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Abstract. As XML has gained prevalence in recent years, the management of 
XML compliant structured-document database has become a very interesting 
and compelling research area. Effective query optimization is crucial to obtain-
ing good performance from an XML database given a declarative query specifi-
cation because of the much enlarged optimization space. Query rewriting  
techniques based on semantic knowledge have been used in database manage-
ment systems, namely for query optimization。 The main goal of query optimi-
zation is to rewrite a user query into another one that uses less time and/or less 
resources during the execution. When using those query optimization strategies 
the transformed queries are equivalent to the submitted ones. This paper pre-
sents a new approach of query optimization using ontology semantics for query 
processing within XML database. In fact, our approach shows how ontologies 
can effectively be exploited to rewrite a user query into another one such that 
the new query provides equally meaningful results that satisfy the intention of 
the user. Based on practical examples and their usefulness we develop a set of 
rewriting rules. In addition, we prove that the results of the query rewriting are 
semantically correct by using a logical model. 

1   Introduction 

Recently, XML has emerged as the de-facto standard for publishing and exchanging 
data on the Web. Many data sources export XML data, and publish their contents 
using DTD’s or XML schemas. Thus, independently of whether the data is actually 
stored in XML native mode or in a relational store, the view presented to the users is 
XML-based. The use of XML as a data representation and exchange standard raises 
new issues for data management.  

A large number of research approaches have used semantic knowledge for support-
ing data management to overcome problems caused by the increasing growth of data 
in local databases, and the variety of its format and model in distributed databases. 
The use of semantic knowledge in its various forms including meta-models, semantic 
rules, and integrity constraints can improve query processing capabilities by trans-
forming user queries into other semantically equivalent ones, which can be answered 
in less time and/or with less resources. Known as semantic query optimization (SQO), 
has generated promising results in deductive, relational and object databases. Natu-
rally, it is also expected to be an optimization direction for XML query processing. 

Wei Sun and Da-Xin Liu 



 Using Ontologies for Semantic Query Optimization of XML Database 65 

Among the three major functionalities of an XML query language, namely, pattern 
retrieval, filtering and restructuring, only pattern retrieval is specific to the XML data 
model. Therefore, recent work on XML SQO techniques [1,2,3] focuses on pattern 
retrieval optimization. Most of them fall into one of the following two categories: 

1. Query minimization: For example, Query tree minimization [1,3] would sim-
plify a query asking for “all auctions with an initial price” to one asking for “all auc-
tions”, if it is known from the schema that each auction must have an initial price. The 
pruned query is typically more efficient to evaluate than the original one, regardless 
of the nature of the data source. 

2. Query rewriting: For example, “query rewriting using state extents” [2] assumes 
that indices are built on element types. In persistent XML applications, it is practical 
to preprocess the data to build indices. However, this is not the case for the XML 
stream scenario since data arrives on the fly and usually no indices are provided in the 
data. 

Currently, research work on the Semantic Web and data integration are focusing on 
using ontologies as semantic support for data processing. Ontologies have proven to 
be useful to capture the semantic content of data sources and to unify the semantic 
relationships between heterogenous structures. Thus, users should not care about 
where and how the data are organized in the sources. For this reason, systems like 
OBSERVER and TAMBIS allow users to formulate their queries over an ontology 
without directly accessing the data sources. In this paper, we present a new approach 
on how to improve the answers of queries based on semantic knowledge expressed in 
ontologies. Given an XML database, we assume the existence of an ontology which is 
associated with the database and which provides the context of its objects. We show 
how ontologies can be exploited effectively to rewrite a user query such that the new 
query can provide more "meaningful" results meeting the intention of the user. 

2   Related Works 

Work related to rewrite user query using semantic knowledge has emerged in two 
different research areas: Semantic query optimization and global information process-
ing area. 

Semantic query optimization. The basic idea of semantic query optimization (SQO) 
is to rewrite a query to another more efficient query, which is semantically equivalent, 
i.e. provides the same answer. Here, SQO approaches use semantic knowledge in 
various forms including semantic rules and range rules. Range rules states facts about 
the range of values of a given attribute, whereas semantic rules define the regularity 
of data for a given database. Therefore, these rules can be driven from the non-
uniform distribution of values in a database. Expressing semantics in the form of horn 
clause sets allows the optimizer to make possible reformulations on an input query 
involving the insertion of new literals, or the deletion of literals, or the refuting the 
entire query. Several approaches on SQO have been developed to address different 
aspects of query processing: In [11] semantic rules have been used to derive useful 
information, which can reduce the cost of query plans. In [12, 13] algorithms have 
been developed for optimizing conjunctive sub-queries. To this end, learning  
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techniques have been applied to generate semantic (operational) rules from a database 
automatically [14]. While the previous approaches are based on extracting semantic 
knowledge from the underlying database, current research approaches use knowledge 
from additional source [15, 16]. 

Ontology. The term “Ontology” or “Ontologies” is becoming frequently used in 
many contexts of database and artificial intelligence researches. However, there is not 
a unique definition of what an ontology is [7-10]. An initial definition was given by 
Tom Gruber: “an ontology is an explicit specification of a conceptualization” [7]. 
However, this definition is general and remains still unsatisfied for many researchers. 
In [8] Nicola Guarino argues that the notion of “conceptualization” is badly used in 
the definition. We note that many real-world ontologies already combine data in-
stances and concepts [9]. Our definition differ from this point of view as we show 
later . Informally, we define an ontology as an intentional description of what is 
known about the essence of the entities in a particular domain of interest using ab-
stractions, also called concepts and the relationships among them. 

Semantic query optimization of XML data. The diversity of the XML queries (re-
ferred to in this paper as structural queries) results from the diversity of possible 
XML schemas (also called structural schemas) for a single conceptual model. In 
comparison, the schema languages that operate on the conceptual level (called con-
ceptual schemas) are structurally flat so that the user can formulate a determined 
query (called conceptual query) without considering the structure of the source. There 
are currently many attempts to use conceptual schemas [4, 5] or conceptual queries 
[6] to overcome the problem of structural heterogeneities among XML sources. 

Contributions. In brief, we make the following contributions in this paper: We pro-
pose an approach for using ontologies based graph model to represent semantic  
information of heterogeneous XML sources. This model integrates semantic informa-
tion both the XML nesting structure and the domain content. These ontologies are 
processed lossless with respect to the nesting structure of the XML document. Finally, 
we describe an id-concept rule for rewriting XML query based on semantic informa-
tion. The optimization is based on a mapping model based on ontology and the rules 
of rewriting the query on the XML sources. 

3   The Problem Representation 

Using semantic knowledge to optimize query has generated promising results in de-
ductive, relational and object databases. Naturally, it is also expected to be an optimi-
zation direction for XML database query processing. Therefore, recent work focuses 
on XML optimization techniques based on semantic. It is becoming a crucial prob-
lem, how to represent the semantic information of XML database. The result is a set 
of semantically constrained axioms and semantically constrained relations between 
axioms. When a query is given to the system, the semantic transformation phase uses 
these stored semantic constrained sets to generate semantically equivalent queries that 
may be processed faster than the original query. In Fig.1, there is one DTD of XML 
data, which will be used as follow. 
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hospital

dept

patientInfoclinicalTrial staffInfo 

patient staffdurationtype 

treatment nurse doctor

wardNotrial regular name phone

test bill medication  

Fig. 1. The DTD of XML document 

4   XML Semantic Model (XSM) 

In this section, we propose the model of XML semantic, which is represented by 
ontologies about the content of XML document and schema. The model XSM can 
transform a normal query to a a semantically equivalent query, and the equivalent 
query has less time than the origin one to be processed. 

4.1   Ontology Definition 

Informally, we define an ontology as an intentional description of what is known 
about the essence of the entities in a particular domain of interest using abstractions, 
also called concepts and the relationships among them. Basically, the hierarchical 
organization of concepts through the inheritance ("ISA") relationship constitutes the 
backbone of an ontology. Other kinds of relationship like part-whole ("PartOf") or 
synonym ("SynOf") or application specific relationships might exist. To the best of 
our knowledge, there is no work until now addressing the issue of using ontology 
relationships at the database instance level. Despite the disagreement upon a common 
meaning of an "ontology", the role of ontologies that must play is clear: Ontologies 
should provide a concise and unambiguous description of concepts and their 
relationships for a domain of interest. Ontologies are shared and reused by different 
agents i.e. human or/and machines. 

Formally, we define an ontology as a set ℵ  and a set ℜ  as follows: 

and = {“ISA”; “SynOf”; “PartOf”}, where 1{ ,..., }nc cℵ= ℜ ic ∈ℵ is a concept 

name, and ir ∈ℜ is the type of the binary relation relating two concepts ( and  

are non-null strings). Other domain-specific types may also exist. At the top of the 
ic ir



68 

4.2   Ontology Formal Representation 

This section presents a graph-based representation of an ontology. We introduce its 
basic formal settings, and some related operations relevant to further discussions. 

Graph oriented model. We represent an ontology as a directed graph G(V;E), where 
V is a finite set of vertices and E is a finite set of edges: Each vertex of V is labelled 
with a concept and each edge of E represents the inter-concept relationship between 
two concepts. Formally, the label of a node n V∈  is defined by a function N(n) = 

ic that maps n to a string ic from . The label of an edge e E∈  is given by a func-

tion T(e) = ir that maps e to a string ir from . 

In summary, an ontology is the set { ( , ), , , , }O G V E N T=

Graph operations. In order to navigate the ontology graph, we define the following 
sets of concepts: Rparent, DESC, SUBT, SY Ns, PARTs and WHOLEs. We need these 
operations to identify nodes in the graph, which hold concepts that are of interest for 
our query reformulations. 

Let 1 2( )thsP n n− be a set of directed paths between two nodes 1n and 2n . We de-

note by node(c) the node labelled by a concept c, and by child(n) and parent(n) the 
child-node and parent-node of a node n, respectively. Given two nodes 

1 1( )n node c= and 2 2( )n node c=  the operation are formulated as follows: 

Rparent(r, 1c )= 2c  iff 2n =parent( 1n ) and T[( 2n , 1n )]=r 

concept hierarchy we assume the existence of a universal concept, called “Anything”, 
which represents the most general concept of an ontology. In the literature, the word 
“concept” is frequently used as a synonym for the word “concept name”. Hence, for 
the design of an ontology only one term is chosen as a name for a particular concept. 
Further, we assume that the terms “concept” and “concept name” have the same 
meaning. 

ℵ
ℜ

ℜℵ

"

DESC(r,c)={ } | ( ( ) ( )) : , ( )thss p P node c node s e p T e r∈ℵ ∃ ∈ − ∀ ∈ =
SYNs(c)={ | ( ( ) ( )) : , ( ) "thss p P node c node s e p T e SynOf∈ℵ ∃ ∈ − ∀ ∈ = } 

SUBT(c)={ | ( ( )thss p P node c node s( ))∈ℵ ∃ ∈ − } 

Informally, Rparent(r; c) returns the label of the parent node of a concept c by 
following an edge of type r. DESC(r; c) returns the set of all concepts in O whose 
nodes are children of the node of c by means of descending edges of type r. Similarly, 
SUBT(c) returns all descendants of c for any edge-type and SY Ns(c) returns the set of 
all synonyms of c in O. In addition, we define an Outgoings(n) as a set of edge-types 
going out from a node n and PARTs(c) as the set of concepts whose nodes are related 
to the node(c) through the edges of type “part of”. Here, two cases must be 
distinguished: 

. 
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4.3   XML Semantic Model 

Case 1: If Outgoings(node(c)) ∋ “Part of” then PARTs(c) = , Where A B C∪ ∪
 A = DESC(“Part of”; c) 
 B = DESC(“ISA”; a), a ∈  A 
 C = SYNs(h)  SY Ns(l), h ∪ ∈  A and l ∈  B 

Informally, PARTs(c) is the set of concepts obtained by retrieving the labels of all 
nodes that are PartOf-children of the node(c) together with their ISA-descendants and 
synonyms. 

Case 2: If Outgoings(node(c)) ∋ “ISA” then PARTs(c) = PARTs( ), where is

is ∈  A and  PARTs( ) = PARTs( ), A = DESC(“ISA”; c). 

Informally, PARTs of a concept c is defined recursively in terms of its sub-concepts. 
It is equal to the PARTs of one of its sub-concepts (if they have the same PARTs). 

2
1 2( , )s s A∀ ∈ 1s 2s

Inversely, we define WHOLEs of a given concept c as the set of concepts  such 

that c ∈  PARTs( ). 

ic

ic

The XML semantic model is stated as an extension of the given ontology, denoted by 

, which includes new concepts and additional relationship-types. The new 
concepts represent relation names, entity names, attribute names and values of the 
database unless they already exist. We denote these concepts by 

 , respectively. Furthermore, we call id-concepts the concepts 

that represent id-values of the database. The additional relationships have to relating 
these concepts to the existing ones or to each other. Their types are defined as follows: 

*O

RNC ENC ANC VNC

“ValueOf” is the type of relationship that relates each value-concept to its associated 
attribute-concept or entity-concept. 
“HasA” is the type of relationship between entity-concepts and attribute-concepts. 
“InstanceOf” is the type of relationship that relates an Id-concept to its associated 
entity-concept. 
“Tupleof” is the type of relationship that relates entity-concepts to each other, which 
are associated with a particular tuple. 
“RelateTo” is the type of relationship that relates relation-concepts to entity-concepts, 
one relation-concept with one or more entity-concepts. 
“OnlyA” is the type of relationship that relates entity-concepts to each other, which 
are associated with an entity-concept only. 

In summary, is defined as a set O G , where 

, and 

*O * * * *{ , , , , }N T= ℵ ℜ

R
*

E A VNC NC NC NCℵ = ∪ ∪ ∪ *ℜ =ℜ∪ {“ValueOf”,” HasA”,” 

InstanceOf”,” Tupleof”, “RelateTo”}. Such as Fig.2. 
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Table 1  XPath expressions and Concepts 

XPath expressions Concept expressions 
hospital hospital 
hospital\dept dept 
Hospital\dept\clinicalTrial\patientInfo clinical-patientInfo 
hospital\dept\patientInfo Non-clinical-patientInfo 

… … 

hospital\
dept\patientInfo\patient\treatment\regular\medication 

medication 

 

hospital

dept

clinicalTrial

staffInfo

patient staff

durationtyp

treatment doctor 

wardNotrial regular phone

test bill medication

clinical
patientInfo

non_clinical
patientInfo

Wang Zhang 

 nurse

name 

No.205
RelateTo 

HasA

OnlyA

TupleOf ValueOf

InstanceOf

 

Fig. 2. Shows a portion of the semantic model related to DTD shown in Fig.1 

Logical Interpretation. By using the First Order Language (FOL) the semantic 

model *O is defined as a theory Γ  which consists of an Interpretation I and a set of 

well formed formulas [12]. I is specified by the set of individuals *ℵ and an interpre-

tation function Ii . In the following, we describe the interpretation of *O . 

Let 1n and 2n be the nodes of two concepts a and b, respectively. Formally, Γ : 

I = ( *ℵ ; Ii ) 
*2

1 2{( , ) | ( , ) " "}IISA a b T n n ISA= ∈ℵ =  

.

*2
1 2{( , ) | ( , ) " "}ISYN a b T n n SynOf= ∈ℵ =
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*2
1 2{( , ) | ( , ) " "}IPARTOF a b T n n PartOf= ∈ℵ = �

*2
1 2{( , ) | ( , ) " "}IHASA a b T n n HasA= ∈ℵ =  

*2
1 2{( , ) | ( , ) " "}IVALUEOF a b T n n ValueOf= ∈ℵ =  

*2
1 2{( , ) | ( , ) " tan "}IINSOF a b T n n Ins ceOf= ∈ℵ =  

*{ | . ( , ) " tan "}IKey a bT a b Ins ceOf= ∈ℵ ∃ =  

*2
1 2{( , ) | ( , ) " "}ITUPOF a b T n n TupleOf= ∈ℵ =  

*2{( , ) | ( , ) "Re "}IRELATETO a b T a b lateTo= ∈ℵ =  

*
1 2 1 2 1 2{ | . ( , ) ( , ) ( , ) ( , )}IWHOLE a b b c ISA a b ISA a b PARTOF b c PARTOF b c= ∈ℵ ∀ ∧ ∧ →

. ( , )x ISA x x∀  

. ( , )x SYN x x∀  

. ( , )x PARTOF x x∀  

. ( , ) ( , ) ( , )xyz ISA x y ISA x z ISA x z∀ ∧ →  

. ( , ) ( , )xy SYN x y SYN y x∀ ↔  

. ( , ) ( , ) ( , )xyz SYN x y SYN x z SYN x z∀ ∧ →  

. ( , ) ( , ) ( , )xyz ISA x y SYN y z ISA x z∀ ∧ ↔  

. ( , ) ( , )xy z VALUEOF x y HASA z y∀ ∃ →  

. ( , ) ( , )xy z TUPVAL x y INSOF y z∀ ∃ →  

. ( , ) ( , ) ( , )xyz PARTOF x y SYN y z PARTOF x z∀ ∧ ↔  

. ( , ) ( , ) ( , )xyz PARTOF x y ISA y z PARTOF x z∀ ∧ ↔  

. ( , ) ( , ) ( , )xyz PARTOF x y PARTOF x z PARTOF x z∀ ∧ ↔  

. ( , ) ( , ) ( , )xyzVALUEOF y z ISA x y VALUEOF x z∀ ∧ →  

. ( , ) ( , ) ( , )xyzVALUEOF y z SYN x y VALUEOF x z∀ ∧ →  

. ( , ) ( , ) ( , ) ( , )xyz w INSOF x y HASA y z TUPVAL x w VALUEOF w z∀ ∃ ∧ → ∧
. ( ) ( , ) ( , ) ( , )xyzWHOLE x ISA x y PARTOF y z PARTOF x z∀ ∧ ∧ ↔ x; y; z; 

w are variables. 

5   Id-Concept Rule and Validations 

We note that a common feature of the rules is that after applying a rule to a query Q, 

the results of the reformulated query might increase. We denote by and the 

result set of Q and Q’, respectively. This augmentation is not arbitrary but it is proved 

by the semantic model . According to , each tuple-identifier in  is 

QS 'Q
S

*O *O QS
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Concerning this rule the QS -identifiers are formally expressed by the following set 

of individuals 1Ω , we obtain the set of individuals from Q which represents all id-

concepts of the tuples in 'Q
S . Formally, 

1 { | ( , ) ( , ) ( , )Ex z aVALUEOF z a TUPOF z x INSOF x NCΩ = ∃ ∀ ∧ ∧ →  

( , ) [ ( , ) ( , )]}E V VTUPOF z NC ISA NC a SYN NC a∧ ∨ . 

6   Conclusions 

Recently, there is a growing interest in ontologies for managing data in database and 
information systems. In fact, ontologies provide good supports for understanding the 
meaning of data. They are broadly used to optimize query processing among the dis-
tributed sources. In this paper, we use ontologies within XML database and present a 
new approach of query optimization using semantic knowledge from a given ontology 
to rewrite a user query in such way that the query answer is more meaningful to the 
user. To this end, we propose a set of query rewriting rules and illustrate their effec-
tiveness by some running examples. Although these rules might not be ideal, we hope 
that they can bring more insight into the nature of query answers. Our approach is 
appropriate for database applications, where some attributes are enumerated from a 
list of terms. In the future, we will develop additional rewriting rules and intend to 
address the problem of how to establish mapping information between the database 
objects and ontological concepts present in an ontology associated with a specific 
database. 
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