
R. Nayak and M.J. Zaki (Eds.): KDXD 2006, LNCS 3915, pp. 85 – 94, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A New Scheme to Fingerprint XML Data*

Fei Guo1, Jianmin Wang1, Zhihao Zhang1, and Deyi Li1, 2

1 School of Software, Tsinghua University, Beijing 100084, China
f-guo03@mails.tsinghua.edu.cn

jimwang@tsinghua.edu.cn
zhangzh02@mails.tsinghua.edu.cn

2 China Constitute of Electronic System Engineering,
Beijing 100039, China

ziqinli@public2.bta.net.cn

Abstract. Watermarking has been used for digital rights protection over
different types of contents on the Web. Since XML data is widely used and
distributed over the Internet, watermarking XML data is of great interest. In this
paper, we present a new watermarking scheme to embed different fingerprints
in XML data. The fingerprint can be used to trace illegal distributors. We also
take into consideration that XML data usually contains categorical elements
which can’t tolerant much modification, our scheme attempts to reduce
modifications without bringing down the robustness of the fingerprint.
Modifications could be reduced by choosing different patterns to insert. The
experiments show that our scheme is effective to make less distortion to the
original data and the fingerprint maintains the same robustness level at the same
time.

1 Introduction

Today, mass of data could be copied and distributed on the Web easily. Since
valuable data could be resold for illegal profit, it’s important to claim original
ownership of a redistributed copy and trace traitors as well. Watermarking is a class
of information hiding techniques to protect digital contents from unauthorized
duplication and distribution by introducing small errors into the object being marked.
These small errors constitute a watermark or fingerprint. Fingerprinting is often
discussed in comparison or extension to watermarking [5]. A watermark is used to
identify the owner while a fingerprint is used to identify illegal distributor. For
example, the owner embedded a unique fingerprint to each user (user1, user2, user3),
see figure 1. When an unauthorized copy on the web is found, the owner could detect
the user3’s fingerprint to argue ownership and track back to identify user3 to be the
illegal distributor out of other users.

Since XML is designed especially for applications on the Web and more and more
Internet contents are defined in XML, it’s of great significance to fingerprint valuable
XML documents.

* This research is supported by National Natural Science Foundation of China under Project

No. 60473077.

86 F. Guo et al.

Fig. 1. Using a fingerprint to identify illegal distributors

Wilfred Ng and Ho-Lam Lau [4] present a selective approach of watermarking
XML. It’s successful to insert a watermark to prove ownership over XML data, but it
can’t insert different fingerprints to help identify illegal distributors. Sion [2] presents
an even grouping method for fingerprinting relational data. We extend his techniques
into a varied-size grouping method to fingerprint XML data. Agrawal [1] presents an
effective watermarking technique for relational data to modify some bit positions of
some attributes of some tuples and gives good mathematic analysis. It gives the
foundation of our analysis on confidence level within each group.

In this paper, we introduce a scheme to embed fingerprints of ordered bits. We first
classify elements into groups and embed one bit of the fingerprint in each group. To
maintain the same grouping result for successful detection, we introduce a varied-size
grouping method. A value of “remainder” of each element is calculated to identify
which group it belongs to, and the ascending order of the “remainder” naturally
preserves the order of the groups, also the order of the fingerprint. Thus, only the
number of groups that equals the length of the fingerprint is needed to calculate the
same “remainder” when detecting the fingerprint. The even grouping method [2] has
to record extra classifying information for each group, which is of the same size of the
fingerprint or even more and is not necessary.

All robust watermarking schemes [1] [2] [4] have to make some distortions to the
original data. So it’s assumed that small errors will not decrease the usability of the
original data remarkably in all robust watermarking algorithms. For example, to
embed a mark, number <byteCount>5440</byteCount> can be modified to
<byteCount>5439</byteCount>, word <TEAM_CITY>Los Angeles</TEAM_CITY>
can be replaced by its synonym <TEAM_CITY>L.A.</TEAM_CITY>. But it’s hard
to define what change is within the acceptable level. In many real life cases, changes
tend to be too big to meet the assumption, especially for categorical data. In [7], the
distortion to each selected categorical item may be significant, for example, even one
bit error in such as social security number is not acceptable. However, [7] assumed
that it’s acceptable if only a small part of data is modified. So we attempt to find a
way to minimum the part to be modified to minimum the change to the original data,
meanwhile preserve the same robustness level of the fingerprint. We believe that data
with fewer errors is more valuable than data with more errors, both for categorical
data and numeric data. In our scheme, we use the fingerprint bit to be embedded to

Owner

User1 User2 User3 / Illegal Distributor

Illegal User

Authorized Authorized Authorized

Unauthorized

Illegal copy detected

Identify Traitor through fingerprint

 A New Scheme to Fingerprint XML Data 87

choose the inserting positions, thus different fingerprint bit is represented by different
positions, not by the value of the selected mark positions, so we have a choice to
either set the selected bit value or word value to “1” or “0”, corresponding to either
pattern1 or pattern0. Since some of the selected mark positions may meet the pattern
naturally, i.e., no need to be modified, we can choose a pattern that needs the
minimum modifications. In other words, we examine the original values of selected
mark positions, and choose a pattern that original values tend to be, thus minimum
modifications. So we don’t reduce the selected bit positions to minimum
modifications, which mean that we don’t bring down the mark ratio, thus the
fingerprint maintains the same robustness level. Our experiment shows that in some
cases, we can reduce the modifications by 1/4 compared with [4] at the same mark
ratio. For numeric data, it means less effect on mean and variance; for categorical
data, it means we reduce the probability of destroying an element (e.g. any distortion
on the social security number) to 3/4.

The rest of the paper is organized as follows: Part 2 provides our insertion
algorithm and detection algorithm. Part 3 gives the implementation of our
fingerprinting scheme and the analysis on modification amount and fingerprints’
robustness. We conclude with a summary and directions for future work in Part 4.

2 Scheme to Fingerprint XML data

In this section, we provide our insertion and detection algorithms. The notations used
in this paper are shown in Table 1:

Table 1. Notations

1/γ Target fraction of elements marked / mark ratio

ε Number of candidate bits to be modified

k The secret key

α Significance level for detecting a watermark

PA Primary Data in each element

N Number of elements in XML data

ο Concatenating

2.1 Insertion Algorithm

A primary data (PA) used to identify each element should be predefined by the
owner; also the candidate bit positions and candidate word positions
num_of_word_in_value should be predefined. The primary data which is used as the
primary key in relational databases should be unique and unchanged. For example,
the <social_security_number> could be used as PA. If no such data exists, we can
construct a virtual PA as stated in [5]. For example, we may use the combination of
<SURNAME> and <GIVEN_NAME> instead. We use a one-way hash function

88 F. Guo et al.

value affected by the PA and the secret key k to decide the group position and mark
position. Since only the owner knows the secret key, it’s hard for an attacker to find
our fingerprint.

First we transform a fingerprint in any form (e.g. fingerprint of a picture) into a bit
flow and the length of the fingerprint should be recorded for detection. Then we
calculate the remainder i for each element at line 4 in our insertion algorithm below.
Then elements with same values of i and meet line 5 at the same time are collected
into the same ith group. The ith bit of the fingerprint will be inserted into elements in
the ith group. Thus we have fpt_length (bit number of the fingerprint) groups. The
ascending order of i ranging from 0 to fpt_length-1 naturally preserves the order of
the fingerprint. Since the hash result of MD5 we used is expected to be uniform
distributed, each group may have varied but similar number of elements.

Let’s see how a bit of fingerprint is inserted in each group. We use the fingerprint
bit value to choose the inserting positions, see line 5, 13 and 16. It decides which
element to mark, and which bit or word to be modified. The mark ratio is used to
choose the insertion granularity. Notice that the elements selected to mark and the
modification position j are different when the fingerprint to be embedded is “1” from
when it’s “0”. In subroutine pattern(subseti), we count the original values of each
selected position within a group and choose the mark pattern. Since most categorical
data is in textual form, we use the parity of the word’s Hash value to represent value
“1” or “0” corresponding to bit value for numeric data, see subroutine value(word).
For pattern1, we set each selected position value into “1”, and for pattern0, we set each
selected position value into “0”. For example, if the selected values are eight “1” and
two “0” in a group, pattern1 is chosen (see line 32) and only two elements have to be
changed. In the opposite situation, if the selected values are eight “0” and two “1” in a
group, pattern0 is chosen (see line 31) and only two elements have to be changed too.
Then subroutine embed(subseti) will modify the selected positions according to the
pattern chosen, two elements in the example. How to modify the selected position for
numeric and textual element is shown at line 14 and 18 respectively.

Algorithm 1. Insertion algorithm
// Only the owner of data knows the secret key k.
// R is the XML document to be marked.
// fpt_length is the length of the fingerprint embedded.
1) fpt[] = bit(fingerprint)
2) record fpt_length // length of the fingerprint is recorded for detection
3) foreach element τ ∈R do {
4) i = Hash(PA ο k) mod fpt_length // fpt[i] to be inserted
5) if(Hash(fpt[i] ο PA ο k) mod γ equals 0) then // mark this element
6) subseti ← element }
7) foreach subseti
8) embed(subseti)
9) subroutine embed(subseti)
10) mask[i] = pattern(subseti)
11) foreach element in subseti do {
12) if(element is numeric)
13) j = Hash(PA ο k ο fpt[i]) mod ε
14) set the jth bit to mask[i] // modify the jth candidate bit

 A New Scheme to Fingerprint XML Data 89

15) else if(element is textual)
16) j = Hash(PA ο k ο fpt[i]) mod num_of_word_in_value
17) if(value(the jth word) is not equal to mask[i]) // modify the jth word
18) replace the jth word by a synonym s where value(s) equals mask[i]
19) else do nothing }

20) subroutine pattern(subseti) // choose a pattern for less modification
21) count0 = count1 = 0
22) foreach element in subseti do {
23) if(element is numeric)
24) j = Hash(PA ο k ο fpt[i]) mod ε
25) if(the jth bit equals 0) count0 increment
26) else count1 increment
27) else if(element is textual)
28) j = Hash(PA ο k ο fpt[i]) mod num_of_word_in_value
29) if(value(the jth word)) count0 increment
30) else count1 increment }
31) if(count0 > count1) mask = 0 // pattern0
32) else mask = 1 // pattern1
33) return mask

34) subroutine value(word)
35) if(Hash(word) is even)
36) value = 0
37) else value = 1
38) return value

2.2 Detection Algorithm

To detect a fingerprint, the owner has to use the same secret key, the same predefined
parameters, the fingerprint length recorded when inserting and choose a significance
level for detection.

First we form similar groups, see line 3 in our detection algorithm below, thus
preserve the same fingerprint order. Next we try to detect one bit of fingerprint from
each group. If the embedded fingerprint is “0”, compared with the insertion process,
we can find exactly the same elements at line 10, and the same selected positions at
line 13 and 17. For a non-marked document, because the positions are selected
randomly, the probabilities of a selected position value to be either “0” or “1” are both
1/2 approximately. But for a marked document, we are expected to see that the values
of each selected position are all the same, either “0” or “1”, i.e., match_count0 =
total_count0 or match_count0 = 0. We use the significance level set by the owner to
calculate a threshold (see line 35), such that either if match_count0 is larger than
threshold or is smaller than (total_count0 – threshold), we can claim that a fingerprint
bit of “0” has been embedded with the confidence level of (1 -), otherwise, we say a
fingerprint bit of “0” isn’t detected. Then we check if the embedded fingerprint is “1”
(see line 20), the process is almost the same. If both “1” and “0” haven’t be detected,
we conclude that no fingerprint has been embedded at the confidence level of (1 - α).

90 F. Guo et al.

Algorithm 2. Detection algorithm
// k, γ, ε and num_of_word_in_value have the same values as in watermark insertion.
// fpt_length has the same value with recorded when inserting.
// α is the significance level for detecting a fingerprint bit.
// S is a marked XML document.
1) foreach element τ ∈S do {
2) i = Hash(PA ο k) mod fpt_length
3) subseti ← element }
4) foreach subseti
5) detect(subseti)
6) return fpt[]

7) subroutine detect(subseti) // recover one bit from each subset
8) total_count0 = match_count0 = total_count1 = match_count1 = 0
9) foreach element in subseti do
10) if(Hash(0 ο PA ο k) mod γ equals 0) then { // subset_0
11) total_count0 increment
12) if(element is numeric)
13) j = Hash(PA ο k ο 0) mod ε
14) if(the jth bit equals 0) then
15) match_count0 increment
16) else if(element is textual)
17) j = Hash(PA ο k ο 0) mod num_of_word_in_value
18) if(Hash(the jth word) is even) then
19) match_count0 increment }
20) if(Hash(1 ο PA ο k) mod γ equals 0) then { // subset_1
21) total_count1 increment
22) if(element is numeric)
23) j = Hash(PA ο k ο 1) mod ε
24) if(the jth bit equals 0)
25) match_count1 increment
26) else if(element is textual)
27) j = Hash(PA ο k ο 1) mod num_of_word_in_value
28) if(Hash(the jth word) is even)
29) match_count1 increment }
30) if(match_count0 > threshold(total_count0, α)) or
 (match_count0 < total_count0 - threshold(total_count0, α)) // pattern0?
31) return fpt[i] = 0
32) else if(match_count1 > threshold(total_count1, α)) or
 (match_count1 < total_count1 - threshold(total_count1, α)) // pattern1?
33) return fpt[i] = 1
34) else return False // no pattern
35) subroutine threshold(n, α)

36) return minimum integer m that satisfies
22

1 α<⎟
⎠
⎞

⎜
⎝
⎛∑

=

nn

mk

k

nc

 A New Scheme to Fingerprint XML Data 91

The selection process in our detection algorithm can be modeled as a Bernoulli
trial, thus the match_count in a non-marked document is a random variable that meets
a binominal distribution with parameters total_count and 1/2. Thus the threshold
should satisfy (1) below.

P{MATCH_COUNT > threshold | total_count } + P{MATCH_COUNT <
total_count – threshold | total_count} < α (1)

Based on Agrawal’s mathematic analysis [1], the threshold for a given total_count
at confidence level of 1 - α can be calculated using formula (2) shown below..

threshold = minimum integer m that satisfies
22

1
ttotal_counttotal_coun

_

α<⎟
⎠
⎞

⎜
⎝
⎛∑

=mk

k

counttotalc (2)

Thresholds for total_count from 1 to 30 when α = 0.01 are shown in figure 2
below. We can see that the bigger total_count is, the smaller portion of threshold is.
Thus, given a large total_count, it gives the potential to resist attacks. For example,
when total_count is 100, the threshold is only 64, which means with loss of nearly
40% of the mark, the fingerprint bit will still be detected successfully at the
confidence level of (1 - α).

5 10 15 20 25 30

5

10

15

20

25

30

th
re

sh
ol

d

total_count

Fig. 2. The relationship between total_count and threshold when α = 0.01

3 Experiments and Analysis

We ran experiments in Windows 2003 with 2.0 GHz CPU and 512MB RAM. The
XML data source is weblog.xml. For simplicity, we choose numeric elements to
modify, results for textual elements are almost the same. We set = 10, = 3 and =
0.01, insert a 100-bit long fingerprint which can identify 2100 different distributors. We
choose N1 = 100,000 and N2 = 10,000 of the records and experiment separately.

92 F. Guo et al.

First we see our varied-size grouping method in figure 3, we list 10 groups. It
shows that the total selected elements are almost 1/ of N and each group has varied
but similar sizes. It means no element or few elements are selected in a certain group
seldom happens. Some marks are expected in each group, thus we can have an entire
fingerprint.

0 1 2 3 4 5 6 7 8 9 10 11
0

10

20

30

40

50

60

70

80

90

100

110

120

130

m
ar

ke
d

el
em

en
ts

group

 N
1
=100,000

 N
2
=10,000

Fig. 3. Elements selected in each group

The situations in each group are alike with Wilfred Ng’s selective approach [4]. So
we can compare the amount of modifications in our scheme with Wilfred Ng’s
approach. We use the same secret key and the same other parameters to embed the
same fingerprints. We can see in table 2 that the selected elements are all the same.
Also the grouping results are the same. Because all parameters used in insertion
are the same. When N1 = 100,000, the elements needed to be modified are 4642 out
of 9995 selected positions in our method. Compared with Wilfred Ng’s method, it’s
4960 elements to be modified out of 9995 selected positions. We reduce modify-
cations by 6.4%. When N2 = 10,000, the elements needed to be modified are

Table 2. The amount of modifications compared with Wilfred Ng’s selective approach

 Modifications
(our method)

Selected
elements (our

method)

Modifications
(Ng’s)

Selected
elements
(Ng’s)

N1 =
100,000

4642 9995 4960 9995 93.6%

N2 =
10,000

374 984 491 984 76.1%

 A New Scheme to Fingerprint XML Data 93

374 out of 984 selected positions in our method. Compared with Wilfred Ng’s
method, it’s 491 elements to be modified out of 984 selected positions. We reduce
modifications by 23.9%.

We can see a significant reduction of modifications when N2 = 10,000, not too
significant when N1 = 100,000. The reason is that when N1 = 100,000, each group has
about 100 elements; when N2 = 10,000, each group has about 10 elements. It’s nearer
to 50% to be modified when N is bigger. It’s like throw a coin. For example, if you
throw 10 times, the number of times when head is up is fluctuating around 5 heavily.
If increased to 100 times, the number of times when head is up will be near 50. So the
bigger N is, the reduction of modifications is less significant, see figure 4, we show
10 groups.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

m
od

ifi
ca

tio
ns

 (
%

)

group

 N
1
 = 100,000

 N
2
 = 10,000

Fig. 4. Portion of elements needed to be modified

We can look at each group as an XML document input in Wilfred Ng’s selective
approach, thus we can compare the robustness level of our fingerprint bit in each
group with Ng’s approach. Because the confidence level is decided by the selected
positions, so the robustness level of our fingerprint bit in each group is the same with
Ng’s result. We can see in table 2 that although the modifications are reduced by
23.9% when N2 = 10,000, the number of selected positions are both 984 elements, so
the robustness level maintains the same.

4 Summary

In this paper, we present our new watermarking scheme to embed fingerprints in
XML data. Thus, we can not only prove ownership, but also identify illegal
distributors since a unique fingerprint is embedded in each copy delivered to different
distributors. We use a varied-size grouping method to preserve the order of the

94 F. Guo et al.

fingerprint’s bits. To solve the problem of some categorical elements in XML
document can’t tolerant much modification, we make our effort to reduce
modifications at the same insertion level, i.e., without bringing down the robustness
of the fingerprint. In our scheme, to minimum modifications, we use the fingerprint to
decide the inserting positions and then choose an inserting pattern. The experiments
show that our scheme is effective to make less distortion to the original data and the
fingerprint maintains the same robustness level at the same time. In some cases, we
can reduce the modifications by 1/4.

In the future, we would like to research on the confidence level of the whole
fingerprint, especially when part of the fingerprint has been destroyed; and how to
argue ownership and identify illegal distributors from a fragmentary fingerprint.

References

1. Rakesh Agrawal, Peter J. Haas, Jerry Kiernan.: Watermarking Relational Data: Framework,
Algorithms and Analysis. VLDB Journal. (2003).

2. Radu Sion, Mikhail Atallah, Sunil Prabhakar.: Rights Protection for Relational Data.
Proceedings of ACM SIGMOD. (2003) 98–109.

3. David Gross-Amblard.: Query-preserving Watermarking of Relational Databases and XML
Documents, PODS 2003, San Diego CA. (2003)191–201.

4. Wilfred Ng and Ho-Lam Lau.: Effective Approaches for Watermarking XML Data.
DASFAA 2005, LNCS 3453, pp. 68–80, 2005.

5. Yingjiu Li, Vipin Swarup, Sushil Jajodia.: Constructing a Virtual Primary Key for
Fingerprinting Relational Data. DRM’03, Washington, DC, USA. 2003.

6. Radu Sion, Mikhail Atallah, Sunil Prabhakar.: Resilient Information Hiding for Abstract
Semi-Structures. Proceedings of IWDW. 2004.

7. Radu Sion, Proving Ownership Over Categorical Data. Proceedings of ICDE 2004, 2004.
8. Yingjiu Li, Huiping Guo, Sushil Jajodia.: Tamper Detection and Localization for

Categorical Data Using Fragile Watermarks. DRM’04, Washington, DC, USA. 2004.

	Introduction
	Scheme to Fingerprint XML data
	Insertion Algorithm
	Detection Algorithm

	Experiments and Analysis
	Summary
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

