
R. Nayak and M.J. Zaki (Eds.): KDXD 2006, LNCS 3915, pp. 3 – 12, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Mining Changes from Versions of
Dynamic XML Documents

Laura Irina Rusu1, Wenny Rahayu2, and David Taniar3

1,2 LaTrobe University, Department of Computer Science & Computer Eng, Australia
lirusu@students.latrobe.edu.au

wenny@cs.latrobe.edu.au
3 Monash University, School of Business Systems, Clayton, VIC 3800, Australia

David.Taniar@infotech.monash.edu.au

Abstract. The ability to store information contained in XML documents for
future reference becomes a very important issue these days, as the number of
applications which use and exchange data in XML format is growing
continuously. Moreover, the contents of XML documents are dynamic and they
change across time, so researchers are looking to efficient solutions to store the
documents’ versions and eventually extract interesting information out of them.
This paper proposes a novel approach for mining association rules from
changes between versions of dynamic XML documents, in a simple manner,
by using the information contained in the consolidated delta. We argue that by
applying our proposed algorithm, important information about the behaviour of
the changed XML document in time could be extracted and then used to make
predictions about its future performance.

1 Introduction

The increasing interest from various applications in storing and manipulating their
data in XML format has determined, during the last few years, a growing amount of
research work, in order to find the most effective and usable solutions in this respect.
One main focus area was XML warehousing [9, 10], but a large volume of work have
been also concentrating on the issue of mining XML documents [7, 8, 11]. The later
one evolved in a quite sensitive issue, because the users became interested not only in
storing the XML documents in a very efficient way and accessing them at any point in
time, but also in getting the most of the interesting information behind the data.

In addressing first part of the problem, i.e. XML warehousing, we have identified
at least two types of documents which could be included in a presumptive XML data
warehouse: static XML documents, which do not change their contents and structures
in time (e.g. an XML document containing the papers published in a proceedings
book) and dynamic XML documents, which change their structures or contents based
on certain business processes (e.g. the content of an on-line store might change
hourly, daily or weekly, depending on the customer behavior). While the first
category of XML documents was the subject of intense research during the recent
years, with various methods for storing and mining them being developed, there is
still work to be done in finding efficient ways to store and mine dynamic XML
documents [1].

4 L.I. Rusu, W. Rahayu and D. Taniar

The work in this paper continues the proposal made in [1], visually grouped in the
general framework presented in Figure 1. In this framework, we focused on both
warehousing and mining dynamic XML documents, in three main steps, i.e. (i)
storing multiple versions of dynamic XML documents (Fig. 1A), (ii) extracting
historic changes for a certain period of time (Fig.1B) and (iii) mining the extracted
changes (Fig.1C) to obtain interesting information (i.e. association rules) from them.

Di

rule X Y
(ARS1)

Dj

rule M N
(ARS2)

Dk

rule X Y
(ARS3)

(k-i+1)
changes
records

historic
changes

C∆

consolidated
delta

historic
changes

Dynamic
association

rule
(ARD)

A B C

Fig. 1. A visual representation of the mining historic changes process, using consolidated delta

In this paper, we are focusing on the part C of the above mentioned framework, i.e.
extracting association rules from changes affecting dynamic XML documents. We
believe this knowledge would be very useful in determining if there are any
relationships between changes affecting different parts of the documents and making
predictions about the future behaviour of the document.

2 Related work

To our knowledge, there is no much work done in the area of mining changes
between versions of dynamic XML documents. The existing work is more focused on
determining interesting knowledge (e.g. frequently changing structures, discovering
association rules or pattern-based dynamic structures) from the multiple versions of
the document themselves, not from the actual changes happened in the specified
interval of time. We detail below some of this work, noting in the same time that the
list of examples is nor complete or exhaustive.

In [2], the authors focus on extracting the FCSs (Frequently Changing Structures).
They propose an H-DOM model to represent and store the XML structural data,
where the history of structural data is preserved and compressed. Based on the
H-DOM model, they present two algorithms to discover the FCSs.

X-Diff algorithm is proposed in [3] and it deals with unordered trees, defined as
trees where only the ancestor relationship is important, but not the order of the
siblings. This approach is considered to be better and more efficient for the purpose of
database applications of the XML. In [3], changes in a XML document over the time

 Mining Changes from Versions of Dynamic XML Documents 5

are determined by calculating the minimum-cost edit script, which is a specific
sequence of operations which can transform the XML tree from the initial to the final
phase, with the lowest possible cost. In introduces the notion of node signature and
a new type of matching between two trees, corresponding to the versions of a
document, utilized to find the minimum cost matching and cost edit script, able to
transform one tree into another.

Another algorithm, proposed by [4], deals with the unordered tree as well, but it
goes further and does not distinguish between elements and attributes, both of them
being mapped to a set of labeled nodes.

In [5], the authors focus on discovering the pattern-based dynamic structures from
versions of unordered XML documents. They present the definitions of dynamic
metrics and pattern-based dynamic structure mining from versions of XML
documents. They focus especially on two types of pattern-based dynamic structures,
i.e. increasing dynamic structure and decreasing dynamic structure, which are
defined with respect to dynamic metrics and used to build the pattern-based dynamic
structures mining algorithm.

3 Problem Specification

To exemplify the problem, in Figure 2 we present one XML document, at the time T0
(the initial document), followed by three versions, at three consecutive moments of
time, i.e. T1, T2 and T3. Each version brings some changes to the previous one,
visually represented by the dotted lines.

One technique for storing the changes of a dynamic XML document (i.e. which
changes its context in time) was proposed in [1]. Three main features of this technique
are: (i) the resulting XML document is much smaller in size than the sum of all
versions’ sizes; (ii) it allows running a simple algorithm to extract any historic version
of the document and (iii) the degree of redundancy of the stored data is very small,
only the necessary information for quick versioning being included.

By running the consolidated delta algorithm [1], we obtain a single XML
document containing the historic changes on top of the initial document. We resume
here the main steps in building the consolidated delta and few important concepts, for
a document changing from the version Di (at time Ti) to version Dj (at time Dj):

• unique identifiers are assigned for the new inserted elements in the Di version;
• version Dj is compared with the previous one Di and for each changed element in

the Dj version, a new child element is inserted in the consolidated delta, namely
<stamp>, with two attributes: (a) “time” , which contain the Ti value (e.g. month,
year etc) and (b) “delta” , which contain one of modified, added, deleted or
unchanged values, depending on the change detected at the time Ti; there are
some rules to be observed when adding the <stamp> elements [1];

• the Di version is removed from the data warehouse, as it can be anytime recreated
using the consolidated delta. The Dj version is kept until a new version arrives or
until a decision to stop the versioning process is taken; Dj will be removed after
the last run of the consolidated delta algorithm;

• at the end of the process, the consolidated delta will contain enough historical
information to allow for versioning.

6 L.I. Rusu, W. Rahayu and D. Taniar

Fig. 2. The “catalog.xml” document in four consecutive versions

We need to mention that the D0 version of the XML document (i.e. the initial one)
will be included in the initial consolidated delta; from that point, only the changes for
any subsequent version will be recorded in the consolidated delta as described above.

After running the consolidated delta algorithm [1] to capture all the changes
affecting the running example document in period T0 – T3, we will obtain an XML
document where each initial element from D0 has attached a history of its changes.
Note that, if an element was either deleted at updated at a time Ti, 0<i<3, its children
do not have attached any stamp elements for that specific time and this helps in
limiting as much as possible the degree of redundancy of the data stored in the
consolidated delta.

In our working example, the changes affecting the initial XML document during
the consecutive transformations from a version to another are presented in Table 1.

<catalog>
 <product>
 <status> Available</Status>
 <name>Walkman</name>

<descript>A very good one</descript>
<price>150$</price>

 </product>
 <product>
 <status>Not available</status>
 <name>MP1</name>
 <price>200$</price>

<description>a mobile
phone</description>

 </product>
 <product>
 <status>Not available</status>
 <name>MP2</name>

<description>another mobile
phone</description>

 </product>
</catalog>

T0

<catalog>
 <product>
 <status> Available</Status>
 <name>Walkman</name>

<descript>A very good one</descript>
<price>180$</price>

 </product>
 <product>
 <status>Not available</status>
 <name>MP1</name>

<description>a mobile phone</description>
 </product>
 </catalog>

T1

<catalog>
 <product>
 <status> Available</Status>
 <name>Walkman</name>

<descript>A very good one</descript>
<price>250$</price>

 </product>
 <product>
 <status>Available</status>
 <name>MP1</name>

<description>a mobile phone</description>
 </product>

<product>
 <status>Available</status>
 <name>Suitcase</name>
 <price>500$</price>

<description>red leather case</description>
 </product>
</catalog>

T2

<catalog>
 <product>
 <status> Available</Status>
 <name>Nice walkman</name>

<descript>A very good one</descript>
<price>250$</price>

 </product>
<product>

 <status>Available</status>
 <name>Suitcase</name>
 <price>450$</price>

<description> red leather case
</description>

 </product>
<product>

 <status>Available</status>
 <name>BBQ set</name>

<description>stainless steel bbq
tools</description>

 </product>
</catalog>

T3

Deleted T1

Inserted T3

Deleted T3

Inserted T2

Modified T3

Modified T3

Modified T2

Modified T2

Modified T1

 Mining Changes from Versions of Dynamic XML Documents 7

Table 1. The list of changes for the working example, for three consecutive versions of an
XML document

T0 T1 Price – modified; Product –
deleted; Price – deleted

T1 T2 Product – inserted; Price –
modified; Status – modified

T2 T3 Name – modified; Product –
deleted; Price – modified;
Product – inserted

If, in our working example, we consider the sets of changes in periods T0 T1,
T1 T2 and T2 T3 (see Table 1) as transactions, it can be noticed that the pairs “Price-
modified” and “Product-inserted” appear in 2 of the 3 (66%) of the transactions. If the
minimum support required is set at a level lower than 66%, the association rule
extracted would be: “when a price element is modified, a product is inserted as well,
and this happens in 66% of the sets of changes appearing from a version to another”.

This paper proposes to build a generic algorithm for extracting association rules
from the changes which affect dynamic XML documents, i.e. to discover if there are
any relationships between modifications, deletions or insertions of some elements or
another. As exemplified above, the resulting rules could be very informative about
how parts of the document are changing together so the user can make predictions
about the future behaviour of the dynamic XML document.

4 Mining Changes – The Proposed Algorithm

The algorithm for mining changes from historic versions of dynamic XML documents
is an improved Apriori one, redesigned to be applicable to XML documents; it has a
preparation step and four main working steps, as follows:

Fig. 3. Generic algorithm for extracting historic changes (ECD) from consolidated delta document

 For each Ti, 0<i<n
 Get all nodes with timestamp Ti
 For each node with timestamp Ti and delta not “unchanged”
 If the delta is “modified” or “inserted”
 If the node has no other children elements except stamp
 Record timestamp, value and delta
 End if
 Else ‘ i.e. delta is “deleted”
 Record timestamp and delta
 End if
 Next
 Next

8 L.I. Rusu, W. Rahayu and D. Taniar

Preparation step:
Because we want to mine the actual changes which influenced the initial XML
document, we use the consolidated delta to extract the set of changes, using the
algorithm proposed in Figure 3. We will name the resulting document ECD (the
extracted changes document) further in the paper.

For each moment of time Ti when the document was changed, 0<i<=n, we will
have a transaction containing the elements changed at the time Ti. Each combination
{element – change} will actually become an item in our mining algorithm.

During this step, also count the number of transactions in the ECD. It will be
relevant for calculating the support of the association rules discovered.

Step 1:
During this step, a new XML document is built, to store the number of modifications,
deletions, insertions for each element Ei in ECD, together with the associated support
for each pair “element-change’. The document will be named MCdoc (matrix of
changes in the document), further in the paper.

The number of modifications, insertions and deletions will be stored as attributes
of each element in MCdoc. Each time a new element is found in the extracted changes
document, the modified, inserted or deleted attribute will take value 1. If the same
element is found again to be changed during a different transaction, the corresponding
attribute will be updated to reflect the current number of changes; the support of the
pair {element – change} will be updated too, with regard to the total number of
transactions (see preparation step).

If during the preparation step, we also include the paths of the elements in the
extracted changes document, the algorithm will be able to identify only the distinct
elements and their changes, so elements with same name but different positions in the
hierarchy will be recorded separately. The algorithm for Step 1 is detailed in Figure 4.

In our working example, the total number of changes extracted is 10 and the result
of applying this step is the document in Figure 6.

 For each element Ei in ECD
 Search MCdoc for the element Ei
 If not found
 Include it in the MCdoc, with value 1 to the appropriate argument
 Else
 ‘check if the path is different
 If path attribute is different

 Include it in the MCdoc, with value 1 to the appropriate argument
 Else
 Update the appropriate argument to reflect the change attached
 Update the support of the pair “element – change’
 End if
 End if
Next element Ei

Fig. 4. Step 1 of the proposed algorithm, i.e. building the document with changing items and
their support from the ECD (extracted changes document)

 Mining Changes from Versions of Dynamic XML Documents 9

Set L = set of large 1-itemsets
For each element in MCDoc
 If sup_modif > min_sup
 Add {“element” – modif} pair to L
 If sup_insert > min_sup
 Add {“element” – inserted} pair to L
 If sup_delete > min_sup
 Add {“element” – deleted} pair to L
Next element

Fig. 5. Step 2 of the proposed algorithm, i.e. determining the large 1-itemsets

Step 2:
The 1-large itemsets will be extracted from the document build at step 1, i.e. those
items (element - change pairs) which have the support in ECD higher than the
min_sup set at the beginning of the process (see Figure 5 for the algorithm).

In our example, we set the minimum support to 20%, so the frequent 1-itemsets are
three: {price - modified}, {product - inserted} and {product-deleted} (see dotted lines
in Figure 6). We emphasise again the fact that, in our proposed algorithm, not the
actual elements from the initial document are the items in transactions, but the
combinations (pairs) element – change.

 <MCdoc>

 <price modified=”3” inserted=”0” deleted=”1”

 sup_modif=”0.3” sup_insert=”0” sup_delete=”0.1”

 path=”catalog/product/price”/>

 <product modified=”0” inserted=”2” deleted=”2”

 sup_modif=”0” sup_insert=”0.2” sup_delete=”0.2”

 path=”catalog/product”/>

 <status modified=”1” inserted=”0” deleted=”0”

 sup_modif=”0.1” sup_insert=”0” sup_delete=”0”

 path=”catalog/product/status”/>

 <name modified=”1” inserted=”0” deleted=”0”

 sup_modif=”0.1” sup_insert=”0” sup_delete=”0”

 path=”catalog/product/name”/>

 </MCdoc >

Large 1-itemsets

Fig. 6. The document resulted by applying Step 1 of the proposed mining changes algorithm,
highlighting the large 1-itemsets in the working example

Step 3:
Similar with the Apriori-based algorithm, the k-itemsets (k>1) are built starting from
the 1-itemsets; for each of them the support is calculated with respect to the total

10 L.I. Rusu, W. Rahayu and D. Taniar

number of changes from ECD. This step is repeated until all the large n-itemsets are
found. This step will be influenced by the observation that any larke k-itemset (i.e.
which has a support greater than minimum required) needs to have all its subsets
large. In figure 7, we show a general k step.

In our example, the 2-itemset {price – modified, product - inserted} has the
support=0.66, because both pairs appear in two out of three transactions extracted.

 For each large (k-1) itemset in Lk-1
 Extend to k itemset by adding a 1-large itemset
 ‘calculate its support in ECD (extracted changes document)
 For each transaction in ECD
 Set bPairFound=false
 For each pair {element-change} in the k itemset
 If (transaction//element and transaction//change) not null
 Set bPairFound= true
 Else
 Set bPairFound= true
 Next pair
 If bPairFound=true ‘found all pairs from k itemset
 Update Sk - support of k itemset
 Next transaction
 If Sk > min_sup then add k itemset to Lk - the list of large k itemsets
Next (k-1) itemset

Fig. 7. Step 3 of the proposed algorithm, i.e. determining the large k-itemsets from the (k-1)
large itemsets

Step 4:
Based on the large n-itemsets extracted at Step 3, we determine the association rule
and calculate their confidence. In the above working example, the rule extracted is “if
a price element is modified, a product is inserted as well, and this happens in 66% of
the sets of changes appearing from a version to another” and it will have a confidence
of 66%.

5 Evaluation of Experimental Results

To evaluate the proposed approach we used the consolidated delta obtained from
successive versions of the same XML documents of various sizes, i.e. 25kb, 63kB,
and 127kB, data being downloaded from the SIGMOD dataset [6]. Firstly, we built a
number of versions for each type of document by using a changes simulator, created
by us, which takes as input the Di version of the document (0<i<n) and returns a
modified Di+1 version, where the desired percentages of deletions, insertions and
modifications can be controlled through a user-friendly interface and elements to be
changed are randomly chosen. For each new version of each document, we calculate
the corresponding consolidated delta, observing the rules in [1];

 Mining Changes from Versions of Dynamic XML Documents 11

By applying the algorithm proposed in this paper and implemented in Visual Basic,
we got a number of association rules and we made measurements of the running time,
for different values of the minimum support required. The graph in Figure 8 shows
the time of running for each consolidated delta obtained after few sets of changes
(number showed in parenthesis on the graph legend) and for different values of
minimum support required.

0

50

100

150

200

50% 40% 30% 20% 10% 5%

Minimum support (min_sup)

T
im

e
in

 s
ec

o
n
d

28kB (25kB after 7changes) 70kB (63kB after 5changes)

448kB (127kB after 10 changes)

Fig. 8. Running time for three different sized consolidated delta and six different percentages of
minimum support imposed

As it can be noticed from the graph, the smaller consolidated delta has the best
results as time of running, as one would expect and even for large XML documents
(as it is the 448kB consolidated delta) the time is kept under 3 minutes. We need to
mention that the first two steps, i.e. preparation step (when the ECD - extracted
changes document is built) and step 1 (when the large 1-itemsets are identified) are
the most expensive ones, as time and processor resources. Our future work is to
explore the possibilities of making this steps more efficient, so the overall
performance of the algorithm to be improved.

6 Conclusions

In conclusion, this paper presents a novel approach for mining changes extracted from
versions of dynamic XML documents, by looking into the actual changes and into the
associations between them. The motivation for this research was that the user not only
needs to know which are, for example, the most changing parts of the document, but
also which are the relationships between the changes of the document’s parts, e.g.
modifications of some parts of the document might be related with insertions of some
new parts or with deletions of other parts. The information extracted would be very
useful to predict the future behaviour of a dynamic XML document. We hence
propose an algorithm to mine these changes, in few clear steps, with examples easy to
understand and replicate.

12 L.I. Rusu, W. Rahayu and D. Taniar

References

1. Rusu, L.I., Rahayu W., Taniar D., “Maintaining Versions of Dynamic XML Documents”,
Proceed. of The 6th International Conference on Web Information Systems Engineering
(WISE 2005), New York, LNCS 3806, pp. 536-543, 2005

2. Zhao, Q., Bhowmick, S.S., Mohania, M., Kambayashi, Y., “FCS Mining: Discovering
Frequently Changing Structures from Historical Structural Deltas of Unordered XML”, In
Proceedings of the 13th Conference on Information and Knowledge Management (CIKM
2004), pp. 188-197

3. Wang Y., DeWitt D.J., Cai J.Y., “X-Diff: An Effective Change Detection Algorithms for
XML Documents”, In Proceedings of ICDE 2003, pp.519-530, IEEE Computer Society,
2003

4. Zhao, Q., Bhowmick, S.S., Mohania, M., Kambayashi, Y., “Discovering Frequently
Changing Structures from Historical Structural Deltas of Unordered XML”, Proceedings
of ACM CIKM’04, pp.188-197, November 8-13, Washington, US, 2004

5. Zhao, Q., Bhowmick, S.S., Mandria, S., “Discovering Pattern-based Dynamic Structure
from Versions of Unordered XML Documents”, In Proceedings of the 6th International
Conference on Data Warehousing and Knowledge Discovery (DaWak 2004), pp.77-86,
Zaragoza, Spain, September 1-3, 2004

6. www.cs.washington.edu/datasets - SIGMOD XML dataset
7. Yin, M., Goh, D.H-L, Lim, E-P., and Sun, A., “Discovery of Content Entities from Web

Sites Using Web Unit Mining”, International Journal of Web Information Systems,
1(3):123-136, 2005.

8. Zhou, B., Hui, S.C., and Fong, A.C.M., “A Web Usage Lattice Based Mining Approach
for Intelligent Web Perzonalization”, International Journal of Web Information Systems,
1(3):137-146, 2005.

9. Quang, N.H., Rahayu, W., “XML Schema Design Approach”, International Journal of
Web Information Systems, 1(3):161-178, 2005.

10. Rusu L.I., Rahayu W., Taniar D., “A methodology for building XML data warehouses”,
International Journal of Data Warehousing and Mining, vol.1, no.2, pp.67-92, April - June
2005

11. Feng.L, Dillon T., “An XML-enabled data mining query language: XML-DMQL”,
International Journal of Business Intelligence and Data Mining, vol 1, no 1, 22-41, 2005-
11-30

	Introduction
	Related work
	Problem Specification
	Mining Changes – The Proposed Algorithm
	Evaluation of Experimental Results
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

