
R. Nayak and M.J. Zaki (Eds.): KDXD 2006, LNCS 3915, pp. 74 – 84, 2006.
© Springer-Verlag Berlin Heidelberg 2006

The Expressive Language ALCNHR+K(D) for
Knowledge Reasoning*

Nizamuddin Channa1,2 and Shanping Li1

1 College of Computer Science, Zhejiang University,Hangzhou, P.R. China 310027
2 Institute of Business Administration, University of Sindh, Jamshoro, Pakistan 71000

nchanna68@yahoo.com, shan@cs.zju.edu.cn

Abstract. The Expressive Language ALCNHR+(D) provides conjunction, full
negation, quantifiers, number restrictions, role hierarchies, transitively closed
roles and concrete domains. In addition to the operators known from
ALCNHR+, a restricted existential predicate restriction operator for concrete
domains is supported. In order to capture the semantic of complicated knowl-
edge reasoning model, the expressive language ALCNHR+K(D) is introduced.
It cannot only be able to represent knowledge about concrete domain and
constraints, but also rules in some sense of closed world semantic model hy-
pothesis. The paper investigates an extension to description logic based knowl-
edge reasoning by means o f decomposing and rewriting complicated hybrid
concepts into partitions. We present an approach that automatically decomposes
the whole knowledge base into description logic compatible and constraints
solver. Our arguments are two-fold. First, complex description logics with pow-
erful representation ability lack effectively reasoning ability and second, how to
reason with the combination of inferences from distributed heterogeneous rea-
soner.

1 Introduction

Description logics (DLs) [1] are a family of logical formalisms that originated in the
field of artificial intelligence as a tool for the representation of conceptual knowledge.
Since then, DLs have been successfully used in a wide range of application areas such
as knowledge representation, reasoning about class based formalisms (e.g conceptual
database models and UML diagrams) and ontology engineering in the context of
semantic web [2]. The basic syntactic entities of description logics are concepts,
which are constructed from concept names (unary predicates) and role names (binary
relations). Furthermore, a set of axioms (also called Tbox) are used for modeling the
terminology of an application Knowledge about specific individuals and their
interrelationships is modeled with a set of additional axioms (so-called ABox). Using
different constructors defined with a uniform syntax and unambiguous semantics,
complex concept definitions and axioms can be built from simple components. There-
fore, DLs are particularly appealing both to represent ontological knowledge and to

* The research is funded by Natural Science foundation of China (No. 60174053, No.

60473052).

 The Expressive Language ALCNHR+K(D) for Knowledge Reasoning 75

reason with it. Unfortunately, Due to the inherent complexity with the product knowl-
edge, the expressive power needed to model complex real-world product ontologies is
quite high. Practical product ontology not only needs to represent abstract concept in
the application, but also the concrete domain and constrains roles [3]. Even in some
scene, such as expert system, procedural rules also need to be considered. During the
last few years, much research has been devoted to the development of more powerful
representation system in DL family [4] [5] [6]. Despite the diversity of their represen-
tations, most of them are based on ALC [7] and its expressive successors SHIQ [8],
extend the original tableau-based algorithm in different ways. It has been proved that
reasoning about extensions of ALC with concrete domains is generally intractable.
This problem can be moderated only if suitable restrictions are introduced in the way
of combining concept constructors [9]. Homogeneous reasoning systems (or systems
with homogeneous inference algorithms) have encountered the difficulty of finding
the right ‘trade-off’ between expressiveness and computational complexity. To take
advantage of the DLs popularity and flexibility in the context of semantic web, we
argue that consistent DLs representation pattern is necessary. But for reasoning abil-
ity, we need to decompose the product ontology into partitions, so that different rea-
soning paradigms can be jointly used. The benefits of such an approach in the context
of ontology sharing through the articulation of ontology interdependencies are high-
lighted in [10].

The rest of this paper is organized as follows: Section 2 presents the overview
of the expressive language ALCNHR+(D) and section 3 Concept definitions of

()ALCNHR K D+ knowledge base. Section 4 describes System architecture for knowl-

edge reasoning in detail. Section 4 draws the conclusion and future work.

2 Overview of the Expressive Language ALCNHR+(D)

In this section, we introduce the expressive language ALCNHR+(D)[11], which sup-
port practical modeling requirements and had been implemented in the RACER (Rea-
soner for ABoxes and Concept Expression Reasoner) system [12]. Based on
ALCNHR+(D), we further extend it by epistemic operator to capture rule knowledge
in product data. The following is it’s main syntax and semantics explanation. We
briefly introduce the syntax and semantics of the expressive language ALCNHR+(D).
We assume five disjoint sets: a set of concept names c , a set of role names R , a set
of feature names F , a set of individual names O and a set of concrete objects CO .
The mutually disjoint subsets P and T of R denote non-transitive and transitive
roles, respectively ().R P T= ∪ For presenting the syntax and semantics of the

language ()ALCNHR D+ , a few definitions are required.

Defination 1(Concrete Domain). A concrete domain D is a pair ,()D D∆ Φ , where

D∆ is a set called the domain and DΦ is a set of predicate names. The interpretation
name function maps each predicate name DP from DΦ with arity n to a subset

IP of n
D∆ . Concert objects from CO are mapped to an element of D∆ . A concrete

domain D is called admissible iff the set of predicate names DΦ is closed under

76 N. Channa and S. Li

negation and DΦ contains a name DT for D∆ and the satisfiability problem
1

11 1 11 (,....)n
nP x x Λ Λ 1... (,...)m

nm
m mnmP x x is decidable (m is finite, ∈ Φni

DiP , ni is the

arity of P and jkx is a name for concrete object from D∆) . We assume that D⊥ is the
negation of the predicate DT .Using the definitions from above, the syntax of concept
terms in ()ALCNHR D+ is defined as follows.

Definition 2 (Concept Terms). Let C be a set of concept names with is disjoint form
R and F . Any elements of C is a concept term. If C and D are concept terms,

RR ∈ is an arbitrary role, SS ∈ is a simple role, , , 1n m n∈ ≥� and 0m ≥ , DP ∈ Φ is

a predicate of the concrete domain, 1, ,..., Fkf f f ∈ are features, then the following

expressions are also concept terms:

C D∩ (conjunction), C D∪ (disjunction), C¬ (negation), .R C∀ (concept value
restriction), .R C∃ (concept exists restriction), mS≤∃ (at most number restriction),

nS≥∃ (at least number restriction), 1, ,..., .kf f f P∃ (predicate exists restriction),

. Df∀ ⊥ (no concrete domain filler restriction).

Definition 3 (Terminological Axiom, TBox). If C and D are concept terms, then
C D⊆ is a terminological axiom. A terminological axiom is also called generalized
concept inclusion or GCI. A finite set of terminological axioms is called a terminol-
ogy or TBox. The next definition gives a model-theoretic semantics to the language
introduced above. Let (,)D DD = ∆ Φ be a concrete domain.

Definition 4 (Semantics). An interpretation (, ,)I
D I DI = ∆ ∆ � consists of a set I∆ (the

abstract domain), a set D∆ (the domain of the ‘concrete domain’ D) and an interpre-

tation function I� . The interpretation function I� maps each concept name C to a sub-

set IC of I∆ , each role name R from R to a subset IR of I I∆ × ∆ . Each fea-

ture f from F is mapped to a partial function If from I∆ to D∆ where ()If a x=

will be written as (,) Ia x f∈ . Each predicate name P from DΦ with arity n is mapped

to a subset IP of n
D∆ . Let the symbols C , D be concept expressions, R , S be role

names, 1, ,... nf f f be features and let P be a predicate name. Then, the interpretation

function is extended to arbitrary concept and role terms as follows (���denotes the
cardinality of a set):

() : , () : , () : \I I I I I I I IC D C D C D C D C CI∩ = ∩ ∪ = ∪ ¬ = ∆

(.) : { | : ,) , }I I IR C a b a b R b CI∃ = ∈ ∆ ∃ (∈ ∈

(.) : { | : (,) , }I I IR C a b a b R b CI∀ = ∈ ∆ ∀ ∈ ∈

() : { | (,) }|| }I IR a b a b R nn I∃ = ∈ ∆ || { ∈ ≥≥

() : { | (,) }|| }I IR a b a b R mm I∃ = ∈ ∆ ||{ ∈ ≤≤

|

|

 The Expressive Language ALCNHR+K(D) for Knowledge Reasoning 77

(,..., .) : { | ,...,1 1
If f P a x xn nI D∃ = ∈ ∆ ∃ ∈ ∆

: (,) ,..., (,) , ,...,1 1 1
I I Ia x f a x f x x Pn n n ∈ ∈ ()∈ }

(. : { : (,1 1
If a x a x fD I D

Ι∀ ⊥) = ∈ ∆ | ¬∃ ∈ ∆)∈ }

An interpretation DI is a model of a concept C iff DIC ≠ ∅ . An interpretation DI sat-

isfies a terminological axiom C D⊆ iff I IC D⊂ . DI is a model of a TBox iff it
satisfies all terminological axioms C D⊆ in TBox. An interpretation DI is a model

of an RBox iff I IR S⊆ for all role inclusions R S⊆ in R and, in addition,

() : ()I Itranstive R R R R +∀ ∈ =

Definition 5 (Assertional Axioms, ABox). Let O NO O O= ∪ be a set of individual
names (or individuals), where the set OO of “old” individuals is disjoint with the set

NO “new”individuals. Old individuals are those names that explicitly appear in an
ABox given as input to an algorithm for solving an inference problem, i.e. the initially
mentioned individuals must not be in NO . Elements of NO will be generated inter-
nally. Furthermore, let CO be a set of names for concrete objects ()CO O∩ = ∅ . If C

is a concept term, R R∈ ¸ a role name, f F∈ a feature, , Oa b O∈ ¸ are individual

names and 1, ,... n Cx x x O∈ , are names for concrete objects, then the following expres-
sions are assertional axioms or

ABox assertions:
:a C (concept assertion), (,) :a b R (role assertion), (,) :a x f (concrete domain feature

assertion) and 1(..) :nx x P (concrete domain predicate assertion).

For example, part of the product model, illustrated in figure 1, can be represented as
following:

_ . _ .PC has part HD has part FD⊆ ∀ ∩ ∀ ∩

_ . _ _ .has part Mother board has part OS∀ ∩ ∀ _ . . _ ,has part HD storag space∩∃

_ . . _ _ .has part OS storag space req more

HD storage_space.integerOS storage_space_requirment.integer⊆ ∀ ⊆ ∀ .

2.1 Epistemic Operation K

In some system, such as computer-aided process planning (CAPP) rules are used to
express knowledge, especial heuristic rules and default rules [13]. The simplest vari-
ant of such rules are expressions of the form C D⇒ , where C , D are concepts.
Operationally, a forward process can describe the semantics of a finite set of rules.
Starting with an initial knowledge base K , a series of knowledge
bases (0)K , (1)K , (2)K ,………. is constructed, where (0)K K= and (1)iK + is obtained
from ()iK by adding a new assertion ()D a whenever there exists a rule C D⇒ such

that () | ()iK C a= holds, but ()iK does not contain ()D a . These processes eventually

halt if the initial knowledge base contains only finitely many individuals and there are

78 N. Channa and S. Li

only finitely many rules. The difference between the rule C D⇒ and the inclusion
axiom C D⊆ is that the rule is not equivalent to its contra positive D C¬ ⇒ ¬ . In
addition, when applying rules one does not make a case analysis. For example, the
inclusions C D⊆ and C D¬ ⊆ imply that every object belongs to D, whereas none of
the rules C D⇒ and C D¬ ⇒ applies to an individual a for which neither ()C a

nor ()C a¬ can be proven. In order to capture the meaning of rules in a declarative

way, we must augment description logics by an operator K [14], which does not refer
to objects in the domain, but to what the knowledge base knows about the domain.
Therefore, K is an epistemic operator.

To introduce the K-operator, we enrich both the syntax and the semantics of de-
scription logic languages. Originally, the K-operator has been defined for ALC [15].
First, we add one case to the syntax rule that allows us to construct epistemic con-
cepts: , KC D C→ (epistemic concept). Intuitively, the concept KC denotes those
objects for which the knowledge base knows that they are instances of C . Next, us-
ing K , we translate rules C D⇒ into inclusion axioms KC D⊆ .

For example, rules like this: “in a computer, if the motherboard type is B1, then the
CPU is only limited to 386 types and the operation system is only limited to Linux
can be represented as:

(_ . 1) _ .∀ ⇒ ∀K has part B has part linux . And it can be translated into:

(_ . 1) _ .∀ ⊆ ∀K has part B has part linux .

Intuitively, the K operator in front of the concept C has the effect that the axiom is
only applicable to individuals that appear in the ABox and for which ABox and TBox
imply that they are instances of C . Such a restricted applicability prevents the inclu-
sion axiom from influencing satisfiability or subsumption relationships between con-
cepts. In the sequel, we will define a formal semantics for the operator K that has
exactly this effect. A rule knowledge base is a triple (, ,K T A R=) , where T is a

TBox, A is an ABox, and R is a set of rules written as inclusion axioms of the form
as KC D⊆ . The procedural extension of such a triple is the knowledge-

base
_ _

(,K T A=) that is obtained from (,)T A by applying the trigger rules as described

above. We call the extended knowledge base ALCNHR+K(D) knowledge base, be-
cause it extended by the operator K . The semantics of epistemic inclusions will be
defined in such a way that it applies only to individuals in the knowledge base that
provably are instances of C , but not to arbitrary domain elements, which would be
the case if we dropped K . The semantics will go beyond first-order logic because we
not only have to interpret concepts, roles and individuals, but also have to model the
knowledge of a knowledge base. The fact that a knowledge base has knowledge about
the domain can be understood in such a way that it considers only a subset W of the
set of all interpretations as possible states of the world. Those individuals that are
interpreted, as elements of C under all interpretations in W are then “known” to be
in C . To make this formal, we modify the definition of ordinary (first-order) interpre-
tations by assuming that: There is a fixed countable infinite set ∆ that is the domain
of every interpretation (Common Domain Assumption); There is a mapping from the
individuals to the domain elements that fixes the way individuals are interpreted

 The Expressive Language ALCNHR+K(D) for Knowledge Reasoning 79

(Rigid Term Assumption). The Common Domain Assumption guarantees that all
interpretations speak about the same domain. The Rigid Term Assumption allows us
to identify each individual symbols with exactly one domain element. These assump-
tions do not essentially reduce the number of possible interpretations. As a conse-
quence, properties like satisfiability and subsumption of concepts are the same inde-
pendently of whether we define them with respect to arbitrary interpretations or those
that satisfy the above assumptions. Now, we define an epistemic interpretation as a
pair (,)I W , where I is a first-order interpretation and W is a set of first-order inter-

pretations, all satisfying the above assumptions. Every epistemic interpretation gives
rise to a unique mapping ,�I W associating concepts and roles with subsets
of ∆ and ∆ × ∆ , respectively. For Τ, ⊥ for atomic concepts, negated atomic concepts,
and for atomic roles, ,�I W agrees with �I . For intersections, value restrictions, and
existential quantifications, the definition is similar to the one of �I .

, , ,()∩ = ∩I W I W I WC D C D , , ,(.) { | .(,) }I W I W I WR C a b a b R b C∀ = ∈ ∆ ∀ ∈ → ∈

, ,(.) { | .(,) }I W I WR a b a b R∃ Τ = ∈ ∆ ∃ ∈

For other constructors, ,�I W can be defined analogously. It would also be possible to
allow the operator K to occur in front of roles and to define the semantics of role
expressions of the form KR analogously. However, since epistemic roles are not
needed to explain the semantics of rules, we restrict ourselves to epistemic concepts.

3 Concept Definitions of ()ALCNHR K D+ Knowledge Base

After rules in ontology are eliminated through operator K , the ()+ALCNHR K D knowl-

edge base only includes concept definitions, which can be decomposed into three con-
cepts:

Atomic concepts, which define the ground, constructs for ontology modeling. Ob-
jects responding to atomic concepts in information system are directly implemented
by basic data structure, which connect the data level and semantic level in the hierar-
chy of knowledge representation. For example, in figure 1, i.e. part of a computer
configuration model, the concept “HD1” own an attribute “storage_space”, which is
inherited form the further concept, whose value is an integer value. So “stor-
age_space” is a concrete concept.

Abstract concepts, which are defined through relationships/attributes declarations
with hybrid concepts and other abstract concepts, such as “HD”.

Hybrid concepts, which are defined through relationships/attributes declarations with
atomic concepts and other abstract concepts or hybrid concepts, such as “HD1”. To
avoid the undecidable inferential problems brought by concrete domain, hybrid con-
cepts are decomposed into an abstract one, an image concrete concept which only
contains the concrete concepts and their constrains projected from the source hybrid
concept. The link relationship between image concrete concept and abstract concept is
implied by the name of image concrete concept. So ()+ALCNHR K D) knowledge

80 N. Channa and S. Li

base denoted as ΠKB can be divided into partitions as ΠDL, i.e. a set of DL-oriented
statements which do not exceed the expressive power of the selected DL-based sys-
tem, and ΠCS i.e. a set of non-DL statements which contains the concrete knowledge
filtered out to from ΠDL. As a result, instead of reasoning with constrains directly,
DL-based systems provide inferential services without being aware of the existence of
constraint reasoning. All the information related to concrete domains is removed form
concept definitions. Thus, only the proper DL-based constructors, which are admitted
by the selected DL-based inferential engines are left.

Fig. 1. Knowledge model for PC

For instance, let us supposed that the storage space of “HD1” type hard disk are to
be required to be more than 4 GB, and the “MS 2000” need at least 2 GB storage
space. In order to decompose the hybrid concept, we have

1 _⊆ ∩HD Hard disk _ . _ 1∀storage space storage spaceHD

⊆MS_2000 Operation_System ∩storage_space_req.storage_space_reqoper_system

In the above expression, the “storage space” restriction is replaced by an atomic con-
cept “storage_space” which has the same name with the attribute name, but with a
subscript which denote where the atomic concept comes from. Meanwhile, the restric-
tions on the hybrid concept is given as

30_ 4 21 ≥ ×storage spaceHD
302 2≥ ×storage_space_reqoper_system

Now, by normalizing the knowledge base we split the concepts definitions and restric-
tion into two parts. First, we replace all the hybrid concepts with the wrapper con-
cepts, which are rewrite only by relationship or attribute with abstract concepts, and
add new atomic concepts, such as “storage_apaceHD1” into the DL parts. Second, all
the image concrete concepts acting as constraints variables are stored in the non-DL
part together with their default domain, such as

1_ HDstorage space _storage_space_reqoper system

: type integer ……… … : type integer

30: 4 2 ≥ ×domain 30: 2 2 ≥ ×domain

In default, domain field is the range allowed by data type. The above statements are
translated into the underlying modeling languages of the cooperative inferential en-
gines. Subsequently, translated statements are loaded into DL and CPL inferential

 The Expressive Language ALCNHR+K(D) for Knowledge Reasoning 81

engines. According to the results from both inferential engines, a reasoning coordina-
tor creates hierarchical structures of hybrid concepts, which are introduced into DL
definitions through the atomic axioms concepts. In our example, after loading the
non-part into an external constraints solver, we obtain a new partial order:

storage_space_reqoperation_system _ 1⊆ storage spaceHD Sending such informa-

tion back to join the original DL part knowledge base, which can be used directly by
DLs reasoner. We can conclude that, between satisfying other constraints, if a com-
puter has a “HD1” type hard disk, operation system “linux” can be installed on it.

4 System Architecture for Knowledge Reasoning.

The STEP standard, ISO 10303, is the predominant international standard for the
definition, management, and interchange of product data, being used in a wide variety
of industries from aerospace, shipbuilding, oil and gas to power generation [16]. Cen-
tral to the standard is the product data model, which are specified in EXPRESS (ISO
10303-11), a modeling language combing ideas from the entity-attribute-relationship
family of modeling languages with object modeling concepts. To satisfy the large
number of sophisticated and complex requirements put forwards by large-scale indus-
try, the EXPRESS language has powerful expressing constructs to describe compli-
cated product information, and had been used to build up a family of robust and
time-tested standard application protocols, which had been, implemented in most
Product data management (PDM) and Computer-Aided-X (CAX) systems.

E X P R E S S b a se d P ro d u c t
K n o w le d g e b a se

T ra n s la to r fo r E X P R E S S
s c h e m a to D L s

C S re a so n e rD L s re a s o n e r

U se r In te r fa c e fo r P ro d u c t
K n o w le d g e R e a so n in g

D L s b a se d P ro d u c t
K n o w le d g e b a se

P a rse r fo r
A L C N H R + K (D)

D L s P a r t N o n D L s P a r t (C S)

R e a so n in g C o -o rd in to r

Fig. 1. Architecture for Knowledge Reasoning

82 N. Channa and S. Li

IPDM systems manages "data about data" or metadata and provides data manage-
ment and integration at the image, drawing and document levels of coarse-grain data.
CAX systems have provided engineering applications with high-performance
solutions.

In our former works [17] [18][19], we had proposed a translation mechanism,
which rewrites the EXPRESS, based product knowledge base into DL based. So the
system architecture for product data reasoning is composed of three modules, as
shows in figure2.

 The translator for EXPRESS schema to DLs;
 Parser for ALCNHR+K(D), divides DLs with constraints and concrete do-

main to DL∏ and CS∏ sub knowledge base.
 Reasoning co-coordinator, which is the link between DLs reasoner and

CS reasoner

The combined reasoning process is as follows:

1. Parse the input EXPRESS schema and translate it into the expressive DL lan-
guage-ALCNHR+K(D).

2. Parse the DL based product knowledge baseextract the concrete image concepts
form hybrid concepts and decompose it into homogeneous parts: DL, non-DL
(the concrete value and constraints).

3. Check the consistency of constraints and propagate them in order to maintain a
full path-consistency by reducing the set of possible values associated with each
constrained variable.

4. Update DL-based representation with the quasi-ordering between the atomic
concepts which are the corresponding image concept for each variable.

5. Update and classify the DL-based descriptions based on the new knowledge.

5 Conclusions and Future Work

In previous sections we presented architecture for reasoning on product knowledge,
which takes originally EXPRESS Schema as input. In order to capture the semantic of
complicated product data model, the expressive language ALCNHR+K (D) is intro-
duced. It cannot only represent knowledge about concrete domain and constraints, but
also rules in some sense of closed world semantic model hypothesis. To avoid the
undecidable inferential problems brought by the extension. A partition based reason-
ing approach is proposed. The usual reasoning problems, such as concept subsuming,
can be resolved by the combined reasoning systems, which take the DL reason engine
as the core part. Utilizing current Semantic Web technology, product knowledge can
be embedded inside Web resources. One feature of this capability is the data sources,
which are readily available for consumption by a wide variety of Semantic Web users.
Our proposed product knowledge reasoning architecture can be used to Semantic Web
based search engines and discovery services. For further work, we need to optimize
the hybrid reasoning system to adapt diverse application domain.

 The Expressive Language ALCNHR+K(D) for Knowledge Reasoning 83

References

1. Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D., and Rosati, R. 1998. Description
logic framework for information integration. In Proceedings of the 6th International Con-
ference on rinciples of Knowledge Representation and Reasoning (KR’98). 2–13.

2. The Semantic Web lifts off 'by Tim Berners-Lee and Eric Miller, W3C. ERCIM News No.
51, October 2002

3. Felix Metzger, “The challenge of capturing the semantics of STEP data models pre-
cisely”, Workshop on Product Knowledge Sharing for Integrated Enterprises
(ProKSI'96), 1996.

4. F. Baader and U. Sattler, “Description Logics with Concrete Domains and Aggregation”,
In H. Prade, editor, Proceedings of the 13th European Conference on Artificial Intelligence
(ECAI-98), pages 336-340. John Wiley & Sons Ltd, 1998.

5. F. Baader and R. Küsters, “Unification in a Description Logic with Transitive Closure of
Roles”. In R. Nieuwenhuis and A. Voronkov, editors, Proceedings of the 8th International
Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR
2001), volume 2250 of Lecture Notes in Computer Science, pages 217–232, Havana,
Cuba, 2001. Springer-Verlag.

6. V. Haarslev, C. Lutz, and R. Möller, “A Description Logic with Concrete Domains and
Role-forming Predicates”. Journal of Logic and Computation, 9(3):351–384, 1999.

7. The Description Logic Handbook, edited by F. Baader, D. Calvanese, DL McGuinness, D.
Nardi, PF Patel-Schneider, Cambridge University Press, 2002.

8. Ian Horrocks, Ulrike Sattler, “Optimised Reasoning for SHIQ”, ECAI 2002: 277-281.
9. I. Horrocks, U. Sattler, and S. Tobies, “Practical Reasoning for Very Expressive Descrip-

tion Logics”. Logic Journal of the IGPL, 8(3):239–264, May 2000.
10. E. Compatangelo, H. Meisel, “K-Share: an architecture for sharing heterogeneous concep-

tualizations”. In Intl. Workshop on Intelligent Knowledge Management Techniques
(I-KOMAT'2002) - Proc. of the 6th Intl. Conf. on Knowledge-Based Intelligent Informa-
tion & Engineering Systems (KES’2002), pages 1439–1443.

11. Volker Haarslev, Ralf Möller, Michael Wessel, “The Description Logic ALCNHR+ Ex-
tended with Concrete Domains: A Practically Motivated Approach”. IJCAR 2001: 29-44.

12. Domazet D., “The automatic tool selection with the production rules matrix method”. An-
nals of the CIRP, 1990, 39(1): 497～500.

13. Volker Haarselev and Ralf Moller. RACER system Description. In proceedings of the In-
ternational Joint Conference on Automated Reasoning(IJCAR 2001), Volume 2083, 2001.

14. Dretske, Fred, “Epistemic Operators, The Journal of Philosophy”, Vol. LXVII, No.24,
Dec. 24, pp.1007-1023.

15. Donini, F. M., Lenzerini, M., Nardi, D., Nutt, W., and Schaerf, A., “Adding epistemic op-
erators to concept languages”. In Proceedings of the 3rd International Conference on the
Principles of Knowledge Representation and Reasoning (KR’92). Morgan Kaufmann, Los
Altos, 342–353.

16. Mike Pratt, “Introduction to ISO 10303 - The STEP Standard for Product Data Ex-
change”, ASME Journal of Computing and Information Science in Engineering, No-
vember, 2000

17. Xiangjun Fu, Shanping Li, “Ontology Knowledge Representation for Product Data
Model”, Journal of Computer-Aided Design & Computer Graphics, to appear (in
Chinese).

84 N. Channa and S. Li

18. Xiangjun Fu, Shanping Li, Ming Guo, Nizamuddin Channa “Methodology for Semantic
Representing of Product Data in XML”, In Proceedings of Advance Workshop on Content
Computing, LNCS, 2004

19. Nizamuddin Channa, Shanping Li, Xiangjun Fu “Product Knowledge Reasoning: A DL-
based approach” In proceedings Seven International Conference on Electronic Commerce
(ICEC’05) Xi’an, China PP:692-697 © ACM 2005

	Introduction
	Overview of the Expressive Language ALCNHR+(D)
	Epistemic Operation K

	Concept Definitions of $ALCNHR+K(D)$ Knowledge Base
	System Architecture for Knowledge Reasoning.
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

