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Preface

This volume contains the proceedings of the 9th Workshop on Hybrid Sys-
tems: Computation and Control (HSCC 2006) held in Santa Barbara, California,
during March 29-31, 2006. The annual workshop on hybrid systems attracts
researchers from academia and industry interested in modeling, analysis, and
implementation of dynamic and reactive systems involving both discrete and
continuous behaviors. The previous workshops in the HSCC series were held
in Berkeley, USA (1998), Nijmegen, The Netherlands (1999), Pittsburgh, USA
(2000), Rome, Italy (2001), Palo Alto, USA (2002), Prague, Czech Republic
(2003), Philadelphia, USA (2004), and Zurich, Switzerland (2005). This year’s
HSCC was organized in cooperation with the Special Interest Group on Embed-
ded Systems (SIGBED) of ACM.

The program consisted of 3 invited talks and 39 regular papers selected from
79 regular submissions. The program covered topics such as tools for analysis
and verification, control and optimization, modeling, engineering applications,
and emerging directions in programming languages support and implementation.

We would like to thank the Program Committee members and reviewers for
an excellent job of evaluating the submissions and participating in the online
Program Committee discussions. Special thanks also go to Francesco Bullo (Uni-
versity of California at Santa Barbara), P. R. Kumar (University of Illinois at
Urbana-Champaign), and John Rushby (SRI International) for their participa-
tion as invited speakers. We are also grateful to the Steering Committee for their
helpful guidance and support. Many other people worked hard to make HSCC
2006 a success and we acknowledge their help. We would like to express our grat-
itude to the US National Science Foundation, SRI International, and University
of California at Santa Barbara for their financial support.

March 2006 João Hespanha
Ashish Tiwari

Program Chair
HSCC 2006
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Motion Coordination for Multi-agent Networks

Francesco Bullo

Mechanical Engineering,
University of California at Santa Barbara,

http://motion.mee.ucsb.edu

Abstract. Motion coordination is an extraordinary phenomenon in bi-
ological systems, such as schools of fishes, as well as a remarkable tool
for man-made groups of robotic vehicles and active sensors. Even though
each individual agent has no global knowledge of the system, complex
coordinated behaviors emerge from local interactions. In this talk I will
describe some recently-developed models, algorithms and tools for mo-
tion coordination. Building on concepts from distributed computation,
robotics and control theory, I investigate notions of robotic network,
joint control and communication laws, and time complexity of coordi-
nation tasks. From an algorithmic viewpoint, the focus is on various
coordination problems such as network deployment over a given region,
rendezvous at a point, and vehicle routing. The proposed control and
communication laws achieve the various coordination objectives requir-
ing only spatially-distributed information.

J Hespanha and A. Tiwari (Eds.): HSCC 2006, LNCS 3927, p. 1, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
.



Towards a Third Generation of Control Systems

P.R. Kumar

Department of Electrical and Computer Engineering,
University of Illinois, Urbana-Champaign

Abstract. The first generation of control systems can be regarded as
analog control and the second generation as digital control. Over the past
three decades since the advent of digital control, there have been great
technological advances in computing hardware and software as well as in
networking. We are therefore at the cusp of a third generation of control
systems which consist of sensors and actuators connected by shared wired
or wireless networks, and involving powerful computational nodes as well
as software services.

How does one facilitate the proliferation of such next generation con-
trol systems? We argue that it is important to develop the appropriate
abstractions and a matching architecture for the (re)convergence of con-
trol with communication and computation. We propose an abstraction
of virtual collocation to be manufactured by the supporting middleware,
and a principle of local temporal autonomy for enhancing reliability. We
provide an overview of efforts in the Convergence Laboratory at the Uni-
versity of Illinois.

J Hespanha and A. Tiwari (Eds.): HSCC 2006, LNCS 3927, p. 2, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
.



Hybrid Systems—And Everything Else�

John Rushby

Computer Science Laboratory,
SRI International,

333 Ravenswood Avenue,
Menlo Park, CA 94025, USA

Abstract. Hybrid systems are at the core of most embedded and many
other kinds of systems; formal methods for analysis of hybrid systems
have made remarkable progress in the last decade and thus provide a
strong foundation for assurance in the system core.

But there are many systems issues that interact with the hybrid sys-
tems core and complicate the overall system design and its assurance
case. These include real time and fault tolerance, interaction with human
operators, and the relationship between verification and certification.

For example, fault tolerance demands multiple redundant sensors,
which are themselves prone to faults and inaccuracy, and whose preci-
sion degrades as real time progresses from the moment when the sample
was taken to that when it is used. Fault tolerance generally also requires
multiple independent channels of computation and this raises issues of
their synchronization and coordination.

There are two broad classes of methods for dealing with these com-
bined issues: one uses architectural means to separate them, so we can
reason separately about hybrid control and fault tolerance, for example;
the other integrates them, so that a single method is used to reason, for
example, about real time and fault tolerance. I decribe some of these
methods and sketch some topics for further research.

In the larger systems context, the embedded core may be managed
by a planning and execution system that uses AI techniques, and/or by
a human operator. Both of these may have an imperfect model of the
system and incomplete knowledge of its internal state. I outline these
topics and some of the interesting research opportunities therein.

Finally, many of the systems we consider have the potential to do harm,
and thus raise concern for informal or regulated certification. I outline re-
cent developments in this area and their connection to verification.

The rich relationship between hybrid systems and everything else sug-
gests a need to reason cooperatively across multiple domains. I sketch a
proposal for “an evidential tool bus” to facilitate this.

� This work was supported by SRI International.

J Hespanha and A. Tiwari (Eds.): HSCC 2006, LNCS 3927, p. 3, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
.



Behavioural Approximations for Restricted
Linear Differential Hybrid Automata

Manindra Agrawal1,�, Frank Stephan2,��, P.S. Thiagarajan3, and Shaofa Yang3

1 Department of Computer Science and Engineering,
Indian Institute of Technology, Kanpur, India

manindra@cse.iitk.ac.in
2 School of Computing and Department of Mathematics,

National University of Singapore (NUS), Singapore
fstephan@comp.nus.edu.sg

3 School of Computing,
National University of Singapore, Singapore

{thiagu, yangsf}@comp.nus.edu.sg

Abstract. We show the regularity of the discrete time behaviour of hy-
brid automata in which the rates of continuous variables are governed by
linear differential operators in a diagonal form and in which the values of
the continuous variables can be observed only with finite precision. We
do not demand resetting of the values of the continuous variables during
mode changes. We can cope with polynomial guards and we can tolerate
bounded delays both in sampling the values of the continuous variables
and in effecting changes in their rates required by mode switchings. We
also show that if the rates are governed by diagonalizable linear differen-
tial operators with rational eigenvalues and there is no delay in effecting
rate changes, the discrete time behaviour of the hybrid automaton is re-
cursive. However, the control state reachability problem in this setting
is undecidable.

1 Introduction

We study the behaviour of hybrid automata in which the rate functions associ-
ated with the modes are restricted linear differential equations. We show that if
the values of the continuous variables can be observed only with finite precision,
then the discrete time behaviour of a large class of hybrid automata is regular.
Further, these behaviours can be effectively computed. The key feature of our
setting is that we do not demand that the value of a continuous variable be
reset during a mode switch. Our results suggest that focusing on discrete time
semantics and the realistic assumption of finite precision can lead to effective
analysis methods for hybrid automata whose continuous dynamics is governed
by (linear) differential equations.

� Part of this work was done when the author was a Distinguished Visiting Professor
at NUS.

�� Supported in part by NUS grant R252–000–212–112.

J Hespanha and A. Tiwari (Eds.): HSCC 2006, LNCS 3927, pp. 4–18, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
.



Restricted Linear Differential Hybrid Automata 5

In the related literature, one often assumes that the rates are piecewise con-
stant. This is so, at least in settings where one obtains positive verification
results [7, 10, 13]. Even here, since the mode changes can take place over con-
tinuous time (a transition may be taken any time its guard is satisfied), basic
verification problems often become undecidable [4, 9]. In contrast, it was shown
in [8] that one can go much further in the positive direction for piecewise constant
rate automata, if one defines their behaviour using a discrete time semantics. As
argued in [8], if the hybrid automaton models the closed loop system consisting
of a digital controller interacting with a continuous plant, then the discrete time
semantics is the natural one; the controller will observe via sensors, the states
of the plant and effect, via actuators, changes in the plant dynamics at discrete
time points determined by its internal clock. In [2] it was shown that, in this
setting, one can in fact tolerate bounded delays both in the observation of the
plant states and in effecting changes in the plant dynamics.

Both in [8] and [2], the transition guards were required to be rectangular;
conjunctions of simple linear inequalities involving just one variable. We showed
in [3] that one can cope with much more expressive guards—essentially all ef-
fectively computable guards—if one assumes that the values of the continuous
variables can be observed only with finite precision. In many settings including
the one where the hybrid automaton models a digital controller interacting with
a continuous plant, this is a natural assumption.

Here our goal is to show that the combination of discrete time semantics and
finite precision can not only allow more expressive guards but can also take us
beyond piecewise constant rates. One of our main results is that under finite
precision, the discrete time behaviour of a hybrid automaton is regular and
effectively computable even when the rate of a continuous variable in the control
state q is governed by an equation of the form dx/dt = cq · x(t). This holds even
though we do not demand resetting of the values of the continuous variables
during mode changes. Further, we can cope with arbitrary computable guards.
We can also tolerate bounded delays in sampling the values of the continuous
variables and in effecting changes in their rates required by mode switchings.

We also show that the discrete time behaviours of hybrid automata in a
much richer setting are recursive. Specifically, the rates of continuous variables
at the control state q are governed by a linear differential operator represented
by a diagonalizable ([11]) matrix Aq with rational eigenvalues. Further, we al-
low polynomial guards but do not permit delays in effecting rates changes. A
consequence of this positive result is that one can effectively solve a variety of
bounded model checking problems [6] in this rich setting. However, we show that
the control state reachability problem is undecidable for this class of automata;
this is so, even if the guards are restricted to be rectangular.

The proofs of the above two results seem to suggest that one can hope to
go much further if update delays are allowed. This will prevent the hybrid au-
tomaton from retaining an unbounded amount of information as its dynamics
evolves. The key obstacle is that we do not know at present how to take advan-
tage of this observation since we lack suitable techniques for tracking rational
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approximations of exponential terms with real exponents. In this connection,
the fundamental theory presented in [5] may turn to be important. We also feel
that the techniques presented in [14, 15] will turn out to be useful even though
they are developed under a regime where continuous variables are reset during
mode changes.

In the next two sections, we define our hybrid automata and develop their
discrete time semantics. In section 4, we present our main result concerning
hybrid automata whose discrete time behaviours are regular. In section 5, we
study a subclass of hybrid automata whose discrete time behaviours are recursive
but whose control state reachability problem is undecidable.

2 Hybrid Automata Preliminaries

Through the rest of the paper, we fix a positive integer n and one function symbol
xi for each i in {1, 2, . . . , n}. We will often refer to the xi’s as “continuous”
variables and will view each xi as a function (of time) xi : IR≥0 → IR with IR
being the set of reals and IR≥0, the set of non-negative reals. We let Q denote
the set of rationals.

The transitions of the hybrid automaton will have associated guards that
need to be satisfied by the values of the continuous variables for the tran-
sitions to be enabled. A polynomial constraint is an inequality of the form
p(x1, x2, . . . , xn) ≤ 0 or p(x1, x2, . . . , xn) < 0 where p(x1, x2, . . . , xn) is a polyno-
mial over x1, x2, . . . , xn with integer coefficients. A polynomial guard is a finite
conjunction of polynomial constraints. We let Grd denote the set of polynomial
guards. Unless otherwise stated, by a guard we will mean a polynomial guard.

A valuation V is just a member of IRn. It will be viewed as prescribing the
value V (i) to each variable xi. The notion of a valuation satisfying a guard is
defined in the obvious way.

A lazy finite-precision differential hybrid automaton is a structure
A = (Q, qin , Vin ,Delay , ε, {ρq}q∈Q, {γmin , γmax},−→) where:

– Q is a finite set of control states with q, q′ ranging over Q.
– qin ∈ Q is the initial control state.
– Vin ∈ Qn is the initial valuation.
– Delay = {δ0

ob , δ
1
ob , δ

0
up, δ

1
up} ⊆ Q is the set of delay parameters such that

0 ≤ δ0
up ≤ δ1

up < δ0
ob ≤ δ1

ob ≤ 1.
– ε, a positive rational, is the precision of measurement.
– {ρq}q∈Q is a family of rate functions associated with the control states.

In the general case, ρq will be of the form ẋ = Aqx + bq where Aq is an
n × n matrix with rational entries and bq ∈ Qn. For each i in {1, 2, . . . , n}
this specifies the rate function of xi as the differential equation dxi/dt =∑n

j=1 Aq(i, j) · xj(t) + bq(i) where Aq(i, j) is the (i, j)-th entry of Aq.
– γmin , γmax ∈ Q are range parameters such that 0 < γmin < γmax .
– −→ ⊆ Q×Grd×Q is a transition relation such that q �= q′ for every (q, g, q′)

in −→.
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We shall study the discrete time behaviour of our automata. At each time
instant Tk, the automaton receives a measurement regarding the current values
of the xi’s. However, the value of xi that is observed at time Tk is the value that
held at some time t ∈ [Tk−1 + δ0

ob , Tk−1 + δ1
ob ]. Further, the value is observed

with a precision of ε. More specifically, any value of xi in the half-open interval
[(m − 1/2)ε, (m + 1/2)ε) is reported as mε where m is an integer. For a real
number v, we will denote this rounded-off value relative to ε as 〈v〉ε and often
just write 〈v〉. More sophisticated rounding-off functions can be considered as
in [3] but for ease of presentation, we shall not do so here.

If at Tk, the automaton is in control state q and the observed n-tuple of
values (〈v1〉, 〈v2〉, . . . , 〈vn〉) satisfies the guard g with (q, g, q′) being a transition,
then the automaton may perform this transition instantaneously and move to
the control state q′. As a result, the xi’s will cease to evolve according to the
rate function ρq and instead start evolving according to the rate function ρq′ .
However, for each xi, this change in the rate of evolution of each xi will not
kick in at Tk but at some time t ∈ [Tk + δ0

up, Tk + δ1
up]. In this sense, both the

sensing of the xi’s and the rate changes associated with mode switching take
place in a lazy fashion but with bounded delays. We expect δ0

ob , δ
1
ob to be close

to 1 and δ0
up, δ

1
up to be close to 0 while both δ1

ob − δ0
ob and δ1

up − δ0
up to be small

compared to 1.
In the idealized setting, the value observed at Tk is the value that holds at

exactly Tk (δ0
ob = 1 = δ1

ob) and the change in rates due to mode switching would
kick in immediately (δ0

up = 0 = δ1
up). In addition, assuming perfect precision

would boil down to setting 〈v〉 = v for every real number v.
The parameters γmin , γmax specify the relevant range of the absolute values

of the continuous variables. The automaton gets stuck if |xi| gets outside the
allowed range [γmin , γmax ] for any i. Loosely speaking, the γmax bound is used
to restrict the amount of information carried by a continuous variable evolving
at a (positive or negative) constant rate (ẋ = c) and a continuous variable
increasing at an exponential rate (ẋ = c · x(t), c > 0). On the other hand, γmin
is used to restrict the amount of information carried by a continuous variable
decreasing at an exponential rate (ẋ = c ·x(t), c < 0). We note that our setting is
quite different from the classical continuous setting. Hence the standard control
objective of driving a system variable to 0 is not relevant here and thus does not
pose a serious limitation.

We will be mainly interested in the setting that each Aq is a diagonal matrix
and in the more general case where each Aq is a diagonalizable matrix having
n distinct rational eigenvalues. In the former setting we show that the control
state sequence languages generated by our hybrid automata are regular and
can be effectively computed provided every continuous variable either evolves
at (possibly different) constant rates in all the control states or at (possibly
different) exponential rates in all the control states. In the latter setting, with
the additional restriction that there are no delays associated with rates update
(δ0

up = 0 = δ1
up), we show that the control state sequence languages generated
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by our hybrid automata are recursive, but the control state reachability problem
is undecidable.

3 The Transition System Semantics

Through the rest of this paper we fix a lazy finite-precision differential hybrid
automaton A and assume its associated notations and terminology as defined
in the previous section. We shall often refer to “lazy finite-precision differential
hybrid automata” simply as “hybrid automata”. The behaviour of A will be
defined in terms of an associated transition system. A configuration is a triple
(q, V, q′) where q, q′ are control states and V is a valuation. q is the current control
state, q′ is the control state that held at the previous time instant and V captures
the actual values of the variables at the current time instant. The valuation
V is said to be feasible if γmin ≤ |V (i)| ≤ γmax for every i in {1, 2, . . . , n}.
The configuration (q, V, q′) is feasible iff V is a feasible valuation. The initial
configuration is (qin , Vin , qin) and is assumed to be feasible. We let Conf A denote
the set of configurations. We assume that the unit of time has been fixed at some
suitable level of granularity and that the rate functions {ρq}q∈Q have been scaled
accordingly.

Suppose the automaton A is in the configuration (qk, Vk, q
′
k) at time Tk.

Then one unit of time will be allowed to pass and at time instant Tk+1, the
automaton A will make an instantaneous move by executing a transition or
the silent action τ and move to a configuration (qk+1, Vk+1, q

′
k+1). The silent

action τ will be used to record that no mode change has taken place during
this move. The action μ will be used to record that a transition has been taken
and as a result, a mode change has taken place. As is common, we will collapse
the unit-time-passage followed by an instantaneous transition into one “time-
abstract” transition labelled by τ or μ. We wish to formalize the transition
relation =⇒⊆ Conf A × {τ, μ} × Conf A. For doing so, we note that given a
matrix A ∈ Qn×n, a vector b ∈ Qn, a positive real T and a valuation V , we
can find a unique family of curves (see [11]) {xi}1≤i≤n with xi : [0, T ] → IR
such that for every i we have xi(0) = V (i) and for every t ∈ [0, T ] we have
dxi/dt =

∑n
j=1 Aq(i, j) ·xj(t)+ bq(i). In what follows, we shall denote the valua-

tion (x1(T ), x2(T ), . . . , xn(T )) thus obtained as Val(A, b, T, V ) without explicitly
displaying the curves xi’s.

Let (q, V, q′), (q1, V 1, q1′) be in Conf A. Suppose there exist reals tupi , i =
1, 2, . . . , n, in [δ0

up , δ
1
up] such that V 1 is related to V as follows: Let tupπ1

≤ tupπ2
≤

· · · ≤ tupπn
with π1, π2, . . . , πn being a permutation of the indices 1, 2, . . . , n. Then

there exist valuations Ui, i = 1, 2, . . . , n, such that U1 = Val(Aq′ , bq′ , tupπ1
, V );

Ui+1 = Val(Ai, bi, t
up
πi+1

− tupπi
, Ui) for i = 1, 2, . . . , n − 1; and V 1 = Val(An, bn,

1 − tupπn
, Un), where for i = 1, 2, . . . , n, the matrix Ai ∈ Qn×n and the vector

bi ∈ Qn are given by: if j ∈ {π1, π2, . . . , πi}, then the j-th row of Ai (bi) equals
the j-th row of Aq (bq); otherwise the j-th row of Ai (bi) equals the j-th row of
Aq′ (bq′).
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The intuition is that at time Tk+1 the continuous variables have valuation V 1
while at time Tk, the continuous variables have valuation V and A resides at
control state q. Further, at time Tk−1, the automaton was at control state q′.
For each i, the real number Tk + tupi is the time at which xi ceases to evolve
at the rate dxi/dt =

∑n
j=1 Aq′(i, j) · xj + bq′(i) and starts to evolve at the rate

dxi/dt =
∑n

j=1 Aq(i, j) · xj + bq(i).
Now we state the condition that =⇒ must fulfil. Let (q, V, q′), (q1, V 1, q1′) be

in Conf A. Suppose there exist reals tupi , i = 1, 2, . . . , n, in [δ0
up, δ

1
up] such that

V 1 is related to V as dictated above.

– Suppose q1 = q1′ = q. Then (q, V, q′) τ=⇒ (q1, V 1, q1′).
– Suppose q1′ = q and there exists a transition (q, g, q1) in −→ and reals

tobi , i = 1, 2, . . . , n, in [δ0
ob , δ

1
ob ] such that (〈w1〉, 〈w2〉, . . . , 〈wn〉) satisfies g,

where wi is the i-th component of the valuation Val(An, bn, t
ob
i − tupπn

, Un)
for i = 1, 2, . . . , n. Then (q, V, q′)

μ
=⇒A (q1, V 1, q1′).

As might be expected, the real Tk + tobi is the time at which the value of xi was
observed for each i = 1, 2, . . . , n.

Basically there are four possible transition types depending on whether q = q′

and whether τ or μ is the action label. For convenience, we have collapsed these
four possibilities into two cases according to τ or μ being the action label, and
in each case have handled the subcases q = q′ and q �= q′ simultaneously.

Now define the transition system TSA = (RCA, (qin , Vin , qin), {τ, μ},=⇒A)
via:

– RCA, the set of reachable configurations of A is the least subset of Conf A
that contains the initial configuration (qin , Vin , qin) and satisfies: Suppose
(q, V, q′) is in RCA and is a feasible configuration. Suppose further,
(q, V, q′) α=⇒ (q1, V 1, q1′) for some α ∈ {τ, μ}. Then (q1, V 1, q1′) ∈ RCA.

– =⇒A is =⇒ restricted to RCA × {τ, μ} × RCA.

We note that a reachable configuration can be the source of a transition
in TSA only if it is feasible. Thus infeasible reachable configurations will be
deadlocked in TSA. A run of TSA is a finite sequence of the form

σ = (q0, V0, q
′
0) α0 (q1, V1, q

′
1) α1 (q2, V2, q

′
2) . . . (q�, V�, q

′
�)

where (q0, V0, q
′
0) is the initial configuration and (qk, Vk, q

′
k) αk=⇒A (qk+1, Vk+1,

q′k+1) for k = 0, 1, . . . , 
−1. The state sequence induced by the run σ above is the
sequence q0q1 . . . q�. We define the state sequence language of A denoted L(A)
to be the set of state sequences induced by runs of TSA.

4 Diagonal Rate Matrices

We first study the setting where each Aq is a diagonal matrix and where every
continuous variable either evolves at constant rates in all the modes or at expo-
nential rates in all the modes. It turns out that the language of state sequences
in this setting is always regular. More precisely:
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Theorem 1. Let A be a lazy finite-precision differential hybrid automaton such
that Aq is a diagonal matrix for every control state q. Suppose there exists a fixed
partition {DIF ,CON } of the indices {1, 2, . . . , n} such that for each control state
q, ẋi = Aq(i, i) ·xi if i ∈ DIF and ẋi = bq(i) if i ∈ CON . Then L(A) is a regular
subset of Q�. Further, a finite state automaton accepting L(A) can be effectively
computed from A.

Proof of Theorem 1: The basic strategy is to generalize the proof of the main
result in [3]. As before, the proof consists of two major steps. The first one
is to quotient the set of reachable configurations RCA into a finite number of
equivalence classes using a suitably chosen equivalence relation ≈. The crucial
property required of ≈ is that it should be a congruence with respect to the
transition relation of TSA. In other words, if (q1, V 1, q1′) ≈ (q2, V 2, q2′) and
(q1, V 1, q1′) α=⇒A (q3, V 3, q3′), then we require that there exists a configura-
tion (q4, V 4, q4′) such that (q2, V 2, q2′) α=⇒A (q4, V 4, q4′) and (q3, V 3, q3′) ≈
(q4, V 4, q4′). The second step is to show that we can effectively compute these
equivalence classes and a transition relation over them such that the resulting
finite state automaton generates the language of state sequences.

For notational convenience, we assume Vin(i) > 0 for every i ∈ DIF . It will
become clear that this involves no loss of generality. The key consequence of this
assumption is that in any reachable configuration, the value of xi for i ∈ DIF
will be positive.

We also assume without loss of generality that for each guard g in A, the
valuation V satisfies g only if V is feasible.

Let Δ be the largest positive rational number that integrally divides every
number in the set of rational numbers {δ0

ob , δ
1
ob , δ

0
up, δ

1
up, 1}. Define Γ to be the

largest rational which integrally divides every number in the finite set of rational
numbers {Aq(i, i) · Δ | q ∈ Q, i ∈ DIF}

⋃
{bq(j) · Δ | q ∈ Q, j ∈ CON }

⋃
{γmin , γmax}

⋃
{ε/2}.

Let ZZ denote the set of integers. Define Θcon to be the finite set of rational
numbers {hΓ ∈ [−γmax , γmax ] | h ∈ ZZ}. In other words, Θcon contains integral
multiples of Γ in the interval [−γmax , γmax ].

Let ΘIR be the set of irrational numbers {ln((m + 1/2)ε) | m ∈ ZZ, 〈γmin〉 ≤
mε ≤ 〈γmax 〉}

⋃
{lnγmin , ln γmax}. Define Θdif to be the finite set of real num-

bers {hΓ ∈ [ln γmin , ln γmax ] | h ∈ ZZ}
⋃
{
Γ + θ ∈ [ln γmin , ln γmax ] | 
 ∈

ZZ, θ ∈ ΘIR}. In other words, Θdif contains rational numbers of the form hΓ
in the interval [ln γmin , lnγmax ] where h is a (positive) integer, and irrational
numbers of the form 
Γ +θ in the interval [ln γmin , ln γmax ] where 
 is an integer
(that can be positive, zero or negative) and θ is a member of ΘIR.

Loosely speaking, the set Θcon (respectively Θdif ) contains bounds relevant to
the values of continuous variables xi’s for i ∈ CON (respectively i ∈ DIF ). The
points in Θcon (Θdif ) cut the real line into a finite number of segments. We shall
use this segmentation to in turn partition the set of reachable configurations into
finitely many equivalence classes. The simple but key observation that enables
this is, in the (natural) logarithmic scale, exponential rates get represented as
constant rates.
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In this light, let the members of Θdif be {θ1, θ2, . . . , θ|Θdif |} where θ1 < θ2 <
· · · < θ|Θdif |. We define the finite set of intervals Idif = {(−∞, θ1), (θ1, θ2), . . . ,
(θ|Θdif |−1, θ|Θdif |), (θ|Θdif |,∞)}

⋃
{[θi, θi] | i = 1, 2, . . . , |Θdif |}. In the same way,

we define Icon from Θcon .
Let IR+ be the set of positive reals. Define the map ‖·‖dif : IR+ → Idif

via: ‖v‖ = I if ln v ∈ I. Define ‖·‖con : IR → Icon via: ‖v‖ = I if v ∈ I.
Finally we define ‖·‖ : RCA → (Idif ∪ Icon)n by: ‖V ‖ = (I1, I2, . . . , In) where
Ii = ‖V (i)‖dif for i ∈ DIF and Ii = ‖V (i)‖con for i ∈ CON . We can now define
the equivalence relation ≈ ⊆ RCA × RCA by: (q1, V 1, q1′) ≈ (q2, V 2, q2′) iff
q1 = q2, ‖V 1‖ = ‖V 2‖ and q1′ = q2′. The crucial property of ≈ is that it is a
congruence relation with respect to the transition relation =⇒A.

Claim 2. Suppose (q1, V 1, q1′) ≈ (q2, V 2, q2′) and (q1, V 1, q1′) α=⇒A (q3, V 3,
q3′), then there exists a reachable configuration (q4, V 4, q4′) such that
(q2, V 2, q2′) α=⇒A (q4, V 4, q4′) and (q3, V 3, q3′) ≈ (q4, V 4, q4′).

Proof of Claim 2: Clearly q1 = q2 and q1′ = q2′. Set q4 = q3 and q4′ = q3′. We
show that (q2, V 2, q2′) is a feasible configuration and there exists a valuation V 4
such that (q2, V 2, q2′) α=⇒A (q4, V 4, q4′) and ‖V 4‖ = ‖V 3‖.

We first note that the configuration (q2, V 2, q2′) is feasible. Fix an i ∈ DIF .
Since the configuration (q1, V 1, q1′) is feasible, we have ln γmin ≤ lnV 1(i) ≤
ln γmax . Since ln γmin , ln γmax are members of Θdif and ‖V 1(i)‖dif = ‖V 2(i)‖dif ,
we conclude ln γmin ≤ lnV 2(i) ≤ ln γmax and so γmin ≤ |V 2(i)| ≤ γmax . Simi-
larly it is easy to see that γmin ≤ |V 2(i)| ≤ γmax for i ∈ CON .

We show the existence of V 4 by considering two cases according to α = τ or
α = μ.

—Case 1: α = τ
It follows from the definition of TSA that there exist reals tupi ∈ [δ0

up , δ
1
up ],

i = 1, 2, . . . , n, such that lnV 3(i) = lnV 1(i) + Aq′ (i, i) · tupi + Aq(i, i) · (1− tupi )
for i ∈ DIF and V 3(i) = V 1(i) + bq′(i) · tupi + bq(i) · (1 − tupi ) for i ∈ CON . It
suffices to show that there exist reals supi ∈ [δ0

up, δ
1
up ], i = 1, 2, . . . , n, such that

‖V 4‖ = ‖V 3‖, where lnV 4(i) = lnV 2(i) +Aq′(i, i) · supi +Aq(i, i) · (1− supi ) for
i ∈ DIF and V 4(i) = V 2(i) + bq′(i) · supi + bq(i) · (1 − supi ) for i ∈ CON .

In what follows, we will often need to give similar arguments for i ∈ DIF and
i ∈ CON . To avoid repetition, we will omit the latter.

Fix an i ∈ DIF . We show the existence of supi . Assume ‖V 3(i)‖dif = (θ, θ′)
where θ, θ′ ∈ Θdif and Aq′(i, i) > Aq(i, i). It will become clear that other cases
can be similarly handled. For any real u, let Φτ (u) be the condition

∃ tup ∈ IR. δ0
up ≤ tup ≤ δ1

up∧
θ < u + Aq′(i, i) · tup + Aq(i, i) · (1− tup) < θ′ .

It is easy to see that Φτ (u) holds iff η < u < η′ where η = θ − Aq′ (i, i) · δ1
up −

Aq(i, i) · (1 − δ1
up) and η′ = θ′ −Aq′(i, i) · δ0

up −Aq(i, i) · (1− δ0
up).

Since Φτ (ln V 1(i)) holds, we have η < lnV 1(i) < η′. Note that η, η′ are mem-
bers of Θdif (if η, η′ ∈ [ln γmin , ln γmax ]). Applying ‖V 2(i)‖dif = ‖V 1(i)‖dif then
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yields η < lnV 2(i) < η′ and consequently Φτ (lnV 2(i)) holds. This establishes
the existence of supi for i ∈ DIF .
—Case 2: α = μ

As in Case 1, it follows from the definition of TSA that there exist reals
tupi in [δ0

up, δ
1
up], i = 1, 2, . . . , n, such that lnV 3(i) = lnV 1(i) + Aq′ (i, i) · tupi +

Aq(i, i)·(1−tupi ) for i ∈ DIF and V 3(i) = V 1(i)+bq′(i)·tupi +bq(i)·(1−tupi ) for i ∈
CON . Further there exist reals tobi ∈ [δ0

ob , δ
1
ob ], i = 1, 2, . . . , n, and a guard g such

that the following conditions are satisfied: Firstly, (q1, g, q3) ∈ −→. Secondly,
(〈U(1)〉, 〈U(2)〉, . . . , 〈U(n)〉) satisfies g, where U is the valuation with lnU(i) =
lnV 1(i)+Aq′(i, i)·tupi +Aq(i, i)·(tobi −t

up
i ) for i ∈ DIF ; U(i) = V 1(i)+bq′(i)·tupi +

bq(i)·(tobi −t
up
i ) for i ∈ CON . We shall show the existence of reals supi ∈ [δ0

up, δ
1
up ],

sobi ∈ [δ0
ob , δ

1
ob ], i = 1, 2, . . . , n, such that ‖V 4‖ = ‖V 3‖ and ‖U ′‖ = ‖U‖ where

V 4 is the valuation given by lnV 4(i) = lnV 2(i)+Aq′(i, i)·supi +Aq(i, i)·(1−supi )
for i ∈ DIF and V 4(i) = V 2(i)+bq′(i)·supi +bq(i)·(1−supi ) for i ∈ CON . And U ′

is the valuation given by lnU ′(i) = lnV 2(i)+Aq′ (i, i) · supi +Aq(i, i) · (sobi − supi )
for i ∈ DIF and U ′(i) = V 2(i)+bq′(i) ·supi +bq(i) ·(sobi −supi ) for i ∈ CON . First
we argue that the existence of U ′ satisfying ‖U ′‖ = ‖U‖ will guarantee 〈U ′(i)〉 =
〈U(i)〉 for i = 1, 2, . . . , n. This follows from the fact ln((m + 1/2)ε) ∈ Θdif for
integers m with 〈γmin〉 ≤ mε ≤ 〈γmax 〉 and (m + 1/2)ε ∈ Θcon for integers m
with 〈−γmax 〉 ≤ mε ≤ 〈γmax 〉. Thus U ′ also satisfies the guard g since U satisfies
g. So the existence of supi , sobi , i = 1, 2, . . . , n, suffices to establish the claim.

Fix an i ∈ DIF . Assume ‖V 3(i)‖dif = (θ, θ′), ‖U(i)‖dif = (ϑ, ϑ′) where
θ, θ′, ϑ, ϑ′ ∈ Θdif and Aq′(i, i) > Aq(i, i) > 0. Other cases can be similarly
handled. For any real u, let Φμ(u) be the condition

∃ tup ∈ IR. ∃ tob ∈ IR. δ0
up ≤ tup ≤ δ1

up∧
θ < u + Aq′(i, i) · tup + Aq(i, i) · (1− tup) < θ′∧
δ0
ob ≤ tob ≤ δ1

ob∧
ϑ < u + Aq′ (i, i) · tup + Aq(i, i) · (tob − tup) < ϑ′ .

As in Case 1, it is easy to see that Φμ(u) holds iff η < u < η′, where η is the larger
of θ−Aq′(i, i) ·δ1

up−Aq(i, i) · (1−δ1
up) and ϑ−Aq′(i, i) ·δ1

up−Aq(i, i) · (δ1
ob−δ1

up).
On the other hand, η′ is the smaller of θ′−Aq′(i, i) · δ0

up −Aq(i, i) · (1− δ0
up) and

ϑ′−Aq′(i, i) · δ0
up −Aq(i, i) · (δ0

ob − δ0
up). It follows that η, η′ are members of Θdif

(if η, η′ ∈ [ln γmin , ln γmax ]). Thus, as in Case 1, one concludes that Φμ(lnV 2(i))
holds and the existence of supi , sobi for i ∈ DIF is established.

By filling in similar but simpler arguments for i ∈ CON , we can complete the
proof of Claim 2. ��
Having established the claim that ≈ is a congruence with respect to =⇒A, we
now argue that one can effectively construct a finite automaton which accepts
L(A). Clearly, the members of Θdif and Θcon can be effectively represented.
Further, the members of Θdif (Θcon) can be effectively ordered and thus the
finitely many equivalence classes of≈ can be effectively represented. Note that, to
compare two members of Θdif one just needs to determine whether em1 < m2 for
integers m1,m2. This can be done by approximating e sufficiently precisely using
for instance the power series expansion of e. Now construct a finite transition
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system B whose states are the finitely many equivalence classes of ≈. Further,
there is a transition from C1 to C2 with label α iff there exists (q, V, q′) in
C1, (q1, V 1, q1′) in C2 such that (q, V, q′) α=⇒A (q1, V 1, q1′). From the proof
of Claim 2, to determine whether there exists a transition from C1 to C2 with
label α amounts to comparing members of Θdif (and Θcon). Hence the transition
system B can be effectively computed. It is now straightforward to construct
from B a finite state automaton which accepts L(A). This completes the proof
of Theorem 1. ��

It is clear that the proof of Theorem 1 also holds for any effectively computable
language of guards instead of just polynomial guards.

As usual, a variety of verification and controller synthesis problems become
decidable for hybrid automata satisfying the conditions set out in Theorem 1
above. One basic verification problem in this context is the control state reacha-
bility problem; to decide, for a designated state qf , whether there exists a state
sequence whose last letter is qf .

5 Diagonalizable Rate Matrices

The regularity result of the previous section requires the matrices Aq to be di-
agonal. A natural way to relax this requirement is just to demand that every
Aq be diagonalizable [11]. We recall that the n × n matrix A is diagonalizable
in case there is a basis of eigenvectors {f1, f2, . . . , fn} so that under the asso-
ciated coordinate transformation, A can be represented as the diagonal matrix
diag(λ1, λ2, . . . , λn) with the λi’s being the eigenvalues of A. Given our concern
for effective computations, it then seems reasonable to demand that, in addition
to being diagonalizable, every matrix Aq should also have (n distinct) rational
eigenvalues.

We further restrict ourselves to the case that there is no delay associated with
the update of rates of the continuous variables (δ0

up = 0 = δ1
up). This is due to the

fact at present we don’t know how to deal with differential equations of the form
ẋ = Ax+b. One will have to deal with such equations if update delays are present
(δ0

up < δ1
up). This is due to the fact that the rate changes of the continuous

variables may kick in at different times in the interval [Tk + δ0
up, Tk + δ1

up].
Assuming there are no update delays we first show that the state sequence

language of every lazy finite-precision differential hybrid automaton is recursive.
This result may be intuitively obvious it still requires an argument. This is so,
since the decidability of the first order theory of the reals extended with the
exponential operator is still open [17] and the results developed in [14] crucially
exploit the resetting property. We then show that the control state reachability
problem is undecidable in this setting.

Theorem 3. Suppose A is a lazy finite-precision differential hybrid such that
δ0
up = 0 = δ1

up and for every control state q, Aq is a diagonalizable matrix having
n distinct rational eigenvalues. Then L(A) is a recursive subset of Q�.
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Proof. First we note that the first order theory of the reals augmented with
the constant e is decidable. For convenience we shall denote this augmented
structure as (IR, +, ·, <, 0, 1, e) but emphasize that e, the base of the natural
logarithm is being used as a constant and not as an operator. To see that the
augmented theory is decidable, we observe that one can effectively determine
whether p(e) < 0 for any given polynomial p(e) with integer coefficients. Since
e = 1 +

∑∞
h=1 1/h!, we have

1 +
k∑

h=1

1
h!

< e < 1 +
k∑

h=1

1
h!

+
∞∑

h=k+1

1
kh−k

= 1 +
k∑

h=1

1
h!

+
1

k − 1
.

Note that the polynomial p(u) with one variable has finitely many real roots.
Hence for sufficiently large k, p(u) has no root in the interval [1 +

∑k
h=1 1/h!,

1 +
∑k

h=1 1/h! + 1/(k − 1)] and so p(e) has the same sign as p(1 +
∑k

h=1 1/h!).
Clearly such a k can be effectively found. Now, given a sentence ϕ in
(IR, +, ·, <, 0, 1, e), one can apply Tarski’s quantifier elimination algorithm [16]
to obtain a quantifier-free sentence ϕ′ such that ϕ is true iff ϕ′ is true, and ϕ′ is
a boolean combination of formulas of the form p(e) < 0.

Next we show that given control states q, q′, q1, q1′ and α ∈ {τ, μ}, one can
construct in (IR, +, ·, <, 0, 1, e) a formula Φq,q′,q1,q1′,α(V, V 1) with free variables
V (i), V 1(i), i = 1, 2, . . . , n, that asserts (q, V, q′) α=⇒A (q1, V 1, q1′). In what
follows, we fix q, q′, q1, q1′ ∈ Q and α ∈ {τ, μ}.

Clearly we can effectively compute the rational eigenvalues λi, i = 1, 2, . . . , n,
of Aq, and for each i = 1, 2, . . . , n find a rational eigenvector fi ∈ Qn corre-
sponding to λi (i.e. Aq · fi = λi · fi). Let F = (f1 f2 . . . fn) be the matrix in
Qn×n whose i-th column is fi for i = 1, 2, . . . , n. From [11] it is easy to see that
for a real T ∈ [0, 1], Val(Aq, bq, T, V ) = H(eT ) where H : IR→ IRn is given by

H(u) = F diag(uλ1 , uλ2 , . . . , uλn) F−1(V + A−1
q bq)−A−1

q bq .

It is easy to see that for α = τ , the formula Φq,q′,q1,q1′,α(V, V 1) can be con-
structed. The only point to note is that constants of the form er where r ∈ Q
are definable in (IR, +, ·, <, 0, 1, e). The case α = μ will follow from two obser-
vations that we now outline.

Let (q, V, q′), (q1, V 1, q1′) be reachable configurations of A such that
(q, V, q′)

μ
=⇒A (q1, V 1, q1′). It follows from the definition of TSA that

(q, V, q′)
μ

=⇒A (q1, V 1, q1′) iff V 1 = Val(Aq, bq, 1, V ) and there exist reals tobi

in [δ0
ob , δ

1
ob ], i = 1, 2, . . . , n, and a guard g such that (q, g, q1) is a transition

in −→. Further, (〈w1〉, 〈w2〉, . . . , 〈wn〉) satisfies g, where wi is the i-th compo-
nent of Val(Aq, bq, t

ob
i , V ) for i = 1, 2, . . . , n. Firstly we note that the function

t ∈ [δ0
ob , δ

1
ob ] → et ∈ [eδ0

ob , eδ1
ob ] is continuous, increasing and onto. Thus there

exist reals tobi , i = 1, 2, . . . , n, satisfying the desired condition iff there exist reals
ui ∈ [eδ0

ob , eδ1
ob ], i = 1, 2, . . . , n, such that wi is the i-th component of H(ui) for

each i = 1, 2, . . . , n.
Secondly, we note that −γmax ≤ wi ≤ γmax for every i = 1, 2, . . . , n. For

a guard g in A, let Valuations(g) be the finite set of valuations given by:
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(v1, v2, . . . , vn) is in Valuations(g) iff for each i, vi = miε where mi is an in-
teger with 〈−γmax 〉 ≤ miε ≤ 〈γmax 〉, and (v1, v2, . . . , vn) satisfies g. It follows
that (w1, w2, . . . , wn) satisfies g iff (〈w1〉, 〈w2〉, . . . , 〈wn〉) is in Valuations(g).

Putting together the above two observations, it is now clear how the formula
Φq,q′,q1,q1′,μ(V, V 1) can be constructed. It is then also straightforward to see that
given a state sequence q0q1 . . . q� one can construct a sentence Φq0q1...q�

such that
Φq0q1...q�

is true iff q0q1 . . . q� is in L(A). ��

Theorem 3 implies that one can in principle solve bounded model checking prob-
lems [6] for the class of hybrid automata satisfying the conditions set out in the
statement of the theorem. The next result shows that one can not hope to do
much better in this setting.

Theorem 4. There is no effective procedure which can, given a lazy finite-
precision differential hybrid automaton A satisfying the restrictions stated in
Theorem 3 and a control state qf of A, determine whether qf is reachable in A.
In other words, whether there exists a reachable configuration (q, V, q′) of A such
that q = qf .

Proof. We shall reduce the halting problem of two-counter automata ([12]) to
the control state reachability problem of the class of hybrid automata stated in
the theorem.

Let C = (S, sin , shalt ,�) be a two-counter automaton where S is a finite
set of states, sin ∈ S the initial state, shalt ∈ S the halting state and � ⊆
S × {ZERO ,POS}2 × {INC ,DEC}2 × S the instruction table. The instruction
(s,O1, O2, α1, α2, s

′) indicates that at state s, if the sign of the integer stored in
counter i is Oi then C can perform action αi (increment or decrement) on counter
i and move to state s′. For example, the instruction (s,ZERO ,POS , INC ,DEC ,
s′) specifies that at state s, if counter 1 is zero and counter 2 is positive, then
C can increment counter 1, decrement counter 2 and move to state s′. The
semantics of C is defined in the obvious way.

In what follows, we construct a lazy finite-precision differential hybrid au-
tomaton A = (Q, qin , Vin , {δ0

ob, δ
1
ob , δ

0
up, δ

1
up}, ε, {ρq}q∈Q, {γmin , γmax},−→) over

continuous variables x1, . . . , xn such that δ0
up = 0 = δ1

up and every ρq is of the
form ẋ = Aqx+bq, where Aq is a diagonalizable matrix having n distinct rational
eigenvalues. Further, a designated control state qf ∈ Q is reachable in A iff the
halting state shalt ∈ S is reachable in C. In fact, we will construct {ρq}q∈Q in
such a way that every Aq is a diagonal matrix.

We set n = 3 and hence A will be over x1, x2, x3. We first outline the construc-
tion of Q, qin , Vin , {ρq}q∈Q,−→ and later discuss the choice of the parameters
δ0
ob , δ

1
ob , ε, γmin , γmax .

The set of control states Q is S
⋃
{s�

ξ, s
��
ξ | ξ ∈ �} where for ξ = (s,O1, O2,

α1, α2, s
′) in �, s�

ξ = (s,O1, O2, α1, α2, s
′, �) and s��

ξ = (s,O1, O2, α1, α2, s
′, ��).

Intuitively, the continuous variable x1 (x2) will represent values of counter 1 (2).
A counter having value h will be represented by the corresponding continuous
variable taking the value 1+ e−1 + e−2 + · · ·+ e−h. In particular, a counter with
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value zero will be represented by the corresponding continuous variable taking
the value 1.

Suppose at time Tk, the hybrid automaton A is at control state s and wants
to “execute” the instruction (s,O1, O2, α1, α2, s

′). This is to be done by moving
first to (s,O1, O2, α1, α2, s

′, �) at time Tk+1, and then to (s,O1, O2, α1, α2, s
′, ��)

at exactly time Tk+2, and finally to land at s′ at exactly time Tk+3. In this
process, the variable x3 will be used to control that A “stays” for exactly one
time unit at each of (s,O1, O2, α1, α2, s

′, �), (s,O1, O2, α1, α2, s
′, ��).

The initial control state is sin . The initial valuation is (1, 1, 1).
The rate functions are as follows. For s ∈ S, we set ρs to be ẋ1 = 0 = ẋ2 = ẋ3.

Suppose (s,O1, O2, α1, α2, s
′) ∈� is an instruction of C and step ∈ {�, ��}, then

the rate function of (s,O1, O2, α1, α2, s
′, step) is: ẋ1 = F step

α1
(x1), ẋ2 = F step

α2
(x2),

ẋ3 = Hstep(x3) where:

– F �
INC (xi) = −xi and F ��

INC (xi) = 1 for i = 1, 2.
– F �

DEC (xi) = −1 and F ��
DEC (xi) = xi for i = 1, 2.

– H�(x3) = 1 and H��(x3) = −1.

The transition relation −→ of A is
⋃

ξ∈� TRξ, where for each ξ = (s,O1, O2,
α1, α2, s

′) in �, the members of TRξ are

(s, gs
ξ , (s,O1, O2, α1, α2, s

′, �)) ,

((s,O1, O2, α1, α2, s
′, �), g�

ξ, (s,O1, O2, α1, α2, s
′, ��)) ,

((s,O1, O2, α1, α2, s
′, ��), g��

ξ , s′) ,

with the guards gs
ξ , g

�
ξ, g

��
ξ being specified as follows. The guard gs

ξ is ΦO1(x1)∧
ΦO2(x2) where ΦZERO (xi) is xi ≤ 1 and ΦPOS (xi) is xi > 1 for i = 1, 2. The
guard g�

ξ is x3 ≤ 2 and g��
ξ is x3 ≥ 1.

It remains to choose the parameters δ0
ob , δ

1
ob , ε, γmin , γmax appropriately. Re-

call that a valuation (v1, v2, . . . , vn) satisfies a polynomial constraint p(x1, x2,
. . . , xn) < 0 iff p(〈v1〉ε, 〈v2〉ε, . . . , 〈vn〉ε) < 0. Thus the main technicality is to
ensure that the guards are “stable” even with finite precision measurement of
values. The only restriction we need for the choice of δ0

ob , δ
1
ob , ε, γmin , γmax is

that ε integrally divides every member of {1, δ0
ob, δ

1
ob}, 〈1 + e−1〉ε > 1, γmin ≤ 1,

γmax ≥ 2. We emphasize that we need not demand δ0
ob = 1 = δ1

ob .
It is now straightforward to establish that the halting state shalt is reachable

in the two-counter automaton C iff the control state shalt is reachable in the
hybrid automaton A. ��

We note that the above proof shows that the undecidability result goes through
even if we restrict ourselves to just rectangular guards. This is not surprising
since we have the undecidability result of [10]. From the above proof, it is also
easy to construct a lazy finite-precision hybrid automaton A1 satisfying the
conditions in Theorem 4 such that L(A1) is not regular. For example, let C1
be the two-counter automaton ({sDEC , sINC , shalt}, sDEC , shalt ,�) where the
members of � are: (sDEC ,ZERO ,ZERO , INC , INC , sINC ), (sINC ,POS ,POS ,
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INC , INC , sINC ), (sINC ,POS ,POS ,DEC ,DEC , sDEC ), (sDEC ,POS ,POS ,
DEC ,DEC , sDEC ). Let A1 be the hybrid automaton constructed from C1 as
in the proof of Theorem 4. It is easy to show that L(A1) is not regular.

6 Summary

We have shown here that the twin features of discrete time semantics and fi-
nite precision can be used to cope with hybrid automata whose dynamics are
governed by restricted linear differential operators and whose transitions have
polynomial guards. It is easy to show (see [1]) that each of our results, namely
Theorem 1, 3, 4, also holds if the combination of finite precision and polynomial
guards is replaced by that of perfect precision and rectangular guards.

Our results seem to suggest that once observational and update delays are
included to further reduce the expressive power of these automata, one may be
able to handle much richer continuous dynamics. The key obstacle here is the
lack of means for constructing suitable rational approximations of the continuous
dynamics. Here, the mathematical foundations provided in [5] and the logical
underpinnings developed in [14, 15] promise to be good starting points.
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Abstract. Model checking is a popular algorithmic verification technique for
checking temporal requirements of mathematical models of systems. In this pa-
per, we consider the problem of verifying bounded reachability properties of
stochastic real-time systems modeled as generalized semi-Markov processes
(GSMP). While GSMPs is a rich model for stochastic systems widely used in
performance evaluation, existing model checking algorithms are applicable only
to subclasses such as discrete-time or continuous-time Markov chains. The main
contribution of the paper is an algorithm to compute the probability that a given
GSMP satisfies a property of the form “can the system reach a target before time
T within k discrete events, while staying within a set of safe states”. For this,
we show that the probability density function for the remaining firing times of
different events in a GSMP after k discrete events can be effectively partitioned
into finitely many regions and represented by exponentials and polynomials. We
report on illustrative examples and their analysis using our techniques.

1 Introduction

Probabilistic modeling is commonly used in the design and performance evaluation of
a wide range of real-time systems such as communication protocols and multi-media
systems ([11, 8]). Traditional analysis of probabilistic models involves simulations, and
is used to obtain estimates of quality-of-service metrics such as mean delivery time for
a message. In contrast, formal verification techniques are aimed at checking whether or
not a system model satisfies a functional correctness property such as “every message is
eventually delivered.” Model checking has emerged as a viable method for formal veri-
fication for debugging critical components in industrial settings ([6, 5, 12]). The goal of
probabilistic model checking is to integrate the two approaches so that a probabilistic
model of a real-time system can be algorithmically checked against a specification such
as “every message is delivered within 1ms with probability 0.9.”

Early work on probabilistic model checking considers discrete models such as finite-
state Markov chains or Markov decision processes, and requirements given by temporal
logics or automata, and shows how to algorithmically compute the probability that a
model satisfies the requirement ([19, 7, 10]). More recent work allows modeling using
continuous-time Markov chains (CTMCs), and specifications written in temporal logics

� This research was supported by the US National Science Foundation via grants CCR-0410662
and ITR/SY 0121431.

J Hespanha and A. Tiwari (Eds.): HSCC 2006, LNCS 3927, pp. 19–33, 2006.
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such as CSL and PCTL that allow requirements with time and probability ([3, 15, 16]).
Issues concerning symbolic representation and efficient implementation have also been
studied leading to a number of probabilistic model checkers ([13, 17]). In particular, the
model checker PRISM has been applied to a number of case studies in distributed proto-
cols and embedded systems (see http://www.cs.bham.ac.uk/˜dxp/prism).

In this paper, we consider the probabilistic model checking problem for systems
modeled as Generalized Semi-Markov Processes (GSMPs) ([9, 18, 8]). In our model of
finite-state GSMPs, the system can be in one of the finitely many states, and can have
a finite number of scheduled events. When the event(s) with the least remaining firing
time happens, the state is updated probabilistically, and new events can be scheduled at
times chosen randomly according to distributions described by exponential and polyno-
mial density functions with finitely many discontinuities, which we call expolynomial
region distributions (ERDs). Unlike CTMCs, such distributions need not be memory-
less, and the class of ERDs includes uniform or polynomial distributions over finite
intervals, point distributions over finitely many constant values, and exponentials.

The classical way to analyze GSMP models involves Monte Carlo simulations. In
[1], the authors show how to check qualitative probabilistic properties, that is, whether
a GSMP satisfies a property with probability 0 or 1, and this analysis is based on the
so-called region graph introduced for analysis of non-probabilistic real-time systems
modeled using timed automata [2]. Region graph, however, is not adequate for comput-
ing quantitative probabilistic properties as different configurations in the same region
have different probabilities of satisfaction of properties. In [14], the authors show that
by refining the region graph, one can approximate the satisfaction of quantitative proba-
bilistic properties, while [20] shows that statistical sampling can be adopted to compute
estimates for the model checking problem. The literature on stochastic Petri nets shows
how GSMPs can be approximated by Markovian models [8]. In this paper, we show
that if we are given a bound on the number of events, then exact symbolic analysis for
verifying quantitative probabilistic properties of GSMPs is possible. More specifically,
given a finite-state GSMP M , a target set F , a safety set S, a bound k on the number
of discrete events, we show how to compute the probability that M will reach F , while
staying within the set S, within k discrete events (and also, within a time bound T , if
specified). The bound k is analogous to the bound on the lengths of paths used in recent
work on bounded model checking of discrete Boolean systems using SAT solvers [4].

For quantitative analysis of a GSMP, we need to effectively represent and compute
the distribution on the remaining firing times of scheduled events when the event(s) with
the least firing time happens. For this purpose, we consider multidimensional expoly-
nomial region distributions: the space of configurations is divided into finitely many
regions using axis-parallel and diagonal constraints similar to the region graph, and
with each region, the density function is continuous represented by a combination of
exponential and polynomial functions. Our main technical construction shows that the
class of ERDs is effectively closed under expiration of events and scheduling of new
events. This leads to an iterative symbolic algorithm which computes the probability
distribution after each discrete step.

We are implementing our modeling and analysis approach in a tool called Event
Horizon Verifier, and we illustrate it using a classical example from queuing networks.
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Consider a buffer for which the interarrival time between successive messages from
the producer, and the processing time for a message by the consumer, are described
by ERDs. Given a capacity N , suppose we want to calculate the probability that the
number of unprocessed messages exceeds N . Then, our analysis allows us to compute
this probability, given a bound on the total number of events.

2 Generalized Semi-Markov Processes

Let N be the set of all natural numbers, N0 be N∪ {0}, R be the set of reals, and R+ be
the set of all non-negative reals.

In a GSMP the time between scheduling an event and its occurrence (or firing time)
is modeled as a positive random variable. For this reason we briefly review related ter-
minology. A random variable X is characterized by its cumulative distribution function
(cdf) distr (x) = Pr(X < x), and if distr(x) is continuous then also by probabil-
ity density function (pdf) dens(x) defined by the equation distr(x) =

∫ x

0 dens(y) dy.
For many modeling purposes, however, it is convenient to use random variables whose
cdf’s are not continuous. For instance, it may be necessary to model the firing time of
an event by a random variable that takes only a finite number of possible values. We
say that x ∈ R+ is a mass point of X if Pr(X = x) > 01. We will see that for random
variables with a finite number of mass points it is still possible to define a function with
properties similar to those of the pdf of a random variable with continuous cdf.

We say that an expression e(x) is expolynomial if it can be written as∑r
k=1 ckx

mkeλkx, where ck, λk ∈ R, mk ∈ N0, for all k = 1, . . . , r. Let Expr(x)
be the set of all expolynomial expressions. Consider a partition Ra of R+, which con-
sists of a bounded intervals followed by an unbounded interval and the points between
them: Ra = ∪a−1

i=0 {i, (i, i+ 1)}∪ {a, (a,+∞)}. The constant a is the width of Ra. We
say that a function f(x) is expolynomial with finite support on Ra if there exists a map
Mf : Ra → Expr(x), such that for all x ∈ R+, f(x) = M(r)(x), where x ∈ r and
r ∈ Ra (i.e. r is either an interval or a point).

Definition 1. A (unidimensional) random variable X has an expolynomial region dis-
tribution of width a, if there exists an expolynomial function dens(x) ≥ 0 on Ra, such
that for all t ∈ R+, Pr(X < t) =

∑
I∈IRa

∫
I∩(y<t) dens(y) dy +

∑min(a,	t
)
i=1 dens(i)

=
∫ t

0 dens(y) dy +
∑min(a,	t
)

i=1 dens(i), where IRa is the set of all intervals in Ra,
and �t� denotes the largest integer no greater than t.

We call dens(x) the pdf of X . Notice, that X has a mass point at i iff dens(i) > 0 and
i ∈ {1, . . . , a}.

Uniform distributions, exponential and truncated exponential distributions, finite dis-
crete distributions are all examples of expolynomial region distributions. Many other
distributions with continuous and discrete components can be approximated by expoly-
nomial distributions. Our definition requires finite intervals to be of the unit length and

1 Mass points can also be treated using Dirac delta function δ(x). We have chosen not to do so
because this approach leads to cumbersome expressions in the multidimensional settings.
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mass points to occur at a finite number of points in N, however this is done only to sim-
plify the presentation of the results. In general, it is sufficient if a distribution is defined
by expolynomial expressions on a finite number of intervals with rational endpoints,
and has only a finite number of mass points.

Now we are ready to give a formal definition of the class of stochastic processes that
we study in this paper.

Definition 2. A finite-state generalized semi-Markov process (GSMP) is a tuple
A = (Q,Σ,E, init , distr ,next) where:

– Q is a finite set of locations;
– Σ is a finite set of events;
– E : Q → 2Σ assigns to each location q ∈ Q a set of events that are active in q. A

location q is absorbing iff E(q) = ∅.
– init : Q → [0, 1] is a probability measure on Q, which for each location q ∈ Q

gives the probability that q is the initial location of A;
– distr : Σ → (R+ → [0, 1]) assigns to each event its firing time distribution, which

is an expolynomial region distribution. For a cdf distr(e), dens(e) denotes the
corresponding pdf.

– next : Q × (2Σ \ {∅}) → (Q → [0, 1]) defines transitions between the locations
of A. This function takes as its arguments a source location q and a non-empty
subset G of the active events of q, and returns a probability measure on Q. For
each location q′, this measure gives the probability that A will move from q to q′ if
all events in G occur simultaneously; we require that

∑
q′∈Q next(q,G)(q′) = 1

for all G ⊆ 2E(q) \ {∅}.

It is convenient to think that a clock is assigned to each event e. Upon (re-)scheduling
of e we update its clock to a new valuation chosen independently at random according
to distr (e).The clock shows the time remaining until the next occurrence of e. Every
clock runs down with the same rate equal to 1. Let us say that ν : Σ → R+ is a clock
valuation (or simply valuation) if ν maps events to the values of their clocks. If an event
is not active in the current location we assume that its value is undefined.

A configuration of the GSMP A is a pair s = (q, ν), where q ∈ Q and ν is a clock
valuation. Given a configuration s = (q, ν), let t∗(s) = min{ν(e), e ∈ E(q)} be the
time until the next transition and E∗(s) = {e∗ | e∗ = argmin{ν(e), e ∈ E(q)}} be the
set of events that causes the transition (the clocks of these events expire simultaneously).
For any t ≤ t∗(s) we denote by ν − t the valuation ν′ such that for all e ∈ E(q),
ν′(e) = ν(e) − t. We say that s

t−→ s′ is a timed transition between the configurations
s = (q, ν) and s′ = (q, ν′) if ν′ = ν − t. If t∗(s) = 0, then E∗ = {e∗ | ν(e∗) = 0},
and s

μ−→ s′ denotes a discrete transition between the configurations s = (q, ν) and
s′ = (q′, ν′), where q′ is chosen according to the probability measure μ = next(q, E∗),
and the valuation ν′ is constructed as follows:

1. if an event e ∈ Eold(q, E∗, q′), where Eold(q, E∗, q′) = E(q′)∩ [E(q) \E∗] is the
set of events, excluding the events in E∗, that were active in q and continue to be
active in q′, then ν′(e) = ν(e);
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2. if e ∈ Enew(q, E∗, q′), where Enew(q, E∗, q′) = E(q′) \ Eold(q, E∗, q′) is the
set of events that were not active in q but become active in q′ and events that
are in E∗ ∩ E(q′) (i.e. events that fired in q and are active in q′), then valuations
ν′(e) are chosen independently at random according to distr(e) (i.e. the events in
Enew(q, E∗, q′) are (re-)scheduled);

3. if e ∈ Ecancelled(q, E∗, q′), where Ecancelled(q, E∗, q′) = E(q) \ E(q′) is the set
of cancelled events that were active in q but no longer active in q′, then ν′(e) is
undefined.

A run σ of A is a sequence of alternating timed and discrete transitions:

σ = s0
t∗(s0)−−−−→ s′0

μ0−→ s1
t∗(s1)−−−−→ s′1

μ1−→ s2
t∗(s2)−−−−→ s′2

μ2−→ . . .

The run σ starts at the initial configuration s0 = (q0, ν0), q0 is the initial location,which
is chosen according to init , and ν0 is the initial valuations of the events in E(q0),
scheduled according to the corresponding firing time distributions. A run can have a
finite or infinite number of transitions; a run that has reached an absorbing location will
stay in that location forever.

The time of the nth transition is the time Tn(σ) =
∑n−1

i=0 t∗(si) that elapsed since
the start of σ and until the nth discrete transition.

Example 1. Let us describe a GSMP As, which we will use as our running example. As

has six locations, q0 is the initial location (i.e. init picks this location with probability
one), and locations q2, q3, q4, and q5 are absorbing. In q0 two events e1 and e2 are
active, the initial clock valuations for these events are chosen according to their firing
time density functions: dens(e1)(t1) = Dt1e

−t1 when t1 ∈ (0, 1) and 0 otherwise
(the normalizing constant D is equal to 1/(1− 2e−1)), and dens(e2)(t2) = 1/2 when
t2 ∈ (0, 1) ∪ (1, 2) and 0 otherwise, i.e. it is uniformly distributed on (0, 2). If e1 fires
first, then the process moves to q1 with probability 1, otherwise it moves to q2 and stays
there forever. In q1 three events are active — e2 whose clock keeps its valuation from q0
and events e1 and e3 whose clocks obtain new valuations upon entering q1. The firing
time density function for e3 is dens(e3)(t3) = 1 when t3 ∈ (0, 1) and 0 otherwise,
and it describes the uniform distribution on (0, 1). Firings of e1, e2 and e3 in q1 lead to
locations q3, q4 and q5, respectively.

A history π of the length n of a run σ is a sequence of tuples and transitions between
them marked with sets of events:

π = (q0,O0,N0)
E1−−→ (q1,O1,N1)

E2−−→ . . .
En−−→ (qn,On,Nn)

Each tuple (qi,Oi,Ni) consists of a visited location and two sets that partition the
set of active events of that location. The set Oi consists of active events that were
not scheduled upon arriving to qi and the set Ni consists of active events that were
scheduled. For the tuple (q0,O0,N0), we have that O0 = ∅ and N0 = E(q0), and for
any i > 0, Oi = Eold(qi−1, Ei, qi) and Ni = Enew(qi−1, Ei, qi).

By last(π) = qn we will denote the last visited location in a history π, and by Π we
will denote the set of all finite histories.
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It easy to see that two runs share the same history π of length n if they visit the same
sequence of n locations and transitions between those locations are caused by firing of
the same sets of events.

We say that a history π′ is a successor of π along an edge marked by a set of events

E iff there exists a tuple (ql′ ,Ol′ ,Nl′) such that π′ = π
E−→ (ql′ ,Ol′ ,Nl′).

Definition 3. Let π be a history of length n and let l = |E(last(π))| be the number of
the active events in the last location of π, then the event clock valuations of π (abbrevi-
ated as ecv of π) is an l-dimensional random variable of values of the active clocks in
the location last(π), immediately after it has been reached by the nth transition.

Given a history π, we denote by fπ(x1, . . . , xl) the pdf of the event clock valuations of
π. We will show how to use fπ(x1, . . . , xl) to compute probability pπ, which is called
the occurrence probability of π and which is equal to the probability that a run of A has
π as its history.

3 Computing Probabilities of Bounded Until Properties

Suppose that we are given a GSMP A. The locations of A are partitioned into two
sets: Qs and Qu which are called the sets of safe and unsafe locations, respectively.
Furthermore, a subset Qd of Qs is called the set of destination locations.

Let Πn
until ⊆ Π be a set of histories of length less than or equal to n, and such that

for every π ∈ Πn
until all locations of π belong to Qs and the only location that belongs

to Qd is last(π); let Πuntil = ∪n>0Π
n
until.

Given two parameters — a real number p ∈ [0, 1] and an integer n > 0, we consider
the bounded until problem:

– Is the probability that a run σ of A has a history π ∈ Πn
until greater than p?

Algorithm 1. is a generic algorithm to solve this problem. The algorithm works on
tuples (π, fπ, pπ), the first element of a tuple is a history π, the second element is the
ecv density fπ of π, and the last element pπ is the occurrence probability of π. Given
fπ and pπ, we assume (and we will prove later) that for any successor history π′ of
π, we are able to compute fπ′

and pπ′|π (which is the occurrence probability of π′

conditioned on the probabilistic event that π has happened).
HistorySet is the set of tuples that the algorithm has to process. The set is initialized

with the tuples (πi
0, f

πi
0, pπi

0
), where πi

0 = (qi,Oi
0,N i

0) for locations qi of A, such that
init(qi) > 0. The algorithm also sets to zero two real numbers Pd and Pu, which are
the lower bounds of reaching a destination location and an unsafe location, respectively.
In the main loop, the algorithm picks a history from HistorySet and checks if its last
location is a destination or an unsafe location. If this is the case then it increases Pd or
Pu. If the last location is a safe location but not a destination location and the length of
the history is less than n, then the algorithm computes fπ′

and pπ′|π for every successor
history π′ of π and updates HistorySet with the computed tuples. When the loop is
completed, the algorithm outputs “YES” if Pd > p and “NO” otherwise.
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Algorithm 1. Genereric iterative algorithm
for all qi : qi ∈ Q ∧ init(qi) > 0 do

HistorySet ← (πi
0, f

πi
0 , pπi

0
)

end for
Pd ← 0, Pu ← 0
while HistorySet �= ∅ ∧ Pd ≤ p ∧ Pu ≤ (1 − p) do

pick (π, fπ, pπ) in HistorySet
if last(π) ∈ Qd then

Pd ← Pd + pπ

else if last(π) ∈ Qu then
Pu ← Pu + pπ

else if length of π < n then
for all πs : πs is a successor of π do

compute fπs and pπs|π
add (πs, f

πs , pπ · pπs|π) to HistorySet
end for

end if
end while
if Pd > p then

return YES
else

return NO
end if

Suppose that in addition to the numbers p and n, we are given a positive real number
T . Then, applying our algorithm, we can also solve the bounded timed-until problem:

– Is the probability that a run σ of A has a history π ∈ Πn
until and T|π|(σ) < T

greater than p?

The bounded timed-until problem can be reduced to the bounded until problem by
introducing a new event et and a new unsafe absorbing location qt. The random variable
that models firing time distribution for et is equal to T with probability one. For every
location q and every set of events E, such that et ∈ E, next(q, E) returns a probability
measure concentrated on qt. Thus, if a destination location is reached then it is reached
before time T has elapsed.

3.1 A Sample Computation

Consider the GSMP As from Example 1 of Section 2. Given a history π1 = π0
{e1}−−−→

(q1, {e2}, {e1, e3}), π0 = (q0, ∅, {e1, e2}), we want to compute pπ1 and fπ1 .
Later, in Section 4, we will prove that to find pπ1 and fπ1 we need to compute three

formulas:

f̃π1(t2) =
∫ +∞

0
dens(e2)(t1 + t2)dens(e1)(t1) dt1,

fπ1(t1, t2, t3) = dens(e1)(t1)
f̃π1(t2)
pπ1

dens(e3)(t3).

pπ1 =
∫ +∞

0
f̃π1(t2) dt2,
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t2

1

1

2

0

A

B

t1

(a) dens(e2)(t2)dens(e1)(t1)

B′

2

0

1

1

A′
2

C

t̂1

t̂2

A′
1

(b) dens(e2)(t̂1 + t̂2)dens(e1)(t̂1)

Fig. 1. Computing fπ1

Intuitively, the first formula captures the necessary information on the distribution of
values of the clock of e2 in q1, given that e1 has fired before e2. The second formula
shows that we can find pπ1 by integrating f̃π1(t2) over all possible values. And the last
formula gives an expression for fπ1(t1, t2, t3) as a product of three density functions,
each corresponds to an active clock of q1. Even though the formulas above use integrals
we will not use numerical computations, but instead we will obtain the formulas in an
explicit form. This suitability for symbolic computations is a distinctive property of the
expolynomial functions and we will use it throughout the paper.

We show two ways to compute the first formula. Let 1[a<t<b] denote a func-
tion of t, which is 1 if a < t < b and 0 otherwise. We know that
dens(e1)(t1) = Dt1e

−t11[0<t1<1] and dens(e2)(t2) = 1
21[0<t2<2], thus f̃π1(t2) =

D
2

∫ +∞
0 t1e

−t11[0<t1<1]1[0<t1+t2<2] dt1 = D
2

∫ 1
0 t1e

−t11[0<t1+t2<2] dt1. We consider
two cases:

– if t2 ∈ (0, 1), then f̃π1(t2) = D
2

∫ 1
0 t1e

−t1 dt1 = 1
2 ;

– if t2 ∈ (1, 2), then f̃π1(t2) = D
2

∫ 2−t2
0 t1e

−t1 dt1 = D
2 (t2et2−2 − 3et2−2 + 1).

Note that computing f̃π1(t2) requires analysis of different possible cases and the
number of cases quickly becomes intractable with the increase in the number of ac-
tive events in a location and complexity of firing time distributions. To deal with these
difficulties we present now a more convenient “geometric” way to compute f̃π1(t2).

In Figure 1(a), the support for the function dens(e2)(t2)dens(e1)(t1) is shown. It
consists of two squares A and B (without the borders), and in each of these squares
the function is equal to D

2 t1e
−t1 . Now consider a linear transformation t1 = t̂1, t2 =

t̂1 + t̂2. Under this transformation the squares A and B are transformed into areas
A′

1 ∪ A′
2 and B′, respectively (see Figure 1(b)). The original function did not depend

on t2, and after the transformation the function will not depend on t̂2 either — it is
equal to D

2 t̂1e
−t̂1 in the areas A′

1, A′
2 and B′, and it is 0 in C. Now it is easy to see

that if t̂2 ∈ (0, 1) then we have to compute two integrals, one over B′ and the other

over A′
2: f̃π1(t̂2) = D

2

∫ 1−t̂2
0 t̂1e

−t̂1 dt̂1 + D
2

∫ 1
1−t̂2

t̂1e
−t̂1 dt̂1 = 1

2 ; and if t̂2 ∈ (1, 2)
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then we need to compute only one integral over A′
1: f̃π1(t̂2) = D

2

∫ 2−t̂2
0 t̂1e

−t̂1 dt1 =
D
2 (t̂2et̂2−2 − 3et̂2−2 + 1).

Now, using the second formula and renaming the variable t̂2 back to t2, we obtain
that

pπ1 =
∫ 2

0
f̃π1(t2) dt =

∫ 1

0

1
2
dt2 +

D

2

∫ 2

1
(t2et2−2 − 3et2−2 + 1) dt2

=
1
2

+
D

2
(3e−1 − 1) ≈ 0.7

Finally, fπ1(t1, t2, t3) = Dt1e
−t11[0<t1<1] · ( 1

2pπ
1[0<t2<1] + D

2pπ
(t2et2−2 − 3et2−2

+ 1)1[1<t2<2]) · 1[0<t3<1]. Again, for this function we can have a convenient geometric
representation but this time in three dimensions.

4 Multidimensional Expolynomial Region Distributions

In this section we introduce multidimensional expolynomial region distributions. We
are interested in this class because it is closed under symbolic computations that we will
use. It follows that if the firing time distributions of the events are (one-dimensional)
ERDs then all the distributions that we will encounter will also be ERDs. Before giving
a formal definition, we describe a class of partitions of the clock valuation space that
we will call diagonal mesh partitions. These partitions serve as domains for the ERDs
— in each region of a diagonal mesh partition, an ERD is given by a multidimensional
expolynomial expression.

4.1 Diagonal and Inverse Diagonal Mesh Partitions

For a set of variables t1, . . . , tn an n-dimensional diagonal mesh partition Ra of width
a ∈ N is a partition of Rn

+ into regions such that each region is described by:

– mesh constraints: for each variable t, by a constraint of the form b− 1 < t < b (we
say that such a constraint is bounded), or t = b, or t > a (an unbounded constraint),
where b ∈ N and b ≤ a;

– diagonal constraints: for every pair of different variables t and t′, such that both of
them have bounded mesh constraints in the region, by an ordering on the fractional
parts of the variables, i.e. by a constraint of the form (t − �t�) ∼ (t′ − �t′�),
where ∼∈ {<,>,=}. Equivalently, if there are constraints b − 1 < t < b and
c− 1 < t′ < c, then the diagonal constraint can be written as t ∼ t′ + (b − c).

Given a region r of an n-dimensional diagonal mesh partition Ra, let m be the
number of independent constraints of the form t = b or t = t′ + b, then we say that the
dimension of r is n−m. The regions that have dimension n are called full dimensional
regions, and regions that have less than n dimensions are called mass regions.

For technical reasons, we will be also interested in the inverse diagonal mesh par-
titions. Compared to the diagonal mesh partitions these partitions have one designated
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variable t∗, which cannot form diagonal constraints with any other variable but, instead,
it forms inverse diagonal constraints. Formally, for a set of variables t1, . . . , tn−1, t

∗ an
n-dimensional inverse diagonal mesh partition R̃a of width a ∈ N is a partition of Rn

+
into regions such that each region is described by:

– mesh constraints: for each variable t ∈ {t1, . . . , tn−1, t
∗} by a mesh constraint, as

described in the definition of diagonal mesh partition;
– diagonal constraints: for every pair of different variables t �= t∗ and t′ �= t∗ with

bounded mesh constraints, by a diagonal constraint, as described in the definition
of diagonal mesh partition;

– inverse diagonal constraints: for every pair of variables t and t∗, such that for
each of them there is a bounded mesh constraint, by a constraint of the form (t −
�t�) + (t∗− �t∗�) ∼ 1, where∼∈ {<,>,=}. Equivalently, if there are constraints
b − 1 < t < b and c − 1 < t∗ < c, then the inverse diagonal constraint can be
written as t + t∗ + 1 ∼ b + c.

Note that the number of the regions in every diagonal or inverse diagonal mesh par-
tition is finite, and exponential in the number of variables. Note also that the constraints
can be seen as hyperplanes in Rn

+.
Next we will consider an important linear transformation L : Rn

+ → Rn
+. Let p =

(t1, . . . , tn−1, t
∗) be a point that L maps to a point p̂ = (t̂1, . . . , t̂n−1, t̂

∗), then coordi-
nates of p and p̂ are related by the following equations: ti = t̂i + t̂∗, for i = 1, . . . , n−1
and t∗ = t̂∗. We have seen an application of L in Section 3.1. The properties of the par-
titions are given by the following lemmas. Due to the lack of space, we omit the proofs.

Lemma 1. Let Ra be an n-dimensional diagonal mesh partition of width a. Then L
transforms Ra into an n-dimensional inverse diagonal mesh partition R̂a of the same
width. The pre-image of any l-dimensional region in R̂a, for l = 0, . . . , n, is a (part of)
l-dimensional region in Ra.

Lemma 2. Let R̂a be an n-dimensional inverse diagonal mesh partition with the vari-
ables (t1, . . . , tn−1, t

∗), then the projection R′
a of R̂a on the subspace Rn−1

+ that corre-
sponds to the variables (t1, . . . , tn−1) is (n − 1)-dimensional diagonal mesh partition
of width a.

Our interest in diagonal and inverse diagonal mesh partitions is justified by the follow-
ing example. Let us revisit the GSMP As from Example 1. In Section 3.1 we have com-
puted pπ1 and fπ1(t1, t2, t3) and showed that fπ1 had its support on cubes in R3

+. Now
we want to show that it is necessary to have diagonal constraints too. Consider the his-

tory π2, which is a successor of π1: π2 = π1
{e3}−−−→ (q5, ∅, ∅). We want to compute pπ2 .

Similarly to the formula for f̃π1(t2), we can write f̃π2(t1, t2) =
∫ +∞
0 fπ1(t1 + t3, t1 +

t3, t3) dt3. Evaluating this formula using, for example, MAPLE we will see that in two
regions (0 < t1 < 1, 0 < t2 < 1, t1 < t2) and (0 < t1 < 1, 0 < t2 < 1, t1 > t2),
f̃π2(t1, t2) is given by two different expolynomial expressions.

4.2 Expolynomial Expressions, Functions, and Distributions

We say that e(x1, . . . , xn) is an expolynomial expression if it is of the
form

∑r
k=1 ckx

mk1
1 · · ·xmkn

n eλk1xk1+···+λknxkn , where ck, λk1, . . . , λkn ∈ R,
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mk1, . . . ,mkn ∈ N0 for all k = 1, . . . , r. By Expr(x1, . . . , xn) we denote the class of
all expolynomial expressions in the variables x1, . . . , xn.

A function fa(x1, . . . , xn) is a multidimensional expolynomial function of width a
with finite support on a diagonal mesh partition Ra if there exists a map Mf : Ra →
Expr(x1, . . . , xn) such that if a point (x1, . . . , xn) ∈ r, r is a region in Ra, then
f(x1, . . . , xn) = Mf(r)(x1, . . . , xn).

Given an expolynomial function f(x̄) = f(x1, . . . , xn) and an m-dimensional re-
gion r ∈ Ra, 1 ≤ m ≤ n, we want to define the integral of f on r (denoted as

∫
r f ). It

is easy to see that due to the region’s constraints, each point in r can be determined by
only m independent parameters ȳ = (y1, . . . , ym), and we can express x̄ as a function
of ȳ, i.e. xi = xi(ȳ) for i = 1, . . . , n. Thus we can define

∫
r f as a multiple integral∫

(x1(ȳ),...,xn(ȳ))∈r
f(ȳ) dȳ taken over m variables.

Definition 4. Multidimensional random variable X̄ = (X1, . . . , Xn) has an expoly-
nomial region distribution (ERD) of width a if there exists an expolynomial function
fa(x̄) = fa(x1, . . . , xn) ≥ 0 on Ra such that for all t̄ = (t1, . . . , tn) ∈ Rn

+, Pr(X̄ <
t̄) = Pr(X1 < t1, . . . , Xn < tn) =

∑
r∈IRa

∫
r∩(x1(ȳ)<t1,...,xn(ȳ)<tn) fa(ȳ) dȳ +∑

(x1,...,xn)∈PRa
x1<t1,...,xn<tn

f(x1, . . . , xn), where IRa is the set of all regions of dimension one or

higher in Ra, and PRa is the set of all zero-dimensional regions (points).

We call fa(x̄) the pdf of X̄ . Note, that for every region r ∈ Ra, Pr(X̄ ∈ r) =
∫

r
f .

Let us give a simple example. Consider two one-dimensional independent random
variables with ERDs given by their density functions:

f1(x) =
{

0, if x = 0 or x = 1
1, if 0 < x < 1 , f2(y) =

{
0, if y = 0
1/2, if 0 < y < 1 or y = 1 .

The first random variable X is uniformly distributed on (0, 1). The second random
variable Y is uniformly distributed on (0, 1) and has a mass point at y = 1. Then the
random variable Z = XY is a two-dimensional random variable with the pdf

f3(x, y) =

⎧⎪⎪⎨⎪⎪⎩
0, if (x = i, y = j) or (x = i, 0 < y < 1), i, j = 0, 1
1/2, if (0 < x < 1, 0 < y < 1, x ∼ y),∼∈ {<,>}
1/2, if (y = 1, 0 < x < 1)
0, if (0 < x < 1, 0 < y < 1, x = y) or (y = 0, 0 < x < 1)

We see that f3(x, y) is not zero in both full dimensional regions and in one mass region
(y = 1, 0 < x < 1).

5 Image Computation

In this section we will prove our main technical result.

Theorem 1. Let A be a GSMP, such that the firing time distributions of all events are
ERDs of width a. Let π ∈ Π be a history of A, fπ be the pdf of the ecv of π, π′ =
π

E∗
−−→ (ql′ ,Ol′ ,Nl′) be a successor of π, fπ′

be the pdf of the ecv of π′, and m′ be the
number of active events in ql′ , then:
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1. fπ′
is an m′-dimensional ERD of width a;

2. given fπ, fπ′
can be computed symbolically.

The theorem will follow from the steps described below.
To simplify complex expressions we will use a convenient shorthand notation. Sup-

pose that B = {b1, . . . , bq} is a set of indices, then instead of writing f(xb1 , . . . , xbq , y)
we will write fb∈B(xb, y). We will also slightly abuse notation by writing fb∈B(xb +
z, y) (where z is a variable) instead of writing fb∈B(x̂b, y), x̂b = xb + z.

Suppose a non-negative n-dimensional random variable X with pdf f(x̄) is divided
into two random variables X1 and X2, such that X1 ∈ Rs

+ and X2 ∈ Rn−s
+ . Then the

pdf of X1 is fX1(x̄1) =
∫ +∞
0 · · ·

∫ +∞
0 f(y1, . . . , ys, ys+1, . . . , yn) dys+1 · · · dyn. The

function fX1(x̄1) is called a marginal pdf of X .

Analysis of fπ′
: Notice that fπ′

can be written as

fπ′
e∈Ol′∪Nl′ (te) = f̌π′

e∈Ol′ (te)
∏

e∈Nl′

dens(e)(te),

where f̌π′
e∈Ol′

(te) is the joint density function of the clock values of the events in Ol′ .

Thus, obtaining f̌π′
is sufficient for the construction of fπ′

. It is also easy to see that if
f̌π′

is an expolynomial function of width a, then fπ′
is also an expolynomial function

of width a (but of a higher dimension).

Computation of f̃π,e∗
: Let us pick any event e∗ ∈ E∗ and let (ql,Ol,Nl) be the last

tuple of π. Suppose that A has followed π and now is in ql. Let G = {te ≥ te∗ |
e ∈ (Ol ∪ Nl) \ {e∗}} be a probabilistic event that the clock of the event e∗ expires
before or simultaneously with the other clocks and Pr(G) be its probability. Then let
f̃π,e∗

e∈(Ol∪Nl)\{e∗}(t̂e) be the pdf of clock values of all events in (Ol ∪ Nl) \ {e∗} at the
moment when te∗ = 0, conditioned on occurrence of G.

Let t̂e = te − te∗ and define

ge∈(Ol∪Nl)\{e∗}(t̂e, te∗) = fπ
e∈(Ol∪Nl)\{e∗}(t̂e + te∗ , te∗). (1)

Then g can be seen as the joint density function of te∗ and the differences between the
values of the other event clocks and te∗ (these differences may be positive or negative).

Now let g′e∈(Ol∪Nl)\{e∗}(t̂e) =
∫ +∞
0 ge∈(Ol∪Nl)\{e∗}(t̂e, te∗) dte∗ be a marginal

pdf. Then, given the definition of G that states that all differences t̂e should be non-
negative we obtain that

f̃π,e∗

e∈(Ol∪Nl)\{e∗}(t̂e) =
g′e∈(Ol∪Nl)\{e∗}(t̂e)

Pr(G)
=

+∞∫
0

ge∈(Ol∪Nl)\{e∗}(t̂e, te∗) dte∗

Pr(G)
(2)

If we know how to compute g′, it is easy to compute Pr(G). Since f̃π,e∗
is a pdf then

if we integrate over all its variables we should obtain 1. Hence, from (2):

Pr(G) =
∫ +∞

0
· · ·

∫ +∞

0
g′ei∈(Ol∪Nl)\{e∗}(t̂ei) dt̂e1 · · ·dt̂em−1 ,

where m is the number of active events in ql.
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It remains to show how, given fπ
e∈(Ol∪Nl)

(te), we can compute g′ and to examine

properties of this computation. Let us introduce a new variable t̂e∗ = te∗ , then from (1)
we see that to compute g from fπ we need to apply the linear transformation L from
Section 4.1. The expolynomial expressions are closed under linear transformations, and
we also saw that diagonal mesh partitions are transformed into inverse diagonal mesh
partitions of the same width (Lemma 1). So we conclude that g is an expolynomial
function on an inverse diagonal partition R̂g

a.
Now we have to obtain g′ from g. First, notice that by Lemma 2, g′ is defined on a

diagonal partition Rg′
a of the dimension one less than R̂g

a and of the same width a. As in
the example of Section 3.1, at each region r it is given as a sum of integrals of expolyno-
mial expressions of regions of R̂g

a that are projected on r. These integrals can be com-
puted symbolically using the formula

∫
Dxmecx dx = D(1

cx
mecx−m

c

∫
xm−1ecx dx),

which can be easily derived by applying the integration by parts method. Thus, g′ (and
therefore f̃π,e∗

) are computable expolynomial functions of width a.

Computation of f̌π′
: First, we “integrate out” of f̃π,e∗

all clocks that were cancelled
upon transition from ql to ql′ :

˜̃fπ,e∗
e∈Ol′

(te) =
∫ +∞

0
· · ·
∫ +∞

0
f̃π,e∗

e∈(Ol∪Nl)\{e∗}(te) dte1 · · ·dtes ,

where e1, . . . , es ∈ Ecancelled(q, E∗, q′), thus ˜̃
fπ is a marginal pdf, and it easy to check

that it is also an expolynomial function of width a.

We are almost done. It is left to extract from ˜̃
fπ,e∗

information that is pertinent only
to the transition that was caused by firing of the events E∗ and not to the transitions that
are triggered by the sets of events that properly contain E∗. Let Ě∗ = E∗\{e∗}, then

we construct f̌π′ from ˜̃fπ,e∗
by extracting exactly those regions that have a constraint

of the form te = 0 if and only if e ∈ Ě∗. For example, if e∗ is the only event in E∗,

then Ě∗ = ∅ and we obtain f̌π′ from ˜̃fπ,e∗
by setting to zero all regions that have a

constraint te = 0 for any event e. Similarly, if Ě∗ = {e1} then we extract all those
regions that are defined by the constraint te1 = 0 (and set to zero the expolynomial
expressions for regions that in addition to te1 = 0 have a constraint te′ = 0 for any
other event e′).

Note, that f̌π′ constructed from ˜̃
fπ,e∗

may no longer be a pdf, so we have to divide
it by a normalizing constant 0 < H < 1, which is easily computable.

Computation of pπ′|π: As a consequence of our previous computations, we obtain the
formula for pπ′|π:

pπ′|π = Pr(G) ·H · next(ql, E
∗, ql′).

6 Illustrative Example

We are developing a tool called EHV (Event Horizon Verifier) that implements the
algorithm of Section 5. The tool is written in JAVA and relies on JSCIENCE open source
library for the symbolic computations.



32 R. Alur and M. Bernadsky

As an application of our method we consider a queueing problem. The producer gen-
erates messages and the consumer processes them. The messages that await processing
are stored in a buffer of capacity K (initially the buffer is empty). The interarrival time
between successive messages is modeled by ERD with the pdf: f1(t) is p if t ∈ (0, 1),
is a(p) + b(p)x if t ∈ (1, 2), and 0 otherwise, where p ∈ (0, 1) is a parameter. With
f1(t) we can model a situation when the interval between any two successive messages
are at most two time units, the probability that a message arrives during the first time
unit is uniform and the probability that a message would arrive during the second time
unit is “skewed” towards the end of the interval.

The time that the consumer needs to process a message is uniformly distributed on
(0, 1). It is also known that the producer can produce at most N > K messages and we
want to find the probability Poverflow that the buffer exceeds its capacity.

Notice, that if the difference between N and K is small, then Poverflow can also
be very small. Simulation techniques to estimate small probabilities are involved, they
require a large number of simulations and give only statistical guarantees. To the con-
trary, the running time of our method does not depend on the absolute value ofPoverflow,
and, in fact, performance improves if there are only a few paths that lead to the unsafe
locations.

The problem can be reduced to the bounded until problem for the GSMP B defined
as follows. The locations of B are encoded with pairs (k, n), where k = 0, . . . ,K + 1
is the number of messages in the buffer and n = 0, . . . , N is the total number of mes-
sages received so far. The location (0, 0) is the initial location. For any n, the locations
(K + 1, n) are “unsafe”, and all locations (k′, n′), such that N − n′ ≤ K − k′ are
destinations (if B is in such a location then the buffer cannot overflow). B has two
events ep and ec. For all n = 0, . . . , N − 1, the locations (0, n) have ep as their only
active event and upon firing of that event B moves to the location (1, n + 1). Unsafe
and destination locations are absorbing, and all the other locations have both ep and ec

as their active events. When B is in such a location (i, j), firing of ep or ec causes a
transition to (i + 1, j + 1) or (i− 1, j), respectively.

We performed experiments for some sets of parameters. The computer that we used
for our experiments was a Linux server equipped with dual Pentium III processors op-
erating at 1400 MHz and with 2 GB of RAM. For each set of parameters we analyzed
all histories in Πuntil (the total number of them is in the “Dest. reached” column) and
all histories that end in an unsafe location (the “Unsafe reached” column). Below is the
summary of results.

Results
Parameter values: (K,N),p Poverflow Running time Dest. reached Unsafe reached

(5, 11), 1/2 9.0897 × 10−4 1 min. 23 sec. 2380 1040
(7, 11), 1/2 7.5504 × 10−6 36 sec. 560 185
(7, 11), 1/5 4.1124 × 10−9 3 min. 7 sec. 560 185
(7, 11), 1/10 1.9335 × 10−11 3 min. 17 sec. 560 185
(30, 31), 1/10 1.2161 × 10−64 23 sec. 30 1
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Abstract. Zeno behaviors are one of the (perhaps unintended) features
of many hybrid models of physical systems. They have no counterpart
in traditional dynamical systems or automata theory and yet they have
remained relatively unexplored over the years. In this paper we address
the stability properties of a class of Zeno equilibria, and we introduce
a necessary paradigm shift in the study of hybrid stability. Motivated
by the peculiarities of Zeno equilibria, we consider a form of asymptotic
stability that is global in the continuous state, but local in the discrete
state. We provide sufficient conditions for stability of these equilibria,
resulting in sufficient conditions for the existence of Zeno behavior.

1 Introduction

Hybrid models have been used successfully during the past decade to describe
systems exhibiting both discrete and continuous dynamics, while they have si-
multaneously allowed complex models of continuous systems to be simplified.
We are interested in the rich dynamical behavior of hybrid models of physi-
cal systems. These hybrid models admit a kind of equilibria that is not found in
continuous dynamical systems or in automata theory: Zeno equilibria. Zeno equi-
libria are collections of points which are invariant under the discrete component
of the hybrid dynamics, and which can be stable is many cases of interest.

Mechanical systems undergoing impacts are naturally modeled as hybrid sys-
tems (cf. [1] and [2]). The convergent behavior of these systems is often of
interest—even if this convergence is not to “classical” notions of equilibrium
points. This motivates the study of Zeno equilibria because even if the conver-
gence is not classical, it still is important. For example, simulating trajectories
of these systems is an important component in their analysis, yet this may not
be possible due to the relationship between Zeno equilibria and Zeno behavior.

An equally important reason to address the stability of Zeno equilibria is to
be able to assess the existence of Zeno trajectories. This behavior is infamous in
the hybrid system community for its ability to halt simulations. The only way to
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prevent this undesirable outcome is to give a priori conditions on the existence
of Zeno behavior. This has motivated a profuse study of Zeno hybrid systems
(see [1, 3, 4, 5, 6, 7, 8] to name a few) but a concrete notion of convergence (in the
sense of stability) has not yet been introduced. As a result, there is a noticeable
lack of sufficient conditions for the existence of Zeno behavior. We refer the
reader to [3, 7, 8] for a more thorough introduction to Zeno behavior.

Our investigations into the stability of Zeno equilibria are made possible
through a categorical framework for hybrid systems (as first introduced in [9]
and later utilized in [10]). This theory allows “non-hybrid” objects to be gener-
alized to a hybrid setting. Specifically, let T be a category, i.e., a collection of
mathematical objects that share a certain property together with morphisms be-
tween these objects. A hybrid object over this category is a special type of small
category H, termed an H-category, together with a functor (either covariant or
contravariant) S : H → T . Morphisms between objects of T are generalized to a
hybrid setting through the use of natural transformations.

The main contribution of this paper is sufficient conditions for the stability
of Zeno equilibria. As a byproduct, we are able to give sufficient conditions
for the existence of Zeno behavior. The categorical approach to hybrid systems
allows us to decompose the study of stability into two manageable steps. The
first step consists of identifying a sufficiently rich, yet sufficiently simple, class of
hybrid systems embodying the desired stability properties: first quadrant hybrid
systems. The second step is to understand the stability of general hybrid systems
by understanding the relationships between these systems and first quadrant
hybrid systems described by morphisms (in the category of hybrid systems).

2 Classical Stability: A Categorical Approach

In this section we revisit classical stability theory under a categorical light. The
new perspective afforded by category theory is more than a simple exercise in
abstract nonsense because it motivates the development of an analogous stability
theory for hybrid systems and hybrid equilibria to be presented in Sections 4
and 5. We shall work on Dyn, the category of dynamical systems, which has as
objects pairs (M,X), where M is a smooth manifold1 and X : M → TM is a
smooth vector field. The morphisms are smooth maps f : N → M making the
following diagram commutative:

TN
Tf� TM

N

Y
�

f� M

X
�

(1)

The subcategory Interval(Dyn) of Dyn will play an especially important role in the
theory developed in this paper. This subcategory is the full subcategory of Dyn
1 We assume that M is a Riemannian manifold, and so has a metric d(x, y) = ‖x−y‖.

Alternatively, we could assume that M is a subset of Rn.
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defined by objects2 (I, d
dt) with I a subset of R of the form [t, t′], (t, t′], [t, t′), (t, t′)

and {t}, where [t, t′] is a manifold with boundary (and so is (t, t′] and [t, t′)) and
{t} is a zero-dimensional manifold consisting of the single point t (which is
trivially a smooth manifold). The following observation shows the relevance of
Interval(Dyn). A morphism c : (I, d/dt) → (M,X) is a smooth map c : I → M
making diagram (1) commutative and thus satisfying:

ċ(t) = Tc · d
dt

= X ◦ c(t).

We can therefore identify a morphism c : (I, d/dt)→ (M,X) with a trajectory of
(M,X). Furthermore, the existence of a morphism f : (N,Y )→ (M,X) implies
that for every trajectory c : (I, d/dt) → (N,Y ), the composite f ◦ c : (I, d/dt)
→ (M,X) is a trajectory of (M,X). In other words, a morphism f : (N,Y ) →
(M,X) carries trajectories of (N,Y ) into trajectories of (M,X).

Remarkably, stability also can be described through the existence of certain
morphisms. Let us first recall the definition of globally asymptotically stable
equilibria.

Definition 1. Let (M,X) be an object of Dyn. An equilibrium point x∗ ∈ M
of X is said to be globally asymptotically stable when for any morphism c :
([t,∞), d

dt ) → (M,X), for any t1 > t and for any ε > 0 there exists a δ > 0
satisfying:

1. ‖c(t1)− x∗‖ < δ ⇒ ‖c(t2)− x∗‖ < ε ∀t2 ≥ t1 ≥ t,
2. limτ→∞ c(τ) = x∗.

Consider now the full subcategory of Dyn denoted by GasDyn and defined by
objects (R+

0 ,−α) where α is a class K∞ function. Lyapunov’s second method
can then be described as follows:

Theorem 1. Let (M,X) be an object of Dyn. An equilibrium point x∗ ∈ M of
X is globally asymptotically stable if there exists a morphism:

(M,X)
v� (R+

0 ,−α) ∈ GasDyn

in Dyn satisfying:

1. v(x) = 0 implies x = x∗,
2. v : M → R+

0 is a proper (radially unbounded) function.

The previous result suggests that the study of stability properties can be car-
ried out in two steps. In the first step we identify a suitable subcategory having
the desired stability properties. In the case of global asymptotic stability, this
subcategory is GasDyn; for local stability we could consider the full subcategory
defined by objects of the form (R+

0 ,−α) with α a non-negative definite function.

2 We do not consider more general objects of the form (J, g(t)d/dt) with g > 0 since
each such object is isomorphic to (I, d/dt).
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The chosen category corresponds in some sense to the simplest possible objects
having the desired stability properties. In the second step we show that existence
of a morphism from a general object (M,X) to an object in the chosen subcat-
egory implies that the desired stability properties also hold in (M,X). This is
precisely the approach we will develop in Sections 4 and 5 for the study of Zeno
equilibria.

3 Categorical Hybrid Systems

This section is devoted to the study of first quadrant hybrid systems, categorical
hybrid systems, and their interplay. We begin by defining a very simple class of
hybrid systems; these systems are easy to understand and analyze, but lack gen-
erality. We then proceed to define general hybrid systems through the framework
of hybrid category theory; these systems are general but difficult to analyze. The
advantage of introducing these two concepts is that not only can they be related
through explicit constructions, but also through the more general framework of
morphisms in the category of hybrid systems. This relationship will be important
in understanding the stability of general hybrid systems.

First Quadrant Systems. In order to understand the stability of general
hybrid systems, we must consider a class of hybrid systems analogous to the
objects of GasDyn; these are termed first quadrant hybrid systems. It is not
surprising that these would be chosen as the “canonical” hybrid systems with
which to understand the stability of Zeno equilibria as they already have been
used to derive sufficient conditions for the existence of Zeno behavior in [3].

A first quadrant hybrid system is a tuple:

HFQ = (Γ,D,G,R, F ),

where

– Γ = (Q,E) is an oriented cycle, with

Q = {1, . . . , k}, E = {e1 = (1, 2), e2 = (2, 3), . . . , ek = (k, 1)}.

– D = {Di}i∈Q, where for all i ∈ Q,

Di = (R+
0 )2 = {(x1, x2) ∈ R2 : x1 ≥ 0 and x2 ≥ 0}.

– G = {Ge}e∈E , where for all e ∈ E

Ge = {(x1, x2) ∈ R2 : x1 = 0 and x2 ≥ 0}.

– R = {Re}e∈E , where Re : Ge → (R+
0 )2 and for all e ∈ E there exists a

function re : R+
0 → R+

0 with

Re(0, x2) = (re(x2), 0).

– F = {fi}i∈Q, where fi is a Lipshitz vector field on (R+
0 )2.
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Before discussing the stability properties of first quadrant hybrid systems,
we need to relate them to more general hybrid systems. This is accomplished
by introducing a categorical framework for hybrid systems. As outlined in the
introduction, a hybrid object over a category is a pair S : H → T. Since we
allow S to be any functor, the main component of the definition is the small
category H which must be an H-category; the special form of this small category
directly reflects its ability to describe “hybrid objects.” Therefore, in order to
define hybrid objects over a category, we must invest a rather sizable amount of
effort in understanding the definition and structure of H-categories.

H-Cateogries. We start by defining a specific type of small category termed
an oriented H-category and denoted by H. This is a small category (cf. [11]) in
which every diagram has the form:3

• � • � • � • � • · · · • � • � •

That is, an H-category has as its basic atomic unit a diagram of the form:
• � • � •, and any other diagram in this category must be obtainable
by gluing such atomic units along the target of a morphism (and not the source).
In addition, we require the existence of an orientation on H. Before defining
such an orientation, some additional definitions are needed. Denote by Ob(H)
the objects of H, denote by Mor(H) the morphisms of H, and by Morid� (H) the
set of non-identity morphisms of H. For a morphism α : a→ b in H, its domain
(or source) is denoted by dom(α) = a and its codomain (or target) is denoted by
cod(α) = b. For H-categories, there are two sets of objects that are of particular
interest; these are subsets of the set Ob(H). The first of these is called the edge
set of H, is denoted by Ob(←·→)(H), and is defined to be

Ob(←·→)(H) = {a ∈ Ob(H) : a = dom(α) = dom(β),
α, β ∈ Morid� (H), α �= β}.

The symbol Ob(←·→)( · ) is used because every object a ∈ Ob(←·→)(H) sits in a
diagram of the form:

cod(αa) = b � αa dom(αa) = a = dom(βa)
βa � c = cod(βa)

called a bac-diagram. Note that giving all diagrams of this form (of which there
is one for each a ∈ Ob(←·→)(H)) gives all the objects in H, i.e., every object of
H is the target of αa or βa, or their source, for some a ∈ Ob(←·→)(H). More
specifically, we can define the vertex set of H by

Ob(→·←)(H) =
(
Ob(←·→)(H)

)c

where
(
Ob(←·→)(H)

)c is the complement of Ob(←·→)(H) in the set Ob(H).

3 Where • denotes an arbitrary object in H and � denotes an arbitrary
morphism.
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Oriented H-Categories. We can orient an H-category by picking a specific
labeling of its morphisms. Specifically, we define an orientation of an H-category
H as a pair of maps (α, β) between sets:

Ob(←·→)(H)
α �

β
� Morid� (H)

such that for every a ∈ Ob(←·→)(H), there is a bac-diagram in H:

b �αa
a

βa� c. (2)

We can form the category of oriented H-categories: Hcat. A morphism be-
tween two oriented H-categories, H and H′ (with orientations (α, β) and (α′, β′),
respectively), is a functor F : H → H′ such that the following diagrams

Ob(←·→)(H)
F� Ob(←·→)(H′) Ob(←·→)(H)

F� Ob(←·→)(H′)

Morid� (H)

α
� F� Morid� (H′)

α′
�

Morid� (H)

β
� F� Morid� (H′)

β′
�

(3)

commute. This requirement implies that, if a ∈ Ob(←·→)(H) with corresponding
bac-diagram (2) in H, there is a corresponding bac-diagram:

F (b) �
F (αa) = α′

F (a)
F (a)

F (βa) = β′
F (a)� F (c)

where F (a) ∈ Ob(←·→)(H′).

From Graphs to H-Categories. To every oriented H-category, we can as-
sociate (a possibly infinite) oriented graph, and vice versa. That is, we have
functors (see [12] for the explicit construction of these functors):

Γ : Grph −→ Hcat H : Hcat −→ Grph
Γ �→ Γ (Γ ) := HΓ H �→H(H) := ΓH

where Grph is the category of oriented graphs. The functor Γ is, roughly speak-
ing, defined on every edge ei ∈ E by:

Γ

(
i

ei� j

)
= i �αei ei

βei� j.

The relationship between oriented H-categories and oriented graphs is made
more precise in the following theorem (again, see [12]).

Theorem 2. There is an isomorphism of categories,

Grph ∼= Hcat, (4)

where this isomorphism is given by the functor H : Hcat → Grph with inverse
Γ : Grph→ Hcat.
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Example 1. For the hybrid system HFQ, and by utilizing (4), we can associate
to the graph Γ a H-category HΓ . Both Γ and the corresponding H-category are
given in the following diagrams:

e1

ek e2

1
e1 � 2 1

�
α e 1

βek �
2

β
e
1 �

� αe2

k

ek�
3

e2�
k

α
e

k �

3

�
β e 2

... Γ
...

... HΓ

...

i + 2 i− 1 i + 2 i− 1

i + 1 �ei

�ei+1

i
�e i−1

i + 1 i

ei+1

β e i+
1
�

αei+1
�

ei−1

�
α

e
i−

1

�
βei−1

ei

α e i
�

�
β

e
i

We now have the necessary framework in which to introduce hybrid objects over
a category.

Definition 2. Let T be a category. Then a hybrid object over T is a pair (H,S),
where H is an H-category and

S : H → T
is a functor (either covariant or contravariant). Given two hybrid objects, (H,S)
and (H′,S′), a morphism between these objects is a functor and a natural trans-
formation (F ,f) : (H,S) → (H′,S′) where F : H → H′ is a morphism in Hcat
and f : S

�−→ S′ ◦ F .

Hybrid Manifolds. An important example of a hybrid object is a hybrid
manifold, defined to be a functor M : HM → Man where HM is an H-category
and Man is the category of smooth manifolds; in this paper, we assume that for
every diagram (2), there is the following diagram:

M b
�Mαa = iαa⊃ Ma

Mβa� M c

in Man, where Ma ⊆ M b and iαa is the natural inclusion. If (HN ,N ) is another
hybrid manifold, a morphism of hybrid manifolds is a pair (F ,f) : (HN ,N) →
(HM ,M) where F : HN → HM is a morphism in Hcat and f is a natural
transformation: f : N

�−→M ◦ F .

Example 2. For HFQ, the “hybrid manifold” portion of this hybrid system cor-
responds to the tuple (Γ,D,G,R). To make this explicit, the hybrid manifold
associated to HFQ is given by the pair (HΓ ,M

HFQ) where MHFQ is the functor
defined on each bac-diagram in HΓ to be

MHFQ

(
i � αei ei

βei� i + 1
)

= Di
� i ⊃ Gei

Rei� Di+1.
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Hybrid Systems. A hybrid system is a tuple (HM ,M ,X), where (HM ,M)
is a hybrid manifold and X = {Xb}b∈Ob(→·←)(H) with Xb : M b → TMb a
Lipschitz vector field on M b. With this formulation of hybrid systems (it can
be verified that this definition is consistent with the standard one), we can form
the category of hybrid systems, HySys. The objects are hybrid systems and the
morphisms are pairs (F ,f) : (HN ,N ,Y ) → (HM ,M ,X), where (F ,f) is a
morphism from the hybrid manifold (HN ,N) to the hybrid manifold (HM ,M)
such that there is a commuting diagram for all b ∈ Ob(→·←)(HN )

TN b
Tfb� TMF (b)

N b

Y b
�

f b� MF (b)

XF (b)
�

That is, for all b ∈ Ob(→·←)(HN ), f b : (N b,Y b) → (MF (b),XF (b)) is a mor-
phism in Dyn.

Morphisms of hybrid systems are composed by composing the associated func-
tor and natural transformation, respectively.

Example 3. The categorical hybrid system associated to HFQ is given by

(HΓ ,M
HFQ ,XHFQ),

where (HΓ ,M
HFQ) is the hybrid manifold defined in the previous example and

XHFQ = {fi}i∈Ob(→·←)(HΓ )=Q.

Hybrid Intervals. As with the continuous case discussed in Section 2, we need
to introduce a notion of intervals for hybrid systems. Let Λ = {0, 1, 2, . . .} ⊆ N
be a finite or infinite indexing set, from which we can associate a graph ΓΛ =
(QΛ, EΛ), where QΛ = Λ and EΛ is the set of pairs ηj+1 = (j, j + 1) such that
j, j + 1 ∈ Λ. From this graph we obtain an H-category HΓΛ via (4); this implies
that every bac-diagram in this H-category must have the form:

j − 1 �αj
ηj = (j − 1, j)

βj � j, (5)

and so we denote by 0 the object of HΓΛ corresponding to the vertex 0 ∈ QΛ = Λ.
Define Interval(Hcat) to be the subcategory of Hcat consisting of all H-categories
obtained from graphs of this form. A hybrid interval now can be defined as a
pair:

I : HI → Interval(Dyn),

where HI is an object of Interval(Hcat), and we assume that for every bac-
diagram in HI , there exist (switching times) τj−1, τj , τj+1 ∈ R ∪ {∞}, with
τj−1 ≤ τj ≤ τj+1 such that:

Ij−1 = [τj−1, τj ] �Iαj = ι
⊃ Iηj = {τj} ⊂

Iβj = ι� Ij = [τj , τj+1] or [τj , τj+1).

We also suppose that I0 = [0, τ1] or [0, τ1).
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Trajectories of Hybrid Systems. The importance of hybrid intervals is that,
like classical intervals, they can be used to define trajectories of hybrid systems
(which correspond to the classical notion of an execution for a hybrid system).
The interval category of HySys, denoted by Interval(HySys), is the full subcate-
gory of HySys with objects consisting of hybrid systems of the form (HI , I,d/dt)
where (HI , I) is a hybrid interval and d/dtj = d/dt for all j ∈ Λ = Ob(→·←)(HI).

Definition 3. A trajectory of a hybrid system (HM ,M ,X) is a morphism
(C, c) in HySys:

(C, c) : (HI , I,d/dt)→ (HM ,M ,X),

where (HI , I,d/dt) is an object of Interval(HySys). In particular, this implies
that ċj(t) = XC(j)(cj(t)) for every object j ∈ Λ = Ob(→·←)(HI).

Note that the functor C corresponds to the “discrete” portion of the trajectory,
while the natural transformation c corresponds to the “continuous” portion.
The discrete initial condition is given by C(0) and the continuous initial con-
dition is given by c0(0) ∈ MC(0), i.e., the initial condition to the trajectory is
(c0(0),C(0)).

Example 4. To better understand the categorical formulation of trajectories, we
enumerate the consequences of Definition 3 for first quadrant hybrid systems.
Let

(C, c) : (HI , I,d/dt)→ (HΓ ,M
HFQ ,XHFQ)

be a trajectory of the hybrid system (HΓ ,M
HFQ ,XHFQ). Since c is a natural

transformation, we have a commuting diagram:

Ij−1 = [τj−1, τj ] �Iαj = ι
⊃ Iηj = {τj} ⊂

Iβj = ι� Ij = [τj , τj+1] or [τj , τj+1)

DC(j−1)

cj−1

�
� ι ⊃ GC(ηj)

cηj

� RC(βj) � DC(j)

cj

�

This in turn implies that a trajectory must satisfy the following conditions:

cj−1(τj) ∈ GC(ηj), RC(βj)(cj−1(τj)) = cj(τj),

which are the standard requirements on a trajectory.

We end this section by noting that, as with the continuous case, if (F ,f):
(HN ,N ,Y ) → (HM ,M ,X) is a morphism of hybrid systems, and (C, c):
(HI , I,d/dt) → (HN ,N ,Y ) is a trajectory of (HN ,N ,Y ), then

(F ◦C,f • c) : (HI , I,d/dt) → (HM ,M ,X)

is a trajectory of (HM ,M ,X).
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4 Stability of Zeno Equilibria

The purpose of this section is to study the stability of a type of equilibria that
is unique to hybrid systems: Zeno equilibria. The uniqueness of these equilibria
necessitates a paradigm shift in the current notions of stability, i.e., we must
introduce a type of stability that is both local and global in nature and, therefore,
has no direct analogue in continuous and discrete systems. The main result of
this section is sufficient conditions for the stability of Zeno equilibria in first
quadrant hybrid systems.

It is important to note that we do not claim that Zeno equilibria are the most
general form of equilibria corresponding to Zeno behavior. We do claim that
the type of Zeno equilibria considered are general enough to cover a wide range
of interesting (and somewhat peculiar) behavior, while being specific enough to
allow for analysis.

Definition 4. Let (HM ,M ,X) be a hybrid system. A Zeno equilibria (HΓ
M , z)

is a H-subcategory HΓ
M of HM obtained from a cycle Γ together with a set z =

{za}a∈Ob(HΓ
M ) such that

– za ∈Ma for all a ∈ Ob(HΓ
M ),

– zb = Mγ(za) for all γ : a→ b in HΓ
M ,

– Xa(za) �= 0 for all a ∈ Ob(HΓ
M ).

Another Interpretation of Zeno Equilibria. There is a more categorical
definition of a Zeno equilibria. Starting with the one point set ∗, we obtain a
hybrid manifold (HΓ

M ,�(∗)) where �(∗) : HΓ
M → Man with � the diagonal

functor. Denoting by Inc : HΓ
M → HM the inclusion functor, a Zeno equilibria

is a morphism of hybrid manifolds:

(Inc, z) : (HΓ
M ,�(∗))→ (HM ,M )

such that Xa(za) �= 0; in this case (and by slight abuse of notation) za(∗) := za.

Example 5. For the hybrid system HFQ, and since we are assuming the under-
lying graph to be a cycle, the conditions expressed in Definition 4 imply that a
set z = {z1, . . . ,zk} is a Zeno equilibria if for all i = 1, . . . , k, zi ∈ Gei and

Rei−1 ◦ · · · ◦Re1 ◦Rek
◦ · · · ◦Rei(zi) = zi. (6)

Because of the special structure of HFQ, (6) holds iff zi = 0 for all i. That is,
the only Zeno equilibria of HFQ is the singleton set z = {0}.

Induced Hybrid Subsystems. Let (HM ,M ,X) be a hybrid system, HΓ
M be

an H-subcategory of HM , and Inc : HΓ
M → HM be the inclusion functor. In this

case, there is a hybrid subsystem (HΓ
M ,MΓ ,XΓ ) of (HM ,M ,X) corresponding

to this inclusion, i.e., there is an inclusion in HySys:

(Inc, id) : (HΓ
M ,MΓ ,XΓ ) ↪→ (HM ,M ,X)

where id is the identity natural transformation.
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Definition 5. A Zeno equilibria (HΓ
M , z) of (HM ,M ,X) is globally asymptoti-

cally stable relative to (HΓ
M ,MΓ ,XΓ ) if the inclusion Inc : HΓ

M → HM satisfies:
for all b ∈ Ob(→·←)(HΓ

M ),

cod(αa1) = Inc(b) = cod(αa2) ⇒ a1 = a2,

and for every trajectory:

(C, c) : (HI , I,d/dt) → (HΓ
M ,MΓ ,XΓ ),

with Λ = N, and for any εC(j) there exists δC(i) such that:

1. If ‖ci(τi)− zC(i)‖ < δC(i) for i = 0, 1, . . . , k ∈ Q then

‖cj(t)− zC(j)‖ < εC(j)

with j ∈ Λ and t ∈ Ij = [τj , τj+1].
2. For all a ∈ Ob(→·←)(HΓ

M )

lim
j→∞

C(j)=a

cj(τj) = za, lim
j→∞

C(j)=a

cj(τj+1) = za.

We say that a Zeno equilibria (HΓ
M , z) of (HM ,M ,X) is globally asymptoti-

cally stable if it is globally asymptotically stable relative to (HΓ
M ,MΓ ,XΓ ) and

(HM ,M ,X) = (HΓ
M ,MΓ ,XΓ ).

The definition of relative global asymptotic stability implicitly makes some very
subtle points. The first is that this type of stability is both local and global
in nature—hence the use of the words “global” and “relative” in the definition.
While for traditional dynamical systems this would seem contradictory, the com-
plexity of hybrid systems requires us to view stability in a much different light,
i.e., we must expand the paradigm for stability.

To better explain the mixed global and local nature of relatively globally
asymptotically stable Zeno equilibria, we note that the term “global” is used
because the hybrid subsystem (HΓ

M ,MΓ ,XΓ ) is globally stable to the Zeno
equilibria; this also motivates the use of the word “relative” as (HM ,M ,X) is
stable relative to a hybrid subsystem. Finally, the local nature of this form of
stability is in the discrete portion of the hybrid system, rather than the contin-
uous one. That is, the H-subcategory HΓ

M can be thought of as a neighborhood
inside the H-category (see Fig. 1, where the H-categories HΓ

M and HM are rep-
resented by graphs in order to make their orientations explicit). The condition
on the inclusion functor given in the definition is a condition that all edges (or
morphisms) are pointing into the neighborhood.

Definition 6. A trajectory of a hybrid system (HM ,M ,X):

(C, c) : (HI , I,d/dt) → (HM ,M ,X)

is Zeno if Λ = Ob(→·←)(HI) = N and

lim
j→∞

τj = τ∞

for a finite τ∞.
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Region of Stability

,,,,

Fig. 1. A graphical representation of the “local” nature of relatively globally asymp-
totically stable Zeno equilibria

Zeno equilibria are intimately related to Zeno behavior for first quadrant hybrid
systems.

Proposition 1. If a first quadrant hybrid system HFQ is globally asymptotically
stable at the Zeno equilibria z = {0}, then every trajectory with Λ = N is Zeno.

Conditions for the Stability of HFQ. In order to give conditions on the
stability of Zeno equilibria, it is necessary to give conditions on both the con-
tinuous and discrete portions of the hybrid system. That is, the conditions on
stability will relate to three aspects of the behavior of the hybrid system: the
continuous portion, the existence of events and the discrete portion.

Continuous conditions: For all i ∈ Q,
(I) fi(x) �= 0 for all x ∈ (R+

0 )2.
(II) There exists a function vi : (R+

0 )2 → R+
0 of class K∞ along each

ray emanating from the origin in Di and dvi(x)fi(x) ≤ 0 for all
x ∈ (R+

0 )2.

Event conditions: For all i ∈ Q,
(III) (fi(x1, 0))2 ≥ 0.

Now consider the map ψi defined by requiring that:

ψi(x) = y if (0, y) = v−1
i (vi(x, 0)) ∩ {x1 = 0 and x2 ≥ 0}

which is well-defined by condition (II). Using ψi we introduce the function Pi :
R+

0 → R+
0 given by:

Pi(x) = rei−1 ◦ ψi−1 ◦ · · · ◦ re1 ◦ ψe1 ◦ rek
◦ ψek

◦ · · · ◦ re1 ◦ ψ1(x).

The map Pi can be thought of as both a Poincaré map or a discrete Lyapunov
function depending on the perspective taken. The final conditions are given by:

Discrete conditions: For all i ∈ Q and e ∈ E,
(IV) re is order preserving.
(V) There exists a class K∞ function α such that Pi(x)−x ≤ −α(x).
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Theorem 3. A first quadrant hybrid system HFQ is globally asymptotically sta-
ble at the Zeno equilibria z = {0} if conditions (I)− (V) hold.

Corollary 1. If HFQ is a first quadrant hybrid system satisfying conditions
(I) − (V), then there exist trajectories with Λ = N and every such trajectory is
Zeno.

Note that the condition that Λ = N in Proposition 1 and Corollary 1 is due to
the fact that there always are trajectories with finite indexing set Λ, e.g., any
trajectory with Λ = N has “sub-trajectories” with finite indexing sets. These
trajectories are trivially non-Zeno, so we necessarily rule them out.

5 Hybrid Stability: A Categorical Approach

Building upon the results of the previous section, we are able to derive sufficient
conditions for the stability of general hybrid systems. Mirroring the continuous
case, we simply find a morphism to the “simplest stable object,” i.e., a first
quadrant hybrid system.

Theorem 4. A Zeno equilibria (HΓ , z) of (HM ,M ,X) is globally asymptoti-
cally stable relative to (HΓ ,M

Γ ,XΓ ) if there exists a morphism of hybrid sys-
tems:

(HΓ ,M
Γ ,XΓ )

(V ,v)� (HSFQ,MSFQ,XSFQ)

where (HSFQ,MSFQ,XSFQ) is the object of HySys corresponding to a stable
first quadrant hybrid system, and for all a ∈ Ob(HΓ ) the following holds:

1. va(x) = 0 implies x = za,
2. va is a proper (radially unbounded) function.

Furthermore, there exist trajectories

(HI , I,d/dt)
(C,c)� (HΓ ,M

Γ ,XΓ )

with Λ = Ob(→·←)(HI) = N and every such trajectory is Zeno.

Example 6. The bouncing ball is the classical example of a hybrid system that
is Zeno (cf. [6]). Although it is possible to show that the bouncing ball is Zeno
by explicitly solving for the vector fields, we will demonstrate that it is Zeno by
applying our results on the stability of Zeno equilibria. In order to do so, we can
view the classical model of a bouncing ball as a first quadrant hybrid system by
adding an additional discrete mode; we then will apply Theorem 3.

The classical hybrid model for the bouncing ball has ({q}, {e = (q, q)}) as its
graph. The domain is given by the set of positive positions:

Dq = {(x1, x2) ∈ R2 : x1 ≥ 0}
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and the guard is given by the ground together with the condition that the velocity
is not positive:

Ge = {(x1, x2) ∈ R2 : x1 = 0 and x2 ≤ 0}.

The equations of motion for the bouncing ball are given by the Hamiltonian

H(x1, x2) =
1
2
x2

2 + mgx1,

where x1 is the position of the ball and x2 is its velocity; here we have assumed
that the mass of the ball is m = 1 for simplicity. This can be used (see [2]) to
define both the vector field on Dq and the reset map Re : Ge → Dq:

fq(x1, x2) =
(
x2
−g

)
, Re(x1, x2) =

(
x1
−ex2

)
,

where 0 ≤ e ≤ 1 is the coefficient of restitution.
The bouncing ball can be viewed as a first quadrant hybrid system HB =

(Γ,D,G,R, F ) by dividing the original domain into two components, and chang-
ing the vector fields accordingly. We first define

Γ = ({1, 2}, {e1 = (1, 2), e2 = (2, 1)}).

Since it is a first quadrant hybrid system, the domains and guards are given as
in Section 3. The domain D1 is obtained from the top half of the original domain
for the bouncing ball by reflecting it around the line x1 = x2. The domain D2
is obtained from the bottom half of the original domain by reflecting it around
the line x2 = 0. This implies that the reset maps are given by:

Re1(x1, x2) = (x2, x1), Re2 (x1, x2) = (ex2, x1).

Finally, the transformed vector fields are given by

f1(x1, x2) =
(
−g
x1

)
, f2(x1, x2) =

(
−x2
g

)
as pictured in Fig. 2.
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Fig. 2. (Left) Vector fields for the modified bouncing ball hybrid system. (Right) Level
sets of the Lyapunov functions on each domain.
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To verify that HB is globally asymptotically stable at the Zeno point z = {0},
and hence Zeno by Proposition 1, we need only show that conditions (I)−(V) are
satisfied. It is easy to see that conditions (I) and (III) are satisfied. Since re1 (x)
= x and re2(x) = ex, condition (IV) holds. We use the original Hamiltonian,
suitably transformed, for the Lyapunov type functions given in (II), i.e., we pick:

v1(x1, x2) =
1
2
x2

1 + gx2, v2(x1, x2) =
1
2
x2

2 + gx1.

It is easy to see that these functions meet the specifications given in (II); some
of the level sets of these functions can be seen in Fig. 2. Note that the level
sets on one domain increase, but this is compensated for by the decreasing level
sets on the other domain. Finally, condition (V) is satisfied when e < 1 since
P1(x) = P2(x) = ex.
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Abstract. A model for discrete time stochastic hybrid systems whose
evolution can be influenced by some control input is proposed in this
paper. With reference to the introduced class of systems, a methodol-
ogy for probabilistic reachability analysis is developed that is relevant to
safety verification. This methodology is based on the interpretation of
the safety verification problem as an optimal control problem for a cer-
tain controlled Markov process. In particular, this allows to characterize
through some optimal cost function the set of initial conditions for the
system such that safety is guaranteed with sufficiently high probability.
The proposed methodology is applied to the problem of regulating the
average temperature in a room by a thermostat controlling a heater.

1 Introduction

Engineering systems like air traffic control systems or infrastructure networks,
and natural systems like biological networks exhibit complex behaviors which can
often be naturally described by hybrid dynamical models– systems with interact-
ing discrete and continuous dynamics. In many situations the system dynamics
are uncertain, and the evolution of the discrete and continuous dynamics as well
as the interactions between them are of stochastic nature.

An important problem in hybrid systems theory is that of reachability anal-
ysis. In general terms, a reachability analysis problem consists in evaluating if
a given system will reach a certain set during some time horizon, starting from
some set of initial conditions. This problem arises, for instance, in connection
with those safety verification problems where the unsafe conditions for the sys-
tem can be characterized in terms of its state entering some unsafe set: if the
state of the system cannot enter the unsafe set, then the system is declared to
be “safe”. In a stochastic setting, the safety verification problem can be formu-
lated as that of estimating the probability that the state of the system remains
outside the unsafe set for a given time horizon. If the evolution of the state can
be influenced by some control input, the problem becomes verifying if it is pos-
sible to keep the state of the system outside the unsafe set with sufficiently high
probability by selecting a suitable control input.
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Reachability analysis for stochastic hybrid systems has been a recent focus
of research, e.g., in [1, 2, 3, 4]. Most of the approaches consider the problem of
reachability analysis for continuous time stochastic hybrid systems (CTSHS),
wherein the effect of control actions is not directly taken into account. The the-
ory of CTSHS, developed for instance in [5, 6, 7], is used in [1] to address the
theoretical issues regarding measurability of the reachability events. On the com-
putational side, a stochastic approximation method is used in [2, 4] to compute
the probability of entering into the unsafe set (reach probability). More recently,
in [3], certain functions of the state of the system known as barrier certificates are
used to compute an upper bound on the reach probability. In the discrete time
framework, [8] computes the reach probability using randomized algorithms.

This study adopts the discrete time setting in order to gain a deeper under-
standing of the theoretical and computational issues associated with the reacha-
bility analysis of stochastic hybrid systems. The present work extends the above
mentioned approaches to controlled systems, by developing a methodology to
compute the maximum probability of remaining in a safe set for a discrete time
stochastic hybrid system (DTSHS) whose dynamics is affected by a control in-
put. The approach is based on formulating the reachability analysis problem as
an optimal control problem. The maximum probability of remaining in a safe set
for a certain time horizon can then be computed by dynamic programming. In
addition, the optimal value function obtained through the dynamic programming
approach directly enables one to compute the maximal safe set for a specified
threshold probability, which is the largest set of all initial conditions such that
the probability of remaining in the safe set during a certain time horizon is
greater than or equal to the threshold probability.

The paper is organized as follows: Section 2 introduces a model for a DTSHS.
This model is inspired by the stochastic hybrid systems models previously intro-
duced in [5, 6, 7] in continuous time. An equivalent representation of the DTSHS
in the form of a controlled Markov process is derived. In Section 3, the notion
of stochastic reachability for a DTSHS is introduced. The problem of determin-
ing probabilistic maximal safe sets for a DTSHS is formulated as a stochastic
reachability analysis problem, which can be solved by dynamic programming.
The representation of the DTSHS as a controlled Markov process is useful in
this respect. In Section 4 we apply the proposed methodology to the problem
of regulating the temperature of a room by a thermostat that controls a heater.
Concluding remarks are drawn in Section 5.

2 Discrete Time Stochastic Hybrid System

In this section, we introduce a definition of discrete time stochastic hybrid system
(DTSHS). This definition is inspired by the continuous time stochastic hybrid
system (CTSHS) model described in [9].

The hybrid state of the DTSHS is characterized by a discrete and a continuous
component. The discrete state component takes values in a finite set Q. In each
mode q ∈ Q, the continuous state component takes values in the Euclidean space
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Rn(q), whose dimension is determined by the map n : Q → N. Thus the hybrid
state space is S := ∪q∈Q{q} × Rn(q). Let B(S) be the σ-field generated by the
subsets of S of the form ∪q{q}×Aq, where Aq is a Borel set in Rn(q). It can be
shown (see [5, page 58]) that (S,B(S)) is a Borel space.

The continuous state evolves according to a probabilistic law that depends
on the discrete state. A transition from one discrete state to another may occur
during the continuous state evolution, according to some probabilistic law. This
will then cause a modification of the probabilistic law governing the continuous
state evolution. A control input can affect both the continuous and discrete
probabilistic evolutions. After a transition in the discrete state has occurred, the
continuous state is subject to a probabilistic reset that is also influenced by some
control input. Following the reference CTSHS model in [9], we distinguish this
latter input from the former one. We call them transition input and reset input,
respectively.

Definition 1 (DTSHS). A discrete time stochastic hybrid system (DTSHS) is
a tuple H = (Q, n,U , Σ, Tx, Tq, R), where

– Q := {q1, q2, . . . , qm}, for some m ∈ N, represents the discrete state space;
– n : Q → N assigns to each discrete state value q ∈ Q the dimension of

the continuous state space Rn(q). The hybrid state space is then given by
S := ∪q∈Q{q} × Rn(q);

– U is a compact Borel space representing the transition control space;
– Σ is a compact Borel space representing the reset control space;
– Tx : B(Rn(·))×S×U → [0, 1] is a Borel-measurable stochastic kernel on Rn(·)

given S × U , which assigns to each s = (q, x) ∈ S and u ∈ U a probability
measure on the Borel space (Rn(q),B(Rn(q))): Tx(dx|(q, x), u);

– Tq : Q × S × U → [0, 1] is a discrete stochastic kernel on Q given S × U ,
which assigns to each s ∈ S and u ∈ U , a probability distribution over Q:
Tq(q|s, u);

– R : B(Rn(·)) × S × Σ × Q → [0, 1] is a Borel-measurable stochastic kernel
on Rn(·) given S × Σ × Q, that assigns to each s = (q, x) ∈ S, σ ∈ Σ,
and q′ ∈ Q, a probability measure on the Borel space (Rn(q′),B(Rn(q′))):
R(dx|(q, x), σ, q′). ��

In order to define the semantics of a DTSHS, we need first to specify how the sys-
tem is initialized and how the reset and transition inputs are selected. The system
initialization can be specified through some probability measure π : B(S) → [0, 1]
on the Borel space (S,B(S)). When the initial state of the system is s ∈ S, then,
the probability measure π is concentrated at {s}. As for the choice of the reset
and transition inputs, we need to specify which is the rule to determine their
values at every time step during the DTSHS evolution (control policy). Here, we
consider a DTSHS evolving over a finite horizon [0, N ] (N < ∞). If the values
for the control inputs at each time k ∈ [0, N) are determined based on the values
taken by the past inputs and the state up to the current time k, then the policy
is said to be a feedback policy.
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Definition 2 (Feedback policy). Let H = (Q, n,U , Σ, Tx, Tq, R) be a DTSHS.
A feedback policy μ for H is a sequence μ = (μ0, μ1, . . . , μN−1) of universally
measurable maps μk : S× (S×U×Σ)k → U×Σ, k = 0, 1, . . . , N−1. We denote
the set of feedback policies as M. ��

Definition 3 (Execution). Consider a DTSHS H = (Q, n,U , Σ, Tx, Tq, R).
A stochastic process {s(k) = (q(k),x(k)), k ∈ [0, N ]} with values in S =
∪q∈Q{q} × Rn(q) is an execution of H associated with a policy μ ∈ M and
an initial distribution π if its sample paths are obtained according to the follow-
ing algorithm, where all the random extractions involved are independent:

DTSHS algorithm:

Extract from S a value s0 = (q0, x0) for the random variable s(0) = (q(0),x(0))
according to π;

set k=0

while k < N do

set (uk, σk) = μk(sk, sk−1, uk−1, σk−1, . . . );

extract from Q a value qk+1 for the random variable q(k + 1) according
to Tq(· |(qk, xk), uk);

if qk+1 = qk, then
extract from Rn(qk+1) a value xk+1 for x(k + 1) according to
Tx(· |(qk, xk), uk)

else
extract from Rn(qk+1) a value xk+1 for x(k + 1) according to
R(· |(qk, xk), σk, qk+1)

set sk+1 = (qk+1, xk+1)

k→ k + 1

end ��

If the values for the control inputs are determined only based on the value taken
by the state at the current time step, i.e., (uk, σk) = μk(sk), then the policy is
said to be a Markov policy.

Definition 4 (Markov Policy). Consider a DTSHS H = (Q, n,U , Σ, Tx,
Tq, R). A Markov policy μ for H is a sequence μ = (μ0, μ1, . . . , μN−1) of univer-
sally measurable maps μk : S → U ×Σ, k = 0, 1, . . . , N − 1. We denote the set
of Markov policies as Mm.

Note that Markov policies are a subset of the feedback policies: Mm ⊆M.

Remark 1. It is worth noticing that the map Tq can model both the sponta-
neous transitions that might occur during the continuous state evolution, and
the forced transitions that must occur when the continuous state exits some
prescribed set.
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As for spontaneous transitions, if at some hybrid state (q, x) ∈ S a transition
to the discrete state q′ is allowed by the control input u ∈ U , then this is modeled
by Tq(q′|(q, x), u) > 0. Tq also encodes a possible delay in the actual occurrence
of a transition: if Tq(q′|(q, x), u) = 1, then the transition must occur, the smaller
is Tq(q′|(q, x), u), the more likely is that the transition will be postponed to a
later time.

The invariant set Dom(q) of a discrete state q ∈ Q, namely the set of all
the admissible values for the continuous state within mode q, can be expressed
in terms of Tq by forcing Tq(q|(q, x), u) to be zero irrespectively of the value of
the control input u in U , for all the continuous state values x ∈ Rn(q) outside
Dom(q). Thus Dom(q) := Rn(q) \ {x ∈ Rn(q) : Tq(q|(q, x), u) = 0, ∀u ∈ U}. ��

Define the stochastic kernel τx : B(Rn(·))×S×U ×Σ×Q → [0, 1] on Rn(·) given
S × U ×Σ ×Q, which assigns to each s = (q, x) ∈ S, u ∈ U , σ ∈ Σ and q′ ∈ Q
a probability measure on the Borel space (Rn(q′),B(Rn(q′))) as follows:

τx(dx′ |(q, x), u, σ, q′) =

{
Tx(dx′|(q, x), u), if q′ = q

R(dx′|(q, x), σ, q′), if q′ �= q.

In the DTSHS algorithm, τx is used to extract a value for the continuous state
at time k + 1 given the values taken by the hybrid state and the control inputs
at time k, and the value extracted for the discrete state at time k + 1.

Based on τx we can define the Borel-measurable stochastic kernel Ts : B(S)×
S × U ×Σ → [0, 1] on S given S × U ×Σ, which assigns to each s = (q, x) ∈ S,
(u, σ) ∈ U ×Σ a probability measure on the Borel space (S,B(S)) as follows:

Ts(ds′ |s, (u, σ)) = τx(dx′ |s, u, σ, q′)Tq(q′|s, u), (1)

s, s′ = (q′, x′) ∈ S, (u, σ) ∈ U×Σ. Then, the DTSHS algorithm can be rewritten
in a more compact form as:

extract from S a value s0 for the random variable s(0) according to π;

set k=0

while k < N do

set (uk, σk) = μk(sk, sk−1, uk−1, σk−1, . . . );

extract from S a value sk+1 for s(k + 1) according to Ts(· |sk, (uk, σk));

k→ k + 1

end ��

This shows that a DTSHS H = (Q, n,U , Σ, Tx, Tq, R) can be described as a con-
trolled Markov process with state space S = ∪q∈Q{q}×Rn(q), control space A :=
U ×Σ, and controlled transition probability function Ts : B(S)×S ×A → [0, 1]
defined in (1). This will be referred to in the following as “embedded controlled
Markov process” (see, e.g., [10] for an extensive treatment on controlled Markov
processes).
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As a consequence of this representation of H, the execution {s(k) = (q(k),
x(k)), k ∈ [0, N ]} associated with μ ∈M and π is a stochastic process defined on
the canonical sample space Ω = SN , endowed with its product topology B(Ω),
with probability measure Pμ

π uniquely defined by the transition kernel Ts, the pol-
icy μ ∈ M, and the initial probability measure π (see [11, Proposition 7.45]).
When π is concentrated at {s}, s ∈ S, we shall write simply Pμ

s . From the embed-
ded Markov process representation of a DTSHS it also follows that the execution
of a DTSHS associated with a Markov policy μ and an initial condition π is a
Markov process. In the sequel, only Markovian policies will be considered.

Example 1 (The thermostat). Consider the problem of regulating the tempera-
ture of a room by a thermostat that can switch a heater on and off.

The state of the controlled system is naturally described as a hybrid state.
The discrete state component is represented by the heater being in either the
“on” or the “off” condition. The continuous state component is represented by
the average temperature of the room.

We next show how the controlled system can be described through a DTSHS
modelH = (Q, n,U , Σ, Tx, Tq, R). We then formulate the temperature regulation
problem with reference to this model.

Concerning the state space of the DTSHS, the discrete component of the hy-
brid state space is Q = {ON, OFF}, whereas n : Q→ N defining the dimension of
the continuous component of the hybrid state space is the constant map n(q) =
1, ∀q ∈ Q. We assume that the heater can be turned on or off, and that this is
the only available control on the system. We then define Σ = ∅ and U = {0, 1}
with the understanding that “1” means that a switching command is issued, “0”
that no switching command is issued. Regarding the continuous state evolution,
in the stochastic model proposed in [12], the average temperature of the room
evolves according to the following stochastic differential equations (SDEs)

dx(t) =

{
− a

C (x(t) − xa)dt + 1
C dw(t), if the heater is off

− a
C (x(t) − xa)dt + r

C dt + 1
C dw(t), if the heater is on,

(2)

where a is the average heat loss rate; C is the average thermal capacity of the
room; xa is the ambient temperature (assumed to be constant); r is the rate
of heat gain supplied by the heater; w(t) is a standard Wiener process model-
ing the noise affecting the temperature evolution. By applying the constant-step
Euler-Maruyama discretization scheme [13] to the SDEs in (2), with time step
Δt, we obtain the stochastic difference equation

x(k + 1) =

{
x(k)− a

C (x(k) − xa)Δt + n(k), if the heater is off
x(k)− a

C (x(k) − xa)Δt + r
CΔt + n(k) if the heater is on,

(3)

where {n(k), k ≥ 0} is a sequence of i.i.d. Gaussian random variables with zero
mean and variance ν2 := 1

C2Δt.
Let N (·;m,σ2) denote the probability measure over (R,B(R)) associated with

a Gaussian density function with mean m and variance σ2. Then, the continuous
transition kernel Tx implicitly defined in (3) can be expressed as follows:
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Tx(· |(q, x), u) =

{
N (·;x− a

C (x− xa)Δt, ν2), q = OFF

N (·;x− a
C (x− xa)Δt + r

CΔt, ν2), q = ON
(4)

Note that the evolution of the temperature within each mode is uncontrolled
and so the continuous transition kernel Tx does not depend on the value u of
the transition control input.

We assume that it takes some (random) time for the heater to actually switch
between its two operating conditions, after a switching command has been is-
sued. This is modeled by defining the discrete transition kernel Tq as follows

Tq(q′|(q, x), 0) =

{
1, q′ = q

0, q′ �= q

Tq(q′|(q, x), 1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α, q′ = OFF, q = ON

1− α, q′ = q = ON

β, q′ = ON, q = OFF

1− β, q′ = q = OFF

(5)

∀x ∈ R, where α ∈ [0, 1] represents the probability of switching from the ON to
the OFF mode in one time-step. Similarly for β ∈ [0, 1].

We assume that the actual switching between the two operating conditions
of the heater takes a time step. During this time step the temperature keeps
evolving according to the dynamics referring to the starting condition. This is
modeled by defining the reset kernel as follows

R(· |(q, x), q′) =

{
N (·;x − a

C (x − xa)Δt, ν2), q = OFF

N (·;x − a
C (x − xa)Δt + r

CΔt, ν2), q = ON.
(6)

Let x̄−, x̄+ ∈ R, with x̄− < x̄+. Consider the (stationary) Markov policy
μk : S → U defined by

μk((q, x)) =

{
1, q = ON, x ≥ x̄+ or q = OFF, x ≤ x̄−

0, q = ON, x < x̄+ or q = OFF, x > x̄−

that switches the heater on when the temperature drops below x̄− and off when
the temperature goes beyond x̄+.

Suppose that initially the heater is off and the temperature is uniformly dis-
tributed in the interval between x̄− and x̄+, independently of the noise process
affecting its evolution. In Figure 1, we report some sample paths of the execution
of the DTSHS associated with this policy and initial condition. We plot only the
continuous state realizations. The temperature is measured in Fahrenheit de-
grees (◦F ) and the time in minutes (min). The time horizon N is taken to be
600 min. The discretization time step Δt is chosen to be 1 min. The param-
eters in equations (4) and (6) are assigned the following values: xa = 10.5◦F ,
a/C = 0.1 min−1, r/C = 10◦F/min, and ν = 1◦F . The switching probabilities
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Fig. 1. Sample paths of the temperature for the execution corresponding to a Markov
policy switching the heater on/off when the temperature drops below 70◦F/goes above
80◦F , starting with heater off and temperature uniformly distributed on [70, 80]◦F

α and β in equation (5) are both chosen to be equal to 0.8. Finally, x̄− and x̄+

are set equal to 70◦F and 80◦F , respectively.
Note that some of the sample paths exit the set [70, 80]◦F . This is due partly

to the delay in turning the heater on/off and partly to the noise entering the
system. If the objective is keeping the temperature within the set [70, 80]◦F,
more effective control policies can be found. In the following section we consider
the problem of determining those initial conditions for the system such that it
is possible to keep the temperature of the room within prescribed limits over a
certain time horizon [0, N ], by appropriately acting on the only available con-
trol input. Due to the stochastic nature of the controlled system, we relax our
requirement to that of keeping the temperature within prescribed limits over
[0, N ] with sufficiently high probability. We shall see how this problem can be
formulated as a stochastic reachability analysis problem. ��

3 Stochastic Reachability

We consider the issue of verifying if it is possible to maintain the state of a
stochastic hybrid system outside some unsafe set with sufficiently high probabil-
ity, by choosing an appropriate control policy. This problem can be reinterpreted
as a stochastic reachability analysis problem.

With reference to the introduced stochastic hybrid model H, for a given
Markov policy μ ∈ Mm and initial state distribution π, a reachability analysis
problem consists in determining the probability that the execution associated
with the policy μ and initialization π will enter a Borel set A ∈ B(S) during the
time horizon [0, N ]:

Pμ
π (A) := Pμ

π (s(k) ∈ A for some k ∈ [0, N ]). (7)

If π is concentrated at {s}, s ∈ S, then this is the probability of entering A
starting from s, which we denote by Pμ

s (A).
Suppose that A represents an unsafe set for H. Different initial conditions are

characterized by a different probability of entering A: if the system starts from
an initial condition that corresponds to a probability ε ∈ (0, 1) of entering the
unsafe set A, then the system is said to be “safe with probability 1 − ε”. It is
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then possible to define sets of initial conditions corresponding to different safety
levels, that is sets of states such that the value for the probability of entering
the unsafe set starting from them is smaller than or equal to a given value ε.

The set of initial conditions that guarantees a safety level 1 − ε, when the
control policy μ ∈Mm is assigned,

Sμ(ε) = {s ∈ S : Pμ
s (A) ≤ ε} (8)

is referred to as probabilistic safe set with safety level 1− ε. If the control policy
can be selected so as to minimize the probability of entering A, then

S�(ε) = {s ∈ S : inf
μ∈Mm

Pμ
s (A) ≤ ε}. (9)

is the maximal probabilistic safe set with safety level 1 − ε. By comparing the
expressions for Sμ(ε) and S�(ε), it is in fact clear that Sμ(ε) ⊆ S�(ε), for each
μ ∈Mm, ε ∈ (0, 1).

In the rest of the section, we show that (i) the problem of computing Pμ
s (A)

and Sμ(ε) for μ ∈ Mm can be solved by using a backward iterative procedure;
and (ii) the problem of computing S�(ε) can be reduced to an optimal control
problem. This, in turn, can be solved by dynamic programming. These results are
obtained based on the representation of Pμ

π (A) as a multiplicative cost function.
The probability Pμ

π (A) defined in (7) can be expressed as Pμ
π (A) = 1−pμ

π(Ā),
where Ā denotes the complement of A in S and pμ

π(Ā) := Pμ
π (s(k) ∈ Ā for all k ∈

[0, N ]). Let 1C : S → {0, 1} denote the indicator function of a set C ⊆ S:
1C(s) = 1, if s ∈ C, and 0, if s �∈ C. Observe that

N∏
k=0

1Ā(sk) =

{
1, if sk ∈ Ā for all k ∈ [0, N ]
0, otherwise,

where sk ∈ S, k ∈ [0, N ]. Then,

pμ
π(Ā) = Pμ

π (
N∏

k=0

1Ā(s(k)) = 1) = Eμ
π [

N∏
k=0

1Ā(s(k))]. (10)

From this expression it follows that

pμ
π(Ā) =

∫
S
Eμ

π

[ N∏
k=0

1Ā(s(k))| s(0) = s
]
π(ds), (11)

where the conditional mean Eμ
π [
∏N

k=0 1Ā(s(k))| s(0) = s] is well defined over the
support of the probability measure π representing the distribution of s(0).

3.1 Backward Reachability Computations

We next show how it is possible to compute pμ
π(Ā) through a backward iterative

procedure for a given Markov policy μ = (μ0, μ1, . . . , μN−1) ∈ Mm, with μk :
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S → U ×Σ, k = 0, 1, . . . , N − 1. For each k ∈ [0, N ], define the map V μ
k : S →

[0, 1] as follows

V μ
k (s) := 1Ā(s)

∫
SN−k

N∏
l=k+1

1Ā(sl)
N−1∏

h=k+1

Ts(dsh+1|sh, μh(sh))Ts(dsk+1|s, μk(s)),

(12)

∀s ∈ S, where Ts is the controlled transition function of the embedded con-
trolled Markov process, and

∫
S0(. . . ) = 1. If s belongs to the support of π, then,

Eμ
π

[∏N
l=k 1Ā(s(l))| s(k) = s

]
is well-defined and equal to the right-hand-side of

(12), so that

V μ
k (s) = Eμ

π

[ N∏
l=k

1Ā(s(l))| s(k) = s
]

(13)

denotes the probability of remaining outside A during the (residual) time horizon
[k,N ] starting from s at time k, under policy μ applied from π.

By (11) and (13), pμ
π(Ā) can be expressed as pμ

π(Ā) =
∫
S V μ

0 (s)π(ds). If π
is concentrated at {s}, pμ

s (Ā) = V μ
0 (s). Since Pμ

s (A) = 1 − pμ
s (Ā), then the

probabilistic safe set with safety level 1 − ε, ε ∈ (0, 1), defined in (8) can be
computed as Sμ(ε) = {s ∈ S : V μ

0 (s) ≥ 1− ε}.
By a reasoning similar to [14] for additive costs, we prove the following lemma.

Lemma 1. Fix a Markov policy μ. The maps V μ
k : S → [0, 1], k = 0, 1 . . . , N ,

can be computed by the backward recursion:

V μ
k (s) = 1Ā(s)

[
Tq(q|s, uμ

k(s))
∫

Rn(q)
V μ

k+1((q, x
′))Tx(dx′|s, uμ

k(s))

+
∑
q′ �=q

Tq(q′|s, uμ
k(s))

∫
Rn(q′)

V μ
k+1((q

′, x′))R(dx′|s, σμ
k (s), q′)

]
, s = (q, x) ∈ S,

where μk = (uμ
k , σ

μ
k ) : S → U ×Σ, initialized with V μ

N (s) = 1Ā(s), s ∈ S.

Proof. From definition (12) of V μ
k , we get that V μ

N (s) = 1Ā(s), s ∈ S. For k < N ,

V μ
k (s) = 1Ā(s)

∫
SN−k

N∏
l=k+1

1Ā(sl)
N−1∏

h=k+1

Ts(dsh+1|sh, μh(sh))Ts(dsk+1|s, μk(s))

= 1Ā(s)
∫
S
1Ā(sk+1)

( ∫
SN−k−1

N∏
l=k+2

1Ā(sl)
N−1∏

h=k+2

Ts(dsh+1|sh, μh(sh))

Ts(dsk+2|sk+1, μk+1(sk+1))
)
Ts(dsk+1|s, μk(s))

= 1Ā(s)
∫
S
V μ

k+1(sk+1)Ts(dsk+1|s, μk(s)).

Recalling the definition of Ts the thesis immediately follows. ��
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3.2 Maximal Probabilistic Safe Set Computation

The calculation of the maximal probabilistic safe set S�(ε) defined in (9) amounts
to finding the infimum over the Markov policies of the probability Pμ

s (A) of
entering the unsafe set A starting from s, for all s outside A ( the probability of
entering A starting from s ∈ A is 1 for any policy). A policy that achieves this
infimum is said to be maximally safe.

Definition 5 (Maximally safe policy). Let H = (Q, n,U , Σ, Tx, Tq, R) be a
DTSHS, and A ∈ B(S) an unsafe set. A policy μ∗ ∈ Mm is maximally safe if
Pμ∗

s (A) = infμ∈Mm Pμ
s (A), ∀s ∈ Ā.

Given that Pμ
s (A) = 1 − pμ

s (Ā), finding the infimum of the probability Pμ
s (A)

is equivalent to computing the supremum of the probability pμ
s (Ā) of remaining

within the safe set Ā. In the following theorem, we describe an algorithm to
compute supμ∈Mm

pμ
s (Ā) and give a condition for the existence of a maximally

safe policy. The proof is based on [11, Proposition 11.7].

Theorem 1. Define the maps V ∗
k : S → [0, 1], k = 0, 1, . . . , N , by the backward

recursion:

V ∗
k (s) = sup

(u,σ)∈U×Σ

1Ā(s)
∫
S
V ∗

k+1(sk+1)Ts(dsk+1|s, (u, σ)), s ∈ S,

initialized with V ∗
N (s) = 1Ā(s), s ∈ S.

Then, V ∗
0 (s) = supμ∈Mm

pμ
s (Ā) for all s∈S. Moreover, if Uk(s, λ)={(u, σ) ∈

U ×Σ|1Ā(s)
∫
S V ∗

k+1(sk+1)Ts(dsk+1|s, (u, σ)) ≤ λ} is compact for all s ∈ S, λ ∈
R, k ∈ [0, N − 1], then there exists a maximally safe policy μ∗ = (μ∗

0, . . . , μ
∗
N−1),

with μ∗
k : S → U ×Σ, k ∈ [0, N − 1], given by

μ∗
k(s) = arg sup

(u,σ)∈U×Σ

1Ā(s)
∫
S
V ∗

k+1(sk+1)Ts(dsk+1|s, (u, σ)), ∀s ∈ S. (14)

Proof. Note that we deal with Borel spaces and with Borel measurable
stochastic kernels. The one-stage cost function 1Ā(s) is Borel measurable, non
negative and bounded for all s ∈ S. In particular, V ∗

N (s) = 1Ā(s) is Borel measur-
able, hence universally measurable. It can be directly checked that the mapping
H : S×U×Σ×V → R defined as H(s, (u, σ), V ) = 1Ā(s)

∫
S V (s′)Ts(ds′|s, (u, σ))

satisfies the monotonicity assumption when applied to universally measurable
functions V (cf. [11, Section 6.1]). Then V ∗

k (s) = sup(u,σ)∈U×Σ H(s, (u, σ), V ∗
k+1)

is universally measurable for every k ∈ [0, N − 1]. The functions V ∗
k (s) are also

lower semi-analytic. This holds because the product of a lower semi-analytic func-
tion by a positive Borel measurable function is lower semi-analytic; furthermore,
the integration of a lower semi-analytic function with respect to a stochastic ker-
nel and its supremization with respect to one of its arguments (in this specific
instance, the control input) is lower semi-analytic (cf. [11, Propositions 7.30,
7.47 and 7.48]). The preceding measurability arguments provide a solid ground



60 S. Amin et al.

for the exact selection assumption to hold ([11, Section 6.2]), which finally leads
to the statement of the theorem by the application of [11, Proposition 11.7]. ��

Remark 2. When U and Σ are finite sets, then the compactness assumption
required in the theorem is trivially satisfied.

The maximal probabilistic safe set S�(ε) with safety level 1 − ε defined in (9)
can be determined as S�(ε) = {s ∈ S : V ∗

0 (s) ≥ 1− ε}.

4 The Thermostat Example

In this section we apply the proposed methodology to the problem of regulating
the temperature of a room by a thermostat controlling a heater. We refer to the
DTSHS description of the system given in Example 1 of Section 2. The system
parameters and time horizon are set equal to the values reported at the end of
Example 1. Three safe sets are considered: Ā1 = (70, 80)◦F , Ā2 = (72, 78)◦F ,
and Ā3 = (74, 76)◦F . The dynamic programming recursion described in Section
3.2 is used to compute maximally safe policies and maximal probabilistic safe
sets. The implementation is done in MATLAB. The temperature is discretized
into 100 equally spaced values within the safe set.

Figure 2 show the plots of 100 temperature sample paths resulting from sam-
pling the initial temperature from the uniform distribution over the safe sets,
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Fig. 2. Sample paths of the temperature for the execution corresponding to maximally
safe policies, when the safe set is: Ā1 (top), Ā2 (middle), and Ā3 (bottom)
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and using the corresponding maximally safe policy. The initial operating mode
is chosen at random between the equiprobable ON and OFF values.

It can be observed from each of the plots that the maximally safe policy
computed by the dynamic programming recursion leads to an optimal behavior
in the following sense: regardless of the initial state, most of the temperature
sample paths tend toward the middle of the corresponding safe set. As for the
Ā1 and Ā2 safe sets, the temperature actually remain confined within the safe
set in almost all the sample paths, whereas this is not the case for Ā3. The
set Ā3 is too small to enable the control input to counteract the drifts and
the randomness in the execution in order to maintain the temperature within
the safe set. The maximal probability of remaining in the safe set pμ∗

π (Āi) for π
uniform over Q × Āi, i = 1, 2, 3, is computed. The value is 0.991 for Ā1, 0.978
for Ā2 and 0.802 for Ā3.

The maximal probabilistic safe sets S�(ε) corresponding to different safety
levels 1 − ε are also calculated. The results obtained are reported in Figure 3
with reference to the heater initially off (plot on the left) and on (plot on the
right). In all cases, as expected, the maximal probabilistic safe sets get smaller
as the required safety level 1 − ε grows. When the safe set is Ā3, there is no
policy that can guarantee a safety probability greater than about 0.86.

The maximally safe policies at some time instances k ∈ [0, 600] μ∗
k : S → U are

shown in Figure 4, as a function of the continuous state and discrete state (the
red crossed line refers to the OFF mode, whereas the blue circled line refers to the
ON mode). The obtained result is quite intuitive. For example, at time k = 599,
close to the end of the time horizon, and in the OFF mode, the maximally safe
policy prescribes to stay in same mode for most of the continuos state values
except near the lower boundary of the safe set, in which case it prescribes to
change the mode to ON since there is a possibility of entering the unsafe set
in the residual one-step time horizon. However, at earlier times (for instance,
time k = 1), the maximally safe policy prescribes to change the mode even for
states that are distant from the safe set boundary. Similar comments apply to
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Fig. 3. Maximal probabilistic safe sets: heater initially off (left) and on (right). Blue,
black, and red colors refer to cases when the safe sets are Ā1, Ā2, and Ā3, respectively.
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Fig. 4. Maximally safe policy as a function of the temperature at times k = 1, 250,
500, 575, 580, 585, 590, 595, and 599 (from top to bottom) for the safe sets Ā1 , Ā2,
and Ā3 (from left to right). The darker (blue) circled line corresponds to the OFF mode
and the lighter (red) crossed line corresponds to the ON mode.

the ON mode. This shows that a maximally safe policy is not stationary. By
observing from top to bottom each column of Figure 4, one can see that this
non-stationary behavior appears limited to a time interval at the end of the
time horizon. Also, by comparing the columns of Figure 4, this time interval
gets progressively smaller moving from Ā1 to Ā2 and Ā3.

It is interesting to note the behavior of the maximally safe policy correspond-
ing to the safe set Ā1 at k = 575 and k = 580. For example, for k = 580,
the maximally safe policy for the OFF mode fluctuates between actions 0 and 1
when the temperature is around 75◦F . This is because the corresponding val-
ues taken by the function to be optimized in (14) are almost equal for the two
control actions. The results obtained refer to the case of switching probabilities
α = β = 0.8. Different choices of switching probabilities may yield qualitatively
different maximally safe policies.

5 Final Remarks

In this paper we proposed a model for controlled discrete time stochastic hybrid
systems. With reference to such a model, we described the notion of stochas-
tic reachability, and discussed how the problem of safety verification can be
reinterpreted in terms of the introduced stochastic reachability notion. By an
appropriate reformulation of the safety verification problem for the stochastic
hybrid system as that of determining a feedback policy that optimizes some mul-
tiplicative cost function for a certain controlled Markov process, we were able to
suggest a solution based on dynamic programming. Temperature regulation of a
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room by a heater that can be repeatedly switched on and off was presented as a
simple example to illustrate the model capabilities and the reachability analysis
methodology.

Further work is needed to extend the current approach to the infinite horizon
and partial information cases. The more challenging problem of stochastic reach-
ability analysis for continuous time stochastic hybrid systems is an interesting
subject of future research.
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Abstract. Optimal switch-time control is an area that investigates how
best to switch between different control modes. In this paper we present
an algorithm for solving the optimal switch-time control problem for
nonlinear systems where the state is only partially known through the
outputs. A method is presented that both guarantees that the current
switch-time estimates remain optimal as the state estimates evolve, and
that ensures this in a computationally feasible manner, thus rendering
the method applicable to real-time applications. The viability of the
proposed method is illustrated through a number of examples.

1 Introduction

The basic question behind the work in this paper can be summarized as fol-
lows: If only incomplete information about the state of the system is available,
and one would like to solve an optimal switch-time control problem with respect
to the true state of the system, how can this be achieved in real-time, i.e. in a
computationally feasible manner? The solution that we propose consists of three
main building-blocks. The first building block is given by the solution to the
optimization problem for a given, initial state estimate/guess. This is compu-
tationally expensive and is a price one can only afford to pay ”off-line” in the
sense that once the system starts evolving, the exact solution can no longer be
obtained from scratch due to computational real-time constraints. The second
building-block is the construction of a set of dynamical equations that dictate
how the current solution to the optimization problem evolves as the state esti-
mate evolves. This ”solution dynamics” must satisfy two properties, namely: (i)
It must be computationally cheap, i.e. no extensive computations are allowed as
the solution evolves over time. (ii) It must be optimal with respect to the cur-
rent state estimate. In other words, at all times the best possible solution to the
optimization problem must be obtained. The final building block that is needed
is a safe-guard against undesirable behaviors that may arise due to the transient
response of the state estimate, e.g. observer over-shoots. We will achieve this by
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imposing constraints on the possible switching times, thus producing a solution
to a constrained rather than a free parameter optimization problem.

This idea has been investigated in [10] for single-switch, linear systems, and
provides us with some initial guidance. However, this paper considerably extends
the results in [10] in order to complete the framework of computationally feasible
optimal switch-time control with partial information. In other words, in this
paper we deal with the problem in its full generality, namely, the multiple-switch,
nonlinear case.

The outline of this paper is as follows: In Section 2, the solution to the com-
plete state-information problem is recalled and the strategy of using observer-
based switch-time control for the partial information case is introduced. The next
section (Section 3) presents the solution to the observer-based problem. Section
4 presents a method for dealing with constrained switch-times in order to avoid
undesirable switch-time behaviors caused by nonlinear observer dynamics. The
resulting, constrained optimization problem is solved, and a number of examples
illustrate the viability of the proposed solution.

2 Background

2.1 State-Based Switch-Time Optimization

Consider the problem of finding the switch-times τ� = (τ�
1 , τ

�
2 , . . . , τ

�
N )T that

solves the optimization problem Σ1(t0, x0):

Σ1(t0, x0) :

min
τ
J(t0, x0, τ) = 1

2

∫ T

t0
L(x(t))dt

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
ẋ(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

f1(x(t)), t ∈ [t0, τ1)
f2(x(t)), t ∈ [τ1, τ2)

...
fN (x(t)), t ∈ [τN−1, τN )
fN+1(x(t)), t ∈ [τN , T ]

x(t0) = x0.

Here x is the n-dimensional state vector, L and fi (i = 1, 2, . . . , N + 1) are con-
tinuously differentiable functions from Rn to R and from Rn to Rn, respectively,
N is the number of switch-times, and τ is the collection of switch-times, i.e.
τ = (τ1, τ2, . . . , τN )T . The interpretation here is that the system evolves accord-
ing to ẋ = f1(x(t)) on the time interval [t0, τ1), to ẋ = fi+1(x(t)) on [τi, τi+1)
(i ∈ {1, 2, . . . , N − 1}), and to ẋ = fN+1(x(t)) on [τN+1, T ]. Such systems arise
in a variety of applications, including situations where a control module has to
switch its attention among a number of subsystems [14, 17, 21], or collect data
sequentially from a number of sensory sources [5, 7, 13].

Recently, there has been a growing interest in optimal switching time control
of such hybrid systems, where the control variable consists of a proper switching
law as well as the input function u(t) (see [4, 6, 11, 12, 18, 19, 20, 22]). In particu-
lar, in [4] a framework is established for optimal control, while [18, 19, 20] present
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suitable variants of the maximum principle to the setting of hybrid systems. In
[2, 3, 11, 16] piecewise-linear or affine systems are considered, while the special
case of autonomous systems, where the term u(t) is absent and the control vari-
able consists solely of the switching times, is considered in [11, 13, 23, 24]. In
particular, in [8, 23, 24] general nonlinear systems are considered together with
nonlinear-programming algorithms that compute the gradient and second-order
derivatives of the cost functional. Note that we, in this paper, follow this line of
work by not having an explicit input u affect the system. This restriction will
have the effect that the gradient of the cost with respect to the control param-
eters (the switch-times) can be quickly computed without having to solve any
boundary value problems. However, the reason why we focus on this model is
not entirely driven by this computational concern, but it also stems from the
fact that in a number of applciations, a collection of control laws have already
been designed (i.e. u has already been given in terms of x) and the remaining
problem is simply the problem of determining the duration of each individual
control mode.

In particular, in [8], the Calculus of Variations were used for finding the first
order, necessary optimality conditions for τ�, namely

∂J

∂τi
(t0, x0, τ

�) = λi(τ�
i )
(
fi(x(τ�

i ))− fi+1(x(τ�
i ))

)
= 0

for every i ∈ {1, 2, . . . , N}, where the costate λi satisfies

λ̇i(t) = −λi(t)
∂fi+1

∂x (x(t)) − ∂L
∂x (x(t)), t ∈ [τi, τi+1]

λi(τi+1) = 0.

Here we have used the convention that the costate is an n-dimensional row vector.
Note that we only obtain locally optimal and not globally optimal solutions,
which is all we can hope for in general since J is nonconvex in τ .

In this case, i.e. in the case where the complete state information is avail-
able, we can thus easily produce a gradient descent-based algorithm for actually
finding the optimal switching time, e.g.:

Algorithm 1:
τ = τ0 (initial guess)
repeat

solve for x(t), t ∈ [t0, T ] forwards
solve for λi(t), t ∈ [τi, τi+1] backwards for every i

compute ∂J/∂τ =
[

∂J
∂τ1

∂J
∂τ2

· · · ∂J
∂τN

]
with

∂J
∂τi

= λi(τi)
(
fi(x(τi))− fi+1(x(τi))

)
τ := τ − γ(∂J/∂τ)T

until ‖∂J/∂τ(τ)‖ ≤ ε

Here ε > 0 is the termination thresh-hold, and γ is the step length in the gradient
descent. Note that γ could possibly be varying, e.g. using the Armijo stepsize [1],



Output-Based Optimal Timing Control of Switched Systems 67

which was the case in [8, 9]. Note also that such an algorithm involves solving
for x(t) and λ(t) a number of times until the optimal τ has been found. In other
words, if δ is the stepsize used in the numerical integration algorithm, and if
a total number of M gradient descent iterations are needed, the computational
complexity isO(M/δ), which is a non-trivial computational burden if the optimal
τ has to be found in real-time, i.e. fast enough with respect to the particular
application that is being considered.

2.2 Partial State Information

We now turn our attention to a slightly different problem, namely the problem
of finding the optimal τ when only partial information is available. By this we
understand that only y(t) ∈ Rp (and not x(t)) is known, where

y(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

g1(x(t)), t ∈ [t0, τ1)
g2(x(t)), t ∈ [τ1, τ2)

...
gN(x(t)), t ∈ [τN−1, τN )
gN+1(x(t)), t ∈ [τN , T ]

and gi (i = 1, 2, . . . , N +1) are continuously differentiable output functions from
Rn to Rp.

The strategy that we will use is to guess an initial state value, x̂(t0) and then
solve the computational resource intense optimal control problem for this initial
state using the gradient descent algorithm in Algorithm 1, resulting in an optimal
switching time τ̂ (t0). The idea is that this computation can be performed off-
line, i.e. before the system actually starts evolving. Once this happens, we will
use an observer for estimating the state. Moreover, the main idea of this paper
is to also update τ̂ (t) in such a way that the following two conditions hold:

1. For all times t ∈ [t0, T ], τ̂ (t) is optimal given the current state estimate x̂(t).
2. The time evolution of τ̂ (t) must be computationally reasonable.

What these two conditions thus say is that we should only pay the high compu-
tational price associated with solving the optimal switch-time control problem
for the initial state estimate guess. After that, the switch-time estimates should
evolve in such a way that they remain optimal as well as are easy to compute.

3 Observer-Based Switch-Time Optimization

This section is concerned with the problem of solving Σ1(t, x̂(t)), where x̂(t) is
the state of the previously defined observer. First, for simplicity of discussion,
we derive the switch-time dynamics for the case N = 1 (single switch time),
i.e. τ = τ1. This will clearly show the key idea behind switch-time optimization
based on observers. Next, observers are introduced for executing our technique,
and then the validity is demonstrated by a numerical example. We finally extend
the result to the multiple switch-time problem (with N ≥ 2).
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3.1 Switch-Time Dynamics

Let us consider the dynamics of the optimal switch-time for the current state
estimate x̂(t) under N = 1. For this, we assume that we have been able to
compute τ̂(t0) as the solution to Σ1(t0, x̂(t0)) using Algorithm 1, where x̂(t0) is
the initial state estimate. Now, let

˙̂τ(t) = − 1
∂2J
∂τ2 (t, x̂(t), τ̂ (t))

( ∂2J

∂t∂τ
(t, x̂(t), τ̂ (t)) +

∂2J

∂x∂τ
(t, x̂(t), τ̂ (t)) ˙̂x(t)

)
. (1)

Throughout this paper we will make the explicit assumption that τ̂ (t) is a local
minimum to Σ1(t, x̂(t)) for all t ∈ [t0, T ], and hence that the Hessian, i.e. the
second derivative matrix of J with respect to τ is positive definite, which in
turn implies that the above expression is well-defined. This assumption may not
always hold since extrema are known to not always be continuous across system
parameters even though the cost and the constraints may be arbitrarily smooth.
In fact, this is a potential weakness of the proposed approach but at present,
we state it as an assumption and leave further investigations of this issue to the
future.

That this is in fact the correct evolution of τ̂ (t) follows directly from the fact
that

d

dt

(∂J
∂τ

(t, x̂(t), τ̂ (t))
)

=
∂2J

∂τ2 (t, x̂(t), τ̂ (t)) ˙̂τ(t) +
∂2J

∂t∂τ
(t, x̂(t), τ̂ (t)) +

∂2J

∂x∂τ
(t, x̂(t), τ̂ (t)) ˙̂x(t)

= −
∂2J
∂τ2 (t, x̂(t), τ̂ (t))
∂2J
∂τ2 (t, x̂(t), τ̂ (t))

( ∂2J

∂t∂τ
(t, x̂(t), τ̂ (t)) +

∂2J

∂x∂τ
(t, x̂(t), τ̂ (t)) ˙̂x(t)

)
+

∂2J

∂t∂τ
(t, x̂(t), τ̂ (t)) +

∂2J

∂x∂τ
(t, x̂(t), τ̂ (t)) ˙̂x(t) = 0.

Hence, as long as ∂J/∂τ = 0 initially it will remain zero and τ̂ (t) will in fact
remain optimal. In the following paragraphs we will compute an explicit expres-
sion for this update rule as well as show that it does in fact satisfy the second
condition that we imposed, namely that the computational burden associated
with evolving τ̂ (t) is low.

From Section 2.1 we know that

∂J

∂τ
(t, x, τ) = λ(τ)(f1(x(τ)) − f2(x(τ))),

where ⎧⎨⎩ ẋ(s) =
{
f1(x(s)), s ∈ [t, τ)
f2(x(s)), s ∈ [τ, T ]

x(t) = x{
λ̇(s) = −λ(s)∂f2

∂x (x(s)) − ∂L
∂x (x(s)), s ∈ [τ, T ]

λ(T ) = 0,

where the costate λ1 is simply denoted by λ.
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By letting Φ2(s, τ) be the state transition matrix on s ∈ [τ, T ] of the
autonomous linear system

ż =
∂f2

∂x
z,

it is straightforward to solve the above costate equation with respect to λ, giving

λ(τ) =
∫ T

τ

∂L

∂x
(x(s))Φ2(s, τ)ds.

By plugging this into the expression for ∂J/∂τ we obtain

∂J

∂τ
(t, x, τ) =

∫ T

τ

∂L

∂x
(x(s))Φ2(s, τ)ds(f1(x(τ)) − f2(x(τ))).

Now, in order to compute the update rule for τ̂ (t), we need the partial derivatives
of ∂J/∂τ , for which it is convenient to define p(t, x, τ) and q(t, x, τ) as

p(t, x, τ) =
∫ T

τ

∂L

∂x
(x(s))Φ2(s, τ)ds,

q(t, x, τ) = f1(x(τ)) − f2(x(τ)),

where, as before, x(t) = x. Using this notation, the partial derivative with respect
to x becomes

∂2J

∂x∂τ
(t, x, τ) = qT (t, x, τ)

∂p

∂x
(t, x, τ) + p(t, x, τ)

∂q

∂x
(t, x, τ),

and then

∂p

∂x
(t, x, τ) =

∫ T

τ

(
∂x(s)
∂x

)T
∂2L

∂x2 (x(s))Φ2(s, τ)ds

=
∫ T

τ

(Φ2(s, τ)Φ1(τ, t))T ∂2L

∂x2 (x(s))Φ2(s, τ)ds

∂q

∂x
(t, x, τ) =

(
∂f1

∂x
(x(τ)) − ∂f2

∂x
(x(τ))

)
∂x(τ)
∂x

=
(
∂f1

∂x
(x(τ)) − ∂f2

∂x
(x(τ))

)
Φ1(τ, t),

where the facts ∂x(s)/∂x = Φ2(s, τ)Φ1(τ, t) and ∂x(τ)/∂x = Φ1(τ, t) are used.
It should be noted that this form of the partial derivative ∂J/∂τ can be

easily computed. In fact, we mainly need to calculate the five integrations for
obtaining Φ1, Φ2, x, p, and ∂p/∂x, in which the three integrations are required
for the differential equations on Φ1, Φ2, and x. Hence, we have a computationally
feasible method for computing ∂J/∂τ that does not involve any iterations in a
gradient descent algorithm.
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In a similar way, the partial derivatives with respect to t and τ are given by

∂2J

∂t∂τ
(t, x, τ) =

∂p

∂t
(t, x, τ)q(t, x, τ) + p(t, x, τ)

∂q

∂t
(t, x, τ)

∂2J

∂τ2 (t, x, τ) =
∂p

∂τ
(t, x, τ)q(t, x, τ) + p(t, x, τ)

∂q

∂τ
(t, x, τ)

where

∂p

∂t
(t, x, τ) =

∫ T

τ

∂x(s)
∂t

∂2L

∂x2 (x(s))Φ2(s, τ)ds

= −
∫ T

τ

Φ2(s, τ)Φ1(τ, t)f1(x)
∂2L

∂x2 (x(s))Φ2(s, τ)ds

∂q

∂t
(t, x, τ) =

(
∂f1

∂t
(x(τ)) − ∂f2

∂t
(x(τ))

)
∂x(τ)
∂t

= −
(
∂f1

∂x
(x(τ)) − ∂f2

∂x
(x(τ))

)
Φ1(τ, t)f(x)

∂p

∂τ
(t, x, τ)

= −∂L

∂x
(x(τ))Φ2(τ, τ) +

∫ T

τ

∂2L

∂τ∂x
(x(s))Φ2(s, τ) +

∂L

∂x
(x(s))

∂

∂τ
Φ2(s, τ)ds

= −∂L

∂x
(x(τ)) +

∫ T

τ

Φ2(s, t)q
∂2L

∂x2 (x(s))Φ2(s, τ)−
∂L

∂x
(x(s))Φ2(s, τ)

∂f2

∂x
(x(τ))ds

∂q

∂τ
(t, x, τ) =

(
∂f1

∂x
(x(τ)) − ∂f2

∂x
(x(τ))

)
∂x(τ)
∂τ

=
(
∂f1

∂x
(x(τ)) − ∂f2

∂x
(x(τ))

)
f1(x(τ)),

and the relations ∂x(s)/∂t = −Φ2(s, τ)Φ1(τ, t)f1(x), ∂x(τ)/∂t = −Φ1(τ, t)f1(x),
∂x(s)/∂τ = Φ2(s, τ)q, and ∂x(τ)/∂τ = f1(x(τ)) are used. It is moreover easy to
see that these partial derivatives can be obtained in a computationally feasible
manner.

Under the assumption that we have a strict local minimum (i.e. that the
Hessian is positive definite), this expression is well-defined, and, as previously
shown, τ̂ (t) is a solution to Σ1(t, x̂(t)), which establishes the first property that
our solution needed to satisfy. The second property involves the computational
burden associated with computing τ̂(t). And, the pieces needed for the compu-
tation of the partial derivatives are given by a bounded number of integrations.
Hence we have an algorithm for updating the optimal switching time that sat-
isfies both properties required from the solution, namely (i) optimality, and (ii)
computational feasibility.
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3.2 Observers for Switch-Time Optimization

The observers underlying this switch-time optimization strategy should (if pos-
sible) provide good estimates of the state, i.e. the estimated state should quickly
converge to the real system state. We here outline two possible such observers:

If the system is in fact composed of linear subsystems, i.e.,

ẋ(t) =
{
A1x(t), t ∈ [t0, τ)
A2x(t), t ∈ [τ, T ]

y(t) =
{
C1x(t), t ∈ [t0, τ)
C2x(t), t ∈ [τ, T ]

x(t0) = x0,

we can use a standard switched-type Luenberger observer, defined as

˙̂x(t) =
{
A1x̂(t)−K1(C1x̂(t)− y(t)), t ∈ [t0, τ)
A2x̂(t)−K2(C2x̂(t)− y(t)), t ∈ [τ, T ],

where K1,K2 are appropriately chosen observer gain matrices. This observer has
the advantage that the convergence of the observer state to the real system state
can be specified by choosing K1,K2.

On the other hand, for systems with nonlinear subsystems:

ẋ(t) = f(x(t)) =
{
f1(x(t)), t ∈ [t0, τ)
f2(x(t)), t ∈ [τ, T ]

y(t) = g(x(t)) =
{
g1(x(t)), t ∈ [t0, τ)
g2(x(t)), t ∈ [τ, T ]

x(t0) = x0,

the Grizzle-Moraal Newton observer, originally proposed in [15], provides a good
candidate. This observer is based on Newton’s method for solving nonlinear
equations, and we recall this method below for the non-switched case:

Given the state x(t) and a (sufficiently) small positive scalar Δ, then x(t+Δ)
can be approximately expressed as x(t + Δ) � x(t) + Δf(x(t)). Then we have
an approximation of x(t+ kΔ) for a natural number k as x(t+ kΔ) � F k(x(t)),
where F (x(t)) = x(t) + Δf(x(t)) and

F k(x(t)) = F ◦ F ◦ · · · ◦ F︸ ︷︷ ︸
k times

(x(t)).

Using this notation, y(t+ kΔ) can be approximated by y(t+ kΔ)�g(F k(x(t))).
Next, define Gm(x̂0(t)) = Ỹm − Ym(x̂0(t)), where

Ỹm =

⎡⎢⎢⎢⎢⎢⎣
y(t)
y(t + Δ)
y(t + 2Δ)

...
y(t + (m− 1)Δ)

⎤⎥⎥⎥⎥⎥⎦ , Ym(x̂0(t)) =

⎡⎢⎢⎢⎢⎢⎣
g(x̂0(t))
g(F (x̂0(t)))
g(F 2(x̂0(t)))

...
g(Fm−1(x̂0(t)))

⎤⎥⎥⎥⎥⎥⎦ .
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Then the Grizzle-Moraal Newton observer is given by the following predictor-
corrector step:

x̂−
k = f(x̂(t + (k − 1)Δ)) (2)

x̂(t + kΔ) = x̂−
k −

{
∂Gm

∂x̂0
(x̂−

k )
}†

Gm(x̂−
k ), (3)

where the symbol “†” denotes the pseudo-inverse. Although this observer is not
always guaranteed to globally converge to the real system state, this observer
can be applied to a broad class of the nonlinear systems, and the estimated state
often converges very quickly to the real system state.

3.3 Example

Consider the system defined by

ẋ =

⎧⎪⎪⎨⎪⎪⎩
(

2
√
x1 −

√
x2

−√x2

)
t ∈ [t0, τ)(

−√x1 +
√
x2√

x2

)
t ∈ [τ, T ]

y = (1 1)x t ∈ [t0, T ],

where t0 = 0, T = 1 and the cost function given by

L(x) =
(
x−

(
2
2

))T (
x−

(
2
2

))
. (4)

The initial state of the system is given as (1.3, 1.8)T , and the observer used here
is a switched version of the Grizzle-Moraal Newton observer whose initial state
is (1.2, 1.9)T .

Figure 1 shows that, as the observer state approaches to the real system state,
the switch time converges from τ̂ (0) = 0.365 to the true optimal switch-time
τ� = 0.337. In this way, even if the complete state information cannot be used,
the switch-time is optimized when using the switch-time dynamics together with
a suitable observer.

3.4 Extension to the Multiple Switch-Time Case

The switch-time optimization technique derived in the previous paragraphs will
here be extended to the multiple switch-time case as follows:

Recall the relation for the single-switch case

∂2J

∂τ2 (t, x̂(t), τ̂ (t)) ˙̂τ(t) +
∂2J

∂t∂τ
(t, x̂(t), τ̂ (t)) +

∂2J

∂x∂τ
(t, x̂(t), τ̂ (t)) ˙̂x(t) = 0,

where the left hand side corresponds to the time derivative of ∂J
∂τ (t, x̂(t), τ̂ (t)),

i.e. d
dt

(
∂J
∂τ (t, x̂(t), τ̂ (t))

)
. It can be directly shown in exactly the same way as for
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Fig. 1. The upper figure shows the state and observer trajectories (solid lines and
dotted lines), while the lower figure shows τ̂(t) in which it is illustrated how τ̂ (t) (solid
line) evolves until τ̂(t) = t (dotted line), at which point the system switches

the single-switch case that this relation still holds for the multiple switch-time
case (N ≥ 2) and then ∂2J/∂τ2 ∈ RN×N , ∂2J/∂t∂τ ∈ RN×1, and ∂2J/∂x∂τ ∈
RN×n. Thus we obtain the following expression for the multiple switch-time
dynamics.

˙̂τ(t) = −
(
∂2J

∂τ2 (t, x̂(t), τ̂ (t))
)−1(

∂2J

∂t∂τ
(t, x̂(t), τ̂ (t)) +

∂2J

∂x∂τ
(t, x̂(t), τ̂ (t)) ˙̂x(t)

)
.

(5)

Here the partial derivatives of ∂J/∂τ , i.e. ∂2J/∂τ2, ∂2J/∂t∂τ , and ∂2J/∂x∂τ ,
can be expressed as similar explicit forms to the case of N = 1. In fact, this is
seen by computing the gradient

∂J

∂τi
(t, x, τ) =

∫ τi+1

τi

∂L

∂x
(x(s))Φi+1(s, τ)ds(fi(x(τi))− fi+1(x(τi)))

λ(τ) =
∫ τi+1

τi

∂L

∂x
(x(s))Φi+1(s, τ)ds.

Furthermore, the observers supporting the switch-time optimization can also
be obtained through a straightforward extension of the results in Section 3.2.
Therefore, the switch-time optimization method works also for the multiple
switch-time case.

The multiple switch-case can best be illustrated through an example. Consider
the system defined as
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f1(x) =
(

1 0
0 −1

)
x, f2(x) =

(
−1 0
0 1

)
x, f3(x) =

(
1 0
0 −1

)
x,

g1(x) = g2(x) = g3(x) = (1, 1),
with N = 2, and the cost function

L(x) = xT

(
1 0
0 1

)
x.

The initial time is t0 = 0 and the final time is T = 1. The initial state of the
system is given by (0.7, 1.4)T , and the observer used here is the Luenberger
observer whose poles are all set at −13, while the initial state is (1, 1)T , which
gives τ̂ (t0) = (0.2, 0.6)T .

Figure 2 shows that even multiple switch-time case, we can still optimize the
switch-times by estimating the state with a suitable observer. It should be noted
that the dynamics are linear in this example. However, this example is to be
thought of as illustrating the transition from N = 1 to N ≥ 2 rather than linear
vs. nonlinear.

Fig. 2. The upper figure illustrates the state and observer trajectories (solid lines and
dotted lines), while the lower figure shows τ̂(t) (solid lines) evolving until τ̂(t) = t
(dotted line). The first switch occurs at t 	 0.468 and the second at t 	 0.736.

4 Constrained Switch-Time Optimization

As noted in our previous paper [10], it is possible that the transient behavior
(e.g. over-shoot) of the observer dynamics will force the system to switch very
quickly. This should not be taken as a fault with the proposed method since we
are in fact guaranteeing that the resulting switch-times τ̂(t) are optimal with
respect to the current state estimate. Instead this implies that the optimality
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with respect to the current state estimate may not always be desirable unless
additional constraints are imposed on the system. Thus as proposed in [10], it
is quite natural to introduce the constraint on the switch-times for making sure
that the observer is given enough time to settle.

On the other hand, this is just a special case of the more challenging problem
that we will address in this paper. Namely, when multiple switches are present,
we must enforce that t0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τN ≤ T . This is the case since
otherwise the transient observer behavior may change the switch-time sequence.
Thus we deal with the following problem: How is the problem Σ1(t0, x0) solved
under the switch-time sequence constraint t0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τN ≤ T ?

4.1 Optimality Conditions

We first assumeN =2 for simplicity of notation. Then the following problem arises.

Σ2(t, x) :

minτ J(t, x, τ) = 1
2

∫ T

t
L(x(s))ds

subject to

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ẋ(s) =

⎧⎨⎩
f1(x(s)), s ∈ [t, τ1)
f2(x(s)), s ∈ [τ1, τ2)
f3(x(s)), s ∈ [τ2, T ]

x(t) = x
τ1 ≤ τ2.

Now, in order to solve Σ2(t, x) it is no longer enough to find τ̂ (t) such that
∂J/∂τ = 0. Instead, the first order necessary Kuhn-Tucker condition will have to
serve as the optimality function. In other words, we must have that ∂L/∂τ = 0,
where the Lagrangian L is given by

L(t, x, τ, μ) = J(t, x, τ) + μ(τ1 − τ2),

where the multiplier satisfies

μ =
{

0, τ1 < τ2
≥ 0, τ1 = τ2.

It is straightforward to see that the Kuhn-Tucker condition becomes{ ∂J
∂τ1

= 0, ∂J
∂τ2

= 0 if τ1 < τ2

∂J
∂τ1

≤ 0, ∂J
∂τ2

≥ 0, ∂J
∂τ1

+ ∂J
∂τ2

= 0 if τ1 = τ2,

which provides the following switch-time dynamics.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂τ(t) = − 1
∂2J

∂τ2
1

+ ∂2J
∂τ2∂τ1

+ ∂2J
∂τ1∂τ2

+ ∂2J

∂τ2
2

(
∂2J

∂t∂τ1
+ ∂2J

∂t∂τ2
+
(

∂2J
∂x∂τ1

+ ∂2J
∂x∂τ2

)
˙̂x(t)

) [1
1

]
if
{
τ1 = τ2
˙̂τ1(t) > ˙̂τ2(t)

˙̂τ(t) = −
(

∂2J
∂τ2

)−1 (
∂2J
∂t∂τ + ∂2J

∂x∂τ
˙̂x(t)

)
otherwise

The switching time τ̂ (t) obtained according to the above dynamics is a solution
to Σ2(t, x̂(t)), i.e., it satisfies the first order necessary Kuhn-Tucker condition.
This can be shown as follows.
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First, as discussed in Sections 3.1 and 3.4, the second switch-time dynamics
satisfies the Kuhn-Tucker condition when (a) τ1(t) < τ2(t) or (b) τ1(t) = τ2(t),
˙̂τ1(t) ≤ ˙̂τ2(t).

Next, it is proven by the reduction to absurdity that the Kuhn-Tucker con-
dition at the boundary point is satisfied by the first switch-time dynamics, ob-
tained from d

dt

(
∂J
∂τ1

+ ∂J
∂τ2

)
= 0, namely, we will show that the first switch-time

dynamics provides τ̂ (t+δ) for some δ > 0 satisfying the Kuhn-Tucker condition:
Let τ∗(t) be an optimal solution satisfying τ∗

1 (t) = τ∗
2 (t), ∂L

∂τi
(t, x, τ∗(t)) = 0

for all i ∈ {1, 2}, and τ∗
1 (t+ δ) = τ∗

2 (t+ δ) for some δ > 0, where τ∗
i (t) is the i-th

element of τ∗(t). Note that τ∗(t) is the switch time satisfying the Kuhn-Tucker
condition at the boundary point and remains on the boundary for a while. If we
assume ˙̂τ(t) �= τ̇∗(t), we have

d

dt

(
∂J

∂τ1
(t, x(t), τ∗(t))

)
> 0,

d

dt

(
∂J

∂τ2
(t, x(t), τ∗(t))

)
< 0, (6)

since the Kuhn-Tucker condition at the boundary point is violated and ∂J
∂τ1

+
∂J
∂τ2

= 0 holds for ˙̂τ(t). This gives

∂J

∂τ1
(t + δ, x(t + δ), τ∗(t) + ˙̂τ(t)δ + o(δ)) > 0 (7)

∂J

∂τ2
(t + δ, x(t + δ), τ∗(t) + ˙̂τ(t)δ + o(δ)) < 0, (8)

for a small positive scalar δ, which implies that

τ∗
1 (t + δ) < τ∗

1 (t) + ˙̂τ1(t)δ + o(δ) (9)
τ∗
2 (t + δ) > τ∗

2 (t) + ˙̂τ2(t)δ + o(δ). (10)

Note here that (7) and (8) mean J(t + δ, x(t + δ), τ∗(t) + ˙̂τ(t)δ + o(δ)) > J(t +
δ, x(t+δ), τ) for a τ satisfying τ1 < τ∗

1 (t)+ ˙̂1τ(t)δ+o(δ), τ2 > τ∗
2 (t)+ ˙̂2τ(t)δ+o(δ),

and thus (9) and (10) are provided. Then, because τ∗
1 (t) = τ∗

2 (t) and ˙̂τ1(t) =
˙̂τ2(t), it follows that τ∗

1 (t + δ) < τ∗
2 (t + δ), namely, it contradicts τ∗

1 (t + δ)
= τ∗

2 (t + δ) for some δ > 0. Hence, ˙̂τ(t) = τ̇∗(t). Therefore, this choice of ˙̂τ(t)
does in fact guarantee that the resulting solution is locally optimal to Σ2(t, x̂(t)),
and thus we use the new ˙̂τ(t) instead of the old one.

For the case N > 2, we can derive the corresponding update rule based on
the first order necessary Kuhn-Tucker condition. More precisely, ˙̂τ(t) can be
provided as the time-derivative of τ̂ (t) satisfying the equality condition in the
corresponding Kuhn-Tucker condition at the boundary point.

4.2 Example: The Constrained Case

Let us return to the example in Section 3.4. Here we consider the initial state
(1.2, 0.3)T .

Figure 3 shows a situation where τ̂1(t) approaches to τ̂2(t) as the time pro-
ceeds, and τ̂1(t) = τ̂2(t) holds on [0.022, 0.147]. On this time interval, the
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Fig. 3. A situation is shown where although τ̂1(t) approaches to τ̂2(t), τ̂1(t) = τ̂2(t)
holds on [0.022, 0.147] and the switch-time optimization is achieved with the proper
switching sequence

switch-time dynamics newly obtained in Section 4.1 is used. It is thus clear that
the switch-times can be optimized while maintaining the switching sequence.

5 Conclusions

An algorithm was presented for solving the optimal switch-time control problem
when the state of the system is only partially known through the output. This
algorithm was constructed in such a way that it both guarantees that the current
switch-time remains optimal as the state estimates evolve, and that it ensures
this in a computationally feasible manner, thus rendering the method applica-
ble for real-time applications. An extension was moreover considered where the
switching-times ensure that they do not cross each other, thus maintaining the
correct switching sequence.
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Università di Pisa, 56100 Pisa, Italy

bicchi@ing.unipi.it
3 Dept. of EECS., University of California at Berkeley, CA 94720, USA

alberto@eecs.berkeley.edu
4 Magneti Marelli Powertrain, Via del Timavo 33, 40134 Bologna, Italy

Gabriele.Serra@bologna.marelli.it

Abstract. We present an industrial case study in automotive control
of significant complexity: the new common rail fuel injection system for
Diesel engines, currently under production by Magneti Marelli Power-
train. In this system, a flow–rate valve, introduced before the High Pres-
sure (HP) pump, regulates the fuel flow that supplies the common rail
according to the engine operating point. The standard approach followed
in automotive control is to use a mean–value model for the plant and to
develop a controller based on this model. In this particular case, this ap-
proach does not provide a satisfactory solution as the discrete–continuous
interactions in the fuel injection system, due to the slow time–varying fre-
quency of the HP pump cycles and the fast sampling frequency of sensing
and actuation, play a fundamental role. We present a design approach
based on a hybrid model of the Magneti Marelli Powertrain common–rail
fuel–injection system for four-cylinder multi–jet engines and a hybrid ap-
proach to the design of a rail pressure controller. The hybrid controller is
compared with a classical mean–value based approach to automotive con-
trol design whereby the quality of the hybrid solution is demonstrated.

1 Introduction

Common–rail fuel–injection is the dominant system in diesel engine control. In
common–rail fuel–injection systems (see Figure 1), a low-pressure pump located
in the tank supplies an HP pump with a fuel flow at the pressure of 4–6 bars.
The HP pump delivers the fuel at high pressure (from 150 to 1600 bars) to the
common rail, which supplies all the injectors. The fuel pressure in the common
rail depends on the balance between the inlet fuel flow from the HP pump and
the outlet fuel flow to the injectors. The common–rail pressure is controlled
to achieve tracking of a reference signal that is generated on–line (it depends
on the engine operating point) to optimize fuel injection and to obtain proper
combustion with low emissions and noise.

J Hespanha and A. Tiwari (Eds.): HSCC 2006, LNCS 3927, pp. 79–92, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
.
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Fig. 1. Common rail fuel injection system developed by Magneti Marelli Powertrain

In the novel fuel–injection system developed by Magneti Marelli Powertrain,
a flow–rate valve located before the HP pump allows for effective control of
the amount of fuel that is compressed to high pressure and delivered to the
rail. The HP pump and, hence, the rail are supplied with the precise amount
of fuel flow that is necessary for fuel injection, achieving high efficiency of the
injection system. The previous fuel injection system, which was not equipped
with the flow–rate valve, was characterized by a high power consumption by the
HP pump, which always supplied with the maximum fuel flow for the current
operating condition (rail pressure control was achieved by a regulation valve
located on the rail).

To control the rail pressure efficiently, we need to model accurately the in-
teraction between discrete and continuous behaviours of the injection system
components, exhibiting the pulsating evolution of the rail pressure due the dis-
continuous inlet fuel flow from the HP pump and outlet fuel flows to the injectors.
To do so, we present in this paper a hybrid model of the Magneti Marelli Pow-
ertrain common–rail fuel–injection system for four-cylinder multi–jet engines.
Motivated by the success in solving other automotive control problems using hy-
brid system methodologies, e.g. cut-off control [1], intake throttle valve control
[2], actual engaged gear identification [3], and adaptive cruise control [4], we de-
veloped a hybrid rail pressure controller that exhibits excellent performance. To
compare our solution with the standard design methodology adopted in the auto-
motive industry based on mean–value models of the plant, we present a classical
Smith Predictor discrete–time controller. Simulations of the closed–loop system
show that the mean–value model design approach does not achieve the same
quality of design as the hybrid approach.
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We believe this paper underlines the important role played by hybrid systems
in solving complex industrial control problems in a domain as economically rel-
evant as the automotive sector.

2 Hybrid Model of the Common Rail Injection System

The proposed hybrid model of the injection system, shown in Figure 2, consists
of: the flow–rate valve, the HP pump, the injectors and the common rail [5]. The
proposed hybrid model describes accurately the interacting discrete and contin-
uous behaviours of the injection system components, reproducing the pulsating
evolution of the rail pressure due the discontinuous inlet fuel flow from the HP
pump and outlet fuel flows to the injectors. The rail pressure p [bar] is the con-
trolled output. The flow–rate valve duty cycle u ∈ [0, 1] is the control input. The
injectors fuel flow qINJ [mm3/sec] , which depends on the injectors opening times
ET [sec], is considered as a disturbance to be compensated. The models of the
components of the system are described in the next sections using the hybrid
automaton formalism [6].

Fig. 2. Hybrid model of the fuel injection system

2.1 The Flow–Rate Valve

The hybrid model of the flow–rate valve is depicted in Figure 3 and includes:
the valve PWM1 electrical driver; the dynamics of the coil current I [A]; and
the relation between the coil current and the fuel flow–rate qM [mm3/sec] across
the valve.

The PWM electrical driver model is a hybrid model with as output a square
wave voltage vPWM(t) ∈ {0, Vbat} given by pulse–width modulation of the battery
voltage Vbat with duty cycle defined by the control input signal u(t) ∈ [0, 1]. Its
implementation is based on a triangular wave generator with period T0 and

1 Pulse Width Modulation.
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Fig. 3. Flow–rate valve hybrid model

output α(t), modelled as a hybrid system. The dynamics of the coil current I
depends on the coil resistance R and inductance L. The relation between the
coil current I and the fuel flow rate qM is given by a nonlinear function

qM = fM (I) (1)

represented as a piecewise affine expression (see [7]).

2.2 The HP Pump

The HP pump consists of three identical hydraulic rams mounted on the same
shaft with a relative phase of 120o (see Figure 4). Since the pump is powered by

Fig. 4. HP pump hybrid model
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η(p, n)

n [rpm]

Fig. 5. HP pump efficiency

the camshaft, its revolution speed depends on the engine speed n [rpm]. Pump
efficiency reduces the fuel flow qI [mm3/sec] to the rams, i.e.

qI = η(p, n)qM (2)

where the efficiency η(p, n) depends on the rail pressure and the engine speed as
depicted in Figure 5. The HP pump fuel flow to the rail qP [mm3/sec] is obtained
by adding the contributions qP

i of the three rams: qP = qP
1 + qP

2 + qP
3 .

The partial closure of the flow–rate regulation valve produces the cavitation
phenomenon in the pump, which affects both the intake and compression phases.
For small effective area of the flow–rate valve, the pressure reduction in the
ram during the intake phase causes fuel vaporization [8]. As a consequence, the
amount of fuel charge in volume is lower than the geometric displacement of the
cylinder. The partial fuel charge depends on the amount of fuel vapor in the
cylinder. In a first part of the compression phase, the ram does not deliver any
fuel to the rail. In fact, at the beginning of the compression phase, the increase of
pressure inside the cylinder causes fuel condensation only. The outlet flow to the
rail starts when the fuel is completely in the liquid state, i.e. when the geometric
volume of the cylinder (which decreases during compression) equals the fuel
charge in volume. From this time on, pressure increase in the ram produces the
opening of outlet valve and the exit of the compressed fuel to the rail.

The hybrid model of the i-th ram of the HP pump is depicted in Figure 6. Its
evolution is determined by the ram angle φi [o]. Since the camshaft revolution
speed is half the engine speed n, then the ram angle dynamics is φ̇i = 360

2
n
60 =

3n, where n is the engine speed in rpm.
The hybrid model contains two macro discrete states corresponding to the

intake and compress phases, which have durations of half camshaft cycle. The
pumping cycle starts with the beginning of the intake phase, which is triggered by
the guard φi = 180o. The camshaft sensor detects the beginning of the pumping
cycle by emitting the output event triggeri at transition time.

Since the intake duration is 180o and the three rams are mounted with a
relative phase of 120o, then the intake phases of the rams partially overlap.
Intake overlapping results in different supplying fuel flow to the rams. Rams
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Fig. 6. Hybrid model of the i-th ram of the HP pump

overlapping is modelled in the i-th ram hybrid model by including three discrete
states I1, I2 and I3 inside the intake state. In each state the model dwells for
a duration of 60o of the ram angle φi. Concurrent intake with one of the other
rams occurs in the first and the last part of the intake, i.e. in I1 and I3. Assuming
that, in case of concurrent intake, both rams receive half of the flow qI given
by (2), then the amount of fuel vi [mm3] inside the i-th ram is subject to the
dynamics: v̇i = qI/2 in I1 and I3; and v̇i = qI in I2.

The compression state consists of two different states: C1, modeling fuel
condensation, and C2, modeling fuel delivery to the rail. On entering the com-
pression state, the ram angle φi is reset. During fuel condensation in state C1,
the fuel charge in the ram remains constant (v̇i = 0) and the fuel flow–rate to
the rail qP

i is zero. The system remains in state C1 while the geometric volume
of the ram V (cos(φi) − 1) is greater than the fuel charge vi. When all fuel is
at the liquid state (i.e. vi = V (cos(φi) − 1)), the model switches to state C2

where: the outlet valve is open, the compressed fuel flows towards the rail with
flow–rate qP

i = V sin(φi), and the ram fuel charge decreases as v̇i = −V sin(φi).
The compression state is left when the ram angle φi reaches 180o.

2.3 Injectors

The common rail supplies four injectors, one for each cylinder of the engine.
In multi–jet engines, each injection phase is composed by a sequence of 3 to 5
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distinct injections. However, in most of the engine operating conditions only
three injections are used. For the sake of simplicity, we consider this case. The
three injections are: a pilot injection (applied to reduce combustion time by in-
creasing cylinder temperature and pressure), a pre-injection (used to reduce pro-
duction of emissions by optimizing combustion conditions) and a main injection
(which produces the desired engine torque). Having the engine four cylinders,
the frequency of injection sequences is twice the engine speed. The engine torque
controller implemented in the engine control unit defines the amount of fuel to be
injected and, consequently, the durations ET = (τPIL, τPRE , τMAIN ) [sec] and
phases (θPIL, θPRE , θMAIN ) (expressed in crank angle) of each fuel injection,
depending on the engine operating condition.

The amount of fuel that flows from the common rail to each injector is the sum
of three different terms: the flow that enters the combustion chamber Qinj , a flow
necessary to keep the injector open Qserv, and a leakage flow Qleak. The latter
two are collected into the tank. While the leakage flow–rate Qleak is a continuous
signal, the flow–rate Qinj and Qserv are not zero only when the injector is
open. Since the common rail model is zero-dimensional and in each engine stroke
only an injector is operated, then there is no loss of generality in referring the
quantities Qinj , Qserv, Qleak to the overall contribution of the four injectors to
the common rail balance, with injection frequency twice the engine speed.

The fuel flow–rate qINJ [mm3/sec] out of the common rail is represented by
the hybrid model reported in Figure 7, where qL denotes the leakage flow Qleak

and qJ stands for the sum of the Qinj and Qserv flows.

Fig. 7. Hybrid model of the injectors
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The three states on the top of the model represent the synchronization phases
for the opening of the injectors, which are defined in terms of guards on the
crankshaft angle θ [o] that evolves from 0 to 180o with dynamics θ̇ = 6n. Pa-
rameters θPIL, θPRE , θMAIN denote the corresponding start of injection an-
gles. In these states, the fuel flow to the injectors is due to leakage only, i.e.
qJ = 0.

As soon as the guard conditions θ = θPIL, θ = θPRE , θ = θMAIN become
true, a transition to the corresponding state on the bottom takes place, and the
timer τ is initialized to the current injection duration time τPIL, τPRE , τMAIN .
The three states on the bottom model the system with one injector open. The
flow to the open injector depends on the engine speed and the rail pressure:
qJ = fJ(n, p) = Qinj(p, n) + Qserv(p, n). The system remains in the injection
states until the injection time elapses, i.e. τ = 0.

2.4 Common Rail

The dynamics of the rail pressure is obtained by considering the balance between
the HP pump inlet flow and injectors outlet flows. Under the assumption of not
deformable rail, the fuel volume is constant, while the capacity depends on the
pressure and temperature of the fuel in the rail according the Bulk module,
which takes into account fuel compressibility. The evolution of the rail pressure
is given by:

ṗ(t) =
KBulk

Vrail

(
qP (t)− qINJ(t)

)
, (3)

where the HP pump fuel flow qP is given by the hybrid model in Figure 4 and
the injector fuel flow qINJ is given by the hybrid model in Figure 7.

p
[bar]

qP

[mm3/sec]

qINJ

[mm3/sec]

t [sec]

Fig. 8. Rail pressure pulsating profile and HP pump and injectors fuel flows
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Simulation results obtained with the proposed common rail hybrid model
show that it nicely represents the pulsating behaviour of the common rail pres-
sure due to the HP pump and injectors discontinuous evolutions. Figure 8 reports
a typical evolution of the common rail pressure, along with the pulsating fuel
flows of the HP pump and the injectors. When the pump delivers the fuel, the
pressure increases while when the injectors open, the pressure decreases.

3 Control Design

The objective is to design a feedback controller for the rail pressure that achieves
tracking of a reference pressure signal. The latter is generated on-line by an
outer loop control algorithm so to optimize fuel injection and obtain proper fuel
combustion, with low emissions and noise, for the current engine operating point.
The specifications for the rail pressure controller are:

– steady state rail pressure error lower than 30 bar;
– settling time lower than 150 mseconds;
– undershoot/overshot lower than 50 bar, for a ramp of rail pressure reference

with rate 800 bar/sec, at 1000 rpm, with 15 mm3/stroke fuel injection.

The most important aspect to be taken into account in the design of the control
algorithm is the varying time delay between the flow–rate valve control command
u and the pulsating fuel flow from the HP pump to the rail. This delay is due
to HP pump cycles and is roughly in inverse proportion to engine speed. As a
consequence, the control task is particularly critical during cranking and at low
engine speed.

3.1 Controller Based on the Smith Predictor

In this section, we develop a “standard” controller based on a mean–value model
of the plant. To cope with the large and time–varying loop delay, the controller
is based on the Smith Predictor. The rail pressure Smith Predictor controller
(see e.g. [9, 10]) is obtained following the standard approach to controller design
adopted in the automotive industry that is based on mean–value modelling of
the plant. The following continuous time model is considered:

İ(t) = −R

L
I(t) +

vPWM(t)
L

(4)

ṗ(t) =
Kbulk(p)
Vrail

[
(qP (t− T̂d)− qINJ(t)

]
(5)

where T̂d = 120/n is an estimate of the loop delay. The controller includes a
model of the high pressure circuit and a PID with anti–windup and feedforward
terms. The control algorithm is implemented in discrete time, with a sampling
time of 5 mseconds. Satisfactory rail pressure tracking is achieved provided that
the rate of variation of the reference pressure is not too large. Figure 9 reports
a typical rail pressure evolution.
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Fig. 9. Closed–loop hybrid system simulation results with the Smith Predictor: for
slow (left) and fast (right) pressure references

However, the tracking performance significantly degrades and large overshoots
are produced for fast rail pressure reference signals, as described in Figure 9. On
the other hand, the simulation of the Smith Predictor controller against the
mean–value model exhibits the expected behaviour showing that the controller
is able to compensate properly the time delay. Hence, the poor tracking perfor-
mances shown in the simulations with the common rail hybrid model demon-
strate that mean–value modelling is not accurate enough to design high quality
control. In fact, major difficulties in the calibration of mean–value model–based
controllers for fast reference pressure signals were observed by Magneti Marelli
Powertrain. From the closed-loop hybrid model simulation shown in Figure 9,
to be able to efficiently track fast pressure references, the controller should be
designed taking into account each single fuel delivery of the HP pump. In fact,
in the reported simulation, only three compression phases of the HP pump drive
the pressure close to the target value. From a physical point of view, the HP
pump combines a sequence of control actions to determine the fuel charge for
each single cycle. However, this behaviour is not taken into account by the pres-
sure controller designed on the basis of the mean–value model of the system,
which then exhibits large overshoot.

This analysis motivates the search for a better solution that can be offered
by designing a hybrid controller that is based on the accurate hybrid model
presented above.

3.2 Hybrid Multi–rate Controller

During the intake phases, the HP pump combines a sequence of control actions to
determine the fuel charge for each single cycle. Hence, the HP pump introduces
an under–sampling of the control actions. The slow frequency of intake and
delivery of the HP pump is time varying since it depends on the engine speed.
A hybrid system approach to controller design allows us to effectively handle
the under–sampling produced by the HP pump cycles and properly handle the
drift between the fast frequency of sensing and actuation (at 5 mseconds) and
frequency of the HP pump [11].
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Fig. 10. Hybrid multi–rate controller

The proposed hybrid multi–rate controller, showed in Figure 10, consists on
two regulators:

– The CM pressure controller is event–based and is synchronous with the
HP pump fuel intake phases (it receives the HP pump trigger event from
the camshaft sensor). This controller defines the desired fuel mass Q̃HP (k)
[mm3/stroke] needed to control the rail pressure error perr(k) to zero. A PI
control with anti-windup and feedforward terms is used for this purpose.

– The flow–rate valve controller runs at 5 mseconds. Its task is to feed the high
pressure circuit with the amount of fuel Q̃HP (l) requested by the outer loop
controller. Due to the lack of a fuel flow–rate sensor downstream the valve,
the flow–rate valve controller has to be open-loop. The duty cycle control u
is obtained by abstracting away the coil current dynamics and inverting the
flow–rate valve characteristic (1) and the PWM model, i.e.

u =
2
3

R

Vbatt
fM

−1(Q̃HP (l)). (6)

The factor 2
3 is introduced to take into account the partial overlapping of

the intakes phases of the rams in HP pump.

Smooth and effective coupling between the different time domains of pressure
sensing, CM pressure control and flow–rate valve control is achieved by using a
decimator and an interpolator [12].

– The decimator converts the high frequency pressure error perr(l) = p(l) −
pref (l), having sampling time 5 mseconds, to the time–varying HP pump
frequency. An IIR low–pass filter is employed (see Figure 11).
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Fig. 11. Signal conversions provided by the decimator and the interpolator

p
[bar]

t [sec]

Fig. 12. Comparison between the proposed hybrid multi-rate controller and a controller
based on the Smith Predictor developed using a mean–value model of the plant

– The interpolator converts the fuel mass signal Q̃HP (k) in [mm3/stroke],
synchronous with the time–varying HP pump frequency to the 5 msecond
discrete–time domain, Q̃HP (l) in [mm3/sec] used by the flow–rate valve con-
troller. An IIR low–pass filter is employed in the interpolator. The inter-
polator produces a smooth and uniform input signal to the flow–rate valve
controller as illustrated in Figure 11.
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Both the decimator and the interpolator implement a gain scheduling of the
cut–off frequency based on engine speed to compensate the variation of the HP
pump frequency.

The simulation results presented in Figure 12 show the improvement obtained
by the proposed hybrid multi–rate controller with respect to a controller based
on the Smith Predictor presented in the previous section. Both controllers have
been tuned to meet the specification on bounded overshoot. The settling time
of the hybrid multi–rate controller is significantly shorter than the one of the
Smith Predictor controller. Moreover, the hybrid multi–rate regulator, which
implements a PI algorithm and two low–pass filters, is significantly simpler than
the Smith Predictor that includes an internal model of the plant. Finally, while
the Smith Predictor is affected by a time delay estimation error, in the multi-rate
controller the loop delay is simply represented by a one step delay. Simulation
results show that the hybrid multi–rate controller is robust to phase errors be-
tween the CM pressure controller execution and the beginning of intake phases
of the rams.

4 Conclusions

We presented a relevant problem in diesel engine control that has been solved
with a hybrid system approach. We first developed a hybrid model that takes
into account the interactions between the discrete dynamics of the components
of the common rail system.

Then we demonstrated the superiority of a hybrid multi–rate control al-
gorithm versus the standard mean-value model approach to controller design
adopted in the automotive industry. To do so, we designed a Smith Predic-
tor controller to compensate the loop delay. Simulation results show that such
controller achieves satisfactory tracking only for slow rail pressure reference sig-
nals. Figure 12 illustrates the improvement achieved by using the multi–rate
controller.

In summary, we demonstrated how the use of hybrid models and control al-
gorithms can produce superior results versus standard control approaches based
on mean–value models for a relevant and complex industrial problem.
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2 Dep. Informática e Ingenieŕıa de Sistemas, Universidad de Zaragoza,
julvez@unizar.es

Abstract. This paper proposes an event-driven model predictive con-
trol scheme with guaranteed closed-loop convergence properties for the
class of integral continuous-time hybrid automata (icHA). After con-
verting icHA to a corresponding event-driven representation that allows
one to compute the model predictive control action by mixed integer
programming, sufficient conditions ensuring event-asymptotic and time-
asymptotic convergence are proven. The paper also shows how the same
modeling methodology can be employed to efficiently solve problems of
verification of safety properties.

1 Introduction

Hybrid systems are complex dynamical systems in which continuous and discrete
variables coexist and are mutually dependent. The trajectory of a continuous-
time hybrid system can be represented as a sequence of continuous evolutions
interleaved by discrete events [1,2], which cause changes in the equations defin-
ing the continuous flow, thus changing the operating mode of the system. The
continuous flows and the instants at which the discrete events occur are further
influenced by exogenous discrete and continuous input signals.

When optimal control is applied to continuous-time hybrid systems [3, 4, 5],
the resulting computational problem is usually hard to solve, since it involves the
solution of non-convex problems [5]. A numerically efficient approach is based on
the application of mixed-integer programming (MIP) to a discrete-time represen-
tation of the system, in order to solve finite-horizon optimal control problems [6].
A drawback of this technique is that events (such as mode switches) can only
occur at sampling instants, which can induce non-negligible modeling errors [7].
Modeling precision can be clearly improved by reducing the chosen sampling
period; however, in a model predictive control (MPC) context [8,9], the obvious
disadvantage is that, for a given time-horizon of prediction, a larger number of
control variables is involved in the optimization problem. Better model accuracy
is paid by increased computation complexity.
� Corresponding author. This work was partially supported by the European Commu-

nity through the HYCON Network of Excellence, contract number FP6-IST-511368.
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A different approach recently proposed in [7] exploits a continuous-time model
of the hybrid system, called integral continuous-time hybrid automaton, and
abstracts an event-driven representation of it, in which the time is an additional
state variable and the events, which can occur at any time instant, cause a change
of the speed of the continuous states. Moreover, constraints on state and input
variables are enforced along the whole continuous-time trajectory, contrarily to
discrete-time approaches that do not ensure constraint satisfaction during the
inter-sampling period.

Under the modeling assumption that dynamics are piecewise integral (ẋ =
Biu+fi) and input functions u are piecewise constant over time, continuous-time
optimal control problems over a finite horizon on integral continuous-time hybrid
automata can be solved by MIP, by exploiting an event-driven representation of
the system [7].

In this paper, after defining the integral continuous-time hybrid automaton
in Section 2, we explain in Section 3 how to represent it as an event-driven
model that can be exploited for formulating optimal control problems as mixed-
integer programs. In Section 4 we discuss an event-driven model predictive con-
trol scheme, providing sufficient convergence conditions and presenting a simple
numerical example. Finally, in Section 5 we show how the event-driven model
can be exploited for verification of hybrid systems, and test the approach on the
well-known train-gate benchmark [10].

2 Integral Continuous Hybrid Automaton

In this paper we consider the class of integral continuous (-time) Hybrid
Automata (icHA) [7]. Such systems are a continuous-time version of the Dis-
crete Hybrid Automaton (DHA) [11], with integral continuous-state dynamics.
The icHA has the same structure of the DHA, consisting of the four components
reported in Figure 1: the integral Switched Affine System (iSAS), the Event
Generator (EG), the Mode Selector (MS) and the asynchronous Finite State
Machine (aFSM). The iSAS represents a collection of possible continuous-time
integral dynamics (i.e., the system modes) for the continuous states,

ẋc(t) = Bi(t)uc(t) + fi(t), (1)

where xc ∈ Rnc and uc ∈ Rmc are the continuous components of the state and
input vectors, respectively, and i ∈ I = {1, 2, . . . s} is the system mode. While
the main reason for focusing the attention to integral dynamics is computational
(see [7] and Equation (6) below), the class of continuous-state dynamics (1) has
been widely exploited for modeling and verification of hybrid systems [1, 10],
showing to be powerful enough for modeling many practical problems1.
1 Given a nonlinear (possibly discontinuous) dynamical model ẋ = f(x, u), model (1)

can be interpreted as a zero-order approximation of the state-transition function
with respect to the state vector x and a first-order approximation with respect to
the input vector u. Piecewise affine (PWA) models ẋ = Aix+Biu+fi are first-order
approximations with respect to both x and u.
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Fig. 1. Integral continuous-time Hybrid Automaton (icHA)

The EG defines the endogenous binary inputs e by linear threshold conditions
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of endogenous binary input variables. The icHA is also excited by exogenous
binary input signals ub ∈ {0, 1}mb . We say that an event occurs whenever an
endogenous input e or an exogenous input (uc, ub) changes its value. Accordingly,
event instants t0 < t1 < . . . are defined as

tk = min
t>tk−1

{t : (uc(t), ub(t), e(t)) �= (uc(tk−1), ub(tk−1), e(tk−1))}, (3)

where we assume that the minimum in (3) exists. As a consequence, the set of
admissible input functions is the set PC(mc,mb) of piecewise constant functions
u = [ uc

ub
], u : R → Rmc × {0, 1}mb such that u(t) = u(tk), ∀t ∈ [tk, tk+1),

∀k = 0, 1, . . ..
The Boolean state ξb ∈ {0, 1}nb is defined as ξb(t) � xb(tk) for tk−1 ≤ t < tk

and
xb(tk+1) = faFSM(xb(tk), ub(tk), e(tk)), (4)

where faFSM : {0, 1}nb+mb+ne → {0, 1}nb is a Boolean function. The Boolean
state ξb(t) remains constant, ξb(t) ≡ xb(tk), during the whole interval tk−1 ≤
t < tk. At the event instant tk, the Boolean state switches to the new value
faFSM(xb(tk), e(tk), ub(tk)), and remains at that value for tk ≤ t < tk+1. While
we are assuming that the transitions of the aFSM are instantaneous, delays
can be easily modeled by introducing additional events and states. Note that
transitions of icHA can occur at any time instant, not only at multiples of a
given sampling period as in DHA [11].
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The different operating modes of the system represented by the variable i(t)
are selected by the MS through the scalar product

i(t) = [1 2 . . . s] · fMS(ξb(t), ub(t), e(t)), (5)

where fMS : {0, 1}nb+mb+ne → {0, 1}s is a Boolean function satisfying the mutual
exclusivity relation [1 . . . 1] ·fMS = 1, ∀(ξb(t), ub(t), e(t)) ∈ {0, 1}nb+mb+ne . Note
that if the inputs and the e variables are constant, the Boolean state and the
system mode are also constant.

3 Event-Driven Representation of icHA

An icHA (1)-(5) can be converted to an event-driven representation that is suit-
able for computing solutions to optimal control problems. If the system mode i(t)
and the input uc(t) are constant for t ∈ [tk, tk+1), k = 1, . . . , h, the continuous
state at th is [7]

xc(th) = xc(t0) +
h−1∑
k=0

(
Bi(tk)(tk+1 − tk)uc(tk) + fi(tk)(tk+1 − tk)

)
. (6)

Thus, the system dynamics can be rewritten as the linear difference equations

xc(k + 1) = xc(k) + Bi(k)vc(k) + fi(k)q(k) (7a)
t(k + 1) = t(k) + q(k) (7b)

where k is the event counter, xc(k) = xc(tk), t(k) = tk, i(k) = i(tk), q(k) is
the time interval between events k and k + 1, vc(k) = q(k)uc(k) is the integral
over time period q(k) of the input uc(k) = uc(tk), and time t is an additional
state variable. The controlled variables are the input integral vc(k) and the input
duration q(k); the input uc(k) = vc(k)

q(k) applied to the continuous-time system is
computed from them.

The event generator becomes

[ex
i (k) = 1]↔

[
Ex

i

[
xc(k)
t(k)

]
≤ F x

i

]
, i = 1, . . . nx

e (8a)

[eu
i (k) = 1]↔ [Eu

i vc(k) ≤ Fu
i q(k)] , i = 1, . . . nu

e (8b)

where e(k) = e(tk), and e(t) = e(tk), ∀t ∈ [tk, tk+1) by the definition of tk in (3).
Note that the dependence on time becomes a dependence on a state variable,
because of (7b) and (8b) is obtained from (2b) by multiplying by q(k) both sides.
The mode selector equation becomes

i(k) = [1 2 . . . s] · f̃MS(xb(k), ub(k), e(k)), (9)

where i(t) = i(k), ∀t ∈ [tk, tk+1) as a consequence of the event definition, and
f̃MS(xb(k), ub(k), e(k)) = fMS(faFSM(xb(k), ub(k), e(tk)), ub(k), e(k)) because of
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(5) and the definition of ξ(t). Equation (4), is already defined with respect to
the events.

Equations (4), (7), (8), (9) define the behavior of the components of the
icHA in an event-driven representation. To take into account (3), however, the
following condition must be ensured:

[(e(tk), uc(tk), ub(tk)) = (ē, ūc, ūb)] → [(e(t), uc(t), ub(t)) = (ē, ūc, ūb), ∀t ∈ [tk, tk+1)].
(10)

We consider two different cases: (i) the value uc or ub changes, so that an event is
externally forced, (ii) an endogenous event occurs (e changes its value). The first
case is caused by an arbitrary decision (e.g., by a controller), and no additional
constraints are needed. Thus, we only need to ensure that

[e(tk) = ē]→ [(e(t) = ē), ∀t ∈ [tk, tk+1)]. (11)

Note that the e variables in (2b) can change only when the input changes, thus
they can be dealt with as for externally forced events. Hence, we only need to
enforce (11) for (2a).

Let the mapping cod() : {0, 1}nx
e → N associate an integer number j to

each allowed value of vector ex = [ex
1 . . . e

x
nx

e
]T defined in (2a). For example j

may be the integer whose binary encoding is ex. Define the matrix Ēx(j) and
the vector F̄ x(j) by collecting the rows in the inequalities of the EG (8) which
are satisfied for ex such that cod(ex) = j. In addition, define Êx(j), F̂ x(j) by
collecting as rows the inequalities of the EG (8), which are not satisfied for ex

such that cod(ex) = j. In this way, for all the values of state and input such
that cod(ex(k)) = j, Ēx(j) [ x

t ] ≤ F̄ x(j), Êx(j) [ x
t ] > F̂ x(j). As an example,

consider two thresholds [ex
1 = 1] ↔ [x ≤ 0], [ex

2 = 1] ↔ [x ≤ 1]. The matrices
associated to ex = [0 1]′, where cod(ex) = 1, are Ēx(1) = 1, F̄ x(1) = 1, collecting
the second threshold condition (satisfied), and Êx(1) = 1, F̂ x(1) = 0.

As detailed in [7], in case of integral dynamics, (11) is guaranteed by the
mixed-logical constraint

[cod(ex(tk)) = j]→
[[

Ēx(j)
−Êx(j)

] [
x(tk+1)
t(k+1)

]
≤
[

F̄ x(j)
−F̂ x(j)

]
+ ε1

]
, (12)

in which ε is an arbitrary small positive constant that ensures that e(t) = e(tk),
∀t ∈ [tk, tk+1−σ(ε)], and σ(ε) tends to zero as ε tends to zero. Note that x(tk+1)
is a linear function of x(k), q(k), and v(k) =

[
vc(k)
vb(k)

]
, where vb(k) = ub(k) , so

that (12) is reformulated as mixed-integer inequalities on x(k), q(k), v(k), e(k).
Equations (4), (7), (8), (9), (12) represent a DHA that can be modeled in

Hysdel [11] through which we can obtain an event-driven MLD (eMLD) system

x(k + 1) = Ax(k) + B1w(k) + B2e(k) + B3z(k) + B5, (13a)
t(k + 1) = t(k) + q(k), (13b)

E2e(k) + E3z(k) ≤ E1w(k) + E4x(k) + E5. (13c)

where w(k) =
[

v(k)
q(k)

]
. Differently from the standard discrete-time MLD sys-

tem [6], in (13) k is an event counter while time t is an additional state variable.
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Remark 1. Discontinuities of the continuous state trajectory can be introduced
by resets. To model resets, additional reset modes i ∈ {s+1, . . . , sr} are included,
(7a) is modified into xc(k+1) = (Eixc(k)+hi)+Bi(k)v(k)+ fi(k)q(k), and (7b)
into t(k + 1) = t(k) + Giq(k). In modes i = {1 . . . s}, Ei = I (where I is the
identity matrix), hi = 0 and Gi = 1, while in reset modes i = {s + 1 . . . sr}
Bi = 0, fi = 0 and Gi = 0. Note that resets are instantaneous.

The definition of the event-driven dynamics of the icHA by an eMLD system
allows the definition of finite horizon optimal control problems that can be solved
by mixed-integer programming (MIP) as shown in [6]. With respect to MLD
models, the only difference is that the horizon represents the number of events
occurred, and the time elapsed along the horizon is a continuous state variable.

4 Event-Driven Model Predictive Control

In [7] event-driven open-loop optimal control strategies are proposed with differ-
ent cost functions: minimum-time, minimum-effort, and minimum displacement.
They are computationally less expensive than their discrete-time counterparts
and the system’s constraints are satisfied along the whole trajectory instead of
only at sampling instants. However, the approach of [7] is an open-loop control
strategy. We introduce an event-driven MPC closed-loop strategy here.

Given an icHA, the eMLD model is obtained as explained in Section 3 so that
a finite horizon optimal control problem can be formulated as in [6]

min
q,v

J(x, t, v, q) (14a)

s.t. system dynamics (13) (14b)
g(x, t, q, v) ≤ 0 , (14c)
x(0) = x0, t(0) = t0, (14d)

where t = {t(k)}N
k=0 are the event instants, x = {x(k)}N

k=0 are the corresponding
state values, q = {q(k)}N−1

k=0 are the durations of the time intervals between two
consecutive events and v = {v(k)}N−1

k=0 are the input integrals during [tk, tk+1).
We consider cost functions of the form

J(x, t, v, q) = F (x(N)) +
N−1∑
k=0

L(x(k), t(k), vc(k), q(k)) (15)

where L(x(k), t(k), vc(k), q(k)) = ‖x(k)− x̂‖Q1
p + ‖t(k)− t̂‖Q2

p + ‖v(k)− v̂‖R1
p +

‖q(k)− q̂‖R2
p is the stage cost, F (x(N)) = ‖x(N)−x̂‖QN

p is the terminal cost, p =
1, 2,∞, ‖z‖Q

∞ = maxi |(Qz)i|, ‖z‖Q
1 =

∑
i |(Qz)i| and ‖z‖Q

2 = zTQz, and if not
differently stated q̂ = 0, v̂ = 0. In (15), N is the number of allowed events, and
as a consequence, the time period considered in the optimization problem will
depend on the chosen input profile through the system dynamics: For a fixed N ,
when the continuous state evolves quickly and switches are frequent, the resulting
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time horizon will shrink because the system requires a tighter control action;
on the contrary, when the dynamics is slow and few mode switches occur, the
time-horizon will increase without increasing the complexity of the optimization
problem, so that a smaller amount of computation per time unit is required.

Constraint (14c) represents additional constraints in the optimal control prob-
lem that have different purposes. Bounds on the continuous-time input value
u ≤ uc(t) ≤ u can be cast as the linear constraints

uq(k) ≤ v(k) ≤ uq(k). (16)

Different input bounds for different modes can be enforced as [i(k) = ı̄] →
[uı̄q(k) ≤ v(k) ≤ uı̄q(k)], where uı̄ and uı̄ are the input upper and lower bounds
while the system remains in mode ı̄. Additional operating constraints may be
imposed on time intervals between two events

q ≤ q(k) ≤ q. (17)

A finite value of q imposes a maximum time for each control action, in order to
prevent the system from running in open-loop with a constant input for too long,
because of the receding horizon mechanism. A minimum duration q ensures a
minimum time interval between two events (thus, between two mode switches),
therefore avoiding undesirable effects such as high frequency chattering and Zeno
behaviors. Additional constraints in (14c) may concern terminal constraints on
the final state and on the final time of the optimization problem. In this case,
we consider

x(N) ∈ XT , t(N) ∈ TT , (18)

as terminal constraints, where XT , TT can be either polyhedra or isolated points.
The event-driven Model Predictive Control (eMPC) strategy is defined as

follows:

1. Let N be the event horizon, and consider the initial instant t̃ and the corre-
sponding state value x(t̃).

2. Solve the optimal control problem (14) with t0 = t̃ and x0 = x(t̃) and
let [v∗(0), . . . , v∗(N − 1)] be the sequence of optimal input integral values,
[q∗(0), . . . , q∗(N − 1)] be the sequence of input action durations, [x∗(1), . . . ,
x∗(N)] be the predicted state values at event instants and [t∗(0), . . . , t∗(N)]
be the corresponding time instants at which the events occur.

3. Compute the input value uc(t̃) = v∗
c (0)

q∗(0) , and apply u(t) ≡
[

uc(t̃)
v∗

b (0)

]
to the

icHA during the time interval [t̃, t̃ + q∗(0)]. 2

4. Set t̃← t̃ + q(0), x(t̃)← x̆ = x(t̃ + q(0)) and go to 2.

2 Different strategies may be proposed here, for example apply uc(t) ≡ v∗
c (0)

q∗(0) for t ∈
[t̃, t̃ + max{q(0), Ts}], where Ts is a given minimum time interval (possibly covering
more than one optimal event instants) to prevent out-of-time computation problems
due to an excessively small duration q∗(0).
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Note that the actual state x̆ at the end of each control action can be different
from the predicted one x∗(1), because of external disturbances and modeling
errors. Clearly, the main advantage of the eMPC strategy with respect to open-
loop optimal control [7] is its closed-loop nature, since after each predicted event
the real state is read or estimated again and a new optimal input sequence is
computed from it. In the current event-driven approach also the prediction of
the time instants at which events occur can be updated.

4.1 eMPC Example

In this section we present a simple numerical example showing the behavior of
the eMPC strategy and its robustness with respect to disturbances. We consider
a system having two continuous states x1 and x2, and two state thresholds [ex

1 =
1]↔ [x1 ≤ 0], [ex

2 = 1]↔ [x2 ≤ 0], so that the system has four modes. Each mode
corresponds to an orthant of the Cartesian plane, where i = 1 corresponds to
the positive orthant and the other orthants are numbered clockwise. The system
has two inputs −50 ≤ u1 ≤ 50 and −50 ≤ u2 ≤ 50, and the vectors and matrices
that define Equation (1) for i = 1, . . . , 4 are f1 = f4 = [ 1

0 ], f2 = f3 =
[−1

0

]
,

B1 = [ 0 0
0 1.4 ], B2 = [ 0 0

0 1.5 ], B3 = [ 0 0
0 1.15 ], B4 = [ 1 0

0 2.3 ]. Moreover, there are
additional constraints on the inputs: when in mode i = 1 it must hold that
u2 ≥ −2, for i = 2 u2 ≤ −0.5, for i = 3 u2 ≤ 2, and for i = 4 u1 ≤ 2 and
−0.5 ≤ u2 ≤ 2.

We want to bring the state of the system from x0 = [ 0.1
2 ] to xf =

[−1
3

]
while minimizing function (14a), where p = ∞, Q1 = [ 10 0

0 10 ], Q2 = [ 0 0
0 0 ], R1 =

[ 10−3 10−3 ], R2 = 1, x̂ = xf and 0.1 ≤ q ≤ 50. We have set q̂ = 0.1, v̂ = u∞q̂,
where u∞ =

[−1
0

]
. The system is perturbed by input-additive disturbances,

so that the continuous state dynamics is ẋ(t) = Bi(tk)
(
u(tk) + ξk

)
+ fi(tk), ∀t ∈

[tk, tk+1), where ξk is a sequence of time-uncorrelated stochastic vectors in which
each component is independent from the other and uniformly distributed in
[−0.1, 0.1].

Figure 2 reports the continuous-time trajectories generated by the eMPC
controller with a prediction horizon of 4 events applied for 8 steps. In the undis-
turbed case (Figure 2(a)) the closed-loop eMPC strategy trajectory coincides
with the open-loop optimal one; four control actions, corresponding to four mode
switches, are required to bring the system to the target state. In the presence

−1.5 −1 −0.5 0 0.5 1
−1

0

1

2

3

(a) eMPC, undisturbed
−1.5 −1 −0.5 0 0.5 1
−1

0

1

2

3

(b) eMPC, disturbed
−1.5 −1 −0.5 0 0.5 1
−1

0

1

2

3

(c) Open-loop, disturbed

Fig. 2. Example, controlled system trajectory
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of disturbances (Figure 2(b)) the eMPC is able to counteract them, and to
still bring the system close to xf , even if a larger number of control actions
with respect to the undisturbed case is required. The trajectory obtained by
the open-loop optimal policy under the effect of the same disturbance realiza-
tion is reported in Figure 2(c), showing that the effects of the interaction of the
disturbance with the switching nature of the system are not negligible.

4.2 Conditions for Convergence of eMPC

We consider the case in which the terminal sets XT , TT are isolated points or
polytopes separately.

Definition 1. A state value x̄ =
[

x̄c
x̄b

]
is an equilibrium point for the icHA in

mode ı̄ if and only if there exists a steady state input value ū∞ =
[

ūc,∞
ūb,∞

]
and

ē∞ such that:

1. ē∞ = fEG(x̄c, ūc,∞, t), ∀t ≥ 0, where fEG is the event generator (2);
2. x̄b = faFSM (x̄b, ūb,∞, ē∞);
3. ı̄ = [0, 1, . . . s] · fMS(x̄b, ūb,∞, ē∞);
4. Bı̄ ūc,∞ + fı̄ = 0 .

This definition of equilibrium requires that the input ū∞ maintains the continu-
ous state, the discrete state, and the mode constant. Note that the target state
xf in the example of Section 4.1 is an equilibrium point of mode i = 4 with
steady-state input u∞ =

[−1
0

]
.

Terminal equality constraint. If the terminal set reduces to a point, Con-
straint (18) can be written as

x(N) = x̂, t(N) = t̂ , (19)

where x̂ and t̂ are referred to as target state and target time, respectively. As
a consequence, the terminal cost can be removed from (15). In the following we
denote by χ(k) =

[
x(k)
t(k)

]
the state of the eMLD system.

Consider an initial state χ0 = χ(k) and solve Problem (14), obtaining the
optimal cost J∗(χ0), the optimal state trajectory X∗(χ0) = [χ∗

1(χ0) . . . χ∗
N (χ0)]

and the optimal input w∗(χ0) = [w∗
0(χ0), . . . w∗

N−1(χ0)], where wi = [ vi
qi ]. Let

the eMPC control action at step k be wMPC(k) = w∗
0(χ0) and let the initial

state for the next optimization problem be χ1 = χ(k + 1) = G(χ0, wMPC(k)),
where G(χ(k), w(k)) is the state update function (13).

Theorem 1. Let q = 0 in (17), x̂ be an equilibrium point with steady-state input
ū∞, q̂ = 0, v̂ =

[ 0
ūb,∞

]
, and Q1, Q2, R1, R2 full rank. If Problem (14) is feasible

for x0 = x(k), t0 = t(k), then it is feasible for x0 = x∗
1(x(k)), t0 = t∗1(x(k)) and

the state and time converge to the target state x̂ and target time t̂, respectively,
as the number of events tends to infinity.
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Proof. Let χ1 = χ∗
1(χ(k)). The input sequence w̃(χ1) =

[
w∗

1(χ0), . . . w∗
N−1(χ0),[ 0

ūb,∞
0

]]
obtained by shifting w∗(χ0) to the left is feasible for Problem (14),

when χ0 is replaced by χ1. Then χi(χ1) = χi+1(χ0) for i = 0, . . . , N − 1 and

χN (χ1) = G
(
χ∗

N−1(χ1),
[ 0

ūb,∞
0

])
is equal to χN−1(χ1) = χN (χ0). Thus, the

dynamics and the operating constraints are satisfied at χN (χ1) and the sequence
w̃(χ1) satisfies the constraints in (14).

Next, we show that the sequence of cost values is decreasing by applying the
same approach of [6]. Because of optimality, J∗(χ1) ≤ J(χ1, w̃(χ1)), where

J(χ1, w̃(χ1)) = J∗(χ0)− L(x(0), t(0), v(0), q(0)), (20)

and hence J∗(χ1) ≤ J∗(χ0). Since J(χ(k)) is lower bounded by 0 and the se-
quence is not increasing, limk→∞ J(χ(k)) = J∞, so that limk→∞ J(χ(k + 1))−
J(χ(k)) = 0, implying that limk→∞ x(k) = x̂, limk→∞ v(k) = v̂, limk→∞ q(k) =
0, limk→∞ t(k) = t̂. �

Note that convergence is asymptotic with respect to the number of events, but
nonetheless the state converges to the target state x̂ in the finite time t̂. In the
more common case of t(N) unconstrained and Q2 = 0, limk→∞ x(k) = x̂ but
it is possible that limk→∞ t(k) = ∞, thus having time-asymptotic convergence;
the proof follows directly from the previous one.

Remark 2. When q∗0 is very small the time required for solving the next opti-
mization problem may be insufficient An approach to avoid q(k) → 0 is to set
q̂ = q∞ > 0, Q2 = 0, v̂ = 0 and R1 = 0. In this way, if a steady state input ū∞
exists, eventually unknown, then wMPC(k) =

[ ūc,∞q∞
ūb,∞
q∞

]
when x(k) = x̂, which

has zero cost. It must be noted that solutions in which q(k) = 0 are still feasible,
but not optimal.

Next, we consider the case q > 0 in (17), that ensures a minimum dwell time.

Theorem 2. Let ū∞ be the steady-state input corresponding to the equilibrium
point x̂, let v̂ =

[
ūc,∞ q̂
ūb,∞

]
and q ≤ q̂ ≤ q. Let Q2 = 0 and t(N) be unconstrained.

If Problem (14) is feasible for χ0 = χ(k), it is also feasible for χ(0) = χ1 =
G(χ0, wMPC(k)) and the state converges to x̂.

Proof. Let w∗(χ0) be the optimal input sequence of the problem with initial
state χ0. Then w̃(χ1) = [w∗

1(χ0), . . . w∗
N−1(χ0),

[
v̂
q̂

]
] is feasible since x(N + 1) =

x(N) = x̂, while fulfilling also all the other constraints. Furthermore, (20) holds
and convergence is ensured. �

Note that the eMPC controller in the example of Section 4.1 was designed basing
on the hypotheses of Theorem 2.

Remark 3. When the constraint q ≥ q > 0 is added, the optimal control problem
might become unfeasible. A sufficient condition for feasibility is that ∀i, ∃ūi that
satisfies the constraints of mode i and verifies Bi ūi + fi = 0. Such condition
ensures the existence of an input that blocks the system state in each mode.
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Terminal cost and terminal set. The terminal constraints are defined by

Sx(N) ≤M, ST t(N) ≤MT , (21)

where S is a suitable matrix and M , ST , MT are suitable vectors. For the sake
of simplicity, we discuss the case in which the target time is not constrained nor
weighted (thus ST , MT are empty and Q2 = 0), x̂ = 0 and v̂ = 0, and the icHA
system is time invariant (i.e. conditions in (2) do not depend on t), so that we can
disregard the eMLD additional state t (the extensions are straightforward). We
assume that there are no Boolean inputs, and that in a neighborhood of the origin
the mode i is such that fi = 0 in (1) and the discrete state is constantly xb =
[0 . . . 0]T . The last two conditions ensure that the translation of the eMLD yields
an equivalent piecewise affine (PWA) model [12] that is linear in a neighborhood
of the origin. We use here the results of [13] for convergence of MPC in discrete-
time.

Let XT be the polytope {x : Sx ≤ M}, W (x) = {V (x) × Q} be the set of
feasible solutions w∗

0(x) =
[

v∗
0 (x)

q∗
0 (x)

]
to Problem (14) when x0 = x, and consider

an auxiliary state-feedback controller

w̃(k) = h
(
x(k)

)
. (22)

The results on [13] ensure that if (i) h
(
x(k)

)
∈ W (x) ∀x ∈ XT , (ii) XT is

a positively invariant set for system (13) in closed loop with (22), and (iii) the
inequality

F (G(x(k), h(x(k))) − F (x(k)) + L(x(k), h(x(k))) ≤ 0, (23)

is satisfied, then if Problem (14) is feasible at step k, it is feasible at step k + 1
and the state converges asymptotically to the target state.

The problem reduces to computing the auxiliary controller, that for the event-
driven approach of this paper has the structure

w(x) =
[
v(x)
q(x)

]
=
[
f1(x(k))
f2(x(k))

]
. (24)

Consider the discrete-time system Σd with sampling time Ts described by
equations (13a), (13c) in which q(k) = Ts and the index k represents the sam-
pling step counter. Let Jd(x, v) = Fd(x(N)) +

∑N−1
k=0 Ld(x(k), v(k)) be the cost

function, where Ld(x(k), vc(k)) = ‖xc(k) − x̂‖Q1
p + ‖vc(k) − v̂‖R1

p , Fd(x(N)) =
F (x(N)), and hd(x(k)) be an auxiliary piecewise linear (PWL) state-feedback
controller. The decreasing cost condition of [13] for asymptotic stability is

Fd(Gd(x(k), hd(x(k))) − Fd(x(k)) + Ld(x(k), hd(x(k))) ≤ 0. (25)

The following proposition shows that the auxiliary controller for Σd allows
proving convergence of the event-driven system.
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Proposition 1. Let Ts be such that q ≤ Ts ≤ q, q̂ = Ts, Q2 = 0 and hd

(
x(k)

)
be a discrete-time PWL controller with sampling time Ts, such that hd(x) ∈
V (x) ∀x ∈ XT . Let XT be a positively invariant set for system Σd in closed-loop
with hd(x), and (25) be satisfied. Then x(k) → 0 for k →∞.

Proof. System (13a), (13c), when q(k) = Ts is a discrete-time MLD system of
the form x((k+1)Ts) = Gd(x(kTs), v(kTs)) for which an equivalent PWA system
can be computed [12]. Since we have supposed that in a neighborhood of the
origin the continuous-time system has no affine terms and that the Boolean state
is [0, . . . , 0], also the discrete-time PWA system is linear in such a region and
the results of [13] hold. The discrete-time controller is equivalent to an event-
driven controller that raises an event every Ts time units. Then the controller
w(k) = h(x(k)) =

[
hd(x(k))

Ts

]
is an auxiliary event-driven controller for system

(13) that respects condition (23), since (23) is equal to (25) because of the chosen
cost function (q̂ = Ts, Q2 = 0).

Thus h(x(k)) is a state-feedback controller that respect hypotheses of [13]
for system (13) interpreted as discrete-time systems, proving convergence of
x(k) → 0 as k →∞. �

Proposition 1 ensures that if a discrete-time PWL controller respecting the hy-
potheses of [13] exists, for instance computed as in [14], then the eMPC controller
is converging. The sampling time of the auxiliary controller is used to compute a
valid XT and can be changed in the design phase, without changing anything in
the event-driven system but the parameter q̂. In order to relax the assumption
xb = [0, . . . , 0]T , one may require convergence only for the continuous state as
in [15], thus without weighting xb in the cost function.

5 Event-Based Verification of icHA

In Section 4 we have exploited the icHA and its discrete-event reformulation for
MPC design. However, this model can be conveniently exploited also for verifi-
cation of safety and liveness properties. The main advantage of the event-based
approach is that verification queries, whenever their negation can be formulated
as a combination of linear and logical constraints, can be posed as feasibility
problems of mixed-integer programs

min
q,v

0

s.t. system dynamics (13) (26a)
g(x, t, q, v) ≤ 0 , (26b)
x(0) ∈ X0, t(0) ∈ T0. (26c)
H(x(N), t(N)) ≤ 0 (26d)

where (26a) and (26b) are the same as in (14), (26c) defines the set of possible
initial states and (26d) is the region in which the query to be verified is false
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and it is enforced on the system’s final state. Note that since we are considering
mixed integer programming, H() can be any combination of linear and logical
constraints and X0, T0 can be any union of polyhedra. The event-horizon on
which the property is verified is defined by the constant N . If Problem (26)
admits a feasible solution, then there exists a trajectory departing from a valid
initial state that violates the query to be verified, thus, the query is false. Note
that if q = 0, (26d) ensures safety ∀k = 1, . . . , N , even if it is formulated only
with respect to the N th step. In fact, if a feasible solution to Problem (26) for
a horizon k < N exists, then a feasible solution of (26) also exists, by extending
the solution on k steps by “fictitious” events separated by q = 0 time units.
Thus, the infeasibility implies that at any event instant constraint (26d) is un-
satisfied. This implies also the safety of the whole trajectory, since trajectories
are piecewise-linear because of the integral dynamics [7]. An intuitive explana-
tion of this property is the following. In order to reach an interior point of the
unsafe region, one of the thresholds delimiting such a region must be crossed.
However, every time a threshold is crossed an event occurs and the state at such
instant is inside the new region. If no state values at the event instants reside
in the unsafe region, then the thresholds delimiting such a region cannot have
been crossed. Note that if this approach is applied to standard discrete-time
models, the infeasibility of the mixed-integer program would only ensure safety
at sampling instants.

It is easy to recognize similarities between the icHA and the Linear Hybrid
Automaton (LHA) [1,10], a model which has been widely exploited for verifica-
tion of hybrid systems [10]. The LHA considers discrete and continuous states,
the continuous dynamics are defined by discrete state dependent differential in-
clusions in the form

∑
i a

j
i ẋi ∈ [bj , cj ], where j is the discrete state index, i is the

continuous state index, aj
i , b

j , cj are constants and xi are the continuous state
variables. The discrete states have associated invariant sets, defined by linear
constraints over continuous state variables, the discrete state transitions are en-
abled by linear conditions over continuous state variables and after each of them
the continuous state can be reset. The discrete state dynamics are defined by an
aFSM with resets in both models, and the equations of the continuous dynamics
switch according to the discrete state. For any given discrete state, all admissible
continuous state trajectories of an LHA can be produced by an icHA by a proper
selection of the input functions u ∈ PC and, viceversa, all icHA trajectories can
be generated by an LHA by appropriately choosing the ranges of the differential
inclusion. For instance, the dynamics a ≤ ẋ(t) + ẏ(t) ≤ b can be modeled as
ẋ = u1(t), ẏ = u2(t) along with a ≤ u1(t) + u2(t) ≤ b. The discrete state transi-
tions of icHA are deterministic, those of LHA are not. However, in an icHA the
non-determinism can be modeled by adding external signals η(k)3 in (13). For
instance, a transition of an LHA that can be fired whenever a ≤ x(t) ≤ b can be
modeled by adding the input − b−a

2 ≤ η(k) ≤ b−a
2 and by setting the transition

to occur when x(k) + η(k) = b+a
2 .

3 η(k) is added in (13) as an additional component of v(k).
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The practical consequence of the similarities between LHA and icHA is that
many systems that are modeled as LHA can be modeled also as icHA and veri-
fied by solving problem (26) by mixed integer programming, for which efficient
algorithms and tools exist. A formal proof of equivalence between subclasses of
LHA and of icHA is currently under study, and it is beyond the scope of this
paper.

5.1 Verification Example

Consider the “train-gate” system [10], with small modifications. The system
consists of a train that must safely cross a gate, meaning that when the train
is crossing the gate, this must be closed. The gate can be idle (I), closing (Cl),
closed (C) or opening (O). A train can be arriving (Ar), crossing (Cr), leaving (L)
or far (F), depending on its position with respect to the gate. The corresponding
automata with continuous-time differential inclusions are reported in Figure 3,
where x is the train position and y is the gate position. Note that the signal
app forces a transition in which x is reset. We performed the tests on a Pentium
IV-M 2 GHz, equipped with 1 GB Ram, running Matlab 6.5 and Cplex 9.0.

Ar

Cr

L

F

x ≥ −10 x > 10

x > 40
app,

x → [−30,−20]

ẋ ∈ [.45, .55]

ẋ ∈ [.50, .34]

ẋ ∈ [.45, .55]

ẋ = 1

(a) Train Automaton

I Cl

CO

app

y ≤ 10−2

x > 10

y = 1

ẏ = 0 ẏ ∈ [−.165,−.6]

ẏ = 0ẏ ∈ [.045, .15]

(b) Gate Automaton

Fig. 3. Train-Gate system

The system is modeled as an icHA and converted to eMLD form. Let the ini-
tial state be (x0, y0), where x0 ∈ [−25,−20] and y0 = 1, and (Ar,Cl) as discrete
state, and the query be: “Does the system always stay out of the unsafe state
(Cr,Cl)?′′. Problem (26) is solved for N = 6 proving its infeasibility, meaning
that an unsafe trajectory does not exist. The computation required 0.984 sec-
onds. If the differential inclusion in state Cl is changed to ẏ = [−0.145,−0.4] a
solution is found, meaning that the gate is closing too slowly.

Another query that can be verified is the following: “Does the train always
reach the state F in less than 100 time units, when departing from x0?”. The
answer is no, since there exists a feasible solution to problem (26) in which (26d)
is x ≤ 40 and −t ≤ −100. This query was tested in 0.312 seconds. Differently
from the previous one, this query involves the capability of the system to reach
its objective, thus it is related to the system liveness.
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6 Conclusions

In this paper we have shown how to obtain an event-driven representation of an
integral continuous-time hybrid automaton and we have analyzed model predic-
tive control and verification schemes for such systems. The main advantage is
that a continuous-time hybrid system can be analyzed as a discretely evolving
one, so that MIP techniques can be exploited for computing the eMPC control
action and for verification of safety properties. In addition, a lighter computa-
tional burden may result with respect to the discrete-time approach.
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Abstract. Finite plans proved to be an efficient method to steer com-
plex control systems via feedback quantization. Such finite plans can be
encoded by finite–length words constructed on suitable alphabets, thus
permitting transmission on limited capacity channels. In particular flat
systems can be steered computing arbitrarily close approximations of a
desired equilibrium in polynomial time.

The paper investigates how the efficiency of planning is affected by
the choice of inputs, and provides some results as to optimal performance
in terms of accuracy and range. Efficiency is here measured in terms of
computational complexity and description length (in number of bits) of
finite plans.

1 Introduction

Consider the problem of planning inputs to efficiently steer a controllable
dynamical system of the type

ẋ = f(x, u), x ∈ X ⊆ IRn, u ∈ U ⊂ IRr (1)

between neighborhoods of given initial and final equilibria. By any approxima-
tion procedure, one may achieve finite plans (for specific choice of initial and
finite states). However, we aim at designing finite plans, among equilibria of the
system, with short description length (measured in bits) and low computational
complexity.

Concerns about the complexity of describing plans show up whenever commu-
nication or storage limitations are in place. Particularly fitting to this perspec-
tive are examples from robotics, where input symbols may represent commands
(aka behaviors, or modes.) For instance, for autonomous mobile rovers, high
level plans may be comprised of sequences of motion primitives such as wander,
look for, avoid wall, etc.; in the control of humanoids (see e.g. [17]), sym-
bols are encountered such as walk, run, stop, squat, etc.. To deal with real
implementations, such languages must be able to encode the richest variety of
tasks by words of the shortest length. Consider for instance the case where the
robotic agent receives its reference plans from a remote high-level control center
through a finite capacity communication channel, or plans are exchanged in a
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networked system of a large number of simple semi-autonomous agents. In gen-
eral, it can be assumed that robots are capable of accepting finitely-described
reference signals, and can implement a finite number of possible different feed-
back strategies via the use of embedded controllers, according to the received
messages.

Finite plans steering was considered by many authors in recent years, e.g.
[15, 9, 12]. A general framework was proposed by introducing Motion Description
Languages in [4]. The line of research addressing finite hyerarchic abstractions
of continuous systems via bi-simulations ([21, 22, 20]) has several contact points
with the one presented in this paper. Of direct relevance to work presented here
is the quantitative analysis of the specification complexity of input sequences for
a class of automata, presented in [10]. The key result there is that feedback can
substantially reduce the specification complexity (i.e., the description length of
the shortest admissible plan) to reach a certain goal state.

In this paper we treat the more complex case of controlled dynamical systems
and, by introducing control encoding of a symbolic input language, we can com-
pute in polynomial time plans for flat systems, whose specification complexity
is logarithmic in the size of the region to be covered. In our context, we postu-
late that control decoders are available and embedded on the remotely controlled
plant. Decoders receive symbols from the planner, and translate them in suitable
control actions, possibly based on locally available state information.

The result is obtained following this reasoning. First we seek for a symbolic
encoding so that there exists a sublanguage, whose action on the system has
the desirable properties of additive groups, i.e. the actions of control words are
invertible and commute. Furthermore, under the action of words in this language,
the reachable set becomes a lattice. More precisely, a suitable (dynamic) feedback
encoding permits us to transform any flat system to:

z+ = z + H̄μ, H̄ ∈ IRn×n, μ ∈ ZZn. (2)

Once reduced to this special form, we address the problem of optimally choosing
finite input sets in order to optimize the efficiency of plans. This objective is
achieved by the study on the minimal specification complexity for interval-filling
controls, derived from concurrent work of number-theoretic nature.

The effectiveness of the method is illustrate by Proposition 4.

1.1 Problem Description

Assume that system (1) is completely controllable, i.e. for any given two points
x0, xf , a plan (i.e., a finite-support input function u : [t, T + t] → U) exists
that steers (1) from x0 to xf . An exact plan among initial and final point would
generically require an infinite–length description, thus we consider approximate
steering and address the following question:

Problem Π : Given a compact subsetM⊆ X and a tolerance ε, provide
a specification P of plans such that, for every pair (x0, xf ) ∈ M2, it exists
a plan in P steering the system (1) from x0 to within an ε-neighborhood
of xf .
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We look for an efficient solution to this problem, where efficiency is intended
in terms of low computational complexity, i.e. minimal number of elementary
computations to be executed, and in terms of low specification complexity, i.e.
minimal number of bits necessary to represent the plan (cf. [10]).

2 Encoding Control Quanta

Symbolic control is inherently related to the definition of elementary control
events, or atoms, or quanta:

Definition 1. A control quantum is a couple (u, T ) where u : X → L∞(IR+ ×
X,U) and T : X → IR+. The set of control quanta is denoted by Ũ .

Hence, a control quantum is essentially a feedback that is applied to the system,
starting at point x0 at time t0, until time t0 +T (x0). To each control quantum it
is natural to associate the map φ(u,T ) : X → X , where φ(u,T )(x0) is the solution
at time T (x0) of the Cauchy problem corresponding to initial data x0 and control
u(x0).

Definition 2. A control quantization consists in assigning a finite set U ⊂ Ũ .
A (symbolic) control encoding on a control quantization is a map E : Σ → U ,
where Σ = {σ1, σ2, . . .} is a finite set of symbols.

Given a control quantization and an encoder, we have the diagram Σ
E−→ U φ−→

D(X), where D(X) denotes the group of automorphisms on X . This can be

extended in an obvious way to Σ∗ E∗
−→ U∗ φ∗

−→ D(X), where Σ∗ is the set
of words formed with letters from the alphabet Σ, including the empty string
ε. We assume φ ◦ E(ε) = Id(X), i.e. the identity map in D(X). An action of
the monoid Σ∗ on X is thus defined. In general, being the action of Σ∗ just
a monoid, the analysis of its action on the state space can be quite hard, and
the structure of the reachable set under generic quantized controls can be very
intricated (even for linear systems: see e.g. [1, 6, 2]). However, we will show that,
appropriately choosing the quantization, for every flat system it is possible to
find a sub-language Ω of Σ∗ acting on IRn as ZZn. Therefore, in suitable state
and input coordinates, the system takes the form (2).

To reach the desired special form (2), we focus our attention on designing
encodings that achieve simple composition rules for the action of words in a
sublanguage Ω ⊂ Σ∗:

∀ω ∈ Ω, ∃h(ω) ∈ IRn : ∀x ∈ X, (φ∗ ◦ E∗(ω))(x) = x + h(ω), (3)

and
∀ω1 ∈ Ω, ∃ω̄1 ∈ Ω : (φ∗ ◦ E∗(ω1)) ◦ (φ∗ ◦ E∗(ω̄1)) = Id(X). (4)

The additivity rule (3) implies that actions commute, therefore, the global action
is independent from the order of application of control words in Ω. Moreover we
have the following:
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Proposition 1. Under rules (3), (4), there exists a sublanguage Ω′ ⊂ Ω such
that the corresponding reachable sets are lattices.

Proof. First notice that, by rules (3) and (4), Ω acts on the states as an additive
group. As a consequence, the reachable set from any point in X under the
concatenation of words in Ω is a set Λ generated by vectors h(ω), ω ∈ Ω,

Λ = {h(ω1)λ1 + · · ·+ h(ωN )λN |λi ∈ ZZ, N ∈ IN}.

If h(ω) ∈ lQn, ∀ω ∈ Ω, then we can choose Ω′ = Ω. Otherwise, we choose Ω′

to consist of concatenations of only n words in Σ∗ which produce independent
vectors h(ω).

A further important concern is that system (1) under symbolic control, maintains
the possibility of approximating arbitrarily well all reachable equilibria in its
state space, for suitable choices of symbols.

Definition 3. A control system ẋ = f(x, u) is additively (or lattice) approach-
able if, for every ε > 0, there exist a control quantization Uε and an encoding
E∗ : Ω �→ U∗

ε with card(Uε) = q ∈ IN, such that: i) the action of Ω obeys
(3), (4), and ii) for every x0, xf ∈ X, there exists x in the Ω–orbit of x0 with
‖x− xf‖ < ε.

Remark 1. The reachable set being a lattice under quantization does not imply
additive approachability. For instance, consider the example used in [14] to illus-
trate the so–called kinodynamic planning method.This consists of a double in-
tegrator q̈ = u with piecewise constant encoding U = {u0 = 0, u1 = 1, u2 = −1}
on intervals of fixed length T = 1. The sampled system reads

q+ = q + q̇ +
u

2
, q̇+ = q̇ + u,

hence q(N) = q(0) +Nq̇(0) +
∑N

i=1
2(N−i)+1

2 u(i), q̇(N) = q̇(0) +
∑N

i=1 u(i). The
reachable set from q(0) = q̇(0) = 0 is

R(U , 0) =
{[

q
q̇

]
=
[ 1

2 0
0 1

]
λ, λ ∈ ZZ2

}
.

The quantization thus induces a lattice structure on the reachable set. The lattice
mesh can be reduced to any desired ε resolution by scaling U or T . However,
the actions of control quanta do not compose according to rule (3): indeed,
φ∗(u1u2) �= φ∗(u2u1) (for instance, φ∗(u1u2)(0, 0) = (1, 0), while φ∗(u2u1)(0, 0)
= (−1, 0)).

The following theorem motivates the interest in seeking control encodings for
additive approachability, moreover Theorem 3 below shows the applicability of
the method.

Theorem 1. For an additively approachable system, a specification P for prob-
lem Π can be given in polynomial time.
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Proof. Consider a feedback encoding ensuring additive approachability. Arrange
a sufficient number q of action vectors h(ωi), ωi ∈ Ω in the columns of a matrix
H ∈ IRn×q. The reachable set from x0 is thus a lattice x0 + Λ, where Λ =
{Hλ|λ ∈ ZZq}. Additive approachability guarantees that the dispersion of Λ can
be bounded by 1

2ε, hence, ∀xf , ∃y ∈ Λ : ‖xf − x0 − y‖ ≤ ε. Finding a plan to
xf is thus reduced to solving the system of diophantine equations

y = Hλ. (5)

Each lattice coordinate λi represent directly the number of times the control
word ωi, hence the corresponding sequence of control quanta, is to be used to
reach the goal. Due to additivity of the action, the order of application of the
ωi is ininfluent. The linear integer programming problem (5) can be solved in
polynomial time with respect to the state space dimension n and p. Indeed, write
H in Hermite normal form, H = [L 0] U , where L ∈ IRn×n is a nonnegative, lower
triangular, nonsingular matrix, and U ∈ lQm×m is unimodular (i.e., obtained from
the identity matrix through elementary column operations). Once the Hermite
normal form of H has been computed (which can be done off-line in polynomial
time [18, 23]), all possible plans to reach any desired configuration y are easily
obtained as λ = U−1[L−1y, μ], ∀μ ∈ ZZm−n.

2.1 Reducing the Specification Complexity

We now address the specification complexity for problem Π for a system in form
(2). Without loss of generality to the purposes of this section, we can set the
tolerance ε = 1 and assume H̄ = Id, thus reducing to system

z+ = z + u. (6)

This system can be treated componentwise, hence it will be sufficient to consider
(6) with z ∈ IR. To deal with problem Π we introduce the following problems.
Consider system (6) and fix integers m > 0, N > 0 and M > 0. Our aim is to
study, for every integer control set W = {0,±v1, . . . ,±vm}, the reachable set
R(0, N) from the origin in N steps . More precisely we want to determine the
maximal M such that the interval of integers I(M) = [−M,−M+1, . . . ,M ] ⊂ ZZ
is contained in R(0, N).

We can thus state three significant problems:

Problem 1. Given a fixed number m and a symmetric interval of integers I(M),
find the minimal number N of steps and the set of 2m+ 1 control values to
completely fill I(M) in at most N steps.

Problem 2. Given a fixed number N of steps and a symmetric interval of in-
tegers I(M), find the minimal m such that there exists a control set with
2m + 1 elements which completely fills I(M) in at most N steps.

Problem 3. Given a fixed number m and N of steps, find the optimal choice
of 2m + 1 control values to completely fill a maximal symmetric interval of
integers I(M) in at most N step.
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Notice that each problem is obtained fixing two of the three parametersm,N and
M and optimizing over the other two. To treat Problem Π , Problems 1 and 2 are
relevant: in both cases M is fixed and the optimization reduces the specification
complexity. However, it is exactly Problem 3 which is mostly treatable. Thus we
now focus on Problem 3 and, later, derive some information on Problems 1 and
2 from the solution of Problem 3.

Problem 3 is a number theoretical problem, related but not equivalent to
the well-known “Frobenius postage stamp problem”. More precisely, the postage
problem seeks to maximize the minimum postage fee not realizable using stamps
from a finite set of m possible denominations. For the classical postage problem,
only results for small values of m are known, see [13]. The main difference with
Problem 3 is the positivity of stamp denominations, while control values fromW
are also negative. Although this difference has substantial technical implications,
the difficulty of the two problems is comparable.

Problem 3 was first studied in [5], then solved for m = 2, 3, 4 and any N in
[7], where a general asymptotic formula was conjectured for every m. We report
here the explicit formulae for the optimal choice of controls for m = 2, 3. For
m = 2 we simply obtain v1 = N and v2 = N + 1. For m = 3 we get:

v3 =
{
N2/4 + 3/2N + 5/4 if N is odd
N2/4 + 3/2N + 1 if N is even,

v2 = v3 − 1,

v1 =
{
v3 − N+1

2 − 1 if N is odd
v3 − N

2 − 2 if N is even.

Table 1 reports the maximum interval of the horizontal line which can be
covered with unit resolution and different word lengths N , along with the actual
values of the different control sets, for m = 3 and m = 4.

Table 1. Optimal interval-filling input values for system (6) for m = 3 (above) and
m = 4 (below)

N 1 2 3 4 5 6 7
v1 1 3 5 8 11 15 19
v2 2 4 7 10 14 18 23
v3 3 5 8 11 15 19 24
M 3 10 24 44 75 114 168

N 1 2 3 4 5 6 7
v1 1 3 7 13 19 29 41
v2 2 6 9 18 27 36 52
v3 3 7 11 20 29 39 55
v4 4 8 12 21 30 40 56
M 4 16 36 84 150 240 392
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For m = 2, 3, 4 andN >> m, for the largest value inW it holds asymptotically
vm ∼ ( N

m−1 )(m−1). Given 2m+1 controls one can thus reach in N steps a region
of size

M ∼ Nm/mm. (7)

In [7], it is conjectured that (7) holds for every m.
Consider now again Problem 1. In this case m and M are fixed. From (7),

we know that we can cover I(M), taking the 2m + 1 optimal control values for
Problem 3, in

N ∼ mM
1
m (8)

steps. This gives an approximate solution to Problem 1.
On the other hand, for Problem 2 (now N and M are fixed), taking the 2m+1

optimal control values for Problem 3, we can cover I(M) in N steps using 2m+1
controls where

m ∼ N

M
1
m

. (9)

Again this gives an approximate solution to Problem 2.
To efficiently solve Problem Π we need to reduce the specification complexity

of finite plans. In order to achieve that we may either use the solution to Problem
1 or to Problem 2 In both cases, to describe plans covering the region of size M ,
a sequence of length N of symbols from an alphabet of size 2m + 1 should be
given. This results on a specification complexity of N #log2(2m + 1)$. Therefore
we immediately get the following:

Proposition 2. Using the (approximate) solutions to Problems 1 and 2, we can
cover the region I(M) by finite plans with specification complexities asymptoti-
cally given by (respectively):

mM
1
m #log2(2m + 1)$ , (10)

N

⌈
log2(

2N
M

1
m

+ 1)
⌉

(11)

Clearly the two expressions (10) and (11) have the same asymptotic behavior
(for M →∞), thus we focus on the first which depends only on two parameters
m and M .

One can check, by formal computations, that (10) admits a minimum in m.
We report in figure 1 the graph of (10) for M = 103: note the discontinuities
produced by the function #·$. An exact expression for the minimum is not pos-
sible, however we can compute the derivative of (10) (replacing the function #·$
with the identity) and thus obtaining:

M
1
m

ln(2)

(
ln(2m + 1)

(
1− ln(M)

m

)
+

2m
2m + 1

)
.

From this expression, we see that the optimal value m∗ satisfies m∗ < ln(M).
Finally, replacing this value in (10) we obtain:
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Fig. 1. Graph of (10) for M = 1000

Proposition 3. Using the (approximate) solutions to Problems 1, the specifica-
tion complexity asymptotically satisfies:

C ≤ ln(M)M
1

ln(M) #log2(2 ln(M) + 1)$ ,

A compact representation of control sequences is obtained by using Run–Length
Encoding (RLE). RLE consists in replacing repeated runs of a single symbol
in an input stream by a single instance of the symbol and a run count. This
compression method is particularly well suited for our method, because of the
commutativity of symbols in control strings. In fact, we can assign, for each pos-
sible control value, an integer of size at most N , specifying how many times the
corresponding control must be used. In this way, the control sequence requires
(2m+1)#log2(N)$ bits, or rather, by exploiting the symmetry of the symbol set
and using sign-magnitude representation, (m+ 1) (1 + #log2(N + 1)$) bits. (We
are assuming that control values are already computed off-line.) Using Proposi-
tion 3 and again (7), we thus get:

Proposition 4. For Problem Π, using feedback encoding, the approximate so-
lution to Problem 1 and RLE, the specification complexity C satisfies:

C ∼ (m + 1)
(
1 + #log2(mM

1
m + 1)$

)
(12)

We can study this expression as above to determine an optimal value m∗ of m:
see in figure 2 the graph of (12) for M = 103. However, in this case we can only
estimate m∗ = o(ln(M)), thus

C = o(ln(M)) log2(o(ln(M))M)
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Fig. 2. Graph of (12) for M = 1000

3 Feedback Encoding for Flat Systems

Feedback encoding consists in associating to each symbol a control input u that
depends on the symbol itself, on the current state of the system, and on its
structure. If the encoding incorporates memory elements, e.g. additional states
ξ are used to define the feedback, the feedback encoding is referred to as dynamic.
The method of feedback encoding avails symbolic control with powerful results
from the literature on feedback equivalence of dynamical systems. We show how
this can be exploited to apply the planning method of theorem 1 to the rather
general class of flat systems.

We start treating the case of linear systems:

ẋ = Fx+ Gu (13)

with x ∈ IRn, u ∈ U = IRr and rank G = r. Application to (13) of piecewise
constant encoding of symbolic inputs with durations Ti = T, ∀i, generates the
discrete-time linear system

x+ = Ax + Bu, (14)

with A = eFT , B = (
∫ T

0 e(T−s)Fds)G. Let us recall the definition of Brunovsky
form (see e.g. [19]). For a controllable system (14), there exist a change of co-
ordinates S in the state space and V in the input space, and a linear feedback
matrix K0 such that the new system with drift Ã = S−1(A+BK0)S and control
matrix B̃ = S−1BV has the following properties. The state ξ = S−1x can be
split in r subvectors ξ = (ξ1, . . . , ξr) for which the dynamics are written as

ξ̇i = Aκiξi + bκiv
′
i, i = 1, . . . , r (15)

where ξi ∈ IRκi ,
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Aκi =

⎡⎢⎢⎢⎢⎢⎣
0 1 · · · 0 0
0 0 1 · · · 0
...

...
. . . . . .

...
0 0 · · · 0 1
0 0 · · · 0 0

⎤⎥⎥⎥⎥⎥⎦ ∈ IRκi×κi , bκi =

⎡⎢⎢⎢⎣
0
...
0
1

⎤⎥⎥⎥⎦ ∈ IRκi ,

v′i ∈ IR and
∑r

i=1 κi = n.

Theorem 2. For a controllable linear discrete-time system x+ = Ax+Bu, there
exists an integer 
 > 1 and a linear feedback encoding E : σi �→ Kx + wi with
constant K ∈ IRn×n and wi ∈ W, W ⊂ IRr a quantized control set, such that,
for all subsequences of period 
T extracted from x(·), the reachable set is a lattice
of arbitrarily fine mesh. In other words the all controllable linear discrete-time
systems are additively approachable.

We recall preliminarily a result which can be derived directly from [2].

Lemma 1. The reachable set of the scalar discrete time linear system ξ+ = ξ+v,
ξ ∈ IR, v ∈ W:=γW with γ > 0 and W = {0,±w1, . . . ,±wm}, wi ∈ IN with at
least two elements wi wj coprime, is a lattice of mesh size γ.

Proof. Theorem 2.
For the controllable pair (A,B), let S, V , and K0 be matrices such that (S−1(A+
BK0)S, S−1BV ) is in Brunovsky form. Let v′ = K1ξ + v, where:

– v ∈ W = γ1
1W × · · · × γr

rW , with kW = {0,±kw1, . . . ,±kwmk
}, kwj ∈ IN

k = 1, . . . , r, j = 1, . . . ,mk, each kW including at least two coprime elements
kwi

kwj ;
– K1 ∈ IRr×n such that its i–th row (denoted K1i) contains all zeroes except

for the element in the (κi−1 +1)–th column which is equal to one (recall that
by definition κ0 = 0).

Using notation as in (15), it can be easily observed that (Aκi +BκiK1i)κi = Iκi ,
the κi × κi identity matrix. Hence, if we let 
 = l.c.m. {κi : i = 1, ..., r}, we get[
S−1((A + BK0)S + BVK1)

]�
= In.

Let ξi ∈ IRκi denote the i–th component of the state vector relative to the pair
(Aκi , Bκi). For any τ ∈ IN we have ξi(τ +κi) = ξi(τ)+ [vi(τ), . . . , vi(τ +κi−1)].
On the longer period of 
T , we have

ξi(τ + 
) = ξi(τ) +

⎡⎢⎢⎢⎣
∑ �

κi
−1

k=0 vi(τ + kκi)
...∑ �

κi
−1

k=0 vi(τ + κi − 1 + kκi)

⎤⎥⎥⎥⎦
:= ξi(τ) + v̄i(τ),

hence, in the initial coordinates,

x(τ + 
) = x(τ) + Sv̄.
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Fig. 3. Nested discrete-time continuous-time feedback encoding

It is also clear that, for any ε, it is possible to choose Γ such that z can be driven
in a finite number of steps (multiple of 
) to within an ε-neighborhood of any
point in IRn.

Let us now pass to treat a general system (1) and let the equilibrium set be
E = {x ∈ X |∃u ∈ U, f(x, u) = 0}. The focus on equilibria is consistent with
usual practice in control, where equilibrium configurations typically correspond
to nominal working conditions for a system (possibly up to group symmetries,
see e.g. [12]).

Among systems with drift, linear systems are the simplest, yet their analysis
encompasses the key features and difficulties of planning. Indeed, our strategy
to attack the general case consists of reducing to planning for linear systems via
feedback encoding. To achieve this, we introduce a further generalized encoder
(still encompassed by the above definition of control quanta), i.e. the nested
feedback encoding described in fig. 3. In this case, an inner continuous (possibly
dynamic) feedback loop and an outer discrete-time loop – both embedded on
the remote system – are used to achieve richer encoding of transmitted symbols.
Since additive approachability for linear systems is proved in theorem 2, using
nested feedback encoding, all feedback linearizable systems are hence additively
approachable. Recalling results from [11], we can state the following

Theorem 3. Every differentially flat system is locally additively approachable.

4 Example

We illustrate the power of the proposed method by solving the steering problem
for an example in the class of underactuated mechanical systems, which have
attracted wide attention in the recent literature (see e.g. [8]).

In particular, we consider the class of underactuated mechanisms identified as
“(n−1)Xa−Ru planar robots”, i.e. mechanisms having n−1 active joints of any
type, and a passive rotational joint. In order to simplify the model analysis and
control design, it is convenient to use a specific set of generalized coordinates.
In particular, let q = (q1, ..., qn−3, x, y, θ) = (qa, θ) where (x, y) are the cartesian
coordinates of the base of the last link. Assuming motion in a horizontal plane
(or zero gravity), the dynamic model takes on the partitioned form
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⎡⎢⎢⎣
0(n−3)×1

Ba(qa) −mndnsθ

mndncθ

01×(n−3) −mndnsθ mndncθ In + mnd
2
n

⎤⎥⎥⎦
⎡⎢⎢⎣ q̈a

θ̈

⎤⎥⎥⎦+

+

⎡⎢⎢⎣ca(q, q̇)

0

⎤⎥⎥⎦ =

⎡⎢⎢⎣Fa

0

⎤⎥⎥⎦ (16)

where Fa = (F1, ..., Fn−3, Fx, Fy) are the generalized forces performing work on
the qa coordinates, sθ = sin θ and cθ = cos θ. For the n–th link, In, mn and dn

are the baricentral inertia, the mass and the distance of the center of mass from
its base.

In order to make the analysis independent from the nature of the n−1 active
joints, the relative dynamics in (16) can be linearized via a globally defined
partial static feedback, thus reducing them to a chain of two integrators per
actuated joint. The dynamics of the coordinates qi, i = 1, ..., n−3 are completely
decoupled from the dynamics of the remaining coordinates (x, y, θ). Therefore,
we will henceforth only consider the case n = 3. Following [8], we choose the
cartesian coordinates of the center of percussion as the system’s (flat) outputs:[

y1
y2

]
=
[
x
y

]
+ KCP

[
cθ

sθ

]
. (17)

The dynamics of the system after the dynamic feedback linearization are written
as y

(4)
1 = v1, y

(4)
2 = v2. Choosing a sample time t = 1s we obtain the following

discrete time linear system:

x+
i = Axi + Bvi =

=

⎡⎢⎢⎣
1 1 1

2
1
6

0 1 1 1
2

0 0 1 1
0 0 0 1

⎤⎥⎥⎦xi +

⎡⎢⎢⎣
1
24
1
6
1
2
1

⎤⎥⎥⎦ vi

where xi =
(
yi, y

(1)
i , y

(2)
i , y

(3)
i

)
, i = 1, 2. Being each subsystem controllable,

there exist S such that (S−1AS, S−1B) is in control canonical form. For each
subsystem in control canonical form, the set of equilibria is given by {α14 ∈
IR4 : α ∈ IR}. Then, in the initial coordinates, the set of equilibria is given
by {αS14 ∈ IR4 : α ∈ IR}. For a given α ∈ IR we obtain the equilibrium α14
for the control canonical form and the equilibrium (α, 0, 0, 0) for the original
subsystem, hence a constant position of the considered coordinate of the center
of percussion. The scale factor is 1 in this case.

To obtain a reachable lattice of size γ1, γ2 > 0, 1W, 2W can be chosen to be
any finite sets of integers, such that at least two of its elements are coprime, and
and inputs scaled as iv ∈ γi

iW , i = 1, 2.
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Fig. 4. An underactuated robot arm of type 2Ra − Ru used in example 2: the given
initial and final configurations are shown by dashed and solid lines, respectively

Fig. 5. Coordinates y1 (left) and y2 (right) of the center of percussion

Fig. 6. Active joints angles (left) and orientation of the last passive link (right)

Given an initial robot pose (y1, y2, θ) = (0, 0, 0), consider three maneuvers:
translation along the x axis, translation along the straight line y = x and transla-
tion along the y axis. The first one can be achieved with a single symbol w applied
on the input 1v for n = 4 periods. The second maneuver is similar to the first one:
we apply the previous command on the two inputs 1v and 2v for n = 4 periods.
We can split the third maneuver in two maneuvers of the previous types.
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Initial and final positions of a 3R robot are shown in fig. 4. Simulations were
performed setting l1 = l2 = 3m, KCP = 1m, T = 1s, and w = 0.8m/s2. Fig. 5
shows the coordinates of the Center of Percussion of the last link while fig. 6
shows the angles of the active joints and the orientation of the last passive link,
respectively.

5 Conclusions

In this paper, we addressed the issue of designing efficient finite plans to steer
controlled dynamical systems. Efficiency is measured by specification and com-
putational complexities.

Via suitable feedback encoding, based on control quanta, we showed how to
reduce flat systems to a special form. Once this is obtained, we can use number-
theoretic results to improve efficiency. It seems fair to affirm that few practically
interesting classes of controllable systems remain outside the scope of application
of the presented methods.

Connections to state observers in planning are unexplored at this stage.
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Abstract. A general Hybrid Minimum Principle (HMP) for hybrid op-
timal control problems (HOCPs) is presented in [1, 2, 3, 4] and in [4, 5], a
class of efficient, provably convergent Hybrid Minimum Principle (HMP)
algorithms were obtained based upon the HMP. The notion of optimality
zones (OZs) ([3, 4]) provides a theoretical framework for the computa-
tion of optimal location (i.e. discrete state) schedules for HOCPs (i.e.
discrete state sequences with the associated switching times and states).
This paper presents the algorithm HMPOZ which fully integrates the
prior computation of the OZs into the HMP algorithms class. Summing
(a) the computational investment in the construction of the OZs for a
given HOCP, and (b) the complexity of (i) the computation of the opti-
mal schedule, (ii) the optimal switching time and optimal switching state
sequence, and (iii) the optimal continuous control input, yields a com-
plexity estimate for the algorithm HMPOZ which is linear (i.e. O(L)) in
the number of switching times L.

1 Introduction

Over the last few years the notion of a hybrid control system with continuous
and discrete states and dynamics has crystallized and various classes of opti-
mal control problems for such systems have been formalized (see for example
[3, 6, 2, 1, 7, 8, 9]). In particular, generalizing the standard Minimum Principle
(MP), Sussmann [10] and Riedinger et al. [11], among other authors, have given
versions of the Hybrid Minimum Principle (HMP) with indications of proof
methods. An explicit theory for the two stage controlled switching optimal con-
trol problem was given by Tomiyama in [12] and a complete, rigorous treatment
of the HMP is given in [13, 14] for the case of a priori fixed location sequences.
In [1, 2, 3, 4] a set of necessary conditions for hybrid optimal control problems
(HOCPs) was derived which constitutes a general Hybrid Minimum Principle
(HMP); based upon this, a class of efficient Hybrid Minimum Principle (HMP)
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algorithms has been constructed [5] and their convergence established. Next, in
[3, 4] the notion of optimality zones (OZs) was introduced as a theoretical frame-
work enabling the computation of optimal schedules (i.e. location sequences with
the associated switching times and states) for HOCPs. A distinct approach to
the computational solution of HOCPs with fixed schedules is to be found in [7],
while [15, 16, 17] present progress on parallel work on the solution of HOCPs
including schedule optimization using a location (i.e. discrete state) insertion
method.

The contributions of this paper include: (i) the algorithm HMPOZ which fully
integrates the prior computation (termed the PREP computation) of the OZs
into the HMP algorithms of [4, 5]; and (ii) computed examples of the application
of HMPOZ to a bilinear quadratic regulator HOCP, demonstrating the efficacy
of HMPOZ.

The computational complexity of HMPOZ has two components: (a) the
complexity of the construction of the optimality zones for a given HOCP, which
depends upon the cardinality of the discrete state set Q and the number of
grid points |G| but is independent of the number of switchings, and (b) the
complexity of a single run of the HMP algorithm which is linear (i.e. O(L)) in
the number of switchings L. This gives the overall complexity of HMPOZ as
O(|G|2 · |Q|) + O(L); this is to be compared with the geometric (i.e. O(|Q|L))
growth of a direct combinatoric search over the set of location sequences.

Efficient Dynamic Programming (DP) based computational methods exist for
certain classes of standard optimal control problems (see [18, 19]); furthermore,
in case the upper bound L̄ on the number of switchings is infinite (see [8, 4])
or the switchings occur at fixed instants, numerical methods for HOCP may,
in principle, be formulated within a DP framework. However, severe complexity
issues arise for DP based methods when the constraint L̄ < ∞ must be taken
into account at each iterative step of a DP procedure; these do not arise for local
optima seeking methods such as HMPOZ.

While the computational complexity of PREP for HMPOZ and DP meth-
ods increases geometrically with the dimension of the continuous state space
Rn, the complexity of HMPOZ implementations increase proportionally to that
of the TPBVP methods used by HMP. For reasons of space, and to concen-
trate on the dependence on L̄, the examples in this paper concern scalar
systems.

The notion of optimality zones must be distinguished from the so-called
“switching regions” presented in [20, 21, 22]; switching regions partition the
continuous state space of autonomous (steady state) hybrid systems whereas
optimality zones partition the Cartesian product of the system’s time and state
space (R1×Rn) with itself, that is to say, they partition (R1×Rn)2. As explained
in Section 4, these partitions are defined for any given finite horizon hybrid opti-
mal control problem (HOCP) and their specification is completely independent
of the number of switchings L in the associated HOCP.
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2 Hybrid Optimal Control Theory

In this paper we consider hybrid systems which in each location are governed by
globally controllable non-linear dynamics of the form

H : ẋq = fq(xq, u), q ∈ Q Δ {1, 2, . . . , |Q|}.

At a controlled location transition at an instant t, t ∈ [t0, tf ], the piecewise con-
stant, right continuous, Q valued, discrete state (component) trajectory satisfies

H : q(t−) = qi ∈ Q, q(t) = qj ∈ Q, qi �= qj .

In this paper no constraints are imposed on the dynamics of the location transi-
tion while in [4, 5] the controlled transitions satisfy the Q-dependent dynamics of
the form qj = Γ (qi, σij), where σij is a partially defined discrete input; however,
the algorithms presented here are easily extended to the more general case.

Consider the initial time t0, final time tf < ∞, initial hybrid state h0 =
(q0, x0), and an upper bound on the number of switchings L̄ ≤ ∞. Let SL

= ((t0, q0), (t1, q1), . . . , (tL, qL)) be a hybrid switching sequence and let IL Δ
(SL, u), u ∈ Ucpt, L̄ ≤ ∞, be a hybrid input trajectory which (subject to the
assumptions of [4, 5]) results in a (necessarily unique) hybrid execution and is
such that L ≤ L̄ switchings occur on the time interval [t0, tf ]. Here the set
of admissible input control functions is Ucpt Δ U(U cpt, L∞([0, tf ])), the set of
all bounded measurable functions on some interval [0, tf ], taking values in the
compact set U cpt. Further let the collection of such inputs be denoted {IL}. We
define the hybrid cost function as:

J : J(t0, tf , h0; IL, L̄,Ucpt) Δ
L∑

i=0

∫ ti+1

ti

lqi(xqi (s), u(s)) ds + g(xqL(tf )), (1)

where for i = 0, 1, . . . , L,

ẋqi(t) = fqi(xqi (t), u(t)), a.e. t ∈ [ti, ti+1),
u(t) ∈ U cpt ⊂ Rn,

u(·) ∈ L∞(U cpt),
h0 = (q0, xq0 (t0)) = (q0, x0),
xqi+1(ti+1) = lim

t↑ti+1
xqi (t), and

tL+1 = tf <∞, L ≤ L̄ ≤ ∞.

Definition 1. ([4, 5], Hybrid Optimal Control Problem (HOCP)) Given a hy-
brid system H, loss functions {lq, q ∈ Q}, initial and final times, t0, tf , the initial
hybrid state h0 = (q0, x0), and an upper bound on the number of switchings L̄ ≤
∞, the hybrid optimal control problem (HOCP(t0, tf , x0, L̄,Ucpt)), is to find the
infimum J0(t0, tf , h0, L̄,Ucpt) of the hybrid cost function J(t0, tf , h0; IL, L̄,Ucpt)
over the family of input trajectories {IL}.

If a hybrid input trajectory IL0 exists which realizes J0(t0, tf , h0, L̄,Ucpt) it is
called a hybrid optimal control for the HOCP(t0, tf , x0, L̄,Ucpt). �
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In Theorem 1 we state the necessary conditions, for the controlled switchings
case, upon which the algorithms of this paper are based; the theorem is stated
for the cases where the control takes values in the compact set U cpt. The reader
is referred to [4] and the associated paper [5] for a complete exposition of the
HMP necessary conditions covering compact and open bounded control value
sets and both the autonomous and controlled switchings cases.

Theorem 1. ([4, 5]) Consider a hybrid system H and the HOCP(t0, tf , x0, L̄,
Ucpt), and define

Hq(x, λ, u) = λT fq(x, u) + l(x, u), x, λ ∈ Rn, u ∈ U cpt, q ∈ Q.

1) Let J0(t0, tf , h0,Ucpt) = inf{IL} J0(t0, tf , h0, IL, L̄,Ucpt) be realized at I0
L0 ,

(x0, q0).
2) Let t1, t2, . . . , tL0 , denote the switching times along the optimal trajectory
(x0, q0).

3) Assume that either (a) L̄ <∞ and L0+2 ≤ L̄, or (b) L̄ =∞ and L0 <∞.

Then

(i) There exists a (continuous to the right), piecewise absolutely continuous
adjoint process λ0 satisfying

λ̇0 = −
∂Hq0(t)

∂x
(x0, λ0, u0), t ∈ (tj , tj+1), j ∈ {0, 1, 2, . . . , L0}, (2)

where tL0+1 = tf and where the following boundary value conditions hold
with λ0(t0) free:
(a) λ0(tf ) = ∇xg(x0(tf )).
(b) If tj is a switching time, then

λ0(tj−) ≡ λ0(tj) = λ0(tj+), j ∈ {0, 1, 2, . . . , L0}. (3)

(ii) The Hamiltonian minimization conditions are satisfied, i.e.
(a)

Hq0(t)(x0(t), λ0(t), u0(t)) ≤ Hq0(t)(x0(t), λ0(t), v),

a.e. t ∈ [tj , tj+1), ∀v ∈ U cpt, j ∈ {0, 1, 2, . . . , L0}. (4)

(b)

Hq0(t)(x0(t), λ0(t), u0(t)) ≤ Hq(x0(t), λ0(t), u0(t)),

a.e. t ∈ [tj , tj+1), j ∈ {0, 1, 2, . . . , L0}, ∀q ∈ Q. (5)

(iii) The following Hamiltonian continuity condition holds at a controlled
switching time t = tj

H(tj−) ≡ Hq0(tj−)(tj−) = Hq0(tj−)(tj) = Hq0(tj)(tj)

= Hq0(tj+)(tj+) ≡ H(tj+), j ∈ {1, 2, . . . , L0}.

�
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3 HMP Conceptual Algorithm

Based on the necessary conditions for hybrid optimality in Theorem 1 we pro-
posed the HMP algorithm in [4, 5] and established its convergence properties.
This algorithm is presented below for the single switching time case but can be
generalized to multiple switching times case in an obvious manner. This algo-
rithm forms the basis of the algorithm HMPOZ which is given in Section 5.

We reproduce the HMP algorithm below; in Steps 3 and 4 {rk} is either a
constant sequence of strictly positive numbers or is an unbounded monotonically
increasing sequence.

0. Algorithm Initialization: Fix 0 < εf & 1. Let (ts, xs) be a nominal switching
time-state pair such that t0 < ts < tf . Set the iteration counter k = 0.
Set tks = ts and xk

s = xs. Compute the optimal control functions uk
1(t),

t0 ≤ t < ts and uk
2(t), ts ≤ t ≤ tf . Compute the associated state and costate

trajectories and Hamiltonians over the two intervals [t0, tks ] and [tks , tf ], with
the terminal state pairs (x0, x

k
s) and (xk

s , xf ) respectively. Also compute the
new total cost Jk(tks , x

k
s).

1. Increment k by 1.
2. Let zk

s Δ (tks , xk
s) and set

zk
s = zk−1

s − rk

(
Hk

1 (tk−1
s )−Hk

2 (tk−1
s )

λk
2(tk−1

s )− λk
1(tk−1

s )

)
.

3. Compute the optimal control functions uk
1(t), t0 ≤ t < ts and uk

2(t), ts ≤ t ≤
tf . Compute the associated state and costate trajectories and Hamiltonians
over the two intervals [t0, tks ] and [tks , tf ] with the terminal state pairs (x0, x

k
s)

and (xk
s , xf ) respectively. Next, compute the Jk Δ Jk(tks , x

k
s).

4. If |Jk − Jk−1| < εf , then Stop; else go to Step 1.

The convergence of the HMP algorithm is established in [4, 5, 23] for the case
of unbounded increasing {rk} by use of penalty function methods and Ekeland’s
variational principle. The efficiency of the HMP algorithm in comparison with
other fixed discrete state sequence hybrid optimal control algorithms is discussed
with illustrative examples in [4, 5].

4 Optimality Zones, Location Sequences and the HMPOZ
Algorithm

Henceforth in this paper the HMP algorithm shall be treated as a modular unit
in more general algorithmic procedures. In this section, the properties of optimal
hybrid controlled trajectories are shown to permit the exploitation of the HMP
algorithm in computational methods which converge to discrete and continuous
control functions with certain local and global optimality properties.
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4.1 Fundamental Implications of the DP Principle for Optimal
Location Sequences

DP Principle. Along an optimal hybrid execution (I0
L0 , x0) the Dynamic Pro-

gramming Principle implies that the part of the hybrid input I0
L0 (and cor-

respondingly the hybrid trajectory (q0, x0)) from the j-th switching time and
state pair to the j + 1-st switching time and state pair, (t0j , x

0
j ) → (t0j+1, x

0
j+1),

0 ≤ j ≤ L0, is optimal. Hence, in particular, q0(t), t ∈ [t0j , t
0
j+1), must be an

optimal location for the trajectory from (t0j , x
0
j ) to (t0j+1, x

0
j+1).

Non-hybrid Optimal Control Problem. It is to be noted that for each
q((t0j , x

0
j), (t

0
j+1, x

0
j+1)) ∈ Q the optimization above is a standard (non-hybrid)

optimal control problem which is not linked to an analogous optimization over
any other interval.

|Q| Complexity Search. We further note that for each time and state pair
{(tj , xj), (tj+1, xj+1)} the set-up cost of a search over a set Q to find the optimal
q0((tj , xj), (tj+1, xj+1)) is proportional to |Q| and is not linked to an analogous
search over any other interval.

4.2 Variations in Switching Time and State and Local Optimality
with respect to Discrete Location

Local Optimality for fixed q ∈ Q. In [4, 23] we show that under weak as-
sumptions the value function v(t, x, q) of HOCP is bounded and continuous in
(t, x) for each q ∈ Q. For simplicity, consider the case where we have two loca-
tions, Q = {q1, q2}, and two controlled switchings at (t1, x1) and (t2, x2) with
t0 ≤ t1 < t2 ≤ tf . Further assume that over the interval [t1, t2] the optimal
cost J0

q1
((t1, x1), (t2, x2)) of a trajectory from x1 to x2 in location q1 is strictly

smaller than the corresponding cost J0
q2

((t1, x1), (t2, x2)) in location q2. Hence
by the continuity of each J0

qi
, i = 1, 2, in ((t1, x1), (t2, x2)), there is a neighbour-

hood N((t1,x1),(t2,x2)) of ((t1, x1), (t2, x2)) such that for any ((t′1, x
′
1), (t

′
2, x

′
2)) ∈

N((t1,x1),(t2,x2)) the optimality of location q1 is preserved.

Specification of OZs. The preservation of the optimality of location q1 with
respect to the perturbations of ((t1, x1), (t2, x2)) gives rise to the notion of (the
set of) optimality zones (OZs).

Under the assumptions generating the class of hybrid systems H (and the
associated HOCP) the value function J0((t1, x1), (t2, x2), q) of HOCP is bounded
and continuous in ((t1, x1), (t2, x2)) for each q ∈ Q (see [4]). So it is possible to
define a region OZq of points ((t1, x1), (t2, x2)) in the space (R×Rn)2 for which
a specific location q ∈ Q corresponds to the optimal hybrid system trajectory
starting at (t1, x1) and terminating at (t2, x2).

We adopt the convention that if (t2, x2) is not accessible from (t1, x1) and
similarly if (t1, x1) is not co-accessible to (t2, x2)) when the system H is in the
location q ∈ Q then Jq((t1, x1), (t2, x2)) =∞.
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Definition 2. For t0 ≤ t1 < t2 ≤ tf , the optimality zone OZq, corresponding
to the location q ∈ Q, is given by

OZq Δ {((t1, x1), (t2, x2)) ∈ ((t0, tf )× Rn)2 :
J0

q ((t1, x1), (t2, x2)) ≤ J0
q′((t1, x1), (t2, x2)), t1 < t2, ∀q′ ∈ Q}. �

Under reasonable conditions [5, 24] optimality zones are closed sets with disjoint
interiors.

4.3 Formulation of the HMPOZ Algorithm

Discretization of Space-Time. For simplicity and for the purpose of esti-
mation of computational complexity assume that Γ is a rectangular region in
Rn+1:

Γ Δ [t0, tf ]× [x1
i , x

1
f ]× · · · × [xn

i , x
n
f ]

Let a grid G on Γ be defined as follows. The time interval [t0, tf ] ∈ R is divided
into N0 uniform subintervals and let δ0 Δ (tf − t0)/N0. For each point t0 + δ0k,
k = 0, 1, . . . , N0, let each edge of Γ be divided into Ni uniform subintervals and
let δi Δ (xi

f − xi
0)/Ni, i = 1, 2, . . . , n. Then

G Δ {t0, . . . , tf} ×
(
×n

k=1{xk
i , . . . , x

k
f}
)
.

Set-Up Computation. We shall adopt the name PREP (G) for an algorithm
performing the following calculation: find the optimal location q0 = q0((t1, x1),
(t2, x2)) ∈ Q, ((t1, x1), (t2, x2)) ∈ G, t0 ≤ t1 < t2 ≤ tf , for all such strictly
ordered tr, ts on the lattice points of the grid G with |G| elements, where the
envelope of G is assumed to contain the optimal trajectory (x0(t); t0 ≤ t ≤ tf ).

HMP with OZ Data; Conceptual Algorithm. Let the execution of the
basic HOCP algorithm HMP (see [4, 5]) be modified so that, after an iterative
shift of the vector of switching time and state pairs (tj , xj)[k] to (tj , xj)[k+1] in
RL(n+1), the location q

[k+1]
j on the interval [t[k+1]

j , t
[k+1]
j+1 ) is chosen so as to be

optimal among all trajectories from x
[k+1]
j to x

[k+1]
j+1 (such a location is generated

by PREP (G)). Upon incrementing k to k+1 the HMPOZ algorithm repeats its
basic HMP operation if the halting rule of HMP has not been satisfied.

4.4 Optimality and Complexity of HMPOZ

Based upon the conceptual specification of Algorithm HMPOZ above, and invok-
ing the DP Principle 4.1 together with the global convergence analysis (subject
to the associated conditions) of the Algorithm HMP in [4, 5], it is shown in Theo-
rem 2 below that if HMPOZ halts at some (xH , uH , qH) ≡ (uH , qH) then neither
(i) a change in qH with the given {tHs , xH

s }, nor (ii) a change in uH for the given
qH can strictly decrease the cost J .

The algorithm PREP (G) solves one standard (i.e. non-hybrid) optimal con-
trol problem for each pair of points in the grid G, for each location q ∈ Q. Hence
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the computational cost of the determination of the optimality zones for HOCP
by use of PREP (G) in R2(n+1) is O(|G|2 · |Q|) which is independent of the num-
ber of switchings L. The HMPOZ algorithm resulting from the enhancement of
HMP with PREP computes (i) the optimal continuous variables and controls,
and (ii) the optimal discrete location sequence with an overall complexity cost of
O(|G|2 · |Q|) +O(L), where O(L) corresponds to the complexity of a single run
of the HMP algorithm. Hence, over k HOCP problems with possibly differing
initial and terminal data, the complexity comparison between the repeated ap-
plication of HMPOZ and of a full combinatorial search method employing HMP
is given by:

α|Q||G|2|x|+1 + βk|Pont(|x|)|(L + 1) < γk|Pont(|x|)|(L + 1)|Q|L,

where α, β, γ are constants, k = number of problems, |G| = space-time sample
point density, L = number of switchings, |Q| = cardinality of Q, |x| = dimension
of x, and |Pont(|x|)| denotes the complexity of solving one classical optimal
control problem by application of a TPBVP algorithm (which constitutes the
basic module of HMP).

Figure 1 shows the projections P1(OZq) and P2(OZq) of the optimality zone
OZq on (t1, x1) and (t2, x2) spaces respectively.

Fig. 1. Optimality zones

5 Halting and Convergence of HMPOZ Algorithms

Let zi Δ (ti, xi) and let OZ : R(n+1)L → QL+1 be such that OZ({zi}L
i=1) =

{qi}L
i=0, i.e. for a given HOCP, the function OZ takes a sequence of time and

state pairs and returns a sequence of locations from the precomputed Optimality
Zones database computed by PREP (G). Notice that the initial and final time-
state are not passed to the OZ as they are part of the specification of HOCP.
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Let HMP : R(n+1)L × QL+1 → R(n+1)L be such that for a given HOCP it
performs the switching time and switching state update step of the Algorithm
HMP of [4, 5].

Also, let SC : R2(n+1)L×Q2(L+1)×Z+ → R+ be a function which, for a given
HOCP, computes a quantity to be compared to the stopping condition tolerance
ε > 0 of the Algorithm HMP of [4, 5].

Then the Algorithm HMPOZ may be specified as follows:

1. Initialization: Fix 0 < ε& 1. Set the iteration counter k = 0. Let {zi}L
i=1 Δ

{(ti, xi)}L
i=1 be initial switching time and state pairs satisfying t0 < t1 <

t2 < · · · < tL < tf . Also let {qi}L
i=0 = OZ({zi}L

i=1) be the initial location
sequence.

2. {zi}L
i=1 ← HMP

(
{zi}L

i=1, {qi}L
i=0

)
.

3. {qi}L
i=0 ← OZ({zi}L

i=1).
4. If SC

(
{zi}L

i=1, {qi}L
i=0; k, k − 1

)
≤ ε then STOP;

else k ← k + 1, go to Step 2. �
Figures 2 and 3 show a typical iteration of the Algorithm HMPOZ where an OZ
boundary crossing takes place.

Fig. 2. An iteration of the Algorithm HMPOZ: ∂OZ crossing

Fig. 3. An iteration of the Algorithm HMPOZ: switching time and switching state
update
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5.1 Convergence of HMPOZ

For brevity let us denote the sequence of switching times, switching states and
locations

(
{(ti, xi)}L

i=1, {qi}L
i=0

)
as (z, q). Also let u0(z, q) denote the optimal

continuous control for the sequence (z, q), i.e. for i = 0, 1, · · · , L, the restriction
of u0(z, q) to the interval [ti, ti+1] is optimal for transferring the system from
the continuous state xi to continuous state xi+1 when the discrete state of the
system is qi. We define a product optimality zone OZq corresponding to the
location sequence {qi}L

i=0 as

OZq Δ OZq0 ×OZq1 × · · · ×OZqL ⊂ R2(n+1)(L+1),

and denote its interior as
◦

OZq. Then the following theorem gives the properties
of the halting point of the Algorithm HMPOZ.

Theorem 2. Assume A1 and A2 hold and assume HMPOZ halts at (zH , qH),
then (zH , qH) has the following properties:

(i) For all q ∈ QN+1: J(u0(zH , qH)) ≤ J(u0(zH , q)).

(ii) Let zH ∈
◦

OZqH , then there exists a neighbourhood N(zH) of zH such that
for all z ∈ N(zH): J(u0(zH , qH)) ≤ J(u0(z, qH)).

Proof. (i) The optimality with respect to location sequence, for a given sequence
of switching times and states, follows from the specification of PREP (G) and
the construction of the function OZ.
(ii) In this case N(zH) can be taken to be a subset of

◦
OZqH for which necessarily

N(zH)∩
◦

OZqH = N(zH). Then locally (i.e. for the iterations of HMPOZ which
result in switching times and states which lie in N(zH)) HMPOZ behaves as
HMP and its convergence proof in [4, 5] is applicable. �

6 The Hybrid Bilinear Quadratic Regulator (BLQR)
Problem

Consider the HOCP specified by a hybrid system whose discrete state set consists
of the two locations corresponding to the bilinear dynamics:

q1 : ẋ = x + xu, q2 : ẋ = −x + xu,

with initial condition x0 at t0 and final condition xf at tf , and for which the
cost function is

J(u) =
1
2

∫ tf

t0

u2(s) ds.

In the set of computational experiments applying HMPOZ to this problem, the
program PREP was first applied to the product time-space (R1+1)2 and this
generated the OZ region data which was stored in the main program look-up
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Fig. 4. OZ boundary for x1, x2, t2 varying with t1 = 0.5
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Fig. 5. OZ boundary for x1, x2, t2 varying with t1 = 0.7

table. The zonal boundary for the OZs corresponding to Q = {q1, q2} is shown
in Figures 4 and 5.

For this particular HOCP it is possible to obtain closed form expressions for
the optimal cost of transferring the system from a general (t1, x1) to a general
(t2, x2) under the two dynamics (i = 1, 2) respectively:

Ji((t1, x1), (t2, x2)) =

⎧⎪⎪⎨⎪⎪⎩
1
2

[
1 + (−1)i

t2−t1
log

(
x2
x1

)]2
(t2 − t1), if t1 �= t2 ∧ x1x2 > 0

0, if t1 = t2 ∧ x1 = x2 ∧ x1x2 > 0
∞, if (t1 = t2 ∧ x1 �= x2) ∨ (x1x2 ≤ 0).
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The interesting case is that of t1 �= t2 and in this case equating the costs
corresponding to the two distinct dynamics gives:

1
2

[
1− 1

t2 − t1
log

(
x2

x1

)]2

(t2 − t1) =
1
2

[
1 +

1
t2 − t1

log
(
x2

x1

)]2

(t2 − t1),

Hence 1
t2−t1

log
(

x2
x1

)
= 0, so x1 = x2, and the switching surface is given in

(t1, t2, x1, x2)-space by:

∂OZ = {(t1, t2, x1, x2) ∈ R4 : x1 = x2},

which is illustrated by the computational experiments in Examples 1 and 2
below.

Example 1. For the subsequent implementation of HMPOZ the initial and final
time and initial and final state were arbitrarily chosen to be t0 = 0, tf = 2,
x0 = −1.2, and x0 = −1.4 respectively.

The control objective was to transfer the continuous state from its initial value
at the initial time to the final value at the final time while minimizing the cost
function J(u) = 1

2

∫ 2
0 u2(s) ds. After two iterations of HMP the second and third

switching time and state pairs passed through the OZ boundary; in each case
this corresponded to the ratio of the subsequent switching state values passing
through the value 1 as specified in the exact analysis above. These transitions
resulted in the location sequence evolving from (2, 1, 1, 2) to (2, 2, 2, 2) as shown
in the third line of Table 1. After three iterations the algorithm converged giving
the optimal cost 1.21587.

The computational time for PREP in this experiment was 7231 seconds
(about two hours). For the HMPOZ implementation the computation time was
2.5637 seconds. All computations were performed in Matlab 6.5 under Windows
2000 SP4 operating system on a P4 3.2 GHz machine with 512 MB of RAM. �

Table 1. Execution of Algorithm HMPOZ

Iter. Loc. sequence Cost xs1 xs2 xs3

1 (2, 1, 1, 2) 1.33775 -1.3329 -1.3000 -1.2684

2 (2, 1, 1, 2) 1.27524 -1.3159 -1.3000 -1.2862

3 (2, 2, 2, 2) 1.21587 -1.2979 -1.3000 -1.3042

Example 2. To demonstrate the power of the HMPOZ algorithm we applied it to
solve an HOCP involving the BLQR of Example 1 with ten switchings. It is to be
noted that the specification of the Optimality Zones for the three switchings case
(Example 1) is reused for this ten switchings example without any modification.
This would have been the case even if the zones had been obtained numerically.
The problem data was: t0 = 0, tf = 2, x0 = 2.4, xf = 2.6 and number of
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Table 2. Execution of Algorithm HMPOZ: Ten switchings case

Iteration Location sequence Cost

1 (1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1) 0.75653

2 (1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1) 0.70324

3 (1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1) 0.68563

4 (1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1) 0.63887

5 (1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1) 0.61678

6 (1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1) 0.60291

7 (1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1) 0.58548

8 (1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1) 0.54783

9 (1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1) 0.49985

10 (1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1) 0.47789

11 (1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1) 0.43679

12 (1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1) 0.39453

13 (1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1) 0.35672

14 (1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1) 0.33756

15 (1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1) 0.31957

16 (1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 1) 0.21986

17 (1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 1) 0.21897

18 (1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 1) 0.21897

switchings was set to 10. The algorithm initially computed (i) ten uniformly
distributed switching times between t0 = 0 and tf = 2, (ii) ten randomly dis-
tributed switching states between x0 = 2.4 and xf = 2.6, and (iii) the initial
switching sequence: (1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1) which corresponds to the initial
choice of switching times and states. The initial cost as computed by the algo-
rithm is J = 0.75653 which drops down to J = 0.31957 by the 15th iteration. In
the next (i.e. 16th) iteration the algorithm switches to the zone corresponding
to the optimal switching sequence: (1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 1) giving the optimal
cost J = 0.21897 at the 18th iteration. The running time was 45.596 seconds.
The iterations of the program execution are shown in Table 2. �
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Abstract. In this paper we propose an algorithm for approximating the
reachable sets of systems defined by polynomial differential equations.
Such systems can be used to model a variety of physical phenomena. We
first derive an integration scheme that approximates the state reachable
in one time step by applying some polynomial map to the current state.
In order to use this scheme to compute all the states reachable by the
system starting from some initial set, we then consider the problem of
computing the image of a set by a multivariate polynomial. We propose
a method to do so using the Bézier control net of the polynomial map
and the blossoming technique to compute this control net. We also prove
that our overall method is of order 2. In addition, we have successfully
applied our reachability algorithm to two models of a biological system.

1 Introduction

Reachability analysis is an important problem in formal verification of hybrid
systems. A major ingredient in designing a reachability analysis algorithm for
hybrid systems is an efficient method to handle their continuous dynamics de-
scribed by differential equations (since their discrete dynamics can be handled
using existing discrete verification methods). Reachability computation methods
for a special class of systems with constant derivatives are well-developed. On
the other hand, while many well-known properties of linear differential equations
can be exploited to design relatively efficient methods, non-linear systems are
much more difficult to analyze. Numerical integration is a common method to
solve non-linear differential equations. Its goal is to derive a scheme to approx-
imate the solution at each time step based on the solution at one or several
previous steps. In general, a typical numerical integration scheme can be written
as: xk+1 = Yk(f, h,x0,x1, . . . ,xk) where f is the derivative and h is the step
size. Nevertheless, while this approach is concerned with computing a single so-
lution at a time and each xk in this scheme is a point, in reachability analysis one
has to deal with sets of all possible solutions (due to non-determinism in initial
conditions and in the dynamics of the system). Therefore, wishing to exploit the
numerical integration idea for reachable set computation purposes, a question
that arises is how to perform such schemes with sets, that is, when each xk is a
set of points. The essence behind the approach we propose in this paper can be
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described as extending traditional numerical integration to set integration. In
particular, we are interested in systems defined by polynomial differential equa-
tions. Such systems can be used to model a variety of physical phenomena, in
particular the dynamics of bio-chemical networks. We first derive an integration
scheme that approximates the reachable state xk+1 by applying some polyno-
mial map to xk. In order to use this scheme to approximate the reachable set,
we then consider the problem of computing the image of a set by a multivariate
polynomial. To do so, we employ the techniques from computer aided geometric
design, in particular the Bézier techniques and the blossoming principle. We also
prove that our overall method is of order 2. Although this paper focuses on con-
tinuous systems, the proposed method can be extended to hybrid systems, since
reachable sets are represented by convex polyhedra, and Boolean operations (re-
quired to deal with discrete transitions) over such polyhedra can be computed
using a variety of existing algorithms. This is illustrated through an example in
Section 3.

Before continuing, we present a brief review of related work. The reachability
problem for continuous systems described by differential equations has motivated
much research both for theoretical problems, such as computability (see for ex-
ample [1]), and for the development of computation methods and tools. If the goal
is to exactly compute the reachable set or approximate it as accurately as possi-
ble, one can use a variety of methods for tracking the evolution of the reachable
set under the continuous flows using some set represention (such as polyhedra,
ellipsoids, level sets) [2, 3, 4, 5, 6, 7, 8, 9]. Since high quality approximations are
hard to compute, other methods seek approximations that are sufficiently good
to prove the property of interest1 (such as barrier certificates [10], polynomial
invariants [11]). Abstraction methods for hybrid systems are also close in spirit
to these methods. Indeed, their main idea is to approximate the original system
with a simpler system (that one can handle more efficiently) and refine it if the
analysis result obtained for the approximate system is too conservative (see for
example [12, 13, 14, 15, 16]).

The paper is organized as follows. In Section 2, after stating our problem,
we describe an integration scheme for polynomial differential equations. This
scheme requires computing the image of a set by a polynomial map, the prob-
lem we discuss in Section 3. We then present our reachability algorithm and
some experimental results obtained using the algorithm on the models of gene
transcription control of the bacteria Vibrio Fisheri.

2 Reachability Analysis of Polynomial Systems

Throughout the paper, vectors are often written using bold letters. Given a
vector x, x[i] denotes its ith component.

We consider a polynomial system:

ẋ(t) = g(x(t)). (1)
1 It should be noted that reachable set computations can also be used for controller

synthesis where the accuracy criterion is important.



140 T. Dang

We first rewrite the dynamics of the system as the sum of its linear part Ax(t)
and its non-linear part f(x(t)), that is,

ẋ(t) = g(x(t)) = Ax(t) + f(x(t)). (2)

We then consider the non-linear term as independent input. In other words,
the system is treated as a linear system with input f(x(t)). This trick is to
separate the linear part for which we can derive the exact closed-form solution.
The interest in doing so will become clearer when we discuss the approximation
error. We now develop a numerical solution for (2). Let h > 0 be a time step
and tk = kh where k = 0, 1, 2, . . .. Then, we have

x(tk+1) = eAhx(tk) +
∫ h

0
eA(h−τ)f(x(tk + τ)) dτ. (3)

The idea is to approximate x(tk + τ) inside the above integral by its Taylor
expansion around tk to the first order, that is α(tk + τ) = x(tk) + g(x(tk))τ .
Denoting x(tk) = xk, f(x(tk)) = fk and g(x(tk)) = gk, we have α(tk + τ) =
xk + gkτ = xk + (Axk + fk)τ . Replacing x(tk + τ) with α(tk + τ), we obtain an
approximation x̄k+1 of the exact solution xk+1:

x̄k+1 = eAhxk +
∫ h

0
eA(h−τ)f(α(tk + τ)) dτ. (4)

The integral in the above equation is a function of xk, and we denote it by
Q(xk) =

∫ h

0 eA(h−τ)f(α(tk + τ)) dτ.

Proposition 1. The map Q(xk) can be written as a polynomial in xk.

Proof. The proof of the proposition is straightforward, however we present it
here for the clarity of the development that follows. It is easy to see that if the
total degree of f(x) is d in x, then α(tk +τ) is a multivariate polynomial of total
degree d in xk, and therefore f(α(tk+τ)) is a polynomial of degree d in τ . We can
write f(α(tk + τ)) =

∑d
l=0 ψl(xk)τ l where for every l ∈ {0, 1, . . . , d}, ψl(xk) is a

polynomial in xk. We then denote Γl =
∫ h

0 eA(h−τ)τ l dτ , which can be written in
a closed form. It then follows that

∫ h

0 eA(h−τ)f(α(tk + τ)) dτ =
∑d

l=0 Γlψl(xk).
��

The resulting integration scheme to approximate the solution of (1) is:{
x̄k+1 = eAhx̄k + Q(x̄k) = P (x̄k),
x̄0 = x(0).

We call P (xk) the integration map.

Example of multi-affine systems. Let us illustrate the proof with a simple
case where g(x) is a multi-affine function of degree 2. This is the case of a
biological model we study in Section 5. The function f(x) can be written as:
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f(x) =
∑

i,j∈{1,...,n},i�=j x[i]x[j]cij with cij ∈ Rn. Then, replacing x(tk + τ) with
α(tk + τ) = xk + gkτ , we have:

f(α(tk + τ))=
∑

i�=j∈{1,...,n}
(gk[i]gk[j]τ2 + (xk[i]gk[j]+gk[i]xk[j])τ+xk[i]xk[j])cij

Therefore, the equation (4) becomes:

x̄k+1 = P (xk) = Φxk +
∑

i�=j∈{1,...,n}
(γ2Γ2 + γ1Γ1 + γ0Γ0)cij . (5)

where Φ = eAh and γ2 = gk[i]gk[j], γ1 = gk[i]xk[j] + xk[i]gk[j], γ0 = xk[i]xk[j].
After straightforward calculations, we obtain:

Γl = l!
∞∑

i=0

Aihi+l+1

(i + l + 1)!
(6)

It is thus easy to see that, due to the term γ2, P (xk) in (5) is a polynomial
of degree 4 in xk. The equation (5) can be readily used as a scheme specialized
for multi-affine systems of degree 2.

Convergence. A bound on the error in our approximation is given in the
following theorem.

Theorem 1. Let x̄(tk+1) be the approximate solution at time tk+1 (computed
by (4)) and x(·) be the corresponding exact solution such that x̄(tk) = x(tk).
Then, a bound on the local error is given by: ||x̄(tk+1)− x(tk+1)|| = O(h3).

The proof of this result is presented in Appendix. This theorem shows that the
equation (4) is a second order scheme. In addition. we can show that the global
error is also convergent. As one can see from the proof, the error bound depends
on the Lipschitz constant of the non-linear function f . So now we can see the
interest in separating the linear part since the Lipschitz constant of f is smaller
than that of g.

Higher order integration schemes. Note that we have used an approxi-
mation of the exact solution x(tk + τ) by the its first order Taylor expansion
around tk. To obtain better convergence orders, we can use higher order ex-
pansions which results in integration schemes involving high order derivatives of
f(x). The derivation of such schemes is similar to the above development, but
the degree of the resulting integration map P (xk) can be higher. In the other
direction, if we use a simpler approximation α(tk + τ) = xk for all τ ∈ [tk, tk+1),
then Q(xk) = Γ0f(xk) and we obtain the classic Euler scheme for the non-linear
part. The advantage of this scheme is that the resulting polynomial Q(xk) has
the same degree as f(x). As we shall see later, the degree of the integration map
is one of the factors determining the complexity of the reachability algorithm.
It remains to compute the polynomial map Q(xk), the problem we tackle in the
next section.
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3 Computing Polynomial Maps

The problem we are interested in can be formally stated as follows. Given a
polynomial map π : Rn → Rn of total degree d and a bounded set X ⊂ Rn, we
want to compute the image π(X) defined as: π(X) = {π(x) | x ∈ X}. We shall
focus on the case where X is a simplex in Rn.

3.1 Bézier Simplices

To determine the image of a simplex by a polynomial map, we use the results
on Bézier simplices [17]. We need to introduce first some notation.

A multi-index i = (i[1], . . . , i[n+1]) is a vector of (n+1) non-negative integers.
We define the norm of i by ||i|| =

∑n+1
j=1 i[j] and let Id

n denote the set of all
multi-indices i = (i[1], . . . , i[n + 1]) with ||i|| = d. We define two special multi-
indices: ej is a multi-index that has all the components equal to 0 except for
the jth component which is equal to 1, and o is a multi-index that has all the
components equal to 0. We call o the zero multi-index.

Let Δ be a full-dimensional simplex in Rn with vertices {v1, . . . ,vn+1}. Given
a point x ∈ Δ, let λ(x) = (λ1(x), . . . , λn+1(x)) be the function that gives the
barycentric coordinates of x with respect to the vertices of Δ, that is, x =∑n+1

j=1 λj(x)vj and
∑n+1

j=1 λj(x) = 1. A Bézier simplex of degree d of the form
π : Rn → Rn is defined as2:

π(x) =
∑

||i||=d

biB
d
i (λ1(x), . . . , λn+1(x)) (7)

where for a given multi-index i, bi is a vector in Rn and Bd
i : Rn → R is a

Bernstein polynomial of degree d defined as:

Bd
i (y1, . . . , yn+1) =

(
d

i

)
y
i[1]
1 y

i[2]
2 . . . y

i[n+1]
n+1 (8)

with the multimonial coefficient
(
d
i

)
= d!

i[1]! i[2]! ... i[n+1]! . In the above formula (7),
each vector bi is called a Bézier control point and the set of all such bi form the
Bézier control net of π with respect to Δ.

Any polynomial can be written in form of a Bézier simplex, as in formula (7).
This form is a popular way to write polynomials in computer aided geomet-
ric design (see [17] and references therein). The following properties of Bern-
stein polynomials are well-known. The Bernstein polynomials form a partition
of unity, that is,

∑
||i||=d B

d
i (y1, . . . , yn+1) = 1, and they are non-negative, that

is, Bd
i (y1, . . . , yn+1) ≥ 0 for all 0 ≤ y1, . . . , yn+1 ≤ 1. These properties of Bern-

stein polynomials imply the following shape properties of Bézier simplices, which
we shall use for reachability computation purposes.

2 The definition holds for more general polynomials of the form π : Rn → Rm.
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Lemma 1. Given an arbitrary point x ∈ Δ,

1. [Convex hull property] the point π(x) lies inside the convex hull of the
control net, that is π(x) ∈ conv{bi | i ∈ Id

n}.
2. [End-point interpolation property] π interpolates the control net at the

corner control points specified by bdek
for all k ∈ {1, . . . , n + 1}.

Note that the number of multi-indices in Id
k is

(
d+n

n

)
; therefore, the number of

points bi is exactly
(
d+n

n

)
= (d+n)!

d! n! . We denote this number by β(n, d).
These shape properties can be used to approximate polynomial maps. In-

deed, the convex hull property in Lemma 1 shows that one can over-approximate
π(Δ) by taking the convex hull of the Bézier control net of π with respect
to Δ. In addition, this over-approximation is tight due to the above end-point
interpolation property. In the rest of this section we focus on the problem of
computing the Bézier control net of the polynomial π. To avoid confusion,
it is worthy to emphasize that for reachability computation purposes, we are
dealing with the systems whose vector fields are given in monomial form (i.e.
sums of monomials), hence the integration map is also defined in this form. To
compute the control points of a polynomial given in monomial forms, we shall
exploit the techniques for approximating and designing polynomial curves and
surfaces. However, it is important to mention that most of such existing tools
deal with univariate or bivariate polynomials (often expressed in terms of
control points), their application to solve our problem requires an adaptation
to multivariate polynomials as well as geometric manipulation in general
dimension.

3.2 Computing the Bézier Control Net

Our goal is to obtain the Bézier control net of a polynomial π given in monomial
form. By the definition (7), the most natural approach is to solve the following
interpolation problem. Let S be a set of β(n, d) points in Δ. For each x ∈ S,
we evaluate π(x) and use (7) to obtain a system of linear equations with the
coordinates of the Bézier control points bi as unknown variables. One can choose
the set S such that the unique solution to these linear equations exists [18].
Although this method is conceptually simple, it may require solving a large linear
system3 (which is of size n∗β(n, d)). We shall use a more efficient approach based
on the blossoming principle, which is summarized in the following theorem. A
thorough description of this principle and its various applications can be found
in [19, 20].

Theorem 2 (Blossoming principle). For any polynomial π : Rn → Rn of
degree d, there is a unique symmetric d-affine map p : (Rn)d → Rn such that
for all x ∈ Rn p(x, . . . ,x) = π(x). The map p is called the blossom or the polar
form of π.

3 The Gaussian elimination algorithm to solve a linear system of size m × m has the
time complexity O(m3).
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We recall that a map q(x1, . . . ,xd) is called d-affine if it is affine when all but one
of its arguments are kept fixed; it is said to be symmetric if its value does not de-
pend on the ordering of the arguments, that is, for any permutation (y1, . . . ,yd)
of (x1, . . . ,xd) we have q(y1, . . . ,yd) = q(x1, . . . ,xd). Given a polynomial π, the
connection between its Bézier control net relative to a simplex Δ and its blossom
p is described by the following lemma.

Lemma 2. For all i ∈ Id
n, bi = p(v1, . . . ,v1︸ ︷︷ ︸

i[1]

, v2, . . . ,v2︸ ︷︷ ︸
i[2]

, . . . , vn+1, . . . ,vn+1︸ ︷︷ ︸
i[n+1]

)

where {v1, . . . ,vn+1} are the vertices of Δ.

This fact is also well-known [19], and we present its proof in Appendix, which
can facilitate understanding the subsequent development.

Computing the blossom. We have seen that the Bézier control points can
be computed by evaluating the blossom values at some particular points shown
in Lemma 2. To compute them, we first derive an analytic expression of the
polar form and then show how to compute this expression efficiently. We do so
by extending the results for bivariate polynomial surfaces [21] to multivariate
polynomials.

Before proceeding, we mention that the problem of computing the Bézier con-
trol net can be formulated as a problem of changing from the monomial basis to
the Bézier basis, which can be solved using the algorithms proposed in [22, 23].
These algorithms also make use of the blossoming principle. The idea is to ex-
press the coordinates of the new basis vectors in the old basis, and then apply
the transformation matrix to the old coefficients. However, when the polynomial
representation is “sparse”, that is it contains many zero coefficients, this spar-
sity is not exploited. The method discussed in the following deals better with
such sparsity since it considers only the monomials with non-null coefficients.
More precisely, by “sparse polynomial representations” we mean those where
the number of monomials (with non-null coefficients) is much smaller than the
number of all combinations of coordinate variables up to degree d. The sparse
case indeed happens in many practical applications we have encountered.

Let us now show how to compute the blossom of monomials which are prod-
ucts of only two variables, such as x[i]hx[j]k. Similar treatment can be used for
monomials involving more variables, but due to the length of the involved for-
mulas we do not detail it here. On the other hand, using linearity, we can obtain
the blossom of any polynomial expressed as a sum of monomials.

The blossom of degree d of the monomial (x[i])h(x[j])k is given by:

pd
h,k(u1,u2, . . . ,ud) =

1(
d
h

)(
d−h

k

) ∑
I ∪ J ⊂ {1, . . . , d},

|I| = h, |J | = k, I ∩ J = ∅

∏
r∈I

ur[i]
∏
s∈J

us[j].

To prove this, it suffices to check that the right hand side is a symmetric multi-
affine function, and moreover pd

h,k(u,u, . . . ,u) = (u[i])h(u[j])k. ��
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To compute the blossom values using the above expression, we make use of a
recurrence equation on p, as proposed in [21]. We first denote

σd
h,k =

1(
d
h

)(
d−h

k

)pd
h,k(u1,u2, . . . ,ud).

The function σ is symmetric and has the following interpretation: this function
is computed by choosing h ith coordinates of the argument points and k ith

coordinates and forming their product, then summing these products over all
possible choices. We can thus derive the following recurrence formula:{

σd
h,k = σd−1

h,k + ud[i]σd−1
h−1,k + ud[j]σd−1

h,k−1 if h, k ≥ 0 and h + k ≥ 1,
σd

0,0 = 0
(9)

This means that to compute the required blossom value pd
h,k(u1,u2, . . . ,ud) we

compute all the intermediate values pd′
h′,k′(u1, . . . ,ud′) with d′ ≤ d, h′ + k′ ≤ d′.

This computation can be done in time O(d3).

3.3 Approximation Error and Subdivision

We proceed to estimate an error bound for the approximation of the polynomial
map π by its the Bézier control points.

Theorem 3. For each Bézier control point bi there exists a point y ∈ π(Δ)
such that ||bi − y|| ≤ Kρ2 where ρ be the maximal side length of Δ and K is
some constant not depending on Δ.

The proof of this theorem can be found in Appendix.
Consequently, when the simplicial domain Δ is large, to achieve the desired

accuracy we may need to subdivide it into smaller simplices. This subdivision
creates new Bézier bases and therefore new control points. However, due to the
properties of multi-affine maps, one can compute the new control nets in a clever
way which reuses the computations performed for the original simplex. Suppose
that we want to partition the simplex Δ by adding a point x ∈ Δ and forming
(n+1) new smaller simplices. Then, we can use de Catesljau algorithm [24, 17] to
compute the value of the polynomial π at x. It turns out that this computation
also produces the control net for the new simplices. Note that this algorithm can
only be applied when the Bézier control points of the polynomial are known.

We denote bl
i = p(v1, . . . ,v1︸ ︷︷ ︸

i[1]

, . . . ,vn+1, . . . ,vn+1︸ ︷︷ ︸
i[n+1]

,x1, . . . ,xl︸ ︷︷ ︸
l

) with i[1] + . . .+

i[n + 1] + l = d. Since p is symmetric and multi-affine, we have:

bl
i = λ1(xl)bl−1

i+e1
+ . . .+ λn(xl)bl−1

i+en
(10)

Note that bn
o = p(x1, . . . ,xn) where o is the zero multi-index. In addition, with

l = 0, b0
i are exactly the Bézier control points of the polynomial. Therefore,

by running the above recursion starting from l = 0 until l = n we obtain the
blossom value at (x1, . . . ,xn). If all the argument points of the blossom are equal
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Fig. 1. Subdividing a Bézier control net

to x, the result of the algorithm is π(x). The de Catesljau algorithm is illustrated
with a 2-dimensional example in Figure 1 where each node is annotated with
the arguments of the blossom to evaluate. The nodes on the outermost layer
correspond to the control points for the original triangle uzw. The incoming
arrows of uux show that the blossom value at this point is computed from
the blossom values at uuu and uuw. As mentioned earlier, we can see that
the computation of π(x) indeed produces the Bézier control points for the sub-
simplices. Figure 1 shows the values p(u, . . . ,u︸ ︷︷ ︸

i[1]

,x, . . . ,x︸ ︷︷ ︸
i[2]

,w, . . . ,w︸ ︷︷ ︸
i[3]

) which are the

Bézier control points for the triangle uxw.
One important remark is that the subdivision at the center of the simplex

does not reduce the maximal side length of the simplices. By Theorem 3 this
means that the convergence of the Bézier control net towards the polynomial is
not guaranteed. However, one can repeat the bisection at the mid-point of the
logest edge, as shown in Figure 1 to achieve the desired accuracy. More generally,
the subdivision of a simplex can be defined as follows. For each barycentric
coordinate λi(x) > 0 of a point x ∈ Δ we define a simplex Δi obtained from
Δ by replacing the vertex vi with x. Hence, when the point x is the mid-point
of an edge we obtain a bisection. It was proved in [25] that using the bisection
at the mid-point of the longest edge, after n steps (where n is the dimension
of the simplex) the simplex diameter is reduced at least by

√
3/2 times. In two

dimensions, another method of subdivision via all the mid-points of the edges
was discussed in [21]. This method is however more complex to implement for
dimensions higher than 2.

4 Reachability Algorithm

Let us summarize our development so far. In Section 2, we presented a scheme
to approximate the successor in one time step by applying a polynomial, called
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the integration map, to the current state. We then showed in Section 3 how to
over-approximate the image of a simplex by a polynomial map using the Bézier
control net. The result of this approximation is in general a polyhedron.

We are now ready to describe our reachability algorithm for polynomial sys-
tems. In Algorithm 1, X0 is the initial set which is assumed to be a convex
polyhedron in Rn, each Rk is a set of convex polyhedra. The function Bez over-
approximates the image of a simplex Δ by the integration map P , using the
method presented in Section 3. The goal of the function triangulation is to
triangulate a set of convex polyhedra and return the set of all simplices of the
triangulation. To do so, we collect all the vertices of the polyhedra and compute
a triangulation of this set. We then exclude all the simplices in the triangulation
whose interior does not intersect with Rk. Let us briefly discuss the precision of

Algorithm 1. Reachable set computation
R0 = {X0}, k = 0
repeat

SΔ = triangulation(Rk)
C = ∅
for all Δ ∈ SΔ do

C = C ∪ Bez(Δ)
end for
Rk+1 = C
k = k + 1

until Rk+1 = Rk

the algorithm. We suppose that ρ is the maximal size of the simplices that are
produced by the function triangulation and h is the integration time step. If the
integration map P can be exactly computed, using Theorem 1, the integration
error is O(h3). In addition, Theorem 3 shows that our approximation of the
integration map P induces an error O(ρ2). By the triangle inequality, the total
error in each iteration of Algorithm 1 is bounded by (O(h3)+O(ρ2)). Therefore,
by choosing appropriate values ρ in function of h, we can guarantee a bound
O(h3) on the local error and thus the order 2 of Algorithm 1.

We now discuss some computation issues. The first remark is that the total
number of the Bézier control points is β(n, d), but the actual number of vertices
of their convex hull (that is, Bez(Δ)) is often much smaller, depending on the
geometric structure of the polynomial map P . On the other hand, in order to
speed up the computation (at the price of less precise results), one can approx-
imate C by its convex hull or even by a simplex. Algorithms for doing so have
been developed and some algorithms can compute a minimal volume enclosing
simplex (such as, [26, 27]).

Let us now briefly discuss the relation between our new algorithm and the
reachability algorithm based on hybridization, proposed in [15]. The latter first
approximates the (general) non-linear dynamics by a piecewise linear dynamics,
using a simplicial decomposition of the state space. Hence, for the approximate
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system, one can indeed compute the reachable set of each linear dynamics more
accurately. However, the treatement of discrete transitions (i.e. the dynamics
changes) makes the overall computation very expensive due to the geometric
complexity of the intersection between the reachable set and the switching hy-
perplanes. In the algorithm of this paper, the one-step computation for polyno-
mial systems is in general more costly than that for linear systems, but discrete
transitions are avoided. Nevertheless, more experimentation is needed to draw
conclusions about the advantages and inconvenients of these two approaches.

5 Application to a Biological System

We have implemented Algorithm 1 and applied it to a well-known biological
system. The initial motivation of our study of polynomial systems come from the
interest in applying hybrid systems techniques to biological systems. Indeed, the
continuous dynamics of many such systems can be described using multi-affine
or more generally polynomial differential equations. We have experimented the
implementation of our algorithm on two simplified models of gene transcription
control in the bacteria Vibrio Fisheri. The reader is refered to the papers [28, 29]
for a detailed description of the models and the related gene control problems.
The first model corresponds to one mode of a simplified hybrid system where
the continuous dynamics is described by the following multi-affine system:⎧⎨⎩

ẋ1 = k2x2 − k1x1x3 + u1
ẋ2 = k1x1x3 − k2x2
ẋ3 = k2x2 − k1x1x3 − nx3 + nu2

(11)

The state variables x = (x1, x2, x3) represent the cellular concentrations of dif-
ferent species, and the parameters k1, k2, n are the binding, dissociation and
diffusion constants. The variables u1 and u2 are control variables, which respec-
tively represent the plasmid and external source of autoinducer. In [29] the fol-
lowing control law for steering all the states in the rectangle [1, 2]× [1, 2]× [1, 2]

Fig. 2. Reachable sets: with u1 = u2 = 0 (left) and with the specified control law
(right). The control law indeed drives the system to the face x2 = 2.
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to the face x2 = 2 was proposed: u1(x) = −10(x2 + x1(−1 + 3) − 4x3) and
u2(x) = x1(3 + x2(−1 + x3))− (−2 + x2)x3. This control objective corresponds
to the activation of some genes in the system. We consider two cases: with no
control (i.e. u1 = u2 = 0) and with the above control law. Figure 2 shows the
projection on x2 and x3 of the reachable sets obtained using our algorithm for
polynomial systems. In [16] we have already treated this model using an abstrac-
tion method based on projection. This method approximates the multi-affine
system by a lower dimensional bilinear system. Comparing with the result pre-
sented in [16], one can see that our new algorithm for polynomial systems is more
accurate, and in addition we have observed that it is also more time-efficient.

The second model is taken from [28]. It is a hybrid model4 with two modes
and one additional continuous variable x4. The continuous dynamics is ẋ =
Ax+g(x)+bij where b01 and b10 correspond respectively to the non-luminescent
and luminescent modes, and

A =

⎛⎜⎜⎜⎝
−1
Hsp

0 0 rCo

0 0 0 −1
Hsp

− rCo

0 x0rAII
−1

HAI
x0rCo

0 −1
Hsp

0 0

⎞⎟⎟⎟⎠ ; g(x) =

⎛⎜⎜⎝
−1
1
−x0

0

⎞⎟⎟⎠ rAIRx1x3

We are interested in the question of how to determine the sets of states from
which the system can reach the luminescent equilibrium. The condition for
switching between the two modes is x2 = x2sw . This problem was also pre-
viously studied in [28] using the tool d/dt. However, in [28] the multi-affine
dynamics was approximated by a 3-dimensional linear system, assuming that x1
remains constant. Using our new algorithm for polynomial systems, we can now
handle the non-linearity in the dynamics. To deal with the discrete dynamics of
the model, it suffices to implement some Boolean operations over the reachable
set by the continuous dynamics, which are represented in form of convex polyhe-
dra. Concerning qualitative behavior, the result obtained for the 4-dimensional
multi-affine model is compatible with the result for the linear approximate model
in [28], that is, from the non-luminescent mode the system can reach the guard
to switch to the luminescent mode and then converge to the equilibrium. How-
ever, the new result obtained for the 4-dimensional model shows a larger set of
states that can reach the equilibrium. This can be explained by the fact that in
this model the variable x1 is not kept constant and can evolve in time.

6 Concluding Remarks

In this paper, we presented a new approach to approximate reachability analysis
of polynomial systems by combining the ideas from numerical integration and
techniques from computer aided geometric design. The reachability algorithm
we proposed is of order 2, and these results can be straightforwardly applied to
safety verification of hybrid systems. This work opens interesting directions to
4 The numbering of variables is different from that in [28].
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explore. Indeed, different tools from geometric modeling (such as, splines) could
be exploited to approximate polynomial maps more efficiently. In addition, we
plan to do more experimentation on other case studies, such as a model of
metabolic mechanism of a plant.
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Proof of Theorem 1. From (3) and (4), the local error can be written as:

x(tk + τ)− x̄(tk + τ) =
∫ h

0
eA(h−τ)[f(x(tk + τ)) − f(α(tk + τ))] dτ.

On the other hand, due to the Taylor expansion, we have ||x(tk +τ)−α(tk +τ)||
≤Mτ2 where M is some constant. We then have || f(x(tk+τ))−f(α(tk+τ)) || ≤
LMτ2 where L is the Lipschitz constant of f . Using the expression (6), we have
Γ2 =

∫ h

0 eA(h−τ)τ2 dτ = A3

3! h
3 +O(h4), it then follows that

||x(tk + τ) − x̄(tk + τ)|| = O(h3).

This completes the proof of the theorem. ��

Proof of Lemma 2. We consider p(x1,x2, . . . ,xd) where each argument xj

can be expressed using the barycentric coordinates as: xj = λ1(xj)v1 + . . . +
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λn+1(xj)vn+1. Due to the property of multi-affine maps, replacing the first ar-
gument x1 with its barycentric coordinates, we have:

p(x1,x2, . . . ,xd) = λ1(x1)p(v1,x2, . . . ,xn+1) + . . . + λn+1(x1)p(vn+1,x2, . . . ,xn+1).

We then do the same with other arguments to obtain:

p(x1, . . . ,xd) =
I∈Ξ k∈I1

λ1(xk) . . .
k∈In+1

λn+1(xk)p(v1, . . . ,v1

i[1]

, . . . ,vn+1, . . . ,vn+1

i[n+1]

)

(12)
where Ξ is the set of all partitions of {1, 2, . . . , d} defined as follows. We say that
I = {Ik}k=1,2...,n+1 is a partition of {1, 2, . . . , d} iff all Ik are pairwise disjoint
and ∪k∈{1,...,n+1}Ik = {1, 2, . . . , d}. We write |Ik| to denote the cardinality of
Ik. Then, by letting the arguments xi to be equal, it is not hard to see that the
equation (12) becomes:

p(x, . . . ,x) =
∑

||i||=d

(
d

i

)
λ
i[0]
1 (x)λi[1]

2 (x). . .λi[n]
n (x)p(v1, . . . ,v1

i[1]

, . . . ,vn+1, . . . ,vn+1

i[n+1]

)

Comparing the above with the definition of Bézier simplices (7), it is easy to see
that all the points p(v1, . . . ,v1︸ ︷︷ ︸

i[1]

, . . . , vn+1, . . . ,vn+1︸ ︷︷ ︸
i[n+1]

) form the control net of a π

whose polar form is p. ��

Proof of Theorem 3. Given a multi-index i with ||i|| = d, we consider a point
y ∈ Δ which is written as y =

∑
i∈{1,...,n}

i[i]
d vi. We first observe that due to

symmetry, p(x,y, . . . ,y) = p(y,x, . . . ,y) = . . . = p(y,y, . . . ,x). Let D denote
the partial derivative of these functions at x = y. Using the Taylor expansion of
p(x1,x2, . . . ,xd) around (y,y, . . . ,y), we have:

bi = p(v1, . . . ,v1︸ ︷︷ ︸
i[1]

, . . . ,vn+1, . . . ,vn+1︸ ︷︷ ︸
i[n+1]

)

= p(y,y, . . . ,y) + i[1]D(v1 − y) + . . .+ i[n + 1]D(vn+1 − y) + O(ρ2)

Note that i[0](v0 − y) + . . . + i[n + 1](vn+1 − y) = 0. It then follows that
bi = π(y) + O(ρ2). This means that ||bi − π(y)|| is indeed of order O(ρ2). ��
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Abstract. In this paper, we propose a fixed point theory to solve games of imper-
fect information. The fixed point theory is defined on the lattice of antichains of
sets of states. Contrary to the classical solution proposed by Reif [Rei84], our new
solution does not involve determinization. As a consequence, it is readily applica-
ble to classes of systems that do not admit determinization. Notable examples of
such systems are timed and hybrid automata. As an application, we show that the
discrete control problem for games of imperfect information defined by rectan-
gular automata is decidable. This result extends a result by Henzinger and Kopke
in [HK99].

1 Introduction

Timed and hybrid systems are dynamical systems with both discrete and continuous
components. A paradigmatic example of a hybrid system is a digital control program
for an analog plant environment, like a furnace or an airplane: the controller state moves
discretely between control modes, and in each control mode, the plant state evolves
continuously according to physical laws. A natural model for hybrid systems is the
hybrid automaton, which represents discrete components using finite-state machines
and continuous components using real-numbered variables whose evolution is governed
by differential equations or differential inclusions [ACH+95].

The distinction between continuous evolutions of the plant state (which is given by
the real-numbered variables of a hybrid automaton) and discrete switches of the con-
troller state (which is given by the location, or control mode, of the hybrid automaton)
permits a natural formulation of the safety control problem: given an unsafe set U of
plant states, is there a strategy to switch the controller state in real time so that the plant
can be prevented from entering U? In other words, the hybrid automaton specifies a set
of possible control modes, together with the plant behavior resulting from each mode,
and the control problem asks for deriving a switching strategy between control modes
that keeps the plant out of trouble.

In the literature, there are algorithms or semi-algorithms (termination is not al-
ways guaranteed) to derive such switching strategy. Those semi-algorithms usually
comes in the form of symbolic fixed point computations that manipulate sets of
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states using a well-suited monotonic function like the controllable predecessor oper-
ator [AHK02, MPS95]. Those algorithms make a strong hypothesis: they consider that
the controller that executes the switching strategy has a perfect information about the
state of the controlled system. Unfortunately, this is usually an unreasonable hypothe-
sis. Indeed, when the switching strategy has to be implemented by a real hardware, the
controller typically acquires information about the state of the system by reading values
on sensors. Those sensors have finite precision, and so the information about the state
in which the system lies is imperfect. Let us illustrate this. Consider a controller that
monitors the temperature of a tank, and has to maintain the temperature between given
bounds by switching on and off a gas burner. The temperature of the tank is the state of
the continuous system to control. Assume that the temperature is sensed through a ther-
mometer that returns an integer number and ensures a deviation bounded by one degree
Celsius. So, when the sensor returns the temperature c, the controller only knows that
the temperature lies in the interval (c−1, c+1) degrees. We say that the sensor reading
is an observation of the system. This observation gives an imperfect information about
the state of the system.

Now, if we fix a set of possible observations of the system to control, the control
problem that we want to solve is the safety control problem with imperfect information:
“given an unsafe setU of plant states, a set of observations, is there an observation based
strategy to switch the controller state in real time so that the plant can be prevented from
entering U?”. While it is well-known that safety games of perfect information can be
won using memoryless strategies, it is not the case for games of imperfect informa-
tion [Rei84]. In that paper, Reif studies games of incomplete information which are a
subclass of safety games of imperfect information where the set of observations is a
partition of the state space. Notice that this is not the case of our tank example since
when the temperature of the water is d, the thermometer may return either #d$ or �d�. To
win such games, memory is sometimes necessary: the controller has to remember (part
of) the history of observations that it has made so far. In the finite state case, games of
incomplete information can be solved algorithmically. Reif proposes an algorithm that
first transforms the game of incomplete information into a game of perfect information
using a kind of determinization procedure.

In this paper, we propose an alternative method to solve games of imperfect (and in-
complete) information. Our method comes in the form of a fixed point (semi-)algorithm
that iterates a monotone operator on the lattice of antichains of sets of states. The great-
est fixed point of this operator contains exactly the information needed to determine the
states from which an observation based control strategy exists and to synthesize such a
strategy. We prove that our algorithm has an optimal complexity for finite state games
and we identify a class of infinite state games for which the greatest fixed point of the
operator is computable. Using this class of games and results from [HK99], we show
that the discrete-time control problem with imperfect information is decidable for the
class of rectangular automata. Strategies that win those games are robust as they can be
implemented using hardware that senses its environment with finite precision.

Our fixed point method has several advantages over the algorithmic method proposed
by Reif. First, as it does not require determinization, our (semi-)algorithm is readily ap-
plicable to classes of systems for which determinization is not effective: timed and
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hybrid automata are notable examples [AD94]. Second, we show that there are families
of games on which the Reif’s algorithm needs exponential time when our algorithm
only needs polynomial time. Third, as our method is based on a lattice theory, abstract
interpretation methods can be used to derive in a systematic way approximation algo-
rithms [CC77].

Our paper is structured as follows. In Section 2, we recall the definition of the lattice
of antichains. In Section 3, we show how to use this lattice to solve games of imperfect
information. In Section 4, we give a fixed point algorithm that is EXPTIME for finite
state games and we compare with the technique of Reif. Finally, in Section 5, we solve
games of imperfect information for rectangular automata. Due to lack of space, the
proofs of most of the theorems have been omitted and can be found in [DDR06].

2 The Lattice of Antichains of Sets of States

First we recall the notion of antichain. An antichain on a partially ordered set 〈X,≤〉
is a set X ′ ⊆ X such that for any x1, x2 ∈ X ′ with x1 �= x2 we have neither x1 ≤ x2
nor x2 ≤ x1, that is X ′ is a set of incomparable elements of X . We define similarly a
chain to be a set of comparable elements of X .

Let q, q′ ∈ 22S

and define q ( q′ if and only if ∀s ∈ q : ∃s′ ∈ q′ : s ⊆ s′.
This relation is a preorder but is not antisymmetric. Since we need a partial order, we
construct the set L ⊆ 22S

for which ( is antisymmetric on L. The set L is the set of
antichains on 〈2S ,⊆〉.

We say that a set s ⊆ S is dominated in q if and only if ∃s′ ∈ q : s ⊂ s′. The set of
dominated elements of q is denoted Dom(q). The reduced form of q is #q$ = q\Dom(q)
and dually the expanded form of q is $q#= q ∪ Dom(q). The set #q$ is an antichain of
〈2S ,⊆〉. Observe that Dom(#q$) = ∅, that is ∀s, s′ ∈ #q$ : if s1 ⊆ s2 then s1 = s2.
The relation ( has the useful following properties:

Lemma 1. Let q, q′ ∈ 22S

. If q ⊆ q′ then q ( q′.

Lemma 2. ∀q, q′ ∈ 22S

, ∀q1, q2 ∈
{
q, #q$, $q#

}
, ∀q′1, q′2 ∈

{
q′, #q′$, $q′#

}
: q1 ( q2

is equivalent to q′1 ( q′2.

We can now define formally L as the set {#q$ | q ∈ 22S}.
Lemma 3. The relation (⊆ L × L is a partial ordering and 〈L,(〉 is a partially
ordered set.

Lemma 4. For q, q′ ∈ L, the greatest lower bound of q and q′ is q
�
q′ = #{s∩s′ | s ∈

q ∧ s′ ∈ q′}$ and the least upper bound of q and q′ is q
⊔
q′ = #{s | s ∈ q ∨ s ∈ q′}$.

For Q ⊆ L, we have
�
Q = #{

⋂
q∈Q sq | sq ∈ q}$ and

⊔
Q = #{s | ∃q ∈ Q : s ∈ q}$.

The least element of L is ⊥ =
�
L = ∅ and the greatest element of L is * =

⊔
L =

{S}.

Lemma 5. 〈L,(,
⊔
,
�
,⊥ ,*〉 is a complete lattice.

This lattice is the lattice of antichains of sets of states.
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3 Games of Imperfect Information

3.1 Definitions

Notations. Given a finite sequence a = a0, a1, . . . , an, we denote by |a| = n + 1 the
length of a, by ak = a0, . . . , ak the sequence of the first k + 1 elements of a (and a−1
is the empty sequence) and by last(a) = an the last element of a.

Definition 6 [Two-player games]. A two-player game is a tuple 〈S, S0, Σ
c, Σu,→〉

where S is a (non-empty) set of states, S0 ⊆ S is the set of initial states, Σc (resp. Σu)
is a finite alphabet of controllable (resp. uncontrollable) actions, and →⊆ S × (Σc ∪
Σu)× S is a transition relation.

The game is turn-based and played by a controller against an environment. To initialize
the game, the environment chooses a state x ∈ S0 and the controller takes the first turn.
A turn of the controller consists of choosing a controllable action σ that is enabled in
the current state x. If no such action exists, the controllers loses. A turn of the envi-
ronment then consists of determining a state y such that x

σ−→ y and of choosing an
uncontrollable action u and a state z such that y

u−→ z. If no enabled action u exists the
environment loses. If the game continues forever, the controller wins.

For σ ∈ Σc ∪ Σu, let Enabled(σ) = {x ∈ S | ∃x′ ∈ S : (x, σ, x′) ∈→} be the set
of states in which the action σ is enabled, and for s ⊆ S let Postσ(s) = {x′ ∈ S | ∃x ∈
s : (x, σ, x′) ∈→} be the set of successor states of s by the action σ. Furthermore,
given a set Σ ⊆ Σc ∪Σu, we define the notation PostΣ(s) to mean

⋃
σ∈Σ Postσ(s).

The controller has an imperfect view of the game state space in that his/her choices
are based on imprecise observations of the states.

Definition 7 [Observation set]. An observation set of the state space S is a cou-
ple (Obs, γ) where γ : Obs → 2S is such that for all x ∈ S, there exists obs ∈ Obs
such that x ∈ γ(obs).

An observation obs is compatible with a state x if x ∈ γ(obs). When the controller
observes the current state x of the game, he/she receives one observation compatible
with x. The observation is non-deterministically chosen by the environment.

Definition 8 [Imperfect information]. A two-player game 〈S, S0, Σ
c, Σu,→〉

equipped with an observation set (Obs, γ) of its state space defines a game of imperfect
information 〈S, S0, Σ

c, Σu,→,Obs, γ〉. The size of the game is the sum of the sizes of
the transition relation→ and the set Obs.

Let G = 〈S, S0, Σ
c, Σu,→,Obs, γ〉 be a game of imperfect information. We say that

G is a game of incomplete information if for any obs1, obs2 ∈ Obs, if obs1 �= obs2 then
γ(obs1) ∩ γ(obs2) = ∅, that is the observations are disjoint, thus partitioning the state
space. We say that G is a game of perfect information if Obs = S and γ is the identity
function.

The drawback of games of incomplete information is that they are not suited for
a robust modelization of sensors. Indeed, real sensors are imprecise and may return
different observations for a given state.
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An observation based strategy for a game of imperfect information G =
〈S, S0, Σ

c, Σu,→,Obs, γ〉 is a function λ : Obs+ → Σc. The outcome of λ on G
is the set Outcomeλ(G) of couples (x, obs) ∈ S+ × Obs+ such that (i) |x| = |obs|,
(ii) x0 ∈ S0, (iii) for all 0 ≤ i ≤ |x|, xi ∈ γ(obsi), and (iv) for all 1 ≤ i ≤ |x|, there
exists u ∈ Σu such that xi ∈ Postu(Postλ(obsi−1)({xi−1})) .

Definition 9 [Winning strategy]. We say that an observation based strategy λ for a
game G of imperfect information is winning if for every (x, obs) ∈ Outcomeλ(G), we
have last(x) ∈ Enabled(λ(obs)).

Let us call an history a couple (obsk, σk−1) ∈ Obs+ ×Σc+ such that ∃x ∈ S+ : x0 ∈
S0 and for all 0 ≤ i ≤ k we have xi ∈ γ(obsi)) and for all 0 ≤ i < k we have
xi+1 ∈ PostΣu(Postσi(xi)). Let us call knowledge after an history (obsk, σk−1) the
function K : Obs+ ×ΣC+ → 2S defined inductively as follows.{

K(obs0, σ−1) = γ(obs0) ∩ S0

K(obsk, σk−1) = γ(obsk) ∩ PostΣu(Postσk−1(K(obsk−1, σk−2))) for k > 0

Thus, the knowledge after an history (obsk, σk−1) is the set of states the player can be
sure the game is in after this history.

The imperfect information control problem for a class C of games of imperfect in-
formation is defined as follows: given a game G ∈ C, determine whether there exists a
winning observation based strategy for G. We define similarly the incomplete informa-
tion control problem and the perfect information control problem.

Safety games. We can encode the classical safety games using our winning condition.
To show that, we first need some definitions. Given a game of imperfect information G
we say that a set of state Sb is final if ∀σ ∈ Σc ∪Σu : Postσ(Sb) ⊆ Sb.

We say that a strategy λ is safe on a game of imperfect information G w.r.t. a final
set of bad states Sb ⊆ S if for every (x, obs) ∈ Outcomeλ(G) we have last(x) /∈ Sb.

The imperfect information safety control problem for a class C of games of imperfect
information is defined as follows: given a two-player game G ∈ C and a final set of
states Sb of G, determine whether there exists an observation based strategy λ which is
safe w.r.t Sb.

Theorem 10. The imperfect information safety control problem can be reduced to the
imperfect information control problem.

3.2 Using the Lattice of Antichains

We show how the lattice of antichains that we have introduced in Section 2 can be used
to solve games of imperfect information by iterating a predecessor operator.

Controllable predecessors. For q ∈ L, define the set of controllable predecessors of q
as follows:

CPre(q) = #{s ⊆ S | ∃σ ∈ Σc · ∀obs ∈ Obs · ∃s′ ∈ q :
s ⊆ Enabled(σ) ∧ PostΣu(Postσ(s)) ∩ γ(obs) ⊆ s′}$
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Let us consider an antichain q = {s′0, s′1, . . . }. A set s belongs to CPre(q) iff (i) there
is a controllable action σ that is enabled in each state of s, (ii) when the controller
plays σ, any observation compatible with the next state reached by the game (after the
environment has played) suffices to determine in which set s′i of q that next state lies 1,
and (iii) s is maximal .

Lemma 11. The operator CPre : L→ L is monotone for the partial ordering (.

Remark. The controllable predecessor operator is also monotone w.r.t. the set of ob-
servations in the following sense: given a two-player game G, let CPre1 (resp. CPre2)
be the operator defined on the set of observations (Obs1, γ1) (resp. (Obs2, γ2)). If
{γ2(obs) | obs ∈ Obs2} ( {γ1(obs) | obs ∈ Obs1}, then for any q ∈ L we have
CPre1(q) ( CPre2(q). That corresponds to the informal statement that it is easier to
control a system with more precise observations.

Theorem 12. Let G = 〈S, S0, Σ
c, Σu,→,Obs, γ〉 be a game of imperfect information.

There exists an observation based strategy winning on G if and only if

{S0 ∩ γ(obs) | obs ∈ Obs} (
⊔
{q | q = CPre(q)}. (1)

Before proving this theorem, we give some intuition. We denote by Win the set⊔
{q | q = CPre(q)} which is the greatest fixed point of CPre. Condition (1) states

that any observation of the initial state x0 suffices to determine in which set s of Win
the game has been started. Since Win is a fixed point of the controllable predecessor
operator, we know that in each set s of Win we have a controllable action that can be
played by the controller in every state x ∈ s such that (i) the state z reached after the
move of the environment lies in one of the sets s′ of Win whatever the environment
does and, such that (ii) the set s′ can be determined using any observation compatible
with z. Following this, there exists a winning strategy if Condition (1) holds. The other
direction of the theorem is a direct consequence of Tarski’s Theorem.

Proof of Theorem 12. First, we give an effective construction of a winning strategy
for G, in the form of a finite automaton. For q ∈ L and σ ∈ Σc, let φ(q, σ) = #{s ∈ S |
s ⊆ Enabled(σ) and ∀obs ∈ Obs, ∃s′ ∈ q : PostΣu(Postσ(s)) ∩ γ(obs) ⊆ s′}$ be the
set of controllable predecessors of q for the action σ. From the greatest fixed point Win
of CPre, we define the finite state automaton A = 〈Q, q0,L, δ〉 where

– Q = Win ∪ {q0} where q0 /∈Win,
– q0 is the initial state,
– L : Q\{q0} → Σc is a labeling of the states. For each s ∈ Win, we choose σ ∈ Σc

such that s ∈ φ(Win, σ) and we fix L(s) = σ (such a σ exists since Win is a fixed
point of CPre).

– δ : Q× Obs → Q is a transition function.

1 The quantification over obs is universal since for observations that are incompatible with the
new state, the condition holds trivially.



A Lattice Theory for Solving Games of Imperfect Information 159

• For each obs ∈ Obs, choose s ∈ Win such that S0 ∩ γ(obs) ⊆ s and fix
δ(q0, obs) = s;

• For each s ∈ Win and obs ∈ Obs, choose s′ ∈ Win such that
PostΣu(Postσ(s)) ∩ γ(obs) ⊆ s′ where σ = L(s) and fix δ(s, obs) = s′.

Such sets s, s′ exist by condition (1).

In this automaton, states are labelled with actions and transitions are labelled with
observations. Intuitively, a state s of A corresponds to the minimal knowledge that is
sufficient to control the system and the label L(s) is a winning move the controller
can play having this knowledge. The next state s′ is determined by the observation obs
according to the transition relation.

Let δ̂ : Q×Obs+ → Q be an extension of the transition function δ on words defined
recursively by δ̂(s, obs) = δ(s, obs) and δ̂(s, obs.obs) = δ(δ̂(s, obs), obs).

The strategy defined by A is λ : Obs+ → Σc such that λ(obs) = L(s)
if δ̂(q0, obs) = s. If for some obs there is no s such that δ̂(q0, obs) = s, then the
sequence of observations obs is impossible. In this case, we can set λ(obs) to any value.

Now we proceed with the proof of the theorem.

– If (1) holds. We show that the strategy λ defined by A is such that for any
(x, obs) ∈ Outcomeλ(G), we have (i) last(x) ∈ δ̂(q0, obs) and (ii) last(x) ∈
Enabled(λ(obs)) (thus λ is winning) . We show this by induction on the length of x
and obs.
1. |x| = 1. We have x = x0 and obs = obs0 with x0 ∈ S0 and x0 ∈ γ(obs0).

Let s = δ̂(q0, obs0) and σ = L(s) = λ(obs0). By construction of A, we have
S0 ∩ γ(obs0) ⊆ s and s ∈ Win.
As x0 ∈ s and Win is a fixed point of CPre, we have (i) last(x) ∈ δ̂(q0, obs0)
and (ii) x0 ∈ Enabled(λ(obs0)).

2. |x| > 0. We have x = x0, x1, . . . , xk and obs = obs0, obs1, . . . , obsk
with xk ∈ γ(obsk). Let sk−1 = δ̂(q0, obsk−1) and σ = L(sk−1) =
λ(obsk−1).

By the induction hypothesis, we have xk−1 ∈ sk−1. For obs = obsk,
let sk = δ(sk−1, obs). By construction of A, we have sk ∈ Win and
PostΣu(Postσ(sk−1)) ∩ γ(obs) ⊆ sk. Therefore, we have xk ∈ sk and by
definition of L, we have sk ⊆ Enabled(σ′) where σ′ = L(sk) = λ(obsk).
This yields (i) last(x) ∈ δ̂(q0, obs) and (ii) xk ∈ Enabled(λ(obsk)).

– If λ is an observation based strategy that is winning on G. We must show that (1)
holds. Let Vλ ⊆ 2S × Obs+ be the smallest set (w.r.t. to ⊆) such that:
• (S0 ∩ γ(obs), obs) ∈ Vλ for every obs ∈ Obs, and
• if (s, obs) ∈ Vλ then (PostΣu(Postλ(obs)(s)) ∩ γ(obs), obs.obs) ∈ Vλ for

every obs ∈ Obs.
Let Wλ = {s | (s, obs) ∈ Vλ}. Let us show that Wλ ( CPre(Wλ). By Lemma 1,
it suffices to show that Wλ ⊆$CPre(Wλ)# . Let (s, obs) ∈ Vλ with obs = obs0,
obs1, . . . , obsk and let us show that s ∈ CPre(Wλ).

By definition of Vλ, there exist s0, s1, . . . , sk such that s0 = S0 ∩ γ(obs0),
sk = s, and for each 1 ≤ i ≤ k: si = PostΣu(Postσi(si−1)) ∩ γ(obsi) with
σi = λ(obs0obs1 . . . obsi−1). For any sequence of states x = x0, x1, . . . , xk
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with xi ∈ si and (xk, obsk) ∈ Outcomeλ(G), since λ is winning on G, we
have xk ∈ Enabled(λ(obs)) and thus s ⊆ Enabled(λ(obs)). Also we have
PostΣu(Postλ(obs)(s)) ∩ γ(obs) ∈Wλ for every obs ∈ Obs by construction of Vλ.
This entails that s ∈$CPre(Wλ)# , showing that Wλ ( CPre(Wλ), that is CPre is
extensive at Wλ and by the Tarski’s fixed point Theorem Wλ ( Win. The conclu-
sion follows since {S0 ∩ γ(obs) | obs ∈ Obs} ⊆Wλ. �

4 Games with Finite State Space

In this section we show that computing the greatest fixed point of CPre for finite state
games can be done in EXPTIME. We also compare our algorithm based on the lattice
of antichains with the classical technique of [Rei84].

4.1 Fixed Point Algorithm

To compute the greatest fixed point of CPre, we iterate CPre from S using Algorithm 1.
This algorithm constructs systematically subsets of S and checks at line l whether they
belong to CPre(q). This is done by treating all subsets of size i before the subsets of
size i− 1, so we avoid to treat the subsets of the already included subsets and the result
is in reduced form. Therefore, Algorithm 1 uses the following operator Children(s) =
{s\{x} | x ∈ s} which returns the subsets of s of cardinality |s| − 1.

Lemma 13. Algorithm 1 computes CPre in EXPTIME in the size of the game.

Lemma 14. An ascending (or descending) chain in 〈L,(,
⊔
,
�
,⊥ ,*〉 has at

most 2n + 1 elements where n = |S|.

Algorithm 1. Algorithm for CPre .
Data : A game of imperfect information G = 〈S, S0, Σ

c, Σu,→, Obs, γ〉 and a set
q ∈ L.

Result : The set Z = CPre(q).
begin

1 Z ← ∅ ;
2 Wait ← {S} ;
3 while Wait �= ∅ do
4 Pick s ∈ Wait of maximal cardinality ;
5 Wait ← Wait\{s} ;
6 if for some σ ∈ Σc we have :

(1) s ⊆ Enabled(σ) and
(2) for all obs ∈ Obs, there exists s′ ∈ q such that PostΣu(Postσ(s)) ∩
γ(obs) ⊆ s′

then
7 Z ← Z ∪ {s} ;

else
8 Wait ← Wait ∪ {s′ | s′ ∈ Children(s) ∧ ∀s′′ ∈ Z ∪ Wait : s′ �⊆ s′′} ;

9 return Z;
end
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Theorem 15. The imperfect information control problem is EXPTIME-complete.

Proof. We first prove the upper bound. From Lemma 14 and since CPre is monotone,
we reach the greatest fixed point Win after at most O(2n) iterations of CPre. From
Lemma 13 computing CPre can be done in EXPTIME. The conclusion follows. For the
lower bound, since we solve a more general problem than Reif [Rei84], we have the
EXPTIME-hardness. �

4.2 Example

Consider the two-player game G1 on Fig. 1 with state space S = {1, 1′, 2, 2′, 3, 3′,
Bad}, initial state S0 = {2, 3}, actions Σc = {a, b} and Σu = {u}. The obser-
vation set is Obs = {obs1, obs2} with γ(obs1) = {1, 1′, 2, 2′,Bad} and γ(obs2) =
{1, 1′, 3, 3′}.

For the controller, the goal is to avoid state Bad in which there is no controllable
action. So the controller must play an a in state 1 and 3 and a b in state 2. However the
controller cannot distinguish 1 from 2 using only the current observation. Thus, to dis-
criminate those states, the controller has to rely on its memory of the past observations.

We show below the iterations of the fixed point algorithm and the construction of the
strategy. The fixed point computation starts from * = {S}. Each set is paired with an
action that can be played in all the states of that set:

S1 = CPre({S}) = {{1, 2, 3}a}
S2 = CPre(S1) = {{2}b, {1, 3}a}
S3 = CPre(S2) = {{1}a, {2}b, {3}a}
S4 = CPre(S3) = S3

1 1′

2

2′

3

3′

Bad
a

b

u

u

a

b
u

a

b

u

u

obs1

obs2

Fig. 1. A two-player game G1 with observation set {obs1, obs2}
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Since S4 = S3, we have Win = S3 = {{1}, {2}, {3}}. The existence of a winning
strategy is established by condition (1) of Theorem 12 since the sets S0∩γ(obs1) = {2}
and S0 ∩ γ(obs2) = {3} are dominated in Win.

From the fixed point, using the construction given in the proof of Theorem 12, we
construct the automaton of Fig. 2 which encodes a winning strategy. Indeed, when the
game starts the control is either in state 2 if the given observation is obs1 or in state 3 if
the given observation is obs2. In the first case, the controller plays b and in the second
case, it plays a. Then the game lies in state 1. According to the strategy automaton,
the controller plays an a and receives a new observation that allows it to determine if
the game lies now in state 2 (obs1) or in state 3 (obs2). From there, the controller can
clearly iterate this strategy.

q0

b

{2}

a

{1}

a

{3}

obs1 obs2

obs1

obs2

obs1

obs2

obs1

obs2

Fig. 2. A finite state automaton A defining a winning strategy for G1

4.3 Comparison with the Classical Technique of [Rei84]

In [Rei84] the author gives an algorithm to transform a game of incomplete information
G into a game G′ of perfect information on the histories of G.

The idea can be expressed as follows : given a game of incomplete information G =
〈S, S0, Σ

c, Σu,→1,Obs, γ〉 define a two-player game G′′ = 〈S′, S′
0, Σ

c, {ε},→2〉 as
follows: S′ is the set of knowledgesK(obsk, σk−1) such that (obsk, σk−1) is an history
of G. S′

0 is the set of knowledges {K(obs0)|γ(obs0) ∩ S0 �= ∅}. Finally the transition
relation →2 is defined as follows: K(obsk, σk−1)

σk−→2 K(obsk+1, σk) and s
ε−→2 s

for all s ∈ S′. To obtain the final game of perfect information G′, equip G′′ with the
set of observation (S′, γI) where γI is the identity function. Solving the resulting game
of perfect information G′ requires linear time in the size of S′ but there exist games of
incomplete information G requiring the construction of a game of perfect information
of size exponentially larger than the size of G.

As our algorithm does not require this determinization, it is easy to find families of
games where our method is exponentially faster than Reif’s algorithm. This is formal-
ized in the next theorem.

Theorem 16. There exist finite state games of incomplete information for which the al-
gorithm of [Rei84] requires an exponential time where our algorithm needs only poly-
nomial time.
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5 Control with Imperfect Information of Rectangular Automata

In this section, we introduce the notion of infinite games with finite stable quotient.
We use this notion to show that the discrete control problem for games of imperfect in-
formation defined by rectangular automata is decidable. This result extends the results
in [HK99].

5.1 Games with Finite R-Stable Quotient

Here we drop the assumption that S is finite and we consider the case where there exists
a finite quotient of S over which the game is stable. We obtain a general decidability
result for games of imperfect information with finite stable quotients.

Let R = {r1, r2, . . . , rl} be a finite partition of S. A set s ⊆ S is R-definable
if s =

⋃
r∈Z r for some Z ⊆ R. An antichain q ∈ L is R-definable if for every s ∈ q,

s is R-definable.

Definition 17 [R-stable]. A game of imperfect information 〈S, S0, Σ
c, Σu,→,Obs, γ〉

is R-stable if for every σ ∈ Σc the following conditions hold:

(i) Enabled(σ) is R-definable;
(ii) for every r ∈ R, PostΣu(Postσ(r)) is R-definable;

(iii) for any r, r′ ∈ R, if for some x ∈ r and u ∈ Σu, Postu(Postσ)({x}) ∩ r′ �= ∅
then for any x ∈ r, there exists u ∈ Σu such that PostΣu(Postσ)({x})∩r′ �= ∅;

(iv) furthermore, for every obs ∈ Obs, γ(obs) is R-definable.

The next lemma states properties of R-stable games of imperfect information. They are
useful for the proof of the next theorem.

Lemma 18. Let G = 〈S, S0, Σ
c, Σu,→,Obs, γ〉 be a R-stable game of imperfect in-

formation. Let s, s′, s′′ ⊆ S and r ∈ R such that (i) s′ and s′′ are R-definable and
(ii) s ∩ r �= ∅. If there exists σ ∈ Σc such that (iii) s ⊆ Enabled(σ) and (iv)
PostΣu(Postσ(s)) ∩ s′ ⊆ s′′ then (v) r ⊆ Enabled(σ) and (vi) PostΣu(Postσ(s ∪
r)) ∩ s′ ⊆ s′′.

Theorem 19. Let G = 〈S, S0, Σ
c, Σu,→,Obs, γ〉 be a R-stable game of imperfect

information. The greatest fixed point of CPre is a R-definable antichain and is com-
putable.

Proof. We show that for any R-definable antichain q ∈ L, the antichain CPre(q) is
also R-definable. Let s ∈ CPre(q). For any r ∈ R such that s ∩ r �= ∅, we have by
Lemma 18 that s ∪ r ∈ CPre(q). Since s ⊆ s ∪ r, we must have s = s ∪ r. This shows
that s is R-definable. The number of R-definable antichains is finite, and so, using
Tarski’s theorem, we can compute the greatest fixed point of CPre in a finite number of
iterations. �



164 M. De Wulf, L. Doyen, and J.-F. Raskin

5.2 Rectangular Automata

We first recall the definition of rectangular automata and we define their associated
game semantics. We recall a result of [HK99] that establishes the existence of a finite
bisimulation quotient for this game semantics.

Let X = {x1, . . . , xn} be a set of real-valued variables. A rectangular inequality
over X is a formula of the form xi ∼ c, where c is an integer constant, and ∼ is one of
the following: <,≤, >,≥. A rectangular predicate over X is a conjunction of rectan-
gular inequalities. The set of all rectangular predicates over X is denoted Rect(X). The
rectangular predicate φ defines the set of vectors [[φ]]= {y ∈ Rn|φ[X := y] is true}.
For 1 ≤ i ≤ n, let [[φ]]i be the projection on variable xi of the set [[φ]]. A set of the
form [[φ]], where φ is a rectangular predicate, is called a rectangle. Given a nonnegative
integer m ∈ N, the rectangular predicate φ and the rectangle [[φ]] are m-bounded if
|c| ≤ m for every conjunct xi ∼ c of φ. Let us denote Rectm(X) the set of m-bounded
rectangular predicate on X .

Definition 20 [Rectangular automaton]. A rectangular automaton H is a tuple
〈Loc, Lab,Edg, X, Init, Inv,Flow, Jump〉 where:

– Loc = {
1, . . . , 
m} is a finite set of locations;
– Lab is a finite set of labels;
– Edg ⊆ Loc× Lab× Loc is a finite set of edges;
– X = {x1, . . . , xn} is a finite set of variables;
– Init : Loc → Rect(X) gives the initial condition Init(
) of location 
. The automa-

ton can start in 
 with an initial valuation v lying in [[Init(
)]];
– Inv : Loc → Rect(X) gives the invariant condition Inv(
) of location 
. The au-

tomaton can stay in 
 as long as the values of its variables lie in [[Inv(
)]];
– Flow : Loc → Rect(Ẋ) governs the evolution of the variables in each location.
– Jump maps each edge e ∈ Edg to a predicate Jump(e) of the form φ ∧ φ′ ∧∧

i/∈Update(e)(x
′
i = xi), where φ ∈ Rect(X) and φ′ ∈ Rect(X ′) and Update(e) ⊆

{1, . . . , n}. The variables in X ′ refer to the updated values of the variables after the
edge has been traversed. Each variable xi with i ∈ Update(e) is updated nondeter-
ministically to an arbitrary new value in the interval [[φ′]]i.

A rectangular automaton is m-bounded if all its rectangular constraints
are m-bounded.

Definition 21 [Nondecreasing and bounded variables]. Let H be a rectangular automa-
ton, and let i ∈ {1, . . . , n}. The variable xi of H is nondecreasing if for every control
mode 
 ∈ Loc, the invariant interval [[Inv(
)]]i and the flow interval [[Flow(
)]]i are
subsets of the nonnegative reals. The variable xi is bounded if for every control mode

 ∈ Loc, the invariant interval [[Inv(
)]]i is a bounded set. The automaton H has nonde-
creasing (resp. bounded; nondecreasing or bounded) variables if all n variables of H
are nondecreasing (resp. bounded; either nondecreasing or bounded).

In the sequel, all the rectangular automata that we consider are assumed to be with
nondecreasing or bounded variables.

We now associate a game semantics to each rectangular automaton.



A Lattice Theory for Solving Games of Imperfect Information 165

Definition 22 [Discrete game semantics of rectangular automata]. The game semantics
of a rectangular automaton H = 〈Loc, Lab,Edg, X, Init, Inv,Flow, Jump〉 is the game
[[H ]]= 〈S, S0, Σ

c, Σu,→〉 where S = Loc × Rn is the state space (with n = |X |),
S0 = {(
, v) ∈ S | v ∈ [[Init(
)]]} is the initial space, Σc = Lab, Σu = {1} and →
contains all the tuples ((
, v), σ, (
′, v′)) such that:

– either there exists e = (
, σ, 
′) ∈ Edg such that (v, v′) ∈ [[Jump(e)]],
– or 
 = 
′and σ = 1 and there exists a continuously differentiable function f :

[0, 1] →[[Inv(
)]] such that f(0) = v, f(1) = v′ and for all t ∈ (0, 1): ḟ(t) ∈
[[Flow(
)]].

Games constructed from rectangular automata are played as follows. The game is
started in a location 
 with a valuation v for the continuous variables such that
v ∈[[Init(
)]]. At each round, the controller decides to take one of the enabled edges
if one exists. Then the environment updates the continuous variables by letting time
elapse for 1 time unit as specified by the (nondeterministic) flow predicates. A new
round is started from there. As for the games that we have considered previously, the
goal of the controller is to avoid to reach states where he does not have an enabled
transition to propose.

The next definition recalls the notion of bisimulation.

Definition 23 [Bisimulation]. A simulation on the game G = 〈S, S0, Σ
c, Σu,→〉 is a

binary relation ∼ on the state set S such that s1 ∼ s2 implies that ∀σ ∈ Σc ∪ Σu, if
s1

σ−→ s′1 then there exists s′2 such that s2
σ−→ s′2 and s′1 ∼ s′2. Such a relation is called

a bisimulation if it is symmetric.

We consider the following equivalence relation between states of rectangular automata.

Definition 24 . Given the game semantics [[H ]]= 〈S, S0, Lab, {1},→〉 of a m-bounded
rectangular automaton H , define the equivalence relation≈m on S by (
, v)≈m(
′, v′)
iff 
 = 
′ and for all 1 ≤ i ≤ n either �vi� = �v′i� and #vi$ = #v′i$ or both vi and v′i are
greater than m. Let us call R≈m the set of equivalence classes of ≈m on S.

The next lemma states that the number of equivalence classes for this relation is finite
for any rectangular automata.

Lemma 25. [HK99] Let H be a m-bounded rectangular automaton. The equivalence
relation ≈m is the largest bisimulation of the game semantics [[H ]].

5.3 Control of Rectangular Automata with Imperfect Information

We are now in position to extend the result of [HK99] to the case of imperfect
information.

Given H = 〈Loc, Lab,Edg, X, Init, Inv,Flow, Jump〉, a m-bounded rectangular au-
tomaton, we say that the observation set (Obs, γ) is m-bounded if for each obs ∈ Obs,
γ(obs) is definable as a finite union of sets of the form {(l, v) | v ∈ g} where g is
m-bounded rectangle.
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Theorem 26. For any m-bounded rectangular automaton H with game semantics
[[H ]]= 〈S, S0, Σ

c, Σu,→〉, for any m-bounded observation set (Obs, γ), the game of
imperfect information 〈S, S0, Σ

c, Σu,→,Obs, γ〉 is R≈m-stable.

As corollary of Theorem 19 and Theorem 26, we have that:

Corollary 1. The discrete control problem for games of imperfect information defined
by m bounded rectangular automata and m-bounded observation sets is decidable (in
2EXPTIME).

So far, we do not have a hardness result but we conjecture that the problem is
2EXPTIME-complete. Now, let us illustrate the discrete control problem for games
of imperfect information defined by rectangular automata on an example.

Example. We have implemented our fixed point algorithm using HYTECH and its script
language [HHWT95]. We illustrate the use of the algorithm on a simple example. Fig. 3
shows a rectangular automaton with four locations and one continuous variable x.

In this example, the game models a cooling system that controls the temperature
x. When requested to start, the system begins to cool down. There are two modes of
cooling, either fast or slow, among which the environment chooses. The controller can
only observe the system through two observations: H with γ(H) = {(
, x) | x ≥ 280}
and L with γ(L) = {(
, x) | x ≤ 285}. Thus, only the continuous variable x can be
observed imperfectly, not the modes. Depending on the mode however, the timing and
action to stop the system are different. In the slow mode, the controller has to issue an
action a when the temperature is below 280. In the fast mode, the controller has to issue
an action b when the temperature is below 270.

The controller must use its memory of the past observations to make the correct
action in time. If the first two observations are H,H then the controller knows that the

Start
ẋ = 0

x = 300

x=300

Slow
ẋ ∈ [−10, −9]
x ∈ [250, 300]

Fast
ẋ ∈ [−30, −25]
x ∈ [210, 300]

Stop
ẋ = 0

a

a

⊥
x ≥ 260

⊥
x ≥ 260

a

x ≤ 280

b

x ≤ 270

⊥

Fig. 3. A rectangular automaton modeling a cooling system
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a

⊥

⊥

⊥

b

a

⊥
q0 0

1 3
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7

H
H

L

H

L

L

L

L

H

L

H

L

H

Fig. 4. A finite state automaton defining a winning strategy for the cooling system

mode is Slow. If the first two observations are H, L then the controller knows that the
mode is Fast.

The greatest fixed point, given below, allows the computation of the deterministic
strategy depicted in Fig. 4. The whole process has been automated in HYTECH. The
correspondence between state numbers in the figure and states of the fixed point is the
following:

– State 0 ≡ (Stop, x = 0), (Slow, 295 < x ≤ 300)
– State 1 ≡ (Slow, 270 ≤ x ≤ 300)
– (Not depicted) State 2 ≡ (Slow, 295 < x ≤ 300), (Fast, 290 ≤ x ≤ 300)
– State 3 ≡ (Slow, 260 ≤ x ≤ 289), (Slow, 295 < x ≤ 300)
– State 4 ≡ (Slow, 295 < x ≤ 300), (Fast, 260 ≤ x ≤ 295)
– State 5 ≡ (Start, x = 300)
– State 6 ≡ (Slow, 250 ≤ x ≤ 280)
– State 7 ≡ (Fast, 210 ≤ x ≤ 270)

As before, the strategy associates an action to each set of the fixed point and the
observations give the next state of the strategy.
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Abstract. In this paper, we deal with the observability problem of a
class of Hybrid Systems whose output is a timed string on a finite al-
phabet. We determine under which conditions it is always possible to
immediately detect, using the observed output, when the system enters
a given discrete state. We illustrate how to construct a Timed Automaton
that is an abstraction of the given Hybrid System, and that preserves its
observability properties. Moreover, we propose a verification algorithm
with polynomial complexity for checking the observability of the Timed
Automaton, and a constructive procedure for an observer of the discrete
state.

1 Introduction

The issue of observability is an interesting open problem in the context of Hybrid
Systems, whose significance is widely recognized in safety critical applications
(e.g. Air Traffic Management) or failure detection applications (e.g. software
monitoring and telecommunications). Observability of Hybrid Systems was ex-
tensively studied in the literature (see e.g. in [3],[8],[14] and [17]), while observer
design was considered e.g. in [4]. In this work, we provide a definition of ob-
servability of a hybrid system with respect to a discrete state (or set of discrete
states): given a hybrid model, we mark as ”critical” some discrete states that cor-
respond to an unsafe behavior or to a failure. For each of such critical locations,
the system is required to be observable.

In [9] and [10], Hybrid Systems with no Guards and Resets were considered
and the discrete outputs of the system were used to characterize observability of
a discrete location. The continuous inputs and outputs were used to enrich the
measurable information with new discrete outputs (signatures) characteristic of
a specific continuous dynamics. However, the generation of a signature requires
a finite and non-zero time to be generated, so that the detection of an unsafe
operation or a failure is given with delay. In this paper, we analyze observability
of Hybrid Systems where the observable output is a timed string on a finite
alphabet, the discrete transitions are triggered by guards and resets, and no
continuous and discrete disturbances are present. The discrete transitions are
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possibly non deterministic if the guard sets intersect, and we suppose that a
transition may not occur even if the continuous state enters a guard set. Also, no
delay is accepted for the detection of a critical location. Building upon the results
achieved in [5], [11] and [18] on reachability in a given time interval of Continuous
and Hybrid Systems, the basic idea is to abstract a Hybrid Automaton H by a
Timed Automaton T , so that the timed output language generated by the former
is contained in or equal to the timed output language generated by the latter.
In other words, we propose a procedure to construct a Timed Automaton that
is an abstraction of the given Hybrid Automaton and preserves observability
of a given discrete state. Necessary and sufficient observability conditions for
a class of Timed Automata are given, and we prove that observability of the
given Hybrid Automaton is implied by observability of the constructed Timed
Automaton.

In Section 2, we define the class of Hybrid Systems of interest, the languages
given by all timed executions and the associated timed observations. Then, we
define observability of a given discrete state. In Section 3, we define a class of
Timed Automata, provide necessary and sufficient observability conditions, and
propose an algorithm with polynomial complexity to verify observability of a
given discrete state. We also relate this work to the results obtained in [16] on
Diagnosability of Timed Automata. Moreover, we construct an observer of a
given discrete state. In Section 4, we provide a procedure to construct a Timed
Automaton from a given Hybrid Automaton, and prove that observability of the
former implies observability of the latter.Some concluding remarks are offered
in the last section.

2 Basic Definitions

2.1 Hybrid Automata

We consider a class of Hybrid Systems, where the continuous state evolves fol-
lowing linear autonomous dynamics, and the discrete state evolution depends
only on the continuous state according to guard maps, possibly with non deter-
ministic transitions. We suppose that the only measurable output is the discrete
one (the continuous output is not measurable), so that the observed output is a
timed string on a finite alphabet. Formally,

Definition 1. A Hybrid Automaton is a tuple
H = (Ξ,Ξ0, S, E,Σ, η,G, Inv,R) (see [13]) where:

– Ξ = Q×X is the hybrid state space, where Q is a finite set of discrete states
q1, q2, · · · qN , and X ⊆ Rn is the continuous state space.

– Ξ0 = Q0×X0 ⊆ Q×X is the set of initial discrete and continuous conditions.
– S associates to each discrete state q ∈ Q autonomous continuous-time linear

dynamics as ẋ = A(q)x, where A(q) ∈ Rn×n.
– Σ is the finite alphabet of discrete output symbols {ε, σ1, σ2, · · ·σr} , where

ε is the null symbol that corresponds to an unobservable output.
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– E ⊆ Q×Q is a collection of edges.
– η : E → Σ is the output function.
– G : E → 2X associates a guard set to each edge.
– Inv : Q→ 2X is the invariant mapping.
– R : X × E → 2X is the reset mapping.

Note that the discrete output symbols are associated with discrete transitions,
and not with discrete states. We assume that Inv(q) = X, ∀q ∈ Q, and that
guard conditions are enabling conditions: even if the continuous state enters
a guard set, the corresponding transition may not take place. This assump-
tion guarantees that the system is non-blocking. Moreover, we assume that
there is no cycle of edges associated with unobservable output. Let Eq→ =
{(q, q̄) ∈ E : q̄ ∈ Q} be the set of all edges starting from q, and E→q = {(q̄, q) ∈
E : q̄ ∈ Q} the set of all edges ending in q. Furthermore, let Eε

q→ = {e ∈ Eq→ :
η(e) = ε} be the set of all edges starting from q and whose output is the empty
string, and Eε

→q = {e ∈ E→q : η(e) = ε} the set of all edges ending in q and
whose output is the empty string.

We introduce a hybrid time basis τ = {Ii}i≥0 of H as a finite or infinite
sequence of intervals Ii = [ti, t′i] such that [13]

1. Ii is closed if τ is infinite; Ii might be right-open if it is the last interval of
a finite sequence τ ;

2. ti ≤ t′i for all i and t′i−1 ≤ ti for i > 0.

An execution of H is a collection χ = (τ, x, q), with x, q satisfying the continuous
and discrete dynamics of H and their interactions (Invariant, Guard and Reset
functions). To each execution χ we associate a unique timed string ρ as a finite or
infinite sequence q(I0), Δ0, q(I1), Δ1, · · · where q(Ii) ∈ Q and Δi = (ti+1 − ti) ∈
R+ ∪ {0,∞}. Namely, ρ is a timed execution of the discrete state of H, where
q(Ii) is the discrete state in the time interval Ii = [ti, ti+1) and Δi the dwell
time in that state.

We define L(H) the language of all finite prefixes of all timed executions ρ
associated to all executions χ of H. Given a discrete state qc ∈ Q, we define
Lqc(H) the language of timed strings ρ in L(H) such that the last discrete state
visited is qc. More formally

Lqc(H) =
{
ρ = q(I0), Δ0, · · · , q(Is), Δs ∈ L(H) : q(Is) = qc, Δs ∈ R+}

Clearly,
Lqi(H) ∩ Lqj (H) = ∅

for each qi �= qj with i, j = 1, · · · , N and i �= j. Furthermore,⋃
q∈Q

Lq(H) = L(H)

Thus, Lqi(H) for i = 1, · · · , N partitions L(H). Let Q̃ ⊆ Q. Then,

LQ̃(H) =
⋃
q̃∈Q̃

Lq̃(H)
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Given a finite discrete execution ρ = q(I0), Δ0, · · · , q(Is), Δs we define the
associated observed timed string as follows. Consider the projection P (ρ), ob-
tained from ρ first by replacing q(I0) with ε and q(Ii) with σi = η(q(Ii−1), q(Ii))
for i = 1, · · · , s, then by erasing all ε (unobservable) symbols and adding the
delays between successive symbols. The resulting string is a finite sequence
P (ρ) = Δ0, σ1, Δ1, · · · , σs′ , Δs′ with s′ ≤ s and Δs′ ≥ Δs. We call P (ρ) the
observed output timed string of ρ, and P(H) = {P (ρ) : ρ ∈ L(H)} the language
given by the projections of all strings in L(H). P(H) is the language that contains
all finite length observed output timed strings of H.

2.2 Observability of Hybrid Automata

Given a Hybrid Automaton H and a discrete state qc ∈ Q, our objective is to
detect immediately whether the current state is qc. This property of qc is called
observability and is formally defined as follows:

Definition 2. Given a Hybrid Automaton H, a discrete state qc ∈ Q is observ-
able if

ρ ∈ Lqc(H), ρ′ ∈ L(H) � Lqc(H)⇒ P (ρ) �= P (ρ′) (1)

Definition 2 states that a state qc is observable if, for each execution that drives
the system to qc, there exists no other execution with the same observed output
such that the system may be in a different discrete state at the same time. In
other words, a state qc is observable if, for each execution ofH, the timed output
of the system allows to detect at each time instant whether the current state
is qc. Conversely, if the condition of Definition 2 does not hold, there exist two
executions ρ′ and ρ′′ of the same time length t̄ and the same observed output
such that, at time t̄, the current state is respectively q′ = qc for the execution ρ′,
and q′′ �= qc for the execution ρ′′. It is then clearly impossible to decide whether
the system is currently in qc at time t̄.

If we are interested in detecting immediately whether the current state belongs
to a set Qc, then a similar definition can be given:

Definition 3. Given a Hybrid Automaton H, the set Qc ⊂ Q is observable if

ρ ∈ LQc(H), ρ′ ∈ L(H) � LQc(H) ⇒ P (ρ) �= P (ρ′)

Our results are given with respect to Definition 2 but can be trivially extended
to Definition 3 (see Section 4).

Given a Hybrid AutomatonH, an observer of the discrete state qc is a decision
block whose input is the timed observed output of H and whose output is 1 (or
true) if the current state of H is qc and 0 (or false) if the current state of H is
not qc.

Definition 4. Given a Hybrid Automaton H, an observer of the discrete state
qc ∈ Q is a function



Observability of Hybrid Automata by Abstraction 173

O : P(H)→ {0, 1}
such that

O(P (ρ)) =
{

1 if ρ ∈ Lqc(H)
0 if ρ /∈ Lqc(H)

The following proposition formalizes the equivalence between observability and
the existence of an observer.

Proposition 1. Given a Hybrid Automaton H, a state qc is observable if and
only if an observer of qc exists.

3 Observability of Timed Automata

The flow chart diagram in Figure 1 shows the whole verification procedure of
observability of a discrete state qc of a given Hybrid Automaton H. The first
step is the construction of an abstraction T of H: Algorithm 4 will be defined in
Section 4, and we will see that T belongs to a special class of Timed Automata.
In this section, we first define this class. Then, starting from T , we show in
Algorithm 1 how to construct a system T̃ that does not contain unobservable
outputs and preserves the observability property of T . Algorithm 3 applied to
the system T or T̃ verifies whether a given discrete state qc is observable for
T . Once we have solved the observability problem on the special class of timed
automata of interest, we will state in Section 4 the main result of this work:
observability of T implies observability of H.

Fig. 1. Verification procedure of observability for the Hybrid Automaton H

A Timed Automaton is a class of Hybrid Automata where the dynamics of
the continuous variables have constant slope 1 for each discrete location (e.g.
clocks), the initial continuous state is a singleton set for each discrete location,
the guards are rectangular sets, and the reset map is a function (deterministic
reset):

Definition 5. A Timed Automaton T is a Hybrid Automaton H such that [1]:

– the continuous state space X = (R+)n.
– for all q0 ∈ Q0, if (X0, q0) ⊂ Ξ0 then X0 is a singleton set.
– S = SI is such that A(q) = In×n ∀q ∈ Q.
– for any edge e the set G(e) is a rectangular set.
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– for any discrete state q the set Inv(q) is a rectangular set.
– for any edge e and any x ∈ G(e) the set R(x, e) is a singleton set.

As such, definitions of executions and languages L(T ) and P(T ), and of observ-
ability and observer can be given as in the previous section.

Remark 1. In [16] a procedure is proposed to verify if a Timed Automaton is
diagnosable, and it is proved that the diagnosability verification problem is in
PSPACE. By Definitions 2 and 4, and by definition of 0-Diagnosability ([16]), it
is possible to prove that, given a Timed Automaton T , a discrete state qc ∈ Q
is observable if and only if all edges e ∈ E→q ∪ Eq→ are 0-Diagnosable.

As a consequence Remark 1, the observability verification problem of Timed
Automata is in PSPACE. However, the Timed Automaton T that will be con-
structed in Section 4 as an abstraction of a given Hybrid Automaton H has
the following properties: X = R+, Inv(q) = X ∀q ∈ Q, and R(x, e) = 0 ∀e ∈
E, x ∈ G(e). We will prove in Proposition 5 that the observability verification
problem for this subclass of Timed Automata is in PTIME. To this purpose, we
first introduce a procedure (Algorithm 1) that constructs, given T , a Timed Au-
tomaton T̃ without unobservable outputs, such that qc is observable for T̃ if and
only if qc is observable for T . This procedure is necessary since Algorithm 3 that
is proposed later for checking observability of a state of T can only be applied if
the system does not contain edges associated to unobservable outputs. Removing
unobservable edges from a Discrete Event System in order to preserve the output
language is a classical problem [15]. We define here a procedure to preserve the
output timed language of a Timed Automaton. Under the assumption that the

guard sets are rectangular time intervals on R+ of the type G(e) =
K⋃

k=1
〈ak, bk〉,

we define a sum operation:

G(e′) + G(e′′) =
K′⋃

k′=1

⎛⎝ K′′⋃
k′′=1

〈a′k′ + a′′k′′ , b′k′ + b′′k′′〉

⎞⎠
where 〈·, ·〉 can be open or closed intervals.

It is easy to prove that G(e′) + G(e′′) is still a rectangular interval, and that
the commutative, associative and transitive properties hold. Given a sequence
of edges e1, · · · , en, we define

δ(e1, · · · , en) =
n∑

i=1

G(ei)

Remark 2. δ(e1, · · · , en) is a rectangular interval, and

t ∈ δ(e1, · · · , en)⇔ ∃t1 ∈ G(e1), · · · , ∃tn ∈ G(en) : t =
n∑

i=1

ti
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Algorithm 1. Given a Timed Automaton T , define
T̃ := (Ξ̃, Ξ̃0, S̃, Ẽ, Σ̃, η̃, G̃, ˜Inv, R̃) = T , then proceed as follows:

1. For all q ∈ Q such that Eε
q→ �= ∅ and E→q \ Eε→q �= ∅, do:

1.1. For all e1 = (q, q1) , · · · , en = (qn−1, qn) , en+1 = (qn, q̄) such that η(e1) =
· · · = η(en) = ε and η(en+1) = σ̄ �= ε, do:

1.1.1. If there exists ē = (q, q̄) such that η(ē) = σ̄ is not in Ẽ, then add ē
to Ẽ, and let η̃(ē) = σ̄ and G̃(ē) = δ(e1, · · · , en+1).

1.1.2. Else If ē = (q, q̄) such that η(ē) = σ̄ is in Ẽ, then G̃(ē) = G̃(ē) ∪
δ(e1, · · · , en+1).

2. Erase all states q ∈ Q̃ such that Ẽ→q \ Ẽε
→q �= ∅;

3. Erase all hanging and unobservable edges.

By construction, T̃ does not contain any edge associated with an unobservable
output.

Remark 3. By construction of T̃ , it is possible that some edge e = (q′, q′′) is as-
sociated to many output symbols σ1, · · · , σm and guards G(e, σ1), · · · , G(e, σm).
In order to associate only a single output symbol and a guard to each edge, we
can split q′ (or q′′) in the set of states q′1, · · · , q′′m such that η(q′i, q

′′) = σi and
G(q′i, q

′′) = G(e, σi). Since we can equivalently split q′ or q′′, we assume without
loss of generality that a critical state qc is never split in T̃ .

Remark 4. Let Tε be the restriction of the graph (Q,E) of T induced by the
edges associated with an unobservable output. We define Nε the maximum car-
dinality of the connected components of Tε: with the assumption that there are
no cycles of edges associated to unobservable output, the complexity of Algo-
rithm 1 is polynomial with Nε.

Remark 5. Eε
→qc

= Eε
qc→ = ∅ is clearly a necessary condition for qc to be

observable. Thus, it is reasonable to apply Algorithm 1 only if Eε
→qc

= Eε
qc→ =

∅, so that qc is never erased from T̃ .

Proposition 2. Given a Timed Automaton T , let T̃ be obtained by Algorithm
1 and qc ∈ Q such that Eε

→qc
= Eε

qc→ = ∅. Then, for each execution ρ ∈ L(T ),
there exists an execution ρ̃ ∈ L(T̃ ) such that:

1. P (ρ) = P (ρ̃);
2. ρ ∈ Lqc(T )⇒ ρ̃ ∈ Lqc(T̃ ) and ρ /∈ Lqc(T )⇒ ρ̃ /∈ Lqc(T̃ )

Viceversa, for each execution ρ̃ ∈ L(T̃ ) there exists an execution ρ ∈ L(T ) such
that:

1. P (ρ) = P (ρ̃);
2. ρ̃ ∈ Lqc(T̃ )⇒ ρ ∈ Lqc(T ) and ρ̃ /∈ Lqc(T̃ )⇒ ρ /∈ Lqc(T )
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Proof. Let ρ ∈ L(T ): if there is no edge e : η(e) = ε in ρ, then ρ̃ = ρ ∈ L(T̃ ),
because Algorithm 1 does not modify edges with observable outputs. Otherwise,
let ρ = · · · qi−1, Δi−1, qi, Δi, · · · qi+n, Δi+n, qi+n+1 · · · where ek = (qk−1, qk). If
η(ei) = σi �= ε, η(ei+1) = · · · = η(ei+n) = ε and η(ei+n+1) = σi+n+1 �=

ε, then P (ρ) = · · ·σi,
i+n∑
k=i

Δk, σi+n+1 · · · . By construction of T̃ , and for each

Δ ∈ δ(ei+1, · · · , ei+n+1), there exists a path ρ̃ = · · · q̃i, Δ, q̃i+n+1 · · · such that
P (ρ̃) = · · · , σi, Δ, σi+n+1, · · · . The first part of this proof shows that ∃ρ̃ : P (ρ)
and P (ρ̃) are equal for all symbols except Δ. However, Remark 2 shows that
i+n∑
k=i

Δk ∈ δ(ei+1, · · · , ei+n+1), thus ∃ρ̃ : Δ =
i+n∑
k=i

Δk. Consider now ρ and the

constructed string ρ̃: if ρ ∈ Lqc(T ) then ρ̃ ∈ Lqc(T̃ ) because qc is not erased
by Algorithm 1; otherwise, if ρ ∈ Lq(T ) where q �= qc, then ρ̃ ∈ Lq̃(T̃ ) where
q̃ = q or q is erased by Algorithm 1, and thus q̃ �= qc. The inverse can be proved
similarly.

Some consequences of Proposition 2 are stated below. In particular, it is pos-
sible to study the observability of a given Timed Automaton on a new Timed
Automaton without unobservable outputs.

Corollary 1. Given T , and T̃ constructed by Algorithm 1, the following hold:

1. P(T ) = P(T̃ ).
2. Given a discrete state qc ∈ Q̃, then qc is observable for T if and only if qc is

observable for T̃ .

Proof. (1) By Proposition 2. (2) Let qc be observable for T̃ but not for T . Then
there exist ρ′, ρ′′ ∈ L(T ) such that ρ′ ∈ Lqc(T ), ρ′′ ∈ L(T )�Lqc(T ) and P (ρ′) =
P (ρ′′). By Proposition 2, there exist ρ̃′ and ρ̃′′ ∈ L(T̃ ) such that ρ̃′ ∈ Lqc(T̃ ),
ρ̃′′ ∈ L(T̃ )�Lqc(T̃ ) and P (ρ̃′) = P (ρ̃′′), that is a contradiction. The same holds
assuming qc observable for T but not for T̃ .

In what follows, we assume without loss of generality that the Timed Automaton
T does not contain any unobservable output symbol. We give now a method
for verifying observability of a discrete state qc of T : the idea of the proposed
procedure is intuitively described as follows: given qc ∈ Q and a pair of initial
states q′0, q

′′
0 ∈ Q0, we construct the Timed Automata Tq′

0
and Tq′′

0
, that are equal

to T except for the set of initial states: more precisely, Q′
0 = {q′0} and Q′′

0 = {q′′0}.
From Tq′

0
and Tq′′

0
, we construct a system Tq′

0,q′′
0
, whose discrete state space is

Q×Q, and such that L(qc,q)(Tq′
0,q′′

0
) is the language of all executions ρ′ ∈ Lqc(Tq′

0
)

and ρ′′ ∈ Lq(Tq′′
0
) with P (ρ′) = P (ρ′′). We will prove that checking emptiness

of L(qc,q)(Tq′
0,q′′

0
) for each q ∈ Q \ {qc} and for each (q′0, q

′′
0 ) ∈ Q0 × Q0 verifies

observability of qc.
Given two Timed Automata Tq′

0
and Tq′′

0
as defined above, we propose a

procedure to construct a Timed Automaton Tq′
0,q′′

0
:

Algorithm 2. Given Tq′
o

= (Q × R+, (q′0, 0), SI, E,Σ, η,G, Inv,R) and Tq′′
0

=
(Q× R+, (q′′0 , 0), SI, E,Σ, η,G, Inv,R), proceed as follows:
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1. Initialize Tq′
0,q′′

0
:=(Q̃×R+, (Q̃0×0), SI, Ẽ, Σ, η̃, G̃, ˜Inv, R̃), where Q̃ ⊆ Q×Q;

2. Initialize Q̃ = Q̃0 := (q′0, q
′′
0 ), Ẽ := ∅;

3. For each unvisited state q = (q′, q′′) ∈ Q̃ do:
1.1. For each e′, e′′ ∈ E : e′ = (q′, q̄′), e′′ = (q′′, q̄′′) ∧ η(e′) = η(e′′) = σ do:

1.1.1. Q̃ := Q̃ ∪ (q̄′, q̄′′) and ˜Inv((q̄′, q̄′′)) = Inv(q̄′) ∩ Inv(q̄′′);
1.1.2. Ẽ := Ẽ ∪ ẽ := ((q′, q′′), (q̄′, q̄′′));
1.1.3. η̃(ẽ) := σ, G̃(ẽ) := G(e′) ∩G(e′′) and R̃(x̃, ẽ) = 0;

1.2 Mark q as visited;

Lemma 1. Given a Timed Automaton T without unobservable outputs and two
strings ρ′ = q′0, Δ′

0, · · · , q′s, Δ′
s, ρ

′′ = q′′0 , Δ′′
0 , · · · , q′′s , Δ′′

s of the language L(T )
such that P (ρ′) = P (ρ′′), then Δ′

i = Δ′′
i ∀i = 1, · · · , s.

Proof. Trivial, because no symbols are erased from P (ρ′) and P (ρ′′).

Proposition 3. Let Tq′
0
, Tq′′

0
be given and Tq′

0,q′′
0

computed with Algorithm 2,
then ρ̃ ∈ L(q′,q′′)(Tq′

0,q′′
0
) if and only if there exist two executions ρ′ ∈ Lq′ (Tq′

0
), ρ′′

∈ Lq′′ (Tq′′
0
) such that P (ρ′) = P (ρ′′) = P (ρ̃).

Proof. (⇐) Consider the strings ρ′ = q′0, Δ0, q
′
1, Δ1, · · · , q′, Δ ∈ Lq′ (Tq′

0
) and

ρ′′ = q′′0 , Δ0, q
′′
1 , Δ1, · · · , q′′, Δ ∈ Lq′′(Tq′′

0
) such that P (ρ′) = P (ρ′′). By construc-

tion of Tq′
0,q′′

0
, q̃0 = (q′0, q

′′
0 ) ∈ Q̃0, q̃1 = (q′1, q

′′
1 ) ∈ Q̃ and ẽ = ((q′0, q

′′
0 ), (q′1, q

′′
1 )) ∈

Ẽ. Clearly, Δ0 ∈ G((q′0, q′1))∩G((q′′0 , q′′1 )) = G̃(ẽ), thus the string ρ̃ = q̃0, Δ, q̃1, 0
∈ L(q′

1,q′′
1 )(Tq′

0,q′′
0
). Furthermore, by construction, η̃(ẽ) = η((q′0, q

′
1)) = η((q′′0 , q

′′
1 )).

Iterating, we construct a string ρ̃ = q0, Δ0, · · · , q̃, Δ ∈ L(q′,q′′)(Tq′
0,q′′

0
) such that

P (ρ̃) = P (ρ′) = P (ρ′′) and q̃ = (q′, q′′).
(⇒) As above, given ρ̃ ∈ L(q′,q′′)(Tq′

0,q′′
0
) we can construct ρ′ ∈ Lq′ (Tq′

0
) and

ρ′′ ∈ Lq′′(Tq′′
0
) such that P (ρ′) = P (ρ′′) = P (ρ̃).

The following proposition provides necessary and sufficient conditions of observ-
ability of qc ∈ Q:

Proposition 4. Given a Timed Automaton T , a discrete state qc is observable
if and only if

∀q ∈ Q \ {qc}, ∀ (q′0, q
′′
0 ) ∈ Q0 ×Q0,L(qc,q)(Tq′

0,q′′
0
) = ∅ .

Proof. (Necessity) Suppose qc is observable, and suppose there exist (q′0, q
′′
0 ) and

q �= qc such that L(qc,q)(Tq′
0,q′′

0
) �= ∅: it implies that there exist two executions ρ′

starting from q′0 and ending in qc and ρ′′ starting from q′′0 and ending in q such
that P (ρ′) = P (ρ′′), that is a contradiction.

(Sufficiency) Suppose qc is not observable. Then there exist two executions ρ′

starting from q′0 and ending in qc and ρ′′ starting from q′′0 and ending in q such
that P (ρ′) = P (ρ′′), thus L(qc,q)(Tq′

0,q′′
0
) �= ∅, that is a contradiction.

Intuitively, we compute, for each pair of initial states q′0, q
′′
0 and for each q �= qc

the language L(qc,q)(Tq′
0,q′′

0
), that is the intersection between the language of

executions starting from q′0 and ending in qc, and the language of executions
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starting from q′′0 and ending in q �= qc, such that the observation string is equal. If
such language is not empty, there exist two executions with the same observation,
such that the first drives the system in qc, but not the second. Checking emptiness
of L(qc,q)(Tq′

0,q′′
0
) for each pair (q′0, q

′′
0 ) ∈ Q0×Q0 and for each q ∈ Q\{qc} verifies

observability of qc. We define now an algorithm that checks if a discrete state qc

is observable for a given Timed Automaton T :

Algorithm 3. Let a Timed Automaton T = (Ξ,Ξ0, SI, E,Σ, η,G, Inv,R) be
given:

1. For each pair (q′0, q′′0 ) ∈ Q0 ×Q0 do:
1.1. Compute Tq′

0,q′′
0

by Algorithm 2: for each q �= qc do:
1.2.1. If L(qc,q)(Tq′

0,q′′
0
) �= ∅, then return False;

2. return True;

Remark 6. Consider a graph G obtained removing from the graph (Q̃, Ẽ) of
Tq′

0,q′′
0

all edges whose guard set is the empty set: it is clear, because of the
assumption that the clocks are always reset to zero, that checking emptiness of
L(qc,q)(Tq′

0,q′′
0
) can be reduced to a reachability problem on G.

We now show that the complexity of Algorithm 3 is polynomial with the number
of discrete states of T :

Proposition 5. The observability verification problem for the studied class of
Timed Automata is in PTIME.

Proof. The first loop on Q0 × Q0 requires N2
0 iterations, where N0 = |Q0| ≤

|Q| = N . Algorithm 2 has complexity o(N4). Remark 6 implies that checking
emptiness of L(qc,q)(Tq′

0,q′′
0
) has quadratic complexity with the number of discrete

states of Tq′
0,q′′

0
, that is (N2)2. Iterating for each q �= qc requires N − 1 steps.

Therefore, the overall complexity of Algorithm 3 is o(N2
0 ·N4 ·N4 ·N) ≤ o(N11).

We conclude this section proposing an observer of a discrete state of T . Given an
output string p = Δ0, σ1, Δ1, · · · , σs, Δs, we define a function q̂ : P(T ) → 2Q.
For, let q̂0(p) = Q0 and

q̂k+1(p) = {q ∈ Q|∃e ∈ E, q̄ ∈ q̂k(p) : e = (q̄, q) ∧Δk ∈ G(e) ∧ η(e) = σk+1}

for k = 0, 1, · · · , s. We define q̂(p) := q̂s(p). Clearly, q̂(p) = {q ∈ Q|∃ρ ∈ Lq(T ) :
P (ρ) = p}. That is, q̂(p) is the set of discrete states where T can be driven by
an execution starting from some q0 ∈ Q0 and whose output is p. Let us define a
function Oqc : P(T ) → {0, 1} as follows:

Oqc(P (ρ)) =
{

1 if q̂(P (ρ)) = {qc}
0 if q̂(P (ρ)) �= {qc}

(2)

for each execution ρ ∈ L(T ). The following holds:

Proposition 6. Let qc be observable for T , then Oqc defined by (2) is an ob-
server of the discrete state qc for T .
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Proof. It is clear that for each P (ρ) ∈ P(T ), then ρ ∈ Lq̂(P (ρ))(T ). Furthermore,
let qc is observable for T : Definition 2 clearly implies that if qc ∈ q̂(P (ρ)), then
q̂(P (ρ)) = {qc}. By these considerations follows that if q̂(P (ρ)) = {qc} then
ρ ∈ Lqc(T ), and if q̂(P (ρ)) �= {qc} then ρ /∈ Lqc(T ), thus Definition 4 is fulfilled.

4 Abstraction of Hybrid Automata

In this section, for a given Hybrid Automaton H, we propose a procedure to
construct a Timed Automaton T that is an abstraction of H, and prove that
observability of T implies observability of H.

Let a discrete state q ∈ Q and the associated continuous dynamics ẋ = A(q)x
be given. We define Rei (q) = -(R(·, ei)) as the range of the reset associated to
an edge ei ∈ E→q and Gej (q) = G(ej) as the domain of the reset associated to
an edge ej ∈ Eq→. Furthermore, we define Re0 (q0) = X0 for (X0, q0) ∈ Ξ0 as
the set of initial continuous states for each initial discrete state.

From [18], given a set of initial states X0, we can define the reach set of the
linear system ẋ = Ax on the interval [t1, t2] as

Reach[t1,t2](A,X0) = {xf ∈ X |∃t ∈ [t1, t2], ∃x0 ∈ X0 : xf = eAtx0}.

Given a set of final states Xf ⊆ X , we define [tmin, tmax] as the time interval
such that

Reach[0,tmin](A,X0) ∩Xf = ∅

Reach[tmin,tmax](A,X0) ∩Xf �= ∅

Reach[tmax,∞)(A,X0) ∩Xf = ∅

With the assumption that X0, Xf are polytopes, and following [18], it is possible
to compute an interval [t∗min, t

∗
max] ⊇ [tmin, tmax], such that if eAtx0 ∈ Xf and

x0 ∈ X0, then t ∈ [t∗min, t
∗
max]. On the basis of this result, and assuming that

Gej (q) and Rei(q) are polytopes, it is possible to compute a rectangular time
interval Δei,ej (q) such that

∀x0 ∈ Rei (q), ∀t ∈ R+ : eA(q)tx0 ∈ Gej (q) ⇒ t ∈ Δei,ej (q) (3)

The algorithm proposed in [18] is very fast, even for high dimensional continuous
state spaces, but there is no analysis on the size of the over-approximation error.
Then, in order to calculate Δei,ej (q), we can use the result in [5], which provides
a procedure to compute a sequence of polytopes (a flow pipe) that are over-
approximations of the reach sets

Reach[0,Δt](A,X0), Reach[Δt,2Δt](A,X0), · · ·

for arbitrary small Δt. By computing, for each of these sets, the intersection with
Xf , it is possible to determine each Δei,ej (q) with an arbitrary small error, but
with an explosion of the computation time. An interesting point of this method
is that it can be applied to non-linear continuous dynamics. Another similar
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procedure is presented in [11]: with the assumption that Gej (q) and Rei(q) are
zonotopes (that is a subclass of polytopes), the computation time considerably
decreases. In what follows, we assume the knowledge of Δei,ej (q) ∀q ∈ Q, ei ∈
E→q, ej ∈ Eq→, and of Δe0,ej (q0) ∀q0 ∈ Q0, ej ∈ Eq0→.

Given a Hybrid Automaton H, we now propose an algorithm to construct
a Timed Automaton T . Then, we will prove that observability of T implies
observability of H. In this algorithm, we will define a function T : Q̃→ Q, that
is a surjection from the discrete state space of T̃ to the discrete state space of H.

Algorithm 4. LetH = (Q×X,Q0×X0, S, E,Σ, η,G, Inv,R) be a given Hybrid
Automaton:

1. Initialize T̃ := (Q̃× R+, Q̃0 × {0}, SI, Ẽ, Σ, η̃, G̃, ˜Inv, R̃), where Q̃ = Q̃0 =
E = ∅;

2. For each qk ∈ Q do:
2.1. Let E→qk

= {e1, · · · er}: assign Q̃ := Q̃ ∪ {q̃k,e1 , · · · , q̃k,er};
2.2. T (q̃k,ei) := qk ∀ei ∈ E→qk

;
2.3. If qk ∈ Q0 then Q̃ := Q̃∪ {q̃k,e0}, Q̃0 := Q̃0 ∪ {q̃k,e0} and T (q̃k,e0) := qk;

2. If ej = (qk, qk′) ∈ E then (q̃k,ei , q̃k′,ej ) ∈ Ẽ;
3. η̃(q̃k,ei , q̃k′,ej ) = η((qk, qk′));
4. G̃(q̃k,ei , q̃k′,ej ) = Δei,ej (qk);
5. ˜Inv = R+ ∀q̃ ∈ Q̃;
6. R̃(x̃, ẽ) = 0 ∀ẽ ∈ Ẽ;

Proposition 7. Given a Hybrid Automaton H, let T̃ be obtained by Algorithm
4 and qc ∈ Q. Then, for each execution ρ ∈ L(H), there exists an execution
ρ̃ ∈ L(T̃ ) such that

1. P (ρ) = P (ρ̃)
2. ρ ∈ Lqc(H) ⇒ ρ̃ ∈ LT −1(qc)(T̃ ) and ρ /∈ Lqc(H)⇒ ρ̃ /∈ LT −1(qc)(T̃ )

Proof. Consider the string ρ = qk0 , Δ0, qk1 , Δ1, · · · , qks , Δs ∈ Lqks
(H) and let

e1 = (qk0 , qk1) ∈ E. By construction of T̃ , q̃k0,e0 ∈ Q̃0, ∃ẽ1 ∈ Ẽ and q̃k1,e1 ∈
T−1(qk1) such that ẽ1 = ((q̃k0,e0 , q̃k1,e1)). (3) implies that Δ0 ∈ Δe0,e1(qk0) =
G̃(ẽ1). Thus, for each qk1 ∈ Q the string ρ̃ = q̃k0,e0 , Δ0, q̃k1,e1 , 0 ∈ LT −1(qk1 )(T̃ ).
Furthermore, by construction, η̃(ẽ1) = η((qk0 , qk1)). Iterating, we construct from
ρ a string

ρ̃ = q̃k0,e0 , Δ0, · · · , q̃ks,es , Δs ∈ LT −1(qks )(T̃ ) such that P (ρ) = P (ρ̃).

Given a Hybrid Automaton H, we assume the Timed Automaton T̃ be given by
Algorithm 4.

Corollary 2. P(H) ⊆ P(T̃ ).

Proof. The statement of Proposition 7 is clearly an inclusion of the languages
of observations.
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The following proposition is a generalization of Proposition 4 according to Def-
inition 3:

Proposition 8. Given a Timed Automaton T , a set of discrete states Qc ⊂ Q
is observable if and only if

∀qc ∈ Qc, q ∈ Q \Qc, ∀ (q′0, q
′′
0 ) ∈ Q0 ×Q0,L(qc,q)(Tq′

0,q′′
0
) = ∅ (4)

Proof. Similar to Proposition 4.

It is easy to see that checking condition (4) can be done with a slight modification
to Algorithm 3, namely by replacing line 1.2 with the following:

1.1. Compute Tq′
0,q′′

0
by Algorithm 2: for each qc ∈ Qc and for each q ∈ Q \ Qc

do:

We can now state the main result:

Theorem 1. Given H and T̃ , then qc is observable for H if T−1(qc) is observ-
able for T̃ .

Proof. Let T−1(qc) be observable for T̃ but qc is not for H. Then ∃ρ′, ρ′′ ∈ L(H)
such that ρ′ ∈ Lqc(H), ρ′′ ∈ L(H) � Lqc(H) and P (ρ′) = P (ρ′′). By Proposition
7, ∃ρ̃′, ρ̃′′ ∈ L(T̃ ) such that ρ̃′ ∈ LT −1(qc)(T̃ ), ρ̃′′ ∈ L(T̃ ) � LT −1(qc)(T̃ ) and
P (ρ̃′) = P (ρ̃′′), that is a contradiction.

If we assume that

(i) The time intervals Δei,ej (q) can be computed exactly, that is when the linear
system has a certain structure [2],[12].

(ii) For the system H the following holds:

R(x, e) = -(R(·, e)) ∀e ∈ E, ∀x ∈ G(e)

that is, given an edge e and guard set G(e), then each continuous state
x ∈ G(e) is non-deterministically reset by R(x, e) to the set -(R(·, e)).

then, we can state the following:

Proposition 9. Given H, T̃ and qc ∈ Q, and assume that (i) and (ii) hold.
Then, for each execution ρ̃ ∈ L(T̃ ), there exists an execution ρ ∈ L(H) such that

1. P (ρ) = P (ρ̃)
2. ρ̃ ∈ LT −1(qc)(T̃ ) ⇒ ρ ∈ Lqc(H) and ρ̃ /∈ LT −1(qc)(T̃ )⇒ ρ /∈ Lqc(H)

Proof. Consider the string ρ̃ = q̃k0,e0 , Δ0, q̃k1,e1 , Δ1, · · · , q̃ks,es , Δs ∈ LT −1(qks )

(T̃ ) and let ẽ1 = (q̃k0,e0 , q̃k1,e1) ∈ Ẽ. By construction of T̃ , qk0 = T (qk0,e0) ∈ Q0,
qk1 = T (qk1,e1) ∈ Q and e1 = (qk0 , qk1) ∈ E. By assumption (i), follows that
if Δ0 ∈ G̃(ẽ1) = Δe0,e1(qk0), then ∃x0 ∈ Re0(qk0 ) : eA(qk0 )Δ0x0 ∈ Ge1 (qk0).
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Since Re0 (qk0) is the set of initial continuous states of H for the initial discrete
state qk0 , then for each qk1,e1 ∈ Q̃ the string ρ = qk0 , Δ0, qk1 , 0 ∈ Lqk1

(H). Fur-
thermore, by construction, η(qk0 , qk1) = η̃(q̃k0,e0 , q̃k1,e1). These considerations
can be iterated to the rest of the string ρ̃ since, under assumption (ii), each
x ∈ G(ei) is non-deterministically reset by the function R(x, ei) to the same set
-(R(·, ei)) when the transition ei = (qki−1 , qki) has occurred. Therefore, we can
construct from ρ̃, by iteration, a string ρ = qk0 , Δ0, · · · , qks , Δs ∈ Lqks

(H) such
that P (ρ) = P (ρ̃).

Proposition 9 has the following consequences:

Corollary 3. P(H) = P(T̃ ).

Theorem 2. Given H and T̃ , let assumptions (i) and (ii) hold. Then, qc is
observable for H if and only if T−1(qc) is observable for T̃ .

Proof. By Theorem 1 and Propositions 7 and 9.

5 Conclusions

In this work, we tackled the problem of immediate detection of a critical state -
corresponding to a dangerous situation - by providing a definition of observability
of the discrete state for a class of Hybrid Systems whose output is a timed string
on a finite alphabet. We proposed a procedure to construct a Timed Automaton
that is an abstraction of the given system, and for which observability is easier
to determine. We provided algorithms to check observability of the abstraction
and to construct an observer of a given discrete state. Finally, we proved that
observability of the abstraction implies observability of the given hybrid system,
and provided conditions under which this implication can be reversed. In some
future work, the authors wish to extend these results to Hybrid Systems with
continuous output, and to simple classes of Stochastic Hybrid Systems.
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Abstract. Recent advances of experimental techniques in biology have
led to the production of enormous amounts of data on the dynamics of
genetic regulatory networks. In this paper, we present an approach for
the identification of PieceWise-Affine (PWA) models of genetic regula-
tory networks from experimental data, focusing on the reconstruction
of switching thresholds associated with regulatory interactions. In par-
ticular, our method takes into account geometric constraints specific to
models of genetic regulatory networks. We show the feasibility of our
approach by the reconstruction of switching thresholds in a PWA model
of the carbon starvation response in the bacterium Escherichia coli.

1 Introduction

Recent advances of experimental techniques in biology have led to the production
of enormous amounts of data on the dynamics of cellular processes. Prominent
examples of such techniques are DNA microarrays and gene reporter systems,
which allow gene expression to be measured with varying degrees of precision
and throughput. One of the major challenges in biology today consists in the
analysis and interpretation of these data, with a view to identifying the networks
of interactions between genes, proteins, and small molecules that regulate the
observed processes. The mapping of these genetic regulatory networks is a key
issue for understanding the functioning of a cell and for designing interventions
of biotechnological or biomedical relevance.

The problem of identifying genetic regulatory networks from gene expression
data has attracted much attention over the last ten years. Most approaches are
based on the use of linear models (e.g., [1, 2, 3]), for which powerful identifica-
tion algorithms exist. However, given that the underlying biological processes
are usually strongly nonlinear, the models are valid only near an equilibrium
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point (see [4] for an exception). While there have been some approaches based
on nonlinear models of genetic regulatory networks, the practical applicability
of these models is often compromised by the intrinsic mathematical and com-
putational difficulty of nonlinear system identification. Not surprisingly, most
authors have therefore focused on specific classes of nonlinear models, with re-
strictions that reduce the number of parameters and simplify the mathematical
form (e.g., [5, 6]).

Another class of models that seems to strike a good compromise between the
advantages and disadvantages of linear and nonlinear models are the PieceWise-
Affine (PWA) models of genetic regulatory networks introduced by Glass and
Kauffman in the 1970s [7]. The study of these models and their generaliza-
tions has been an active research area in both mathematical biology and hybrid
systems theory (e.g., [8, 9, 10, 11, 12, 13]). Notwithstanding their simple math-
ematical form, PWA systems capture essential aspects of gene regulation, as
demonstrated by several modeling studies of regulatory networks of biological
interest [12, 14]. Moreover, powerful techniques for the identification of PWA
systems have been developed in the field of hybrid systems (see [15] and the
references therein), which might be profitably applied to the reconstruction of
genetic regulatory networks from experimental data.

Although the available hybrid identification algorithms provide a good start-
ing point, they are generic in nature and therefore not well-adapted to a number
of constraints specific to PWA models of genetic regulatory networks. First of
all, the state space regions associated with modes of the system are hyperrectan-
gular, as they are defined by switching thresholds of the concentration variables.
Second, there exist strong dependencies between the modes of the system, as a
consequence of the coordinated control of gene expression. Third, the aim of the
system identification process is not to generate a single model, but all models
with a minimal number of regulatory interactions that are consistent with the
experimental data.

The aim of our paper is to make a first step towards the adaptation of existing
algorithms for the identification of PWA models so as to take into account the
above constraints. In particular, we focus on a crucial stage of the identification
process: the estimation of the switching thresholds that partition the state space
into hyperrectangular regions. We introduce an algorithm that, given gene ex-
pression time-series data classified according to the regulatory modes, produces
all minimal sets of switching thresholds. We thus assume here that the prelim-
inary problem of detecting mode switches in time-series data has been solved
[15], although we are of course well aware that the underlying classification al-
gorithms will probably have to be tailored to gene expression data as well. In
order to illustrate the feasibility of our approach, we apply the threshold re-
construction algorithm to a PWA model of the carbon starvation response in
Escherichia coli [8, 14]. The gene expression data has been obtained by simu-
lation, while adjusting the noise level and the sampling frequency to the real
data that will ultimately be available to us. The work presented in this paper
is complementary to the approach of Perkins and colleagues [16], who focus on
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the reconstruction of the regulatory modes once the switching thresholds of the
system are known.

In the next two sections, we will review PWA models of genetic regulatory
networks and discuss the use of hybrid identification techniques for their recon-
struction. In Sections 4 to 6 we introduce the notions of cut and multicut, formu-
late the switching threshold reconstructing problem in terms of these concepts,
and introduce a so-called multicut algorithm that, under suitable assumptions,
reconstructs minimal sets of switching thresholds from gene expression data.
Section 7 presents the results of the multicut algorithm in the context of the E.
coli carbon starvation model. In the final section we summarize our contributions
and indicate directions for further research.

2 Piecewise-Affine Models of Genetic Regulatory
Networks

A variety of model formalisms have been proposed to describe the dynamics
of genetic regulatory networks (see [17] for a review). One particularly well-
adapted to the currently available experimental data is the following class of
PWA differential equations [7]:

ẋ = h(x) = f(x)− g(x)x, (1)

where x = [x1, . . . , xn]′ ∈ Ω ⊂ Rn
≥0 is a vector of cellular protein concentrations,

f = [f1, . . . , fn]′, g = diag (g1, . . . , gn), and Ω is a bounded, n-dimensional hy-
perrectangle. In (1), the rate of change of each protein concentration xi is the
difference of the rate of synthesis fi(x) and the rate of degradation gi(x)xi. The
map fi is defined as a sum of terms having the general form κl

i b
l
i(x), where

κl
i > 0 is a rate parameter and bl

i(x) : Ω → {0, 1} a piecewise-constant function
defined in terms of the scalar step functions s+ and s− defined as

s+(xi, θi) =

{
1 if xi > θi

0 if xi < θi

and s−(xi, θi) = 1− s+(xi, θi), (2)

with θi > 0 a constant denoting a threshold concentration for xi. The step
functions are reasonable approximations of sigmoid functions, which represent
the switch-like character of the interactions found in gene regulation. The map
gi, which expresses regulation of protein degradation, is defined analogously,
except that it is required to be strictly positive. Examples of PWA models of
genetic networks are given in [8, 10].

We now show how model (1) can be recast into a standard PWA system.
Consider the union of threshold hyperplanes Θ = ∪i∈{1,...,n},li∈{1,...,pi}{x ∈ Ω :
xi = θli

i }, where pi denotes the number of thresholds for xi. Θ splits Ω in open
hyperrectangular regions Δj , j = 1, . . . , s, s =

∏n
i=1(pi + 1), called regulatory

domains. One can show that if x ∈ Δj , then model (1) reduces to ẋ = μj − νjx,
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where μj = f(x) is a constant vector and νj = g(x) is a constant diagonal matrix.
In summary, when x ∈ Ω\Θ, model (1) is equivalent to the PWA system

ẋ = h(x) = μj − νjx, if λ(x) = j, j = 1, . . . , s, (3)

where the switching function λ is defined as: λ(x) = j, if and only if x ∈ Δj . Note
that in every domain Δj , the map h(x) is affine and in each mode of operation
the state variables evolve independently of each other.

3 Hybrid System Identification of Genetic Regulatory
Networks

Experimental techniques in biology, like DNA microarrays and gene reporter
systems, allow gene expression to be measured at discrete time instants. In what
follows, we assume that data are obtained with a uniform sampling period T > 0,
where T is small with respect to the time constants of gene expression. We denote
by x̂(k), k = 1, . . . , N + 1, the measured vectors of concentrations x̂(kT ). By
approximating derivatives through first-order differences, from (3) one obtains
the following data model:

x̂(k + 1) = (I − Tνj) x̂(k) + Tμj + ε(k), if λ(x̂(k)) = j, (4)

where ε(k) is an additive noise corrupting the measurements. By focusing on the
dynamics of a single protein concentration, say x̂i, model (4) becomes

x̂i(k + 1) =
[
x̂i(k) 1

]
φj + ε(k), if λ(x̂(k)) = j, (5)

where φj =
[
1− T (νj)ii T (μj)i

]′. 1

Over the last few years, several hybrid system identification algorithms have
been proposed for the reconstruction of so-called PieceWise AutoRegressive
eXogenous (PWARX) models (see [15] for a review). Without going into details
(which can be found in [18]), we just highlight that (5) is a PWARX system with
input u(k) = [x̂1(k), . . . , x̂l �=i(k), . . . , x̂n(k)]′ and output y(k) = x̂i(k).

The identification of model (5) involves various tasks [15, 18]. In the sequel, we
focus on the estimation of the hyperrectangular domains Δj , which usually re-
quires an intermediate result produced by all of the above algorithms: the recon-
struction of the switching sequence λ(x̂(k)), k = 1, . . . , N . More specifically, as
illustrated in [18], a domain Δj is found by looking for the s−1 hyperplanes sepa-
rating the set Fj = {x̂(k) : λ(x̂(k)) = j} from all sets Fl = {x̂(k) : λ(x̂(k)) = l},
l �= j. These hyperplanes can be obtained through pattern-recognition techniques
such as Multicategory Robust Linear Programming (MRLP) [19] or Support
Vector Classifiers (SVC) [20].

A problem with this approach is that both MRLP and SVC do not impose any
constraints on the hyperplanes to be estimated. As a consequence, even if the

1 (νj)ii is the element at position (i, i) of νj , (μj)i is the ith element of μj .
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switching sequence is perfectly known, there is no guarantee that the estimated
domains Δj will be hyperrectangular. This may result in hybrid models that are
meaningless from a biological point of view, since they do not preserve the con-
cept of a switching threshold associated with a concentration variable. Another
problem with existing techniques is that they produce a single model. This is
not realistic in our case, because only a fraction of the modes are encountered in
the experiments. As a consequence, several hybrid models of the network, each
characterized by a different combination of thresholds for the variables, may be
consistent with the data and need to be considered.

For all of these reasons, we propose a pattern recognition algorithm tailored
to the features of PWARX models of genetic regulatory networks in the next
three sections.

4 Switching Thresholds and Multicuts

Let F1, . . . ,Fs be disjoint sets collecting finitely-many points in Rn and F∗ =
{F1, . . . ,Fs}. Hereafter, we focus on the problem of separating the sets in F∗

with hyperplanes parallel to the linear combination of n − 1 axes. In order to
illustrate the main concepts, we will use the collection F∗ depicted in Figure 1(a).
Pairs of distinct sets in F∗ will often be indexed by means of pairs in U =
{(p, q) ∈ {1, . . . , s}2 : p < q}.

(a) (b) (c)

Fig. 1. Simple example of multicuts. (a) Data sets F∗. (b) Multicut C∗: bold lines
correspond to cuts and dotted lines are the limits of their equivalence class. (c) Multicut
Max� C∗.

Definition 1 (Ap-hyperplane). An axis-parallel (ap-) hyperplane in Rn with
direction i ∈ {1, . . . , n} is a hyperplane of equation xi = α, α ∈ R, or equiva-
lently, the zero level set of the function θ(x) = xi − α.

By abuse of notation, θ will denote both an ap-hyperplane and its associated
function. The function dir(θ) gives the direction i of the ap-hyperplane θ, while
the function Z (θ) gives the zero-level α. We introduce the following set-valued
functions that will turn out to be useful below:

I−(θ) = {j : ∀x ∈ Fj , θ(x) < 0}, B−(θ) = ∪j∈I−(θ)Fj ,
I+(θ) = {j : ∀x ∈ Fj , θ(x) > 0}, B+(θ) = ∪j∈I+(θ)Fj .
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Definition 2 (Separability). Let Fp and Fq be disjoint sets collecting finitely
many points in Rn. An ap-hyperplane θ in Rn separates Fp and Fq if there exists
δ ∈ {+1,−1} such that for all x ∈ Fp ∪ Fq one has δ θ(x) > 0, if x ∈ Fp, and

δ θ(x) < 0, if x ∈ Fq. In this case, we write Fp

θ
� Fq. Fp and Fq are separable

if there exists an ap-hyperplane separating the sets.

We introduce two additional functions on sets Fp and Fq, for i ∈ {1, . . . , n},

Inf i(Fp,Fq) = min(maxx∈Fp xi,maxx∈Fq xi),
Supi(Fp,Fq) = max(minx∈Fp xi,minx∈Fq xi).

In Figure 1, F1 and F2 are separable since there exist ap-hyperplanes in
the x1-direction (e.g., θ(1),1 and θ(2),1), such that all points in F1 lie on one
side of the hyperplane θ(1),1 and all points of F2 on the other side. Notice that
the sets F1 and F2 are not separable in the x2-direction. As can be verified in
Figure 1, the ap-hyperplane θ(1),1 separates more sets than the ap-hyperplane
θ(2),1. The difference in separation power of ap-hyperplanes can be formally
defined as follows.

Definition 3 (Separation power). The separation power of an ap-hyperplane

θ is the set-valued function S(θ) = {(p, q) ∈ U : Fp

θ
� Fq}.

In the remainder of this section, we focus on ap-hyperplanes in the set Θ =
{θ : S(θ) �= ∅}. The comparison of the separation power of ap-hyperplanes in
Θ in a given direction motivates the introduction of equivalence classes of ap-
hyperplanes.

Definition 4 (Equivalence). Two ap-hyperplanes θ, θ′ ∈ Θ are equivalent if
dir (θ) = dir (θ′) and S(θ) = S(θ′). Equivalent ap-hyperplanes will be denoted by
θ ∼ θ′ and the equivalence class of θ by [θ] = {θ′ : θ′ ∼ θ}.

Following the above definition, the ap-hyperplanes θ(1),1 and θ(2),1 in Figure 1
are not equivalent.

We recall that, given an equivalence relation ∼ on a set X and a function
f : X → Y , f is invariant under ∼ if x ∼ y implies f(x) = f(y). It is not
difficult to show that the functions dir, S, I+, I−, B+ and B− are invariant
under the equivalence relation ∼ defined in Definition 4. This implies that we
can generalize these functions to the quotient set E∗ = Θ/ ∼. Note also that the
cardinality of E∗ is finite [21].

Although all ap-hyperplanes in an equivalence class E ∈ E∗ have the same sep-
aration power, only one is optimal in a statistical sense [20]. This ap-hyperplane
will be called a cut.

Definition 5 (Cut). Let E ∈ E∗ and i = dir (E). The cut associated to E is the
ap-hyperplane θ ∈ Θ such that

Z(θ) = Inf i(B+(E),B−(E)) +
Supi(B+(E),B−(E))− Inf i(B+(E),B−(E))

2
. (6)
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In what follows the set of all cuts is denoted by C∗. Since E∗ and C∗ are isomor-
phic, the cardinality of C∗ is also finite. In the example with three data sets in
Figure 1(a), C∗ is composed of five cuts (θ(1),1, θ(2),1, θ(3),1, θ(1),2, and θ(2),2),
which are represented in Figure 1(b) by means of bold lines.

Intuitively, we would be inclined to say that the cut θ(1),1 is more powerful
than θ(2),1, in the sense that the former separates F1 and F2 as well as F1 and F3,
whereas the latter separates only F1 and F2 (that is, S(θ(1),1) = {(1, 2), (1, 3)}
and S(θ(2),1) = {(1, 2)}). This motivates the introduction of the following rela-
tion on C∗, denoted by /:

θ / θ′ if S(θ) ⊆ S(θ′) and dir (θ) = dir (θ′). (7)

It is straightforward to show that / is reflexive, antisymmetric, and transitive,
and hence that / is a partial order on C∗. That is, C∗ is a poset (partially ordered
set).

Fig. 2. (a) Poset diagram for the set of cuts C∗ in Figure 1. The diagram shows, e.g.,
θ(2),1 � θ(1),1. (b) Poset diagram for the down-set of M = {θ(1),1, θ(3),1, θ(2),2}, which
is a multicut for Figure 1. In fact, M equals Max� C∗.

The poset diagram corresponding to the example in Figure 1 is shown in
Figure 2(a). As for any poset, C∗ admits maximal and minimal elements. The sets
of maximal and minimal elements of C∗ are denoted by Max� C∗ and Min� C∗,
respectively. For instance, in Figure 2(a) Max� C∗ = {θ(1),1, θ(3),1, θ(2),2}.

In general, several cuts will be required to separate all sets in F∗. This moti-
vates the introduction of multicuts.

Definition 6 (Multicut). A multicut M of F∗ is a finite set of cuts such

that for all (p, q) ∈ U there exists a θ ∈ M, such that Fp

θ
� Fq. A collection

F∗ is said to be m-separable if there exists a multicut of F∗ or, equivalently, if
U = ∪θ∈M S(θ).

We call M∗ the set of multicuts. Due to the fact that C∗ is finite, M∗ is finite
as well. Notice that M∗ may be empty, that is, F∗ may not be m-separable.
In the example of Figure 1, M = {θ(3),1, θ(2),2} is a multicut since we have
S(θ(3),1) = {(1, 2), (2, 3)} and S(θ(2),2) = {(1, 3)}.

The following proposition, proven in [21], states a relevant property of C∗.
Proposition 1. F∗ is m-separable if and only if C∗ is a multicut.

We define an obvious partial order relation on the set of multicuts M∗, the set
inclusion ⊆. The poset M∗ for the example in Figure 1 consists of 20 multicuts
(figure not shown).
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To every subset B of M∗ we can associate a down-set, which consists of the
multicuts in M∗ upper bounded (according to ⊆) by some multicut in B. For
reasons that will become clear below, we focus here on the down-set of singletons
B = {M}, for some M ∈M∗.

Definition 7 (Down-set of multicut set). The down-set of {M},M ∈M∗,
denoted by ↓ {M}, is defined by ↓ {M} = {M′ ∈M∗ :M′ ⊆M}.

Consider the multicut Max� C∗ in the example (Figure 2(a)). The down-set of
{Max� C∗} is the union of all sets appearing in Figure 2(b). We note that ↓ {M}
is also a poset with respect to set inclusion.

5 Formulation of Switching Threshold Reconstruction
Problem

The introduction of the concepts of cut and multicut, and the partial orders
defined on them, allows us to formulate the problem of reconstructing switching
thresholds in a more precise way. In general, the available data are consistent
with a large number of multicuts, and thus with a large number of PWA models
of the genetic regulatory network. A priori there is no reason to prefer one of
these models above the others. However, in practice we are most interested in
the minimal models that account for the available data, that is, those models
that contain a minimal number of thresholds and separate all pairs of sets in F∗.
Assuming that the set of data points is m-separable, so that C∗ is a multicut, it
seems reasonable to accept as solutions all multicuts in Min⊆ ↓ {C∗}.

Notice though that C∗ may contain many cuts with a weak separation power
that could be eliminated beforehand if we are only interested in finding minimal
multicuts. That is, we can remove cuts θ ∈ C∗ if there exists another θ′ ∈ C∗,
θ′ �= θ, such that θ / θ′. Eliminating these cuts does not affect the m-separability
of the sets of data points, as indicated by the following proposition (proven in
[21]), which should be compared with Proposition 1.

Proposition 2. Max� C∗ is a multicut if and only if F∗ is m-separable.

Once C∗ has been reduced to Max� C∗, our switching threshold reconstruction
problem can be recast into the problem of computing the set

Min⊆ ↓ {Max� C∗}. (8)

Notice that Max⊆ ↓ {Max� C∗} is {Max� C∗} itself, so that we will call Max� C∗
the maximal multicut. In the example of Figure 1, Max� C∗ consists of three cuts,
as shown in Figure 2(a). That is, two cuts with obvious weaker separation power
have been eliminated (θ(2),1 and θ(1),2). The down-set of {Max� C∗} is shown
in Figure 2(b). It has three minimal multicuts: {θ(1),1, θ(3),1}, {θ(1),1, θ(2),2},
and {θ(3),1, θ(2),2}. As illustrated by the example, there will generally be several
minimal multicuts. We can distinguish between locally and globally minimal
multicuts.
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Definition 8. Let M be a multicut of F∗. M is locally minimal if for all θ ∈
M, the set M\{θ} is not a multicut of F∗. M is globally minimal if

|M| = min
M̃∈Mmin

|M̃|, (9)

where Mmin is the set of all locally minimal multicuts of F∗.

It can be shown (see [21]) that the elements of Min⊆ ↓ {Max� C∗} are locally
minimal multicuts, but they are not necessarily globally minimal.

The above remarks lead us to a final refinement of the problem statement:

find all globally minimal multicuts in Min⊆ ↓ {Max� C∗}. (10)

6 Algorithms for Computing Switching Thresholds

In this section we present an approach to compute the multicuts satisfying cri-
terion (10), and thus infer the minimal set of switching thresholds for a PWA
model of a genetic regulatory network from a classified data set F∗ .

The computation of the set of all cuts (C∗) is rather straightforward, based on
the definition of a cut (Definition 5). For sake of brevity, we omit the algorithm
which can be found in [21]. Similarly, the set of maximal cuts (Max� C∗) can
be computed by applying directly the definition of maximal element of C∗ with
respect to the partial order (7) (see [21] for further details).

A more challenging task is the computation of all globally minimal multicuts.
In order to find them, we could in principle enumerate all subsets of Max� C∗
and verify minimality by means of Definitions 6 and 8. However, this procedure is
computationally prohibitive even for simple examples. Therefore, in the sequel,
we present an additional result on multicuts that will allow us to reduce the
dimension of the search space.

Definition 9 (Redundancy). Let M be a multicut of F∗. A cut θ ∈ M is
redundant in M, if S(θ) ⊆ ∪θ′∈M\{θ}S(θ′).

In the example of Figure 1, each of the three cuts in the multicut {θ(1),1, θ(3),1,
θ(2),2} is redundant. The following proposition (proven in [21]), shows that re-
dundant cuts can be safely ignored.

Proposition 3. A multicut M of F∗ is locally minimal if and only if no θ ∈M
is redundant in M.

Definition 10 (Kernel). Let M be a multicut of F∗. The kernel of M is
defined as ker(M) = {θ ∈M : ∃u ∈ S(θ), � ∃θ′ ∈ M \ {θ}, u ∈ S(θ′)}.

From Definition 10, it is apparent that ker(Max� C∗) collects the cuts inM that
must belong to every minimal multicut, otherwise at least one pair of sets in F∗

will not be separated. In the case of M = {θ(1),1, θ(3),1, θ(2),2} in the example of
Figure 1, the kernel is empty: none of the cuts is indispensable.
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Algorithm 1. Create the set M∗
min of all globally minimal multicuts

1: Initialize the global variables M∗
min = ∅ and best = |Max� C∗|. Initialize Min =

ker(Max� C∗)
2: if U = ∪θ∈MinS(θ) then
3: Append ker(Max� C∗) to M∗

min and exit
4: else
5: Branch(Min)
6: end if

function Branch(Min)
1: for all θ ∈ Max� C∗\Min do
2: if S(θ) �⊆ ∪θ′∈Min

S(θ′) then //θ is not redundant in Min ∪ {θ}.
3: Set Mout = Min ∪ {θ}
4: if U = ∪θ′∈MoutS(θ′) then //Mout is a multicut.
5: if |Mout| = best and Mout �∈ M∗

min then
6: Append Mout to M∗

min

7: else if |Mout| < best then
8: Set M∗

min = {Mout} and best = |Mout| //Reset M∗
min and update

best .
9: end if

10: else if |Mout| < best then
11: Branch(Mout)
12: end if
13: end if
14: end for

The notions of redundancy and kernel are used to speed up the branch-and-
bound strategy of Algorithm 1 below, computing the setM∗

min ⊆M∗ of globally
minimal multicuts. The basic idea is to start with a small subset of Max� C∗,
given by ker(Max� C∗), and add new cuts iteratively.

During the execution of Algorithm 1, the global variable best stores the size
of the smaller multicut found so far. If ker(Max� C∗) is a multicut, it is also
the only globally minimal multicut in Max� C∗ and the algorithm terminates
(lines 1 and 1 of the main procedure). Otherwise, the function Branch is called
in order to add suitable cuts to ker(Max� C∗). At line 1 of the function Branch,
the addition of a new cut θ to Min is considered only if θ is not redundant in
Mout = Min ∪ {θ} (following Proposition 3). Lines 1-1 process sets Mout that
are multicuts and modify the setM∗

min accordingly. More specifically, a multicut
of size best is added to M∗

min (line 1), while a multicut of size less than best
causes the reset of the setM∗

min (line 1) and the update of best . These operations
guarantee that only globally minimal multicuts will be stored in M∗

min.

7 Reconstruction of Switching Thresholds in PWA Model
of Carbon Starvation Response of E. coli

In order to test the applicability of the multicut approach, we have used it for the
reconstruction of switching thresholds in a PWA model of the carbon starvation
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response in the bacterium Escherichia coli. In the absence of essential carbon
sources, an E. coli population abandons exponential growth and enters a non-
growth state called stationary phase. On the molecular level, the transition from
exponential phase to stationary phase in response to a carbon stress is controlled
by a complex genetic regulatory network.

A PWA model of the carbon starvation response has been developed in
E. coli [14]. The model describes how a carbon stress signal is propagated
through a network of interactions between global transcriptional regulators of
the bacterium, so as to influence the synthesis of stable RNAs and thereby adapt
the growth of the cell. For this study, we have used a simplified version of this
model (Figure 3), which preserves essential properties of the qualitative dynamics

Signal
Fis

CRP

Stable RNAs
GyrAB

Fis Synthesis of protein Fis

Legend

Activation

Inhibition

Fig. 3. (a) Simplified PWA model of the carbon starvation network in E. coli
[14]. The variables xCRP , xF is, xGyrAB, and xrrn denote the concentrations of
CRP, Fis, GyrAB, and stable RNAs, while xS represents the carbon starva-
tion signal (s+(xS, θS) = 1 means that the carbon starvation signal is present).
The variables have been rescaled to the interval [0, 1], and the following param-
eter values have been used for the simulations: θ1

CRP = 0.33, θ2
CRP = 0.67,

θ1
F is = 0.1, θ2

F is = 0.5, θ3
F is = 0.75, θGyrAB = 0.5, θrrn = 0.5, θS = 0.5,

γCRP = 0.5;, γF is = 2, γGyrAB = 1, γrrn = 1.5, γS = 0.5, κ0
CRP = 0.25,

κ1
CRP = 0.4, κ1

F is = 0.6, κ2
F is = 1.15, κGyrAB = 0.75, κrrn = 1.12, (b)

Graphical representation of the PWA model, indicating genes and their regulatory
interactions. The interactions in bold have been correctly identified by the best glob-
ally minimal multicuts obtained from the data for the reentry into exponential phase
after a carbon upshift (MC2 in Figure 5(c)) and for the entry into stationary phase
(results not shown).
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predicted by the original model, as verified by means of the approach described
in [8]. In response to a carbon starvation signal, the system switches from an
equilibrium point characteristic for exponential growth to another equilibrium
point, corresponding to stationary phase. Reentry into exponential phase after a
carbon upshift gives rise to a damped oscillation towards the exponential-phase
equilibrium point.

The use of reporter genes encoding fluorescent and luminescent proteins makes
it possible to obtain precise and densely-spaced measurements of the expression
of the genes in the carbon starvation response network. This kind of data is
well-suited for system identification purposes, as shown previously in [2, 6]. In
this paper, we use simulated data to test the multicut approach, staying close
to the expected noise and sample density of the real measurements.

Figure 4 gives an indication of the data obtained from simulating the reentry
into exponential phase after a carbon upshift. In order to separate the threshold
reconstruction problem from the classification problem for the purpose of this
paper, we have generated the correct classification by detecting mode switches
during simulation.

The resulting datasets have been analyzed by means of a Matlab implemen-
tation of the algorithms presented in Section 6. The results for the transition
from stationary to exponential phase after a carbon upshift are summarized
in Figure 5. The algorithm finds the maximal multicut C∗, consisting of six
cuts (θ1, . . . , θ6). In order to get an idea of the separation power of the cuts,
Figure 5(b) pictures the projection of the data points on the (xFis, xGyrAB)-
subspace. As can be seen, the cuts θ2, θ5, and θ6 nicely separate the classes
generated from the damped oscillation (Figure 4).
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Fig. 4. Simulation of the reentry into exponential phase following a carbon upshift,
using the PWA model in Figure 3(a). In order to mimic the absence of a carbon stress,
xS(0) has been set to 0. For each protein concentration variable, the mode switches
are indicated by means of vertical bars.
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Cut Variable Threshold value Interaction Correct? (Y/N)
θ1 xF is 0.26 Fis activates fis N
θ2 xGyrAB 0.49 GyrAB activates fis Y
θ3 xrrn 0.03 Stable RNAs activate rrn N
θ4 xCRP 0.65 CRP inhibits fis Y
θ5 xF is 0.5 Fis activates rrn Y
θ6 xF is 0.74 Fis inhibits gyrAB Y

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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1

x
GyrAB
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(b)

Multicut Composing cuts Correct?
MC1 {θ2, θ3, θ6} {Y, N, Y }
MC2 {θ2, θ4, θ6} {Y, Y, Y }
MC3 {θ2, θ5, θ6} {Y, Y, Y }

(c)

Fig. 5. (a) Maximal multicut for the data in Figure 4. (b) Illustration of the separation
power of the cuts θ2, θ5, and θ6, included in the globally minimal multicut MC3 in (c).
The data have been projected on the (xF is, xGyrAB)-subspace. (c) Globally minimal
multicuts generated by Algorithm 1 from the maximal multicut in (a).

To each of the cuts corresponds a switching threshold, associated with a reg-
ulatory interaction in the network. For instance, one can verify in Figure 4 that
when xFis crosses the threshold value 0.5 from below, the concentration xrrn of
stable RNAs starts to increase as well. This motivates the conclusion that the
threshold where xFis equals 0.5 corresponds to the activation of the rrn operon
by Fis, an interaction that is correctly inferred from the simulation data (Fig-
ure 4). Four of the cuts in the maximal multicut correspond to real switching
thresholds of the system.

Applying Algorithm 1 to the maximal multicut yields three globally minimal
multicuts, shown in Figure 5(c). Each of the multicuts consists of three cuts,
two of which occur in every solution. The cut θ6 corresponds to the switching
threshold above which Fis starts to inhibit the expression of the gene gyrAB,
while θ2 represents the switching threshold associated with the activation of fis
by GyrAB. Notice that the globally minimal multicuts MC2 and MC3 contain
only cuts corresponding to correct switching thresholds, whereas for MC1 two
out of three thresholds are correct.

Repeating the above procedure for the second set of simulation data, corre-
sponding to the entry into stationary phase, yields a maximal multicut consisting
of four cuts, three of which correspond to a real switching threshold of the system
(results not shown). From this information, Algorithm 1 generates four globally
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minimal multicuts, each composed of two cuts. Two of the globally minimal
multicuts entirely consist of cuts corresponding to correct switching thresholds,
whereas in the other two cases one of the cuts corresponds to a non-existing
threshold.

Summarizing the results of the switching threshold reconstruction process,
the best globally minimal multicuts for the first and second data series have
been projected on the graphical representation of the carbon starvation net-
work in Figure 3. As can be seen, the multicut approach has inferred five
out of six interactions from the data (only the autoactivation of CRP is miss-
ing). As for the worst globally minimal multicuts found by the algorithm, they
nevertheless achieve the correct identification of three of the switching thresh-
olds in the model. These results confirm the in-principle applicability of our
approach.

8 Conclusions

In this paper we have proposed a pattern recognition technique for reconstruct-
ing all combinations of switching thresholds that are consistent with measured
data in PWA models of genetic regulatory networks. We have shown how to
recast this problem into finding all globally minimal multicuts of maximal cuts
that separate different sets of points within a given collection. This algorithm
is intended to be used in combination with hybrid identification procedures for
classifying the data (i.e., partitioning temporal gene expression data into subsets
associated with different regulatory modes) and for reconstructing the values of
synthesis/degradation parameters characterizing the dynamics of the network in
different regulatory domains.

A potential pitfall of the multicut approach is that the algorithms presented
in Section 6 have been derived under the assumption that the sets of points
considered are m-separable. Although this assumption is satisfied in the exam-
ple of Section 7, it may be violated in other situations for two main reasons.
The first one is that noisy data may affect the quality of the results obtained
through hybrid systems identification, and lead to a misclassification of some
data points [15]. The second reason is that genetic regulatory networks may ex-
hibit the same dynamics on different regulatory domains, a fact that may result
in a structural loss of m-separability. However, we stress that even if some pairs
of sets are not separable, this does not prevent the multicut algorithm from
finding some of the thresholds. Most importantly, the m-separability assump-
tion can be verified once C∗ has been found. We also believe that even if the
mathematical framework for multicuts developed in Sections 4 to 6 is tailored to
an idealized case, it provides a sound background for developing new methods
capable of dealing with m-inseparable collections of sets.

Acknowledgments. This research has been supported by the European Com-
mission under project HYGEIA (NEST-4995).
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Abstract. We study two questions in the theory of timed automata
concerning timed language inclusion of real-time programs modeled as
timed pushdown automata in real-time specifications with just one clock.
We show that if the specification B is modeled as a timed automaton
with one clock, then the language inclusion problem L(A) ⊆ L(B) for a
timed pushdown automaton A is decidable. On the other hand, we show
that the universality problem of timed visibly pushdown automata with
only one clock is undecidable. Thus there is no algorithm to check lan-
guage inclusion of real-time programs for specifications given by visibly
pushdown specifications with just one clock.

1 Introduction

Timed automata [4] are a standard modeling formalism for real-time systems.
Alur and Dill [4] showed the untimed reachability problem for timed automata
is decidable. However, the universality problem (whether all timed traces are
accepted) is undecidable, and therefore the timed language inclusion problem
(whether all finite timed traces accepted by A are also accepted by B) is also
undecidable. These bounds were recently tightened. The timed language inclu-
sion problem L(A) ⊆ L(B) for timed automata A and B is decidable if B has
at most one clock [13], while the proof of [4] shows two clocks are sufficient for
the universality problem to become undecidable. On the other hand, over infi-
nite timed words, one clock is enough to make the language inclusion problem
undecidable [2].

When verifying real-time software, the basic model of timed automata must
be augmented by a program stack to model procedure calls. In this case, the
model is a timed pushdown automaton: a timed automaton augmented with
a stack. Untimed reachability is decidable for timed pushdown automata [8],
in fact, the binary reachability relation for timed pushdown automata is also
decidable [9]. Since the timed language inclusion problem L(A) ⊆ L(B) is un-
decidable for timed automata if B has more than one clock, one remaining
open question is when A is a timed pushdown automaton and B is a timed
automaton that has exactly one clock (if B has no clocks, then the question
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is decidable by a reduction to reachability, using closure properties of finite
automata). We show that this problem is decidable, by extending the proof
of [13]. The question is not just of theoretical interest. Many network pro-
tocol specifications can be modeled as timed automata with just one clock,
and their software implementations are usually modeled as timed pushdown
automata [12].

The main technical content of our proof is a generic decidability result for well-
structured infinite software systems that is of independent interest in software
verification. A large class of infinite state systems have been shown decidable
using well quasi-ordering relations on the state space [1, 3, 10]. However, these
formalisms are not immediately applicable to software verification, where a pro-
gram is organized into procedures with possibly recursive calls. For software with
a finite data state space, the standard technique to compute the set of reach-
able states is context free reachability [14, 7]. Our result unifies the two worlds
by providing a context free reachability algorithm for infinite data state spaces,
whose termination is proved using well quasi-ordering relations of [1, 10].

What if we extend the expressive power of the specification formalism be-
yond timed automata? The universality (and so language inclusion) problem for
timed pushdown automata is undecidable, since the corresponding problems are
already undecidable for (untimed) pushdown automata. We must therefore con-
tend ourselves with formalisms of lesser expressive power. One such candidate
is visibly pushdown automata [6] —where the stack pushes and pops are deter-
mined explicitly by the input alphabet. (Untimed) visibly pushdown automata
are already sufficient to specify many interesting properties of software systems
[6, 5]. Moreover, they have the nice decidability properties akin to regular lan-
guages: for example, universality and language inclusion problems are decidable
for (untimed) visibly pushdown automata, and one can hope for similar decid-
ability results in the timed case. We therefore study the universality problem
for timed visibly pushdown automata with one clock. Unfortunately, we exhibit
that this problem (and hence the language inclusion problem even when there
is exactly one clock) is undecidable, thus precluding algorithmic solutions to the
problem.

Our undecidability result encodes the operation of two counter machines using
a timed visibly pushdown automaton with exactly one clock. We cannot directly
apply the undecidability proof for the universality of pushdown automata, since
the standard proof [11] is not visibly pushdown (indeed, universality is decidable
for visibly pushdown automata). Instead, we represent a configuration of a two
counter machine using two “identical” copies, one with the pop alphabet of the
visibly pushdown automaton, and the other with the push alphabet, and use the
single clock to make sure that the two copies are identical.

Thus, our results show that model checking real-time software modeled as
timed pushdown automata against real time specifications with one clock and
no stack remains decidable, however, the problem becomes undecidable as soon
as the specification formalism is allowed a visibly pushdown stack.
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2 Timed Pushdown Automata

Given an alphabet Σ, a timed word (σ, τ) ∈ Σ∗ × R∗ of length n is a word
σ = σ1σ2 . . . σn paired with a time sequence τ = τ1τ2 . . . τn such that τ is
monotonically increasing. A timed language is a set of timed words.

Let C be a set of clock variables. A clock constraint φ is defined inductively
by

φ := x ≤ c | c ≤ x | ¬φ | φ1 ∧ φ2

where x ∈ C and c ∈ Q. Φ(C) is the set of all clock constraints over C. For a set
of clocks C, a clock valuation is a function ν : C → R which describes the values
of each clock c ∈ C at an instant. A clock constraint φ ∈ Φ(C) is satisfied by the
clock valuation ν (written ν 1 φ) if [ν(c)/c]c∈Cφ is true. Given a set of clocks λ
and a clock valuation ν, let ν ↓ λ be defined as

(ν ↓ λ)(c) =
{

0 when c ∈ λ
ν(c) otherwise

Given a clock valuation ν and a time t ∈ R define (ν + t)(c) = ν(c) + t.
A timed pushdown automaton (TPDA) is a tuple M = (Σ̃, Γ,Q, S, F, C, δ),

where Σ̃ is a finite alphabet of input symbols, Γ is finite stack alphabet (we
write Γε = Γ ∪{ε} where ε is a fresh symbol not in Γ ), Q is a finite set of states,
S ⊆ Q is a set of start states, F ⊆ Q is a set of final states, C is a finite set of
real-valued clocks, and δ ⊆ (Q × Σ × Γε × Φ(C) × Q × Γε × 2C) is a discrete
transition relation.

A transition (q, a, γ, φ, q′, γ′, λ) ∈ δ is taken if the current location is q, the
input symbol is a, the stack is popped and the popped symbol is γ (if γ = ε,
then the stack is not popped), and the current valuation ν satisfies φ, and then
the new location is q′, the symbol γ′ is pushed on the stack (if γ′ = ε, then
no symbol is pushed) and the new clock valuation is ν′ = ν ↓ λ. Given a
timed word (σ, τ) of length n, a run of a TPDA M on (σ, τ) is a sequence
(q1, ν1, γ1), (q2, ν2, γ2), . . . , (qn+1, νn+1, γn+1) ∈ (Q× (C → R)× Γ ∗)∗ if for each
i ∈ {1, . . . , n} there exists t ∈ R such that (qi, σi, γ, φ, qi+1, γ̂, λ) ∈ δ, νi 1 φ,
νi+1 = νi ↓ λ+t, and there is some γ′ ∈ Γ ∗ such that γi = γ′ ·γ and γi+1 = γ′ · γ̂.
A run ρ = (q1, ν1, γ1) . . . (qn+1, νn+1, γn+1) of a TPDA M is initialized if q1 ∈ S,
ν1(c) = 0 for all c ∈ C, and γ1 = ε. The run ρ is accepting if qn+1 ∈ F . A timed
word (σ, τ) of length n is accepted by a TVPA M if there exists a run of M
on (σ, τ) that is initialized and accepting. The timed language of a TPDA M ,
denoted L(M), is the set of all timed words that are accepted by M . A TPDA
M is called universal if L(M) = (Σ̃ × R)∗, i.e., if it accepts all timed words.

A TPDA M is visibly pushdown (TVPA) if the input alphabet Σ̃ can be
partitioned into three disjoint sets Σ̃ = Σint ∪ Σc ∪ Σr of internal, call, and
return input symbols respectively, and δ ⊆ (Q×Σint × Φ(C)×Q× 2C) ∪ (Q×
Σc×Φ(C)×Q×Γ ×2C)∪(Q×Σr×Γ ×Φ(C)×Q×2C) is the visible pushdown
transition relation. The transitions of a TVPA come in three varieties. Let ν be a
clock valuation. An internal transition (q, a, φ, q′, λ) ∈ δ at clock valuation ν is a
move on the (internal) input symbol a from the state q to q′ such that ν satisfies
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φ and the resulting clock valuation ν′ = ν ↓ λ. A call transition (q, a, φ, q′, γ, λ)
is a move on the (call) input symbol a from q to q′ where ν satisfies φ, the clock
valuation is updated from ν to ν ↓ λ, and γ is pushed on the stack. A return
transition (q, a, γ, φ, q′, λ) is a move on the (return) input symbol a and stack
symbol γ, from q to q′ where φ is satisfied and ν is updated to ν ↓ λ. Given
a timed word (σ, τ) of length n, a run of the TVPA M on (σ, τ) is a sequence
(q1, ν1, γ1), (q2, ν2, γ2), . . . , (qn+1, νn+1, γn+1) ∈ (Q× (C → R)× Γ ∗)∗ if for each
i ∈ {1, . . . , n} there exists t ∈ R such that one of the following holds:

1. (qi, σi, φ, qi+1, λ) ∈ δ, νi 1 φ, νi+1 = νi ↓ λ + t, and γi+1 = γi

2. (qi, σi, φ, qi+1, γ, λ) ∈ δ, νi 1 φ, νi+1 = νi ↓ λ + t, and γi+1 = γiγ
3. (qi, σi, γ, φ, qi+1, λ) ∈ δ, νi 1 φ, νi+1 = νi ↓ λ + t, and γi+1γ = γi

Initialized and accepted runs, languages, and universality for TVPAs are defined
by restriction from TPDAs. A TVPA is a timed automaton if Σc = Σr = ∅.

The universality problem for TPDAs (resp. TVPAs) takes as input a TPDA
(resp. TVPA) M , and returns “yes” if M is universal, and returns “no” otherwise.
Notice that the universality problem for TPDAs is undecidable, even if there is
no clock, i.e., if C = ∅, since the universality of PDAs is undecidable [11].

3 One-Clock Language Inclusion Problem

We now show that the language inclusion problem L(B) ⊆ L(A) where B is a
TPDA and A is a timed automaton with one clock is decidable. This extends
the result of [13]. Our main technical tool is a decidability result for context free
reachability for well-structured transition systems.

3.1 Well-Structured Infinite Pushdown Automata

A quasi-order (or preorder) ≤ over a set A is a reflexive and transitive relation
≤⊆ A × A. A well-quasi-order (wqo) is a quasi-order where for every infinite
sequence a1, a2, a3, . . . from A, there exist i, j ∈ N where i < j and ai ≤ aj . We
say that a dominates a′ if a′ ≤ a.

An infinite pushdown automaton (∞PDA)M is a quintuple M =(Q,Σ, Γ, S, δ)
where Q is an infinite set of states, Σ and Γ are input and tape alphabets, S ⊆ Q
is a finite set of initial states, and δ ⊆ (Q×Σ×Q)∪(Q×Σ×Q×Γ )∪(Q×Σ×Γ×Q)
is a transition relation. We say M is finitely branching if for all q ∈ Q, {(q, σ, q′) ∈
δ | σ ∈ Σ, q′ ∈ Q} ∪ {(q, σ, q′, γ) ∈ δ | σ ∈ Σ, q′ ∈ Q, γ ∈ Γ} ∪ {(q, σ, γ, q′) ∈ δ |
σ ∈ Σ, γ ∈ Γ, q′ ∈ Q} is a finite set. Given a quasi-order ≤⊆ Q×Q we say that
≤ is strictly (downward) compatible with δ if for all p ≤ q:

(i) if (q, σ, q′) ∈ δ for some q′ ∈ Q then there exists p′ ∈ Q such that (p, σ, p′) ∈
δ and p′ ≤ q′;

(ii) if (q, σ, q′, γ) ∈ δ for some q′ ∈ Q and γ ∈ Γ then there exists p′ ∈ Q such
that (p, σ, p′, γ) ∈ δ and p′ ≤ q′; and

(iii) if (q, σ, γ, q′) ∈ δ for some q′ ∈ Q and γ ∈ Γ then there exists p′ ∈ Q such
that (p, σ, γ, p′) ∈ δ and p′ ≤ q′.
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A well-structured infinite pushdown automaton (∞�PDA) M = (Q,Σ, Γ, S, δ,()
is a finitely branching infinite pushdown automaton where (⊆ Q× Q is a wqo
over the set of states Q that is strictly compatible with δ.

Let M be a well-structured infinite pushdown automaton over states Q, and
let ( be a well-quasi-order over Q. Define (-reachability to be the decision
problem of whether or not for a given state q ∈ Q there exists a state q′ ∈ Q
such that q′ ( q and q′ is reachable from an initial state of M .

Theorem 1. The (-reachability problem is decidable for well-structured infinite
pushdown automata with decidable (.

Proof. The algorithm (-Reachability shown in Figure 1 computes the set Paths
⊆ S × Q. The set Paths contains pairs of states (s, q) where s is a start state,
and there is some series of transitions from M in which to arrive at q, taking into
account constraints on stack symbols. Thus the pair (s, q) ∈ Paths corresponds
to the existence of a path from s to q. To see that there is a corresponding pair
in Paths for every reachable state, if a state q remains unexplored either Update

subroutine Update(q, p, s)
if �b ∈ Basis.b � q then

Basis := Basis ∪ {q}
if q ∈ Basis and ( p � Paths or s � Summaries ) then

Paths := Paths ∪ p
Summaries := Summaries ∪ s
ToExplore := ToExplore ∪ {q}

algorithm �-Reachability(M = (Q, Σ, Γ, S, δ, �))
let Basis := {q | q ∈ S}

ToExplore := {q | q ∈ S}
Paths := {(q, q) | q ∈ S}
Summaries := ∅

in until ToExplore = ∅ repeat
remove some q from ToExplore
for each q′ ∈ Q and σ ∈ Σ where (q, σ, q′) ∈ δ do

let p = {(q′′, q′) | (q′′, q) ∈ Paths}
s = {(q′′, q′)γ | (q′′, q)γ ∈ Summaries}

in Update(q′, p, s)
for each q′ ∈ Q and σ ∈ Σ and γ ∈ Γ where (q, σ, q′, γ) ∈ δ do

let p = {(q′′, q′) | (q′′, q) ∈ Paths}
s = {(q, q′)γ}

in Update(q′, p, s)
for each q′ ∈ Q and σ ∈ Σ and γ ∈ Γ where (q, σ, γ, q′) ∈ δ do

let p = {(q′′, q′) | ∃q′′′ ∈ Q where
(q′′, q′′′) ∈ Paths and (q′′′, q)γ ∈ Summaries}

s = {�q′′, q′�γ | (q′′, q)γ ∈ Summaries}
in Update(q′, p, s)

Fig. 1. Algorithm to decide �-reachability
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was never invoked with q, or there is some state q′ which is dominated by q, and
q′ is explored. In the latter case, since ( is compatible with δ, we can be sure
that for any state p which q could have transitioned to, there will be some state
p′ ( p which q′ could transition to. If Update is never invoked with q then either
there is no explored state which made a transition to q, or at some point along
a path to q there is a state which dominates a state that is explored. Thus to
decide whether a given state p ∈ Q is (-reachable in M , it suffices to find a pair
(s, p′) from the finite set Paths such that p′ ( p.

To show that the algorithm (-Reachability indeed terminates in a finite num-
ber of steps, consider the following argument. Since ( is a wqo, there is no infinite
strictly decreasing sequence q1 � q2 � q3 � . . . from Q, and so any number of
repeated invocations of the subroutine Update can only add a finite number of
states to the set Basis. Because Basis is always a finite set, and only states
from Basis are considered in the sets Paths, Summaries and ToExplore, these
sets are also finite; thus the second phase of the subroutine Update is only in-
voked a finite number of times, and only a finite sequence of states is added
to ToExplore. For each state that is explored there are only a finite number
of successors (by the definition of ∞PDA.) Combined with a finite bound on
the number of states inserted into ToExplore, it is clear that the algorithm
(-Reachability terminates in a finite number of steps.

3.2 Decidability of Language Inclusion

We now show the decidability of language inclusion when the specification is a
timed automaton with one clock and the implementation a TPDA. Our proof
follows that of [13]. The idea is to construct an infinite pushdown automaton
by a product construction between A and B, in which we identify “bad” states
as product states which are accepting in B, and non-accepting in A. Then we
apply Theorem 1 to decide if any bad states are reachable. If some bad state is
reachable, then B accepts some string which A does not, and L(B) � L(A). If
there are no reachable bad states, then we know L(B) ⊆ L(A).

Theorem 2. For a single-clock timed automaton A and timed pushdown au-
tomaton B, L(B) ⊆ L(A) is decidable.

Proof. Given a single-clock timed automaton A=(QA, Σ, SA, FA, CA ={x}, δA),
and a TPDA B = (QB, Σ, Γ, SB, FB, CB , δB), we now define a∞�PDA P which
is the product automaton of a determinized A and non-deterministic B. We
define the product as P = (Q,Σ, Γ, S, δ,() where

Q = P(QA × (CA → R))×QB × (CB → R)
S = P(SA × (CA → {0}))× SB × (CB → {0})
δ = {((qA, qB), σ, (q′A, q

′
B)) | q′B ∈ δ′B(qB , σ), q′A = δ′A(qA, σ)}

∪ {((qA, qB), σ, (q′A, q
′
B), γ) | (q′B , γ) ∈ δ′B(qB, σ), q′A = δ′A(qA, σ)}

∪ {((qA, qB), σ, γ, (q′A, q
′
B)) | q′B ∈ δ′B(qB, σ, γ), q′A = δ′A(qA, σ)}
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and
δ′A(qA, σ) = {(q′, ν′) | (q, ν) ∈ qA, (q, σ, φ, q′, λ) ∈ δA, ν 1 φ, ν′ = ν ↓ λ}
δ′B((q, ν), σ) = {(q′, ν′) | (q, σ, φ, q′, λ) ∈ δB, ν 1 φ, ν′ = ν ↓ λ}

∪ {(q′, ν′, γ) | (q, σ, φ, q′, λ, γ) ∈ δB, ν 1 φ, ν′ = ν ↓ λ}
δ′B((q, ν), σ, γ) = {(q′, ν′) | (q, σ, γ, φ, q′, λ) ∈ δB, ν 1 φ, ν′ = ν ↓ λ}

are defined for convenience. Note that P is finitely branching since clock valu-
ations are not arbitrarily increased by a transition of A or B; rather they must
either remain constant or be (partially) reset.

As in [13], the wqo( over Q is defined as follows. Without loss of generality we
assume that all numeric values in the clock constraints of A and B are integral.
Define the set of regions Reg = {r0, r1

0 , r1, r
2
1 , . . . , rK}, where K is the largest

constant appearing in a clock constraint of A and B. For all t ∈ R, let t̄ ∈ [0, 1)
be the fractional part of t (i.e., t̄ = t− �t�). Let reg : R → Reg be the function
mapping clock values to regions defined by

reg(t) =

⎧⎨⎩
rK when t ≥ K
ri when t < K, t̄ = 0 and t = i

ri+1
i when t < K, t̄ �= 0 and i < t < i + 1

.

Let F : Q→ P((QA×Reg× [0, 1))∪ (QB ×CB ×Reg× [0, 1))) be a function
which disassembles the state structure of Q into sets of its constituents:

F ((qA, qB , νB)) = {(η, ν(x)) | (q, ν) ∈ qA, {x} = CA and η = (q, reg(ν(x)))}
∪ {(η, νB(y)) | y ∈ CB and η = (qB, y, reg(νB(y)))}

Now define G to group together tuples with the same clock fraction:

G(q) =
{(⋃

{ρ′ | (ρ′, t) ∈ F (q)}, t
)∣∣∣ (ρ, t) ∈ F (q)

}
and finally let H be defined as

H(q) = ρ1ρ2 . . . ρ|G(q)|,

where (ρi, ti) ∈ G(q) for 1 ≤ i ≤ |G(q)| and ti < ti+1 for 1 ≤ i < |G(q)|.
The codomain of H is the set of finite words on a finite alphabet. By Higman’s
Lemma, this set is well quasi-ordered with respect to the subword ordering /.
We define the quasi-order ( as q1 ( q2 if and only if H(q1) / H(q2). As shown
in [13], this is a well quasi-ordering on states.

To see that ( is strictly compatible with δ consider two states p ( q. By
the definition of (, p and q are in the same QA and QB states, and the val-
uations of their corresponding clocks are in the same regions (i.e., they satisfy
the same clock constraints.) Thus any transition that is enabled out of q has a
corresponding transition enabled out of p.

Define Bad = P((QA \ FA) × (CA → R)) × FB × (CB → R) to be the
set of “bad” states of P . Since P is a ∞�PDA with decidable (, Theorem 1
states that (-reachability is decidable on P . Let Paths be computed from
(-Reachability(P ). Now the language containment question L(B) ⊆ L(A) is
reduced to finding a state from the finite set {q | (s, q) ∈ Paths} which also
belongs to Bad, and is thus decidable.
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4 Universality of Timed Visibly Pushdown Automata

We now prove a negative result that shows that the specification formalism can-
not be extended from finite state one-clock timed automata to one-clock TVPA.
The universality problem for (untimed) visibly pushdown automata is decid-
able [6]. On the other hand, the universality problem for timed automata with
two clocks is undecidable, and (from [13]) the universality problem for timed
automata with one clock is decidable. We now show that the universality prob-
lem for TVPAs with one clock is undecidable, thus completing the decidability
picture.

The proof is by a reduction from the halting problem for two counter ma-
chines. A two counter machine is a tuple M = (I, C,D) where I : N →
({C,D}×N×N)∪ ({Inc,Dec}× {C,D}) and the domain of I is finite. That is,
M has a finite set of instructions I and counters C and D and at each instruc-
tion M can either increment or decrement one counter and proceed to the next
instruction, or conditionally jump to another instruction upon a given counter
having the value 0. For example the instruction (3, (C, 5, 7)) ∈ I means that the
instruction at location 3 is a jump to location 5 if the value of C is 0, and is
otherwise a jump to location 7. The instruction (5, (Dec,D)) ∈ I means that at
location 5 the value of counter D is decremented before advancing to location 6.

A configuration of M is represented by the triple (l, c, d) ∈ N×N×N where l
is a location and c, d ≥ 0 are the values of counters C and D. The unique initial
configuration is the triple (1, 0, 0). The set of final configurations is {(2, c, d) |
c, d ∈ N}. A run of the two-counter machine M = (I, C,D) is a sequence of
configurations (l1, c1, d1)(l2, c2, d2) . . . (ln, cn, dn) ∈ (N×N×N)∗ where for each
i ∈ {1, 2, . . . , n− 1}, we have

(li+1, ci+1, di+1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(li + 1, ci + 1, di) when I(li) = (Inc, C)
(li + 1, ci − 1, di) when I(li) = (Dec,C)
(li + 1, ci, di + 1) when I(li) = (Inc,D)
(li + 1, ci, di − 1) when I(li) = (Dec,D)
(b1, ci, di) when I(li) = (C, b1, b2) and ci = 0
(b2, ci, di) when I(li) = (C, b1, b2) and ci �= 0
(b1, ci, di) when I(li) = (D, b1, b2) and di = 0
(b2, ci, di) when I(li) = (D, b1, b2) and di �= 0

.

A run α1 . . . αn of M is accepting if α1 an initial configuration and αn is a final
configuration.

Theorem 3. Universality of single clock TVPA’s is undecidable.

Proof. We reduce from the accepting problem for two counter machines. For a
two-counter machine M = (I, C,D), fix Σint = {hi | i ∈ dom(I)}, Σc = {fc, gc},
Σr = {fr, gr} and Σ̃ = Σint ∪ Σc ∪ Σr. Given a two-counter machine M , we
build a TVPA N that accepts any string in w ∈ (Σ̃ × R)∗ such that w does
not represent an accepting run of M . The problem of finding the existence of an
accepting run of M is then reduced to verifying that N is not universal (i.e., if
the language of N is the universe, then M has no accepting run).
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We represent each configuration (i, j, k) of the two-counter machine M by a
timed word Π(i, j, k) = (hif

j
r g

k
r g

k
c f

j
c , τ) where τ1 ∈ N, and τ1 ≤ τj+1 < (τ1 + 1

4 )
< τj+2 ≤ τj+k+1 < (τ1 + 1

2 ) < τj+k+2 ≤ τj+2k+1 < (τ1 + 3
4 ) < τj+2k+2 ≤

τ2j+2k+1 < (τ1 + 1). In addition we require that for every gr there is a gc that
follows at exactly 1

4 time units, and for every fr there is a fc that follows at
exactly 3

4 time units. A sequence of configurations β1β2 . . . βn is represented as
the concatenation of timed words Π(β1)Π(β2) . . . Π(βn) where for each 1 ≤ i <
n we have βi = (αi, τ i), τ i+1

1 = τ i
1 + 1, and τ1

1 = 1.
We will build N to be a disjunction of several smaller TVPA’s which each try

to find a particular reason why the input string is not an accepting run of M .
The input alphabet of N is Σ̃, the stack alphabet is Γ = {C,D,X, Y }, and there
is one clock x. The state and transition structure is taken as the disjunction of
the smaller automata that we now describe.

One possibility is that the input string does not represent some sequence of
configurations. The regular automaton N¬format accepts strings that are not
matched by the regular expression Rformat = ((h1 ∪ h2 ∪ . . . hm)f∗

r g
∗
rg

∗
cf

∗
c )∗,

where m = |dom(I)|.
Another possibility is that at least one timing constraint is broken in the input

string. The single-clock automaton N¬schedule accepts any string in which either
the first symbol does not occur at time 1, or there exist hi, hj ∈ Σint from succes-
sive configurations where hi does not occur exactly one time unit before hj , or any
of the symbols fr, gr, fc, gc don’t fit into the intervals (τ +0, τ+ 1

4 ), (τ + 1
4 , τ + 1

2 ),
(τ + 3

4 , τ + 1), and (τ + 1
2 , τ + 3

4 ) respectively, where τ is the time of the nearest
preceding hi. The single-clock automaton N¬schedule is shown in Figure 2.

The regular automaton N¬init accepts strings that start with a configuration
which is not initial. Since an initial configuration has location 1 and both counter
values of 0, the regular expression Rinit = h1 (h1 ∪ h2 ∪ . . . ∪ hm) (h1 ∪ h2 ∪
. . . ∪ hm ∪ fc ∪ fr ∪ gc ∪ gr)∗ matches all strings that represent correct initial
configurations, where m = |dom(I)|.

The regular automaton N¬final accepts strings that end with a configuration
that is not final. Since a final configuration has location 2, the regular expression

h1, . . . , hm, (x �= 1)?

h1, . . . , hm, fc, fr, gc, gr

h1, . . . , hm, (x �= 1)?

h1, . . . , hm, (x = 1)?, x := 0

h1, . . . , hm, (x = 1)?, x := 0
fc, (

3

4
< x < 1)?

gc, (
1

2
< x < 3

4
)?

gr, (
1

4
< x < 1

2
)?

fr, (0 < x < 1

4
)?

Fig. 2. The one-counter automaton N¬schedule recognizes strings that are not properly
timed configuration sequences
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Rfinal = (h1 ∪ h2 ∪ . . .∪ hm ∪ fc ∪ fr ∪ gc ∪ gr)∗ h2 (fc ∪ fr ∪ gc ∪ gr)∗ matches
all strings that represent correct final configurations, where m = |dom(I)|.

In our textual representation of a configuration there should be a fc fol-
lowing each fr by 3

4 time units, a fr
3
4 time units before each fc, and gr if

and only if there is a gc following at 1
4 time units. The single-clock automata

N¬fr→fc , N¬fr←fc , N¬gr→gc and N¬gr←gc accept strings with unpaired fr’s and
fc’s (or gr’s and gc’s) within a configuration. As an example N¬fr→fc is shown in
Figure 3.

The automata that have been described so far accept when there is some
problem with the format of a particular configuration representation, and ac-
cept timed (or untimed) regular languages. The remaining automata will accept
when there is a particular problem with a sequence of two configurations and
will use the pushdown stack of a visibly pushdown automaton.

For each instruction/location we will use several automata to recognize an in-
valid sequence. For each instruction i that is not a branch instruction, the regular
automaton N i¬step accepts when the following instruction in the configuration
sequence is not i + 1 (e.g., represented by hi+1). For each instruction i which
increments counter C, the automata N i

¬c↑ and N i
c↑∧¬d= accept when counter C

is not incremented, or C is incremented and D does not remain the same. These
automata function by using the pushdown stack to remember how many gc’s and
fc’s appear before the fr’s and gr’s of the following configuration. Note that the
pushdown stack can only compare the counters of successive configurations, since

h1, . . . , hm, fc, fr, gc, gr

fr, x := 0

h1, . . . , hm, fc, fr, gc, grfc, fr, gc, gr, (x < 3

4
)?

h1, . . . , hm, fc, fr, gc, gr, (x > 3

4
)?

Fig. 3. The single-clock automaton N¬fr→fc recognizes strings in which some config-
uration has a symbol fr without a matching symbol fc following at 3

4 time units

fr,⊥

fr, D

fr, Xfr, X

fr,⊥

fr, D

fc/C, gc/D

fr/∗, gr/∗

fc/X, gc/X

fr/∗, gr/∗

h1, . . . , hm

fc/X, gc/X

gr/∗

h1, . . . , hm

fc/X, gc/X

fr/∗, gr/∗

h1, . . . , hm

hi hi + 1

fr/C

Fig. 4. The visibly pushdown automaton N i
¬c↑ recognizes strings in which a configu-

ration invoking instruction (Inc, C) is followed by a configuration where the C counter
is not properly incremented
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symbols can only be pushed on the stack when fc or gc are read, and can only be
popped from the stack when fr or gr are read. Figure 4 depicts this functionality.

The remaining N i
c↑∧¬d=, N i

¬c↓, N i
c↓∧¬d=, N i¬c=, N i

c=∧¬d↑, N i
c=∧¬d↓, and

N i
c=∧¬d= automata all function in a similar manner, by counting between con-

figurations using the pushdown stack.
The automata N i

c=0∧¬goto−l1
and N i

c �=0∧¬goto−l2
require no clock or stack, and

simply recognize when the configuration following a branch has a location that
does not match with the branch location.

As mentioned earlier, N is simply the disjunction of each of the machines
mentioned above. Since each automaton uses at most one clock, and are either
regular or visibly pushdown, the resulting disjunction N is a single-clock visibly
pushdown automaton. By construction N accepts any string that either doesn’t
encode a sequence of configurations of M , or encodes a sequence of configura-
tions that is not an initialized and accepting run of M . Thus by reduction, the
universality problem for N decides membership for M .

As a corollary, the language inclusion problem L(A) ⊆ L(B) where B is a timed
visibly-pushdown automaton with at least one clock is undecidable. What can
we say if the specification automaton B has no clocks (i.e., is an untimed visibly
pushdown automaton)? If A is a TVPA, then the language inclusion problem
is decidable using the closure properties of visibly pushdown automata (i.e., we
can reduce the problem to the emptiness question L(A∩¬B) = ∅, and A∩¬B is
again a TVPA). On the other hand, if A is a PDA, then the problem is already
undecidable from the untimed case.

5 Conclusions

We have sharpened the frontier for decidability of timed language inclusion.
On the one hand, we show that the language problem remains decidable if the
implementation is strengthened to be a TPDA and the specification is a timed
automaton with at most one clock. On the other hand, if we strengthen the
specification to TVPA with one clock, the problem becomes undecidable.

References
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Abstract. The problem of driving a collection of mobile robots to a
given target location is studied in the context of partial difference equa-
tions. In particular, we are interested in achieving this transfer while
ensuring that the agents stay in the convex polytope spanned by dedi-
cated leader-agents, whose dynamics will be given by a hybrid Stop-Go
policy. The resulting system ensures containment through the enabling
result that under a Laplacian, decentralized control strategy for the fol-
lowers, these followers will converge to a location in the convex leader
polytope, as long as the leaders are stationary and the interaction graph
is connected. Simulation results testify to the viability of the proposed,
hybrid control strategy.

1 Introduction

This paper investigates a particular subarea of multi-agent control, namely the
so-called containment problem. (See for example [1, 2].) The problem is to drive a
collection of autonomous, mobile agents to a given target location while guaran-
teeing that their motion satisfies certain geometric constraints. These constraints
are there to ensure that the agents are contained in a particular area during
their transportation. These types of issues arise for example when a collection
of autonomous robots are to secure and then remove hazardous materials. This
removal must be secure in the sense that the robots should not venture into
populated areas or in other ways contaminate their surroundings.

We approach this problem from a leader-follower point-of-view [3, 4, 5]. In
particular, we will let the agents move autonomously based on local, consensus-
like interaction rules, commonly found in the literature under the banner of

J Hespanha and A. Tiwari (Eds.): HSCC 2006, LNCS 3927, pp. 212–226, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
.
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algebraic graph theory [6, 7, 8]. The reason for this is that the robot motion can
be described using the graph Laplacian. However, we will augment this control
structure with the addition of leader-agents. These leaders are to define vertexes
in a convex polytope (the leader-polytope) and they are to move in such a way
that the target area is reached while ensuring that the follower-agents stay in
the convex polytope spanned by the leaders, as shown in Fig. 1. As such, the
followers movements are calculated in a decentralized manner according to a
fixed interaction topology, while the leaders are assumed to be able to detect if
any of the followers violate the containment property. This strategy also explains
the title ”Laplacian Sheep” since the followers are moving using a ”Laplacian-
based” control strategy. However, they are to be ”herded” like sheep by the
leaders, and hence the title.

Fig. 1. The containment problem: The leaders are to move in such a way that the
followers remain in the convex leader-polytope for all times

It should be noted already at this point that although the subject matter is
multi-agent control, our proposed solution to the problem of selecting the leader
dynamics will be hybrid. In particular, we will use a Stop-Go policy [9, 10], in
which the leaders move according to a decentralized formation control strategy
until the containment property is about to be violated. At this point, they stop
and let the followers settle back into the leader-polytope before they start moving
again. For such a strategy to be successful, a number of results are needed,
including a guarantee that the Laplacian-based follower-control will in fact drive
the followers back into the leader-polytope. Moreover, we must also ensure that
such a control strategy is feasible in the sense of non-Zeno, live in the sense of
not staying in the Stop mode indefinitely, and convergent in the sense that the
target area is in fact reached. These are the main issues under investigation in
this paper.

In order to properly understand the behavior of such a control system, some
initial results in multi-agent control are needed. We will use the recently de-
veloped framework of Partial difference Equations (PdEs) [11] for this, and, in
particular, we will show that as long as the interaction graph is connected and
the leaders are stationary, the followers will always converge to locations in the
convex hull spanned by the leaders. This result enables the use of a Stop-Go
policy since by halting the evolution of the leaders, the containment property
can be ensured.

The outline of this paper is as follows: In Section 2 we present the mathe-
matical preliminaries needed to prove the main convergence result for the case
with stationary leaders, in Section 3. The hybrid Stop-Go control policy is
given in Section 4, followed by an illustrative example, in Section 5. Additional
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extensions to the proposed control strategy, including a hierarchical layering of
the formation, are given in Section 6.

2 Background and Mathematical Preliminaries

Even though the main focus of this paper is the development of hybrid control
strategies for the leader-agents in charge of “herding” the followers, this task
will rely on a collection of enabling results in (non-hybrid) multi-agent control.
These enabling results will allow us to structure the hybrid Stop-Go controller
in such a way that containment is achieved. Hence, before we can start defining
any hybrid control laws, some room must be given to multi-agent control. In
this section we will present the basic mathematical framework, and the main
containment results will follow in the next section.

We start summarizing basic notions of graph theory. For more details we defer
the reader to [12]. An undirected graph G is defined by a set NG = {1, . . .N}
of nodes and a set EG ⊂ NG ×NG of edges. We will also use |NG| for denoting
the cardinality of NG. Two nodes x and y are neighbors if (x, y) ∈ EG. The
neighboring relation is indicated with x ∼ y and P(x) = {y ∈ NG : y ∼ x}
collects all neighbors to the node x. A path x0x1 . . . xL is a finite sequence of
nodes such that xi−1 ∼ xi, i = 1, . . . , L. A graph G is connected if there is a
path connecting every pair of distinct nodes. G is complete if EG = NG ×NG.

Definition 1. Let S = (NS , ES) be an undirected host graph and NS′ ⊂ NS.
The subgraph S′ associated with NS′ is the pair (NS′ , ES′) where ES′ = {(x, y) ∈
ES : x ∈ NS′ , y ∈ NS′}.

Definition 1 allows basic operations in set theory to be extended to graphs.

Definition 2. Let S1 and S2 be to subgraphs of the graph S. Then, S1 ∪ S2,
S1∩S2 , S1\S2 are the graph associated with NS1∪NS2 , NS1∩NS2 , and NS1\NS2 ,
respectively.

For our purposes, we will often use graphs with a boundary.

Definition 3. Let S be a subgraph of G. The boundary of S is the subgraph
∂S ⊂ G associated with N∂S

.= {y ∈ NG \ NS : ∃x ∈ NS : x ∼ y}. The
closure of S is S̄ = ∂S ∪ S.

Note that the definition of the boundary of a graph depends upon the host graph
G. This implies that if one considers three graphs S′ ⊂ S ⊂ G, the boundaries
of S′ in S and in G may differ.

In our case, the nodes of the host graph G represent agents and the edges
are communication links. In particular, an agent x has access to the states of
all its neighbors and can use this piece of information to compute its control
law. In this setting, partial communication amounts to considering incomplete
graphs. However, we always assume that the host graph is connected, otherwise
the agents are split in one or more sub-groups that do not exchange information.
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In order to model the collective behavior of the agents we will use functions
f : NG �→ Rd defined over a graph G [13]. The partial derivative of f is defined as
∂yf(x) .= f(y)−f(x) and enjoys the following properties: (i) ∂yf(x) = −∂xf(y),
(ii) ∂xf(x) = 0 and (iii) ∂2

yf(x) = −∂yf(x). The Laplacian of f is given by

Δf(x) .= −
∑

y∈NG,y∼x

∂2
yf(x) = +

∑
y∈NG,y∼x

∂yf(x), (1)

where the last identity follows from property (iii). The integral and the average
of f are defined, respectively, as∫

G

f dx
.=
∑

x∈NG

f(x), 〈f〉 .=
1

|NG|

∫
G

f dx. (2)

Let L2(G|Rd) be the Hilbert space composed by all functions f : NG �→ Rd

endowed with the norm ‖f‖2L2 =
∫

G‖f‖2. We will use the shorthand notation L2

when there is no ambiguity on the underlying domain and range of the functions.
Let S be a subgraph of G and ∂S its boundary in G, such that S ∪ ∂S = G

As in [13], we also consider the Hilbert space H1
0 (S) = {f ∈ L2(G) : f|∂S = 0}

(see [13] for the definition of a suitable norm on H1
0 (S)). Note that a function

f ∈ H1
0 (S) is defined on S̄ and possibly non null only on S.

The next theorem, proved in [13], characterize the eigenstructure of the Lapla-
cian operator defined on H1

0 (S).

Theorem 1. Let G be a connected graph and S a proper subgraph of G. Then,
the operator Δ : H1

0 (S|Rd) �→ L2(S̄|Rd) has |NS |d strictly negative eigenvalues.
Moreover, the corresponding eigenfunctions form a basis for H1

0 (S|Rd).

3 Multiple Stationary Leaders

In this section we use PdEs for modeling and analyzing a group of agents with
multiple leaders. A leader is just a vehicle that moves along a prescribed trajec-
tory, independently of the motion of all other vehicles. However, followers that
are neighbors to the leader can use the leader state in order to compute their
control inputs.

Let r(x, t) be the position of the agent x at time t ≥ 0, where1 r ∈ L2. The
communication network is represented by the undirected and connected graph
G. For distinguishing between leaders and followers, we consider two subgraphs
SF and SL of G such that SF ∪ SL = G and ∂SF = SL, where the subscripts
denote ”Leaders” and ”Followers” respectively. Note that we assume that all
agents are either designated as leaders or followers.

As already mentioned in the introduction, we will assume that the followers
obey the simple dynamics ṙ(x, t) = u(x, t), where

u(x, t) .= Δr(x, t) (3)
1 For sake of conciseness, for a function f(x, t) : NG × R+ → Rd we will often write

f ∈ L2 instead of f(·, t) ∈ L2.



216 G. Ferrari-Trecate et al.

is the Laplacian control law. Let r̂(x, t), x ∈ N∂SF (i.e. in the set of leaders,NSL)
be the trajectory of the leaders. Then, the collective dynamics is represented by
the model

ṙ(x, t) = Δr(x, t) x ∈ NSF (4a)
r(x, t) = r̂(x, t) x ∈ N∂SF (4b)

endowed with the initial conditions r(·, 0) = r̃ ∈ L2(SF ).
Model (4) is an example of a continuous-time Partial difference Equation

(PdE) with non-homogeneous Dirichlet boundary conditions. We defer the reader
to [13, 11, 14] for an introduction to PdEs.

Laplacian control has been one of the most studied control paradigms for
multi-agent systems. The main reason is that Laplacian control allows the agents
to achieve globally coordinated behaviors, despite its decentralized nature. The
main results on Laplacian control available in the literature and specialized to
model (4) are:

– in the leaderless case (i.e. ∂SF = ∅), the Laplacian control solves the rendez-
vous problem, i.e. r(x, t) → r∗ ∈ Rd, ∀x ∈ NG as t → +∞. Moreover,
the agents achieve average consensus, i.e. r∗ = 〈r̃〉. These results have been
established in [15, 16] through the joint use of tools in control theory and
algebraic graph theory. A formal analysis of the PdE (4a) has been conducted
in [11, 14] showing a complete accordance with results available within the
theory of the heat equation [17];

– in the case of a single leader (i.e. N∂SF = {xL}) with fixed position (i.e.
r̂(xL, t) = r̄ ∈ Rd), Laplacian control solves the rendez-vous problem with
r∗ = r̄ [15]. This property has also been shown in [11, 14] within the PdE
framework, thus highlighting the profound links between model (4) and the
heat equation with Dirichlet boundary conditions [17].

A first aim of this paper is to characterize the asymptotic behavior of the
followers in the presence of multiple leaders with fixed positions. To this end,
for the remainder of this section, we will assume that r̂(x, t) = r̄(x) ∈ L2(∂SF ).
The equilibria of (4) are then given by the solutions to the PdE

Δh(x) = 0 x ∈ NSF (5a)
h(x) = r̄(x) x ∈ N∂SF (5b)

and they have been studied in [13]. In particular, [13, Theorem 3.5] shows that if
the hosting graph G is connected and N∂SF �= ∅ then, the PdE (5) has a unique
solution2 h(x). By analogy with the jargon of Partial Differential Equations, h
is termed the harmonic extension of the boundary conditions r̄.

Our next aim is to verify that r → h as t → +∞. Let us consider the
decomposition

r(x, t) = r0(x, t) + h(x), r0 ∈ H1
0 (SF ) (6)

2 [13, Theorem 3.5] assumes that the subgraph S is induced (see [13] for the definition
of induced subgraphs). However, a careful examination of the proof, reveals that this
assumption is unnecessary.
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(a) (b)

Fig. 2. An example of the application of Theorem 2 is given. Initially, some of the
followers (white) are located outside ΩL but after a while they have all reached ΩL,
spanned by the stationary leaders (black). The edges between agents capture the in-
formation flow in this static interaction graph.

Since h does not depend upon time and Δh = 0, ∀x ∈ NSF , the PdE (4) is
equivalent to the following one

ṙ0(x, t) = Δr0(x, t) x ∈ NSF (7a)
r0(x, t) = 0 x ∈ N∂SF (7b)

From (6), it is apparent that the problem of checking if r → h as t → +∞ can
be recast into the problem of studying the convergence to zero of the solutions
to the PdE (7). The fact that r0 → 0 as t → +∞ follows from Theorem 1 and
it can be shown by proceeding exactly as in the proof of [11, Theorem 7]3.

The next Theorem, proved in Appendix A, highlights a key geometrical feature
of h(x). For a set X of points in Rd, Co(X) will denote its convex hull. Moreover,
the setΩL is the convex hull of leaders positions, i.e.ΩL

.= Co({r̄(y), y ∈ N∂SF }).

Theorem 2. Let S1 be a nonempty connected subgraph of SF and ∂S1 be its
boundary in G. Then, ∀x ∈ NS1 it holds

h(x) ∈ Co({h(y), y ∈ N∂S1}). (8)

Moreover, one has that h(x) ∈ ΩL, i.e. that the position of each follower lies in
the convex hull of the leaders positions. Finally, if ΩL is full dimensional, then
h(x) ∈ ΩL\∂ΩL, ∀x ∈ NSF .

This result is illustrated in Fig. 2.
Another geometrical feature which we need is the following:

Theorem 3. Suppose that ΩL is fully dimensional and that r(x, t) is evolving
according to (4). Suppose that, at a given time t = t, there is an agent x ∈ NSF

such that r(x, t) ∈ ∂ΩL. Then, two situations may occur:
3 Actually, [11, Theorem 7] proves a stronger property, namely that the origin of (7)

is “exponentially stable on the space H1
0 (S)”. The definition of stability of equilibria

on subspaces is provided in [11].
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1. there exists an (affine) hyperplane χ such that

r(x, t) ∈ χ ∩ ∂ΩL, and r(y, t) ∈ χ ∩ ∂ΩL ∀y ∈ P(x).

Then:
∃α > 0 : r(x, t) + αṙ(x, t) ∈ χ ∩ ∂ΩL, (9)

2. otherwise,
∃α > 0 : r(x, t) + αṙ(x, t) ∈ ΩL \ ∂ΩL. (10)

Note that (9) means that the velocity of x will be along the hyperplane χ (in
other words, the agent may slide on the boundary ∂ΩL), whereas (10) means
that the velocity of x is pointing inside the polytope ΩL.

Proof: (Theorem 3)
Since r(x, t) obeys to (4), by rearranging terms we obtain:

ṙ(x, t) = −|P(x)|r(x, t) +
∑

y∈P(x)

r(y, t).

Then, setting α = |P(x)|−1, it holds:

r(x, t) + αṙ(x, t) = |P(x)|−1
∑

y∈P(x)

r(y, t),

i.e., r(x, t)+αṙ(x, t) is the barycenter b(Yx) of the polytope Yx
.= Co({r(y, t), y ∈

P(x)}). Note that: first Yx ∈ ΩL, second, thanks to convexity, the barycenter of
Yx lies in the relative interior of Yx. Thus, if all y ∈ P(x) verify that r(y, t) ∈
χ ∩ ∂ΩL then Yx ⊂ χ ∩ ∂ΩL and so does b(Yx), i.e. b(Yx) ∈ χ ∩ ∂ΩL; otherwise
b(Yx) ∈ ΩL \ ∂ΩL. �

4 Hybrid Containment Control

Since the motion of the followers is governed directly by the Laplacian control in
(4a), what the system designers have control over is the motion of the leaders.
In particular, we would like to endow the leaders with a motion that requires as
little information sharing as possible while still ensuring containment. For this,
we define two distinctly different control modes for the evolution of the leaders.
The first of the two control modes is the Stop mode. As the name indicates, this
mode corresponds to the leaders halting their movements altogether in order to
prohibit a break in the containment:

STOP :
ṙ(x, t) = Δr(x, t) x ∈ NSF (11a)
r(x, t) = r̂(x, t) x ∈ N∂SF (11b)
˙̂r(x, t) = 0 x ∈ N∂SF (11c)
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It is clear that in order to execute this mode, no information is needed for the
leaders whatsoever.

The second control mode under consider is the Go mode, in which the leaders
move toward a given target location/formation/shape. A number of different
control laws can be defined for this, but we, for the sake of conceptual unification,
let the Go mode be given by a Laplacian-based control strategy as well.

GO :
ṙ(x, t) = Δr(x, t) x ∈ NSF (12a)
r(x, t) = r̂(x, t) x ∈ N∂SF (12b)
˙̂r(x, t) = ΔSL(r̂(x, t) − rT (x)) x ∈ N∂SF (12c)

where rT (x), x ∈ N∂SF denotes the desired target position of leader x, and where
we use ΔSL to denote the Laplacian operator defined solely over the subgraph
SL, i.e.

ΔSLf(x) .= −
∑

y∼x, y∈NSL

∂2
yf(x).

Now, under the assumption that SL is connected, and, by exactly the same
reasoning as for the standard rendez-vous problem, the leaders will converge to
positions rL(x) such that ∂yrL(x) = ∂yrT (x), ∀x, y ∈ NSL . In other words, no
convergence to a predefined point is achieved. Rather, this control law ensures
that the leaders arrive at a translationally invariant target formation.

Note that the details of the leaders’ motion is not crucial and this particular
choice is but one of many possibilities. However, this choice is appealing in that
it makes the information flow explicit, and the leaders only need access to the
positions (and target locations) of their neighboring leaders in order to compute
their motion. As such the decentralized character of the algorithm is maintained.

STOP2GO

GO2STOP

STOPGO

Fig. 3. The hybrid automaton implementing the Stop-Go policy

In order for fully specify the hybrid Stop-Go leader policy depicted in Fig. 3,
transition rules are needed as well. As before, let ΩL denote the leader-polytope
and let d(μ,ΩL) denote the signed distance

d(μ,ΩL) .= ζΩL(μ) min
x∈∂ΩL

‖μ− x‖2,

where ‖ · ‖2 denotes the Euclidean 2-norm, and where ζΩL(μ) = −1 if μ ∈ ΩL

and +1 otherwise. Using this distance measure we let the two guards be given by
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GUARDGO2STOP : ∃y ∈ NSF | d(r(y, t), ΩL) ≥ 0? (13)
GUARDSTOP2GO : d(r(y, t), ΩL) < −ε ∀y ∈ NSF ? (14)

Note that the guard STOP2GO is crossed only if the following assumptions
are verified:

Assumption 1. Let ĥ(·, t) be the solution to (5) for r̄(·) = r̂(·, t), ∀t ≥ 0 and
consider the set Ωε

L(t) = {y ∈ ΩL(t) : dist(y, ∂ΩL(t)) > ε}. Then

1. Ωε
L(t) is nonempty, ∀t ≥ 0;

2. Co({ĥ(x, t), x ∈ NSF }) ⊂ Ωε
L(t).

In particular, Assumption 1 implies that ΩL must be full-dimensional at all
times and “sufficiently fat” along every direction. Conditions relating property 2
of Assumption 1 to the graph topology are currently under investigation. A few
comments must be made about the computation and communication require-
ments that these guards give rise to. If two leaders are located at the end-points
of the same face of ΩL, then they must be able to determine if any of the fol-
lowers are in fact on this face. This can be achieved through a number of range
sensing devices, such as ultrasonic, infra-red, or laser-based range-sensors. More-
over, in order for all leaders to transition between modes in unison, they must
communicate between them, which means that either ∂SF is a complete graph,
or that multi-hop strategies are needed. In either way, a minimal requirement
for these mode transitions to be able to occur synchronously, without having to
rely on information flow across follower-agents, is that ∂SF must be connected.

STOP GOGO

Fig. 4. A hysteresis-based transition strategy avoids Zeno executions

The hysteresis threshold ε > 0 in the STOP2GO guard (see Fig. 4) is needed
in order to avoid Zeno executions, as seen from the following argument: The
distance between any points in ΩL is less than the diameter of ΩL. We let ρΩL

denote the supremum of these diameters during an execution, and note that since
the leaders are under our control, ρΩL can be prevented from being unbounded,
and we state this as an assumption:

Assumption 2. ∃M <∞ such that ρΩL ≤M .

Note that the Laplacian control law used for controlling the leaders is but one
of many possible control strategies. As such, we can always use for example a
plan-based leader control law if the Laplacian control law was to violate the
assumption.
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Under the above-mentioned assumption we have

‖ṙ(x, t)‖ = ‖Δr(x, t)‖ ≤
∑
y∼x

‖∂yr(x)‖ ≤
∑
y∼x

ρΩL ≤ NρΩL , ∀x ∈ NSF .

Now, in order for the system to leave the Stop mode, at least one follower agent
must have traveled at least a distance ε, which in turn implies that the system
will always stay for a time greater than or equal to ε/NρΩL in the Stop mode.
And, in order for the system to exhibit Zeno executions, a necessary condition is
that the difference between the transition times must approach zero [18]. And,
since this is not the case here, the non-Zeno property is established.

In the following section, an example is given that describes the operation and
the feasibility of the proposed Stop-Go control policy.

5 Examples

The previous sections show that the polytope spanned by the leaders is invariant
to the followers and the hybrid control strategy is non-Zeno. In this section, an
example is given to show the validity of the proposed control method.

A scenario where three leaders (black) maneuver four followers (white) is in-
vestigated here. The initial position and final position of the leaders are r(x, 0) =
{(1,−3), (0,−1), (0, 1)} and rT (x) = {(0,−2), (1, 2), (2,−2)} respectively. The
followers are indexed from 1 to 4 and the leaders from 5 to 7.

During the maneuvering, the Stop-Go policy is adopted, i.e. the followers are
governed by the Laplacian control, while the leaders dynamics are only affected
by other leaders, as in (12c).

In Fig. 5, the snap-shots of the herding process are shown. The magnitude of
the velocities of the agents are shown in Fig. 6, where we can see the instances
when the leaders stop to make sure that the followers remain inside the leader-
polytope. The snap-shots of the transition instances are shown in Fig. 7.

0 sec 0.25 sec 0.5 sec 0.75 sec 1 sec

1.25 sec 1.5 sec 1.75 sec 2 sec 2.25 sec

Fig. 5. A herding process where 4 followers (white) are herded by 3 leaders (black),
who use the hybrid Stop-Go control policy



222 G. Ferrari-Trecate et al.

0 0.5 1 1.5 2 2.5
0

2

4

6

8

10

12

14

16

Fig. 6. The magnitude of the velocities of the agents in the Stop-Go herding process.
Solid lines correspond the velocity of the leaders while dashed lines correspond to those
of the followers.

On the boundary (0.04 sec) Off the boundary (0.1145 sec) On the boundary (0.1315 sec) Off the boundary (0.2175 sec)

On the boundary (0.236 sec) Off the boundary (0.337 sec) On the boundary (0.3575 sec) Off the boundary (0.4775 sec)

On the boundary (0.501 sec) Off the boundary (0.643 sec) On the boundary (0.6725 sec) Off the boundary (0.8385 sec)

Fig. 7. Time instances when transitions occur. (The asterisk denotes the particular
follower who touches the boundary.)

6 Extensions: Liveness Issues and Hierarchical Control

As already mentioned, the proposed solution is non-Zeno. However, as it is cur-
rently defined, the Stop-Go policy may be blocking in the sense that the system
never leaves the Stop mode. One remedy to this problem is to allow the contain-
ment to be slightly less tight. In other words, we can select different guards, e.g.

GUARDGO2STOP : ∃y ∈ NSF | d(r(t, y), ΩL) > δ? (15)
GUARDSTOP2GO : d(r(t, y), ΩL) ≤ 0 ∀y ∈ NSF ? (16)
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What this means is that we do not enter the Stop mode until a follower is δ > 0
outside ΩL.

Assumption 3. The set ΩL is full dimensional at all times and Co({r̂T (x), x ∈
N∂SF }) is full dimensional.

Under Assumption 3, the size of ΩL is lower bounded at all times by a positive
constant and hence, by virtue of Theorem 2, every follower will eventually get
back in ΩL in finite time (since the leaders are stationary in the Stop mode).
This argument proves that the system is live in the sense of always leaving the
Stop mode eventually.

However, liveness is not enough. We moreover must ensure that we do in fact
reach the target location.

Under Assumption 2, it holds ‖ṙ(x, t)‖ ≤ N(ρΩL + δ) and we can repeat the
non-Zeno argument from Section 4 in order to see that the system always stays
in the Go mode for a time greater than or equal to δ/(N(ρΩL + δ)). In fact, this
bound can be made tighter by virtue of Theorem 3, since we do not need to take
the followers on ∂ΩL into account because the motion of the followers is such
that their velocities will never point away from ΩL. In other words, a transition
from Go to Stop occurs when the leaders ”catch up” with the followers rather
than when the followers move away from ΩL. As a result, in a non-blocking
system the leaders will be given infinitely many opportunities to move during
a finite (bounded away from zero) time horizon, which implies convergence to
the target location as long as the the leaders would in fact end up at the target
location under the influence of the Go mode alone without the leader polytope
degenerating to a convex polytope of a reduced dimension.

Another direction in which additional improvements can be expected is to
reduce the necessary information flow by imposing a hierarchical structure on
the formation. This can for instance be achieved by organizing the agents into
M layers such that each agent in layer i, i = 1, 2, . . . ,M − 1, is a follower of the
agents in its upper layer, i+1, i.e.N∂Si+1 ⊆ NSi∪NSi+2 ∀ i = 1, · · · ,M−2, where
Si denotes the subgraph corresponding to layer i and ∂Si−1 is the (non-empty)
boundary of Si−1 in the host graph G. In such a setting, the Stop-Go control
policy would still be applicable. Only the agents of the outermost layer would be
given target locations, rT (x). All other layers simply obey the Laplacian control
strategy unless that layer’s boundary is intersected by an agent belonging to
layer i − 1, at which point they would halt their motion. This, however, is a
research direction that is left to the future, and we simply mention it here as a
possible and promising extension.

7 Conclusions

In this paper we present a hybrid Stop-Go control policy for the leaders in a
multi-agent containment scenario. In particular, the control strategy allows us
to transport a collection of follower-agents to a target area while ensuring that
they stay in the convex polytope spanned by the leaders. The enabling results
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needed in order to achieve this is that, for stationary leaders, the followers in
a connected interaction graph will always converge to locations in the leader-
polytope. Additional extensions to the proposed control strategy are given in
order to ensure certain liveness properties and we outline how the proposed
methods lend themselves easily to generalizations to hierarchical information
exchange strategies. Examples are moreover presented in order to stress the
viability of the proposed approach.
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Appendix A

This Appendix is devoted to the proof of Theorem 2. We start by introducing a
basic result on polytopes.

Lemma 1. Consider the polytope P = Co(X) where X = {xi ∈ Rd : i =
1, . . . , L} and let X1 be a proper subset of X. If x ∈ Co(X1), ∀x ∈ X\X1, then
P = Co(X1).

Proof: The conditions x ∈ X\X1 and x ∈ Co(X1) imply that x is not a vertex
of P . Then, X1 includes all vertexes of P , thus proving that P = Co(X1). �

Lemma 2. Let G be a host graph, S a subgraph of G and T1 a proper subgraph of
S and ∂T1 the boundary of T1 in G. Consider x̄ ∈ N∂T1 ∩NS , and let r ∈ L2(G)
be a function verifying

r(x̄) ∈ Co({r(y) : y ∈ P(x̄)}) (17)
r(x) ∈ Co({r(y) : y ∈ N∂T1}), ∀x ∈ NT1 (18)

Let T2 be the subgraph associated with NT1 ∪ {x̄} and ∂T2 be the boundary of T2
in G. Then, for all x′ ∈ NT2 it holds

r(x′) ∈ Co({r(y) : y ∈ N∂T2}). (19)

Proof: From (17), one has that all r̄ ∈ {r(y) : y ∈ NT2} verify r̄ ∈ P where
P = Co({r(y) : y ∈ N∂T1 ∪ P(x̄)}). In particular, if x ∈ P(x̄) ∩ T1 one has that
r(x) ∈ Co({r(y) : y ∈ N∂T1}). Recalling (18) and that x̄ ∈ N∂T1 one can apply
Lemma 1 and obtain

P = Co({r(y) : y ∈ (N∂T1\{x̄}) ∪ (P(x̄)\NT1)}).
The proof is concluded by realizing that

N∂T2 = (N∂T1\{x̄}) ∪ (P(x̄)\NT1). �

We are now in a position to prove Theorem 2.
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Proof: (Theorem 2.)
Let p = x0x1 . . . xL be a path going through all nodes of S1. Since Δh(x) = 0,

∀x ∈ NSF from (1) one has

h(x) =
1

|P(x)|
∑

y∈P(x)

h(y), ∀x ∈ NSF

which implies that
h(x) ∈ Co{h(y) : y ∈ P(x)} (20)

We will prove the theorem using a recursive argument on the nodes composing
P . First, note that x1 ∈ P(x0). Let T1 and T2 be the subgraphs associated with
{x0} and NS1 ∪ {x1}, respectively. Lemma (2) can be applied with x̄ = x1.
Indeed, (17) amounts to (20) for x = x0 and (18) amounts to (20) for x = x1.
Then, from (19) we have

h(x) ∈ Co({h(y) : y ∈ N∂T2}), ∀x ∈ NT2

Now, we denote by S(i), i < L the subgraph of S1 associated with the i+1 nodes
{x0, x1, . . . , xi} and by ∂S(i) its boundary in G. Assume now that at the i-th
step, i < L we have

h(x) ∈ Co({h(y) : y ∈ N∂S(i)}), ∀x ∈ NS(i) (21)

We need to prove that:

h(x) ∈ Co({h(y) : y ∈ N∂S(i+1)}), ∀x ∈ NS(i+1) . (22)

Note that xi+1 ∈ P(xi). Set T1 = S(i) and let T2 be the graph associated with
NS(i) ∪ {xi+1}. Lemma (2) can be applied with x̄ = xi+1. Indeed, (17) amounts
to (20) for x̄ = xi+1 and (18) amounts to (21). Then, from (19) we have

h(x) ∈ Co({h(y) : y ∈ N∂T2}), ∀x ∈ NT2 .

Since, T2 = S(i+1), formula (8) is proved. If S is connected, the result holds also
for S = S1. If S is not connected, we apply (8) on each connected component
Si, 1 ≤ i ≤ n, and, by simple algebra, obtain

h(x) ∈ Co({h(y), y ∈ N∂S1 ∪ N∂S2 ∪ . . . ∪N∂Sn}).

The proof that each follower lies in the convex hull of the leaders positions is
ended by realizing that N∂S = N∂S1 ∪ N∂S2 ∪ . . . ∪ N∂Sn .

The fact that the full dimensionality of ΩL implies that h(x) ∈ ΩL\∂ΩL,
∀x ∈ NSF is proved by contradiction. Let x ∈ NSF be such that h(x) ∈ ∂ΩL and
denote with χ the supporting hyperplane of ΩL such that h(x) ∈ ΩL ∩χ. Then,
since h(x) ∈ Co({h(y), y ∈ P(x)}), all y ∈ P(x) verify h(y) ∈ ∂ΩL∩χ. Iterating
the argument over the followers lying on χ, one would find that also all leaders
x ∈ N∂SF lie on χ and this contradicts the fact that ΩL is full dimensional. �
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Abstract. We present a new method to solve the constrained finite-time
optimal control (CFTOC) problem for piece-wise polynomial (PWP) hy-
brid systems, based on Cylindrical Algebraic Decomposition (CAD). The
computational approach consists of two parts. The off-line, where the
method re-formulates the original CFTOC optimization problem in al-
gebraic form, decomposes it into smaller subproblems and then inde-
pendently pre-processes each subproblem to obtain certain structural
information, and the on-line, where this available precomputed informa-
tion is used to efficiently compute the optimal solution of the original
problem in real time. The method is illustrated through its application
to the control of a boost dc-dc converter.

1 Introduction

In this paper we present a new solution approach to the constrained finite-
time optimal control (CFTOC) problem for discrete-time piece-wise polynomial
systems. The latter term refers to systems defined over a semi-algebraic partition
of the state-input space, where a polynomial state-update and output equation is
associated with each semi-algebraic set. In particular, we are going to show how
algebraic tools can be used to solve the optimization problem that results from
the CFTOC formulation and obtain the optimal control law by combining an
off-line precomputation stage using algebraic techniques and the on-line solution
of univariate polynomial equations.

The problem considered has been motivated by the successful application of
Model Predictive Control (MPC) [1] for the optimal control of linear, non-linear
and hybrid systems. In MPC, a CFTOC problem is set up and solved, based
on a model of the controlled plant that is used to predict the plant’s behavior
over a prediction horizon. The control objectives are expressed in an objective
function and the control law is obtained by minimizing this objective function
subject to the plant’s model and the physical constraints that are present. By
employing a receding horizon strategy, feedback is achieved.
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In many applications, however, the use of MPC is restricted due to its in-
creased computational cost. The restrictions arise either from the need to use
hardware of limited cost in the control loop, or from the very small sampling
times that are present, making the time-consuming on-line solution of the
optimization problem an inviable option. Such cases have motivated the de-
velopment of new solution methods to the optimization problem, that allow one
to pre-compute off-line the optimal control law for all feasible states using the
state vector as a parameter. Such methods have been reported in [2] for linear
systems with quadratic cost and have been extended in [3] to linear systems with
linear cost expressions, and in [4, 5, 6] to linear hybrid systems in a piece-wise
affine (PWA) representation.

On the other hand, deriving an exact closed-form expression giving the so-
lution of the CFTOC problem for non-linear systems is in the general case not
possible. The authors in [7] have proposed a method to obtain an approximate ex-
plicit solution, by partitioning the state-space into polyhedral regions and locally
approximating the multi-parametric non-linear program with a multi-parametric
quadratic program (mp-QP) over each polyhedron. An algorithm is presented
that creates and iteratively refines the above mentioned partition such that the
approximation error introduced is kept below a certain specified threshold.

More recently, the authors of [8] have shown how to parameterize the optimal
solution of the CFTOC problem for nonlinear polynomial systems, i.e. systems
that comprise polynomial state-update and output equations, by combining a
precomputation stage using algebraic techniques and the on-line solution of uni-
variate polynomial equations. The CFTOC problem is reformulated in algebraic
form and then solved using cylindrical algebraic decomposition (CAD) [9]. The
CAD falls within the frame of symbolic-algebraic computation techniques. In the
recent past, numerous publications have reported on the use of such algebraic
methods to tackle computational issues in hybrid systems. As representative
examples, one can refer to the application of quantifier elimination (a process
that can be performed using CAD) for the reachability analysis of hybrid au-
tomata [10], the use of symbolic computations for the construction of abstrac-
tions of hybrid systems [11] and the application of algebraic methods to the
identification of hybrid systems [12]. Due to space limitations, a more extensive
literature review of this area cannot be provided in this paper; the reader is
referred to [11] and references therein for a more extended coverage.

CAD is a method that given a set of multivariate polynomials in n variables,
creates a special partition of Rn into components, called cells, over which all
the polynomials have constant signs. When using CAD for solving the optimiza-
tion problem, the set of polynomials comprises the objective function, together
with a real variable expressing the optimal cost, and the constraints. Therefore,
the cells provide information for the feasible region of the CFTOC problem and
the boundaries of the feasible cells give a number of candidate solutions to the
optimization problem. This method is extended in this paper to the case of
piece-wise polynomial (PWP) systems. Here, the CFTOC problem is also first
reformulated in algebraic form and subsequently decomposed into subproblems
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that are solved independently using an approach similar to the above method.
The proposed approach consists of two stages, an off-line and an on-line. The
off-line stage comprises the algebraic reformulation, the decomposition of the
CFTOC problem, and the independent solution of each subproblem. What is
obtained is a set of polynomials whose roots yield candidate optimal solutions
and optimizers to the original problem. In the on-line stage, the candidate so-
lutions are extracted from each subproblem and a comparison procedure selects
the one with the minimum cost.

The method is illustrated through its application to CFTOC problem of the
boost dc-dc converter, which, as shown in [13], can be modelled for controller
design purposes as a PWP system. On the one hand, it becomes evident that
the method suffers from the excessive computational burden associated with the
off-line stage. On the other hand, despite the inherent difficulties associated with
the method, the authors express the belief that there is still a lot of potential in
it, since.

The rest of the paper is structured as follows. In Section 2 the PWP systems
are formally defined. Section 3 derives the formulation of the CFTOC problem
and demonstrates the connection with parametric optimization. In Section 4,
the computational approach is presented and Section 5 illustrates it with an
application example. Finally, the paper is concluded in Section 6, where future
research directions are pointed out.

2 Piece-Wise Polynomial (PWP) Hybrid Systems

In this section, we formally define the class of piece-wise polynomial (PWP)
hybrid systems. This class is fairly general and the physical systems it can
describe can be abundantly found in various disciplines (nonlinear oscillators,
friction models and battery charge characteristics to name a few).

Before defining the PWP class of systems, some definitions are in order. Let
R[y1, . . . , yn] denote the ring of scalar-valued polynomials in n variables with
coefficients in the field of real numbers R. The ring of vector-valued real polyno-
mial functions in n variables is accordingly denoted with R[y1, . . . , yn]q, where q
is the dimension of the range of the functions.

Definition 1 (Semi-algebraic set). A subset S of Rn is semi-algebraic if it
can be constructed by finitely many applications of the union, intersection and
complementation operations, starting from sets of the form

{y ∈ Rn | F (y) ≤ 0}

where F is an element of R[y1, . . . , yn], the ring of real polynomials in n variables.

Consider now the class of discrete time hybrid systems that can be described as
constrained piece-wise polynomial systems of the following form:

x(k + 1) = fPWP (x(k), u(k)) := fi(x(k), u(k)), if
[
x(k)
u(k)

]
∈ Di , (1)
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where x ∈ Rn is the continuous state vector, u ∈ Rm is the continuous input
vector, {fi}s

i=1 ∈ R[x, u] are real, vector-valued polynomial functions in vectors
x and u and {Di}s

i=1 is a partition of the joint state-input space Rn+m into s
disjoint semi-algebraic sets. We furthermore assume that the origin is contained
in some Di. We call the class of systems defined by equation (1) Piece-wise
Polynomial Systems (PWP).

3 The CFTOC Problem for PWP Systems

We consider the problem of regulating system (1) to the origin. Based on the
model of system (1), and given a control input sequence {u(0), u(1), . . . , u(N −
1)}, with u(k) ∈ Rm, we predict the system evolution over a prediction horizon
of N future moves. With a slight abuse of notation, from now on we consider
u to be an r-vector, with u := [u(0)T , . . . , u(N − 1)T ]T ∈ Rr, where r = mN .
Therefore, u denotes the vector of all control inputs over the prediction horizon.
Let also x0 := x(0) = [x1(0), . . . , xn(0)]T ∈ Rn denote the initial state vector of
the system. We introduce then a cost function that penalizes the control action
and the deviation of state from the origin over the prediction horizon as follows:

J(u, x0) = LN (x(N)) +
N−1∑
k=0

Lk(x(k), u(k)) , (2)

where Lk are polynomial functions of the state x and control u called stage
costs, whereas LN – a polynomial function of the terminal state x(N) – is called
terminal cost. Note that the cost function J(u, x0) depends only on the input
control sequence and the initial condition x0 ∈ Rn. This is because state update
equation (1) implicitly expresses all states x(k) for k > 1 with respect to x0
and the input control sequence. Solving the CFTOC problem amounts to the
following optimization problem:

min
u

J(u, x0)

s.t.

{
x(k + 1) = fPWP (x(k), u(k))

g(u(k), x(k)) ≤ 0 , k = 0, . . . , N ,

(3)

where g(u(k), x(k)) ∈ R[x1(k), . . . , xn(k), u1(k), . . . , um(k)]q is a vector-valued
polynomial function representing the system constraints in the joint input-state
space Rm+n.

In the case where the objective function J(u, x0) is linear with respect to
the decision variable u ∈ Rr and the submodels fi of system (1) are affine, the
resulting optimization problem (3) is an instance of a parametric mixed-integer
linear programming problem that has been extensively studied in the literature
[4]. Closed-form formulas for problem (3) that give the optimal solution and
corresponding optimizer as a function of the parameter x0 can then be computed.
It turns out that these expressions are piece-wise affine (PWA) functions of the
parameter x0.
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3.1 Parametric Optimization and PWP Systems

For the more general class of polynomial systems we study in this paper, however,
such closed-form formulas do not always exist. In contrast to the PWA case with
linear cost [14], no “simple” expression of the optimal solution is possible, as it
necessarily involves implicit algebraic functions. Nevertheless, a parametrization
of the optimal solution is still possible by combining a precomputation stage
using cylindrical algebraic decomposition and the on-line solution of univariate
polynomial equations [8].

Namely, our goal is to minimize the function J(u, x0) with respect to u for
any given value of the parameter x0 in the region of interest. Therefore, the
polynomial parametric optimization problem consists of finding a computational
procedure for evaluating the maps

u∗(x0) : Rn −→ Rr

x0 �−→ u∗ and
J∗(x0) : Rn −→ R

x0 �−→ J∗, (4)

where u∗ = arg min
u

J(u, x0) and J∗ = min
u

J(u, x0). Generally speaking, a non-

linear optimization problem is not guaranteed to have a unique optimizer. Con-
sequently, in order for (4) not to be point-to-set maps, we focus our attention
to one (any) optimizer. In addition, we assume that the minimum is attained1.
Moreover, it has to be noted that the proposed approach is applicable without
the need for any convexity assumptions on the optimization problem.

4 Computation of the Optimal Control Law

In order to parametrically solve the optimal control problem (3), we first trans-
late the problem into an algebraic form. Then, the translated problem is de-
composed into smaller subproblems, each of which is a nonlinear optimization
problem (NLP).

4.1 Posing the Problem in Algebraic Form

Consider again system (1). For simplicity and without loss of generality, we
assume that the semi-algebraic sets Di are described by vector polynomial func-
tions hi(u, x) as

Di = {(x, u) ∈ Rm+n |hi(x, u) ≤ 0} ∀ i = 1, . . . , s . (5)

Because in every regionDi a different vector field fi is active, we can describe the
system evolution over the finite prediction horizon N by the following relation:

N−1∧
k=0

s∨
i=1

[
hi(x(k), u(k)) ≤ 0 ∧
fi(x(k), u(k)) = x(k + 1)

]
= true . (6)

1 That is, there exists a feasible u∗ ∈ Rr such that J(u∗, x0) = inf
u

J(u, x0).
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Using (6), CFTOC problem (3) can be written in the following form:

min
u

J(u, x0)

s.t.

{
N−1∧
k=0

s∨
i=1

[
hi(x(k), u(k)) ≤ 0 ∧
fi(x(k), u(k)) = x(k + 1)

]}
∧
{

N∧
k=0

[g(u(k), x(k)) ≤ 0]
}
.
(7)

4.2 Decomposing the Problem

To break the problem into smaller subproblems, we convert the logic expression
appearing in (7) into disjunctive normal form (DNF), by repeatedly applying
the distributive law. Thus, we obtain the following optimization problem:

min
u

J(u, x0) s.t.

sN∨
j=1

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∧

k ∈ [1 N ]
tj ∈ QN

[1 s]

[
htj(k)(x(k), u(k)) ≤ 0 ∧
ftj(k)(x(k), u(k)) = x(k + 1)

]⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
∧
{

N∧
k=0

[ g(u(k), x(k)) ≤ 0 ]
}
,

(8)

where tj := [tj(1), . . . , tj(N)] is an index vector, [1 s] denotes all the integers
from 1 to s, s being the number of polynomial system submodels, and QN

[1 s] is
the set of all permutations of the elements of the set{

1, . . . , 1,︸ ︷︷ ︸
N elements

2, . . . , 2,︸ ︷︷ ︸
N elements

· · ·
s, . . . , s︸ ︷︷ ︸
N elements

}
,

taken N at a time. The permutation set Q expresses all possible - feasible or
infeasible - transitions of the system from one sub-model region Di to another.

For ease of notation, we define Gk ⊂ Rn+r to be the subset of the feasible
joint (u, x0)-space, provided that the system will follow a predefined sub-model
transition sequence. As a consequence, equation (8) gives rise to sN subproblems
SPk of the form:

SPk : min
u

J(u, x0) s.t. (u, x0) ∈ Gk , (9)

where

Gk = { (u, x0) ∈ Rn+r |⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∧

k ∈ [1 N ]
tj ∈ QN

[1 s]

[
htj(k)(x(k), u(k)) ≤ 0 ∧
ftj(k)(x(k), u(k)) = x(k + 1)

]⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
∧
{

N∧
k=0

[ g(u(k), x(k)) ≤ 0 ]
}}

.

(10)

The subproblems SPk are solved using cylindrical algebraic decomposition, as
shown in the next Section.
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4.3 Solving the Subproblems

Before showing how CAD can be used to parametrically solve sub-problems (9)
and present the full MPC algorithm for PWP systems, we have to introduce
some basic algebraic notions associated to CAD.

Cylindrical Algebraic Decomposition. The notion of CAD was initially con-
ceived in the breakthrough paper by Collins [9]. Given a set P ⊂ R[y1, . . . , yn] of
multivariate polynomials in n variables, a CAD is a special partition of Rn into
components, called cells, over which all the polynomials have constant sign. The
algorithm for computing a CAD also provides a point in each cell, called sample
point, which can be used to determine the sign of the polynomials in the cell.

To perform optimization, a CAD is associated with a Boolean formula. This
Boolean formula can either be quantified or quantifier-free. By a quantifier-
free Boolean formula we mean a formula consisting of polynomial equations
{fi(y) = 0} and inequalities {fj(y) ≤ 0} combined using the Boolean operators
∧ (and), ∨ (or), and → (implies). In general, a formula is an expression in the
variables y = (y1, ..., yn) of the following type:

Q1y1...Qnyn F(f1(y), ..., fφ(y)) (11)

where F(f1(y), ..., fφ(y)) is assumed to be a quantifier-free Boolean formula and
Qi is one of the quantifiers ∀ (for all) and ∃ (there exists).

Construction of the CAD. The construction of the CAD involves three
phases. The first, the projection phase computes successive sets of polynomi-
als in n − 1, n − 2, . . . , 1 variables. The second phase is the base phase and it
constructs a decomposition of R, at the lowest level of projection, after all vari-
ables but one have been eliminated. The last phase is the extension phase where
the R-decomposition is successively extended to a decomposition of R2, R2 to
R3,...,Rn−1 to Rn. In this way, a decomposition of the full Rn-space is obtained.

Additionally, along with every set of polynomials Pk(fi(y)), the CAD con-
struction algorithm returns a special set of polynomials attached to each pro-
jection level d, called the projection level factors denoted by {Ld

i }i=1..td
. The

set of the real roots of these polynomials contains critical information about the
CAD, defining the boundaries of its cells. These roots can be isolated points in
Rn, curves, surfaces or hypersurfaces, depending on the dimension of the projec-
tion space. In Figure 1, for example, the zero sets of the level factors of a CAD
are depicted as three n-dimensional hypersurfaces. The level factor polynomials
are also called level factors. Moreover, every cell c in every projection level of a
CAD has an associated truth value v(c). The truth value of a cell is “true” if
F(f1(y), ..., fφ(y)) in (11) is true in that cell and “false” otherwise.

CAD and Parametric Optimization. Suppose we have to solve problem (9).
We associate with problem (9) the following boolean expression:

[(u, x0) ∈ Gk] ∧ [γ − J(u, x0) ≥ 0] , (12)
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tion in R2. The true cells are specially marked.
The Figure is taken from the example in [8].

where γ is a new variable associated with the cost function. We then compute
the CAD defined by the polynomial expressions in (12). For this, we use the
software tool QEPCAD B [15]. The signs of the polynomials appearing in (12)
as well as of Pk(fi(x)) resulting from the projection steps are determined in each
cell. These signs, in turn, determine the truth value of (12) in each cell – see
also Figure 2. All we need to solve problem (9) is the level factor polynomials
associated with the CAD of system (12), and the truth value of the cells. The
input formula to the CAD construction algorithm is (12). The projection phase
of the CAD is carried out up to the point where all decision variables u plus
the cost-associated variable γ have been eliminated. The resulting level factors
at this last projection level are parameterized in the variable x0, which is the
optimization problem parameter.

4.4 The MPC Algorithm

The MPC algorithm for PWP systems consists of two parts. The off-line, where
the CAD’s for systems (12) associated to optimization problems (9) are con-
structed and the associated level factor information is extracted, and the on-line,
where this precomputed information is used to obtain the solution of the original
CFTOC problem (3) in real time. It has to be emphasized that the on-line al-
gorithm needs only solve univariate polynomial equations and perform a search
over a discrete set of candidate solutions to select the optimal.
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We have to note, however, a difference of our approach as compared to the
algorithm presented in [8]. Here, we partially construct the CAD by projecting
(eliminating) only the decision variables and the variable γ. The drawback of this
“partial” approach is that in the on-line implementation one has to compare more
candidate solutions. This is because one lacks the sample point information that
comes with a full projection [8], that would enable us to immediately determine
the solution of each subproblem SPk. The benefit, however, is that the off-line
computations become much easier.

The on-line process repeatedly calls Algorithm 1 to solve each of the SPk prob-
lems. Algorithm 1 uses then the precomputed CAD information to obtain the
optimizer and optimal solution for each one of the subproblems [8] and returns
these to the calling on-line process. Subsequently, the on-line process compares
all the candidate solutions returned and selects the one with the minimum op-
timal cost J∗

k as the optimal solution for CFTOC problem (3).

Algorithm 1. (Subroutine called by the on-line algorithm)
Input: Value of the parameter x0 (state measurement taken in real time).
Output: Optimal cost J∗

k and optimizer u∗
k for sub-problem SPk.

1: Specialize parameter x0 in level factor polynomials {Ln+1
i } and solve resulting

univariate equations to obtain roots {rk} (candidate optimal costs J∗
k ).

2: for all j = 1, . . . , r do
3: specialize x0 and solve Ln+1+j

i = 0 to obtain candidate optimizers uj .
4: end for
5: Check feasibility of candidate solutions and discard infeasible ones
6: Among the feasible ones, select minimum candidate optimal cost J∗

k and related
optimizer u∗

k.
7: return: optimal cost J∗

k and optimizer u∗
k.

Remark 1. The feasibility check in step 5 of Algorithm 1 can lead to a search
of exponential complexity with respect to the dimension m of the control input
vector. This would be avoided if one were to have the associated sample point in-
formation that comes with the full projection of all variables (decision variables
and cost associated variable plus parameters) [8]. Therefore, the practical rele-
vance of the proposed partial projection scheme is restricted to problems with
a relatively small dimension m. The reader is referred to [8] for a more detailed
description of Algorithm 1.

5 Application Example

Dc-dc converters are a class of electronic power circuits that is used extensively in
regulated dc power supplies and dc motor drive applications due to its advanta-
geous features in terms of size, weight and reliable performance. In this paper the
controller synthesis problem of the fixed-frequency boost dc-dc converter is con-
sidered, where the semiconductor switch is operated by a pulse sequence with con-
stant switching frequency fs (resp. period Ts). It is then possible to regulate the
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dc component of the output voltage via the duty cycle d = ton

Ts
, where ton denotes

the interval within the switching period during which the switch is in conduction.

5.1 Modelling

Operation Principle. The circuit topology of the boost converter is shown in
Fig. 3; only the continuous conduction mode will be considered, that is operating
points for which the inductor current remains positive. The boost converter
features two operation modes with two different affine dynamics. The controller
selects the control input, the duty cycle d(k), for each period k, determining
when the switch from the first mode to the second takes place. During the time
interval kTs ≤ t < (k+d(k))Ts the switch S is in the s1 position and the inductor
is charged. At the end of this interval S is switched to s2 and power is transferred
to the load. Subsequently, at the end of the period, the switch is set back to the
s1 position.

Hybrid PWP Model. As shown in [13], one can formulate a discrete-time
PWP hybrid model of the boost converter, to be used for the design of the con-
troller. The model monitors the behaviour of the states within a single switching
period, thus providing an expression approximating the average inductor current,
required for reasons further detailed in Section 5.2. By taking x(t) = [i�(t) vc(t)]T

as the state vector, where i�(t) is the inductor current and vc(t) the capacitor
voltage, and d(k) being the manipulated variable of the control problem, this
PWP model can be written in the form introduced in Section 2

x(k + 1) = fj(x(k), d(k)) (13)

y(k) = gj(x(k), d(k)), if d(k) ∈ [
j − 1
ν

,
j

ν
] , j = 1, . . . , ν , (14)

where fj and gj are polynomial functions and ν is a design parameter that
determines the accuracy of the PWP model with respect to the exact discrete-
time map describing the converter [13].
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5.2 Control

Objectives. The main control objective is to regulate the dc component of the
output voltage vo to its reference. This regulation has to be achieved in the pres-
ence of the hard constraints on the manipulated variable (the duty cycle) which
is bounded between 0 and 1, and needs to be maintained despite changes in the
voltage source vs. The controller must also render a steady state operation un-
der a constant duty cycle, thus avoiding the occurrence of fast-scale instabilities
(subharmonic oscillations). Due to some peculiarities of the specific converter,
detailed in [13], the control problem is formulated as a current (rather than a
voltage) regulation problem, aiming at steering the average value of the inductor
current i� to a reference i�,ref . This approach is the common industrial prac-
tice [16], and yields satisfactory results in terms of the closed-loop performance.

CFTOC. For the formulation of the CFTOC, the control objectives are to
regulate the average inductor current to its reference, despite changes in the
voltage source vs, which we assume to be measurable, consistently with industrial
practice. At every time-instant k the measurements of the states and the current
reference are then normalized with respect to vs, so that a variation in the voltage
source is directly mirrored in an updated value for the current reference. Let
Δd(k) = |d(k) − d(k − 1)| indicate the absolute value of the difference between
two consecutive duty cycles. This term is introduced in order to reduce the
presence of unwanted chattering in the input when the system has almost reached
stationary conditions.

We define the penalty matrix Q = diag(q1, q2) with q1, q2 ∈ R+ and the
vector ε(k) = [i�,err(k), Δd(k)]T , with i�,err(k) being the deviation of the average
inductor current from its reference (see [13] for details). Consider the objective
function

J(D(k), x(k), d(k − 1)) =
N−1∑
�=0

‖Q ε(k + 
|k)‖22 (15)

which penalizes the predicted evolution of ε(k+ 
|k) from time-instant k on over
the finite horizon N using the quadratic cost. The control law at time-instant k
is then obtained by minimizing the objective function (15) over the sequence of
control moves D(k) = [d(k), . . . , d(k + N − 1)]T subject to the related system
equations and constraints for the PWP model.

Computation. For the numerical simulation of the proposed scheme, we em-
ploy a PWP model with ν = 3. The circuit parameters are as in [13], the penalty
matrix is chosen to be Q = diag(5, 2) and the prediction horizon is set to N = 2.

Initially, to keep the computational cost relatively low, we employ a move
blocking [17] scheme of length two, i.e. we consider the control input to be
constant over the horizon. The x0 parameter of the problem is then x0 =
[i� vc i�,ref d0]T , where d0 is the duty cycle input of the previous time step.
The move blocking renders the decision variable space Rr one-dimensional, that
is r = 1. After decomposing the algebraic formulation (8) of the CFTOC problem
into subproblems, we obtain three nonlinear programs SPk. Normally one would
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expect sN = 9 subproblems, since s = 3 and N = 2. Due to the move block-
ing, however, and because the dynamics of the system are partitioned along the
d-space only, the subproblems that we get are only three, since the same mode
of the piece-wise dynamics will be active throughout the horizon.

The projection phase of the CAD construction algorithm constructs three
level factor polynomials for each SPk. The degree of these polynomials is three,
one and one. Their coefficients are polynomial functions of the parameters i�,
vc, i�,ref and d0. In real time, these parameters are specified and the roots com-
puted provide the candidate optimal cost and optimizer to the original CFTOC
problem. The optimal solution is then determined by searching over this finite
set of candidate solutions.

Subsequently, we increase the complexity of the considered example by
abandoning the move blocking strategy. The decision variable becomes then a
two-dimensional vector. In this case, the CAD construction involves two projec-
tion steps instead of one. In the second step, the CAD off-line procedure tries to
symbolically expand the determinant of Sylvester matrices as large as 23 × 23,
whose elements are polynomials of up to approximately 2000 monomials. This
is a highly demanding task, impossible with today’s commonly available com-
putational power. This complex step is central to the CAD procedure, since the
latter eliminates variables step by step [9] and therefore needs the level factor
polynomials of the previous step, which are determinants of Sylvester matrices.
To alleviate this bottleneck, we modify the last projection step of the CAD pro-
cedure as follows. We choose not to expand the determinants of the Sylvester
matrices, since it is only the roots of the determinant polynomials that are
needed for the on-line algorithm, not the polynomials themselves. Their com-
putation can be achieved through the use of generalized eigenvalues, which is a
highly efficient numerical linear algebra procedure. In the last projection step,
the Sylvester matrices are matrix polynomials in the cost-associated variable γ.
If we write them in the form

M(γ) = M0 + M1γ + · · ·+ Mξγ
ξ , (16)

where ξ is the maximum degree of the polynomials in M(γ), it turns out that

{γ ∈ C | detM(γ) = 0} = {λ ∈ C | ∃ x : Ax = λBx} , (17)

where A and B are certain square block matrices whose blocks are the coeffi-
cient matrices Mj , j = 1, . . . , ξ, arranged with a certain structure [18]. In other
words, the roots of the determinant of a univariate matrix polynomial (w.r.t.
γ in this case) are equal to the generalized eigenvalues of its linearization [18].
By taking this step the problem is rendered computationally feasible. However,
there are two issues that arise. First, the sheer size of the matrices in terms of
storage needed is prohibitive. Therefore, one has to use floating point arithmetic
to reduce it within the limits that modern computer algebra systems can handle.
There is an inevitable loss of accuracy involved in this operation. Secondly, this
loss of accuracy creates numerical instabilities to such an extent, that the on-line
computations, although feasible from a complexity point of view, yield results
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that can no longer be meaningfully used. For this second approach, a simple
version of the CAD algorithm was implemented in Maple. The level factors ob-
tained were transferred to Matlab, where the on-line algorithm was implemented
using YALMIP [19].

5.3 Simulation Results

In this section, simulation results demonstrating the performance of the proposed
scheme (with move blocking) are presented. All results presented in the following
figures are normalized, including the time scale where one time unit is equal to
one switching period.

The first case to be examined is that of the transient behavior during startup.
Fig.5(a) and Fig.5(b) depict the step responses of the different schemes dur-
ing start-up. The initial state is given by x(0) = [0, 0]T , the voltage source is
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Fig. 5. Simulation results for the startup scenario
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Fig. 6. Simulation results for the scenario featuring the step-down of vs from 0.8 p.u.
to 0.55 p.u.
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vs = 0.8 p.u. and the reference for the output is 1 p.u. This translates to a
current reference i�,ref = 1.3889. The output voltage reaches its steady state
within approximately 30 switching periods with an overshoot of just over 10%.

In the second case, the behavior of the converter under a step change in the
voltage source is analyzed. In the example presented, the converter is initially at
steady state when a step change in the voltage source from vs = 0.8 p.u. to vs =
0.55 p.u. is applied at time-instant k = 5. This is shown in Fig.6(a) and Fig.6(b),
where one can see that the output voltage remains practically unaffected and
the controller finds the new steady-state duty cycle within 15 switching periods.

6 Conclusions and Future Outlook

A new solution approach to the CFTOC problem for discrete-time PWP systems
has been proposed. The described technique is based on CAD to compute the
optimal control law by combining an off-line precomputation stage using alge-
braic techniques with the on-line solution of exclusively univariate polynomial
equations, and has been exemplified in an MPC control scheme of the boost
dc-dc converter.

The proposed problem setup is still in its infancy so that adequate algo-
rithmic strategies must be devised to circumvent the computational limitations
that impose a boundary on the tractable problem size, and the aforementioned
advantages motivate further research efforts to overcome this barrier; in par-
ticular, one possible direction towards overcoming the intrinsic computational
difficulties associated with the CAD is to implement elimination techniques that
do not proceed sequentially, but rather eliminate blocks of variables simultane-
ously. Such algorithms are pointed out in [20] and [21] (critical point method)
and it would be worth exploring their implementability in the context of optimal
control problems.
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Abstract. We revisit the problem of designing controllers to meet safety
specifications for hybrid systems, whose evolution is affected by both
control and disturbance inputs. The problem is formulated as a dynamic
game and an appropriate notion of hybrid strategy for the control inputs
is developed. The design of hybrid strategies to meet safety specifications
is based on an iteration of alternating discrete and continuous safety cal-
culations. We show that, under certain assumptions, the iteration con-
verges to a fixed point, which turns out to be the maximal set of states
for which the safety specifications can be met. The continuous part of the
calculation relies on the computation of the set of winning states for one
player in a two player, two target, pursuit evasion differential game. We
develop a characterization of these winning states using methods from
non-smooth analysis and viability theory.

1 Introduction

Problems of controller synthesis for discrete and hybrid systems have been an
important topic of research in the automatic control and computer theory com-
munities for a number of years. Initial work concentrated on purely discrete
systems, first from a computer theoretic perspective (see [1] and the references
therein) and, more recently, from an automatic control perspective [2]. The dis-
crete results were subsequently extended to timed automata [3, 4] and classes
of hybrid automata where the continuous dynamics are described by constant
differential inclusions (the so-called linear hybrid automata) [5]. Of particular
interest have been problems of controller synthesis under safety specifications,
where the objective of the controller is to keep the system state in a “safe” part
of the state space.
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If the system evolution is influenced by both control and disturbance inputs,
the problem of controller synthesis is naturally formulated in the context of
dynamic games. Specifically for controller synthesis problems under safety spec-
ifications, this gives rise to pursuit-evasion games, where it is assumed that the
disturbance is trying to lead the state to the unsafe part of the state space and
the controller is trying to prevent it from doing so. Such a pursuit evasion ap-
proach to safe controller synthesis for general classes hybrid systems was adopted
in [6, 7, 8, 9, 10]. The procedure proposed in these references revolves around an
iteration of two coupled reachability computations, one involving the discrete
dynamics and one involving the continuous dynamics. The discrete reachabil-
ity computation requires only the inversion of the maps encoding the discrete
dynamics. The continuous reachability computation, however, requires the so-
lution of a pursuit-evasion differential game with two players and two targets
(what is referred to in [8] as a “reach-avoid” computation). In [8, 9, 10] the solu-
tion to these pursuit evasion games is characterized using dynamic programming,
through the level sets of an appropriate value function.

Though conceptually appealing, the approach of [8, 9, 10] suffers from two
drawbacks. The first is that each step of the iterative procedure establishes a set
of states where the controller can ensure that the system solutions remain in the
safe set for an interval of continuous evolution, followed by a discrete transition.
Iterating, establishes sets of states for which the controller can ensure that the
state remains in the safe set for 2, 3, . . . such continuous-discrete operations.
There is, however, no guarantee that this procedure will converge to a kernel of
states for which there exists a controller such that all solutions stay in the kernel
for ever. This kernel is what is referred to as the “maximal control invariant”
subset of the safe states [7].

The second draw back of the approach of [8, 9, 10] is that the dynamic pro-
gramming argument in these references only applies to differentiable value
functions. In [8, 9], the value function for the reach-avoid computation is charac-
terized as a solution to a pair of coupled variational inequalities. In [10], a simpler
characterization is developed, that involves one Hamilton-Jacobi type partial dif-
ferential equation, together with an inequality constraint. Even though classical
(differentiable) solutions may exist for some of these variational problems, it
is well known that this is not the case in general; even for purely continuous
pursuit evasion games one typically has to allow viscosity solutions [11, 12, 13].
Moreover, the Hamiltonians used in the characterizations of [8, 9, 10] are only
lower semi-continuous functions. Therefore, even if one allows viscosity solu-
tions, a very complicated mathematical argument will be necessary to ensure
the existence and uniqueness of the solutions, and hence the well-posedness of
the characterization.

In this paper we rethink the safe controller synthesis problem for uncertain
hybrid systems formulated in [6, 7, 8, 9, 10]. Instead of relying on dynamic pro-
gramming and viscosity solutions, we follow the approach of [14, 15, 16, 17] and
formulate the gaming problem in the context of viability theory. We then use
non-smooth analysis tools to characterize the solution. This approach not only
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does not suffer from the technical complications that arise with viscosity solu-
tions of the partial differential equation with lower semi-continuous Hamiltonian,
but also allows us to establish convergence results for the iterative procedure.
Finally, it opens the door for the use of powerful numerical algorithms that have
been developed based on non-smooth analysis to numerically approximate dis-
continuous value functions [18, 19]. A related approach to safety problems for
hybrid systems under either only control or only disturbance inputs was devel-
oped in [20]. Approximate stabilization of the class of systems considered in this
paper was studied in [21].

In summary, the main contributions of this paper are:

1. The definition of an appropriate notion of strategy for a class of hybrid
pursuit evasion games (Definition 6). This allows one to characterize control
invariant sets as fixed points of an appropriate operator (Theorem 1) and
hence the maximal control invariant set as the limit point of an intuitive
iteration (Theorem 2).

2. The characterization of the continuous part of the operator using non-smooth
analysis tools. To the best of our knowledge this is the only complete char-
acterization of this operator at this level of generality.

In Section 2 we provide some background definitions on hybrid systems neces-
sary to formulate our results. We then define pursuit-evasion games for a class of
hybrid systems and provide an appropriate notion of strategy. In Section 3 we de-
velop an iterative procedure closely related to that of [8, 9, 10] for approximating
the solution to the hybrid pursuit evasion games and provide convergence re-
sults. Then, in Section 4, we provide a characterization of the continuous part of
the iteration as a two player, two target differential game, based on non-smooth
analysis tools. The proofs of the continuous results are rather lengthy and tech-
nical and are omitted in the interest of space; proof sketches are provided for
the hybrid argument.

2 Hybrid Dynamics and Reachability Problem
Formulation

2.1 Notation and Terminology

We briefly review a few concepts from non-smooth analysis and viability the-
ory needed to develop our results; for a more thorough treatment the reader is
referred to [22]. Let 〈·, ·〉 denote the standard inner product in Rn and let | · |
denote the corresponding metric. We assume that Rn is endowed with the stan-
dard Euclidean topology generated by open balls in the metric. We assume that
finite sets are endowed with the discrete topology (i.e. all subsets are open). We
assume that product spaces of the form Q×X , where Q is a finite set and X is
a subset of Euclidean space, are endowed with the product topology generated
by the products of the corresponding open sets. For a set K we use 2K to denote
the set of all subsets (power set) of K.
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For x ∈ Rn and K ⊆ Rn, let dK(x) denote the distance of the point x to the
set K defined by

dK(x) = inf
y∈K

|x− y|.

Clearly dK(x) = 0 if x is in the closure of K. The set of proximal normals to the
set K ⊆ Rn at the point x ∈ K is defined by

NPK(x) = {y ∈ Rn | dK(y + x) = |y|}.

Clearly NPK(x) = {0} if x is in the interior of K. For y ∈ Rn, we denote by
ΠK(y) the projection of y onto K, i.e. the set

ΠK(y) = {x ∈ K | dK(y) = |x− y|}.

Clearly ΠK(y) = {y} if y ∈ K.
For variables u and d taking values in sets U ⊆ Rm and D ⊆ Rp respectively

we use U and D to denote the sets of Lebesgue measurable functions u(·) : R+ →
U and d(·) : R+ → D respectively. For u(·) ∈ U and T ≥ 0 we use u ↓T (·) ∈ U
to denote the function u ↓T (t) = u(t + T ).

In logic formulas we use ∧ as a shorthand for “and”, ∨ as a shorthand for
“or” and ⇒ as a shorthand for “implies”.

2.2 Dynamics and Solutions

We consider dynamical systems that involve both a continuous state (denoted by
x) and a discrete state (denoted by q). The evolution of the state is influenced by
two different kinds of inputs: controls and disturbances. We partition the inputs
of each kind into two classes, those used to control the discrete evolution (υ and
δ respectively) and those used to control continuous evolution (u and d). The
inputs υ and δ can be further partitioned into discrete valued and continuous
valued, we will not, however, make this distinction explicit in the notation.

The dynamics of the state are determined through four functions: a vector
field f that determines the continuous evolution, a reset map r that determines
the outcome of the discrete transitions, a “guard” set that determines when
discrete transitions can take place and a “domain” set Dom that determines when
continuous evolution is possible. The following definition formalizes the details.

Definition 1 (Hybrid game automaton). A hybrid game automaton char-
acterizes the evolution of

– discrete state variables q ∈ Q and continuous state variables x ∈ X,
– control inputs υ ∈ Υ and u ∈ U , and
– disturbance inputs δ ∈ Δ and d ∈ D

by means of four functions

– a vector field f : Q×X × U ×D → X,
– a domain set Dom : Q→ 2X,
– guard sets G : Q×Q→ 2X and
– a reset function r : Q×Q×X × Υ ×Δ→ X.
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To formally define the solutions of this class of hybrid systems, we recall the
following notion from [23, 20]; an effectively equivalent notion of hybrid time can
be found in [24].

Definition 2 (Hybrid time set). A hybrid time set τ = {Ii}N
i=0 is a finite or

infinite sequence of intervals of the real line, such that

– for all i < N , Ii = [τi, τ
′
i ];

– if N <∞, then IN = [τN , τ ′
N ], or IN = [τN , τ ′

N ), possibly with τ ′
N = ∞;

– for all i, τi ≤ τ ′
i = τi+1.

Since all the primitives in Definition 1 are time invariant, we can assume that
τ0 = 0 without loss of generality.

Roughly speaking, the solution of a hybrid game automaton (called a “run”) is
defined over a hybrid time set τ and involves a sequence of intervals of continuous
evolution followed by discrete transitions. Starting at some initial state (q0, x0)
the continuous state moves along the solution of the differential equation

ẋ = f(q0, x, u, d)

as long as it does not leave the set Dom(q0). The discrete state remains constant
throughout this time. If at some point x reaches a set G(q0, q′) for some q′ ∈ Q,
a discrete transition can take place. The first interval of τ ends and the second
one begins with a new state (q′, x′) where x′ is determined by the reset map r.
The process is then repeated. Notice that considerable freedom is allowed when
defining the solution in this “declarative” way: in addition to the effect of the
input variables, there may also be a choice between evolving continuously or
taking a discrete transition (if the continuous state is in both the domain set
and a guard set) or between multiple discrete transitions (if the continuous state
is in many guard sets at the same time).

The following concept helps to formalize the above discussion.

Definition 3 (Hybrid trajectory). A hybrid trajectory over a set of variables
that take values in a set A is a pair (τ, a) where τ = {Ii}N

i=0 is a hybrid time set
and a = {ai(·)}N

i=0 is a sequence of functions ai(·) : Ii → A.

Notice that given a function û(·) ∈ U and a hybrid time set τ = {Ii}N
i=0 one can

naturally define a hybrid trajectory (τ, u) by ui(t) = û(t) for all i ∈ {0, 1, . . . , N}
and all t ∈ Ii. Likewise, given a sequence {υ̂i}∞i=0 with υ̂i ∈ Υ and a hybrid time
set τ = {Ii}N

i=0 one can define a hybrid trajectory (τ, υ) by υi(t) = υ̂i for all
i ∈ {0, 1, . . . , N} and all t ∈ Ii. Constructions like these will be used repeatedly
in the definition of runs, hybrid strategies, etc.

Definition 4 (Run). A run of a hybrid game automaton is a hybrid trajectory
(τ, q, x, υ, u, δ, d) over its state and input variables that satisfies the following
conditions:

– Discrete Evolution: for i < N ,
1. xi(τ ′

i) ∈ G(qi(τ ′
i), qi+1(τi+1)).

2. xi+1(τi+1) = r(qi(τ ′
i ), qi+1(τi+1), xi(τ ′

i), υi+1(τi+1), δi+1(τi+1)).
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– Continuous Evolution: for all i with τi < τ ′
i

1. ui(·) and di(·) are measurable functions on Ii.
2. qi(t) = qi(τi), υi(t) = υi(τi) and δi(t) = δi(τi) for all t ∈ Ii.
3. xi(·) is the solution of the differential equation

ẋi(t) = f(qi(t), xi(t), ui(t), di(t)) (1)

over the interval Ii with initial condition xi(τi).
4. xi(t) ∈ Dom(qi(t)) for all t ∈ [τi, τ

′
i).

Notice that since the discrete state and inputs remain constant throughout the
continuous evolution, we can identify the discrete elements of a run with se-
quences of discrete states and inputs in the obvious way. Definition 4 suggests
that hybrid game automata can encode a very rich class of hybrid dynamics.
There are two main limitations, however.

1. The inputs cannot force discrete transitions to take place. Since Dom is
independent of both control and disturbance inputs (and will be assumed to
be open below), if x ∈ Dom(q) continuous evolution is possible from (q, x),
irrespective of the values of the input variables.

2. The inputs cannot determine the discrete state after a discrete transition.
Since G(q, q′) is independent of both control and disturbance inputs, if x is
in multiple guards, say x ∈ G(q, q′)∩G(q, q′′), any of the q′, q′′ is a possible
destination of a discrete transition from (q, x). The inputs have no way of
influencing the choice.

In the context of the safety problems considered below, these are not a very severe
limitation from the point of view of the disturbance inputs. The design proce-
dure we develop is naturally conservative and assumes that all non-deterministic
choices are resolved in favor of the disturbance. In other words, if there is a possi-
bility of unfavorable continuous evolution, or an unfavorable discrete transition,
the algorithm assumes that the system will follow that evolution without the
disturbance having to force it to do so. The same argument, however, suggests
that these limitation can be quite severe for the control inputs; if both favor-
able and unfavorable alternatives are possible the control inputs have no way of
forcing the system to take the favorable path.

The results given below rely on a number of assumptions needed to ensure well
posedness of the models and convergence of the algorithms. These assumptions
are summarized below; not all assumptions are needed for all results though.

Assumption 1. 1. The continuous state space is X = Rn. The set Q is finite.
The sets U , Υ , D and Δ are compact subsets of Euclidean spaces.

2. For all q ∈ Q the function f(q, x, u, d) is globally Lipschitz continuous
in x, continuous in u and d and bounded. For all (q, x) ∈ Q × X, the set⋃

d∈D f(q, x, u, d) is convex and compact for all u ∈ U . U is convex and f is
affine in u, i.e., f(q, x, u, d) = g(x, d) + h(x, d)u.

3. For all q, q′ ∈ Q, the function r(q, q′, x, υ, δ) is continuous in x, υ and δ.
4. For all q, q′ ∈ Q, the set G(q, q′) is open (possibly the empty set).
5. For all q ∈ Q, the set Dom(q) is open and Dom(q) ∪

⋃
q′∈Q G(q, q′) = X.
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Under Assumption 1 one can show that infinite (possibly Zeno) runs exist for
all choices of inputs and disturbance.

2.3 Pursuit-Evasion Games and Strategies

In this paper we concentrate on reachability problems for hybrid game automata.
Following [7, 8] we assume that we are given a hybrid game automaton and a set
of desirable states, F ⊆ Q×X , and are asked to select the control inputs to keep
the state in F whenever possible; borrowing notation from temporal logic we will
say that runs that have this property meet the safety specification �[(q, x) ∈ F ].

Since there are both control and disturbance inputs involved, the reachability
problems can be cast in the framework of pursuit evasion games. Formulating
these games precisely requires one to introduce an appropriate notion of strategy.
To this end, we first recall the standard notion of non-anticipative strategy for
continuous, differential games [25, 11, 15].

Definition 5 (Non-anticipative). A function α(·, ·, ·) : D × Q × X → U is
called non-anticipative (with respect to the first variable) if for all (q, x) ∈ Q×X,
d(·), d′(·) ∈ D and T ≥ 0, if d(t) = d′(t) for almost every t ∈ [0, T ] then
α(d, q, x)(t) = α(d′, q, x)(t) for almost every t ∈ [0, T ].

A non-anticipative function β(·, ·, ·) : U × Q × X → D can be defined analo-
gously. As will soon become apparent, (q, x) in Definition 5 plays the role of the
initial condition. Definition 5 coincides effectively with the classical definition of
non-anticipative strategy for differential two player games [25, 11, 15]. The only
difference is that we have made explicit the dependence of the control input gen-
erated by the strategy at time t not only on the disturbance input up to time t,
but also on the initial condition (q, x). Given an initial condition (q̂, x̂) ∈ Q×X ,
an α(·, ·, ·) : D×Q×X → U non-anticipative and a d(·) ∈ D we use φ(t, q̂, x̂, α, d)
to denote the unique solution of

ẋ(t) = f(q̂, x(t), α(d, q̂, x̂)(t), d(t))

starting at x(0) = x̂. Notice that since any “open-loop” u(·) ∈ U , d(·) ∈
D can also be thought of as trivial non-anticipative strategies we will also
use φ(t, q̂, x̂, u, d) to denote the solution to the differential equation ẋ(t) =
f(q̂, x(t), u(t), d(t)) starting at x(0) = x̂. We also use φ(t, q̂, x̂, u, d) with u ∈ U
and/or d ∈ D to denote the solution under constant inputs. The interpretation
should be clear from the context.

Building on the non-anticipative notion, we can now define a notion of strategy
for hybrid game automata.

Definition 6 (Hybrid strategy). A hybrid strategy (α, γ) for the control in-
puts υ and u consists of a non-anticipative function, α(·, ·, ·) : D ×Q×X → U
and a feedback function γ(·, ·) : Q×X → Υ .

Given a hybrid strategy (α, γ) for the control inputs one can define the “closed-
loop” runs of the hybrid game automaton. These will be runs (τ, q, x, υ, u, δ, d)
of the hybrid game automaton that for some disturbance inputs d̂(·) ∈ D and
{δ̂i}∞i=0 satisfy:
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– For all Ii ∈ τ and all t ∈ Ii, di(t) = d̂(t), δi(t) = δ̂i, ui(t) = α(d ↓τi

(·), qi(τi), xi(τi))(t− τi).
– For i < N , υi+1(τi+1) = γ(qi(τ ′

i), xi(τ ′
i)).

(In addition to the constraints imposed by Definition 4).
Coming back to the reachability problem, we would like to find a strategy for

the control inputs to keep the state in F for all actions of the disturbance.

Definition 7 (Hybrid discriminating domain). A closed set K ⊆ Q × X
is called a hybrid discriminating domain if there exists a hybrid strategy (α, γ)
for the control inputs such that all the closed loop runs, (τ, q, x, υ, u, δ, d), with
(q0(τ0), x0(τ0)) ∈ K are such that (qi(t), xi(t)) ∈ K for all Ii ∈ τ and all t ∈ Ii.

In general, the set F in the safety specification �[(q, x) ∈ F ] will not be a
discriminating domain, and therefore it will be impossible to meet the safety
specification for all initial conditions in F . We call the largest subset of F for
which it is possible to meet the specification the discriminating kernel of F .

Definition 8 (Hybrid discriminating kernel). The hybrid discriminating
kernel, Disc(F ), of a closed set F ⊆ Q×X is the set

{(q, x) ∈ F | ∃ hybrid strategy (α, γ) such that ∀d(·) ∈ D, ∀{δi}∞i=0,

all closed loop runs starting at (q, x) remain in F}.

We shall see (Theorem 2) that the hybrid discriminating kernel is closed and
it is the largest closed hybrid discriminating domain contained in F . Note that
here we have defined hybrid discriminating kernels and domains by properties
of the trajectories, while usually ([14, 15, 16, 17] and Definition 10 of the present
paper) they are defined through Hamiltonians. This ambiguity will disappear
when we show that both definitions coincide under our assumptions, as can be
deduced from Theorems 2, 3 and 4.

3 Main Procedure and Results

Following [8, 9] we define two operators, Pre∃ : 2Q×X → 2Q×X and Pre∀ :
2Q×X → 2Q×X by

Pre∃(K) = {(q, x) ∈ K | [x �∈ Dom(q)] ∧ [∃υ ∈ Υ, ∀δ ∈ Δ, ∀q′ ∈ Q,

x ∈ G(q, q′)⇒ (q′, r(q, q′, x, v, δ)) ∈ K]}
Pre∀(K) = Kc ∪ {(q, x) ∈ K | ∀υ ∈ Υ, ∃δ ∈ Δ, ∃q′ ∈ Q,

[x ∈ G(q, q′)] ∧ [(q′, r(q, q′, x, v, δ)) �∈ K]}

In words, Pre∃(K) contains all states in K for which a discrete transition is
forced to take place and there exists a choice for the discrete controls such that
for all choices of the discrete disturbance the state after the discrete transition
is bound to also be in the set K. Pre∀(K), on the other hand, contains all states
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outside of K, plus all states for which for all choices of the discrete controls
there exists a choice for the discrete disturbance such that a transition to a state
outside of K is possible.

The operators Pre∃ and Pre∀ encode the reachability implications of the dis-
crete dynamics. To capture the reachability implications of the continuous dy-
namics we introduce a third operator, Reach : 2Q×X × 2Q×X → 2Q×X given
by1:

Reach(K,L)={(q, x) ∈ Q×X | ∃α(·, q, x) :D → U non-anticipative, ∀d(·) ∈ D,
[∀t ≥ 0, (q, x(t)) �∈ L]
∨ [∃T ≥ 0, ((q, x(T )) ∈ K) ∧ (∀t ∈ [0, T ], (q, x(t)) �∈ L)]},

where we abbreviate x(·) = φ(·, q, x, α, d). In words, the operator Reach returns
the set of states for which there exists a non-anticipative strategy for the controls
such that whatever the disturbance does the state will evolve continuously and
either avoid the set L altogether, or reach the set K before reaching L.

The hybrid discriminating kernel of a set can now be characterized in terms
of the three operators, Pre∃, Pre∀ and Reach. The first step is to show all hybrid
discriminating domains are fixed points of an appropriate operator.

Theorem 1. A closed set K is a hybrid discriminating domain if and only
if Reach(Pre∃(K),Pre∀(K)) = K.

Proof (sketch): Sufficiency: Assume that K is a hybrid discriminating domain.
Let (α, γ) denote the strategy of Definition 7 and R = Reach(Pre∃(K),Pre∀(K)).
It is easy to show that R ⊆ K. To prove that K ⊆ R, consider an arbitrary
(q̂, x̂) ∈ K. Notice that if (q̂, x̂) ∈ Pre∃(K), then (q̂, x̂) ∈ R and the sufficiency
proof is complete. Assume now that (q̂, x̂) ∈ K \ Pre∃(K). By the definition
of Pre∃ either x̂ ∈ Dom(q̂), or there exists δ̂ and q̂′ such that x̂ ∈ G(q̂, q̂′)
and (q̂′, r(q̂, q̂′, x̂, γ(q̂, x̂), δ̂)) �∈ K. In the latter case, there exists a run with
τ0 = τ ′

0 = 0, q0(τ0) = q̂, x0(τ0) = x̂, q1(τ1) = q̂′, υ1(τ1) = γ(q̂, x̂), δ(τ1) = δ̂ and
x1(τ1) = r(q̂, q̂′, x̂, γ(q̂, x̂), δ̂) that leaves K immediately by a discrete transition.
This violates the assumption that K is a hybrid discriminating domain.

Finally, assume that (q̂, x̂) ∈ K \ Pre∃(K) and x̂ ∈ Dom(q̂). For arbitrary
d(·) ∈ D let x(·) = φ(·, q̂, x̂, α, d). Since Dom(q̂) is open, under Assumption 1
there exists θ > 0 such that x(t) ∈ Dom(q̂) for all t ∈ [0, θ]. Let θ̂ denote the sup
of such θ. Notice that for all t ∈ [0, θ̂) we must have (q̂, x(t)) �∈ Pre∀(K). If θ̂ = ∞
then we are done. Otherwise, x(θ̂) �∈ Dom(q̂) and (q̂, x(θ̂)) ∈ Pre∃(K)∪Pre∀(K).
If (q̂, x(θ̂)) ∈ Pre∃(K) the sufficiency proof is complete. The case (q̂, x(θ̂)) ∈
Pre∀(K) is impossible.

Necessity: We assume that Reach(Pre∃(K),Pre∀(K)) = K and construct a
hybrid strategy, (α, γ) satisfying Definition 7. For (q̂, x̂) �∈ K take α(d, q̂, x̂)
and γ(q̂, x̂) arbitrary. For (q̂, x̂) ∈ K, we first define γ : Q × X → Υ . If

1 This operator is different (in a sense dual) from the Reach-Avoid operator defined
in [8, 9].
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(q̂, x̂) �∈ Pre∃(K) take γ(q̂, x̂) to be any υ̂ ∈ Υ . If (q̂, x̂) ∈ Pre∃(K) then there
exists a υ̂ such that for all δ and for all q̂′ with x̂ ∈ G(q̂, q̂′) we have that
(q̂′, r(q̂, q̂′, x̂, υ̂, δ)) ∈ K. We take γ(q̂, x̂) = υ̂. To define α for (q̂, x̂) ∈ K =
Reach(Pre∃(K),Pre∀(K)), notice that, by definition of Reach, there exists a
non-anticipative strategy such that for all d(·) ∈ D the solution either never
reaches Pre∀(K) or reaches Pre∃(K) before it reaches Pre∀(K). We let α be the
strategy that achieves this. One can easily show that under the strategy (α, γ)
all runs starting in K stay in K for ever.

Theorem 1 suggests that one should be able to compute the hybrid discriminat-
ing kernel of a set F as the maximal fixed point of the operator Reach(Pre∃(·),
Pre∀(·)). A standard procedure for doing this is by recursive application of the
operator, as shown in the following algorithm.

Algorithm 1 (Discriminating kernel approximation)

initialization: W0 = F , i = 0
repeat

Wi+1 = Reach(Pre∃(Wi),Pre∀(Wi))
i = i + 1

until Wi = Wi−1
set W∞ =

⋂∞
i=0 Wi

Theorem 2. W∞ is the hybrid discriminating kernel of F . Moreover, it is the
largest closed hybrid discriminating domain contained in F .

Proof (sketch): We show first that Disc(F ) ⊆ W∞. Since Disc(F ) ⊆ F and
W∞ ⊆ F , it suffices to show that F \W∞ ⊆ F \Disc(F ). Take (q̂, x̂) ∈ F \W∞.
Fix any hybrid strategy (α, γ). We show that we can find a closed loop run
starting at (q0(τ0), x0(τ0)) = (q̂, x̂) leaving F in finite time and after a finite
number of discrete transitions, thus proving that (q̂, x̂) �∈ Disc(F ).

Since (q̂, x̂) �∈ W∞, there exists i such that (q̂, x̂) �∈ Wi. Note that (q̂, x̂) �∈
Pre∃(Wi−1). Therefore, either x̂ ∈ Dom(q̂), or there exists δ̂ and q̂′ such that
x̂ ∈ G(q̂, q̂′) and (q̂′, r(q̂, q̂′, x̂, γ(q̂, x̂), δ̂)) �∈ Wi−1. In the latter case, set τ ′

0 = 0,
q1(τ1) = q̂′, x1(τ1) = r(q̂, q̂′, x̂, γ(q̂, x̂), δ̂)) and notice that (q1(τ1), x1(τ1)) �∈
Wi−1. If now x̂ ∈ Dom(q̂), there exists d(·) such that the solution to φ(·, q̂, x̂, α, d)
reaches Pre∀(Wi−1) without first reaching Pre∃(Wi−1). It is easy to see that
there exists T ≥ 0 such that x(T ) ∈ Pre∀(Wi−1) and for all t ∈ [0, T ), x(t) ∈
Dom(q̂)\Pre∃(Wi−1). Let x0(t) = x(t) for all t ∈ [0, T ]. By the definition of Pre∀,
either (q(T ), x0(T )) �∈ Wi−1 or there exist δ̂ and q̂′ such that x0(T ) ∈ G(q̂, q̂′)
and (q̂′, r(q̂, q̂′, x0(T ), γ(q̂, x0(T )), δ̂)) �∈ Wi−1. In the latter case, set τ ′

0 = T ,
q1(τ1) = q̂′ and x1(τ1) = r(q̂, q̂′, x0(T ), γ(q̂, x0(T )), δ̂) and notice that τ1 = T <
∞ and (q1(τ1), x1(τ1)) �∈Wi−1.

Iterating i times we construct a run that leaves W0 = F in finite time and
after at most i discrete transitions. Hence for any α we have found d and {δi}i

such that the associated run starting from (q̂, x̂), leaves F in finite time. Hence
(q̂, x̂) �∈ Disc(F ).
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To complete the proof we need to show that W∞ ⊆ Disc(F ). This can be
done as in the proof of Theorem 4 (argument omitted).

4 Characterization of the Reach Operator

In this section we provide a characterization of the set Reach based on non-
smooth analysis tools. Note that Reach(K,L) can be computed separately for
each discrete state, by taking the disjoint union of the sets

Reachq(Kq, Lq) = {x ∈ X | ∃α(·, q, x) : D → U non-anticipative, ∀d(·) ∈ D,
[∀t ≥ 0, x(t) �∈ Lq]
∨ [∃T ≥ 0, (x(T ) ∈ Kq) ∧ (∀t ∈ [0, T ], x(t) �∈ Lq)]},

where Kq = {x ∈ X | (q, x) ∈ K} and Lq = {x ∈ X | (q, x) ∈ L}. Throughout
this section we will therefore assume that the discrete state has a constant value.

The characterization of Reach is closely related to the characterization of
the victory domains for two player, two target games developed in [16]. The
key difference is that in [16] one of the two targets is treated as a state con-
straint that all trajectories are forced to respect. By contrast, the situation is
more symmetric in our case: the dynamics do not constrain the system to stay
out of either target set, it is the players that try to reach or avoid the target
sets in order to win the game. In [16] the main goal was to deal with state
constrained differential games. This required the introduction of a number of
additional assumptions. For example, the continuous state was assumed to be
separated into two parts, one controlled by u and the other by d. Moreover,
transversality conditions on the constraint sets were imposed. In this section,
because we do not deal with state constrained games, we show how these as-
sumptions can be relaxed and hence obtain a more general characterization of
the Reach operator.

Consider a continuous two target game with dynamics ẋ = f(q, x, u, d), state
x ∈ X and players u ∈ U (Ursula) and d ∈ D (David). Let Kq ⊆ X be a
closed target for Ursula and Lq ⊆ X an open evasion set for David. Ursula aims
either to avoid Lq altogether, or to reach Kq before reaching Lq. David aims to
reach Lq in finite time, without first reaching Kq. To achieve their aims for a
given initial state x0 ∈ X the two players are allowed to play non-anticipative
strategies, α(·, q, x0) : D → U for Ursula and β(·, q, x0) : U → D for David.

Definition 9 (Ursula’s victory domains). Ursula’s victory domain is the
set of initial states x0 ∈ X for which she can find a non-anticipative strategy
α(·, q, x0) : D → U such that for all d(·) ∈ D played by David, the trajectory
φ(t, q, x0, α, d) either avoids Lq for ever, or avoids Lq as long as it does not
reach Kq.

David’s victory domain can be defined in a similar way [26]. We will not provide
the definition and characterization of this set here, because of the following fact.
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Proposition 1. The victory domain of Ursula is the desired set Reachq(Kq, Lq).

Therefore to complete the characterization of the hybrid discriminating kernel
of Section 3 if suffices to characterize Ursula’s victory domain.

For a given closed set Kq ⊆ Rn, let us introduce the following Hamiltonian.

H(x, p) =

{
supd∈D infu∈U 〈f(q, x, u, d), p〉, if x /∈ Kq,

min{0, supd∈D infu∈U 〈f(q, x, u, d), p〉}, otherwise.
(2)

It is easy to show that if Kq is closed, H is lower semi-continuous.

Definition 10. A closed set W ⊆ X is a discriminating domain for f if for all
x ∈ W and all p ∈ NPW (x), H(x, p) ≤ 0.

Because H is lower semi-continuous, it can be shown that [26] any closed W ⊆ Rn

contains a maximal discriminating kernel for f , denoted by Discf (W ). In the rest
of this section we show that the desired set Reachq(Kq, Lq) is in fact the discrim-
inating kernel of the set Lc

q. This completes the theoretical characterization of
of the hybrid discriminating kernel and enables the use of numerical algorithms
developed for viability computations in differential games [18, 19].

We first provide an interpretation of discriminating domains in terms of non-
anticipative strategies for Ursula.

Theorem 3. A closed set W ⊆ Rn is a discriminating domain for f if and
only if for any initial position x0 ∈ W , there exists a non-anticipative strategy
α(·, q, x0) : D → U such that for any d, the solution φ(t, q, x0, α, d) remains in
W until it reaches Kq (or remains in W on [0,+∞) if it never reaches Kq).

The following theorem provides a connection between the discriminating ker-
nel of a set and the game winning positions for Ursula, and hence the com-
putation of the operator Reachq needed for the hybrid discriminating kernel
characterization.

Theorem 4. The discriminating kernel of closed set W ⊆ Rn, for f is the set
of x0 ∈ W , for which there exists a non-anticipative strategy α(·, q, x0) : D → U
such that for any d(·) ∈ D, the solution φ(t, q, x0, α, d) remains in W until it
reaches Kq (or remains in W on [0,+∞) if it never reaches Kq).

5 Example

To illustrate the construction of the hybrid discriminating kernel, we apply the
algorithm to a toy example. For more realistic problems in highway automation
and in air traffic management where our algorithm is applicable the reader is
referred to [6, 8, 27, 10].

Consider a hybrid game automaton with Q = {q}, X = R, U = D = Υ =
Δ = [−1, 1], f(q, x, u, d) = u + |x|d, Dom(q) = (−∞, 2), G(q, q) = (0,∞) and
r(q, q, x, υ, δ) = 4(1 − |x − 1|)δ. Since there is only one discrete state, we drop
the dependence on q everywhere to simplify the notation. We would like to
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compute the hybrid discriminating kernel of the set [−2, 2]. Notice that even
though the system is very simple, it still possesses some challenging features:
nonlinear continuous and discrete dynamics and a choice between continuous
evolution and discrete transition in the interval (0, 2).

Applying the algorithm, we set W0 = [−2, 2]. It is easy to see that Pre∃(W0) =
{2}. Moreover,

Pre∀(W0) =(−∞, 2) ∪ (2,∞)
∪ {x ∈ [0, 2] | ∃δ ∈ [−1, 1], (r(x, δ) < −2) ∨ (r(x, δ) > 2)}

=(−∞, 2) ∪ (2,∞) ∪ (1/2, 3/2).

Because d can dominate u whenever |x| > 1, we then have W1 = [−1, 1/2]∪{2}.
At the second step of the algorithm we get Pre∃(W1) = {2} and

Pre∀(W1) = (−∞,−1) ∪ (1/8, 2) ∪ (2,∞).

Therefore, W2 = [−1, 1/8]∪ {2}.
More generally, it is easy to see that at step i of the algorithm we get the set

Wi =
[
−1,

2
4i

]
∪ {2}.

This sequence converges to the hybrid discriminating kernel

Disc([−2, 2]) = [−1, 0] ∪ {2}.

The strategy for u that keeps the state in Disc([−2, 2]) can in this case be
expressed in feedback terms: any u(x) with u(−1) = 1, and u(0) ≤ 0 is adequate
for this task. Notice that υ does not enter any of the equations.

6 Concluding Remarks

Motivated by problems of safe controller synthesis for hybrid systems, we devel-
oped an approach to pursuit-evasion games for a fairly general class of hybrid
systems. We introduced a notion of a hybrid strategy and developed a charac-
terization of the game winning positions for the control inputs. These are readily
identified with what are known in the literature as maximal controlled invariant
sets, i.e. the maximal set of states for which a controller that meets a given safety
specification exists. The continuous part of the argument required an extension
of classical results for two player, single target differential pursuit evasion games
to a class of differential games with two players and two targets.

Even though the class of hybrid systems treated here are rather general, they
are still not as general as one would like. The main limitation is that the models
do not allow control inputs to force discrete transitions. Current work concen-
trates on alleviating this restriction.

With the approach adopted in this paper, control inputs view the disturbances
as an adversary. As a consequence, the controller design methodology is worst
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case: the aim is to ensure that specifications are met for any realization of the
disturbance inputs. Even though this is a standard approach for many problems
in the literature (including pursuit-evasion games and robust control) it is too
conservative for some applications, where substantial levels of uncertainty are
present. In such cases it may be more realistic to assume a probabilistic charac-
terization of the disturbances and design controllers that take this into account
(e.g. work “on the average”, or guarantee specifications with certain probability).
An approach to safety problems for such stochastic hybrid systems is another
topic of our current research.
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Abstract. This work is concerned with the problem of computing the
set of reachable states for linear time-invariant systems with bounded
inputs. Our main contribution is a novel algorithm which improves sig-
nificantly the computational complexity of reachability analysis. Algo-
rithms to compute over and under-approximations of the reachable sets
are proposed as well. These algorithms are not subject to the wrapping
effect and therefore our approximations are tight. We show that these ap-
proximations are useful in the context of hybrid systems verification and
control synthesis. The performance of a prototype implementation of the
algorithm confirms its qualities and gives hope for scaling up verification
technology for continuous and hybrid systems.

1 Introduction

Computing reachable states for continuous or hybrid systems subject to bounded
disturbances has become a major research issue in hybrid systems [ACH+95],
[G96], [CK98], [DM98], [CK03], [GM99], [ABDM00], [BT00], [MT00], [KV00],
[D00] [ADG03], [G05], [F05]. One may argue that focusing on this question,
which is concerned with transient behaviors of dynamical systems, can be seen as
a major contribution of computer science to enriching the ensemble of standard
questions (stability, controllability) traditionally posed in control [ABD+00],
[M02]. For hybrid systems in which the continuous dynamics has constant deriva-
tives in every discrete state, such as timed automata or “linear” hybrid automata,
the computation of the reachable states in a continuous phase is simply a mat-
ter of linear algebra [ACH+95], [AMP95], [HHW97], [F05]. For systems with
a non-trivial continuous dynamics, an approximation of the reachable states is
generally computed by a combination of numerical integration and geometrical
algorithms [GM99], [CK03], [ABDM00], [D00], [BT00], [KV00] [G05].
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As an illustration consider a continuous linear time-invariant system of the
form ẋ(t) = Ax(t). The computation of the set of states reachable from an ini-
tial set I within a time interval [0, T ] can be handled as follows. We choose an
integration step r = T/(N + 1) and compute a sequence of sets Ω0, . . . , ΩN

such that Ωi contains all the states reachable from I within [ir, (i + 1)r] time.
The first set of the sequence, Ω0, can be obtained by bloating the convex hull
of the sets I and ΦI where Φ = erA (see [CK03], [ABDM00], [D00], [G05]).
Then, the other elements of the sequence can be computed from the recurrence
relation Ωi+1 = ΦΩi. For obvious reasons, the choice of the representation of
the sets Ωi usually consists of classes of sets closed under linear transforma-
tions such as polytopes [CK03], [ABDM00], ellipsoids [KV97], [KV00], [BT00]
or zonotopes [G05].

When dealing with continuous linear time-invariant systems with bounded
inputs of the form ẋ(t) = Ax(t) + Bu(t), where the value of u(t) is constrained
in some bounded convex set, a similar algorithm is possible. The computation of
the influence of the inputs on the reachable sets can be handled according to two
main approaches. The first one uses techniques borrowed from optimal control
[V98], [ABDM00], [KV00] to compute for each point on the boundary of Ωi the
input u that transforms it in the most “outward” manner. The second approach
consists in computing the reachable set using the autonomous dynamics ẋ(t) =
Ax(t) and then adding (in the sense of the Minkowski sum) a set which accounts
for the influence of the inputs [ADG03], [G05]. The recurrence relation between
Ωi and Ωi+1 is then of the form Ωi+1 = ΦΩi ⊕ U where U is a bounded convex
set. This is the approach considered in this paper.

The major contribution of this paper is a new implementation scheme for the
recurrence relation Ωi+1 = ΦΩi ⊕ U which improves significantly (both theo-
retically and empirically) the computation of the reachable sets of linear time-
invariant (LTI) systems with bounded inputs. A version of this algorithm based
on zonotopes decisively outperforms related algorithms. In addition, algorithms
for the computation of over- and under-approximations of the reachable sets
are proposed. These algorithms are not subject to the wrapping effect (prop-
agation of approximation errors through the computations [K98], [K99]) and
therefore our approximations are tight in the sense of [KV00]. In the context
of hybrid systems, we show that over- and under-approximations can be com-
puted such that they both intersect the guards if and only if the exact reachable
set does. We also show that our under-approximations can be used for control
synthesis.

2 Reachability Computations for LTI Systems

We consider the problem of computing an over-approximation of the reachable
set of a linear time-invariant system over Rd with bounded inputs within a
bounded time interval. As explained in the introduction, this can be done with
arbitrary precision by computing the first N elements of a sequence of sets
defined by a recurrence relation of the form:
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Ωi+1 = ΦΩi ⊕ U, i ∈ N (1)

where Φ is a d× d matrix, U is a convex bounded subset of Rd (not necessarily
full dimensional) and ⊕ denotes the Minkowski sum. The derivation of this
recurrence relation from the continuous-time system is not detailed in the present
paper but can be found, for instance, in [ADG03], [G05]. Note that since the
system is time-invariant, the matrix Φ and the set of inputs U resulting from
time discretization are independent of i.

For representations closed under linear transformation and Minkowski sum
such as polytopes or zonotopes, the complexity of Ωi grows due to the Minkowski
sum. As a consequence, the computation of the next element of the sequence be-
comes more expensive as the cost of the linear transformation is proportional
to the complexity of the set to which it is applied. For representations with
bounded complexity such as oriented rectangular hulls, ellipsoids or zonotopes
with bounded order, the Minkowski sum enforces us to make over-approximations
at each step. The propagation of these errors through the computations, known
as the wrapping effect [K98], [K99], can lead to dramatic over-approximations
when considering reachability problems for large time horizons.

For linear time-invariant systems we present an algorithm free of any of these
problems. Let us remark that from the recurrence relation (1), we have:

Ωi+1 = Φi+1Ω0 ⊕ ΦiU ⊕ . . .⊕ U, i ∈ N.

Then, let us define the auxiliary sequences of sets:

X0 = Ω0, Xi+1 = ΦXi,
V0 = U, Vi+1 = ΦVi,
S0 = {0}, Si+1 = Si ⊕ Vi.

(2)

Equivalently, we have

Xi+1 = Φi+1Ω0, Vi+1 = Φi+1U and Si+1 = ΦiU ⊕ . . .⊕ U.

Therefore,Ωi+1 = Xi+1⊕Si+1 where Xi+1 is the reachable set of the autonomous
system from the set of initial states Ω0, and Si+1 is the reachable set of the system
with inputs from the initial set {0}. Note that the decomposition of the linear
transformation and the Minkowski sum in the computation of Si+1 is possible
only because the system is time-invariant. Algorithm 1 implements the reachable
set computation based on the recurrence relations (2).

Let us remark that this algorithm does not depend on the class of sets chosen
for the representing of the reachable sets. However, this class has to be closed
under linear transformation and Minkowski sum (e.g. polytopes, zonotopes).
The main advantage of this algorithm is that the linear transformations are
applied to sets whose complexity does not increase at each iteration and this
constitutes a significant improvement over existing algorithmic realizations of
the recurrence relation (1). Thus, the time complexity of Algorithm 1 is bounded
by O(NL(nin) + NK(nout)), where L is the complexity of performing a linear
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Algorithm 1. Reachability of linear time-invariant systems.
Input: The matrix Φ, the sets Ω0 and U , an integer N .
Output: The first N terms of the sequence defined in equation (1).
1: X0 ← Ω0

2: V0 ← U
3: S0 ← {0}
4: for i from 0 to N − 1 do
5: Xi+1 ← ΦXi � Xi+1 = Φi+1Ω0

6: Si+1 ← Si ⊕ Vi � Si+1 = ΦiU ⊕ · · · ⊕ U
7: Vi+1 ← ΦVi � Vi+1 = Φi+1U
8: Ωi+1 ← Xi+1 ⊕ Si+1 � Ωi+1 = Φi+1Ω0 ⊕ ΦiU ⊕ · · · ⊕ U
9: end for

10: return {Ω1, . . . , ΩN}

transformation, K is the complexity of performing a Minkowski sum, nin bounds
the size of Ω0 and U , and nout bounds the size of ΩN . These parameters depend
obviously on the class of sets chosen for the representation.

Due to the Minkowski sum, the size of the output may actually be very large.
Hence, for an efficient implementation of Algorithm 1, the class of sets used
for the representation of the reachable sets has to satisfy one of the following
properties. Either the representation size of the Minkowski sum of two sets equals
the representation size of the operands, or the computational complexity of the
Minkowski sum is independent of the size of the operands.

General polytopes, for example, do not satisfy any of these requirements.
As far as we know, there is no reasonable representation satisfying the first
property which is closed under Minkowski sum and linear transformations. The
second property is satisfied by the class of zonotopes for which the complexity
of Minkowski sum does not depend on the description complexity of the sets.
In the following section, the implementation of Algorithm 1 using zonotopes is
discussed.

3 Reachability Using Zonotopes

The class of zonotopes has already been suggested for efficient reachability com-
putations in [K98], [K99], [G05]. Indeed, zonotopes have a compact representa-
tion and are closed under linear transformation and Minkowski sum1. A zonotope
is defined as the Minkowski sum of a finite set of segments. Equivalently it can
be seen as the image of a cube by an affine transformation.

Definition 1 (Zonotope). A zonotope is a subset of Rd represented by its
center u ∈ Rd and its generators v1, . . . , vm ∈ Rd:

1 Actually, the class of zonotopes is the smallest class of sets closed under linear
transformation and Minkowski sum and which contains a connected set with a non-
empty interior.
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(u, 〈v1, . . . , vm〉) =

⎧⎨⎩u +
m∑

j=1

αjvj | αj ∈ [−1, 1], j = 1, . . . ,m

⎫⎬⎭ .

A zonotope with m generators is said to have order m
d .

Each zonotope is a centrally-symmetric convex polytope. Parallelepipeds are
zonotopes of order one. A planar zonotope with three generators is depicted
in Figure 1. Zonotopes admit a very compact representations relative to their
number of vertices or faces. A generic zonotope of order p, though it is encoded
by only pd2 + d numbers, has more than (2p)d−1/

√
d vertices [Z75]. Hence,

zonotopes are perfectly suited for the representation of high dimensional sets.

v3

v2

v1

Fig. 1. A planar zonotope with three generators

The image of a zonotope Z = (u, 〈v1, . . . , vm〉) under a linear transformation
Φ is given by:

ΦZ = (Φu, 〈Φv1, . . . , Φvm〉).
Then, the computational complexity of a linear transformation applied to a zono-
tope is O(pM(d)), where M(d) is the complexity of the multiplication of two
d × d matrices. Using standard matrix multiplication the computational com-
plexity of the linear transformation is2 O(pd3). In comparison, if the zonotope
Z was to be represented by its vertices, the linear transformation would require
at least (2p)d−1d3/2 operations.

The property which really makes zonotopes interesting for the implementa-
tion of Algorithm 1 is that their Minkowski sum can be computed in O(d),
independently of the order of the operands. Indeed, the sum of two zonotopes
Z1 = (u1, 〈v1, . . . , vm〉) and Z2 = (u2, 〈w1, . . . , wn〉) is

Z1 ⊕ Z2 = (u1 + u2, 〈v1, . . . , vm, w1, . . . , wn〉).

Hence, the computation of the Minkowski sum consists of summing two vectors
and concatenating two lists. Therefore, zonotopes satisfy the requirements for
an efficient implementation of Algorithm 1. Assuming Ω0 and U are zonotopes
of orders p and q, respectively, the time complexity of Algorithm 1 becomes
O(N(p + q)d3). Moreover, since the Minkowski sum essentially consists of a
2 Note that, theoretically, the complexity can be further reduced down to O(pd2.376)

by using a more sophisticate matrix multiplication algorithm [CW90].
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concatenation of lists, it is not necessary to store the sequence Si since it can be
computed very easily from the sequence Vi. Therefore, the space complexity of
a zonotope implementation of Algorithm 1 is O(N(p + q)d2).

4 Tight Over-Approximations of the Reachable Sets

The implementation of Algorithm 1 using zonotopes provides for an efficient (in
time and in space) computation of the sets Ω1, . . . , ΩN defined by (1). Neverthe-
less, the result of this algorithm, which is typically a set of high-order zonotopes,
does not lend itself easily to operations other than linear transformations and
Minkowski sum. For example, intersecting a zonotpe with another set, a cru-
cial operation for hybrid reachability computation, is very costly as it involves
the transformation of the zonotope into a polytopic representation. In this sec-
tion, we propose an algorithm for computing over-approximations of the sets
Ω1, . . . , ΩN which are both tight and of low order.

4.1 Interval Hull Approximations

We first consider interval hull over-approximations of the reachable sets. Let Box
be a function that maps a set E ⊆ Rd to its interval hull, that is, to the smallest
Cartesian product of intervals containing E. Note that for every E1, E2 ⊆ Rd

we have
Box(E1 ⊕ E2) = Box(E1)⊕ Box(E2). (3)

Algorithm 2 computes the interval hulls of the reachable sets Ω1, . . . , ΩN .

Algorithm 2. Interval hull approximation of the reachable sets
Input: The matrix Φ, the sets Ω0 and U , and an integer N .
Output: The interval hulls of the N first terms of the sequence defined in (1).
1: X0 ← Ω0

2: V0 ← U
3: S0 ← {0}
4: for i from 0 to N − 1 do
5: Xi+1 ← ΦXi � Xi+1 = Φi+1Ω0

6: Si+1 ← Si⊕Box(Vi) � Si+1 =Box(ΦiU ⊕ · · · ⊕ U)
7: Vi+1 ← ΦVi � Vi+1 = Φi+1U
8: Ωi+1 ← Box(Xi+1) ⊕ Si+1 � Ωi+1 =Box(Ωi+1)
9: end for

10: return {Ω1, . . . , ΩN}

The sequences X0, . . . , XN and V0, . . . , VN are represented as zonotopes which
allow to benefit from the low computational complexity of the linear transfor-
mations. The sequences S0, . . . , SN and Ω1, . . . , ΩN are represented as interval
products (2d numbers). The computation of the interval hull of a zonotope is
particularly easy since the projection of a zonotope on a coordinate axis can
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be computed by projecting each of its generators on that axis. Then, the time
complexity of Algorithm 2 is equivalent to that of Algorithm 1, but its space
complexity drops to O(Nd + (p + q)d2).

Let us remark that in Algorithm 2, approximations occur only when the func-
tion Box is invoked. Note that Box is always applied to exact sets and that other
operations are computed exactly. Thus, approximation errors do not propagate
further through the computations and Algorithm 2 does not suffer from the
wrapping effect. Particularly, we have the following result:

Proposition 1. For all i ∈ {1, . . . , N}, Ωi is the interval hull of the set Ωi.

Proof. From equation (3), we have that

Ωi = Box(ΦiΩ0)⊕ Box(Φi−1U)⊕ . . .⊕ Box(U)
= Box

(
ΦiΩ0 ⊕ Φi−1U ⊕ . . .⊕ U

)
= Box(Ωi). �

Thus, each face of Ωi has at least one common point with the set Ωi and the
over-approximationsΩ1, . . . , ΩN computed by Algorithm 2 are tight in the sense
of [KV00].

Remark 1. Algorithm 2 is not specific to zonotopes and interval products. It
can be implemented using any pair of classes of sets, the first of which closed
under linear transformation and the second closed under the Minkowski sum
and admitting a constant size representation. Then, the function Box has to
be replaced by a function that approximates an object from the first class by
an object from the second. For accurate over-approximations, this function has
to satisfy a property similar to that of equation (3). For instance, we can re-
place zonotopes by ellipsoids or general polytopes. The choice of the second
class is more restricted. In the following, we show that a class of polytopes de-
fined as intersections of bands can be used advantageously in the hybrid systems
context.

4.2 Guards-Oriented Over-Approximations for Hybrid Systems

Let us consider the class of hybrid systems where the continuous dynamics is
linear and time-invariant, and where transition guards are specified by hyper-
planes:

Ge =
{
x ∈ Rd| ne · x = fe

}
where ne ∈ Rd, fe ∈ R.

In this section we present a variant of Algorithm 2 whose output can be in-
tersected efficiently with such transition guards. The algorithm computes tight
over-approximations of the sets Ω1, . . . , ΩN in a class of polytopes defined as
intersections of bands.

Definition 2. Let S = {s1, . . . , s�} be a set of vectors. An S-band intersection,
represented by two vectors m,M ∈ R�, is the set defined by:

[m,M ]S =
{
x ∈ Rd| mi ≤ si · x ≤Mi, i = 1, . . . , 


}
.
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Let us remark that interval products constitute a subclass of S-band intersections
where S is the set of coordinate vectors, and that parallelepipeds are obtained
when S is a set of d linearly independent vectors. For a given set of vectors
S, it is easy to show that the class of S-band intersections is closed under the
Minkowski sum:

[m1,M1]S ⊕ [m2,M2]S = [m1 + m2,M1 + M2]S .

To use S-band intersections in Algorithm 2, we need an over-approximation
function which maps a zonotope to its smallest enclosing S-band intersection.

Proposition 2. Let Z = (u, 〈v1, . . . , vm〉) be a zonotope, then the S-band inter-
section BoxS(Z) = [m,M ]S given by

mi = si · u−
m∑

j=1

|si · vj |, Mi = si · u +
m∑

j=1

|si · vj |, i = 1, . . . , 


is an over-approximation of Z. Moreover, each face of BoxS(Z) has at least one
common point with Z.

Proof. Let x ∈ Z, then for all i ∈ {1, . . . , 
},

si · x = si ·

⎛⎝u +
m∑

j=1

αjvj

⎞⎠ = si · u +
m∑

j=1

αjsi · vj .

Since, for all j ∈ {1, . . . ,m}, αj ∈ [−1, 1], x ∈ BoxS(Z). Moreover, let xi,1 and
xi,2 be the elements of Z given by

xi,1 = u−
m∑

j=1

sign(si · vj)vj , xi,2 = u +
m∑

j=1

sign(si · vj)vj .

Then, si · xi,1 = mi and si · xi,2 = Mi. �

Thus, the function BoxS maps a zonotope Z to a tight over-approximation in
the class of S-band intersections (see Figure 2). Moreover, it is straightforward
to show that BoxS satisfies the following property:

BoxS(Z1 ⊕ Z2) = BoxS(Z1)⊕ BoxS(Z2).

Hence, S-band intersections can replace interval hulls in Algorithm 2. The time
complexity of the algorithm becomes O(k(p + q)(d3 + 
d2)) and the space com-
plexity O(k
 + (p + q)d2 + 
d). Similar to Proposition 1, we can show that the
sets computed by Algorithm 2 indeed satisfy Ωi = BoxS(Ωi), i = 1, . . . , N .

The following result demonstrates some advantage in using band intersections
in Algorithm 2 in the context of hybrid systems verification:
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Z

s1

s2

Z

Z
Z

s1

s2

Fig. 2. A zonotope Z, a set of directions S = {s1, s2}, an over-approximation Z ⊃ Z
by an S-band intersection and an under-approximation Z ⊂ Z by the convex-hull of
points in Z which are extremal with respect to projections on S

Proposition 3. Let Ωi denote the over-approximation of Ωi computed by
Algorithm 2 using S-band intersections, i.e. Ωi = BoxS(Ωi). If the normal vector
ne to the guard Ge is an element of S then:

Ωi intersects Ge ⇐⇒ Ωi intersects Ge.

Proof. Let sj ∈ S, such that sj = ne. Let us assume that Ωi intersects Ge. This
is equivalent to saying that mj ≤ fe ≤ Mj . From Proposition 2, we have that
there exist points xj,1, xj,2 ∈ Ωi such that mj = sj · xj,1 and Mj = sj · xj,2.
Hence, there exists x ∈ Ωi such that sj · x = fe and Ωi intersects Ge. The other
direction of the equivalence is trivial since Ωi ⊆ Ωi. �

Remark 2. Although Proposition 3 implies that a set computed by a step of
Algorithm 2 will intersect a guard exactly when a set computed by Algorithm 1
would (when started from the same set), the corresponding intersections will
differ and after the transition, Algorithm 2 will start from a larger set and will
generate more behaviors. In other words, the wrapping effect manifests itself
during discrete transitions.

5 Tight Under-Approximations and Control Synthesis

When the input U is interpreted as control rather than disturbance, reachability
computation can be used to solve controller synthesis problems: find a sequence
of input values that drives the system to a desired state while avoiding undesired
ones. In this section we show how such control sequences can be extracted from
tight under-approximations of the reachable sets. Previous work on applying
reachability computation to controller synthesis was restricted to synthesizing
mode switching conditions for hybrid systems [ABD+00].

5.1 Under-Approximation of the Reachable Sets

Let S = {s1, . . . , s�} be a set of vectors. A zonotope Z = (u, 〈v1, . . . , vm〉) can
be under-approximated by a polytope defined as the convex hull of the finite set
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of points corresponding to the extremal points of Z in the directions of S (see
Figure 2). From the proof of Proposition 2, we know that the extremal points of
Z in the direction si are xi,1 = u− gi and xi,2 = u+ gi where:

gi =
m∑

j=1

sign(si · vj)vj .

The under-approximation of Z will be denoted by:

Z = (u, [g1, . . . , g�]S) = ConvexHull ({u± gi, i ∈ {1, . . . , 
} })

=

{
u +

�∑
i=1

αigi :
�∑

i=1

|αi| ≤ 1

}
.

Let us remark that the indices have their importance since u±gi are the extremal
points in the direction given by si. In order to use this under-approximation in
a reachability algorithm, we need to express the under-approximation of the
Minkowski sum of two zonotopes as a function of the under-approximations of
each zonotope.

Lemma 1. Let us define the following operation

(u, [g1, . . . , g�]S) � (u′, [g′1, . . . , g
′
�]S) = (u + u′, [g1 + g′1, . . . , g� + g′�]S).

Then, for two zonotopes Z and Z ′, we have Z ⊕ Z ′ = Z � Z ′.

Proof. The extremal points of Z ⊕ Z ′ in the direction si are u + u′ − hi and
u + u′ + hi where

hi =
m∑

j=1

sign(si · vj)vj +
m′∑
j=1

sign(si · v′j)v′j = gi + g′i. �

Thus, we can adapt Algorithm 2 to compute under-approximations of the sets
Ω1, . . . , ΩN . This is done by replacing Box by the under-approximation function
defined above. Then, from Lemma 1, the output of the algorithm is exactly the
sequence Ω1, . . . , ΩN . These under-approximations are tight since the extremal
points of Ωi in each direction si ∈ S are vertices of Ωi. Furthermore, it is easy
to see that they have the same S-band over-approximation. Then, the following
result is straightforward.

Theorem 1. Let Ωi denote the S-band over-approximation of Ωi and let Ωi

denote its under-approximation. If the normal vector ne to the guard Ge is an
element of S then:

Ωi intersects Ge ⇐⇒ Ωi intersects Ge ⇐⇒ Ωi intersects Ge.
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5.2 Application to Control Synthesis

The under-approximation of Ωi can be used for control synthesis when U is
interpreted as control rather than disturbance. Let y be a point of ΩN and
therefore of ΩN , we want to determine an initial state x0 ∈ Ω0 and a sequence of
inputs v0, . . . , vN−1 in U , such that the discrete-time system defined by equation
(1) reaches y in N steps. Since y ∈ ΩN = (u, [g1, . . . , g�]S), it can be written
under the form:

y = u +
�∑

j=1

αjgj, with
�∑

j=1

|αj | ≤ 1.

If 
 = d and Ωk is full dimensional, this is equivalent to a change of variable. The
under-approximationsΦNΩ0 = (uN , [gN

1 , . . . , gN
� ]S) and ΦiU = (ui, [gi

1, . . . , g
i
�]S)

(i ∈ {0, . . . , N − 1}) are computed by Algorithm 2 while computing ΩN . Let us
remark that from Lemma 1, we have u = uN + uN−1 + . . . + u0 and gj =
gN

j + gN−1
j + . . . + g0

j . Then, if Φ is invertible (which is the case if the discrete-
time system is achieved by discretization of a continuous-time system), we can
choose

x0 = Φ−N (uN +
�∑

j=1

αjg
N
j ),

vi = Φi+1−N (uN−1−i +
�∑

j=1

αjg
N−1−i
j ), i = 0, . . . , N − 1.

It is clear that x0 ∈ Ω0, v0, . . . , vN−1 ∈ U and, moreover, the sequence xi+1
= Φxi + vi satisfies xN = y.

6 Experimental Results

Algorithms 1 and 2 have been implemented in OCaml [C05]. For the sake
of comparison, we have also implemented the zonotope-based reachability al-
gorithm presented in [G05]. This algorithm, which obtained the best accu-
racy/performance tradeoffs reported so far, computes an over-approximation of
the reachable sets using the recurrence relation (1). At each step, in order to
avoid computational explosion, it reduces the complexity of the reachable set by
over-approximating it by a zonotope of fixed order p. In the following, we refer
to this algorithm by Zono-p. Zonotopes and linear algebra operations were im-
plemented in separate modules so that all algorithms use the same subroutines.
All computations were performed on a Pentium III 800MHz with 256MB RAM.

6.1 A Five-Dimensional Linear System

As a first benchmark consider the five-dimensional example borrowed from [G05].
Over-approximations of the reachable sets of this system have been computed
using Algorithms 1, 2 and Zono-20.
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The approximation obtained by Algorithm 1 is always the most accurate
because it consists of the exact sequence Ω1, . . . , ΩN defined by the recur-
rence relation (1). For short time horizons, the over-approximations computed
by Zono-20 are more accurate than the ones computed by Algorithm 2. How-
ever, as we consider longer time horizons, the errors introduced at each step of
Zono-20 start propagating through the computations and the wrapping effect
becomes too significant to actually say anything interesting about the reach-
able states of the system. In comparison, the over-approximations obtained by
Algorithm 2 are tight and remain accurate even for long time horizons. More-
over, since Algorithm 2 uses interval hull over-approximations, the output of
this algorithm is much easier to manipulate than the output of Zono-20 which
consists of a sequence of zonotopes of order 20.

Fig. 3. Reachable states of a five-dimensional linear system after 1000 iterations: pro-
jections on coordinates x1 and x2 (left), x4 and x5 (right). In light gray: set computed
by Zono-20 (maximum order allowed for the zonotopes is 20). In dark gray: set com-
puted by Algorithm 2. In black: set computed by Algorithm 1.

Figure 3 shows the over-approximations of the reachable sets obtained by the
three algorithms for a long time horizon (N = 1000). It is clear that Algorithms 1
and 2 have a much better precision than Algorithm Zono-20, an obvious victim
of the wrapping effect. Computation time and memory consumption of the three
algorithms for different time horizons N are reported in Table 1. We can see that
Algorithms 1 and 2 are fast and require much less memory. Algorithm 2, which
computes interval-hulls approximation, is about 100 times faster, and needs 25
times less memory than Algorithm Zono-20, while producing approximations of
higher quality.

6.2 High-Dimensional Linear Systems

The three algorithms were also tested on continuous linear time-invariant sys-
tems which were randomly generated according to the following procedure: the
matrix A was chosen at random and then normalized for the infinity norm and
the inputs were chosen bounded for the infinity norm. In [G05], it is explained
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Table 1. Time and memory consumptions of reachability computations for a five-
dimensional linear system, for different time horizons

N = 200 400 600 800 1000
Algorithm 1 0.01s 0.02s 0.04s 0.05s 0.07s
Algorithm 1 0.s 0.s 0.01s 0.01s 0.02s
Zono-20 0.34s 0.74s 1.14s 1.46s 2.16s

N = 200 400 600 800 1000
Algorithm 1 492KB 737KB 983KB 1.23MB 1.47MB
Algorithm 1 246KB 246KB 246KB 246KB 246KB
Zono-20 1.47MB 2.95MB 4.18MB 5.65MB 6.88MB

Table 2. Time and memory consumption for N = 100 for several linear time-invariant
systems of different dimensions

d = 5 10 20 50 100 150 200
Algorithm 1 0.0s 0.02s 0.11s 1.11s 8.43s 35.9s 136s
Algorithm 2 0.0s 0.01s 0.07s 0.91s 8.08s 28.8s 131s
Zono-20 0.16s 0.61s 3.32s 22.6s 152s

d = 5 10 20 50 100 150 200
Algorithm 1 246KB 492KB 1.72MB 8.85MB 33.7MB 75.2MB 133MB
Algorithm 2 246KB 246KB 246KB 492KB 983KB 2.21MB 3.69MB
Zono-20 737KB 2.46MB 8.36MB 44.5MB 177MB

how the recurrence relation given by equation (1) can be obtained. The dis-
cretization time step was r = 0.01 and the number of iterations is N = 100.
Computation times and memory consumptions of the three algorithms for linear
systems of several dimensions d are reported in Table 2.

Algorithms 1 and 2 appear to be extremely scalable in terms of both time and
space, which confirms the theoretical complexity estimations. Let us remark that
using Algorithm 2, we can compute a tight over-approximation of the reachable
set of a 100-dimensional system after 100 time steps in less than 10 seconds
using less than 1MB memory. To the best of our knowledge, there is no report in
the literature of algorithms with similar performances for such high-dimensional
systems.

6.3 Varying the Time Step

When the recurrence relation (1) is obtained by discretization of a continuous-
time system, we expect that the smaller is the time step, the more accurate
will be the over-approximation we compute. However, is not always the case for
algorithms suffering from the wrapping effects because reducing the time steps
increases the number of iterations of the reachability algorithm in order to cover
the same time interval. As we can see in Figure 4, reducing the time step improves
the quality of the over-approximations obtained by Algorithm 2 whereas the
over-approximations obtained by Algorithm Zono-5 blows up beyond usefulness.
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Δt = 0.1, k = 10 Δt = 0.001, k = 1000

Δt ← Δt
100−→

Δt ← Δt
100−→

Fig. 4. Reducing the timestep in a 20-dimensional example improves the quality of the
over-approximation obtained by Algorithm 2 (top) but increase the wrapping effect on
the algorithm Zono-5 (bottom)

7 Conclusions

We have presented an extremely-efficient and exact algorithm for computing
reachable states of a discrete-time LTI systems, as well as several variants of
this algorithm for computing tight over- and under-approximation of these sets,
which do not suffer from the wrapping effect. We showed that we can com-
pute over-approximations that facilitate guard intersections, and that our under-
approximations can be used to solve control synthesis problems. The prototype
implementation of our algorithms has outperfromed previously reported algo-
rithms in terms of execution time, memory consumption and approximation
tightness. The implementation will be improved by using efficient linear algebra
libraries. Future work will focus on the application to hybrid systems and, in
particular, on computing intersections with guards.
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[K99] W. Kühn, Towards an Optimal Control of the Wrapping Effect, SCAN
98, Developments in Reliable Computing, 43–51, Kluwer, 1999.

[KV97] A. Kurzhanski and I. Valyi, Ellipsoidal Calculus for Estimation and
Control. Birkhauser, 1997.

[KV00] A.B Kurzhanski and P. Varaiya, Ellipsoidal Techniques for Reachability
Analysis, HSCC’00, LNCS 1790, 202–214, Springer, 2000.

[M02] O. Maler, Control from Computer Science, Annual Reviews in Control
26, 175-187, 2002.

[MT00] I. Mitchell and C. Tomlin, Level Set Methods for Computation in Hybrid
Systems, HSCC’00, LNCS 1790, 310–323, Springer, 2000.

[V98] P. Varaiya, Reach Set computation using Optimal Control, KIT Work-
shop, Verimag, Grenoble, 377–383, 1998.

[Z75] T. Zaslavsky, Facing Up to Arrangements: Face-Count Formulas for
Partitions of Space by Hyperplanes, Memoirs of the AMS 154, American
Mathematical Society, 1975.



Verification Using Simulation�

Antoine Girard and George J. Pappas

Department of Electrical and Systems Engineering,
University of Pennsylvania,

Philadelphia, PA 19104
{agirard, pappasg}@seas.upenn.edu

Abstract. Verification and simulation have always been complemen-
tary, if not competing, approaches to system design. In this paper, we
present a novel method for so-called metric transition systems that
bridges the gap between verification and simulation, enabling system ver-
ification using a finite number of simulations. The existence of metrics
on the system state and observation spaces, which is natural for continu-
ous systems, allows us to capitalize on the recently developed framework
of approximate bisimulations, and infer the behavior of neighborhood of
system trajectories around a simulated trajectory. For nondeterministic
linear systems that are robustly safe or robustly unsafe, we provide not
only a completeness result but also an upper bound on the number of
simulations required as a function of the distance between the reach-
able set and the unsafe set. Our framework is the first simulation-based
verification method that enjoys completeness for infinite-state systems.
The complexity is low for robustly safe or robustly unsafe systems, and
increases for nonrobust problems. This provides strong evidence that ro-
bustness dramatically impacts the complexity of system verification and
design.

1 Introduction

Given a system model and a desired specification, system designers rely on both
analysis and simulation methods. Simulation-based approaches ensure that a
finite number of user-defined system trajectories meet the desired specification.
Even though computationally inexpensive simulation is ubiquitous in system
design, it suffers from completeness as it is impossible or impractical to test
all system trajectories. Furthermore, simulation-based testing is semi-automatic
since the user must provide a large number of test cases. On the other hand,
automated verification methods enjoy completeness by showing that all system
trajectories satisfy the desired property. Despite great progress on verification
tools for discrete software and hardware systems, the algorithmic complexity of
verification tools makes them applicable to smaller scale problems.

The gap between simulation and verification is more extreme when con-
sidering systems with infinite states, such as continuous or hybrid systems.
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Whereas traditional simulation techniques for discrete and continuous systems
can be naturally extended for hybrid systems [1, 2, 3], verification techniques
have been much more challenging to extend due to the complexity of computing
reachable sets for continuous systems. This has resulted in a variety of com-
putationally intensive approaches for hybrid system verification using predicate
abstraction [4, 5], barrier certificates [6], level sets [7], and exact arithmetic [8].
Even though these approaches can handle low-dimensional hybrid systems, for
the class of uncertain linear systems, promising scalable results have been ob-
tained using zonotope computations [9].

In this paper, we present a novel method that bridges the gap between verifi-
cation and simulation methods, enabling system verification using a finite num-
ber of simulations. This is achieved for so-called metric transition systems, that
are transition systems that are equipped with metrics on the system state and
observation spaces. Whereas choosing metrics may not be natural for purely
combinatorial discrete problems, they are very natural for continuous and hybrid
systems. Having a notion of distance between states and observations, enables us
to build on the recently developed framework of approximate bisimulation met-
rics [10, 11, 12, 13]. Bisimulation metrics measure how far two states are from
being bisimilar, thus enabling the quantification of error between trajectories
originating from approximately bisimilar states.

Equipping transition systems with bisimulation metrics enables the develop-
ment of a simulation-based verification algorithm by inferring the behavior of
neighborhood of system trajectories around a simulated trajectory, resulting in
more robust simulations. By appropriately sampling the set of initial states, we
can verify or falsify the desired property for all system trajectories. The more ro-
bust the simulations, the less simulations we have to perform. The pre-computed
bisimulation metric is used for automatically guiding the choice of trajectories
that will be simulated.

For the class of metric transition systems generated by nondeterministic lin-
ear systems that are robustly safe or robustly unsafe, a completeness result is
provided. Our framework is the first simulation-based verification method that
enjoys completeness for continuous systems. Furthermore, we obtain an upper
bound on the number of simulations required as a function of the distance be-
tween the reachable set of the system and the unsafe set. Naturally, the com-
plexity of our approach is low for robustly safe or robustly unsafe systems, and
increases for nonrobust problems. This provides strong evidence that robustness
dramatically impacts the complexity of system verification and design.

2 Bisimulation Metrics for Transition Systems

We consider the class of metric transition systems defined as follows:

Definition 1 (Metric transition system). A transition system with obser-
vations is a tuple T = (Q,→, Q0, Π, 〈〈.〉〉) that consists of:
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– a (possibly infinite) set Q of states,
– a transition relation →⊆ Q×Q,
– a (possibly infinite) set Q0 ⊆ Q of initial states,
– a (possibly infinite) set Π of observations,
– an observation map 〈〈.〉〉 : Q→ Π.

If (Q, dQ) and (Π, dΠ) are metric spaces, then T is called a metric transition
system.

A metric transition system is therefore a possibly nondeterministic transition
system equipped with metrics for states and observations. A transition (q, q′) ∈→
will be denoted q → q′. The successor map is defined as the set valued map
given by

∀q ∈ Q, Post(q) = {q′ ∈ Q| q → q′} .

We assume the set of initial values Q0 is a compact subset of Q and for all q ∈ Q,
Post(q) is a compact subset of Q. A state trajectory of T is a finite sequence of
transitions, q0 → · · · → qk, where q0 ∈ Q0. For N ∈ N, SN (T ) denotes the set
of state trajectories of length less or equal to N . The reachable set of T within
N transitions is the subset of Π defined by:

ReachN (T ) = {π ∈ Π | ∃ q0 → · · · → qk ∈ SN (T ), 〈〈qk〉〉 = π} .

An important problem for transition systems is the safety verification problem
which asks whether the intersection of ReachN (T ) with an unsafe set U ⊆ Π
is empty or not. When considering metric transition systems, more robust (i.e.
quantitative) versions of this property can be formulated:

Definition 2. A metric transition system T is robustly safe if there exists δ > 0
such that

∀π ∈ ReachN (T ), NΠ(π, δ) ∩ U = ∅,

and is robustly unsafe if there exists δ > 0 such that

∃π ∈ ReachN (T ), NΠ(π, δ) ⊆ U ,

where NΠ(π, δ) denotes the δ-neighborhood of observation π for the metric dΠ .
The supremum of the set of δ such that one of these equations holds is called the
coefficient of robustness of T . If T is neither robustly safe nor robustly unsafe,
we say that T is not robust with respect to the safety property.

Remark 1. Robustness with respect to the safety property is generic for metric
transition systems. Indeed, T is not robust with respect to the safety property
if and only if the intersection of the interior of ReachN (T ) and U is empty while
the intersection of their closure is not.

For systems with a finite number of states, the safety verification problem can
be solved by exhaustive simulation of the transition system. Though effective for
systems with a reasonable number of states, this approach becomes much more
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computationally demanding when the number of states increases. For systems
with a finite but large number of states, notions of systems refinement and equiv-
alence, based on language inclusion, simulation and bisimulation relations [14],
have been useful for simplifying the safety verification problem.

Definition 3 (Bisimulation relation). A relation ∼⊆ Q×Q is a bisimulation
relation if for all q1 ∼ q2:

1. 〈〈q1〉〉 = 〈〈q2〉〉,
2. for all q1 → q′1, there exists q2 → q′2, such that q′1 ∼ q′2,
3. for all q2 → q′2, there exists q1 → q′1, such that q′1 ∼ q′2.

From a bisimulation relation, we can construct an equivalent (but smaller) tran-
sition system T ′ defined on the quotient set of states Q/ ∼. Particularly, the
reachable sets of T and T ′ are equal and therefore the safety verification prob-
lem of both systems are equivalent though much simpler to solve for T ′.

For transition systems with an infinite number of states such as those gener-
ated by dynamical and hybrid systems, exhaustive simulation is generally not
possible. Extensions of the notion of simulation and bisimulation relations have
recently been developed [15, 16, 17]. Though simpler, the quotient system gener-
ally still has an infinite number of states for which exhaustive simulation would
require to compute an infinite number of trajectories. In the following, we show
that an approach based on the computation of a finite number of trajectories is
possible using more robust relations defined by metrics.

Definition 4 (Bisimulation metric). A continuous function dB : Q × Q →
R+ is a bisimulation metric if it is a pseudo-metric:

1. for all q ∈ Q, dB(q, q) = 0,
2. for all q1, q2 ∈ Q, dB(q1, q2) = dB(q2, q1),
3. for all q1, q2, q3 ∈ Q, dB(q1, q3) ≤ dB(q1, q2) + dB(q2, q3),

and if in addition, there exists λ > 1, such that for all q1, q2 ∈ Q,

dB(q1, q2) ≥ max( dΠ(〈〈q1〉〉, 〈〈q2〉〉), λ sup
q1→q′

1

inf
q2→q′

2

dB(q′1, q
′
2) ). (1)

The notion of bisimulation metrics extends the notion of bisimulation relations.
A bisimulation metric measures how far two states are from being bisimilar:

Proposition 1. The zero set of a bisimulation metric is a bisimulation relation.

Proof. Let q1, q2 ∈ Q such that dB(q1, q2) = 0. Then, from equation (1), we have
that dΠ(〈〈q1〉〉, 〈〈q2〉〉) = 0. Since dΠ is a metric, this implies that 〈〈q1〉〉 = 〈〈q2〉〉.
Now, let q1 → q′1, then since dB is continuous and Post(q2) is compact, equation
(1) implies that there exists q2 → q′2 such that dB(q′1, q

′
2) = 0. Similarly, since

dB(q1, q2) = dB(q2, q1), we have that for all q2 → q′2, there exists q1 → q′1 such
that dB(q′2, q′1) = dB(q′1, q′2) = 0. �
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Remark 2. The branching distance defined in [10] and [11] as the smallest func-
tion (but not necessarily metric) d satisfying the functional equation:

d(q1, q2) = max( dΠ(〈〈q1〉〉, 〈〈q2〉〉),
λ sup

q1→q′
1

inf
q2→q′

2

d(q′1, q
′
2), λ sup

q2→q′
2

inf
q1→q′

1

d(q′1, q
′
2) )

is a bisimulation metric. Moreover, we have shown [11] that it is the smallest
(or minimal) bisimulation metric which is the analog for metrics of the largest (or
maximal) bisimulation relation for relations. Though it is possible to compute
the minimal bisimulation metric for systems with a finite number of states [10],
it becomes more problematic for systems with an infinite number of states. In
that case, the relaxed conditions of Definition 4 allows to make computations
easier [12, 13].

Given a bisimulation metric dB, we define state neighborhoods associated to this
metric. For all q ∈ Q and δ > 0, NB(q, δ) = {q′ ∈ Q | dB(q, q′) ≤ δ}.

3 Simulation-Based Reachability Computation

In this section, we show that for metric transition systems equipped with a bisim-
ulation metric, we can compute an approximation (with any desired precision)
of the reachable set of a metric transition system by simulating a finite number
of its state trajectories. Let us assume that we have a discretization function
Disc which associates to a compact set C ⊆ Q and a real number ε > 0, a finite
set of points Disc(C, ε) = {q1, . . . , qr} ⊆ C such that

for all q ∈ C, there exists qi, such that dB(q, qi) ≤ ε.

Since dB is assumed to be continuous, such a function always exists1.
The reachable set of T can then be approximated with arbitrarily precision

using a finite set of simulations, i.e. by computing a finite number of state
trajectories of T . Let δ > 0 be the desired precision of approximation for the
reachable set. Let ε be a discretization parameter such that δ ≥ δ/λ + ε. First,
start with the discretization of the set of initial states of T , P0 = Disc(Q0, δ).
Then, we compute some state trajectories of T from the following iteration:

Pi+1 = Pi ∪

⎛⎝ ⋃
q∈Pi

Disc(Post(q), ε)

⎞⎠ , i = 0, . . . , N − 1.

Theorem 1. Let us consider the finite set

Reachδ,ε
N (T ) = {π ∈ Π | ∃q ∈ PN , 〈〈q〉〉 = π}.

Then, the following inclusions hold

Reachδ,ε
N (T ) ⊆ ReachN (T ) ⊆ NΠ

(
Reachδ,ε

N (T ), δ
)
.

1 The proof is not stated here because of the lack of space.
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Proof. The first inclusion is obvious since PN is obtained from simulations of
T . Let π ∈ ReachN (T ) and q0 → · · · → qk be a state trajectory of T , such
that 〈〈qk〉〉 = π (k ≤ N). Since q0 ∈ Q0, there exists p0 ∈ Disc(Q0, δ) = P0
such that dB(p0, q0) ≤ δ. Then, from equation (1), there exists p′1 ∈ Post(p0)
such that dB(p′1, q1) ≤ δ/λ. There also exists p1 ∈ Disc(Post(p0), ε) ⊆ P1 such
that dB(p1, p

′
1) ≤ ε. From the triangular inequality, dB(p1, q1) ≤ δ/λ + ε ≤ δ.

Recursively, we can show that there exists pk ∈ Pk ⊆ PN such that dB(pk, qk) ≤
δ. Then, from equation (1), we also have dΠ(〈〈pk〉〉, 〈〈qk〉〉) ≤ δ which finally leads
to the second inclusion. �

If we assume that the number of elements Disc(Post(q), ε) is always greater than
an integer r > 1, then the set PN contains O(rN ) elements. Then, the number of
trajectories that we need to compute grows exponentially with the time horizon
N . To overcome this problem and design a more efficient reachability algorithm,
one can think of using an approach similar to the systematic simulation algorithm
proposed in [2]. The main idea consists in merging, at each iteration, neighbor
states in Pi. The algorithm in [2] used general ellipsoidal neighborhoods and
requires several ellipsoidal operations at each step to determine which states need
to be merged. An implementation of this method with neighborhoods associated
to the bisimulation metric seems promising and will be explored in the future.

4 Simulation-Based Safety Verification

The method presented in the previous section can be dramatically improved in
the context of safety verification. First, it is seldom the case that we need a
uniform approximation (in space) of the reachable set. Whereas the previous
approach uniformly covers the reachable set with δ neighborhoods, an approach
allowing rough approximations where it is possible (i.e. far from the unsafe set)
and an accurate estimation where it is necessary (i.e. near the unsafe set) would
definitely give more accurate results for equivalent computations. Second, if the
approximation with δ neighborhoods does not allow concluding the safety of the
transition system T , the previous approach does not give any guidance for refin-
ing our approximation other than choose a smaller δ and start over. Motivated
by these two remarks, we propose an algorithm for safety verification for the
class of metric transition systems generated by discrete-time linear systems of
the form:

Σ :
{
x(k + 1) = Ax(k) + Bu(k), x(k) ∈ Rn, u(k) ∈ U, x(0) ∈ I,
y(k) = Cx(k), y(k) ∈ Rp,

(2)

where U is a compact subset of Rm and I is a compact subset of Rn. The input
u(.) is to be thought as a disturbance rather than a control.

Remark 3. The distance between the reachable set of a continuous-time system
and the reachable set of its sampled version can be quantified. The presented
approach can therefore be adapted for safety verification of a continuous-time
system at the expense of a quantifiable error.
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4.1 Bisimulation Metrics for Linear Systems

In the spirit of [16], the linear system can be written as a nondeterministic
transition system T = (Q,→, Q0, Π, 〈〈.〉〉) where

– the set of states is Q = Rn,
– the transition relation is given by

x→ x′ ⇐⇒ ∃u ∈ U such that x′ = Ax + Bu,

– the set of initial states is Q0 = I,
– the set of observations is Π = Rp,
– the observation map is given by 〈〈x〉〉 = Cx.

The set of states and observations are equipped with the traditional Euclidean
metric. Our approach requires a bisimulation metric for our transition system.
Following [12], we search for bisimulation metrics of the form:

dB(x1, x2) =
√

(x1 − x2)TM(x1 − x2) (3)

where M is a positive semi-definite symmetric matrix.

Theorem 2. Let M be a positive semi-definite symmetric matrix, λ > 1 such
that the following linear matrix inequalities hold:

M ≥ CTC, (4)
M − λ2ATMA ≥ 0. (5)

Then, the function dB(x1, x2) given by equation (3) is a bisimulation metric.

Proof. It is clear that dB is pseudo-metric. The linear matrix inequality (4)
implies that

dB(x1, x2) ≥
√

(x1 − x2)TCTC(x1 − x2) = ‖Cx1 − Cx2‖.

The linear matrix inequality (5) implies that for all u ∈ U ,

λdB(Ax1 + Bu,Ax2 + Bu) = λ
√

(x1 − x2)TATMA(x1 − x2)

≤
√

(x1 − x2)TM(x1 − x2) = dB(x1, x2).

It follows that dB(x1, x2) ≥ λ supx1→x′
1
infx2→x′

2
dB(x′

1, x
′
2). �

Thus, a bisimulation metric can be computed by solving a set of linear matrix
inequalities which can be done efficiently using semi-definite programming [18].
Moreover, for the class of asymptotically stable linear systems, bisimulation met-
rics of the form (3) are universal.

Theorem 3. If Σ is asymptotically stable (i.e. all the eigenvalues of A lie inside
the open unit disk), then there exists a bisimulation metric of the form (3).

The proof is omitted here but a similar result has been proved in [12].
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4.2 Safety Verification Algorithm

Let T be a metric transition system generated by a stable discrete-time linear
system and dB a bisimulation metric of form (3). We propose a safety verification
algorithm consisting of two main phases. First, by simulating a single trajectory
of T , we compute a rough finite-state abstraction TA of our transition system.
Then, the algorithm automatically decides which new trajectories need to be
simulated (choice of the initial value and of the sequence of inputs) in order to
refine the abstraction TA and conclude the safety of T .

The states of our abstraction are of the form q = (x, μ) with x ∈ Rn and
μ ≥ 0 and should be thought of as representing the points of the neighbor-
hood NB(x, μ). The abstraction of T is a transition system TA = (QA,→A,
QA,0, ΠA, 〈〈.〉〉A) where the set of states QA is a finite subset of Rn × R+, the
set of observations is ΠA = Π and the observation map is given by 〈〈(x, μ)〉〉A =
〈〈x〉〉. We also need a set Qsafe ⊆ QA consisting of safe states of TA.

Algorithm 1 shows the structure of our safety verification algorithm. In the
following, each step of the method is detailed.

Compute the initial abstraction TA
while ReachN(TA) ∩ U = ∅ and QA �= Qsafe do

- Main refinement loop:
Determine the states to split S ⊆ QA \ Qsafe

foreach q ∈ S do
Split the state q - refinement operation

end
end
if ReachN (TA) ∩ U �= ∅ then

return “The system is unsafe”
else

return “The system is safe”
end

Algorithm 1. Safety verification algorithm

Computation of the initial abstraction. The initial abstraction is computed
according to the following procedure. Initially, the set of states QA, the set of
initial states QA,0 the set of safe states Qsafe as well as the transition relation
→A are empty.

First, we choose an initial state z0 ∈ I and compute μ0 such that for all x0 ∈ I,
dB(x0, z0) ≤ μ0. We insert (z0, μ0) in QA and QA,0. Then, we choose an input
v ∈ U and compute ε such that for all u ∈ U , dB(Bv,Bu) ≤ ε. For i = 1 . . .N ,
we compute zi = Azi−1 + Bv and μi = μi−1/λ + ε. Note that this essentially
consists in simulating system T for the initial state z0 and the constant input v.
We insert (zi, μi) in QA and ((zi−1, μi−1), (zi, μi)) in the transition relation→A.

The second step consists in inserting safe states in Qsafe. A state (zi, μi)
of the abstraction is safe if NΠ(〈〈zi〉〉, μi) ∩ U = ∅ (i.e. it is safe now) and
its succesors are safe (i.e. it is safe in the future). We start from the state
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(z−1, μ−1)

(z−1, μ−1)

(z3, μ3)

(z1
0 , μ′

0)

(z1, μ1)

(z1
4 , μ′

4)

(z1
2 , μ′

2)

(z5, μ5)

(z2
0 , μ′

0)

(z2
4 , μ′

4)

(z2
2 , μ′

2)

NΠ(z2
4 , μ′

4) ∩ U = ∅
NΠ(z2

2 , μ′
2) ∩ U = ∅

NΠ(z1
4 , μ′

4) ∩ U �= ∅

(z3, μ3)

(z0, μ0)

(z1, μ1)

(z2, μ2)

(z5, μ5)(z4, μ4)

NΠ(z2
0 , μ′

0) ∩ U �= ∅

Fig. 1. Illustration of state splitting, the new states are obtained by simulation of the
system. The grey states are safe states (elements of Qsafe): dark grey for states that
were in Qsafe before state splitting and light grey for those that were added during
state splitting.

(zN , μN ), if NΠ(〈〈zN 〉〉, μN ) ∩ U = ∅, then we insert (zN , μN ) in Qsafe. We
repeat this procedure for (zN−1, μN−1) and so on until we find (zN ′ , μN ′) such
that NΠ(〈〈zN ′〉〉, μN ′) ∩ U �= ∅.

Refinement operation: state splitting. If the initial abstraction is not suf-
ficient to conclude safety (QA = Qsafe) or unsafety (ReachN (TA) ∩ U �= ∅) then
the abstraction needs to be refined by splitting states. Let ρ ∈ (0, 1) be a refine-
ment parameter that determines how many states result from state splitting; the
smaller ρ, the more new states are inserted in the abstraction. For simplicity,
we assume that all the states in QA \Qsafe have at most one predecessor for the
transition relation →A2. We split any state q0 = (z0, μ0) ∈ QA \Qsafe according
to the following procedure. State splitting is illustrated on Figure 1.

The first step consists in splitting the state q0 into several states. If q0 is an ini-
tial state (i.e. q0 ∈ QA,0), then let μ′

0 =ρμ0 and {z1
0 , . . . , z

r
0} = Disc(NB(z0, μ0)∩

I, ρμ0). We replace (z0, μ0) by (z1
0 , μ

′
0), . . . , (zr

0 , μ
′
0) in QA and QA,0. If q0 is not

an initial state (i.e. q0 /∈ QA,0), then let (z−1, μ−1) ∈ QA be the predecessor of q0
(i.e. (z−1, μ−1) →A (z0, μ0)) and let {w1

−1, . . . , w
r
−1} = Disc(NB(Bv−1, ε−1) ∩

BU, ρε−1) where ε−1 = μ0 − μ−1/λ and v−1 ∈ U is the input which leads
T from z−1 to z0. Let v1

−1, . . . , v
r
−1 ∈ U be inputs such that Bvj

−1 = wj
−1

(j = 1, . . . , r). Let zj
0 = Az−1 + Bvj

−1 and μ′
0 = μ−1/λ + ρε−1, we replace

2 This assumption is not restrictive since we are performing finite-horizon verification
and thus such cases can be handled by duplicating states.
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(z0, μ0) by (z1
0 , μ

′
0), . . . , (z

r
0 , μ

′
0) in QA and ((z−1, μ−1), (z0, μ0)) is replaced by

((z−1, μ−1), (z1
0 , μ

′
0)), . . . , ((z−1, μ−1), (zr

0 , μ
′
0)) in the transition relation →A.

We update QA and →A, so that each sequence of transitions of the form
(z0, μ0) →A (z1, μ1) →A · · · →A (zk, μk) such that (zk, μk) /∈ Qsafe is replaced
by r sequences:

(zj
0, μ

′
0)→A (zj

1, μ
′
1) →A · · · →A (zj

k, μ
′
k), j = 1, . . . , r

such that zj
i+1 = Azj

i +Bvi where vi ∈ BU is the input which leads the system
T from zi to zi+1 and μ′

i+1 = μ′
i/λ+ εi where εi = μi+1 − μi/λ. Hence, for each

trajectory initiating from z0 (associated to a sequence of inputs v0, . . . , vk−1), we
need to simulate the trajectories starting in z1

0 , . . . , z
r
0 for the same sequence of

inputs. For each safe successors of (zk, μk), (zk+1, μk+1) ∈ Qsafe, the transition
((zk, μk), (zk+1, μk+1)) is replaced by the transitions ((z1

k, μ
′
k), (zk+1, μk+1)), . . . ,

((zr
k, μ

′
k), (zk+1, μk+1)) in TA. The main idea is that since we already know that

(zk+1, μk+1) is safe, there is no need to split this state.
Finally, we update the set of safe states Qsafe. For each new state (z, μ) of

TA, if all its successors are safe and NΠ(〈〈z〉〉, μ) ∩ U �= ∅, then we insert (z, μ)
in Qsafe. The same process is repeated for the predecessor of (z, μ).

Remark 4. The number of new states introduced by the splitting of q0 depends
critically on how many transitions separate q0 from a state in Qsafe. For instance
if all the successors of q0 are in Qsafe then the refinement operation adds r new
states. On the other hand, if q0 is an initial state the total number of states of
the abstraction can multiplied by r.

At each iteration of the main loop of Algorithm 1, we choose a set S ⊆ QA\Qsafe
of states to be split according to a refinement policy. Then, we apply state
splitting to each state in S. The order in which we split the elements of S is in
backward manner, that is we split an element q of S if all the states q′ ∈ S such
that q →A · · · →A q′ have already been split.

The refinement procedure defined by state splitting is such that after each
refinement, the states q which remain in QA \ Qsafe are those for which there
exists a sequence of transitions q →A · · · →A q′ such that q′ = (z′, μ′) and
NΠ(〈〈z′〉〉, μ)∩U is not empty. This means that all states of QA\Qsafe are states
which potentially lead to an unsafe state. Since only these states are refined, this
approach is similar to counterexample guided abstraction refinement [19, 4, 5].

Soundness and completeness. Before stating results on soundness and com-
pleteness of Algorithm 1, we need two approximation results.

Lemma 1. Let TA be an abstraction of T obtained from the initial abstraction
by a finite sequence of state splittings, let x0 → · · · → xk ∈ SN(T ). Then, there
exists (z0, μ0) →A · · · →A (zk, μk) ∈ SN (TA) such that one of the following
holds
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1. (zk, μk) ∈ Qsafe and dB(xk, zk) ≤ μk,
2. (zk, μk) /∈ Qsafe, dB(x0, z0) ≤ μ0 and dB(Bui, Bvi) ≤ εi (i = 0, . . . , k − 1),

where εi = μi+1 − μi/λ and u0, . . . , uk−1 (respectively v0, . . . , vk−1) is the
sequence of inputs associated to the trajectory x0 → · · · → xk (respectively
z0 → · · · → zk).

Proof. Let x0 → · · · → xk ∈ SN(T ), let (z0, μ0) →A · · · →A (zk, μk) be the
unique trajectory of length k of the initial abstraction TA. By construction, we
have dB(x0, z0) ≤ μ0 and dB(Bui, Bvi) ≤ εi (i = 0, . . . , k − 1). Then,

dB(xi+1, zi+1) ≤ dB(Axi + Bui, Axi + Bvi) + dB(Axi + Bvi, Azi + Bvi)
≤ εi + dB(xi, zi)/λ.

By induction, we have that dB(xk, zk) ≤ μk. Hence, it is clear that the property
holds for the initial abstraction. Let us assume that it holds after a finite sequence
of refinements, and let (z0, μ0) →A · · · →A (zk, μk) be the associated element
of SN (TA). We apply state splitting to an element q ∈ QA \ Qsafe. If (zk, μk)
was in Qsafe before state splitting, then it is clear that the first assertion of
the lemma still holds after state splitting. Let us assume that (zk, μk) is not in
Qsafe and that the second assertion of the lemma holds before state splitting.
Particularly, it can be shown by induction that dB(xk, zk) ≤ μk. If for all i ∈
{0, . . . , k}, q �= (zi, μi) then (z0, μ0) →A · · · →A (zk, μk) is still a trajectory
of TA after state splitting and one of the two assertions of the lemma holds.
If q = (zi, μi) (for some i ∈ {1, . . . , k}, the case i = 0 being similar), then
after state splitting, we know by construction that there exists a trajectory of
TA of the form (z0, μ0) →A · · · →A (zi−1, μi−1) →A (zj

i , μ
′
i) · · · →A (zj

k, μ
′
k)

such that dB(x0, z0) ≤ μ0 and dB(Bu0, Bv0) ≤ ε0, . . . , dB(Bui−2, Bvi−2) ≤ εi−2,
dB(Bui−1, Bvj

i−1) ≤ ε′i−1 = ρεi−1, dB(Bui, Bvi) ≤ εi, . . . , dB(Buk−1, Bvk−1) ≤
εk−1. Note that this also implies that dB(xk, z

j
k) ≤ μ′

k. Therefore, one of the
assertions of the lemma holds after state splitting. Hence, Lemma 1 is proved by
induction. �

Theorem 4. Let TA be an abstraction of T obtained from the initial abstraction
by a finite sequence of state splittings. Let us define the following set

R̃eachN (TA) = {π ∈ Π | ∃(z, μ) ∈ QA, dπ(〈〈z〉〉, π) ≤ μ}.

Then, the following inclusions hold

ReachN (TA) ⊆ ReachN (T ) ⊆ R̃eachN (TA).

Proof. The first inclusion is obvious because the states of the abstraction are
computed by simulation of T . Let π ∈ ReachN (T ) and x0 → · · · → xk be a state
trajectory of T , such that 〈〈xk〉〉 = π (k ≤ N). From Lemma 1, there exists
(z0, μ0) →A · · · →A (zk, μk) ∈ SN (TA) such that one assertion of the lemma
holds. Let us remark that in both cases, we have dB(zk, xk) ≤ μk and therefore
dπ(〈〈zk〉〉, π) ≤ μk. �
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The following soundness result is straightforward:

Theorem 5. If Algorithm 1 terminates, then it provides the correct answer to
the safety verification problem.

Proof. If at the termination of Algorithm 1, we have ReachN (TA) ∩ U �= ∅,
then from the first inclusion of Theorem 4, we have that T is unsafe. If at the
termination of Algorithm 1, we have QA = Qsafe, this particularly means that for
all (z, μ) ∈ QA, Nπ(〈〈z〉〉, μ)∩U = ∅. From the second inclusion of Theorem 4, we
have that T is safe. �
Guaranteed termination of Algorithm 1 requires defining more precisely the re-
finement policy. If at each iteration of the main loop of Algorithm 1, we split
all the states of TA (S = QA \Qsafe), then we have the following completeness
result:

Theorem 6. If we apply the refinement policy S = QA\Qsafe, and if the metric
transition system T is either robustly safe or robustly unsafe with coefficient of ro-
bustness δ, then Algorithm 1 terminates after at most #(log(δ)−log(μ̄0))/ log(ρ)$
iterations where μ̄0 = max{μ| (z, μ) ∈ QA \Qsafe in the initial abstraction}.

Proof. Let μ̄i = max{μ| (z, μ) ∈ QA\Qsafe after the i-th refinement loop}. Since
at each refinement loop, state splitting is applied to all the states in QA \Qsafe,
it is not hard to see that μ̄i+1 ≤ ρμ̄i. Then, μ̄i ≤ ρiμ̄0. It follows that for
i ≥ (log(δ) − log(μ̄0))/ log(ρ), μ̄i ≤ δ. Let us assume that Algorithm 1 did not
terminate after i iterations. Then, there exists (z, μ) ∈ QA \ Qsafe with μ ≤ δ
and such that 〈〈z〉〉 /∈ U and NΠ(〈〈z〉〉, μ) ∩ U is not empty. From Theorem 4,
we have that 〈〈z〉〉 ∈ ReachN (T ), it follows that T cannot be robustly safe. If T
was robustly unsafe, there would be a π ∈ ReachN (T ) such that NΠ(π, δ) ⊆ U ,
from Theorem 4, there exists π′ ∈ ReachN (TA) such that dΠ(π, π′) ≤ μ̄i. Hence,
π′ ∈ NΠ(π, μ̄i) ⊆ NΠ(π, δ) ⊆ U which contradicts the fact that Algorithm 1 did
not terminate. �
We can see that the more robust with respect to the safety property a system is,
the less refinements are needed resulting in fewer computations and easier safety
verification. Note that particularly, if μ̄0 ≤ δ, no refinement is needed to decide
wether T is safe or unsafe. This is an important advantage of the method.

In practice, it is seldom necessary to apply state splitting to all the states of
the abstraction. Moreover, we have seen that applying state splitting to states
that are separated by a large number of transitions of a state in Qsafe may
result in a large increase of the number of states in QA. Hence, from this point
of view it is better to apply state splitting to states that are within a small
number of transitions from elements in Qsafe. A different refinement policy can
be defined by S = P(QA, p) which consists of the states q = (z, μ) ∈ QA such
that there exists a sequence of transition of the form q →A q1 →A · · · →A qk with
qk ∈ Qsafe and k ≤ p. Note that for this refinement policy, Theorem 6 does not
hold even if Algorithm 1 shows better performances in practice. For theoretical
completeness, we can use a refinement policy which alternates S = P(QA, p)
and S = QA \Qsafe. In that case, a result similar to Theorem 6 holds.
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Remark 5. It is clear from Lemma 1 that the abstraction TA not only allows to
approximate the reachable set of T but also its language. This is strong evidence
that our approach can be generalized for the simulation-based verification of
more complex properties such as those expressible in linear temporal logic [14].

4.3 Experimental Results

Let us consider the following continuous-time linear system:⎧⎨⎩
ẋ1(t) = 3x1(t) + 20x2(t)
ẋ2(t) = −2x1(t)− 9x2(t) + x3(t) + u(t)
ẋ3(t) = −4x3(t) + 2u(t)

For piecewise constant inputs with sampling period τ = 0.1, the sampled system
dynamics are given by

x(k + 1) = Ax(k) + Bv(k), where

A =
[

1.17 1.47 0.07
−0.15 0.28 0.05

0 0 0.67

]
, B =

[
0.09
0.07
0.16

]
, x(k) =

[
x1(kτ)
x2(kτ)
x3(kτ)

]
,

and v(k) = u(kτ). Only the variable x2 is observed (i.e. C = [0 1 0]). The set of
initial states I and of inputs U are given by I = [−0.05, 0.05]× [9.95, 10.05]×{0}
and U = [0, 2.5]. T denotes the associated metric transition system. The safety
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Fig. 2. Over approximation of the set reachable by x1 and x2, the red line represent
the border of the unsafe set. The quality of the approximation is adapted automatically
to the safety property we want to verify.
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property we want to check is wether the reachable set Reach20(T ) intersects
the set {y ≤ θ} or not. In order to apply our safety verification algorithm, we
need to compute a bisimulation metric. This is done by solving linear matrix
inequalities (4) and (5). Our safety verification algorithm has been implemented
in MATLAB and used for several values of the parameter θ with the refinement
parameter and the refinement policy S = P(QA, 5).

Figure 2 represents the over approximation of the set reachable by x1 and
x2 computed by our algorithm for different values of θ. We can see that as
the value of θ becomes larger, the system becomes less robustly safe and our
over-approximation of the reachable set needs to be more precise. Let us re-
mark that the state-splitting is effectively applied where it is needed, that is
where the reachable set is close to the unsafe set. The results of our compu-
tations are presented in Figure 3. Experimentation confirms what we expected
from Theorem 6. Indeed, we can check that if the system is very robust with
respect to the safety property, the safety verification is performed using only one
simulation and takes less than a second. As the system safety becomes less ro-
bust, the algorithm needs more time to decide if the system is safe or unsafe. On
Figure 3, this is visible and we can expect that the curves of the CPU time and
of the number of refinement loops have a vertical asymptote for some critical
value of θ.

θ Result CPU time (s) Refinements

-7.4 Safe 0.16 0

-7.0 Safe 0.25 1

-6.5 Safe 0.44 2

-5.8 Safe 74.77 3

-4.6 Unsafe 5.82 3

-4.5 Unsafe 0.16 0

−8 −7.5 −7 −6.5 −6 −5.5 −5 −4.5 −4
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Fig. 3. Results of Algorithm 1 (table). Number of refinement loops needed by Algo-
rithm 1 and CPU time in logarithmic scale against the parameter θ (figure).

5 Conclusion

In this paper we presented a simulation-based framework for verifying the safety
of metric transition systems. Our algorithm critically relies on recently devel-
oped bisimulation metrics which can be used to approximate arbitrarily close
the reachable set of metric transition systems by simulating a finite number of
trajectories. For metric transition systems generated by nondeterministic linear
systems, we proposed a safety verification algorithm which is complete for sys-
tems that are robustly safe or robustly unsafe. Future research will focus on
lifting the completeness of the safety verification algorithm to general metric
transition systems, including classes of hybrid systems.
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Abstract. This paper presents a method for computing the reach set of
affine systems for sets of initial states given as low-dimensional polytopes.
An affine representation for polytopes is introduced to improve the effi-
ciency of set representations. Using the affine representation, we present
a procedure to compute conservative over-approximations of the reach
set, which uses the Krylov subspace approximation method to handle
large-scale affine systems (systems of order over 100).

1 Introduction

Reachability analysis is an important problem in formal verification of continu-
ous and hybrid dynamic systems. Reachability analysis concerns the computa-
tion of the system’s reach set, the set of reachable states in the state space from
a given set of initial states. Due to the complexity of representing and comput-
ing high-dimensional sets, most existing tools for reachability analysis have been
limited to low-order systems (orders less than 10).

Recent progress on reachability analysis for linear systems has made it possi-
ble to compute over-approximations of reach sets for relatively high-order systems
[1, 2, 3]. These methods can be categorized into two classes, which we refer to as di-
mensional methods and representational methods. Dimensional methods rely on
the construction of reduced-order approximations for the given full-order linear
system models [3, 4]. Reach sets are computed for the reduced-order models us-
ing existing computational tools, and analysis results for the full-order model are
then inferred from the results obtained for the reduced-order models. Representa-
tional methods, on the other hand, reduce the computational complexity by using
special representations of sets in the high-dimensional state space of the full-order
model. For polytopes, this can be done by restricting the sets to special classes of
polytopes, e.g., hyper-boxes [5], oriented rectangles [2], and zonotopes [1]. Besides
polytopes, ellipsoids have been used successfully for reachability analysis of con-
tinuous and hybrid systems [6]. The reduction in computational complexity is due
to the use of reduced-size representations in the reachability algorithms.

Both classes of methods still have difficulties when they are applied to large-
scale systems. For dimensional methods, a good reduced-order model in practice
may be of order 10 to 30, which is still beyond the capability of the current com-
putational tools for reachability analysis. Representational methods suffer from
� Research supported in part by US Army Research Office (ARO).
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two problems. First, arbitrary polytopes can be only over-approximated using
the reduced-size representations. Second, these special classes of polytopes are
not closed under intersection, e.g., the intersection of a hyper-box with a halfs-
pace is generally not a hyper-box. Since intersection is a necessary computation
in reachability analysis for hybrid dynamic systems, additional post-processing
is needed for these methods to be useful for applications.

This paper concerns reachability analysis for affine systems with sets of initial
states given as low-dimensional polytopes. A polytope is low dimensional when
the continuous variables are linearly correlated. Linearly correlated variables are
common in linear systems [7, 8]. In applications, this class of problems arises in
the following situations. If variations in a certain subset of continuous variables
are of interest, the initial set is low-dimensional. Preliminary analysis of the
system, e.g., using simulations and principal component analysis, can identify the
variables of interest. Another possible situation is that there is strong correlation
between the initial values of the state variables because of the dynamics, e.g., if
the initial state of the system is an unknown but steady state, the initial state
satisfies Ax(0) = b. This equality constraint enforces the initial polytope to be
low-dimensional.

Our method of reachability analysis attacks the complexity issue from both
the representational and the dimensional perspectives. From the representational
perspective, we introduce an affine representation for polytopes to enable efficient
set representations. The affine representation can describe arbitrary polytopes
and is closed under intersection. From the dimensional perspective, we reduce
the computational complexity of analyzing high-order models by approximating
the reach set using the Krylov subspace approximations [9].

This paper is organized as follows. Section 2 presents mathematical back-
ground and notation used in this paper. Section 3 introduces the affine represen-
tation for polytopes. Section 4 describes the procedure to compute the reach set
using affine representations. Section 5 considers the reach set computation using
the Krylov subspace approximations. Section 6 presents a numeric example to
illustrate the method. The paper concludes with a summary of the contribution
and a discussion of the relationship of this work to zonotope computations [1].

2 Preliminaries

2.1 Polytopes

Let Rn denote the nth-order normed real space. The norm ‖·‖ denotes the infinity
norm. The Hausdorff distance between two subsets X1 and X2 of Rn is defined
as d(X1,X2) = max{supx1∈X1

infx2∈X2 ‖x1 − x2‖, supx2∈X2
infx1∈X1 ‖x1 − x2‖}.

A finite set of points vi ∈ Rn, i = 1, . . . , k is also represented by the matrix
V ⊂ Rn×k =

[
v1 v2 . . . vk

]
. The subspace span(V ) is the linear subspace spanned

by the set of points v1, . . . , vk, that is, span(V ) = {x|x =
∑k

i=1 λivi,λi ∈ R}.
A halfspace is a set of the form H(πT , d) = {x|πTx ≤ d, x ∈ Rn}, where

π ∈ Rn and d ∈ R. A polytope in Rn is a bounded intersection of a finite set of



Reachability Analysis of Large-Scale Affine Systems 289

halfspaces P = {x|πT
i x ≤ di, x ∈ Rn} where πi ∈ Rn, di ∈ R and i = 1, . . . ,m.

Given Π =
[
π1 . . . πm

]T ∈ Rm×n, d =
[
d1 d2 . . . dm

]T ∈ Rm, we use P (Π, d)
as a short-hand notation for a polytope P = {x|Πx ≤ d} ⊆ Rn. The halfspace
representation is also called the H-representation of the polytope [10].

For a set X ⊂ Rn, the convex hull CH(X ) is the intersection of all the convex
sets that contains X [10]. A polytope can be represented as the convex hull of
a finite set of points P = CH({v1, v2 . . . , vk}) := {x|x =

∑k
i=1 λivi, λi ≥ 0,∑k

i=1 λi = 1}. Using the matrix notation we write P = CH(V ), which is called
the V-representation for polytopes [10].

The dimension of a set of points, denoted dim(X ), is the dimension of the
affine subspace aff(X ) = {z|z =

∑k
i=1 λixi, xi ∈ X , λi ∈ R,

∑k
i=1 λi = 1} [10].

A polytope P is full-dimensional if dim(P) = n. A d-dimensional polytope is
also called d-polytope.

For polytopes, the following operations are commonly used in reachability
analysis. Polytopes are closed under these operations [10], i.e., the results of the
operations are also polytopes.

– Affine transformation: For A ∈ Rm×n, b ∈ Rm: AP + b = {y|y = Ax + b,
x ∈ P ⊂ Rn} ⊆ Rm.

– Intersection: P1 ∩ P2 = {x|x ∈ P1 ∧ x ∈ P2, P1 ⊆ Rn, P2 ⊆ Rn} ⊆ Rn.
– Minkowski sum: P1 ⊕ P2 = {y|y = x1 + x2, x1 ∈ P1 ⊆ Rn, x2 ∈ P2 ⊆ Rn}.
– Cartesian product: P1 ⊗ P2 = {[xT

1 , x
T
2 ]T |x1 ∈ P1 ⊆ Rn, x2 ∈ P2 ⊆ Rm}

If P2 is an affine transformation of P1 and the affine mapping P1 → P2 : x �→
Ax+ b is bijective, then P1 and P2 are said to be affinely equivalent [10]. Every
d-polytope in Rn is affinely equivalent to a d-polytope in Rd.

2.2 Reach Sets for Affine Dynamic Systems

Affine systems are dynamic systems governed by affine differential equations of
the form S : ẋ(t) = Ax(t)+b, where A ∈ Rn×n, b ∈ Rn, and x(t) ∈ Rn is a vector
of state variables. For a given initial set X0, where X0 ⊆ Rn is a set of initial
states, the reach set of an affine system S at time t is the set Reach(S,X0, t) =
{x(t)|x(t) = eAtx0 +

∫ t

0 e
A(t−τ)bdτ, x0 ∈ X0}, where t > 0. With a slight abuse of

notation, the reach set of system S with initial set X0 over a time interval [ts, tf ]
is defined as Reach(S,X0, [ts, tf ]) =

⋃
t∈[ts,tf ] Reach(S,X0, t), where 0 ≤ ts <

tf <∞. We denote the reach set at t and [ts, tf ] as Reach(t) and Reach([ts, tf ]),
if the other parameters are clear from the context. For a given time sequence t0,
t1, . . ., tN , where 0 = t0 < t1 < . . . < tN , the reach set Reach(tk) is also written
as Xk as a short-hand notation.

In the sequel we let Xk−1,k be the set defined as Xk−1,k = {x|x = λxk−1 +
(1−λ)xk where xk−1 =eAtk−1x0+

∫ tk−1

0 eA(t−τ)bdτ , xk = eAtkx0+
∫ tk

0 eA(t−τ)bdτ ,
x0 ∈ X0, λ ∈ [0, 1]} and call it the linear interpolation of Xk−1 and Xk. The set
Xk−1,k is in general non-convex. Over-approximations of the reach set segment
can be computed by ‘bloating’ a convex over-approximation of the linear inter-
polation [11].
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2.3 Krylov Subspace Approximations

To facilitate the discussion we introduce a series of matrix functions ϕi [9]. For
matrix A ∈ Rn×n:

ϕi(A, t) =

{
eAt =

∑∞
j=0

1
j!A

jtj , i = 0
1

(i−1)!ti

∫ t

0 e
A(t−τ)τ i−1dτ =

∑∞
j=0

1
(i+j)!A

jtj , i ≥ 1
(1)

For matrix A ∈ Rn×n and B ∈ Rn×m, we define the scalar-valued matrix func-
tion ψi(A,B, t) as ψi(A,B, t) = sups∈[0,t] ‖ϕi(A, s)B‖, i = 0, 1, . . ..

There are a collection of methods for computing the matrix functions ϕi [12].
The Krylov subspace approximation method is in particular a very efficient way
to compute ϕi(A, t)v for an arbitrary v ∈ Rn and a large-scale sparse matrix A
[9, 13].

Consider the case i = 0, the matrix exponential eAtv is the solution to the
linear system ẋ(t) = Ax(t), x(0) = v at time t. For matrix A ∈ Rn×n and
vector v ∈ Rn, the rth-order Krylov subspace is defined as Kr(A, v, r) :=
span{v,Av, . . . , Ar−1v}. The solution of the full-order model can be approx-
imated by its orthogonal projection to Kr(A, v, r). Let Vr ∈ Rn×r be a ma-
trix whose column vectors {v1, v2, . . . , vr} is an orthogonal basis of Kr. Then
a reduced-order model is constructed as ż(t) = Hrz(t), z(0) = V T

r v, where
Hr = V T

r AVr ∈ Rr×r is a reduced-order system matrix. The trajectory of the
full-order model is approximated by x(t) ≈ Vrz(t). In terms of matrix compu-
tations, the Krylov subspace method approximates the full-order matrix expo-
nential using eAtv ≈ Vre

HrtV T
r v =: (eAtv)K . In this paper we use superscript

K to denote the terms computed using Krylov subspace approximation. The
projection matrix Vr can be computed using iterative methods, e.g., the Arnoldi
procedure [14].

To compute approximations to ϕi(A, t)v, i ≥ 1, it is shown in [13] that ϕi(A, t)
can be computed using ϕ0(A, t)v by augmenting the system matrix. Consider
the (n + i)th-order linear dynamic model

ẋ = Ax =

⎡⎢⎢⎢⎢⎢⎢⎣

A v 0 · · · 0

0 0 1
. . . 0

...
...

. . . . . .
...

0 0 · · · 0 1
0 0 · · · 0 0

⎤⎥⎥⎥⎥⎥⎥⎦x, x(0) = x0 =

⎡⎢⎢⎢⎣
0
...
0
1

⎤⎥⎥⎥⎦ ∈ Rn+i (2)

The first n-rows of the solution to the augmented system are tiϕi(A, t)v.
Krylov subspace approximation is usually good for small values of t. For

large values of t, approximations to the solution of the linear system are com-
puted through a time-stepping strategy [13]. At each step k, a small step size
hk = tk − tk−1 is chosen and the Krylov subspace approximation to x(tk) is
computed using the Krylov subspace from previous results Kr(A, x(tk−1), r).
The computation repeats until the time t is reached, giving an approximation of
eAtv. Throughout the paper we neglect the numeric error caused by round-off



Reachability Analysis of Large-Scale Affine Systems 291

and focus on the error introduced by Krylov subspace approximation. The fol-
lowing theorem provides a bound on the error of Krylov subspace approximation
for matrix exponentials.

Theorem 1. [9]. Let A be any square matrix and let ρ = ‖A‖. Then the error
of the rth-order Krylov subspace approximation for matrix exponential satisfies
‖eAv − Vre

HrV T
r v‖ ≤ 2‖v‖ ρreρ

r! .

3 Affine Representation for Polytopes

Affine representations are introduced for efficiently representing low-dimensional
polytopes in the reachability analysis algorithms. Before introducing the affine
representation, we note that operations on low-dimensional polytopes result in
low-dimensional polytopes. Indeed,

– Affine transformation: dim(AP + b) ≤ dim(P).
– Intersection: dim(P1 ∩ P2) ≤ min{dim(P1), dim(P2)}.
– Minkowski sum: dim(P1 ⊕ P2) ≤ dim(P1) + dim(P2).
– Cartesian product: dim(P1 ⊗ P2) = dim(P1) + dim(P2).

Since every d-polytope in Rn is affinely equivalent to a d-polytope in Rd,
it is convenient to represent the d-polytope in high-order space as an affine
transformation of the d-polytope in low-order space. For polytope P ⊆ Rn sat-
isfying P = ΦPw + γ where Φ ∈ Rn×d is full-column-rank, γ ∈ Rn and Pw is a
d-polytope in Rd. we write P = 〈Φ, γ,Pw〉 and call it the affine representation
for P . We further enforce the following restrictions on affine representations

Pw is full-dimensional,
0 ∈ Pw and supw∈Pw

‖w‖ ≤ 1. (3)

Computation for operations on polytopes can be performed on their affine
representations. The following proposition gives operations on polytopes in their
affine representation.

Proposition 1. For polytopes P = 〈Φ, γ,Pw〉, P1 = 〈Φ1, γ1,Pw1〉 and P2 =
〈Φ2, γ2,Pw2〉 in their affine representations, the following relations hold.

– Affine transformation: AP + b = 〈AΦ,Aγ + b,Pw〉.
– Minkowski sum: P1 ⊕ P2 = 〈

[
Φ1 Φ2

]
, γ1 + γ2,Pw1 ⊗ Pw2〉.

– Cartesian product: P1 ⊗ P2 = 〈
[
Φ1 0
0 Φ2

]
,

[
γ1
γ2

]
,Pw1 ⊗ Pw2〉.

– Intersection with halfspace: P ∩H(πT , d) = 〈Φ, γ, P (
[
Πw

πTΦ

]
,
[

d
d− πT γ

]
)〉.

Proof. The first three computations can be derived directly from their definition.

For intersections, we first prove P∩H(πT , d) ⊆ 〈Φ, γ, P (
[
Πw

πTΦ

]
,

[
d

d− πT γ

]
)〉.

Assume x ∈ 〈Φ, γ, P (Πw, dw)〉 ∩ H(πT , d), then there exists a w ∈ P (Πw, dw)
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such that x = Φw + γ ∈ H(πT , d). From definition of halfspace we know w ∈
H(πTΦ, d− πT γ).

To prove 〈Φ, γ, P (Πw, dw)〉 ∩ H(πT , d) ⊇ 〈Φ, γ, P (
[
Πw

πTΦ

]
,

[
d

d− πT γ

]
)〉, let

x ∈ 〈Φ, γ, P (
[
Πw

πTΦ

]
,
[

d
d− πTγ

]
)〉, then there exists a w such that x = Φx + γ.

Then x ∈ 〈Φ, γ, P (Πw, dw)〉 since w ∈ P (Πw, dw). Also x ∈ H(πT , d) since
w ∈ H(πTΦ, d− πTγ). ��

The computations in Proposition 1 are efficient for low-dimensional polytopes.
For affine transformations, the computation is reduced to matrix and vector com-
putations. For the other computations, the polytope operations are performed
in Rd instead of Rn.

For affine systems, the reach set segments Reach([tk−1, tk]) are generally
full-dimensional, even though Xk−1 and Xk may be low-dimensional. There-
fore, low-dimensional polytopes are approximations of the actual reach sets.
Over-approximations can be computed from the low-dimensional polytopes by
“bloating”. Consider a set X ⊆ Rn in the state space, let P = 〈Φ, γ,Pw〉 be
the low-dimensional polytope approximation and let δ denote a bound of the
Hausdorff distance between the approximation and the set X , i.e., d(P ,X ) ≤ δ.
A conservative over-approximation can be constructed as X ⊆ P ⊕ Bδ, where
Bδ = [−δ, δ]n is a closed hyper-box with radius δ, which is called the bloating
factor in this paper. Note that the bloated polytope P ⊕ Bδ is an n-polytope
in Rn since the hyper-box 〈I, γ,Bδ〉 ⊆ P ⊕ Bδ. To reduce the complexity of the
representation, we write P = P ⊕ Bδ = 〈Φ, γ,Pw, δ〉 and call it an approximate
affine representation for the n-polytope P. The following proposition provides
over-approximations for operations of polytopes in their approximate affine rep-
resentations.

Proposition 2. For polytopes P = 〈Φ, γ,Pw, δ〉, P1 = 〈Φ1, γ1,Pw1, δ1〉 and
P2 = 〈Φ2, γ2,Pw2, δ2〉 in their approximate affine representations, the follow-
ing relations hold.

– Affine transformation: AP + b ⊆ 〈AΦ,Aγ + b,Pw, ‖A‖δ〉.
– Minkowski sum: P1 ⊕ P2 = 〈

[
Φ1 Φ2

]
, γ1 + γ2,Pw1 ⊗ Pw2, δ1 + δ2〉.

– Cartesian product: P1 ⊗ P2 ⊆ 〈
[
Φ1 0
0 Φ2

]
,

[
γ1
γ2

]
,Pw1 ⊗ Pw2,max{δ1, δ2}〉.

– Intersection with halfspace:P∩H(πT , d)⊆〈Φ, γ, P (
Πw

πT Φ
,

dw

d−πT γ +‖πT ‖δ
),δ〉.

Proof. See [15]. ��

4 Reach Set Computation Using Affine Representations

For affine system S, we consider the problem of computing Reach([0, tf ]) for the
set of initial states X0 = 〈Φ0, γ0,Pw〉, which is a d-polytope. Note that the reach
set Xk at a time tk is an affine transformation of X0 given by:
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Xk = ϕ0(A, tk)X0 + tkϕ1(A, tk)b. (4)

Thus,
Xk = 〈ϕ0(A, tk)Φ0, ϕ0(A, tk)γ0 + tkϕ1(A, tk)b,Pw〉. (5)

Figure 1 shows REACH AFFINEK, a procedure to compute the reach set
Reach([0, tf ]) using affine representations and Krylov subspace approximations.
The procedure first computes Xk for k = 1, . . ., N . Over-approximations of
the reach set segment Reach([tk−1, tk]) are then computed by bloating over-
approximations of the linear interpolations Xk−1,k, k = 1, . . . , N .

Input: S , X0, 0, dt, tf

Output: Reach([0, tf ])
ProcedureREACH AFFINEK:
t ← 0, k ← 1, R ← ∅
WHILE t ≤ tf

IF size(A) >MAX ORDER
Choose step size h based on the error tolerance εOSE

Compute Xk ← X K
k

ELSE
Choose step size h ← dt
Compute Xk using (5)

END IF
Compute low-dimensional polytope Pk−1,k s.t. Xk−1,k ⊆ Pk−1,k

Compute bloating factor δk−1,k

IF X K
k is used

Compute bloating factor δAE for the Krylov subspace approximation
END IF
R ← R ∪ (P ⊕ Bδk−1,k+δAE ), t ← t + h, k ← k + 1

END FOR
RETURN R

Fig. 1. Reach set computation using the Krylov subspace approximation

The parameter MAX ORDER is the threshold for the Krylov subspace ap-
proximation method. If the size of the matrix A is smaller than MAX ORDER,
the set Xk is computed by first computing ϕi(A, tk) and then forming the affine
representations for Xk. If size(A) > MAX ORDER, the Krylov subspace ap-
proximation method is used to compute Xk. The terms ϕ0(A, tk)Φ0, ϕ0(A, tk)γ0
and ϕ1(A, tk)b are computed approximately using the Krylov subspace method.
The approximation of the reach set is XK

k = 〈[ϕ0(A, tk)Φ0]K, [ϕ0(A, tk)γ0]K

+ tk[ϕ1(A, tk)b]K,Pw〉. The step size is chosen based on computation of the er-
ror bound of the Krylov subspace approximations. The step size is chosen such
that the one-step error δOSE ≤ εOSE where εOSE is the manually chosen tol-
erance. To incorporate the error caused by the Krylov subspace approximation,
we compute a bound on the accumulated error δAE and incorporated it into the
bloating factor to guarantee conservative results.
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The remainder of this section explains the details of computing low-
dimensional over-approximations of Xk−1,k and δk−1,k. Section 5 presents the
computation of a bound on the error of Krylov subspace approximation.

4.1 Low-Dimensional Polytope Over-Approximations of Xk−1,k

The linear interpolation, Xk−1,k, is contained in CH(Xk−1 ∪Xk). The following
proposition establishes an upper bound on the dimension of CH(Xk−1 ∪ Xk).

Proposition 3.
dim (CH(Xk−1 ∪ Xk)) ≤ 2d+ 1.

Proof. For Xk−1 = 〈Φk−1, γk−1,Pw〉 and Xk = 〈Φk, γk,Pw〉, each satisfying (3).
CH(Xk−1∪Xk) = CH((Φk−1Pw +γk−1)∪(ΦkPw +γk)). Noticing the dimension
of a set is invariant for any arbitrary displacement, we have dim(CH((Φk−1Pw +
γk−1)∪ (ΦkPw + γk))) = dim(CH((ΦkPw)∪ (Φk+1Pw + γk − γk−1))). Hence the
dimension of the set is bounded by dim(CH(Xk−1 ∪ Xk)) = rank([Φk−1Φkγk−
γk−1]) ≤ 2d+ 1 . ��

Proposition 3 implies that the convex hull CH(Xk−1 ∪ Xk) can be low-
dimensional if the initial set is low-dimensional. As a corollary we know that
the dimension of the linear interpolation Xk−1,k is also bounded by 2d+1. Note
that the bound is valid for any k, hence the dimension of Xk−1,k does not grow
with time.

CH(Xk−1 ∪Xk) can be computed in the affine subspace, aff(Xk−1∪Xk). The
computation is as follows. We compute a matrix V ∈ Rn×m, m = rank(

[
Φk−1

Φk γk − γk−1
]
) ≤ 2d + 1 whose columns form an orthogonal basis of span

(
[
Φk−1 Φk γk−γk−1

]
). This leads to the following affine representation for

CH(Xk−1 ∪ Xk):

CH(Xk−1 ∪ Xk) = 〈V, γk−1, CH(V TΦk−1Pw ∪ V T (ΦkPw + γk − γk−1))〉.

The convex hull computation is performed in Rm instead of Rn.
For the case where m > 10, the computation of convex hull of the points can

be difficult [10]. The linear interpolation can be over-approximated by Minkowski
sums of polytopes when the convex hull computation is too complex. We use the
following over-approximations in our computations that avoid the computation
of convex hull:

1. (Forward Approximation) MS0 = 〈Φk−1, γk−1,Pw〉 ⊕ 〈Φk − Φk−1, 0,Pw〉 ⊕
〈γk − γk−1, 0, [0, 1]〉.

2. (Backward Approximation) MS1 = 〈Φk, γk,Pw〉 ⊕ 〈Φk−1 − Φk, 0,Pw〉 ⊕
〈γk−1 − γk, 0, [0, 1]〉.

3. (Mid-point Approximation) MS1/2 = 〈12 (Φk−1 + Φk), 1
2 (γk−1 + γk),Pw〉 ⊕

〈12 (Φk − Φk−1), 0,Pw〉 ⊕ 〈12 (γk − γk−1), 0, [− 1
2 ,

1
2 ]〉.

Note thatMSi is an m-polytope, i = 0, 1, 1/2. The following proposition claims
the three polytopes are indeed over-approximations of Xk−1,k.
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Proposition 4. All three approximations MS0, MS1 and MS1/2 are over-
approximations of Xk−1,k.

Proof. See [15]. ��

Since each approximationMSi is convex and contains Xk−1 and Xk, these poly-
topes all contain the convex hull CH(Xk−1 ∪ Xk). The over-approximations of
Xk−1,k are illustrated in the following example.

Example 1. Consider approximating Xk−1,k where Xk−1 = 〈
[
0.1 0 0

]T ,
[
0 0 0

]T ,

[−1, 1]〉 and Xk = 〈
[
0 0.1 0

]T ,
[
0 0 1

]T , [−1, 1]〉. Figure 2 shows the polytope
over-approximations to the set Xk−1,k. All of the polytope over-approximations
are 3-polytopes. Among the polytopes, CH(Xk−1 ∪ Xk) is the tightest since it
is contained properly in any of the other three over-approximations. For this
example, MS1/2 is tighter than MS0 and MS1.

(a) CH(Xk−1 ∪ Xk) (b) MS0 (c) MS1 (d) MS1/2

Fig. 2. Polytope over-approximations of Xk−1,k

4.2 Bloating Factor δk−1,k

Consider the problem of computing an over-approximation of the reach set seg-
ment Reach([tk−1, tk]). If the polytope approximation of Xk−1,k is Pk−1,k =
〈Φk−1,k, γk−1,k,Pw〉, we want to compute δk−1,k such that Reach([tk−1, tk]) ⊆
〈Φk−1,k, γk−1,k,Pw, δk−1,k〉. Motivated by the analysis of the hump phenomenon
[12, 13], we compute a bound on the bloating factor using the matrix functions
ψi, which in turns are computed by computing matrix exponentials φi over time
[0, h]. The following proposition gives a bloating factor for reach set segments.

Proposition 5 (Bloating factor for linear interpolation). Given affine
system S with the initial state set X0 = 〈Φ0, γ0,Pw〉 and t0, t1 ∈ R satisfying 0
= t0 < t1 = h, let P0,1 be a polytope such that X0,1 ⊆ P0,1, then Reach([t0, t1]) ⊆
P0,1 ⊕ Bδ where

δ = 2h2ψ2(A,A2Φ0, h) + 2h2ψ2(A,A2γ0 + Ab, h).

Proof. Let x(·) denote a trajectory of the actual system where s ∈ [0, h], and let
x′(·) denote the trajectory of the linear interpolation between x′(t) = h−t

h x(0)+
t
hx(h). Let x(0) = x0, then x(h) = eAhx0 + hϕ1(A, h)b, respectively. Consider
the difference of x(t) and x′(t):
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x(t)− x′(t)
= eAtx0 − (h−t

h x0 + t
he

Ahx0) + tϕ1(A, t)b − t
hhϕ1(A, h)b

= (tϕ2(A, t)− hϕ2(A, h))tA2x0 + (tϕ2(A, t) − hϕ2(A, h))tAb

For a set of initial states in the affine representation, x0 = Φ0w + γ0 where
w ∈ Pw. The error is rewritten as

x(t) − x′(t)
= [(tϕ2(A, t)− hϕ2(A, h))tA2Φ0w] + [(tϕ2(A, t)− hϕ2(A, h))tA(Aγ0 + b)]
=: Err1(t) + Err2(t)

To compute the error bound Err1, we have

sup0≤t≤h ‖Err1(t)‖ ≤ sup0≤t≤h t‖(tϕ2(A, t)− hϕ2(A, h))A2Φ0‖‖w‖
≤ sup0≤t≤h t(‖tϕ2(A, t)A2Φ0‖+ ‖hϕ2(A, h)A2Φ0‖)‖w‖
≤ 2h2ψ2(A,A2Φ0, h).

where we have used the fact that ‖w‖ ≤ 1 (3). A bound on the approximation
error Err2 can be estimated similarly as sup0≤t≤h ‖Err2(t)‖ ≤ 2h2ψ2(A,A2γ0 +
Ab, h). The total error in the low-dimension reach set segment approximation is
then computed as d(Reach([t0, t1]),P0,1) ≤ 2h2ψ2(A,A2Φ0, h)+2h2ψ2(A,A2γ0+
Ab, h). The proposition then follows from the definition of d(·, ·). ��

Proposition 5 gives a bound on the bloating factor δk−1,k which can be computed
using matrix function ψ2:

δk−1,k = 2h2
kψ2(A,A2Φk−1, hk) + 2h2

kψ2(A,A2γk−1 + Ab, hk). (6)

An alternative bloating factor is derived and used in [1]. The bloating factor
given in [1] always grows exponentially with the step size h, even when the
system is stable. In contrast our bloating factor depends on the hump, ψi, of the
system matrix. When the system is stable, the hump is bounded [9]. In this case
our bloating factor grows quadratically with the step size h.

5 Bloating Factor for the Krylov Subspace Approximation

We first consider the problem of estimating the error of the Krylov subspace
approximation for matrix functions. The following lemma gives bound on the
error of the Krylov subspace approximation of ϕi(A, h)b.

Lemma 1. For A ∈ Rn×n, v ∈ Rn, A given in (2), let ρ = ‖A‖. Then the error
of the rth-order Krylov subspace approximation for ϕj(A, h) is such that

‖ϕj(A, h)v − Vrϕj(Hr, h)V T
r v‖ ≤ 2

hrρr+je(hρ)

(r + j)!
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Proof. To compute the approximation error for ϕj , consider first the augmented
system (2). Observe that if the rth-order projection matrix for Kr(A, v, r) is
Vr, then the (r + j)th-order projection matrix for A can be formed as V r+j =[
Vr 0
0 Ij

]
∈ R(n+j)×(r+j). Note that V r+j is orthonormal and spans Kr(A, x0,

r + j), the Krylov subspace approximation is obtained for system with state
matrix

Hr+j = V
T

r+jA V r+j =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Hr V T
r v 0 . . . 0

0 0 1
. . . 0

...
...

. . . . . .
...

0 0 0
. . . 1

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ R(r+j)×(r+j).

Using theorem 1 on the augmented matrix A, V and H. We have

‖eAhx0 − V
T

j+re
HhV j+rx0‖ ≤ 2

(hρ)r+jehρ

(r + j)!
.

Since the Krylov subspace approximation of ϕ(A, h)v is computed as 1
hj e

Ahx0,
the error bound is obtained by dividing the above inequality by hj . ��

To compute a bound on the error in the computed reach set, we first compute a
bound on the error incurred in each step of the computation, which we call the
one-step error (OSE), and then derive a bound on the accumulated error (AE)
which includes the error propagated from the previous steps.

Proposition 6 (One-step Krylov approximation error). For affine system
S and initial set X0 = 〈Φ0, γ0,Pw〉 satisfying (3), let φK

i and γK be the Krylov
subspace approximation for the vector eAhφ0i and vector ϕ1(A, h)(Aγ0+b), where
φ0i is the ith-column of Φ0. For t ∈ [0, h], let Δφi and Δγ denote the bounds on
approximation errors of the vectors estimated using Theorem 1 and Lemma 1.
Then

∀t ∈ [0, h] : Reach(t) ⊆ 〈ΦK
t , γ

K
t ,Pw, δOSE〉

where δOSE :=
∑d

i=1 Δφi + Δγ.

Proof. For any x ∈ Reach(t), x can be written as x = eAtΦ0w+γ0+(eAtγ0−γ0)+
tϕ1(A, t)b = eAtΦ0w+ γ0 + tϕ1(A, t)(Aγ0 + b), where t ∈ [0, h] and w ∈ Pw. Let
xK =

∑d
i=1 φ

K
i w + γK be the Krylov subspace approximation, then ‖x− xK‖ =

‖
∑d

i=1(φi − φK
it

)w + γi − γK
it
‖ ≤

∑d
i=1 ‖φi − φK

it
‖‖w‖+ ‖γi − γK

it
‖ ≤ δOSE . ��

The following proposition gives a bound on the AE of the reach set computed
using the Krylov subspace approximations.

Proposition 7 (Accumulated Krylov approximation error). For affine
system S and initial set X0 = 〈Φ0, γ0,Pw〉, suppose the time steps for reach set



298 Z. Han and B.H. Krogh

computation are 0 = t0 < t1 < . . . < tN = tf . Let δavg = max1≤k≤N
δOSEk

tk−tk−1
.

Then ∀t ∈ [0, tf ] : Reach(t) ⊆ 〈ΦK
t , γ

K
t ,Pw, δAE〉, where δAE := tf maxτ∈[0,tf ]

‖eτA‖δavg.

Proof. Suppose x(t) ∈ Reach(t) and x′(t) ∈ ReachK(t) is an element of the
approximation computed using the Krylov subspace approximation. For t ∈
[tk−1, tk],‖x(t) − x′(t)‖ ≤

∑k
i=0 ‖eA(t−ti)‖δOSEi .

Since every term in the summation is nonnegative, we have the AE bound as
‖x(t)− x′(t)‖ ≤ maxτ∈[0,tf ] ‖eτA‖ ·

∑N
i=1

δOSEi

ti−ti−1
(ti − ti−1) ≤ δAE . ��

For the reach set segments, the bloating factor is the sum of the bounds from
Proposition 5 and Proposition 7.

Proposition 8 (Bloating factor for reach set segments). For affine system
S and initial set X0 = 〈Φ0, γ0,Pw〉 satisfying (3), suppose the time steps for reach
set computation are 0 = t0 < t1 < . . . < tN = tf and let δAE be the accumulated
error estimated using Proposition 7. Then Reach([tk−1, tk]) ⊆ 〈ΦK

k−1,k, γ
K
k−1,k,

Pwk−1,k
, δk−1,k + δAE〉 for 1 ≤ k ≤ N , where δk−1,k = 2h2

kψ
K
2 (A,A2ΦK

k−1, hk) +
2h2

kψ
K
2 (A,A2γK

k−1 + Ab, hk).

Proof. Let t ∈ [tk−1, tk], and let x(·) be a trajectory of the system. Let xK(·)
denote the trajectory of the corresponding Krylov subspace approximation model
and xK′

= hk−t
hk

xK(tk−1) + t−hk−1
hk

xK(tk) be the linear interpolation. Then

‖x(t)− xK′
(t)‖ ≤ ‖x(t)− xK(t)‖+ ‖xK(t)− xK′

(t)‖ ≤ δAE + δk−1,k.

Since x(t) ∈ Reach([tk−1, tk]) and xK(t) ∈ PK
k−1,k. The proposition follows

from the definition of d(·, ·). ��

6 Example: Heat Conduction

This section applies the reachability analysis procedure REACH AFFINEK to
a numeric example. The reach set computation procedures are implemented in
Matlab. All the computations are performed on a Pentium4 PC with 1G RAM
running Windows XP and Matlab 7.0.1.

Figure 3(a) shows a metal plate insulated along three edges. The right edge
is open, allowing heat exchange with the ambient environment. The left half of
the bottom edge of the plate is connected to a constant heat source. Suppose the
temperature of the environment is 0 , and the temperature of the heat source
is 1 . Figure 3(b) shows a contour plot of the steady-state temperature for the
plate.

The dynamics of the temperature in the metal plate is modeled as the partial
differential equation (PDE) ∂T

∂t (x, t) = α2 ∂2T
∂x2 (x, t), where T (·, ·) is the tempera-

ture. Linear system models are used to approximately model the dynamics by dis-
cretizing the PDE among the grid points of a rectangular mesh over the plate [16].
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Fig. 3. Heat conduction example
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Fig. 4. The reach set for the 400th-order model

The linear system has the form ẋ = Ax+bu where x ∈ Rp2
is the temperature at

the grid points, u ∈ R is the temperature of the heat source and p is the number
of grid point along an edge.

Suppose the temperature of the plate is initially 0 , and the material has diffu-
sion constant 1cm2/sec andheat exchange coefficient 0.5cal/(cm·sec· ).Consider
the problem of computing the reach set for the system for u(t) = T ∈ [0.9, 1.1] .
We apply REACH AFFINEK to compute the reach set X1, . . ., Xk for 0 = t0 <
. . . < tN = 200. 30th-order Krylov subspace approximation models are used for the
computation. The tolerance εOSE is set to 1×10−8 by hand. The accumulated
error δAE is computed to be bounded by 4×10−6 for the reach set.

Figure 4 shows the reach set computed for the 400th-order heat conduction
model. Figure 4(a) shows the projection of the reach set to xc, the temperature
of the grid point at the center of the plate. The nominal trajectory for u = 1 is
shown as the dashed line in the same figure. Figure 4(b) shows the temperature at
tf computed for all the states. For each grid point, the reach set is an interval.
Figure 4(b) shows the upper bound curve and the lower bound curve of the
temperature across the mesh grid.
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Fig. 5. Computation time and memory usage of reachability analysis using the Krylov
subspace approximations for fixed error bounds

We generated systems of various orders using meshes of different sizes. Note
that although we vary the order of the model, the initial set remains a 1-polytope.
Figure 5 shows the computation time and memory usage of REACH AFFINEK

for systems of various orders. The computation time and memory increase with
the order of the model. The increase is mainly due to the computations involving
larger state vectors and smaller time steps in the reachability analysis.

7 Discussion

Reachability analysis for arbitrary high-order continuous systems is difficult.
This paper presents a method to compute the reach set for large-scale affine
systems for initial sets given as low-dimensional polytopes. With the aid of the
Krylov subspace approximations we demonstrate that our method can be applied
to a class of reachability analysis problems of large-scale affine systems. Methods
to extend the approach to analyze hybrid system is currently under investigation.

There is an interesting relation between the affine representation in this pa-
per and the representation for zonotopes in [1]. A zonotope is a polytope that
is equivalent to the affine transformation of a unit cube [10] Z = {y|y =
Φx + γ where x ∈ [−1, 1]p ⊂ Rp} for some Φ ∈ Rn×p and γ ∈ Rn. The affine
representation for zonotopes is Z = 〈Φ, γ, [−1, 1]p〉. Since the radius of the cube
is always 1 and its dimension is equal to the number of columns of Φ, the cube
can be dropped from the representation. This simplification gives rise to the gen-
erator representation in [1]. Using the generator representation, the procedure
REACH AFFINEK can be applied to zonotope computations, which is similar
to the procedure in [1] when applied to affine systems, except for the use of the
Krylov subspace approximations.

This paper concerns affine systems. A more general reachability analysis
problem is to compute the reach set for linear systems with uncertain inputs
Su : ẋ = Ax + Bu, u ∈ U . The reach set Reach(Su,X0, t) for the system is
the Minkowski sum Reach(S1,X0, t) ⊕ Reach(Su, 0, t), where S1 : ẋ = Ax. The
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reach set Reach(S1,X0, t) can be computed using the method in this paper. Our
method does not apply to the computation of Reach(Su, 0, t), since the reach
set is not guaranteed to be low-dimensional. Over-approximations of the reach
set can be computed using zonotopes computation for moderate-order models
[1]. For large-scale systems, a promising way to compute the reach set is to
first compute reduced-order models and then apply zonotope computations to
compute the reach sets. Thus, over-approximations of Reach(Su,X0, t) can be
efficiently computed by combining our method with zonotope computation and
model order reduction techniques.
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Abstract. This paper addresses the receding horizon control problem
of continuous-time linear systems with respect to continuous control in-
puts and discrete state waypoints under discrete-dynamical constraints.
First, a generalized version of our previous method is described, where
a discretization technique is applied only for the constrained state vari-
ables. Next, it is proven that the problem is reduced to the finite-time
optimal control problem of a certain discrete-time linear system with
discrete-valued inputs. Finally, a new efficient algorithm for solving this
optimization problem is proposed. Several numerical simulations show
that this solver is much faster than the CPLEX solver.

1 Introduction

As in the case of bisimulation techniques (see e.g., [1, 2]), it is one of the natu-
ral approaches to approximately solve a complex problem by simplifying it via
discretization/abstraction techniques. In such an approach, even if the original
control problem involves only a dynamical system of continuous variables as a
controlled plant, it may be often reduced to the control problem of some hybrid
system; one of typical examples is an approximation of nonlinear systems via
piecewise affine systems (see e.g., [3]).

From a similar (but rigorously different) point of view, we have addressed
in [4] the obstacle avoidance problem (see e.g., [5, 6]) of continuous-time linear
systems. In this problem, the admissible region of the state is in general given by
a time-varying, non-convex set, which will make it quite difficult to determine
an optimal control input in a short time interval. Thus, in order to solve this
kind of problem approximately and efficiently, we have used there a directed
graph (i.e., discrete dynamics) with respect to the waypoint of the state and the
time at which the state coincides with the waypoint, and have derived a solution
to the control problem of simultaneously optimizing the so-called continuous
control input and the waypoints of the state constrained by the directed graph.
However, a discretization technique has been used there for the waypoints of
all the state variables (e.g., both position and velocity). In general, some of
state variables, e.g., the velocity variable, may not be constrained via complex
conditions. Furthermore, the computational amount exponentially increases with
respect to the number of the discretized state variables, if the same resolution
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is used for all state variables. This implies that it is not so easy to apply the
proposed method to the class of large-dimensional systems. Hence it is more
relevant to use a discretization technique only for the state variables constrained
in a complex way such as the position variables in the obstacle avoidance case.

This paper addresses the model predictive control problem of continuous-time
linear systems under the state constraints given by the directed graph, and gives
a generalized version of the control method proposed in [4] in the sense that
a discretization approach is applied for the constrained state variables, not for
all state variables. First, after describing the control problem in a generalized
setting, we prove that the problem is reduced to the finite-time optimal con-
trol problem of a certain discrete-time linear system with discrete-valued inputs
constrained by a directed graph. Next, an efficient algorithm for solving the
integer quadratic programming (IQP) problem subject to a kind of dynamical
constraints on discrete variables, which is given from the above finite-time op-
timal control problem, is proposed. It is shown by numerical simulations that
the proposed solver is much faster compared with the CPLEX solver, which is
well known as one of the efficient commercial solvers. Numerical simulations also
show that the proposed control method including the solver is effective.

The following notation is used: let R and PC denote the real number field and
the set of all piecewise continuous functions, respectively. For the sets S and T ,
let us denote by S/T the difference set of S and T , and by | S | the cardinality
of the finite set S.

2 Problem Statement

Consider the linear system
ẋ = Ax + Bu (1)

where x ∈ Rn is the state, u ∈ Rm is the input, and the pair (A,B) is controllable.
For this system, we study the model predictive control problem under a kind of
state constraints that x(ti) = xi, i = k, k+ 1, . . . , k+N , where ti is the decision
time (tk is the current time), and xi denotes the waypoint at time ti selected
from a finite set of the candidates for waypoints.

More specifically, the problem to be studied here is given as follows. We
assume without loss of generality

x(t) =
[
xc(t)
xu(t)

]
, xc(t) ∈ Rnc , xu(t) ∈ Rn−nc

where the subscripts “c” and “u” of xc and xu express the “constrained” and the
“unconstrained” state, respectively. In a similar way, the waypoint of the state
at time ti is denoted by

xi =
[
xc

i

xu
i

]
, xc

i ∈ Rnc , xu
k ∈ Rn−nc .

We also consider a kind of directed graph on time axis and state space to
express constraints on the state (see Fig. 1). So let Vi, i = k, k + 1, . . . , k + N
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c
kx 1k+V 2k+V 3k+V

Fig. 1. Directed graph on time axis and state space

denote the finite set whose element takes a value in Rnc and expresses a can-
didate for waypoints at time ti. Furthermore, the finite set of all elements in
Vi+1 to which the system can be driven from ξ ∈ Vi is denoted by Ei(ξ). Note
that Ei(xc

i ) expresses the set of all candidates for waypoints in Vi+1 subject to
xc(ti) = xc

i . Thus a directed graph with its depth N , where the starting node is
xc

k, is generated by xc
i+1 ∈ Ei(xc

i ), i = k, k + 1, . . . , k + N − 1, which we denote
by Gk(xc

k). Then the problem to be studied here is given as follows.

Problem 1. Suppose that the decision times ti (ti < ti+1), i = k, k+1, . . . , k+N ,
and a directed graph Gk(xc

k) are given. Then for the system (1), find a state-
feedback control u(t) ∈ PCm, t ∈ [tk, tk+N ), and waypoints xi ∈ Rn, i = k +
1, k + 2, . . . , k + N , of the state minimizing the cost

J(x(tk), u(·), {xi}i=k+1,k+2...,k+N ) =
k+N−1∑

i=k

Ji(xi, u(·), xi+1) + gi(xc
i , x

c
i+1) (2)

Ji(xi, u(·), xi+1) :=
∫ ti+1

ti

{
(x(t)− xi+1)TQ(x(t)− xi+1) + uT (t)Ru(t)

}
dt

gi(xc
i , x

c
i+1) :=

[
xc

i

xc
i+1

]T

Ga
i

[
xc

i

xc
i+1

]
+
[

xc
i

xc
i+1

]T

Gb
i ,

subject to

xc(ti) = xc
i ∈ Ei−1(xc

i−1), xu(ti) = xu
i ∈ Rn−nc ,

i = k + 1, k + 2, . . . , k + N

where Q ≥ 0, R > 0, and Ga
i ≥ 0. �

The cost function gi(xc
i , x

c
i+1) is used for the geometrical distance between two

waypoints xc
i , x

c
i+1, e.g., gi =‖ xc

i − xc
i+1 ‖2, where ‖ · ‖ is the Euclid norm.

The receding horizon policy is executed by solving Problem 1 at each time tk
as follows. Suppose that the optimal control input u∗(t), t ∈ [tk, tk+N ), and the
optimal waypoint x∗

i , i = k, k + 1, . . . , k +N are obtained by solving Problem 1
at t = tk. Then after u∗(t) with x∗

k+1 is applied to the system for t ∈ [tk, tk+1),
Problem 1 with tk replaced by tk+1 is solved and the same strategy is repeated.
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c
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Fig. 2. Directed graph in the obstacle avoidance problem

Note that tk+N+1, Vk+N+1, and Ek+N (ξ) for every ξ ∈ Vk+N need to be gener-
ated at time tk+1 to realize the above receding horizon policy. However, in this
paper, we will not address the generation problem of tk and Gk(xc

k) due to the
limited space. This issue will be reported in the near future.

Problem 1 can be applied to various motion control problems of mechanical
systems such as robots. In particular, it will be useful to solve the obstacle avoid-
ance problem in an approximated way. For example, suppose that the vehicle,
as a controlled plant, is given by ẋp = xv, ẋv = u. In this case, the position
xp of the vehicle may be often restricted by some time-varying, non-convex set,
while its velocity xv is not. It will be difficult to rigorously solve such an optimal
control problem in a real time. Thus we consider xc = xp, xu = xv, and nc = 1
in Problem 1, and approximate the allowable region of the position in terms of
the directed graph Gk(xc

k) as in Fig. 2. Based on this graph and the state signal
x(t), both a sequence of waypoints xi, i = k, k+1, . . . , k+N and a control input
u(t), t ∈ [tk, tk+N ), are optimized. This corresponds to simultaneously optimize
a kind of discrete decision such as the right- or left-side path by selecting a
sequence of waypoints on xp, and a continuous-time continuous-valued motion
trajectory of the vehicle between two waypoints.

The first author has considered in [4] the case in which every element of the
waypoints xi ∈ Rn takes a value in a finite set. However, as in the obstacle
avoidance problem, it will be natural to define a finite set only for elements of
the waypoint corresponding to the state variables constrained in a complex way.
In the following sections, a solution to such an extended version is given.

Note also that Problem 1 belongs to a special class of the optimal control
problems of piecewise affine systems, since it can be considered the problem of
finding switching actions of the affine terms as well as the so-called control inputs
(see the first part of the proof of Theorem 1).

3 Derivation of an Optimal Controller

Problem 1 is reduced to a kind of discrete-time optimal control problem with
discrete-valued inputs. Before showing this result, we prepare the following
symbols.

Assume that the pair (A,B) is controllable. Then there exists positive-definite
solutions P and Mi satisfying
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PA + ATP − PBR−1BTP + Q = 0 (3)

MiÃ
T + ÃMi + BR−1BT − eÃhiBR−1BT eÃT hi = 0 (4)

respectively, where hi denotes the decision time interval, i.e., hi := ti+1− ti, and
Ã := A−BR−1BTP . So using

Di := eÃhi , Ei := eÃhi −
∫ hi

0
eÃτdτ(I + BR−1BT Ã−TP )A

we define the matrix given by

Si =
[

Si
1 Si

2
(Si

2)
T Si

3

]
,

Si
1 := DT

i M
−1
i Di + P ∈ Rn×n,

Si
2 := −DT

i M
−1
i Ei − P − Ã−TPA ∈ Rn×n,

Si
3 := ET

i M
−1
i Ei + P + Ã−TPA+ ATPÃ−1

+hiA
TPÃ−1P−1QP−1Ã−TPA ∈ Rn×n.

(5)

Furthermore, we express Si
2 and Si

3 as

Si
2 =

[
Si

21 Si
22
]
, Si

22 ∈ Rn×(n−nc),

Si
3 =

[
Si

31 Si
32

(Si
32)

T Si
33

]
, Si

33 ∈ R(n−nc)×(n−nc),

respectively. Then one of the main results in this paper is obtained.

Theorem 1. For Problem 1, assume that the pair (A,B) is controllable. Then
the optimal waypoints x∗

i , i = k+1, k+2, . . . , k+N , are solutions of the optimal
trajectory to the following optimal control problem of the discrete-time linear
system with discrete-valued inputs:

Problem A: min
vc

i , i = k, k + 1,
. . . , k + N − 1

k+N−1∑
i=k

wi(xi, v
c
i ) + gi(xc

i , v
c
i )

subject to xi+1 = Ad
i xi + Bd

i v
c
i , xk : given

vc
i ∈ Ei(vc

i−1), vc
k−1 = xc

k

where

wi(xi, v
c
i ) :=

[
xi

vc
i

]T

W i

[
xi

vc
i

]
, W i =

[
W i

1 W i
2

(W i
2)

T W i
3

]
,

W i
1 := Si

1 − Si
22(S

i
33)

−1(Si
22)

T ∈ Rn×n,

W i
2 := Si

21 − Si
22(S

i
33)

−1(Si
32)

T ∈ Rn×nc ,

W i
3 := Si

31 − Si
32(S

i
33)

−1(Si
32)

T ∈ Rnc×nc

Ad
i :=

[
0nc×n

−(Si
33)

−1(Si
22)

T

]
, Bd

i :=
[

Inc

−(Si
33)

−1(Si
32)

T

]
.
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Then the optimal control u∗(t) ∈ PC, t ∈ [tk, tk+N ), is given by

u∗(t) = −R−1BTP (x(t) − x∗
i+1) + R−1BT Ã−TPAx∗

i+1

−R−1BT eÃT (ti+1−t)M−1
i (Dix(ti)− Eix

∗
i+1),

t ∈ [ti, ti+1), i = k, k + 1, . . . , k + N − 1. (6)

Proof. For x̄i(t) := x(t)− xi+1, we obtain ˙̄xi(t) = Ax̄i(t) + Bu(t) + Axi+1, and
further for x̂i(t) := [ x̄T

i (t) 1 ]T , we obtain

˙̂xi(t) = Âix̂i(t) + B̂u(t), Âi :=
[
A Axi+1
0 0

]
, B̂ :=

[
B
0

]
.

Since, by (3), we have the relation P̂iÂi + ÂT
i P̂i− P̂iB̂R−1B̂T P̂i + Q̂i = 0, where

Q̂i :=
[
Q 0
0 ri

]
, P̂i :=

[
P qi

qT
i 0

]
qi := −Ã−TPAxi+1, ri := −xT

i+1A
TPÃ−1P−1QP−1Ã−TPAxi+1

it follows that

Ji(xi, u(·), xi+1) =
∫ ti+1

ti

[
x̂T

i (t)Q̂ix̂i(t) + uT (t)Ru(t)
]
dt− hiri,

= x̂T
i (ti)P̂ix̂i(ti)− x̂T

i (ti+1)P̂ix̂i(ti+1) +
∫ ti+1

ti

ūT
i (t)Rūi(t)dt− hiri

where ūi(t) := u(t)+R−1B̂T P̂ix̂i. Then from x(ti) = xi, x̄i(ti) = x(ti)− xi+1 =
xi − xi+1 and x̄i(ti+1) = x(ti+1)− xi+1 = 0, it follows that

Ji(xi, u(·), xi+1) = (xi − xi+1)TP (xi − xi+1)

−2(xi − xi+1)T Ã−TPAxi+1 +
∫ ti+1

ti

ūT
i (t)Rūi(t)dt− hiri. (7)

Thus the problem for fixed xi and xi+1 is reduced into a minimum energy control
problem with respect to ūi(t); for given xi and xi+1, find an input ū∗

i (t) satisfying
(x(ti), x(ti+1)) = (xi, xi+1) and minimizing the cost Ĵ =

∫ ti+1

ti
ūT

i (t)Rūi(t)dt. As
is well known, the optimal controller and the minimum cost of this problem are
given by ū∗

i (t) = −R−1BT eÃT (ti+1−t)M−1
i (Dixi −Eixi+1) and min Ĵ = (Dixi −

Eixi+1)TM−1
i (Dixi − Eixi+1), respectively (see e.g., [7, 8]). It is remarked here

thatMi of (4) is a positive-definite matrix given byMi =
∫ hi

0 eÃτBR−1BT eÃT τdτ .
Thus by applying min Ĵ = (Dixi − Eixi+1)TM−1

i (Dixi − Eixi+1) to (7), we
have

min
u

Ji = si(xi, xi+1), si(xi, xi+1) :=
[

xi

xi+1

]T

Si

[
xi

xi+1

]
(8)

where Si is given in (5). Therefore, the original problem minu,{xi} J is rewritten
as the following optimization problem with respect to the waypoints xi, i =
k + 1, k + 2, . . . , k + N :
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Problem A’: min
xi, i = k + 1,

k+2, . . . , k+N

k+N−1∑
i=k

si(xi, xi+1) + gi(xc
i , x

c
i+1)

subject to xk : given, xc
i ∈ Ei−1(xc

i−1), xu
i ∈ Rn−nc

Furthermore, if we set xi+1 = vi, where vi is a new input, Problem A’ is expressed
as the optimal control problem of the discrete-time linear system with input
constraints:

Problem A”: min
vi, i = k, k + 1,
..., k + N − 1

k+N−1∑
i=k

si(xi, vi) + gi(xc
i , v

c
i )

subject to xi+1 = vi, xk : given

vi =
[
vc

i

vu
i

]
, vc

i ∈ Ei(vc
i−1), v

c
k−1 = xc

k, vu
i ∈ Rn−nc .

Now suppose xi ≡ 0 and xi+1 �= 0 in (8). Then minu Ji > 0 holds because the
input energy term

∫ ti+1

ti
uT (t)Ru(t)dt in Ji necessarily becomes positive. This

proves that Si
3 > 0. Thus since Si

33 > 0 holds from Si
3 > 0, simple calculation

shows that a minimizer (vu
i )∗ of vu

i for this problem with vc
i fixed is given as

(vu
i )∗ = −(Si

33)−1{(Si
22)Txi +(Si

32)T vc
i }. By substituting vu

i = (vu
i )∗ into xi+1 =

vi, we obtain xi+1 = Ad
i xi + Bd

i v
c
i . This implies that Problem A” is reduced to

Problem A. �

Theorem 1 gives the optimal input u∗(t) in an explicit form parameterized with
the waypoints, which are the solutions of Problem A. It is also remarked that
Si ≥ 0, Si

1 > 0, W i ≥ 0, W i
1 > 0, W i

3 > 0 are also proven in addition to Si
3 > 0;

Si ≥ 0 follows from Ji ≥ 0, and Si
1 > 0 follows from the control problem of Ji

with xi+1 ≡ 0. These facts also yield W i
1 > 0, W i

3 > 0, W i ≥ 0 by the property
of positive definiteness of the block matrix.

Remark 1. Suppose n = nc, that is, xi = xc
i , which has been studied in [4].

Then Problem A is reduced into the following problem:

Problem B: min
vc

i , i = k, k + 1,
. . . , k + N − 1

k+N−1∑
i=k

wg
i (xi, v

c
i )

subject to xi+1 = vc
i , xk : given

vc
i ∈ Ei(vc

i−1), vc
k−1 = xk

where wg
i = wi + gi. Thus we can use the forward dynamic programming (F-DP)

to solve Problem B as follows.

Vj+1(vc
k+j+1) = min

vc
k+j∈Ek+j(vc

k+j−1)
{wg

k+j(v
c
k+j , v

c
k+j+1) + Vj(vc

k+j)}
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where

Vj(vc
k+j) := min

vc
i ∈ Ei(vc

i−1), i = k,
k + 1 . . . , k + j − 1

k+j∑
i=k

wg
i (xi, v

c
i ).

It is well-known that the computational cost in the above F-DP is O(ne),
where ne is the number of the edges of the directed graph Gk(xc

k). However, under
the assumption that the resolution of the discretized variables is all the same, ne

will grow exponentially with the dimension of the state, i.e., the computational
effort will exponentially grow.

4 Optimization Algorithm of Discrete Inputs with
Dynamical Constraints

In Theorem 1, the original problem has been reduced to Problem A. Thus, next,
we discuss an efficient algorithm for solving Problem A.

Problem A may be solved by the ”backward” dynamic programming. However,
the computational effort in this case is much larger than the case in Remark 1.
Thus such a kind of approach will not be practical, and a new efficient approach
will be required.

By substituting

xk+i =

(
i−1∏
s=0

Ad
k+i−1−s

)
xk +

i−1∑
j=0

(
i−2−j∏
s=0

Ad
k+i−1−s

)
Bk+ivk+i,

obtained from xi+1 = Ad
i xi +Bd

i v
c
i , into the cost of Problem A, it is reduced to

the following discrete quadratic programming problem:

Problem C: min
U

UTHU + UT f

subject to U ∈ U

where H is a positive definite matrix (proven fromW i
3 > 0, W i ≥ 0, and Gi

a ≥ 0),
f is a vector-valued function of xk, and

U := {U | vc
i ∈ Ei(vc

i−1), i = k, k + 1, . . . , k + N − 1, vc
k−1 = xk }, (9)

U :=

⎡⎢⎢⎢⎣
vc

k

vc
k+1
...

vc
k+N−1

⎤⎥⎥⎥⎦ ∈ RNc , Nc := Nnc.

Although the above symbols H , f , U , and U depend on the time tk and/or the
state xk, we have omitted this information for simplicity of notation. Moreover,
the ith element of U is denoted by ui (i = 1, 2, . . . , Nc) and the condition U ∈ U
is called the input sequence constraints hereafter.
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Fig. 3. A super-ellipsoid EV (r) and a super-rectangular ĒV (r) for Nc = 2 (black points
express inputs that belong to U)

If the input sequence constraints are ignored, Problem C is rewritten as the
0-1 integer quadratic programming (IQP) problem by vc

i =
∑|Ei(vc

i−1)|
j=1 αi

jδ
i
j ,

δi
j ∈ {0, 1},

∑|Ei(vc
i−1)|

j=1 δi
j = 1, and αi

j is the element of Ei(vc
i−1). So the efficient

IQP solvers such as ILOG CPLEX solvers can be applied to this problem. How-
ever, in this case, the number of the binary variables increases in proportion to
the cardinality of the finite set Ei(vc

i−1), which makes the computation load ex-
ponentially increased. Furthermore, many additional inequalities are required to
express the input sequence constraints in terms of δi

j ; for example, the condition
that ”if δ1 = 1, then we can take δ2 = 1 or δ3 = 1” can be expressed as the four
inequalities δ1 − θ ≤ 0, δ2 − θ ≤ 0, δ3 − θ ≤ 0, and δ2 + δ3 − θ ≥ 0 by using
additional binary variable θ ∈ {0, 1}.

Thus we will propose the other approach, that is, an enumeration approach
based on the branch and bound method as follows. For a given positive constant
r, consider the super-ellipsoid on RNc as follows:

EV (r) := {U ∈ RNc | V (U) ≤ r}

where V (U) = UTHU + UT f . Then for each enumerated U ∈ U
⋂
EV (r), we

will compare the value V (U) to find U∗ = argminV (U). However, it will in
general spend much time to find a U ∈ U

⋂
EV (r), otherwise to determine that

there exists no U ∈ U
⋂
EV (r). So we will consider a super-rectangular, denoted

by ĒV (r), that is circumscribed in the super-ellipsoid EV (r), and whose side is
parallel to some ui-axis of U (see Fig. 3). Then the set ĒV (r) can be easily
characterized as follows.

Lemma 1. The center c of ĒV (r) (or equivalently the center of EV (r)) and the
distance w(r) between the center c and each face of ĒV (r) are given as follows:

c = −1
2
H−1f, wi(r) =

√
(r +

1
4
fTHf)hinv

i , i = 1, 2, . . . , Nc (10)

where wi(r) denotes the ith element of w(r), and hinv
i the (i, i)th element of

H−1.
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Proof. The first relation is trivial. We prove the second one. So for V̄ (Ū) :=
ŪTHŪ with Ū := U+ 1

2H
−1f(= U−c), the super-ellipsoid EV (r) is expressed as

EV (r) = {U ∈ RNc | V̄ (Ū) ≤ r̄}, r̄ := r +
1
4
fTHf.

Then defining for Ū and H the symbols given by

Ū =

⎡⎣ Ūa

Ūb

Ūc

⎤⎦ , Ūa ∈ Ri−1, Ūb ∈ R, Ūc ∈ RNc−i,

H =

⎡⎣h11 h12 h13
hT

12 h22 h23
hT

13 hT
23 h33

⎤⎦ ,
h11 ∈ R(i−1)×(i−1), h12 ∈ Ri−1, h13 ∈ R(i−1)×(Nc−i),

h22 ∈ R, h23 ∈ R1×(Nc−i), h33 ∈ R(Nc−i)×(Nc−i),

V̄ (Ū) is expressed as

V̄ (Ū) = ÛT ĤÛ + 2ŪbÛ
T f̂ + h22Ū

2
b

where

Û :=
[
Ūa

Ūc

]
, Ĥ :=

[
h11 h13
hT

13 h33

]
, f̂ :=

[
h12
hT

23

]
.

Thus since Ĥ > 0 follows from H > 0, we have

r̄− V̄ (Ū) = r̄− (h22− f̂T Ĥ−1f̂)Ū2
b − (Û + Ĥ−1f̂ Ūb)T Ĥ(Û + Ĥ−1f̂ Ūb) ≥ 0 (11)

which thus implies r̄ ≥ (h22 − f̂T Ĥ−1f̂)Ū2
b . Since H > 0, we can prove that the

term h22 − f̂T Ĥ−1f̂ is positive, and its reciprocal number 1/(h22− f̂T Ĥ−1f̂) is
equal to the (i, i)th element hinv

i of H−1 (via the definition of the inverse ma-
trix). Thus noting Ūb = ui− ci, we have for the ith element of U , ci−

√
r̄hinv

i ≤
ui ≤ ci +

√
r̄hinv

i . Finally, we show that wi(r) of (10) expresses the distance
between the center c and each face of ĒV (r). For Û = −Ĥ−1f̂ Ūb in (11), we

can take Ūb as Ūb =
√
r̄/(h22 − f̂T Ĥ−1f̂) to satisfy V̄ (Ū) = r̄. This proves the

second relation. �

From this lemma, we can see that ĒV (r) is easily calculated by using H and f
of V (U); thus we can easily pick up an element U ∈ U

⋂
ĒV (r) thanks to the

fact that each side of ĒV (r) is parallel to its corresponding axis ui. However, in
general, the cardinality of U

⋂
ĒV (r) is still much larger than that of U

⋂
EV (r).

So we will consider a section of the ellipsoid EV (r) by fixing the values of ui

that belongs to ĒV (r). The main idea is as follows. Consider the case of Nc = 2.
First, the value of u1 is fixed as u1 = p1 for a certain constant p1 in U

⋂
ĒV (r).

Then for a function V (U)|u1=p1 on u2, it will be quite easy to characterize all
values of u2 in U

⋂
EV (r), which enables us to check the minimum value of V (U)

for u1 = p1 in an easy way. A similar way for the other p1 is repeated, and finally
the minimum value of V (U) is obtained. Even if Nc ≥ 3, we can use the same
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technique by fixing the values of all variables except for one variable, although
some proper strategy on how the variables are fixed is required. Thus if we can
find a candidate Utemp in U

⋂
EV (r), we can reset the value of r as r = V (Utemp),

which is denoted by rnew , to make the search region smaller. Then for a new
super-rectangular EV (rnew), the same procedure is executed. In this way, the
solution U∗ will be determined by making r smaller until U

⋂
EV (r) = ∅.

Of course, for the worst case, all elements in the finite set U
⋂
ĒV (r) may

have to be picked up; this is the same as that of all the other branch and
bound algorithms. Thus by numerical comparisons with the other algorithms,
the efficiency of the proposed algorithm will be shown in the next section, where
we will see that this branch and bound method based on ĒV (r) dramatically
decrease the number of the elements to be picked up.

First, we prepare the following notation. Using the new variable U i := [ui ui+1
· · · uNc ]

T , let us consider the function

Vi(U i; pi−1) := V (U)
∣∣
[u1 u2 ··· ui−1]T =pi−1

where pi−1 = [p1 p2 · · · pi−1]T is any given (i− 1)-dimensional constant vector.
This function is expressed as

Vi(U i; pi−1) = (U i)THiU i + (U i)T f i(pi−1)

Hi =
[

hi
11 hi

12
(hi

12)
T hi

22

]
, f i(pi−1) =

[
f i
1(p

i−1)
f i
2(p

i−1)

]
.

where Hi and f i are defined in an inductive way:

H1 = H, f1(p0) = f,

Hi = hi−1
22 , f i(pi−1) = 2pi−1(hi−1

12 )T + f i−1
2 (pi−2), i ≥ 2. (12)

Note that p0 is used in a formal way, p1 = p1, and pi = [(pi−1)T pi]T , and also
V1(U1; p0) = V (U). Furthermore, we define the following notation for i ≥ 2:

ri(pi−1) = ri−1(pi−2) + hi−1
11 (pi−1)2 + f i−1

1 (pi−2)pi−1, (13)

ci(pi−1) = −1
2
(Hi)−1f i(pi−1), (14)

wi(r, pi−1) = [wi
j(r, p

i−1)], wi
j(r, p

i−1) =
√

(r − ri(pi−1) + f̃ i)hi,inv
j , (15)

f̃ i(pi−1) =
1
4
{f i(pi−1)}T (Hi)−1f i(pi−1), (16)

Di(r, pi−1) = { ui ∈ Ui | ci
i(p

i−1)− wi
i(r, p

i−1) ≤ ui ≤ ci
i(p

i−1) + wi
i(r, p

i−1) }
(17)

where hi,inv
j is the (j, j)th element of (Hi)−1, ci

i is the ith element of ci, wi
j

(r, pi−1) is the ith element of wi(r, pi−1), and Ui is the set of the ith element of
U ∈ U .
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Note that ri(pi−1) characterizes the super-ellipsoid subject to [u1 u2 · · · ui−1]T

= pi−1, i.e., Vi(U i; pi−1) ≤ r − ri(pi−1). For this ellipsoid, its center is given
by ci(pi−1), and wi(r, pi−1) expresses the distance between the center ci(pi−1)
and each face of the super-rectangular ĒVi(ri(pi−1)) (see Lemma 1). Finally,
Di(r, pi−1) expresses, among all the points U i within the ellipsoid Vi(U i; pi−1) ≤
r − ri(pi−1), all the 1-st elements ui of U i such that ui ∈ Ui.

Now we are in a position to propose the following algorithm.

[Proposed algorithm]
Main routine:

Step 0: H , f , U , and Uini ∈ U are given.
Step 1: Calculate

r = V (Uini), H1 = H, f1(p0) = f, r1(p0) = 0,

c1(p0) = −1
2
H−1f, w1(r, p0) = w(r),

D1(r, p0) = {u1 ∈ U1 | c11(p0)− w1
1(r, p

0) ≤ u1 ≤ c11(p
0) + w1

1(r, p
0)},

B1 = ∅, P1(r, p0,B1) = D1(r, p0), i = 1

Step 2: One of (i)∼(iii) is executed.
(i) If i < Nc and P i(r, pi−1,Bi) �= ∅, then pi = mid(P i(r, pi−1,Bi)), Bi =
Bi
⋃
{pi}, Bi+1 = ∅, and then i = i + 1. Go to Substep 1.

(ii) If i = Nc and PNc(r, pNc−1,BNc) �= ∅, then pNc = argminuNc∈PNc VNc

(uNc ; pNc−1), p = [p1 p2 · · · pNc ]T , r = V (p), and then i = Nc − 1. Go to
Substep 2.

(iii) If i > 1 and P i(r, pi−1,Bi) = ∅, then i = i− 1 and go to Substep 3.
(iv) If i = 1 and P1(r, p0,B1) = ∅, then output U∗ = p.

Subroutine:

Substep 1: Calculate Hi and f i of Vi(U i; pi−1) in (12), ri(pi−1) in (13), and
ci(pi−1) in (14). Then go to Substep 2.

Substep 2: Calculate wi(r, pi−1) in (15) and Di(r, pi−1) in (17), and then go to
Substep 3.

Substep 3: Renew P i(r, pi−1,Bi) as P i(r, pi−1,Bi) = Di(r, pi−1)/Bi and then
go to Step 2.

Here the function mid(P) is defined for a finite set P on R as follows:

mid(P) = argminp∈P

|P|∑
j=1

| p− pj |

which implies that p∗ = mid(P) expresses the middle of P in the above sense.
Let us explain the procedures in the algorithm roughly. Suppose that i = 1

and that (i) holds in step 2. Then p1 is determined as a middle of the set
P1(r, p0,B1), i.e., D1(r, p0). Further, B1 = {p1}, B2 = ∅, and i = 2 are set
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(Bi is used for memorizing the values of pi that have been checked). In substeps
1 and 2, the ellipsoid V2(u2; p1) ≤ r − r2(p1) with u1 = p1 and its parame-
ters are calculated. In substep 3, we have P2(r, p1,B2) = D2(r, p1) because of
B2 = ∅.

Next, suppose that (ii) holds in step 2 (suppose Nc = 2). Then p2 ∈ P2(r, p1,
B2) is determined to minimize the value of V2(u2; p1), and the value of r is
renewed as r = V (p), where p = [p1, p2]T . Furthermore, we reset i = 1 and
go to substeps 2 and 3. Thus P1(r, p0,B1) is given by deleting the element p1,
because B1 = {p1}. So if (i) is satisfied, the same story is repeated for this new
P1(r, p0,B1).

On the other hand, suppose that (iii) holds (assume i = 2), i.e., P2(r, p1,B2)
= ∅. which implies that no candidate for p2 exists. Then we reset i = 1. Thus
after the new P1(r, p0,B1) is obtained in substep 3, if (i) in step 2 holds, we can
change the value of p1.

Finally, if (iv) holds after repeating the above procedure, that is, r is decreas-
ing and at last no possible new candidate for p1 exists, we can obtain the optimal
solution.

It is also stressed that the proposed approach has another advantage; it needs
to take no special consideration for the constraints given by the directed graph,
because the value pi of ui only has to be selected based on the directed graph. On
the other hand, in the usual IQP solvers that cannot directly treat the constraints
given by the directed graph, many binary variables and some inequalities will
be required in general to express such constraints.

5 Simulation

5.1 Computation Time with No Constraints

First, it is shown that the discrete optimization algorithm is quite efficient by
comparing the commercial solver ”ILOG CPLEX solver”, which is well known
as one of efficient solvers, even if no constraints exist.

For fixed k, consider Problem C with

U := {U |ui ∈ {−d,−(d− 1), . . . , d− 1, d}, i = 1, . . . , Nc}.

This corresponds to the so-called integer quadratic programming problem with
no constraints. Fig. 4 shows the computation time with respect to the number
of variables Nc for d = 5, where Linux (Kernel 2.4) is used on the computer
with the Intel Pentium 4 2.53GHz processor and the 2048MB memory, and 20
different cases of H , f , which are generated in a random way, are used for each
Nc. This figure shows that the proposed solver is about 30 times faster than
the CPLEX solver at Nc = 25 ∼ 30. For d = 20 and Nc = 25, the maximum
computation time is about 0.6 (sec) for the proposed solver, while 12.76 (sec) for
the CPLEX solver. In this way, the proposed solver is quite efficient compared
with the CPLEX solver.
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Fig. 4. Computation time with no constraints for d = 5
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Fig. 5. Computation time with the sequence constraints for d = 5

5.2 Computation Time Under the Sequence Constraints

Next, we consider Problem C with

U := { U | ui ∈ E(ui−1), i = 1, 2, . . . , Nc, u0 = 0 }

where E is given by the rule that for ui ∈ {−d,−(d− 1), . . . , d− 1, d}

ui+1 ∈ {d, d− 1, d− 2} if ui = d,
ui+1 ∈ {−d,−d+ 1,−d+ 2} if ui = −d,
ui+1 ∈ {ui − 2, ui − 1, ui, ui + 1, ui + 2} otherwise.

Note that E(·) is a time-invariant function. Fig. 5 shows the computation time
with respect to the number of variables Nc (2∼30), where Linux (Kernel 2.4)
is used on the computer with the Xenon 2.0GHz processor and the 2048MB
memory, and 20 different cases of H , f , which are generated in a random way,
are used for eachNc. From this result, we can see that the proposed algorithm can
solve the problem with Nc ≤ 29 within 1 (sec). On the other hand, if the CPLEX
solver (IQP solver) is applied to this problem by expressing the directed graph
in terms of 0-1 inequalities and additional binary variables, the computational
time is much larger than the case of the proposed method as in Fig. 5(b). For
example, the proposed solver is more than 4000 times faster than the CPLEX
solver at Nc = 15.
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5.3 Simulation Results of Receding Horizon Control

Finally, we show the simulation results when our approach is applied to the
obstacle avoidance problem.

The system (1) and the cost parameters are given as

A =

⎡⎣0 1 0
0 −3 1
0 0 −5

⎤⎦ , B =

⎡⎣0
0
1

⎤⎦ , Q =

⎡⎣1 0 0
0 0 0
0 0 0

⎤⎦ , R = 1, ti = i, N = 30.

We also set that xc = x1 and xu = [x2 x3]T for x = [x1 x2 x3]T , and assume
that the graph Ei(xc

i ) is given by

xc
i+1 ∈ {d, d− 1}

⋂
Vi+1 if xc

i = d,
xc

i+1 ∈ {−d,−d+ 1}
⋂
Vi+1 if xc

i = −d,
xc

i+1 ∈ {xc
i , x

c
i − 1, xc

i + 1}
⋂
Vi+1 otherwise.

where Vi denotes the allowable region at time ti that is randomly produced.
Fig. 6 shows the simulation results in receding horizon control, where the max-
imum computation time for solving Problem C is 0.26 (sec). The obrained tra-
jectory is smooth and appears reasonable. For the other cases, e.g., for several
4-dimensional linear systems with xc = x1, similar results are obtained. In this
way, it is stressed that the proposed approach is useful even for high-dimensional
systems if the dimension of xc is small.
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Fig. 6. Simulation results for the obstacle avoidance problem

6 Conclusion

This paper has proposed a generalized framework of simultaneous optimization
of motion trajectories (continuous variables) and waypoints (discrete variables)
subject to the linear system with discrete dynamical constraints. Although the
problem of how to generate a directed graph from the admissible region, which
is also an important issue, has not been addressed here, it will be reported in
the near future.
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Abstract. This paper discusses a notion of approximate abstraction for
linear stochastic hybrid automata (LSHA). The idea is based on the con-
struction of the so called stochastic bisimulation function. Such function
can be used to quantify the distance between a system and its approx-
imate abstraction. The work in this paper generalizes our earlier work
for jump linear stochastic systems (JLSS). In this paper we demonstrate
that linear stochastic hybrid automata can be cast as a modified JLSS
and modify the procedure for constructing the stochastic bisimulation
function accordingly. The construction of quadratic stochastic bisimula-
tion functions is essentially a linear matrix inequality problem. In this
paper, we also discuss possible extensions of the framework to handle
nonlinear dynamics and variable rate Poisson processes. As an example,
we apply the framework to a chain-like stochastic hybrid automaton.

1 Introduction

Stochastic hybrid systems are widely used to model physical and engineering
systems, in which the continuous dynamics has many modes or discontinuities,
as well as stochastic behavior [1]. Applications of stochastic hybrid systems can
be found in telecommunication networks [2], systems biology [3], air traffic man-
agement [4], etc.

There are several available modelling formalisms for stochastic hybrid sys-
tems. One of the earliest frameworks is the one in [5], where a general type
of stochastic hybrid systems, whose continuous dynamics is described by dif-
fusion stochastic differential equation [6], is presented. Mode switching occurs
when some invariant condition in the corresponding mode is violated. Another
framework that involves multimodal diffusion equation is the switched diffu-
sion processes [7]. There are also modelling frameworks, where the continuous
dynamics is described by ordinary differential equation, such as the piecewise
deterministic Markov processes [8], stochastic hybrid systems [2], etc. In these
frameworks, the switching is modelled as a Poisson process. For a more thorough
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survey on the modelling formalisms for stochastic hybrid systems, the interested
reader is referred to [1].

Researchers have been working on how to tame the increasing complexity of
system analysis. There are two approaches. The first approach is to develop a
framework that allows the computation to be performed in a modular fashion.
The other approach is to develop a framework that allows abstraction of the com-
plex system. By abstraction we mean building a simpler system that is, in some
sense, equivalent to the complex system. The computation is then performed
on the simpler system and the equivalence guarantees that the results can be
carried over into the complex system. The discussion in this paper pertains to
the second approach.

Bisimulation is a concept of system equivalence that is widely used for ab-
straction of complex systems. Notions of exact bisimulation for some classes of
stochastic hybrid systems have been recently developed in [9, 10]. In [9], a cate-
gory theoretical notion exact bisimulation for general stochastic hybrid systems
is discussed, while [10] treats the issue of exact bisimulation for the so called
communicating piecewise deterministic hybrid systems. In this paper, we relax
the requirement that the abstraction is exactly equivalent to the original sys-
tem. Instead, we require that they are only approximately equivalent [11, 12].
We then need to define a metric, with which we can measure the distance be-
tween systems and hence the quality of the abstraction. In [13, 14], the authors
develop some metrics for labelled Markov processes and probabilistic transition
systems, inspired by the Hutchinson metric, which gives the distance between
two distributions of the transition probability. The approach that we take in this
paper differs from that, since we use a different kind of metric. The metric that
we use is based on the L∞ distance between the output trajectories of the sys-
tems. We develop a theory of approximate bisimulation for a class of stochastic
hybrid automata, in which the continuous dynamics is modelled by stochastic
differential equations and the switches are modelled as Poisson processes. This
class of systems is called the linear stochastic hybrid automata (LSHA).

The approach that we take in this paper is by computing the so called stochas-
tic bisimulation function. The stochastic bisimulation function is used to quantify
the quality of the abstraction. This approach has been used in [15] for jump lin-
ear stochastic systems (JLSS). The jump linear stochastic systems are stochastic
systems whose dynamics is described by a stochastic differential equation with
Poisson jumps in the continuous state. Thus, an LSHA can be thought of as a
generalization of JLSS, as in LSHA it is possible to have multiple modes for the
continuous dynamics. However, in this paper we also show that it is possible to
cast an LSHA as a modified JLSS, and hence we can compute the stochastic
bisimulation function for LSHA by modifying the procedure for JLSS. We also
demonstrate that the construction of quadratic stochastic bisimulation functions
for LSHA can be cast as a tractable linear matrix inequality problem. Further,
we also discuss possible extensions of the framework to deal with nonlinear dy-
namics and variable rate Poisson processes.
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2 Linear Stochastic Hybrid Automata

In this paper, we formally define a linear stochastic hybrid automaton (LSHA)
as a 5-tuple A = (L, n,m, T, F ), where

– L is a finite set, which is the set of locations or discrete states. The number
of locations is denoted by |L|.

– n : L → N, where for every l ∈ L, n(l) is the dimension of the continuous
state space in location l,

– m ∈ N, is the dimension of the output of the automaton A,
– T is the set of random transitions. A transition τ ∈ T can be written as

a 4-tuple (l, λτ , l
′, Rτ ). This is a transition from location l ∈ L to l′ ∈ L

that is triggered by a Poisson process with intensity λτ ∈ R+. The matrix
Rτ ∈ Rn(l′)×n(l) is the linear reset map associated with the transition τ . The
number of transitions is denoted by |T |.

– F defines the continuous dynamics in each location. For every l ∈ L, F (l) is
a triple (Al, Gl, Cl), where Al ∈ Rn(l)×n(l), Gl ∈ Rn(l)×n(l)and Cl ∈ Rm×n(l).

The state space of the automaton can be written as

X =
|L|⋃
i=1

(
{li} × Rn(li)

)
. (1)

We also define the functions source : T → L and dest : T → L, such that if
τ ∈ T is (l, λτ , l

′, Rτ ) then

source(τ) = l, dest(τ) = l′. (2)

The semantics of the linear stochastic hybrid automatonA can be explained as
follows. The state trajectory ξt = (lt, xt) of the LSHAA is inherently a stochastic
process. Every state trajectory that the automaton executes is a realization of
the process. In each location l ∈ L, the continuous state of the system satisfies
the following stochastic differential equation (SDE).

dxl,t = Alxl,t dt + Glxl,t dwt, (3a)
yt = Clxl,t, (3b)

xl,t ∈ Rn(l), yt ∈ Rm. (3c)

The process wt is an R valued standard Brownian motion, where E[w2
t ] = t. The

Rm valued stochastic process yt is the output/observation of automaton A.

Remark 1. In general, it is possible to incorporate multi dimensional Brownian
motions in the framework. In this case, the term Glxlt dwt in (3a) would be re-
placed by

∑N
i=1 Gl,ixl,t dwi,t to incorporate an N -dimensional Brownian motion.

Hereafter, we stick to the one dimensional Brownian motion for simplicity.
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Denote the set of outgoing transitions of a location as

out : L→ 2T , out(l) := {τ ∈ T | source(τ) = l} , (4)

and |out(l)| as the number of outgoing transitions from location l. While the
system is evolving in a location l ∈ L, each transition in out(l) is represented by
an active Poisson process. Each of these Poisson processes has a constant rate
indicated by the transition. The first Poisson process to generate a point triggers
a transition. Suppose that τ = (l, λτ , l

′, Rτ ) is the transition that corresponds
to the first process that generates a point (at time t), then the evolution of the
system will switch to location l′. The matrix Rτ defines a linear reset map,

xt = Rτxt− , (5)

where xt− := lims↑t xs.
Figure 1 illustrates a realization of the execution of an LSHA. In Figure 1, the

execution starts in location l0 by following the SDE that defines the dynamics
in the location. The set of outgoing transitions from l0, out(l0) = {τ, θ}. In this
particular realization, the Poisson process associated with τ generates a point
before that of θ. Hence, a transition occurs that brings the trajectory to location
dest(τ) = l1. The continuous state of the trajectory is reset by the linear map

Rτ

τ
′ =

(l 1
, λ

τ
′ , l

2,
R τ

′ )

Rτ ′

l0 l1

l2

Rn(l0)

τ = (l0, λτ , l1, Rτ )

Rn(l1)

Rn(l2)

l3

Rn(l3)

θ
=

(l 0
, λ

θ
, l

3
, R

θ
)

θ ′
=

(l1 , λ
θ ′, l3 , R

θ ′)

Fig. 1. An illustration of the execution of an LSHA. The solid bold arrows represent
transitions between locations that occur. The dotted bold arrows indicate transitions
that do not occur, since the associated Poisson process do not generate a point fast
enough. The dotted arrows denote the linear reset maps associated with the transitions
that occur.
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Rτ . In the new location, the continuous dynamics proceeds with the SDE that
defines the dynamics in location l1. The set out(l1) = {τ ′, θ′}. In this particular
realization, the Poisson process associated with τ ′ generates a point before that
of θ′. Hence, a transition occurs that brings the trajectory to location l2. The
continuous state of the system is then subsequently reset by the linear map Rτ ′ .

3 Approximate Abstraction of LSHA

In this paper we will develop the notion of approximate abstraction of lin-
ear stochastic hybrid automata. The notion of approximate abstraction is con-
structed using the concept of stochastic bisimulation functions [15]1.

A stochastic bisimulation function is defined between two LSHA, Ai = (Li,
ni,m, Ti,Fi), i = 1, 2. Notice that we assume that the outputs of the automata
have the same dimension. We denote the state space of Ai as Xi, i = 1, 2. See (1).

Definition 1. [15] A function φ : X1 × X2 → R+ ∪ {+∞} is a stochastic
bisimulation function between A1 and A2 if the following statements hold.
(i) Suppose that ξi = (li,xi) ∈ Xi, i = 1, 2, then

φ(ξ1, ξ2) ≥ ‖C1,l1x1 − C2,l2x2‖2 = ‖y1 − y2‖2 ,

where ‖·‖ denotes the Euclidean distance in Rm,
(ii) the stochastic process φt := φ(ξ1,t, ξ2,t) is a supermartingale for any distri-
bution of the initial state.

Remark 2. The definition of stochastic bisimulation function in this paper does
not exhibit the game theoretic aspect as that in [15]. This is because we do
not model disturbance as a source of nondeterminism in this framework. We
could add disturbance as another affine term in (3a), and we can see later in
Section 4 that the theoretical framework that we develop in this paper can be
extended easily to cover this case. However, this would be done at significant
computational expense.

The following theorem describes the relation between the stochastic bisimulation
function and the difference between the output of A1 and A2.

Theorem 1. (adapted from [15])Given two LSHA, Ai = (Li,ni,m,Ti,Fi), i =
1, 2, and φ(·) a stochastic bisimulation function. The following relation holds.

P

{
sup

0≤t<∞
‖y1,t − y2,t‖2 ≥ δ

∣∣∣∣ (ξ1,0, ξ2,0)
}
≤ φ(ξ1,0, ξ2,0)

δ
. (6)

Proof. Following Definition 1, φ(ξ1t, ξ2t) is a supermartingale. Since φ(ξ1t, ξ2t)
is a nonnegative supermartingale, we have the following result [16].

P

{
sup

0≤t<∞
φ(ξ1,t, ξ2,t) ≥ δ

∣∣∣∣ (ξ1,0, ξ2,0)
}
≤ φ(ξ1,0, ξ2,0)

δ
. (7)

1 The work is inspired by the nonstochastic version in [12].
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Moreover, since φ(ξ1, ξ2) ≥ ‖y1 − y2‖2 by construction, we also have that

P sup
0≤t<∞

‖y1,t − y2,t‖2 ≥ δ (ξ1,0, ξ2,0) ≤ P sup
0≤t<∞

φ(ξ1,t, ξ2,t) ≥ δ (ξ1,0, ξ2,0) .

(8)
Hence we have (6).

The stochastic bisimulation function can be used to guarantee that the difference
between the output of the original system and its abstraction will not exceed a
given bound, with a certain probability. The difference between the outputs is
measured in the sense of L∞. This makes this approach particularly suitable for
analyzing safety/reachability property of the system, as it is illustrated in the
following.

Given a complex system represented by an LSHA A1 and its simpler abstrac-
tion A2. Suppose that φ(·) is a stochastic bisimulation function between the two
automata, and that the initial condition of the composite system is (ξ1,0, ξ2,0).
Given the unsafe set for the automaton A1, unsafe1 ⊂ Rm, we can construct
another set unsafe2 ⊂ Rm, which is the δ neighborhood of unsafe1 for some
δ > 0. That is,

unsafe2 = {y | ∃y′ ∈ unsafe1, ‖y − y′‖ ≤ δ} . (9)

We define the events unsafei := {∃t ≥ 0 s.t. yi,t ∈ unsafei}, i = 1, 2. The
following theorem holds [15].

Theorem 2. The following relation between the safety properties of the au-
tomata holds.

P{unsafe1} ≤ P{unsafe2}+
φ(ξ1,0, ξ2,0)

δ2 . (10)

Theorem 2 tells us that we can get an upper bound of the risk of the complex
system by performing the risk calculation on the simple abstraction and adding
a factor that depends on the stochastic bisimulation function.

4 Casting LSHA as Jump Linear Stochastic Systems

We have seen that we need to construct a stochastic bisimulation function be-
tween an LSHA and its abstraction, to measure the quality of abstraction. In
this section, we demonstrate how an LSHA can be cast as a modified jump lin-
ear stochastic system (JLSS) [15]. We shall then use the tools that have been
developed for JLSS to construct stochastic bisimulation functions for LSHA.

First, we introduce the structure of a jump linear stochastic system. A jump
linear stochastic system (JLSS) can be modeled as a stochastic system that
satisfies the following stochastic differential equation.

dxt = Axt dt + Gxt dwt +
N∑

i=1

Qixt dpi
t, (11a)

yt = Cxt. (11b)
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Here, yt is the output of the system, the process wt is a standard Brownian
motion, while pi

t is a Poisson process with a constant rate λi. We assume that
the Poisson processes and the Brownian motion are independent of each other.

Remark 3. The model of jump linear stochastic system that we use here is
slightly different from that in [15]. The difference is in the fact that the we
use a linear diffusion term (i.e. Gxt), while in [15] a constant term is used. With
this modification, we make sure that the origin is an equilibrium with probability
1. That is, P{xt �= 0, t ≥ 0|x0 = 0} = 0. As we shall see later, this property is
exploited to cast LSHA as JLSS.

Given an LSHA A = (L,n,m,T ,F ) as in Section 2, the following is an algorithm
to define a JLSS, structured as in (11), that represents A.

– The state space of the JLSS has the dimension of
∑|L|

i=1 n(li), li ∈ L.
– The A and G matrices of the JLSS has a block diagonal structure, with |L|

blocks. That is,

A :=

⎡⎢⎢⎢⎣
A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · A|L|

⎤⎥⎥⎥⎦ ,G :=

⎡⎢⎢⎢⎣
G1 0 · · · 0
0 G2 · · · 0
...

...
. . .

...
0 0 · · · G|L|

⎤⎥⎥⎥⎦ . (12)

where Ai := Ali and Gi := Gli are the A and G matrices of the LSHA in
location li.

– The C matrix of the JLSS is structured as C :=
[
C1 C2 · · · C|L|

]
, where

Ci := Cli is the C matrix of the LSHA in location li.
– There are |T | independent Poisson processes. Thus, N = |T |. Each Pois-

son process represents a transition in T . Denote the transitions as T =
{τi}1≤i≤|T | and τi := (loci, λi, loc

′
i, Ri). Then the Poisson process pi

t has the
rate of λi, and the matrix Qi has a block diagonal structure as A and G,
where

Qi :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 0 · · · 0
...

. . .
...

0 −I 0 0
0 Ri 0 0
...

. . .
...

0 · · · 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

.
←− loci

←− loc′i
.
.

, (13)

that is, almost all the blocks are zero, except for two blocks:
(i) the diagonal block associated with loci, which is −I, and
(ii) the block whose row is associated with loc′i and its column with loci,
which is Ri.

The idea behind this procedure is as follows. We formulate a JLSS with |L|
invariant dynamics. That is, the state space can be written as the direct sum of
|L| subspaces, each of which is invariant with respect to the following dynamics:

dxt = Axt dt + Gxt dwt. (14)
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Each invariant subspace represents a location in the LSHA. Further, we can
observe that the origin is also invariant with respect to (14) (see Remark 3). As
the result, if we start the evolution of the system in one of the invariant subspaces
(hence, in one of the locations of the LSHA), the trajectory will remain in the
subspace. Let us call the location l. When a Poisson process generates a point, if
the process does not correspond to a transition whose source location is l, then
the reset map does not change the continuous state of the system. This is due
to the construction of (13). If the source location is l and the target is, say, l′,
then the continuous state is reset to another invariant space that corresponds to
the location l′.

One apparent difference between the JLSS realization of the system and
the original LSHA is that in the LSHA, only the Poisson processes in the
active location are active. However, this difference does not affect the proba-
bilistic properties of the trajectories, since Poisson processes are memoryless
[8]. When we enter a location, it does not matter if we assume that the Pois-
son processes in the location are just started or that they have been running
before.

5 Computation of the Stochastic Bisimulation Function

In the previous section we demonstrate how we can cast a linear stochastic hy-
brid automaton (LSHA) as a jump linear stochastic system (JLSS). In general,
we can then exploit the available construction of quadratic stochastic bisimu-
lation function for JLSS [15], and apply it for LSHA. However, since we also
modified the definition (see Remark 3), we also need to modify the procedure
for constructing a stochastic bisimulation function.

Given two JLSS, for i = 1, 2,

Si :
{
dxi,t = Aixi,t dt + Gixi,t dwt +

∑N
j=1 Qijxt dpj

t ,

yit = Cixi,t.
(15)

We define the following composite system

xt :=
[
x1,t

x2,t

]
, yt := y1,t − y2,t,A :=

[
A1 0
0 A2

]
,G :=

[
G1 0
0 G2

]
, (16a)

Qj :=
[
Q1j 0
0 Q2j

]
,C :=

[
C1 −C2

]
. (16b)

Hence we have the following system:

S :
{
dxt = Axt dt + Gxt dwt +

∑N
j=1 Qjxt dpj

t ,

yt = Cxt.
(17)

As mentioned above, we want to construct a quadratic stochastic bisimulation
function. Thus, we want to find the conditions for a function of the form
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φ(x) = xTMx, (18)

to satisfy Definition 1. We can observe that the process φt := φ(xt) satisfies the
following SDE.

dφt =
∂φ

∂x
dxt +

1
2
dxT

t

∂2φ

∂x2 dxt = 2xT
t M

⎛⎝Axt dt + Gxt dwt +
N∑

j=1

Qjxt dpj
t

⎞⎠
+ xT

t G
TMGxt dt +

∑
i,j∈{1,2,··· ,N}

xT
t Q

T
i MQjxt dpi

tdp
j
t . (19)

Using the fact that the Poisson processes are independent from each other, we
can establish that the expectation of the last term of the right hand side satisfies
the following relation,

E
[
xT

t Q
T
i MQjxt dpi

tdp
j
t

]
=
{

E
[
xT

t Q
T
i MQjxt

]
λiλjdt

2, i �= j,
E
[
xT

t Q
T
j MQjxt

]
(λjdt + λ2

jdt
2), i = j.

The expectation of φt then satisfies the following equation.

dE[φt]
dt

= E
[
xT

t Θxt

]
, (20)

where

Θ := 2MA + 2M
N∑

i=1

λiQi + GTMG +
N∑

i=1

λiQ
T
i MQi. (21)

Theorem 3. The function φ(x) = xTMx is a stochastic bisimulation function
for the systems in (15) if and only if M ≥ CTC, and Θ ≤ 0.

This theorem in an immediate consequence of Definition 1. The problem of
finding M such that the conditions in Theorem 3 hold is a linear matrix equality
(LMI) problem.

Remark 4. If we see the quadratic stochastic bisimulation function as a stochas-
tic Lyapunov function, then the conditions in Theorem 3 guarantee that yt con-
verges to 0 in probability. However, in this paper we are not interested in the
asymptotic behavior of yt (the convergence), rather we are interested in the
bound on the magnitude of yt.

6 Extensions of the LSHA

In this section we discuss two possible extensions of the linear stochastic hybrid
automata, and the implications of the extensions to the computation of the
stochastic bisimulation function.
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6.1 Nonlinear Stochastic Hybrid Automata

Consider a linear stochastic hybrid automata A = (L,n,m,T ,F ). Suppose that
instead of the linear dynamics in (3), we assume that the dynamics in location
l ∈ L satisfies a nonlinear SDE of the following form.

dxl,t = al(xl,t) dt + gl(xl,t) dwt, (22a)
yt = cl(xl,t), (22b)

xl,t ∈ Rn(l), yt ∈ Rm. (22c)

We assume that for all l ∈ L,

al(0) = 0, gl(0) = 0. (23)

This assumption renders the origin invariant under the dynamics described by
(22). In general, we only need to have a point that is invariant under (22).

Furthermore, assume that instead of the linear reset map (5), the reset func-
tion of a given transition τ ∈ T follows the relation xt = rτ (xt−),where xt− :=
lims↑t xt.

Analogous to the discussion in Section 4, we can show that the nonlinear
version of the stochastic hybrid automata can be cast as a nonlinear version of
the jump linear stochastic systems, that is, systems of the form.

dxt = a(xt) dt + g(xt) dwt +
N∑

i=1

qi(xt) dpi
t, (24a)

yt = c(xt). (24b)

Furthermore, given two systems, for i = 1, 2,

Si :
{
dxi,t = ai(xi,t) dt + gi(xi,t) dwt +

∑N
j=1 qij(xt) dpj

t ,

yi,t = ci(xi,t),
(25)

we can form a composite system in the form of (24), by following a construction
analogous to (16).

Definition 1 is still valid for the nonlinear version of the stochastic hybrid
automata. Hence, the results that relate the stochastic bisimulation function
with approximate abstraction and safety verification still hold.

Suppose that we are given a smooth function φ(·) of the state of the composite
system (24). It can be verified that the evolution of the expectation of φt := φ(xt)
can be written as:

dE [φt]
dt

= E

[
∂φ

∂x
a(xt)

]
+

1
2
E

[
gT (xt)

∂2φ

∂x2 g(xt)
]
+

N∑
j=1

λjE[φ(xt+qj(xt))−φ(xt)].

(26)
Define

Θ(x) :=
∂φ

∂x
a(x) +

1
2
gT (x)

∂2φ

∂x2 g(x) +
N∑

j=1

λj(φ(x + qj(x)) − φ(x)), (27)

then dE[φt]
dt = E[Θ(xt)].
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Thus, to compute a general stochastic bisimulation function, we need to find
a smooth function φ such that

φ(x) ≥ (c(x))2 , Θ(x) ≤ 0. (28)

An automatic procedure for constructing such a function φ does not exist. How-
ever, if we assume that all the functions involved are polynomials, this problem
can be cast as a sum-of-squares problem. There is a software tool that can be
used to solve such problems, that is SOSTOOLS [17].

6.2 LSHA with Variable Rate Poisson Processes

In this subsection, we discuss the LSHA where the rate of the Poisson processes
are assumed to be functions of the continuous state. This type of LSHA can
still be cast as a JLSS of the form (11). The only difference is that now the
Poisson processes {pj

t}1≤j≤N have rates that depend on the continuous state,
λj(x) instead of a constant rate. We also assume that for every j ∈ {1, 2, · · · ,N},
there exist Lj ≥ 0 and Uj ≥ Lj such that for every continuous state x,

Lj ≤ λj(x) ≤ Uj. (29)

Thus, for all x, the vector
[
λ1(x) λ2(x) · · · λN (x)

]
is contained in a hyper rect-

angle defined by the lower and upper bounds in (29). Let Γ ∈ R2N×N be the
matrix with all the 2N vertices of the hyper rectangle. That is,

Γ :=

⎡⎢⎢⎢⎢⎢⎣
L1 L2 · · · LN−1 LN

L1 L2 · · · LN−1 UN

L1 L2 · · · UN−1 LN

...
...

...
...

U1 U2 · · · UN−1 UN

⎤⎥⎥⎥⎥⎥⎦ .

Assuming quadratic stochastic bisimulation function φ(x) = xTMx, we can
show that in the case of variable rate Poisson processes, equations (20) and (21)
become

dE[φt]
dt

= E
[
xT

t Θ(xt)xt

]
, (30)

where

Θ(x) := 2MA + 2M
N∑

i=1

λi(x)Qi + GTMG +
N∑

i=1

λi(x)QT
i MQi. (31)

Theorem 4. Let M be a symmetric matrix that satisfies

M ≥ CTC, (32a)

Θi := 2MA + 2M
N∑

j=1

ΓijQi + GTMG +
N∑

j=1

ΓijQ
T
i MQi ≤ 0, (32b)

for 1 ≤ i ≤ 2N , then φ(x) = xTMx is a stochastic bisimulation function.
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Proof. We need to show that (32b) implies that φt = φ(xt) is a supermartingale
for any distribution of the initial state. Suppose that (32b) holds, then for any
x, the matrix Θ(x) can be written as a convex combination of {Θi}1≤i≤2N .
Therefore, Θ(x) ≤ 0. From (30) we can infer that φt is a supermartingale for
any distribution of the initial state.

The problem of finding M such that (32) holds can also be cast as a linear matrix
inequality problem.

7 Example: Chain-Like Linear Stochastic Hybrid
Automata

In this section we present an example, where we apply the framework of approx-
imate abstraction of linear stochastic hybrid automata. The original automaton
A has a chain like structure, with 21 locations. See Figure 2.

l1 l2l0 l20

λ

λ

λ

λ

λ

λ

λ

λ

Fig. 2. The chain-like automaton A with 21 locations

Chain-like automata is a structure that can be found in modelling of systems
that involve birth and death process. That is, each location represents the num-
ber of a certain object in the system, for example, persons in a queue or molecules
in a chemical reaction. Researchers have been working towards approximating
such systems in a way that allows for both fast and accurate simulations [18], as
well as faster computation [19].

Adjacent locations in the automaton A are connected by a pair of transitions
with constant rate λ = 0.02. The continuous dynamics of A is such that the
dynamics changes gradually from location l0 to location l20. The stochastic dif-
ferential equation that describes the dynamics in location li, 0 ≤ i ≤ 20, is as
follows.

dxi,t = Aixi,t dt + Gixt dwt,

yt = Cixi,t, where

Ai =
[

−0.01 −0.1(1 + α · i)
0.1(1 + α · i) −0.01

]
,Gi =

[
0.1 0
0 0.1

]
,

Ci =
[
0 1

]
, i = 0 . . . 20.

We are going to apply the procedure for several values of α.
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Fig. 3. A realization of the output trajectory (top) and the location (bottom) of the
linear stochastic hybrid automaton A

Fig. 4. Ten realizations of the error trajectory for each of the α value. The parallel
lines indicate the 90% confidence interval stipulated by the stochastic bisimulation
functions.

We can easily observe that the continuous dynamics in each location is a
damped 2-dimensional oscillator driven by Brownian motion. A realization of
the output of A is plotted in Figure 3. As we go from location l0 to l20, the
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frequency of the oscillation increases. We want to see if we can approximate A
with another automatonA′ that has only one location. The continuous dynamics
of A′ is the same as that in location l10 of A. Hence we compute a stochastic
bisimulation function between A and A′. The computation is done by solving
the linear matrix inequality problem explained in Section 5. We perform the
computation using the tool YALMIP [20].

Three different values for α are used, namely 5 × 10−3, 10−2, and 2× 10−2.
For these values of α, the ratio between the oscillation frequency in location
l20 and l0 are 1.1, 1.2, and 1.4 respectively. We simulate the execution of the
original automaton A and its abstraction A′. In the simulation we use [1 1]T as
the initial condition for the continuous dynamics, and assume that automaton
A starts in location l10. With the computed stochastic bisimulation function, we
can also compute the 90% confidence interval for the error between the outputs
of A and A′ (see Theorem 1).

In Figure 4 we can see ten realizations of the error trajectory for each of the
value of α. The 90% confidence intervals are also shown. We can observe that
the quadratic stochastic bisimulation function seems to give a good estimate
for the error, as the confidence intervals seem quite tight. We can also observe
that as the dynamics in the locations vary more, the error in the approximation
becomes larger.

8 Conclusions

In this paper we develop the notion of approximate bisimulation for linear
stochastic hybrid automata. The approach is based on the construction of a
stochastic bisimulation function that can be used as a tool to quantify the dis-
tance between an automaton and its abstraction. We show that this notion of
distance relates nicely with the safety properties of the automata (see Theorem
2). An example of the application of the results is provided at the end of the pa-
per, where we evaluate approximate abstraction of a chain-like stochastic hybrid
automaton.

We also discuss two possible extensions to the framework, namely when the
continuous dynamics is nonlinear, and when the rates of the Poisson processes
are not constant. In each case, we show how the computation of the stochastic
bisimulation function will be. Future extensions of the work presented in this pa-
per can be highlighted as follows. Issues such as incorporating nondeterminism
(see Remark 2) and establishing necessary and sufficient conditions for the ex-
istence of the stochastic bisimulation function are possible research direction in
the future. Another interesting direction is exploring different construction pro-
cedure for the stochastic bisimulation function, for example, using polynomial
functions (which are generalization of quadratic functions).

Acknowledgements. The author would like to thank Antoine Girard and
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Abstract. We consider the following problem: given a linear system and an
LTL−X formula over a set of linear predicates in its state variables, find a feed-
back control law with polyhedral bounds and a set of initial states so that all
trajectories of the closed loop system satisfy the formula. Our solution to this
problem consists of three main steps. First, we partition the state space in accor-
dance with the predicates in the formula and construct a transition system over
the partition quotient, which captures our capability of designing controllers. Sec-
ond, using model checking, we determine runs of the transition system satisfying
the formula. Third, we generate the control strategy. Illustrative examples are
included.

1 Introduction

Temporal logic [1] is the natural framework for specifying and verifying the correctness
of computer programs. However, due to their resemblance to natural language, their ex-
pressivity, and the existence of off-the-shelf algorithms for model checking, temporal
logic has the potential to impact several other areas of engineering. Analysis of systems
with continuous dynamics based on qualitative simulations and temporal logic was pro-
posed in [2, 3, 4]. In the control-theoretic community, a framework for specifying and
controlling the behavior of a discrete linear system has been developed in [5]. The use
of temporal logic for task specification and controller synthesis in mobile robotics has
been advocated as far back as [6], and recent results include [7, 8, 9]. In the area of sys-
tems biology, the qualitative behavior of genetic circuits can be expressed in temporal
logic, and model checking can be used for analysis, as suggested in [10, 11].

We consider the following problem: given a linear system ẋ = Ax + b + Bu with
polyhedral control constraints U , and given an arbitrary LTL−X formula φ over an
arbitrary set of linear predicates, find initial states and a feedback control strategy u so
that the corresponding trajectories of the closed loop system verify the formula φ, while
staying inside a given full-dimensional polytope PN .

Our approach to solving the above problem can be summarized as the following
three steps. In the first step, we construct a finite state “generator” transition system Tg.
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Its states are the equivalence classes produced by the feasible full-dimensional subpoly-
topes of PN determined by the linear predicates appearing in the formula φ. The tran-
sitions of Tg are determined by adjacency of subpolytopes and existence of feedback
controllers making such subpolytopes invariant or driving all states in a subpolytope to
an adjacent subpolytope through a common facet [12]. In the second step, we produce
runs of Tg that satisfy formula φ. This is in essence a model checking problem, and we
use standard tools based on Büchi automata [13]. In the third step, we construct a feed-
back ”control strategy”, which leads to a closed loop hybrid system, whose continuous
trajectories satisfy formula φ. We implemented our approach as a user friendly software
package LTLCON [14] under Matlab.

Related work and contribution of the paper. In order to extend temporal logic tech-
niques from purely discrete systems to continuous systems, two approaches are pos-
sible. First, a careful treatment of the semantics of temporal logic formulas in models
with continuous or hybrid dynamics [4] can be performed. Second, finite quotients with
respect to meaningful equivalence relations can be constructed. Such equivalence rela-
tions include language equivalences (preserving properties specified in linear temporal
logic) and bisimulation relations (preserving specifications in both linear and branching
time logic). The first success in this direction was the work on timed automata reported
in [15], followed by multi-rate automata [16], and rectangular hybrid automata [17].
Other classes of systems for which finite bisimulation quotients exist are identified in
[18]. The interested reader is referred to [19] for an excellent review of all these works.
Linear dynamics are studied in [20], while nonlinear systems are considered in [21, 22].
Quotients that only simulate a continuous or hybrid system and can be used for conser-
vative analysis are developed in [23].

This paper is inspired from [5, 9]. The problem of controller synthesis from LTL
specifications for discrete-time continuous-space linear systems with semi-linear par-
titions are considered in [5], where it is shown that finite bisimulations exist for con-
trollable systems with properly chosen observables. The focus in [5] is on existence
and computability. Specifically, it is shown that the iterative (partitioning) bisimula-
tion algorithm [18] terminates and each step is computable. However, no computational
formulas for the controllers are provided. Another contribution of [5] is setting up the
framework for producing runs of the finite quotient satisfying an LTL formula. This
framework is further refined in [9], where the authors study the problem of controlling
a planar robot in a polygon so that its trajectory satisfies an LTL−X formula. In [9], it
is assumed that a triangulation of the polygon is given, and vector fields are assigned in
each triangle so that the produced trajectories satisfy a formula over the triangles. For
construction of vector fields, the authors use the algorithms developed in [24].

This paper extends the results of [5, 9] in several ways. First, we consider continuous-
time systems as opposed to discrete-time systems in [5]. Second, based on results on
controlling a linear system to a facet of a polytope from [12], and an invariance the-
orem stated in this paper, we provide a fully computational and algorithmic approach
to controller design consisting of polyhedral operations and searches on graphs only.
Third, as opposed to [5], we can guarantee arbitrary polyhedral control bounds. Fourth,
we extend the results [9] by approaching arbitrary dimensional problems and consider-
ing systems with (linear) drift. The feasibility of the partition induced by the predicates
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in the formula and the construction of the partition quotient is fully automated in our
framework, rather than assuming a given triangulation. Finally, we provide a tighter
connection between the continuous and the discrete part of the problem in two ways.
First, the transitions of the discrete quotient capture the controllability properties of
the continuous system. Second, the runs of the discrete system are shown to be of a
particular form which is implementable by the continuous system.

2 Preliminaries

2.1 Polytopes

Let N ∈ N and consider the N - dimensional Euclidean space RN . A full dimensional
polytope PN is defined as the convex hull of at least N + 1 affinely independent points
in RN . A set of M ≥ N + 1 points v1, . . . , vM ∈ RN whose convex hull gives PN

and with the property that vi, i = 1, . . . ,M is not contained in the convex hull of
v1, . . . , vi−1, vi+1, . . . , vM is called the set of vertices of PN . A polytope is completely
described by its set of vertices:

PN = conv(v1, . . . , vM ), (1)

where conv denotes the convex hull. Alternatively, PN can be described as the inter-
section of at least N + 1 closed half spaces. In other words, there exist a K ≥ N + 1
and ai ∈ RN , bi ∈ R, i = 1, . . . ,K such that

PN = {x ∈ RN | aT
i x + bi ≤ 0, i = 1, . . . ,K} (2)

Forms (1) and (2) are referred to as V- and H- representations of the polytope, respec-
tively. Given a full dimensional polytopePN , there exist algorithms for translation from
representation (1) to representation (2) [25, 26]. A face of PN is the intersection of PN

with one or several of its supporting hyperplanes. If the dimension of the intersection
is p (with 0 ≤ p < N ), then the face is called a p-face. A (N − 1)-face obtained by
intersecting PN with one of its supporting hyperplanes is called a facet. The vertices
of PN are 0-faces. We denote by int(PN ) the set of points of PN which are not on its
facets, i.e., the region in RN obtained if the inequalities in (2) were strict. If F is a facet
of PN , int(F ) is defined analogously, with the observation that F is full dimensional
polytope in RN−1.

A full dimensional polytope with N + 1 vertices (and N + 1 facets) is called a full
dimensional simplex. Arbitrary full dimensional polytopes can be triangulized [27]. In
other words, for any full dimensional polytope PN , there exist full dimensional sim-
plices S1, . . . ,SL such that: (i) PN =

⋃L
i=1 Si, (ii) Si

⋂
Sj is either empty or a com-

mon face of Si and Sj , for all i, j = 1, . . . ,L, i �= j, and (iii) The set of vertices of
simplex Si is a subset of {v1, . . . , vM}, for all i = 1, . . . ,L.

2.2 Transition Systems and Temporal Logic

Definition 1 . A transition system is a tuple T = (Q,Q0,→,Π, 	), where Q is a set of
states, Q0 ⊆ Q is a set of initial states,→⊆ Q×Q is a transition relation, Π is a finite
set of atomic propositions, and 	⊆ Q×Π is a satisfaction relation.
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In this work, we assume that the transition system is finite (Q is finite). For an arbi-
trary proposition π ∈ Π , we define [[π]] = {q ∈ Q|q 	 π} as the set of all states satis-
fying it. Conversely, for an arbitrary state q ∈ Q, let Πq = {π ∈ Π | q 	 π}, Πq ∈ 2Π ,
denote the set of all atomic propositions satisfied at q. A trajectory or run of T starting
from q is an infinite sequence r = r(1)r(2)r(3) . . . with the property that r(1) = q,
r(i) ∈ Q, and (r(i), r(i + 1)) ∈→, for all i ≥ 1. A trajectory r = r(1)r(2)r(3) . . .
defines a word w = w(1)w(2)w(3) . . ., where w(i) = Πr(i).

In the rest of this section, we give a brief review of a propositional linear temporal
logic known as LTL−X [1].

Definition 2 [Syntax of LTL−X formulas]. A linear temporal logic LTL−X formula
over Π is recursively defined as follows:

– Every atomic proposition πi, i = 1, . . . ,K is a formula, and
– If φ1 and φ2 are formulas, then φ1 ∨ φ2, ¬φ1, φ1Uφ2 are also formulas.

The semantics of LTL−X formulas are given over words of transition system T .

Definition 3 [Semantics of LTL−X formulas]. The satisfaction of formula φ at posi-
tion i ∈ N of word w, denoted by w(i) 	 φ, is defined recursively as follows:

– w(i) 	 π if π ∈ w(i),
– w(i) 	 ¬φ if w(i) � φ,
– w(i) 	 φ1 ∨ φ2 if w(i) 	 φ1 or w(i) 	 φ2,
– w(i) 	 φ1Uφ2 if there exist a j ≥ i such that w(j) 	 φ2 and for all i ≤ k < j we

have w(k) 	 φ1

A word w satisfies an LTL−X formula φ, written as w 	 φ, if w(1) 	 φ.

The symbols ¬ and ∨ stand for negation and disjunction. The Boolean constants* and
⊥ are defined as * = π ∨¬π and ⊥ = ¬*. The other Boolean connectors ∧ (conjunc-
tion),⇒ (implication), and⇔ (equivalence) are defined from ¬ and ∨ in the usual way.
The temporal operator U is called the until operator. Formula φ1Uφ2 intuitively means
that (over a word) φ2 will eventually become true and φ1 is true until this happens.
Two useful additional temporal operators, “eventually” and “always” can be defined as
♦φ = *Uφ and �φ = φU⊥, respectively. Formula♦φ means that φ becomes eventu-
ally true, whereas �φ indicates that φ is true at all positions of w. More expressiveness
can be achieved by combining the temporal operators. Examples include �♦φ (φ is
true infinitely often) and ♦�φ (φ becomes eventually true and stays true forever).

LTL [1], the most used propositional linear temporal logic, is richer than LTL−X in
the sense that it allows for an additional temporal operator©, which is called the ‘next’
operator. Formally, the syntax of LTL is obtained by adding “©φ1” to Definition 2
and its semantics is defined by adding ”w(i) 	 ©φ if w(i + 1) 	 φ” to Definition 3.
A careful examination of the LTL and LTL−X semantics shows that the increased
expressivity of LTL is manifested only over words with a finite number of repetitions
of a symbol. Our choice of LTL−X over LTL is motivated by our definition of the
satisfaction of a formula by a continuous trajectory and by our approach to finding runs.
Specifically, as it will become clear in Section 3, a word corresponding to a continuous
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trajectory will never have a finite number of successive repetitions of a symbol. In
Section 4.3, we produce runs which will either have one or infinitely many successive
appearances of a symbol (or finite sequences of symbols).

3 Problem Formulation and Approach

Consider the following affine control system in a full dimensional polytope PN in RN :

ẋ = Ax + b + Bu, x ∈ PN , u ∈ U ⊂ Rm (3)

where A ∈ RN×N , B ∈ RN×m, b ∈ RN , and U is a given polyhedral subset of Rm

capturing control constraints. Let Π be a set of atomic propositions given as arbitrary
strict linear inequalities in RN . Formally:

Π = {πi | i = 1, . . . ,n}, (4)

where each proposition πi, i = 1, . . . ,n, denotes an open half-space of mathbbRN :

[[πi]] = {x ∈ RN | cT
i x + di < 0} (5)

The polytopePN can be seen as a region of RN capturing known physical bounds on the
state of system (3), or as a region that is required to be an invariant for its trajectories.
For example, P2 can be a convex polygon giving the environment boundaries for a
planar robot with kinematics given by (3). The predicates (5) describe other regions
(properties) of interest. Note that, for technical reasons to become clear later, we only
allow strict inequalities in (5). However, this assumption does not seem restrictive from
an application point of view. If the predicates in Π model sensor information, it is
unrealistic to check for the attainment of a specific value due to sensor noise. Moreover,
if a specific value is of interest, it can be included in the interior of a polyhedron given
by other predicates.

In this paper we consider the following problem:

Problem 1. For an arbitrary LTL−X formula φ over Π , find a set of initial states and
a feedback control strategy for system (3) so that all trajectories of the corresponding
closed loop system satisfy φ, while always staying inside PN .

To fully specify Problem 1, we need to define the satisfaction of an LTL−X formula φ
on Π by a trajectory of (3), which can be seen as a continuous curve α : [0,∞)→ RN .
This curve can, in general, be non-smooth and can have self-intersections. For each
symbol Θ ∈ 2Π , we define [[Θ]] as being the set of states in RN satisfying all and only
propositions π ∈ Θ:

[[Θ]] =
⋂

π∈Θ

[[π]] \
⋃

π∈Π\Θ

[[π]] (6)

Definition 4 . The word corresponding to trajectory α is the sequence wα = wα(1)
wα(2)wα(3) . . ., wα(k) ∈ 2Π , k ≥ 1, generated such that the following rules are
satisfied for any τ ≥ 0 and any k ∈ N∗:
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– α(0) ∈ [[wα(1)]],
– If α(τ) ∈ [[wα(k)]] and wα(k) �= wα(k + 1), then there exist τ ′ > τ such that: (1)
α(τ ′) ∈ [[wα(k+1)]], (2) α(t) /∈ [[π]], ∀t ∈ [τ, τ ′], ∀π ∈ Π \(wα(k)∪wα(k+1)),
and (3) cT

i α(t′) + di �= 0, for all i ∈ {1, . . . ,n} and t′ ∈ {τ, τ ′} ,
– If α(τ) ∈ [[wα(k)]] and wα(k) = wα(k + 1), then α(t) ∈ [[wα(k)]], ∀t ≥ τ (i.e.

the region [[wα(k)]] is a ”sink” for trajectory α).

A careful examination of Definition 4 shows that the word produced by a continuous
trajectory is exactly the sequence of sets of propositions satisfied by it as time evolves.
Note that Definition 4 captures the situations when a trajectory hits a sink region, leave
it and eventually come back and remains there, as well as Zeno-type behaviors, when a
trajectory visits two adjacent regions infinitely often.

Remark 1. On the well posedness of Definition 4, first note that our assumption that
trajectories of system (3) always stay inside PN implies that the generated words have
infinite length, so the problem of satisfaction of an LTL−X by such a word is well-
posed. Second, the predicates in (4) are given by strict linear inequalities, Definition 4
makes sense only if cT

i α(0) + di �= 0 and cT
i ᾱ + di �= 0, where ᾱ = limt→∞ α(t)

(if it exists), for all i = 1, . . . ,n. Third, Definition 4 is a proper characterization of
satisfaction of sets of predicates from Π by α(t) as time evolves only if there does not
exist t1 < t2 and i = 1, . . . ,n such that cT

i α(t) + di = 0, for all t ∈ (t1, t2). All these
three requirements are guaranteed by the way we design controllers, as it will become
clear in Sections 4.1 and 5.

Remark 2. According to Definition 4, the word wα produced by a trajectory α(t) does
not contain a finite number of successive repetitions of a symbol, which suggests using
LTL without the ’next’ operator, as stated in Section 2.2.

Definition 5 . A trajectory α : [0,∞)→ RN of (3) satisfies LTL−X formula φ, written
as α 	 φ, if and only if wα 	 φ, where wα is the word generated by α in accordance
with Definition 4.

4 The Generator Transition System

4.1 Control of Affine Systems in Polytopes

Consider a full dimensional polytope P in RN with vertices v1, . . . , vM , M ≥ N + 1.
Let F1, . . . ,FK denote the facets of P with normal vectors n1, . . . ,nK pointing out of
the polytope P . For i = 1, . . . ,K , let Vi ⊂ {1, . . . ,M} be the set of indexes of vertices
belonging to facet Fi. For j = 1, . . . ,M , let Wj ⊂ {1, . . . ,K} be the set of indexes of
all facets containing vertex vj .

Lemma 1 [Lemma 4.6 from [12]]. There exists a continuous function λ : P → [0, 1]M

with
∑M

j=1 λj(x) = 1 such that, for all x ∈ P , x =
∑M

j=1 λj(x)vj .

Theorem 1 [Theorem 4.7 plus Remark 4.8 from [12]]. Consider control system (3)
defined on the full dimensional polytope P . Assume that there exist u1, . . . ,uM ∈ U
such that:
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(1) ∀j ∈ V1 :
(a) nT

1 (Avj + Buj + b) > 0,
(b) ∀i ∈Wj \ {1} : nT

i (Avj + Buj + b) ≤ 0.
(2) ∀j ∈ {1, . . . ,M} \ V1 :

(a) ∀i ∈Wj : nT
i (Avj + Buj + b) ≤ 0,

(b) nT
1 (Avj + Buj + a) > 0.

Then there exists a continuous feedback controller u : P → U with the property that for
any initial state x(0) ∈ P , there exist a T0 > 0 such that (i) ∀t ∈ [0,T0] : x(t) ∈ P ,
(ii) x(T0) ∈ F1, and (iii) nT

1 ẋ(T0) > 0.

In other words, Theorem 1 states that if linear inequalities (1)(a),(b) and (2)(a),(b) are
satisfied by some u1, . . . ,uM ∈ U , then a continuous feedback controller driving all
initial states from P out of P through facet F1 in finite time exists (condition (iii) means
that the velocity on the exit facet F1 is oriented outside the facet).

Theorem 2 . Consider control system (3) defined on the full dimensional polytope P .
There exists a continuous feedback controller u : P → U that makes P an invariant
for (3) if and only if there exist u1, . . . ,uM ∈ U such that:

∀j ∈ {1, . . . ,M}, ∀i ∈ Wj : nT
i (Avj + Buj + b) ≤ 0

Proof. See [28].

For both Theorems 1 and 2, given the values u1, . . . ,uM at the vertices, the construction
of a continuous controller everywhere in P starts with a triangulation S1,. . .,SL of P .
Let vi

1, . . . , v
i
N+1 ∈ {v1, . . . , vM} be the vertices of the full dimensional simplex Si,

i = 1, . . . ,L and ui
1, . . . ,u

i
N+1 ∈ {u1, . . . ,uM} be the corresponding control values.

Then everywhere in P , the feedback control is given by:

u(x) = ui(x) if x ∈ Si, i = 1, . . . ,L (7)

where the control in each simplex is given by [29]:

ui(x) =
[
ui

1 · · · ui
N+1

] [vi
1 · · · vi

N+1
1 · · · 1

]−1 [
x
1

]
, i = 1, . . . ,L. (8)

Note that the controller given by (7) is well defined. It is obvious that the controller is
well defined when (7) is restricted to the interior of the simplices, since the intersection
of all such interiors is empty. The only problem that might appear is on the common
facets. However, recall that an affine function defined on RN is uniquely determined by
its values at the vertices of a full dimensional simplex and the restriction of the function
to the simplex is a unique convex combination of these values [12, 29]. Moreover, a
facet of a full dimensional simplex in RN is a full dimensional simplex in RN−1. It
follows that, given a pair of adjacent simplices Si and Sj , ui(x) = uj(x) everywhere
on the common facet of Si and Sj . Therefore, formula (7) is well defined and the affine
feedback controller is continuous everywhere in P . Moreover, u(x) constructed using
(7) is always a convex combination of the values u1, . . . ,uM . This guarantees that
u(x) ∈ U everywhere in P if and if uj ∈ U , for all j = 1, . . . ,M .
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If inequalities (1)(b) and (2)(a) from Theorem 1 are satisfied strictly, then it is easy
to see that, for all i = 2, . . . ,K and all j ∈ Vi, nT

i (Avj + Buj + b) < 0. Since with
u constructed using (7) and (8), the restriction of nT

i (Ax + Bu + b) to Fi is a convex
combination of nT

i (Avj + Buj + b), j ∈ Vi, it follows that nT
i (Ax + Bu + b) < 0

everywhere in Fi. We conclude that, if the system starts in int(P ), it will never reachFi.
Moreover, if it starts in Fi, it will instantaneously penetrate in int(P ). Similar reasoning
applies the case when the inequalities of Theorem 2 are strict, leading to the following
two Corollaries:

Corollary 1. If inequalities (1)(b) and (2)(a) from Theorem 1 are satisfied strictly, the
continuous controller constructed in accordance with (7), (8) produces trajectories that
satisfy x(t) ∈ int(P ), for all t ∈ (0,T0), and x(T0) ∈ int(F1).

Corollary 2. If the inequalities in Theorem 2 are satisfied strictly, then int(P ) is an
invariant for system (3) with controls given by (7), (8).

4.2 Construction of the Generator Transition System

Assume the polytope PN is given in the inequality form (2). Assume there are M,
1 ≤M ≤ 2n feasible sets of the form

∧n
i=1((−1)ji(cT

i x+ di) < 0)
∧K

l=1(a
T
l x+ bl <

0), where j1, . . . , jn ∈ {0, 1} (each of these sets is the interior of a full dimensional
polytope included in PN and corresponds to a feasible combination of all predicates
from Π inside PN ). To each of them we attach a symbol qi, i = 1, . . . ,M. Let P
denote the set of all such symbols P = {qi | i = 1, . . . ,M}. Let h : PN− → P be the
quotient map corresponding to these nonempty sets, wherePN− = int(PN )\

⋃n
i=1{x ∈

Rn|cT
i x + di = 0}. We also use the notations h−1(q) and h−1(h(x)) to denote the

set of all points in PN− with quotient q and the set of all points in PN− in the same
equivalence class with x, respectively. Let h−1(q) denote the closure of h−1(q). Note
that h−1(q), q ∈ P are full-dimensional subpolytopes of PN . It is easy to see that
h−1(qi)

⋂
h−1(qj) = ∅ for all i, j = 1, . . . ,M, i �= j and

⋃M
i=1 h

−1(qi) = PN .

Definition 6 . The transition system Tg = (Qg,Qg0,→g,Πg, 	g) is defined by

– Qg = Qg0 = P ,
– For all i = 1, . . . ,M, (qi, qi) ∈→g if there exists a feedback controller uqiqi :
h−1(qi) → U for the polytope h−1(qi), making h−1(qi) an invariant for the tra-
jectories of (3) as in Corollary 2 of Theorem 2,

– For all i, j = 1, . . . ,M, i �= j, (qi, qj) ∈→g if h−1(qi) and h−1(qj) share a
facet and there exists a feedback controller uqiqj : h−1(qi) → U for the polytope

h−1(qi) with exit facet h−1(qi) ∩ h−1(qj) as in Corollary 1 of Theorem 1,
– Πg = Π , with Π as defined in (4),
– q 	g πi ∈ Π if ∃x ∈ h−1(q) so that cT

i x + di < 0.

On the computation of the transition system Tg, (i.e., checking the existence of affine
controllers uqiqi and uqiqj ), it is important to note that it only consists of checking the
non-emptiness of polyhedral sets (since U is polyhedral), for which there exists several
powerful algorithms.
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4.3 Determining Trajectories of the Generator Transition System

In this section, we will outline a procedure for finding runs of Tg satisfying an arbitrary
LTL−X formula φ over Π . Due to space constraints, we omit the details, and refer the
reader to the technical report available at [28]. We start by translating φ into a Büchi
automaton Bφ. To this goal, we use the conversion algorithm described in [13] and its
freely downloadable implementation LTL2BA. Then we take the (synchronous) product
of Tg with Bφ to obtain a product automatonAg,φ [30]. We use standard algorithms for
graph traversing on Ag,φ and eventually project back to find the desired runs of Tg.
Our approach is inspired by model checking algorithms, which are used to verify if a
transition system satisfies a property expressed in terms of LTL. The difference is that
a model checker constructs a Büchi automaton for the negation of the LTL formula and
the product automaton is checked for emptiness (i.e. non-existence of accepted runs).

While we refer the reader to [28] for details, two important observations are in order.
First, as opposed to related approaches reported in [30, 9], we consider possible self-
transitions in states of Tg (Definition 6), and cannot use the ”stutter extension” rule. In
our case, the usage of this rule (adding self-loops to blocking final states ofAg,φ) could
lead to incorrect results, because we could obtain runs which cannot be produced by
Tg. Second, we consider only runs of Tg that have a special structure composed of one
prefix and an infinite number of repetitions of a suffix. Note that this is not restrictive,
since it can be proved [30] that, if there is an accepted run, then there is at least one
accepted run with the above structure. If there are more such runs starting from the
same state, we choose the ”shortest” one, as defined in [28].

Let ri = ri(1)ri(2)ri(3) . . ., ri(j) ∈ Qg = P denote the nonempty run of Tg

starting from state qi, i.e., ri(1) = qi, i ∈ I , where I ⊆ {1, . . . ,M} is the set of
indices of all nonempty runs. The fact that ri has the prefix-suffix structure can be
formally written as: for any i ∈ I , there exists ni

p and ni
s such that for any j > ni

p +ni
s,

ri(j) = ri((j−ni
p−1)modni

s +ni
p +1). ni

p and ni
s are the number of states in prefix

and suffix of ri, respectively and thus the run ri contains at most ni
p+ni

s different states.
Proposition 1, proved in [28], states that, in a run ri, i ∈ I of Tg , none of the states

can be succeeded by itself, except for the state of a suffix of length one (case in which
this state will be infinitely repeated).

Proposition 1. Each run ri = ri(1)ri(2)ri(3) . . ., i ∈ I , satisfies the following prop-
erty: ri(j) �= ri(j + 1), ∀j ∈ N∗, j �= ni

p + k ni
s + 1, k ∈ N. Moreover, if ni

s ≥ 2,
ri(j) �= ri(j + 1), ∀j ∈ N∗.

Remark 3. Proposition (1) and Remark 2 justifies our choice of LTL without the ’next’
operator. Indeed, we do not need the increased expressiveness obtained by adding it.

5 Control Strategy

To provide a solution to Problem 1, we restrict the set of initial states of system (3) to

x(0) ∈ ∪i∈Ih
−1(qi), (9)

where I ⊆ {1, . . . ,M} is the set of indices of non-empty runs as defined in the previous
section.
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Definition 7 (Control strategy) . A control strategy for system (3) corresponding to an
LTL−X formula φ is a tuple Cφ = (L,L0,u, Inv, Rel), where:

– L = {liri(j)ri(j+1) | i ∈ I, j ≥ 1} is its set of locations,

– L0 = {liqiri(2), i ∈ I} is the set of initial locations,

– Inv : L → 2PN , Inv(liri(j)ri(j+1)) = h−1(ri(j)) gives the invariant for each
location,

– u : L × PN → U is a map which assigns to each location liri(j)ri(j+1) and state

x ∈ Inv(liri(j)ri(j+1)) a feedback controller u(liri(j)ri(j+1),x) = uri(j)ri(j+1)(x)
(uri(j)ri(j+1) are defined in Section 4.2),

– Rel ⊆ L × L, Rel = {(liri(j)ri(j+1), l
i
ri(j+1)ri(j+2)), i ∈ I, j ≥ 1, ri(j) �=

ri(j + 1)}

A location liri(j)ri(j+1) corresponds to position j in run ri. According to struc-
ture of runs described in Section 4.3, the set of locations L is finite, even though
the runs are infinite. A location liri(j)ri(j+1) corresponds to driving all states from

h−1(ri(j)) to h−1(ri(j + 1)) in finite time (through the common facet of h−1(ri(j))
and h−1(ri(j + 1))) if ri(j) �= ri(j + 1), or to keeping the state of the system in
h−1(ri(j)) for all times if ri(j) = ri(j + 1), by using the control uri(j)ri(j+1)(x).
Note that there can be several locations mapped to the same physical region h−1(q),
q ∈ Q. These can correspond to different runs of Tg passing through q or to locations
of the same run passing through q at different times and with different successors.

The semantics of control strategy from Definition 7 applied to system (3) with initial
states (9) are as follows: starting from x(0) ∈ h−1(qi) and location l = liqiri(2) ∈ L0,
feedback controller u(l,x) is applied to system (3) as long as the state x ∈ Inv(l).
When (and if) x /∈ Inv(l), then the location of Cφ is updated to l′ according to (l, l′) ∈
Rel and the process continues.

Remark 4. From the given semantics of the control strategy, it follows that the control
is well defined on common facets: the one from the polytope that is left is always used.
Also, with controllers uqiqi and uqiqj designed according to Corollaries 2 and 1, the
produced trajectories are consistent with Definition 4 in the sense of Remark 1.

We are now ready to provide a solution to Problem 1:

Theorem 3 . All trajectories of system (3), with feedback control strategy given by Def-
inition 7 and set of initial states as in (9), satisfy the LTL−X formula φ and stay inside
PN for all times.

Proof. The proof follows from the construction of Cφ from Definition 7, the satis-
faction of an LTL−X formula by a continuous trajectory given in Definition 5, and
Corollaries 1 and 2 of Theorems 1 and 2. The details can be found in [28].

Remark 5. It is possible that the solution trajectories visit some states more than once,
and have different velocities at the same state at different times. Therefore, the ob-
tained feedback controllers are in general time-variant. The feedback controllers will
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be piece-wise affine and with a thin set of discontinuities - the common facets of full
dimensional subpolytopes of PN . The generated trajectories will be piecewise smooth
and everywhere continuous.

To implement the control strategy described in Definition 7, we have in general in-
finitely many choices of controllers of the type uqiqi and uqiqj . Indeed, for any poly-
tope, Corollaries 2 and 1 return whole polyhedral sets of allowed controls at vertices.
In order to construct a controller according to (7), (8), we need to choose a control at
each vertex. To this goal, we solve a set of (maximization) linear programs obtained by
attaching a cost to each vertex. If a controller of type uqiqj is desired in h−1(qi), then
the costs corresponding to the vertices of h−1(qi) are the projections of the controls
at the vertices along the unit vector connecting the center of h−1(qi) to the center of
h−1(qj). If a controller of type uqiqi is desired in h−1(qi), then the cost at a vertex is
the projection of the control at the vertex along the unit vector from the vertex to the
center of h−1(qi).

Discussion. Our approach to solving Problem 1 is obviously conservative. If the model
checking algorithm does not find any solution, this does not mean that there does not ex-
ist initial states and feedback controllers producing trajectories satisfying the formula.
There are three sources of conservativeness in our approach. First, we look for whole
sets (full dimensional polytopes) of initial states instead of investigating isolated ones.
Second, we restrict our attention to affine feedback controllers, as opposed to allow-
ing for any type of controllers. Third, Theorem 1 and Corollary 1 provide sufficient
conditions for existence of controllers, as opposed to equivalent conditions.

On the positive side, working with sets of states instead of isolated states provides
robustness with respect to uncertainty in initial conditions and measurement of the cur-
rent state. As proved in [12], Theorem 1 can be replaced with a very similar result
providing equivalent conditions for the existence of affine controllers if full dimen-
sional simplices are considered instead of full dimensional polytopes. Therefore, if PN

was triangulized instead of partitioned into arbitrary polytopes, the third source of con-
servativeness would be eliminated. Another advantage of using simplices instead of
polytopes would be the fact that we could produce smooth trajectories everywhere by
matching the choice of controls at vertices on adjacent simplices [24]. We chose poly-
topes as opposed to simplices for two reasons. First, as far as we know, there does not
exist algorithms for triangulation in dimension larger than 2 that preserve linear con-
straints (we need to produce proposition preserving partitions when we construct Tg).
Second, triangulations can produce an explosion in the number of states of Tg. Due to
space constraints, we do not give here an analysis of complexity. However, an example
is included at the end of Section 6 for illustration.

6 Implementation and Simulation Results

We implemented our approach as a user friendly software package for LTL−X control
of linear systems LTLCon under Matlab. The tool, which is freely downloadable from
[14], takes as input the polytope PN , the matrices A, B, and b of system (3)), and the
LTL−X formulaφ. If it finds a solution, it plots the produced trajectories corresponding
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to user defined initial states. Even though transparent to the user, LTLCon also uses two
free packages. The first one is a mex-file calling CDD in Matlab [31] and it is used to
convert a polytope expressed in form (1) to form (2) and vice-versa. The second one is
LTL2BA [13], which is used to convert an LTL formula to a Büchi automaton.

To illustrate the use of LTLCon, we first consider a 2D case (N = 2), chosen for
simplicity of graphical representation. We considered the following numerical values
for system (3):

ẋ =
[
0.2 − 0.3
0.5 − 0.5

]
x +

[
1 0
0 1

]
u +

[
0.5
0.5

]
, x ∈ P2, u ∈ U (10)

Polytope P2 is specified in form (2), as the intersection of 8 closed half spaces, defined
by: a1 = [−1 0]T , b1 = −5, a2 = [1 0]T , b2 = −7, a3 = [0 − 1]T , b3 = −3,
a4 = [0 1]T , b4 = −6, a5 = [−3 − 5]T , b5 = −15, a6 = [1 − 1]T , b6 = −7,
a7 = [−1 2.5]T , b7 = −15, a8 = [−2 2.5]T , b8 = −17.5. Control constraints are
captured by the set U = [−2, 2]× [−2, 2].

We define a set Π containing 10 predicates, as in equations (4,5), where: c1 =
[0 1]T , d1 = 0, c2 = [1 − 1]T , d2 = 0, c3 = [4 1]T , d3 = 12, c4 = [4 − 7]T ,
d4 = 34, c5 = [−2 − 1]T , d5 = 4, c6 = [−1 − 12]T , d6 = 31, c7 = [−1 − 1]T ,
d7 = 11, c8 = [1 0]T , d8 = −3, c9 = [0 − 1]T , d9 = −1.5, c10 = [−6 − 4.5]T ,
d10 = −12.

Fig. 1. The arrows represent the drift vector field of system (10). The yellow boxes mark the
half-spaces corresponding to atomic propositions πi, i = 1, . . . , 10. The regions to be visited are
green, while the obstacles are gray.
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There are 33 feasible full-dimensional subpolytopes in P2, and therefore 33 states in
Tg. Figure 1 depicts the bounding polytope P2, the vector field given by the drift of sys-
tem (10), the predicates πi, i = 1, . . . , 10, and the feasible subpolytopes corresponding
to states qi, i = 1, . . . , 33 of Tg. The red lines connecting the centroids of the polytopes
in Figure 1 represent the transitions of Tg, with the following convention: for all i �= j:
a full line means that (qi, qj), (qj , qi) ∈→g; a dashed line means that (qi, qj) ∈→g for
i < j; a dotted line means that (qi, qj) ∈→g for i > j. A self-transition (qi, qi) ∈→ is
represented by a red star in the center of h−1(qi).

We have chosen an LTL−X formula inspired from robot motion planning, which in-
volves visiting a sequence of three regions infinitely often, while always avoiding three
obstacles. The regions to be visited are, in order: r1 = h−1(q1), r2 =

⋃
i∈{20,21,29}

h−1(qi), and r3 = h−1(q32). The obstacles are represented by the polyhedral regions
o1 =

⋃
i∈{13,14,16,17,18} h

−1(qi), o2 =
⋃

i∈{19,28} h
−1(qi) and o3 = h−1(q10). All

regions to be visited and obstacles are represented in Figure 1. The LTL−X formula
can be written as φ = �(6(r1 ∧ 6(r2 ∧ 6r3)) ∧ ¬(o1 ∨ o2 ∨ o3)). By expressing in-
teresting regions ri and oi, i = 1, 2, 3 in terms of predicates πj , j = 1, . . . , 10 we
obtain φ = �(6((π3 ∧ π10) ∧ 6 ((¬π4 ∧ π5 ∧ π6 ∧ π8) ∧ 6 (¬π1 ∧ ¬π6 ∧ ¬π8)))
∧¬(π4 ∨ π7 ∨ (π1 ∧ ¬π2 ∧ ¬π5 ∧ π9))).

The set of initial states from which there exist continuous trajectories satisfying the
formula is the union of the yellow polytopes in Figure 2 (a). The set of initial states
of Tg from which there exist runs satisfying the formula are the corresponding la-
bels. The run r15 of Tg starting from q15 and satisfying φ is presented in Figure 2
(b). The prefix of run r15 of Tg is q15q2 (shown as green polytopes), while the suffix
is q1q3q26q23q20q23q31q32q30q22q20q23q26q3 (red polytopes). A continuous trajectory
starting from x0 = [−2.66 − 1.33]T (blue diamond) is also shown in Figure 2 (b). It
is colored in blue for prefix part and in red for suffix part.

The above case study was run on a Pentium 4 (2.66 GHz) machine with 1 GB RAM,
Windows XP, and Matlab 7. The transition system Tg with 33 states was created in

(a) (b)

Fig. 2. (a) The union of the yellow polytopes represents the set of initial states from which there
exist continuous trajectories satisfying formula φ. (b) An example of such a trajectory.
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about 0.9 seconds. The Büchi automaton had 9 states and was created in 2.2 seconds.
The desired runs of Tg were obtained in about 11 seconds. We also ran a four dimen-
sional example (N = 4), with P4 defined by 9 hyperplanes and Π containing n = 15
predicates. There were M = 295 states in Tg - its construction took 68 seconds. A
tesselation using the intersection points between hyperplanes defining the predicates
would yield 17509 tetrahedra. As explained before, these simplices are not suitable for
our problem, but even if they were, a transition system with so many states would be
inefficient from a computational point of view.

7 Conclusion

In this paper, we described a fully automated framework for control of linear systems
from specifications given in terms of LTL−X formulas over linear predicates in its state
variables. We expect that the method will find applications in several areas of engineer-
ing, where linear systems are used for modelling and temporal logic for specifying
performance. Future directions of research include the extension of these techniques to
piece-wise affine systems and hybrid systems with more complicated dynamics.
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Abstract. We present a technique for reachability analysis of contin-
uous multi-affine systems based on rectangular partitions. The method
is iterative. At each step, finer partitions and larger discrete quotients
are produced. We exploit some interesting convexity properties of multi-
affine functions on rectangles to show that the construction of the discrete
quotient at each step requires only the evaluation of the vector field at
the set of all vertices of all rectangles in the partition and finding the
roots of a finite set of scalar affine functions. The methodology promises
to be easily extendable to rectangular hybrid automata with multi-affine
vector fields and is expected to find important applications in analysis
of biological networks and robot control.

1 Introduction

Reachability analysis is the problem of constructing the set of states reached
by trajectories of a system originating in a given (possibly infinite dimensional)
initial set. Safety verification is the problem of proving that a system does not
have any trajectory from a given initial set to a given final (unsafe) set. For
discrete systems with a finite number of states, these problems are decidable,
i.e., can be solved by a computer in a finite number of steps. For continuous and
hybrid (i.e., described by both continuous and discrete dynamics) systems, these
problems are very difficult (in general undecidable) because of the uncountability
of the state space.

One way to solve such problems for continuous and hybrid systems is to
construct the set of states reached by the system, or an over-approximation of
this set, by working directly in the continuous state space. Such methods are
called direct and are not the subject of this paper. Our work can be included
into the group of indirect methods, where a reachability problem for a continuous
or hybrid system is mapped to a reachability problem for a finite state discrete
system through discrete abstractions. The main idea in discrete abstractions
is to iteratively partition the infinite dimensional continuous state space and
produce partition quotients whose trajectories include the trajectories of the
continuous or hybrid system. Such a discrete system is said to simulate the
original system. If the converse is true, i.e., the continuous or hybrid system
simulate the discrete quotient, the two systems are called bisimilar, and the two
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reachability problems become equivalent. Therefore, in this case, the reachability
problem for a continuous or hybrid system becomes decidable.

The bisimulation relation was introduced in [1], formally defined for linear
systems in [2], and for nonlinear systems in a categorical context in [3]. In [4], it
has been shown that reachability is undecidable for a very simple class of hybrid
systems. Several decidable classes have been identified though by restricting the
continuous behavior of the hybrid system, as in the case of timed automata [5],
multirate automata [6], [7], and rectangular automata [4], [8], or by restricting
the discrete behavior, as in order-minimal hybrid systems [9, 10, 11]. All these
decidable classes are too weak to represent continuous and hybrid system models
encountered in practice. Then one might be satisfied with sufficient abstractions,
when a discrete quotient that simulates the original system is enough to prove a
safety property. But even finding the discrete quotient is not at all trivial. Related
work focuses on partitioning using linear functions of the continuous variables,
as in the method of predicate abstractions [12, 13], or using polynomial functions
as in [13, 14]. However, to derive the transitions of the discrete quotient, one has
to be able to either integrate the vector fields of the initial system [12], or use
computationally expensive decision procedures such as quantifier elimination for
real closed fields and theorem proving [13], which severely limit the dimensions
of the problems that can be approached.

In this paper, we focus on formal analysis of continuous systems with multi-
affine vector fields, i.e, affine in each variable, defined on rectangular regions
of the Euclidean space. The main idea behind this work is, as in [15, 16, 17], to
exploit the specific form of the vector field and the particular shape of the in-
variant to infer reachability properties of infinite uncountable sets of states from
properties verified by a finite set of states. Specifically, in [18], we proved that
a multi-affine function is uniquely determined by its values at the vertices of a
rectangle and its restriction to the rectangle is a convex combination of these
values. In this paper, we use this result to develop a reachability analysis algo-
rithm for multi-affine systems by iteratively constructing finer and finer discrete
quotients.

Even though the abstraction procedure in this paper falls into the more
general framework of [13], we show that if more structure is allowed, then reach-
abiltity and safety verification questions can be answered with much less compu-
tation. The calculation of the discrete quotient at a given iteration involves only
finding the roots of scalar affine functions and evaluation of multi-affine func-
tions at a finite number of points. This will allow us to approach much larger
problems, as usually found in analysis of bio-molecular networks, where the
multi-affine structure appears naturally when chemical reactions with unitary
stoichiometric coefficients are modelled using mass action kinetics. Multi-affine
dynamics are also found in other systems, including the celebrated Euler’s equa-
tions for angular velocity of rotation of rigid bodies, the equations of motion of
translating and rotating rigid bodies with rotation parameterized by quaternions
[19], Volterra [20], and Lotka-Volterra equations [21].



350 M. Kloetzer and C. Belta

2 Continuous Systems and Discrete Quotients

Definition 1 (Continuous system). We represent a continuous dynamical
system as a pair

CS = (X, f), (1)

where X ⊆ Rn, n ∈ N is its continuous state space and f is a smooth vector
field on X, i.e., the state x ∈ X of system (1) evolves according to ẋ = f(x).

We assume that X is a connected subset of Rn and introduce a set partition of
X by defining the abstraction map: abs : X → L, where L is a finite set of labels
for all the elements in the partition. Let con be the concretization map of the
partition induced by abs: con : L→ X, con(l) = {x ∈ X |abs(x) = l}.

In other words, for l ∈ L, we use con(l) ⊆ X to denote the set of all x ∈ X
in the partition element with label l. Since abs induces a partition and con is its
concretization map, we have

⋃
l∈L con(l) = X and con(l)

⋂
con(l′) = ∅, for all

l, l′ ∈ L, l �= l′. We use con(l) ∼ con(l′), or simply l ∼ l′ to denote adjacency of
regions con(l) and con(l′). For simplicity of notation, we use con(I) to denote⋃

l∈I con(l), I ⊂ L. For an arbitrary I ⊂ L, we denote by Post(con(I)) the set
of all states in X reached by the trajectories of (1) originating in con(I), for all
times t ≥ 0. The reachability problem for CS can be formulated as follows:

Problem 1 (Reachability). For an arbitrary I ⊂ L, determine Post(con(I)).

The safety verification problem for CS is the problem of deciding if (1) has
trajectories between arbitrary regions in the partition induced by the map abs:

Problem 2 (Safety). Given I,F ⊂ L with I
⋂
F = ∅, determine the truth value

of the following assertion:

Post(con(I))
⋂

con(F ) = ∅ (2)

In a particular application, con(I) corresponds to a set of states around initial or
operating points of a system CS, while con(F ) might represent unsafe regions.

Note that our definition of ’Post’ operator implies that the reachability and
safety problems we are dealing with are time-abstract. It is obvious to see that
the solution to Problem 1 immediately gives a solution to Problem 2, provided
that we can calculate the intersection in Eqn. (2). However, in order to solve
Problem 2, it is not necessary to solve Problem 1 - it is enough to construct an
over-approximation of Post(con(I)) that has empty intersection with con(F ). To
construct over-approximations of Post(con(I)), we use discrete quotients:

Definition 2 (Discrete quotient). A discrete quotient of CS induced by the
partition map ’abs’ is a finite state transition system DS described by the pair

DS = (L,T ), (3)
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where L is the set of labels produced by the abstraction map ’abs’, and T ⊆ L×L
is a set of transitions satisfying the following property:

(l, l′) ∈ T if l ∼ l′ and there exist t1, t2 ≥ 0, t1 < t2 and
a trajectoryx(t) of CS such that

x(t1) ∈ con(l), x(t2) ∈ con(l′) andx(t) ∈ (con(l)) ∩ con(l′), ∀ t ∈ [t1, t2].
(4)

As before, for I ⊂ L, we denote by Post(I) ⊆ L the set of all discrete states that
can be reached from I by DS. More formally, Post(I) =

⋃
l∈I Post(l).

Note that we use the same operator ‘Post’ for both CS and DS, with the
observation that they are easily distinguished by their arguments.

From (4) it follows that

Post(con(I)) ⊆ con(Post(I)) (5)

Eqn. (5) implies that, if the transitions (4) of a discrete quotient (3) can be
computed, then an over-approximation con(Post(I)) of Post(con(I)) can be eas-
ily determined by a search on the transition system (3), which is a decidable
problem. If Post(I)

⋂
F = ∅ (equivalent with con(Post(I)) ∩ con(F ) = ∅, since

con(L) is a partition of X), then the truth value of (2) is TRUE. Otherwise, we
cannot answer Problem 2, and a less conservative discrete quotient is necessary.

There are two sources of conservativeness in the definition of DS. The first
comes from the fact that, according to (4), there might exist a transition (l, l′) ∈
T even if CS does not have a trajectory from con(l) to con(l′). A more correct
definition of the discrete quotient should have ’if and only if’ instead of ’if’ in
Eqn. (4). This would make CS and DS equivalent from the point of view of
reachability of adjacent regions in one step. However, even in this case, there
is a second source of conservativeness, which comes from lack of transitivity in
the following sense: if (l, l′) ∈ T and (l′, l′′) ∈ T , which implies that l, l′, l′′ is a
trajectory of DS, this does not imply that CS has a trajectory from con(l) to
con(l′) and to con(l′′), simply because it is possible that all trajectories that go
from con(l) to con(l′) escape to a region con(l′′′), with l′′′ �= l′′. The conserva-
tiveness is completely eliminated, i.e., CS and DS are equivalent with respect
to reachability properties, if and only if, in (4), the ’if’ statement is replaced by
’if and only if’, and all initial states in con(l) flow in finite time to con(l′) under
the dynamics of CS.

As outlined in Section 1, finding such non-conservative discrete quotients of
continuous systems is an extremely hard problem. Moreover, even finding dis-
crete quotients with ’if and only if’ in Eqn. (4) is very difficult. In this paper,
we use the relaxed Definition 2 of a discrete quotient to construct less and less
conservative over-approximations con(Post(I)) for the solutions to Problems 1
and 2. Formally, we define a refinement of a discrete quotient as follows:

Definition 3 (Refinement). For a given continuous system CS, a discrete
quotient DS = (L̄, T̄ ) induced by abs : X → L̄ refines a discrete quotient DS =
(L,T ) induced by abs : X → L if |L̄| > |L| and the following conditions hold:

(i) For any l ∈ L, there exists Ī ⊂ L̄ with |Ī| ≥ 1 so that con(Ī) is a partition
of con(l). Any l̄ ∈ Ī is said to refine l ∈ L, and we denote this by l̄ ≤ l.



352 M. Kloetzer and C. Belta

(ii) For any l̄, l̄′ ∈ L̄ with (l̄, l̄′) ∈ T̄ , if there exist l, l′ ∈ L, l �= l′, so that l̄ ≤ l
and l̄′ ≤ l′, then (l, l′) ∈ T .

(iii) There exist l, l′ ∈ L with (l, l′) ∈ T and l̄, l̄′ ∈ L̄ with l̄ ∼ l̄′, l̄ ≤ l, l̄′ ≤ l′,
and (l̄, l̄′) /∈ T̄ .

In other words, (i) states that each region in the partition produced by abs
is further partitioned by abs. Note that, since |L̄| > |L|, at least one region
con(l) is strictly partitioned. Condition (ii) requires that the finer quotient DS
can only have transitions between states refining states connected by transitions
in the coarser quotient DS and between states refining the same state of DS.
Conditions (i) and (ii) will guarantee that the over-approximation con(Post(I))
as in Eqn. (5) does not grow through refinement. Finally, (iii) means that there
exist at least one pair of states connected in the coarser DS for which refinement
determines two disconnected states in the finer description DS.

Fig. 1. Discrete quotients for a vector field f = (f1, f2), f1 = 2−x1x2, f2 = 1+x2−x1x2

in a rectangular region [1.5, 1.56] × [1.1, 1.42] in plane. An initial partition and the
corresponding discrete quotient are shown in (a) and (b), respectively. A finer partition
is shown in (c), and the corresponding discrete quotient (d) refines the initial one
(b). The regions of partitions are ”open” rectangles of dimension 0 (points), 1 (open
line segments), and 2 (rectangles without boundaries). The transitions of the discrete
quotients correspond to ’if and only if’ in Eqn. (4).

An example is given in Fig. 1, where an initial partition
⋃

i,j=0,1,2 con(lij) of a
2-dimensional rectangle (containing its boundaries) is refined to

⋃
i=0,1,2;j=0,...,4

con(l̄ij). It is easy to see that condition (ii) of Definition 3 is satisfied, i.e., no
“new” transitions are added. As it can be seen in Fig. 1(c), the refinement is
achieved by “cutting” with a horizontal line where the f1 component of the
vector field becomes zero on the vertical open segment con(l21). This leads to a
partition con(l̄13), con(l̄12), con(l̄11) of con(l11) and a partition con(l̄23), con(l̄22),
con(l̄21) of con(l21). In the finer quotient, it can be seen for example that there is
no transition from l̄21 to l̄11 and from l̄13 to l̄23, even though the coarser quotient
had transitions between l11 and l21 in both directions (condition (iii)).

Condition (iii) in Definition 3 is a necessary condition for strict shrinking of
the over-approximation con(Post(I)). However, it is not sufficient. Indeed, for
adjacent regions l̄ ∼ l̄′, if CS does not have trajectories penetrating directly from



Reachability Analysis of Multi-affine Systems 353

con(l̄) to con(l̄′), this does not mean that Post(con(l̄))
⋂
con(l̄′) = ∅. Trajectories

originating in con(l̄) can loop around and eventually hit con(l̄′).
These ideas are formalized in Proposition 1. Due to the space constraints, the

proof of Proposition 1 is not included here, and it can be found in [22].

Proposition 1 (Conservativeness reduction by refinement). If DS =
(L̄, T̄ ) refines DS = (L,T ), and I ⊂ L, Ī ⊂ L̄ with the property that con(Ī) is a
partition of con(I), then we have

Post(con(I)) = Post(con(Ī)) ⊆ con(Post(Ī)) ⊆ con(Post(I)) (6)

Moreover, if (iii) from Definition 3 is replaced by:

(iii)’ There exist l, l′ ∈ L with (l, l′) ∈ T and l̄′ ∈ L̄ with l̄′ ≤ l′, and l̄′ /∈ Post(l̄),
∀l̄ ∈ L̄, l̄ ≤ l

and l ∈ (I∪Post(I)), then the last inclusion relation in (6) is strict, i.e., the over-
approximation con(Post(I)) as in Eqn. (5) strictly shrinks through refinement.

Remark 1 (Simulation and bisimulation). Both CS and DS defined above can
be embedded into transition systems [2, 23] with set of observables L. In this
framework, DS given by Definition 2 is said to simulate CS. When both sources
of conservativeness mentioned above are eliminated, then CS simulates DS as
well, and they are called bisimilar. The interested reader can refer to [1, 2, 23]
for formal definitions of simulation and bisimulation relations.

In this paper, we assume that X is a full dimensional “closed” rectangle in Rn

and the vector field f is multi-affine, i.e., affine in each state component. We use
iterative partitions of X into “open” rectangles and some interesting convexity
properties of multi-affine functions on rectangles to calculate discrete quotients
according to Definitions 2 and 3 and provide a solution to Problem 2 and a
conservative solution to Problem 1. As it will be seen, we cannot guarantee
the sufficient condition (iii)’ for strict shrinking at each step of the refinement.
Instead, we satisfy the necessary condition (iii), with the ”hope” that the con-
servativeness is strictly reduced.

3 Rectangles and Multi-affine Functions

Two vectors a = (a1, . . . , an) ∈ Rn and b = (b1, . . . , bn) ∈ Rn with the property
that ai < bi for all i = 1, . . . ,n determine a set of 3n rectangles in Rn:

R(a, b) = {R(l1,...,ln), li ∈ {0, 1, 2}, i = 1, . . . ,n} (7)

where each rectangle R(l1,...,ln), li ∈ {0, 1, 2}, i = 1, . . . ,n is defined by

R(l1,...,ln) = {x = (x1, . . . ,xn) ∈ Rn |xi = ai if li = 0,

ai < xi < bi if li = 1, xi = bi if li = 2, i = 1, . . . ,n} (8)
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We define the order m of a rectangle R(l1,...,ln) as being the number of ‘1’
entries in its label (l1, . . . , ln). The number of m - order rectangles in R(a, b)
is 2n−mn!/((n − m)!m!). As particular cases, there is only one n - order (full
dimensional) rectangle R(1,...,1), and 2n 0 - order rectangles, or vertices R(l1,...,ln),
li ∈ {0, 2}, i = 1, . . . ,n. For a given rectangle R(l1,...,ln), we can define

LR(l1,...,ln) = {R(l′1,...,l′n) ∈ R(a, b) |
(l′1, . . . , l

′
n) �= (l1, . . . , ln) ∧ l′i = li if li ∈ {0, 2}} (9)

The set of vertices corresponding to R(l1,...,ln) is a subset of LR(l1,...,ln) defined
by

VR(l1,...,ln) = {R(l′1,...,l′n) ∈ R(a, b) | (l′1, . . . , l′n) �= (l1, . . . , ln)∧
l′i = li if li ∈ {0, 2} ∧ l′i ∈ {0, 2} if li = 1} (10)

If the order of R(l1,...,ln) is m, there are 3m − 1 rectangles in LR(l1,...,ln),
all of order less than or equal to m − 1, and 2m vertices (0-order rectangles)
in VR(l1,...,ln). We call the rectangles defined by (8) open rectangles, with the
observation that, except for R(1,...,1), they are not open sets in Rn. If all ‘<’ in
(8), if any, are replaced by ‘≤’, then R(l1,...,ln) becomes closed, and is denoted by
R̄(l1,...,ln). It is easy to see that R̄(l1,...,ln) = R(l1,...,ln) ∪LR(l1,...,ln). For a closed
rectangle R̄, sets LR̄ and VR̄ are defined as in (9,10) by replacing R with R̄. It
follows that the sets of vertices of open and closed rectangles are identical, i.e.,
VR = VR̄. Therefore we will use VR for the set of vertices of VR̄.

Definition 4 (Multi-affine function). A multi-affine function f : Rn −→ Rp

(with p ∈ N) is a polynomial in the indeterminates x1, . . . ,xn with the property
that the degree of f in any of the variables is less than or equal to 1. Stated
differently, f has the form:

f(x1, . . . ,xn) =
∑

i1,...,in∈{0,1}
ci1,...,inx

i1
1 · · ·xin

n , (11)

with ci1,...,in ∈ Rp for all i1, . . . , in ∈ {0, 1} and using the convention that if
ik = 0, then xik

k = 1.

The following proposition is proved in [18]:

Proposition 2. A multi-affine function is uniquely determined by its values at
the vertices VR(1,...,1) of a full dimensional closed rectangle R̄(1,...,1). Its restric-
tion to the rectangle is a convex combination of the values at the vertices and
has the following form:

f |R̄(1,...,1)
(x1, . . . ,xn) =

∑
(v1,...,vn)∈VR(1,...,1)∏n

k=1

(
xk−ak

bk−ak

)ξ(vk) (
bk−xk

bk−ak

)1−ξ(vk)
f(v1, . . . , vn),

(12)

where ξk : {a1, . . . , an, b1, . . . , bn} → {0, 1} is an indicator function defined by:
ξk(ak) = 0, ξk(bk) = 1, k = 1, . . . ,n.
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Since a multi-affine function remains multi-affine if some of its arguments are
kept constant, Proposition 2 is true when a multi-affine function is restricted to
a lower order closed rectangle, when Eqn. (12) becomes:

f |R̄(l1,...,ln)
(x1, . . . ,xn) =

∑
(v1,...,vn)∈VR(l1,...,ln)∏

k,lk=1

(
xk−ak

bk−ak

)ξ(vk) (
bk−xk

bk−ak

)1−ξ(vk)
f(v1, . . . , vn),

(13)

Note that f |R̄(l1,...,ln)
(x1, . . . ,xn) is obtained from f |R̄(1,...,1)

(x1, . . . ,xn) by set-
ting xi = ai for li = 0 and xi = bi for li = 2, i = 1, . . . ,n.

A straightforward corollary of Proposition 2 can be stated as (the proof can
be found in [22]):

Corollary 1. If f is a scalar multi-affine function (p = 1 in Definition 4) and
R(l1,...,ln) is an open rectangle of arbitrary order, then we have:

(a) f(x) > 0 everywhere in R(l1,...,ln) if and only if f(v) ≥ 0 for all v ∈
VR(l1,...,ln), and there exists at least one v ∈ VR(l1,...,ln) for which f(v) > 0.

(b) f(x) < 0 everywhere in R(l1,...,ln) if and only if f(v) ≤ 0 for all v ∈
VR(l1,...,ln), and there exists at least one v ∈ VR(l1,...,ln) for which f(v) < 0.

(c) f(x) = 0 everywhere in R(l1,...,ln) if and only if f(v) = 0 for all v ∈
VR(l1,...,ln).

(d) There exist x,x′ ∈ R(l1,...,ln) with f(x) > 0 and f(x′) < 0 if and only if there
exist v, v′ ∈ VR(l1,...,ln) with f(v) > 0 and f(v′) < 0.

4 Reachability Analysis of Multi-affine Systems

We now have all the necessary background to consider Problems 2 and 1 for a
continuous system CS (Definition 1) , whose continuous state space is a closed
rectangle in Rn defined by a = (a1, . . . , an) ∈ Rn and b = (b1, . . . , bn) ∈ Rn,
ai < bi for all i = 1, . . . ,n:

X = {x = (x1, . . . ,xn) ∈ Rn | ai ≤ xi ≤ bi, i = 1, . . . ,n}, (14)

and whose vector field f is multi-affine as in Definition 4 (with p = n).
We first define a partition of X into open rectangles, which gives the states

of the discrete quotient DS (Definition 2). We then define the transitions of DS
and a refinement procedure according to Definition 3. Finally, we collect all the
results in an iterative algorithm for safety verification of multi-affine systems.
Due to the space constraints, we give just some informal explanations of the
involved algorithms, and we refer to [22] for pseudocodes.

4.1 The States of the Discrete Quotient

We assume that each axis Oxi, i = 1, . . . ,n is divided into ni ≥ 1 intervals by
the points θi

0 < θi
1 < . . . < θi

ni
. This induces a partition of X into

∏n
i=1(2ni +1)
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open rectangles. Using the same idea as in Section 3, we label the rectangles
with n - uples (l1, . . . , ln) by defining an abstraction map as follows:

abs(x1, . . . ,xn) = (l1, . . . , ln) (15)

where, for each i = 1, . . . ,n and ji = 0, 1, . . . ,ni,

li = 2ji, if xi = θi
ji

, li = 2ji − 1, if θi
ji−1 < xi < θi

ji
(16)

Remark 2. The connection with the work in [13] can be seen as follows: the
polynomials xi−θi

ji
, ji = 0, . . . ,ni, i = 1, . . . ,n define a set of discrete variables,

which generate the set L when interpreted over the set of symbols {pos,neg, zero}
(with the obvious significance). In this representation, each discrete state l ∈ L is
a word of length

∑n
i=1 ni+n over the set {pos,neg, zero}, and the cardinality of L

becomes |L| = 3
n
i=1 ni+n. However, in our definition (15), |L| =

∏n
i=1(2ni + 1).

The dramatic reduction in the number of discrete states comes form the fact
that, in the rectangular partition, infeasible combinations of polynomial inter-
pretations are automatically eliminated.

As defined in Section 3, the number m of odd entries in l = (l1, . . . , ln) is the
order of the rectangle. Moreover, con(l) is an open m - rectangle in X . From
now on, when we refer to rectangles we mean open rectangles. If all li’s are odd,
then con(l) is a (full dimensional) n - order rectangle and if all li’s are even, then
con(l) is a point (vertex), or 0 - order rectangle. Inspired by this observation, we
define the order of a discrete state l as the number of its odd entries.

4.2 The Transitions of the Discrete Quotient

Before we start constructing the set T of transitions from all discrete states
l ∈ L, note that, because of the rectangular partition, it is easy to identify a
subset of L where transitions are possible, so we don’t have to explore the whole
L in search for successors. Let

H(l) = {l′ = (l′1, . . . , l′n) ∈ L | l′ �= l∧
l′i = li if li odd ∧ l′i ∈ {li − 1, li, li + 1} if li even}

(17)

L(l) = {l′ = (l′1, . . . , l
′
n) ∈ L | l′ �= l∧

l′i = li if li even ∧ l′i ∈ {li − 1, li, li + 1} if li odd}
(18)

Note that, if l is an m - order discrete state, then all the discrete states in
H(l) are of order strictly greater than m and all the discrete states in L(l) are
of order strictly less than m. For a m - order discrete state l = (l1, . . . , ln),
1 ≤ li ≤ 2ni − 1, the cardinality of H(l) and L(l) are 3n−m − 1 and 3m − 1,
respectively. Given l ∈ L, it is only possible to have discrete transitions towards
discrete states in H(l)∪L(l). For a state l with order m ≥ 1, let V(l) denote the
set of labels of vertices of con(l). Formally,

V(l) = {l′ = (l′1, . . . , l
′
n) ∈ L | l′ �= l∧

l′i = li if li even ∧ l′i ∈ {li − 1, li + 1} if li odd}
(19)

Before adding discrete transitions to complete the discrete system DS, we
assign a signature to each discrete state l ∈ L.
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Definition 5 (Signature of a discrete state). For a discrete location l =
(l1, . . . , ln) ∈ L, the signature s(l) = (s1(l), . . . , sn(l)) is a n-uple over the four-
valued domain {po,ne, ze, in} (i.e., positive, negative, zero, indefinite) with the
following significance, for all i = 1, . . . ,n:

– si(l) = po, if fi(x) > 0, ∀x ∈ con(l)
– si(l) = ne, if fi(x) < 0, ∀x ∈ con(l)
– si(l) = ze, if fi(x) = 0, ∀x ∈ con(l)
– si(l) = in, if ∃x ∈ con(l) so that fi(x) > 0 and ∃x ∈ con(l) so that fi(x) < 0

where f = (f1, . . . , fn) is the vector field of CS.

The first and second cases correspond to the situation when con(l) has an empty
intersection with fi(x) = 0. In the third case, con(l) coincides with fi(x) = 0 or
fi(x) = 0 contains con(l). In the fourth, there is an intersection between con(l)
and fi(x) = 0. The four cases from Definition 5 cover all possible choices for
vector field f of CS.

Determining the signatures for 0 - order discrete states, i.e., l = (l1, . . . , ln) ∈
L with all li even, is easy, because con(l) is a point in X and determining the
signatures reduces to evaluating the vector field f at con(l) and determining its
sign. Note that the symbol in in the signature of such a discrete state cannot
appear. Based on Corollary 1, the signature si(l) of an m - order discrete state
l = (l1, . . . , ln), m ≥ 1, is determined by checking what different symbols appear
in each of the sets {si(l′) | l′ ∈ V(l)}, i = 1, . . . ,n [22].

We give here an informal and intuitive description of the algorithm from
[22] for finding transitions of DS. For every state l = (l1, . . . , ln) ∈ L, a set L′ is
created, such that l×L′ contains transitions of DS starting from l, in accordance
with Definition 2.

In order to easily describe the transitions from a state with signature entries
in the set {po,ne, ze}, we introduce a map from these symbols to numbers:
eval : {po,ne, ze} → {+1,−1, 0}, eval(po) = +1, eval(ne) = −1, eval(ze) = 0.
Each direction i, i = 1, . . . ,n is considered separately and a set Li containing
all sub-labels l′i of states l′ in which l transits is constructed. The main idea in
finding elements of set Li is to decide the value of l′i based only on the value
of si(l). Roughly speaking, if si(l) ∈ {po,ne, ze}, (i.e., fi(x) has a well defined
sign everywhere in con(l) according to Definition 5), then l′i = li + eval(si(l)).
In this case, the added transitions correspond to Definition 2 in which the ’if’
statement from Eqn. (4) is replaced by ’if and only if’. It is interesting to note
here that our algorithm properly deals with situations in which, judged by the
signature s(l) of l, transitions to higher order neighbors l′ are suggested, while in
reality it is possible that f(x) points towards con(l′) everywhere on con(l), while
the trajectories of CS only become tangent to con(l′) everywhere on con(l) and
flow to a even higher order neighbor. Each situation of this kind is signaled by
a flag, some preliminary sets Li, i = 1, . . . ,n are constructed and later they are
modified in a fixpoint manner.

If si(l) = in, then by Definition 5, in general there might exist points in
con(l) flowing to all neighbors in direction i, and therefore we let l′i be any of
{li − 1, li, li + 1}. In this case, it is possible that we add transitions in DS that
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do not correspond to trajectories of CS, i.e., Eqn. (4) is satisfied in general with
‘if’. However, this source of conservativeness is eliminated through refinement as
described below.

After finding all sets Li, since l can have transitions to its neighbors only, set
L′ is found by intersecting the cartesian product of sets Li, i = 1, . . . ,n with the
set of neighbors of l.

4.3 Refinement

For a given partition con(L) in which all entries si(l), i = 1, . . . ,n, in the signa-
tures s(l) of all states l ∈ L are in the set {po,ne, ze}, con(Post(I)) cannot be
shrunk by finer partitioning, for any I ⊂ L. Therefore it does not make sense to
partition such quotients.

On the contrary, if for a given partition con(L) there exists a state l ∈ L and
a signature entry si(l) = in, we can show that proper partitioning produces a
discrete quotient DS = (L̄, T̄ ) that refines DS = (L,T ) in the sense of Definition
3. Therefore, “smaller” over-approximations of the reach set can be constructed
(guaranteed strictly smaller if (iii)’ in Proposition 1 holds). We give here the
main ideas that lead to conclusion that Definition 3 is satisfied.

Rectangles of order 0 (vertices) always have well-defined signature entries si(l)
in all directions i = 1, . . . ,n. A rectangle l of order 1 from DS has indefinite
signature entry si(l) if con(l) intersects the surface defined by fi(x) = 0 in X .
Let lj be the only odd entry in l. Since f is multi-affine and con(l) is parallel with
axis Oxj , the intersection is a point whose coordinates can be easily computed
by solving a linear equation with respect to xj . Let the solution be denoted
by x̃j . By splitting the current partition DS with respect to the hyperplane
xj = x̃j , we obtain a new partition DS. In this partition there are three states
refining state l from the previous partition. All these states have well defined
signature entry of index i, and by applying the transition algorithm described
in Section 4.2 to these states, their discrete transitions will exactly correspond
to continuous trajectories in direction i.

A finer quotient DS of DS can be found by using a refinement algorithm
inspired by the above idea and available in [22]. The algorithm computes all
possible intersections in X between all surfaces fi = 0, i = 1, . . . ,n and all
con(l), where l is a state of order 1 in DS. Rectangles with order greater than
1 are not split if they have an indefinite signature on a certain direction and all
their neighbors of order 1 have well defined signatures on the same direction.
From the tests we performed, we observed that if X contains no common points
of any two surfaces fi = 0 and fj = 0, i, j = 1, . . . ,n, i �= j, then, after a finite
number of iterations, the refinement algorithm will not produce new points.
In this case, all surfaces fi = 0, i = 1, . . . ,n will eventually have non-empty
intersections only with some rectangles of order 0 and of order greater than 1.

4.4 Safety Verification Algorithm

We collect all the results in this paper in the form of an iterative algorithm,
detailed in [22], for providing a solution to Problem 2. This safety verification
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algorithm starts with an initial rectangular partition determined by the sets I
and F . A discrete quotient DS is constructed as described in Sections 4.1 and
4.2 and Post(I) is calculated using standard techniques from graph theory. If
Post(I)

⋂
F = ∅, then assertion (2) is true, i.e., con(F ) cannot be reached by

the continuous system initialized in con(I). If Post(I)
⋂
F �= ∅, then refinement

is undertaken as described in Section 4.3. The algorithm is stopped if any of
the following occurs: the safety property is satisfied, the refinement is finished, a
partitioning precision is reached, or a user defined maximum number of iterations
is exceeded. Otherwise, the algorithm iterates by using the finer quotient of DS.
When the algorithm is stopped and the safety property is not verified, it returns
a sub-region con(SF ) of con(F ) which is safe for CS if initialized in con(I). If
only an over-approximation of the solution to Problem 1 is desired, then the
safety verification algorithm can be run with F = L (con(F ) = X), where the
initial partition L is induced by I only.

On the connection between the solutions to Problems 1 and 2, note that, even
if the over-approximation of con(Post(I)) is guaranteed to strictly shrink, this
does not necessarily imply that the safe sub-region con(SF ) of con(F ) strictly
grows. It is guaranteed not to shrink, but it might not grow if the refinement
is made in a region of X which has empty intersection with con(F ) and/or the
rectangles which are refined are not contained in a path from I to F in DS.

5 Case Studies

We have developed a user-friendly software package for Reachability Analysis
of Multi-Affine Systems (RAMAS) in Matlab [24]. The program takes as inputs
the dimension n, the closed rectangle X , the coefficients ci1,...,in of a multi-
affine vector field f as in Eqn. (11), and the sets con(I) and con(F ) given in
terms of unions of open sub-rectangles of arbitrary order in X . According to
algorithm described in Section 4.4, it returns either a positive answer if there
are no trajectories of the continuous system from con(I) and con(F ), or a subset
of con(F ) which is guaranteed to be safe with respect to con(I). Even though
our tries show that the algorithm works even for n = 10, in this paper we focus
on a planar case (n = 2) so we can show illustrative pictures.

We first consider a nonlinear multi-affine vector field (Case Study 1). We then
focus on a linear systems (i.e., ẋ = Ax) (Case Study 2), which is of course a
particular case of multi-affine systems. The qualitative phase portraits for such
planar linear systems are known, and reachability properties are almost intuitive.
Applying our method to such systems gives us some idea on the conservativeness
of our approach, as detailed in [22].

Case Study 1 (nonlinear multi-affine system). Consider X = [1.5, 3] ×
[0.4, 2], f = (f1, f2) with f1 = 2 − x1x2, and f2 = 1 + x2 − x1x2. The initial
set is con(I) = [1.5, 2.5]× {0.4}, which can be written as the union of two zero-
order open rectangles {1.5, 0.4}, {2.5, 0.4} and one first-order open rectangle
(1.5, 2.5)× 0.4. The final set is con(F ) = [1.5, 3]× [0.8, 1.4], which in the initial
partition can be seen as the union of 6 zero-order open rectangles, 7 first-order
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Fig. 2. Case Study 1: (a) Multi-affine vector field f , initial set con(I) (blue - almost
black on black and white printers), final set con(F ) (yellow - light grey), and initial
partition induced by initial and final sets. (b,c) Iterations 2 and 10 from safety veri-
fication algorithm. The growing green (dark grey) area represents the safe sub-region
con(SF ) of con(F ).

open rectangles, and 2 second-order open rectangles. In Fig. 2(a), we plot the
vector field f everywhere in X and the two curves f1 = 0 and f2 = 0. Note
that the two curves intersect inside con(F ), and the refinement procedure will
not terminate. At each iteration, the algorithm will produce strictly shrinking
over-approximations of Post(con(I)) in X , which lead to strictly growing safe
sub-regions in con(F ), as depicted by Fig. 2(b,c).

Case Study 2 (linear system). Consider the rectangular region X = [−3, 4]×
[−3, 2] and the planar linear vector field f1 = 0.5x1 + 1.5x2, f2 = 1.5x1 + 0.5x2,
for which the origin is an unstable node (saddle). The vector field is plotted
in Fig. 3(a), together with the initial set con(I) = [−1, 3] × {−2} and the two

Fig. 3. Case Study 2: (a) Vector field f , lines f1 = 0 and f2 = 0, and initial set (b)
Safe region (green - dark grey) obtained in 4 iterations by the reachability algorithm
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lines f1 = 0 and f2 = 0, which intersect at the origin. The over-approximation
of Post(con(I)) calculated in 4 iterations by our method is shown as the white
region in Fig. 3(b), together with the eigenvectors and some illustrative trajecto-
ries. Note that the refinement does not terminate, but the result does not change
significantly with the number of iterations.

6 Conclusion and Future Work

In this paper, we developed a computationally inexpensive method for reachabil-
ity analysis of multi-affine continuous systems. The method is based on rectan-
gular partitions and iterative constructions of discrete quotients which provide
an over-approximation of the reach set of the continuous system, with guaran-
teed decrease of conservativeness. While falling into the more general framework
of [13], where general polynomials are used for partition and polynomial vec-
tor fields are allowed, this paper shows that if more structure is allowed, then
reachabiltity and safety verification questions can be answered with much less
computation. Future work includes development of algorithms to check specifi-
cations given in terms of linear temporal logic and and applications to mathe-
matical models found in areas such as biochemistry and control of aircraft and
under-water vehicles.

Acknowledgements. This work is partially supported by NSF CAREER 0447721
and NSF 0410514. The second author wishes to thank Luc C.G.J.M. Habets for
useful discussions on this topic.
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Abstract. This paper addresses the question of extending the usual approx-
imation and sampling theory of continuous signals and systems to those
encompassing discontinuities, such as found in modern distributed control sys-
tems. We provide a topological framework dealing with continuous, discrete and
mixed systems in a uniform manner. We show how this theoretical framework
can be used for voting on hybrid signals in critical real-time systems.

1 Introduction

Though the theory of distributed fault-tolerant systems advocates the use of clock
synchronization [16, 11], still many critical real-time systems are based on the
GALS (globally asynchronous, locally synchronous), and more precisely the “Quasi-
Synchronous” [6] paradigm: in this framework, each computer is time-triggered but the
clocks associated with each computer are not synchronized and communication is based
on periodic sampling: each computer has its own clock and periodically samples its en-
vironment, i.e., the physical environment but, also, the activities of the other computers
with which it communicates. When such an architecture is used in critical systems, there
is a need for a thorough formalization of fault tolerance in this framework. In a previous
paper [7] we already formalized the concepts of threshold and delay voters. However
there was in this paper some lack of symmetry between the two concepts: sampling
continuous signals and threshold voting were very simply based on topological notions
like uniform continuity and L∞ norm. On the contrary, sampling discrete event signals
and associated delay voting were based on more ad-hoc notions.

Later [5], we found that the use of the Skorokhod distance [3] was a way to overcome
this lack of symmetry. More precisely, we showed that the discrete signals that could be
sampled were those that were uniformly continuous with respect to this distance. This
opened the way toward a generalization to hybrid (mixed continuous-discrete) signals.
Moreover, we remarked that our previous study on voters was incomplete: in practice,
it appears that people do not only use threshold voters and delay voters but also, and
mainly, mixed threshold and delay voters. In these voters, a failure is detected if two
signals differ for more than a given threshold during more than a given delay. But, when
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we tried to relate those two issues [12] we found unexpected difficulties linked to the
fact that the Skorokhod topology is too fine and distinguishes too many systems. It
should be noted that this would be also the case for another topology which has also
been proposed for robust hybrid systems [9].

In this paper, we propose a simpler topology which seems to better meet our needs
in that it:

– generalizes the L∞ norm to non continuous signals and systems;
– allows us to uniformly handle errors and bounded delays;
– provides a setting where samplable signals are those uniformly continuous with re-

spect to this topology, and where asymptotically stable systems and combinational
boolean systems are uniformly continuous systems;

– provides a foundation to mixed error and delay voters.

More precisely, we show that if two signals are within a given neighborhood and if both
of them are uniformly continuous with respect to that topology, then we can design a
2x2 hybrid voter which will not raise an alarm as long as these conditions are fulfilled.
In practice, this result allows us to finely tune the voter parameters as a function of the
nominal (non-faulty) errors and delays resulting from:

– the numerical and delay analysis of sensors,
– the algorithms used for computing outputs1

– and the architecture of communication between computing locations.

The paper is organized as follows: in a second section, we provide basic definitions.
Section 3 addresses the classical theory of sampling continuous signals and systems.
Section 4 recalls basic voting schemes and presents the mixed (hybrid) voter. In Section
5, we define our topology and prove the paper main result on the property of signals
and systems which are uniformly continuous with respect to that topology. Finally,
section 6 applies this result to hybrid voters and to mixed error and delay analysis of
combinational systems.

1.1 Related Works

Several approaches seem to have been followed for addressing the question:

– The topological approach initiated by Nerode [17, 4] explicitly introduces the ap-
proximation and then tries to characterise it as a continuous mapping. This leads to
equip the approximation space with an ad-hoc (small) topology.

– The equivalence or property preserving approaches followed for instance in [15, 1,
8, 10] tries to construct an approximation of a given system and to check whether
it is equivalent to or preserves some properties of the original system expressed in
some logic.

– Finally, M. Broucke [14] mixes the two approaches and uses the Skorokhod dis-
tance in order to define an approximate bisimulation between several classes of
hybrid systems. In this sense, her work is quite close from ours. However, the mo-
tivations are slightly different: it doesn’t seem that uniformity is addressed and that
a result similar to proposition 6.1 is obtained.

1 We can remark that this kind of method allows the use of diverse programming [2] which is
one of the ways for tolerating design and software faults.
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2 Basic Definitions

2.1 Signals and Systems

We consider systems that have to operate continuously for a long time, for instance a
nuclear plant control that is in operation for weeks or an aircraft control that flies for
several hours. Thus, the horizon of our signals is not bounded. Hence, a signal x is
for us simply a piece-wise continuous function from R to R, that is to say, a function
which is continuous but on a finite or diverging sequence of times {t0, . . . tn, . . .}. This
means, in particular, that left and right limits exist at each point in time. Furthermore,
we assume that discontinuities are only of the first kind, such that the value at a given
time is always within the interval made of left and right limits:

For all t,

x(t) ∈ [inf(x(t−),x(t+)), sup(x(t−),x(t+))]

where, as usual, x(t−), (x(t+)) is the left (right) limit of x at t.
Finally, we assume that the signal remains constant before the first discontinuity

time t0.
Concerning boolean signals, the fact that the sequence of discontinuity points di-

verges does not prevent there being two consecutive discontinuity points arbitrarily
close together. This is why, in many cases we may need a stronger restriction:

Definition 1 . A boolean signal x has uniform bounded variability (UBV) if the interval
between two consecutive discontinuities is lower bounded, i.e., there exists a positive
(stable time) Tx between any two successive discontinuities of x.

A system is simply a function S causally transforming signals, that is to say, such that
S(x)(t) is only function of x(t′), t′ < t.

The delay operator Δτ is such that (Δτ x)(t) = x(t−τ), and a system is stationary
(or time invariant) if ∀τ,S(Δτ x) = Δτ (S x).

An even more restricted class of systems is the class of static or combinational sys-
tems, that is to say, systems that are the “unfolding” of a scalar function:

Sf (x)(t) = f(x(t))

3 A Sampling Theory for Continuous Signals and Systems [12]

3.1 Uniformly Continuous Signals

A signal x is uniformly continuous (UC) (figure 1) if there exists a positive function2

ηx from errors to delays, such that:

∀ε > 0, ∀t, t′, |t− t′| ≤ ηx(ε)⇒ |x(t) − x(t′)| ≤ ε

2 A Skolemisation of the usual textbook definition ∀ε∃η: there exists therefore a function
providing η, given ε.
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ε

ηx(ε)

x x′

Fig. 1. A uniformly continuous signal

Such a definition can be rephrased in a functional way by introducing the || ||∞ norm
on signals, i.e., for our piece-wise continuous signals with only first kind discontinuities:
||x||∞ = supt |x(t)|.

Then, a signal x is uniformly continuous if there exists a positive function ηx from
errors to delays, such that:

∀ε > 0, ∀τ, |τ | ≤ ηx(ε)⇒ ||x−Δτ x||∞ ≤ ε

3.2 Retiming and Sampling

A retiming function r is a non decreasing function from R to R. Let Ret be the set of
such functions. This is a very general definition which provides many possibilities. For
instance, a piece-wise constant retiming function can be seen as a sampler: if x′ = x◦r,
and if r is piece-wise constant, then, at each jump of r, a new value of x is taken and
maintained up to the next jump. This allows us to define a periodic sampler r, of period
Tr as the piece-wise constant function (see figure 2):

r(t) = �t/Tr�Tr

where �� is the floor function.
Finally, retimings allow us to characterize static (or combinational) systems as those

systems which commute with retiming:

�

�

�

�

. . .

�

�

Fig. 2. A periodic sampling retiming
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Proposition 3.1 (Static systems). A static system S is such that, for any r ∈ Ret,

S ◦ r = r ◦ S

3.3 Sampling

Retiming allows us to restate the uniformly continuous signal definition, by saying that
a signal x is uniformly continuous if there exists a positive function ηx from errors to
delays, such that:

∀ε > 0, ∀ retiming r, ||r − id||∞ ≤ ηx(ε)⇒ ||x − x ◦ r||∞ ≤ ε

where id is the identity function (neutral retiming).
We can then define a samplable signal as a signal such that the sampling error can

be controlled by tuning the sampling period:

Definition 2 (Samplable Signal) . A signal x is samplable if there exists a positive func-
tion ηx from errors to sampling periods, such that:

∀ε > 0, ∀ periodic sampling r,Tr ≤ ηx(ε)⇒ ||x− x ◦ r||∞ ≤ ε

Then the following property obviously holds:

Proposition 3.2. A signal is samplable if and only if it is uniformly continuous.

3.4 From Signals to Systems

This framework extends quite straightforwardly to systems by saying that a system S
is uniformly continuous (figure 3) if there exists a positive function ηS from errors to
errors such that:

∀ε > 0, ∀x,x′, ||x− x′||∞ ≤ ηS(ε)⇒ ||(S x)− (S x′)||∞ ≤ ε

and state the following proposition:

Proposition 3.3. A uniformly continuous stationary system, fed with a uniformly con-
tinuous signal outputs a uniformly continuous signal.

The proof is straightforward and can be found in [5, 13]. This property says that given
an acyclic network of UC systems, one can compute maximum delays on system inter-
connection, sampling periods and maximum errors on input signals such that errors on
output signals be lower than given bounds. This provides us thus with a nice approxi-
mation theory.

System

ηS(ε)

ε

Fig. 3. A uniformly continuous system
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4 Hybrid Voting

In this section we recall the classical threshold and delay voting schemes. Then we
propose a 2/2 hybrid voter3 which is a mixture of these two aspects.

4.1 Threshold Voting

Threshold voting is a classical voting scheme. Assume that signals x,x′ are redundantly
computed signals. In theory, the two signals should be equal but, because they are not
computed at the same time, in the same computer, from the same sensor values, and
possibly by dissimilar algorithms, their values can be slightly different. The figure 4
shows a tolerance tube around the reference signal x. Whenever the signal x′ remains
within the tolerance tube, the voted value is the reference one. If the signal x′ gets out
the tube, an alarm is raised.

alarm

x1
x2

Fig. 4. Threshold voting

Knowing bounds on the normal deviation between values that should be equal, easily
allows the design of threshold voters. For instance, if x is uniformly continuous and if

x′ = x ◦ r + e

with

– ||r − id||∞ ≤ ηx(ε)
– ||e||∞ ≤ ε

we can find a threshold ε′ = 2ε and design a 2/2-voter:

voter2/2(x,x′, ε′) = if |x− x′| ≤ ε′

then x
else alarm

such that the voter delivers a correct output in the absence of failure and, otherwise,
delivers an alarm.

Notations: In this definition and in the sequel, algorithms are expressed using a func-
tional notation, that is to say by abstracting over time indices, in order to stay consistent
with design tools like Simulink4 or Scade5. Thus, a signal definition x1 = x2 means
∀n ∈ N : x1(nT ) = x2(nT ) where T is the period of the computing unit running the
algorithm.

3 In the usual terminology for voters, n1/n2 means that n1 units out of n2 redundant ones
should operate correctly in order that the redundant system operates correctly.

4 http://www.mathworks.com
5 http://www.esterel-technologies.com
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4.2 Delay Voting

Delay voting is the discontinuous equivalent to the threshold one. The figure 5 shows
this scheme principle. Whenever the two signals are equal, the voted value is the com-
mon one. Else, the voter holds its output and waits for a new agreement during a prede-
fined temporal window. If there is no agreement, an alarm is latched.

alarm

δ

x1

x2

v

Fig. 5. Bounded delay voting

Let us consider boolean UBV signals x1 and x2 which is, in normal operation, a
delayed image of x1:

x2 = x1 ◦ r
with a bound τ on the delay in correct operation:

||r − id||∞ ≤ τ

There signals are received by some unit of period T . However, the assumption that
correct computers have perfect clocks, is clearly not realistic. To be more realistic, one
should consider clock drifts. A frequent assumption is that clock drifts are bounded,
either because the mission time is bounded or extra mechanisms allow for detecting
exceedingly large drifts. Then there exist lower (Tm) and upper (TM ) bounds for T
and, in each condition involving T , it should be replaced by the bound which makes it
more pessimistic. We thus assume Tm ≤ T ≤ TM .

We also assume τ + TM < Tx where Tx is the stable time of signal x (cf. defini-
tion 1). This assumption guarantees that the joint effect of the delay and the sampling at
rate T (which can induce an additional delay) cannot lead to miss any change of input
value (which, by assumption lasts at least Tx). Then,

– the maximum time interval during which the two signals may continuously disagree
is obviously τ ,

– the maximum number of samples where two correct copies continuously disagree
is

nmax =
⌊

τ

Tm

⌋
+ 1

This allows us to design delay voters for delay booleans signals. For instance, a 2/2
voter could be:
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Definition 3 (2/2 delay voter)

voter2/2(x1,x2,nmax) = x where x, n = if x1 = x2
then x1, 0
else if ΔT

0 n < nmax− 1
then ΔT

x0
x, ΔT

0 n + 1
else alarm

where ΔT
x0

is the delay operator such that ΔT
x0
x(t) = x(t− τ) with initial value x0.

– this voter maintains a counter n with initial value 0, and its previous output, with
some known initial value x0,

– whenever the two inputs agree, it outputs one input and resets the counter,
– else, if the counter has not reached nmax − 1, it increments it and outputs the

previous output,
– else it raises an alarm.

Proposition 4.1. voter2/2 raises an alarm if the two inputs disagree for more than
nmaxTM and otherwise delivers the correct value with maximum delay (nmax +
1)TM .

4.3 Hybrid Delay-Threshold Voting

Can we mix now the two previous voters, the threshold and the delay one? This would
amount to define an hybrid voter that is illustrated at figure 6:

Definition 4 (2/2hybrid voter)

hyb voter2/2(x,x′,nmax, ε′) = y where y, n = if |x− x′| ≤ ε′

then x, 0
else if ΔT

0 n < nmax− 1
then ΔT

x0
y, ΔT

0 n + 1
else alarm

– this voter maintains a counter n with initial value 0, and its previous output, with
some known initial value x0,

– whenever the two inputs threshold-agree, it outputs one input and resets the counter,
– else, if the counter has not reached nmax − 1, it increments it and outputs the

previous output,
– else it raises an alarm.

On which condition could we state the following desirable proposition?

Proposition 4.2 (Hybrid voter property). hyb voter2/2 raises an alarm if the two
inputs differ for more than ε′ during more than nmaxTM and otherwise delivers the
correct value with maximum delay (nmax + 1)TM .

Answering this question is the object of the next section.
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x2

alarm

v

x1

τ τ

ε

Fig. 6. Hybrid threshold-delay voting

5 A Hybrid Topology

The difficulties met with the Skorxokhod topology have led us to propose the following
definition:

5.1 Topology Definition

Let us consider the following family of open balls centered at arbitrary signals x, with
positive parameters T , ε:

B(x;T , ε) = {y | sup
t

∫ t+T

t

|x− y|
T

< ε}

Proposition 5.1. This family defines a topology.

Proof. It suffices to show that any point of a ball is the center of another ball which is a
subset of the former.

Let x′ ∈ B(x;T , ε). It yields:

sup
t

∫ t+T

t

|x′ − x|
T

= d < ε

Let us take

– T ′ = T
– ε′ = (ε− d)

Let x′′ ∈ B(x′;T ′, ε′) and let us show that x′′ belongs to B(x;T , ε): for any t,∫ t+T

t

|x′′ − x| ≤
∫ t+T

t

|x′′ − x′|+
∫ t+T

t

|x′ − x|

∫ t+T

t

|x′′ − x| < ε′T + dT = (ε− d)T + dT = εT
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x′

x

h

Fig. 7. x and x′ are close to each other when h is small in the given topology

Example: Figure 7 shows two boolean signals that can be made arbitrarily close in this
topology by decreasing the durationh. It is easy to see conversely that this is not the case,
neither with the L∞ distance nor the Skorokhod distance nor the tube distance of [9].

Closed Balls: Let us denote as B̄(x;T , ε) the corresponding closed balls.

B̄(x;T , ε) = {y | sup
t

∫ t+T

t

|x− y|
T

≤ ε}

5.2 Product Topology

When dealing with signal tuples, we consider product topologies. For instance, the
topology associated with couples (x,x′) will be defined by the balls:

B((x,x′);T , ε,T ′, ε′) = B(x;T , ε)×B(x′;T ′, ε′)

In order to deal with these cases in a uniform way, we adopt the following con-
vention: in a ball B(x;T , ε), x can be a n-tuple and T , ε two n-vector parameters
(T1,T2, . . . Tn), (ε1, ε2, . . . εn).

5.3 Uniformly Continuous Signals

Definition 5 . A signal x is uniformly continuous with respect to the hybrid topology
(UCht) if there exists a positive function ηx(T , ε) such that

– For all ε,T > 0,
– For all r with supt |r(t) − t| ≤ ηx(T , ε)

x ◦ r belongs to B̄(x;T , ε)

Examples:

– Uniform bounded variability signals are UCht.
– Uniformly continuous signals in the usual sense are UCht.

5.4 Fundamental Property of UCht signals

Proposition 5.2. Let x be a UCht signal, fix T > 0 and ε > 0 and let

n =
⌈

T

inf{T , ηx(T , ε)}

⌉



Approximation, Sampling and Voting in Hybrid Computing Systems 373

Then, there exists in any interval of duration T , a sub-interval of duration h = T
n such

that, for any t, t′ in this interval

|x(t) − x(t′)| ≤ 2ε

Proof. Let us divide an arbitrary interval I of duration T into n equal sub-intervals
Ii, i = 1,n of duration h. Let:

– xM
i = supt∈Ii

x(t)
– xm

i = inft∈Ii x(t)
– ei = xM

i − xm
i

It is easy to design two retimings rM et rm such that :

– for all t ∈ Ii, x ◦ rM (t) = xM
i and x ◦ rm(t) = xm

i

We have moreover for all r in {rM , rm}:

sup
t
|r(t) − t| ≤ ηx(T , ε)

Thus, for r in {rM , rm}: ∫
I

|x− x ◦ r|
T

≤ ε

By triangular inequality, we get:∫
I

|x ◦ rM − x ◦ rm|
T

≤ 2ε

Finally,

n∑
1

h

T
ei ≤ 2ε

If all ei were larger than 2ε, this would be also true for their mean value. Thus, at least
one ei is smaller than or equal to 2ε.

We clearly see now how our new topology generalizes the usual one concerning uniform
continuity: In the usual definition, for any ε, we can find η such that, in any interval of
duration η, the signal variation is smaller than or equal to ε. In our new framework,
for any T , ε, we can find η such that, in any interval of duration T , there exists a sub-
interval of duration η where the signal variation is smaller than or equal to ε. This
is clearly a generalization and it is the price to be paid for tolerating the discontinu-
ities inherent to discontinuous signals like booleans and for encompassing in the same
framework continuous signals and boolean signals. Furthermore, having been able to
encompass both classes of signals allows us to also deal with hybrid piece-wise contin-
uous ones.
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Moreover, we can show that this property is quite tight by considering the example of
a boolean signal x with uniform bounded variability, i.e., such that the interval between
two discontinuities is larger than T .

It is easy to show, by taking a delay r(t) = t− T ε, with ε < 1/2, that

ηx(T , ε) = T ε

Now, in any interval of duration T , there truly exists an interval of duration T ε < T/2
where the boolean signal remains constant and, thus,

xM − xm ≤ 2ε < 1

6 Applications

6.1 UCht Signals and Votes

We can now state this proposition which provides a positive answer to the question
raised in 4.2:

Proposition 6.1. If x and x′ are UCht and

x′ ∈ B̄(x;T , ε)

then there exists some T ′ such that, in any interval of duration T , there exists a sub-
interval of duration T ′ over which any t yields

|x(t) − x′(t)| ≤ 3ε

We omit here the proof which is very similar to the one of proposition 5.2 and can
be found in [13]. Clearly this proposition provides a foundation to the use of mixed
threshold and delay voters.

6.2 UCht Systems

This framework also allows us to provide elements of a sampling and approximation
theory for hybrid systems.

Definition 6 . A system S is UCht if there exists a positive function ηS(T , ε) such that:

– for all T , ε > 0,
– for all x,x′ where x′ belongs to B̄(x; ηS(T , ε))

S(x′) belongs to B̄(S(x);T , ε)

Clearly,

Proposition 6.2. Asymptotically stable linear time-invariant systems are UCht.

The proof is simple and can be found in [13]. But we also have this very nice property:
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Proposition 6.3. Boolean combinational systems are UCht.

Proof. Let us show the proof for a boolean function f with two inputs. It suffices to
take:

ηf (T , ε) = (T ,T ), (ε/2, ε/2)

Let us first remark that if ε ≥ 1 the property is obvious.
Let us assume ε < 1 and x′

1 ∈ B̄(x1;T , ε/2),x′
2 ∈ B̄(x2;T , ε/2). This amounts to

saying that in any interval of duration T , x′
1 differs from x1 for some fraction of time

ε/2 < 0.5 and similarly for x2,x
′
2. It is then clear that the couple x′

1,x
′
2 differs from

couple x1,x2 for a fraction of time at most equal to ε. This is also the case for f(x′
1,x

′
2)

and f(x1,x2).

Noting that combinational functions commute with retiming, we can reuse the proof
of 3.3 to state a similar property for networks of boolean functions:

Proposition 6.4. A uniformly continuous combinational system, fed with a uniformly
continuous signal outputs a uniformly continuous signal.

This property says that given an acyclic network of UCht combinational systems, one
can compute maximum delays on system interconnection, sampling periods and max-
imum errors on input signals such that errors on output signals, in the sense of our
topology, be lower than given bounds. This provides us thus with a nice approximation
theory which also nicely combines with voting, in that this “error calculus” allows voter
parameters to be correctly set.

7 Conclusion

This paper has intended to provide a satisfactory theory for merging together threshold
voters adapted to continuous signals and delay voters adapted to boolean signals in or-
der to cope with hybrid piece-wise continuous signals. One problem in performing this
merge was that, while threshold voters are based on uniform continuity, delay voters
are based on a more ad-hoc notion of uniform bounded variability. After having previ-
ously tried the Skorokhod topology, we propose here a new topology for hybrid systems
which seems to better match our purpose. In particular, it allows us to merge in a very
uniform way the theory of threshold voters and the theory of delay voters and to build
a theory of hybrid mixed threshold and delay voters.

Moreover, this voting problem is clearly related to the more general sampling prob-
lem for hybrid systems and the results provided here may also help in defining which
classes of hybrid systems can be accurately sampled. This can be a subject for future
work.

Identifying uniformly continuous signals and systems enables us to handle in a safe
way reconfiguration issues by using finely tuned voting schemes. These schemes guar-
antee recovering the overall stability of switched hybrid systems. The “error calculus”
introduced in this paper is a starting point for a further work closely linking uniform
continuity to the more general field of robustness.
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Abstract. Stochastic hybrid system models can be used to analyze and
design complex embedded systems that operate in the presence of un-
certainty and variability. Verification of reachability properties for such
systems is a critical problem. Developing algorithms for reachability anal-
ysis is challenging because of the interaction between the discrete and
continuous stochastic dynamics. In this paper, we propose a probabilistic
method for reachability analysis based on discrete approximations. The
contribution of the paper is twofold. First, we show that reachability can
be characterized as a viscosity solution of a system of coupled Hamilton-
Jacobi-Bellman equations. Second, we present a numerical method for
computing the solution based on discrete approximations and we show
that this solution converges to the one for the original system as the dis-
cretization becomes finer. Finally, we illustrate the approach with a navi-
gation benchmark that has been proposed for hybrid system verification.

1 Introduction

Stochastic hybrid system models can be used to analyze and design complex
embedded systems that operate in the presence of uncertainty and variability
because they incorporate complex dynamics, uncertainty, multiple modes of op-
erations, and they can support high-level control specifications that are required
for design of autonomous or semi-autonomous applications. Reachability analy-
sis for such systems is a critical problem because of the interaction between the
discrete and continuous stochastic dynamics. Reachability properties are usually
expressed as formulas in appropriate logics. Given a specification formula encod-
ing a property, the task is to determine whether the formal model of the system
satisfies the property or generate a counterexample that violates the formula.
In this paper, we proposed a probabilistic method for reachability analysis. In-
stead of encoding the reachability property with a logical formula that can be
evaluated to be true or false, we consider a representation using measurable
functions taking values in [0, 1] that characterize the probability that the system
will satisfy the property.

In this paper, we show that reachability for stochastic hybrid systems can be
represented by a measurable function that is the viscosity solution of a system of
coupled Hamilton-Jacobi-Bellman (HJB) equations. This function is similar to
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the value function for the exit problem of a standard stochastic diffusion but the
running and terminal costs depend on the function itself. Using a non-degeneracy
assumption for the diffusion term of the stochastic dynamics, we show that the
viscosity solution is continuous and bounded which allows us to extend standard
results for Markov diffusions to stochastic hybrid systems.

One of the advantages of characterizing reachability properties using viscosity
solutions is that for computational purposes we can employ numerical methods
based on discrete approximations. We use an approximation method based on
finite differences and we present an iterative algorithm based on dynamic pro-
gramming for computing the solution. We show that the algorithm converges
for appropriate initial conditions. Further, we show that the solution based on
the discrete approximations converges to the one for the original stochastic hy-
brid system as the discretization becomes finer. Finally, we illustrate the ap-
proach with a navigation benchmark which has been proposed for hybrid system
verification.

In this paper, we adopt the model presented in [3] which can be viewed as an
extension of the stochastic hybrid systems described in [12]. An important char-
acteristic of this model used in our analysis is that it satisfies the strong Markov
property [3]. Related models have been presented in [11] with the emphasis on
modeling and analysis of communication networks and in [1] for simulation of
concurrent systems. Stochastic hybrid systems can be viewed as an extension
of piecewise-deterministic processes [6] that incorporate stochastic continuous
dynamics. Reachability of such systems has been studied in [4]. Communicating
piecewise Markov processes have been presented in [20] with an emphasis on
concurrency. Viscosity solution techniques in optimal control of piecewise deter-
ministic processes have been studied in [7]. Our approach extends the results
of [7] for reachability analysis of stochastic hybrid systems.

Reachability properties for continuous and hybrid systems have been charac-
terized as viscosity solutions of variants of HJB equations in [16, 17]. Extensions
of this approach to stochastic hybrid systems and a toolbox based on level set
methods have been presented in [18]. Level set methods are also based on a
discretization of the state space but they may offer computational advantages
since the computation is limited to a boundary of the reachable set. The dy-
namic programming approach described in this paper is simpler to implement
and capture the dependency of the value function between discrete modes. The
approach allows us to show the convergence of solution obtained using the nu-
merical solutions to the solution of the stochastic hybrid system.

Discrete approximation methods based on finite differences have been
studied extensively in [15] and the references therein. Based on discrete approx-
imations, the reachability problem can be solved using algorithms for discrete
processes [19, 5, 8]. The approach has been applied for optimal control of stochas-
tic hybrid systems given a discounted cost criterion in [14]. For reachability anal-
ysis, the discount term cannot be used and convergence of the value function
can be ensured only for appropriate initial conditions. A grid-based method for
safety analysis of stochastic systems with applications to air traffic management
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has been presented in [13]. Our approach is similar but using viscosity solutions
we show the convergence of the discrete approximation methods.

The paper is organized as follows. Section 2 describes the stochastic hybrid
system model. Section 3 formulates the reachability problem and characterizes
its solution. Section 4 presents and analyzes the numerical methods based on
discrete approximations. Section 5 illustrates the approach using a navigation
benchmark and Section 6 concludes the paper.

2 Stochastic Hybrid Systems

We adopt the General Stochastic Hybrid System (GSHS) model presented in [3].
We briefly describe the model to establish the notation.

Let Q be a set of discrete states. For each q ∈ Q, we consider the Euclidean
space Rd(q) with dimension d(q) and we define an invariant as an open set Xq ⊆
Rd(q). The hybrid state space is denoted as S =

⋃
q∈Q{q} × Xq. Let S̄ = S ∪

∂S and ∂S =
⋃

q∈Q{q} × ∂Xq denote the completion and the boundary of S
respectively. The Borel σ-field in S is denoted as B(S).

Definition 1. A GSHS is defined as H = ((Q, d,X ), b,σ, Init, λ, R) where

– Q is a set of discrete states,
– d : Q → N is a map that defines the continuous state space dimension for

each q ∈ Q,
– X : Q → Rd(·) is a map that describes the invariant for each q ∈ Q as an

open set Xq ⊆ Rd(q),
– b : Q×Xq → Rd(q) and σ : Q×Xq → Rd(q)×p are drift vectors and dispersion

matrices respectively,
– Init : B(S)→ [0, 1] is an initial probability measure on S,
– λ : S̄ → R+ is a nonnegative transition rate function, and
– R : S̄ × B(S̄)→ [0, 1] is a transition measure.

To define the execution of the system, denote (Ω,F ,P ) the underlying proba-
bility space and consider an Rp-valued Wiener process w(t) and a sequence of
stopping times {t0 = 0, t1, t2, . . .} that represent the times when the continuous
and discrete dynamics interact. Let the state at time ti be s(ti) = (q(ti),x(ti))1

with x(ti) ∈ Xq(ti). While the continuous state stays in Xq(ti), x(t) evolves
according to the stochastic differential equation (SDE)

dx = b(q,x)dt + σ(q,x)dw (1)

where the discrete state q(t) = q(ti) remains constant and the solution of (1) is
understood using the Itô stochastic integral.

1 When there is no confusion, we will use interchangeably the notation (q, x) and s
for the hybrid state to simplify complex formulas and often we will use the notation
sti = (qti , xti) for brevity.
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Let t∗i+1 = inf{t ≥ ti,x(t) ∈ ∂Xq(ti)}. The next stopping time ti+1 is defined
as the minimum between t∗i+1 and a stopping time τi+1 with survivor function

exp
(
−
∫ t

ti
λ(q(ti),xz(ω)dz,

)
, ω ∈ Ω. Thus, the survivor function of ti+1 can be

written as

F (t,ω) = I(t<t∗
i+1) exp

(
−
∫ t

ti

λ(q(ti),xz(ω))dz
)

where I denotes the indicator function. If ti+1 = ∞, the system continues to
evolve according to (1) with q(t) = q(ti). If ti+1 <∞, the system jumps at ti+1
to a new state s(ti+1) = (q(ti+1),x(ti+1)) according to the transition measure
R(s(t−i+1),A) with A ∈ B(S). The evolution of the system is then governed by
(1) with q(t) = q(ti+1) until the next stopping time.

The following assumptions are imposed on the model. The functions b(q,x)
and σ(q,x) are bounded and Lipschitz continuous in x for every q, and thus the
SDE (1) has a unique solution. The transition rate function λ is a bounded and
measurable function which is assumed to be integrable for every xt(ω). For the
transition measure, it is assumed that R(·,A) is measurable for all A ∈ B(S),
R(s, ·) is a probability measure for all s ∈ S̄, and R((q,x), dz) is a stochastic
continuous kernel.

Let Nt =
∑

i It≥ti denote the number of jumps in the interval [0, t]. It is
assumed that Es[Nt] <∞ for every initial state s ∈ S. Sufficient conditions for
ensuring finitely many jumps can be formulated by imposing restrictions on the
transition measure R(s,A) [1].

Additionally, in this paper we consider the two following assumptions:

Assumption 1: Non-degeneracy. The boundaries ∂Xq are assumed to be
sufficiently smooth and the trajectories of the system satisfy a non-tangency
condition with respect to the boundaries. A sufficient condition for the non-
tangency assumption is that the diffusion term is non-degenerate, i.e. a(q,x) =
σ(q,x)σT (q,x) is positive definite. This assumption is used to show the conti-
nuity of the viscosity solution close to the boundaries [10]. It should be noted
that it is possible to show the continuity of the viscosity solution close to the
boundaries even with degenerate variance by imposing appropriate conditions
[10, 15].

Assumption 2: Boundness. It is assumed that the set Q is finite and that Xq is
bounded for every q. This is a reasonable assumption for many systems that have
finitely many modes and saturation constraints on the continuous state. Even if
the state space is unbounded, often it is desirable to approximate it for applying
numerical methods. By defining appropriately the boundary conditions, it can be
shown that the effect of the numerical cutoff is small [10]. This assumption is used
for approximating the hybrid system by a finite Markov chain and employing
numerical methods based on dynamic programming.

We refer to the class of GSHS that satisfies the assumptions above simply as
stochastic hybrid systems (SHS).



Computational Methods for Reachability Analysis 381

3 Probabilistic Reachability

In this section, we show that the probability that a state will reach a set of target
states while avoiding an unsafe set can be characterized as the viscosity solution
of a system of coupled HJB equations.

Let T = ∪q∈QT {q}×T q and U = ∪q∈QU {q}×U q be subsets of S representing
the set of target and unsafe states respectively. We assume that T q and U q are
proper subsets of Xq for each q, i.e. ∂T q ∩ ∂Xq = ∂U q ∩ ∂Xq = ∅ and the
boundaries ∂T q and ∂U q are sufficiently smooth. We define Γ q = Xq \ (T q∪U q)
and Γ = ∪q∈Q{q} × Γ q. The initial state (which, in general, is a probability
distribution) must lie outside the sets T and U . The transition measure R(s,A)
is assumed to be defined so that the system cannot jump directly to U or T .

Consider the stopping time τ = inf{t ≥ 0 : s(τ−) ∈ ∂T ∪ ∂U}. Let s be an
initial state in Γ , then we define the function V : Γ̄ → R+ by

V (s) =

⎧⎨⎩
Es[I(s(τ−)∈∂T ], s ∈ Γ
1, s ∈ ∂T
0, s ∈ ∂U

.

The function V (s) can be interpreted as the probability that a trajectory starting
at s will reach the set T while avoiding the set U .

Inspired by [6], we add a new state Δ and we denote Γ ′ = Γ ∪Δ. The system
transitions to Δ according to the measure

R(s,Δ) =
{

1, if s ∈ ∂T ∪ ∂U
0, otherwise .

The new process is indistinguishable from the original process s(t) for t < τ and
at time τ it jumps to Δ and stays there forever. The system dies immediately
after transitioning to Δ, i.e. b(Δ) = σ(Δ) = λ(Δ) = 0. Finally, we extend V to
Γ ′ by defining V (Δ) = 0 which agrees with the probabilistic interpretation of
V . By abuse of notation, we will denote the new process also by s(t).

Given the assumptions on the sets T and U and their boundaries, we can
construct a bounded function c : S̄ → R+ continuous in x such that

c(q,x) =
{

1, if s = (q,x) ∈ ∂T q

0, if s = (q,x) ∈ ∂U q ∪ ∂Xq .

Then, the value function V can be written as

V (s) = Es

[∫ ∞

0
c(qt− ,xt−)dp∗(t)

]
(2)

where p∗(t) =
∑∞

i=1 I(t≥ti)I((qt
i− ,xt

i− )∈∂S) is a counting process counting the
number of times the trajectory hits the boundary and jumps.

Consider the set of nonnegative Borel measurable functions B(S)+ and define
the operator G : B(S)+ → B(S)+ by

Gg(q,x) = Es[c(qt−
1
,xt−

1
)I(t1=t∗

1) + g(qt1 ,xt1)]. (3)
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where t1 is the stopping time of the first jump. We will show that V is a fixed
point of G.

Lemma 1. Gng(q,x) = Es

[∫ tn

0 c(qt− ,xt−)dp∗(t) + g(qtn ,xtn)
]
.

Proof. By the strong Markov property [3] and the construction of the SHS
process we have2

Es[c(qt−
2
,xt−

2
)I(t2=t∗

2) + g(qt2 ,xt2)|F t1 ] = Es[c(qt1 ,xt−
2
)I(t2=t∗

2) + g(qt2 ,xt2)|F t1 ]

= Es[g(qt1 ,xt1)].

Therefore,

G2g(q,x) = G(Gg(q,x)) = Es[c(qt−
1
,xt−

1
)I(t1=t∗

1) + Gg(qt1 ,xt1)]

= Es[c(qt−
1
,xt−

1
)I(t1=t∗

1) + Es[c(qt−
2
,xt−

2
)I(t2=t∗

3) + g(qt2 ,xt2)|F t1 ]]

= Es[c(qt−
1
,xt−

1
)I(t1=t∗

1) + c(qt−
2
,xt−

2
)I(t2=t∗

2) + g(qt2 ,xt2)].

By induction, we get

Gng(q,x) = Es[
n∑

i=1

c(qt−
i
,xt−

i
)I(ti=ti∗) + g(qtn ,xtn)]

= Es[
∫ tn

0
c(qt− ,xt−)dp∗(t) + g(qtn ,xtn)].

Theorem 1. The value function V is a fixed point of the operator G.

Proof. By definition of G, for any ψ1 ≤ ψ2 we have Gψ1 ≤ Gψ2. Let v0(q,x) = 0
for every q and every x and set vn+1(q,x) = Gvn(q,x). Then {vn} increases
monotonically and vn takes values in [0, 1] for every n. Therefore, limn→∞ vn(q,x)
= v(q,x) exists. Note that convergence is not guaranteed for other choices of v0.

Since v ≥ vn, we have Gv ≥ Gvn and thus Gv ≥ vn+1 for all n, therefore
Gv ≥ v. In addition, Gvn = vn+1 ≤ v ≤ Gv and limn→∞ vn = v, therefore
Gv ≤ v ≤ Gv and v = limn→∞ vn is a fixed point of G.

Finally by Lemma 1, v = limn→∞ Gnv0 = Es[
∫∞
0 c(qt− ,xt−)dp∗(t)] therefore

V is a fixed point of G, i.e. V (s) = GV (s).

Next, we show that the value function V can be represented as a discounted cost
criterion with a target set where the running and the terminal cost depend on
V itself.

Theorem 2. Consider the value function V (s) defined by (2) and define LV (q,x)
= λ(q,x)

∫
Γ
V (y)R((q,x), dy) and ψV (q,x) = c(q,x) +

∫
Γ
V (y)R((q,x), dy).

Then, for s ∈ Γ

V (s) = Es

[∫ t∗
1

0
Λ(t)LV (qt− ,xt−)dt + Λ(t∗1)ψ

V (qt∗
1
,xt∗

1
)

]
. (4)

2 Ft denotes the filtration of the SHS process.
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Proof. The SHS satisfies the strong Markov property [3], and therefore, the
Markov property can be applied not only for constant times but also for random
stopping times. Let t1 be the time of the first jump and t∗1 = inf{t ≥ 0 : x(t) ∈
∂Xq(t0)}, then, using a standard dynamic programming argument, we can write

V (s) = Es

[
I(t1<t∗

1)

∫
Γ

V (y)R((qt−
1
,xt−

1
), dy)dt

+ I(t1=t∗
1)

(
c(qt∗

1
,xt∗

1
) +

∫
Γ

V (y)R((qt∗
1
,xt∗

1
), dy)

)]
. (5)

By construction of the transition rate λ, t1 and xt are not independent (un-
less λ is constant). Denote F∞ the σ-field σ(xt, t ≥ 0) generated by xt. The
conditional distribution of t1 given F∞ is P [t1 > t|F∞] = It<t∗

1
Λ(t), where

Λ(t) = exp
{
−
∫ t

0 λ(q0,xz)dz
}
, and the conditional density is

dP [t1 ≤ t|F∞]
dt

= λ(q0,xt)Λ(t)I(t<t∗
1) + Λ(t∗1)δ(t− t∗1).

Thus, equation (5) can be written as

V (s) = Es

[
Es

[
I(t1<t∗

1)

∫
Γ

V (y)R((qt−
1
,xt−

1
), dy)dt

+ I(t1=t∗
1)

(
c(qt∗

1
,xt∗

1
) +

∫
Γ

V (y)R((qt∗
1
,xt∗

1
), dy)

)
|F∞

]]
= Es

[∫ t∗
1

0
λ(qt,xt)Λ(t)

∫
Γ

V (y)R((qt− ,xt−), dy)dt

+ Λ(t∗1)c(qt∗
1
,xt∗

1
) + Λ(t∗1)

∫
Γ

V (y)R((qt1∗,xt1∗), dy)
]
.

Using the definitions of LV (q,x) and ψV (q,x) we have

V (s) = Es

[∫ t∗
1

0
Λ(t)LV (qt− ,xt−)dt + Λ(t∗1)ψ

V (qt∗
1
,xt∗

1
)

]
.

Assuming that the transition measure R(s,A) is a continuous stochastic kernel,
the map (q,x) →

∫
Γ f(y)R((q,x), dy) is bounded uniformly continuous for every

bounded and continuous function f [2]. Then, if V is continuous in X̄q(t0), equa-
tion (4) is very similar to the discounted cost criterion with a target set [15]. The
main difference is that the running cost LV (q,x) and the terminal cost ψV (q,x)
depend on the value function. Since the SHS satisfies the strong Markov prop-
erty, the same procedure can be repeated every time a jump occurs. Next, we
show that under the non-degeneracy assumption V is continuous.
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Theorem 3. V is bounded and continuous in x on Γ̄ .

Proof. The G operator defined by (3) can be written as

Gg(q,x) = Es

[∫ t1

0
c(qt− ,xt−)dp∗(t) + g(qt1 ,xt1)

]
.

Since the SHS satisfies the strong Markov property, we can apply the same
transformation as in Theorem 2 to get

Gq(q,x) = Es

[∫ t∗
1

0
Λ(t)Lg(qt− ,xt−)dt + Λ(t∗1)ψ

g(qt∗
1
,xt∗

1
)

]
. (6)

Therefore

vn+1(q,x) = Gvn(q,x)

= Es

[∫ t∗
n

0
Λ(t)Lvn

(qt− ,xt−)dt + Λ(t∗1)ψ
vn

(qt∗
n
,xt∗

n
)

]
.

Because of the non-degeneracy assumption, the exit times t∗i are continuous at
the sample paths of the process [15]. Therefore, all the functions in the sequence
vn are continuous and further, we have vn ≥ v0 for every n. By applying the
results of [2] (Chapter 7) we can conclude that V = limn→∞ vn is lower semi-
continuous and bounded below.

Next, define a new function Ṽ : Γ̄ → R+ by

V (s) =

⎧⎨⎩
Es[I(s(τ−)∈∂U), s ∈ Γ
1, s ∈ ∂U
0, s ∈ ∂T

.

The function Ṽ can be interpreted as the probability that a trajectory starting
at s will reach U before T and it can be written as

Ṽ (s) = Es

[∫ ∞

0
c̃(qt− ,xt−)dp∗(t)

]
where

c̃(q,x) =
{

0, if s = (q,x) ∈ ∂T q ∪ ∂Xq

1, if s = (q,x) ∈ ∂U q .

From the non-degeneracy assumption, we have that Ṽ = 1− V (s). By applying
the argument given in the first part of the proof to Ṽ , it follows that Ṽ is
lower semi-continuous and bounded below and therefore, V = 1+(−Ṽ ) is upper
semi-continuous and bounded above. Thus, V is continuous and bounded in Γ̄ .

Next, we prove the main result of this section that characterizes V as the viscosity
solution of a system of HJB equations. We use the results of [15] to derive the
HJB equations (similar results can be found also in [10]).



Computational Methods for Reachability Analysis 385

Theorem 4. Assume that f and σ are continuously differentiable w.r.t. x in
Γ q for each q and for suitable C1 and C2 satisfy |fx| ≤ C1, |σx| ≤ C1, and
|f(q, 0)|+ |σ(q,x)| ≤ C2. Then V is the unique viscosity solution of the system
of equations

HV

(
(q,x),V,DxV,D2

xV
)

= 0 in Γ q, q ∈ Q (7)

with boundary conditions

V (q,x) = ψV (q,x) on ∂Γ q, q ∈ Q (8)

where

HV

(
(q,x),V,DxV,D2

xV
)

= f(q,x)DxV +
1
2
tr(a(q,x)D2

xV )+λ(q,x)V +LV (q,x).

Proof. Consider the function

v(q,x) =
{
Gg(q,x) in Γ q

ψg(q,x) on ∂Γ q

where g ∈ B(S)+ is a continuous and bounded function. From (6), it follows
that v(q,x) is the value function of an exit-time problem in Γ q for the diffusion
(1) where Lg : Γ → R+ and ψg : ∂Γ → R+ are bounded continuous functions.
Under the assumptions of f and σ, we can apply the results for standard Markov
diffusions [10] (Thm V.2.1 and Cor. V.3.1) and therefore, v(q,x) a viscosity
solution of

Hg

(
(q,x),V,DxV,D2

xV
)

= 0 in Γ q (9)
V (q,x) = ψg(q,x) on ∂Γ q. (10)

By Theorem 3, V is bounded and continuous. Therefore,

V̄ (q,x) =
{
GV (q,x) in Γ q

ψV (q,x) on ∂Γ q

is a viscosity solution of

HV

(
(q,x), V̄ ,DxV̄ ,D2

xV̄
)

= 0 in Γ q

V̄ (q,x) = ψV (q,x) on ∂Γ q.

where V is considered known and V̄ unknown. But V is a fixed point of G,
and thus V = GV = V̄ in Γ q and ψV = ψV̄ on ∂Γ q, which means V = V̄ is
a viscosity solution of (7 - 8). Further, V is continuous, and therefore, is the
unique viscosity solution which is continuous in Γ̄ .

4 Numerical Methods for Reachability Analysis

4.1 Locally Consistent Markov Chains

In this section, we employ the finite difference method presented in [15] to com-
pute locally consistent Markov chains (MCs) that approximate the SHS while
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preserving local mean and variance. We consider a discretization of the state
space denoted by S̄h = ∪q∈Q{q} × S̄h

q where S̄h
q is a set of discrete points ap-

proximating Xq and h > 0 is an approximation parameter characterizing the
distance between neighboring points. By abuse of notation, we denote the sets
of boundary and interior points of S̄h

q by ∂Sh
q and Sh

q respectively. The state of
the approximating MC is denoted by sh

n = (qh
n, ξh

n), n = 0, 1, 2, . . ..
Consider the continuous evolution of the SHS between jumps and assume that

the state is (q,x). The local mean and variance given the SDE (1) on the interval
[0, δ] are

E[x(δ) − x] = b(q(t),x(t))δ + o(δ)
E[(x(δ) − x)(x(δ) − x)T ] = a(q(t),x(t))δ + o(δ).

Let {qh
n = q, ξh

n} describe the MC on Sh
q ⊂ Xq with transition probabilities

denoted by ph
D((q,x), (q, y)). A locally consistent MC must satisfy

E[Δξh
n] = b(q,x)Δth(q,x) + o(Δth(q,x))

E[(Δξh
n − E[Δξh

n ])(Δξh
n − E[Δξh

n ])T ] =
a(q(t),x(t))Δth(q,x) + o(Δth(q,x))

where Δξh
n = ξh

n+1 − ξh
n, ξh

n = x and Δth(q,x) are appropriate interpolation
intervals (or the “holding times”) for the MC.

The diffusion transition probabilities ph
D((q,x), (q′,x′)) and the interpolation

intervals can be computed systematically from the parameters of the SDE (de-
tails can be found in [15]). If the diffusion matrix a(q,x) is diagonal and we
consider a uniform grid with ei denoting the unit vector in the ith direction, the
transition probabilities are

ph
D((q,x), (q,x ± hei)) =

aii(q,x)/2 + hb±i (q,x)
Q(q,x)

and the interpolation intervals are Δt(q,x) = h2/Q(q,x) where Q(q,x) =
∑

i[aii

(q,x)+h|bi(q,x)|] and a+ = max{a, 0} and a− = max{−a, 0} denote the positive
and negative parts of a real number.

Next, consider the jumps with transition rate λ(q,x) and transition measure
R((q,x),A). Suppose that at time t the state has just changed to {qh

n = q, ξh
n =

x}. The probability that a jump will occur on [t, t + δ) conditioned on the past
data can be approximated by

P [(q,x) jumps on [t, t + δ)|q(s),x(s),w(s), s ≤ t] = λ(q,x)δ + o(δ).

The ith jump of the approximating process is denoted by ζ((q,x), ρi) where ρi

are independent random variables with distribution R̄ = {ρ : ζ((q,x), ρi) ∈ A} =
R((q,x),A) with compact support Θ. Let ζh be a bounded measurable function
such that |ζh((q,x), ρ) − ζ(q,x), ρ)| → 0 uniformly in x for each ρ and which
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satisfies ζh((q,x), ρ) ∈ S̄h. If x ∈ Sh
q , then with probability 1−λ(q,x)Δth(q,x)−

o(Δth(q,x)) the next state is determined by the diffusion probabilities ph
D and

with probability λ(q,x)Δth(q,x)+o(Δth(q,x)) there is a jump and the next state
is (qh

n+1, ξ
h
n+1) = ζ((q,x), ρi). For the points in ∂Sh

q , the next state is determined
by ζ((q,x), ρi) with probability 1. Therefore, the transition probabilities are
defined by

ph((q, x), (q′, x′)) =

(1 − λ(q, x)Δth(q, x) − o(Δth(q, x)))ph
D((q, x), (q′, x′))

+(λ(q, x)Δth(q, x) + o(Δth(q, x)))R̄{ρ : ζh((q, x), ρ) = (q′, x′ − x)} if x ∈ Sh
q

R̄{ρ : ζh((q, x), ρ) = (q′, x′ − x)} if x ∈ ∂Sh
q

(11)

4.2 Iterative Methods for Reachability Analysis

This section describes the approximation of the value function, formulates the
problem for the discrete approximations, and presents the convergence results
for the numerical methods.

Consider the approximating MC {sh
n} = {ξh

n, qh
n} with transition probabilities

ph((q,x), (q′,x′)) defined in (11). Let T̄ h = S̄h∩T̄ and Ūh = S̄h∩Ū and denote by
ni the jump times and νh the stopping time representing that (qh

n, ξh
n} ∈ T̄ h∪Ūh,

then the value function V can be approximated by

V h(s) = Es

[
νh∑

n=0

c(qh
n, ξh

n)I(n=ni)

]
.

The function V h can be computed using a value iteration algorithm. To show
the convergence of the algorithm, we consider a terminal state Δ similar to
Section 3. The state space of the MC becomes S̃h = S̄h∪{Δ} and the transition
probabilities are defined so that p̃h((q,x),Δ) = 1 if x ∈ T̄ h ∪ Ūh, p̃h(Δ,Δ) = 1,
and p̃h((q,x), (q′,x′)) = ph((q,x), (q′,x′)) otherwise. This means that when the
state reaches T or U , it transitions to Δ and stays there for ever. Consider the
function c̃ : S̃h → R+ with c̃(Δ) = 1 and c̃(q,x) = 0 for every (q,x) and the
value function

Ṽ h(s) = Es[
∞∑

n=0

c̃(sn)]. (12)

Clearly, this sum is well-defined, bounded, and we have Ṽ h = V h.

Proposition 1. Let Ṽ h
0 (q,x) = 0 for every (q,x), then the iteration

Ṽ h
n+1(q,x) =

⎡⎣∑
q′,x′

p̃h((q,x), (q′,x′))Ṽ h
n (q′,x′)

⎤⎦ (13)

converges pointwise and monotonically to Ṽ h = V h.
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Proof. Consider the value function defined by (12) for {sn}. We have that
Ṽ h(q,x) ∈ [0, 1] < ∞ and c̃(s) ≥ 0 for all s ∈ S̃h. Therefore, computing Ṽ
is a special case of the total expected reward criterion for positive models [19]. If
v is a fixed point of the iteration (13), then v+k[1, . . . , 1]T , k > 0 is also a fixed
point. Thus, the iteration may have multiple fixed points but if we pick Ṽ h

0 = 0
it converges to the least fixed point Ṽ [19] (Thm 7.2.12).

4.3 Convergence Results

Finally, we show that the value function V h obtained using the approximating
MC converges to the value function V of the SHS as h → 0. Let g ∈ B(S)+ be
a continuous and bounded function and suppose that V is the unique viscosity
solution of (9-10) that is bounded and continuous in Γ̄ q. Consider Σ̄h

q to be a
discretization of Γ̄ q and denote Σh

q and ∂Σh
q the set of interior and boundary

points respectively. Using the approximation described in Subsection 4.1, the
dynamic programming equation for Σ̄h

q can be written as

V h(q,x) =
{
Fh

g [V h(·)](q,x) if x ∈ Σh
q

ψh
g (q,x) if x ∈ ∂Σh

q

where

Fh
g [V h(·)](q,x) =

(1 − λ(q,x)Δth(q,x) − o(Δth(q,x))
∑
q′ ,x′

ph
D((q,x), (q′,x′))V h(q′,x′)

+(λ(q,x)Δth(q,x) + o(Δth(q,x))
∫

Θ

g(ζh((q,x), ρ))R̄(dρ)

and
ψh

g (q,x) = c(q,x) +
∫

Θ

g(ζh((q,x), ρ))R̄(dρ).

Lemma 2. limy→x,h→0 V
h(q, y) = V (q,x) uniformly in Γ̄ q.

Proof. V is continuous and bounded viscosity solution of (9-10) and ψg(q,x) is
continuous. Therefore, for each q we have a standard exit problem from Γ q for
the SDE (1) and by applying the results of [10] (Sec. IX.5) we have that V h

converges uniformly to V .

To show convergence of V h for the SHS, we replace g by V and we follow an
argument similar to the proof of Theorem 1.

Theorem 5. Let

V h(q,x) =
{
Fh

V [V h(·)](q,x) if x ∈ Σh
q

ψh
V (q,x) if x ∈ ∂Σh

q

then limy→x,h→0 V
h(q, y) = V (q,x).
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Proof. Assume that V is given and define

V̄ h(q,x) =
{
Fh

V [V̄ h(·)](q,x) if x ∈ Σh
q

ψh
V (q,x) if x ∈ ∂Σh

q
.

By Lemma 2, since V is bounded and continuous we have limy→x,h→0 V̄
h(q, y) =

V̄ (q,x). Assume that for each h, V̄ h is computed by a value iteration algorithm
with v0 = 0. Then, V h is a fixed point of Fh

V and therefore, V̄ h = V h for every
h and V̄ = V .

5 Navigation Benchmark

This section illustrates the approach using a stochastic version of the navigation
benchmark presented in [9]. The benchmark describes an object moving within
a bounded 2-dimensional region partitioned into cells Xq, q ∈ {0, 1, . . . ,N}
as shown in Figure 1. Let [x1,x2]T and v = [v1, v2]T denote the position and
the velocity of the object respectively. The behavior is defined by the ODE
v̇ = A(v − vq

d) where A ∈ R2×2 and vq
d = [sin(qπ/4), cos(qπ/4)]T . Selecting the

matrix A and adding a diffusion term, the dynamics of the object are described
by the SDE

dx = (Ãx + B̃uq
d)dt + Σdw

where x = [x1,x2, v1, v2]T , uq
d = [0, 0, vq

d]
T , w(t) is an R4-valued Wiener process,

Ã =
[
0 I2
0 A

]
, A =

[
−1.2 0.1
0.1 −1.2

]
, and Σ = 0.1I4.

Consider the target set T and the unsafe set U shown in Figure 1. Given
initial state s0 = (q0,x0), we want to compute the probability that the state will
reach T while avoiding U . Sample trajectories are shown in Figure 1. In order
to apply the approach described in this paper, we under-approximate each cell
Xq by X̃q by considering a smooth boundary ∂X̃q. We also define a transition

U

T

Unsafe Set

Safe Set

0

1

Fig. 1. The navigation benchmark, sample trajectories, and the value function
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Table 1. Performance Data

h Time (minutes) Number of States
.5 .5 2500
.25 7 32400
.1 200 1147041
.05 5110 17147881

measure R((q,x),A) so that the state jumps into an adjacent cell if it hits an
“inner” boundary and jumps into the same cell if it hits on “outer” boundary.
The transition rate is assumed to be zero. We discretize the state space using
a uniform grid with approximation parameter h > 0 and apply the method
described in Section 4 to compute V h(q,x). As h→ 0, V h(q,x) converges to the
solution V (q,x) of the stochastic approximation of the benchmark problem.

Since the continuous state space of the example is 4-dimensional, we select
to plot a projection of V h for initial velocity v0 = [0, 0]T . Figure 1 shows this
projection for h = 0.1 that describes the probability that a trajectory starting
from (q, [x1,x2, 0, 0]T ) will reach T while avoiding U . The computational per-
formance of the algorithm is illustrated in Table 1. All data was collected using
a 3.0 GHz desktop computer with 1 Gb RAM. A more exact characterization
is more involved since the operator Fh

V of the value iteration algorithm is not a
contraction mapping and convergence is guaranteed only for V h

0 = 0.

6 Conclusions and Future Work

The paper characterizes reachability of stochastic hybrid systems as a viscosity
solution of a system of coupled Hamilton-Jacobi-Bellman equations and employs
a numerical method based on discrete approximations for reachability analysis.
The main advantage of the approach is that it guarantees the convergence of
the solution based on the discrete approximation to the solution of the original
problem. The approach can be extended to controlled stochastic hybrid sys-
tems by imposing appropriate conditions for admissible controls. Convergence
of the discrete approximation methods can be investigated using relaxed con-
trols. Characterization of error bounds and convergence rates is an important
and challenging problem especially since convergence is not based on contraction
mappings but it is guaranteed only for appropriate initial conditions. Another
fundamental challenge is to develop scalable numerical methods that can be
applied to large systems. Towards this goal, currently we are investigating meth-
ods based on variable resolution grids and parallel algorithms as well as methods
based on value function approximation.
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Abstract. This paper describes the modeling language R-Charon as an
extension for architectural reconfiguration to the existing distributed hy-
brid system modeling language Charon. The target application domain of
R-Charon includes but is not limited to modular reconfigurable robots and
large-scale transportation systems. While largely leaving the Charon syn-
tax and semantics intact, R-Charon allows dynamic creation and destruc-
tion of components (agents) as well as of links (references) between the
agents. As such, R-Charon is the first formal, hybrid automata based mod-
eling language which also addresses dynamic reconfiguration. We develop
and present the syntax and operational semantics for R-Charon on three
levels: behavior (modes), structure (agents) and configuration (system).

1 Introduction

A hybrid system typically consists of a collection of components interacting
with each other and with an analog environment. In many real world systems,
the collection of components as well as the components they interact with may
change dynamically, i.e., reconfigure [1].

In the world of software design the concept of reconfiguration is well recog-
nized. Object orientation is (becoming) the main design and implementation
paradigm. Creation and destruction of objects as well as changing the commu-
nication structure of the objects are at the core of the object oriented design
paradigm.

Traditional object oriented design methodologies and languages, however,
only support the modeling of discrete systems. Despite the growth of hybrid
modeling languages [2, 3, 4, 5, 6], most hybrid modeling languages do not sup-
port reconfiguration. To properly describe and analyze reconfigurable hybrid
systems, a formal approach is necessary which integrates reconfigurable discrete
behaviors with continuous behaviors. In this paper we present a reconfiguration
extension for the hierarchical hybrid modeling language Charon [2, 3].

Charon is a hybrid modeling language with support for architectural as well
as behavioral hierarchy. The building block for describing a system architecture
is an agent, which can communicate with other agents. Concurrency of agents
and hiding of information is provided by a composition and a hiding operator.
� This research was supported in part by NSF CNS-0509327 and ARO DAAD19-01-

1-0473.

J Hespanha and A. Tiwari (Eds.): HSCC 2006, LNCS 3927, pp. 392–406, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
.



R-Charon, a Modeling Language for Reconfigurable Hybrid Systems 393

The building block for describing behavior in an agent is a mode. A mode is
a hierarchical hybrid state machine, i.e., it can have submodes and transitions
connecting them. An agent alternates between taking a discrete and a continuous
step. A discrete step consists of a series of transitions leading from the currently
active atomic mode, to another atomic mode. This flow of control is determined
by mode invariants, transition guards, and transition actions possibly changing
mode variables. A continuous step amounts to passage of time, during which the
continuous variables evolve according to the algebraic and differential constraints
of the active modes.

There could be many notions of (re)configuration for hybrid systems. We fo-
cus on reconfiguration in two, in a sense similar, application domains: large-scale
transportation systems and modular reconfigurable robots. A transportation sys-
tem typically consists of a large number of possibly mobile entities, competing for
bounded resources. These entities can enter and leave an environment dynam-
ically. Furthermore, (groups of) entities nearing each other may dynamically
set up a communication connection to prevent a collision or to continue as a
group to allow for a more efficient use of the resources. Examples of large-scale
transportation systems include highway control systems [7], unmanned aerial
vehicles [8], and air traffic control systems [9]. A modular robot is built up from
homogeneous modules which can be connected to each other [10, 11]. Typically
there are only a few different types of modules, where each type is designed to
be very orthogonal with respect to the connection to other modules. In this way
a number of many relative simple modules can be connected to form a sophisti-
cated robot. A comprehensive overview of the different existing modular robot
systems can be found in Chapter 4 of [12].

The main contribution of this paper is the formal definition of R-Charon and
its features. In addition to the Charon features, our extension supports agent
creation and destruction as well as dynamic communication connections between
the agents. This makes R-Charon the first formal, hybrid automata based mod-
eling language with explicit support for reconfiguration. We used two guidelines
in the design of R-Charon: minimize the amount of changes to Charon and min-
imize the number of restrictions on the use of the syntax. Note that the latter
comes at the expense of more sophisticated semantics.

Related work. An early approach to hierarchical hybrid modeling with support
for reconfiguration is SHIFT [13]. R-Charon is inspired by its features while en-
joying the formal Charon semantics. The Φ-calculus [6] is a process algebraic
based hybrid reconfigurable modeling language. As an extension of Milner’s
π-calculus [14] it inherits the powerful reconfiguration primitives on process al-
gebra terms. However, as pointed out in [4] the Φ-calculus considers continuous
behavior to be a property of an explicit environment instead of being part of an
agent as we do. Furthermore a process algebraic approach has the disadvantage
that it is difficult to learn and use due to some of its technicalities [15]. Besides
a hybrid extension to I/O Automata [5], also a reconfiguration extension [16]
exists, though not both are combined into a single framework. Some work has
been done on reconfiguration in discrete state machines [17] for programmable
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hardware. The state machines are reconfigured by adding and removing states
and transitions, i.e., take place at the behaviorial level in contrast to the archi-
tectural level we aim at.

2 Reconfiguration

Before we present R-Charon, we first formalize the notion of reconfiguration we
use. The definition is based on the reconfiguration possibilities of modular robots
and large-scale transportation systems, and is inspired by SHIFT [13].

A model of a system consists of a set of components C. Each component c ∈ C
consists of a single set of links L, containing links to other components to which
the component is either logically or physically connected. The set of links L of a
specific component c is denoted by c.L. A component c having at least one link
to a component d, means that c can communicate with d, where we consider
linking not to be reciprocal.

Given a system with a set of components C, the reconfiguration primitives
given below can take place. More complex operations can be performed by a
series of primitives. Since a reconfiguration-only view is presented, the time
instant or the event at which the reconfiguration happens is not relevant.

1. Adding a component: A component c ∈ C can create a new component
cnew and add it to the set C, i.e., C := C ∪ {cnew}. As a consequence
components can now link to cnew . We assume that cnew is of a certain type,
which is known beforehand and defines the structure of the new component.

2. Removing a component: A component c ∈ C can remove an arbitrary
cr ∈ C from the set C, i.e., C := C − {cr}.

3. Adding a link: A component c ∈ C can add an arbitrary ca ∈ C to its
set c.L, i.e., c.L := c.L ∪ {ca}. As a consequence component c can now
communicate with ca.

4. Removing a link: A component c ∈ C can remove an arbitrary cr ∈ c.L
from c.L, i.e., c.L := c.L− {cr}.

The configuration of the world is determined by the set of components C and
the specific values of the sets of links L of all components. To keep a system
consistent after removal of a component, all links to the removed component are
removed as well.

3 Application Example

In this section we present an application example that exhibits the new fea-
tures of R-Charon. In the course of the example, we introduce some graphical
R-Charon syntax, and point out the difficulties in defining the semantics for
R-Charon. Our example is inspired by next generation air-traffic control sup-
porting free flight for commercial airplanes [9], which allows airplanes to navigate
themselves to their target with minimal air-traffic control interaction. We focus
on a section of airspace (center) in which airplanes enter and leave, see Figure 1.
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leave
airspace

enter
airspace

Fig. 1. Air-traffic control example

Airplane3

CAV(Auto) 
Pilot

ADS-B 
Datalink C

ontroller
Airplane2

CAV(Auto) 
Pilot

ADS-B
Datalink

Airplane1

...(Auto)
Pilot

...

Ground control

Center

Fig. 2. Configuration snapshot

The center has a designated no-fly zone, e.g. a military training operation area
off limit to commercial airplanes. In case an airplane approaches the designated
no-fly zone, ground control takes over the navigation of the airplane by giving
way-points, directing the airplane around the no-fly zone. Collision avoidance is
not considered in this example.

Figure 2 presents a snapshot of the hierarchical agents and the configuration
of the system. The arrows originating from a white box depict the links from
one agent to another. The Center agent represents the section of the airspace
and stores links to all airplanes in the airspace. Airplanes entering and leav-
ing the center are modeled by creation and destruction of Airplane agents. The
Ground control agent monitors the airspace in the center. In case an Airplane
agent approaches the no-fly zone, the Ground control agents creates a new con-
troller agent. The Controller agent contacts the corresponding airplane and
guides it around the no-fly zone. As in Charon, each agent consists of one or more
top-level modes, which can contain submodes. Figures 3 and 4 depict simplified
views of the top-level modes of a Ground control agent, a Controller agent,
and a number of Airplane agents, respectively. Modes not specified in detail are
marked with a fat line. Assume that in the mode Monitor center , an airplane
approaching the no-fly zone will be assigned to the nfzPlane reference variable.
This triggers the creation of a new controller referred to by the newController
variable. In the discrete initialization step of a Controller agent, the no-fly zone
violating airplane is notified by setting a reference of the Airplane agent to itself.

Ground control

Monitor center
...

local IAirplane nfzPlane
ICenter ctr
IController newController

create( newController, 
(ctr := this.ctr; release  := False; 
 tar := (0,0); plane := nfzPlane), 
Controller)

Controller global (Real, Real) tar
local ICenter ctr

IAirplane plane

Guide plane

inv{ plane <>  }

plane.con := this

plane = 
destroy( this )

destroy( this )

nfzPlane <> 

Fig. 3. Top-level modes of a Ground control and Controller agent
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(Auto)Pilot

dif{ d(pos) == v * SPEED }

global (Real,Real) pos[X,Y]
(Real,Real) v[X,Y]
IController con

local (Real, Real) tar[X,Y]

Ground control guided
alg{ v == g ( con.tar, pos ) }
inv{ con <> }

Free flight
alg{ v == f ( tar, pos ) 
inv{ con ==  }

con = con <> 

distance(pos, tar) < 1
destroy(this)

distance(pos, tar) < 1
destroy(this)

Fig. 4. Top-level mode of an airplane agent

Note that this reference represents a link from Airplane to Controller . The air-
plane switches to Ground control guided mode and follows a target coordinate
given by the controller, which is computed in the Guide plane mode. As soon as
either the airplane leaves the center or the controller decides that the airplane
has maneuvered successfully around the no-fly zone, the controller is destroyed.
In the latter case, the airplane switches back to the Free flight mode.

The most prominent semantic difficulties are related to agent creation and
destruction. With agent creation the question arises when new agents take their
discrete initialization step. Moreover, agent creation during initialization of a
created agent leads to questions about creation and initialization order. With
agent deletion the question arises how and when to update affected reference
variables to reflect the deletion. The common difficulty lies in the compositional
and hierarchial structure of Charon and the fact that creation or destruction is
an action of a mode that has an effect on the much higher system level.

4 R-Charon

4.1 Notation

Let T be a tuple (t1, t2, . . . , tn). The ith element of T is identified by T.ti. In
other words, the tuple element-names are used as record names and the period is
used as a selector operator. This notation is extended to sets of tuples as follows.
Let ST be a set of tuples with the same structure. The shorthand notation ST.ti
with ti a set will be used for

⋃
T∈ST

T.ti.

Let V be a set of typed variables. A valuation for V is a function mapping
from V to values, where the mapping is assumed to be type correct. The set of
valuations over V is denoted QV . Restriction of a valuation q ∈ QV to a set of
variables W ⊆ V is denoted as q[W ]. Function application of a valuation q ∈ QV

to a variable v ∈ V is written as q(v) and returns the value of the variable v.
A flow for a set V of variables is a differentiable function f from a closed

interval of non-negative reals to the set of valuations: f : [0, δ] → QV , with
δ ≥ 0 the duration of the flow. The set of all flows for V is denoted as FV .
Restriction of a flow f ∈ FV to a set of variables W ⊆ V is denoted as f [W ].
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A list l with elements a1, . . . , an is written as 〈a1, . . . , an〉. A list with zero
elements is written as 〈 〉. Concatenation of two lists la = 〈a1, . . . , an〉, lb =
〈b1, . . . , bm〉 is denoted by la 
 lb and results in the list 〈a1, . . ., an, b1, . . ., bm〉.

4.2 Syntax

The syntax of Charon is extended to accommodate the proposed (re)configu-
ration concept. The syntax is presented in a top-down fashion. Although coun-
terintuitive for a modular modeling language, this approach is more suitable
since the reconfiguration infrastructure is defined on the higher system and agent
levels and used in the lower mode level.

System. The components of Section 2 are mapped onto Charon agents. Con-
sequently, agents can be created and destroyed. Moreover, when creating new
agents dynamically, the structure of the agent has to be known beforehand. To
capture the dynamic set of agents and the possible structures of new agents, we
define an R-Charon system as:

Definition 1 (System). An R-Charon system is a tuple (S,A), where S is a
set of structures and A is a set of parallelly composed agents. Each agent is an
instantiation of a structure from the set S.

Structures and Agents. Assume that a system Sys = (S,A) is given. A
structure is then defined as:

Definition 2 (Structure). A structure S ∈ S is a tuple (TM,V ), where TM
is a set of top-level modes and V is a set of typed variables.

A structure is a blueprint for agents. The set of top-level modes consists of
R-Charon modes, which are Charon modes extended as described in the mode
syntax section further below. The top-level modes of the structure collectively
define the behavior of each R-Charon agent which is an instance of the structure.
The set of variables V is partitioned into two sets: a set of local variables Vl and
a set of global variables Vg. All global variables of the structure have to originate
in some top-level mode, i.e., Vg ⊆ TM.Vg. As in Charon, a variable can be of
any type, as long as it has a type correct valuation.

To facilitate the concept of adding and removing links between agents, we
introduce reference variables. Each instantiated reference variable represents a
link to an agent. This introduces another partitioning of the set of variables V
of a structure into two sets: the set of reference variables variables Vr and the
set of non-reference variables Vnr . A reference variable which is instantiated to
point to an agent A can be used to access the global variables of A. Note that a
reference variable can be a global or a local variable.

A straightforward choice for the type of reference variables would be any
S ∈ S. However, to allow for a greater flexibility we introduce and use the notion
of interface. The interface of an Agent A of structure S is defined to be the set
of global variables of S, S.Vg. The set of interfaces I is then I = {S.Vg|S ∈ S}.
The type of a reference variable can be any I ∈ I, possibly representing a link to
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an agent with a compatible interface J . An agent with interface I1 is compatible
to a reference variable of type interface I2, if all variables available in I2 are
also present in I1, i.e., I2 ⊆ I1. These definitions enable interface specialization,
allowing a single reference variable to link to agents with compatible interfaces
but different behaviors.

Each agent A ∈ A is an instantiation of a certain structure S ∈ S, i.e., there
exists a function s : A → S mapping each agent to a structure. The structure of
each agent remains fixed throughout its entire lifespan. An agent is defined as :

Definition 3 (Agent). An agent A ∈ A of structure s(A) is a tuple (TM,V, I),
where TM is a set of top-level modes, V a set of variables, and I is a set of
possible initialization assignments to the variables of A.

The set of top-level modes is a copy of the set of top-level modes of the structure
of the agent. The set of variables is a copy of the set of variables of the structure
of the agent. The set V is extended with a special fixed variable this, always
referring to the agent itself. The use of this variable will become apparent in the
mode syntax presented below.

Modes. The high-level definition of the mode is identical to a Charon mode:

Definition 4 (Mode). A mode M is a tuple (E,X,V,SM,Cons,T ), where E
is a set of entry control points, X is a set of exit control points, V is a set of
variables, SM is a set of submodes, Cons is a set of constraints, and T is a set
of transitions.

The entry and exit control points and the submodes are the same as in Charon
modes. A mode M is called atomic if M.SM = ∅ and composite otherwise.
The syntax of the sets of variables, constraints, and transitions is extended to
facilitate reconfiguration.

In R-Charon the configuration of the agents and the system can change as the
system evolves. Hence, the Charon concept of using fixed agent input and output
variables in the description of a mode is changed. Now modes can use the global
variables of all agents to which they have a reference. To prevent undesirable
behavior, all global variables of agents except for the (discrete) global reference
variables are defined to be single writer variables, i.e., read-only for the modes
in other agents. Allowing to write to global reference variables provides more
flexibility in modeling reconfiguration.

To use the global variables of referenced agents in a mode, some additional
syntax is introduced. Consider an agent A with the global variables A.Vg. Any
mode in an agent with a reference variable vr pointing to A, can use any global
variable v ∈ A.Vg of A by putting vr.v in its constraint or transition definitions.

The set of variables V of a mode is partitioned into subsets Va and Vd, the sets
of analog and discrete variables, respectively. In addition, V is partitioned into
subsets Vg and Vl of global and local variables, respectively. Let Vref ⊆ Vd be
the subset of V containing all reference variables of the mode. Define V+ to
be the set of the readable variables, i.e., the union of V and the sets of global
variables Vg of the interfaces of the reference variables in Vref . Moreover define
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the set Vact to be the set of writable variables, i.e., the union of V and the
subsets of global reference variables of the interfaces of the reference variables
in Vref . The set of derivatives of the variables in V is denoted as d(V ).

To enable creation and destruction of agents, the syntax of the action part
of the transitions is extended with two special operations: create and destroy.
The create operation has a three tuple argument of the form (vr, Init ,S). With
vr a reference variable afterwards pointing to the new agent, Init ∈ QS.V an
initialization of the variables of the agent, and S the structure of the agent to
be created. Similar to assignments to reference variables, the interface of S is
required to be compatible to the interface type of vr. The destroy action has one
argument, a reference variable pointing to the agent that has to be destructed.
Note that self-destruction of an agent is possible using the this-variable.

As already formalized in the Charon semantics, T is a set of transitions of
the form (e,α,x), where e ∈ E ∪ SM.X and x ∈ X ∪ SM.E. The action α has
a guard γ attached to it, which in turn is a predicate over the set of valuations
of V+, QV+ . The action α is a sequence of assignments to the variables Vact or
create or destroy statements.

Each assignment is of the form x = g(x1, . . . ,xn) with x ∈ Vact and x1, . . .,
xn ∈ V+. The function g might be any function on the given arguments, which
returns a value with the same type as x. Note that by the definition of Vact new
links to agents can be created either through assignments to reference variables
of the mode or through assignments to global reference variables of referenced
agents. A reference to an agent can be removed by assigning a special value ε to
the reference variable representing the link. Adding as well as removing a link
are demonstrated in the Controller mode of Figure 3.

As in Charon, the set of constraints consists of a set of invariants, a set of
algebraic constraints, and a set of differential constraints, which together define
the flow permitted in the mode. Similar to transition actions, the right-hand side
of constraints can include variables from the set of global variables of referenced
agents, V+.

4.3 Informal Semantics

The extensions to Charon consist of two parts. The first part consists of the ref-
erence variables and the use of global variables of referenced agents in the mode
constraints and transitions. This combination enables creation and destruction
of links. The second part consists of the creation and destruction of agents. The
semantics are defined on three levels: mode, agent, and system. An extensive
discussion on the informal semantics and the motivated choices made, can be
found in Section 4.4 of [18].

Upon agent creation, a new agent of the specified structure will be created
and initialized according to the given initialization assignment on the mode level.
The reference variable passed along as a parameter of the create command will
point to the newly created agent. On the system level, the newly created agent
will be added to the set of agents of the system.
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Upon agent destruction, the agent referred to by the argument of the destroy
operation, is removed from the set of agents of the system. The passed reference
variable is set to ε. Upon deleting an agent, all reference variables in the system
referring to the deleted agent are set to ε.

4.4 Semantics

Mode Operational Semantics. The set of all variables of a mode M as well
as all variables of the submodes of M is defined recursively as M.V∗ = M.V ∪
M.SM.V∗. A subset of M.V∗ containing all reference variables of a mode M
and its submodes, is defined recursively as M.Vref ∗ = M.Vref ∪ M.SM.Vref ∗.
Assuming that q is the current valuation of the variables in V∗, the set V is
defined as M.V = M.V∗ ∪

⋃
v∈M.Vref ∗

q(v).Vg . For every composite mode, the set

V is extended with a local variable h which stores the currently active submode.
In case no submode is active, h is valued ε. The state of the mode consists
of a valuation of V, denoted by various forms of q. The configuration state is
captured by the valuation of the reference variables of the mode.

For any transition (e,α,x) ∈ M.T of a mode M, the action α is defined
as a relation between the states of the variables. As described in the syntax,
agents can be created or destroyed in α and as such also affect the system
level. Respecting the hierarchy, however, the mode semantics cannot capture
this directly. Therefore the relation defining the action is augmented with a list
of agents created and destroyed in the action. Such a list will be denoted by
various forms of L. The relation part of the action is a relation between QVact\Vl

and QVact if e ∈M.E and between QVact and QVact otherwise. All operations and
assignments in α are executed sequentially, atomically, and instantaneously. An
augmented pair ((q, q′),L) ∈ α if and only if:

– q satisfies the guard γ attached to α.
– Assuming that α contains k operations, there is a sequence of pairs of a state

and a list of created and destroyed agents (q1,L1), (q2,L2), . . . , (qk+1,Lk+1)
such that q1 = q, L1 = 〈 〉, and for every operation i, 1 ≤ i ≤ k:
• Unless specified otherwise, for every v ∈ V, qi+1(v) = qi(v).
• If operation i is a create operation (vr, Init ,S), then Li+1 = Li 
 〈Anew〉

with agent Anew = (S.TM,S.V, Init) of structure S. Moreover qi+1(vr) =
Anew and qi+1[Anew.V ] = Init . Note that Anew is created instantly and
can be used in operations of the remainder of the transition.

• If operation i is a destroy operation with argument vd, then Li+1 =
Li 
 〈qi(vd)〉. Moreover qi+1(vd) = ε and qi+1(v) = ε for every reference
variable v ∈ V with qi(v) = qi(vd).

• If operation i is neither a create nor a destroy operation, then Li+1 = Li

and qi+1 is the result of the assignment operation performed in qi.
– q′ = qk+1 and L = Lk+1.

The relations which capture the discrete steps of a mode M (RD, Re for
e ∈M.E, and Rx, for x ∈M.X) are constructed from one or more transitions. As
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in Charon, the relations are constructed by sequentially aggregating the actions
of the transitions, including the added lists of created and destroyed agents.

An atomic mode has a single internal step, which is the idling step. It is
enabled if and only if the invariant of the mode is satisfied. Obviously, no agents
are created or destroyed. So, for each state q such that I(q), ((q, q), 〈 〉) ∈ RD.
Further an atomic mode can be entered and exited at any time. Since it does not
have any entry or exit transitions, neither the state is changed nor agents are
created or destroyed. That is, for all q, ((q, q), 〈 〉) ∈ Rde and ((q, q), 〈 〉) ∈ Rdx.

For a composite mode M , the entry relations Re and the exit relations Rx

are constructed from the actions of entry, respectively exit transitions of the
submodes of M. For each entry transition (e,α, e′), it holds that ((q, q′),L) ∈
Re if for some q′′, ((q, q′′),L′′) ∈ α, e′ is an entry point of a submode M ′,
(q′′, q′,L′) ∈M ′.Re′ and L = L′′ 
 L′. For the default entry point, ((q, q), 〈 〉) ∈
Rde whenever q(h) �= ε, which means that the execution of M has been previously
interrupted by a group transition. None of the group transitions added in Charon
contains a create or destroy operation and hence the create and destroy list
is empty. When q(h) = ε, a non-deterministic initialization occurs and thus
((q, q′),L) ∈ Rde whenever ((q, q′),L) ∈ Re for some non-default entry point e.
Similarly, for each exit transition (x′,α,x) of a composite mode, ((q, q′),L) ∈ Rx

if for some q′′, ((q, q′′),L′′) ∈ M ′.Rx′ , ((q′′, q′),L′) ∈ α and L = L′′ 
 L′. Also,
M can be interrupted by a group transition at any moment during its execution
and thus always has to be ready to exit through the default exit. Therefore, for
every q such that q(h) �= ε, ((q, q), 〈 〉) ∈ Rdx.

Internal steps of a composite mode M are either internal steps of M changing
the currently active submode or internal steps of the currently active submode of
M . If a transition of the mode is involved in the step, then the source submode of
the transition should be the active submode and allow an exit step that matches
the transition, and also the target submode of the transition should allow a
matching entry step. Similar to entry and exit steps, the create and destroy
lists are constructed straightforwardly from the create and destroy lists of the
transitions within the step. Consequently, ((q, q′),L) ∈ RD if there exists a state
q0 such that q0[V ] = q[V ] and

– For an active submode N ∈ M.SM , it holds that ((q0[N.V], q′[N.V]),L) ∈
N.RD and q0[V\N.V] = q′[V\N.V], or

– The following four conditions hold:
• There exists an exit point x of the active submode N such that for some
q1 and L1, ((q0[N.V], q1[N.V]),L1) ∈ N.Rx.

• There exists an entry point e of a submode N ′ such that for some q2 and
L2, ((q2[N ′.V∗], q′[N ′.V∗]),L2) ∈ N ′.Re.

• There exists a transition (x,α, e) ∈ M.T such that for some L3,
((q1, q2),L3) ∈ α.

• L = (L1 
 L3) 
 L2.

Similar to the Charon mode semantics, the continuous steps are captured by
the relation RC . The relation RC ⊆ QV+ ×FV+ gives for every state q of M , the
set of flows from q. RC is obtained from the constraints of a mode and relation
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M2

M1

inv{ ref1 <> }

M1.1 M1.2
… ref1.var1 ...

ref1 <>

Fig. 5. Example of an additionally required invariant for a used reference variable

N.RC of its active sub-mode. Given a state Q of a mode M , (q, f) ∈ RC if and
only if the following three conditions hold:

– The flow f is permitted by M , i.e., f satisfies all constraints in M.Cons.
– (q[N.V], f [N.V]) ∈ N.RC .
– For each variable x, q(x) = f(0)(x) unless M has an algebraic constraint Ax.

To be able to define the semantics for a mode, all reference variables used in a
mode must be initialized, i.e., be unequal to ε, at all times at which the mode is
active. A reference variable is used if it either appears in a destroy operation or a
global variable of the referenced agent appears in the constraints or transitions.
Consequently, everymode shouldhavean invariant for eachused referencevariable,
which states that the reference variable is unequal to ε. Figure 5 shows an example
of a mode M1 with one reference variable ref1 complying to this requirement.

Definition 5 (Mode Operational semantics). The operational semantics of
the mode M , OS(M) is defined to be a six tuple consisting of its control points,
its variables and the discrete and continuous relations: OS(M) = (M.E ∪M.X,
M.V, M.RC, M.RD, {M.Re|e ∈M.E}, {M.Rx|x ∈M.X}).

Agent Operational Semantics. Assume that q is the current valuation of the
variables in V . Denote the set of all variables as well as all global variables of
referenced agents as V, formally V = V

⋃
v∈Vr

q(v).Vg. The state of the agent

consists of a valuation of V, denoted by various forms of q.
To improve the clarity of the semantics of the system level, we lift the discrete

and continuous step relations defined in the mode semantics to the level of
the agent semantics. The discrete and continuous relations RAinit, RAD, and
RAC are constructed from the relations Rinit, RD, and RC respectively of the
top-level modes of the agent1. For o ∈ {init,D}, ((q1, q2),L) ∈ RAo if and
only if there is an M ∈ TM such that ((q1[M.V], q2[M.V]),L) ∈ M.Ro. For
the continuous steps, (q1, f) ∈ RAC if and if only for every mode M ∈ TM ,
(q1[M.V ], f [M.V ]) ∈M.RC .

Definition 6 (Agent Operational semantics). The operational semantics
of the agent A, OS(A) is defined to be a five tuple consisting of the control
points of its top-level modes, its variables, the continuous step relation, and the
discrete step relations: OS(A) = (A.TM.E ∪A.TM.X, A.V, A.RAC , A.RAD,
A.RAinit).
1 A Charon top-level mode only has a single entry point init and no exit points.
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System Operational Semantics. The state of a system consists of a two tuple
(q,A). The first element of this tuple is a valuation of all variables of all agents
in A. The set of variables of V of the system is defined as V = A.V . The second
element of the tuple is the set of all agents that currently exist in the system.

Definition 7 (System operational semantics). The operational semantics
of a system Sys, SO(Sys) consist of the set of structures and the set of agents
of the system: SO(Sys) = (S,A).

The operational semantics define a transition system RS over the states of the
system Sys. A transition of the system RS representing a continuous step is

denoted by (q1,A)
(f,t)→ (q2,A) if for all A ∈ A, (q1[A.V ], f [A.V ]) ∈ A.RAC with

f defined on the interval [0, t] and f(t) = q2. Agents created and destroyed in
a discrete step will be added, respectively deleted from the system subsequent
to the discrete step. Each destroyed agent will be deleted from the system in
a system update delete step. Each created agent will be added in a system
update add step which is immediately followed by the discrete initialization steps
of the top-level modes of the created agent. System update steps and discrete
initialization steps of agents created or destroyed during a discrete initialization
step are handled in a depth-first approach. A discrete step and its aftermath
are thus best described recursively. For this purpose we introduce the recursive
function Γ with as arguments a state (q,A) and a list L of created and destroyed
agents. The function Γ ((q,A),L) returns all possible parts of the transition
system dealing with recursively adding and initializing the agents created and
deleting the agents destroyed during the discrete step.

Assuming the function Γ , a transition of the system representing a discrete
step and its aftermath is denoted by (q1,A) o→ Γ ((q2,A),L) if there is an A ∈ A
such that ((q1[A.V ], q2[A.V ]),L) ∈ A.RAo for o ∈ {init,D}. In a discrete step
only one top-level mode of one agent takes a discrete step.

Both the system update add and delete step only occur in the parts of the
transition system defined by Γ and are defined in the context of Γ . The function
Γ is defined based on the pattern of the list of created and destroyed agents
argument. In case the list is empty, no agents have been created or destroyed
during the discrete step: Γ ((q,A)), 〈 〉) = (q,A). In case the first element of
the list is a destroyed agent Ad, first a system update delete step is taken:
Γ ((q1,A)), 〈Ad〉 
 L) = (q1,A) ud→ Γ ((q2,A\{Ad}),L) if

– q2[V\A.Vr] = q1[V\A.Vr ].
– For all v ∈ A.Vr, if q1(v) = Ad then q2(v) = ε otherwise q2(v) = q1(v). That

is, all references to the destroyed agent are removed.

In case the first element of the list is a created agent Ac:

Γ ((q,A), 〈Ac〉 
 L) = (q,A) ua→ (q0,A0)
init→

Γ ((q1,A1),L1)
init→ . . .

init→ Γ ((qk−1,Ak−1),Lk−1)
init→ Γ ((qk,Ak),Lk 
 L)
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if

– Agent Ac has k top-level modes, i.e., |Ac.TM | = k.
– q0[A.c\(Ac.Vr∩Ac.Vg)] ∈ Ac.I[A.c\(Ac.Vr∩Ac.Vg)]. Note that the valuation

of global reference variables of Ac already might have been changed by the
remainder of the discrete step in which the agent has been created.

– The created agent is added to the set of agents in the system update step,
i.e., A0 = A1 = A ∪ {Ac}.

– There is an M ∈ Ac.TM such that ((q0[Ac.V ], q1[Ac.V ]),L1) ∈ M.Rinit.
That is, the first discrete step initializes one of the top-level modes of the
added agent.

– For every 2 ≤ i ≤ k:
• Denote the last state of the transition system part defined by
Γ ((qi,Ai),Li) as (q′i,A′

i).
• There is an M ′ ∈ Ac.TM\M such that ((q′i−1, qi),Li) ∈M ′.Rinit. That

is, the remaining top-level modes of the added agent are initialized.
• Ai = A′

i−1.

An execution of a system Sys = (S,A) is a path through the transition graph
of RS and starts with:

(q0,A0)
init→ Γ ((q1,A1),L1)

init→ Γ ((q2,A2),L2)
init→ . . .

init→ Γ ((qk,Ak),Lk)

such that if we define (q′i,A′
i) to denote the last state of a transition system part

defined by Γ ((qi,Ai),Li):

– A0 = A and for all A ∈ A it holds that q0[A] ∈ A.I.
– The number k equals the total number of top-level modes initially in the

system, i.e., k =
∑

A∈A
|A.TM |.

– Each of the k top-level modes initially in the system takes one of the k
explicitly described discrete initialization steps.

– For any i, 2 ≤ i ≤ k it holds that qi = q′i−1 and Ai = A′
i−1.

From that point on the execution continues as follows:

(f1,t1)→ (qk+1,Ak+1)
o→ Γ ((qk+2,Ak+2),Lk+2)

f2,t2→ . . .

such that for any i > 0, i odd, it holds that Ak+i = A′
k+i−1.

5 Example Revisited

We discuss a part of a trace of the air-traffic control example system of Section 3:

. . . (q0,A) D→ (q1,A) ua→ (q1,A′) init→ (q2,A′)
(f1,0)→ (q2,A′) D→

(q3,A′)
(f2,t2)→ (q4,A′) D→ (q5,A′) ud→ (q6,A)

(f3,0)→ (q6,A) D→ (q7,A)
(f3,0)→ . . .



R-Charon, a Modeling Language for Reconfigurable Hybrid Systems 405

We consider the system at a stage with three agents: a ground control agent, a
center agent, and an airplane agent, i.e., A = {gc, ctr, a}. Assuming the airplane
is approaching the no-fly zone, a discrete step in the gc agent occurs. In this
step, gc creates a new controller c to guide a which results in a system update
add step and A′ = {gc, ctr, a, c}. Note that the valuation q1 does not change in
this step. As described in the semantics, the add step is followed by the discrete
initialization step of c. In this initialization step a link from a to c is created, i.e.,
q2(a.con) = c. The continuous step with flow f1 has a duration of 0 because the
invariant of the Free flight mode of a evaluates to false now. The next discrete
step is then a mode switch in a to the Ground control guided mode. After some
time t2 the airplane has been navigated successfully around the no-fly zone and
the controller c destroys itself in a discrete step. This leads to the system update
delete step in which the link from a to c is removed (q6(a.con) = ε) and c
is removed from the system. Because the invariant in the active mode of a has
become false again, the next continuous step has a duration of 0. In the following
discrete step, a is forced back into the Free flight mode.

6 Conclusion and Future Work

We have presented an extension for reconfigurability to Charon, the hierarchi-
cal modular language for hybrid systems. The presented extension is a semi-
conservative extension of Charon. i.e., an embedding of a Charon model to an
R-Charon model exists [18]. The language extension is designed to support phys-
ical as well as communication-wise reconfiguration as encountered in large-scale
transportation systems and in modular reconfigurable robots. Applicability of
the reconfiguration notion inspired by SHIFT has already been shown [19].

The compositionality results of R-Charon modes can be taken over and ex-
tended straightforwardly from the mode compositionality results in [3]. A logical
next step is to come up with a sound notion of agent compositionality and to
prove that it holds for R-Charon agents. Other relevant work includes extending
the Charon toolkit to support the presented reconfiguration concept, applying
R-Charon to real modular robot models and use the models for analysis, explor-
ing explicit agent hierarchy and reconfiguration between sub-agents within an
agent, and adding a location model as a first class language element.
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Abstract. Monitoring a hybrid system subjected to human actions
needs both an estimation of the system state and an analysis of the
possible conflicts in order to guarantee a safe behavior of the system.
Such a monitoring principle is presented in this paper. The estimation of
the hybrid system state is performed using the particle Petri net model.
Then the estimated state is analysed by checking its consistency with re-
spect to the reachable markings of the Petri net. The principle is applied
to aircraft pilot’s activity tracking and conflict detection.

1 Conflict Detection in Hybrid Systems

Monitoring hybrid systems is a major topic of research in complex applica-
tions. Indeed most of the real systems have a hybrid behavior – i.e. a con-
tinuous/discrete evolution of the state – induced both by the dynamics of the
system (discontinuities, linear approximations) and by external actions that may
be performed by a human operator. Moreover a real system is sensitive to envi-
ronment modifications such as noises, defects. . . Therefore such a system needs
its state to be estimated and its behavior to be analysed so as to ensure that it
remains safe.

The work presented in this paper rests both on an estimation of the hybrid
state of a system and on a detection of inconsistent behaviors. The monitoring
principle is applied to the detection of conflicts [1] in the pilot’s activities: during
a flight, a misunderstanding between two agents (e.g. the pilot and the copilot,
the crew and the controller, the crew and the autopilot. . . ) may induce a dan-
gerous situation. The case we are focusing on is the autopilot-pilot conflict: the
aircraft state and the pilot’s actions on the autopilot are monitored jointly to
detect and anticipate possible inconsistencies.

In the next section, hybrid estimators are presented and discussed, and some
prerequisites are given in Sect. 3. Then Sect. 4 presents the estimation process
which is based on an iterative prediction–correction loop. The conflict detection
principle is presented in Sect. 5. The estimation process is illustrated both with
a thermostat example and an aircraft approach simulation (Sect. 6).
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2 Hybrid State Estimation

Estimating the state of a hybrid system is widely studied in the literature and
involves a large amount of techniques, from numerical filters to network models.

In [2] the estimation rests on a set of Kalman filters, each one tracking a
linear mode of the system. The most probable states allow to determine the
most probable filter and then the most probable mode of the system (i.e. the
most probable behavior of a car like turning, accelerating, etc.) In the same way,
[3] propose an estimator based both on hybrid automata to represent the mode
evolution and on a particle filter to estimate the continuous state of the system.
The estimated mode is then the most probable mode of the system with respect
to the estimated continuous states. A similar principle is applied in [4] that uses
a concurrent probabilistic hybrid automaton (cPHA) to estimate the mode of
the system using Kalman filters.

Bayesian networks are also used to represent hybrid systems by modeling the
links between discrete and continuous variables in terms of conditional probabil-
ities over time. Inference rules [5] or particle filtering [6] can be used to estimate
the state of a hybrid system. However Bayesian networks suffer from:

1. the necessity to define a measure (probability, possibility. . . ) on the (contin-
uous and discrete) state. This is sometimes impossible to do for instance in
case of complete uncertainty (see [7]);

2. the fact that consistency analysis is difficult to perform as the estimations
on discrete and continuous states are aggregated within the probability dis-
tribution.

In the same way, the analysis of conflicts, or conversely consistency, is mainly
based on the study of continuous variables. In [8] the hybrid system must satisfy
constraints that are checked on the continuous estimated states of the system.
Del Vecchio and Murray [9] use lattices to identify the discrete mode of a hybrid
system when only continuous variables are observed. In [10], the reachability
analysis, based on hybrid automata, allows to identify safe and dangerous be-
haviors of the system and is applied to an aircraft collision problem. Nielsen
and Jensen [11] define a conflict measure on the estimated state of a Bayesian
network; nevertheless this method still suffers from the need to define a measure
on totally uncertain states, and from the fact that the conflict measure is contin-
uous, which leads to a threshold effect. In [12] an aircraft procedure and pilot’s
actions are jointly modeled using a particle Petri net that allows the procedure
to be simulated using a Monte-Carlo method and the results to be analysed using
the Petri net properties. Hence only the nominal procedure is modeled and the
analysis is based on qualitative properties and does not involve any continuous
measure.

The monitoring system presented in this paper is based on the later work: it
allows both the estimation to be computed and the consistency of the estimated
states to be analysed without defining a priori measures on unknown states.
Indeed it is the structure of the Petri net-based model itself which allows the
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consistency to be checked. The next section mentions the main definitions of
particle Petri nets.

3 Prerequisites

3.1 Particle Filtering

The particle filter [13] allows the state xk at time k of a dynamic system subject
to deterministic and random inputs to be estimated from observations zk spoilt
with stochastic errors. It is based on a discretization of the uncertainty on the
state value: the probability distribution function of the estimate x̂k|k – meaning
the state estimated at time k knowing the observation at time k – is represented
by a set of N particles x

(1)
k|k, . . . ,x

(N)
k|k (see Fig. 1). The estimation is achieved

through a two-step process : the prediction, that consists of estimating the next
particles x

(i)
k+1|k according to the evolution model, and the correction, that is

based on a comparison of the expected particle values with the observation: the
closer the expected particles are to the most probable value of the observation,
the bigger weight they are assigned. Then N new particles x(i)

k+1|k+1 are generated
from a resampling of the weighted corrected particles.

Fig. 1. Particle filtering (from [14])

3.2 Particle Petri Nets

A Petri net < P,T ,F,B > is a bipartite graph with two types of nodes: P is
a finite set of places; T is a finite set of transitions [15]. Arcs are directed and
represent the forward incidence function F : P × T → N and the backward
incidence function B : P × T → N respectively. An interpreted Petri net is such
that conditions and events are associated with places and transitions. When
the conditions corresponding to some places are satisfied, tokens are assigned to
those places and the net is said to be marked. The evolution of tokens within the
net follows transition firing rules. Petri nets allow sequencing, parallelism and
synchronization to be easily represented.
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A particle Petri net [12] is a hybrid Petri net model where places and transi-
tions are either numerical or symbolic:

1. numerical places PN are associated with differential equations representing
the continuous evolution of the system;

2. numerical transitions TN are associated with conditions and represent mode
changes in the system dynamics;

3. symbolic places PS and transitions TS are associated with symbolic states
and actions respectively.

The state of the system is represented by a set of tokens, that are particles
π

(i)
k+1|k – meaning particle number i at time k + 1 knowing the observation at

time k –, evolving within the numerical places, and a set of configurations δ(j)
k+1|k

evolving within symbolic places. A marking mi,j = (π(i), δ(j)) represents a pos-
sible state of the system. The firing rules [12] associated with numerical and
symbolic transitions allow all the expected states of the system to be computed
whatever the actions.

Figure 2 is the particle Petri net of a thermostat. The thermostat manages
temperature1 θ between 20◦C and 25◦C. The numerical places p0, p1 and p2 are
associated with differential equations modeling heating (θ̇ = −0.2θ + 5.4) and
cooling (θ̇ = −0.1θ + 1.2) respectively. The numerical transitions correspond to
guards: transition θ > 25 (respectively θ < 20) indicates that the temperature is
(respectively is not) warm enough. The symbolic places indicate the modes of the
thermostat (on or off) and the symbolic transitions (OFF ) represent external
actions to turn off the thermostat.

Fig. 2. The thermostat Petri net

4 Estimation of Particle Petri Net Marking

The estimator presented here is based on the particle filtering principle and com-
putes the expected markings of a particle Petri net. The estimation is achieved
through a two-step process:
1 The temperature is noted θ in the text and T on figures as the θ character is not

available in the estimation software and T is already the set of transitions of the
particle Petri net.
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1. a prediction of the expected markings, according to the particle Petri net
firing rules, that computes all the possible combinations of numerical and
symbolic states;

2. a correction of the markings according to an observation made on the system.

4.1 Prediction

The prediction is achieved through the computation of the reachable markings
of the particle Petri net, i.e. the set of the expected states. It is based both on an
isoparticle evolution, i.e. an evolution of the tokens within the net to model mode
changes according to actions, and an isomarking evolution, i.e. an evolution of
the particles according to differential equations.

Let us consider the example of the thermostat (Fig. 2), and let the initial
marking be π

(0)
0|0 = 20◦C marking place p0 and δ(0) marking place on. Then the

expected marking at time 1 is the marking shown on Fig. 3, where

1. in place p0, particle π(0) = 21.4◦C has evolved according to the heating
differential equation;

2. in place p2, particle π(1) = 19.2◦C has evolved according to the cooling dif-
ferential equation, predicting the situation corresponding to the thermostat
being turned off;

3. configurations δ(0) and δ(1) in symbolic places on and off respectively indicate
that the thermostat may be either on or off at time 1.

Thereby the marking at time k represents the estimated states as a set of
tokens – the set of particles being a discretization of the probability distribu-
tion on the continuous state –, and the prediction step computes the expected
marking at time k + 1.

Fig. 3. Predicted marking at time 1

4.2 Correction

The correction consists in comparing matchings between the predicted tokens
and the incoming observation and selecting the “best” ones. The correction
process:
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1. weights the predicted particles according to the noisy observation:

w(π(i)
k+1|k) =

p(zk+1|π(i)
k+1|k)

N∑
j=0

p(zk+1|π(j)
k+1|k)

(1)

where zk+1 is the observation at time k + 1, w(π) is the weight of particle π
and p(z|π) is the conditional probability to observe z knowing the expected
state π;

2. groups the weighted particles according to the equivalence relation R:

π(i)Rπ(j) ⇔

⎧⎨⎩
∀p ∈ PN , (π(i) ∈M(p) ⇔ π(j) ∈M(p))
∀π(k) ∈ Π / ∀p ∈ PN (π(i) ∈ M(p)⇒ π(k) �∈ M(p)),

(w(π(i)) ≥ w(π(k)) ⇔ w(π(j)) ≥ w(π(k)))
(2)

where Π = {π(i), i ∈ �1;N�} and M(p) is the marking of place p. The
equivalence classes are noted Γ = {γ(i)

k+1|k}, and their weights are defined by

w(γ(i)
k+1|k) =

∑
π∈γ

(i)
k+1|k

w(π) (3)

The process is then recursively applied on Γ to group the equivalence classes
until they are restricted to singletons;

Remark 1. The equivalence relation R is designed to help diagnose the state
of the system by reducing the size of the data to be analysed. (2) means that
particles π(i) and π(j) are equivalent if they mark the same place p and for
each particle π(k) which is not in p, both π(i) and π(j) have either a higher
or lower weight than π(k).

Remark 2. The algorithm applying recursively relation R on particles and
then on equivalence classes terminates and computes at most N steps, where
N is the number of particles (the worst case considers that at each step only
two classes are equivalent).

3. updates [16] the ranking of predicted configurations δk+1|k according to the
observation. This results in a ranking of corrected configurations δk+1|k+1
(≺Δ means “is preferred to”):

(zk+1 → δ
(i)
k+1|k) ∧ (zk+1 �→ δ

(j)
k+1|k)⇒ δ

(i)
k+1|k+1 ≺Δ δ

(j)
k+1|k+1 (4)

where z → δ means that configuration δ matches observation z (see Example
1 below). (4) means that the configurations matching the observation are
preferred to the configurations not matching the observation.
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If both δ
(i)
k+1|k and δ

(j)
k+1|k match (or do not match) the configuration, the

ranking is not changed, the relation between δ
(i)
k+1|k+1 and δ

(j)
k+1|k+1 is the

same as between δ
(i)
k+1|k and δ

(j)
k+1|k:

(zk+1 → δ
(i)
k+1|k ∧ zk+1 → δ

(j)
k+1|k)

⇒ (δ(i)
k+1|k+1 �Δ δ

(j)
k+1|k+1 ⇔ δ

(i)
k+1|k �Δ δ

(j)
k+1|k)

(5)

(zk+1 �→ δ
(i)
k+1|k ∧ zk+1 �→ δ

(j)
k+1|k)

⇒ (δ(i)
k+1|k+1 �Δ δ

(j)
k+1|k+1 ⇔ δ

(i)
k+1|k �Δ δ

(j)
k+1|k)

(6)

The relation �Δ (meaning “is preferred or equivalent to”) is a partial pre-
order on the set of configurations;

Example 1. In the thermostat example, relation→, representing the match-
ing between predicted configurations and the observation, is defined by :

(a) on → on and on �→ off,
(b) off → off and off �→ on,
(c) on ∧ off → on and on ∧ off → off
(d) false → on and false → off

where case (c) corresponds to an observation of both modes on and off,
that may come from a sensor error, and case (d) corresponds to an empty
observation (false) that may come from a sensor failure.

4. constructs the correction graph by ranking (relation �) the markings mi,j =
(γ(i), δ(j)), according to the weights on γ(i) and to relation �Δ on configu-
rations δ(j):

mi,j ≺ mk,l ⇔
{
w(γ(i)) ≥ w(γ(k)) ∧ δ(j) �Δ δ(l)

w(γ(i)) > w(γ(k)) ∨ δ(j) ≺Δ δ(l) (7)

mi,j ∼ mk,l ⇔ (w(γ(i)) = w(γ(k)) ∧ δ(j) ∼Δ δ(l) ) (8)

5. resamples the particles : N new particles π
(i)
k+1|k+1 are drawn from the dis-

crete probability law {π(i)
k+1|k,w(π(i)

k+1|k)}. The particles are then spoilt with
the model noise to represent the model approximation.

The resampled particles represent the estimated numerical states of the sys-
tem at time k+1 and are introduced in the next prediction step. The correction
graph built from predicted tokens is analysed to detect inconsistencies. This anal-
ysis is presented in the next section. The whole estimation process is illustrated
in Sect. 6 on the thermostat example.
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5 Consistency Analysis and Conflict Detection

A state of the system is said to be consistent if it is a possible state with respect
to the initial state and to the model of the nominal behavior of the system. The
set of possible states can be computed before the on-line estimation and consists
in computing the reachable states of the particle Petri net.

Hence an ordinary safe Petri net4 is associated with the particle Petri net of
the system such as one ordinary token is associated to each place corresponding
to a marked (by particles or by configurations) place in the particle Petri net.

Let the initial marking of the ordinary safe Petri net of the thermostat (Fig. 2)
beM0 = (1 0 0 1 0): places p0 and on are marked, places p1, p2 and off are empty.
Then marking M0 represents the initial state of the Petri net: the thermostat
is on and heating.

The reachable states of the particle Petri net correspond to the reachable
markings of the safe Petri net represented in Fig. 4. This graph is the classical
automaton of a thermostat, with three modes: on (marking M0), idle (marking
M1) and off (marking M2). Consequently the markings that are inconsistent in
the estimation process are:

1. M4 = (0 0 1 1 0), meaning that the thermostat is on but the temperature
decreases;

2. M5 = (1 0 0 0 1), meaning that the thermostat is off but is still heating;
3. M6 = (0 1 0 0 1), meaning that the thermostat is off but will heat as soon as

the temperature is under 20.

Fig. 4. Reachable markings of the thermostat Petri net

Remark 3. The computation of the reachable markings may be complex in gen-
eral as the set of reachable markings may be infinite. Nevertheless the set of
reachable markings of a safe Petri net is finite.

The consistency analysis is achieved through the study of the correction graph
computed during the correction process:

1. Each marking mi,j = (γ(i), δ(j)) is associated with a marking m̃i,j in the
associated safe Petri net:

∀p ∈ P = PN ∪ PS , m̃i,j(p) =
{

1 if γ(i) ∈M(p)5 or δ(j) ∈M(p)
0 otherwise

(9)

4 An ordinary Petri net is a Petri net with no interpretation containing undifferentiated
classical tokens. A Petri net is said to be safe for an initial marking M0 if for all
reachable markings, each place contains zero or one token.
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2. Then the consistency of mi,j is checked:

mi,j is consistent ⇔ m̃i,j ∈ G (10)

where G is the graph of the reachable markings of the safe Petri net.

Knowing the (in)consistent markings of the correction graph is a first step
towards the detection of conflictual situations. Some issues in analysing such
a graph are currently under study, for instance about using the graph in the
resampling strategy or identifying patterns in the correction graph to detect
well-known conflictual situations.

The next section presents some examples and results about the estimation
principle and the consistency analysis.

6 Simulations

6.1 Thermostat Monitoring

This subsection illustrates the estimation process and the consistency analysis
presented in the previous section. The initial marking of the thermostat is repre-
sented in Fig. 5 where 50 particles have been drawn from the normal distribution
N (22◦C, 1) – 22◦C is the initially observed temperature.

Fig. 5. Initial estimated state of the thermostat: the thermostat is on, heating, and
the temperature is approximatively 22◦C

Temperature Estimation. Figure 6 is the result of the estimation process
launched on the Petri net of Fig. 5 with a new observation of the temperature
and the thermostat mode every second. The dashed line represents the (noisy)
observations and the crosses are the particles.

We can notice that the shape of the estimated temperature smoothly fits
the observed temperature, meaning that the estimation well corresponds to the

5 By abuse of notation, γ(i) ∈ M(p) means that all the particles in γ(i) are marking
place p (which is true by construction of γ(i)).
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Fig. 6. Estimation of the temperature

thermostat behavior. To illustrate the estimation process, let us consider the
correction step at time 1.

The observation at time 1 is z1 = (21.567◦C, on). Table 1 contains the ten
best predicted particles according to z1 and their associated weights. As far
as the consistency analysis is concerned, it is easily guessed that analysing the
whole table, containing fifty columns (one per particle), is not obvious. Then
the particles are grouped in equivalence classes according to relation R applied
recursively: when the particles are ranked by weight, (2) consists in making
classes by grouping the particles by place following the ranking. The first step
of the construction results in the following equivalence classes:

1. γ(1) = {π(11)} with weight 0.0361 in p2,
2. γ(2) = {π(12),π(25),π(17)} with weight 0.1077 in p0,
3. γ(3) = {π(41),π(18)} with weight 0.0702 in p2,
4. γ(4) = {π(8),π(29),π(1),π(42)} with weight 0.1410 in p0.

Relation (2) applied recursively on Γ = {γ(1), γ(2), γ(3), γ(4)} gives as a final
result:

1. γ(5) = {γ(4), γ(2)} with weight 0.2487 in p0,
2. γ(6) = {γ(3), γ(1)} with weight 0.1063 in p2.

The associated correction graph is drawn in Fig. 7 where δ(0) = on and δ(1) =
off: as the observation is on, δ(0) ≺ δ(1), and as w(γ(5)) > w(γ(6)), the marking
relation is m5,0 ≺ m5,1, m5,0 ≺ m6,0, m5,0 ≺ m6,1, m5,1 ≺ m6,1 and m6,0 ≺ m6,1.

The framed markings are consistent. As a result, the best marking (the root of
the graph) is consistent and matches the on state (thermostat on and heating).

Table 1. Best weighted particles at time 1

particle number 11 12 25 41 17 18 8 29 1 42
θ 21.581 21.594 21.535 21.615 21.618 21.624 21.630 21.502 21.638 21.642

weight 0.0361 0.0360 0.0360 0.0357 0.0357 0.0355 0.0354 0.0353 0.0352 0.0351
place p2 p0 p0 p2 p0 p2 p0 p0 p0 p0
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Fig. 7. Correction graph at time 1

Inconsistent Behaviors. In order to study the consistency of the thermostat
behavior, two faulty cases are considered. Both consist in a wrong behavior of
the thermostat that stops heating at temperatures 26◦C and 24◦C respectively.

Figure 8 is the result of the estimation of the thermostat that stops heating
at 26◦C. At time 7, the best marking (given the observation at time 7) has a
weight of 0.9985 and matches the state idle (places p1 and on). At time 8, the
best marking has a weight of 0.9970 and matches the state on (places p0 and
on). The difficulty to estimate the right state can be explained by the fact that
the behavior is misunderstood by the estimator as no particle has a temperature
around 26◦C.

Fig. 8. Conflict detection: the behavior of the thermostat is unknown

At time 22, the best marking matches the idle state (place p1 and on) with a
weight of 1. Then from time 23, the best markings match state off (places p2 and
off) and consequently are inconsistent as the observation is on. The difficulty to
track the behavior results in the fact that the estimation is completely wrong:
all the particles are out of the main part of the Gaussian observation – 99% of
the probability of a Gaussian distribution is within [μ − 3σ;μ + 3σ] where μ is
the mean value and σ the standard deviation.

This case shows that the prediction does not match the observations very
well as nearly no particle has a temperature around 26◦C. Nevertheless the
estimation is able to track the temperature over 25◦C. Switching from consistent
to inconsistent matchings (times 7 and 8) reveals an inconsistent behavior.

Figure 9(a) is the result of the estimation of the thermostat that stops heating at
24◦C. In that case the estimation is completely different: all the correction graphs
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(a) Estimation of the temperature (b) Correction graph

Fig. 9. Conflict detection: the behavior of the thermostat corresponds to the off mode

from time 4 are the same (Fig. 9(b), where γ(1) ∈ p2). Indeed the numerical obser-
vations can be explained as they match the particles within place p2. However the
symbolic observation is on. Then the best corrected marking is inconsistent and
reveals a fault: the temperature evolves as if the thermostat was off.

6.2 Estimation of the Pilot’s Activity

This section presents an application of the estimation principle to aircraft pilot’s
activity tracking. The considered flight is modeled by the particle Petri net of
Fig. 10.

Numerical places and transitions represent the trajectory of the aircraft. The
procedure consists of a descent (place p0) from Agen. At 7 NM from Agen
(transition d(AGN)>7NM), the aircraft starts turning (place p1) and when

Fig. 10. The particle Petri net of the Approach from Agen to Toulouse
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intercepting heading 144◦ (transition Heading>144), the aircraft has to perform
a deceleration (place p2). At 4 NM from Toulouse (transition d(TOU)<4NM),
the Approach procedure is finished: the next phase is the Landing procedure.
The symbolic transitions correspond to pressing the Approach button (transition
APPR while descending or turning), engaging the autopilot and setting flaps 1
(transitions AP and Flaps1 while decelerating). Then the configurations have
attributes APPR, AP and Flaps. The particles have attributes x, y, z (the 3-D
coordinates of the aircraft), s (the speed) and h (the heading).

The estimation of the aircraft position (x and y coordinates) is represented
in Fig. 11. The dashed lines represent the nominal trajectory of the aircraft and
the dots represent the estimated particles. At time 0, the aircraft position is
quite uncertain: the initial distribution is diffuse. The estimation becomes more
precise from time 10.

At time 220, some particles mark place p2 (the aircraft may be decelerating)
but the main corrected state matches place p1: the aircraft is still turning. At
this time the observation states that the Approach button is not pressed. The
correction graph at time 220 is shown in Fig. 12, with γ(i) ∈ pi for i ∈ {1, 2}
and δ(j) ∈ pj for j ∈ {3, 4, 5, 6, 7}. Marking m2,3 is close to the best marking
m1,3 and is inconsistent: it has to be studied and tracked while estimating the
system state. Indeed it allows to anticipate a possible conflict that may occur if
the Approach button is not pressed in a near future.

At time 230 most of the corrected particles are in p2 and the Approach button
is pressed (according to the observation): a safe state is recovered.

(a) at time 0 (b) estimated aircraft positions plotted
from time 10 to 340

Fig. 11. Estimation of the aircraft position

Fig. 12. Correction graph of the Approach at time 220
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7 Conclusion

The particle Petri net-based estimation principle that is presented in this paper
paves the way to the detection of inconsistent behaviors in systems subjected to
discrete actions – e.g. human actions on the system interface. Therefore the paper
has focused on the ability of the estimation principle to track and diagnose hybrid
systems. Computational issues will be studied and discussed on future works.

Ongoing work is focusing on the analysis of the correction graph, and more
specifically on inconsistent states. What is considered is to study the dynamics
of inconsistent states within the correction graph while monitoring the system
in order to design an automatic monitoring agent for hybrid systems that would
allow an early detection of conflicts.

Experiments are being prepared with the flight simulator at Supaero in order
to assess conflict detection in procedures involving complex autopilot modes.
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1 Coordinated Science Laboratory,
University of Illinois at Urbana-Champaign,

Urbana, IL 61801, USA
liberzon@uiuc.edu

2 Department of Electrical and Electronic Engineering,
University of Melbourne, Parkville, 3052, Victoria, Australia

d.nesic@ee.unimelb.edu.au

Abstract. We present a general approach to analyzing stability of hy-
brid systems, based on input-to-state stability (ISS) and small-gain theo-
rems. We demonstrate that the ISS small-gain analysis framework is very
naturally applicable in the context of hybrid systems. Novel Lyapunov-
based and LaSalle-based small-gain theorems for hybrid systems are pre-
sented. The reader does not need to be familiar with ISS or small-gain
theorems to be able to follow the paper.

1 Introduction

The small-gain theorem is a classical tool for analyzing input-output stability of
feedback systems; see, e.g., [1]. More recently, small-gain tools have been used
extensively to study feedback interconnections of nonlinear state-space systems
in the presence of disturbances; see, e.g., [2]. Hybrid systems can be naturally
viewed as feedback interconnections of simpler subsystems. For example, every
hybrid system can be regarded as a feedback interconnection of its continuous
and discrete dynamics. This makes small-gain theorems a very natural tool to
use for studying internal and external stability of hybrid systems. However, we
are not aware of any systematic application of this idea in the literature.

The purpose of this paper is to bring the small-gain analysis method to the
attention of the hybrid systems community. We review, in a tutorial fashion, the
concept of input-to-state stability (ISS) introduced by Sontag [3] and a nonlinear
small-gain theorem from [2] based on this concept. The ISS small-gain theorem
states that a feedback interconnection of two ISS systems is ISS if an appropriate
composition of their respective ISS gain functions is smaller than the identity
function. Since a proof of this theorem can be based entirely on time-domain
analysis of system signals, the result is valid for general dynamical systems, thus
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providing an “off-the-shelf” method for verifying stability of hybrid systems. We
also discuss Lyapunov-based tools for checking the hypotheses of this theorem.

As an alternative to time-domain proofs, Lyapunov function constructions for
interconnected systems under small-gain conditions were studied for continuous-
time systems in [4] and for discrete-time systems in [5]. It is well known that
having a Lyapunov function provides additional insight into the behavior of
a stable system and is important for tasks such as perturbation analysis and
estimating the region of attraction. In this paper, we present a novel construction
of a Lyapunov function for a class of hybrid systems satisfying the conditions
of the ISS small-gain theorem. We also describe another approach, based on
constructing a “weak” (non-strictly decreasing) Lyapunov function and applying
the LaSalle invariance principle for hybrid systems from [6]. While the basic
idea of the small-gain stability analysis for hybrid systems was announced and
initially examined by the authors in [7], the Lyapunov function constructions
reported here are new and represent the main technical contribution of this work.

In the companion paper [7], we illustrate the power of the proposed method
through a detailed treatment of several specific problems in the context of hybrid
control with communication constraints. As demonstrated there, the small-gain
analysis provides insightful interpretations of existing results, immediately leads
to generalizations, and allows a unified treatment of problems that so far have
been studied separately. Due to the pervasive nature of hybrid systems in appli-
cations, we expect that the main ideas described in this paper will be useful in
many other areas as well.

2 Preliminaries

In what follows, id denotes the identity function and ◦ denotes function com-
position. We write a ∨ b for max{a, b} and a ∧ b for min{a, b}. The class of
continuously differentiable functions is denoted by C1 (the domain will be spec-
ified separately). The gradient operator is denoted by ∇. Given some vectors
x1 ∈ Rn1 and x2 ∈ Rn2 , we often use the simplified notation (x1,x2) for the
“stack” vector (xT

1 ,xT
2 )T ∈ Rn1+n2 .

2.1 Hybrid System Model

We begin by describing the model of a hybrid system to which our subsequent
results will apply. This model easily fits into standard modeling frameworks for
hybrid systems (see, e.g., [8, 6, 9]), and the reader can consult these references for
background and further technical details. The description to be provided here is
somewhat informal, but it is sufficient for presenting the results.

We label the hybrid system to be defined below as H. The state variables of H
are divided into continuous variables x ∈ Rn and discrete variables μ ∈ Rk. We
note that μ actually takes values in a discrete subset of Rk along every trajectory
of the hybrid system, but this set need not be fixed a priori and may vary with
initial conditions. The time is continuous: t ∈ [t0,∞). We also consider external
variables w ∈ Rs, viewed as disturbances.
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The state dynamics describing the evolution of these variables with respect to
time are composed of continuous evolution and discrete events. During continu-
ous evolution (i.e., while no discrete events occur), μ is held constant and x satis-
fies the ordinary differential equation ẋ = f(x,μ,w) with f : Rn×Rk×Rs → Rn

locally Lipschitz. We now describe the discrete events. Given an arbitrary time
t, we will denote by x−(t), or simply by x− when the time arguments are omit-
ted, the quantity x(t−) = lims↗t x(s), and similarly for the other state vari-
ables. Consider a guard map G : Rn+k → Rp (where p is a positive integer)
and a reset map R : Rn+k → Rn+k. The discrete events are defined as fol-
lows: whenever G

(
x−,μ−) ≥ 0 (component-wise), we let (x,μ) = R(x−, μ−) =(

Rx(x−, μ−), Rμ(x−, μ−)
)
. By construction, all signals are right-continuous.

Some remarks on the above relations are in order. In many situations, the
continuous state does not jump at the event times: Rx(x,μ) ≡ x. The guard map
often depends on time and/or auxiliary clock variables, which we do not explicitly
model here (they can be incorporated into x). We want inequality rather than
equality in the reset triggering condition because for a discrete event to occur, we
might need several conditions which do not become valid simultaneously (e.g.,
some relation between x and μ holds and a clock has reached a certain value).
Of course, equality conditions are easily described by pairs of inequalities. Note
that we allow the disturbances w to affect the discrete events only indirectly,
through the continuous state x. This assumption will simplify the Lyapunov-
based conditions in Sections 4 and 5; it is typically reasonable in the context of
hybrid control design (see [7, 10]).

Well-posedness (existence and uniqueness of solutions) of the hybrid system
H is an issue; see, e.g., [8]. At the general level of the present discussion, we are
going to assume it. For example, by using clocks, we can ensure that a bounded
number of discrete events occurs in any bounded time interval. Then, to obtain a
solution (in the sense of Carathéodory), we simply flow the continuous dynamics
until either the end of their domain is reached (finite escape) or a discrete event
occurs; in the latter case, we repeat from the new state, and so on. See also [11]
for an interesting alternative definition of solutions of hybrid systems.

2.2 Feedback Interconnection Structure

The starting point for our results is the observation that we can view the hybrid
system H as a feedback interconnection of its continuous and discrete parts, as
shown in Figure 1(a). For simplicity, we ignore the roles of the guard map G and
the continuous state reset map Rx in the diagram.

It is clear that the above decomposition is just one possible way to split
the hybrid system H into a feedback interconnection of two subsystems. There
may be many ways to do it; the best choice will depend on the structure of
the problem and will be one for which the small-gain approach described below
will work. Each subsystem in the decomposition can be continuous, discrete, or
hybrid, and may be affected by the disturbances. This more general situation is
illustrated in Figure 1(b). Here, the state variables and the external signals of
H are split as x = (x1,x2), μ = (μ1,μ2), w = (w1,w2), the first subsystem H1
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x

μ

ẋ = f(x, μ, w)

μ = Rμ(x−, μ−)

w w1

w2
z2

z1H1

H2

Fig. 1. Hybrid system viewed as feedback interconnection: (a) special decomposition,
(b) general decomposition

has states z1 := (x1,μ1) and inputs v1 = (z2,w1), and the second subsystem H2
has states z2 := (x2,μ2) and inputs v2 = (z1,w2).

In the approach discussed here, coming up with a decomposition of the above
kind is the first step in the analysis of a given hybrid system. As we pointed out,
at least one such decomposition always exists. It can also happen that the hybrid
system model is given from the beginning as an interconnection of several hybrid
systems. Thus the structure we consider is very general and not restrictive.

2.3 Stability Definitions

A function α : [0,∞)→ [0,∞) is said to be of class K (which we write as α ∈ K)
if it is continuous, strictly increasing, and α(0) = 0. If α is also unbounded, then
it is said to be of class K∞ (α ∈ K∞). A function β : [0,∞)× [0,∞)→ [0,∞) is
said to be of class KL (β ∈ KL) if β(·, t) is of class K for each fixed t ≥ 0 and
β(r, t) is decreasing to zero as t→∞ for each fixed r ≥ 0.

We now define the stability notions of interest in this paper. Consider a hybrid
system with state z = (x,μ) and input v (as a special case, it can have only
continuous dynamics or only discrete events). Following [3], we say that this
system is input-to-state stable (ISS) with respect to v if there exist functions
β ∈ KL and γ ∈ K∞ such that for every initial state z(t0) and every input v(·)
the corresponding solution satisfies the inequality

|z(t)| ≤ β(|z(t0)|, t− t0) + γ(‖v‖[t0,t]) (1)

for all t ≥ t0, where ‖v‖[t0,t] := sup{|v(s)| : s ∈ [t0, t]} (except possibly on a
set of measure 0). We will refer to γ as an ISS gain function, or just a gain if
clear from the context. For time-invariant systems, we can take t0 = 0 without
loss of generality. If the inputs are split as v = (v1, v2), then (1) is equivalent
to |z(t)| ≤ β(|z(t0)|, t − t0) + γ1(‖v1‖[t0,t]) + γ2(‖v2‖[t0,t]) for some functions
γ1, γ2 ∈ K∞. In this case, we will call γ1 the ISS gain from v1 to z, and so on.

In the case of no inputs (v ≡ 0), the inequality (1) reduces to |z(t)| ≤
β(|z(t0)|, t) for all t ≥ t0, which corresponds to the standard notion1 of global
asymptotic stability (GAS). In the presence of inputs, ISS captures the property
1 This can also be equivalently restated in the more classical ε–δ style (cf. [12]).
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that bounded inputs and inputs converging to 0 produce states that are also
bounded and converging to 0, respectively. We note that asymptotic stability of
a linear system (continuous or sampled-data) can always be characterized by a
class KL function of the form β(r, t) = cre−λt, c, λ > 0. Moreover, an asymptot-
ically stable linear system is automatically ISS with respect to external inputs,
with a linear ISS gain function γ(r) = cr, c > 0.

3 ISS Small-Gain Theorem

Consider the hybrid systemH defined in Section 2.1, and suppose that it has been
represented as a feedback interconnection of two subsystems H1 and H2 in the
way described in Section 2.2 and shown in Figure 1(b). The small-gain theorem
stated next reduces the problem of verifying ISS of H to that of verifying ISS
of H1 and H2 and checking a condition that relates their respective ISS gains.
The result we give is a special case of the small-gain theorem from [2]. That
paper treats continuous systems, but since the statement and the proof given
there involve only properties of system signals, the fact that the dynamics are
hybrid in our case does not change the validity of the result. We note that the
small-gain theorem presented in [2] is much more general in that it treats partial
measurements (input-to-output-stability, in conjunction with detectability) and
deals with practical stability notions. Many other versions are also possible, e.g.,
we can replace the sup norm used in (1) by an Lp norm [13].

Theorem 1. Suppose that:
1. H1 is ISS with respect to v1 = (z2,w1), with gain γ1 from z2 to z1, i.e.,

|z1(t)| ≤ β1(|z1(t0)|, t− t0) + γ1(‖z2‖[t0,t]) + γ̄1(‖w1‖[t0,t])

for some β1 ∈ KL, γ1, γ̄1 ∈ K∞.
2. H2 is ISS with respect to v2 = (z1,w2), with gain γ2 from z1 to z2, i.e.,

|z2(t)| ≤ β2(|z2(t0)|, t− t0) + γ2(‖z1‖[t0,t]) + γ̄2(‖w2‖[t0,t])

for some β2 ∈ KL, γ2, γ̄2 ∈ K∞.
3. There exists a function ρ ∈ K∞ such that2

(id + ρ) ◦ γ1 ◦ (id + ρ) ◦ γ2(r) ≤ r ∀ r ≥ 0. (2)

Then H is ISS with respect to the input w = (w1,w2).

Three special cases are worth mentioning explicitly. First, in the case of no ex-
ternal signals (w1 = w2 ≡ 0), we conclude that H is GAS. Second, when the
two ISS gain functions are linear: γi(r) = cir, i = 1, 2, the small-gain condi-
tion (2) reduces to the simple one c1c2 < 1. Third, the theorem covers the case

2 If one replaces β + γ with β ∨ γ in the definition (1) of ISS, then the small-gain
condition (2) can be simplified to γ1 ◦ γ2(r) < r for all r > 0.
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of a cascade connection, where one of the gains is 0 and hence the small-gain
condition (2) is automatically satisfied.

Sometimes one wants to concentrate only on some states of the overall system,
excluding the other states from the feedback interconnection. For example, one
might ignore some auxiliary variables (such as clocks) which have very simple
dynamics and remain bounded for all time. Theorem 1 is still valid if z1 and z2
include only the states of interest for each subsystem.3

Small-gain theorems have been widely used for analysis of continuous-time
as well as discrete-time systems with feedback interconnection structure. The
discussion of Section 2.2 suggests that it is also very natural to use this idea to
analyze (internal or external) stability of hybrid systems. Of course, one needs to
show that the subsystems in a feedback decomposition satisfy suitable ISS prop-
erties, and calculate the ISS gains in order to check the small-gain condition (2).
There exist efficient tools for doing this, as exemplified in the next section.

4 Sufficient Conditions for ISS

Consider the hybrid systemH defined in Section 2.1, and suppose that it has been
represented as a special feedback interconnection shown in Figure 1(a). The two
lemmas stated below provide Lyapunov-based conditions which guarantee ISS
of the continuous and discrete dynamics, respectively, and give expressions for
the ISS gains. Thus they can be used for verifying the hypotheses of Theorem 1
in this particular case. The first result is well established [3]; the second one is
a slightly sharpened version of Theorem 4 from the recent paper [15].

Lemma 1. Suppose that there exists a C1 function V1 : Rn → R, class K∞ func-
tions α1,x,α2,x, ρx,σ, and a continuous positive definite function α3,x : [0,∞)→
[0,∞) satisfying

α1,x(|x|) ≤ V1(x) ≤ α2,x(|x|) (3)

and

V1(x) ≥ ρx(|μ|) ∨ σ(|w|) ⇒ ∇V1(x)f(x,μ,w) ≤ −α3,x(V1(x)). (4)

Then the x-subsystem is ISS with respect to (μ,w), with gain γx := α−1
1,x ◦ ρx

from μ to x.

The condition (3) simply says that V1 is positive definite and radially unbounded.
We can take α3,x to be of classK∞ with no loss of generality [3]. The condition (4)
can be equivalently rewritten as ∇V1(x)f(x,μ,w) ≤ −α4,x(V1(x)) + χx(|μ|) for
some α4,x,χx ∈ K∞. However, using the latter condition instead of (4) in the
lemma would in general lead to a more conservative ISS gain. We also note that
Lemma 1 can be easily generalized by allowing V1 to depend on t as well as on
x, leaving the bounds in (3) unchanged, and adding the time derivative of V1
in (4); we will work with a Lyapunov function of this kind in Theorem 2 below.
3 This amounts to modifying the hypotheses by replacing ISS with a suitable input-to-

output stability notion (cf. [2, 14]) and requiring that the ISS gain from the “hidden”
states in each subsystem to the states of interest in the other subsystem be 0.
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Lemma 2. Suppose that there exists a C1 function V2 : Rk → R, class K∞ func-
tions α1,μ,α2,μ, ρμ, and a continuous positive definite function α3,μ : [0,∞) →
[0,∞) satisfying

α1,μ(|μ|) ≤ V2(μ) ≤ α2,μ(|μ|) (5)

such that we have

V2(μ) ≥ ρμ(|x|) ⇒ V2(Rμ(x,μ))− V2(μ) ≤ −α3,μ(V2(μ)) (6)

and
V2(μ) ≤ ρμ(r) and |x| ≤ r ⇒ V2(Rμ(x,μ)) ≤ ρμ(r). (7)

Suppose also that for each t > t0 such that V2(μ(s)) ≥ ρμ(‖x‖[t0,s]) for all
s ∈ [t0, t), the number N(t, t0) of discrete events in the interval [t0, t] satisfies

N(t, t0) ≥ η(t− t0) (8)

where η : [0,∞) → [0,∞) is an increasing function. Then the μ-subsystem is
ISS with respect to x, with gain γμ := α−1

1,μ ◦ ρμ.

We can assume that α3,μ ∈ K∞ with no loss of generality [16]. The conditions (6)
and (7) are both satisfied if we have

V2(Rμ(x,μ))− V2(μ) ≤ −α4,μ(V2(μ)) + χμ(|x|) (9)

for some α4,μ,χμ ∈ K∞. Indeed, letting ρμ(r) := α−1
4,μ(2χμ(r)), we see that (6)

holds with α3,μ := α4,μ/2. Decreasing α4,μ if necessary, assume with no loss of
generality that id− α4,μ ∈ K (cf. [17]). We then have

V2(μ) ≤ α−1
4,μ(2χμ(r)) and |x| ≤ r ⇒

V2(Rμ(x,μ)) ≤ χμ(|x|) + (id− α4,μ)
(
α−1

4,μ(2χμ(r))
)
< α−1

4,μ(2χμ(|x|))

and so (7) holds with the same ρμ. Moreover, (6) implies (9) and consequently (7)
if the map Rμ is continuous at (x,μ) = (0, 0). Still, it is useful to write two
separate conditions (6) and (7) if we want the least conservative expression for
the ISS gain. The former condition coupled with (8) is the main ingredient for
obtaining ISS, while the latter is automatically enforced if, for example, discrete
events can only decrease V2(μ). An example of a function η that can be used
in (8) is η(r) = r

δa
−N0, where δa and N0 are positive numbers (see [15]). In this

case, (8) says that discrete events must happen at least every δa units of time
on the average, modulo a finite number of events that can be “missed”.

Proof of Lemma 2. Let t̄ := min
{
t ≥ t0 : V2(μ(t)) ≤ ρμ(‖x‖[t0,t])

}
≤ ∞ (this

is well defined in view of right-continuity). By virtue of (6), we have V2(μ) −
V2(μ−) ≤ −α3,μ(V2(μ−)) at each event time in the interval [t0, t̄). Therefore,
there exists a function β̄ ∈ KL such that V2(μ(t)) ≤ β̄(V2(μ(t0)),N(t, t0)) for
all t ∈ [t0, t̄); cf. [17]. Invoking (8), we have V2(μ(t)) ≤ β̄

(
V2(μ(t0)), η(t − t0)

)
hence |μ(t)| ≤ α−1

1,μ

(
β̄
(
α2,μ(|μ(t0)|), η(t − t0)

))
=: βμ(|μ(t0)|, t − t0) for all t ∈

[t0, t̄). Next, (7) applied with r := ‖x‖[t0,t] at each event time guarantees that
V2(μ(t)) ≤ ρμ(‖x‖[t0,t]) hence |μ(t)| ≤ α−1

1,μ ◦ρμ(‖x‖[t0,t]) for all t ≥ t̄. Combining
the two bounds for |μ(t)| gives the desired estimate. ��
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5 Lyapunov-Based Small-Gain Theorems

Consider again the hybrid system H defined in Section 2.1 and decomposed as in
Figure 1(a). Here we assume for simplicity that Rx(x,μ) ≡ x (continuous state
does not jump at the event times). Theorem 1, applied to this special feedback
decomposition, provides sufficient conditions for ISS. The proof of this theorem is
based on trajectory analysis. Lemmas 1 and 2 can be used to check the hypothe-
ses of Theorem 1, and involve ISS-Lyapunov functions for the two subsystems.
The question naturally arises whether Theorem 1 can be formulated and proved
entirely in terms of such Lyapunov functions. Such alternative formulations are
available for continuous-time as well as discrete-time small-gain theorems [4, 5],
but this issue has not been pursued for hybrid systems.

Here we present a preliminary result in this direction. We denote by tk,
k = 1, 2, . . . the discrete event times, which we assume to be distinct (with
no significant changes, we could allow finitely many discrete events to occur
simultaneously). It is also convenient to introduce a special clock variable τ ,
which counts the time since the most recent discrete event and is reset to 0
at the event times: τ(t) := t − tk for t ∈ [tk, tk+1). It must be noted that the
Lyapunov function V constructed in Theorem 2 below depends, besides x and
μ, on this variable τ . Therefore, it can really be viewed as a Lyapunov function
only if the sequence {tk} is independent of the initial state. Otherwise, the proof
of ISS using this function is actually a trajectory-based argument (but it still
represents an interesting alternative to a purely time-domain one).

Theorem 2. Suppose that there exist positive definite, radially unbounded C1

functions V1 : Rn → R and V2 : Rk → R, class K∞ functions χ1,χ2,σ, and
positive constants b1, b2, c, d,T such that we have

V1(x) ≥ χ1(V2(μ)) ∨ σ(|w|) ⇒ ∇V1(x)f(x,μ,w) ≤ −cV1(x), (10)

V2(μ) ≥ χ2(V1(x)) ⇒ V2(Rμ(x,μ)) ≤ e−dV2(μ), (11)

V2(μ) ≤ eb2χ2(eb1V1(x)) ⇒ V2(Rμ(x,μ)) ≤ χ2(V1(x)), (12)

the small-gain condition

eb1χ1(eb2χ2(r)) < r ∀ r > 0 (13)

holds, and the discrete events satisfy

tk+1 − tk ≤ T ∀ k ≥ 0. (14)

Then there exist a locally Lipschitz function V : [0,T ]×Rn×Rk → R, class K∞
functions α1,α2, σ̄, a continuous positive definite function α3 : [0,∞)→ [0,∞),
and a continuous function α4 : [0,T ] × [0,∞) → [0,∞) satisfying α4(τ, r) > 0
when τr �= 0, such that for all τ ∈ [0,T ] and all (x,μ) ∈ Rn × Rk the bound

α1(|(x,μ)|) ≤ V (τ,x,μ) ≤ α2(|(x,μ)|) (15)

holds and we have
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V (τ,x,μ) ≥ σ̄(|w|) ⇒

V̇ (τ,x,μ) :=
∂V

∂τ
(τ,x,μ) +

∂V

∂x
(τ,x,μ)f(x,μ,w) ≤ −α3(|(x,μ)|) (16)

for the continuous dynamics4 and

V (0,x, Rμ(x,μ))− V (τ,x,μ) ≤ −α4(τ, |(x,μ)|) (17)

for the discrete events. Consequently, H is ISS with respect to w.

In spirit, the hypotheses of Theorem 2 match the hypotheses of Theorem 1
and Lemmas 1 and 2, although there are some differences. We note that the
condition (14) can be written as N(t, s) ≥ t−s

T for all t > s ≥ t0, i.e., it is a
strengthened version of (8). For simplicity, we assumed in (10) and (11) that V1
and V2 decay at exponential rates. In the special case when the gain functions
χ1 and χ2 are also linear, b1 and b2 in (12) and (13) can be set to 0. Note also
that (10) only needs to hold for those states where we have continuous evolution,
i.e., where G(x,μ) < 0, while (11) and (12) only need to hold for those states
where discrete events occur, i.e., where G(x,μ) ≥ 0.

Proof of Theorem 2. We have that V1 stays constant during the discrete events
while V2 stays constant along the continuous dynamics. First, we want to con-
struct modified functions V 1 and V 2 which strictly decrease during the discrete
events and the continuous dynamics, respectively, while also enjoying decreasing
properties similar to (10)–(12). Pick a number L1 ∈

(
0, c ∧ (b1/T )

)
and define

V 1(τ,x) := eL1τV1(x). (18)

Using (14), we have

V1(x) ≤ V 1(τ(t),x) ≤ eL1TV1(x) ∀ t,x. (19)

Similarly, pick a number L2 ∈
(
0, (d ∧ b2)/T

)
and define

V 2(τ,μ) := e−L2τV2(μ) (20)

to obtain
e−L2TV2(μ) ≤ V 2(τ(t),μ) ≤ V2(μ) ∀ t,μ. (21)

Define χ̄1(r) := eL1Tχ1(eL2T r) and σ̄(r) := eL1Tσ(r). Combining (10), (18),
(19), and (21), we have for the continuous dynamics

V 1(τ,x) ≥ χ̄1(V 2(τ,μ)) ∨ σ̄(|w|) ⇒
∂V 1

∂τ
(τ,x) +

∂V 1

∂x
(τ,x)f(x,μ,w) ≤ −(c− L1)V 1(τ,x) (22)

and for the discrete events
4 We will define V as a maximum of two C1 functions, hence the gradient ∂V /∂x is in

general not defined at the points where these two functions are equal. However, the
derivative of V (x(·)) with respect to time exists everywhere and is continuous almost
everywhere along each trajectory. This is sufficient for establishing ISS; cf. [4].
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V 1(0,x) = e−L1τV 1(τ,x). (23)

Similarly, the evolution of V 2 satisfies

∂V 2

∂τ
(τ,μ) = −L2V 2(τ,μ), (24)

V 2(τ,μ) ≥ χ2(V 1(τ,x)) ⇒ V 2(0, Rμ(x,μ)) ≤ e−(d−L2T )V 2(τ,μ), (25)

V 2(τ,μ) ≤ χ2(V 1(τ,x)) ⇒ V 2(0, Rμ(x,μ)) ≤ χ2(V 1(τ,x)). (26)

The condition (13) implies χ̄1 ◦χ2(r) < r for all r > 0, which is equivalent to
χ2(r) < χ̄−1

1 (r) for all r > 0. As in [4], pick a C1, class K∞ function ρ with

ρ′(r) > 0 ∀ r > 0 (27)

such that
χ2(r) < ρ(r) < χ̄−1

1 (r) ∀ r > 0. (28)

We are now ready to define a (time-varying) candidate ISS-Lyapunov function
for the closed-loop system H as

V (τ,x,μ) :=

{
ρ(V 1(τ,x)) if ρ(V 1(τ,x)) ≥ V 2(τ,μ)
V 2(τ,μ) if ρ(V 1(τ,x)) < V 2(τ,μ)

(29)

We claim that it satisfies (15)–(17). To prove this, pick arbitrary τ ∈ [0,T ] and
(x,μ) �= (0, 0). Let us first consider the case when V (τ,x,μ) ≥ σ̄(|w|). We further
distinguish between the following two cases.

Case 1: ρ(V 1(τ,x)) ≥ V 2(τ,μ), so that V (τ,x,μ) = ρ(V 1(τ,x)). If ρ(V 1(τ,x)) >
V 2(τ,μ), then we have, using (22), (27), (28), and positive definiteness of V1 and
V2, that x �= 0 and

V̇ (τ,x,μ) = ρ′(V 1(τ,x))
(
∂V 1

∂τ
(τ,x) +

∂V 1

∂x
(τ,x)f(x,μ,w)

)
≤ −ρ′(V 1(τ,x))(c − L1)V 1(τ,x) < 0

If ρ(V 1(τ,x)) = V 2(τ,μ), then by positive definiteness of V1 and V2 both x and
μ are nonzero and, invoking also (24), we have

V̇ (τ,x,μ) = ρ′(V 1(τ,x))
(
∂V 1

∂τ
(τ,x) +

∂V 1

∂x
(τ,x)f(x,μ,w)

)
∨ ∂V 2

∂τ
(τ,μ)

≤ −ρ′(V 1(τ,x))(c − L1)V 1(τ,x) ∨ −L2V 2(τ,μ) < 0

Turning to the discrete events, we have three possible cases. If ρ(V 1(0,x)) ≥
V 2(0, Rμ(x,μ)), then from (23) we have V (0,x, Rμ(x,μ)) = ρ(V 1(0,x))
= ρ(e−L1τV 1(τ,x)) ≤ ρ(V 1(τ,x)) = V (τ,x,μ), and the inequality is strict if
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τ > 0. If ρ(V 1(0,x)) < V 2(0, Rμ(x,μ)) and V 2(τ,μ) ≥ χ2(V 1(τ,x)), then (25)
gives V (0,x, Rμ(x,μ))=V 2(0,x, Rμ(x,μ)) < V 2(τ,μ) ≤ ρ(V 1(τ,x))=V (τ,x,μ).
Finally, if ρ(V 1(0,x)) < V 2(0, Rμ(x,μ)) and V 2(τ,μ) ≤ χ2(V 1(τ,x)), then
using (26) we obtain V (0,x, Rμ(x,μ)) = V 2(0,x, Rμ(x,μ)) ≤ χ2(V 1(τ,x)) <
ρ(V 1(τ,x)) = V (τ,x,μ).

Case 2: ρ(V 1(τ,x)) < V 2(τ,μ), so that V (τ,x,μ) = V 2(τ,μ). Using (24) and pos-
itive definiteness of V2, we have μ �= 0 and V̇ (τ,x,μ) = ∂V 2

∂τ (τ,μ) = −L2V 2(τ,μ)
< 0. As for the discrete events, (25) and (28) imply that V 2(0, Rμ(x,μ)) <
V 2(τ,μ). If V 2(0, Rμ(x,μ)) > ρ(V 1(0,x)), then we have V (0,x, Rμ(x,μ))
= V 2(0, Rμ(x,μ)) < V 2(τ,μ) = V (τ,x,μ). On the other hand, if V 2(0, Rμ(x,μ))
≤ ρ(V 1(0,x)), then by virtue of (23) we have V (0,x, Rμ(x,μ)) = ρ(V 1(0,x)) ≤
ρ(V 1(τ,x)) < V 2(τ,μ) = V (τ,x,μ).

Since V1 and V2 are positive definite and radially unbounded, there exist
functions α1,x,α2,x,α1,μ,α2,μ ∈ K∞ such that (3) and (5) hold. Using (19),
(21), and (29), we obtain

ρ(α1,x(|x|)) ∨ e−L2Tα1,μ(|μ|) ≤ V (τ,x,μ) ≤ ρ
(
eL1Tα2,x(|x|)

)
∨ α2,μ(|μ|).

It is now a routine exercise to construct functions α1,α2 ∈ K∞ for which (15)
holds. Next, observe that the condition V (τ,x,μ) ≥ σ̄(|w|) was used, via (22),
only to prove the decrease of V along the continuous dynamics but not during
the discrete events. Thus (16) and (17) are established (constructing α3 and α4
is again a simple exercise). Finally, ISS of H with respect to w follows from (15)–
(17) via standard arguments (cf. [3, 15]). ��

Remark 1. ISS of H would still hold if instead of (17) we had the weaker
condition V (0,x, Rμ(x,μ)) ≤ V (τ,x,μ), with (16) unchanged. To construct a
function V with these properties, we could set L1 = 0 in the above proof, i.e.,
work with the original function V1 in place of V 1; accordingly, we could set b1 = 0,
and also the linearity of the right-hand side of (10) in V1 would not be important.
On the other hand, the stronger condition (17) makes the Lyapunov function
V more useful for quantifying the effect of the discrete events. In particular,
if we impose a dwell-time constraint tk+1 − tk ≥ ε > 0 for all k ≥ 0, then a
uniform decrease condition of the form V −V − ≤ −ᾱ4(V −), with ᾱ4 continuous
positive definite, holds for all discrete events, yielding the stronger property of
ISS with respect to a “hybrid time domain” in which the continuous time t and
the discrete event index k play essentially equivalent roles (see [11]). ��

As an alternative to constructing a Lyapunov function strictly decreasing along
solutions, we can work with a weak Lyapunov function non-strictly decreas-
ing along solutions and apply a LaSalle invariance principle for hybrid systems,
such as the one proved in [6] (see also [18] for recent generalizations and im-
provements). As can be seen from the proof of the result given next, such an
approach is perhaps simpler and more natural in the situation at hand, and the
relevant hypotheses more closely match those of Theorem 1 and Lemmas 1 and 2.
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However, the result has inherent limitations characteristic of LaSalle theorems;
in particular, it is restricted to disturbance-free, time-invariant dynamics.

Consider the same hybrid system H as in Theorem 2, but assume that there
are no disturbances, i.e., the continuous dynamics are described by ẋ = f(x,μ).
We assume as before that the resulting discrete event times are distinct (the
extension to the case when a finite number of discrete events can occur simulta-
neously is straightforward). We also assume that the behavior of H is continuous
with respect to initial conditions, in the sense defined and characterized in [6].

Theorem 3. Suppose that there exist positive definite, radially unbounded C1

functions V1 : Rn → R and V2 : Rk → R, class K∞ functions χ1,χ2, and
continuous positive definite functions α1,α2 : [0,∞)→ [0,∞) such that we have

V1(x) ≥ χ1(V2(μ)) ⇒ ∇V1(x)f(x,μ) ≤ −α1(V1(x)), (30)

V2(μ) ≥ χ2(V1(x)) ⇒ V2(Rμ(x,μ)) − V2(μ) ≤ −α2(V2(μ)), (31)

V2(μ) ≤ χ2(V1(x)) ⇒ V2(Rμ(x,μ)) ≤ χ2(V1(x)), (32)

the small-gain condition

χ1 ◦ χ2(r) < r ∀ r > 0 (33)

holds, and for each t > t0 such that V2(μ(s)) ≥ χ2(V1(x(s))) for all s ∈ [t0, t),
the number N(t, t0) of discrete events in the interval [t0, t] satisfies (8) for some
increasing function η : [0,∞) → [0,∞). Then there exists a positive definite,
radially unbounded, locally Lipschitz function V : Rn×Rk → R such that for all
(x,μ) ∈ Rn × Rk we have

V̇ (x,μ) :=
∂V

∂x
(x,μ)f(x,μ) ≤ 0 (34)

for the continuous dynamics,5

V (x, Rμ(x,μ)) ≤ V (x,μ) (35)

for the discrete events, and there is no forward invariant set except for the origin
inside the set S1 ∪ S2, where S1 := {(x,μ) : V̇ (x,μ) = 0, G(x,μ) < 0} and
S2 := {(x,μ) : V (x, Rμ(x,μ)) = V (x,μ), G(x,μ) ≥ 0}. Consequently, H is GAS.

As in Theorem 2, the condition (30) only needs to hold for those states where
we have continuous evolution, i.e., where G(x,μ) < 0, while (31) and (32) only
need to hold for those states where discrete events occur, i.e., where G(x,μ) ≥ 0.

Proof of Theorem 3. The condition (33) is equivalent to χ2(r) < χ−1
1 (r) for all

r > 0. As in [6], pick a C1, class K∞ function ρ satisfying (27) and

χ2(r) < ρ(r) < χ−1
1 (r) ∀ r > 0. (36)

5 See footnote 4.
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Define a candidate weak Lyapunov function for H as

V (x,μ) :=

{
ρ(V1(x)) if ρ(V1(x)) ≥ V2(μ)
V2(μ) if ρ(V1(x)) < V2(μ)

This function is positive definite and radially unbounded by construction. We
now prove that it satisfies (34) and (35). We consider two cases, similarly to the
proof of Theorem 2.

Case 1: ρ(V1(x)) ≥ V2(μ), so that V (x,μ) = ρ(V1(x)). If ρ(V1(x)) > V2(μ), then
we have, using (27), (30), (36), and positive definiteness of V1 and V2, that x �= 0
and

V̇ (x,μ) = ρ′(V1(x))
∂V1

∂x
(x)f(x,μ) ≤ −ρ′(V1(x))α1(V1(x)) < 0.

If ρ(V1(x)) = V2(μ) then, since V2 stays constant along the continuous dynamics,
we have V̇ (x,μ) ≤ −ρ′(V1(x))α1(V1(x)) ∨ 0 ≤ 0. We know that the discrete
events do not change the value of ρ(V1(x)). If V2(μ) ≥ χ2(V1(x)), then using (31)
we have V2(x, Rμ(x,μ)) ≤ V2(μ) ≤ ρ(V1(x)). If V2(μ) ≤ χ2(V1(x)), then with the
help of (32) we obtain V2(x, Rμ(x,μ)) ≤ χ2(V1(x)) ≤ ρ(V1(x)). In either case we
have V2(Rμ(x,μ)) ≤ ρ(V1(x)), hence V (x, Rμ(x,μ)) = ρ(V1(x)) = V (x,μ).

Case 2: ρ(V1(x)) < V2(μ), so that V (x,μ) = V2(μ). For the continuous dy-
namics, we have V̇ (x,μ) = 0. As for the discrete events, (31) and (36) imply
that V2(Rμ(x,μ)) < V2(μ). If V2(Rμ(x,μ)) > ρ(V1(x)), then V (x, Rμ(x,μ)) =
V2(Rμ(x,μ)) < V2(μ) = V (x,μ). If V2(Rμ(x,μ)) ≤ ρ(V1(x)), then we have
V (x, Rμ(x,μ)) = ρ(V1(x)) < V2(μ) = V (x,μ).

The properties (34) and (35) are therefore established. Next, we turn to the
claim about the absence of a nonzero invariant set inside S1 ∪ S2. The previ-
ous analysis implies that we have S1 ⊆ S̃1 and S2 ⊆ S̃2, where S̃1 := {(x,μ) :
ρ(V1(x)) ≤ V2(μ), G(x,μ) < 0} and S̃2 := {(x,μ) : ρ(V1(x)) ≥ V2(μ), G(x,μ) ≥
0}. Hence it is enough to prove the claim for S̃1 ∪ S̃2. By (36) and the hy-
potheses placed on the discrete events, no subset of either S̃1 or S̃2 can be
invariant. Indeed, while the state is in S̃1, (8) holds and so a discrete event
must eventually occur, which means that the state must leave S̃1. On the other
hand, since consecutive discrete events are assumed to be separated by posi-
tive intervals of continuous evolution, S̃2 is not invariant. It remains to show
that discrete events cannot take the state from S̃2 \ {(0, 0)} to S̃1. Consider an
arbitrary (x,μ) ∈ S̃2 \ {(0, 0)}. If V2(μ) ≥ χ2(V1(x)), then from (31) we have
V2(x, Rμ(x,μ)) < V2(μ) ≤ ρ(V1(x)). If V2(μ) ≤ χ2(V1(x)), then from (32) we
have V2(x, Rμ(x,μ)) ≤ χ2(V1(x)) < ρ(V1(x)). We conclude that (x, Rμ(x,μ))
cannot be in S̃1, which establishes the claim.

Stability in the sense of Lyapunov and boundedness of all solutions follow
from (34), (35), and the fact that V is positive definite and radially unbounded.
Since H is non-blocking and deterministic by construction, the invariance prin-
ciple for hybrid systems from [6] applies. To conclude GAS, we need to rule out
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the existence of an invariant set other than the origin inside the set on which V
does not strictly decrease. But this latter set is S1 ∪ S2, and we are done. ��
We see that although the function V in Theorem 3 is a weak Lyapunov func-
tion, it has the right properties for applying the LaSalle invariance principle
and concluding GAS. However, for other purposes (such as, for example, ana-
lyzing stability under perturbations of the right-hand side) it is still desirable to
have a strictly decreasing Lyapunov function. One may try to construct such a
Lyapunov function by modifying V (e.g., see results of this kind for continuous
systems under appropriate “detectability” conditions in [19] and “observability”
conditions in [20]).

6 Conclusions and Future Work

The main purpose of this paper was to bring the small-gain analysis method
to the attention of the hybrid systems community. We argued that general hy-
brid systems can be viewed as feedback interconnections of simpler subsystems,
and thus the small-gain analysis framework is very naturally applicable to them.
While the small gain theorem based on time-domain analysis provides an “off-
the-shelf” tool for studying stability of hybrid systems, Lyapunov function con-
structions are also of interest and were addressed in this paper. For a class of
hybrid systems satisfying the conditions of the small-gain theorem, we described
a construction of a Lyapunov function and another construction of a weak Lya-
punov function, each of which can be used to establish stability.

Further research is needed for improving Lyapunov function constructions of
Section 5, which are currently not quite satisfactory. First, Theorem 2 falls short
of recovering the result of Theorem 1. Second, both Theorem 2 and Theorem 3
are restricted to the special feedback interconnection shown in Figure 1(a). An-
other direction for future work is to systematically exploit the proposed method in
application-motivated contexts. As demonstrated in the companion paper [7] (see
also [13] and the subsequent work [21]), quantized control and networked control
systems represent very promising application areas, but we expect the small-gain
analysis to be useful for hybrid systems arising in many other areas as well.
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Abstract. In this paper we will investigate a stochastic hybrid delay
population dynamics (SHDPD) and show under certain conditions, the
SHDPD will have global positive solution. Ultimate boundedness and ex-
tinction, two important properties in a population systems, are discussed.
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1 Introduction

Population dynamics have been of interest in a number of years. Starting with
the early work of Lotka-Volterra, the delay differential equation

dx(t)
dt

= x(t)[μ + αx(t) + δx(t − τ)] (1.1)

has been used to model the population growth of certain species and is known
as the delay Lotka-Volterra model or the delay logistic equation. To allow the
introduction of uncertainty in the influence of the environment, the delay Lotka-
Volterra model for n interacting species is decribed by the n-dimensional delay
differential equation

dx(t)
dt

= diag(x1(t), · · · ,xn(t))[b + Ax(t) + Bx(t − τ)], (1.2)

where

x = (x1, · · · ,xn)T , b = (b1, · · · , bn)T , A = (aij)n×n, B = (bij)n×n.

There is an extensive literature concerned with the dynamics of this delay
model and we here only mention Ahmad and Rao [1], Bereketoglu and Gyori
[4], Freedman and Ruan [6], He and Gopalsamy [8], Kuang and Smith [13], Teng
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and Yu [18] among many others. In particular, the books by Gopalsamy [7],
Kolmanovskii and Myshkis [11] as well as Kuang [12] are good references in
this area.

Taking the environmental disturbances into account, Bahar and Mao [5] dis-
cussed stochastic differential delay population dynamics

dx(t) = diag(x1(t), · · · ,xn(t))
(
[b + Ax(t) + Bx(t− τ)]dt + σdw(t)

)
, (1.3)

where σ = (σ1, . . . ,σn)T and w(t) is a scalar Bownian motion.
On the other hand, many practical systems may experience abrupt changes

in their structure and parameters caused by phenomena such as component fail-
ures or repairs, changing subsystem interconnections, and abrupt environmental
disturbances. The hybrid systems driven by continuous-time Markov chains have
recently been developed to cope with such situation. The hybrid systems com-
bine a part of the state that takes values continuously and another part of the
state that takes discrete values. Kazangey and Sworder [10] presented a jump
system, where a macroeconomic model of the national economy was used to
study the effect of federal housing removal policies on the stabilization of the
housing sector. The term describing the influence of interest rates was modeled
by a finite-state Markov chain to provide a quantitative measure of the effect of
interest rate uncertainty on optimal policy. Athans [2] suggested that the hybrid
systems would become a basic framework in posing and solving control-related
issues in Battle Management Command, Control and Communications (BM/C3)
systems. The hybrid systems were also considered for the modeling of electric
power systems by Willsky & Levy [19] as well as for the control of a solar thermal
central receiver by Sworder & Rogers [17]. Hu, Wu and Sastry [9] studied mod-
eled subtilin production in bacillus subtilis by using stochastic hybrid systems.
In his book [15], Mariton explained that the hybrid systems had been emerging
as a convenient mathematical framework for the formulation of various design
problems in different fields such as target tracking (evasive target tracking prob-
lem), fault tolerant control and manufacturing processes. An important class of
hybrid systems is the jump linear systems

ẋ(t) = A(r(t))x(t) (1.4)

where a part of the state x(t) takes values in Rn while another part of the state
r(t) is a Markov chain taking values in S = {1, 2, . . . ,N}.

Motivated by hybrid systems, let us return to the Eq. (1.3). If this system
experiences abrupt changes in its structure and parameters and we use the
continuous-time Markov chains to model these abrupt changes, we then need
to deal with stochastic hybrid delay population dynamics (SHDPD)

dx(t) = diag(x1(t), · · · ,xn(t))
(
[(b(r(t)) + A(r(t))x(t) + B(r(t))x(t − τ)]dt

+ σ(r(t))dw(t)
)
. (1.5)
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To ensure models are realistic one needs to check certain properties, e.g.
they never predict that populations become negative or that they will grow
unbounded. The first contribution of this paper is to establish a number of such
well posedness conditions for a class of delay population models. For analysis,
the most important question is extinction, i.e. whether a species is doomed. The
second contribution of the paper is to determine extinction conditions. These
are formulated in terms of stability results for the delayed SDEs that arise in
the population dynamics.

2 Stochastic Hybrid Delay Population Dynamics

2.1 Generalised Itô Formula

Throughout this paper, unless otherwise specified, we let (Ω,F ,Ft,P ) be a
complete probability space with a filtration Ft satisfying the usual conditions
(i.e. it is increasing and right continuous while F0 contains all P -null sets).
Let w(t) be a scalar Brownian motion defined on the probability space. Let
Rn

+ = {x = (x1, . . . ,xn) ∈ Rn : xm > 0, 1 ≤ m ≤ n}. Let |·| denote the Euclidean
norm for vectors or the trace norm for matrices. If A is a symmetric matrix, de-
note by λmax(A) and λmin(A) its biggest and smallest eigenvalue respectively.
Let τ > 0 and C([−τ, 0]; Rn) denote the family of all continuous Rn-valued func-
tions on [−τ, 0]. Let Cb

F0
([−τ, 0]; Rn) be the family of all F0-measurable bounded

C([−τ, 0]; Rn)-valued random variables ξ = {ξ(θ) : −τ ≤ θ ≤ 0}.
Let r(t), t ≥ 0, be a right-continuous Markov chain on the probability space

taking values in a finite state space S = {1, 2, . . . ,N} with generator Γ =
(γij)N×N given by

P{r(t + Δ) = j|r(t) = i} =
{

γijΔ + o(Δ) : if i �= j
1 + γijΔ + o(Δ) : if i = j

where Δ > 0. Here γij ≥ 0 is transition rate from i to j if i �= j while

γii = −
∑
j �=i

γij .

We assume that the Markov chain r(·) is independent of the Brownian motion
w(·). It is well known that almost every sample path of r(t) is a right continuous
step function.

In this paper we consider the following stochastic hybrid delay population
dynamics

dx(t) = diag(x1(t), · · · ,xn(t))
(
[b(r(t)) + A(r(t))x(t) + B(r(t))x(t − τ)]dt

+ σ(r(t))dw(t)
)
, (2.1)

where ∀i ∈ S, b(i) = (b1(i), . . . , bn(i))T ,A(i) = (akl(i))n×n,B(i) = (bkl(i))n×n,
σ(i) = (σ1(i), . . . ,σn(i))T . Let C2,1(Rn ×R+ × S; R+) denote the all the family
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of non-negative functions V (x, t, i) on Rn×R+×S which are continuously twice
differentiable in x and once in t. If V ∈ C2,1(Rn×R+×S; R+), define an operator
LV associated with Eq. (2.1) from Rn × Rn × R+ × S to R by

LV (x, y, t, i) = Vt(x, t, i) + Vx(x, t, i)diag(x1, · · · ,xn)[b(i) + A(i)x + B(i)y)]

+
1
2
trace[σT (i)diag(x1, · · · ,xn)Vxx(x, t, i)diag(x1, · · · ,xn)σ(i)]

+
N∑

j=1

γijV (x, t, j), (2.2)

where

Vt(x, t, i) =
∂V (x, t, i)

∂t
, Vx(x, t, i) =

(
∂V (x, t, i)

∂x1
, . . . ,

∂V (x, t, i)
∂xn

)
and

Vxx(x, t, i) =
(
∂2V (x, t, i)
∂xi∂xj

)
n×n

.

By recalling that a continuous time Markov chain r(t) with generator Γ =
{γij}N×N can be represented as a stochastic integral with respect to a Poisson
random measure (cf. [3]). Indeed, let Δij be consecutive, left closed, right open
intervals of the real line each having length γij and define a function

h : S × R → R (2.3)

by

h(i, y) =
{
j − i : if y ∈ Δij ,

0 : otherwise. (2.4)

Then
dr(t) =

∫
R

h(r(t−), y)ν(dt, dy), r(0) = i0, (2.5)

where ν(dt, dy) is a Poisson random measure with intensity dt ×m(dy), m be-
ing the Lebesgue measure on R. Let x(t) be the solution of Eq. (2.1). For the
convenience of the reader we cite the the generalised Ito’s formula (cf. [16]): If
V ∈ C2,1(Rn ×R+ × S), then for any t ≥ 0

V (x(t), t, r(t)) = V (x(0), 0, r(0))

+
∫ t

0
LV (x(s),x(s − τ), s, r(s))ds +

∫ t

0
Vx(x(s), s, r(s))σ(r(s))dB(s)

+
∫ t

0

∫
R

(V (x(s), s, i0 + h(r(s), l)) − V (x(s), s, r(s)))μ(ds, dl), (2.6)

where the function h is defined as in (2.4) and μ(ds, dl) = ν(ds, dl)−m(dl)ds is
a martingale measure.
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2.2 Global Positive Solutions

Generally speaking, to the existence and the uniqueness of a stochastic differ-
ential equation for any given initial data, the coefficients of the equation are
required to satisfy the linear growth condition and local Lipschitz condition.
However, the coefficients of Eq. (2.1) do not satisfy the linear growth condition,
though they are locally Lipschitz continuous, so the solution of Eq. (2.1) may
explode at a finite time. It is therefore useful to establish some conditions under
which the solution of Eq. (2.1) is not only positive but will also not explode to
infinite at any finite time.

Theorem 1. Assume that there are positive numbers c1(i), . . . , cn(i), i ∈ S and
θ such that

λmax

(1
2
[C(i)A(i) + AT (i)C(i)] +

1
4θ

C(i)B(i)BT (i)C(i) + θI
)
≤ 0, (2.7)

where C(i) = diag(c1(i), . . . , cn(i)) and I is the n× n identity matrix. Then for
any given initial data {x(t) : −τ ≤ t ≤ 0} ∈ Cb

F0
([−τ, 0]; Rn

+), there is a unique
solution x(t) to equation (2.1) on t ≥ −τ and the solution will remain in Rn

+
with probability 1, namely x(t) ∈ Rn

+ for all t ≥ −τ almost surely.

Proof of Theorem 1. Since the coefficients of the SHDPD (2.1) are locally
Lipschitz continuous, for any given initial data ξ(t) = {x(t) : −τ ≤ t ≤ 0} ∈
CF0

b([−τ, 0]; Rn) and r(0) = i0 ∈ S there is a unique maximal local solution
x(t) on t ∈ [−τ, τe), where τe is the explosion time. To show this solution is
global, we need to show that τe = ∞ a.s. Let k0 be sufficiently large for

1
k0

< min
−τ≤t≤0

|ξ(t)| ≤ max
−τ≤t≤0

|ξ(t)| < k0

For k ≥ k0, define the stopping time

ρk = inf{t ∈ [0, τe) : xm(t) /∈ (1/k, k) for some m = 1, . . . ,n}.

Also define V on Rn
+ × S such that

V (x, i) =
n∑

m=1

cm(i)h(xm), (x, i) ∈ Rn
+ × S, (2.8)

where h(u) = u− 1− ln(u). The operator associated with Eq. (2.1)

LV (x, y, i) = xTC(i)b +
1
2
xT [C(i)A(i) + AT (i)C(i)]x + xTC(i)B(i)y

− C̄(i)(b(i) + A(i)x + B(i)y) +
1
2
σT (i)C(i)σ(i) +

N∑
j=1

γijV (x, j), (2.9)

where C̄(i) = (c1(i), . . . , cn(i)). Noting that
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xTC(i)B(i)y ≤ 1
4θ

xTC(i)B(i)BT (i)C(i)x + θ|y|2

and the condition (2.7), we have

1
2
xT [C(i)A(i) + AT (i)C(i)]x + xTC(i)B(i)y

≤ 1
2
xT [C(i)A(i) + AT (i)C(i)]x +

1
4θ

xTC(i)B(i)BT (i)C(i)x + θ|y|2

= xT

[
1
2
(C(i)A(i)+AT (i)C(i)) +

1
4θ

C(i)B(i)BT (i)C(i) + θI

]
x− θ|x|2 + θ|y|2

≤ −θ|x|2 + θ|y|2. (2.10)

Moreover, there is a constant K1 > 0 such that

xTC(i)b− C̄(i)(b(i) + A(i)x + B(i)y) +
1
2
σT (i)C(i)σ(i) ≤ K1(1 + |x|+ |y|).

Substituting these into (2.9) yields we have

LV (x, y, i) ≤ K1(1 + |x|+ |y|)− θ|x|2 + θ|y|2 +
N∑

j=1

γijV (x, j). (2.11)

Let

q̂ = max
{
cm(i)
cm(j)

: m = 1, . . . ,n, i, j ∈ S

}
.

By the definition of V , for any i, j ∈ S, we have

q̂V (x, i) =
n∑

m=1

q̂cm(i)[xm − 1− lnxm]

≥
n∑

m=1

cm(j)[xm − 1− lnxm] = V (x, j)

and

|x| ≤
n∑

m=1

xi ≤
n∑

m=1

[2(xm − 1− log x−m) + 2]

≤ 2n +
2

min{cm(i) : 1 ≤ m ≤ n, i ∈ S}

n∑
m=1

cm(i)(xm − 1− log x−m)

= 2n +
2

min{cm(i) : 1 ≤ m ≤ n, i ∈ S}V (x, i).

Hence there is a constant K2 > 0 such that

LV (x, y, i) ≤ K2(1 + V (x, i) + V (y, i))− θ|x|2 + θ|y|2. (2.12)
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E

∫ ρk∧t

0
LV (x(s),x(s − τ), r(s))ds ≤ E

∫ ρk∧t

0

[
− θ|x(s)|2 + θ|x(s − τ)|2

+ K2(1 + V (x(s), r(s)) + V (x(s− τ), r(s)))
]
ds. (2.13)

Compute

E

∫ ρk∧t

0
|x(s− τ)|2ds = E

∫ ρk∧t−τ

−τ

|x(s)|2ds

≤
∫ 0

−τ

|x(s)|2ds + E

∫ ρk∧t

0
|x(s)|2ds

and

E

∫ ρk∧t

0
V (x(s − τ), r(s)))ds

≤ E

∫ 0

−τ

V (x(s), r(0))ds + E

∫ ρk∧t

0
V (x(s), r(s − τ))ds

≤ E

∫ 0

−τ

V (x(s), r(0))ds + q̂E

∫ ρk∧t

0
V (x(s), r(s))ds.

Substituting these into (2.13) gives

E

∫ ρk∧t

0
LV (x(s),x(s − τ), r(s))ds

≤ K3 + K2(1 + q̂)E
∫ ρk∧t

0
V (x(ρk ∧ s), r(ρk ∧ s))ds, (2.14)

where

K3 = K2T +
∫ 0

−τ

|x(s) − x̄|2ds + K2E

∫ 0

−τ

V (x(s), r(0))ds.

Using the generalised Itô formula and taking the expectation

EV (x(ρk ∧ t), r(ρk ∧ t))

= EV (ξ(0), r(0)) + E

∫ ρk∧t

0
LV (x(s),x(s − τ), r(s))ds

≤ EV (ξ(0), r(0)) + K3 + K2(1 + q̂)E
∫ ρk∧t

0
V (x(ρk ∧ s), r(ρk ∧ s))ds. (2.15)

By the Gronwall inequality,

EV (x(ρk ∧ T ), r(ρk ∧ T )) ≤ K := eK2(1+q̂) [EV (ξ(0), r(0)) + K3] .

Note that for every ω ∈ {ρk ≤ T }, there is some m such that xm(ρk,ω) equals
either k or 1/k, hence

K ≥ E[I{ρk≤T}V (x(ρk,ω), r(ρk,ω))]

≥ P (ρk ≤ T ) min
i∈S,1≤m≤n

{
cm(i)[k − 1− ln k] ∧ cm(i)

[
1
k
− 1− ln k

]}
.
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Letting k→∞ gives
lim

k→∞
P (ρk ≤ T ) = 0,

this implies that y(t) ∈ Rn
+ and τe = ∞ a.s. The proof is therefore complete. �

We observe from the proof above that condition (2.7) is used to derive (2.11)
from (2.9). But there are several different ways to estimate (2.9) which will lead
to different alternative conditions for the global positive solution. For example,
we know that

xT C̄(i)B(i)y ≤ 1
2θ

xTC(i)x +
θ

2
yTBT (i)C(i)B(i)y

holds for any θ > 0. So

LV (x, y, i) ≤ 1
2
xT
[
C(i)A(i) + AT (i)C(i)

+ θ−1C(i) + θBT (i)C(i)B(i)
]
x

− θ

2
xTBT (i)C(i)B(i)x +

θ

2
yTBT (i)C(i)B(i)y

+ K1(1 + |x|+ |y|) +
N∑

j=1

γijV (x, j) (2.16)

If we assume that

λmax

(
C(i)A(i) + AT (i)C(i) + θ−1C(i) + θBT (i)C(i)B(i)

)
≤ 0,

we will then have

LV (x, y, i) ≤ −θ

2
xTBT (i)C(i)B(i)x +

θ

2
yTBT (i)C(i)B(i)y

+ K1(1 + |x|+ |y|) +
N∑

j=1

γijV (x, j) (2.17)

From this can we show in the same way as in the proof of Theorem 1 that the
solution of equation (2.1) is positive and global. In other words, the arguments
above give us an alternative result which we describe as a theorem below.

Theorem 2. Assume that there are positive numbers c1(i), · · · , cn(i) and θ such
that

λmax

(
C(i)A(i) + AT (i)C(i) + θ−1C(i) + θBT (i)C(i)B(i)

)
≤ 0, (2.18)

where C(i) are the same as defined in Theorem 1. Then for any given initial
data {x(t) : −τ ≤ t ≤ 0} ∈ C([−τ, 0]; Rn

+), i0 ∈ S, there is a unique solution x(t)
to equation (2.1) on t ≥ −τ and the solution will remain in Rn

+ with probability
1, namely x(t) ∈ Rn

+ for all t ≥ −τ almost surely.
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3 Ultimate Boundedness

From now on we shall denote by x(t; ξ, i0) the unique global positive solu-
tion of the SHDPD (2.1) given initial data ξ = {ξ(t) : −τ ≤ t ≤ 0} ∈
Cb

F0
([−τ, 0]; Rn

+), i0 ∈ S. One of the important properties for a population dy-
namics is the ultimate boundedness in mean. To be precise, let us give the
definition.

Definition 3.1. The SHDPD (2.1) is said to be ultimately bounded in mean if
there is a positive constant K such that

lim sup
t→∞

E|x(t)| ≤ K.

Theorem 3. Assume that there are positive numbers c1(i), · · · , cn(i) and θ such
that

−λ := λmax

(1
2
[C(i)A(i) + AT (i)C(i)] +

1
4θ

C(i)B(i)BT (i)C(i) + θI
)
< 0

(3.1)

Then for any initial data ξ = {ξ(t) : −τ ≤ t ≤ 0} ∈ Cb
F0

([−τ, 0]; Rn
+), i0 ∈ S, the

solution x(t; ξ, i0) is ultimately bounded in mean.

Proof. By Theorem 1, the solution x(t) will remain in Rn
+ for all t ≥ −τ with

probability 1. Let C̄(i) = (c1(i), . . . , cn(i)) and define

V (x, i) = C̄(i)x =
n∑

m=1

cm(i)xm ∀x ∈ Rn
+.

The operator with Eq. (2.1)

LV (x, y, i) = xTC(i)b +
1
2
xT [C(i)A(i) + AT (i)C(i)]x + xTC(i)B(i)y

+
N∑

j=1

γijV (x, j), (3.2)

By (2.10) we have

xTC(i)[A(i)x + B(i)y] ≤ −(λ + θ)|x|2 + θ|y|2.

Therefore

LV (x, y, i) ≤(|C(i)b|+ γ|C̄(i)|)|x| − (λ + θ)|x|2 + θ|y|2 (3.3)

where γ = maxj∈S

∑N
i=1 |γij |.
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By the generalised Itô formula and taking the expactation, we have

eαtEV (x(t), r(t)) = EV (x(0), r(0))

+ E

∫ t

0
xT (s)eαs[αV (x(s), r(s)) + LV (x(s)),x(s − τ)r(s))]ds

≤ E

∫ t

0
eαs

[
β|x(s)| − (λ + θ)|x(s)|2 + θ|x(s − τ)|2

]
ds

≤ E

∫ t

0
eαsβ|x(s)|ds − E

∫ t

0
eαs(λ + θ)|x(s)|2ds

+ θeατE

∫ t

0
eαs|x(s)|2ds + θeατE

∫ 0

−τ

|x(s)|2ds. (3.4)

where β = maxi∈S(|C(i)b(i)|+ (γ + α)|C̄(i)|).
Let

α =
1
τ

log
λ + 2θ

2θ
,

we obtain that

eαtEV (x(t), r(t)) ≤ EV (x(0), r(0)) + θeατE

∫ 0

−τ

|x(s)|2ds

+ E

∫ t

0
eαs

(
β|x(s)| − λ

2
|x(s)|2

)
ds

≤ EV (x(0), r(0)) + θeατE

∫ 0

−τ

|x(s)|2ds +
β2

2λ

∫ t

0
eαsds.

Hence

lim sup
t→∞

EV (x(t), r(t)) ≤ β2

2αλ
.

But

|x(t)| ≤
n∑

m=1

xm(t) ≤ V (x(t), r(t))
min{cm(i) : 1 ≤ m ≤ n, i ∈ S} .

This yields

lim sup
t→∞

E|x(t)| ≤ β2

2αλmin{cm(i) : 1 ≤ m ≤ n, i ∈ S} ,

as required. The proof is therefore finished. �

In the proof above, we not only prove that the solution is ultimately bounded in
mean, but also we give a upper-bound. As the same way we obtain Theorem 2,
we have the following theorem.

Theorem 4. Assume that there are positive numbers c1(i), · · · , cn(i) and θ such
that

−λ := λmax

(
C(i)A(i) + AT (i)C(i) + θ−1C(i) + θBT (i)C(i)B(i)

)
< 0 (3.5)



446 J. Lygeros, X. Mao, and C. Yuan

Then for any initial data ξ = {ξ(t) : −τ ≤ t ≤ 0} ∈ C([−τ, 0]; Rn
+), i0 ∈ S, the

solution x(t; ξ, i0) is ultimately bounded in mean.

4 Extinction

One of the important properties for a population dynamics is the extinction
which means every species will become extinct. The most natural analogue for
the stochastic population dynamics (2.1) is that every species will become extinct
with probability 1. To be precise, let us give the definition.

Definition 4.1. The SHDPD (2.1) is said to be extinct with probability 1 if, for
every initial data ξ = {ξ(t) : −τ ≤ t ≤ 0} ∈ C([−τ, 0]; Rn

+), i0 ∈ S, the solution
x(t; ξ, i0) has the property that

lim
t→∞xm(t) = 0 a.s. for all 1 ≤ m ≤ n. (4.1)

In the previous section we have shown that either condition (2.7) or (2.18) guar-
antees the unique global positive solution. We shall now show that either of
them together with the other condition below also guarantees the extinction
with probability 1.

Theorem 5. Assume that there are positive numbers c1(i), · · · , cn(i) and θ such
that either (2.7) or (2.18) holds and

bT (i)CT (i) +
N∑

j=1

γijC̄(j) ≤ 0 (4.2)

Then the SHDPD (2.1) is extinct.

To prove this theorem we will need the nonnegative semimartingale convergence
theorem (see e.g. [14, Theorem 7 on p.139]) which we cite as a lemma below.

Lemma 1. Let A(t) and U(t) be two continuous Ft-adapted increasing processes
on t ≥ 0 with A(0) = U(0) = 0 a.s. Let M(t) be a real-valued continuous local
martingale with M(0) = 0 a.s. Let ζ be a nonnegative F0-measurable random
variable such that Eζ <∞. Define

X(t) = ζ + A(t)− U(t) + M(t) for t ≥ 0.

Then, if X(t) is nonnegative,{
lim

t→∞A(t) <∞
}
⊂
{

lim
t→∞X(t) <∞

}
∩
{

lim
t→∞U(t) <∞

}
a.s.,

where B ⊂ D a.s. means P (B ∩ Dc) = 0. In particular, if limt→∞ A(t) < ∞
a.s., then for almost all ω ∈ Ω

lim
t→∞X(t,ω) <∞, lim

t→∞U(t,ω) <∞

and
−∞ < lim

t→∞M(t,ω) <∞.
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Proof of Theorem 5. By Theorem 5, the solution x(t) will remain in Rn
+ for

all t ≥ −τ with probability 1. define

V (x, i) = C̄(i)x =
n∑

m=1

cm(i)xi ∀x ∈ Rn
+.

By the generalised Itô formula, we have

V (x(t), r(t)) = V (x(0), r(0))

+
∫ t

0

(
xT (s)C(r(s))[b(r(s)) + A(r(s))x(s) + B(r(s))x(s − τ)]

+
N∑

j=1

γr(s)jC̄(j)x(s)
)
ds + M1(t) + M2(t), (4.3)

where

M1(t) =
∫ t

0

∫
R

(V (x(s), s, i0 + h(r(s), l))− V (x(s), s, r(s)))μ(ds, dl)

M2(t) =
∫ t

0
xT (s)C(r(s))σ(r(s))dw(s).

By (2.10) we have

xT (s)C(r(s))[A(r(s))x(s) + B(r(s))x(s − τ)] ≤ −θ|x(s)|2 + θ|x(s − τ)|2.

This, together with the condition (4.2), yields

V (x(t), r(t)) ≤ V (x(0), r(0))

+
∫ t

0

(
xT (s)C(r(s))b(r(s)) +

N∑
j=1

γr(s)jC̄(j)x(s) − θ|x(s)|2 + θ|x(s − τ)|2
)
ds

+M1(t) + M2(t) ≤ θ

∫ 0

−τ

|x(s)|2ds + M1(t) + M2(t) (4.4)

By Lemma 1,

−∞ < lim
t→∞(M1(t) + M2(t)) <∞ a.s. (4.5)

For any positive constant K, define the stopping time

ρK = inf{t ≥ 0 : |M1(t) + M2(t)| ≥ K}.

where here and throughout this paper we set inf ∅ = ∞. Obviously τK is increas-
ing. In particular, by (4.5), there is a subset Ω1 of Ω with P (Ω1) = 1 such that for
every ω ∈ Ω1 there is a finite number K(ω) such that ρK(ω) = ∞ for all K ≥
K(ω). On the other hand, since M1(t) is continuous martingale and M2(t) is
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discontinuous martingale, we have, for any t > 0, E[M1(t∧ρK )M2(t∧ρK)] = 0.
Therefore

K2 ≥ E|M1(t ∧ ρK) + M2(t ∧ ρK)|2 = E

∫ t∧ρK

0
|xT (s)C(r(s))σ(r(s))|2ds.

Letting t→∞ yields

E

∫ ρK

0
|xT (s)C(r(s))σ(r(s))|2ds ≤ K2,

which implies that ∫ ρK

0
|xT (s)C(r(s))σ(r(s))|2ds <∞ (4.6)

holds with probability 1. Hence there is another subset Ω2 of Ω with P (Ω2) = 1
such that if ω ∈ Ω2, (4.6) holds for every K ≥ 1. Therefore, for any ω ∈ Ω1∩Ω2,
we have∫ ∞

0
|xT (s)C(r(s))σ(r(s))|2ds =

∫ ρK(ω)(ω)

0
|xT (s)C(r(s))σ(r(s))|2ds <∞.

It is straightforward to see that

lim inf
t→∞ |x(t)| = 0 a.s. (4.7)

and

lim
t→∞

∫ t

t−τ

|x(s)|2ds = 0 a.s. (4.8)

Define μ : R+ → R+ by

μ(u) = inf
|x|≥u,i∈S

V (x, i).

By the definition of V (x, i), it is clear that μ(u) ↓ 0 as u ↓ 0. Let ε > 0 be
arbitrary and set δ = εμ(ε)/2. Define the stopping time:

ρ1 = inf
{
t ≥ 0 : V (x(t), r(t)) + θ

∫ t

t−τ

|x(s)|2ds ≤ δ

}
.

It follows from (4.7) and (4.8) that P{ρ1 < ∞} = 1. We can therefore find a
positive constant T sufficiently large for

P{ρ1 ≤ T } ≥ 1− ε

2
. (4.9)

Now, define two stopping times

ρ2 =
{
ρ1 if ρ1 ≤ T ,
∞ otherwise
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and
ρ3 = inf{t ≥ ρ2 : |x(t)| ≥ ε}.

We then derive from (4.4) that for any t ≥ T ,

EV (x(t ∧ ρ3), r(t ∧ ρ3))

≤ E

(
V (x((t ∧ ρ2), r((t ∧ ρ2)) +

∫ t∧ρ3

t∧ρ2

(−θ|x(s)|2 + θ|x(s− τ)|2)ds
)
. (4.10)

Noting that ρ2 > T means ρ2 = ∞ and ρ3 = ∞, therefore

E

{
I{ρ2>T}

(
V (x((t ∧ ρ2), r((t ∧ ρ2)) +

∫ t∧ρ3

t∧ρ2

(−θ|x(s)|2 + θ|x(s− τ)|2)ds
)}

= E
{
I{ρ2>T}V (x((t), r((t))

}
= E

{
I{ρ2>T}V (x((t ∧ ρ3), r((t ∧ ρ3))

}
.

By (4.10) we have

E
{
I{ρ2≤T}V (x((t ∧ ρ3), r((t ∧ ρ3))

}
≤ δ.

Noting {ρ3 ≤ t} ⊂ {ρ2 ≤ T } and recalling the definition of μ(·), we further
obtain

μ(ε)P{ρ3 ≤ t} ≤ δ.

Using the definition of δ, we obtain

P{ρ3 <∞} ≤ ε

2
.

Hence, by (4.9) and the definition of ρ2,

P{ρ2 <∞ and ρ3 = ∞} ≥ P{ρ2 < T } − P{ρ3 <∞} ≥ 1− ε.

This yields
P{lim sup

t→∞
|x(t)| ≤ ε} ≥ 1− ε.

Since ε is arbitrary, we must have

P{lim sup
t→∞

|x(t)| = 0} = 1.

The Proof is therefore complete. �

We only prove the Theorem 5 under condition (2.7) since it can be done in the
same way under condition (2.18). We omit it here and leave to the reader.

5 Conclusion

It is interesting to observe that the conditions imposed in all Theorems are inde-
pendent of the noise intensity vector σ(i), i ∈ S. This means all properties which
we studied for the SHDPD (2.1) will not change no matter the environmental
noise is large or small. In other words, these properties of Eq. (2.1) are very
robust under the noise. The logic next step is to investigate environmental noise
effect on the SHDPD.
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Finite Gain lp Stabilization Is Impossible by Bit-Rate
Constrained Feedback

Nuno C. Martins

ISR and ECE Dept., University of Maryland, College Park

Abstract. In this paper, we show that the finite gain (FG) lp stabilization, with
1 ≤ p ≤ ∞, of a discrete-time, linear and time-invariant unstable plant is im-
possible by bit rate constrained feedback. In addition, we show that, under bit
rate constrained feedback, weaker (local) versions of FG lp stability are also im-
possible. These facts are not obvious, since recent results have shown that input
to state stabilization (ISS) is viable by bit-rate constrained control. We establish
a comparison with existing work, leading to two conclusions: (1) in spite of ISS
stability being attainable under bit rate constrained feedback, small changes in the
amplitude of the external excitation may cause, in relative terms, a large increase
in the amplitude of the state (2) FG lp stabilization requires logarithmic precision
around zero, implying that even without bit-rate constraints FG lp stabilization
is impossible in practice. Since our conclusions hold with no assumptions on the
feedback structure, they cannot be derived from existing results. We adopt an in-
formation theoretic viewpoint, which also brings new insights into the problem
of stabilization.

1 Introduction

Consider the following feedback system:

X(k + 1) = AX(k) + F(Xk, k) + W (k), X(0) = 0, k ∈ N+ (1)

where W (k) ∈ Rn represents the input, X(k) ∈ Rn, Xk = (X(0), . . . ,X(k)), A ∈
Rn×n and F(·, k) : Rn×(k+1) → R represents a feedback strategy.

Definition 1 (Bit-Rate constrained feedback). Let Fk be defined as:

Fk(Xk) =
(
F(X(0), 0), . . . ,F(Xk, k)

)
,X(k) ∈ Rn, k ∈ N+

We say that (1) has bit-rate constrained feedback if, for a given R ∈ R+, the range
of Fk has at most 2(k+1)R elements.

Stabilization under bit-rate constrained feedback involves, implicitly, quantization. The
work in [3] has motivated the careful study of the effects of quantization in feedback,
where it is shown that the naive quantization noise model is not appropriate. The for-
mulation in [3] adopts a discrete-time, time-invariant, memory-less and finite valued
quantization of the state, under which it is shown that asymptotic internal stabilization
is impossible. The analysis in [2], gives a complete solution to the problem of finding

J Hespanha and A. Tiwari (Eds.): HSCC 2006, LNCS 3927, pp. 451–459, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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a quadratic control Lyapunov function (QCLF) in the presence of memoryless quanti-
zation of either the state, or of the observation estimation error (output feedback). In
[2], it is shown that, under the aforementioned framework, the existence of a QCLF
requires a quantizer with an infinite number of levels, whose resolution increases loga-
rithmically around zero. On the other hand, it is reported in [1] that, by allowing analog
processing before and after quantization, global asymptotic stability can be achieved in
the presence of bit-rate constraints. A meticulous analysis of internal stabilization for
discrete-time linear systems, in the presence of memoryless piecewise non-linearities,
is given in [4]. The stabilization of nonlinear systems is studied in [9].

Most external stability bounds, for bit-rate constrained feedback, assume that the am-
plitude of the external excitation is known [5], [17], [8], [14],[6]. Therefore, in all of the
aforementioned publications, the notions of stability are not compatible with finite gain
(FG) lp , nor with the more general notion of input to state stability (ISS) [13]. Recently,
the authors of [10] have addressed this issue, by devising a bit-rate constrained feedback
scheme that guarantees stabilization in the ISS sense. In order to attain ISS, the controller
must not depend on prior knowledge of the amplitude of the external excitation. In ad-
dition, ISS guarantees that the amplitude of the state decreases, as the amplitude of the
external signals decreases. However, the sensitivity, in terms of how the state is ampli-
fied with respect to the external excitation, has to be characterized using gain notions
such as FG lp stability, where 1 ≤ p ≤ ∞. These facts have motivated the investigation
reported in this paper, i.e., the derivation of necessary conditions for FG lp stabilization.

Regarding the framework, the approaches in [2], [3] and [4] are significantly differ-
ent from [1], [5], [17], [8] and [14]. The former addresses stabilization, under a given
class of quantization schemes, while the latter is about control with bit-rate constraints.
Each approach has its own motivation: specific quantization schemes are well suited for
modeling measurement resolution, while bit-rate constraints describe an information-
rate bottleneck in the feedback loop. It is important to make this distinction because
necessary conditions for stabilization, derived for a given class of quantization schemes,
cannot be used in deriving necessary conditions in terms of bit-rate constraints. For in-
stance, [1] achieves global asymptotic stabilization by bit-rate constrained feedback,
while in the scheme of [3] the state trajectory always converges to a chaotic orbit.

Our contribution is to show that FG lp stabilization in not possible by bit-rate con-
strained feedback, and that includes bit-rate constrained control as a particular case. In
addition, it follows from our analysis that bit-rate constrained feedback also rules out
weaker (local) versions of FG lp stabilization, and that, even though ISS is achievable
[10], the amplitude of the state may increase arbitrarily with only a small change in the
amplitude of the external excitation. The concept of logarithmic resolution was intro-
duced in [2] for a class of quantization schemes. Our work comes in support of such
fundamental notion, by proving that, regardless of the quantization scheme, the afore-
mentioned weaker (local) versions of FG lp stability also requires logarithmic resolu-
tion. Any quantization scheme requiring logarithmic resolution is not implementable
in practice1 and, for that reason, it introduces further limits to stability, even in the

1 For instance, logarithmic resolution can be achieved by non-linear gains before and after uni-
form quantization, without amplitude constraints. On the other hand, such non-linear gains
will explode around zero.
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absence of bit-rate constraints. Our conclusions cannot be derived from existing re-
sults because they hold with no assumptions on the feedback structure. In particular,
we allow arbitrary analog or digital pre-quantization processing (encoding) as well as
post-quantization processing (decoding). In addition, we allow quantizers which may
be time-varying and have infinite memory, or no quantizer at all. We use standard prop-
erties of information theory, which makes our proofs short and very general.

This paper has four sections. Section 2 discusses, without proofs, the necessary con-
ditions for FG lp stability and its implications on ISS, while detailed proofs may be
found in [18]. Section 4 finalizes the paper with conclusions.

We adopt the following notation: Complex (or real) variables are represented by small
caps letters, while vectors use large caps letters, such as Z ∈ Cn, where the element
at the i-th coordinate is presented as Zi. Exception to this rule is A, which is used to
denote the dynamic matrix of the state space representation in (1). Sequences of com-
plex (or real) variables are indicated as zk = (z(0), . . . , z(k)), k ∈ N+

⋃
{∞}. Simi-

larly, a sequence of vectors is represented as Zk = (Z(0), . . . ,Z(k)), k ∈ N+
⋃
{∞}.

The absolute value is given by |z| =
√

Re{z}2 + Im{z}2. The p-norm of a vec-

tor Z ∈ Cn is defined as ‖Z‖p = (
∑n

i=1 |Zi|p)
1
p . Likewise, the ∞-norm of Z is

computed as ‖Z‖∞ = maxi∈{1,...,n} |Zi|. Infinite complex (real) sequences are in-
dicated as z̄ = (z(0), z(1), . . .), while infinite vector sequences are represented as
Z̄ = (Z(0),Z(1), . . .). The lp norm of an infinite sequence is defined as ‖Z̄‖p =(∑∞

i=0 ‖Z(i)‖p
p

) 1
p and the l∞ norm is given by ‖Z̄‖∞ = supk≥0 ‖Z(k)‖∞. Com-

plex (or real) random variables and vectors are represented by bold face letters, such
as z and Z. With the exception of K (reserved), functions and maps are represented in
calligraphic font, e.g., Q. We denote R+

⋃
{∞} as R̄+. We also adopt the convention

0 log2 0 = 0.

2 Necessary Conditions for FG lp Stability

In this section, we explain why FG lp stabilization cannot be achieved with bit-rate con-
strained feedback. In addition, we define a weaker (local) version of FG stabilization,
which we prove is also not possible by bit-rate constrained feedback. At a later point,
we argue that logarithmic resolution is needed for such weak notion of stability. The
implications of our results, in input to state stability (ISS), are discussed at the end of
this section.

The following are reasons why feedback may be bit-rate constrained. (1) If the feed-
back loop comprises a uniform quantizer with amplitude constraints then the feedback
is finite set. Notice that, without amplitude constraints, a uniform quantizer has infinite
range. (2) Another case of finite set feedback is when the controller is implemented
by a dynamical system operating on a finite alphabet, such as a digital computer. (3)
Furthermore, control over networks is necessarily bit-rate constrained. This scenario
is specially relevant to remote control applications, where information can be reliably
transmitted only at a finite rate. Besides being finite, the rate of transmission might also
be low due to security reasons, because of the communication medium ( under-water
missions) or in the presence of fading.
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Our results hold for the following parameterized notion of stability:

Definition 2 ((ε, δ) FGI stability). Let X̄ be the solution of (1) and the constants ε, δ ∈
R̄+ be given. The system represented by (1) is (ε, δ) FGI (finite gain internally) stable,
if the following holds:

∃kmin > 0, G(kmin, ε, δ)
def
= sup

k>kmin

(
sup

W̄∈Dε,δ

‖X(k)‖∞
‖W (0)‖∞

)
<∞ (2)

where Dε,δ
def
= {W̄ ∈ Rn×∞ : 2−ε < ‖W (0)‖∞ < 2δ and ∀k ≥ 1,W (k) = 0}.

The following Theorem represents one of the main results of this paper.

Theorem 1 [18]. Assume that the dynamical system represented by (1) has a non-
Hurwitz (unstable) matrix A. In addition, consider the following conditions: (C1) there
exists a real and positive δ such that (1) is (∞, δ) FGI stable; (C2) there exists a real
and positive ε such that (1) is (ε,∞) FGI stable; (C3) (1) is (∞,∞) FGI stable . If at
least one of these conditions holds, then there exists kmin such that the range of Fkmin

is an infinite set.

Definition 3 . The feedback system specified by (1) is FG lp stable, if the following
holds:

sup
W̄∈Rn×∞−{0}

‖X̄‖p

‖W̄‖p
= βp <∞ (3)

Notice that if there is at least one p, with 1 ≤ p ≤ ∞, such that (1) is FG lp stable
then (1) is also (ε, δ) FGI stable for all ε, δ ∈ R̄+. Therefore, Theorem 1 is sufficiently
general to prove the following corollary.

Corollary 1 . Consider that A, the dynamic matrix of the dynamical system represented
by (1), is non-Hurwitz (unstable). If there exists p, satisfying 1 ≤ p ≤ ∞, such that (1)
is FG lp stable then there exists kmin such that the range of Fkmin is an infinite set.

2.1 Comparative Analysis Between ISS and (ε, δ) FGI Stability

We start by defining input to state stability (ISS) in discrete time [12], which is analo-
gous to the continuous time version found in [13].

Definition 4 (ISS). Let x̄ be the solution of (1). We denote by K the set of positive,
continuous, strictly increasing and unbounded functions B satisfying B(0) = 0. We
qualify the feedback loop (1) as input to state stable (ISS) (with zero initial conditions),
if there exists B ∈ K such that the following holds:

∀W̄ ∈ Rn×∞, ‖X̄‖∞ ≤ B
(
‖W̄‖∞

)
(4)

The following Remark follows readily from definitions 2 and 4, and it establishes a
connection between ISS and (ε, δ) FGI stability.
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Remark 1. Consider that the system (1) is ISS and that B ∈ K satisfies (4). For any
arbitrary ε, δ ∈ R̄+, the following holds:

sup
�∈(2−ε,2δ)

B(�)
�

≥ sup
W̄∈Dε,δ

‖X̄‖∞
‖W̄‖∞

≥ sup
k≥0

G(k, ε, δ) (5)

The following Corollary, shows that finite set feedback may impose fundamental con-
straints on the non-linear gain B. Its proof follows from definition 2, Remark 1 and
Theorem 1.

Corollary 2 . Consider that the matrix A, of the dynamical system represented by (1), is
non-Hurwitz (unstable) and that the feedback loop is ISS, with B ∈ K satisfying (4). If
F implements a finite set feedback strategy, then the function B satisfies the following:

∀δ > 0, sup
�∈(0,2δ)

B(�)
�

=∞

∀ε > 0, sup
�>2−ε

B(�)
�

=∞

Since B is continuous and increasing, the unbounded growth-rate at zero creates a cusp-
like shape ( see Fig. 1) which has been confirmed empirically by the authors2 of [10].

Unbounded growth rate
at 0

Unbounded growth rate
at infinity

0

Fig. 1. Illustration of a function B ∈ K which is not differentiable at zero and has unbounded
sub-differential at infinity

The work in [17] addresses the problem of robustness in the presence of operator
uncertainty, using induced norms, under the assumption that an upper bound on the am-
plitude of the external excitation is known. An alternative framework, in the absence of
external excitation, can also be found in [7]. In the absence of a-priori bounds, Corollary
2 has further implications to robustness analysis. Since FG lp stabilization is impossi-
ble under bit-rate constrained feedback, it follows that small gain arguments using lp
based induced norms are not viable. Thus, our results further support the use of ISS
approaches to robustness, such as the work in [11].

2 The author would like to thank Daniel Liberzon (UIUC) for sharing this information.
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2.2 (∞, δ) FGI Stabilization Requires a Logarithmically Increasing Resolution

In this subsection, we argue that any (∞, δ) FGI stabilizing feedback requires a loga-
rithmically increasing resolution as the infinity norm of W̄ decreases.

Definition 5 . Let F be the causal feedback map in (1). Clearly F is ultimately a func-
tion of W̄ and we can define F|Dε,δ

by restricting the domain of F to W̄ ∈ Dε,δ.

Corollary 3 [18]. Let δ be a given and x̄ be the solution of (1). Consider that F stabi-
lizes (1) in the (∞, δ) ISS sense, for some kmin and gain α > 0. The following holds:

∃k∞ > 0, lim sup
ε→∞

log
(
�Range

(
F|k∞

Dε,δ

))
log ε

≥ 1 (6)

where F|Dε,δ
is the restricted F of definition 5 and �Range(F|k∞

Dε,δ
) is the cardinality

of the range of F|k∞
Dε,δ

.

3 Sufficient Conditions for FG lp Stabilizability, with 1 ≤ p ≤ ∞
In this section, we study the stability of the following system:

X(k + 1) = AX(k) + BU(k) + W (k),X(0) = 0 (7)

Y (k) = CX(k) + DU(k) (8)

where X(k) ∈ Rn, U(k) ∈ Rq, Y (k) ∈ Rm and W (k) is the input of the system.
In this section, we provide a short illustration of why logarithmic resolution feedback

is sufficient to guarantee FG lp stability. The concept of logarithmic quantization was
originally presented in [2].

3.1 FG lp Stabilization Can Be Achieved Through a Logarithmic Quantizer

If the pair (A,B) is stabilizable and (A,C) is detectable, then we can find a linear and
time-invariant controller K such that the feedback loop of Fig. 2 is FG lp stable for
every 1 ≤ p ≤ ∞. In particular, if W̄ = 0 then we have:

sup
Ē �=0

‖Ȳ ‖p

‖Ē‖p
= αp <∞ (9)

The diagram in Fig. 3 represents the feedback loop of Fig. 2 when a memory-less
quantizerQ is placed between the output of the plant and the controller. By representing
the quantization effect as E(k) = Q(Y (k))−Y (k), we can use the small gain theorem
to infer that FG lp stability, with 1 ≤ p ≤ ∞, is preserved in the presence ofQ, provided
that the following holds:(

sup
V ∈Rm−{0}

‖Q(V )− V ‖p

‖V ‖p

)
αp < 1 (10)
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K +

( )kY

( )kE

( )kU

( ) ( )kWkBUkAXkX ++=+ )()1(

( )kW

Fig. 2. Feedback system without quantization

( ) ( )kWkBUkAXkX ++=+ )()1(

K +

( )kY

( )kE Δ
Quantizer

( )kU

( )kW

Fig. 3. Feedback system with quantization

Fig. 4. Cone defined by (11), superimposed with a logarithmic quantizer Qi
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We can adopt a decoupled quantizerQ, where each component is designed indepen-
dently according to: (

sup
Vi∈R−{0}

|Qi(Vi)− Vi|
|Vi|

)
αp < 1 (11)

It is easy to see that the range of each Qi may be countable, but it must be infinite.
Indeed, in order to satisfy (11), we need to make sure that each Qi is in the cone rep-
resented in Fig 4. It suffices that each Qi is a logarithmic quantizer [2], with a density
strictly smaller than α−1

p .
For the framework in Fig 3 it is known [2] that for single input plants the least dense

quantizer, required for quadratic internal stabilization, may not be decoupled, suggest-
ing that (11) might not be the best choice for FG lp stabilization as well. However, we
are not concerned about the density of Q because we only intended to illustrate that
logarithmic quantization is sufficient to guarantee FG lp stabilization.

4 Conclusions

We have established that FG lp stabilization is not possible by bit-rate constrained feed-
back, and that the resolution of the controller must increase logarithmically as the am-
plitude of the external excitation decreases. The main implication of this result is the
following: ISS stabilization is achievable with bit-rate constrained feedback, but the
sensitivity with respect to external signals becomes arbitrarily large for small and large
disturbances. This fact is a fundamental limitation and cannot be avoided, in particular,
FG lp stabilization can only be accomplished by analog control. The absence of FG lp
stability also precludes the use of standard, induced norm based, small gain theorem
approaches for robustness analysis.

Acknowledgements. The author is grateful to Sridevi Sarma (MIT) and to Munther
A. Dahleh (MIT) for interesting suggestions. The author is also indebted to Ola Ayaso
(MIT), to Andre Tits (UMD) and to Armand M. Makowski (UMD) for their important
feedback on this manuscript. He also would like to thank Alex Megretski (MIT) and
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Specification and Analysis of Distributed
Object-Based Stochastic Hybrid Systems

José Meseguer and Raman Sharykin

University of Illinois at Urbana-Champaign, USA

Abstract. In practice, many stochastic hybrid systems are not auto-
nomous: they are objects that communicate with other objects by ex-
changing messages through an asynchronous medium such as a network.
Issues such as: how to compositionally specify distributed object-based
stochastic hybrid systems (OBSHS), how to formally model them, and
how to verify their properties seem therefore quite important. This pa-
per addresses these issues by: (i) defining a mathematical model for such
systems that can be naturally regarded as a generalized stochastic hybrid
system (GSHS) in the sense of [6]; (ii) proposing a formal OBSHS spec-
ification language in which system transitions are specified in a modular
way by probabilistic rewrite rules; and (iii) showing how these systems
can be subjected to statistical model checking analysis to verify their
probabilistic temporal logic properties.

1 Introduction

Stochastic hybrid systems (see the survey [28] and references there) generalize
ordinary hybrid systems (see, for example, [23, 3, 22, 4]) by allowing continuous
evolution to be governed by stochastic differential equations (SDE’s) and/or by
allowing instantaneous changes in system modes to be probabilistic. This fits
well the intrinsic uncertainty of the environments in which many hybrid systems
must operate, and is also very useful when some of the system’s algorithms
are probabilistic. Indeed, there is a wide range of application areas, including
communication networks [16], air traffic [18, 19], economics [9], fault tolerant
control [13], and so on. Bioinformatics, where symbolic, hybrid, and probabilistic
cell models are used, e.g., [11, 21, 15], seems also a field ripe for stochastic hybrid
system applications.

While a solid foundation already exists about the mathematical properties
of stochastic hybrid system models, such as being a strong Markov process,
the question of how to specify such systems in a compositional way, so that
larger systems can be described and understood in terms of smaller subsystems,
remains to a good extent open, although some proposals discussed below and
in Section 6 have already been made. Likewise, the question of how to formally
analyze such systems in ways that substantially extend the analytic power of
current simulation methods seems very much open. Since some application areas
(for example, air traffic control) require very high assurance, specification and
verification are important issues to address.

J Hespanha and A. Tiwari (Eds.): HSCC 2006, LNCS 3927, pp. 460–475, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The main goal of this paper is to address these specification and verification
issues, presenting a concrete proposal for how to formally specify and verify
stochastic hybrid systems that are distributed, and consist of different kinds of
stochastic hybrid objects that interact with each other by asynchronous message
passing. A distributed object-oriented style with asynchronous communication
seems very natural for specifying many such systems: for example, networked em-
bedded systems, or systems made out of aircraft and other, possibly unmanned,
vehicles. However, we are not aware of any formal model currently supporting
this specification style for stochastic hybrid systems. Our contributions in this
regard include: (i) a mathematical model of distributed and asynchronous object-
based stochastic hybrid systems (OBSHS) that has the strong Markov property
and can be mapped to the GSHS model of [6] (Section 3); and (ii) a formal
specification language in which such systems can be specified in a modular and
natural way using probabilistic rewrite rules (Section 4).

We also address formal verification issues in Section 5. Our specifications can
be simulated by translating them into Maude rewriting logic specifications [7].
They can also be subjected to statistical model checking analysis using the VeStA
tool [29]. In this way, probabilistic temporal logic properties of a stochastic hy-
brid system can be model checked with a desired degree of statistical confidence,
based on Monte Carlo simulations. We explain and illustrate this kind of model
checking analysis with two case studies.

In Section 6 we discuss related work and make some concluding remarks. In
particular, we discuss three other models that also address composition and
concurrency issues for stochastic hybrid systems, namely, those proposed in
[2, 31, 12]. As we further explain in Section 6 , although the model in [2] supports
objects, and that in [12] supports delayed interaction, none of these models sup-
ports distributed object communication by asynchronous message passing. To
make the paper reasonably self-contained and ease the presentation in Sections
3–4, we provide basic background on term rewriting, probabilistic rewriting, and
object-based specification in Section 2.

2 Probabilistic Rewriting and Distributed Objects

We review basic concepts on term rewriting, probabilistic rewriting, and dis-
tributed objects. This will help motivate our mathematical model of OBSHS
in Section 3 and our proposed OBSHS specification language in Section 4. The
exposition below is informal; we refer to [10] for more details on term rewriting,
and to [1] for more details on probabilistic rewriting.

We assume a signature Σ of function symbols, say, f, g,h, a, b, . . . ∈ Σ, having
an arity function ar : Σ −→ N specifying the number of arguments of each
function symbol. We then denote by TΣ(X) the algebra of Σ-terms on a set
X of variables. For example, f(x, g(b, y)) ∈ TΣ(X) is a Σ-term with ar(f) =
ar(g) = 2, ar(b) = 0, and x ∈ X . We illustrate with an example the notions of
subterm, subterm position, and subterm replacement For example, x, g(b, y), and
b are subterms of f(x, g(b, y). If we think of a term as a labeled tree, then its
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subterms are its subtrees. We can indicate subterm positions by finite strings of
natural numbers denoting paths from the root of the tree. For example, the above
three subterms are at positions 1, 2, and 2.1, respectively. Given a position p in a
term t, t/p denotes the subterm at position p. Given terms t and u, and a position
p in t, we denote by t[u]p the new term obtained by replacing the subterm t/p
by u at position p. For example, for t our example term and u = h(a) we have
t[u]2 = f(x,h(a)). Note that each term t has a set vars(t) of variables appearing
in it. A substitution θ is a function θ : Y −→ TΣ(X) with Y a set of variables.
It extends in a unique way to a Σ-homomorphism θ : TΣ(Y ) −→ TΣ(X). For
our example term t, if θ(x) = h(z) and θ(y) = c, then θ(t) = f(h(z), g(b, c)). A
rewrite rule is a sequent l −→ r with l, r ∈ TΣ(X). We call l the rule’s lefthand
side, and r its righthand side, Let R be a set of rewrite rules. We say that a term
t is rewritten in one step by R to t′, denoted t −→R t′, if there is a position p in
t and a substitution θ such that t/p = θ(l) and t′ = t[θ(r)]p. We denote by −→∗

R

the reflexive and transitive closure of R. Intuitively, we will think of terms as
the states of a system. Then a set R of rewrite rules can be understood as a set
of parametric state transitions, and −→∗

R as the system’s reachability relation.
We call a rewrite rule l −→ r nondeterministic if vars(r) �⊆ vars(l).

We can generalize this picture by rewriting not just terms, but equivalence
classes of terms modulo an equational theory E. This is accomplished by the no-
tion of a rewrite theory (Σ,E, R) [24], with Σ a signature, E a set of
Σ-equations, and R a set of rewrite rules. Intuitively, the idea is to view the
states of our system as elements of the algebraic data type TΣ/E specified by the
equations E, its so-called initial algebra. The elements of TΣ/E are E-equivalence
classes [t] of Σ-terms t without variables modulo the equations E. Now R rewrites
such equivalence classes instead of rewriting just terms. This is particularly use-
ful for modeling distributed object systems that communicate with each other
by message passing. We can view an object, say of a given object class C, as a
record-like term of the form 〈o : C | a1 : v1, . . . , an : vn〉, where o is the object’s
name or identifier, C is its class name, and the ai are its state variables (each
of an appropriate type) with the vi the corresponding values. We can similarly
view a message addressed to o as another term of the form 〈o ← c〉 with c its
contents and o its addressee. We can then model the distributed state of an
object system as a multiset or “soup” of objects and messages. We denote mul-
tiset union with the parallel composition operator ‖ , where the two underbars
indicate argument positions. For example the distributed state

〈o : C | a1 : v1, . . . , an : vn〉 ‖ 〈o← c〉 ‖ 〈o′ : C′ | b1 : v′1, . . . , bk : v′k〉 ‖ 〈o′ ← c′〉

has two objects o and o′ of classes C and C′, each with a message addressed
to it and not yet received. Since multiset union is associative and commutative,
the order of objects and messages is immaterial. In the case of objects in an
OBSHS, the only additional fact is that some of the variables ai of an object
〈o : C | a1 : v1, . . . , an : vn〉 are continuous, that is, they take real numbers as
values, while other variables can be discrete. Since for OBSHS real time is of
the essence, in addition to ordinary messages ready for instantaneous reception,
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there will also be scheduled messages of the form [d, 〈o← c〉], where d is a time
called the deadline, which is decreased by time elapse. This allows us to model
the fact that asynchronous communication in a distributed system takes time, so
that a message sent is not immediately available for reception. In an OBSHS at
any given time there will be at most one message available for reception, called
the active message: all other messages will be scheduled messages.

The discrete transitions of a distributed object systems typically take place
in response to messages: an object, upon receiving a message, may change its
state, send other messages, and may disappear and/or spawn new objects. Such
discrete concurrent transitions, as we will illustrate in a moment, can be natu-
rally specified by rewrite rules. The point, however, is that for such systems the
rewriting should be multiset rewriting, in which the order of objects and mes-
sasages in the “soup” is immaterial. This can be neatly captured by a rewrite
theory (Σ,AC ∪ E, R), where Σ specifies all the operators building up objects
and messages, and the parallel composition operator ‖ , AC are equations of
associativity and commutativity for ‖ , and E are other equations specifying
auxiliary functions.

However, in an OBSHS the rewrite rules R specifying the instantaneous ob-
ject transitions are typically probabilistic. A probabilistic rewrite rule [20, 1] is a
rewrite rule of the form

l(x)→ r(x, y) with probability y := p(x)

The first thing to observe is that such a rule is nondeterministic, because the
term r has new variables y disjoint from the variables x appearing in l. Therefore,
a substitution θ for the variables x appearing in l that matches a subterm of
a term t at position p does not uniquely determine the next state after the
rewrite: there can be many different choices for the next state, depending on
how we instantiate the extra variables y in r. In fact, we can denote the different
next states by expressions of the form t[r(θ(x), ρ(y))]p, where θ is fixed as the
given matching substitution, but ρ ranges over all the possible substitutions for
the new variables y. The probabilistic nature of the rule is expressed by the
notation: with probability y := p(x), where p(x) is a probability measure on
the set of substitutions ρ (modulo the equations E in the given rewrite theory).
However, the probability measure p(x) may depend on the matching substitution
θ. We sample y, that is, the substitution ρ, probabilistically according to the
probability measure p(θ(x)).

A simple example can illustrate many of the ideas presented so far. A possible
object in an OBSHS can be a bidder object in an auction (Section 5.1). This is an
object of the form 〈o : Bidder | motivation : m〉, with motivation a continuous
variable measuring the bidder’s degree of interest in the auction. The bidder
sends bids to the auction at random times, but a bidder with greater motivation
will bid more often. This can be modeled by the probabilistic rewrite rule

〈X : Bidder | motivation : M〉 ‖ 〈X ← schedule.bid〉 −→
〈X : Bidder | motivation : M〉 ‖ [T, 〈X ← place.bid〉]

with probability T := Exp(0.1 ∗ duration/0.1 + M)
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were upon receiving a message 〈X ← schedule.bid〉 the bidder X schedules
its next bid according to an exponential distribution whose rate involves both
the auction duration and its own motivation. The probability measure crucially
depends on the bidder’s motivation, which is determined in each rule instance
by the substitution θ instantiating the lefthand side variable M .

3 Object-Based Stochastic Hybrid Systems

This section presents our OBSHS model and shows its relation to the GSHS
model. To simplify the mathematical details, we adopt a more Spartan notation
for object states as tuples (o, q, v), with o the objects name, q a single discrete
element that tuples together the class name and the discrete variables, and v
the vector of values of the continuous variables. For (X,O) a topological space,
(X, B(X)) denotes its associated measurable space.

Definition 1. Given measurable spaces (X, FX), (Y, FY ), we call a function
K : X × FY → [0, 1] a Markov kernel (from (X, FX) to (Y, FY )) iff K satisfies:
(i) ∀x ∈ X, K(x, ·) is a probability measure, and (ii) ∀B ∈ FY , K(·,B) is
measurable. Intuitively, we think of K as a “probabilistic transition relation”
from X to Y . �

Definition 2. A stochastic hybrid object class (OBSHS class) C is a tuple
C = (QC ,Oid, InvC ,μ,σ, JumpC), where:

Discrete States: QC is a countable set of discrete states.
Object Identifiers: A countable set Oid of object names.
Invariants: For a fixed dimension l, a function InvC : QC → O(Rl), where
O(Rl) is the set of open sets of the Euclidean space Rl.
Object States: The state of an object o, with o ∈ Oid, is a triple s = (o, q, v)
with q ∈ QC and v ∈ InvC(q). The set of all such states for all objects in the
class C is denoted

SC =
⋃

o∈Oid, q∈QC

{o} × {q} × InvC(q)

we also define its closure SC as the set

SC =
⋃

o∈Oid, q∈QC

{o} × {q} × InvC(q)

with InvC(q) the topological closure of the open set InvC(q), and its boundary
∂SC = SC �SC. Note that SC is a disjoint union of metric spaces and therefore
has an associated measurable space (SC , B(SC)).
SDE Dynamics: is specified by a pair of functions μ : DC → Rl and σ : DC →
Rl×m, with DC =

⋃
q∈QC

{q} × InvC(q), and with μ(q,x), σ(q,x) bounded and
Lipschitz continuous in x.
Jump Kernel: a Markov kernel JumpC : ∂SC ×B(SC) → [0, 1]. �
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A message has an object o from some class C as its addressee, and can also
contain discrete and continuous parameters.

Definition 3. Given an OBSHS class C, a message type M for objects of class
C is a tuple M = (OidC ,Q′, d) with OidC the object names of class C, Q′ a
countable set of discrete parameters, and d ∈ N the dimension of the set of
continuous parameters Rd. The set SM of messages of type M is then SM =
OidC × Q′ × Rd. Similarly, the set SSM of scheduled messages of type M is
SSM = SM × R≥0. �
Definition 4. An Object-Based Stochastic Hybrid System (OBSHS) A is
given by:

• a set C1, . . . ,Cn of OBSHS classes.
•a setM1,. . . ,Mm of message types, each involvingsome Ci among the C1,. . . ,Cn.

The states of an OBSHS are multisets which contain objects in C1, . . . ,Cn,
scheduled messages in M1, . . . ,Mm, and at most one message in one of the Mj:

s={((o1, q1, v1), . . . , (ok, qk, vk), [(o′, q′, v′)], ((o′1, q
′
1, v

′
1), t1), . . . , ((o

′
s, q

′
s, v

′
s), ts))}

where the object identities o1, . . . , ok are all different, we have a set inclusion
{o′, o′1, . . . , o′s} ⊆ {o1, . . . , ok}, and [(o′, q′, v′)] means that the single message
(o′, q′, v′) may not be present. The discrete component of the above state is the
multiset

q = disc(s) = {(o1, q1), . . . , (ok, qk),< (o′, q′) >, (o′1, q
′
1), . . . , (o

′
s, q

′
s)}

where the angle bracket operator < (o′, q′) > acts as a marker to distinguish
the discrete part of the unique active message (o′, q′, v′) if such a message is
present. The set QA of all discrete components disc(s) of the states s of an
OBSHS A is by construction a countable set. The continuous component of the
state s is of course scattered through the different objects and messages, but
we can easily consolidate it into a single component as follows. Without loss
of generality we may assume that the sets OidC1 , . . . ,OidCn and Q′

M1
, . . . ,Q′

Mm

are all disjoint and that the discrete message parts q′, q′1, . . . , q
′
s are all different1.

Then, by linearly ordering the C1, . . . ,Cn, M1, . . . ,Mm, and assuming linear
orders in the OidCi and Q′

Mj
, we can lexicographically sort the elements of any

discrete state disc(s) in a unique way. Suppose that the sorted form of the state s
above is exactly the order in which its elements are listed. Then, the continuous
component of s is the vector

v = cont(s) = (v1, . . . , vk, v′, v′1, t1, . . . , v
′
s, ts)

This means that we can represent the set of all states of the OBSHS A as a
disjoint union

SA =
⋃

q∈QA

{q} × Inv(q)

1 They can always be made different, for example, by including a message identifier
in each message.



466 J. Meseguer and R. Sharykin

where if (o1, q1), . . . , (ok, qk) (of classes Ci1 , . . . Cik
) are the discrete objects parts

of the state q, then

Inv(q) = InvCi1
(q1)× . . .× InvCik

(qk)× Rmd(q)

where md(q), the message dimension of q, is obtained by adding all the dimen-
sions of the continuous components in the optional active message and in the
scheduled messages.

• a Markov kernel Msg : ŜA ×B(SA)→ [0, 1] called the instantaneous message
reception kernel, with ŜA ⊂ SA the measurable subset of states containing ex-
actly one active message.
• an initial probability measure Init : B(SA)→ [0, 1]. �

Assumption 1 . (i) Msg, when thought of as a “probabilistic transition rela-
tion” leaves all scheduled messages untouched, and all new scheduled messages
introduced by the transition have a deadline in R>0

2. (ii) From a state in ŜA,
a state in SA � ŜA (no active messages) is reached in a finite number of Msg
“transitions” with probability 1; therefore, all Msg transition sequences almost
surely terminate.

Since SA is a disjoint union of metric spaces, it has a measurable space struc-
ture (SA, B(SA)). The JumpCi kernels specified for each class C1, . . . ,Cn in an
OBSHS A can be “glued together” to define a jump kernel JumpA : ∂SA ×
B(SA) → [0, 1], where, by definition, SA =

⋃
q∈QA

{q} × Inv(q), and ∂SA =
SA � SA. The proof of the following proposition can be found in Appendix B of
[25].

Proposition 1. Given an OBSHS A with classes C1, . . . ,Cn, the jump ker-
nels JumpC1 , . . . , JumpCn can be extended to a jump kernel JumpA : ∂SA ×
B(SA)→ [0, 1] in such a way that for states in ∂SA consisting of a single object
(o, q, v) of class Ci, then JumpCi((o, q, v), ·) and JumpA({o, q, v}, ·) agree, when
∂SCi is homeomorphically embedded as a subspace of ∂SA. �

An execution of an OBSHS is a trajectory of a stochastic process P . The state
space of P is SA. The initial state is chosen according to the initial distribution
Init. The system has evolutions of two types: continuous evolution and discrete
evolution.

The system follows the continuous evolution (CE) when in its state all objects
have their continuous states inside their boundaries, there is no active message,
and there are no scheduled messages with their deadline times equal to zero. We
denote the set of all such states by SCE

A . During its continuous evolution the
system evolves with each object evolution governed by the SDE of its class. The
deadline time of each scheduled message decreases by the time elapsed.

When some objects reach their boundary or the deadline times of some sched-
uled messages reach zero, the system starts its discrete evolution. We denote by
2 Note that, by definition of SA, Msg will introduce at most one active message.
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SA! the set of states in SA such that at least one scheduled message has reached
its deadline. Therefore, discrete evolution begins when the process hits ∂SA∪SA!.
During the discrete evolution the system proceeds as follows:

(i) if there are some objects whose continuous state is in the boundary of their
invariants, the JumpA kernel is used to perform a transition to the new state.
(ii) if there are no objects in the boundary, and there is an active message in the
state, then the Msg kernel is used to perform a transition to the new state3.
(iii) if there are no objects in the boundary and no active message, but some
scheduled messages have their deadline time equal to 0, a scheduled message is
chosen uniformly among the scheduled messages with 0 deadline and becomes
the active message.

By the fact that JumpA moves states outside ∂SA, plus Assumption 1, plus
the fact that each transition of type (iii) decreases the number of zero-deadline
messages, we know that after a finite number of iterations of transitions (i)-(iii) a
state in SCE

A (which is an absorbing state for transitions (i)-(iii)) is reached with
probability 1. Therefore, all such transition sequences almost surely terminate.

After reaching a state in SCE
A through a finite number of instantaneous transi-

tions (i)-(iii), the system continues in time according to its continuous dynamics
until a new time Ti+1 is reached in which P hits ∂SA ∪ SA!. Therefore, instan-
taneous transitions happen at discrete times T1 < T2 < T3 < . . ...

Assumption 2 (Non-Zeno Dynamics). The expectation of Nt, the number
of instantaneous transition times on [0, t] is finite for all t.

We are now ready to relate the OBSHS model to a very general model proposed
by Bujorianu and Lygeros, namely, General Stochastic Hybrid Systems (GSHS)
[6]. Intuitively, the key observation is that the sequence of instantaneous tran-
sitions (i)-(iii) after a process hits a state in ∂SA ∪ SA! can be packed together
into a single Markov kernel. The proof of the following proposition is given in
Appendix B of [25].

Proposition 2. Under Assumptions 1-2 an OBSHS A can be naturally under-
stood as a GSHS.4 �
As corollary of the above proposition, by using the same results proven for
GSHS’s in [6], we immediately obtain

Theorem 1. Under Assumptions 1-2 an OBSHS A is a Borel right process.
�

4 Specifying OBSHS’s with Rewrite Rules

The different components of an OBSHS should be specified in a simple and
highly reusable way by means of class specifications that are then composed into
3 Note that, by the definition of Msg, the resulting state will have no objects in the

boundary.
4 In fact, by GSHS we mean a slight generalization of the model introduced in [6]. See

Appendix B of [25] for details.
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overall OBSHS specifications involving different class objects and messages and
specifying their message-passing communication. We discuss below an object-
based stochastic hybrid system example specified in SHYMaude, an extension of
the PMaude language [1] supporting OBSHS features. PMaude itself supports
specification of probabilistic rewrite theories in the Maude style; and simulation
of such theories in the underlying Maude rewriting logic language [7].

A SHYMaude (Stochastic HYbrid Maude) module specifies an OBSHS and
may contain several class declarations. It is introduced with the keyword shymod
followed by its name and ends with the keyword endshy. In this example, the
module is called ROOM&SENSOR and contains two classes: a class Room of rooms
endowed with a thermostat control which can handle stochastic changes in room
temperature, and a class Sensor of sensor objects that collect temperature infor-
mation from rooms for statistical purposes. A module may import other mod-
ules, such as the NAT natural number module importation declared with the
protecting keyword. Different types, called sorts, can also be declared; here
we declare a sort RMode of room modes with two constants (heat and cool)
introduced with the ops keyword. Similarly, several constants of sort Real are
declared. Inside such a module, several stochastic hybrid object classes may
be declared, each beginning with the class keyword followed by its name, and
ending with endclass. After the class name, the discrete (disc) and continuous
(cont) variables of objects in the class are declared, with the separation be-
tween both sets of variables marked by a vertical bar. For each discrete variable
its corresponding sort is specified. Room objects have just one discrete variable
(mode) holding the current mode, and one continuous variable (temp) holding
the current temperature.

The invariant, SDE dynamics, and jump kernel of the class are declared with
the inv, dyn, and jump keywords, with each declaration finished by a respective
end keyword. The invariants are specified by equations identifying each invariant
with a boolean predicate. The SDE dynamics is specified by a finite set of (in
general parametric on the discrete state) SDE’s with self-explanatory notation.
Here we have just two discrete states for each object; therefore and SDE is spec-
ified for the temperature changes in each case. The Jump kernel specification is
specified by probabilistic rewrite rules whose lefthand sides specify object states
that have reached the boundary of their invariant, and with the corresponding
righthand side specifying the state to which the object jumps according to a
certain probability measure. Since for this class the jump outcomes are deter-
ministic, the rules in this case are ordinary rewrite rules and the righthand side
states are reached with probability 1.

Before specifying the Sensor class, its two sleep and wait modes are de-
clared as constants of sort SMode. This class is very simple. It has three discrete
variables: its mode, the oid of the room object it is sensing, and a counter,
its only continuous variable (a temperature average) has no SDE dynamics, no
invariants, and no jumps. The syntax for messages and for their contents are
specified with operators of sorts Msg and Contents. Here a sensor S can send to
its room R a message asking to report its temperature, and the room answers
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back with a temperature report. These message exchanges are specified by the
first two rules. We assume that the sensor and the room are contiguous, so the
reply message sent back by the room in the first rule has no delay. In the second
rule, the sensor, upon receiving a temperature report, schedules a check message
with delay chosen according to an exponential probability measure. The third
rule shows how the sensor wakes up upon receiving a check message and queries
the room again. Note that, by convention, variables not modified by a rule need
not be mentioned. Note also that such message reception rules are implicitly
conditional to the corresponding object being inside its current invariant. For
example, the first rule must satisfy the implicit condition Inv(mode : M, temp
: T) = true for M the current mode. Note finally, that the parallel composition
operator ( ‖ ) is denoted here with empty (juxtaposition) syntax ( ).

shymod ROOM&SENSOR is protecting NAT . sort RMode . ops heat cool
: -> RMode . ops T_max T_min intensity epsilon : -> Real .

class Room is disc mode : RMode | cont temp .

inv
Inv(mode : heat, temp : T) = T < T_max .
Inv(mode : cool, temp : T) = T > T_min .

endinv

dyn
sde(mode : heat) d(temp) = intensity * dt + epsilon * dW(t) .
sde(mode : cool) d(temp) = - intensity * dt + epsilon * dW(t) .

enddyn

jump
rl < O : Room | mode : heat, temp : T_max > => < O : Room | mode: cool, temp : T_max > .
rl < O : Room | mode : cool, temp : T_min > => < O : Room | mode :heat, temp : T_min > .

endjump endclass

sort SMode . ops sleep wait : -> SMode .

class Sensor is disc mode : SMode, room : Oid, count : Nat | cont
average . endclass

op < _ <- _ > : Oid Contents -> Msg . op report : Oid -> Contents
. op temp :_ : Real -> Contents . op check : -> Contents .

rl < R : Room | temp : T > < R <- report(S) > => < R : Room |
temp : T > < S <- temp : T > .

rl < S : Sensor | mode : wait, average : A, count : N > < S <-
temp : T > =>

< S : Sensor | mode : sleep, average : (A * N + T)/(N + 1), count : N + 1 >
[D, < S <- check >] with probability D := Exponential(1) .

rl < S : Sensor | mode : sleep, room : R > < S <- check > =>
< S : Sensor | mode : wait, room : R > < R <- report(S) > .

endshy

A SHYMaude specification can be desugared into a corresponding PMaude
specification. Since probabilistic rewrite rules have extra variables in their right-
hand sides, they are not directly executable. However, as explained in [1], pro-
vided sampling functions for the corresponding probability measures have been
implemented in the underlying Maude, a PMaude specification can be simu-
lated by an ordinary rewrite theory in Maude, in which the probabilistic choice
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is realized by the corresponding sampling function. In this way, SHYMaude
specifications can be simulated in the underlying Maude system. The Maude
translation of a SHYMaude module approximates the SDE dynamics using the
Euler-Maruyama method. In this way, Monte Carlo simulations of the OBSHS
specification can be performed. Furthermore, such simulations can be input to
a statistical model checker like VeStA [29] to formally verify system properties.

5 Statistical Model Checking of OBSHS’s

Developing formal verification methods for stochastic hybrid system properties
that go beyond current simulation methods is an important research issue. Prob-
abilistic temporal logics are possible candidates to state properties; but they are
somewhat restrictive: they give a true or false answer when one would often be
interested in a quantitative answer. For this reason, we use the QuaTEx lan-
guage of Quantitative Temporal Expressions proposed in [1]. This language is
supported by the VeStA tool [29], which has an interface to Maude allowing
PMaude and SHYMaude specifications to be model checked with respect to
QuaTEx properties using their Maude translations.

The key idea of QuaTEx is to generalize probabilistic temporal logic formulas
from Boolean-valued expressions to real-valued expressions. The Boolean inter-
pretation is preserved as a special case using the real numbers 0 and 1. As usual,
QuaTEx has state expressions, evaluated on states, and (real-valued) path ex-
pressions evaluated on computation paths. The notion of state predicates is now
generalized to that of state functions, which can evaluate quantitative properties
of a state. QuaTEx is particularly expressive because of the possibility of defin-
ing recursive expressions. In this way, only the next operator © (represented as
# in the VeStA syntax) and conditional branching if Bexp then Pexp then Pexp′

fi, with Bexp Boolean and Pexp,Pexp′ path expressions, are needed to define
more complex operators like the until U of probabilistic computational tree logic
(PCTL) and of continuous stochastic logic (CSL) [5], and the CSL bounded
until U≤t. We refer to [1] for a detailed account of QuaTEx and its semantics.
We give a flavor for it here by means of one of the QuaTEx expressions that
we have evaluated in one of the case studies described below (an auction). The
expression in question, numToGet(n,id), computes the number of times that a
bidder named id has to compete in a repeated auction to get the auctioned item
n times. This is an expression evaluated on computation paths. The two auxil-
iary state functions in this case are won(id), counting the number of times that
id has already won a bid, and numberOfAuctions(id), counting the number of
auctions id has participated in. The corresponding QuaTEx expression is

numToGet(n,id) = if won(id) = n then numberOfAuctions(id) else #numToGet(n,id) fi;

VeStA performs statistical model checking on a probabilistic system by evaluat-
ing QuaTEx expressions on computation paths obtained by Monte Carlo simu-
lations. For the above formula the VeStA command is E[numToGet(n,id)]. Two
other parameters α and δ are also provided to the tool. VeStA then responds
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with a real number v, which is the estimated value of the expression with a
(1 − α)100% confidence interval bounded by δ. Depending on the tightness of
the parameters, VeStA may need a greater or smaller number of sample runs to
compute such a value.

5.1 Repeated Second-Price Auction

We have specified and analyzed a model of consecutive second-price online auc-
tions repeated on similar items inspired by [27]. During each auction a similar
item is on sale and throughout the auction the second highest bid is posted.
To overbid the current bid a bidder must submit a bid higher then the cur-
rent winning bid (which is not public). The winner pays the second highest bid.
We enrich the model with the assumption that the bidders reside in different
countries and hence the exchange rates (which fluctuate over time and whose
dynamics we can model using SDE’s [32]) must be used. The specification of
the system consists of several object classes: a class of auctioneer who receives
bids and updates the current state of the auction, the agency who provides the
exchange rate modeling them using the appropriate SDE’s, and two classes of
bidders one being a class of “normal” bidders who bid throughout the auction
with a certain probability and the other being a class of “experts” who bid at
the very end of the auction with the price which they consider to be appropriate.

VeStA Analysis. We have used VeStA to estimate a quantitative property of
the system. In the analysis we considered a system consisting of 1 auctioneer,
3 early bidders with 1 domestic and 2 in different foreign countries, and one
foreign sniper.

The quantitative property was the expected number of auctions for a bidder
to get N items. The QuaTEx query for this quantitative property was explained
above. The results of estimating this quantitative property for n = 2 with 95%
confidence were: (i) for the domestic bidder the interval [6.8, 7.5], (ii) for a foreign
bidder [8.2, 9.1], and (iii) for the sniper [7.8, 8.6].

5.2 Thermostat

We have specified and analyzed a system consisting of N rooms, each equipped
with a thermostat and a central server unit controlling them. Each thermostat
can be in one of three modes: heating, cooling, and idle. The temperature in
each room changes randomly according to the SDE dT = Idt + IndWt, where I
depends on the thermostat mode and is either the rate of heating Ih , the rate of
cooling Ic, or equal to zero in the idle mode. The server checks the temperature
in each room at random times and sends commands to the thermostat according
to three rules: (i) if the temperature T in a room is T > Tmax, then it sends
a messages to to start cooling, (ii) if T < Tmin, then it sends a message to
start heating, (iii) if the temperature is in the region close to T0 with T0 =
(Tmax + Tmin)/2, then it sends a message to go to the idle mode.

VeStA Analysis. We used VeStA to estimate a quantitative property of the
thermostat system. The property was the probability that if during a run the
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temperature goes out of some desired interval ID = [T0−Δ,T0+Δ]⊆ [Tmin,Tmax]
in a specific room it will return to the desired interval in a specified amount of
time. The QuaTEx query for this probability is

Eventually(t,id) = if time() >= T then 0
else if time() > t + I then 0

else if InInterval(id) = 1 then #Always(id)
else #Eventually(t,id) fi fi ;

Always(id) = if time() > T then 1
else if InInterval(id) = 1 then #Always(id)

else #Eventually(time(),id) fi fi ;
eval E[Always(id)];

where T bounds the lengths of paths, and I defines the interval during which the
temperature has to return to the desired interval after leaving it. The function
InInterval returns 1 if the temperature of the room with the identifier id is
in the desired interval ID and 0 otherwise. The function Always returns 1 if the
path satisfies the property stated above and 0 otherwise. Thus the expectation
of this function is the desired quantitative property [1]. We used T = 20 minutes
and I = 60 seconds. As in the previous property we used Tmax = 74, Tmin = 70,
Δ = 1. Using this values we obtained that with 95% confidence the desired
probability lies in the confidence interval [0.31,0.34].

6 Related Work and Conclusions

Since under Assumption 3 the OBSHS model can be mapped into the GSHS
model, the relation to less general models — including PDP [8], SHS [17], and
SDP [14] — which are encompassed by GSHS as special cases is then very
direct. We refer to [28] for a recent survey of stochastic hybrid system models,
and focus instead on the relation of OBSHS to the three other stochastic hybrid
system models addressing concurrency and composition that we are aware of,
namely: (i) the model presented in [2], with associated Charon specifications;
(ii) communicating piecewise deterministic Markov processes (CPDP) [31]; and
(iii) stochastically and dynamically colored Petri nets (SDCPN) [12].

Like OBSHS specifications, the Charon specifications in [2] also support
stochastic hybrid objects (called agents in Charon) and object composition;
however, the forms of composition supported in each model are orthogonal and
complementary. Charon objects can be composed out of subobjects that com-
municate instantaneously with each other by sharing variables. Once a closed
object is thus composed, no dynamic object creation is possible; also, no support
for non-instantaneous asynchronous message passing is provided. By contrast, in
OBSHS objects are composed into distributed configurations by means the ‖
operator. We view these composition operations as serving different purposes:
Charon object composition is best suited for building a single object out of tightly
coupled subobjects that are contiguouous to each other and can communicate
instantaneously. OBSHS composition is best suited for asynchronous distributed
object composition. We believe that the methods presented in this paper could
be generalized to encompass both Charon and OBSHS compositions, essentially
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by viewing composed Charon objects as “Russian doll” objects [26] that could
then communicate asynchronously with other such objects by messages in the
OBSHS style.

The CPDP model [31] is a hybrid automaton formalism with two types of syn-
chronization: on shared events, and on active-passive events with complementary
labels. Composition is then synchronous parallel automaton composition. As in
the PDP model [8], to which CPDP models can be reduced if their nondeter-
minism is eliminated by means of a scheduler, no diffusion is allowed, and no
dynamic process creation is possible. Also, all communication (which can be
value-passing) is assumed to be instantaneous. Therefore, CPDP models seem
best suited for composing tightly coupled stochastic processes, not involving
diffusion, out of simpler subprocesses.

The SDCPN model [12] has some similarities and some differences with re-
spect to OBSHS. Both models map to GSHS. Both have distributed states
formed by multiset union. In fact, by using the formalization of Petri nets as
rewrite theories presented in [30], SDCPN transitions can be understood as prob-
abilistic rewrite rules that perform multiset rewriting in the current marking
multiset. In both models, both instantaneous and delayed interactions are pos-
sible (the analogous role of scheduled messages in OBSHS is played by delay
transitions in SDCPN). But SDCPN models do not directly support objects and
asynchronous message passing. In our view, SDCPN and OBSHS models, while
having a comparable expressive power at the level of their GSHS translations,
support quite different specification styles. We think that the most fruitful way
of relating these models would be by unifying them within a more general model
that specifies transitions as probabilistic rewrite rules.

We can summarize the work just presented as the first proposal we are aware of
for a formal model and specification language for distributed object-based stochas-
tic hybrid systems that communicate by asynchronous message passing; and for
analyzing such systems by statistical model checking. We view explicit modeling of
asynchronous communication as essential for many classes of applications in which
objects are physically distributed over non-negligible distances. Furthermore, net-
work communication makes message delays unavoidable. Compositionality is sup-
ported in OBSHS at two different levels: at the object level by the parallel object
composition operator ‖ , and at the class level by multiple inheritance.

The work presented here is a first step. Further work is needed in several di-
rections, including: (i) further advancing the design and implementation of our
OBSHS specification language; (ii) experimenting with a wider class of applica-
tions, including Bioinformatics applications; and (iii) developing, as suggested
above, a more general formalism for stochastic hybrid system specification based
on probabilistic rewrite rules that can combine the benefits of the OBSHS model
with those of other models such as those proposed in [2, 12].
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Abstract. A switched system is a hybrid system whose discrete mech-
anisms are abstracted away in terms of an exogenous switching signal
which brings about the mode switches. For switched systems, the Av-
erage Dwell time (ADT) property defines restricted classes of switching
signals which can be used for proving stability. In this paper, we develop
optimization-based methods for automatically verifying ADT properties
of hybrid systems. This enables us to prove stability of hybrid systems,
provided the individual modes of the system are stable. For two special
classes of hybrid systems, we show that the resulting optimization prob-
lems can indeed be solved efficiently using standard mathematical pro-
gramming techniques. We also present simulation relation-based proof
methods for establishing equivalence of hybrid systems with respect to
ADT. The proposed methods are applied to verify ADT properties of a
linear hysteresis switch and a nondeterministic thermostat.

1 Introduction

In order to accurately represent hybrid phenomena that arise in typical applica-
tions, hybrid system models must provide discrete and continuous valued state
variables and must have mechanisms to capture both instantaneous state transi-
tions and state trajectories spanning time intervals. The standard approach for
describing hybrid behavior is to assume that every state of the system belongs
to one of P modes , where P is a finite index set. When the state is in mode
p, for some p ∈ P , the continuous variables x evolve according to ẋ = fp(x)
and the discrete variables remain constant. Discrete transitions alter both con-
tinuous and discrete variables, which may lead to mode change. Analyzing the
stability of hybrid systems is challenging because the stability of the continuous
dynamics of each individual mode does not necessarily imply the stability of
the whole system (see [1] for an example). The basic tool for studying stabil-
ity of hybrid systems relies on the existence of a Common Lyapunov function,
whose derivative along the trajectories of all the modes must satisfy suitable
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inequalities. When such a function is not known or does not exist, Multiple Lya-
punov functions [1] are useful for proving stability of a chosen execution. These
and many other stability results are based on the switched system [2, 3] view of
hybrid systems. Switched systems may be seen as higher-level abstractions of
hybrid systems. A switched system model neglects the details of the discrete be-
havior of a hybrid system and instead relies on an exogenous switching signal to
bring about the mode switches. If the individual modes of the system are stable,
then the Dwell Time [4] and the more general Average Dwell Time (ADT) crite-
ria, introduced by Morse and Hespanha [5], define restricted classes of switching
signals that guarantee stability of the whole system. In this paper, we present
techniques for automatically verifying ADT properties using a model for hybrid
systems that captures both their discrete and continuous mechanisms. Thus we
provide a missing piece in the toolbox for analysis of stability of hybrid systems.

We use the Hybrid Input/Output Automaton (HIOA) framework of Lynch,
Segala, and Vaandrager [6] to develop methods for checking ADT properties. A
hybrid system A has ADT τa if, in every execution fragment ofA, any τa interval
of time, on an average, has at most one mode switch. A large ADT means that the
system spends enough time in each mode to dissipate the transient energy gained
through mode switches. Having a large ADT itself is not sufficient for stability;
in addition, the individual modes of the automaton must also be stable. In fact,
the problem of testing the stability of a hybrid system can be broken down
into (a) finding Lyapunov functions for the individual modes and (b) checking
the ADT property. We assume that a solution to part (a)—a set of Lyapunov
functions for the individual modes—is known from existing techniques, and we
present automatic methods for part (b).

Our approach for checking if a given automatonA has ADT τa, is to formulate
an optimization problem OPT(τa). From the solution of OPT(τa) we can either
get a counterexample execution fragment of A that violates the ADT property
τa, or else we can conclude that no such counterexample exists and that A has
ADT τa. We show that for certain useful classes of HIOA, OPT(τa) can indeed be
formulated and solved using standard mathematical programming techniques.
We also present a simulation relation-based proof technique for showing that
ADT of a given HIOA is no less than (or equal to) that of another HIOA. This
proof technique enables us to verify ADT of automata for which OPT(τa) may
not be solvable directly. For example, we can abstract such an automaton A in
terms of another automaton B for which OPT(τa) can be solved efficiently, such
that ADT of A is no less than that of B. Then, by verifying that B has ADT τa

we can conclude that the ADT of A is at least τa. We do not address the problem
of constructing such an abstract automaton B in this paper; this direction will
be pursued in the future.

In [7], an invariant-based method for proving ADT is proposed. This method
transforms the given automaton A to a new automaton Aτa , so that A has ADT
τa if and only if Aτa has a particular invariant property Iτa . This method is
applicable to any HIOA; however, for general HIOA, the invariant Iτa cannot
be checked automatically. The optimization-based approach presented here is
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automatic and complements the invariant method of [7] because the two can be
used in combination to find the ADT of hybrid systems. We can start with some
candidate value of τa > 0 and search for a counterexample execution fragment
for it, using the optimization-based approach. If such an execution fragment is
found, then we decrease τa (say, by a factor of 2) and try again. If eventually
the optimization approach fails to find a counterexample execution fragment for
a particular value of τa, then we use the invariant approach to prove that this
value of τa is an ADT for the given system.

Contributions and overview. In Section 2 we introduce a specialization of
HIOA called Structured Hybrid Automaton (SHA) and define the Average Dwell
Time (ADT) property in terms of this model. In Section 3 we introduce the opti-
mization problem OPT(τa). We formally define what it means for two SHA to be
ADT-equivalent and present a new type of simulation relation, called switching
simulation, that provides sufficient conditions for establishing the ADT equiva-
lence. In Section 4 we explore the class of One-clock initialized SHA, and we show
that solving OPT(τa) for this class reduces to detecting a negative cost cycle in a
weighted graph. We verify the ADT property of a linear, scale-independent hys-
teresis switch taken from [8] by first finding a SHA B that is ADT-equivalent to
it and then showing how OPT(τa) for B can be solved efficiently using standard
graph algorithms, like Karp’s algorithm for minimum mean-weight cycle [9]. In
Section 5, we study the more general class of Initialized SHA and show that
OPT(τa) can be solved by detecting a cyclic execution fragment with “extra”
mode switches. We show that for rectangular initialized SHA, OPT(τa) can be
formulated as a Mixed Integer Linear Program. We use this formulation along
with switching simulations to verify the ADT property of a nondeterministic
thermostat.

2 Hybrid System Model and Stability Definitions

The Hybrid Input/Output Automaton (HIOA) model [6] with its invariant and
simulation based proof methods has been used to verify the safety properties of
several hybrid systems (see, e.g., [10, 11, 12]). In this paper, we are concerned
with internal stability of hybrid systems, so we use a specialization of the HIOA
model called Structured Hybrid Automata (SHA), that does not have input/out-
put variables and does not distinguish among input, output, and internal actions.
On the other hand, SHA have extra structure called “state models” for describing
the trajectories using differential and algebraic equations.

2.1 Structured Hybrid Automaton Model

We denote the domain of a function f by f.dom. For a set S ⊆ f.dom, we
write f # S for the restriction of f to S. If f is a function whose range is a
set of functions containing Y , then we write f ↓ Y for the function g with
g.dom = f.dom such that for each c ∈ g.dom, g(c) = f(c) # Y . For a tuple or an
array b with n elements, we refer to its ith element by b[i].



Verifying ADT by Solving Optimization Problems 479

We fix the time axis T to be R≥0. Let X be a set of state variables; X is
partitioned into Xd, the set of discrete variables, and Xc, the set of continuous
variables. Each variable x ∈ X is associated with a type, which is the set of
values that x can assume. Each x ∈ Xd (respectively, Xc) has dynamic type,
which is the pasting closure of the set of constant (resp. continuous) functions1

from left-closed intervals in T to the type of x. A valuation x for the set of
variables X is a function that associates each x ∈ X to a value in its type. The
set of all valuations of X is denoted by val(X). A trajectory τ : J → val(X)
specifies the values of all variables X on a time interval J with left endpoint of J
equal to 0, with the constraint that evolution of each x ∈ X over the trajectory
should be consistent with its dynamic type. A trajectory with domain [0, 0] is
called a point trajectory. If τ.dom is right closed then τ is closed and its limit
time is the supremum of τ.dom and is written as τ.ltime. The first valuation
of τ , τ.fval is τ(0), and if τ is closed, then the last valuation of τ , τ.lval, is
τ(τ.ltime).

Definition 1. A state model F for a set of variables X is a set of differential
equations for Xc of the form ẋc = f(xc), such that: (1) For every x ∈ val(X),
there exists a trajectory τ with τ.fval = x, with the property that τ ↓ Xc satisfies
F , and (2) for all t ∈ τ.dom, (τ ↓ Xd)(t) = (τ ↓ Xd)(0). The prefix and suffix
closure of the set of trajectories of X that satisfy the above conditions is denoted
by traj(X,F ).

Definition 2. A Structured Hybrid Automaton (SHA) is a tuple A=(X,Q,Θ,-
A,D,P ), where (1) X is a set of variables, including a special discrete variable
called mode. (2) Q ⊆ val(X) is the set of states, (3) Θ ⊆ Q is a nonempty set
of start states, (4) A is a set of actions, (5) D ⊆ Q×A×Q is a set of discrete
transitions, and (6) P is an indexed family Fi, i ∈ P, of state models, where P
is an index set.

A transition (x, a,x′) ∈ D is written in short as x a→A x′ or as x a→ x′ when A
is clear from the context. A transition x a→ x′ is a mode switch if x # mode �=
x′ # mode. The set of mode switching transitions is denoted by M . The guard
predicate of action a is Ga

Δ= {x ∈ Q | ∃x′,x a→ x′ ∈ D}. In this paper,
we assume that the right hand sides of the differential equations in the state
models are well behaved (locally Lipschitz), and the differential equations have
solutions defined globally in time. Therefore, for each Fi, i ∈ P and x ∈ Q with
x # mode = i, there exists a trajectory τ starting from x that satisfies Fi and
if, τ.dom is finite then τ.lval ∈ Ga for some a ∈ A. The set T of trajectories of
SHA A is defined as T Δ=

⋃
i∈P traj(X,Fi). An execution fragment of an SHA A

is an alternating sequence of actions and trajectories α = τ0a1τ1a2 . . ., where (1)
each τi ∈ T , and (2) if τi is not the last trajectory then τi.lstate

ai+1→ τi+1.fstate.
The first state of an execution fragment α, α.fstate, is τ0.fstate. An execution
fragment α is an execution of A if α.fstate ∈ Θ. The length of a finite execution
1 This set of functions must be closed under time-shift, restriction to subintervals, and

pasting. See [13] for formal definition of these closure properties.
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fragment α is the number of actions in α. An execution fragment is closed if
it is a finite sequence, and the domain of the last trajectory is closed. Given a
closed execution fragment α = τ0, a1, . . . , τn, its last state, α.lstate, is τn.lstate
and its limit time, α.ltime, is defined as

∑n
i τi.ltime. We define the following

shorthand notation for the valuation of the variables of A at t ∈ [0,α.ltime]:
α(t) = α′.lstate, where α′ is the longest prefix of α with α′.ltime = t. A state
x ∈ Q is reachable if it is the last state of some execution of A. An execution
fragment α is reachable if α.fstate is reachable. A closed execution fragment α
of SHA A is a cycle if α.fstate = α.lstate.

2.2 Stability and Average Dwell Time

Stability is a property of the continuous variables of SHA A with respect to the
standard Euclidean norm in Rn. At a given state x ∈ Q, we write the norm of
the continuous variables |x # Xc| in short as |x|. We assume that for each i ∈ P ,
the origin is an equilibrium point for the state model ẋc = fi(xc) of A.

SHA A is stable (also called stable in the sense of Lyapunov), if for every
ε > 0, there exists a δ > 0, such that for every closed execution α of A, for all
t ∈ [0,α.ltime], |α(0)| ≤ δ implies |α(t)| ≤ ε. A is asymptotically stable if it is
stable and δ can be chosen so that, |α(0)| ≤ δ implies α(t) → 0 as t→∞. If the
above condition holds for all δ then A is globally asymptotically stable.

Uniform stability guarantees that the stability property in question holds
for execution fragments and not only for executions. A is uniformly stable if
for every ε > 0 there exists a constant δ > 0, such that for any execution
fragment α, |α.fstate| ≤ δ implies |α.lstate| ≤ ε. An SHA A is said to be
uniformly asymptotically stable if it is uniformly stable and there exists a δ > 0,
such that for every ε > 0 there exists a T , such that for any execution fragment
α with α.ltime ≥ T , ∀t ≥ T , |α.fstate| ≤ δ implies |α(t)| ≤ ε. It is said
to be globally uniformly asymptotically stable if the above holds for all δ, with
T = T (δ, ε).

It is well known that a hybrid system is stable if all the individual modes
of the system are stable and the switching is sufficiently slow, so as to allow
the dissipation of the transient effects after each switch. The dwell time [4] and
the average dwell time [5] criteria define restricted classes of switching patterns,
based on switching speeds, and one can conclude the stability of a system with
respect to these restricted classes.

Definition 3. Given a duration of time τa > 0, SHA A has Average Dwell Time
(ADT) τa if there exists a positive constant N0, such that for every reachable
execution fragment α, N(α) ≤ N0 + α.ltime/τa, where N(α) is the number of
mode switches in α. The number of extra switches of α with respect to τa is
Sτa(α) Δ= N(α)− α.ltime/τa.

Theorem 1 from [5], adapted to SHA, gives a sufficient condition for stability
based on ADT. Roughly, it states that a hybrid system is stable if the modes are
individually stable and the switches do not occur too frequently on the average.
See Section 3.2 of [2] for a proof.
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Theorem 1. If there exist positive definite, radially unbounded, and continu-
ously differentiable functions Vi : Rn → Rn, for each i ∈ P, and positive numbers
λ0 and μ such that:

∂Vi

∂xc
fi(xc) ≤ −λ0Vi(xc), ∀xc, ∀i ∈ P , and

Vi(x′
c) ≤ μVj(xc), ∀x a→A x′, where i = x′  mode and j = x  mode.

Then, A is globally uniformly asymptotically stable if it has an ADT τa > log μ
λ0

.

This stability condition effectively allows us to decouple the construction of
Lyapunov functions—the Vi’s for each i ∈ P , which we assume are known from
available methods of system theory—from the problem of checking that the
automaton has a certain ADT, which we discuss in the rest of the paper.

3 ADT: Optimization and Equivalence

From Definition 3 it follows that a given τa > 0 is not an ADT of a given SHA A
if and only if, for every N0 > 0 there exists a reachable execution fragment α of
A such that Sτa(α) > N0. Thus, if we solve the following optimization problem:

OPT(τa) : α∗ ∈ argmaxSτa(α)

over all the execution fragments of A, and the optimal value Sτa(α∗) turns out to
be bounded, then we can conclude that A has ADT τa. Otherwise, if Sτa(α∗) is
unbounded and α∗ is reachable then we can conclude that τa is not an ADT for
A. However, the optimization problem OPT(τa) may not be solvable because,
among other things, the executions of A may not have finite descriptions. In
Sections 4 and 5 we study particular classes of SHA for which OPT(τa) can
be solved efficiently. In the remainder of this section we develop a simulation
relation-based method for proving that any given SHAA is equivalent to another
SHA B, with respect to ADT properties. As we shall see in Sections 4 and 5,
this simulation method enables us to use the optimization based technique to
verify ADT of even those SHA for which OPT(τa) cannot be solved directly.

Definition 4. A switching simulation relation from A to B is a relation R ⊂
QA ×QB satisfying the following conditions:

1. If x ∈ ΘA then there exists y ∈ ΘB such that x R y.
2. If x R y and α is an execution fragment of A consisting of a single action

surrounded by two point trajectories with α.fstate = x, then B has a closed
execution fragment β, such that β.fstate = y, N(β) ≥ N(α), β.ltime = 0,
and α.lstate R β.lstate. Here N(β) is the number of mode switches in β.

3. If x R y and α is an execution fragment of A consisting of a single closed
trajectory with α.fstate = x, then B has a closed execution fragment β, such
that β.fstate = y, β.ltime ≤ α.ltime, and α.lstate R β.lstate.
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Lemma 1. Let R be a switching simulation relation from SHA A to B. Then,
for all τa > 0 and for every reachable execution fragment α of A, there exists a
reachable execution fragment β of B, such that Sτa(β) ≥ Sτa(α).

Owing to space limitations most of the proofs are omitted from this paper;
complete proofs for all the results are available in the full version [14]. The
above lemma is proved by inductively defining a sequence β0β1β2 . . . of closed
execution fragments of B for a given an execution fragment α = τ0a1τ1a2τ2 . . .
of A, such that for all i, βi.lstate = βi+1.fstate, αi.lstate R βi.lstate, and
Sτa(β) ≥ Sτa(α). We use Property 3 of the definition of switching simulation
for the construction of the βi’s with i even. This gives us βi.ltime ≤ αi.ltime
for every even i. We use Property 2 of the definition of switching simulation for
the construction of the βi’s with i odd. This gives us βi.ltime = αi.ltime and
N(βi) ≥ N(αi) for every odd i.

Suppose for every τa > 0, if B has ADT τa then A also has ADT τa; we write
this as A ≥ADT B. If A ≥ADT B and B ≥ADT A, then we write A =ADT B.
Intuitively, A ≥ADT B means that B switches faster than A on an average, and
A =ADT B means that A and B have the same average switching speeds. We
use Theorem 2for proving B ≥ADT A.

Theorem 2. IfR is a switching simulation relation fromA toB, thenB ≥ADT A.

Corollary 1. If R1 be a switching simulation from A to B and R2 is a switching
simulation from B to A, then, A =ADT B.

4 One-Clock Initialized SHA

In this section we study a special class of SHA, called one-clock initialized SHA,
for which OPT(τa) (see Section 3) can be solved using classical graph algorithms.
Consider a graph G defined by: a set of vertices V , a set of directed edges
E ⊆ V × V , a cost function w : E → R≥0 for the edges, and a special start edge
e0 ∈ E . The cost of a path in G is the sum of the costs of the edges in the path.
Given G = (V , E ,w, e0), the corresponding one-clock initialized SHA Aut(G) is
specified by the code in Figure 1. The source and the target vertices of an edge
e are denoted by e[1] and e[2], respectively.

The discrete transitions are written using the standard precondition-effect
style. Each trajdef d defines a set of trajectories Td in terms of the invariant
inv(d), the stopping condition stop(d), and the state model written as an evolve
clause evolve(d). A trajectory τ is in Td, if an only if (1) τ satisfies evolve(d), (2)
∀ t ∈ τ.dom, τ(t) ∈ inv(d), and (3) ∃ t ∈ τ.dom, τ(t) ∈ stop(d) → t = τ.ltime.
The set of trajectories of Aut(G) is the union of the sets of trajectories defined
by each trajdef.

Intuitively, the state of Aut(G) captures the motion of a particle moving with
unit speed along the edges of the graph G. The position of the particle is given by
the mode, which is the edge it resides on, and the value of x, which is its distance
from the source vertex of the edge G. Thus, a switch from mode e to mode e′

of Aut(G) corresponds to the particle arriving at vertex e[2] via edge e, and
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Variables:
mode ∈ E ⊂ V × V, initialy e0
x ∈ R, initially 0

Actions:
switch(e,e′), e,e′ ∈ E

Transitions:
switch(e,e′)

Precondition
mode = e ∧ e[2 ] = e′[1 ] ∧ x = w(e)

Effect
mode ← e′, x ← 0

Trajectories:
Trajdef edge(mode)
Evolve d(x) = 1
Invariant x ≤ w(mode)
Stop when x = w(mode)

Fig. 1. Automaton Aut(G), where G = (V, E ⊆ V × V, w : E → R≥0, and e0)

departing on edge e′. Within edge e the particle moves at unit speed from e[1],
where x = 0 to e[2], where x = w(e). The next theorem implies that to search
for an execution of Aut(G) that violates a ADT property τa, it is necessary and
sufficient to search over the space of the cycles of G. See [14] for a proof.

Theorem 3. Consider τa > 0 and a one-clock initialized SHA Aut(G). A has
average dwell time τa if and only if for all m > 1, the cost of any reachable cycle
of G with m segments is at least mτa.

Thus, the problem of solving OPT(τa) for Aut(G) reduces to checking whether
G contains a cycle of length m, for some m > 1, with cost less than mτa. This
is a standard problem for directed graphs and can be solved efficiently using
Bellman-Ford algorithm or Karp’s minimum mean-weight cycle algorithm [9].

Example 1: Linear hysteresis switch. We verify the ADT properties of a
linear, scale-independent hysteresis switch which is a subsystem of an adaptive
supervisory control system taken from [8] (also Chapter 6 of [2]). An adaptive
supervisory controller consists of a family of candidate controllers ui, i ∈ P ,
which correspond to the parametric uncertainty range of the plant in a suitable
way. The controller operates in conjunction with a set of on-line estimators
that provide monitoring signals μi, i ∈ P ; intuitively, smallness of μi indicates
high likelihood that i is the actual parameter value. Based on these signals,
the switching logic unit changes the variable mode, which in turn determines
the controller to be applied to the plant. Average dwell time property of this
switching logic guarantees stability of the overall supervisory control system.

In building the linear SHA model A (shown in Figure 2), we consider moni-
toring signals generated by linear differential equations, such that for each i ∈ P ,
if mode = i, then d(μi) = ciμi, otherwise d(μi) = 0. The switching logic unit im-
plements scale independent hysteresis switching as follows: at an instant of time
when controller k is operating, that is, mode = k for some k ∈ P , if there exists
an i ∈ P such that μi(1 + h) ≤ μk for some fixed hysteresis constant h, then the
switching logic sets mode = i and applies output of controller i to the plant.

As A is not a one-clock initialized SHA, we cannot apply Theorem 3 to verify
its ADT directly. However, we notice that the switching behavior of A, does not
depend on the value of the μi’s, but on the ratio of μi

μmin
, which is always within
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Variables:
mode ∈ P, initially p0
μp ∈ R, p ∈ P,

initialy μp0 = (1+h)C0

for all i �= p0, μi = C0
derived

μmin = Mini∈P μi

Actions:
switch(p,q), p,q ∈ P

Transitions:
switch(p,q)
Precondition

mode = p ∧ (1+h)μq ≤ μp

Effect mode ← q

Trajectories:
Trajdef mode(p)
Evolve for all i ∈ P,

if i = p then d(μp) = cpμp else d(μi) = 0
Stop when

∃ q ∈ P such that (1 + h)μq ≤ μp

Fig. 2. Linear hysteresis switch with parameters P , C0, h and ci for each i ∈ P

[1, (1 + h)]. When A is in mode p ∈ P , all the ratios remain constant, except
μp

μmin
which increases monotonically from 1 to either (1 + h) or to (1 + h)2, in

time 1
cp

ln(1+h) or 2
cp

ln(1+h), respectively. Thus, we will first show that there
exists a one-clock initialized automaton B, that is equivalent to A with respect
to ADT, and then we will solve OPT(τa) for B.

Consider a graph G = (V , E ,w, e0), where:

1. V ⊂ {1, (1 + h)}n, such that for any v ∈ V , all the n-components are not equal.
We denote the ith component of v ∈ V , by v[i].

2. An edge (u, v) ∈ E if and only if, one of the following conditions hold:
(a) There exists j ∈ {1, . . . , n}, such that, u[j] �= v[j] and for all i ∈ {1, . . . , n},
i �= j, u[i] = v[i]. The cost of the edge w(u, v) Δ= 1

cj
ln(1 + h) and we define

ζ(u, v) Δ= j.
(b) There exists j ∈ {1, . . . , n} such that u[j] = 1, v[j] = (1 + h) and for all
i ∈ {1, . . . , n}, i �= j implies u[i] = (1 + h) and v[i] = 1. The cost of the edge
w(u, v) Δ= 2

cj
ln(1 + h) and we define ζ(u, v) Δ= j.

3. e0 ∈ E , such that e0[1][p0] = (1 + h) and for all i �= p0, e0[1][i] = 1.

As an example, the graph for n = 3 is shown in Figure 3. Let B be the automaton
Aut(G). Each edge of G corresponds to a mode of A. In fact, mode of A equals
ζ(e), where e is the edge corresponding to the mode of B.

We define a relation R on the state spaces on A and B. Each vertex of G is
an n-tuple; the ith component of the source vertex of e is denoted by e[1][i].

Definition 5. For any x ∈ QA and y ∈ QB, x R y if and only if:

1. ζ(y  mode) = x  mode

2. For all j ∈ {1, . . . , n}, if j = ζ(y  mode) then (a) x�μj

x�μmin
= ecj(y�x) else (b)

x�μj

x�μmin
= (y  mode)[1][j] and x�μj

x�μmin
= (y  mode)[2][j].

Part 1 of Definition 5 states that if A is in mode j and B is in mode e, then
ζ(e) = j. Part 2 states that for all j �= ζ(e), the jth component of e[1] and e[2]
are the same, and are equal to μj/μmin, and for j = ζ(e), μj = μmine

cjx. The
next lemma states that R is a switching simulation relation from A and B and
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3 ln(1 +
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[(1 + h), 1, 1]

[1, (1 + h), 1][1, 1, (1 + h)]

[1 + h, 1 + h, 1]

[1, 1 + h, 1 + h]

[1 + h, 1, 1 + h]

Fig. 3. Graph G with 3 modes. Here h and ci’s are the parameters from the hysteresis
switch automaton A.

from B to A. The first part is proved by showing that every start state of A
is related to some state of B and that every action and trajectory of A can be
emulated by an execution fragment of B with more extra switches. The second
part is proved using identical steps by interchanging A and B.

Lemma 2. R is a switching simulation relation from A to B and from B to A.

Remark 1. From Corollary 1 it follows that SHA A and B are ADT-equivalent.
As B is one-clock initialize, its ADT properties can be verified using Karp’s
algorithm.

5 Initialized SHA and Mixed Integer Linear
Programming

In this section we study ADT properties of Initialized SHA. A SHA A is ini-
tialized if every a ∈ A is associated with a set Ra ⊆ Q, such that x a→ x′ is
a mode switching transition if and only if x ∈ Ga and x′ ∈ Ra. The set Ra is
called the initialization predicate of a. A SHA is rectangular if the differential
equations in the state models have constant right hand sides, and the guard and
the initialization predicates (restricted to the set of continuous variables) are
polyhedra.

Our next theorem implies that for an initialized SHA A, it is necessary and
sufficient to solve OPT(τa) over the space of the cyclic fragments of A instead
of the larger space of all execution fragments.

Theorem 4. Given τa > 0 and initialized SHA A, τa is an ADT for A if and
only if A does not have any cycles with extra switches with respect to τa.

Here we sketch a proof of this theorem and refer the reader to [14] for the
complete proof. Existence of a cycle α of A with Sτa(α) > 0 implies that τa is
not an ADT, because by concatenating many α’s we can construct an execution
fragment α� α� α . . . with an arbitrarily large Sτa . To prove that the existence
of a cycle with extra switches is also necessary for violating the ADT property,
we assume that τa is not an ADT for A and that A does not have any cycles
with extra switches. We choose N0 > |P|3; from the definition of ADT we
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know that there exists an execution fragment γ, such that Sτa(γ) > N0. Let
α = τ0a1τ1 . . . τn be the shortest such execution fragment. Since N(α ≥ |P|3
mode switches and A is initialized, α must contain a cycle. As A does not have
any cycles with extra switches, we get a contradiction to the assumption that α
is the shortest execution fragment with more than N0 extra switches.

Lemma 3 allows us to limit the search for cycles with extra switches to cycles
with at most |P|3 mode switches. It is proved by showing that any cycle with
extra switches that has more than |P|3 mode switches, can be decomposed into
two smaller cycles, one of which must also have extra switches.

Lemma 3. If initialized SHA A has a cycle with extra switches, then it has a
cycle with extra switches that has fewer than |P|3 mode switches.

MILP formulation of OPT(τa). We use the above results to solve the ADT
verification problem for rectangular initialized SHA with Mixed Integer Linear
Programming (MILP). Figure 4 shows the specification of a generic Initialized
rectangular SHA A. The automaton A has a single discrete variable called mode
which takes values in the index set P = {1, . . . ,N}, and a continuous variable
vector x ∈ Rn. For any p, q ∈ P , the action that changes the mode from p to q
is called switch(p, q). The guard and the initialization predicates of this action
are given by sets of linear inequalities on the continuous variables, represented
in the matrix notation by: G[p, q]x ≤ g[p, q] and R[p, q]x ≤ r[p, q], respectively,
where G[p, q] and R[p, q] are constant matrices with n columns and g[p, q], r[p, q]
are constant vectors.

For each mode p ∈ P of automatonA, the invariant is stated in terms of linear
inequalities of the continuous variables A[p]x ≤ a[p], where A[p] is a constant
matrix with n columns and a[p] is a constant vector. The evolve clause is given
by a single differential equation d(x) = c[p], where the right hand side c[p] is a
constant vector.

We describe a MILP formulation MOPT(K, τa) for finding a cyclic execution
with K mode switches that maximizes the number of extra switches with respect
to τa. If the optimal value is positive, then the optimal solution represents a cycle
with extra switches with respect to τa, and we conclude that τa is not an ADT
for A. On the other hand, if the optimal value is not positive, then we conclude
that there are no cycles with extra switches of length K. To verify ADT of

Variables:
mode ∈ P, initially p
x ∈ Rn, initially x0

Actions
switch(p,q), p,q ∈ P

Transitions:
switch(p,q)

Precondition
mode = p ∧G[p,q ]x ≤ g[p, q]

Effect
mode ← q
x ← x′ such that R[p,q ]x′ ≤ r[p, q]

Trajectories:
Trajdef mode(p)
Invariant A[p ]x ≤ a[p]
Evolve d(x) = c[p ]

Fig. 4. Generic rectangular initialized SHA with parameters P , G, A, R, q, a, r, c
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Objective function: Sτa :
K

2
− 1

τa

K

i=0,2,...

ti

Mode: ∀ i ∈ {0, 2, . . . , K},
N

j=1

mij = 1 and ∀ i ∈ {1, 3, . . . , K − 1},
N

j=1

N

k=1

pijk = 1

(1)

Cycle: x0 = xK and ∀ j ∈ {1, . . . , N}, m0j = mKj (2)

Preconds: ∀ i ∈ {1, 3, . . . , K − 1},
N

j=1

N

k=1

G[j, k].pijk.xi ≤
N

j=1

N

k=1

pijk.g[j, k] (3)

Initialize: ∀ i ∈ {1, 3, . . . , K − 1},
N

j=1

N

k=1

R[j, k].pijk.xi+1 ≤
N

j=1

N

k=1

pijk.r[j, k] (4)

Invariants: ∀ i ∈ {0, 2, . . . , K},
N

j=1

A[j].mij .xi ≤
N

j=1

mij .a[j] (5)

Evolve: ∀ i ∈ {0, 2 . . . , K}, xi+1 = xi +
N

j=1

c[j].mij .ti (6)

Fig. 5. The objective function and the linear and integral constraints for MOPT(K, τa)

A, we solve a sequence of MOPT(K, τa)’s with K = 2, . . . , |P|3. If the optimal
values are not positive for any of these, then we conclude that τa is an ADT for
A. By adding extra variables and constraints we are able to formulate a single
MILP that maximizes the extra switches over all cycles with K or less mode
switches, but for simplicity of presentation, we discuss sf MOPT(τa) instead of
this latter formulation. The following are the decision variables for MOPT(K, τa);
the objective function and the constraints are shown in Figure 5.

– xi ∈ Rn, i ∈ {0 . . . , K}, value of continuous variables
– ti ∈ R, i ∈ {0, 2, 4, . . . , K}, length of ith trajectory

– mij = 1, if mode over ith trajectory is j
0, otherwise. for each i ∈ {0, 2, . . . , K}, j ∈ {1, . . . , N}

– pijk =
1, if mode over (i − 1)st trajectory is j and over (i + 1)st trajectory is k
0, otherwise. for each i ∈ {0, 2, 4, . . . , K}, j, k ∈ {1, . . . , N}

In MOPT(K, τa), an execution fragment with K mode switches is represented
as a sequence x0,x1, . . . ,xK of K valuations for the continuous variables. For
each even i, xi goes to xi+1 by a trajectory of length ti. If this trajectory is in
mode j, for some j ∈ {1, . . . ,N}, then mij = 1, else mij = 0. For each odd i, xi

goes to xi+1 by a discrete transition. If this transition is from mode j to mode
k, for some j, k ∈ {1, . . . ,N}, then pijk = 1, else pijk = 0. These constraints are
specified by Equation (1) in Figure 5. For each odd i, Constraints (3) and (4)
ensure that (xi, switch(j, k),xi+1) is a valid mode switching transition. These
constraints reduce to the inequalities G[j, k]xi ≤ g[j, k] and R[j, k]xi+1 ≤ r[j, k]
which correspond to the guard and the initialization conditions on the pre- and
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the post-state of the transition. For each even i, xi evolves to xi+1 through a tra-
jectory in some mode, say j. Constraint (5) ensures that xi satisfies the invariant
of mode j described by the inequality A[j]xi ≤ a[j]. An identical constraint for
xi+1 is written by replacing xi with xi+1 in (5). Since the differential equations
have constant right hand sides and the invariants describe pohyhedra in Rn, the
above conditions ensure that all the intermediate states in the trajectory satisfy
the mode invariant. Equation (6) ensures that, for each even i, xi evolves to xi+1
in ti time according to the differential equation d(x) = c[j].

Some of these constrains involve nonlinear terms. For example, mijxi in (5)
is the product of real variable xi and boolean variable mij . Using the “big M”
method [15] we can linearize this equation by replacing mijxi with yi, and adding
the following linear inequalities: yi ≥ mijδ, yi ≤ mijΔ, yi ≤ xi − (1 −mij)δ,
and yi ≥ xi − (1 −mij)Δ, where δ and Δ are the lower and upper bounds on
the values of xi.

Example 2: Thermostat. We use the MILP technique together with switching
simulation relations to verify the ADT of a thermostat with nondeterministic
switches. The thermostat SHA A (see Figure 6 Left) has two modes l0, l1, two
continuous variables x and z, and real parameters h,K, θ1, θ2,
θ3, θ4, where 0 < θ1 < θ2 < θ3 < θ4 < h. In l0 mode the heater is off and
the temperature x decreases according to the differential equation d(x) = −Kx.
While the temperature x is between θ2 and θ1, the on action must occur. As a
result of which the mode changes to l1. In mode l1, the heater is on and the x
rises according to the d(x) = K(h − x), and while x is between θ3 and θ4, the
offaction must occur. The continuous variable z measures the total time spent
in mode l1.

The thermostat SHA A is neither initialized nor rectangular; however, there
is a rectangular initialized SHA B, such that B ≥ADT A. Consider the SHA B
of Figure 6 (Right) with parameters L0 and L1. Automaton B has a clock t and
two modes l0 and l1, in each of which t increases at a unit rate. When t reaches
Li in mode li, a switch to the other mode may occur and if it does then t is
set to zero. We define a relation R on the state spaces of A an B such that
with appropriately chosen values of L0 and L1, B captures the fastest switching
behavior of A.

Definition 6. For any x ∈ QA and y ∈ QB, x R y if and only if: (1) x  mode =
y  mode, and (2) if x  mode = l0 then y  t ≥ 1

k
ln θ3

x�x
else y  t ≥ 1

k
ln h−θ2

h−x�x
.

Lemma 4. If we set L0 = 1
k ln θ3

θ2
and L1 = 1

k ln h−θ2
h−θ3

, then the relation R is a
switching simulation from A to B.

The proof of this lemma is like that of Lemma 2 ; we show that every state of
A is related to some state of B and that every action and trajectory of A can
be emulated by an execution fragment of B with more extra switches. Lemma 4
implies that A ≥ADT B, that is, for any τa > 0 if τa is an ADT for B then τa is
also an ADT for A. Since B is rectangular and initialized, we can use Theorem 4
and the MILP technique to check any ADT property of B.
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Variables:
mode ∈ {l0, l1}, initially l0
x, z ∈ R, initially x = θ4, z = 0

Actions
on, off

Transitions:
on Precondition

mode = l0 ∧ x ≤ θ2
Effect mode ← l1

off Precondition
mode = l1 ∧ x ≥ θ3

Effect mode ← l0

Trajectories:
Trajdef l0
Evolve d(x) = -Cx; d(z) = 0
Invariant x ≥ θ1 Stop when x = θ1

Trajdef l1
Evolve d(x) = C(h-x); d(z) = 1
Invariant x ≤ θ4 Stop when x = θ4

Variables:
mode ∈ {l0, l1}, initially l0
r ∈ R, initially r = L1

Actions
switchtoi, i ∈ {0,1}

Transitions:
switchto1
Precondition

mode = l0 ∧ r ≥ L0
Effect mode ← l1, r ← 0

switchto0
Precondition

mode = l1 ∧ r ≥ L1
Effect mode ← l0, r ← 0

Trajectories:
Trajdef l0
Evolve d(r) = 1

Trajdef l1
Evolve d(r) = 1

Fig. 6. Left:Thermostat SHA A with parameters θ1, θ2, θ3, θ4, K, and h. Right:
Rectangular SHA B with parameters L0, L1.

We formulated the MOPT(K, τa) for automaton B and used the GNU Linear
Programming Kit [16] to solve it. Solving for K = 4,L0 = 40,L1 = 15, and τa =
25, 27, 28, we get optimal costs −0.4,−4.358E−13(≈ 0) and 0.071, respectively.
We conclude that the ADT of B is ≥ 25,≥ 27, and < 28. Since B ≥ADT A, we
conclude that the ADT of the thermostat is no less than 27.

Remark 2. For finding counterexample execution fragments of proposed ADT
properties, the MILP approach can be applied to non-initialized rectangular
SHA as well. In such applications, however, the necessity part of Theorem 4 will
not hold and from the failure to find a counterexample alone we cannot conclude
that the automaton satisfies the ADT property in question.

6 Conclusions

We have presented optimization-based methods for automatically verifying Av-
erage Dwell Time (ADT) properties of certain classes of hybrid systems, which
provides a tool for proving (uniform) stability. We have also defined equivalence
of hybrid systems with respect to ADT and have presented a simulation relation-
based method for proving these equivalence relationships. The proposed methods
have been applied to verify ADT of a linear, scale-independent hysteresis switch
and a nondeterministic thermostat.

In this paper we examined internal stability only; however, the input and
output variables of HIOA make the framework suitable for studying input-output
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properties of hybrid systems. Another direction of future research is to extend
the ADT verification technique to probabilistic hybrid systems.

Acknowledgments. We thank Debasish Chatterjee and the anonymous re-
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the paper. In particular we thank the reviewer for suggesting Karp’s algorithm
as an alternative to the Bellman-Ford for solving the optimization problem of
Section 4.
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Abstract. In [1] we advocated the need for an interchange format for
hybrid systems that enables the integration of design tools coming from
many different research communities. In deriving such interchange for-
mat the main challenge is to define a language that, while presenting
a particular formal semantics, remains general enough to accommodate
the translation across the various modeling approaches used in the ex-
isting tools. In this paper we give a formal definition of the syntax and
semantics for the proposed interchange format. In doing so, we clearly
separate the structure of a hybrid system from the semantics attached to
it. The semantics can be considered an “abstract semantics” in the sense
that it can be refined to yield the model of computation, or “concrete
semantics”, which, in turn, is associated to the existing languages that
are used to specify hybrid systems. We show how the interchange format
can be used to capture the essential information across different model-
ing approaches and how such information can be used in the translation
process.

1 Introduction

While the main concept behind the term hybrid system is commonly accepted by
the control theory community and the computer science community, there is a
mismatch in the interpretation of hybrid system models. The original definition
of hybrid systems captures the discrete dynamics as a graph representing a state
machine [2]. A function associates a continuous dynamics to each discrete state.
These dynamics, which are expressed in terms of differential equations, may
vary across different states. Transitions from a source state to a target state are
enabled, or triggered, by the continuous evolution of the system’s variables and
each transition can also set the initial conditions for the system of differential
equations associated with the target state. Following a denotational approach,
control theorists use such model to complete a formal analysis of a hybrid system
and derive necessary and/or sufficient conditions for its stability, safety, and
reachability. Computer scientists, instead, use such model as a reference while
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following an operational approach. Their main concern is to develop software
programs that designers can use to simulate and verify hybrid systems. Generally,
this entails the definition of a language, whose syntax defines the words and
sentences that can be written in a program while its semantics defines their
meaning. In fact, the language semantics should formally define the steps that
an idealized computer must follow in order to produce a meaningful result while
processing the program. In particular, for tools that target simulation, to define
the semantics of their language corresponds to formally specify the algorithm
that will produce the simulation trace. An excellent example of the definition of
operational semantics of hybrid systems is given in [3].

Each language defines a programming style to describe hybrid systems based
on its specific purpose, e.g. simulation, verification, or synthesis. Moreover, dif-
ferent algorithms require different data structures and the language is usually
tailored to simplify the translation from the input language description to the
internal data structure used by the algorithms. Modelica, for instance, pro-
vides a language for describing systems in terms of implicit equations [4, 5]. The
language is object-oriented and objects can be instantiated inside other object
to model hierarchy. HyVisual gives a graphical syntax and a rich library of pre-
defined actors that can be composed to model dynamical systems [6]. A hybrid
system is described as a state machine in which states are refined into intercon-
nection of continuous time actors. CheckMate [7], like Hysdel [8], uses the
interconnection of a state machine and a set of dynamical systems where the
state machine selects one of the dynamics depending on the value of the system
variables. Finally, a language also defines the class of hybrid systems that can be
described. For instance, tools that target verification only allow linear dynamics
and convex guards and invariants.

A system is usually described as a composition of objects. Compositionality
and hierarchy are desirable features for the design of complex systems. While
composing objects at the denotational level corresponds to composing functions,
giving a semantically sound definition of composition in terms of a programming
language is not a trivial task. The semantics of Charon, a high-level language
for modular specification of multiple, interacting hybrid systems, is indeed com-
positional in the sense that the semantics of one of its components (possibly
the entire hybrid system) is entirely specified in terms of the semantics of its
subcomponents [9, 10]. An interesting aspect of composition for simulation pur-
poses is how to schedule the execution of a system across multiple interacting
components. Consider, for instance, a system where component A feeds two com-
ponents B and C and, furthermore, C also receives the output of B as input.
After executing A, the simulator must choose whether to execute B or C first.
The two possible choices would likely give different simulation results.

Another interesting issue involves solving a system of differential algebraic
equations. The solution is typically represented inside a computer as a finite
subset of value-time pairs (x, t). Since the computer resources are discrete and
finite, two problems must be addressed: (1) how to select a subset that makes
the result meaningful and (2) how to compute the value of x at time t for a
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generic system of differential equations without relying on the analytical solu-
tion [3]. Further, if instead of a single equation we have a system of differential
and algebraic equations, then there are many variables that must be computed
and the order in which equations are evaluated becomes relevant. Finally, sup-
port for expressing algebraic equations makes things more complex due to the
possibility of generating algebraic loops. In fact, some languages like Model-
ica do not define the meaning of an algebraic loop and leave the decision of how
to compute the solution of such equations to the simulation engine. Other tools
like Simulink/Stateflow and HyVisual return an error message whenever
they detect the presence of algebraic loops.

Contributions. Researchers in industry and academia have developed several
tools for the simulation, verification and synthesis of hybrid systems. In their
development efforts, they had to address all the important issues mentioned
above and, generally, they have made different implementation decisions. In [1]
we advocated the need for an interchange format for hybrid systems that makes
it possible to integrate design tools coming from many different research commu-
nities. While to define the syntax of the interchange format is an important step,
and there are already interesting approaches in this direction [11], the definition
of its semantics is the key to enable unambiguous translation of models across
tools. In order to capture all the different models, we define an abstract semantics
that can be refined in the concrete semantics of each language, we specify a set
of functions that can be applied to perform such refinement, and we show the
effectiveness in translating to and from the interchange format. Our approach
allows us to better understand the structure of the exisisting languages for hy-
brid systems, to capture the semantic differences among them, and to develop
algorithms for interchanging models.

2 Preliminaries

Metropolis Meta-Model Interchange Format. In [1] we reviewed a number of
languages and tools for hybrid systems. Based on the outcome of our comparative
summary, we highlighted the differences among tools and also a set of desirable
features that a language for hybrid systems should provide. We then offered a
proposal for an interchange format for hybrid systems whose formal semantics
is based on the Metropolis Meta-Model [12]. The main challenge in defining
an interchange format is to define a language with a formal semantics that
remains general enough as it provides and easy translation path to/from all
other languages of interest. Accordingly, the proposed interchange format defines
processes for the solution of equations and media for communicating results
among processes. The way in which the computation is performed is described
in a separate view of the specification that consists of a collection of schedulers.
Processes, media and schedulers can be hierarchically organized as shown in
Figure 1. The hierarchy of a hybrid system has three levels: the transition level,
the dynamical system level and the equation level. At the transition level, a
scheduler (TM) selects a set of continuous-time processes whose composition forms
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eqn(...)

TM

ERM

EM2

Computation/Communication

EM1

Dynamical system level

Equation level

Scheduling

Transition level

refine(S2,N)

S1

S2

A1

A2

eqn(...)

Fig. 1. Organization of the interchange format presented in [1]

a dynamical system. At the dynamical system level, a scheduler (ERM) selects a
set of equations and orders their execution. At the equation level, the execution of
each equation is governed by equation managers EM. Across the three hierarchical
levels, the network of schedulers restricts the possible executions of the process
network by (1) selecting a set of active processes at the transition level, (2)
scheduling the execution of continuous time processes at the dynamical system
level and (3) scheduling the solution of the equations at the equation level.

Notation Basics. For a tuple W = (w1, ...,wn), we denote the component wi

of W with W.wi. Given a variable with name v, its value is denoted by val(v)
where val is a valuation function. If V is the tuple (v1, ..., vn) then val(V ) =
(val(v1), ..., val(vn)). If, instead, V is the set {v1, ..., vn} then its valuation is
the multi-set val(V ) = {val(v1), ..., val(vn)}. For a set of variables V , the set of
all possible valuations of V is denoted by R(V ). Given a subset D ⊆ R(V ) of
the possible values of the set of variables V , and given another set V ′ ⊇ V , the
lifting of D to V ′ is given by the operator L(V ′)(D) = {p′ ∈ R(V ′) : p′|V ∈ RV },
where p′|V denotes the restriction of the valuation p′ to only the variables in V .

Running Example. The diagram in Figure 2 represents a half-wave rectifier cir-
cuit, a simple electronic circuit that can be modeled as a hybrid system and will
be used throughout the paper to illustrate the proposed interchange format. In
particular, we model the diode by dividing the voltage across its endpoints in
two regions of operation: if va − vk < 0 the diode behaves as a constant current
source of value −I0; if va − vk ≥ 0 the diode behaves like a resistor of value
Rd. The half-wave rectifier can be “structurally” represented by the block dia-
gram in Figure 3. The three currents id, iR and iC must satisfy the Kirchoff’s
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Fig. 2. Half-wave rectifier used as running example in this paper

Fig. 3. Block diagram representing the half-wave rectifier

current law that states that the sum of all currents of components attached to
the same node is equal to zero. This constraint is implemented by the block SUB
in Figure 2.

3 Interchange Format Syntax

With the term syntax we refer to the language constructs that are provided by
the interchange format to express hybrid systems. Our definitions are based on
sets and functions that have a direct connection to the syntax defined in [1]. To
simplify our notation, and without loss of generality, all components in our model
are already instantiated and unique. The introduction of renaming functions
and instantiation is straightforward in this context. We describe the syntax of a
hybrid system as a tuple H = (V,E,D, I,σ,ω, ρ) where:

– V = {v1, ..., vn} is a set of variables;
– E = {e1, ..., em} is a set of equations in the variables V . An equation ei is

of the form l(V ) = r(V ) (or equivalently l(V ) = 0) where l(V ) and r(V ) are
expressions;
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– D ⊆ 2R(V ) is a set of domains, or regions, of the possible valuations of the
variables V ;

– I ⊆ N is a set of indexes. The index set is used to capture the distinct
dynamics of a hybrid system. Its precise role is explained in detail later
when we discuss the composition of hybrid systems;

– σ : 2R(V ) → 2I is a function that associates a set of indexes to each domain
and such that σ(D) = ∅ if D /∈ D;

– ω : I → 2E is a function that associates a set of equations to each index;
– ρ : 2R(V ) × 2R(V ) × R(V ) → 2R(V ) is a function to reset the values of the

variables (after a transition between two domains has happened) and such
that ρ(D1,D2, val(v)) = ∅ if D1 /∈ D ∨D2 /∈ D.

A hybrid system is characterized by a set of variables that are related by equa-
tions. The dynamics of a hybrid system, i.e., the system of differential and al-
gebraic equations that determine its continuous-time evolution, depends on the
values of the variables, and can change over time. This behavior is captured
by the two functions σ and ω. For each domain, σ provides a set of indexes
J . The union ∪i∈Jω(i) is the set of equations that are active in that domain.
The components that define these functions can be easily identified in the inter-
change format structure of Figure 1. Function σ is implemented at the transition
level while function ω is implemented at the dynamical system level. The reset
function describes what happens to the values of the variables when the active
domain changes.

Example 1. The Load component instantiated in the Rect component of Figure 2
is a hybrid system such that V = {vR, vC , iR, iC , vk, id}, E = {vR = vC , vR =
vk, iC + iR = id, iR = vR/R, iC = Cv̇C}, D = {R6}, I = {1}, σ(R6) = {1},
ω(1) = E. The reset function ρ acts as the identity on the values of the variables
V : ρ(R6, R6, val(V )) = val(V ). �

In the previous example, a continuous time system is described as a hybrid
system with one domain, where all equations are active, and a trivial reset map.
The following example shows a system with two domains and a more elaborated
reset map.

Example 2. A bouncing ball is a hybrid system whose dynamics is described by
two variables: the vertical position y and the vertical velocity v. Every time the
ball touches the ground, the sign of the velocity is reversed and the value is
scaled by a factor called the restitution factor, and denoted by ε, that accounts
for the energy loss due to the impact. A bouncing ball can be modeled as a hybrid
system with V = {y, v}, E = {v̇ = −g, ẏ = v}. The set of possible valuations of
the variables V is partitioned in two subsets: D1 = {{val(y), val(v)} : val(y) ≤
0 ∧ val(v) < 0} and D2 = D1 ={{val(y), val(v)} : val(y) > 0 ∨ val(v) ≥ 0},
hence D = {D1,D2}; I = {1}, σ(D1) = σ(D2) = {1}, ω(1) = E. The re-
set function is defined as follows: ρ(D2,D1, val(V )) = {val(y),−εval(v)} and
ρ(D1,D2, val(V )) = {val(y), val(v)}. �

Both these examples show hybrid systems where the index set is a singleton. The
reason is that the dynamics of the hybrid system is the same in each domain.
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Hybrid systems for which the dynamics changes depending on the domain, or
hybrid systems resulting from the composition of other hybrid systems, will have
non-singleton index sets.

Equation ordering and temporary variables. Before defining the composi-
tion of hybrid systems, we extend the hybrid system tuple by adding two more
elements: a set of temporary variables Vt, which store the intermediate results of
a computation, and a function π : E → {1, 2, . . . , |E|} that fixes an order on the
set of equations1. Hence, the tuple denoting a hybrid system that was defined
in the previous section is extended as follows: H = (V,Vt,E,D, I,σ,ω, ρ,π).

Temporary variables are used in algorithms like fixed-point computation or
event detection, i.e., whenever the system of equations must be solved multiple
times before reaching the desired result. Also, as discussed in the introduction,
an important task in solving the systems of equations is to properly order them.

Composition of hybrid systems. Given two hybrid systems H1 = (V1,Vt1,
E1, D1, I1,σ1,ω1, ρ1,π1) and H2 = (V2,Vt2,E2,D2, I2,σ2,ω2, ρ2,π2), we define
their composition as a new hybrid system H = H1 ||H2 such that:

– the variable, equation and domain sets are the union of the corresponding
sets of the two hybrid systems H1 and H2:

V = V1 ∪ V2, Vt = Vt1 ∪ Vt2, E = E1 ∪E2, D = L(V )(D1) ∪ L(V )(D2)

where domains are lifted as the new set of variables contains V1 and V2;
– the index set is the juxtaposition of the two index sets

I = {1, ..., |I1|+ |I2|}

which takes into account the fact that the number of dynamics and compo-
nents is equal to the sum of the number of the dynamics and components
coming from the two hybrid systems H1 and H2;

– for a given domain, the set of enabled dynamics (which is a subset of the
index set) is the union of the sets of enabled dynamics of H1 and H2:

∀D ∈ 2R(V ), σ(D) = σ1(D|V1 ) ∪ (σ2 + |I1|+ 1)(D|V2)

where (σ + k)(D) = {n+ k : n ∈ σ(D)} is a shifting of the indexes;
– the set of equations associated with each given index (and, therefore, the

set of equations associated with the dynamics denoted by that index) is the
same as in H1 and H2 (after a suitable shifting of the indexes):

ω(i) = ω1(i), if 1 ≤ i ≤ |I1|,
ω(i) = ω2(i− |I1|), if |I1|+ 1 ≤ i ≤ |I1|+ |I2|

1 Note that π is not necessarily an injective function. For instance, for languages like
Modelica that do not define any specific equation ordering all the equations are
mapped to the same integer.
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– the equations order is directly derived form the orders in H1 and H2. The
new order must preserve the original order within the two sets E1 and E2
such that equations in E1 precede equations in E2:

π(e) =
{
π1(e) if e ∈ E1
π2(e) + |I2|+ 1 if e ∈ E2

– the two reset functions ρ1 and ρ2 give a set of new possible values for the
variables as a function of the domains and the variables themselves. If the two
hybrid systems share the same variables and if the two reset functions assign
different values for the same domain transition, then both resets should be
considered. If the two reset functions agree on the resets then only one value
should be considered. This operation is implemented by the set union. Given
Di, Dj ∈ 2R(V )

ρ(Di,Dj , val(V )) = L(V )(ρ1(Di|V1 ,Dj|V1 , val(V1)) ∪
L(V )(ρ2(Di|V2 ,Dj|V2 , val(V2))

The composition of hybrid systems is associative but it is not commutative
because the equation ordering depends on the position of the hybrid systems
in the composition. The n-ary composition of n hybrid systems H1, . . . ,Hn is
another hybrid system H = H1 || . . . ||Hn = (((H1 ||H2) ||H3) || . . .Hn).

Example 3. We model here the diode of Figure 2. Resistor Rd is a hybrid system
such that Rd.V = {va, vk, id}, Rd.E = {e1} = {id = (va − vk)/Rd}, D1 = {p ∈
R(Rd.V ) : val(va) − val(vk) ≥ 0} and Rd.D = {D1}, Rd.I = {1}, Rd.σ(D1) =
{1}, ω(1) = Rd.E, π(e1) = 1 and Rd.ρ acts as the identity on the values of the
variables.

The current source Id is a hybrid system such that Id.V
= {va, vk, id}, Id.E = {e2} = {id = −I0}, D2 = {p ∈ R(Id.V ) : val(va) −
val(vk) < 0} and Id.D = {D2}, Id.I = {1}, Id.σ(D1) = {1}, ω(1) = Id.E,
π(e2) = 1 and Id.ρ acts as the identity on the values of the variables.

A diode is the parallel composition Rd || Id = diode that results in the hybrid
system with the following properties: diode.V = {va, vk, id}, diode.E = {e1, e2},
diode.D = {D1,D2}, I = {1, 2} diode.σ(D1) = {1}, diode.σ(D2) = {2}, ω(1) =
e1, ω(2) = e2, π(e1) = 1, π(e2) = 2 and diode.ρ acts as the identity on the values
of the variables. �

In the previous example D1 and D2 are disjoint, therefore the ordering among
the various equations is irrelevant because they will never belong to the same
system of equations. The following example, instead, is a case where the order
is relevant.

Example 4. The entire rectifier is the parallel composition rect = Vs||diode||load.
The reader can verify that such composition has three domains: the entire set
of possible valuation coming from the voltage source and the load, and the two
domains D1 and D2 defined by the diode. Moreover, equations are ordered with
Vs.E coming before diode.E which, in turn, come before load.E. �
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4 Interchange Format Semantics

We define the semantics of a hybrid system H with a tuple (H,B,T , resolve,
init, update). The set B is a set of pairs (γ, t) where γ ∈ R(H.V ) is a multi-set
of possible values of the hybrid system variables and t ∈ R+ is a time stamp. The
computation of the time stamps is controlled by the abstract finite state machine
T (the time stamper), whose transition diagram is reported in Figure 4. Further-
more, T governs the valuation of the system variables for a given time stamp. In
other words, T is in charge of both selecting the next time stamp and deciding
whether the pair (val, t) can be added to the set B. Both tasks are performed by
T through the invocation of three algorithms (init, resolve and update). This
invocation follows a specific sequence that is encoded in the transition diagram.
For different time-stamp-control methods, predicates and actions on the arcs of
the abstract state machine change, while the three algorithms remain the same.

Fig. 4. Time stamper finite state machine

The set of actions that can be used to “customize” the time stamper are:
next, which selects the next time stamp, and resolve, init and update that
are each used to invoke the execution of the corresponding homonymous algo-
rithms. The set of predicates that can be used are true, false, thresholds on
the integration error, and domainchange, which checks if the values of the vari-
ables H.V have caused a domain change. Depending on how such predicates and
actions are positioned on the arcs of the state machine, and depending on the
implementation of next, several execution semantics can be implemented that
lead to different sets B.

The set B is initialized with a pair (V0, 0) representing the initial condition of
the hybrid system H . In the initial state init the time stamper T invokes the
initialization of H . This is carried out by executing the init algorithm. In the
resolve state, T invokes the execution of the resolve algorithm that produces
a valuation of all the variables of H . Finally, in the update state, T invokes the
execution of the update algorithm and adds a new pair (γ, t) to the set B.

In the resolve algorithm (Algorithm 4), the solve method takes an equa-
tion and computes the value of the unknown variables at time t. Computation
is done on the auxiliary set Vt. Depending on the equation ordering, it might
happen that the equation admits more than one solution. In this case, solve
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Algorithm 1. resolve algorithm
resolve(t)
D′ ⇐ {D ∈ D | val(Vt) ∈ D} // Compute the set of active domains.
I ⇐ ∅, Et ⇐ ∅
I ⇐ ∪D∈D′ σ(D) // Collect all active dynamics and components.
for all i ∈ I do

Et = Et ∪ ω(i) // Collect all active equations.
end for
sort(Et, π) // Order the equations.
for all ei ∈ Et do

solve(ei,t)
end for
D′′ ⇐ {D ∈ D | val(Vt) ∈ D} // Set of active domains after the computation.
markchange(D′, D′′) // Check if the set of active domains has changed.

has several options: it could assign a special value any to all variables to in-
dicate that a unique solution could not be computed; it could return a set
of solutions; it could pick one solution depending on specific criteria. In fact,
solve can be seen as another interface that can be customized depending on
the source-language semantics. Finally, the function markchange checks if dur-
ing the equation resolution phase a domain change has happened. This decision
also depends on the semantics of the source language. Algorithm init initial-
izes the auxiliary variables Vt to a value that depends on the reset function H.ρ
and on the algorithm implemented by the time stamper. Algorithm update ex-
ecutes val(V ) = val(Vt), which assigns the intermediate-computation values to
the system variables.

The abstract semantics can be refined into a concrete semantics by fully spec-
ifying the algorithms and functions that we have described in this section. Some
of them, e.g. equation ordering, are easy to specify while others like solve and
next have usually very complicated implementations. Consequently, for these
functions we foresee the development of standard libraries that can be selected in
the translation from one language to the interchange format. Tools for simulation
map directly onto the scheduling specification. Tools for verification and synthe-
sis can also be applied by taking advantage of the trace semantics B discussed
in Section 4 and of the underlying Metropolis Meta-Model [12], which defines
a formal semantics for the schedulers that is suitable for analysis. The use of
libraries can further simplify the analysis with the use of pre-characterized com-
ponents. The Meta-Model also supports declarative properties and constraints,
which can be used as links to tools and components described in other models
of computation.

Back-tracking and Algebraic Loops. As shown in Figure 4, a time stamper can in-
voke the resolve algorithm of a hybrid system multiple times. It is also possible
to re-initialize the system before updating the values of the variables. Such iter-
ations can be used for back-traking or to reach a fixed-point in case of algebraic
loops. Many iterations are also required for event detection. This is the main
reason for having auxiliary variables and separating the resolution step from
the update step as it is also defined by the stateful firing abstract semantics of
Ptolemy [13].
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5 Partitioning Structure and Semantics

In Section 3 and 4 we defined the syntax and abstract semantics of the inter-
change format and we showed how the abstract semantics can be refined into
many concrete semantics. In this section we show 1) how the semantics can still
be formally defined by partitioning the resolve algorithm among components
and 2) how structure and semantics can be clearly separated such that it is
possible to assign different semantics to hybrid systems having the same struc-
ture. In order to keep structure and semantics well separated and also to clearly
represent the hierarchical structure of a design, we partition a hybrid system
into components and schedulers and we organize them into a tree that has both
a structural as well as an algebraic interpretation. This section formalizes and
justifies the structure of the interchange format presented in [1] and shown in
Figure 1.

A hybrid system is a pair H = (c, s) where c is a component and s is a
scheduler. The component is a tuple c = (V,E,D) of variables and equations
while the scheduler is a tuple s = (I,σ,ω, ρ,π). Let C be the set of all component
instances and S be the set of all scheduler instances for a hybrid system H .
Then, I : C → S is a bijection that for each component c returns its associated
scheduler. Note that we use instances of components and schedulers instead of
objects. Also note that the same symbol H has been used here and in Section 3,
but this should not confuse the reader since the object and the elements in the
tuple are the same, while the tuple is just partitioned in a component and a
scheduler.

The n-way composition for components and schedulers can be easily derived
from the composition of hybrid systems defined in Section 3. Let ||c and ||s
be such operations, respectively. Given two hybrid systems H1 = (c1, s1) and
H2 = (c2, s2), their composition is H = H1 ||H2 = (c1 ||c c2, s1 ||s s2).

We now consider the hierarchical structure of hybrid systems. A hybrid system
structure H = (C,S) is a pair where C is a rooted tree of components and S is
a rooted tree of schedulers. C = (CN ,CE) where CN is a set of components and
CE ⊂ CN × CN is a binary relation (the edges of the tree). If r = (ci, cj) ∈ CE

we say that cj is instantiated in ci.
The tree of schedulers has the following structure: S = (SN ,SE) where SN

is a set of schedulers and SE ⊂ SN × SN is a set of connections among sched-
ulers. SN = T ∪ S′

N where T is a time-stamper. The subtree induced2 by S′
N is

isomorphic to C, and the isomorphism is I. Also, if s ∈ S′
N is the root of such

induced subtree, then (T , s) ∈ SE and it is the only outgoing edge of T . The
input degree of T is always equal to zero.

We illustrate this concept using the example in Figure 2.

Example 5. Figure 5, which shows the structure of the rectifier, has two
interpretations:

2 A subgraph induced by a set of vertices of a graph G is the set of vertices together
with any edge whose endpoints are both in the subset.
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– it captures the organization of a design. For instance, component Diode
contains two instances: component Rd and component I0;

– it represents the parse tree of the algebraic composition

Rect = vs ||Diode ||GND ||SUB ||Load = vs ||(Rd ||I0) ||GND ||SUB ||(R ||C)

�

Fig. 5. Structural representation of the half-wave rectifier

Being able to capture hierarchies in a formal way is extremely important for
an interchange format in order to retain the structure of the original specification
and to allow “back translation” without loss of information.

Let G : SN → 2SN be a function that associates to each scheduler the set of
its children, and let Π : SN → {1, ..., |SN |} be a global ordering of the nodes.
Such ordering depends on the order in which hybrid systems are composed. Each
scheduler implements three algorithms: init, resolve, and update.

The time stamper, which has been presented in Section 4, invokes the init,
resolve and update functions on the “root scheduler” of SN for a given time

Algorithm 2. resolve algorithm of s ∈ SN

resolve(t)
children ⇐ G(s)
if children = ∅ then

// s is a leaf, proceed to solve the equations and end recursion
D′ ⇐ {D ∈ I−1(s).D | val(I−1(s).Vt) ∈ D}
J ⇐ ∪D∈D′ s.σ(D)
Et ⇐ ∪i∈J s.ω(i)
Et ⇐ sort(Et, s.π)
for all ei ∈ Et do

solve(ei, t)
end for
markchange ( D′, val(I−1(s).Vt) )

else
// s is not a leaf, continue the recursion
children ⇐ sort(children, Π)
for all si ∈ children do

si.resolve(t)
end for

end if
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Fig. 6. Simulation result of the rectifier circuit

stamp t. In particular, the resolve algorithm (Algorithm 2) proceeds as follows:
first, the set of all children of the scheduler s is computed. If s is a leaf then
the active equations are selected and solved, while if s is not a leaf the recursion
along the trees calls the resolvemethod on all children of s in the order specified
by Π . Notice that Π together with ordering π defined in the leaves implement
the ordering H.π.

The init and update algorithms recursively call the init and update along
the tree using the ordering in Π . They simply initialize variables to a given value
and copy the auxiliary variable Vt into V , respectively.

We have implemented the rectifier circuit in the Metropolis framework and
the simulation results can be observed in Figure 6. We used a fixed step size
solver as a time stamper and simulated the rectifier for C = 10−4μF, R = 100Ω,
and for an input voltage vs(t) = 5 sin(2π103t).

6 Applications

The structure of the interchange format introduced in Section 5 and its abstract
semantics are very effective in 1) representing models coming from different
languages, 2) developing algorithms for the translation of models to and from
different tools and 3) understanding the concrete semantics of different languages
for hybrid systems.

Figure 7 a) shows the structure of a language that supports neither hierarchy
nor composition. Examples of languages belonging to this class are Check-
Mate [7], d/dt [14], and Hysdel [8]. The tree of components has only one
node which is the entire hybrid system described as a single monolithic com-
ponent. In CheckMate, c is a switched dynamical system and a set of linear
inequalities that defines the domains implemented in Simulink. The scheduler
is implemented by a Stateflow chart and the time stamper is provided by the
Simulink solvers.
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(a) (b)

Fig. 7. Structure of the programs that do not support a) hierarchy and composition,
b) hierarchy

Fig. 8. Structure of a HyVisual modal model

Figure 7 b) shows the structure of programs that support composition but not
hierarchy. Examples of languages belonging to this class are HyTech [15] and
HSIF [16]. Each child of the root node is a hybrid system. For HSIF programs,
hybrid automata are ordered with respect to a dependency graph. The graph
nodes are are hybrid automata and there is an edge Hi → Hj if an output of
Hj is used in some equation, invariant, guard or assignment of Hj . The depen-
dency graph, which is required to be acyclic, can be used to order the automata.
Moreover, differential equations precede algebraic equations in the order.

Figure 8 shows the structure of a HyVisual modal model [17]. A modal model
is described by a state machine with guards and reset maps on the edges. Each
state of the state machine is refined into a continuous time system that is an
interconnection of continuous time actors. The topological sort of the actor graph
gives their order of execution. Also, since guards have a triggering semantics, a
transition must be taken as soon as a guard is satisfied (i.e., there is a domain
change as soon as the values of the variables fall outside a domain). Modal
models can be connected together as indicated by the dotted lines in Figure 8.
Charon [9] programs lead to a similar structure but guard conditions have
different enabling semantics: these impact the way in which the time stamper
processes the domainchange condition in order to decide whether a pair (val, t)
is valid or not.

The interchange of models between simulation tools like HyVisual or
Modelica and verification tools like CheckMate, requires to check several
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conditions. First, the pair (C,S) of component and scheduler trees must be com-
pacted into only three nodes: one component, one scheduler and a time stamper.
This implies the explicit computation of the parallel composition defined in Sec-
tion 3. Second, the domains must be defined as intersection of polyhedra. The
inverse translation leaves many choices, the most natural among which would
be to have a root node connected to as many dynamical systems as there are
domains in the original CheckMate model.

For each language, the interchange format representation also highlights
semantic and structural properties such as scheduling decisions, transition
semantics, composition, representation of discrete and continuous dynamics in-
teraction, hierarchy and solution methods. Some of these properties could be
unspecified or not supported in a particular language and such information is
directly reflected in the interchange format. Hierarchy is one example that we
have already discussed. Ordering of equations and scheduling of hybrid systems
is another good example. For instance, Modelica does not define how a system
of differential and algebraic equations is sorted and solved. A Modelica model
represented in the interchange format would have π(e) = 1, ∀e ∈ H.E. The
translation of such model to HSIF would first require the reduction of the tree
representation to a one-level tree and then the decision on how automata and
equations are ordered. On the other hand, the inverse translation would disre-
gard such order.

7 Conclusions

We discussed the importance of an abstract semantics as the foundation of an
interchange format for hybrid system design. In particular, we defined an ab-
stract semantics for the interchange format that we first proposed in [1]. The
abstract semantics can be refined into various concrete semantics, each capturing
the model used by a different language for the specification of hybrid systems.
We also showed how a structural representation that keeps semantics and struc-
ture clearly separated is effective in highlighting the differences among such
languages. We illustrated the use of the abstract semantics and its structural
representation by applying them to various existing languages. We implemented
the proposed interchange format within the Metropolis framework and we ver-
ified with a simple example the viability of our approach. In particular, thanks
to its modularity, this approach makes it possible not only to translate the model
of an hybrid system from one language to another, but also to combine models
written in different languages.
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Abstract. We call a hybrid system stable if every trajectory inevitably ends up
in a given region. Our notion of stability deviates from classical definitions in
control theory. In this paper, we present a model checking algorithm for stability
in the new sense. The idea of the algorithm is to reduce the stability proof for the
whole system to a set of (smaller) proofs for several one-mode systems.

1 Introduction

Consider a heating system for a plant that consists of a heater and an internal engine.
The internal engine may overheat and switch off the heater temporarily, even though
the desired temperature is not yet reached. This means that, starting from low, the tem-
perature will not increase strictly monotonically but it will also decrease during some
(relatively short) periods of time. We do not know when exactly such periods start and
how long they will be. A sample trajectory of the system is shown in Fig. 1.

When does such a system behaves correctly? Informally, we expect that the heating
system will bring the temperature of the plant to a range between 20 and 25 degrees and
then keep it there, whatever the initial temperatures of the plant and the heater are and
whatever the exact time points are when the controller switches the heater from “on”
to “off” and back. In this paper we introduce a new notion of stability that allows one
to formalize the corresponding notion of correctness. We will then give an algorithm
to verify that a hybrid system is stable in our sense. The algorithm is parameterized by
the constraint solver that it calls as a subroutine in each of its different steps. Using a
constraint solver for linear constraints, we obtain a specific algorithm for linear hybrid
systems.

The contribution of this paper is threefold. First, our notion of stability fills the need
to specify correctness properties of hybrid systems that cannot be formalized by “clas-
sical” notions like asymptotic or exponential stability [2, 17, 23]. An example of such
a system is the above mentioned heating system. Another example may be an aircraft
that oscillates around an optimal course within a certain allowance. Any realistic model
of such a system does not satisfy a stability property in the classical sense yet the per-
formance of the aircraft is acceptable.

Second, we use existing reachability tools to reduce the stability proof for the whole
system to a set of proofs for one-mode systems [12, 11, 29]. We also show (and this is
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Fig. 1. Sample trajectory of the heating system

the third part of our contribution) how one can carry over techniques that are used in
program analysis for termination proofs to stability proofs for one-mode hybrid sys-
tems [25, 26, 9, 4].

2 Related Work

In this section, we discuss the relation between our and classical notions of stability
in control theory, and the relation between our algorithm and verification methods in
control theory and model checking.

Stability is a central themes in control theory. There are many different variations of
this property, such as asymptotical stability or exponential stability [2, 3, 17, 19, 21].
These classical notions of stability refer to a single equilibrium point. As we have
pointed out in the introduction, stability with respect to one point does not seem to
be always adequate. In the example of the heating system, where the temperature is
specified by upper and lower bounds, such an equilibrium point does not even exist.

The example of the heating system shows that it is not always possible to express
stability with respect to a region in terms of e.g. asymptotical stability. The other way
round, asymptotical stability with respect to a point x0 is expressible as stability with
respect to every region (x0−ε,x0 +ε), for ε> 0. However, it does not seem clear how to
compare these notions of stability. In particular we don’t see how one could use existing
techniques for proving classical stability (e.g. [2, 3, 18, 19, 20]) to prove that a hybrid
system is stable with respect to a given region.

Verification methods for non-reachability properties (or properties that can be re-
duced to non-reachability) for hybrid systems have been intensively studied by both
computer scientists and control theorists [32, 10, 34, 8, 27] and have lead to popular
verification systems such as PHAVer [12], HSolver [29], d/dt [11] and CheckMate [7].
Stability properties (in the classical as well as in our sense) are fundamentally different
from (non-)reachability. The methods used in reachability analysis are inherently not
applicable to stability. This means it is not possible to check stability with existing tools
for reachability.

The open problem that this paper attacks is the question whether model checking
for our new definition of stability is possible. Our results together with preliminary
experiments in a prototypical implementation implicate that this is possible in principle.
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3 Preliminaries: Hybrid Systems and Trajectories

In this section, we rephrase the classical definitions of the syntax and semantics of
hybrid systems [1, 13, 14].

A hybrid system is a tuple (fixed from now on)

A = (L,V ,( jump!,!′)!,!′∈L ,( f low!)!∈L ,(inv!)!∈L ,(init!)!∈L)

consisting of the following components:

1. a finite set L of locations.
2. a finite set V of real-valued variables, including a variable t that denotes the time.
3. a family ( jump!,!′)!,!′∈L of formulas over V representing the possible jumps from

location ! to location !′.
4. a family ( f low!)!∈L of formulas over V and V̇ specifying the continuous variable

update in location !. We use V̇ = {ẋ1, ẋ2, . . .} for the set of dotted variables. A
variable ẋ represents the first derivative of x with respect to time, i.e. ẋ = dx/dt.
Especially the derivative of time t with respect to itself is always equal to 1, ṫ = 1.

5. a family (inv!)!∈L of formulas over V representing the invariant condition in loca-
tion !.

6. a family (init!)!∈L of formulas over V representing the initial states of the system.

A state s is a pair (!,ν) consisting of a location ! of L and a valuation ν of all
variables over the set V . We write ΣV for the set of all variables valuations ν and Σ =
L×ΣV for the set of all states. A set of states is also called a region. A valuation over
the set V̇ of dotted variables is denoted by ν̇.

Note that a linear flow formula f low! can also be specified over V and V ′ (instead
of V and V̇ ). A formula f low!(x1, . . . ,t,x′1, . . . ,t

′) represents the flow of duration t ′ − t
in location !, where the values of the continuous variables change from x1, . . . ,t to
x′1, . . . ,t

′.
A trajectory τ of a hybrid system A is a function mapping time points t in R+ to

states in Σ such that the following conditions hold:
Let ν be the real-valued component of τ at time point t.

1. If τ(0) has location !, then τ(0) must satisfy the initial condition of that location,
formally

τ(0) |= init! .

2. If ν is differentiable at t, and both τ(t) and the left-limit of τ at t,

lim
t′→t−

τ(t ′) ,

have an equal location !, then the pair (ν, ν̇) of variable valuation and valuation
of the first derivatives satisfies the invariant and the flow condition of location !,
formally

(ν, ν̇) |= inv!∧ f low! .
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3. If the left-limit of τ at t has location ! and τ(t) has a different location !′, then
the real-valued component of the left-limit of τ at t must satisfy the jump condi-
tion from location ! to location !′,formally The values of the continuous variables
remain unchanged during a jump.

lim
t′→t−

τ(t ′) |= jump!,!′ .

The values of the continuous variables remain unchanged during a jump.

Example:

We take a simplified model of a temperature controller with an internal engine which
we depict in Fig.2.

!1
ẋp =−xp
ẋe =−3xe

ṫ = 1
(xp ≥ 20 ∨ xe ≥ 50)

xp≤21 ∧ xe≤55

�� !2
ẋp = 100−xp

ẋe = 2(150−xe)
ṫ = 1

(xp ≤ 25 ∧ xe ≤ 80)
xp≥24 ∨ xe≥75

��

Fig. 2. Temperature controller

The temperature of a plant is controlled through a thermostat, which continuously
senses the temperature and turns a heater on and off. The system has three variables xp,
xe and t,

V = {xp,xe,t} ,

where xp models the temperature of the plant, xe models the temperature of the internal
engine and t models the total elapse of time. The two states “on” and “off” of the heater
correspond to the two locations !1 and !2 of the overall system,

L = {!1,!2} .

The temperature fall resp. rise is governed by differential equations. Namely, in location
!1, where the heater is off, the temperature falls according to the flow condition f low!1 .

f low!1(xp,xe,t, ẋp, ẋe, ṫ) ≡ (ẋp =−xp ∧ ẋe =−3xe ∧ ṫ = 1)

In location !2, where the heater is on, the temperature rises as specified by f low!2 .

f low!2(xp,xe,t, ẋp, ẋe, ṫ) ≡ (ẋp = 100− xp ∧ ẋe = 2(150− xe) ∧ ṫ = 1)

The heater itself has an engine that may overheat. The heater is turned off not only
when the plant gets too hot but also when the engine is overheated. We assume that a
ventilator aids cooling down the engine; that is it cools down faster than it heats up. The
engine is overheated if its temperature exceeds 80 degrees; if it is cooled down to 55
degrees, the heater can again be turned on.
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The controller can switch the heater from “off” to “on” and back (which corresponds
to switches between the modes for the overall system) according to the jump conditions
on the edges between the two modes.

jump!1,!2(xp,xe,t) ≡ (xp ≤ 21 ∧ xe ≤ 55)
jump!2,!1(xp,xe,t) ≡ (xp ≥ 24 ∨ xe ≥ 75)

The controller must switch the heater from “off” to “on” and thus trigger a switch of
the locations !1 and !2 before the invariant condition of the location !1 is violated (i.e.
before the temperature of the plant is below 20 and the temperature of the heater is
below 50).

inv!1 ≡ (xp ≥ 20 ∨ xe ≥ 50)

Similarly, the controller must switch from “on” to “off” before the temperature of the
plant is above 25 or the temperature of the heater is above 80.

inv!2 ≡ (xp ≤ 25 ∧ xe ≤ 80)

4 Stability

In this section, we introduce our notion of stability and investigate its expressiveness.

Definition 1 (Stability). We call a hybrid system stable with respect to a given region
ϕ if for every trajectory τ there exists a point of time t0 such that from then on, the
trajectory is always in the region ϕ.

∀τ ∃t0 ∀t ≥ t0 : τ(t) ∈ ϕ

In the example of the heating system, the correctness property we are interested in is
this: whatever the initial temperature of the plant is and whatever the initial temperature
of the heater is and whatever the exact time points are when the controller switches the
heater from “off” to “on” and back, the temperature of the plant will finally be between
20 and 25 degrees (and it may oscillate between these bounds). We can now formalize
this correctness property as the stability wrt. the region ϕ ≡ xp ∈ [20,25].

We can express stability in temporal logic, in LTL or in CTL∗. In CTL∗, for example,
one would say that all trajectories f inally globally are in the region ϕ.

A(FG) ϕ

One might think of verifying stability by applying a CTL∗ model checker to a finite state
abstraction of the given hybrid system. However, there exist no abstraction techniques
that would preserve the stability property (except for trivial cases).

The following CTL formula is stronger than, but not implied by stability.

AF AG ϕ

The hybrid system below is stable with respect to the region x = 0. However, it does
not satisfy AF AG (x = 0); if the system stays in location !0 forever, it always has the
option to switch to location !1 where it would go outside the region x = 0.
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x=0

y=0
��

!0
ẋ = 0
ẏ = 0

x=0 ��
!1

ẋ = cos(y)
ẏ = 1
x≥ 0

x≤0 ��
!2

ẋ = 0
ẏ = 0

One might think of verifying stability wrt. ϕ by using fixpoint iteration in order to
compute the set of states satisfying the formula ¬EG ¬EF ¬ϕ, which is equivalent to
AF AG ϕ. The problem here would be to find practical approximation techniques for
greatest fixpoint iteration which is needed for the computation of ¬EG.

We will now introduce yet another property that is stronger than stability (and
stronger than AF AG ϕ). Our algorithm to prove stability is based on this property.

Definition 2 (Strong Attractor). We call a region ϕ a strong attractor of a hybrid sys-
tem A if every trajectory τ of A will (1) finally reach the attractor ϕ and (2) once in ϕ it
will never leave the region again.

∃t0 ∈ R+
{
∀t < t0 : τ(t) /∈ ϕ
∀t ≥ t0 : τ(t) ∈ ϕ

Our terminology refers to the notion of attractor in the theory of dynamical systems,
where the basin of attraction is a specified region (and not necessarily the whole state
space, as with strong attractors) and where trajectories are required to converge towards
the given region ϕ (and need not finally reach ϕ).

The region ϕ ≡ x ≤ 0 is not a strong attractor for the hybrid system below, which,
however, satisfies the temporal property AF AG ϕ.

x≤0 ��
!0

ẋ = 1
x≤ 1

x≥1 �� !1
ẋ =−1

A hybrid system can be stable wrt. a region without having that region as a strong
attractor. For example a slightly damped pendulum that oscillates around the origin
with initial amplitude x = 100 is certainly stable wrt. x < 1, but the region x < 1 is not
a strong attractor of the system. In fact, this system does not have any strong attractor
at all.

5 Algorithm

In this section we describe in detail our algorithm.
The input of the algorithm is a hybrid system A and a region ϕ. The output is a

“yes/don’t know” answer. If the the answer is “yes”, the system A is stable wrt. ϕ. If the
algorithm answers “don’t know”, the system may be stable or unstable.

Again, our algorithm doesn’t check directly whether the system A is stable with
respect to the region ϕ, but it checks whether ϕ is a strong attractor of A with the whole
state space as its basin of attraction, which implies stability.
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The algorithm proceeds in four steps.

Step 1: Transformation A �→ AT

The first step of the algorithm is to transform the given hybrid system into a new one.
Program transformation has been used recently in program analysis for termination
proofs for finite state systems and infinite programs [4, 9]. For the example of the heat-
ing system, Fig.3 shows the relevant part of the transformed system.

�
upp
1

ẋp = −xp ∧ ẋ′p = −xp

ẋe = −3xe ∧ ẋ′e = −3xe

ṫ = 1 ∧ ṫ ′ = 1
(xp ≥ 20 ∨ xe ≥ 50)

xp≤21 ∧ xe≤55
��

xp ≤ 21 ∧ xe ≤ 55
flag := 2

����������������������������

�
upp
2

ẋp = 100−xp ∧ ẋ′p = 100−xp

ẋe = 2(150−xe) ∧ ẋ′e = 2(150−xe)
ṫ = 1 ∧ ṫ ′ = 1

(xp ≤ 25 ∧ xe ≤ 80)
xp≥24 ∨ xe≥75

��

xp ≥ 24 ∨ xe ≥ 75
flag := 1

����������������������������

�low1
ẋp = 0 ∧ ẋ′p = −xp

xe = 0 ∧ ẋ′e = −3xe
ṫ = 0 ∧ ṫ ′ = 1

(x′p ≥ 20 ∨ x′e ≥ 50)

x′p≤21 ∧ x′e≤55

�� �low2
ẋp = 0 ∧ ẋ′p = 100−xp

ẋe = 0 ∧ ẋ′e = 2(150−xe)
ṫ = 0 ∧ ṫ ′ = 1

(x′p ≤ 25 ∧ x′e ≤ 80)
x′p≥24 ∨ x′e≥75

��

Fig. 3. Transformed system

We will explain next the characteristics of the transformation. Each state of the new
system corresponds to a pair (s,s′) of states s and s′ of the original system. Whenever
the state s′ is reachable from the state s in the original system, where s is a state just
after a discrete jump, then the state corresponding to the pair (s,s′) is reachable in the
new system. We refer to this property as binary reachability, i.e. a pair of states (s,s′) is
called binary reachable in a hybrid system A, if there exists a trajectory τ of A such that

1. s is a state on τ at time point t: s = τ(t);
2. s′ is a state on τ at time point t ′: s′ = τ(t ′);
3. t < t ′.

Take the states s = (!2; xp = 17.1, xe = 50, t = 0.157) and s′ = (!2; xp = 21.4, xe =
60, t = 0.209). The state s can reach the state s′ (both the temperature of the plant and
the engine increase in a time period of 5) in a trajectory of the original system; the
trajectory starts in the initial state s0 = (!1; xp = 20, xe = 80, t = 0). The state

(!low2 ; xp = 17.1, xe = 50, t = 0.157, x′p = 21.4, x′e = 60, t ′ = 0.209)

of the new system corresponds to the pair (s,s′). We will now see that this state is
reachable (in the transformed system). The state
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(!upp
1 ; xp = 20, xe = 80, t = 0, x′p = 20, x′e = 80, t ′ = 0)

is an initial state of the transformed system; it corresponds to the pair (s0,s0). Looking
at Fig.3 we see that it can reach the state

(!upp
1 ; xp = 17.1, xe = 50, t = 0.157, x′p = 17.1, x′e = 50, t ′ = 0.157)

(namely, when the transformed system stays in the location !upp
1 from time point 0 to

time point 10). That state can jump (by taking a transition into the lower half of the
system) to the state

(!low2 ; xp = 17.1, xe = 50, t = 0.157, x′p = 17.1, x′e = 50, t ′ = 0.157) .

From now on (after a transition into the lower half of the system), only the primed
variables keep changing. Looking at Fig.3 we see that this state can reach (by staying
in the same location) the state that corresponds to the pair (s,s′).

We will formalize next the program transformation. Given a hybrid system A we
assume that the set L of locations of A contains m elements !1 to !m, and the set V

consists of n + 1 real-valued variables, namely x1 to xn and t. The transformed system
AT ,

AT = (LT ,V T ,( jumpT
!,!′)!,!′∈LT ,( f lowT

! )!∈LT ,(invT
! )!∈LT ,(initT

! )!∈LT ) ,

consists of the following components.

1. Variables: The set V T of variables contains all variables of V , and their primed
versions.

V T = {x1, . . . ,xn, t,x
′
1, . . . ,x

′
n, t
′}

= V ∪ V ′

2. Locations: Each location of the original system is duplicated, i.e. a location
! of the original system corresponds to two locations !upp and !low in the
transformed system. We refer to the set of all locations from !upp

1 to !upp
m

as Lupp,
Lupp = {!upp

1 , . . . ,!upp
m }

and to the set of locations from !low1 to !lowm as L low.

L low = {!low1 , . . . ,!lowm }

In addition, the transformed system has a location !init. Altogether, the set LT of
locations of the transformed system consists of the following components:

LT = {!init} ∪ Lupp ∪ L low .

3. Initial conditions: Initially, each variable xi has the same value as x′i and the value
of t is equal to the value of t ′; the system starts in !init.

initT
! (x1, . . . ,t

′)≡
{
{(x1, . . . ,t ′)∈ΣV T : x1 =x′1∧ . . .∧ t = t ′} , if ! = !init

false , otherwise
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4. Jump conditions: There are two types of switches in the transformed system. The
first type occurs between two locations of Lupp or between two locations of L low,
respectively. A jump condition between location !upp

i and location !upp
j for the

variables (x1, . . . ,t,x′1, . . . ,t
′) conforms to the jump condition between the locations

!i and ! j of the original system A for the variables (x1, . . . ,t). Analogously, a
jump condition between the locations !lowi and !lowj of the transformed system
corresponds to the jump condition from location !i to ! j of the original system
after replacing the variables x1, . . . ,t by their primed versions.

( jumpT
!,!′)(x1, . . . ,t,x′1 . . . ,t

′) ≡
{

( jump!,!′)(x1, . . . ,t) , if !,!′ ∈ Lupp

( jump!,!′)(x′1, . . . ,t
′) , if !,!′ ∈ L low

The second type of switches are nondeterministic jumps either between the location
!init and a location of Lupp, or between a location of Lupp and a location of L low.
A jump is always possible from the location !init to any location of Lupp, if the
invariant condition of the target location is fulfilled.

( jumpT
!init,!′)(x1, . . . ,t,x

′
1 . . . ,t

′) ≡ (invT
!′)(x1, . . . ,t,x

′
1 . . . ,t

′) , if !′ ∈ Lupp

A jump from a location !upp
i to a location !lowj is possible whenever the jump con-

dition from !i to ! j is fulfilled in the original system. We use the variable flag /∈ V T

as a discrete variable that ranges over the set {1, . . . ,m} of indices of the locations
of the system. During the jump, the index j of the target location is memorized in
the variable flag.

( jumpT

!
upp
i ,!lowj

)(x1, . . . ,t,x
′
1 . . . ,t

′) ≡ ( jump!i,! j)(x1, . . . ,t) ∧ flag := j

If there is no jump outgoing from !i possible in the original system, the jump con-
dition from !upp

i to !lowi in the transformed system is true.

∀ j �= i :( jump!i ,! j)(x1, . . . ,t)≡ false⇒( jumpT

!
upp
i ,!lowi

)(x1,. . . ,t,x
′
1 . . . ,t

′)≡ true

All other jump conditions are false.

5. Flow conditions: First, in the locations !init no flow of the continuous variables
proceeds.

( f lowT
! )(x1, . . . ,t

′, ẋ1, . . . , ṫ
′) ≡

x∈V T

ẋ = 0 , if ! = !init

In each location !upp
i of Lupp, the flow of the variables x1, . . . ,t in the transformed

system is the same as the flow of x1, . . . ,t in the original system; each variable
x′1, . . . ,t

′ behaves exactly like its unprimed version, that is the flow of x′1, . . . ,t
′ is

equal to the flow of the original system after replacing the variables x1, . . . ,t by
their primed versions x′1, . . . ,t

′.

( f lowT
! )(x1, . . . ,t

′, ẋ1, . . . , ṫ
′)≡ f low!(x1, . . . , ṫ)∧ f low!(x′1, . . . , ṫ

′), if !∈Lupp
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In each location of L low the values of the variables x1, . . . ,t are fixed, i.e. the flow of
them is constant. The variables x′1, . . . ,t

′ keep on evolving as before.

( f lowT
! )(x1, . . . ,t

′, ẋ1, . . . , ṫ
′) ≡

x∈V

ẋ = 0∧ f low!(x′1, . . . , ṫ
′) , if ! ∈ Llow

6. Invariant conditions: For the location !init, the invariant condition is true.

(invT
! )(x1, . . . ,t,x

′
1, . . . ,t

′) ≡ true , if ! = !init

For a location !upp
i in Lupp (or !lowi in L low, respectively), the invariant condition over

x1, . . . ,t,x′1, . . . ,t
′ is the same as the invariant condition of the original system A for

!i over x1, . . . ,t (or x′1, . . . ,t
′, respectively).

(invT
! )(x1, . . . ,t,x

′
1, . . . ,t

′) ≡
{

inv!(x1, . . . ,t) , if ! ∈ Lupp

inv!(x′1, . . . ,t
′) , if ! ∈ Llow

Step 2: Reachability analysis
In the second step, our algorithm applies a procedure on the transformed system that
computes an overapproximation of the set of all reachable states of the transformed
system. The procedure is implemented by existing reachability tools as PHAVer [12],
d/dt [11] or HSolver [29]. As result we obtain a set of constraints, given by a disjunction
of conjunctions of linear inequalities in case of PHAVer . Each constraint is marked by
the location of the transformed system it is related to. In the example of the heating
system, one constraint in the output of PHAVer is e.g.

!low2 : flag = 2, xp ≥ 20, −xp ≥−21, xe ≥ 0, −xe ≥−55,

−x′p >−20, −x′e ≥−80, −x′e + 300(t ′ − t)≥ 245, t ′ − t ≥ 1,

x′e−140(t ′ − t)≥−90, x′p−75(t ′ − t)≥−75

In our notation, we identify a constraint with the relation that it denotes. We view a
unary relation over the variables V T of the transformed system as a binary relation over
the values of the variables V and their primed versions V ′ of the original system. Each
relation refers to pairs of valuations (ν,ν′), where the pair of states ((!,ν),(!′,ν′)) is
binary reachable in the original system for some ! and !′.

In the remainder of this paper we only talk about binary relations over pairs of val-
uations of the original system (and not about unary relations over valuations of the
transformed system) when we refer to relations in the output of the reachability tool.

Step 3: Computation of a Lyapunov-like function
For the third step of the algorithm we consider the finite subset C of disjuncts in the
output of the reachability tool where the value of the variable flag is equal to the index
of the location the relation is related to. These relations refer to pairs of valuations (ν,ν′)
such that the pair of states ((!i,ν),(!i,ν′)) is binary reachable in the original system for
the location !i whose index i is equal to the value of the variable flag.
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We prove for each single relation c of C that its conjunction with the negation of the
region ϕ and with t ′ − t ≥ δ

c ∧ ¬ϕ ∧ (t ′ − t ≥ δ)

is well-founded, where δ > 0 is arbitrarily small. Well-founded means that there is no
infinite sequence of states s1,s2,s3, . . . such that each pair of consecutive states (si,si+1)
satisfies the relation.

To show that a relation is well-founded, the algorithm applies a proce-
dure that automatically constructs a Lyapunov-like function for the relation. By
a Lyapunov-like function we mean a function r over the real-valued variables
V , such that (1) r(x1, . . . ,xn,t) ≥ 0 for all (x1, . . . ,xn, t), and (2) r(x1, . . . ,xn, t)
< r(x′1, . . . ,x

′
n, t
′) for all (x1, . . . ,xn,t,x′1, . . . ,x

′
n,t
′) that fulfill the considered constraint.

For relations that are given by conjunctions of linear inequalities, the algorithm com-
putes a Lyapunov-like function using RankFinder [31], a tool for synthesizing linear
ranking functions [24, 5, 6].

In section 6, we will prove that this condition suffices to show, that every trajectory
of the original system A inevitably reaches the region ϕ.

For the sample formula above, we obtain the result “Ranking: r = [1,0,0]” which
means that the Lyapunov-like function

r(xp,xe,t) = xp

is a witness for inevitability of the evolution towards ϕ.

Step 4: Invariance
In a final step our algorithm checks the entailment between constraints in the form
below, where c is a constraint given by the output of the reachability tool in Step 2 of
the algorithm (the renaming of all variables in ϕ to their primed versions yields ϕ′).

ϕ ∧ c |= ϕ′

This check proves that the region ϕ is an invariant of the system, i.e. each evolution of a
state in the region leads to another state that is in the region again. For linear constraints
c the algorithm uses the linear constraint solver clp(Q,R) [16] for this entailment check.

6 Correctness

In this section we investigate the correctness of the algorithm. The algorithm is sound
(its definite answers are correct) and not complete (it may return don’t know answers).

Soundness. The hybrid system A is stable wrt. ϕ if (1) every trajectory of A must reach
the region ϕ after a amount of finite time, and (2) from then on it will never leave the
region again.

Assume that the set C contains all relations c in the output of the reachability analysis
for the transformed system (computed in Step 2 of the algorithm) where the value of the
variable flag is equal to the index of the location the relation is related to. Again, these
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relations refer to pairs of valuations (ν,ν′) such that the pair of states ((!,ν),(!,ν′))
is binary reachable in the original system for the same location !. We must show that
property (1) holds for A if the conjunction of each relation c in the set C with the
negation of the region ϕ and with t ′ − t ≥ δ (for any arbitrary small δ > 0)

c ∧ ¬ϕ ∧ (t ′ − t ≥ δ)

is well founded.
The well-known combinatorial argument used to show that this is indeed sufficient

(and that the algorithm is correct) is standard in the theory of Büchi automata and has
been used so far only for linear temporal properties of discrete systems [28, 25, 26].

Theorem 1. Assume a hybrid system A and a solution of the reachability analysis for
the transformed system AT such that the set C consists of all relations c of the solution
where the value of the variable flag is equal to the index of the location the relation is
related to.

The hybrid system A reaches a region ϕ in every trajectory after a finite amount of
time if C is a finite set of relations where the conjunction of each relation c of C with
the negation of the region ϕ and with t ′ − t ≥ δ

c ∧ ¬ϕ ∧ (t ′ − t ≥ δ)

is well-founded for any arbitrary small δ > 0.

Proof. For a proof by contradiction we assume that each relation c∧¬ϕ∧ (t ′ − t ≥ δ),
for c in c, is well-founded but A does not reach the region ϕ in every trajectory. Let τ be
a trajectory of the system A that does not reach ϕ.

We consider a discretization of the trajectory τ by a time interval δ > 0, that is the
infinite sequence

τ(0),τ(δ),τ(2δ), . . .

The sequence is infinite, but we have only finitely many locations. Hence, at least one
location, say !, appears infinitely often in the sequence. This means that we can build
an infinite subsequence τ0,τ1,τ2, . . . of the sequence τ(0),τ(δ),τ(2δ), . . ., such that all
states on the subsequence have the same location !.

We now use the assumption that c is a finite union of relations, say

C = c1 ∪ . . . ∪ ck

such that for each relation c j of c its conjunction with the negation of the region ϕ and
with t ′ − t ≥ δ

c j ∧¬ϕ∧ (t ′ − t ≥ δ)

is well-founded.
We define a function g with finite range that maps an ordered pair of indices of the

sequence τ0,τ1,τ2, . . . to the index j of the relation c j that contains the corresponding
pair of states.

g(k, l) def.= j if (τk,τl) ∈ c j
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Furthermore the function g induces an equivalence relation∼ on pairs of indices of the
sequence τ0,τ1,τ2, . . ..

(k1, l1)∼ (k2, l2)
def.⇔ g(k1, l1) = g(k2, l2)

The index of ∼ is finite since the range of g is finite. By Ramsey’s Theorem [28],
there exists an infinite set of indices K such that all pairs from K belong to the same
equivalence class. Thus, there exists m and n in K, with m < n, such that for every k and
l in K, with k < l, we have (k, l) ∼ (m,n). Let k1,k2, . . . be the ascending sequence of
elements of K. Hence, for the infinite sequence τk1 ,τk2 , . . . we have

(τki ,τki+1) ∈ c j for all i≥ 1

By our assumption that τ does not reach ϕ, each state τki is not in the region ϕ, which
yields that

(τki ,τki+1) ∈ c j ∧¬ϕ for all i≥ 1

Because we have chosen a discretization of τ by δ, this is a contradiction to the well-
foundedness of c j ∧¬ϕ∧ (t ′ − t ≥ δ). �

Incompleteness. The algorithm may fail to prove the stability of a correct system (and
return a don’t know answer) for one of the following three reasons.

First, the output of the existing reachability tools (that we use in Step 2 of our algo-
rithm) is only an overapproximation of the set of all reachable states (and not the set
itself) due to the fact that reachability in general is undecidable.

The second point is the incompleteness of general well-foundedness tests (used in
Step 3 of the algorithm). Complete tests exist only in some restricted cases (e.g. in the
form of termination checkers for small classes of programs [24, 33]).

The third source of incompleteness is that the algorithm checks whether a region ϕ
is a strong attractor of the system, which is only a sufficient but not necessary condition
for stability wrt. ϕ; see Section 4.

7 Conclusion and Future Work

Previous notions of stability refer to a single equilibrium point. We have introduced a
new notion of stability that refers to a region instead. For some cases of hybrid systems,
this gives the appropriate formalization of their correctness. We have situated our notion
in the landscape of related properties in control theory and model checking.

Verification methods for non-reachability properties (or properties that can be re-
duced to non-reachability) for hybrid systems have been intensively studied by both
computer scientists and control theorists [32, 10, 34, 8, 27] and have lead to popular
verification systems such as PHAVer [12], HSolver [29], d/dt [11] and CheckMate [7].

There are many methods for the verification of hybrid systems for non-reachability
properties or properties that can be reduced to non-reachability; stability does not be-
long to them. We have given an algorithm to verify stability properties (in the new sense)
for general hybrid systems. The algorithm is parameterized by the constraint solver that
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it calls as a subroutine in each of its different steps. Using a constraint solver for linear
constraints, we obtain a specific algorithm for linear hybrid systems.

The crucial step of the algorithm is the computation of binary reachability (a precise
enough approximation of the binary reachability relation). Thanks to a source-to-source
transformation, this step can be implemented using an off-the-shelf tool for (unary)
reachability. Future work consists of evaluating existing (or new) reachability tools in
our context, where we use them not for safety but for stability.

In preliminary experiments, we have run the different steps on a number of exam-
ples (using PHAVer [12] and RankFinder [31]), including the example of the heating
system. The experiments indicate a promising potential of our method.

Out of the three sources of incompleteness of our algorithm, two are inherent due to
recursion-theoretic properties. The question is whether the third source of incomplete-
ness can be circumvented by an alternative to our present definition of strong attractors
and ways to compute them.
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Abstract. Several recent results in the area of robust asymptotic sta-
bility of hybrid systems show that the concept of a generalized solution
to a hybrid system is suitable for the analysis and design of hybrid con-
trol systems. In this paper, we show that such generalized solutions are
exactly the solutions that arise when measurement noise is present in the
system.

1 Introduction

1.1 Motivation

Hybrid dynamical systems comprise a rich class of systems in which the state
can both evolve continuously (flow) and discontinuously (jump). Over the last
ten years or more, in research areas such as computer science, feedback control,
and dynamical systems, researchers have given considerable attention to model-
ing and solution definitions for hybrid systems. Some notable references include
[41, 38, 4, 9, 8, 28, 40].

In the paper [19], motivated by robust stability issues in hybrid control sys-
tems, the authors introduced the notion of a generalized solution to a hybrid
system and outlined some stability theory consequences that followed from this
solution concept. These included results on “for free” robustness of stability,
a generalization of LaSalle’s invariance principle, and the existence of smooth
Lyapunov functions for asymptotically stable hybrid systems. More details about
these results and generalizations were given in the subsequent conference papers
[20] (see also [21]), [35] and [10], respectively.

The purpose of the current paper is to motivate further the use of generalized
hybrid solutions by considering the effect of arbitrary small measurement noise
in hybrid control systems. In this paper we show that, for hybrid systems arising
from using hybrid feedback control, generalized hybrid solutions agree with the
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limits (in an appropriate sense) of solutions generated by arbitrarily small mea-
surement noise in the hybrid control system. This result generalizes to hybrid
systems a similar result for differential equations initially reported by Hermes
in [23] and expanded upon by Hàjek in [22]. It contains, as a special case, an
analogous result for difference equations that, to the best of our knowledge, has
not appeared in the literature.

1.2 Controversy?

In continuous-time systems, generalized solutions to discontinuous differential
equations are shunned at times because using such a solution precludes solving
certain nonlinear control problems. For example, for asymptotically controllable
nonlinear systems, it is possible to solve the stabilization problem by state feed-
back when using weak notions of solution for discontinuous differential equations
(e.g., Caratheodory solutions, Euler solutions, etc.) (see [13]) but it is impossi-
ble to solve this problem in general when using generalized solutions such as
those due to Krasovskii [25], Filippov [18], or Hermes [23]; for further details
see [11].

The feedback stabilization problem does not provide the same motivation for
avoiding generalized solutions to hybrid systems. Indeed, it is possible to robustly
stabilize asymptotically controllable nonlinear systems using hybrid feedback
and using generalized solutions to hybrid systems. See, for example, [31].

Despite our opinion that the use of generalized solutions to hybrid systems
will never diminish the capabilities of hybrid control, we would not be surprised
to see some resistance to the use of generalized hybrid solutions to hybrid control
systems. We expect the main sticking point to be how the notion of generalized
solutions affects the “semantics” of a hybrid control system. We now elaborate
on what we mean.

For the purposes of this paper, a hybrid system is specified by the data H =
(f, g,C,D,O) where the open set O ⊂ Rn is the state space of the hybrid system
H, f is a function from C to Rn called the “flow map”, g is a function from D
to C ∪D called the “jump map”, C is a subset of O called the “flow set” and
indicates where in the state space flow may occur, D is a subset of O called the
“jump set” and indicates from where in the state space jumps may occur. At
times, we write the data in the suggestive form

H
{
ẋ = f(x) x ∈ C
x+ = g(x) x ∈ D

(1)

where x is the state of the hybrid system (with discrete modes already embedded
in it). Several models for hybrid systems available in the literature (see e.g.
[8], [28], [40]), under certain assumptions, can be fit in such framework. The
particular concept of a solution to a hybrid system we use will be made precise
in Section 2; it is not relevant for the discussion below.

Generalized solutions to H are solutions to a hybrid system with regularized
data H = (f , g,C,D,O), where f and g are constructed from f and g in a
manner that will be made precise later (see Definition 3) and C and D denote
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the closures of C and D, respectively, relative to O. In particular this means
that if C ∪D = O then C ∩D is not empty1 even if C ∩D is empty. It turns out
that many models of hybrid systems insist on having C∩D empty. For example,
one has C = O\D in the definition of state-dependent impulsive systems in [5]
(see also [6] and [12]). The condition C = O\D is also used in many of the
hybrid models considered in [8]. Making C ∩ D empty is one way to guarantee
that jumps are enforced in the jump set rather than simply enabled. (Some
researchers use the phrases “ ‘as is’ semantics” and “enabling semantics” for
these two respective situations, see [36].) Moreover, it is a way to guarantee that
solutions, if they exist, are unique when the flow map f is locally Lipschitz. See,
for example, [29].

As we pointed out in [19], changing C and D to their relative closures can have
a dramatic effect on the solutions to the hybrid control system. For example, if
D has measure zero, perhaps being a surface on which jumps are enforced, and
C = O\D (see, for example, the model of reset control systems used in [6] and
the references therein) then the relative closure of C will be equal to the entire
state space. This may enable solutions that never jump, circumventing the reason
for hybrid control in the first place. However, the point we are making in this
paper is that the new behavior that appears when taking the relative closures
can manifest itself due to measurement noise in a feedback control system. In
this sense, this new behavior should be taken into account.

There are many motivations for not taking the flow set C and the jump
set D to be sets that are closed relative to O in the definition of a hybrid
system. However, in the context of hybrid control systems, we hope that the
robust stability motivation given in [19], the solution properties reported in [20],
the stability theory corollaries reported in [20] and [35], and the new results
reported here on the equivalence between generalized solutions and the limit
of solutions due to measurement noise continue to motivate the development
of hybrid control system models that use jump and flow sets that are closed
relative to the state space. An example in this direction is the work of [42, 30]
which revisits the reset control systems considered in [6] and finds a natural
definition of the flow set and jump set so that they are closed and yet still force
jumps at the appropriate locations in the state space.

2 Definition of Generalized Solutions

In what follows we write R≥0 for [0, +∞), N for {0, 1, 2, ...}, and | · | for the
Euclidean vector norm.

2.1 Generalized Time Domain

In what could be described as the “classical” approach to hybrid systems, a
solution to H = (f, g,C,D,O) is, vaguely, a piecewise continuous function ξ that
1 This is true unless either C is empty or D is empty, in which case the original system

was not truly hybrid in the first place.
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is left-continuous and such that, on each interval of continuity satisfies ξ(t) ∈ C
and ξ̇ = f(ξ(t)), while at each point τ of discontinuity satisfies limt→τ− ξ(t) ∈
D and ξ(τ) = g(limt→τ− ξ(t)) (so, more compactly, ξ− ∈ D, ξ+ = g(ξ−)).
By design, such concept of a solution excludes multiple jumps at a single time
instant. Furthermore, it makes it troublesome (or impossible) to discuss limits of
solutions; see Example 1. These issues can be overcome by using a “generalized”
time domain, as defined below.

Definition 1 (hybrid time domain). A subset D ⊂ R≥0 × N is a compact
hybrid time domain if

D =
J−1⋃
j=0

([tj , tj+1], j)

for some finite sequence of times 0 = t0 ≤ t1 ≤ t2 ... ≤ tJ . It is a hybrid time
domain if for all (T , J) ∈ D, D ∩ ([0,T ]× {0, 1, ...J}) is a compact hybrid
domain.

Hybrid time domains are similar to hybrid time trajectories in [28],[29], and [3],
and to the concept of time evolution in [40], but give a more prominent role
to the number of jumps j (c.f. the definition of hybrid time set by Collins in
[15]). On each hybrid time domain there is a natural ordering of points: we write
(t, j) / (t′, j′) for (t, j), (t′, j′) ∈ D if t ≤ t′ and j ≤ j′.

Definition 2 (hybrid arc). A hybrid arc is a pair (x, dom x) consisting of a
hybrid time domain domx and a function x defined on domx that is locally
absolutely continuous in t on domx ∩ (R≥0 × {j}) for each j ∈ N.

We will not mention domx explicitly, and understand that with each hybrid arc x
comes a hybrid time domain domx. In this way, hybrid arcs x are parameterized
by (t, j) ∈ domx, with x(t, j) being the value of x at the “hybrid instant” given
by (t, j). A hybrid arc ξ is said to be nontrivial if dom ξ contains at least one
point different from (0, 0), complete if dom ξ is unbounded, and Zeno if it is
complete but the projection of dom ξ onto R≥0 is bounded.

Example 1. Consider a hybrid system on R2 given by D = (0, 1) × {0}, C =
R2 \D, f(x1,x2) = (x2,−x1), g(x) = x/2. For any point ξ0 with 0 < |ξ0| < 1,
ξ0 �∈ D, a “classical” solution from ξ0 (the solution is unique!) rotates clockwise
until it hits D, then via a jump has its magnitude divided by 2, then rotates
again for time 2π until it jumps again, etc; see Figure 1(a). In the presence of
arbitrarily small noise, a “classical” solution may jump almost immediately after
the first jump. That is, if τ is the time of the first jump, a solution to ẋ = f(x+e),
x ∈ C while x+ = g(x− + e−), x− ∈ D will jump at τ and then again when
x2 = −ε, if one considers the noise e(t) = (0, 0) if t ≤ τ , e(t) = (0, ε) for t > τ .
In this fashion, one can in fact construct a “classical” solution and arbitrarily
small noise so that the solution jumps arbitrarily many times (even infinitely
many) in arbitrary short time (so it may be a Zeno solution). One can then ask
what the limit of such solutions is (with the noise size decreasing to 0), and it
would be reasonable to expect that the limit is a solution that jumps infinitely
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(a) One possible “classi-
cal” solution

(b) Convergence of solutions when the noise approaches
zero. The value of the noise e at the i-th jump is given
by (0, εi) where εi → 0 as i → ∞.

Fig. 1. Solutions and their convergence under the presence of measurement noise for
the system in Example 1

many times at time τ . Figure 1(b) shows this on hybrid time domains. Of course,
such solution is not a “classical” solution, in fact, it can not be represented using
regular time. However, it is a hybrid arc (in the sense of Definition 2) defined on
a hybrid time domain.

2.2 Generalized Solutions a La Krasovskii

The regularization of the hybrid system H is defined below. We remind the
reader that for a set C ⊂ O, its closure relative to O is equal to the closure
of C intersected with O, and is the smallest relatively closed subset of O that
contains C.

Definition 3 (regularized hybrid system H). Given a hybrid system H =
(f, g,C,D,O), its regularization (a la Krasovskii) is denoted by H = (f , g,C,
D,O) where, for every x ∈ O,

f(x) :=
⋂
δ>0

cof((x + δB) ∩ C), g(x) :=
⋂
δ>0

g((x + δB) ∩D) (2)

and C,D are the relative closures of the sets C,D with respect to the state space
O, respectively.

Regarding the function f , the regularization corresponds to the one proposed
by Krasovskii in [26] for discontinuous differential equations. (An equivalent
description of f(x) would say that it is the smallest closed convex set containing
all limits of f(xi) as xi → x, xi ∈ C.) We note that the regularization of f as
proposed by Filippov in [18] ignores the behavior of f on sets of measure zero,
and thus proves to be unsuitable for hybrid systems (and even for constrained
differential equations). Indeed, for example, a set C with zero measure leads to
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an “empty” regularization. Regarding g, the regularization is the one used in
[24]; due to the nature of discrete time, the convexification is not needed.

Following the compact form for hybrid systems H = (f, g,C,D,O) given in
(1), we can write its regularized version H = (f , g,C,D,O) as

H
{
ẋ ∈ f(x) x ∈ C

x+ ∈ g(x) x ∈ D.
(3)

Note that the differential and difference equations in H are replaced by differ-
ential and difference inclusions, since f : O →→ Rn, g : O →→ O, by their very
definitions, are in general set-valued mappings and not functions. A formal def-
inition of Krasovskii solutions follows.

Definition 4 (hybrid Krasovskii solution to H). A hybrid arc ψ : domψ →
O is a hybrid Krasovskii solution to the hybrid system H = (f, g,C,D,O) with
regularization given by H = (f , g,C,D,O) if ψ(0, 0) ∈ C ∪D and:

(K1) for all j ∈ N and almost all t such that (t, j) ∈ domψ,

ψ(t, j) ∈ C, ψ̇(t, j) ∈ f(ψ(t, j)); (4)

(K2) for all (t, j) ∈ domψ such that (t, j + 1) ∈ domψ,

ψ(t, j) ∈ D, ψ(t, j + 1) ∈ g(ψ(t, j)). (5)

Under minor assumptions on f and g, the system H = (f , g,C,D,O) has the
regularity properties (stated below, in Theorem 1) that were imposed on the
hybrid systems by the authors et al. in [19] and in [20] and led to results on
sequential compactness of the sets of solutions to hybrid systems. In particular,
such properties guarantee that an appropriately understood limit of a sequence
of solutions to a hybrid system is itself a solution.

A function φ : O → Rn (or a set-valued mapping φ : O →→ Rn) is locally
bounded on O if for each compact set K ⊂ O there exists a compact set K ′ ⊂ Rn

such that φ(K) ⊂ K ′. It is locally bounded with respect to O on O if we request
that K ′ ⊂ O.

Assumption 1. The function f is locally bounded on O. The function g is locally
bounded with respect to O on O.

A set valued mapping φ : O→→ Rn (or φ : O→→ O) is outer semicontinuous if for
any sequence {xi}∞i=1 with limi→∞ xi = x ∈ O and any sequence {yi}∞i=1 with
yi ∈ φ(xi) and limi→∞ yi = y we have y ∈ φ(x).

Theorem 1 (basic properties of H). Under Assumption 1, the regularized
hybrid system H = (f , g,C,D,O) satisfies

(A0) O ⊂ Rn is an open set.
(A1) C and D are relatively closed sets in O.
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(A2) f : O →→ Rn is outer semicontinuous and locally bounded, and f(x) is
nonempty and convex for all x ∈ C.

(A3) g : O→→ O is outer semicontinuous and g(x) is nonempty for all x ∈ D.

One of the benefits of these properties is that, for systems that possess them,
very general conditions for existence of solutions can be given, and maximal
solutions behave as expected: that is, they are either complete or “blow up”
in finite hybrid time (a solution is complete if its domain is unbounded). More
specifically, under Assumption 1, and hence in presence of the properties listed
in Theorem 1, the following is true: if ψ0 ∈ D or the following condition holds:

(VC) ψ0 ∈ C and for some neighborhood U of ψ0, for all ψ′ ∈ U ∩ C, TC(ψ′) ∩
F (ψ′) �= ∅,

then there exists a nontrivial Krasovskii solution ψ to H with ψ(0, 0) = ψ0. If
(VC) holds for all ψ0 ∈ C\D, then for any maximal solution ψ with ψ(0, 0) = ψ0

(a Krasovskii solution ψ is said to be maximal if there does not exist another
Krasovskii solution ψ′ such that ψ is a truncation of ψ′ to some proper subset
of domψ′) at least one of the following statements is true:

(i) ψ is complete;
(ii) ψ eventually leaves every compact subset of O: for any compact K ⊂ O,

there exists (T , J) ∈ domψ such that for all (t, j) ∈ domψ with (T , J) ≺
(t, j), ψ(t, j) �∈ K;

(iii) for some (T , J) ∈ domψ, (T , J) �= (0, 0), we have ψ(T , J) �∈ C ∪D.

If additionally

(VD) for all ψ0 ∈ D, G(ψ0) ⊂ C ∪D,

then case (iii) above does not occur. For details, see [21, Proposition 2.5].
Note that the viability condition (VC) for the continuous evolution is au-

tomatically satisfied at each point ψ0 in the interior of C. Therefore, when
C ∪ D = O (a condition that is common in many models for hybrid systems,
see the Introduction), (VC) holds for all ψ0 ∈ C \D since C \D = O \D and
the latter set is open. Consequently, if C ∪D = O, for all ψ0 ∈ O there exists a
nontrivial solution ψ with ψ(0, 0) = ψ0.

Example 2. Consider the system from Example 1. Since the set D is thin, ar-
bitrarily small noise can cause “classical” solutions, or solutions understood as
hybrid arcs satisfying (1), starting from initial points ξ0 with 0 < |ξ0| < 1,
ξ �∈ D, to miss D and never jump. On the other hand, arbitrarily small noise
can cause solutions from ξ0 with |ξ0| = 1 to jump (to a point near (0.5, 0)) when
the solution is near (1, 0). Finally, once a solution ξ is such that 0 < |ξ(t)| < 1,
arbitrarily small noise can cause it to miss D and rotate, jump several times
in arbitrarily short time, or display any combination of these behaviors. (So in
particular, when limits of such solutions under vanishing noise are considered,
uniqueness – present for “classical” solutions – is lost.)
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Such potential effects of noise on the system are captured by its Krasovskii
regularization. Here, we get C = R2, D = [0, 1]× {0}, while f = f , g = g. The
fact that C = R2 results in Krasovskii solutions that only flow, or rotate around
the origin an arbitrary number of times in between jumps. The point (1, 0) being
in D leads to solutions starting with |ξ(0)| = 1 that jumps at some time. These
features, and the generality of hybrid time domains, capture the behavior of the
original system under (arbitrarily small) noise.

2.3 Generalized Solutions a La Hermes

To define hybrid Hermes solutions to a hybrid system, we need a concept of con-
vergence of hybrid arcs that admits sequences of arcs with potentially different
domains. Consequently, we will rely on graphical convergence. Given a hybrid
arc x with domain domx, its graph is the set

gphx := {(t, j,x(t, j)) ∈ R≥0 × N×O | (t, j) ∈ domx} .

A sequence of hybrid arcs {xi}∞i=1 converges graphically to a hybrid arc x if the
sequence of graphs {gphxi}∞i=1 converges to gphx in the sense of set conver-
gence. The latter concept is well-established and often used in set-valued and
nonsmooth analysis; see [32, 2]. For precise definitions of general set and graph-
ical convergence we refer the reader to [32, Chapters 4,5]; below we state a
version of [32, Exercise 5.34] relevant for our purposes. For further details on
graphical convergence of hybrid arcs we recommend [20]. Finally, we add that
graphical convergence is closely related to convergence in the Skorokhod topology
used in [15].

Lemma 1 (graphical convergence of hybrid arcs). Let x be a hybrid arc
with compact domx, and let (T , J) be the supremum of domx. A sequence
{xi}∞i=1 of hybrid arcs with domxi ⊂ R≥0 × {0, 1, . . . , J}, i = 1, 2, . . . , con-
verges graphically to x if and only if for all ε > 0, there exists i0 ∈ N such that,
for all i > i0

(a) for all (t, j) ∈ domx there exists s such that (s, j) ∈ domxi, |t − s| < ε,
and |x(t, j) − xi(s, j)| < ε,

(b) for all (t, j) ∈ domxi there exists s such that (s, j) ∈ domx, |t − s| < ε,
and |xi(t, j)− x(s, j)| < ε.

In particular, a sequence {xi}∞i=1 of hybrid arcs with domxi ⊂ domx, i =
1, 2, . . . , converges graphically to x if for all ε > 0 there exists i0 ∈ N such that,
for all i > i0, all (t, j) ∈ domx, we have (t, j) ∈ domxi and |x(t, j)−xi(t, j)| < ε.

Equipped with graphical convergence, we generalize the definition of Hermes
solutions discussed by Hermes in [23] and later defined by Hàjek in [22].

Definition 5 (hybrid Hermes solution to H). A hybrid arc ϕ : domϕ→ O
is a hybrid Hermes solution to H = (f, g,C,D,O) if for each compact hybrid time
domain D ⊂ domϕ and the truncation ϕD of ϕ to D, there exists a sequence
of hybrid arcs ϕi : domϕi → O and measurable functions ei : dom ei → Rn,
dom ei = domϕi, that satisfy, for each i,
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(H1) for all j ∈ N and almost all t such that (t, j) ∈ domϕi,

ϕi(t, j) + ei(t, j) ∈ C, ϕ̇i(t, j) = f(ϕi(t, j) + ei(t, j)); (6)

(H2) for all (t, j) ∈ domϕi such that (t, j + 1) ∈ domϕi,

ϕi(t, j) + ei(t, j) ∈ D, ϕi(t, j + 1) = g(ϕi(t, j) + ei(t, j)) (7)

with the property that limi→∞ ϕi(0, 0) = ϕ(0, 0), {ϕi}∞i=0 converges graphically
to ϕD, for each i we have sup(t,j)∈dom ei

|ei(t, j)| =: εi < +∞, and the sequence
{εi}∞i=0 converges to 0.

To illustrate what graphical convergence (vs. classical convergence notions)
grants us, we give two somewhat extreme, but important, examples.

Example 3. Consider the system from Example 1, and a sequence of points on
the line x1 = x2 converging to (0, 0). From each such point, one can find noise
ei and a “classical” solution ξi so that ξi rotates to D, and then jumps infinitely
many times, with jumps separated by less than 1/i amount of time. (We argued
that this is possible in Example 1.) The resulting sequence of hybrid arcs ξi

converges graphically to a hybrid arc ξ with dom ξ = {0} × N (that is, ξ never
flows) and for all j ∈ N, ξ(0, j) = (0, 0). Such ξ is a Hermes solution. It is also
a Krasovskii solution, since (0, 0) ∈ D and g(0, 0) = (0, 0). (Recall though that
(0, 0) �∈ D!)

Example 4. Consider a hybrid system on R2 given by D = R2; C = [0, +∞)×
{0}; f(x1,x2) = (1, 1) for every point (x1,x2) where x1 is rational, otherwise
f(x1,x2) = (1,−1); and g(x) = 0. For any point ξ0 ∈ C every classical solution
cannot flow since it would be pushed away from the set C. On the other hand,
in the presence of arbitrarily small noise, a “classical” solution can flow along
the C set towards +∞. Note that such a solution is also a Krasovskii solution
since the regularization of f is given by f(x1,x2) = (1, [−1, 1]).

In many control applications, the state of the system cannot be measured exactly
since it is corrupted by noise. The measurement noise can appear in some but
not every component of the state (e.g. when state feedback is implemented, noise
appears only on states measured with specific sensors). To account for such cases,
we consider functions f and g given as

∀x ∈ C f(x) := f ′(x,κc(x)), ∀x ∈ D g(x) := g′(x,κd(x)) (8)

where f ′ : O × U → Rn and g′ : O × U → O, κc : C → U , and κd : D → U ,
U ⊂ O. We allow for κc,κd to be discontinuous.

The notion of Hermes solution in Definition 5 changes for a hybrid system
H = (f, g,C,D,O) with f and g given by (8) since the noise is affecting the
differential and difference equations only through the function κc and κd.

Definition 6 (hybrid control-Hermes solution to H). A hybrid arc ϕ :
domϕ → O is a hybrid control-Hermes solution to H = (f, g,C,D,O) with f
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and g given in (8) if for each compact hybrid time domain D ⊂ domϕ and the
truncation ϕD of ϕ to D, there exists a sequence of hybrid arcs ϕi : domϕi → O
and measurable functions ei : dom ei → Rn, dom ei = domϕi, that satisfy, for
each i,

(cH1) for all j ∈ N and almost all t such that (t, j) ∈ domϕi,

ϕi(t, j) + ei(t, j) ∈ C, ϕ̇i(t, j) = f ′(ϕi(t, j),κc(ϕi(t, j) + ei(t, j))); (9)

(cH2) for all (t, j) ∈ domϕi such that (t, j + 1) ∈ domϕi,

ϕi(t, j) + ei(t, j) ∈ D, ϕi(t, j + 1) = g′(ϕi(t, j),κd(ϕi(t, j) + ei(t, j)))
(10)

with the property that limi→∞ ϕi(0, 0) = ϕ(0, 0), {ϕi}∞i=0 converges graphically
to ϕD, for each i we have sup(t,j)∈dom ei

|ei(t, j)| =: εi < +∞, and the sequence
{εi}∞i=0 converges to 0.

3 Statement of Main Results

Following the work by Hermes [23] and Hàjek [22], we show that hybrid
Krasovskii solutions to H are equivalent to hybrid Hermes solutions to H.

Theorem 2 (Krasovskii solutions ≡ Hermes solutions). Under Assump-
tion 1, a hybrid arc is a hybrid Krasovskii solution to H if and only if it is a
hybrid Hermes solution to H.

The two implications are stated and proved as Corollary 4.4 and Corollary 5.2
in [34].

We note that Theorem 2 generalizes, to the hybrid framework, the result
by Hàjek [22] given for differential equations. In proving the theorem, we first
extend some results by Hàjek to differential equations with a constraint (and we
give a proof quite different from that by Hàjek). We will also rely on results on
perturbations of hybrid systems given in [20].

Assumption 2. The functions f ′ is locally Lipschitz in the first argument uni-
formly in the second argument. The function g′ is continuous in the first argu-
ment uniformly in the second argument.

The result below is a generalization to the hybrid framework of the result given
by Coron and Rosier [16] in the context of robust stabilizability of nonlinear
systems with time-varying feedback laws.

Theorem 3 (Krasovskii solutions ≡ control-Hermes solutions). Under
Assumptions 1 and 2, for a hybrid system H with f and g given in (8), a hybrid
arc is a hybrid Krasovskii solution to H if and only if it is a hybrid control-
Hermes solution to H.

The two implications are stated and proved as Corollary 4.7 and Proposition 5.1
in [34] (One of them naturally follows from Theorem 2.)
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4 Examples

Here we discuss examples that illustrate that generalized solutions to hybrid
systems play a very important role in the robust stabilization problem.

Example 5 (reset and impulsive control systems). For the problem of stabilizing
dynamical systems with state feedback, controllers that have states that jump
when certain conditions are satisfied have been proposed in the literature as it
is the case of reset and impulsive control systems, see e.g. [14], [27], [6], [42]. A
reset controller is a linear system with the property that its output is reset to
zero whenever its input and output satisfy certain algebraic condition. The first
reset integrator was introduced in [14] in order to improve the performance of
linear systems. Several models for reset control systems and various design tools
are currently available in the literature. One of the models for (closed-loop) reset
control systems that has been widely used in the literature, see e.g. [6] and the
references therein, assumes the form

ẋ = Aclx + Bcld x �∈ M (11)
x+ = ARx x ∈M (12)

where M := {x ∈ Rn | Cclx = 0, (I −AR)x �= 0}; Acl, Bcl, Ccl are the closed-
loop system matrices; AR is the reset control matrix; x is the state of the system;
and d is an exogenous signal. The set where resets are possible is a subset of
{x ∈ Rn | Cclx = 0} and is given by D :=M, while the set where the flows are
active is given by C := Rn \M. Note that the latter set corresponds to almost
every point in the state space. It follows that for every trajectory of the system it
is possible to construct an arbitrarily small measurement noise signal so that the
measurement of the state never belongs to the jump set M, so that the solution
never jumps.

Therefore, in the presence of arbitrary small measurement noise, there ex-
ist solutions to the reset control system that never jump. Note that since the
measurement noise can be picked arbitrarily small, a sequence of solutions con-
verging to a solution that never jumps under the presence of measurement noise
with magnitude converging to zero can be constructed, a Hermes solution to the
reset control system. The limiting solution corresponds to a Krasovskii solution
to the reset control system and it satisfies (K1) and (K2) in Definition 4 on the
regularized sets C = Rn and D = M, respectively.

This lack of robustness not only arises in situations where exogenous signals
are present in the system but also in numerical simulation. When the reset
control system (11)-(12) is implemented in Simulink with an integrator with
reset and simple function blocks, the discretization in time produced by the
ODE solver may prevent the resets from being triggered and one has to appeal
to special Simulink blocks with zero-crossing detection. These special blocks
confer certain robustness properties to the closed loop and, in some situations,
make the simulation possible while affecting the model considered in the first
place.
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Now consider the state-dependent impulsive dynamical system first intro-
duced in [5] that is modeled as (see also [12] and the references therein)

ẋ = fc(x) x �∈ M (13)
x+ = x + fd(x) x ∈M (14)

where the function fc defines the continuous dynamics, the function fd defines
the discrete dynamics, and M is the reset set. In most applications of state-
dependent impulsive dynamical systems, the reset set M defines a surface in Rn

(for example, see the modeling examples in [12] or the feedback control strategies
proposed in [37, 33]). In such situations, it is also the case that arbitrarily small
measurement noise in the state x can prevent every solution to the closed-loop
system from jumping.

Example 6 (optimal control). In many robotics applications, optimal navigation
algorithms for mobile robots are designed by switching between several feedback
laws when the state of the system reaches the switching surface corresponding
to the current operation mode, see e.g. [1],[17], [7]. Since the switches between
modes occur when the state reaches the switching surface, arbitrarily small mea-
surement noise can prevent the switches from occurring, and consequently, can
cause the navigation task to fail.

Consider the example given in [7, Section 3] where a mobile robot of the uni-
cycle type is optimally steered from its initial location to a target (by optimality
the authors mean that the vehicle reaches the target while avoiding obstacles so
that it minimizes a cost function that penalizes the distance from the obstacle
and the proximity to the target). In this case, a hysteresis-type switching scheme
is designed around a circular obstacle by defining two circular surfaces given by
gi(x, y, ai) = (x0−x)2 + (y0− y)2− a2

i , i = 1, 2, a2 > a1. When the surface g1 is
reached with the vector field pointing inwards, the control law switches to the
one that drives the vehicle away from the obstacle while when the surface g2 is
reached with the vector field pointing outwards, the control law is switched to
the one that steers the vehicle to the target. Figure 2 depicts this scenario. Even

Fig. 2. Steering a vehicle to its target: the circles represent the switching surfaces
for the control strategy.“Classical” (solid) and generalized (dashed) solutions to the
optimal control problem in Example 6.
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though this strategy solves the chattering problem when only one switching sur-
face is considered, arbitrary small measurement noise can prevent the switch on
the surface g1 from happening (causing the vehicle to crash against the obstacle)
or it can also preclude the switch on the other surface to occur (causing the vehi-
cle to miss its target). Note that the nonrobustness phenomenon in this example
is not due to the existence of obstacles itself (see [39]), it is mainly related to the
fact that the concept of solution and the modeling framework were not designed
for asymptotic stability to be robust.

5 Conclusions

In this paper, motivated by the problem of robust stabilization of hybrid systems,
we have discussed the concepts of hybrid Krasovskii, Hermes, and control-Hermes
solutions. We have established that these three concepts of generalized solutions
are equivalent. This equivalence implies that hybrid Krasovskii solutions can be
approximated with arbitrary precision by solutions to the unregularized system
with (arbitrarily small) measurement noise. By examples of theoretical and prac-
tical relevance, we have motivated the use of generalized solutions in the design
of robust hybrid control systems.
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Abstract. We investigate techniques for automatically generating sym-
bolic approximations to the time solution of a system of differential equa-
tions. This is an important primitive operation for the safety analysis of
continuous and hybrid systems. In this paper we design a time elapse
operator that computes a symbolic over-approximation of time solutions
to a continuous system starting from a given initial region. Our approach
is iterative over the cone of functions (drawn from a suitable universe)
that are non negative over the initial region. At each stage, we iteratively
remove functions from the cone whose Lie derivatives do not lie inside
the current iterate. If the iteration converges, the set of states defined by
the final iterate is shown to contain all the time successors of the initial
region. The convergence of the iteration can be forced using abstract
interpretation operations such as widening and narrowing.

We instantiate our technique to linear hybrid systems with piecewise-
affine dynamics to compute polyhedral approximations to the time suc-
cessors. Using our prototype implementation TimePass, we demonstrate
the performance of our technique on benchmark examples.

1 Introduction

An invariant is a predicate that holds on every reachable state of the system. By
generating invariants, it is possible to prove a system safe or find potential bugs
in systems. For discrete systems, the generation of invariants can be performed
by a static analysis of the system; forward propagation is used to explore the
reachable states of the system starting from the initial states of the system until
an over-approximation of the reach set is generated, excluding the unsafe region.
This idea has been explored for restricted classes of hybrid systems by popular
tools such as Hytech, DDT, CheckMate and Charon.

To apply the forward propagation scheme to hybrid systems, we need a time
elapse operator ; an operator that, given an initial region Θ and a vector field
D describing the continuous dynamics, computes an over-approximation of the
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time successors of Θ under D for a potentially infinite time horizon. The con-
struction of the reachable set consists of alternate applications of such a time
elapse operator for each mode, along with the standard post condition (image)
operator for discrete mode changes. To be useful, this time elapse operator must
be as accurate as possible. This paper presents a novel method to construct such
a time elapse operator.

Our method iteratively constructs a set of functions {f1, . . . , fm} over the
system variables drawn from a given universe of functions U , such that the cor-
responding assertion f1 ≥ 0∧ . . .∧fm ≥ 0 holds for all time successors of Θ. We
start with the set of all functions in U that are nonnegative over Θ, and then iter-
atively remove those functions whose Lie derivative with respect to the system’s
vector field D does not support the corresponding invariant assertion until a
fixed point is reached. We show that the fixed point is guaranteed to correspond
to an invariant assertion. Standard techniques from abstract interpretation such
as widening and narrowing [5, 6] are used to force convergence in a finite number
of steps to a set of functions that are guaranteed to be nonnegative on all the
time successors of Θ.

The method is presented as a general framework, parameterized by an ab-
stract refinement operator that performs the removal of functions from the set
at each iteration. Specialization of the refinement operator allows the method
to be applied to different function domains, thus generating different types of
inequalities. To illustrate the method we describe a concrete instance of the
framework for the domain of affine functions, providing an alternative way of
polyhedral analysis. We have implemented this approach in our prototype tool
TimePass with encouraging results over benchmark examples.

Related Work

The time elapse operator can be analytically computed for polyhedral initial
regions and piecewise constant dynamics. The computation is hard for linear
systems and harder for nonlinear systems. The polyhedral flowpipe approxima-
tion approach of Krogh et al. can solve the bounded time elapse problem for
arbitrary differential equations. The approach has been implemented in their
tool CheckMate [18] and used for complex systems with both linear and nonlin-
ear dynamics. The DDT system due to Dang et al. uses orthogonal polyhedra
and face lifting to compute the time elapse [1]. The PHAVer tool due to Frehse [9]
presents a technique for the safety analysis of linear system using a sophisticated
flowpipe construction for linear differential equations. Nevertheless, these tech-
nique can approximate flowpipes only upto a time bound. They also rely on
numerical integration using ODE solvers to solve a hard non convex optimiza-
tion problem numerically. Piazza et al. [13] and Ratschan et al. [15] propose
approximations to the time-elapse based on quantifier elimination over the reals
along with Taylor series expansions.

The time solutions can be symbolically computed for certain affine systems.
However, the solution typically contains terms involving exponentiations, sines
and cosines. It is computationally expensive to draw inferences from these results.
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Extracting polyhedral over-approximations from the solution of linear systems
is a formidable challenge. The work of Lafferriere et al. [12] and Tiwari [19]
present interesting techniques for proving safety by integrating the dynamics
of the system. Recently, symbolic techniques for generating invariants without
the use of an explicit time elapse operator have been proposed, including the
generation of nonlinear equality invariants for systems with polynomial dynam-
ics [17, 20, 16]. These techniques can handle interesting nonlinear systems beyond
the reach of traditional automatic techniques, but the theory has so far been re-
stricted to equality invariants. Prajna and Jadbabaie [14] propose a method for
the synthesis of barrier functions (inequalities) to justify invariants of nonlin-
ear systems using convex optimization. These barrier functions are generated
by solving equations on the unknown coefficients of a parametric polynomial; in
contrast, in this paper we iteratively compute a set of functions starting from
the initial region.

2 Preliminaries

Let R denote the set of reals. A function f : Rn �→ R is said to be smooth
if it is continuous and differentiable to any degree. Examples of such functions
include polynomials and other analytical functions. Throughout this paper, we
consider assertions ϕ :

∧m
i=1 fi ≥ 0, such that each fi : Rn �→ R is smooth.

Let ϕ :
∧m

i=1 fi ≥ 0 be such an assertion. We denote the set of values satisfying
ϕ by [[ϕ]], i.e, [[ϕ]] = {x ∈ Rn | ϕ(x)}. An assertion ϕ1 semantically entails ϕ2,
written ϕ1 |= ϕ2 iff [[ϕ1]] ⊆ [[ϕ2]].

Definition 1 (Cone). Let G = {f1, . . . , fi, . . .} be a set of smooth functions.
The cone generated by G is given by

Cone(G) =

{
λ0 +

N∑
i=1

λifi | λi ≥ 0, 0 ≤ i ≤ N, N > 0

}
.

Each fi ∈ G is said to be a generator of the cone. The cone I is said to be
finitely generated iff I = Cone(G) for some finite set G. Given an assertion
ϕ :

∧m
i=1 fi ≥ 0, the expression Cone(ϕ) denotes Cone({f1, . . . , fm}).

A cone I defines a region [[I]] = {x ∈ Rn | fi(x) ≥ 0, ∀fi ∈ I}. Given cones
I, J , note that I ⊆ J iff [[J ]] ⊆ [[I]].

Lemma 1. Given ϕ :
∧m

i=1 fi ≥ 0, if g ∈ Cone(ϕ) then ϕ |= (g ≥ 0).

Example 1. Consider J = Cone(ϕ : x ≥ 0 ∧ y ≥ 0). We note that 3x+4y ∈ J .
Thus ϕ |= 3x+4y ≥ 0. On the other hand, ϕ |= x2 +y ≥ 0. However, x2 +y �∈ J ;
Cone(ϕ) is not necessarily a complete set of consequences.

The intersection of two cones is also a cone. However, the union of two cones fails
to be a cone. We define the conic hull I1 9 I2, to be the smallest cone containing
I1 ∪ I2. Let I1 = Cone(f1, . . . , fk) and I2 = Cone(g1, . . . , gm), then I1 9 I2 =
Cone(f1, . . . , fk, g1, . . . , gm). Therefore, Cone(ϕ1 ∧ ϕ2) = Cone(ϕ1) 9Cone(ϕ2)
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Continuous and Hybrid Systems

A vector field D over Rn associates each point x with a direction D(x) ∈ Rn.
Given a system of differential equations of the form ẋi = fi(x1, . . . ,xn), we
associate a vector field D(x) = 〈f1(x), . . . , fn(x)〉.

Definition 2 (Continuous System). A continuous system 〈V,D(·),X,Θ〉
consists of a set of real-valued continuous variables V , such that |V | = n; a
vector field D(·) over Rn defining the dynamics of the system; an invariant
predicate (domain) X restricting the state space of the system and an initial
region Θ such that [[Θ]] ⊆ [[X ]].

A time trajectory of a continuous system is a function τ : [0, δ) �→ Rn for some
time δ > 0 such that

(a) τ(0) ∈ [[Θ]],
(b) τ(t) ∈ [[X ]], for all t ∈ [0, δ), and
(c) τ̇ (t) = D(τ(t)).

Definition 3 (Lie Derivative). Let V (x) = 〈p1(x), . . . , pn(x)〉 be a vector
field in Rn. Let f : Rn �→ R be continuous and differentiable. The Lie derivative
of f over V is given by LV (f) = (∇f) · V (x) =

∑n
i=1

∂f
∂xi

· pi(x).

Let τ be some time trajectory of a continuous system with dynamics given by
D(·). Consider the function u(t) = f(τ(t)). The time derivative u̇(t) is given by
the Lie derivative LD (f) evaluated at x = τ(t).

Hybrid systems generalize continuous systems by providing finitely many
modes, each with possibly different dynamics and discrete mode changes. A state
is reachable if it occurs in some computation. The set of all reachable states of
a hybrid system is denoted Reach(H). The safety analysis problem given a safe
set S, asks if Reach(H) ⊆ S. Alternatively, the reachability problem given an
unsafe set U , decides Reach(H) ∩ U = ∅.

The safety analysis problem is undecidable for a general hybrid system. In
practice, it is solved by generating an over-approximation of the set Reach(H),
also known as an invariant. The standard technique for generating invariants is
based on a symbolic simulation of the system using assertions to represent sets
of states. These techniques require the fundamental primitive of computing time
elapse on a given region.

Definition 4 (Time Elapse Problem). Given a system 〈V,D(·),X,Θ〉, com-
pute an assertion ψ that contains all the time trajectories of the system starting
from any state x0 ∈ [[Θ]].

This problem is hard to solve in general. However, for restricted cases such as
piecewise constant differential equations and polyhedral assertions, there have
been many successful approaches to approximating the time elapse operation.
In this paper, we provide a general iterative approach to computing the time
elapse operator.
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3 Algorithm

We first present the general framework to construct the time elapse operator
without the use of invariant regions. After specializing this framework for the
domain of affine functions, we refine the general framework to the case of systems
with invariant regions. Proofs of theorems have been omitted in this version.
They may be obtained in an extended version of this paper.

3.1 General Framework

Let x be a vector of system variables, Θ : f1 ≥ 0∧ · · · ∧ fm ≥ 0 be the initial
region. Differential equations ẋi = pi(x), 1 ≤ i ≤ n specify the dynamics. Recall
that the dynamics induce a vector field D such that D(x) = 〈p1(x), . . . , pn(x)〉.
Assume p1, . . . , pn Lipschitz continuous.

Let U be a class of continuous and differentiable functions. Typically, U is
suggested by the class of inequalities fi ≥ 0 that appear in the system description
and those inequalities sought as potential invariants. We assume that U is a
vector space of functions, i.e, closed under addition of functions and scaling by
a real. Examples of U include the set of all affine functions over x, the set of all
polynomials of degree at most k, and the set of all polynomials.

We shall begin by formulating the notion of invariants that over-approximate
the reachable states of the continuous system. The time elapse operator that we
seek is nothing but a process of computing such invariants automatically.

Definition 5 (Bounding Invariant). An assertion ϕ : g1 ≥ 0 ∧ · · ·∧gm ≥ 0
is a bounding invariant iff (a) Θ |= ϕ and (b) g1 ≥ 0 ∧· · ·∧ gi = 0 ∧ · · ·∧ gm ≥
0 |= LD(gi) > 0, for all 1 ≤ i ≤ m.

Bounding invariants contain the time trajectories of the system starting from Θ.

Lemma 2 (Soundness). If ϕ is a bounding invariant then all time trajectories
starting from x0 ∈ [[ϕ]] satisfy ϕ.

The set of all functions that are bounding invariants need not be convex. For
instance, if g1 ≥ 0 and g2 ≥ 0 are bounding invariants, then g1 + g2 ≥ 0
is invariant but not necessarily a bounding invariant. The notion of a relaxed
invariant provides a stronger condition that is convex.

Definition 6 (Relaxed Invariant). An assertion ϕ :
∧m

i=1 gi ≥ 0 is a relaxed
invariant for a scale factor λ ∈ R iff (a) Θ |= ϕ and (b) ϕ |= LD(gi) + λgi > 0,
for each 1 ≤ i ≤ m.

Lemma 3. If ϕ is a relaxed invariant then it is also a bounding invariant.

We now extend the notion of a relaxed invariant to a cone of functions.

Definition 7 (Invariant Cone). Let I = Cone({g1, . . . , gm}) be a finitely gen-
erated cone of functions such that I ⊆ U . Let λ ∈ R be a scale factor. We say
that I is an invariant cone iff it satisfies the initiation and closure condition
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(1) Initiation: I ⊆ Cone(Θ), (thus [[Θ]] ⊆ [[I]]),

(2) Lie derivative closure: (∀ f ∈ I) (∃ε > 0) (LD(f) + λf − ε ∈ I).

Lemma 4 (Soundness). Let I = Cone({g1, . . . , gm}) be an invariant cone for
scale factor λ. The assertion ϕ : g1 ≥ 0 ∧ . . . ∧ gm ≥ 0 is a relaxed invariant.

Lemma 5. If Iλ is an invariant cone for scale factor λ, then it is also invariant
for any scale factor μ ≥ λ.

The key computational step in our scheme is that of a refinement operator:

Definition 8 (Refinement Operator). Given a cone I, a vector field D and
a scale factor λ, we define the set

∂λI = {f ∈ U | λf + LD(f)− ε ∈ I, ε > 0} .

Thus, ∂λI consists of all the functions f ∈ U such that LD(f) + λf − ε ∈ I.

The notion of an invariant may be recast as follows: A cone I is invariant for
scale factor λ iff I ⊆ Cone(Θ) ∩ ∂λI. Consider the monotonic function Fλ over
cones, defined by Fλ(I) = I ∩∂λI ∩Cone(Θ). A cone I is said to be a fixed point
for Fλ iff Fλ(I) = I.

Theorem 1. Given a cone I, and the refinement operator ∂λ,

1. ∂λI is a cone.
2. The function Fλ(I) = I ∩ (∂λI)∩ (Cone(Θ)) is monotonic and decreasing in

the lattice of cones ordered by set inclusion, i.e., Fλ(I) ⊆ I.
3. If Fλ(I) = I, i.e., I is a fixed point of Fλ, then I is an invariant cone.
4. If λ ≤ μ then ∂λI ⊆ ∂μI. Thus, Fλ(I) ⊆ Fμ(I).

The space of all cones I ⊆ U forms a complete lattice and furthermore, Fλ is
a monotonic function. Tarski’s theorem (see [7]) guarantees the existence of a
greatest fixed point of Fλ: I∗λ =

⋂
i≥0 ∂

i
λCone(Θ) .

If I∗λ is finitely generated then its generators correspond to an invariant asser-
tion. Note that I∗λ ⊆ I∗μ for μ ≥ λ. Thus, it follows that [[I∗μ]] ⊆ [[I∗λ]]. A larger
value of λ, yields a stronger invariant.

In practice, the greatest fixed point is frequently not computable and even
when it can be analytically computed, it may not be finitely generated. There-
fore, we seek fixed points that are not necessarily the greatest fixed points. Note
that such fixed points are also guaranteed to be invariant cones. This is per-
formed by under-approximating I∗λ as the limit of the following iteration:

I(0) = U

I(i+1) = Fλ(I(i)) = I(i) ∩ (∂λI
(i)) ∩ Cone(Θ)

It follows from the monotonicity of Fλ that each I(i+1) ⊆ I(i). The iteration
converges if I(i+1) = I(i). If convergence occurs in finitely many steps then the
result is a fixed point. Additionally, if the result is finitely generated then it is also
an invariant. On the other hand, convergence is not guaranteed in all domains.
Therefore, we use the narrowing operator � to force convergence [5, 6].
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Definition 9 (Narrowing Operator [5, 6]). Let I1, I2 be two cones such that
I1 ⊇ I2. The narrowing I1 � I2 is a cone defined as follows

1. I1 � I2 ⊆ I1 ∩ I2 ⊆ I2.
2. Given any monotonically decreasing sequence I0 ⊇ I1 ⊇ · · · , the sequence

J0 = I0, Ji = Ji−1 � Ii converges in finitely many steps.

The convergence of the iterative strategy to some fixed point can now be ensured
by repeated application of narrowing. For instance, consider the strategy

I0 = U
Ij+1 = Fλ(Ij), if 0 ≤ j ≤ K
Ik+1 = Ik � F(Ik), if k > K

This strategy known as the naive iteration computes the regular iteration se-
quence until a fixed limit K. If convergence is not achieved within this bound, the
repeated application of the narrowing operator guarantees convergence. Start-
ing from a finitely generated cone Cone(Θ), and forcing convergence in finitely
many steps (either naturally or through narrowing), we are guaranteed a finitely
generated invariant cone I.

3.2 Polyhedral Analysis of Affine Systems

As a concrete instance of the framework defined in Section 3.1, we now present
algorithms for the special case when the universe is the set of all affine expressions
cT x + c0, the initial set Θ is a polyhedron of the form Ax + b ≥ 0, and the
dynamics are affine, of the form ẋ = Px + q. The Lie derivative is given by
LD(cT x + c0) = cTPx + cT q.

Definition 10 (Finitely generated (polyhedral) cones). A cone I ⊆ U is
said to be finitely generated iff I = Cone(g1, . . . , gm). The functions g1, . . . , gm

are said to be its generators. Let I be a finitely generated cone of affine expres-
sions. We may represent I in the form of a polyhedron I = {cT x + c0 | Ac ≥ 0} ,
for a m× (n + 1) matrix A.

More generally, the coefficients of each expression in I satisfy a linear constraint
of the form Ac ≥ 0. Note that the vector c contains coefficient ci for variables
xi along with the coefficient c0 for the constant term.

Example 2. Consider the set of all affine expressions with nonnegative coeffi-
cients. We may represent such a set as

N = {cT x + c0| c0 ≥ 0 ∧ c1 ≥ 0 ∧ · · · cn ≥ 0} .

This set is finitely generated by the expressions {x1,x2, . . . ,xn}. Consider the
assertion Θ : x = 0 ∧ y ≥ 0 ∧ y ≤ 1. We may represent Cone(Θ) in two ways:

Cone(Θ) = Cone({x, −x, y, 1− y})
= {c0 + c1x + c2y | c0 ≥ 0 ∧ c0 + c2 ≥ 0}

Conversion between representations is achieved through a vertex enumeration.
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The refinement operator can be computed in a straightforward manner for
finitely generated cones of affine expressions, as suggested by the following lemma

Lemma 6. Let I = {cT x + c0 | ϕ(c, c0)} and ε > 0. The refinement ∂λI for a
field D(x) = Px + q is a finitely generated cone given by

∂λI = {cT x + c0 | ϕ(P T c + λc, λc0 + qT c− ε)} .

Proof. The Lie derivative LD(cT x + c0) = cTPx + qT c. Therefore, given an
expression f : cT x + c0 ∈ U , (LD(f) + λf − ε) ∈ I : {cT x + c0 | ϕ(c, c0)} iff
ψ : ϕ(λc + P T c, λc0 + qT c− ε) holds.

Note: The set I = {cT x + c0 | A(c, c0)T + b ≥ 0} is convex but not a cone unless
b = 0. If ε were given a fixed value such as 0.001 in our theory, the resulting
constraints after refinement are not homogeneous. In theory, we introduce ε as a
new variable and eliminate it from the final result. This is common in polyhedral
libraries implementing strict inequalities.

The intersection of two sets {cT x + c0 | ϕ1} and {cT x + c0 | ϕ2} is given by
{cT x + c0 | ϕ1 ∧ ϕ2}. We have now defined all the basic primitives needed to
carry out the fixed point iteration for this domain.

Example 3. Consider the system ẋ = 2x − y, ẏ = −x + 2y. We perform the
iterator for scale factor λ = 0. The Lie derivative of an expression c0+c1x+c2y is
given by (2c1−c2)x+(2c2−c1)y. Consider the initial region Θ : x = 0, 0 ≤ y ≤ 1.

Cone(Θ) = {c0 + c1x + c2y | c0 ≥ 0 ∧ c0 + c2 ≥ 0} .

Let I(0) = U , the set of all affine expressions. It follows that ∂0I
(0) = U . There-

fore, I(1) = F(I) = Cone(Θ) ∩ (∂0I
(0)) ∩ I(0) = Cone(Θ).

∂0I
(1) = ∂0 {c0 + c1x + c2y | c0 ≥ 0 ∧ c0 + c2 ≥ 0}

= {c0 + c1x + c2y | 2c2 − c1 ≥ ε}
I(2) = {c0 + c1x + c2y | c0 ≥ 0 ∧ c0 + c2 ≥ 0 ∧ 2c2 − c1 ≥ ε, ε > 0}

Table shows the cones encountered along the iteration, visualized in Figure 1(a).
The fixed point I∞ is not reached in finitely many iterations. The following table
shows the fixed points for different values of the scale factor λ. Convergence was
forced by the narrowing heuristics described below. Figure 1(b) depicts the fixed
point for the case λ = 1.

λ Iλ fixed point generators
−1 x + y ≥ 0, x ≤ 0

1
x + y ≥ 0, x ≤ 0, 2x + y ≤ 1, 7x + 5y ≤ 8,
13x+ 11y ≤ 32, 25x+ 23y ≤ 128, 49x+ 47y ≤ 512

2 x + y ≥ 0,x ≤ 0, 2x + y ≤ 1, 6x + 4y ≤ 5,
56x + 44y ≤ 75, 536x+ 464y ≤ 1125
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Table 1. Iterates for Examples 3 for λ = 0

# constraints generators
1 c0 ≥ 0, c0 + c2 ≥ 0 x = 0, 0 ≤ y ≤ 1
2 c0 ≥ 0, c0 + c2 ≥ 0, 2c2 − c1 ≥ ε x ≤ 0, y ≥ 0, 0 ≤ 2x + y ≤ 1

3
c0 ≥ 0, c0 + c2 ≥ 0,

2c2 − c1 ≥ ε, 5c2 − 4c1 ≥ 0
x ≤ 0, y ≥ 0,

2x + y ≤ 1, 4y + 5x ≥ 0

4
c0 ≥ 0, c0 + c2 ≥ 0,

2c2 − c1 ≥ ε, 14c2 − 13c1 ≥ 0
x ≤ 0, y ≥ 0,

2x + y ≤ 1, 13y + 14x ≥ 0
...

...
...

∞ c0 ≥ 0, c0 + c2 ≥ 0,
2c2 − c1 ≥ ε, c2 − c1 ≥ 0

x ≤ 0, y ≥ 0,
2x + y ≤ 1,
y + x ≥ 0

Θ

I(2)I(3) y

x

y

x

(a) (b)

Fig. 1. Fixed points for Example 3: (a) λ = 0, (b) λ = 1. The shaded figure represents
the final fixed point (not to scale). Dashed line in (b) represents upper solid line in (a).

Note that the invariant for a larger value of λ subsumes that for a smaller value.
In general, the iteration does not necessarily terminate in a finite number of
steps. Furthermore, the resulting cone I may not be finitely generated. Therefore,
approximations in the form of narrowing are required to force termination in a
finite number of steps. For any two finitely generated cones, it is possible to
define a standard narrowing by dropping generators [5].

Definition 11 (Standard Narrowing). Consider two cones I1 = Cone(g1,
. . . , gm) and I2 = Cone(h1, . . . ,hk) such that I1 ⊇ I2. The standard narrowing
I = I1 � I2 is defined as I = Cone(gi | gi ∈ I2) . In other words, the standard
narrowing drops from I1 all those generators that do not belong to the cone I2.

Each application of the standard narrowing results either in convergence or the
removal of at least one generator from the first argument. This guarantees con-
vergence of the naive iteration strategy in finitely many steps.

Example 4. Consider two successive iterates from Example 3.

I1 =
(
c0 ≥ 0, c0 + c2 ≥ 0,
2c2 − c1 ≥ 0, 11c2 − 10c1 ≥ 0

)
= Cone(x,−y, 2x + y − 1, 10y + 11x)
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I2 =
(
c0 ≥ 0, c0 + c2 ≥ 0,
2c2 − c1 ≥ 0, 33c2 − 32c1 ≥ 0

)
= Cone(x,−y, 2x + y − 1, 32x+ 33y)

Note that all but one generator (10x + 11y) in I1 also belong to I2. Therefore,
narrowing drops this generator resulting in

I1 � I2 =
(
c0 ≥ 0, c1 ≤ 0,
c0 + c2 ≥ 0, 2c2 − c1 ≥ 0

)
= Cone(x,−y, 2x + y − 1)

3.3 Adding Invariant Regions

We now extend the general framework by considering the evolution restricted
to an invariant region of the form X : h1 ≥ 0 ∧ h2 ≥ 0 · · ·hk ≥ 0 such that
Θ |= X . Let J = Cone(X) = Cone(h1, . . . ,hk). As in Section 3.1, we assume
that U is a universe, Θ is the initial condition and D is a differential field, with
the refinement operator ∂λ. Furthermore, we assume that h1, . . . ,hk ∈ U .

Definition 12 (Invariant Cone). Let I = Cone({g1, . . . , gm}) be a finitely
generated cone of functions such that I ⊆ U . We fix a scale factor λ ∈ R. We
say that I is an invariant cone under the invariant region J = Cone(X) iff it
satisfies the initiation and closure condition

(1) Initiation: I ⊆ Cone(Θ) 9 J ,

(2) Lie derivative closure: (∀ f ∈ I) (∃ ε > 0) (LD(f) + λf − ε ∈ I 9 J).

Lemma 7 (Soundness). Let τ : [0, δ) be any time trajectory starting from
x0 ∈ [[Θ]], under the vector field D and the invariant region X. Let I be an
invariant cone (under X). It follows that for all t ∈ [0, δ), gi(τ(t)) ≥ 0.

Algorithm 1. Algorithmic scheme for computing Time Elapse
K: Number of steps of initial iteration. λ: Appropriate value of λ for refinement.
Narrow: function implementing narrowing scheme for forcing convergence
function ComputeTimeElapse( Θ : predicate, D: dynamics, ψ: invariant)
I(0) := ConeOfConsequences(Θ) { Form the initial cone by dualization }
J := ConeOfConsequences(ψ) { Form the cone for the invariant region}
for i = 1 to K do

{Initial iteration for K steps}
I(i) := (I(i − 1) ∩ Refinement(I(i − 1), D, λ)) � J

end for
I := I(K)
{Start Narrowing to enforce convergence}
repeat

I ′ := (I ∩ Refinement(I, D, λ)) � J {Refine I w.r.t. dynamics. assert(I ′ ⊆ I)}
I := Narrow(I, I ′) { Narrow successive iterations. assert(I ⊆ I ′)}

until I ′ ≡ I
return[[I ]]
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Algorithm 2. Compute reach-set for hybrid system using time elapse operator

list wlist : worklist consisting of unprocessed modes and predicates.
map reachmap : maps each location to its current reachability predicate.

function analyze-hybrid-system { compute reachable state (predicates) }
{initialize the worklist and reachmap}
wlist := {〈minitial , Θ〉} {add initial mode and start predicate to the worklist}
(∀ mode m) reahmap(m) := false
{initial reachable region is empty for each mode}
while wlist �= ∅ do

〈m,ϕ〉 := pop(wlist) {pop an unprocessed mode/predicate from worklist.}
if [[ϕ]] �⊆ [[reachmap(m)]] then

{if the states in the popped predicate have not already been visited}
visit(m, ϕ) {process unvisited states}

end if
end while
{No more unprocessed predicates. Hence, all states have been visited.}
end function {analyze-hybrid-system}

function visit( m :mode, ϕ : predicate) {mode m is entered with state set ϕ}
ϕ′ := computeTimeElapse(ϕ, inv(m),dynamics(m))
{apply time elapse operator to ϕ}
reachmap(m) := reachmap(m) ∨ ϕ′

{add ϕ′ to reachmap. If ϕ′ is polyhedral, ∨ may be approximated by convex hull. }
for all τ : m → m′ outgoing discrete transitions of mode m do

ψ′ := post(ϕ′, τ ) {compute post condition}
wlist := wlist ∪ 〈m′, ψ′〉 { enqueue new 〈location, predicate〉 pair}

end for
end function {visit}

We now extend the iterative solution in the presence of an invariant region cone
J . Let us assume a fixed scale factor λ. Let FX(I) = J 9 (Fλ(I)). Also, let
I(0) = U be the initial iterate. We refine each iterate using

I(i+1) = FX(I(i)) = J 9 (I(i) ∩ (∂λI
(i)) ∩ Cone(Θ)) .

FX is monotonic, and furthermore, its fixed point is an invariant under the
region X . Therefore, as before, we may use the iterative technique with heuristic
narrowing to force convergence. Algorithm 1 depicts the computation.

Given two cones I1 = {cT x+ c0|A1c ≥ 0} and I2 = {cT x+ c0|A2c ≥ 0}, their
union is given by I1 9 I2 = {cT x+ c0 | (A1c ≥ 0)� (A2c ≥ 0)} , where � denotes
the polyhedral convex hull of two polyhedra.

Hybrid Systems Analysis. The time elapse operator presented so far can be used
as a primitive to perform approximate reachability analysis of hybrid systems.
While the time elapse operator is used inside each mode to compute the time
successors, the standard post condition operator is used to compute the image
of a set of reachable states under a discrete transition. Algorithm 2 presents
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the use of our time elapse operator for the analysis of hybrid system. This al-
gorithm is widely used in the analysis of hybrid systems [11]. Note that the
convergence of this algorithm is not guaranteed for all hybrid systems. It is
possible to modify Algorithm 2 to use widening/narrowing along the lines of Al-
gorithm 1 (see [10]). However the loss in precision due to widening could make
it less useful in practice. We have implemented the algorithm for systems with
affine dynamics and polyhedral guards/invariants maps in our prototype tool
TimePass.

3.4 Discussion

The technique, so far, has many parameters that need to be adjusted for its
proper working. We list a few important issues that arise in practice.

Narrowing. Repeated applications of standard narrowing guarantees the termi-
nation of the iteration. However, the standard narrowing is a poor strategy for
forcing convergence. More heuristic strategies such as extrapolation are based
on “guessing” the ultimate limits of an iteration. For instance, the evolution of
a generator across successive iterations 4y + 5x, 13y + 14x, 40y + 41x, · · · ob-
served in Example 3 suggests the limit x+y, leading us to the actual fixed point.
The problem of designing precise narrowing/widening operators for polyhedral
iterates has received a lot of attention in the (discrete) program analysis com-
munity [4, 10, 2]. Our own narrowing strategy maps generators across successive
iterates using a distance metric such as the euclidean distance. It then guesses
the ultimate limit as a weighted sum of the mapped pairs of generators rounded
to a fixed precision limit.

Iteration Scheme. There has been a significant amount of work in the program
analysis community on choosing iteration schemes for fixed point iterations. In
this paper, however, we choose the “naive iteration” scheme (Algorithm 1). The
scheme uses a pre-determined number (K) of initial iteration steps followed by
narrowing/extrapolation until convergence. The value of K needs to be suffi-
ciently large to allow our extrapolation scheme to guess the right limit to the
iteration. However, higher values of K lead to large and complex polyhedra.

Choosing λ. In theory, a larger value of λ produces a stronger invariant. This
may fail to hold due to the approximate nature of the narrowing operator.
Nevertheless, the result holds in most examples encountered in practice. Un-
fortunately, a larger value of λ yields extremely complex cones with large co-
efficients in its representation. In practice, we perform many time elapses in
stages, starting from a coarser grained approximation with smaller values of λ
and improving using larger values. Such an approach provides means of focusing
our narrowing heuristic at each stage to perform no worse than the previous
one. For linear systems, using λ = 0 discovers the rays (infinite directions) of
the time elapse operator, useful for computing time elapses over infinite time
horizons.
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4 Applications

Our tool TimePass implements the algorithms described in this paper for the
case of hybrid automata with affine dynamics and updates. Mode invariants,
transition guards and initial regions are all assumed polyhedral. Our implemen-
tation is based on the Parma Polyhedral Library [2]. The library uses exact
arithmetic to represent the coefficients of polyhedra. By default, the reachable
set is represented as a list of polyhedra. However, it is possible to speed conver-
gence of Algorithm 2 by using a single polyhedron per location.

Example 5. We consider the nav benchmark examples standardized by Fehnker
and Ivančić [8]. These benchmarks consist of an object moving through rectan-
gular cells on a plane, each with different target velocities. Instances of these
benchmarks have been standardized and are available online1. We refer the
reader to this online repository for a detailed description. For each benchmark,
we allowed our tool 45 minutes to converge. Figure 2 depicts the final reach sets
computed for nav-04 and nav-06. In each case, the square at the top left corner
is the forbidden region whose unreachability needs to be proved. Table 2 shows
the running times and memory consumption recorded on an Intel Pentium III
laptop with 512 Mb RAM. We were able to prove unreachability of the forbidden

Fig. 2. Reachable regions for benchmarks nav-04 (left) and nav-06(right). Top left
rectangle shows the unsafe region.

Table 2. Resource utilization for the NAV benchmark examples

# λ = 0, 10 λ = 0, 100
Time Mem (Mb) Proved Time Mem (Mb) Proved

nav-01 4.4s 2.1 Yes 1m28s 5.2 Yes
nav-02 1m13s 5.2 Yes 20m12s 18 Yes
nav-03 1m18s 5 Yes 17m51s 16 Yes
nav-04 19m51s 16 Yes ≥ 45m ≥ 60 No
nav-05 2m39s 8.5 No 11m49s 30 No
nav-06 ≥ 45m ≥ 35 No 12m14s 21 No

1 see http://www.cse.unsw.edu.au/∼ansgar/benchmark/nav inst.txt
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region for benchmarks nav-01 to nav-04. For nav-06, the entire forbidden region
but for the right most corner of the forbidden region is unreachable. As expected,
there is a performance penalty for a higher value of λ. However for the case of
nav-06, we observe a reversal of this trend. A more accurate time elapse operator
forces convergence of Algorithm 2 faster for this case.

5 Conclusion

We have presented a general framework for over approximating the flowpipe of a
continuous system given a starting region. We have provided an instance of this
framework for affine systems and polyhedral approximations. Our technique is
entirely symbolic and works by computing a greatest fixed point in the space of
finitely generated cones. As an advantage, our technique can handle unbounded
domains and construct approximations that hold without any time bounds. Our
approach is independent of the eigenstructure of the equation. On the other hand,
the technique presents many parameters, chiefly the “scale factor” involved in
the iteration. A larger value provably yields a more precise answer at the cost of
performance.

We have engineered a prototype TimePass for the analysis of affine hybrid
systems using polyhedra to represent sets of states. Our initial results with
benchmarks results are encouraging. Better narrowing strategies and careful
engineering should improve its performance on these benchmarks. We are also
looking into other representations of cones such as ellipsoids and quadratic forms
for handling non-linear systems. We hope to extend our technique to provide
a stronger framework based on sum-of-squares and positive semidefinite cones
rather than polyhedral cones.

Acknowledgments. We are grateful Franjo Ivančić and the reviewers for their
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Abstract. This article proves the existence and uniqueness of a weak
solution to a scalar conservation law on a bounded domain. A weak for-
mulation of hybrid boundary conditions is needed for the problem to be
well posed. The boundary conditions are represented by a hybrid au-
tomaton with switches between the modes determined by the direction
of characteristics of the system at the boundary. The existence of the
solution results from the convergence of a Godunov scheme derived in
this article. This weak formulation is written explicitly in the context of
a strictly concave flux function (relevant for highway traffic). The nu-
merical scheme is then applied to a highway scenario with data from the
I210 highway obtained from the California PeMS system. Finally, the ex-
istence of a minimizer of travel time is obtained, with the corresponding
optimal boundary control.

Keywords: Weak solution of scalar conservation laws, Weak hybrid
boundary conditions, LWR PDE, Highway traffic modeling, Boundary
control.

1 Introduction

This article is motivated by recent research efforts which investigate the problem
of controlling highway networks with metering strategies that can be applied
at the on-ramps of the highway (see in particular [46] and references therein).
The seminal models of highway traffic go back to the 1950’s with the work
of Lighthill-Whitham [36] and Richards [43] who tried to use fluid dynamics
equations to model traffic flow. The resulting theory, called Lighthill-Whitham-
Richards (LWR) theory relies on a scalar hyperbolic conservation law, with a
concave flux function. Very few approaches have tackled the problem of boundary
control of scalar conservation laws in bounded domains in an explicit manner
directly applicable for engineering. Unlike the viscous Burgers equation, which
has been is focus of numerous ongoing studies, very few results exist for the
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inviscid Burgers equation, which is traditionally used as a model problem for
hyperbolic conservation laws. Differential flatness [42] and Lyapunov theory [30]
have been explored and appear as promising directions to investigate.

The proper notion of weak solution for the LWR partial differential equation
(PDE), called entropy solution was first defined by Oleinik [39] in 1957. Even
though this work was known to the traffic community, it does not (as far as we
know) appear explicitly in the transportation literature before the 1990’s with
the work of Ansorge [4]. The entropy solution has been since acknowledged as
the proper weak solution to the LWR PDE [18] for traffic models. Unfortunately
the work of Oleinik in its initial form [39] does not hold for bounded domains,
i.e. it would only work for infinitely long highways with no on-ramps or off-
ramps. Bounded domains, i.e. highways of finite length (required to model on
and off-ramps) imply the use of boundary conditions, for which the existence
and uniqueness of a weak solution is not straightforward.

The first result of existence and uniqueness of a weak solution of the LWR
PDE in the presence of boundary conditions follows from the work of Bardos,
Leroux and Nedelec [8], in the more general context of a first order quasilinear
PDE on a bounded open set of Rn. In particular, they introduce a weak formu-
lation of the boundary conditions for which the initial-boundary value problem
is well-posed.

We begin this article by explaining that in general, one cannot expect the
boundary conditions to be fulfilled pointwise a.e. and we provide several exam-
ples to illustrate this fact. We then turn to the specific case of highway traffic
flow, for which we are able to state a simplified weak hybrid formulation of the
boundary conditions, and prove the existence and uniqueness of a weak solution
to the LWR PDE, the former resulting from the convergence of the associated
Godunov scheme to the entropy solution of the PDE. This represents a major
improvement from the existing traffic engineering literature, where boundary
conditions are expected to be fulfilled pointwise and therefore existence of a
solution and convergence of the numerical schemes to this solution are not guar-
anteed. We illustrate the applicability of the method and the numerical scheme
developed in this work with a highway scenario, using data for the I210 high-
way, obtained from the California PeMS system. In particular, we show that the
model is able to reproduce flow variations on the highway with a good accuracy
over a period of five hours. The last part of the article is devoted to the boundary
control of the LWR PDE and its application to a highway optimization problem,
in which boundary control is used to minimize travel time on a given stretch of
the highway.

2 The Need for a Weak Formulation of Hybrid Boundary
Conditions

This section shows three examples of the sort of trouble one runs into when
prescribing the boundary conditions in the strong sense. Numerous articles solve
a discrete version of this type of problems. Regardless of the numerical schemes
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used (Godunov [22], Jameson-Schmidt-Turkel [25, 26], Daganzo [17, 18]), these
methods suffer from the same difficulties: the authors solve a discrete problem
with strong boundary conditions which entails that the corresponding continuous
problem is usually ill-posed, i.e. does not have a solution. While the numerical
schemes listed above might still yield a numerical output, this numerical data
would be meaningless since the initial boundary-value problem does not have a
solution in the first place. The object of this work is not to make an endless list
of engineering articles which exhibit such shortcomings: we will just mention a
previous paper from one of the authors [9] and let the reader discover that this
is far from being an exception... To sum up, boundary conditions may only be
prescribed on the part of the boundary where the characteristics are incoming,
that is entering the domain.

Example 1: Advection equation. We start by considering the simple example
where the propagation speed is a constant c,

∂ρ

∂t
+ c

∂ρ

∂x
= 0 for (x, t) ∈ (a, b)× (0,T ).

In that case, one can clearly see that the boundary condition is either prescribed
on the left (x = a) if the speed c is positive or the right (x = b) if the speed is
negative. While finding the sign of the speed is quite simple in the linear case,
it becomes more subtle when dealing with a nonlinear conservation law such as
the LWR PDE as this sign is no longer constant.

Example 2: LWR PDE, shock wave back-propagation due to a bottleneck. For this
example, we consider the LWR PDE with a Greenshields flux function [24]:

∂ρ

∂t
+ v

(
1− 2ρ

ρ∗

)
∂ρ

∂x
= 0 (1)

where ρ = ρ(x, t) is the vehicle density on the highway, ρ∗ is the jam density and
v is the free flow density (see [17, 18] for more explanations on the interpretation
of these parameters). We consider a road of length L = 30, ρ∗ = 4 and v = 1
(dummy values), and an initial density profile given by ρ0(x) � ρ(x, 0) = 2 if
x ∈ [0, 10], ρ0(x) � ρ(x, 0) = 4 if x ∈ (10, 20], ρ0(x) � ρ(x, 0) = 1 if x > 20. The
highway might be bounded or unbounded on the right at x = L = 30 (it does not
matter for our problem). We assume free flow conditions at x = L, that we can
control the inflow at x = 0, and we try to prescribe it pointwise, i.e. ρ(0, t) = 2
for all t (this corresponds to sending the maximum flow onto the highway). The
solution to this problem can easily be computed by hand (for example by the
method of characteristics, see Figure 1, left). The solution to this problem reads

ρ(x, t) = 2 if t ≤ 2(10 − x) AC: shock
ρ(x, t) = 4 if 2(10 − x) ≤ t ≤ 20 − x BC: left edge of exp. wave
ρ(x, t) = 2(1 − (x − 20)/t) if t ≥ max{20 − x, 2(x − 20)} CBD is an expansion wave
ρ(x, t) = 1 if t ≤ 2(x − 20) BD: right edge of exp.wave

As can be seen, limx→0+ ρ(x, t) = 2 for t ≤ 20 and limx→0+ ρ(x, t) = 2(1 + 20/t)
for t > 20. Thus, the boundary condition ρ(0, t) = 2 is no longer verified as soon
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Fig. 1. Left: Characteristics for the solution of the LWR PDE for Example 2. Right:
corresponding value of the solution at successive times. The arrow represents the value
of the input at x = 0, which becomes irrelevant for t ≥ 20.

as t ≥ 20. This phenomenon is crucial in traffic flow models: it represents the
back-propagation of congestion (i.e. upstream). If the location x = 0 was the end
of a link merging into the highway (that we could potentially control), the case
when ρ(0+, t) > ρ∗ is congested would correspond to a situation in which the
upstream flow (x = 0−) is imposed by the downstream flow (x = 0+), i.e. the
boundary condition on the left becomes irrelevant. When ρ(0+, t) < ρ∗ is not
congested, the boundary condition is relevant and can be imposed pointwise.

Example 3: Burgers equation. We now consider the inviscid Burgers equation on
(0, 1) × (0,T ). If we try to prescribe strong boundary conditions at both ends,
the problem becomes ill-posed. Burgers equation reads:

∂u

∂t
+ u

∂u

∂x
= 0 (2)

The initial value is u(x, 0) = 1, and the boundary conditions u(0, t) = u(1, t) = 0
on [0, 1]. The solution of (2) with these boundary conditions is for t < 1 :{

u(x, t) = x
t if x < t self similar expansion wave

u(x, t) = 1 if x > t convection to the right with speed 1

We notice that the boundary condition is not satisfied at x = 1. Since the data
propagates at speed u, they are leaving [0, 1] at x = 1 while they stay in [0, 1] as
a rarefaction wave at x = 0.

3 Traffic Flow Equation with Hybrid Boundary
Conditions

We consider a mixed initial-boundary value problem for a scalar conservation
law on (a, b)× (0,T ).

∂ρ

∂t
+

∂q(ρ)
∂x

= 0 (3)

with the initial condition
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ρ(x, 0) = ρ0(x) on (a, b)

and the boundary conditions

ρ(a, t) = ρa(t) and ρ(b, t) = ρb(t) on (0,T ).

As usual with nonlinear conservation laws, in general there are no smooth solu-
tions to this equation and we have to consider weak solutions (see for example
[10], [19], [45]). In this article we use the space BV of functions of bounded vari-
ation which appears very often when dealing with conservation laws. A function
of bounded variation is a function in L1 such that its weak derivative is uniformly
bounded. We refer the intrigued readers to the book from Ambrosio, Fusco and
Pallara [1] for many more properties and applications of BV functions. Other
valuable references on BV functions include the article by Vol’pert [48] and the
book from Evans and Gariepy [20].

In our problem, we make the assumption that the flux q is continuous and
that the initial and boundary conditions ρ0, ρa, ρb are functions of bounded
variation. When the flux q models the flux of cars in terms of the car density
ρ we obtain the LWR PDE. As explained earlier on, boundary conditions may
not be fulfilled pointwise a.e., thus following [8], we shall require that an entropy
solution of (3) satisfy a weak formulation of the boundary conditions:

L(ρ(a, t), ρa(t)) = 0 and R(ρ(b, t), ρb(t)) = 0

where
L(x, y) = sup

k∈I(x,y)
(sg(x− y)(q(x)− q(k)) and

R(x, y) = inf
k∈I(x,y)

(sg(x− y)(q(x)− q(k)) for x, y ∈ R

and I(x, y) = [inf(x, y), sup(x, y)] with sg denoting the sign function. In the
case of a strictly concave flux (such as the Greenshields [24] and Greenberg [23]
models used in traffic flow modeling), the boundary conditions can be written
as (Le Floch gives analogous conditions in the case of a strictly convex flux in
[33]): ⎧⎪⎨⎪⎩

ρ(a, t) = ρa(t) or
q′(ρ(a, t)) � 0 and q′(ρa(t)) � 0 or
q′(ρ(a, t)) � 0 and q′(ρa(t))  0 and q(ρ(a, t)) � q(ρa(t))

(4)

Similarly, the boundary condition at b is:⎧⎪⎨⎪⎩
ρ(b, t) = ρb(t) or
q′(ρ(b, t))  0 and q′(ρb(t))  0 or
q′(ρ(b, t))  0 and q′(ρb(t)) � 0 and q(ρ(b, t))  q(ρb(t))

(5)

As noticed in [33], we can always assume the boundary data are entering the
domain at both ends. Indeed, if for example q′(ρa(t)) < 0 on a subset I of R+
of positive measure, the boundary data:



Mixed Initial-Boundary Value Problems for Scalar Conservation Laws 557

ρ̃a(t) =

{
q′−1(0) if t ∈ I

ρa(t) otherwise
(6)

will yield the same solution. With this assumption the boundary conditions can
be written as: {

ρ(a, t) = ρa(t) or
q′(ρ(a, t)) � 0 and q(ρ(a, t)) � q(ρa(t))

(7)

and {
ρ(b, t) = ρb(t) or
q′(ρ(b, t))  0 and q(ρ(b, t))  q(ρb(t))

(8)

We can now define an notion of entropy solution for a scalar conservation law
(3) with initial and boundary conditions.

Interpretation of the hybrid automaton for concave flux functions. Figure 2
(left) shows the three-mode automaton corresponding to (4). The first mode,
ρ(a, t) = ρa(t) corresponds to the situation in which the boundary condition
ρa(t) is effectively applied (as in the strong sense). The second mode q′(ρ(a, t)) �
0 and q′(ρa(t)) � 0 corresponds to a situation in which the characteristics exit
the domain at x = a for both the solution ρ(a, t) and the prescribed boundary
condition ρa(t) (therefore the boundary condition does not ‘affect’ the solution).
The third mode corresponds to a supercritical ρ(a, t), i.e. ρ(a, t) ≥ ρc (see Fig-
ure 3 and [17, 18]), a subcritical ρa(t), i.e. i.e. ρa(t) ≤ ρc, and a prescribed inflow
q(ρa(t)) greater than the actual flow q(ρ(a, t)) at x = a. This corresponds to a
shock moving to the left (to see this, plug the previous quantities in the Rankine-
Hugoniot conditions), which means that the prescribed boundary condition does

Fig. 2. Left: Hybrid automaton encoding the boundary conditions at x = a, corre-
sponding to (4). A similar automaton can be constructed for (5). Right: Simplification
of the automaton corresponding to the transformation of (4) into (7). A similar au-
tomaton can be constructed for (8) from (5).
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not ‘affect’ the solution. The guards for this hybrid systems are thus determined
by the sign of the flux derivative q′(·) and the values of the flux q(·) at x = a.

Definition: A solution of the mixed initial-boundary value problem for the PDE
(3) is a function ρ ∈ L∞((a, b)×(0,T )) such that for every k ∈ R, ϕ ∈ C1

c ((0,T )),
the space of C1 functions with compact support, and ψ ∈ C1

c ((a, b)×(0,T )) with
ϕ and ψ nonnegative:∫ b

a

∫ T

0
(|ρ− k|∂ψ

∂t
+ sg(ρ− k)(q(ρ) − q(k))

∂ψ

∂x
)dxdt  0

and there exist E0, EL, ER three sets of measure zero such that :

lim
t→0,t/∈E0

∫ b

a

|ρ(x, t)− ρ0(x)|dx = 0

lim
x→a,x/∈EL

∫ T

0
L(ρ(x, t), ρa(t))ϕ(t)dt = 0

lim
x→b,x/∈ER

∫ T

0
R(ρ(x, t), ρb(t))ϕ(t)dt = 0

With this definition, we now establish the uniqueness by proving an
L1- semigroup property following the method introduced by Kružkov [31] (see
also the articles from Keyfitz [28] and Schonbek [44]).

Let ρ, σ be two solutions of (3), ϕ and ψ two test functions in C1
c ((0,T )) and

C1
c ((a, b)) respectively and nonnegative; the aforementioned definition yields:

b

a

T

0
(|ρ(x, t)−σ(x, t)|ψ(x)ϕ′(t)+sg(ρ(x, t)−σ(x, t))(q(ρ(x, t))−q(σ(x, t)))ϕ(t)ψ′(x)))dxdt  0

For ψ approximating χ |[a,b], the characteristic function of the interval [a, b], we
have:

b

a

T

0
|ρ(x, t)−σ(x, t)|ϕ′(t)dt lim inf

x→b

T

0
sg(ρ(x, t)−σ(x, t))(q(ρ(x, t)−q(σ(x, t)))ϕ(t)dt

− lim sup
x→a

T

0
sg(ρ(x, t) − σ(x, t))(q(ρ(x, t)) − q(σ(x, t)))ϕ(t)dt.

For a fixed x /∈ EL and t ∈ (0,T ), we can always define k(x, t) ∈ I(σ(x, t), ρa(t))∩
I(ρ(x, t), ρa(t)) such that:

sg(ρ(x, t)−σ(x, t))(q(ρ(x, t))−q(σ(x, t))) = sg(ρ(x, t)−ρa(t))(q(ρ(x, t))−q(k(x, t)))

+sg(σ(x, t)−ρa(t))(q(σ(x, t))−q(k(x, t))) � L(ρ(x, t), ρa(x, t))+L(σ(x, t), ρa(x, t)).

The situation is similar in a neighborhood of b which eventually yields:∫ b

a

∫ T

0
|ρ(x, t) − σ(x, t)|ϕ′(t)dtdx  0.
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Therefore, for 0 < t0 < t1 < T ,∫ b

a

|ρ(x, t1)− σ(x, t1)|dx �
∫ b

a

|ρ(x, t0)− σ(x, t0)|dx

which proves the L1-semigroup property from which the uniqueness follows.

4 Numerical Methods for the Initial-Boundary Value
Problem

In this section, we prove the existence of a solution to equation (3) through the
convergence of the Godunov scheme. Let h = b−a

M and Ii = [a + h(i − 1
2 ), a +

h(i + 1
2 )) for i ∈ {0, ...,M}. For r > 0, let Jn = [(n − 1

2 )rh, (n + 1
2 )rh) with

n ∈ {0, 1, ...,N = E(1 + T
rh )}. We approximate the solution ρ by ρn

i on each cell
Ii×Jn, with ρh the resulting function on [a, b]× [0,T ]. The initial and boundary
conditions can be written as:{

ρ0
i = 1

h

∫
Ii
ρ0(x)dx , 0 � i � M

ρn
0 = 1

rh

∫
Jn

ρa(t)dt and ρn
M = 1

rh

∫
Jn

ρb(t)dt , 0 � n � N

According to the Godunov scheme [22], ρn+1
i is computed from ρn

i by the
following algorithm:{
ρn

i+ 1
2

is an element k of I(ρn
i , ρn

i+1) such that sg(ρn
i+1 − ρn

i )q(k) is minimal

ρn+1
i = ρn

i − r(q(ρn
i+ 1

2
)− q(ρn

i− 1
2
))

Let M0 = max(‖ρ0‖∞, ‖ρa‖∞, ‖ρb‖∞); if the CFL (Courant-Friedrichs-Lewy)
condition ([35])

r sup
|k|<M0

|q′(k)| � 1

is verified, ρh converges in L1((a, b)×(0,T )) to a solution ρ ∈ BV ((a, b)×(0,T )).
The CFL condition yields the following estimates:

|ρn+1
i | � (1 + C0h) sup(|ρn

i− 1
2
|, |ρn

i |, |ρn
i+ 1

2
|) + C1h for every i ∈ Z∑

1�i�M

|ρn+1
i+1 − ρn+1

i | � (1 + C2h)
∑

|i|�M+1

|ρn
i+1 − ρn

i |+ C3Mh2 for every M ∈ N

∑
|i|�M

|ρn+1
i − ρn

i | �
∑

|i|�M+1

|ρn
i+1 − ρn

i |+ C4Mh(1 + sup
i∈Z

|ρn
i |) for every M ∈ N

from which we can deduce that a subsequence ρhn converges strongly to a func-

tion ρ ∈ L∞((a, b)× (0,T )) of bounded variation and verifying the initial condi-
tion. We also have for k of I(ρn

i , ρn
i+1)

|ρn+1
i −k| � |ρn

i −k|−r(sg(ρn
i+ 1

2
−k)(q(ρn

i+ 1
2
)−q(k))−sg(ρn

i− 1
2
−k)(q(ρn

i− 1
2
)−q(k)))
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which shows that ρ is a weak solution of (3). If ϕn = 1
rh

∫
In

ϕ(t)dt for ϕ ∈
C1

c ((0,T )), non negative, we have:

0�n�N

sg(ρn
i+ 1

2
− k)(q(ρn

i+ 1
2
) − q(k))ϕnrh �

0�n�N

sg(ρn
1
2

− k)(q(ρn
1
2
) − q(k))ϕnrh+

+ih‖ϕ′‖∞T (M0 + |k|).
Let λ(t) be the weak * limit in L∞((0,T )) of a subsequence of q(ρi

1
2
); the

following inequality holds:
T

0
sg(ρ(x, t) − k)(q(ρ(x, t)) − q(k))ϕ(t)dt �

T

0
sg(ρa(t) − k)(λ(t) − q(k))ϕ(t)dt+

+|x − a|‖ϕ′‖∞T (M0 + |k|),
using that sg(ρn

1
2
− k)(q(ρ 1

2
)− q(k)) � sg(ρn

0 − k)(q(ρ 1
2
)− q(k)).

ρ(x, .) is of bounded variation, therefore it converges strongly in L1 sense to
a limit α ∈ L∞((0,T )) and it verifies:

sg(α(t)− k)(q(α(t)) − q(k)) � sg(ρa(t)− k)(λ(t) − q(k))

for every k ∈ R and a.e. t ∈ (0,T ). This inequality shows that λ = q(α) a.e.
and L(α(t), ρa(t)) � 0 and ρ verifies the weak boundary condition at x = a.
Similarly, ρ verifies the corresponding condition at x = b and the existence is
proved.

5 Implementation and Simulations for I201W

We now turn to the practical implementation of the Godunov scheme for the
LWR PDE. The scheme is written as follows:

ρn+1
i = ρn

i − r(qG(ρn
i , ρn

i+1)− qG(ρn
i−1, ρ

n
i ))

If the flux q is strictly concave, which is often the case in traffic flow modeling,
it reaches its only maximum at a point ρc (see Figure 3) and the numerical flux
is defined by:

qG(ρ1, ρ2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min(ρ1, ρ2) if ρ1 � ρ2,

q(ρ1) if ρ2 < ρ1 < ρc,

q(ρc) if ρ2 < ρc < ρ1,

q(ρ2) if ρc < ρ2 < ρ1.

The boundary conditions are treated via the insertion of a ghost cell on the left
and on the right of the domain, that is:

ρn+1
0 = ρn

0 − r(qG(ρn
0 , ρn

1 )− qG(ρn
−1, ρ

n
0 ))

with ρn−1 = 1
rh

∫
Jn

ρa(t)dt, 0 � n � N for the left boundary condition and

ρn+1
M = ρn

M − r(qG(ρn
M , ρn

M+1)− qG(ρn
M−1, ρ

n
M ))
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Fig. 3. Left: Illustration of the empirical data obtained from the PeMS system. The
horizontal axis represents the normalized density ρ (i.e. occupancy, see [41, 38] for more
details). The vertical axis represents the flux q(·). Each track corresponds to a loop
detector measurement. This data can easily be modelled with a strictly concave flux
function (solid fit), for which we display the critical density ρc and the jam density, ρ∗.
Right: Location of the loop detectors used for measurement and validation purposes.

with ρn
M+1 = 1

rh

∫
Jn

ρb(t)dt, 0 � n � N on the right of the domain. We illustrate
an application of this Godunov scheme to the simulation of highway traffic. A
comparison of the density obtained numerically with the corresponding experi-
mental density measured by the loop detectors is performed. We consider I210
West in Los Angeles and focus on a stretch going from the Santa Anita on-ramp
1 to the Baldwin on-ramp 2 in free-flow conditions between midnight and 05:00
a.m. The data measured by the loop detectors is accessible through the PeMS
system (Performance Measurement System [41]); in our case the two detectors
ID are 764669 and 717664.

We measure the flow at the loop detector 764669 (left subfigure in Figure 4).
The need for signal processing is quite visible; for this example, it was done using
Fast Fourier Transform methods. Noise levels are a very important issue with
PeMS measurements, that has been covered extensively in the literature and is
out of the scope of this work. The comparison with the actual measurements
is performed at the next downstream loop detector (detector 717664), see right
subfigure in Figure 4. The results shown in this figure illustrate the fact that the
method is able to reproduce traffic flow patterns over an extended period of time
(5 hours in the present case). The numerical simulation was done with Fortran
codes from the Clawpack software developed by LeVeque and available at [12],
implemented on a Sun Blade workstation. Further model refinements would be
needed to obtain an enhanced matching of the two curves. This is also out of
the scope of this article (the reader is referred to [38] for more on this topic).

6 Optimization of Travel Time Via Boundary Control

Our next endeavor is directed towards the minimization of the mean time spent
by cars traveling through a stretch of highway between x = x0 and x = x1 via
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Fig. 4. Left: PeMS data used for the simulation, measured at loop detector 717669.
The horizontal axis represents time, the vertical axis represents the inflow at the left
boundary. Right: Comparison between loop detector measurements 717664 and flux
simulations predicted by the model at the same location. The horizontal axis is time;
the vertical axis is the vehicle flux. Source [41] .

the adjustment of the density of cars entering the highway. The results from
Ancona and Marson ([2], [3]) enable us to solve this problem. The first step
consists in studying the attainable set at a fixed point in space x1:

A(x1, C) = {ρ(x1, .)}, ρ being a solution of the LWR PDE with ρ0 = 0 and
ρa ∈ C for a given set of admissible controls C ⊂ L1

loc.
Using the method of generalized characteristics introduced by Dafermos ([15],

[16]), the attainable set is shown to be compact, the key argument being that
the set of fluxes {q(ρa), ρa ∈ C} is weakly compact in L1 (see [32] for functional
analysis in Lp spaces). The compactness of the attainable set in turn yields the
existence of a solution to the optimal control problem

min
ρa∈C

F (S(.)ρa(x1))

for F : L1([0,T ])→ R a lower semicontinuous functional and C a set of admissible
controls. We use the semigroup notation Stρa to designate the unique solution
of the LWR PDE at time t (we refer to the textbook [19] for more on semigroup
theory). In the case of traffic modeling on a highway, we wish to minimize the
difference between the average incoming time of cars at x = x1 and at x = x0
which can be written as:

min
ρa∈C

(∫ +∞

0
tq(Stρa(x1))dt−

∫ +∞

0
tg(t)dt

)(∫ +∞

0
g(t)dt

)−1

where g(t) represents the number of cars entering the stretch of highway per
unit of time. This amounts to solving the equivalent problem:

min
ρa∈C

∫ +∞

0
tq(Stρa(x1))dt
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For this particular problem, we make the following additional assumptions:

– the net flux of cars entering the highway is equal to the total number of cars
arriving at the entry: ∫ +∞

0
q(ρa(s))ds =

∫ +∞

0
g(s)ds

– for every time t > 0 the total number of cars which have entered the highway
is smaller than or equal to the total number of cars that have arrived at the
entry from time 0 to t: ∫ t

0
q(ρa(s))ds �

∫ t

0
g(s)ds

– the number of cars entering the highway is at most equal to the maximum
density of cars on the highway:

ρa(t) ∈ [0, ρm]

– after a given time T no cars enter the highway:

ρa(t) = 0 for t > T.

The map F : ρ →
∫ T

0 q(ρ(t))dt is obviously a continuous functional on L1
loc

([0,T ]), hence the existence of a solution of an optimal control ρa.
Furthermore, a comparison principle for solutions of scalar nonlinear con-

servation laws with boundary conditions established by Terracina in [47] will
allow us to find an explicit expression of the optimal control. Indeed if ρ(x, t)
is a weak solution of the LWR PDE, u(x, t) = −

∫ +∞
x ρ(y, t)dy is the viscosity

solution ([14]) of the Hamilton-Jacobi equation

∂u

∂t
+ q(

∂u

∂x
) = q(0).

Since viscosity solutions verify a comparison property [13], so will the solution
of the LWR PDE.

Since
∫ T

0 tq(Stρa(x1))dt = T
∫ T

0 q(Stρa(x1))dt −
∫ T

0

∫ t

0 q(Ssρa(x1))dsdt, the
boundary control problem can be rewritten as:

max
ρa∈C

∫ T

0

∫ t

0
q(Ssρa(x1))dsdt.

As we can assume that the boundary data is always incoming, the comparison
principle shows that the optimal control ρ̃ should verify:∫ t

0
q(ρ̃(s))ds 

∫ t

0
q(ρa(s))ds, for every t > 0 and ρa ∈ C.

Eventually we obtain the following expression of the optimal control ρ̃:

ρ̃(t)=

{
q−1(ρm) if g(t) � q(ρm) and

∫ t

0 q(ρ̃(s))ds <
∫ t

0 g(s)ds or g(t) > q(ρm)
q−1(g(t)) if g(t) � q(ρm) and

∫ t

0 q(ρ̃(s))ds =
∫ t

0 g(s)ds
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7 Conclusion

We have proved the existence and uniqueness of a weak solution to a scalar
conservation law on a bounded domain. The proof relies on the weak formu-
lation of the hybrid boundary conditions which is necessary for the problem
to be well posed. For strictly concave flux functions, the simplified expression
of the weak formulation of the hybrid boundary conditions was written ex-
plicitly. The corresponding Godunov scheme was developed and applied on a
highway traffic flow application, using PeMS data for the I210W highway in
Pasadena. The numerical scheme and the parameters identified for this highway
were validated experimentally against measured data. Finally, the existence of
a minimizer of travel time was obtained, with corresponding optimal boundary
control.

The hybridness of the boundary conditions is closely linked to the one-
dimensional nature of the problem (i.e. to the direction of the characteristics
and the corresponding values of the fluxes). The switches between the modes oc-
cur based on the value of the solution, which itself acts as a guard. The boundary
conditions derived in this article should thus be viewed as an instantiation of
the more general weak boundary conditions given in [8], for which a clear hybrid
structure appears in the one dimensional case, through a modal behavior.

This article should be viewed as a first step towards building sound metering
control strategies for highway networks: it defines the mathematical solution,
and appropriate hybrid boundary conditions to apply in order to pose and solve
the optimal control problem properly. Not using the framework developed here
while computing numerical solutions of the LWR PDE would lead to ill-posed
problems and therefore the data obtained through a numerical scheme would be
meaningless.

Our result is crucial for highway performance optimization, since by nature, in
most highways, traffic flow control is achieved by on-ramp metering, i.e. bound-
ary control. However, results are still lacking in order to generalize our approach
to a real highway network. For such a network, PDEs are coupled through bound-
ary conditions, which makes the problem harder to pose. Furthermore, optimiza-
tion problems arising in transportation networks often cannot be solved as the
problem derived in the last section of this article. In fact, several approaches
have to rely on the computation of the gradient of the optimization functional,
which for example could be achieved using adjoint-based techniques. Obtaining
the proper formulation of the adjoint problem, and the corresponding proofs
of existence and uniqueness of the resulting solutions represents a challenge for
which the present result is a building block.
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Abstract. In this paper we propose a technique to extend the sim-
ulation of a Zeno hybrid system beyond its Zeno time point. A Zeno
hybrid system model is a hybrid system with an execution that takes
an infinite number of discrete transitions during a finite time interval.
We argue that the presence of Zeno behavior indicates that the hybrid
system model is incomplete by considering some classical Zeno models
that incompletely describe the dynamics of the system being modeled.
This motivates the systematic development of a method for completing
hybrid system models through the introduction of new post-Zeno states,
where the completed hybrid system transitions to these post-Zeno states
at the Zeno time point. In practice, simulating a Zeno hybrid system
is challenging in that simulation effectively halts near the Zeno time
point. Moreover, due to unavoidable numerical errors, it is not practi-
cal to exactly simulate a Zeno hybrid system. Therefore, we propose a
method for constructing approximations of Zeno models by leveraging
the completed hybrid system model. Using these approximation, we can
simulate a Zeno hybrid system model beyond its Zeno point and reveal
the complete dynamics of the system being modeled.

1 Introduction

The dynamics of physical systems at the macro scale level (not considering effects
at the quantum level) are continuous in general. Even in a digital computer that
performs computation in a discrete fashion, its fundamental computing elements
(transistors) have continuous dynamics. Therefore, it is a natural choice to model
the dynamics of physical systems with ordinary differential equations (ODEs)
or partial differential equations (PDEs). However, modeling a physical system
with only continuous dynamics may generate a stiff model, because the system
dynamics might have several time scales of different magnitudes. Simulating such
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stiff models in general is difficult in that it takes a lot of computation time to
get a reasonably accurate simulation result.

Hybrid system modeling offers one way to resolve the above problem by intro-
ducing abstractions on dynamics. In particular, slow dynamics are modeled as
piecewise constant while fast dynamics are modeled as instantaneous changes,
i.e., discretely. In this way, the remaining dynamics will have time scales of
about the same magnitude and the efficiency of simulation, especially the simu-
lation speed, is greatly improved. However, special attention must be devoted to
hybrid system models because Zeno hybrid system models may arise from the
abstractions.

An execution of a Zeno hybrid system has an infinite number of discrete
transitions during a finite time interval. The limit of the set of switching time
points of a Zeno execution is called the Zeno time. The states of the model at
the Zeno time point are called the Zeno states. Because each discrete transition
takes a non-zero and finite computation time, the simulation of a Zeno hybrid
system inevitably halts near the Zeno time point.

Some researchers have treated Zeno hybrid system models as over abstractions
of the physical systems and tried to rule them out by developing theories to detect
Zeno models [1, 2, 3]. However, because of the intrinsic complexity of interactions
between continuous and discrete dynamics of hybrid systems, a general theory,
which can give the sufficient and necessary conditions for the existence of Zeno
behaviors of hybrid system models with nontrivial dynamics, is still not available
(and does not appear to be anywhere on the horizon).

Some researchers have tried to extend the simulation of Zeno systems beyond
the Zeno point by regularizing the original system [4, 5] or by using a sliding
mode simulation algorithm [6]. The regularization method requires modifica-
tion of the model structure by introducing some lower bound of the interval
between consecutive discrete transitions. However, the newly introduced lower
bound invalidates the abstractions and assumptions of the instantaneity of dis-
crete transitions. Consequently, the simulation performance might suffer from
the resulting stiff models. Furthermore, different behaviors after the Zeno time
may be generated depending on the choices of regularizations. This may not
be desirable because the physical system being modeled typically has a unique
behavior. The sliding mode algorithm tends to be more promising in simulation
efficiency and uniqueness of behaviors, but it only applies to special classes of
hybrid system models.

A new technique to extend simulations beyond the Zeno time point is pre-
sented in [7], where a special class of hybrid systems called Lagrangian hybrid
systems are considered. Rather than using regularizations or a sliding mode al-
gorithm, the dynamics of a Lagrangian hybrid system before and after the Zeno
time point are derived under different constraints. In this paper, we extend the
results in [7] to more general hybrid system models.

Before we get into the details of the algorithm on extending simulation beyond
Zeno time points, we would like to investigate some classical Zeno hybrid system
models including the bouncing ball model [8] and the water tank model [4], and
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show that they do not completely describe the behavior of the original physical
systems.

1.1 Bouncing Ball

Considering a ball bouncing on the ground, where bounces happen instanta-
neously with a restitution coefficient e ∈ [0, 1]. A hybrid system model for this
system is shown in Fig. 1. This model has only one state q1 associated with a
second-order differential equation modeling the continuous dynamics, where the
variables x1 and x2 represent the ball’s position and velocity respectively, and
ẋ1 = x2, ẋ2 = −g. From this one state, there is a transition e1 that goes back to
itself. The transition has a guard expression, x1 = 0 ∧ x2 ≤ 0, and a reset map,
x2 := −e · x2.1

Note that the above guard expression declares that a bounce happens when
the ball touches the ground and its velocity x2 is non-positive, meaning either
it is still or it is moving towards the ground. However, further analysis of the
model reveals that when the following condition holds, x1 = 0∧x2 = 0, meaning
that the ball is at reset on the ground, the supporting force from the ground
cancels out the gravity force. Therefore, the acceleration of the ball should be 0
rather than the acceleration of gravity. Under this circumstance, the ball in fact
has a rather different dynamics given by ẋ1 = x2, ẋ2 = 0.

This suggests that new dynamics might be necessary to describe the model’s
behavior. Consequently, the complete description of the dynamics of the bounc-
ing ball system should include both an extra state associated with the new
dynamics and a transition that drives the model into that state. One design of
such hybrid system models is shown in Fig. 2, where q2 and e2 are the new state
and transition.
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Fig. 1. A hybrid system model of a
simple bouncing ball
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Fig. 2. A more complete hybrid system
model of the bouncing ball

1.2 Water Tank

The second model that we will consider is the water tank system consisting of two
tanks. We use x1 and x2 for the water levels, r1 and r2 for the critical water level
thresholds, and v1 and v2 for the constant flow of water out of the tanks. There is a
constant input flow of water w, which goes through a pipe and into either tank at
any particular time point. We assume that (v1+v2) > w, meaning that the sum of
the output flow in both tanks is greater than the input flow. Therefore, the water
levels of both tanks keep dropping. If the water level of any tank drops below its
1 Identity reset maps, such as x1 := x1, are not explicitly shown.
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Fig. 3. A hybrid system model of a
water tank system
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Fig. 4. A more complete hybrid system
model of the water tank system

critical threshold, the input water gets delivered into that tank. The process of
switching the pipe from one tank to the other takes zero time.

One hybrid system model that describes such system is shown in Fig. 3. This
model has two states q1 and q2 corresponding to the different dynamics of the
system when the input water flows into either of the two tanks. Transitions e1
and e2 specify switching conditions between states.

Note that the guard expressions between those two states are not mutually
exclusive, meaning that the guards x1 ≤ r1 and x2 ≤ r2 may be enabled at the
same time. A trivial example will be that the two tanks have initial water levels
x1 = r1 and x2 = r2. If the two tanks have initial water levels x1 > r1 and
x2 > r2, then the water levels of both tanks will drop and the water pipe will
switch between the two tanks. As more and more water flows out of tanks, we
will see that the frequency of the pipe switching becomes higher and higher. In
the limit, when this frequency reaches infinity, both guards become enabled at
the same time.

When both guards are enabled, the water tank system will have a different
dynamics. Recall the assumption that the switching speed of the water pipe is
infinitely fast, the pipe should inject water into both tanks at the same time.
In other words, there are virtually two identical pipes injecting water into both
tanks. Also note that the input water flow is a constant and the pipe cannot
hold water, therefore one possible scenario will be that each tank gets half of
the input water. Therefore, at this time point, the whole system will have a
rather different dynamics given by

ẋ1 = w/2− v1, ẋ2 = w/2− v2. (1)

We introduce a new state associated with the above dynamics and complete
the transitions going from the existing states to the newly added state. The new
design of the complete hybrid system model for the water tank system is shown in
Fig. 4, where q3 is the new state, e3 and e4 are the newly added transitions. Note
that for simplicity we allow the water levels to have negative values. Otherwise,
we will need some other discrete states to show that once a tank is empty, it is
always empty.
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The hybrid system model in Fig. 4 is similar to the temporal regularization
results proposed in [4]. One of the key differences is that the temporal regular-
ization solution requires the process of switching pipe to take some positive time
ε. The amount of this ε affects the resulting behaviors. In fact, when ε goes to 0,
the temporal regularization result is the same as what we have derived in (1).

In the next section, we will propose a systematical way to complete the speci-
fication of hybrid system models. In particular, we will discuss how to introduce
new states, to modify the existing transitions, and to construct new transitions
to these new states for model behaviors before and after potential Zeno time
points. In Sect. 3, we will develop a feasible simulation algorithm to approx-
imate the exact behaviors of Zeno hybrid system models. Conclusions will be
given in Sect. 4.

2 Completing Hybrid System Models

The purpose of this section is to introduce an algorithm for completing hybrid
system models with the goal of carrying executions past the Zeno point. This
algorithm can be thought of as a combination of the currently known conditions
for the existence (or nonexistence) of Zeno behavior in hybrid systems. Of course,
the characterization of Zeno behavior in the literature is by no means complete,
so we cannot claim that the procedure outlined here is the only way to complete a
hybrid system, nor that the resulting hybrid system is the canonical completed
hybrid system. We only claim that, given the current understanding of Zeno
behavior, this method provides a reasonably satisfying method for completing
hybrid systems. We dedicate the latter half of this section to examples, where
we carry out the completion process.

2.1 Hybrid System Completion

Define a hybrid system as a tuple,

H = (Γ,D,G, R,F ),

where

– Γ = (Q,E) is a finite oriented graph, where Q represents the set of discrete
states and E represents the set of edges connecting these states. There are
two maps s : E → Q and t : E → Q, which are the source and target maps
respectively. That is s(e) is the source of the edge e and t(e) is its target.

– D = {Dq ⊆ Rn | q ∈ Q} is a set of domains, one for each state q ∈ Q.
While the hybrid system is in state q, the dynamics of the hybrid system is
a trajectory in Dq.

– G = {Ge ⊆ Ds(e) | e ∈ E} is a set of guards, where Ge is a set associated with
the edge e and determines the switching behavior of the hybrid system at
state s(e). When the trajectory intersects with the guard set Ge, a transition
is triggered and the discrete state of the hybrid system changes to t(e).
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Gq =
⋃

s(e)=q Ge is the union of the guards associated with the outgoing
edges from the same state q. We assume that Gq is closed, i.e., that every
Cauchy sequence converges to an element in Gq.

– R = {Re : Ge → Dt(e) | e ∈ E} is a set of reset maps. We write the image of
Re as Re(Ge) ⊆ Dt(e). These reset maps specify the initial continuous states
of trajectories in the target discrete states.

– F = {fq : Dq → Rn | q ∈ Q} is a set of vector fields, which specify the
dynamics of the hybrid system when it is in a discrete state q. We assume
fq is Lipschitz when restricted to Dq.

In this paper, we will not explicitly define hybrid system behavior and Zeno
behavior, as these definitions are well-known and can be found in a number of
references (cf. [1, 2, 4, 9]).

The goal of this section is to complete a hybrid system H , i.e., we want to
form a new hybrid system H in which executions are carried beyond the Zeno
point. We begin by constructing this system theoretically and then discuss how
to implement it practically. The theoretical completion of a hybrid system is
carried out utilizing the following process:

– Augment the graph Γ of H , based on the existence of higher order cycles,
to include post-Zeno states, and edges to these post-Zeno states.

– Specify the domains of the post-Zeno states.
– Specify the guards on the edges to the post-Zeno states.
– Specify the vector fields on the post-Zeno states, based on the vector fields

on the pre-Zeno states.

Before carrying out this process, it is necessary to introduce the notion of
higher order cycles in Γ . We call a finite string consisting of states and edges in
Γ a finite path,

q1
e1−→ q2

e2−→ q3
e3−→ · · · ek−1−→ qk,

with ei ∈ E and qi ∈ Q, s.t., s(ei) = qi and t(ei) = qi+1. We denote such a path
by 〈q1; e1, e2, . . . , ek−1; qk〉.

For simplicity, we only consider paths with distinct edges. We could have
considered paths with repeated edges, but that will result in an unbounded
number of paths, each of which is arbitrarily long. This makes the problem
intractable. The number and length of paths with distinct edges are finite. In
the worst case scenario, the number of paths is |Q| 2 |E|, where |Q| and |E| are
the number of states and edges.

Although we only consider paths with distinct edges, we do not require a path
to contain distinct states. In particular, if the starting state is the same as the
ending state, such as 〈q1; e1, e2, . . . , ek−1; q1〉, we call such a path a finite cyclic
path. The set of all finite cyclic paths is called the higher order cycles in Γ and
denoted by C. Formally,

C = {〈q; e1, e2, . . . , ek−1; q〉 | ∀i, j, i �= j ⇒ ei �= ej, ei, ej ∈ E, q ∈ Q}. (2)

To ease future discussion, we define two operators, πQ and πE , on a cyclic path
c ∈ C, where πQ(c) gives the starting and ending state of the path and πE(c)
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gives the first edge appearing in the path. When applied to a path in (2), πQ(c) =
q and πE(c) = e1.

For a cyclic path c ∈ C, where πQ(c) = q and πE(c) = e1, we define the
following map R∗

c : Ge1 → Dq, where Ge1 ⊆ Dq, by

R∗
c = R∗

〈q;e1,e2,...,ek−1;q〉 = Rek−1 ◦Rek−2 ◦ · · · ◦Re2 ◦Re1 .

R∗
c is the composition of the reset maps along the path c. We write the image of

R∗
c as R∗

c(Ge1 ) ⊆ Dq.
For a cyclic path c ∈ C, where πE(c) = e1, let

Zc = Ge1 ∩R∗
c(Ge1), (3)

then,
R∗

c(z) = z, ∀z ∈ Zc. (4)

Equation (4) states that if a trajectory intersects with the guard set Ge1 at an
element z ∈ Zc, then after a series of reset maps, R∗

c , the initial continuous
state of the new trajectory is again z. Since transitions happen instantaneously,
there will be an infinite number of transitions happening at the same time point.
Therefore, the existence of a nonempty set Zc indicates the possible existence of
Zeno equilibria (cf. [1]). This motivates the construction of the completed hybrid
system based on a subset of cyclic paths, C′ = {c ∈ C | Zc �= ∅}.

For a hybrid system H , define the corresponding completed hybrid system H
by

H = (Γ ,D,G, R,F ),

where

– Γ = (Q,E), where Γ has more discrete states and edges than Γ . The set of
extra states is Q′ = Q\Q, where Q′ is called the set of post-Zeno states. The
set of extra edges is E′ = E \ E. We pick the extra states and edges to be
in bijective correspondence with Q′, i.e., there exist bijections g : Q′ → C′

and h : E′ → C′. Consequently, ∀c ∈ C′, there always exist a unique q ∈ Q′

and a unique e ∈ E′.
We define the source and target maps, s : E → Q and t : E → Q for

e ∈ E by

s(e) =
{

s(e) if e ∈ E
πQ(h(e)) if e ∈ E′ , and t(e) =

{
t(e) if e ∈ E

g−1(h(e)) if e ∈ E′ .

Intuitively, for each cyclic path c ∈ C′ found in Γ , we can find a new discrete
state q = g−1(c) ∈ Q′ and a new edge e = h−1(c) ∈ E′ that goes from πQ(c)
to q in Γ .

– Define D = D ∪ D′, where D′ is the set of domains of post-Zeno states,
defined as D′ = {D′

q ⊆ Rn | q ∈ Q′}. For each c ∈ C′, D′
q is defined by

D′
q = Zc, where q = g−1(c) ∈ Q′. (5)

Note that D′
q is not only the domain for post-Zeno state q but also the

guard set that triggers the transition from the pre-Zeno state πQ(c) to the
post-Zeno state q.



Beyond Zeno: Get on with it! 575

– In order to define G, we first modify the guard Ge in G by subtracting Zc

from Ge, where c ∈ C′ with πQ(c) = s(e). Define, for all e ∈ E,

G̃e = Ge\
⋃

c∈C′ s.t. πQ(c)=s(e)

Zc, (6)

and define, for all e ∈ E′,

G′
e = D′

q, where q = t(e). (7)

Then the complete definition of G is G = {G̃e | e ∈ E} ∪ {G′
e | e ∈ E′}.

– R = {Re : G̃e → Dt(e) | e ∈ E} ∪ {R′
e : G′

e → Dt(e) | e ∈ E′}, where the
reset map R′

e is the identity map.
– F = F ∪ {f ′

q : D′
q → Rn | q ∈ Q′}, where f ′

q is the vector field on D′
q. This

vector field may be application-dependent, but in some circumstances, it can
be obtained from the vector field fq′ on Dq′ , where q′ = πQ(g(q)) ∈ Q.

Upon inspection of the definition of the completed hybrid system, it is evident
that we have explicitly given a method for computing every part of this system
except for the vector fields on the post-Zeno states. We do not claim to have
an explicit method for generally computing f ′

q, because this would depend on
the constraints imposed by D′

q which we do not assume are of any specific form.
However, in some special cases, it is possible to find such a vector field. In the
next subsection, we will demonstrate how to carry out the process of completing
hybrid systems by revisting the examples discussed in Sect. 1.

2.2 Examples

Example 1: Bouncing Ball. We first revisit the bouncing ball example shown
in Fig. 1. Write this example hybrid system as a tuple, H = ((Q,E),D,G, R,F ).
We have the discrete state set Q = {q1}, the edge set E = {e1}, the set of
guards G = {Ge1}, where Ge1 = {(x1,x2) ∈ R2 | x1 = 0 ∧ x2 ≤ 0}, and
the set of the reset maps R = {Re1}, where Re1 is defined by Re1(x1,x2) =
(x1,−e · x2), ∀(x1,x2) ∈ Ge1 .

There is only one element, c = 〈q1; e1; q1〉, in the set C of cyclic paths. For
path c, the composition of reset maps along c is R∗

c = Re1 and πE(c) = e1.
Evaluating (3) with the guard Ge1 , we get

Zc = Ge1 ∩Re1(Ge1 )
= {(x1,x2) | x1 = 0 ∧ x2 ≤ 0} ∩ {(x1,x2) | x1 = 0 ∧ x2 ≥ 0}
= {(x1,x2) | x1 = 0 ∧ x2 = 0}
= {(0, 0)}.

Since Zc is nonempty, we introduce a new state q2 and a new edge e2 such that
Q = {q1, q2} and E = {e1, e2}. The source and target maps are

s(e) = q1 , ∀e ∈ E , and t(e) =
{
q1 if e = e1
q2 if e = e2

.
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The domain for discrete state q2 is D′
q2

= Zc. Then D = D ∪ {D′
q2
}. Since

the set D′
q2

only contains one element, the dynamics (vector fields) of the hybrid
system is trivial, where ẋ1(t) = 0, ẋ2(t) = 0. This simply means that the ball
cannot move at all, which is exactly the same as what we got in the introduction.

We must point out that the domain for a post-Zeno state may contain more
than one element. In this case, the dynamics in general cannot be computed
without a model designer’s expertise. However, in some special cases such as
mechanical systems, the vector fields describe the equations of motion for these
systems. If in addition, the guards are derived from unilateral constraints on
the configuration space, then the vector fields on the post-Zeno states can be
obtained from the vector fields on the pre-Zeno states via holonomic constraints.
In fact, the vector fields on the post-Zeno state of the above example can be
obtained from a hybrid Lagrangian [7]. A detailed explanation of the process for
computing vector fields and more examples can be found in [7].

Note that D′
q2

is also the guard set of e2 that specifies the switching condition
from q1 to q2, meaning G′

e2
= {(x1,x2) ∈ R2 | x1 = 0 ∧ x2 = 0}. Following (6),

we get a modified G̃e1 = {(x1,x2) ∈ R2 | x1 = 0 ∧ x2 < 0}. The set of these two
guard sets gives G = {G̃e1 ,G

′
e2
}.

Finally, R = {Re1 , R
′
e2
}, where R′

e2
is just the identity map.

In summary we get the completed hybrid system H = ((Q,E),D,G, R,F ),
which is the same as the model shown in Fig. 2.

Example 2: Water Tank. Now let us revisit the water tank example shown in
Fig. 3. Write this example hybrid system as a tuple, H = ((Q,E),D,G, R,F ).
We have the discrete state set Q = {q1, q2}, the edge set E = {e1, e2}, the set
of guards G = {Ge1 ,Ge2}, where Ge1 = {(x1,x2) ∈ R2 | x2 ≤ r2} and Ge2 =
{(x1,x2) ∈ R2 | x1 ≤ r1}, and the set of the reset maps R = {Re1 , Re2}, where
both reset maps are identity maps.

There are two elements, c1 = 〈q1; e1, e2; q1〉 and c2 = 〈q2; e2, e1; q2〉, in the set
C that contains cyclic paths. For path c1, the composition of reset maps along c1
is R∗

c1
= Re2 ◦Re1 and πE(c1) = e1. Evaluating (3) with the guard Ge1 , we get

Zc1 = Ge1 ∩Re2(Re1 (Ge1))
= Ge1 ∩Ge2

= {(x1,x2) | x2 ≤ r2} ∩ {(x1,x2) | x1 ≤ r1}
= {(x1,x2) | x1 ≤ r1 ∧ x2 ≤ r2}.

Similarly, for path c2, we get Zc2 = {(x1,x2) | x1 ≤ r1 ∧ x2 ≤ r2}, which is the
same as Zc1 .

Since both Zc1 and Zc2 are nonempty, we introduce two new states q3 and q4
and two new edges e3 and e4 such that Q={q1, q2, q3, q4} and E={e1, e2, e3, e4}.
The source and target maps are

s(e) =
{
q1 if e = e1 ∨ e = e3
q2 if e = e2 ∨ e = e4

, and t(e) =

⎧⎪⎪⎨⎪⎪⎩
q2 if e = e1
q1 if e = e2
q3 if e = e3
q4 if e = e4

.
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The domain for discrete state q3 is D′
q3

= Zc1 , and the domain for discrete
state q4 is D′

q4
= Zc2 . Then D = D ∪ {D′

q3
,D′

q4
}.

As we pointed out earlier in the previous example, in order to derive the
dynamics for post-Zeno states, a careful analysis has to be performed by model
designers, and the resulting dynamics may not be unique. For example, one might
think that 3/4 of the input flow goes into the first tank and the rest goes into the
second tank. This dynamics is different from what we had in the introduction
section. We do not (in fact, we cannot) determine which result is better.

Note that D′
q3

is also the guard set of e3 that specifies the switching condition
from q1 to q3, meaning G′

e3
= {(x1,x2) ∈ R2 | x1 ≤ r1 ∧ x2 ≤ r2}. Following

(6), we get a modified G̃e1 = {(x1,x2) ∈ R2 | x1 ≤ r1 ∧ x2 > r2}. Similarly,
we get G′

e4
= {(x1,x2) ∈ R2 | x1 ≤ r1 ∧ x2 ≤ r2}, and a modified G̃e2 =

{(x1,x2) ∈ R2 | x2 ≤ r2 ∧ x1 > r1}. The set of these two guard sets gives
G = {G̃e1 , G̃e2 ,G

′
e3

,G′
e4
}.

Finally, R = {Re1 , Re2 , R
′
e3

, R′
e4
}, where all reset maps are identity maps.

In summary we get the completed hybrid system H = ((Q,E),D,G, R,F ),
which is slightly different from the model shown in Fig. 4 in that H contains 4
discrete states. However, if we choose the same dynamics such as (1) for discrete
states q3 and q4, then q3 and q4 are the same. Thus we get a model with the
same dynamics as that of the model in Fig. 4.

3 Approximate Simulation

In [10], we proposed an operational semantics for simulating hybrid system mod-
els. The key idea of the operational semantics is to treat a complete simulation as a
sequence of unit executions, where a unit execution consists of two phases. The dis-
crete phase of execution handles all discrete events at the same time point, and the
continuous phase resolves the continuum between two consecutive discrete events.

When simulating a Zeno hybrid system model, we meet more challenging
practical issues. The first difficulty is that before the Zeno time point, there
will be an infinite number of discrete transitions (events). A discrete phase of
execution needs to be performed for each time point when a discrete event occurs,
which takes a non-zero time. So it is impossible to handle all discrete transitions
in a finite time interval. In other words, the simulation gets stuck near the Zeno
time point. The second difficulty is caused by numerical errors, which make it
impractical to get an exact simulation. We will first elaborate on the second
issue, and then we will come back to the first issue in subsection 3.3.

3.1 Numerical Errors

There are two sources of numerical errors: round-off error and truncation er-
ror2. Round-off error arises from using a finite number of bits in a computer to
2 We will not give a thorough discussion of numerical errors, which have been exten-

sively studied, e.g. in [11]. We would rather briefly review and explain the important
trade-offs when choosing integration step sizes.
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represent a real value. We denote this kind of difference as η. Then we can say
that each integration operation will incur a round-off error of order η, denoted
as O(η). Round-off error accumulates. Suppose we integrate with a fixed step-
size solver with a integration step size as h. In order to simulate over a unit
time interval, we need h−1 integration steps, then the total round-off error is
O(η/h). Clearly, the bigger the step size, the fewer integration steps, the smaller
the total round-off error. Similar results can be drawn for variable step-size
solvers.

Truncation error comes from the integration algorithms used by practical
ODE solvers. For example, an nth-order explicit Runge-Kutta method, which is
derived to match the first n+1 terms of Taylor’s expansion, has a local truncation
error of O(hn+1) and an accumulated truncation error of O(hn). Note that both
truncation errors decrease as h decreases. Ideally we will get no truncation errors
as h→ 0.

The total numerical error ε for an ODE solver using an nth-order explicit
Runge-Kutta method is the sum of the round-off error and truncation error,

ε ∼ η/h + hn. (8)

We can see that with a big integration step size h, the total error is dominated
by truncation error, whereas round-off error dominates with a small step size.
Therefore, although it is desirable to choose a small step size to reduce truncation
error, the accuracy of a calculation result may not be increased due to the
accumulation of round-off error. If we take the derivative of (8) with respect to
h, then we get that when h ∼ η1/(n+1) the total error ε reaches its minimum
O(ηn/(n+1)) . Therefore, in practice, we need to set a lower bound for both
the integration step size and error tolerance (or value resolution) of integration
results. We denote them as h0 and ε0 respectively, where

h0 ∼ η1/(n+1), ε0 ∼ ηn/(n+1).

For a good simulation, accuracy is one concern and efficiency is another ob-
jective. Efficiency for numerical integration is usually measured in terms of com-
putation time or the number of computing operations. Using a big integration
step size is an effective way to improve efficiency but with the penalty of loss of
accuracy. So there is a trade-off. Furthermore, step sizes have upper bounds that
are enforced by the consistency, convergence, and stability requirements when
deploying practical integration methods on concrete ODEs [11]. Therefore, most
practical adaptive ODE solvers embed a mechanism inside the integration pro-
cess to adjust the step size according to the changing speed (derivative) of inte-
gration results, so that efficiency gets improved while maintaining the required
accuracy at the same time.

In summary, a practical ODE solver usually specifies a minimum integration
step size h0, some small error tolerance ε0, and an algorithm to adapt step size
to meet requirements on both efficiency and accuracy.
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3.2 Computation Difficulties

It is well-known that numerical integration in general can only deliver an ap-
proximation to the exact solution of an initial value ODE. However, the distance
of the approximation from the exact solution is controllable for certain kinds of
vector fields. For example, if a vector field satisfies a Lipschitz condition along
the time interval where it is defined, we can constrain the integration results to
reside within a neighborhood of the exact solution by introducing more bits for
representing values to get better precision and integrating with a small step size.

The same difficulties that arise in numerical integration also appear in event
detection. A few algorithms have been developed to solve this problem
[12, 13, 14]. However, there is still a fundamental unsolvable difficulty: we can
only get the simulation time close to the time point where an event occurs, but
we are not assured of being able to determine that point precisely.

Simulating a Zeno hybrid system poses another fundamental difficulty. We
will first explain it through a simple continuous-time example with dynamics

ẋ(t) = 1/(t− 1), x(0) = 0, t ∈ [0, 2]. (9)

We can analytically find the solution for this example, x(t) = ln |t−1|. However,
getting the same result through simulation is difficult. Suppose the simulation
starts with t = 0. As t approaches 1, the derivative ẋ(t) keeps decreasing without
bound. To satisfy the convergence and stability requirements, the step size h has
to be decreased. When the step size becomes smaller than h0, round-off error is
not neglectable any more and the simulation results become unreliable. Trying to
reduce the step size further doesn’t help, because the disturbance from round-off
error will dominate.

A similar problem arises when simulating Zeno hybrid system models. Recall
that Zeno executions have an infinite number of discrete events (transitions)
before reaching the Zeno time point, and the time intervals between two con-
secutive transitions shrink to 0. When the time interval becomes less than h0,
round-off errors again dominate.

In summary, it is impractical to precisely simulate the behavior of a Zeno
model. Therefore, similar to numerical integration, we need to develop a compu-
tationally feasible way to approximate the exact model behavior. The objective
is to give a close approximation under the limits enforced by numerical errors.
We will do this in the next subsection.

3.3 Approximating Zeno Behaviors

In Sect. 2, we have described how to specify the behaviors of a Zeno hybrid
system before and after the Zeno time point and how to develop transitions
from pre-Zeno states to post-Zeno states. The construction procedure works for
guards which are arbitrary sets. However, assuming that each guard is the sub-
levelset of a function (or collection of functions) simplifies the framework for
studying transitions to post-Zeno states. Therefore, we assume that a transition
going from a pre-Zeno state to a post-Zeno state has a guard expression of form,
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Gec = {x ∈ Rn | gec(x) ≤ 0}, (10)

for every c ∈ C, where ec = h−1(c) and gec : Rn → Rk. Furthermore, we assume
that gec(x) is continuously differentiable.

In this section, we will develop an algorithm such that the complete model
behavior can be simulated. As the previous subsection pointed out, we can only
approximate the model behaviors before the Zeno time point. Therefore, the
first issue is to be able to tell how close the simulation results are to the exact
solutions before the Zeno time point. This will decide when the transitions from
pre-Zeno states to post-Zeno states are taken. The second issue is how to estab-
lish the initial conditions of the dynamics after the Zeno time point from the
approximated simulation results.

Issue 1: Relaxing Guard Expressions. To solve the first issue, we first relax
the guard conditions defining the transitions from the pre-Zeno states to the
post-Zeno states; if the current states fall into a neighborhood of the Zeno states
(the states at the Zeno time point), the guard is enabled and transition is taken.
Note that when the transition is taken, the system has a new dynamics and the
rest of the events before the Zeno time point, which are infinite in number, are
discarded. Therefore the computation before the approximated Zeno time point
can be finished in finite time.

A practical problem now is to define a good neighborhood such that the
approximation is “close enough” to the exact Zeno behavior. We propose two
criteria. The first criterion is based on the error tolerance ε0

3. We rewrite (10)
as

Gε0
ec

= {x ∈ Rn | gec(x) ≤ ε0}, (11)

meaning if x(t) is the solution of ẋ = fq(x) with q = s(ec), and if the evaluation
result of gec(x(t)) falls inside [0, ε0], the simulation results of x(t) will be thought
as close enough to the exact solution at the Zeno time point, and the transition
will be taken. In fact, because ε0 is the smallest amount that can be reliably
distinguished, any value in [0, ε0] will be treated the same.

The second criterion is based on the minimum step size h0. Suppose the
evaluation result of gec(x(t)) is outside of the range [0, ε0]. If it takes less than
h0 time for the dynamics to drive the value of gec(x(t)) down to 0, then we
will treat the current states as close enough to the Zeno states. This criterion
prevents the numerical integration from failing with a step size smaller than h0,
which may be caused by some rapidly changing dynamics, such as those in (9).

We first get a linear approximation to function gec(x(t)) around t0
(cf. [12],[14]),

gec(x(t0 + h)) = gec(x(t0)) +
∂gec(x)

∂x
· fq(x) |x=x(t0) ·h + O(h2), (12)

where h is the integration step size. Because we are interested in the model’s
behavior when h is close to h0, where h is very small, we can discard the O(h2)
3 If gec(x) is a vector valued function, then ε0 is a vector with ε0 as the elements.
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term in (12). We are interested in how long it takes for the value of function
gec(x(t0)) to go to 0, so we calculate the required step size by solving (12),

h = − gec(x(t0))
∂gec (x)

∂x · fq(x) |x=x(t0)

. (13)

Now we say that if h < h0, the states are close enough to the Zeno point. So we
rewrite the boolean expression (10) as

Gh0
ec

=

{
x ∈ Rn | − gec(x)

∂gec (x)
∂x · fq(x)

≤ h0

}
. (14)

In the end, we give a complete approximated guard expression of the transition
ec from a pre-Zeno state to a post-Zeno state:

Gapprox
ec

= Gε0
ec
∪Gh0

ec
.

This means that if either guard expression in (11) and (14) evaluates to be
true, the transition will be taken. Performing this process on each guard in
the set {Gec | c ∈ C} we obtain the set {Gapprox

ec
| c ∈ C}. Note that to

ensure deterministic transitions, we also subtract the same set from the original
guard sets defined in (6). Replacing the guard expressions given in Sect. 2 with
these approximated ones, we obtain an approximation to the completed hybrid
system H , H

approx
. This is the completed hybrid system that is implemented

for simulation.

Issue 2: Reinitialization. The other issue is how to reinitialize the initial con-
tinuous states of the new dynamics defined in a post-Zeno state. Theoretically,
these initial continuous states are just the states at the Zeno time point, meaning
that they satisfy the guard expression in (10). This is guaranteed by the identity
reset maps associated with the transitions.

In some circumstances, like the examples discussed in this paper, the initial
continuous states can be explicitly and precisely calculated. However, in general,
if there are more variables involved in guard expressions than the constraints
enforced by guard expressions, we cannot resolve all initial states. In this case,
we have to use the simulation results as part of the initial states. Clearly, since
in simulation we do not actually reach the Zeno time point, the initial states are
just approximations. Consequently, the simulation of the dynamics of post-Zeno
states will be approximation too.

4 Conclusions

We have introduced a systematic method for completing hybrid systems through
the introduction of new post-Zeno states and transitions to these states at the
Zeno point. We have developed a way to approximate model behaviors at Zeno
points such that the simulation does not halt nor break down. With these solu-
tions, we can simulate a Zeno hybrid system model beyond its Zeno point and
reveal its dynamics completely. In the end, we want to thank the anonymous
reviewers for their valuable and constructive comments.
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