
R. Nayak and M.J. Zaki (Eds.): KDXD 2006, LNCS 3915, pp. 64 – 73, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Using Ontologies for Semantic Query Optimization of
XML Database

College of Computer Science and Technology, Harbin Engineering University,
Harbin Heilongjiang Province, China
sunwei78@hrbeu.edu.cn

Abstract. As XML has gained prevalence in recent years, the management of
XML compliant structured-document database has become a very interesting
and compelling research area. Effective query optimization is crucial to obtain-
ing good performance from an XML database given a declarative query specifi-
cation because of the much enlarged optimization space. Query rewriting
techniques based on semantic knowledge have been used in database manage-
ment systems, namely for query optimization。 The main goal of query optimi-
zation is to rewrite a user query into another one that uses less time and/or less
resources during the execution. When using those query optimization strategies
the transformed queries are equivalent to the submitted ones. This paper pre-
sents a new approach of query optimization using ontology semantics for query
processing within XML database. In fact, our approach shows how ontologies
can effectively be exploited to rewrite a user query into another one such that
the new query provides equally meaningful results that satisfy the intention of
the user. Based on practical examples and their usefulness we develop a set of
rewriting rules. In addition, we prove that the results of the query rewriting are
semantically correct by using a logical model.

1 Introduction

Recently, XML has emerged as the de-facto standard for publishing and exchanging
data on the Web. Many data sources export XML data, and publish their contents
using DTD’s or XML schemas. Thus, independently of whether the data is actually
stored in XML native mode or in a relational store, the view presented to the users is
XML-based. The use of XML as a data representation and exchange standard raises
new issues for data management.

A large number of research approaches have used semantic knowledge for support-
ing data management to overcome problems caused by the increasing growth of data
in local databases, and the variety of its format and model in distributed databases.
The use of semantic knowledge in its various forms including meta-models, semantic
rules, and integrity constraints can improve query processing capabilities by trans-
forming user queries into other semantically equivalent ones, which can be answered
in less time and/or with less resources. Known as semantic query optimization (SQO),
has generated promising results in deductive, relational and object databases. Natu-
rally, it is also expected to be an optimization direction for XML query processing.

Wei Sun and Da-Xin Liu

 Using Ontologies for Semantic Query Optimization of XML Database 65

Among the three major functionalities of an XML query language, namely, pattern
retrieval, filtering and restructuring, only pattern retrieval is specific to the XML data
model. Therefore, recent work on XML SQO techniques [1,2,3] focuses on pattern
retrieval optimization. Most of them fall into one of the following two categories:

1. Query minimization: For example, Query tree minimization [1,3] would sim-
plify a query asking for “all auctions with an initial price” to one asking for “all auc-
tions”, if it is known from the schema that each auction must have an initial price. The
pruned query is typically more efficient to evaluate than the original one, regardless
of the nature of the data source.

2. Query rewriting: For example, “query rewriting using state extents” [2] assumes
that indices are built on element types. In persistent XML applications, it is practical
to preprocess the data to build indices. However, this is not the case for the XML
stream scenario since data arrives on the fly and usually no indices are provided in the
data.

Currently, research work on the Semantic Web and data integration are focusing on
using ontologies as semantic support for data processing. Ontologies have proven to
be useful to capture the semantic content of data sources and to unify the semantic
relationships between heterogenous structures. Thus, users should not care about
where and how the data are organized in the sources. For this reason, systems like
OBSERVER and TAMBIS allow users to formulate their queries over an ontology
without directly accessing the data sources. In this paper, we present a new approach
on how to improve the answers of queries based on semantic knowledge expressed in
ontologies. Given an XML database, we assume the existence of an ontology which is
associated with the database and which provides the context of its objects. We show
how ontologies can be exploited effectively to rewrite a user query such that the new
query can provide more "meaningful" results meeting the intention of the user.

2 Related Works

Work related to rewrite user query using semantic knowledge has emerged in two
different research areas: Semantic query optimization and global information process-
ing area.

Semantic query optimization. The basic idea of semantic query optimization (SQO)
is to rewrite a query to another more efficient query, which is semantically equivalent,
i.e. provides the same answer. Here, SQO approaches use semantic knowledge in
various forms including semantic rules and range rules. Range rules states facts about
the range of values of a given attribute, whereas semantic rules define the regularity
of data for a given database. Therefore, these rules can be driven from the non-
uniform distribution of values in a database. Expressing semantics in the form of horn
clause sets allows the optimizer to make possible reformulations on an input query
involving the insertion of new literals, or the deletion of literals, or the refuting the
entire query. Several approaches on SQO have been developed to address different
aspects of query processing: In [11] semantic rules have been used to derive useful
information, which can reduce the cost of query plans. In [12, 13] algorithms have
been developed for optimizing conjunctive sub-queries. To this end, learning

66

techniques have been applied to generate semantic (operational) rules from a database
automatically [14]. While the previous approaches are based on extracting semantic
knowledge from the underlying database, current research approaches use knowledge
from additional source [15, 16].

Ontology. The term “Ontology” or “Ontologies” is becoming frequently used in
many contexts of database and artificial intelligence researches. However, there is not
a unique definition of what an ontology is [7-10]. An initial definition was given by
Tom Gruber: “an ontology is an explicit specification of a conceptualization” [7].
However, this definition is general and remains still unsatisfied for many researchers.
In [8] Nicola Guarino argues that the notion of “conceptualization” is badly used in
the definition. We note that many real-world ontologies already combine data in-
stances and concepts [9]. Our definition differ from this point of view as we show
later . Informally, we define an ontology as an intentional description of what is
known about the essence of the entities in a particular domain of interest using ab-
stractions, also called concepts and the relationships among them.

Semantic query optimization of XML data. The diversity of the XML queries (re-
ferred to in this paper as structural queries) results from the diversity of possible
XML schemas (also called structural schemas) for a single conceptual model. In
comparison, the schema languages that operate on the conceptual level (called con-
ceptual schemas) are structurally flat so that the user can formulate a determined
query (called conceptual query) without considering the structure of the source. There
are currently many attempts to use conceptual schemas [4, 5] or conceptual queries
[6] to overcome the problem of structural heterogeneities among XML sources.

Contributions. In brief, we make the following contributions in this paper: We pro-
pose an approach for using ontologies based graph model to represent semantic
information of heterogeneous XML sources. This model integrates semantic informa-
tion both the XML nesting structure and the domain content. These ontologies are
processed lossless with respect to the nesting structure of the XML document. Finally,
we describe an id-concept rule for rewriting XML query based on semantic informa-
tion. The optimization is based on a mapping model based on ontology and the rules
of rewriting the query on the XML sources.

3 The Problem Representation

Using semantic knowledge to optimize query has generated promising results in de-
ductive, relational and object databases. Naturally, it is also expected to be an optimi-
zation direction for XML database query processing. Therefore, recent work focuses
on XML optimization techniques based on semantic. It is becoming a crucial prob-
lem, how to represent the semantic information of XML database. The result is a set
of semantically constrained axioms and semantically constrained relations between
axioms. When a query is given to the system, the semantic transformation phase uses
these stored semantic constrained sets to generate semantically equivalent queries that
may be processed faster than the original query. In Fig.1, there is one DTD of XML
data, which will be used as follow.

W. Sun and D.-X. Liu

 Using Ontologies for Semantic Query Optimization of XML Database 67

hospital

dept

patientInfoclinicalTrial staffInfo

patient staffdurationtype

treatment nurse doctor

wardNotrial regular name phone

test bill medication

Fig. 1. The DTD of XML document

4 XML Semantic Model (XSM)

In this section, we propose the model of XML semantic, which is represented by
ontologies about the content of XML document and schema. The model XSM can
transform a normal query to a a semantically equivalent query, and the equivalent
query has less time than the origin one to be processed.

4.1 Ontology Definition

Informally, we define an ontology as an intentional description of what is known
about the essence of the entities in a particular domain of interest using abstractions,
also called concepts and the relationships among them. Basically, the hierarchical
organization of concepts through the inheritance ("ISA") relationship constitutes the
backbone of an ontology. Other kinds of relationship like part-whole ("PartOf") or
synonym ("SynOf") or application specific relationships might exist. To the best of
our knowledge, there is no work until now addressing the issue of using ontology
relationships at the database instance level. Despite the disagreement upon a common
meaning of an "ontology", the role of ontologies that must play is clear: Ontologies
should provide a concise and unambiguous description of concepts and their
relationships for a domain of interest. Ontologies are shared and reused by different
agents i.e. human or/and machines.

Formally, we define an ontology as a set ℵ and a set ℜ as follows:

and = {“ISA”; “SynOf”; “PartOf”}, where 1{ ,..., }nc cℵ= ℜ ic ∈ℵ is a concept

name, and ir ∈ℜ is the type of the binary relation relating two concepts (and

are non-null strings). Other domain-specific types may also exist. At the top of the
ic ir

68

4.2 Ontology Formal Representation

This section presents a graph-based representation of an ontology. We introduce its
basic formal settings, and some related operations relevant to further discussions.

Graph oriented model. We represent an ontology as a directed graph G(V;E), where
V is a finite set of vertices and E is a finite set of edges: Each vertex of V is labelled
with a concept and each edge of E represents the inter-concept relationship between
two concepts. Formally, the label of a node n V∈ is defined by a function N(n) =

ic that maps n to a string ic from . The label of an edge e E∈ is given by a func-

tion T(e) = ir that maps e to a string ir from .

In summary, an ontology is the set { (,), , , , }O G V E N T=

Graph operations. In order to navigate the ontology graph, we define the following
sets of concepts: Rparent, DESC, SUBT, SY Ns, PARTs and WHOLEs. We need these
operations to identify nodes in the graph, which hold concepts that are of interest for
our query reformulations.

Let 1 2()thsP n n− be a set of directed paths between two nodes 1n and 2n . We de-

note by node(c) the node labelled by a concept c, and by child(n) and parent(n) the
child-node and parent-node of a node n, respectively. Given two nodes

1 1()n node c= and 2 2()n node c= the operation are formulated as follows:

Rparent(r, 1c)= 2c iff 2n =parent(1n) and T[(2n , 1n)]=r

concept hierarchy we assume the existence of a universal concept, called “Anything”,
which represents the most general concept of an ontology. In the literature, the word
“concept” is frequently used as a synonym for the word “concept name”. Hence, for
the design of an ontology only one term is chosen as a name for a particular concept.
Further, we assume that the terms “concept” and “concept name” have the same
meaning.

ℵ
ℜ

ℜℵ

"

DESC(r,c)={ } | (() ()) : , ()thss p P node c node s e p T e r∈ℵ ∃ ∈ − ∀ ∈ =
SYNs(c)={ | (() ()) : , () "thss p P node c node s e p T e SynOf∈ℵ ∃ ∈ − ∀ ∈ = }

SUBT(c)={ | (()thss p P node c node s())∈ℵ ∃ ∈ − }

Informally, Rparent(r; c) returns the label of the parent node of a concept c by
following an edge of type r. DESC(r; c) returns the set of all concepts in O whose
nodes are children of the node of c by means of descending edges of type r. Similarly,
SUBT(c) returns all descendants of c for any edge-type and SY Ns(c) returns the set of
all synonyms of c in O. In addition, we define an Outgoings(n) as a set of edge-types
going out from a node n and PARTs(c) as the set of concepts whose nodes are related
to the node(c) through the edges of type “part of”. Here, two cases must be
distinguished:

.

W. Sun and D.-X. Liu

 Using Ontologies for Semantic Query Optimization of XML Database 69

4.3 XML Semantic Model

Case 1: If Outgoings(node(c)) ∋ “Part of” then PARTs(c) = , Where A B C∪ ∪
 A = DESC(“Part of”; c)
 B = DESC(“ISA”; a), a ∈ A
 C = SYNs(h) SY Ns(l), h ∪ ∈ A and l ∈ B

Informally, PARTs(c) is the set of concepts obtained by retrieving the labels of all
nodes that are PartOf-children of the node(c) together with their ISA-descendants and
synonyms.

Case 2: If Outgoings(node(c)) ∋ “ISA” then PARTs(c) = PARTs(), where is

is ∈ A and PARTs() = PARTs(), A = DESC(“ISA”; c).

Informally, PARTs of a concept c is defined recursively in terms of its sub-concepts.
It is equal to the PARTs of one of its sub-concepts (if they have the same PARTs).

2
1 2(,)s s A∀ ∈ 1s 2s

Inversely, we define WHOLEs of a given concept c as the set of concepts such

that c ∈ PARTs().

ic

ic

The XML semantic model is stated as an extension of the given ontology, denoted by

, which includes new concepts and additional relationship-types. The new
concepts represent relation names, entity names, attribute names and values of the
database unless they already exist. We denote these concepts by

 , respectively. Furthermore, we call id-concepts the concepts

that represent id-values of the database. The additional relationships have to relating
these concepts to the existing ones or to each other. Their types are defined as follows:

*O

RNC ENC ANC VNC

“ValueOf” is the type of relationship that relates each value-concept to its associated
attribute-concept or entity-concept.
“HasA” is the type of relationship between entity-concepts and attribute-concepts.
“InstanceOf” is the type of relationship that relates an Id-concept to its associated
entity-concept.
“Tupleof” is the type of relationship that relates entity-concepts to each other, which
are associated with a particular tuple.
“RelateTo” is the type of relationship that relates relation-concepts to entity-concepts,
one relation-concept with one or more entity-concepts.
“OnlyA” is the type of relationship that relates entity-concepts to each other, which
are associated with an entity-concept only.

In summary, is defined as a set O G , where

, and

*O * * * *{ , , , , }N T= ℵ ℜ

R
*

E A VNC NC NC NCℵ = ∪ ∪ ∪ *ℜ =ℜ∪ {“ValueOf”,” HasA”,”

InstanceOf”,” Tupleof”, “RelateTo”}. Such as Fig.2.

70

Table 1 XPath expressions and Concepts

XPath expressions Concept expressions
hospital hospital
hospital\dept dept
Hospital\dept\clinicalTrial\patientInfo clinical-patientInfo
hospital\dept\patientInfo Non-clinical-patientInfo

… …

hospital\
dept\patientInfo\patient\treatment\regular\medication

medication

hospital

dept

clinicalTrial

staffInfo

patient staff

durationtyp

treatment doctor

wardNotrial regular phone

test bill medication

clinical
patientInfo

non_clinical
patientInfo

Wang Zhang

 nurse

name

No.205
RelateTo

HasA

OnlyA

TupleOf ValueOf

InstanceOf

Fig. 2. Shows a portion of the semantic model related to DTD shown in Fig.1

Logical Interpretation. By using the First Order Language (FOL) the semantic

model *O is defined as a theory Γ which consists of an Interpretation I and a set of

well formed formulas [12]. I is specified by the set of individuals *ℵ and an interpre-

tation function Ii . In the following, we describe the interpretation of *O .

Let 1n and 2n be the nodes of two concepts a and b, respectively. Formally, Γ :

I = (*ℵ ; Ii)
*2

1 2{(,) | (,) " "}IISA a b T n n ISA= ∈ℵ =

.

*2
1 2{(,) | (,) " "}ISYN a b T n n SynOf= ∈ℵ =

W. Sun and D.-X. Liu

 Using Ontologies for Semantic Query Optimization of XML Database 71

*2
1 2{(,) | (,) " "}IPARTOF a b T n n PartOf= ∈ℵ = �

*2
1 2{(,) | (,) " "}IHASA a b T n n HasA= ∈ℵ =

*2
1 2{(,) | (,) " "}IVALUEOF a b T n n ValueOf= ∈ℵ =

*2
1 2{(,) | (,) " tan "}IINSOF a b T n n Ins ceOf= ∈ℵ =

*{ | . (,) " tan "}IKey a bT a b Ins ceOf= ∈ℵ ∃ =

*2
1 2{(,) | (,) " "}ITUPOF a b T n n TupleOf= ∈ℵ =

*2{(,) | (,) "Re "}IRELATETO a b T a b lateTo= ∈ℵ =

*
1 2 1 2 1 2{ | . (,) (,) (,) (,)}IWHOLE a b b c ISA a b ISA a b PARTOF b c PARTOF b c= ∈ℵ ∀ ∧ ∧ →

. (,)x ISA x x∀

. (,)x SYN x x∀

. (,)x PARTOF x x∀

. (,) (,) (,)xyz ISA x y ISA x z ISA x z∀ ∧ →

. (,) (,)xy SYN x y SYN y x∀ ↔

. (,) (,) (,)xyz SYN x y SYN x z SYN x z∀ ∧ →

. (,) (,) (,)xyz ISA x y SYN y z ISA x z∀ ∧ ↔

. (,) (,)xy z VALUEOF x y HASA z y∀ ∃ →

. (,) (,)xy z TUPVAL x y INSOF y z∀ ∃ →

. (,) (,) (,)xyz PARTOF x y SYN y z PARTOF x z∀ ∧ ↔

. (,) (,) (,)xyz PARTOF x y ISA y z PARTOF x z∀ ∧ ↔

. (,) (,) (,)xyz PARTOF x y PARTOF x z PARTOF x z∀ ∧ ↔

. (,) (,) (,)xyzVALUEOF y z ISA x y VALUEOF x z∀ ∧ →

. (,) (,) (,)xyzVALUEOF y z SYN x y VALUEOF x z∀ ∧ →

. (,) (,) (,) (,)xyz w INSOF x y HASA y z TUPVAL x w VALUEOF w z∀ ∃ ∧ → ∧
. () (,) (,) (,)xyzWHOLE x ISA x y PARTOF y z PARTOF x z∀ ∧ ∧ ↔ x; y; z;

w are variables.

5 Id-Concept Rule and Validations

We note that a common feature of the rules is that after applying a rule to a query Q,

the results of the reformulated query might increase. We denote by and the

result set of Q and Q’, respectively. This augmentation is not arbitrary but it is proved

by the semantic model . According to , each tuple-identifier in is

QS 'Q
S

*O *O QS

72

Concerning this rule the QS -identifiers are formally expressed by the following set

of individuals 1Ω , we obtain the set of individuals from Q which represents all id-

concepts of the tuples in 'Q
S . Formally,

1 { | (,) (,) (,)Ex z aVALUEOF z a TUPOF z x INSOF x NCΩ = ∃ ∀ ∧ ∧ →

(,) [(,) (,)]}E V VTUPOF z NC ISA NC a SYN NC a∧ ∨ .

6 Conclusions

Recently, there is a growing interest in ontologies for managing data in database and
information systems. In fact, ontologies provide good supports for understanding the
meaning of data. They are broadly used to optimize query processing among the dis-
tributed sources. In this paper, we use ontologies within XML database and present a
new approach of query optimization using semantic knowledge from a given ontology
to rewrite a user query in such way that the query answer is more meaningful to the
user. To this end, we propose a set of query rewriting rules and illustrate their effec-
tiveness by some running examples. Although these rules might not be ideal, we hope
that they can bring more insight into the nature of query answers. Our approach is
appropriate for database applications, where some attributes are enumerated from a
list of terms. In the future, we will develop additional rewriting rules and intend to
address the problem of how to establish mapping information between the database
objects and ontological concepts present in an ontology associated with a specific
database.

References

1. S. Amer-Yahia, S. Cho, L. V. Lakshmanan, and D. Srivastava. Minimization of Tree Pat-
tern Queries. In Proc. of SIGMOD(2001) 497–508

2. M. F. Fernandez, D. Suciu. Optimizing Regular Path Expressions Using Graph Schemas.
In Proc. of ICDE (1998) 14–23

3. Z. Chen, H. Jagadish and L.V.S. Lakshmanan et al. From Tree Patterns to Generalized
Tree Patterns; On Efficient Evaluation of XQuery. In Proc. of 29th VLDB (2003) 237-248

4. B. Amann, C. Beeri, I. Fundulaki, and M. Scholl. Ontology-Based Integration of XML
Web Resources. In Proceedings of the 1st International Semantic Web Conference (ISWC
2002) 117–131

represented by an id-concept, which is related to value-concepts through the
ValueOf-relationship and a relation-concept through the TupleOf and InstanceOf-

relationship, respectively. interprets the reformulation results of a given rule as
the existence of additional value-concepts, which are semantically related to those
representing terms in the condition of Q. For brevity, we describe only an example of
validation of the proposed rules using the available logical expressions from Γ .

*O

5. B. Amann, I. Fundulaki, M. Scholl, C. Beeri, and A. Vercoustre. Mapping XML Frag-
ments to Community Web Ontologies. In Proceedings of the 4th International Workshop
on the Web and Databases (WebDB 2001) 97–102

W. Sun and D.-X. Liu

 Using Ontologies for Semantic Query Optimization of XML Database 73

6. S. D. Camillo, C. A. Heuser, and R. S. Mello. Querying Heterogeneous XML Sources
through a Conceptual Schema. In Proceedings of the 22nd International Conference on
Conceptual Modeling (ER2003 186–199

7. Gruber, T.: A translation approach to portable ontology specifications. In: Knowledge Ac-
quisition, 5(2) (1993) 199-220

8. Guarino, N., Giaretta, P.: Ontologies and knowledge bases: towards a terminological clari-
fication. In: Knowledge Building Knowledge Sharing,ION Press. (1995) 25-32

9. Noy, N., Hafner, C.D.: The state of the art in ontology design. AI Magazine 3(1997) 53-74
10. Chandrasekaran, B., Josephson, J., Benjamins, V.: What are ontologies, and why do we

need them? In: IEEE Intelligent Systems, (1999) 20-26
11. Hsu, C., Knoblock, C.A.: Semantic query optimization for query plans of heterogeneous

multidatabase systems. Knowledge and Data Engineering, 12 (2000) 959-978
12. Yu, C.T., Sun, W.: Automatic knowledge acquisition and maintenance for semantic query

optimization. IEEE Trans. Knowledge and Data Engineering, 1 (1989) 362-375
13. Sun, W., Yu, C.: Semantic query optimization for tree and chain queries. IEEE Trans. on

Data and Knowledge Engineering 1 (1994) 136-151
14. Hsu, C.: Learning effective and robust knowledge for semantic query optimization (1996)
15. Peim, M., Franconi, E., Paton, N., Goble, C.: Query processing with description logic on-

tologies over object-wrapped databases. technical report, University of Manchester (2001)
16. Bergamaschi, S., Sartori, C., Beneventano, D., Vincini, M.: ODB-tools: A description lo-

gics based tool for schema validation and semantic query optimization in object oriented
databases. Advances in Artificial Intelligence, 5th Congress of the Italian Association for
Artificial Intelligence, Rome, Italy (1997) 435-438

	Introduction
	Related Works
	The Problem Representation
	XML Semantic Model (XSM)
	Ontology Definition
	Ontology Formal Representation
	XML Semantic Model

	Id-Concept Rule and Validations
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

