
Information Retrieval from Distributed
Semistructured Documents Using Metadata

Interface

Guija Choe1, Young-Kwang Nam1,
Joseph Goguen2, and Guilian Wang2

1Department of Computer Science, Yonsei University, Wonju, Korea
gjchoe@hosu.yonsei.ac.kr, yknam@dragon.yonsei.ac.kr

2Department of Computer Science and Engineering, UCSD, La Jolla, CA 92093
{goguen, guilian}@cs.ucsd.edu

Abstract. We describe a method for retrieving information from dis-
tributed heterogeneous semistructured documents, and its implementa-
tion in the metadata interface DDXMI (Distributed Document XML
Metadata Interface). The system generates local queries appropriate for
local schemas from a user query over the global schema and shows the
result of the generated queries. The three components are designed to
generate the local queries: mappings between global schema and local
schemas (extracted from local documents if not given), path substitu-
tion, and node identification for resolving the heterogeneity among nodes
with the same label that often exist in semistructured data. The system
uses Quilt as its XML query language. An experiment is reported over
three local semistructured documents: ‘thesis’, ‘reports’, and ‘journal’
documents with ‘article’ global schema. The prototype was developed
under Windows system with Java and JavaCC.

1 Introduction

There is much research on integrating distributed heterogeneous data with ex-
plicit schemas, which are called structured data. Besides expensive data ware-
housing, a major focus is virtual integration, i.e., developing portals that allow
uniform querying through a global schema to distributed heterogeneous data
[12], [14], [18], [21], [25]. A query over the global schema is usually resolved and
answered by consulting mappings between the global and local schemas.
Semistructured data models emerged as a result of the efforts to extend data-
base management techniques to data with the irregular, unknown, and frequently
changing structures that are becoming more and more common as the Internet
grows [1], [2], [13]. However, for semistructured data, structural information is
not given explicitly, and usually data are created without any restriction on
structure, so that it is much more difficult to develop such data processing sys-
tem. Because the semistructured data have no specific rules or enforcement of
the structure, it often happens that elements with the same tag have different

R. Nayak and M.J. Zaki (Eds.): KDXD 2006, LNCS 3915, pp. 54–63, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Information Retrieval from Distributed Semistructured Documents 55

structures and contain different information so that a single element in the global
schema may correspond to several elements with the same tag and even the same
path in an extracted local schema with different mapping types, i.e., 1:1, 1:N,
and N:1 mappings.

We designed a system to address this problem and implemented it in a re-
search system for generating local queries over distributed semistructured doc-
uments through a metadata interface and the queries are executed on its own
local site. It handles semistructured data with additional functionality to extract
schemas for XML documents without explicit schema information, as identifying
different types of elements with the same tag in our query processing system.
The proposed system architecture is shown in Fig. 1. Queries over the global
schema are processed based on the mapping information stored in a structured
document called DDXMI (for Distributed Documents XML Metadata Interface),
which works as an integrated view over all relevant local schemas. The DDXMI
file contains the mapping information and functions to be applied to each lo-
cal document, along with some identification information such as author, date,
comments, etc. The system prototype has two parts: the DDXMI Generator for
mapping the global schema with local schemas and producing a DDXMI file,
and the Query Generator for generating the local queries and answering queries.
Our tool parses a document schema or the document itself if its schema is un-
known to get the structure of the document, and then generates a dynamic path
tree, which can be folded and unfolded by clicking. The mapping is specified
by assigning indices through clicking involved nodes in the path trees in a GUI,
which link local elements to corresponding global elements and to the names of
conversion functions. These functions can be built-in or user-defined in Quilt [7],
which is our XML query language. The DDXMI document is then generated by
collecting over index numbers, which are internal to the system. User queries are

Fig. 1. The structure of the proposed system

56 G. Choe et al.

rewritten into appropriate queries for each relevant local document according
to the mapping information in the DDXMI document and node identification
information; finally each local query is processed by Kweelt engine for Quilt.

2 The Related Work

To facilitate formulation, decomposition and optimization of queries for
semistructured data, schema extraction or type inference have been studied by
using machine learning methods and heuristics [19], [20], [22]. Unfortunately, the
accuracy goes down as the extracted schema size decreases.

Schema mapping is a critical step for data integration and many other im-
portant database applications. An extensive review of techniques and tools for
automatic schema matching up to 2001 is given in [23]. Traditional approaches
such as instance-based LSD [8] and GLUE [9] and schema-based Cupid [15],
SF [16], Rondo [17] and Coma [10], and the holistic approach MGS [11] only
help find 1-to-1 matches, and have great difficulty with matches that involve
conditions or conversion functions, and cannot discover n-to-m matches for n>1
or m>1, automatically. Some tools such as COMAP, Clio, SCIA find complex
matches based on user input [4], [5], [6], [9], or ontologies [24]. However, it is very
difficult for these tools to deal with extremely complex mappings where schema
nodes have the same label but different types (these often exist in semistructured
data).

Rewriting queries using views has been studied extensively for structured
data [12], [18] and for semistructured data [3]. But those researches and tech-
niques all targeted at restricted formats of views.

3 The Three Query Processing Components

Our method for generating a set of appropriate local queries Qout from a global
query Qin includes three components, M(LSS, GS), PS, and NIP, where M is
a component for mapping a global schema GS to a set of local schemas LSS,
PS is a path substitution component, and NIP is a node identification predicate
generation component for resolving the heterogeneous nodes with the same label,
GS is a global schema and LSS is a set of local schema LS1 , . . . , LSj . We describe
each of these in the following sub-sections.

3.1 Schema Mapping

The essential part of a system for distributed data sources is the mappings
between the global schema and local schemas. Here we describe the semantics
of mappings and the mapping representation in our approach.

Assuming that only data are queried and answered from the single document
for each site and there are no JOINs among local documents, the total mappings
M(LSS,GS) are the union of the mappings of the global schema to each of the
local schemas, M(LS,GS). Let G and L be the set of nodes in the path tree GT of

Information Retrieval from Distributed Semistructured Documents 57

Fig. 2. Mappings between Global and Local nodes

the global schema GS and the set of nodes in the path tree LT of a local schema
LS respectively, and let PG and PL be the power set of G and L respectively.
A node oi in a path tree is an object (oli, ovi) which consists of the node label
oli and the node value ovi. In Fig. 2, the node number 5 has the node label
’location’ and the value ’1900 King’s Highway, Rolla, MO, 65401’. In GT and
LT, several nodes may have the same labels, so we differentiate them by putting
the subscript in the label when necessary, such as ’location1 ’ and ’location2 ’.
The mappings M(LS,GS) between the global schema GS and the local schema
LS contain mapping elements in the format of (l, g) ∈ PL×PG, where g = (gn1 ,
gn2 , . . . , gnm) ∈ PG and gni ∈ G for i = 1 to m and l = (ln1 , ln2 , . . . , lnn)
∈ PL and lni ∈ L for i = 1 to n. We group the mapping elements according to
their mapping types as follows:

M(LS,GS) = M11 (LS,GS) ∪ M1N (LS,GS) ∪ MN1 (LS,GS) where

i) M11 (LS, GS) is the set of one-to-one mapping elements m11 = (l, g), where
g ∈ PG and l ∈ PL are both the singleton.

ii) M1N (LS, GS) is the set of one-to-many mapping elements m1N = (l, g),
where g = (gn1 , gn2 , . . . , gnm) ∈ PG, m>1, l ∈ PL is a singleton.

iii) MN1 (LS, GS) is the set of many-to-one mapping elements mN1 = (l, g),
where g ∈ PG is a singleton and l is (ln1 , ln2 , . . . , lnn) ∈ PL, n>1.

58 G. Choe et al.

In Fig. 2, ’guide’ and ’agency2’ are the names of the global and local schemas
respectively, M11 (agency2, guide) is ((state-code, state), (zip-code, zip)), M1N

(agency2, guide) is ((location, (street, city, zipcode)), (location, (street, city,
state, zip))), and MN1 (agency2, guide) is ((state-code, zip-code), zipcode).

For m = (l, g) where l is not a singleton, functions are required for combining
the content of multiple elements of l into an instance of g. Even for m = (l, g)
where l is a singleton, conversion functions are often required for transforming
the content of l into an instance of g. We call both combining and conversion
functions as transformation functions. Therefore, the transformation Tm over m
= (l, g) ∈ M(LS, GS) is Tm:l → g where Tm is a vector of functions applied to
the values of objects in l in order to get the appropriate values for objects in g,
i.e., Tm(l) = g, where |Tm| = |g|.

3.2 Path Substitution for Generating Local Queries

Quilt is used as the XML query language in our prototype. A typical Quilt query
usually consists of FOR, LET, WHERE and RETURN clauses. FOR clauses are
used to bind variables to nodes. In order to identify some specific nodes, more
condition may be given inside of ’[]’ predicate. Therefore, path substitution
in FOR clauses and WHERE clauses vary according to the mapping kind. In
case of N:1 mapping, one global path is mapped by N local paths in a single
local document, multiple variables may be introduced for those N nodes, or the
parents of the N local nodes are bound and give conditions in predicates. When
comparison of node values is involved, relevant transformation functions have to
be combined with the paths during path substitution. The primary work for the
local query generation from global queries is to replace paths in the global query
by the corresponding paths appropriate to the local documents.

For example, in Fig. 2, PS(address/zipcode) = (location/zip-code, location/
state-code) since the global element ’address’ corresponds to the local element
’location’ and the global element ’zipcode’ maps to (state-code, zip-code) for
many-to-one mapping along the ’location’ path, hence PS(address/zipcode) =
Tm(address/zip-code) = mergepath(location/state-code, location/zip-code). PS
(address/street) = (location) along the ’location’ path since there is no map-
ping for ’address’, and ’street’ maps to ’location’, hence PS(address/street) =
Tm(address/street) = cstr1 (location).

3.3 Resolving the Heterogeneity of Nodes in Local Documents

Recall that the primary difference between structured and semistructured data
is that a semistructured document may have several nodes with the same name
but different structures. In this case, the nodes with the same label but different
structures may map to multiple global nodes in different ways; some may even be
mapped and some not, so a condition statement indicating that some unmapped
nodes should not participate in the possible candidate answer is needed in the
output local query.

Information Retrieval from Distributed Semistructured Documents 59

For example, in Fig. 2, consider a global query given as Query1 and assume
’address’ in ’guide’ is only mapped to the nodes ’location1 ’ and ’location2 ’ node
and not to ’location3 ’. The ’location3 ’ node is not relevant to this query. Thus,
the local query generator checks whether there are irrelevant nodes to the global
query in the local path tree. If so, then such nodes must be explicitly screened
by using path filtering predicates.

[Query1 : A global query for ’guide’ schema]
FOR $addr IN document("guide.xml")//address
WHERE $addr/zipcode[CONTAINS(.,"MO")]
RETURN $addr

Let li and lj be two nodes with the same label but different structures in a
local path tree. If li and lj are mapped to the same global node, then li and lj are
called homogeneous, otherwise they are said to conflict. All the nodes sharing
the same label with li and mapped to the same global node are represented
as a set, homo(li), while the set of nodes conflicting li is conflict(li). In Fig. 2,
homo(location1) = {location1 , location2 }, conflict(location1) = {location3}, and
conflict(location2) = {location3} since ’address’ is mapped to ’location1 ’ and
’location2 ’ but not to ’location3 ’. In Query1, the CONTAINS(.,”MO”) predicate
is applied to the ’location1 ’ and ’location2 ’ nodes, but not to ’location3 ’ since
’address’ maps to only ’location1 ’ and ’location2 ’. To select the homogeneous
elements ’location1 ’ and ’location2 ’, some specific conditions need to be specified.

Let lni ∈l and Lhc(lni) be the set of nodes having the same label, but different
structure so different index numbers, hence Lhc(lni) = homo(lni) ∪ conflict(lni).
For any element lni, childpaths(lni) is defined as the set of paths from lni’s
direct children to leaf nodes. The super child path set SCP(lni) of lni is defined
as the set of all child paths for all elements of Lhc(lni), i.e., SCP(lni) = Uk

i=1
childpaths(hi), where hi ∈ Lhc(lni), k = |Lhc(lni)|. We use childpaths(lni) and
SCP(lni) to formulate predicates to specify only node lni while excluding any
other nodes sharing the same label with lni. The predicate ((p1 AND, . . . , AND
pi) AND (NOT(q1) AND NOT(q2), . . . , AND NOT(qj))) for pi ∈ childpaths(lni)
and qi ∈ (SCP(lni) - childpaths(lni)) means that lni has the child paths p1 , . . . ,
pi and should not have the child paths q1 , . . . , qj .

4 System Implementation and Execution Examples

4.1 Mapping Representation and Path Substitution

The mapping information for the global schema and local schemas is stored in a
structured XML document, a DDXMI file. The structure of DDXMI is specified
in DDXMI’s DTD, shown in Fig. 3. The elements in the global schema are called
global elements, while the corresponding elements in the local documents are
called local elements. When the query generator reaches a global element name
in a global query, if its corresponding local element is not null, then the paths
in the query are replaced by the paths to the local elements to get local queries.

60 G. Choe et al.

Fig. 3. The DDXMI’s DTD

Fig. 4. A portion of the mapping information for ’article’ global schema and 3 local
documents

Information Retrieval from Distributed Semistructured Documents 61

Fig. 5. A global query and the generated local queries

The type attribute in local is for mapping kind; 0, 1, and 2 for one-to-one, one-
to-many, and many-to-one respectively; if operation attributes are included, the
value of ’operation’ attribute is applied to the content of the relevant local nodes
in order to get data consistent with the global schema.

The <local> and <global> elements are absolute paths from the root node,
which represented as ’/’, to the leaf nodes. For the example in Fig. 2, the
<global> element for ’street’ node is ’/guide/restaurant/address/street’ and its
<local> node is ’/agency2/restaurant/location’. Therefore, the mapping node
for ’street’ is ’location’ only if the parent node of ’street’ node is mapped, other-
wise, its mapping node is the difference of the path between the nearest mapped
ancestor node and the current node in DDXMI. This means that ’street’ is
mapped to strdiff(’/agency2/restaurant/location’ - ’agency2/restaurant’) = ’lo-
cation’. Since the mapping type of ’street’ node is 2 and the attribute value of
its operation is ’cstr1’, it can be easily seen that this is a 1:N mapping, and the
transformation function ’cstr1’ is applied to the value of ’location’ node, where
’cstr1’ is the name of function separating a string into a set of strings delimited
by comma. When the ’street’ node is encountered in the parsing process, it is au-
tomatically replaced by either the string ’cstr1(location)’ or ’location’ depending
on the type of the Quilt statement.

The mapping information for N:1 mapping types is stored in DDXMI by sepa-
rating the node paths by comma. In Fig. 2, the <local> elements of ’zipcode’ are
’/agency2/restaurant/location/state-code’ and ’/agency2/restaurant/location/
zip-code’ and the attribute value of its operation is ’0, 1’, which is used to indicate

62 G. Choe et al.

the merging sequence. Therefore, ’zipcode’ is transformed into ’mergepath(state-
code, zip-code)’.

4.2 Experimental Results

To demonstrate how the system works, we report an experiment with integra-
tion of information from 3 local documents: ’thesis’, ’reports’, and ’journal’ semi-
structured documents. Assume that we are going to build ‘article’ database as a
virtual global document from information maintained by ’thesis’, ‘reports’, and
’journal’ local documents.

The mapping between global and local schemas is shown in Fig. 4. An ex-
ample Quilt queries getting author’s name whose first name contains ’M’ letter
and the generated local queries from them are shown in Fig. 5.

5 Conclusion and Remaining Issues

A system for generating local queries corresponding to a query of the virtual
global schema over distributed semistructured data has been described, with a
focus on resolving both structural and semantic conflicts among data sources.
It consists of mapping, path substitution, and node identification mechanisms.
Especially, it handles the multiple mapping on an element and the node identi-
fication among the elements with the same label and different meanings.

The DDXMI file is generated by collecting the paths with the same index
numbers. Global queries from end users are translated to appropriate queries
to local documents by looking up the corresponding paths and possible seman-
tic functions in the DDXMI, and node identification information. Finally local
queries are executed by Kweelt.

There are several obvious limitations with the query processing algorithm and
its implementation. Firstly, we extract path trees for documents without explicit
schemas using an algorithm that may produce extremely large path trees for
irregular semistructured data, which may be too difficult for human to handle.
It is desirable to explore how to balance the accuracy and size of approximate
typing in practice. Secondly, JOINs among local data are not considered. In
order to fully use knowledge of the local documents for query decomposition
and optimization, it is planned to extend the mapping description power to
support describing and using more sophisticated kinds of relationship, and also
relationships at more levels, such as local path vs. local path, document vs.
document, and document vs. path.

References

1. S. Abiteboul. Querying semistructured data. In Proceedings of ICDT, 1997
2. Peter Buneman. Tutorial: Semistructured data. In Proceedings of PODs, 1997.
3. Andrea Cal‘y, Diego Calvanese, Giuseppe De Giacomo and Maurizio Lenzerini.

View-based query answering and query containment over semistructured data. In:
Proc. of DBPL 2001.

Information Retrieval from Distributed Semistructured Documents 63

4. Lucian Popa, Mauricio. Hernandez, Yannis Velegrakis, Renee J. Miller, Felix Nau-
mann, and Howard Ho. Mapping xml and relational schemas with clio. Demo on
ICDE 2002.

5. Lucian Popa, Yannis Velegrakis, Renee Miller, Mauricio. Hernandez, and Ronald
Fagin. Translating web data. Proc. 28th VLDB Conf., 2002.

6. Joseph Goguen. Data, schema and ontology integration. In Walter Carnielli, Miguel
Dionisio, and Paulo Mateus, editors, Proc. Comblog’04, pages 21-31, 2004.T

7. D. Chamberlin, J. Robie and D. Florescu. Quilt: An XML Query Language for
Heterogeneous Data Sources. Proceedings of WebDB 2000 Conference, in Lecture
Notes in Computer Science, Springer-Verlag, 2000.

8. An-Hai Doan, Pedro Domingos and Alon Halevy. Reconciling schemas of disparate
data sources: A machine-learning approach. Proc. SIGMOD, 2001.

9. An-Hai Doan. Thesis: Learning to Translate between Structured Representations
of Data.University of Washington, 2003.

10. Hong-Hai Do and Erhard Rahm. Coma - a system for flexible combination of
schema matching approaches. Proc. 28th VLDB Conf., 2002.

11. Bin He and Kevin Chen-Chuan Chang. Statistical Schema Matching across Web
Query Interfaces. Proc. SIGMOD, 2003.

12. A. Y. Levy. Answering Queries Using Views: A Survey. VLDB Journal, 2001.
13. J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore: A database

management systems for semistructured data. SIGMOD Record, 26, 1997.
14. Alon Levy. The Information Manifold approach to Data Integration. IEEE Intelli-

gent Systems, vol.13, pages:12–16,1998.
15. Jayant Madhavan,Philip Bernstein and Erhard Rahm. Generic Schema Matching

with Cupid. Proc. 27th VLDB Conference, 2001.
16. Sergey Melnik, Hector Garcia-Molina and Erhard Rahm. Similarity Flooding: A

Versatile Graph Matching Algorithm and its Application to Schema Matching.
Proc. ICDE,2002.

17. Sergey Melnik, Erhard Rahm and Philip Bernstein. Rondo: A Programming Plat-
form for Generic Model Management. Proc.SIGMOD,2003.

18. J. D. Ullman. Information integration using logical views. International Conference
on Database Theory (ICDT), pages 19-40, 1997.

19. S. Nestorov, S. Abiteboul, and R. Motwani. Inferring Structure in Semistructured
Data. In Proceedings of the Workshop on Management of Semistructured Data,
1997.

20. Svetlozar Nestorov, Serge Abiteboul and Rajeev Motwani. Extracting schema from
semistructured data. In Proceedings of SIGMOD, pages 295-306, 1998.

21. Y. K. Nam, J. Goguen, and G. Wang. A Metadata Integration Assistant Generator
for Heterogeneous Distributed Databases. Springer, LNCS, Volume 2519, pages
1332-1344, 2002.

22. Svetlozar Nestorov and Jeffrey D. Ullman and Janet L. Wiener and Sudarshan
S. Chawathe. Representative Objects: Concise representations of Semistructured,
Hierarchical Data. Proceeding of ICDE, pages 79-90, 1997.

23. Erhard Rahm and Philip Bernstein. On Matching Schemas Automatically. Tech-
nical report, Dept. Computer Science, Univ. of Leipzig, 2001.

24. Li Xu and David Embley. Using Domain Ontologies to Discover Direct and Indirect
Matches for Schema Elements. Proc. Semantic Integration Workshop, 2003.

25. Hector Garcia-Molina, Yannis Papakonstantinou, D. Quass, Anand Rajarman, Y.
Sagiv, Jeffrey Ullman, Vasilis Vassalos and Jennifer Widom. The TSIMMIS Ap-
proach to Mediation: Data Models and Languages. Intelligent Information System,
8(2), 1997.

	Introduction
	The Related Work
	The Three Query Processing Components
	Schema Mapping
	Path Substitution for Generating Local Queries
	Resolving the Heterogeneity of Nodes in Local Documents

	System Implementation and Execution Examples
	Mapping Representation and Path Substitution
	Experimental Results

	Conclusion and Remaining Issues

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

