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Abstract. The Expressive Language ALCNHR+(D) provides conjunction, full 
negation, quantifiers, number restrictions, role hierarchies, transitively closed 
roles and concrete domains. In addition to the operators known from 
ALCNHR+, a restricted existential predicate restriction operator for concrete 
domains is supported. In order to capture the semantic of complicated knowl-
edge reasoning model, the expressive language ALCNHR+K(D) is introduced. 
It cannot only be able to represent knowledge about concrete domain and  
constraints, but also rules in some sense of closed world semantic model hy-
pothesis. The paper investigates an extension to description logic based knowl-
edge reasoning by means o f decomposing and rewriting complicated hybrid 
concepts into partitions. We present an approach that automatically decomposes 
the whole knowledge base into description logic compatible and constraints 
solver. Our arguments are two-fold. First, complex description logics with pow-
erful representation ability lack effectively reasoning ability and second, how to 
reason with the combination of inferences from distributed heterogeneous rea-
soner. 

1   Introduction 

Description logics (DLs) [1] are a family of logical formalisms that originated in the 
field of artificial intelligence as a tool for the representation of conceptual knowledge. 
Since then, DLs have been successfully used in a wide range of application areas such 
as knowledge representation, reasoning about class based formalisms  (e.g conceptual 
database models and UML diagrams) and ontology engineering in the context of 
semantic web [2]. The basic syntactic entities of description logics are concepts, 
which are constructed from concept names (unary predicates) and role names (binary 
relations). Furthermore, a set of axioms (also  called  Tbox)  are used for modeling the 
terminology of an application Knowledge  about  specific   individuals   and    their 
interrelationships is modeled with a set of additional axioms (so-called ABox). Using 
different constructors defined with a uniform syntax and unambiguous semantics, 
complex concept definitions and axioms can be built from simple components. There-
fore, DLs are particularly appealing both to represent ontological knowledge and to 
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reason with it. Unfortunately, Due to the inherent complexity with the product knowl-
edge, the expressive power needed to model complex real-world product ontologies is 
quite high. Practical product ontology not only needs to represent abstract concept in 
the application, but also the concrete domain and constrains roles [3]. Even in some 
scene, such as expert system, procedural rules also need to be considered. During the 
last few years, much research has been devoted to the development of more powerful 
representation system in DL family [4] [5] [6]. Despite the diversity of their represen-
tations, most of them are based on ALC [7] and its expressive successors SHIQ [8], 
extend the original tableau-based algorithm in different ways. It has been proved that 
reasoning about extensions of ALC with concrete domains is generally intractable. 
This problem can be moderated only if suitable restrictions are introduced in the way 
of combining concept constructors [9]. Homogeneous reasoning systems (or systems 
with homogeneous inference algorithms) have encountered the difficulty of finding 
the right ‘trade-off’ between expressiveness and computational complexity. To take 
advantage of the DLs popularity and flexibility in the context of semantic web, we 
argue that consistent DLs representation pattern is necessary. But for reasoning abil-
ity, we need to decompose the product ontology into partitions, so that different rea-
soning paradigms can be jointly used. The benefits of such an approach in the context 
of ontology sharing through the articulation of ontology interdependencies are high-
lighted in [10]. 

The rest of this paper is organized as follows: Section 2 presents the overview  
of the expressive language ALCNHR+(D) and section 3 Concept definitions of 

( )ALCNHR K D+  knowledge base. Section 4 describes System architecture for knowl-

edge reasoning in detail. Section 4 draws the conclusion and future work. 

2   Overview of the Expressive Language ALCNHR+(D) 

In this section, we introduce the expressive language ALCNHR+(D)[11], which sup-
port practical modeling requirements and had been implemented in the RACER (Rea-
soner for ABoxes and Concept Expression Reasoner) system [12]. Based on 
ALCNHR+(D), we further extend it by epistemic operator to capture rule knowledge 
in product data. The following is it’s main syntax and semantics explanation. We 
briefly introduce the syntax and semantics of the expressive language ALCNHR+(D). 
We assume five disjoint sets: a set of concept names c , a set of role names R , a set 
of feature names F , a set of individual names O  and a set of concrete objects CO . 
The mutually disjoint subsets P and T of R denote non-transitive and transitive 
roles, respectively ( ).R P T= ∪  For presenting the syntax and semantics of the 

language ( )ALCNHR D+ , a few definitions are required. 

Defination 1(Concrete Domain). A concrete domain D  is a pair ,( )D D∆ Φ , where 

D∆ is a set called the domain and DΦ  is a set of predicate names. The interpretation 
name function maps each predicate name DP  from DΦ  with arity n to a subset 

IP of n
D∆ . Concert objects from CO  are mapped to an element of D∆ . A concrete 

domain D is called admissible iff the set of predicate names DΦ is closed under  
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negation and DΦ  contains a name DT for D∆ and the satisfiability problem 
1

11 1 11 ( ,.... )n
nP x x Λ Λ 1... ( ,... )m

nm
m mnmP x x  is decidable ( m  is finite, ∈ Φni

DiP , ni is the 

arity of P and jkx is a name for concrete object from D∆ ) . We assume that D⊥  is the 
negation of the predicate DT .Using the definitions from above, the syntax of concept 
terms in ( )ALCNHR D+ is defined as follows.  

Definition 2 (Concept Terms). Let C  be a set of concept names with is disjoint form 
R  and F . Any elements of C  is a concept term. If C and D  are concept terms, 

RR ∈ is an arbitrary role, SS ∈  is a simple role, , , 1n m n∈  ≥� and 0m ≥ , DP ∈ Φ is 

a predicate of the concrete domain, 1, ,..., Fkf f f ∈  are features, then the following 

expressions are also concept terms: 

C D∩  (conjunction), C D∪  (disjunction), C¬  (negation), .R C∀  (concept value 
restriction), .R C∃  (concept exists restriction), mS≤∃  (at most number restriction), 

nS≥∃  (at least number restriction), 1, ,..., .kf f f P∃  (predicate exists restriction), 

. Df∀ ⊥  (no concrete domain filler restriction). 

Definition 3 (Terminological Axiom, TBox). If C  and D  are concept terms, then 
C D⊆  is a terminological axiom. A terminological axiom is also called generalized 
concept inclusion or GCI. A finite set of terminological axioms is called a terminol-
ogy or TBox. The next definition gives a model-theoretic semantics to the language 
introduced above. Let ( , )D DD = ∆ Φ  be a concrete domain. 

Definition 4 (Semantics). An interpretation ( , , )I
D I DI = ∆ ∆  �  consists of a set I∆  (the 

abstract domain), a set D∆  (the domain of the ‘concrete domain’ D ) and an interpre-

tation function I� . The interpretation function I� maps each concept name C to a sub-

set IC of I∆ , each role name R from R to a subset IR of I I∆ × ∆ . Each fea-

ture f from F  is mapped to a partial function If  from I∆  to D∆ where ( )If a x=  

will be written as ( , ) Ia x f∈ . Each predicate name P from DΦ with arity n is mapped 

to a subset IP of n
D∆ . Let the symbols C , D  be concept expressions, R , S be role 

names, 1, ,... nf f f  be features and let P be a predicate name. Then, the interpretation 

function is extended to arbitrary concept and role terms as follows (  ���denotes the 
cardinality of a set): 

( ) : , ( ) : , ( ) : \I I I I I I I IC D C D C D C D C CI∩ = ∩ ∪  = ∪ ¬  = ∆

( . ) : { | : , ) , }I I IR C a b a b R b CI∃  = ∈ ∆  ∃  ( ∈  ∈

( . ) : { | : ( , ) , }I I IR C a b a b R b CI∀  = ∈ ∆ ∀ ∈  ∈

( ) : { | ( , ) }|| }I IR a b a b R nn I∃  = ∈ ∆  || { ∈   ≥≥

( ) : { | ( , ) }|| }I IR a b a b R mm I∃  = ∈ ∆ ||{ ∈   ≤≤  

|

|
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( ,..., . ) : { | ,...,1 1
If f P a x xn nI D∃  = ∈ ∆   ∃ ∈ ∆      

: ( , ) ,..., ( , ) , ,...,1 1 1
I I Ia x f a x f x x Pn n n ∈ ∈  ( )∈ }

( . : { : ( ,1 1
If a x a x fD I D

Ι∀ ⊥ )  = ∈ ∆  | ¬∃ ∈ ∆  )∈ }   

An interpretation DI is a model of a concept C  iff DIC ≠ ∅ . An interpretation DI sat-

isfies a terminological axiom C D⊆ iff I IC D⊂  . DI is a model of a TBox iff it 
satisfies all terminological axioms C D⊆  in TBox. An interpretation DI is a model 

of an RBox iff I IR S⊆  for all role inclusions R S⊆ in R and, in addition, 

( ) : ( )I Itranstive R R R R +∀ ∈  =  

Definition 5 (Assertional Axioms, ABox). Let O NO O O= ∪ be a set of individual 
names (or individuals), where the set OO of “old” individuals is disjoint with the set 

NO  “new”individuals. Old individuals are those names that explicitly appear in an 
ABox given as input to an algorithm for solving an inference problem, i.e. the initially 
mentioned individuals must not be in NO . Elements of NO  will be generated inter-
nally. Furthermore, let CO be a set of names for concrete objects ( )CO O∩ = ∅ . If C 

is a concept term, R R∈ ¸ a role name, f F∈  a feature, , Oa b O∈ ¸ are individual 

names and 1, ,... n Cx x x O∈ , are names for concrete objects, then the following expres-
sions are assertional axioms or 

ABox assertions: 
:a C  (concept assertion), ( , ) :a b R (role assertion), ( , ) :a x f (concrete domain feature 

assertion) and 1( .. ) :nx x P (concrete domain predicate assertion).  

For example, part of the product model, illustrated in figure 1, can be represented as 
following: 

_ . _ .PC has part HD has part FD⊆ ∀ ∩ ∀ ∩  

_ . _ _ .has part Mother board has part OS∀ ∩ ∀ _ . . _ ,has part HD storag space∩∃   

_ . . _ _ .has part OS storag space req more  

HD storage_space.integerOS storage_space_requirment.integer⊆ ∀ ⊆ ∀ . 

2.1   Epistemic Operation K 

In some system, such as computer-aided process planning (CAPP) rules are used to 
express knowledge, especial heuristic rules and default rules [13]. The simplest vari-
ant of such rules are expressions of the form C D⇒ , where C , D  are concepts.  
Operationally, a forward process can describe the semantics of a finite set of rules. 
Starting with an initial knowledge base K , a series of knowledge 
bases (0)K , (1)K , (2)K ,………. is constructed, where (0)K K= and ( 1)iK + is obtained 
from ( )iK by adding a new assertion ( )D a whenever there exists a rule C D⇒  such 

that ( ) | ( )iK C a= holds, but ( )iK does not contain ( )D a . These processes eventually 

halt if the initial knowledge base contains only finitely many individuals and there are 
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only finitely many rules. The difference between the rule C D⇒ and the inclusion 
axiom C D⊆ is that the rule is not equivalent to its contra positive D C¬ ⇒ ¬ . In 
addition, when applying rules one does not make a case analysis. For example, the 
inclusions C D⊆ and C D¬ ⊆  imply that every object belongs to D, whereas none of 
the rules C D⇒  and C D¬ ⇒  applies to an individual a  for which neither ( )C a  

nor ( )C a¬ can be proven. In order to capture the meaning of rules in a declarative 

way, we must augment description logics by an operator K [14], which does not refer 
to objects in the domain, but to what the knowledge base knows about the domain. 
Therefore, K  is an epistemic operator.  

To introduce the K-operator, we enrich both the syntax and the semantics of de-
scription logic languages. Originally, the K-operator has been defined for ALC [15]. 
First, we add one case to the syntax rule that allows us to construct epistemic con-
cepts: , KC D C→ (epistemic concept). Intuitively, the concept KC denotes those 
objects for which the knowledge base knows that they are instances of C . Next, us-
ing K , we translate rules C D⇒  into inclusion axioms KC D⊆ . 

For example, rules like this: “in a computer, if the motherboard type is B1, then the 
CPU is only limited to 386 types and the operation system is only limited to Linux 
can be represented as: 

( _ . 1) _ .∀ ⇒ ∀K has part B has part linux . And it can be translated into: 

( _ . 1) _ .∀ ⊆ ∀K has part B has part linux . 

Intuitively, the K operator in front of the concept C has the effect that the axiom is 
only applicable to individuals that appear in the ABox and for which ABox and TBox 
imply that they are instances of C . Such a restricted applicability prevents the inclu-
sion axiom from influencing satisfiability or subsumption relationships between con-
cepts. In the sequel, we will define a formal semantics for the operator K that has 
exactly this effect.  A rule knowledge base is a triple ( , ,K T A R=   ) , where T is a 

TBox, A  is an ABox, and R is a set of rules written as inclusion axioms of the form 
as KC D⊆ . The procedural extension of such a triple is the knowledge-

base
_ _

( ,K T A=   ) that is obtained from ( , )T A by applying the trigger rules as described 

above. We call the extended knowledge base ALCNHR+K(D) knowledge base, be-
cause it extended by the operator K .  The semantics of epistemic inclusions will be 
defined in such a way that it applies only to individuals in the knowledge base that 
provably are instances of C , but not to arbitrary domain elements, which would be 
the case if we dropped K . The semantics will go beyond first-order logic because we 
not only have to interpret concepts, roles and individuals, but also have to model the 
knowledge of a knowledge base. The fact that a knowledge base has knowledge about 
the domain can be understood in such a way that it considers only a subset W of the 
set of all interpretations as possible states of the world. Those individuals that are 
interpreted, as elements of C  under all interpretations in W are then “known” to be 
in C . To make this formal, we modify the definition of ordinary (first-order) interpre-
tations by assuming that: There is a fixed countable infinite set ∆  that is the domain 
of every interpretation (Common Domain Assumption); There is a mapping from the 
individuals to the domain elements that fixes the way individuals are interpreted 
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(Rigid Term Assumption). The Common Domain Assumption guarantees that all 
interpretations speak about the same domain. The Rigid Term Assumption allows us 
to identify each individual symbols with exactly one domain element. These assump-
tions do not essentially reduce the number of possible interpretations. As a conse-
quence, properties like satisfiability and subsumption of concepts are the same inde-
pendently of whether we define them with respect to arbitrary interpretations or those 
that satisfy the above assumptions. Now, we define an epistemic interpretation as a 
pair ( , )I W , where I  is a first-order interpretation and W is a set of first-order inter-

pretations, all satisfying the above assumptions. Every epistemic interpretation gives 
rise to a unique mapping ,�I W  associating concepts and roles with subsets 
of ∆ and ∆ × ∆ , respectively. For Τ, ⊥  for atomic concepts, negated atomic concepts, 
and for atomic roles, ,�I W agrees with �I . For intersections, value restrictions, and 
existential quantifications, the definition is similar to the one of �I . 

, , ,( )∩ = ∩I W I W I WC D C D  , , ,( . ) { | .( , ) }I W I W I WR C a b a b R b C∀ = ∈ ∆  ∀ ∈ → ∈  

, ,( . ) { | .( , ) }I W I WR a b a b R∃ Τ = ∈ ∆  ∃ ∈  

For other constructors, ,�I W can be defined analogously. It would also be possible to 
allow the operator K to occur in front of roles and to define the semantics of role 
expressions of the form KR analogously. However, since epistemic roles are not 
needed to explain the semantics of rules, we restrict ourselves to epistemic concepts.  

3   Concept Definitions of ( )ALCNHR K D+  Knowledge Base 

After rules in ontology are eliminated through operator K , the ( )+ALCNHR K D knowl-

edge base only includes concept definitions, which can be decomposed into three con-
cepts: 

Atomic concepts, which define the ground, constructs for ontology modeling. Ob-
jects responding to atomic concepts in information system are directly implemented 
by basic data structure, which connect the data level and semantic level in the hierar-
chy of knowledge representation. For example, in figure 1, i.e. part of a computer 
configuration model, the concept “HD1” own an attribute “storage_space”, which is 
inherited form the further concept, whose value is an integer value. So “stor-
age_space” is a concrete concept.  

Abstract concepts, which are defined through relationships/attributes declarations 
with hybrid concepts and other abstract concepts, such as “HD”. 

Hybrid concepts, which are defined through relationships/attributes declarations with 
atomic concepts and other abstract concepts or hybrid concepts, such as “HD1”. To 
avoid the undecidable inferential problems brought by concrete domain, hybrid con-
cepts are decomposed into an abstract one, an image concrete concept which only 
contains the concrete concepts and their constrains projected from the source hybrid 
concept. The link relationship between image concrete concept and abstract concept is 
implied by the name of image concrete concept. So ( )+ALCNHR K D ) knowledge 
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base denoted as ΠKB can be divided into partitions as ΠDL, i.e. a set of DL-oriented 
statements which do not exceed the expressive power of the selected DL-based sys-
tem, and ΠCS i.e. a set of non-DL statements which contains the concrete knowledge 
filtered out to from ΠDL. As a result, instead of reasoning with constrains directly, 
DL-based systems provide inferential services without being aware of the existence of 
constraint reasoning. All the information related to concrete domains is removed form 
concept definitions. Thus, only the proper DL-based constructors, which are admitted 
by the selected DL-based inferential engines are left. 

 

 

Fig. 1. Knowledge model for PC 

For instance, let us supposed that the storage space of “HD1” type hard disk are to 
be required to be more than 4 GB, and the “MS 2000” need at least 2 GB storage 
space. In order to decompose the hybrid concept, we have 

1 _⊆ ∩HD Hard disk _ . _ 1∀storage space storage spaceHD  

⊆MS_2000 Operation_System ∩storage_space_req.storage_space_reqoper_system  

In the above expression, the “storage space” restriction is replaced by an atomic con-
cept “storage_space” which has the same name with the attribute name, but with a 
subscript which denote where the atomic concept comes from. Meanwhile, the restric-
tions on the hybrid concept is given as  

30_ 4 21 ≥ ×storage spaceHD
302 2≥ ×storage_space_reqoper_system  

Now, by normalizing the knowledge base we split the concepts definitions and restric-
tion into two parts. First, we replace all the hybrid concepts with the wrapper con-
cepts, which are rewrite only by relationship or attribute with abstract concepts, and 
add new atomic concepts, such as “storage_apaceHD1” into the DL parts. Second, all 
the image concrete concepts acting as constraints variables are stored in the non-DL 
part together with their default domain, such as  

1_ HDstorage space   _storage_space_reqoper system  

:  type integer ……… … : type integer  

30: 4 2 ≥ ×domain  30: 2 2 ≥ ×domain  

In default, domain field is the range allowed by data type. The above statements are 
translated into the underlying modeling languages of the cooperative inferential en-
gines. Subsequently, translated statements are loaded into DL and CPL inferential 
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engines. According to the results from both inferential engines, a reasoning coordina-
tor creates hierarchical structures of hybrid concepts, which are introduced into DL 
definitions through the atomic axioms concepts. In our example, after loading the 
non-part into an external constraints solver, we obtain a new partial order: 

storage_space_reqoperation_system  _ 1⊆ storage spaceHD  Sending such informa-

tion back to join the original DL part knowledge base, which can be used directly by 
DLs reasoner. We can conclude that, between satisfying other constraints, if a com-
puter has a “HD1” type hard disk, operation system “linux” can be installed on it. 

4   System Architecture for Knowledge Reasoning. 

The STEP standard, ISO 10303, is the predominant international standard for the 
definition, management, and interchange of product data, being used in a wide variety 
of industries from aerospace, shipbuilding, oil and gas to power generation [16]. Cen-
tral to the standard is the product data model, which are specified in EXPRESS (ISO 
10303-11), a modeling language combing ideas from the entity-attribute-relationship 
family of modeling languages with object modeling concepts. To satisfy the large 
number of sophisticated and complex requirements put forwards by large-scale indus-
try, the EXPRESS language has powerful expressing constructs to describe compli-
cated product information, and had been used to build up a family of robust and  
time-tested standard application protocols, which had been, implemented in most 
Product data management (PDM) and Computer-Aided-X (CAX) systems. 

 

E X P R E S S  b a se d  P ro d u c t
K n o w le d g e  b a se

T ra n s la to r fo r E X P R E S S
s c h e m a  to  D L s

C S  re a so n e rD L s  re a s o n e r

U se r In te r fa c e  fo r P ro d u c t
K n o w le d g e  R e a so n in g

D L s b a se d  P ro d u c t
K n o w le d g e  b a se

P a rse r  fo r
A L C N H R + K (D )

D L s P a r t N o n  D L s P a r t (C S )

R e a so n in g  C o -o rd in to r

 

Fig. 1. Architecture for Knowledge Reasoning 
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IPDM systems manages "data about data" or metadata and provides data manage-
ment and integration at the image, drawing and document levels of coarse-grain data. 
CAX systems have provided engineering applications with high-performance  
solutions. 

In our former works [17] [18][19], we had proposed a translation mechanism, 
which rewrites the EXPRESS, based product knowledge base into DL based. So the 
system architecture for product data reasoning is composed of three modules, as 
shows in figure2. 
 

 The translator for EXPRESS schema to DLs; 
 Parser for ALCNHR+K(D), divides DLs with constraints and concrete do-

main to   DL∏ and  CS∏ sub knowledge base.  
 Reasoning co-coordinator, which is the link between DLs reasoner and              

CS reasoner 
 

The combined reasoning process is as follows: 
 

1. Parse the input EXPRESS schema and translate it into the expressive DL lan-
guage-ALCNHR+K(D). 

2. Parse the DL based product knowledge baseextract the concrete image concepts 
form hybrid concepts and decompose it into homogeneous parts: DL, non-DL 
(the concrete value and constraints). 

3. Check the consistency of constraints and propagate them in order to maintain a 
full path-consistency by reducing the set of possible values associated with each 
constrained variable. 

4. Update DL-based representation with the quasi-ordering between the atomic 
concepts which are the corresponding image concept for each variable. 

5. Update and classify the DL-based descriptions based on the new knowledge. 

5   Conclusions and Future Work 

In previous sections we presented architecture for reasoning on product knowledge, 
which takes originally EXPRESS Schema as input. In order to capture the semantic of 
complicated product data model, the expressive language ALCNHR+K (D) is intro-
duced. It cannot only represent knowledge about concrete domain and constraints, but 
also rules in some sense of closed world semantic model hypothesis. To avoid the 
undecidable inferential problems brought by the extension. A partition based reason-
ing approach is proposed. The usual reasoning problems, such as concept subsuming, 
can be resolved by the combined reasoning systems, which take the DL reason engine 
as the core part. Utilizing current Semantic Web technology, product knowledge can 
be embedded inside Web resources. One feature of this capability is the data sources, 
which are readily available for consumption by a wide variety of Semantic Web users. 
Our proposed product knowledge reasoning architecture can be used to Semantic Web 
based search engines and discovery services. For further work, we need to optimize 
the hybrid reasoning system to adapt diverse application domain. 
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