

Lecture Notes in Computer Science 3915
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Richi Nayak Mohammed J. Zaki (Eds.)

Knowledge Discovery
from XML Documents

First International Workshop, KDXD 2006
Singapore, April 9, 2006
Proceedings

13

Volume Editors

Richi Nayak
Queensland University of Technology
Faculty of Information Technology, GP, School of Information Systems
GPO Box 2434, Brisbane, QLD 4001, Australia
E-mail: r.nayak@qut.edu.au

Mohammed J. Zaki
Rensselaer Polytechnic Institute, Computer Science Department
Troy, NY 12180-3590, USA
E-mail: zaki@cs.rpi.edu

Library of Congress Control Number: 2006922467

CR Subject Classification (1998): H.2.8, I.2, H.3, F.1

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-33180-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-33180-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11730262 06/3142 5 4 3 2 1 0

Preface

The KDXD 2006 (Knowledge Discovery from XML Documents) workshop is
the first international workshop running this year in conjunction with the 10th
Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD
2006. The workshop provided an important forum for the dissemination and
exchange of new ideas and research related to XML data discovery and retrieval.

The eXtensible Markup Language (XML) has become a standard language
for data representation and exchange. With the continuous growth in XML data
sources, the ability to manage collections of XML documents and discover knowl-
edge from them for decision support becomes increasingly important. Due to the
inherent flexibility of XML, in both structure and semantics, inferring important
knowledge from XML data is faced with new challenges as well as benefits. The
objective of the workshop was to bring together researchers and practitioners to
discuss all aspects of the emerging XML data management challenges. Thus, the
topics of interest included, but were not limited to: XML data mining methods;
XML data mining applications; XML data management emerging issues and
challenges; XML in improving knowledge discovery process; and Benchmarks
and mining performance using XML databases.

The workshop received 26 submissions. We would like to thank all those who
submitted their work to the workshop under relatively pressuring time deadlines.
We selected ten high-quality full papers for discussion and presentation in the
workshop and for inclusion in the proceedings after being peer-reviewed by at
least three members of the Program Committee. Accepted papers were grouped
in three sessions and allocated equal presentation time slots. The first session
was on XML data mining methods of classification, clustering and association.
The second session focused on the XML data reasoning and querying meth-
ods and query optimization. The last session was on XML data applications of
transportation and security. The workshop also included two invited talks from
leading researchers in this area. We would sincerely like to thank Tok wang Ling
and Stephane Bressan for presenting valuable talks in the workshop program.

Special thanks go to the Program Committee members, who shared their
expertise and time to make KDXD 2006 a success. The final quality of selected
papers reflects their efforts.

Finally, we would like to thank Queensland University of Technology for
providing us with the resources and time and the Indian Institute of Technology,
Roorkee India for providing us with the resources to undertake this task. Last
but least, we would like to thank the organizers of PAKDD 2006 for hosting
KDXD 2006. We trust that you will enjoy the papers in this volume.

January 2006 Richi Nayak
Mohammad Zaki

Organization

KDXD 2006 was organized by the School of Information System, Queensland
University of Technology, Brisbane, Australia, in cooperation with PAKDD 2006.

Workshop Chairs

Richi Nayak Queensland University of Technology, Australia
Mohammad Zaki Rensselaer Polytechnic Institute, USA

Program Committee

Hiroki Arimura (Japan)
Giovanna Guerrini (Italy)
Jung-Won Lee (Korea)
Xue Li (Australia)
Yuefeng Li (Australia)
Chengfei Liu (Australia)
Marco Mesiti(Italy)
Ankush Mittal (India)
Shi Nansi (Australia)

Siegfried Nijssen (Netherlands)
Maria Orlowska (Australia)
Seung-Soo Park (Korea)
Wenny Rahayu (Australia)
Michael Schrefl (Austria)
David Tanier (Australia)
Takeaki Uno (Japan)
Yue Xu (Australia)

Table of Contents

Keynote Papers

Opportunities for XML Data Mining in Modern Applications, or XML
Data Mining: Where Is the Ore?

Stephane Bressan, Anthony Tung, Yang Rui . 1

Capturing Semantics in XML Documents
Tok Wang Ling . 2

XML Data Mining Methods

Mining Changes from Versions of Dynamic XML Documents
Laura Irina Rusu, Wenny Rahayu, David Taniar 3

XML Document Clustering by Independent Component Analysis
Tong Wang, Da-Xin Liu, Xuan-Zuo Lin . 13

Discovering Multi Terms and Co-hyponymy from XHTML Documents
with XTREEM

Marko Brunzel, Myra Spiliopoulou . 22

Classification of XSLT-Generated Web Documents with Support Vector
Machines

Atakan Kurt, Engin Tozal . 33

Machine Learning Models: Combining Evidence of Similarity for XML
Schema Matching

Tran Hong-Minh, Dan Smith . 43

XML Data Reasoning and Querying Methods

Information Retrieval from Distributed Semistructured Documents
Using Metadata Interface

Guija Choe, Young-Kwang Nam, Joseph Goguen,
Guilian Wang . 54

Using Ontologies for Semantic Query Optimization of XML Database
Wei Sun, Da-Xin Liu . 64

VIII Table of Contents

The Expressive Language ALCNHR+K(D) for Knowledge
Reasoning

Nizamuddin Channa, Shanping Li . 74

A New Scheme to Fingerprint XML Data
Fei Guo, Jianmin Wang, Zhihao Zhang, Deyi Li 85

A Novel Labeling Scheme for Secure Broadcasting of XML Data
Min-Jeong Kim, Hye-Kyeong Ko, SangKeun Lee 95

Author Index . 105

R. Nayak and M.J. Zaki (Eds.): KDXD 2006, LNCS 3915, p. 1, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Opportunities for XML Data Mining in Modern
Applications, or XML Data Mining: Where Is the Ore?

Stephane Bressan, Anthony Tung, and Yang Rui

Department of Computer Science, School of Computing,
National University of Singapore

steph@nus.edu.sg

Abstract. We attempt to identify the opportunities for XML data mining in
modern applications. We will try and match requirements of modern application
managing XML data with the capabilities of the existing XML mining tools and
techniques.

R. Nayak and M.J. Zaki (Eds.): KDXD 2006, LNCS 3915, p. 2, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Capturing Semantics in XML Documents

Tok Wang Ling

Department of Computer Science, School of Computing,
National University of Singapore
lingtw@comp.nus.edu.sg

Abstract. Traditional semantic data models, such as the Entity Relationship
(ER) data model, are used to represent real world semantics that are crucial for
the effective management of structured data. The semantics that can be ex-
pressed in the ER data model include the representation of entity types together
with their identifiers and attributes, n-ary relationship types together with their
participating entity types and attributes, and functional dependencies among the
participating entity types of relationship types and their attributes, etc.

Today, semistructured data has become more prevalent on the Web, and
XML has become the de facto standard for semi-structured data. A DTD and an
XML Schema of an XML document only reflect the hierarchical structure of
the semistructured data stored in the XML document. The hierarchical struc-
tures of XML documents are captured by the relationships between an element
and its attributes, and between an element and its subelements. Element-
attribute relationships do not have clear semantics, and the relationships
between elements and their subelements are binary. The semantics of n-ary re-
lationships with n > 2 cannot be represented or captured correctly and precisely
in DTD and XML Schema. Many of the crucial semantics captured by the ER
model for structured data are not captured by either DTD or XML Schema. We
present the problems encountered in order to correctly and efficiently store,
query, and transform (view) XML documents without knowing these important
semantics. We solve these problems by using a semantic-rich data model
called the Object, Relationship, Attribute data model for SemiStructured Data
(ORA-SS). We briefly describe how to mine such important semantics from
given XML documents.

R. Nayak and M.J. Zaki (Eds.): KDXD 2006, LNCS 3915, pp. 3 – 12, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Mining Changes from Versions of
Dynamic XML Documents

Laura Irina Rusu1, Wenny Rahayu2, and David Taniar3

1,2 LaTrobe University, Department of Computer Science & Computer Eng, Australia
lirusu@students.latrobe.edu.au

wenny@cs.latrobe.edu.au
3 Monash University, School of Business Systems, Clayton, VIC 3800, Australia

David.Taniar@infotech.monash.edu.au

Abstract. The ability to store information contained in XML documents for
future reference becomes a very important issue these days, as the number of
applications which use and exchange data in XML format is growing
continuously. Moreover, the contents of XML documents are dynamic and they
change across time, so researchers are looking to efficient solutions to store the
documents’ versions and eventually extract interesting information out of them.
This paper proposes a novel approach for mining association rules from
changes between versions of dynamic XML documents, in a simple manner,
by using the information contained in the consolidated delta. We argue that by
applying our proposed algorithm, important information about the behaviour of
the changed XML document in time could be extracted and then used to make
predictions about its future performance.

1 Introduction

The increasing interest from various applications in storing and manipulating their
data in XML format has determined, during the last few years, a growing amount of
research work, in order to find the most effective and usable solutions in this respect.
One main focus area was XML warehousing [9, 10], but a large volume of work have
been also concentrating on the issue of mining XML documents [7, 8, 11]. The later
one evolved in a quite sensitive issue, because the users became interested not only in
storing the XML documents in a very efficient way and accessing them at any point in
time, but also in getting the most of the interesting information behind the data.

In addressing first part of the problem, i.e. XML warehousing, we have identified
at least two types of documents which could be included in a presumptive XML data
warehouse: static XML documents, which do not change their contents and structures
in time (e.g. an XML document containing the papers published in a proceedings
book) and dynamic XML documents, which change their structures or contents based
on certain business processes (e.g. the content of an on-line store might change
hourly, daily or weekly, depending on the customer behavior). While the first
category of XML documents was the subject of intense research during the recent
years, with various methods for storing and mining them being developed, there is
still work to be done in finding efficient ways to store and mine dynamic XML
documents [1].

4 L.I. Rusu, W. Rahayu and D. Taniar

The work in this paper continues the proposal made in [1], visually grouped in the
general framework presented in Figure 1. In this framework, we focused on both
warehousing and mining dynamic XML documents, in three main steps, i.e. (i)
storing multiple versions of dynamic XML documents (Fig. 1A), (ii) extracting
historic changes for a certain period of time (Fig.1B) and (iii) mining the extracted
changes (Fig.1C) to obtain interesting information (i.e. association rules) from them.

Di

rule X Y
(ARS1)

Dj

rule M N
(ARS2)

Dk

rule X Y
(ARS3)

(k-i+1)
changes
records

historic
changes

CΔ

consolidated
delta

historic
changes

Dynamic
association

rule
(ARD)

A B C

Fig. 1. A visual representation of the mining historic changes process, using consolidated delta

In this paper, we are focusing on the part C of the above mentioned framework, i.e.
extracting association rules from changes affecting dynamic XML documents. We
believe this knowledge would be very useful in determining if there are any
relationships between changes affecting different parts of the documents and making
predictions about the future behaviour of the document.

2 Related work

To our knowledge, there is no much work done in the area of mining changes
between versions of dynamic XML documents. The existing work is more focused on
determining interesting knowledge (e.g. frequently changing structures, discovering
association rules or pattern-based dynamic structures) from the multiple versions of
the document themselves, not from the actual changes happened in the specified
interval of time. We detail below some of this work, noting in the same time that the
list of examples is nor complete or exhaustive.

In [2], the authors focus on extracting the FCSs (Frequently Changing Structures).
They propose an H-DOM model to represent and store the XML structural data,
where the history of structural data is preserved and compressed. Based on the
H-DOM model, they present two algorithms to discover the FCSs.

X-Diff algorithm is proposed in [3] and it deals with unordered trees, defined as
trees where only the ancestor relationship is important, but not the order of the
siblings. This approach is considered to be better and more efficient for the purpose of
database applications of the XML. In [3], changes in a XML document over the time

 Mining Changes from Versions of Dynamic XML Documents 5

are determined by calculating the minimum-cost edit script, which is a specific
sequence of operations which can transform the XML tree from the initial to the final
phase, with the lowest possible cost. In introduces the notion of node signature and
a new type of matching between two trees, corresponding to the versions of a
document, utilized to find the minimum cost matching and cost edit script, able to
transform one tree into another.

Another algorithm, proposed by [4], deals with the unordered tree as well, but it
goes further and does not distinguish between elements and attributes, both of them
being mapped to a set of labeled nodes.

In [5], the authors focus on discovering the pattern-based dynamic structures from
versions of unordered XML documents. They present the definitions of dynamic
metrics and pattern-based dynamic structure mining from versions of XML
documents. They focus especially on two types of pattern-based dynamic structures,
i.e. increasing dynamic structure and decreasing dynamic structure, which are
defined with respect to dynamic metrics and used to build the pattern-based dynamic
structures mining algorithm.

3 Problem Specification

To exemplify the problem, in Figure 2 we present one XML document, at the time T0
(the initial document), followed by three versions, at three consecutive moments of
time, i.e. T1, T2 and T3. Each version brings some changes to the previous one,
visually represented by the dotted lines.

One technique for storing the changes of a dynamic XML document (i.e. which
changes its context in time) was proposed in [1]. Three main features of this technique
are: (i) the resulting XML document is much smaller in size than the sum of all
versions’ sizes; (ii) it allows running a simple algorithm to extract any historic version
of the document and (iii) the degree of redundancy of the stored data is very small,
only the necessary information for quick versioning being included.

By running the consolidated delta algorithm [1], we obtain a single XML
document containing the historic changes on top of the initial document. We resume
here the main steps in building the consolidated delta and few important concepts, for
a document changing from the version Di (at time Ti) to version Dj (at time Dj):

• unique identifiers are assigned for the new inserted elements in the Di version;
• version Dj is compared with the previous one Di and for each changed element in

the Dj version, a new child element is inserted in the consolidated delta, namely
<stamp>, with two attributes: (a) “time” , which contain the Ti value (e.g. month,
year etc) and (b) “delta” , which contain one of modified, added, deleted or
unchanged values, depending on the change detected at the time Ti; there are
some rules to be observed when adding the <stamp> elements [1];

• the Di version is removed from the data warehouse, as it can be anytime recreated
using the consolidated delta. The Dj version is kept until a new version arrives or
until a decision to stop the versioning process is taken; Dj will be removed after
the last run of the consolidated delta algorithm;

• at the end of the process, the consolidated delta will contain enough historical
information to allow for versioning.

6 L.I. Rusu, W. Rahayu and D. Taniar

Fig. 2. The “catalog.xml” document in four consecutive versions

We need to mention that the D0 version of the XML document (i.e. the initial one)
will be included in the initial consolidated delta; from that point, only the changes for
any subsequent version will be recorded in the consolidated delta as described above.

After running the consolidated delta algorithm [1] to capture all the changes
affecting the running example document in period T0 – T3, we will obtain an XML
document where each initial element from D0 has attached a history of its changes.
Note that, if an element was either deleted at updated at a time Ti, 0<i<3, its children
do not have attached any stamp elements for that specific time and this helps in
limiting as much as possible the degree of redundancy of the data stored in the
consolidated delta.

In our working example, the changes affecting the initial XML document during
the consecutive transformations from a version to another are presented in Table 1.

<catalog>
 <product>
 <status> Available</Status>
 <name>Walkman</name>

<descript>A very good one</descript>
<price>150$</price>

 </product>
 <product>
 <status>Not available</status>
 <name>MP1</name>
 <price>200$</price>

<description>a mobile
phone</description>

 </product>
 <product>
 <status>Not available</status>
 <name>MP2</name>

<description>another mobile
phone</description>

 </product>
</catalog>

T0

<catalog>
 <product>
 <status> Available</Status>
 <name>Walkman</name>

<descript>A very good one</descript>
<price>180$</price>

 </product>
 <product>
 <status>Not available</status>
 <name>MP1</name>

<description>a mobile phone</description>
 </product>
 </catalog>

T1

<catalog>
 <product>
 <status> Available</Status>
 <name>Walkman</name>

<descript>A very good one</descript>
<price>250$</price>

 </product>
 <product>
 <status>Available</status>
 <name>MP1</name>

<description>a mobile phone</description>
 </product>

<product>
 <status>Available</status>
 <name>Suitcase</name>
 <price>500$</price>

<description>red leather case</description>
 </product>
</catalog>

T2

<catalog>
 <product>
 <status> Available</Status>
 <name>Nice walkman</name>

<descript>A very good one</descript>
<price>250$</price>

 </product>
<product>

 <status>Available</status>
 <name>Suitcase</name>
 <price>450$</price>

<description> red leather case
</description>

 </product>
<product>

 <status>Available</status>
 <name>BBQ set</name>

<description>stainless steel bbq
tools</description>

 </product>
</catalog>

T3

Deleted T1

Inserted T3

Deleted T3

Inserted T2

Modified T3

Modified T3

Modified T2

Modified T2

Modified T1

 Mining Changes from Versions of Dynamic XML Documents 7

Table 1. The list of changes for the working example, for three consecutive versions of an
XML document

T0 T1 Price – modified; Product –
deleted; Price – deleted

T1 T2 Product – inserted; Price –
modified; Status – modified

T2 T3 Name – modified; Product –
deleted; Price – modified;
Product – inserted

If, in our working example, we consider the sets of changes in periods T0 T1,
T1 T2 and T2 T3 (see Table 1) as transactions, it can be noticed that the pairs “Price-
modified” and “Product-inserted” appear in 2 of the 3 (66%) of the transactions. If the
minimum support required is set at a level lower than 66%, the association rule
extracted would be: “when a price element is modified, a product is inserted as well,
and this happens in 66% of the sets of changes appearing from a version to another”.

This paper proposes to build a generic algorithm for extracting association rules
from the changes which affect dynamic XML documents, i.e. to discover if there are
any relationships between modifications, deletions or insertions of some elements or
another. As exemplified above, the resulting rules could be very informative about
how parts of the document are changing together so the user can make predictions
about the future behaviour of the dynamic XML document.

4 Mining Changes – The Proposed Algorithm

The algorithm for mining changes from historic versions of dynamic XML documents
is an improved Apriori one, redesigned to be applicable to XML documents; it has a
preparation step and four main working steps, as follows:

Fig. 3. Generic algorithm for extracting historic changes (ECD) from consolidated delta document

 For each Ti, 0<i<n
 Get all nodes with timestamp Ti
 For each node with timestamp Ti and delta not “unchanged”
 If the delta is “modified” or “inserted”
 If the node has no other children elements except stamp
 Record timestamp, value and delta
 End if
 Else ‘ i.e. delta is “deleted”
 Record timestamp and delta
 End if
 Next
 Next

8 L.I. Rusu, W. Rahayu and D. Taniar

Preparation step:
Because we want to mine the actual changes which influenced the initial XML
document, we use the consolidated delta to extract the set of changes, using the
algorithm proposed in Figure 3. We will name the resulting document ECD (the
extracted changes document) further in the paper.

For each moment of time Ti when the document was changed, 0<i<=n, we will
have a transaction containing the elements changed at the time Ti. Each combination
{element – change} will actually become an item in our mining algorithm.

During this step, also count the number of transactions in the ECD. It will be
relevant for calculating the support of the association rules discovered.

Step 1:
During this step, a new XML document is built, to store the number of modifications,
deletions, insertions for each element Ei in ECD, together with the associated support
for each pair “element-change’. The document will be named MCdoc (matrix of
changes in the document), further in the paper.

The number of modifications, insertions and deletions will be stored as attributes
of each element in MCdoc. Each time a new element is found in the extracted changes
document, the modified, inserted or deleted attribute will take value 1. If the same
element is found again to be changed during a different transaction, the corresponding
attribute will be updated to reflect the current number of changes; the support of the
pair {element – change} will be updated too, with regard to the total number of
transactions (see preparation step).

If during the preparation step, we also include the paths of the elements in the
extracted changes document, the algorithm will be able to identify only the distinct
elements and their changes, so elements with same name but different positions in the
hierarchy will be recorded separately. The algorithm for Step 1 is detailed in Figure 4.

In our working example, the total number of changes extracted is 10 and the result
of applying this step is the document in Figure 6.

 For each element Ei in ECD
 Search MCdoc for the element Ei
 If not found
 Include it in the MCdoc, with value 1 to the appropriate argument
 Else
 ‘check if the path is different
 If path attribute is different

 Include it in the MCdoc, with value 1 to the appropriate argument
 Else
 Update the appropriate argument to reflect the change attached
 Update the support of the pair “element – change’
 End if
 End if
Next element Ei

Fig. 4. Step 1 of the proposed algorithm, i.e. building the document with changing items and
their support from the ECD (extracted changes document)

 Mining Changes from Versions of Dynamic XML Documents 9

Set L = set of large 1-itemsets
For each element in MCDoc
 If sup_modif > min_sup
 Add {“element” – modif} pair to L
 If sup_insert > min_sup
 Add {“element” – inserted} pair to L
 If sup_delete > min_sup
 Add {“element” – deleted} pair to L
Next element

Fig. 5. Step 2 of the proposed algorithm, i.e. determining the large 1-itemsets

Step 2:
The 1-large itemsets will be extracted from the document build at step 1, i.e. those
items (element - change pairs) which have the support in ECD higher than the
min_sup set at the beginning of the process (see Figure 5 for the algorithm).

In our example, we set the minimum support to 20%, so the frequent 1-itemsets are
three: {price - modified}, {product - inserted} and {product-deleted} (see dotted lines
in Figure 6). We emphasise again the fact that, in our proposed algorithm, not the
actual elements from the initial document are the items in transactions, but the
combinations (pairs) element – change.

 <MCdoc>

 <price modified=”3” inserted=”0” deleted=”1”

 sup_modif=”0.3” sup_insert=”0” sup_delete=”0.1”

 path=”catalog/product/price”/>

 <product modified=”0” inserted=”2” deleted=”2”

 sup_modif=”0” sup_insert=”0.2” sup_delete=”0.2”

 path=”catalog/product”/>

 <status modified=”1” inserted=”0” deleted=”0”

 sup_modif=”0.1” sup_insert=”0” sup_delete=”0”

 path=”catalog/product/status”/>

 <name modified=”1” inserted=”0” deleted=”0”

 sup_modif=”0.1” sup_insert=”0” sup_delete=”0”

 path=”catalog/product/name”/>

 </MCdoc >

Large 1-itemsets

Fig. 6. The document resulted by applying Step 1 of the proposed mining changes algorithm,
highlighting the large 1-itemsets in the working example

Step 3:
Similar with the Apriori-based algorithm, the k-itemsets (k>1) are built starting from
the 1-itemsets; for each of them the support is calculated with respect to the total

10 L.I. Rusu, W. Rahayu and D. Taniar

number of changes from ECD. This step is repeated until all the large n-itemsets are
found. This step will be influenced by the observation that any larke k-itemset (i.e.
which has a support greater than minimum required) needs to have all its subsets
large. In figure 7, we show a general k step.

In our example, the 2-itemset {price – modified, product - inserted} has the
support=0.66, because both pairs appear in two out of three transactions extracted.

 For each large (k-1) itemset in Lk-1
 Extend to k itemset by adding a 1-large itemset
 ‘calculate its support in ECD (extracted changes document)
 For each transaction in ECD
 Set bPairFound=false
 For each pair {element-change} in the k itemset
 If (transaction//element and transaction//change) not null
 Set bPairFound= true
 Else
 Set bPairFound= true
 Next pair
 If bPairFound=true ‘found all pairs from k itemset
 Update Sk - support of k itemset
 Next transaction
 If Sk > min_sup then add k itemset to Lk - the list of large k itemsets
Next (k-1) itemset

Fig. 7. Step 3 of the proposed algorithm, i.e. determining the large k-itemsets from the (k-1)
large itemsets

Step 4:
Based on the large n-itemsets extracted at Step 3, we determine the association rule
and calculate their confidence. In the above working example, the rule extracted is “if
a price element is modified, a product is inserted as well, and this happens in 66% of
the sets of changes appearing from a version to another” and it will have a confidence
of 66%.

5 Evaluation of Experimental Results

To evaluate the proposed approach we used the consolidated delta obtained from
successive versions of the same XML documents of various sizes, i.e. 25kb, 63kB,
and 127kB, data being downloaded from the SIGMOD dataset [6]. Firstly, we built a
number of versions for each type of document by using a changes simulator, created
by us, which takes as input the Di version of the document (0<i<n) and returns a
modified Di+1 version, where the desired percentages of deletions, insertions and
modifications can be controlled through a user-friendly interface and elements to be
changed are randomly chosen. For each new version of each document, we calculate
the corresponding consolidated delta, observing the rules in [1];

 Mining Changes from Versions of Dynamic XML Documents 11

By applying the algorithm proposed in this paper and implemented in Visual Basic,
we got a number of association rules and we made measurements of the running time,
for different values of the minimum support required. The graph in Figure 8 shows
the time of running for each consolidated delta obtained after few sets of changes
(number showed in parenthesis on the graph legend) and for different values of
minimum support required.

0

50

100

150

200

50% 40% 30% 20% 10% 5%

Minimum support (min_sup)

T
im

e
in

 s
ec

o
n
d

28kB (25kB after 7changes) 70kB (63kB after 5changes)

448kB (127kB after 10 changes)

Fig. 8. Running time for three different sized consolidated delta and six different percentages of
minimum support imposed

As it can be noticed from the graph, the smaller consolidated delta has the best
results as time of running, as one would expect and even for large XML documents
(as it is the 448kB consolidated delta) the time is kept under 3 minutes. We need to
mention that the first two steps, i.e. preparation step (when the ECD - extracted
changes document is built) and step 1 (when the large 1-itemsets are identified) are
the most expensive ones, as time and processor resources. Our future work is to
explore the possibilities of making this steps more efficient, so the overall
performance of the algorithm to be improved.

6 Conclusions

In conclusion, this paper presents a novel approach for mining changes extracted from
versions of dynamic XML documents, by looking into the actual changes and into the
associations between them. The motivation for this research was that the user not only
needs to know which are, for example, the most changing parts of the document, but
also which are the relationships between the changes of the document’s parts, e.g.
modifications of some parts of the document might be related with insertions of some
new parts or with deletions of other parts. The information extracted would be very
useful to predict the future behaviour of a dynamic XML document. We hence
propose an algorithm to mine these changes, in few clear steps, with examples easy to
understand and replicate.

12 L.I. Rusu, W. Rahayu and D. Taniar

References

1. Rusu, L.I., Rahayu W., Taniar D., “Maintaining Versions of Dynamic XML Documents”,
Proceed. of The 6th International Conference on Web Information Systems Engineering
(WISE 2005), New York, LNCS 3806, pp. 536-543, 2005

2. Zhao, Q., Bhowmick, S.S., Mohania, M., Kambayashi, Y., “FCS Mining: Discovering
Frequently Changing Structures from Historical Structural Deltas of Unordered XML”, In
Proceedings of the 13th Conference on Information and Knowledge Management (CIKM
2004), pp. 188-197

3. Wang Y., DeWitt D.J., Cai J.Y., “X-Diff: An Effective Change Detection Algorithms for
XML Documents”, In Proceedings of ICDE 2003, pp.519-530, IEEE Computer Society,
2003

4. Zhao, Q., Bhowmick, S.S., Mohania, M., Kambayashi, Y., “Discovering Frequently
Changing Structures from Historical Structural Deltas of Unordered XML”, Proceedings
of ACM CIKM’04, pp.188-197, November 8-13, Washington, US, 2004

5. Zhao, Q., Bhowmick, S.S., Mandria, S., “Discovering Pattern-based Dynamic Structure
from Versions of Unordered XML Documents”, In Proceedings of the 6th International
Conference on Data Warehousing and Knowledge Discovery (DaWak 2004), pp.77-86,
Zaragoza, Spain, September 1-3, 2004

6. www.cs.washington.edu/datasets - SIGMOD XML dataset
7. Yin, M., Goh, D.H-L, Lim, E-P., and Sun, A., “Discovery of Content Entities from Web

Sites Using Web Unit Mining”, International Journal of Web Information Systems,
1(3):123-136, 2005.

8. Zhou, B., Hui, S.C., and Fong, A.C.M., “A Web Usage Lattice Based Mining Approach
for Intelligent Web Perzonalization”, International Journal of Web Information Systems,
1(3):137-146, 2005.

9. Quang, N.H., Rahayu, W., “XML Schema Design Approach”, International Journal of
Web Information Systems, 1(3):161-178, 2005.

10. Rusu L.I., Rahayu W., Taniar D., “A methodology for building XML data warehouses”,
International Journal of Data Warehousing and Mining, vol.1, no.2, pp.67-92, April - June
2005

11. Feng.L, Dillon T., “An XML-enabled data mining query language: XML-DMQL”,
International Journal of Business Intelligence and Data Mining, vol 1, no 1, 22-41, 2005-
11-30

R. Nayak and M.J. Zaki (Eds.): KDXD 2006, LNCS 3915, pp. 13 – 21, 2006.
© Springer-Verlag Berlin Heidelberg 2006

XML Document Clustering by Independent Component
Analysis

Tong Wang1, Da-Xin Liu1, and Xuan-Zuo Lin2

1 Department of Computer Science and Technology,
Harbin Engineering University, China

Wangtong@hrbeu.edu.cn
2 Northeast Agriculture University, Harbin, China

xuanzuolin@sina.com

Abstract. When XML documents are clustered, the high dimensionality prob-
lem will occur. Independent Component Analysis (ICA) can reduce dimension-
ality and in the meanwhile find the underlying latent variables of XML
structures to improve the quality of the clustering. This paper proposes a novel
strategy to cluster XML documents based on ICA. According to D_path ex-
tracted from XML trees, the document was at first represented as Vector Space
Model (VSM).Then ICA is applied to reduce the dimensionality of document
vectors. Furthermore, document vectors are clustered on this reduced Euclidean
Space spanned by the independent components. The experiments show that ICA
can enhance the accuracy of the clustering with stable performance.

1 Introduction

XML is becoming the standard web data exchange format. Many research efforts are
currently devoted to support the storage and retrieval of large collections of such
documents. Our research is driven by the hypothesis that closely associated docu-
ments tend to be relevant to the same requests, thus grouping similar documents can
accelerate the search [1]. Many researchers [2][3] measure structural similarity using
the “edit distance” between tree structures. However, the edit distance between two
documents has time complexity at least 2()O n and the algorithm requires computing

the distance for each document-pair. Thus, it is unsuitable for a collection of large
documents. In this paper, we represent XML documents using path sequences. The
representation can embody the structural information with lower complexity.

Moreover, it is common to extract thousands of different words or features from
text document in order to represent the vectors. The high dimensionality of natural
text is often referred to as the "curse of dimensionality". In the context of clustering,
the commonly used distance measure between data points will lose discriminative
power gradually as the number of dimensions increases for the given dataset. It has
been shown that, in a high dimensional space, data points almost always have equal
distance to each other for various data distributions and distance functions [4]. To
solve the high-dimensionality problem, various reduction dimension methods [5, 6]
have been applied for clustering.

14 T. Wang, D.-X. Liu, and X.-Z. Lin

Independent Component Analysis (ICA) has gained widespread attention in signal
processing, face recognition [7], etc. However, there are only few works in which
ICA is applied to text applications such as topic discovery in temporal text [11], and
unsupervised identification of linguistic features such as parts of speech [9]. In order
to mine intrinsic structure of documents in higher-order statistics, this paper applied
ICA to reduce dimension of vector space. To the best of author’s knowledge, this pa-
per is the first to introduce ICA into XML document clustering.

In this paper, we propose a novel clustering strategy for XML documents using ICA
(ICAXC). Based on _D path , we at first represent documents as vectors in VSM. Fur-

thermore, we get the independent components of document matrix and cluster vectors in
the reduced space spanned by ICs. The remainder of the paper is organized as follows:
section 2 is the feature extraction; section 3 introduced the ICAXC technique; we analyze
experiment results in section 4 and conclude in section 5.

2 Vector Representation

XML document can be viewed as a labeled tree. In our case, we define here XML
document tree d . �

Definition 1. XML document tree: Suppose a countable infinite set E of element
labels (tags), a countable infinite set A of attribute names. An XML document tree is
defined to be (, , , ,)rd V lab ele att v= where V is a finite set of nodes in d; lab is a

function from V to E AU ; ele is a partial function from V to a sequence of V nodes
such that for any v V∈ , if ele(v) is defined then ()lab v E∈ ; att is a partial function

from V A× to V such that for any v V∈ and l A∈ , if 1(,)att v l v= , then ()lab v E∈

and 1()lab v l= ; rv is a distinguished node in V called root of d, ()rlab v root= .

Figure 1 shows an example of XML document trees. The model is a rooted, directed,
and unordered tree. A path in d is a sequence of nodes 1 2 3, , ,..., nv v v v , through which

we can traverse step by step in d . In addition, there exists one and only one path
from node iv to node jv for each iv and jv , provided i jv v≠ .

book

phonename

authortitle

Pubaddr pubname

publisher

book

phone

author

publisher

name

title

yearyear

Fig. 1. XML document tree 1d (left) and 2d (right)

 XML Document Clustering by Independent Component Analysis 15

Definition 2. Path Sequence: Consider an XML document tree, d . The path se-

quence of iv is an ordered sequence of tag names from rv to iv , written _
i

d
vD path :

0 1_ { , ,..., }
i

d
v qD path v v v= , where ,k [1...q]kv V∈ ∈ .

Given node iv and pv , we define iv is nested in pv w.r.t. ,ii p v< ∧ _
i

d
p vv D path∈ .

Note that _D path describes not only the XML structure but also hierarchical infor-

mation of kd , for it shows how iv is nested in kd . Since an XML document kd con-

sists of many _ k

i

d
vD path sequences, it can be expressed as follows:

1 2{ _ , _ ,..., _ }k k kd d d
k v v vwd D path D path D path= . (1)

We employ the Vector Space Model (VSM)[10] and consider a document collec-
tion, matrix 1 2(, ...)m n nD d d d× = , where n is the cardinality of the collection and m is

the number of _D paths extracted from D. Each column is an m-dimensional vector

relevant to document kd , k [1...n]∈ and every row corresponds to one _D path . The

thi row of kd is the number of the corresponding _D path occurrences if _D path

exists in kd ; otherwise, the thi row of vector is 0. This arrangement is analogous to

standard term-document matrix used in latent Semantic Indexing (LSI) literature [12].

Table 1. Representation of XML document D=(1d , 2d), where 1d and 2d are given in figure 1

D_Path Real path sequence 1d 2d

1_D path <{book},{title}> 1 1

2_D path <{book},{author},{name}> 1 1

3_D path <{book},{author},{phone}> 1 1

4_D path <{book},{publisher},{pubaddr}> 1 0

5_D path <{book},{publisher}> 0 1

6_D path <{book},{year}> 0 2

7_D path <{book},{publisher},{pubname}> 1 0

Let us take XML document collection D= (1d , 2d) as an example. As is shown in

table1, T
1 {1,1,1,1,0,0,1}d and T

2 {1,1,1,0,1,2,0}d . In the context of clustering, we

choose to compute the Distance metric via cosine Distance [17].

()
tan (,)

|| || || ||

T
i j

i j
i j

d d
Dis ce d d

d d
=

⋅
. (2)

16 T. Wang, D.-X. Liu, and X.-Z. Lin

3 Document Clustering Based on ICA

The proposed XML Clustering strategy based on ICA (called ICAXC) consists of 3
stages: vector representation, feature transformation with ICA and clustering with
C-means method. Section 2 has introduced the feature extraction and vector represen-
tation. In this section, we will show how ICA reduces the dimensionality of vector
space and finds the latent variables. Then, standard C-means method is employed to
cluster in reduced Euclidean space.

3.1 Background

Independent Component Analysis (ICA) is a statistical and computational technique
for revealing hidden factors that underlie sets of random variables or signals. It is a
general-purpose statistical technique, which tries to linearly transform the original
data into components that are maximally independent from each other in a statistical
sense. ICA has enjoyed good success in many different areas:

Consider, for example, electrical recordings of brain activity as given by an elec-
troencephalogram (EEG). The EEG data consists of recordings of electrical potentials
in many different locations on the scalp. These potentials are presumably generated
by mixing some underlying components of brain activity. This situation is quite
similar to the cocktail-party problem: we would like to find the original components
of brain activity, but we can only observe mixtures of the components. ICA can
reveal interesting information on brain activity by giving access to its independent
components.

A very different application of ICA is on feature extraction. A fundamental prob-
lem in digital signal processing is to find suitable representations for image, audio or
other kind of data for tasks like compression and denoising. Data representations are
often based on (discrete) linear transformations. Standard linear transformations
widely used in image processing are the Fourier, cosine transforms etc. Each of them
has its own favorable properties [13].

However, until very recently, there are only a few experimental works in which
ICA is applied to text applications [11][14]. ICA has been compared to LSI in produc-
ing representations better aligned with the grouping structure of the given text [14].
An extension of standard ICA to streaming data has been used successfully for identi-
fying topics in a dynamical textual environment, i.e., chat room conversation streams
[11]. So far, the other applications of ICA to text are still few.

3.2 Dimensionality Reduction of Document Matrix

When XML documents are clustered, the tags from the XML provide the structural and
semantic information, which can improve the discriminative ability of each XML docu-
ments. Since _D path is nested in XML structures, there is close correlativeness and re-

dundancy between these paths. Thus, ICA can help for mining the hidden relevancy from
the deeper statistical level. Actually, the process of dimension reduction via ICA is actu-
ally the process of feature transformation in document collection, matrix m nD × . The

lower dimensional space is often believed to represent the underlying latent structure or
features in the matrix. Such a transformation can either guarantee a good degree of

 XML Document Clustering by Independent Component Analysis 17

distance preservation among vectors or generate statistically more independent compo-
nents of the original dataset.

Independent component analysis was originally developed to deal with problems
that are closely related to the cocktail-party problem. However, in this paper, ICA
procedure is described for document clustering.

We assume each observed data (in our case, a document id) being generated by a

mixing process of statistically independent components (latent variables is). Accord-

ing to Vector Space Model, the noise-free mixing model can be written as

m n m k k nD A S× × ×= ⋅ . (3)

where A is referred to as the mixing matrix. Suppose the inverse of matrix A is im-
mixing matrix W, the independent components can be expressed as

k n k m m nS W D× × ×= ⋅ . (4)

where W is the projection matrix that projects D from m dimensional space to a lower
k dimensional space(k m≤).

In our application, the task of ICA is to use documents matrix 1 2(, ,...,)nD d d d= to

estimate the mixing matrix A and the independent components, S , which represents
the new documents collection. Afterwards, clustering is operated on this space
spanned by the independent components.

The most commonly used implementation is fastICA [13], which is known to be ro-
bust and efficient in detecting the underlying independent components in the data for a
wide range of underlying distributions [8]. The mathematical details of fastICA can be
found in [11], which is not discussed here. FastICA has two pre-processing steps: center-
ing and whitening. In our experiment, the most time consuming part of fastICA is the
whitening, which can be computed with SVDs in MatlabTM. Based on principal compo-
nents of the matrix D obtained in the whitening, fastICA algorithm then iterates to find

one independent component each time by Negentropy-maximization [13].

3.3 Clustering Method

After dimension reduction, we discuss the use of the clustering algorithm, which
is employed to cluster vectors in the reduced Euclidean space. We choose to use
C-means, since C-means is the most popular clustering algorithms used in text clus-
tering [15] and its efficiency, with time complexity ()O ntk , where n is the size of

dataset, k is the clusters and t is the circle time. Besides, recent studies have shown
that partitional clustering algorithms are more suitable for clustering large datasets
than other clustering algorithms [19].

C-means algorithm is a simple, partitional clustering algorithm based on the firm
foundation of analysis of variances. It clusters a group of data vectors into a prede-
fined number of clusters. It starts with randomly initial cluster centroids and keeps

18 T. Wang, D.-X. Liu, and X.-Z. Lin

reassigning the data objects in the dataset to cluster centroids based on the similarity
between the data object and the cluster centroid. The reassignment procedure will not
stop until a convergence criterion is metï(e.g., the fixed iteration number, or the clus-
ter result does not change after a certain number of iterations).

4 Experimental Results and Analysis

We conducted the experiments on a workstation of 1.5GHz Intel Pentium 4 machine
with 512 MB main memory.

4.1 Dataset

We choose a variety of XML datasets including two widely used real datasets and one
synthetic dataset, Xmark. One real dataset is obtained from DBLP [16], the biblio-
graphical data of scientific conferences and journals; the other is Swiss Prot, a real-
life data set with annotations on proteins; Xmark, a synthetic dataset that models
transactions on an on-line auction site. Compared with DBLP, the data in Xmark is
relatively tilted and sparse, with more complex structures.

The test subset of DBLP we used consists of 10 different ACM Journals. Each journal
with 100 documents is grouped, denoted by ,1 10iG i≤ ≤ . We mix these documents to-

gether and cluster them for our test. In the context of clustering, we can also produce 10
categories, denoted by ,1 10iC i≤ ≤ . Similarly, the subset of Protein set contains 1324

document that have been classified into 54 categories.
For the synthetic dataset, Xmark, our experiment is based on the hypothesis that

the documents with the same DTD will be clustered in the same class. When we gen-
erate files using Xmark, the scale parameter of Xmark is 0.2. That is, each generated
document is 20M or so. We input 5 DTD (Data Type Definition) documents [18] and
for each DTD generate 20, 40, 60, 80, 100 XML documents, respectively. The five
generated datasets are denoted as Xmark1, Xmark2, Xmark3, Xmark4 and Xmark5,
respectively.

4.2 Measurement of Clustering Accuracy

In order to measure the clustering accuracy, we take the DBLP as an example. As
mentioned above, the groups we specify beforehand are denoted by ,iG and the final

clustered groups in the experiments are denoted by iC . The δ function is given by

1 2
1 2

1 2

0, , ,
(, ,)

1, , ,
j

i
j

if j d d G
d d C

if j d d G
δ

∃ ∈
=

¬∃ ∈
 . (5)

where 1d 2d are documents from iC category. To quantify the clustering accuracy of

the ICAXC technique, we define Classified Error Rate (CER) as follows.

 XML Document Clustering by Independent Component Analysis 19

,

(, ,)

[(1) / 2]

i

i
i m n C m n

i

m n C

CER
i i

δ
∈ ∧ ≠=

× −
. (6)

If there is no pair of documents occurring in both C and G classes, the error rate
will reach the maximum value, e.g., combination 2

iC = (1) / 2i i× − . CER is a relative

error rate value, 0 1CER≤ ≤ . A lower CER value would indicate that the hidden
variable discovered by the clustering is more informative of, or more useful in recov-
ering, the original classification.

4.3 Experimental Analysis

To test the performance of the proposed strategy, we also implement the naïve clus-
tering method and represent document vector using D_path sequences. In the third
stage of ICAXC, we choose the same clustering method C-means as naïve method
does. Besides, the documents were parsed into labeled trees via the parser developed
by Zhang et al [20] in pre-process.

All tests are under Matlab 6.5.1 environment. The matlab code for fastICA is ob-
tained from [13]. The C-means procedures are taken directly from Matlab toolboxes.
In the stage of standard C-means procedure, the choice of k is often ad hoc, larger
than the number of classes in general. In our case, we choose the class number. Since
C-means is sensitive to the input order of vectors, we did each experiment several
times and obtained the mean of CER. Fig.2 shows the results of the two methods.

0

0. 05

0. 1

0. 15

0. 2

0. 25

DBLP Prot ei n Xmark1

ICAXC

nai ve

Fig. 2. Classified Error Rate of two methods: the ICAXC and naïve method (without dimen-
sionality reduction by ICA)

The first case is to test the accuracy of the ICAXC method. From figure 2, for all
the datasets, it is obvious that CER value of ICAXC outperformed that of naïve
clustering without ICA method. That’s to say, ICA method significantly improves
clustering quality. This occurs because the discriminative information in the XML
documents is mainly associated with the independent components of the document

20 T. Wang, D.-X. Liu, and X.-Z. Lin

100 200 300 400 500
5

10

15

20

25

30

C
la

ss
ifi

ed
 E

rr
or

 R
at

e

Scale of Documents

 ICAXC

Fig. 3. The scalability of the ICAXC method. Xmark datasets: Xmark1, Xmark2, Xmark3,
Xmark4 and Xmark5.

matrix D. ICA can mine the projection axes that can be aligned with the data distribu-
tion and embody more information. When ICA is used to highlight the discriminative
features and at the same time to eliminate ambiguous portions, the performance of the
clustering is enhanced.

Note also that the clustering performance of two methods is almost similar in the
Xmark1 dataset. This happens due to that ICA technique may not as effective in the
sparse matrix as in the normal document matrix.

Then, we test the scalability of ICAXC. In this experiment, Xmark1, Xmark2,
Xmark3, Xmark4 and Xmark5 are used as the test dataset, one by one. Figure 3 shows
that the Classified Error Rate of these dataset varies very small when the number of
the documents increases. It shows that as a dimension reduction technique, the ICA
algorithm is a robust and stable algorithm especially when the scale of dataset is large
[15]. That is to say, the proposed strategy can be used for a high-volume XML docu-
ments collection.

5 Conclusions

This paper presents a clustering strategy for XML documents. According to the
D_path, we introduced the vector representation and distance metric. Then, we apply
ICA to reduce the dimensionality of vector space and in the meanwhile, fine the latent
features in XML documents. Finally, standard c-means method is used for clustering
in reduced Euclidean space. Experimental results show that the method using Inde-
pendent Component Analysis outperformed the traditional clustering method.

References

1. Faloutsos C. and Oard D. A survey of information retrieval and filtering methods. De-
partment of Computer Science. University of Maryland, Technical Report, CS-TR-35l4,
August (1995)

2. A. Nierman and H.V. Jagadish, “Evaluating Structural Similarity in XML Documents,”
Proc. Fifth Int’l Workshop Web and Databases, June (2002) 1-16

 XML Document Clustering by Independent Component Analysis 21

3. Gianni Costa, Giuseppe Manco, Riccardo Ortale, Andrea Tagarelli: A Tree-Based Ap-
proach to Clustering XML Documents by Structure. PKDD 2004, Sydney, Austra-
lia.(2004) 137-148

4. K. Beyer, J. Goldstein., R. Ramakrishnan., & U. Shaft, "When is the Nearest Neighbour
Meaningful?" Proc.of the 7th International Conference on Database Theory, (1999) 217-
235

5. L. Parsons, E. Hague, H. Liu, "Subspace clustering for high dimensional data: a review",
ACM SIGKDD Explorations Newsletter, Special issue on learning from imbalanced data-
sets, vol. 6 (1), (2004) 90 - 105

6. Jianghui Liu, Jason TL Wang, Wynne Hsu, Katherine G. Herbert: XML Clustering by
Principal Component Analysis. Proc. of ICTAI 2004: 658-662.

7. A. Hyvärinen and E. Oja. “A fast fixed-point algorithm for independent component analy-
sis,” Neural Computation, vol, 9, (1997) 1483-1492

8. H.H. Bock, "Probabilistic aspects in clustering analysis," Conceptual and numerical analy-
sis of data, pp., Berlin: Springer-verlag, (1989) 12-44

9. Honkela, T., & Hyvarinen, A. Linguistic feature extraction using independent component
analysis. Proc. of IJCNN2004, Budapest, Hungary,(2004)

10. R. Baeza-Yates and B. Ribeiro. Modern Information Retrieval. Addison Wesley, (1999)
11. E. Bingham, A. Kabán, and M. Girolami, "Topic identification in dynamical text by com-

plexity pursuit", Neural Processing Letters, vol. 17(1), (2003) 69-83
12. S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W.Furnas, and R. A. Harshman. In-

dexing by latent semantic analysis. Journal of the American Society of Information Sci-
ence, 41(6), (1990) 391–407

13. Aapo Hyvärinen, Erkki Oja: Independent component analysis: algorithms and applica-
tions. Neural Networks 13(4-5) (2000) 411-430

14. T. Kolenda, L. K. Hansen, S. Sigurdsson, Indepedent Components in Text. Advances in
Independent Component Analysis, Springer-Verlag,(2000)229-250

15. Tang, B., Shepherd, M., Milios, E. and M.I. Heywood. Comparing and Combining Dimen-
sion Reduction Techniques for Efficient Text Clustering.Proc. of International Conference
on Data Mining, April 23, Newport Beach, California. 2005

16. DBLP Computer Science Bibliography. 2004. http:// www.informatik.uni-trier.de/~ley/db/
17. Selim, S. Z. And Ismail, M. A. K-means type algorithms: A generalized convergence theo-

rem and characterization of local optimality. IEEE Trans. Pattern Anal. Mach. Intell. 6,
(1984) 81–87.

18. Abiteboul, S., Buneman, P., Suciu, D.: Data On The Web: From relations to Semistruc-
tured Data and XML. Morgan Kaufmann Publishers, San Francisco, California (2000)

19. Al-Sultan, K. S. and Khan, M. M..Computational experience on four algorithms forthe
hard clustering problem. Pattern Recogn. Lett.17, 3, (1996) 295–308

20. S. Zhang, J. T. L.Wang, and K. G. Herbert. Xml query by example. International Journal
of Computational Intelligence and Applications, 2(3)(2002) 329–337

R. Nayak and M.J. Zaki (Eds.): KDXD 2006, LNCS 3915, pp. 22 – 32, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Discovering Multi Terms and Co-hyponymy from
XHTML Documents with XTREEM

Marko Brunzel and Myra Spiliopoulou

Otto-von-Guericke-University Magdeburg
{forename.name}@iti.cs.uni-magdeburg.de

Abstract. The Semantic Web needs ontologies as an integral component.
Current methods for learning and enhancing ontologies, need to be further
improved to overcome the knowledge acquisition bottleneck. The identification
of concepts and relations with only minimal user interaction is still a
challenging objective. Current approaches performed to extract semantics often
use association rules or clustering upon regular flat text. In this paper we
describe an approach on extracting semantics from Web Document collections
which takes advantage of the semi structured content within XHTML (an XML
dialect which can be obtained from traditional HTML documents) Web
Documents.

The XTREEM (Xhtml TREE Mining) method uses structural information,
the mark-up in Web content, as indicators of term boundaries and for co-
hyponymy relations.

1 Introduction

The realization of the Semantic Web depends on the broad availability of semantic
resources, often incorporated in ontologies. Ontology establishment is a process
demanding substantial human involvement. To facilitate this demanding process,
much research has been devoted to (semi-)automated methods for ontology learning
and enhancement. Since semantics are expressed by a lexical layer, such methods
must address next to the core task of discovering semantics also the prerequisite task
of identifying the terms that represent the concepts [W05]. This terminology issue is
still only rarely addressed within ontology learning [BMV01, GTA05].

Many methods tackle this issue by exploiting existing resources such as
dictionaries, glossaries or database schemata (e.g. [K99, SSV02]). However,
dedicated resources for specific application domains are rare and of low coverage, so
that the applicability of such methods is limited. Other methods use plain text as
input, converting semi-structured content into plain text [FN99, MS00, BOS05],
thereupon eliminating the so-called “syntactic sugar”. In this paper, we take the
opposite approach: We concentrate on the document structure and use it as guide to
the content. Our method XTREEM (XHTML TREE Mining) processes Web sites of
XHTML documents and extracts multi-terms and co-hyponyms [COH] by relying
solely on page mark-up.

XTREEM has several advantages: It requires minimal human contribution and no
linguistic resources. It operates on the syntactic structure, which is independent of

Discovering Multi Terms and Co-hyponymy from XHTML Documents with XTREEM 23

national languages and application-specific jargons. It is not constrained by textual
borders like sentences and paragraphs and is thus able to find terms that stand in a co-
hyponymy relation even if they rarely appear in the same document. XTREEM is thus
a complementary method to conventional text analysis, exploiting information that is
traditionally skipped, while using the whole of the Web as information source.

The rest of the paper is organized as follows: In section 2 we discuss related work.
In section 3 we introduce XTREEM and describe how it processes Web pages,
derives vectors of terms by building a feature space of mark-up tags, clusters these
vectors on semantic similarity and derives conceptual labels of correlated terms for
them. Section 4 contains our first experiments. The last section concludes our study.

2 Related Work

A recent overview on Ontology Learning from text has appeared in [BOS05]. Here,
we concentrate on methods that consider the Web as information source. Cimiano et
al discover hyponymy relations by finding examples of Hearst patterns via the Google
API and then analyzing the retrieved documents [CPSS04]. However, they treat
documents as plain text, ignoring the semantics implicit in the Web structure.

Web Document structure is used in [E04] to build a knowledge base of extracted
entities. Nierman and Jagadish [NJ02] study the structural similarity of XML
documents, while Dalamagas et al exploit structural similarities in XML document
clustering [DCWS04]. Closer to our work are the studies of Kruschwitz [K01a,
K01b], where marked up sections of Web Documents are used to learn a “domain
model”, because similar mark-up is often used for the representation of similar
concepts in Web Documents. Differently from our approach, only local mark-up is
exploited: Tag combinations, as reflected in the tree-like structure of (X)HTML
documents are not considered. The same holds for the work of Shinzato and
Torizawa, who use different tags of HTML documents to find hyponymy relations
[ST04]: They consider items of lists but ignoring the role of tag combinations for the
representation of semantics.

3 The XTREEM Method

We present the XTREEM method for the extraction of semantic relations through the
exploitation of Web Document structure. XTREEM is based on mark-up conventions
that are present in almost all Web Documents in the HTML (respective XHTML
which can be obtained by conversion) format. Authors use different nested tags to
structure pieces of information in Web Documents. We find terms that adhere to the
same syntactic structure within an XHTML document and apply data mining to find
semantically related terms. These desired semantically related pieces of text are not
necessarily physically "co-located" i.e. appearing in the same narrow context window
as can be seen in the headings example of table1. Both text elements {Wordnet,
Germanet} share a common syntactic structure, the series of HTML tags they are
placed in. We aim to use such syntactic structures to infer semantic relatedness.

24 M. Brunzel and M. Spiliopoulou

Table 1. Semantically related terms, located in different paragraphs or separated by other terms

Headings, located in
different paragraphs

Highlighted keywords, separated by normal text

…<h2>Wordnet</h2>
<p>Was developed
…</p>
<h2>Germanet</h2>
<p>Analogous
…</p>…

… <p> … there are different
important standards for building the
Semantic Web. … is
RDF. … RDFS
 adds … whereas OWL
 is … </p> …

The tasks of XTREEM are depicted in Fig. 2 and described in Section 3.2. Before
doing so, we introduce some basic terminology in Section 3.1.

3.1 Web Documents

Web Document D: A Web Document (Web page) is a semi-structured document
following the W3C XHTML standard. XHTML is a XML dialect, wherein the former
HTML standard has been adopted to meet the XML requirements. Traditional legacy
HTML documents are converted to XHTML documents, as it is performed by all
popular Web browsers too. The major constituents of XHTML documents are tags
(mark-up elements) which enclose text (text elements) as described in the following.
In the XML terminology only the terms “element” and “text” are used, but for
audibility we will use “mark-up element” and “text element” in the following.

Text Element T: A “Text Element” within a Web Document is a continuous span of
text without tags; tags form its border. It can be either (1) a single token without any
white space like “Wordnet” in line 8 of Fig. 1, (2) a multi-token term like “Lexical
Resources” in line 6 of Fig. 1 or (3) a long sequence of tokens like the texts
surrounded by paragraph tags in the same Figure. For our objectives, we are interested
in identifying text elements of the first two types: co-hyponyms can be single or
multi-token terms. As we will see in the next subsection, XTREEM skips text
elements that occur rarely in the collection, so that texts of the third type are filtered
out anyway.

1 <html>
2 <html><head>
3 <html><head>…
4 <html></head>
5 <html><body>
6 <html><body><h1>Lexical Resources …</h1>
7 <html><body><p>…</p>
8 <html><body><h2>Wordnet</h2>
9 <html><body><p>Was developed …</p>
10 <html><body><h2>Germanet</h2>
11 <html><body><p>Analogous to Wordnet for the English …</p>
12 <html><body>…
13 <html></body>
14 </html>

Fig. 1. Document Paths for Text Elements in a XHTML Tree

Discovering Multi Terms and Co-hyponymy from XHTML Documents with XTREEM 25

Mark-up Element: According to the XHTML standard, a “Mark-up Element” is a
fixed set of tags which can be used to structure XHTML documents. These tags are
interpreted by Web browsers during document rendering.

Document Path P: For each text element a document path, defined as the sequence of
mark-up elements from the document root to the text element within the XHTML
tree, can be constructed. For example, the heading “Wordnet” in line 8 of Fig. 2 has
the document path <html><body><h2>.

Document Path = [Mark-up Element Name]*

3.2 The XTREEM Procedure

The XTREEM discovers multi-terms and co-hyponyms for a domain of discourse by
mining Web Documents. The XTREEM process encompasses the tasks depicted in
Fig. 2. Those tasks extend the conventional process of text mining by a task that
builds the text collection itself from the Web. The core of XTREEM are the parallel
tasks for Building the Feature Space and Building the Data Space. Briefly, the feature
space consists of text elements, while the data space consists of document paths
leading to the text elements, i.e. to the features. The tasks of XTREEM are described
below.

Fig. 2. Data-flow Diagram of the XTREEM procedure

Building the Web Collection: The input to XTREEM is a small set of keywords, the
“seed”, which characterizes the target domain. Rather than expecting a well-prepared
collection of appropriate documents, XTREEM collects documents from the Web by
invoking a crawler or by retrieving document references from internet search engine
web services.

Hence, the user input to XTREEM is limited to specifying a seed that describes the
domain of discourse adequately and guarantees broad coverage. Example seeds may
be (1) “Semantic Web” for the Semantic Web, (2) “tourism” for tourism or (3)

26 M. Brunzel and M. Spiliopoulou

“cardiology” for everything associated with heart medicine. More specific terms that
characterize the domain, such as “ontology” or “XML” for the Semantic Web or
“hotel” for “tourism” are possible but not necessary.

XHTML Conversion: This simple task transforms Web Documents complying to the
older HTML standard in XHTML. Moreover, the converter eliminates some existing
format errors, thus dealing with malformed Web Documents as well.

Text Element Counting: We create a frequency statistic on all Text Elements. For
efficiency, a threshold on the maximum length of text elements can be incorporated to
refuse long sequences of text at an early stage. The longer a text element is, the more
unlikely that it is a term.

Term Selection: For the feature space construction, the human expert should specify
the desired number of features as value of the threshold n. Small values of n are more
appropriate if the expert is interested to learn the base terminology for the domain,
while large values are more reasonable if the goal is to collect as many terms and
multi-terms as possible and acquire co-hyponyms for them.

Due to the low frequency, long text elements (text which is not marked up) have
nearly no chance to get into the feature space, while short terms which consist of
more than one token and which are used frequently inside the document collection get
into the feature space. This has the positive effect, that our approach has an implicit
multi term recognition, which otherwise would be a complex Natural Language
Processing problem of its own, e.g. the multi token terms “data mining”, “Semantic
Web” and “Resource Description Format” are recognized by this approach. Web
Document specific words such as home, contact, back, top, site_map
are rejected with help of a domain neutral Web content stopword list.

Group-by-Path Approach: The XHTML tree is traversed by the XTREEM
algorithm, for each encountered text element the document path is built. Document
path and the text element are stored together for later processing. When the whole
document is traversed, we group text elements that have the same document path as
its predecessor. E.g. in our example (Fig. 2), Wordnet and Germanet both have
<html><body><h2> as document path, and, thus become members of the same set
of terms {Wordnet, Germanet}. Usually, authors use different tags and
therefore things separate according to different tags, resulting in different documents
paths, therefore several Text Element Sets stemming from one document are possible.

Algorithm 1. The XTREEM Group-By-Path approach on a XHTML document
Input: D
Output: n ‘sets of T’

1: for all T in D: create the corresponding P store P associated with T
2: create the set of n unique P
3: for all n unique P:

for all T: which T are associated with P store T
store set of T

return n ‘sets of T’

Discovering Multi Terms and Co-hyponymy from XHTML Documents with XTREEM 27

The resulting sets are filtered: only sets with cardinality greater than min and
cardinality smaller than max are further processed. This corresponds to the usage of
only those mark-up structures, which are regarded as providing a useful separation.
Here precision is preferred over recall.

Next we will contrast how this approach is different to traditional processing of
documents.

Traditional processing XTREEM processing
If a page contains the
text elements
{Contact, Map,
Back, Lexical
Resources,
Wordnet,
Germanet}, one would
regard all this terms as a
set and model the
document as a vector
over those terms.

XTREEM processing: According to our approach,
which incorporates the structure of the XHTML tree, it
is more likely that the text elements form more
homogenous term sets, e.g. the 4 term sets
{contact, map}, {back}, {lexical
structures} and {Wordnet, Germanet}.
XTREEM groups text elements with the same
document path together, thus resulting in more
homogenous instances which facilitate further
processing to reveal semantic relations among text
elements.

Note that we use element tags only to infer siblingness of elements. We do not
consider the meaning of the tags.

The term sets found by this approach can be used for different purposes. In the
following we will describe the application of clustering upon these term sets with the
goal to eliminate terms which do not belong in such sets, because the semantic
relation is of another type than typical inside a set or because there is no semantic
relation at all among the set members.

Vectorization: The term sets obtained by the Group-by-Path procedure in step 3 are
now vectorized according to the feature space build in step 4. We only process term
sets with more than one unique member (for our purpose, finding semantic
relatedness, a single term is not useful because for the desired semantic relations at
least 2 terms are necessary). Each term set (text element set, transaction) is used to
form an instance (vector, record, matrix row). Afterwards, TF-IDF weighting is
performed, where IDF refers to the number of vectors, i.e. document paths, rather
than to the number of original documents

W
o
r
d
n
e
t

G
e
r
m
a
n
e
t

E
u
r
o
w
o
r
d

n
e
t

S
e
m
a
n
t
i
c

W
e
b

…

DocumentA<html><body><h2> 1 1 0 0 …
DocumentB<html><body><table><h1> 1 0 1 0 …
DocumentC<html><body><p>… 0 0 0 1 …
… … … … … …

Fig. 3. Exemplary fragment of a Vectorization

28 M. Brunzel and M. Spiliopoulou

Clustering: The objective of the clustering task is the discovery of correlated
features, more precisely of co-hyponyms. The Vectorization obtained in the prior step
has the tendency to reveal semantic related terms. One way to get these related terms
is the application of a clustering algorithm. Association Rules Mining would be an
alternative method. For clustering a K-Means algorithm with cosine distance function
was applied.

The amount of clusters to be generated can be set on the algorithm. The clustering
algorithm creates clusters of instances, which are not useful on our objectives
themselves. The desired result (related terms) has to be obtained by the following post
processing step.

Cluster Labelling: As we are not directly interested in whether documents paths
(with their associated terms) fall into a cluster, we want to see semantic relatedness,
expressed through the characteristics of clusters. A “label” is a subset of the features
supported by the cluster members, such as the m most frequent features or the features
with higher support than a threshold. According to our objectives, these features are
semantically correlated, since they appear together in many instances.

4 Experiments

We present here our first preliminary experiments on the discovery of multi-terms and
co-hyponyms with XTREEM. The evaluation of an agnostic method like XTREEM is
intriguing for the following reasons: First, the establishment of the Web Document
collection for a given seed of keywords is part of the XTREEM procedure; hence, we
cannot compare with a method that is applied on a well-prepared corpus. Second, only
a human expert can decide whether a multi-token object is indeed a multi-term and
whether two features are in co-hyponymy relation within an arbitrary domain of
discourse. In future work, we intend to test XTREEM against the multi-terms and co-
hyponyms of a given ontology, using it as gold standard for a given domain of
discourse. In this study, we concentrate on showing the potential of XTREEM in
proposing multi-terms and co-hyponymy candidates for the exemplary domain of
discourse “Semantic Web, Ontology”. For comparison purposes, we have devised a
simple agnostic method that discovers correlated features by analyzing the plain text.

4.1 The Web Document Collection

The establishment of the document collection is the first task of the XTREEM
procedure. The seed consisted of the keywords “Semantic Web” and “Ontology”. We
used Google API for retrieving. Under standard settings, Google returns a maximum
of 1000 documents per query. To increase the coverage, we have issued for each
keyword K in the seed several queries containing the seed and one additional
constraint, namely asking for (1) htm documents, (2) html documents, (3) excluding
ps and pdf documents and (4) excluding all of the above, so that e.g. php documents
could be retrieved. We have thus acquired 4 sets of Web Documents for each
keyword. We merged those sets for all keywords, eliminating duplicate documents.
The result was a set of 4209 distinct URLs, from which we retrieved 4015 Web

Discovering Multi Terms and Co-hyponymy from XHTML Documents with XTREEM 29

Documents from 2112 domains. From these, we have removed approximatly 10
percent documents that were recognized as non-English language documents.

4.2 Experiment 1 - XTREEM

According to the preprocessing tasks of XTREEM, the Web Documents have been
converted to XHTML and the frequencies of text elements over the whole document
collections have been counted. We have chosen the 1000 most frequent text elements
as features. The Group-by-Path algorithm has processed 49365 document paths, using
the threshold values min=1 and max=+infinity. The threshold m on the number of
non-zero values per vector was set to 2, so that 6109 vectors were retained.

The vectors have been weighted using TF-IDF and the K-Means clustering
algorithm has been applied, setting K=100. We refer to these results as “document
path clusters” or “path clusters” for short. Then, each cluster was labeled by its k=10
most frequent features. In Table 2 we show the features in the labels of a selection of
three clusters. These clusters were selected because the correlated features in their
labels were the easy to interpret. However, many further clusters contained no less
informative labels. As can be seen from the table, the cluster labels are quite intuitive.
The rightmost one contains 9 publishers where books, journals or articles on the
domain of discourse have appeared. The middle cluster contains names of
researchers; the two forms of the forename of the last person are remarkable here. The
left cluster contains 9 key terms associated with the Semantic Web and with
ontologies. Next to the fact that all those terms are related to the domain of discourse,
the clear thematic separation of the clusters must be stressed.

Table 2. Clusters of Document Paths (characterized by 10 most frequent features)

ontology
taxonomy
thesaurus
source
controlled_vocabulary
metadata
topic_maps
concept
faceted_classification
is_a

tim_berners_lee
deborah_l_mcguinness
eric_miller
ora_lassila
stefan_decker
brian_mcbride
dan_brickley
j_r_me_euzenat
jim_hendler
james_hendler

springer
wiley
acm
elsevier
ieee
march_april
mit_press
springer_verlag
computing
ieee_computer_society

4.3 Experiment 2 - Application of Conventional Procedure

For comparison purposes, we have designed a conventional text analysis method that
has prepared, vectorized and clustered the Web Documents as plain texts. We have
used similar constraints: For the feature space, we have selected the 1000 most
frequent features. Vectors with less than m=2 non-zero values were removed,
resulting in 3089 out of 3829 vectors as input to the clustering algorithm. Again, the
K-means with cosine similarity was used, setting K=100. Each of the 100 clusters,
hereafter denoted as “document clusters” was labeled with the k=10 most frequent

30 M. Brunzel and M. Spiliopoulou

features in it. The labels of four clusters are shown in Table 3; again, these are the
clusters whose labels can be most easily interpreted.

As can be seen, those labels are much more diffuse: The same feature appears in
many labels, terms characteristic for the domain are mixed with generic words (e.g.
entity and introduction in the second cluster to the right), while the few recognized
names of researchers appear together with names of institutions and with some
generic names (department of computer science, chair).

We have experimented with this method for larger values of K as well. If K is
between 300 and 500, then some homogeneous clusters of similar label quality to
those of XTREEM can be found. However, this implies that the human expert must
study a much larger number of less interesting clusters to identify reasonable good
labels.

Table 3. Clusters of Documents (characterized by 10 most frequent features)

ontoedit
rdf
oil
semantic_web
daml
ontolingua
project
semtalk
protege
tool

department_of_computer_science
university_of_maryland
agents_and_the_semantic_web
james_hendler
darpa
chair
hendler_cs_umd_edu
ian_horrocks
nature
semantic_web_services

ontology
relation
abstract
attribute
conclusion
entity
introduction
knowledge_base
semantic_web
description_logic

4.4 Comparison of the Findings

The differences between the document clusters of the conventional method and the
path clusters of XTREEM can be summarized as follows:

• Document clusters are more diffuse, containing features related by arbitrary kinds
of semantic relationships.

• The semantic relationships among the features in each path cluster are easily
recognizable. This is indicated by the fact that a summarizing concept can be
assigned to each of these clusters, serving as parent concept. Hence, the semantic
relationship is a sibling-relationship – co-hyponymy: For example, the clusters in
Table 2 refer to (1) instruments for the representation of meta-data types, (2) to
persons and (3) to publishers.

A posteriori, the supremacy of XTREEM towards simple text analysis is not
astonishing: When authors group texts at the same level into itemlists, headlines etc,
they are usually motivated by the intention to present sibling concepts in an intuitive
way.

For the path-clusters, a human expert can often easily name the implicit but
unnamed parent concept and filter out the erroneous terms of the cluster. This requires
much less effort than the manual identification of co-hyponyms from groups of
loosely correlated features.

Discovering Multi Terms and Co-hyponymy from XHTML Documents with XTREEM 31

The terms in the traditional document-clusters are not semantically unrelated, but
the relations are manifold and can bot be eaysls named.

5 Conclusions and Future Work

We have presented XTREEM, an agnostic method for the discovery of semantic
relations among terms on the basis of structural conventions in Web Documents. We
exploit the interplay of structure and content in Web Documents to find groups of
terms which have a certain syntactic structure within a Web Document in common.

Our first results indicate that rerms appearing in the same cluster, i.e. co-occuring
in different documents with the same mark-up grouping are good co-hyponymy
candidates.

Our method is only a first step on the exploitation of the structural conventions in
the Web for the discovery of semantic relations. We will next perform an evaluation
of of the extracted terms and co-hyponomy relations. Discovering the coresponding
hypernym for the co-hyponyms is a further desireable extension. In our future work
we also want to investigate the impact individual mark-up element tags.

References

[BMV01] R. Basili, M. Missikoff, and P. Velardi, Identification of relevant terms to support the
construction of Domain Ontologies, ACL-0 1 workshop on Human language Technologies,
Toulouse, France, July 2001

[BOS05] P. Buitelaar, D. Olejnik, M. Sintek , Ontology Learning from Text: Methods,
Evaluation and Applications, Frontiers in Artificial Intelligence and Applications Series
Volume 123, IOS Press, Amsterdam, 2005

[COH] http://www.websters-online-dictionary.org/definition/english/co/co-hyponyms.html
[DCWS04] Dalamagas, T. & Cheng, T. & Winkel, K.-J. & Sellis, T. (2004). A Methodology

for Clustering XML Documents by Structure. Information Systems. In press.
[E04] O. Etzioni, M. Cafarella, D. Downey, S. Kok, A.-M. Popescu, T. Shaked, S. Soderland,

D. S. Weld, A. Yates. Web-Scale Information Extraction in KnowItAll. Proceedings of the
13th International WWW Conference, New York, 2004.

[FN99] D. Faure, C. Nedellec. Knowledge acquisition of predicate argument structures from
technical texts using machine learning: the system ASIUM. EKAW '99, volume 1621 of
LNCS, pp 329-334.

[GTA05] L. Gillam and M. Tariq and K. Ahmad, Terminology and the Construction of
Ontology. Terminology 11 2005 , pp55-81. John Benjamins Publishing Company.

[K01a] Kruschwitz, U. "A Rapidly Acquired Domain Model Derived from Mark-up Structure".
In Proceedings of the ESSLLI'01 Workshop on Semantic Knowledge Acquisition and
Categorization, Helsinki, 2001.

[K01b] U. Kruschwitz. Exploiting Structure for Intelligent Web Search. Proc. of the 34th
Hawaii International Conference on System Sciences (HICSS), Maui Hawaii 2001, IEEE

[K99] V. Kashyap. Design and creation of ontologies for environmental information retrieval.
Proc. of the 12th Workshop on Knowledge Acquisition, Modeling and Management.
Alberta, Canada. 1999.

[MS00] A. Maedche and S. Staab. Discovering conceptual relations from text. In Proc. of
ECAI-2000, pp. 321-325.

32 M. Brunzel and M. Spiliopoulou

[NJ02] Nierman, A. & Jagadish, H.V. (2002). Evaluating Structural Similarity in XML
Documents. In Proc. of International Workshop on the Web and Databases, 61-66.

[SSV02] L. Stojanovic, N. Stojanovic, R.Volz. Migrating data-intensive Web Sites into the
Semantic Web. Proc. of the 17th ACM symposium on applied computing. ACM press,
2002. 1100-1107.

[ST04] K. Shinzato and K. Torisawa. Acquiring hyponymy relations from web documents. In
Proceedings of the 2004 Human Language Technology Conference (HLT-NAACL-04),
pages 73--80, Boston, Massachusetts, 2004.

[W05] H.F. Witschel. Terminology extraction and automatic indexing - comparison and
qualitative evaluation of methods. In Proc. of Terminology and Knowledge Engineering
(TKE), 2005.

R. Nayak and M.J. Zaki (Eds.): KDXD 2006, LNCS 3915, pp. 33 – 42, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Classification of XSLT-Generated Web Documents
with Support Vector Machines

Atakan Kurt and Engin Tozal

Fatih University, Computer Eng. Dept.,
Istanbul, Turkey

{akurt, engintozal}@fatih.edu.tr

Abstract. XSLT is a transformation language mainly used for converting XML
documents to HTML or other formats. Due to its simplicity and flexibility XML
has replaced traditional EDI file formats. Most e-business applications store
data in XML, convert XML into HTML using XSTL, and publish the HTML
documents to the web. In this paper we argue that the use of XSLT presents an
opportunity rather than a challenge to web document classification. We show
that it is possible to combine the advantages of both HTML and XML into
classification of documents at the XSLT transformation stage, named XSLT
classification, to attain higher classification rates using Support Vector
Machines (SVM). The results are both expected and promising. We believe that
XSLT classification can become a favorable classification method over HTML
or XML classification where XSLT stylesheets are available.

1 Introduction

Data mining has been applied to a much wider spectrum of application domains
including web, GIS, multimedia in the last decade facilitated by many remarkable
advancements in various branches of information and computing technologies. XML
(eXtensible Markup Language, http://www.w3.org/XML/) is certainly one of those
information technologies that have dramatically impacted many application domains.
By bringing structure to unstructured documents, XML practically became a synonym
for semi-structured documents in the area of digital libraries or information retrieval.

The widespread use of XML in e-business applications has resulted in the
definition of many domain specific XML vocabularies such as ebXML, VRML, SVG.
More recently applications that produce dynamic or static HTML documents have
started generating documents/data in XML format first, then converting the XML
documents to medium or client specific formats including HTML, XML, text,
PDF(Portable Document Format), WML (Wireless Markup Language), etc using
XSLT (eXtensible Style Language Transformations, http://www.w3.org/TR/xslt),
thus simplifying overall software engineering process and cutting down development
costs among other obvious advantages.

From the data mining point of view, this new XML-to-HTML-by-XSLT trend
seems to complicate things at first look, as the effects of such transformations on the
classification of web documents whether HTML or XML were not considered before.
A number of web page or site classifcation techniques based on HTML have been

34 A. Kurt and E. Tozal

introduced into web mining literature [9, 10]. Different approaches are taken in these
studies. Text-only approach removes all markups and performs classification based on
pure content [7]. HyperText approach considers the markup tags to assign weights of
features [8, 9]. Link Analysis approach builds its classification model links among
web pages [11, 12]. Semi-Structured Document or XML classification techniques not
only consider the textual content or the text but also the markup. Structured vector
model [13], tags each word with the enclosing markup to generate a feature set. A
different semi-structured document classifier [14] proposes a model based on
Bayesian Networks in which the training is done for sub-sections of documents.

 In this paper we show that XSLT presents unique opportunities rather than new
challenges in web classification. The idea is to combine advantages of HTML and
XML with the power of XSL transformations which is presented in more detail in
Section 2. The experiments performed on a small data set reveal that XSLT
transformation outperforms both HTML and XML classifications using Support
Vector Machines, confirming similar findings performed in a previous study [1, 2]
using Naïve Bayes.

 This paper is organized as follows: In Section 2 we define XSLT and the
motivation behind the use of XSLT in web applications. The web/document
classification framework based on XSLT used to perform the experiments is briefly
introduced in Section 3. We discuss the data set, the experimental setup and a short
evaluation of the results in Section 4. The conclusions are drawn in Section 5.

2 Background and Motivation

XSLT is a part of XSL (Extensible Stylesheet Language) standard that is used to
define a set of transformation rules for converting XML documents into different
formats as shown in Fig. 1. In a way, XSLT is to XML as CSS (Cascading Style
Sheets) is to HTML. However XSLT is much more powerful than CSS as it can be
used as a full-featured programming language. XSLT Stylesheets (transformation
programs written in XSL), as they are called, are themselves written in a specific
XML format defined by a DTD (Document Type Definition), and therefore can be
processed by other XSLT stylesheets as data. Different stylesheets can be used for
different requirements. For example, one stylesheet can be employed to produce
WML output for WAP (Wireless Application Protocol) enabled cell phones, a
different stylesheet for printer output, and another one for handheld computers with
small displays.

Fig. 1. The Extensible Stylesheet Language Transformations

XML
data + structure

HTML
data + presentation

XSLT
Processor

XSLT Stylesheet

 Classification of XSLT-Generated Web Documents with Support Vector Machines 35

As shown in the figure, XML enables us to define the structure and separate the
data/content from presentation which is mostly medium/application specific. This
advantage over HTML is exploited in the web classification framework used in this
study. XSLT stylesheets are executed by XSLT processors such as Saxon, and Xalan
that are available as APIs or in mainstream web browsers. XSLT stylesheets can be
used in various combinations. Two such scenarios are shown in Fig. 2.

Fig. 2. The use of XSLT in Web Applications

XML XSLT
<source id=”10021”>
<type>article</type>
<status>APPROVED</status>
<title>XSL</title>
<author><fname>John</fname>
<lname>Sabre</lname>
</author>
<comment>Appropriate for
publishing</comment>
</source>

HTML
<html><head>
<meta name="keywords"
content="article, xml,
xslt, xsl, web"/>
<title>XSL ERA</title>
</head><body><h1>XSL</h1>
<h2>John Sabre</h2>
Articles about XML, XSL,
and new web technologies…
</body></html>

<xsl:stylesheet version = '1.0'
 xmlns:xsl='http://../Transform'>
<xsl:template match="/">
<html><head><meta name="keywords"
content="article, xml, xslt,
xsl"/><title>XSL
Era</title></head><body>
<h1><xsl:value-of
select="//title"/></h1>
<h2><xsl:value-of
select="//author/fname"/> <xsl:value-
of select="//author/lname"/></h2>
Articles about XML, XSL, and new web
technologies…
</body></html>
</xsl:template>
</xsl:stylesheet>

Fig. 3. The Sample XML, XSLT and HTML Documents

Cell Phone

WML XSLT sheet1

Browser

WML XSLT sheetn

...

Server

Cell Phone

Browser

HTML XSLT sheetn

XMLDatabase Programs

WMLXSLT sheet1

. . .

Scenario 1

…

 ...

Server1

XML1Database Programs

…

Scenario 2

Servern

XMLnDatabase Programs

36 A. Kurt and E. Tozal

Fig. 3 contains a sample XML document, an XSLT stylesheet applied to this
sample document, and the produced HTML output. XSL commands and templates are
indicated with the xsl: namespace in the stylesheet. XSLT stylesheets are composed of
templates to be matched from the input. All literals and the results of applying the
templates are copied to the output. Values-of elements from the input can be selected.
Looping, conditional processing, functions are available. Built in filtering and sorting
capabilities are parts of the language as well. XPath, XML Path Language is used to
selectively address the parts of input XML document. For example //title selects all
<title> elements, while special ‘/’ symbol selects the root element from input.

3 The XSLT Classification Framework

XSLT classification is a hybrid classification technique that exploits both structural
markup in XML and presentational markup features in HTML. The logical system
layout is depicted in Fig. 4. In this figure HTML is shown in gray, since we do not
work on HTML documents directly. The XSLT classification uses data (content),
structure in XML, and other heuristics from HTML to improve classification rates.

Fig. 4. The XSLT Classification Overview

We think that XSLT classification produces better results than HTML

classification, because XML documents contain structural information of nesting and
content specific markup vocabulary not present in HTML.

We believe that XSLT classification is better than XML classification too, because:

• An XML document usually contains meta-data that is not related to the subject
of the document but used for other purposes by the generators of document.
Usually that data is not presented to end-user, and should be omitted in the
classification process. Elements such as id, type, status are examples of meta-
data in Fig. 3. We can eliminate meta portions of XML document using XSLT
classification

• There may be some literals valuable in classification presented to the user as
part of HTML but not a part of the XML document such as sentence “Articles
about XML, XSL, and new web technologies…” as shown in Fig. 3. This type
of data can be processed with XSLT easily.

• Some important data that is embedded in HTML tags like <title>, ,
<meta> but not present in XML should be captured with XSLT.

Classifier

Text

Structure

P
reprocessing

Structural
m

odeler

Classification
Model

 XSLT sheet

XML

HTML

 Classification of XSLT-Generated Web Documents with Support Vector Machines 37

• Sometimes only a part of an XML document may be relevant for the end-user
or relevant to the subject of the HTML document. In this case, the irrelevant
parts of the XML should be discarded all together in the classification.

• It may be the case that an HTML output could be combination of a set XML
documents. It would be wiser to consider the output HTML, instead of input
documents in classification which is the case with XSLT classification.

The architecture of web classification framework based on XSLT is shown in
Fig. 5. The framework consists of three modules; Preprocessor, Semi-Structured
Document Modeler, and Classifiers. The system accepts a set of XML documents and
an XSLT stylesheet to transform them in HTML or other formats as input. The
output of the framework is a classification model for the given training set using
support vector machines. The framework can be used to classify documents in both
Scenario 1 and Scenario 2.

Fig. 5. The XSLT Classification Framework Architecture

The original XSLT document is passed to the preprocessor in which an XSLT-to-
XSLT stylesheet is applied to produce a new XSLT document called formatted-XSLT
stylesheet. The formatted-XSLT is an XSLT stylesheet that contains transformation
rules in the original XSLT, at the same time, is able to produce appropriate outputs of
XML documents for the structural modeler. These formatted-XML documents (not
shown in the figure) generated by applying formatted-XSLT to the XML documents
are then fed to the structural modeler which applies one of the structural models
defined in the study [1]. The modeler produces a feature vector for the term frequency
vectors (not shown) used later in the classification step. A feature vector usually
contains all unique words mostly prefixed with the XML tags in which they reside in
the original XML document. Term frequency vectors are generated for all formatted-
XML documents and passed as a training set to the classifier. The classifier contains a
number of classification algorithms in Weka. SVM [5] is used in this study, as it was
reported in [3,4,6] to perform better that many others on text. The classifier creates a
model based on the training set. This model is used to classify new documents. In the
following sub-sections we briefly discuss components of the framework.

Input

OutputInternal Data

XSLT Classification Framework

XSLT
Stylesheet

Preprocessor

xslt-to-xslt
stylesheet

formatted-xslt
stylesheet

Classifiers

Struc. Modeler

Structural
Models

Classification
Techniques

Feature
Vector

Classification
Model

XML

38 A. Kurt and E. Tozal

3.1 Preprocessor

In the preprocessing step, an XSLT-to-XSLT stylesheet is applied to the original
XSLT stylesheet to generate formatted-XSLT stylesheet. The XSLT-to-XSLT
stylesheet simply traverses each element of the original XSLT document and does the
following to produce the XSLT stylesheet which is referred to as result tree below.
The ancestor-or-self refers to creating a string by concatenating all the element names
from the root to the innermost element separated with ‘-_-’ as shown in Fig. 6.

<?xml version="1.0" encoding="UTF-8"?>
<document-root>
article xml xslt xsl XSL Era <source-_-title>XSL</source-_-
title>
 <source-_-author-_-fname>John</source-_-author-_-fname>
 <source-_-author-_-lname>Sabre</source-_-author-_-lname>
Articles about XML XSL and new web technologies
</document-root>

Fig. 6. The Sample Formatted-XML Document

• If the current node is an xsl:element node whose name is not an HTML tag, insert
it into result tree and process its child-nodes.

• If the current node is an xsl:vlaue-of element, then insert the value referred by
select attribute into the result tree with all its ancestor-or-self hierarchy.

• If the current node is an xsl:text element, then insert the text into the result tree
with all its ancestor-or-self hierarchy.

• If the current node is any other XSLT element -xsl:variable, xsl:param, xsl:with-
param, xsl:if, xsl:when, xsl:choose, xsl:otherwise, xsl:copy, xsl:copy-of, xsl:sort,
xsl:for-each- put it directly into the result tree and process its children.

• If the the node is an HTML title, meta, img/alt tag, insert its content into the tree.
• If any other string literals, copy them into the result tree.

3.2 Semi-structured Document Modeler

Semi-Structured document modeler generates a feature vector from the set of
formatted-XML documents. Later the frequencies of each unique feature or word are
placed into term frequency vectors for each formatted XML document using a
structural representation model.

There are a number of alternatives, as explained in [1], of incorporating structural
information into document classification such as prefixing the word with the
innermost enclosing tag or all inclosing tags etc. The strength of each alternative
model is affected both by how the structure is represented in the term frequency
vectors and by the variations in element, removal or insertion of inter elements, and
the swap of elements in the document. We show how a document is represented in
feature vectors in this study. The example below is based on XML document given in
Fig. 3. source, author, fname are tags, John is a text content.

 Classification of XSLT-Generated Web Documents with Support Vector Machines 39

Table 1. A Sample Term Frequency Vector

Term Frequency Vectors Feature Vector
D1 D2 ... Dn

...
source 8 6 4
author 4 2 0
source.author 3 1 0
fname 3 1 1
source.fname 2 2 2
author.fname 2 3 0
john 1 0 1
source.john 1 0 1
author.john 1 0 0
source.john 1 0 1
. . .

A feature for term frequency vector is created as follows: each unique word or
element is a feature. Each word and element is prefixed with each of its ancestor
separately to create new features. Furthermore each of the ancestor elements is
prefixed with their ancestor elements to create new features. Table 1 shows term
frequency vectors for the “<source-_-author-_-fname>John</source-_-author-_-
fname>” fragment of formatted-XML document given in Fig. 6. Values shown in the
table are not actual values.

Although the structure is captured in a loose manner (i.e. we do not capture
ancestor hierarchy in a strict manner), the complete document hierarchy is captured.

4 Experiments, Results, and Evaluation

We performed a set of experiments to compare the classification rates for HTML,
XML, and XSLT classifications using the framework described above. The
framework was implemented in Java and XSLT. We used Weka for the classification
algorithms. 2/3 of documents are used for training and 1/3 for testing with 10-fold
cross validation to improve the reliability. The element/attribute names and the words
in text are stemmed (taking the root of a word) in all experiments, as it is a common
practice in text mining.

4.2 Dataset

Current dataset repositories on the web do not provide a proper dataset for the XSLT
classification. We generated XML/XSLT version of web pages from 20 different sites
belonging to 4 different categories; Automotive, Movie, Software, News & Reference.
The sites in News & Reference category contain news and articles about movies,
automobiles and software health and literature. This should result in a more difficult
classification task. The data set can be downloaded freely from http://www.fatih.
edu.tr/~engin. 100 XML documents were generated from the web sites. These documents

40 A. Kurt and E. Tozal

are evenly distributed among categories. XML documents are created in a way that they
have various structures, element and attribute names, and nesting to mimic that they are
generated by different people/applications. An XSLT stylesheet producing exactly the
same presentation with all links, images, embedded objects, literal strings and non-
printable data like meta, style, script tags etc. of actual HTML page is generated for each
web site. When the XSLT is applied to the XML document, it combines static content
with dynamic content. Static content includes menus, scripts, headings, and other similar
material. Dynamic content is the data retrieved from the XML files. By combining the
two contents, an HTML or XHTML page is created.

Table 2. TFV Sizes

Data Type # Features

XML ~37000

HTML ~7000

XSLT ~34000

Table 3. Dataset Properties

Data Set # Classes # Sites # Documents
1 4 17 91
2 4 14 75
3 3 13 70
4 3 13 60

Since data size is quite limited, we have created 4 different versions of the data set
by excluding either some categories or some web sites or both randomly from the
original data set. Characteristics of data sets are shown in Table 2 and Table 3. We
conducted experiments on these data set using SVM and Naive Bayes [15,16,17] to
compare the results with the previous study [2] which used only the Naïve Bayes.
Experience dictates that not all classification algorithms do well with a certain type of
data. Data mining is an experimental science. It is also a common practice, called
voting, to apply a number of different techniques to classify a new instance by
choosing the category preferred by the highest number of techniques. For these
reasons, we think that it is necessary to conduct further experiments with different
techniques and datasets on XSLT classification as explained in the next section.

All presentation markups are removed while generating feature set for HTML
documents. Yet contents of meta, title, anchor and alternative name for img tags are
included into the feature set. The structural modeling technique explained in Section
3.2 is not only used to generate feature set for XSLT documents but also for XML
documents. Moreover, %2 to %4 noise is introduced into XML documents instead of
using actual XML meta data.

4.4 Results and Evaluation

The experimental results are shown in tabular form per data set in Table 4 and
average classifications over all datasets are depicted in Fig. 7. In general XSLT
classification yields considerably higher accuracy rates than both HTML and XML
classification, while XML classification produced slightly better accuracy rates than
HTML classification. The results reveal that both SVM and Naïve Bayes deliver
similar rates confirming each other’s output.

In all data sets except the last one, the XSLT classification performs better than the
other two, while XML classification yields better scores than HTML classification.

 Classification of XSLT-Generated Web Documents with Support Vector Machines 41

Noticeably Naïve Bayes outperforms SVM on both XSLT and XML data. Since the
numbers are close and data sets are small, between Bayes and SVM it s not possible
determine which one is better. However there seems to be marked difference between
the two methods on HTML data. As shown in Table 2, representing structure in XML
and XSLT classifications results in much larger term frequency vectors than those of
HTML classification. Since XML and XSLT produce higher classification rates, this
is a trade-off between accuracy and space. However an empirical threshold value can
be used to reduce the term frequency vector size in XML and XSLT classifications.
As shown in Table 4 SVM takes longer in building classification model compared to
Naïve Bayes (NB).

Table 4. Accuracy Rates of SVM and NB

Data
Set

Data
Type

Bayes
%

SVM
%

Bayes
Time

SVM
Time

1 HTML 94.44 96.6 20 490
 XML 97.7 97.7 60 1000
 XSLT 100 100 50 950

2 HTML 93 96 30 2090
 XML 97.3 97.3 910 890
 XSLT 100 100 50 1630

3 HTML 92.8 95 20 360
 XML 97.14 95.7 50 660
 XSLT 100 100 50 590

4 HTML 95 95 20 270
 XML 95 95 40 880
 XSLT 100 96.6 50 890

90
91
92
93
94
95
96
97
98
99

100

HTML XML XSLT

Bayes SVM

Fig. 7. Average Accuracy Rates

5 Conclusions

XSLT is used in more and more applications because of the ease, power and
flexibility it offers in software development. Web applications producing output using
XML/XSLT technology allows three types of classification options; classification at
the source (XML classification), classification at the destination (HTML
classification), and a new alternative: classification at the point of XSLT
transformation. We have explored the third option for classifying web pages and
showed that it is not only viable but also a preferable approach over the others as it
takes advantages of both approaches. This technique is able to combine both the
source and the destination document for better classification. More specifically, it is
able utilize both structural data in XML and relevant data in HTML using the
transformation rules in XSLT stylesheets. As a result a technique with a considerably
higher classification rate is obtained.

We implemented a framework that incorporates the XSLT classification in a
practical manner to classify web pages. In this framework different structural models

42 A. Kurt and E. Tozal

and alternative classifiers can be combined to classify documents generated by XSLT
Stylesheets.

Even though many e-business applications are using XSLT internally to generate
and share XML/HTML documents, applications that rely on client side XSLT is rare.
Although there are browsers with built-in XSLT processor, other types of clients such
as cell phone, PDAs, TV sets do not have widespread XSLT support at present. This
situation restricts applications to server side transformations in todays applications.
With the availability of larger public datasets in the future, further experiments can be
performed.

References

[1] Engin Tozal, “Classification Using XSLT” MS Thesis, Comp. Eng.Fatih University,
2005.

[2] Atakan Kurt, Engin Tozal, "A Web Classification Framework Based on XSLT" ADWeb
2006 Lecture Notes in Computer Science (LNCS) 3842, pp. 86 – 96, 2006.

[3] S. Dumais, et al, “Inductive learning algorithms and representations for text categ-
orization”, 7th Int. Conf. on Information and knowledge management, pages 148--155.
1998.

[4] Thorsten Joachims, "Text categorization with support vector machines: learning with many
relevant features", 10th European Conference on Machine Learning (ECML), 1998.

[5] V. N. Vapnik, The Nature of Statistical Learning Theory”, Springer, 2nd edition, 1999.
[6] A. Basu, C. Watters, and M. Shepherd, ”Support Vector Machines for Text

Categorization”, Proceedings of the 36th Annual Hawaii International Conference on
System Sciences, 2003.

[7] Dunja Mladenic, “Turning Yahoo to Automatic Web-Page Classifier”, European
Conference on Artificial Intelligence, 1998

[8] F. Esposto, D. Malerba, L. D. Pace, and P. Leo. “A machine learning apporach to web
mining”, In Proc. of the 6th Congress of the Italian Association for Artificial Intelligence,
1999

[9] A. Sun and E. Lim and W. Ng, “Web classification using support vector machine”, the
4th Int. Workshop on Web information and Data Management. ACM Press, 2002

[10] Arul Prakash Asirvatham, Kranthi Kumar Ravi, “Web Page Classification based on
Document Structure”, 2001

[11] H.-J. Oh, et al “A practical hypertext categorization method using links and incrementally
available class information”, the 23rd ACM Int. Conf on R & D in Information Retrieval
2000

[12] Soumen Chakrabarti and Byron E. Dom and Piotr Indyk, “Enhanced hypertext
categorization using hyperlinks”, Proceedings of the ACM SIGMOD, 1998

[13] Jeonghee Yi and Neel Sundaresan, ”A classifier for semi-structured documents”,
Proceedings of the 6th ACM SIGKDD 2000.

[14] Ludovic Denoyer and Patrick Gallinari, ”Bayesian network model for semi-structured
document classification”, Information Processing and Management, Volume 40, Issue 5,
2004.

[15] David D. Lewis, “Naive (Bayes) at Forty: The Independence Assumption in Information
Retrieval” Lecture Notes in Computer Science; Vol. 1398, 1998.

[16] Irina Rish, "An empirical study of the naive Bayes classifier", IJCAI 2001 Workshop on
Empirical Methods in Artificial Intelligence, 2001.

[17] Andrew McCallum and K. Nigam, “A comparision of event models for naive bayes text
classification”, AAAI-98 Workshop on Learning for Text Categorization, 1998.

Machine Learning Models: Combining Evidence
of Similarity for XML Schema Matching

Tran Hong-Minh and Dan Smith

School of Computing Sciences,
University Of East Anglia,

Norwich, UK
NR4 7TJ

{mtht, djs}@cmp.uea.ac.uk

Abstract. Matching schemas at an element level or structural level
is generally categorized as either hybrid, which uses one algorithm, or
composite, which combines evidence from several different matching al-
gorithms for the final similarity measure. We present an approach for
combining element-level evidence of similarity for matching XML schemas
with a composite approach. By combining high recall algorithms in a
composite system we reduce the number of real matches missed. By per-
forming experiments on a number of machine learning models for combi-
nation of evidence in a composite approach and choosing the SMO for the
high precision and recall, we increase the reliability of the final matching
results. The precision is therefore enhanced (e.g., with data sets used by
Cupid and suggested by the author of LSD, our precision is respectively
13.05% and 31.55% higher than COMA and Cupid on average).

1 Introduction

Comparing schemas to obtain matches is a major part of the schema match-
ing process, information cooperation, data warehouse, e-commerce and query
processing. In practice, schema matching is done manually with the help of
graphical user interfaces in a labour-intensive process [4]. As the number of on-
line information sources increases rapidly we need better ways of merging and
summarizing information from multiple heterogeneous sources. Hence, improved
schema matching algorithms and integration strategies are increasingly impor-
tant.

Matching schema traditionally takes two internal schema representations
(e.g., tree-like model or graph-like model) as an input and produces as the output
a correspondence between the elements in the two input schemas. A matching
problem is usually categorized as either hybrid or composite [10]. A common
feature of all hybrid systems is that many criteria and schema properties (e.g.
node label, data type, etc.) are exploited in a single algorithm. Hence, the order
of comparing the criteria and properties is predefined and fixed in the algorithm,
which is less flexible. On the contrary, in a composite system, numerous match-
ers are independently used. Each of them is described by one or more matching

R. Nayak and M.J. Zaki (Eds.): KDXD 2006, LNCS 3915, pp. 43–53, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

44 T. Hong-Minh and D. Smith

algorithms and deals with different aspects of the schema. The final result is ob-
tained by combining the results from each of the matching algorithm. Therefore
the composite systems are more flexible.

In the other aspect, the aim of the matching activity is to classify each pair of
elements of two representations into either the similarity category or the dissimi-
larity category. Hence, classification algorithms can be applied to matching prob-
lems. Studies in the fields of classification and data fusion (see e.g., [1, 7, 9]) have
shown that a superior final result can be achieved by using a number of different
algorithms and combing the results even when an individual algorithm performs
poorly on its own, instead of using just a single algorithm. These studies suggest
that the composite approach could give a better overall precision.

Motivated by above, we use a composite approach in our experiments, in
order to obtain high precision matches while minimizing the number of missed
matches. To match schemas in different aspects and obtain the results, we use
six different algorithms, which are grouped into either syntax-driven techniques
or semantic-driven techniques. The combination of those algorithms gives a com-
plete view of similarity since each of them works on different aspects of schema
element labels. To combine the evidence of similarity into the overall result we
propose the use of machine learning models. The advantage of such models is
that they avoid manually defining weights, thresholds or heuristics. The quality
of which are largely determined by human expertise and domain knowledge.

We present machine learning methods to combine evidence of similarity
computed by multiple algorithms into the overall matching determination. We
present a set of experiments on machine learning models, by which we exper-
imentally suggest a suitable model for high recall/precision. Our experimental
results suggest that machine learning models in a composite system could sig-
nificantly enhance the precision.

The rest of the paper is organized as follows. Related work is briefly pre-
sented in Section 2. An overview of the algorithms used in our element-level
matchers and relationships between those matchers are given in Section 3. Sec-
tion 4 discusses about methods for combining evidence and experimental results
are provided in Section 5. Finally, we summarize our work in Section 6.

2 Related Work

Studies on XML Schema matching use either the hybrid or the composite ap-
proach. Most research has been based on the hybrid approach.

Cupid [2] is a hybrid system for schema matching at both element and struc-
ture levels. In the Cupid system, the schema matching is produced by deduc-
ing a match from computed similarity coefficients between elements of the two
schemas. Cupid combines matching information by firstly using data type and
synonym information from tokenized and categorized labels, and then follow-
ing a bottom-up structure-based matching which exploits information from the
node’s immediate parent, to get more precise matches. Two elements are similar

Machine Learning Models 45

if their leaf sets are similar. The similarity of the leaves is increased if they
have ancestors that are similar. The final similarity coefficients, WordSimCupid,
is the weighted combination of the similarity at the structure-level matching,
structureSim, and the label meaning similarity at the element-level matching,
labelSim. The weightstruct defines the contribution of each level matching to the
final similarity degree:

WordSimCupid = weightstruct × structureSim+(1−weightstruct)× labelSim. (1)

XClust [8] is another hybrid system for both element level and structure-
level matching. It proposes a matching function with thresholds to score DTDs
for deducing matches. At the element level, Unlike Cupid, which uses a built-
in dictionary and a number of different component properties, in XClust the
label similarity solely results from WordNet dictionary [5, 11]. The use of Word-
Net is limited into exploiting synonyms in XClust system. The degree of struc-
tural similarity is determined by tree-edit distance algorithm. In XClust, the
label meaning—SemanticSim, the number of common children at the leaf level—
LeafContextSim, and the number of common direct children ImmediateDescSim
are counted for the final similarity—ElementSim—of two elements e1 and e2:

ElementSim(e1, e2) = α × SemanticSim(e1, e2)
+ β × LeafContextSim(e1, e2)
+ γ × ImmediateDescSim(e1, e2)

(2)

where α+β+γ = 1 and α, β and γ are weights of SemanticSim, LeafContextSim
and ImmediateDescSim, respectively.

Unlike the Cupid and XClust approaches, the LSD system [4] is a composite
system using a multi-strategy learning approach for element-based one-to-one
matching at the leaf level of tree-like schemas. Each engine learns well certain
kinds of patterns and then the predictions of the learners are combined by using
meta-learners.

Similar to LSD, COMA [3] is a composite generic matching system but differ-
ent from LSD, it consists of multi-matchers which do not use machine learning
techniques. To combine results computed from various matchers, it supports
different rule-based methods, for example, taking the average or the maximum
value of results. It allows the user to interact the match process by feedbacks
and to choose a combination of results from its extensible library.

However, the composite approach is not so widely studied as the hybrid
approach. In the composite approach, current matchers and combinations are
categorized into two types. In the first type, both matchers and the combination
have been in the context of machine learning. In the second type, matchers are
not confined to machine learning but the combination method is simple rule-
based. Our matchers are also not restricted to machine learning. To combine
similarity evidence we are not restricted into rule-based, we use a formal learning
model, which is more generic and good-result promising.

46 T. Hong-Minh and D. Smith

3 Element-Level Matchers Overview

At the atomic level, we use the composite approach which includes six different
matchers. Results produced by matchers are combined in a formal model to
determine if a pair of nodes makes a match. The element level matching consists
of three macro steps:

Step 1: Pre-processing: The objective is to make all schemas compara-
ble. Many semantically similar component labels contain abbreviations and
acronyms that make them syntactically different due to different style of en-
coding a XML Schema. Furthermore, some of our comparisons for a match-
ing candidate take into account each word of a label with every word in the
other label instead of the whole labels. Redundant words in a label thus
could reduce the similarity degree of the two labels. To avoid those obsta-
cles, we tokenize labels into words, expand abbreviations and acronyms into
the original forms and build a minimum set of words presenting the same
concepts denoted by before-pre-processed labels.
Step 2: Computing similarity: For each pair of nodes in two tree-like
structures, we compute independently the similarity of each pair by using
six different matchers.
Step 3: Determining final similarity: we use a learning model to deter-
mine whether or not the pair is similar based on six results computed by
matchers. Step 3 is discussed in details in Section 4.

The meaning of a label can be investigated in three different aspects: its lexi-
cal view, its semantic meaning and phonetic view. In Step 2, each matcher covers
a certain aspect of labels then the combination of results could give a complete
and appropriate prediction of the similarity of two labels. Therefore, in Step 2,
we use six different matchers covering all such aspects to determine the similarity
of a pair of labels. The matchers implementing string-based algorithms [6](e.g.,
edit distance, approximate string and q-gram) explore lexical view of labels.
Those implementing sense-based algorithms [11] (e.g., WordNet sense analysis)
directly cover the semantic meaning of concepts denoted by labels. Those im-
plementing phonetic-based algorithms [6] (e.g., soundex and metaphone) exploit
the phonetics of labels.

4 Combining Similarity Evidences

Sub-results have to be combined together for obtaining a final result. A popular
way for the combination is to establish a formula with weights and thresholds.
Each result is experimentally assigned a weight on the basis of researcher’s ex-
periences about the domain and/or the importance of the matcher to the whole
system. The thresholds are also defined by a similar method. To cover some ex-
ceptions, heuristic rules are used. However, it is easy to see that the formula with
weights, thresholds and heuristic rules are not flexible and could not embrace all
possible cases.

Machine Learning Models 47

In the case of using a single matcher and combination from multiple matching
criteria, such as Cupid or XClust, in formula (1) of Cupid and in formula (2)
of XClust, the weights weightstruct for Cupid and α, β and γ for XClust are all
predefined to reflect the fixed contributions of each matching phase for whatever
matching cases are. They therefore are not tolerant to the variations in matching
cases.

In the case of using multiple matchers, we also suggest that the matching
function and thresholds cannot deliver a good result. Various results obtained
by independent matchers could have conflict or agreement, which are varied
and difficult to describe in a formula. For example, {Contact, Person, Primary}
and {Primary, Contact, Person} have sense-based similarity degree of 0.3, which
indicates that they are not similar. It is correct as they have different mean-
ings. Whereas, they get the value of 0.947 returned by the approximate string
matching algorithm, which indicates that they are very similar. This is an incor-
rect result. Therefore, in this case, the similarity determined by the sense-based
algorithm is against the result of the approximate string matching algorithm
and it should be dominant the final result as it is correct. However, for example,
{Postcode} and {Postal, Code} which have the value of 0.8 and 0.75 respectively
computed by the sense-based algorithm and the approximate string matching al-
gorithm. In this case, those values have agreement.

Therefore, machine learning models are intuitively more suitable to deter-
mine the final result on the basis of sub-similarity degrees. Especially, as most
learning models work well for the problems of binary classification, they are
more applicable for our matching determination, which is either similarity or
dissimilarity rather than a degree.

Regarding using machine learning models for fusion, evidence sets which are
good candidates for an effective combination are very important for a good final
result. Therefore matchers which produce good evidence sets for the fusion are
crucial. It raises a problem of defining characteristics of good matchers. Based
on [9, 12], we define three characteristics of good matchers as follows:

(a) At least one matcher produces high accuracy results,
(b) High overlap of real matches (true positive),
(c) Low overlap of real non-matches (true negative).

The above criteria (b) and (c) are described by the below formulas:

R =
n × Rcommon

n∑

i=1

Ri

, N =
n × Ncommon

n∑

i=1

Ni

, (3)

where R and N are the overlap ratios of real matches and real non-matches, re-
spectively. Ri and Ni are the real matches and the real non matches respectively
computed by the i-th algorithm in the system. Rcommon and Ncommon are com-
mon portions of real matches and of non-matches of all result sets, respectively.

48 T. Hong-Minh and D. Smith

5 Experiments

Three sets of experiments are done for three purposes. We compare various
machine learning models for final determination from multiple results in the
first experimental set. Those experiments give an idea about a suitable formal
model for the fusion of evidence. We analyze the combination of six algorithms
proposed in Section 4 on the basis of characteristics in the second experimental
set. The discussion shows how suitable the algorithms are to be good candidates
for fusion. We do some comparisons between our approach with two existing
ones, e.g., Cupid and COMA in the last experimental set.

We use a 10-fold cross-validation method for all our experiments. To evalu-
ate the matching quality we use the following indicators: recall, precision, and
F-measure. To evaluate the time efficiency we compare computational time spent
for building the data model for each learning model. All experiments are per-
formed on a Intel Centrino 1.7GHz with 768MB RAM and WindowsXP opera-
tion system. All implementations are written in Java without using any compiler
optimization.

5.1 Comparison of Models for Combining Evidences

In the first set of experiments, we use the same quite large XML Schema data sets
with 739 components (includes elements and attributes), published by FGDC 1

(Federal Geographic Data Committee) and NBII 2 (National Biological Infor-
mation Infrastructure). For each pair of components we measure sub-similarity
degrees by using matching algorithms and then combine them to determine if a
pair is a match by using various learning models. The experimental results pro-
duced by each model are then compared statistically to choose the most accurate
model.

Table 1. Computational time (in second) of 18 learning models

Models time Models time Models time
Bays.Net. 5.49 Nave 2.03 Compl.Naive 0.19
NaiveUpdate. 1.86 Logistic 11.06 Bagging 70.49
RBFNet. 38.87 ThresholdSelector 19.29 SimpLogistic 278.14
FilterClass. 6.45 SMO 5.51 LogitBoost 53.21
VotedPercpt. 28.41 MultiClassClass. 9.82 AdaBoostM1 27.56
OrdClassClass. 22.59 AttrSelClass. 6.63 RacedIncrLogBoost. 12.23

All 18 learning algorithms compared in this set of experiments mostly inferen-
tially explore the undetermined relationships among variables. The algorithms
are classified into three categories: Bayes model, function learning model and
1 http://www.fgdc.gov/. FGDC is responsible for metadata about geographic data
2 http://www.nbii.gov/. NBII offers metadata standard for images related to nature

and the environment.

Machine Learning Models 49

Fig. 1. Precision, Recall and F-Measure of (a) Bayes models (b) Function learning
models (c) Meta learning models

meta learning model. We use evidence values computed by matchers as vari-
ables for the learning models to investigate the relationships. The inferences are
then used for determining if two labels are matched.

In the Bayes category, we compare Baysian network, Näıve Bayes, Comple-
ment Näıve Bayes and Updateable Näıve models. The function learning category
has Logistic, RBF Network, Simple Logistic, SMO and Voted Perceptron mod-
els. In the meta learning category, we have Ada BoostM1, Attribute Selected
Classifier, Bagging, Threshold Selector, Filter Classifier, LogitBoost, Multi-Class
Classifier, Ordinal Class Classifier and Raced Incremental Logic Boost models.

Figure 1(a), (b) and (c) display precision/recall and F-measure, which indi-
cate the quality of algorithms. Table 1 shows computational time for building
model of Bayes models, function learning models and meta learning models,
respectively.

In Figure 1, among the Bayes models, the Bayesian Network has the highest
precision and its recall is not so different to other Bayes models. In general,
among models in three categories, Bayes models give the highest recall (88.35%
in average), which means that the number of real matches missed is the smallest.
The precision is also the lowest (21.38% in average), which means they deliver the
maximum number of unreal matches. Hence, matches obtained by such models
are not reliable. However, as having the highest recall, Bayes models are more
applicable for recognizing and eliminating non-matches.

Models in the function learning category and the meta learning category give
higher precision (average 85.5%, 78.6%) but lower recall (average 44.5%, 47.3%)

50 T. Hong-Minh and D. Smith

than Bayes models. Hence, function learning models and meta learning models
are more reliable for the matching problem than Bayes models are. In the meta
learning category, the Filter Classifier model gives the highest precision. In the
function learning category, both SMO model and Simple Logistic model achieve
the highest precision. They also deliver the highest precision on overall, compared
with all models from the three categories. SMO produces 90.4% precision, 44.1%
recall and 59.2% F-measure. Simple Logistic model produces 89.9%, 44.4% and
59.4% in precision, recall and F-measure, respectively.

Regarding computational time, from our observation on experimental results,
in general, the higher precision/recall and F-measure a model achieves the more
expensive in computational time could be. Bayes models, which have the lowest
reliability, have the smallest computational time (2.39s in average). The function
learning models, which have the highest reliability, have the highest computa-
tional time (72.40s in average). Furthermore, in the Bayes category, the Bayesian
Network, which has the highest precision, also has the highest computational
time. Similarly, models giving high precision (such as Bagging, Simple Logistics)
also have high computational time. However, SMO and Filter Classifier which
are among the best models for high precisions have small computational time.

5.2 Analysis of Combining Evidences

Section 5.1 shows that Simple Logistic, SMO and Filter Classifier learning mod-
els give best precision/recall and computational time. Therefore, in this exper-
imental set, we use them for the analysis of our fusion of evidence returned by
matching algorithms. The quality of combining algorithms are analyzed on the
basis of three characteristics proposed in Section 4.

We measure precision/recall and F-measure for each algorithm. Table 2 shows
precision/recall and F-measure of each algorithm with the default threshold
value of 0.5. We observe that Metaphone algorithm gives the highest precision
and WordNet algorithm gives the highest recall. Thus, the first characteristic is
satisfied.

Furthermore, before fusion, the average precision of all algorithms is 45.74%
but the precision after fusion by using SMO model is 91.9%. Obviously, using
multiple algorithms and combining them significantly improve the precision.
However, the recall before fusion is 70.76% but it is 59.6% after using SMO for
combining results.

Table 2. Precision-Recall-F-measure (in %) of each algorithm without using learning
models

EditDist. WordNet Apprx.Str Soundex Metaphone Q-Gram
Precision 41.05 12.27 44.55 23.78 96.77 56.00
Recall 68.42 82.46 78.95 68.42 52.63 73.68
F-measure 51.32 21.36 56.95 35.29 68.18 63.64

Machine Learning Models 51

Table 3. Overlap of real matches and real non-matches in fusion of algorithms (in %)

Algo.1 Algo. 2 Match Non-match Algo.1 Algo. 2 Match Non-match
EditDist. WordNet 78.07 21.05 WordNet Metaphone 77.92 24.39
EditDist. Approx. 92.86 28.62 WordNet Q-Gram 78.65 20.67
EditDist. Soundex 92.31 28.62 Approx. Soundex 90.48 26.48
EditDist. Metaphone 84.06 35.33 Approx. Metaphone 80.00 32.51
EditDist. Q-Gram 91.36 30.05 Approx. Q-Gram 96.55 28.02
WordNet Approx. 82.61 19.72 Soundex Metaphone 86.96 33.33
WordNet Soundex 81.40 19.84 Soundex Q-Gram 88.89 27.93
All algorithms 71.90 59.29 Metaphone Q-Gram 83.33 34.50

In overall, by using multiple matchers and evidence fusion we obtain more
efficiency in matching, since the F-measure is higher than using only one match-
ers. The F-measures after using fusion are 59.2% for the SMO model and 59.4%
for the Simple Logistic model, which are higher than the average F-measure of
individual algorithms (49.46%).

We use formula (3) for analysing the the final characteristics raised in
Section 4. We build the overlap ratios for real matches R and for real non-
matches N for all possible pairs of algorithms(in Table 3). Most of our couples
produce high match-overlap and small non-match-overlap ratios, which are sat-
isfied the characteristics in Section 4. Therefore, our set of algorithms is good
candidates for fusion of evidence.

5.3 Comparison with Cupid and COMA

We perform two experiments to compare our approach with COMA and Cupid.
In the first experiment we use CIDX Schema and EXCEL schema, which were
used by Cupid. The first data set has 68 components (elements and attributes).
In the second experiment we use schemas about courses in Cornell University
and Washington University. The second data set has 73 components. Suggested
by above experimental results, we use SMO learning model for determining if
two components are a match.

The Figure 2 (a) and (b) show that our approach is better, especially in the
first experiment. In the second experiment, our precision is nearly equal to the
COMA precision and better than Cupid one, but our recall is not. Table 4 also
shows that our approach is more efficient in time.

Table 4. Comparison of computational time for building data models(in second), using
CIDX–EXCEL data set and Course (of Cornell Uni. and Washington Uni.) data set

CIDX-EXCEL Course
Cupid COMA Ours Cupid COMA Ours

Computational time 0.60 1.70 0.45 10.00 3.00 1.35

52 T. Hong-Minh and D. Smith

Fig. 2. Comparison on (a) CIDX–EXCEL data set (b) Course (of Cornell Uni. and
Washington Uni.) data set

6 Conclusion

In this paper, we present a composite approach with multi-matchers for element-
level XML schema matching. The approach takes into account both syntactic and
semantic matching. It uses six different matching algorithm for dealing all aspects
of schema element labels. We analyze to show that relations between results are
difficult to model into a formula. We propose a machine learning method to
determine the final results on the basis of results computed by matchers and
we achieve a better precision than Cupid and COMA did (e.g., with data sets
used by Cupid and suggested by the author of LSD, our precision is respectively
13.05% and 31.55% higher than COMA and Cupid in average.). By carrying
out experiments on 18 machine learning models, we see that the SMO learning
model gives the best performance.

To improve the recall, we plan to exploit data type and instance for improving
matching results at both the element level and the structural level. Besides im-
proving matching algorithms themselves, we plan further work on using multiple
learning models for a higher accuracy, since we recognize from our experimen-
tal results that some models can produce high recall but low precision and vice
versa.

References

1. B. T. Bartell, G. W. Cottrell, and R. K. Belew. Automatic combination of multiple
ranked retrieval systems. In 17th annual international ACM SIGIR conference on
Research and development in information retrieval, pages 173–181, 1994.

2. P. A. Bernstein, J. Madhavan, and E. Rahm. Generic schema matching with cupid.
In 27th VLDB, volume 10, pages 49–58, 2001.

3. H.-H. Do and E. Rahm. Coma - a system for flexible combination of schema
matching approaches. In VLDB, pages 610–621, 2002.

4. A. Doan, P. Domingos, and A. Y. Levy. Learning source description for data
integration. In WebDB, pages 81–86, 2000.

5. C. Fellbaum, editor. WordNet: An Electronic Lexical Database. MIT, Cambridge,
MA, 1998.

Machine Learning Models 53

6. P. A. V. Hall and G. R. Dowling. Approximate string matching. ACM Comput.
Surv., 12(4):381–402, 1980.

7. J. H. Lee. Analyses of multiple evidence combination. In 20th annual international
ACM SIGIR conference on Research and development in information retrieval,
pages 267–276, 1997.

8. M. L. Lee, L. H. Yang, and W. Hsu. Xml schemas: integration and translation:
Xclust: clustering xml schemas for effective integration. In CIKM, pages 292–299,
2002.

9. M. C. McCabe, A. Chowdhury, D. Grossman, and O. Frieder. System fusion for im-
proving performance in information retrieval systems. In International Conference
on Information Technology: Coding and Computing (ITCC ’01), pages 639–644,
2001.

10. E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema match-
ing. The VLDB Journal, 10(4):334–350, 2001.

11. N. Seco, T. Veale, and J. Hayes. An intrinsic information content metric for se-
mantic similarity in wordnet. In ECAI, pages 1089–1090, 2004.

12. C. C. Vogt and G. W. Cottrell. Predicting the performance of linearly combined
ir systems. In 21st annual international ACM SIGIR conference on Research and
development in information retrieval, pages 190–196, 1998.

Information Retrieval from Distributed
Semistructured Documents Using Metadata

Interface

Guija Choe1, Young-Kwang Nam1,
Joseph Goguen2, and Guilian Wang2

1Department of Computer Science, Yonsei University, Wonju, Korea
gjchoe@hosu.yonsei.ac.kr, yknam@dragon.yonsei.ac.kr

2Department of Computer Science and Engineering, UCSD, La Jolla, CA 92093
{goguen, guilian}@cs.ucsd.edu

Abstract. We describe a method for retrieving information from dis-
tributed heterogeneous semistructured documents, and its implementa-
tion in the metadata interface DDXMI (Distributed Document XML
Metadata Interface). The system generates local queries appropriate for
local schemas from a user query over the global schema and shows the
result of the generated queries. The three components are designed to
generate the local queries: mappings between global schema and local
schemas (extracted from local documents if not given), path substitu-
tion, and node identification for resolving the heterogeneity among nodes
with the same label that often exist in semistructured data. The system
uses Quilt as its XML query language. An experiment is reported over
three local semistructured documents: ‘thesis’, ‘reports’, and ‘journal’
documents with ‘article’ global schema. The prototype was developed
under Windows system with Java and JavaCC.

1 Introduction

There is much research on integrating distributed heterogeneous data with ex-
plicit schemas, which are called structured data. Besides expensive data ware-
housing, a major focus is virtual integration, i.e., developing portals that allow
uniform querying through a global schema to distributed heterogeneous data
[12], [14], [18], [21], [25]. A query over the global schema is usually resolved and
answered by consulting mappings between the global and local schemas.
Semistructured data models emerged as a result of the efforts to extend data-
base management techniques to data with the irregular, unknown, and frequently
changing structures that are becoming more and more common as the Internet
grows [1], [2], [13]. However, for semistructured data, structural information is
not given explicitly, and usually data are created without any restriction on
structure, so that it is much more difficult to develop such data processing sys-
tem. Because the semistructured data have no specific rules or enforcement of
the structure, it often happens that elements with the same tag have different

R. Nayak and M.J. Zaki (Eds.): KDXD 2006, LNCS 3915, pp. 54–63, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Information Retrieval from Distributed Semistructured Documents 55

structures and contain different information so that a single element in the global
schema may correspond to several elements with the same tag and even the same
path in an extracted local schema with different mapping types, i.e., 1:1, 1:N,
and N:1 mappings.

We designed a system to address this problem and implemented it in a re-
search system for generating local queries over distributed semistructured doc-
uments through a metadata interface and the queries are executed on its own
local site. It handles semistructured data with additional functionality to extract
schemas for XML documents without explicit schema information, as identifying
different types of elements with the same tag in our query processing system.
The proposed system architecture is shown in Fig. 1. Queries over the global
schema are processed based on the mapping information stored in a structured
document called DDXMI (for Distributed Documents XML Metadata Interface),
which works as an integrated view over all relevant local schemas. The DDXMI
file contains the mapping information and functions to be applied to each lo-
cal document, along with some identification information such as author, date,
comments, etc. The system prototype has two parts: the DDXMI Generator for
mapping the global schema with local schemas and producing a DDXMI file,
and the Query Generator for generating the local queries and answering queries.
Our tool parses a document schema or the document itself if its schema is un-
known to get the structure of the document, and then generates a dynamic path
tree, which can be folded and unfolded by clicking. The mapping is specified
by assigning indices through clicking involved nodes in the path trees in a GUI,
which link local elements to corresponding global elements and to the names of
conversion functions. These functions can be built-in or user-defined in Quilt [7],
which is our XML query language. The DDXMI document is then generated by
collecting over index numbers, which are internal to the system. User queries are

Fig. 1. The structure of the proposed system

56 G. Choe et al.

rewritten into appropriate queries for each relevant local document according
to the mapping information in the DDXMI document and node identification
information; finally each local query is processed by Kweelt engine for Quilt.

2 The Related Work

To facilitate formulation, decomposition and optimization of queries for
semistructured data, schema extraction or type inference have been studied by
using machine learning methods and heuristics [19], [20], [22]. Unfortunately, the
accuracy goes down as the extracted schema size decreases.

Schema mapping is a critical step for data integration and many other im-
portant database applications. An extensive review of techniques and tools for
automatic schema matching up to 2001 is given in [23]. Traditional approaches
such as instance-based LSD [8] and GLUE [9] and schema-based Cupid [15],
SF [16], Rondo [17] and Coma [10], and the holistic approach MGS [11] only
help find 1-to-1 matches, and have great difficulty with matches that involve
conditions or conversion functions, and cannot discover n-to-m matches for n>1
or m>1, automatically. Some tools such as COMAP, Clio, SCIA find complex
matches based on user input [4], [5], [6], [9], or ontologies [24]. However, it is very
difficult for these tools to deal with extremely complex mappings where schema
nodes have the same label but different types (these often exist in semistructured
data).

Rewriting queries using views has been studied extensively for structured
data [12], [18] and for semistructured data [3]. But those researches and tech-
niques all targeted at restricted formats of views.

3 The Three Query Processing Components

Our method for generating a set of appropriate local queries Qout from a global
query Qin includes three components, M(LSS, GS), PS, and NIP, where M is
a component for mapping a global schema GS to a set of local schemas LSS,
PS is a path substitution component, and NIP is a node identification predicate
generation component for resolving the heterogeneous nodes with the same label,
GS is a global schema and LSS is a set of local schema LS1 , . . . , LSj . We describe
each of these in the following sub-sections.

3.1 Schema Mapping

The essential part of a system for distributed data sources is the mappings
between the global schema and local schemas. Here we describe the semantics
of mappings and the mapping representation in our approach.

Assuming that only data are queried and answered from the single document
for each site and there are no JOINs among local documents, the total mappings
M(LSS,GS) are the union of the mappings of the global schema to each of the
local schemas, M(LS,GS). Let G and L be the set of nodes in the path tree GT of

Information Retrieval from Distributed Semistructured Documents 57

Fig. 2. Mappings between Global and Local nodes

the global schema GS and the set of nodes in the path tree LT of a local schema
LS respectively, and let PG and PL be the power set of G and L respectively.
A node oi in a path tree is an object (oli, ovi) which consists of the node label
oli and the node value ovi. In Fig. 2, the node number 5 has the node label
’location’ and the value ’1900 King’s Highway, Rolla, MO, 65401’. In GT and
LT, several nodes may have the same labels, so we differentiate them by putting
the subscript in the label when necessary, such as ’location1 ’ and ’location2 ’.
The mappings M(LS,GS) between the global schema GS and the local schema
LS contain mapping elements in the format of (l, g) ∈ PL×PG, where g = (gn1 ,
gn2 , . . . , gnm) ∈ PG and gni ∈ G for i = 1 to m and l = (ln1 , ln2 , . . . , lnn)
∈ PL and lni ∈ L for i = 1 to n. We group the mapping elements according to
their mapping types as follows:

M(LS,GS) = M11 (LS,GS) ∪ M1N (LS,GS) ∪ MN1 (LS,GS) where

i) M11 (LS, GS) is the set of one-to-one mapping elements m11 = (l, g), where
g ∈ PG and l ∈ PL are both the singleton.

ii) M1N (LS, GS) is the set of one-to-many mapping elements m1N = (l, g),
where g = (gn1 , gn2 , . . . , gnm) ∈ PG, m>1, l ∈ PL is a singleton.

iii) MN1 (LS, GS) is the set of many-to-one mapping elements mN1 = (l, g),
where g ∈ PG is a singleton and l is (ln1 , ln2 , . . . , lnn) ∈ PL, n>1.

58 G. Choe et al.

In Fig. 2, ’guide’ and ’agency2’ are the names of the global and local schemas
respectively, M11 (agency2, guide) is ((state-code, state), (zip-code, zip)), M1N

(agency2, guide) is ((location, (street, city, zipcode)), (location, (street, city,
state, zip))), and MN1 (agency2, guide) is ((state-code, zip-code), zipcode).

For m = (l, g) where l is not a singleton, functions are required for combining
the content of multiple elements of l into an instance of g. Even for m = (l, g)
where l is a singleton, conversion functions are often required for transforming
the content of l into an instance of g. We call both combining and conversion
functions as transformation functions. Therefore, the transformation Tm over m
= (l, g) ∈ M(LS, GS) is Tm:l → g where Tm is a vector of functions applied to
the values of objects in l in order to get the appropriate values for objects in g,
i.e., Tm(l) = g, where |Tm| = |g|.

3.2 Path Substitution for Generating Local Queries

Quilt is used as the XML query language in our prototype. A typical Quilt query
usually consists of FOR, LET, WHERE and RETURN clauses. FOR clauses are
used to bind variables to nodes. In order to identify some specific nodes, more
condition may be given inside of ’[]’ predicate. Therefore, path substitution
in FOR clauses and WHERE clauses vary according to the mapping kind. In
case of N:1 mapping, one global path is mapped by N local paths in a single
local document, multiple variables may be introduced for those N nodes, or the
parents of the N local nodes are bound and give conditions in predicates. When
comparison of node values is involved, relevant transformation functions have to
be combined with the paths during path substitution. The primary work for the
local query generation from global queries is to replace paths in the global query
by the corresponding paths appropriate to the local documents.

For example, in Fig. 2, PS(address/zipcode) = (location/zip-code, location/
state-code) since the global element ’address’ corresponds to the local element
’location’ and the global element ’zipcode’ maps to (state-code, zip-code) for
many-to-one mapping along the ’location’ path, hence PS(address/zipcode) =
Tm(address/zip-code) = mergepath(location/state-code, location/zip-code). PS
(address/street) = (location) along the ’location’ path since there is no map-
ping for ’address’, and ’street’ maps to ’location’, hence PS(address/street) =
Tm(address/street) = cstr1 (location).

3.3 Resolving the Heterogeneity of Nodes in Local Documents

Recall that the primary difference between structured and semistructured data
is that a semistructured document may have several nodes with the same name
but different structures. In this case, the nodes with the same label but different
structures may map to multiple global nodes in different ways; some may even be
mapped and some not, so a condition statement indicating that some unmapped
nodes should not participate in the possible candidate answer is needed in the
output local query.

Information Retrieval from Distributed Semistructured Documents 59

For example, in Fig. 2, consider a global query given as Query1 and assume
’address’ in ’guide’ is only mapped to the nodes ’location1 ’ and ’location2 ’ node
and not to ’location3 ’. The ’location3 ’ node is not relevant to this query. Thus,
the local query generator checks whether there are irrelevant nodes to the global
query in the local path tree. If so, then such nodes must be explicitly screened
by using path filtering predicates.

[Query1 : A global query for ’guide’ schema]
FOR $addr IN document("guide.xml")//address
WHERE $addr/zipcode[CONTAINS(.,"MO")]
RETURN $addr

Let li and lj be two nodes with the same label but different structures in a
local path tree. If li and lj are mapped to the same global node, then li and lj are
called homogeneous, otherwise they are said to conflict. All the nodes sharing
the same label with li and mapped to the same global node are represented
as a set, homo(li), while the set of nodes conflicting li is conflict(li). In Fig. 2,
homo(location1) = {location1 , location2 }, conflict(location1) = {location3}, and
conflict(location2) = {location3} since ’address’ is mapped to ’location1 ’ and
’location2 ’ but not to ’location3 ’. In Query1, the CONTAINS(.,”MO”) predicate
is applied to the ’location1 ’ and ’location2 ’ nodes, but not to ’location3 ’ since
’address’ maps to only ’location1 ’ and ’location2 ’. To select the homogeneous
elements ’location1 ’ and ’location2 ’, some specific conditions need to be specified.

Let lni ∈l and Lhc(lni) be the set of nodes having the same label, but different
structure so different index numbers, hence Lhc(lni) = homo(lni) ∪ conflict(lni).
For any element lni, childpaths(lni) is defined as the set of paths from lni’s
direct children to leaf nodes. The super child path set SCP(lni) of lni is defined
as the set of all child paths for all elements of Lhc(lni), i.e., SCP(lni) = Uk

i=1
childpaths(hi), where hi ∈ Lhc(lni), k = |Lhc(lni)|. We use childpaths(lni) and
SCP(lni) to formulate predicates to specify only node lni while excluding any
other nodes sharing the same label with lni. The predicate ((p1 AND, . . . , AND
pi) AND (NOT(q1) AND NOT(q2), . . . , AND NOT(qj))) for pi ∈ childpaths(lni)
and qi ∈ (SCP(lni) - childpaths(lni)) means that lni has the child paths p1 , . . . ,
pi and should not have the child paths q1 , . . . , qj .

4 System Implementation and Execution Examples

4.1 Mapping Representation and Path Substitution

The mapping information for the global schema and local schemas is stored in a
structured XML document, a DDXMI file. The structure of DDXMI is specified
in DDXMI’s DTD, shown in Fig. 3. The elements in the global schema are called
global elements, while the corresponding elements in the local documents are
called local elements. When the query generator reaches a global element name
in a global query, if its corresponding local element is not null, then the paths
in the query are replaced by the paths to the local elements to get local queries.

60 G. Choe et al.

Fig. 3. The DDXMI’s DTD

Fig. 4. A portion of the mapping information for ’article’ global schema and 3 local
documents

Information Retrieval from Distributed Semistructured Documents 61

Fig. 5. A global query and the generated local queries

The type attribute in local is for mapping kind; 0, 1, and 2 for one-to-one, one-
to-many, and many-to-one respectively; if operation attributes are included, the
value of ’operation’ attribute is applied to the content of the relevant local nodes
in order to get data consistent with the global schema.

The <local> and <global> elements are absolute paths from the root node,
which represented as ’/’, to the leaf nodes. For the example in Fig. 2, the
<global> element for ’street’ node is ’/guide/restaurant/address/street’ and its
<local> node is ’/agency2/restaurant/location’. Therefore, the mapping node
for ’street’ is ’location’ only if the parent node of ’street’ node is mapped, other-
wise, its mapping node is the difference of the path between the nearest mapped
ancestor node and the current node in DDXMI. This means that ’street’ is
mapped to strdiff(’/agency2/restaurant/location’ - ’agency2/restaurant’) = ’lo-
cation’. Since the mapping type of ’street’ node is 2 and the attribute value of
its operation is ’cstr1’, it can be easily seen that this is a 1:N mapping, and the
transformation function ’cstr1’ is applied to the value of ’location’ node, where
’cstr1’ is the name of function separating a string into a set of strings delimited
by comma. When the ’street’ node is encountered in the parsing process, it is au-
tomatically replaced by either the string ’cstr1(location)’ or ’location’ depending
on the type of the Quilt statement.

The mapping information for N:1 mapping types is stored in DDXMI by sepa-
rating the node paths by comma. In Fig. 2, the <local> elements of ’zipcode’ are
’/agency2/restaurant/location/state-code’ and ’/agency2/restaurant/location/
zip-code’ and the attribute value of its operation is ’0, 1’, which is used to indicate

62 G. Choe et al.

the merging sequence. Therefore, ’zipcode’ is transformed into ’mergepath(state-
code, zip-code)’.

4.2 Experimental Results

To demonstrate how the system works, we report an experiment with integra-
tion of information from 3 local documents: ’thesis’, ’reports’, and ’journal’ semi-
structured documents. Assume that we are going to build ‘article’ database as a
virtual global document from information maintained by ’thesis’, ‘reports’, and
’journal’ local documents.

The mapping between global and local schemas is shown in Fig. 4. An ex-
ample Quilt queries getting author’s name whose first name contains ’M’ letter
and the generated local queries from them are shown in Fig. 5.

5 Conclusion and Remaining Issues

A system for generating local queries corresponding to a query of the virtual
global schema over distributed semistructured data has been described, with a
focus on resolving both structural and semantic conflicts among data sources.
It consists of mapping, path substitution, and node identification mechanisms.
Especially, it handles the multiple mapping on an element and the node identi-
fication among the elements with the same label and different meanings.

The DDXMI file is generated by collecting the paths with the same index
numbers. Global queries from end users are translated to appropriate queries
to local documents by looking up the corresponding paths and possible seman-
tic functions in the DDXMI, and node identification information. Finally local
queries are executed by Kweelt.

There are several obvious limitations with the query processing algorithm and
its implementation. Firstly, we extract path trees for documents without explicit
schemas using an algorithm that may produce extremely large path trees for
irregular semistructured data, which may be too difficult for human to handle.
It is desirable to explore how to balance the accuracy and size of approximate
typing in practice. Secondly, JOINs among local data are not considered. In
order to fully use knowledge of the local documents for query decomposition
and optimization, it is planned to extend the mapping description power to
support describing and using more sophisticated kinds of relationship, and also
relationships at more levels, such as local path vs. local path, document vs.
document, and document vs. path.

References

1. S. Abiteboul. Querying semistructured data. In Proceedings of ICDT, 1997
2. Peter Buneman. Tutorial: Semistructured data. In Proceedings of PODs, 1997.
3. Andrea Cal‘y, Diego Calvanese, Giuseppe De Giacomo and Maurizio Lenzerini.

View-based query answering and query containment over semistructured data. In:
Proc. of DBPL 2001.

Information Retrieval from Distributed Semistructured Documents 63

4. Lucian Popa, Mauricio. Hernandez, Yannis Velegrakis, Renee J. Miller, Felix Nau-
mann, and Howard Ho. Mapping xml and relational schemas with clio. Demo on
ICDE 2002.

5. Lucian Popa, Yannis Velegrakis, Renee Miller, Mauricio. Hernandez, and Ronald
Fagin. Translating web data. Proc. 28th VLDB Conf., 2002.

6. Joseph Goguen. Data, schema and ontology integration. In Walter Carnielli, Miguel
Dionisio, and Paulo Mateus, editors, Proc. Comblog’04, pages 21-31, 2004.T

7. D. Chamberlin, J. Robie and D. Florescu. Quilt: An XML Query Language for
Heterogeneous Data Sources. Proceedings of WebDB 2000 Conference, in Lecture
Notes in Computer Science, Springer-Verlag, 2000.

8. An-Hai Doan, Pedro Domingos and Alon Halevy. Reconciling schemas of disparate
data sources: A machine-learning approach. Proc. SIGMOD, 2001.

9. An-Hai Doan. Thesis: Learning to Translate between Structured Representations
of Data.University of Washington, 2003.

10. Hong-Hai Do and Erhard Rahm. Coma - a system for flexible combination of
schema matching approaches. Proc. 28th VLDB Conf., 2002.

11. Bin He and Kevin Chen-Chuan Chang. Statistical Schema Matching across Web
Query Interfaces. Proc. SIGMOD, 2003.

12. A. Y. Levy. Answering Queries Using Views: A Survey. VLDB Journal, 2001.
13. J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore: A database

management systems for semistructured data. SIGMOD Record, 26, 1997.
14. Alon Levy. The Information Manifold approach to Data Integration. IEEE Intelli-

gent Systems, vol.13, pages:12–16,1998.
15. Jayant Madhavan,Philip Bernstein and Erhard Rahm. Generic Schema Matching

with Cupid. Proc. 27th VLDB Conference, 2001.
16. Sergey Melnik, Hector Garcia-Molina and Erhard Rahm. Similarity Flooding: A

Versatile Graph Matching Algorithm and its Application to Schema Matching.
Proc. ICDE,2002.

17. Sergey Melnik, Erhard Rahm and Philip Bernstein. Rondo: A Programming Plat-
form for Generic Model Management. Proc.SIGMOD,2003.

18. J. D. Ullman. Information integration using logical views. International Conference
on Database Theory (ICDT), pages 19-40, 1997.

19. S. Nestorov, S. Abiteboul, and R. Motwani. Inferring Structure in Semistructured
Data. In Proceedings of the Workshop on Management of Semistructured Data,
1997.

20. Svetlozar Nestorov, Serge Abiteboul and Rajeev Motwani. Extracting schema from
semistructured data. In Proceedings of SIGMOD, pages 295-306, 1998.

21. Y. K. Nam, J. Goguen, and G. Wang. A Metadata Integration Assistant Generator
for Heterogeneous Distributed Databases. Springer, LNCS, Volume 2519, pages
1332-1344, 2002.

22. Svetlozar Nestorov and Jeffrey D. Ullman and Janet L. Wiener and Sudarshan
S. Chawathe. Representative Objects: Concise representations of Semistructured,
Hierarchical Data. Proceeding of ICDE, pages 79-90, 1997.

23. Erhard Rahm and Philip Bernstein. On Matching Schemas Automatically. Tech-
nical report, Dept. Computer Science, Univ. of Leipzig, 2001.

24. Li Xu and David Embley. Using Domain Ontologies to Discover Direct and Indirect
Matches for Schema Elements. Proc. Semantic Integration Workshop, 2003.

25. Hector Garcia-Molina, Yannis Papakonstantinou, D. Quass, Anand Rajarman, Y.
Sagiv, Jeffrey Ullman, Vasilis Vassalos and Jennifer Widom. The TSIMMIS Ap-
proach to Mediation: Data Models and Languages. Intelligent Information System,
8(2), 1997.

R. Nayak and M.J. Zaki (Eds.): KDXD 2006, LNCS 3915, pp. 64 – 73, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Using Ontologies for Semantic Query Optimization of
XML Database

College of Computer Science and Technology, Harbin Engineering University,
Harbin Heilongjiang Province, China
sunwei78@hrbeu.edu.cn

Abstract. As XML has gained prevalence in recent years, the management of
XML compliant structured-document database has become a very interesting
and compelling research area. Effective query optimization is crucial to obtain-
ing good performance from an XML database given a declarative query specifi-
cation because of the much enlarged optimization space. Query rewriting
techniques based on semantic knowledge have been used in database manage-
ment systems, namely for query optimization The main goal of query optimi-
zation is to rewrite a user query into another one that uses less time and/or less
resources during the execution. When using those query optimization strategies
the transformed queries are equivalent to the submitted ones. This paper pre-
sents a new approach of query optimization using ontology semantics for query
processing within XML database. In fact, our approach shows how ontologies
can effectively be exploited to rewrite a user query into another one such that
the new query provides equally meaningful results that satisfy the intention of
the user. Based on practical examples and their usefulness we develop a set of
rewriting rules. In addition, we prove that the results of the query rewriting are
semantically correct by using a logical model.

1 Introduction

Recently, XML has emerged as the de-facto standard for publishing and exchanging
data on the Web. Many data sources export XML data, and publish their contents
using DTD’s or XML schemas. Thus, independently of whether the data is actually
stored in XML native mode or in a relational store, the view presented to the users is
XML-based. The use of XML as a data representation and exchange standard raises
new issues for data management.

A large number of research approaches have used semantic knowledge for support-
ing data management to overcome problems caused by the increasing growth of data
in local databases, and the variety of its format and model in distributed databases.
The use of semantic knowledge in its various forms including meta-models, semantic
rules, and integrity constraints can improve query processing capabilities by trans-
forming user queries into other semantically equivalent ones, which can be answered
in less time and/or with less resources. Known as semantic query optimization (SQO),
has generated promising results in deductive, relational and object databases. Natu-
rally, it is also expected to be an optimization direction for XML query processing.

Wei Sun and Da-Xin Liu

 Using Ontologies for Semantic Query Optimization of XML Database 65

Among the three major functionalities of an XML query language, namely, pattern
retrieval, filtering and restructuring, only pattern retrieval is specific to the XML data
model. Therefore, recent work on XML SQO techniques [1,2,3] focuses on pattern
retrieval optimization. Most of them fall into one of the following two categories:

1. Query minimization: For example, Query tree minimization [1,3] would sim-
plify a query asking for “all auctions with an initial price” to one asking for “all auc-
tions”, if it is known from the schema that each auction must have an initial price. The
pruned query is typically more efficient to evaluate than the original one, regardless
of the nature of the data source.

2. Query rewriting: For example, “query rewriting using state extents” [2] assumes
that indices are built on element types. In persistent XML applications, it is practical
to preprocess the data to build indices. However, this is not the case for the XML
stream scenario since data arrives on the fly and usually no indices are provided in the
data.

Currently, research work on the Semantic Web and data integration are focusing on
using ontologies as semantic support for data processing. Ontologies have proven to
be useful to capture the semantic content of data sources and to unify the semantic
relationships between heterogenous structures. Thus, users should not care about
where and how the data are organized in the sources. For this reason, systems like
OBSERVER and TAMBIS allow users to formulate their queries over an ontology
without directly accessing the data sources. In this paper, we present a new approach
on how to improve the answers of queries based on semantic knowledge expressed in
ontologies. Given an XML database, we assume the existence of an ontology which is
associated with the database and which provides the context of its objects. We show
how ontologies can be exploited effectively to rewrite a user query such that the new
query can provide more "meaningful" results meeting the intention of the user.

2 Related Works

Work related to rewrite user query using semantic knowledge has emerged in two
different research areas: Semantic query optimization and global information process-
ing area.

Semantic query optimization. The basic idea of semantic query optimization (SQO)
is to rewrite a query to another more efficient query, which is semantically equivalent,
i.e. provides the same answer. Here, SQO approaches use semantic knowledge in
various forms including semantic rules and range rules. Range rules states facts about
the range of values of a given attribute, whereas semantic rules define the regularity
of data for a given database. Therefore, these rules can be driven from the non-
uniform distribution of values in a database. Expressing semantics in the form of horn
clause sets allows the optimizer to make possible reformulations on an input query
involving the insertion of new literals, or the deletion of literals, or the refuting the
entire query. Several approaches on SQO have been developed to address different
aspects of query processing: In [11] semantic rules have been used to derive useful
information, which can reduce the cost of query plans. In [12, 13] algorithms have
been developed for optimizing conjunctive sub-queries. To this end, learning

66

techniques have been applied to generate semantic (operational) rules from a database
automatically [14]. While the previous approaches are based on extracting semantic
knowledge from the underlying database, current research approaches use knowledge
from additional source [15, 16].

Ontology. The term “Ontology” or “Ontologies” is becoming frequently used in
many contexts of database and artificial intelligence researches. However, there is not
a unique definition of what an ontology is [7-10]. An initial definition was given by
Tom Gruber: “an ontology is an explicit specification of a conceptualization” [7].
However, this definition is general and remains still unsatisfied for many researchers.
In [8] Nicola Guarino argues that the notion of “conceptualization” is badly used in
the definition. We note that many real-world ontologies already combine data in-
stances and concepts [9]. Our definition differ from this point of view as we show
later . Informally, we define an ontology as an intentional description of what is
known about the essence of the entities in a particular domain of interest using ab-
stractions, also called concepts and the relationships among them.

Semantic query optimization of XML data. The diversity of the XML queries (re-
ferred to in this paper as structural queries) results from the diversity of possible
XML schemas (also called structural schemas) for a single conceptual model. In
comparison, the schema languages that operate on the conceptual level (called con-
ceptual schemas) are structurally flat so that the user can formulate a determined
query (called conceptual query) without considering the structure of the source. There
are currently many attempts to use conceptual schemas [4, 5] or conceptual queries
[6] to overcome the problem of structural heterogeneities among XML sources.

Contributions. In brief, we make the following contributions in this paper: We pro-
pose an approach for using ontologies based graph model to represent semantic
information of heterogeneous XML sources. This model integrates semantic informa-
tion both the XML nesting structure and the domain content. These ontologies are
processed lossless with respect to the nesting structure of the XML document. Finally,
we describe an id-concept rule for rewriting XML query based on semantic informa-
tion. The optimization is based on a mapping model based on ontology and the rules
of rewriting the query on the XML sources.

3 The Problem Representation

Using semantic knowledge to optimize query has generated promising results in de-
ductive, relational and object databases. Naturally, it is also expected to be an optimi-
zation direction for XML database query processing. Therefore, recent work focuses
on XML optimization techniques based on semantic. It is becoming a crucial prob-
lem, how to represent the semantic information of XML database. The result is a set
of semantically constrained axioms and semantically constrained relations between
axioms. When a query is given to the system, the semantic transformation phase uses
these stored semantic constrained sets to generate semantically equivalent queries that
may be processed faster than the original query. In Fig.1, there is one DTD of XML
data, which will be used as follow.

W. Sun and D.-X. Liu

 Using Ontologies for Semantic Query Optimization of XML Database 67

hospital

dept

patientInfoclinicalTrial staffInfo

patient staffdurationtype

treatment nurse doctor

wardNotrial regular name phone

test bill medication

Fig. 1. The DTD of XML document

4 XML Semantic Model (XSM)

In this section, we propose the model of XML semantic, which is represented by
ontologies about the content of XML document and schema. The model XSM can
transform a normal query to a a semantically equivalent query, and the equivalent
query has less time than the origin one to be processed.

4.1 Ontology Definition

Informally, we define an ontology as an intentional description of what is known
about the essence of the entities in a particular domain of interest using abstractions,
also called concepts and the relationships among them. Basically, the hierarchical
organization of concepts through the inheritance ("ISA") relationship constitutes the
backbone of an ontology. Other kinds of relationship like part-whole ("PartOf") or
synonym ("SynOf") or application specific relationships might exist. To the best of
our knowledge, there is no work until now addressing the issue of using ontology
relationships at the database instance level. Despite the disagreement upon a common
meaning of an "ontology", the role of ontologies that must play is clear: Ontologies
should provide a concise and unambiguous description of concepts and their
relationships for a domain of interest. Ontologies are shared and reused by different
agents i.e. human or/and machines.

Formally, we define an ontology as a set and a set as follows:

and = {“ISA”; “SynOf”; “PartOf”}, where1{ ,..., }nc c ic is a concept

name, and ir is the type of the binary relation relating two concepts (and

are non-null strings). Other domain-specific types may also exist. At the top of the
ic ir

68

4.2 Ontology Formal Representation

This section presents a graph-based representation of an ontology. We introduce its
basic formal settings, and some related operations relevant to further discussions.

Graph oriented model. We represent an ontology as a directed graph G(V;E), where
V is a finite set of vertices and E is a finite set of edges: Each vertex of V is labelled
with a concept and each edge of E represents the inter-concept relationship between
two concepts. Formally, the label of a node n V∈ is defined by a function N(n) =

ic that maps n to a string ic from . The label of an edge e E∈ is given by a func-

tion T(e) = ir that maps e to a string ir from .

In summary, an ontology is the set { (,), , , , }O G V E N T=

Graph operations. In order to navigate the ontology graph, we define the following
sets of concepts: Rparent, DESC, SUBT, SY Ns, PARTs and WHOLEs. We need these
operations to identify nodes in the graph, which hold concepts that are of interest for
our query reformulations.

Let 1 2()thsP n n− be a set of directed paths between two nodes 1n and 2n . We de-

note by node(c) the node labelled by a concept c, and by child(n) and parent(n) the
child-node and parent-node of a node n, respectively. Given two nodes

1 1()n node c= and 2 2()n node c= the operation are formulated as follows:

Rparent(r, 1c)= 2c iff 2n =parent(1n) and T[(2n , 1n)]=r

concept hierarchy we assume the existence of a universal concept, called “Anything”,
which represents the most general concept of an ontology. In the literature, the word
“concept” is frequently used as a synonym for the word “concept name”. Hence, for
the design of an ontology only one term is chosen as a name for a particular concept.
Further, we assume that the terms “concept” and “concept name” have the same
meaning.

"

DESC(r,c)={ }| (() ()) : , ()thss p P node c node s e p T e r

SYNs(c)={ | (() ()) : , () "thss p P node c node s e p T e SynOf }

SUBT(c)={ | (()thss p P node c node s()) }

Informally, Rparent(r; c) returns the label of the parent node of a concept c by
following an edge of type r. DESC(r; c) returns the set of all concepts in O whose
nodes are children of the node of c by means of descending edges of type r. Similarly,
SUBT(c) returns all descendants of c for any edge-type and SY Ns(c) returns the set of
all synonyms of c in O. In addition, we define an Outgoings(n) as a set of edge-types
going out from a node n and PARTs(c) as the set of concepts whose nodes are related
to the node(c) through the edges of type “part of”. Here, two cases must be
distinguished:

.

W. Sun and D.-X. Liu

 Using Ontologies for Semantic Query Optimization of XML Database 69

4.3 XML Semantic Model

Case 1: If Outgoings(node(c)) “Part of” then PARTs(c) = , WhereA B C
 A = DESC(“Part of”; c)
 B = DESC(“ISA”; a), a A
 C = SYNs(h) SY Ns(l), h A and l B

Informally, PARTs(c) is the set of concepts obtained by retrieving the labels of all
nodes that are PartOf-children of the node(c) together with their ISA-descendants and
synonyms.

Case 2: If Outgoings(node(c)) “ISA” then PARTs(c) = PARTs(), whereis

is A and PARTs() = PARTs(), A = DESC(“ISA”; c).

Informally, PARTs of a concept c is defined recursively in terms of its sub-concepts.
It is equal to the PARTs of one of its sub-concepts (if they have the same PARTs).

2
1 2(,)s s A 1s 2s

Inversely, we define WHOLEs of a given concept c as the set of concepts such

that c PARTs().

ic

ic

The XML semantic model is stated as an extension of the given ontology, denoted by

, which includes new concepts and additional relationship-types. The new
concepts represent relation names, entity names, attribute names and values of the
database unless they already exist. We denote these concepts by

 , respectively. Furthermore, we call id-concepts the concepts

that represent id-values of the database. The additional relationships have to relating
these concepts to the existing ones or to each other.Their types are defined as follows:

*O

RNC ENC ANC VNC

“ValueOf” is the type of relationship that relates each value-concept to its associated
attribute-concept or entity-concept.
“HasA” is the type of relationship between entity-concepts and attribute-concepts.
“InstanceOf” is the type of relationship that relates an Id-concept to its associated
entity-concept.
“Tupleof” is the type of relationship that relates entity-concepts to each other, which
are associated with a particular tuple.
“RelateTo” is the type of relationship that relates relation-concepts to entity-concepts,
one relation-concept with one or more entity-concepts.
“OnlyA” is the type of relationship that relates entity-concepts to each other, which
are associated with an entity-concept only.

In summary, is defined as a set O G , where

, and

*O * * * *{ , , , , }N T

R
*

E A VNC NC NC NC * {“ValueOf”,” HasA”,”

InstanceOf”,” Tupleof”, “RelateTo”}. Such as Fig.2.

70

Table 1 XPath expressions and Concepts

XPath expressions Concept expressions
hospital hospital
hospital\dept dept
Hospital\dept\clinicalTrial\patientInfo clinical-patientInfo
hospital\dept\patientInfo Non-clinical-patientInfo

… …

hospital\
dept\patientInfo\patient\treatment\regular\medication

medication

hospital

dept

clinicalTrial

staffInfo

patient staff

durationtyp

treatment doctor

wardNotrial regular phone

test bill medication

clinical
patientInfo

non_clinical
patientInfo

Wang Zhang

 nurse

name

No.205
RelateTo

HasA

OnlyA

TupleOf ValueOf

InstanceOf

Fig. 2. Shows a portion of the semantic model related to DTD shown in Fig.1

Logical Interpretation. By using the First Order Language (FOL) the semantic

model *O is defined as a theory Γ which consists of an Interpretation I and a set of

well formed formulas [12]. I is specified by the set of individuals *ℵ and an interpre-

tation function I . In the following, we describe the interpretation of *O .

Let 1n and 2n be the nodes of two concepts a and b, respectively. Formally, Γ :

I = (*ℵ ; I)
*2

1 2{(,) | (,) " "}IISA a b T n n ISA= ∈ℵ =

.

*2
1 2{(,) | (,) " "}ISYN a b T n n SynOf= ∈ℵ =

W. Sun and D.-X. Liu

 Using Ontologies for Semantic Query Optimization of XML Database 71

*2
1 2{(,) | (,) " "}IPARTOF a b T n n PartOf= ∈ℵ = �

*2
1 2{(,) | (,) " "}IHASA a b T n n HasA= ∈ℵ =

*2
1 2{(,) | (,) " "}IVALUEOF a b T n n ValueOf= ∈ℵ =

*2
1 2{(,) | (,) " tan "}IINSOF a b T n n Ins ceOf= ∈ℵ =

*{ | . (,) " tan "}IKey a bT a b Ins ceOf= ∈ℵ ∃ =

*2
1 2{(,) | (,) " "}ITUPOF a b T n n TupleOf= ∈ℵ =

*2{(,) | (,) "Re "}IRELATETO a b T a b lateTo= ∈ℵ =

*
1 2 1 2 1 2{ | . (,) (,) (,) (,)}IWHOLE a b b c ISA a b ISA a b PARTOF b c PARTOF b c= ∈ℵ ∀ ∧ ∧ →

. (,)x ISA x x∀

. (,)x SYN x x∀

. (,)x PARTOF x x∀

. (,) (,) (,)xyz ISA x y ISA x z ISA x z∀ ∧ →

. (,) (,)xy SYN x y SYN y x∀ ↔

. (,) (,) (,)xyz SYN x y SYN x z SYN x z∀ ∧ →

. (,) (,) (,)xyz ISA x y SYN y z ISA x z∀ ∧ ↔

. (,) (,)xy z VALUEOF x y HASA z y∀ ∃ →

. (,) (,)xy z TUPVAL x y INSOF y z∀ ∃ →

. (,) (,) (,)xyz PARTOF x y SYN y z PARTOF x z∀ ∧ ↔

. (,) (,) (,)xyz PARTOF x y ISA y z PARTOF x z∀ ∧ ↔

. (,) (,) (,)xyz PARTOF x y PARTOF x z PARTOF x z∀ ∧ ↔

. (,) (,) (,)xyzVALUEOF y z ISA x y VALUEOF x z∀ ∧ →

. (,) (,) (,)xyzVALUEOF y z SYN x y VALUEOF x z∀ ∧ →

. (,) (,) (,) (,)xyz w INSOF x y HASA y z TUPVAL x w VALUEOF w z∀ ∃ ∧ → ∧
. () (,) (,) (,)xyzWHOLE x ISA x y PARTOF y z PARTOF x z∀ ∧ ∧ ↔ x; y; z;

w are variables.

5 Id-Concept Rule and Validations

We note that a common feature of the rules is that after applying a rule to a query Q,

the results of the reformulated query might increase. We denote by and the

result set of Q and Q’, respectively. This augmentation is not arbitrary but it is proved

by the semantic model . According to , each tuple-identifier in is

QS 'Q
S

*O *O QS

72

Concerning this rule the QS -identifiers are formally expressed by the following set

of individuals 1Ω , we obtain the set of individuals from Q which represents all id-

concepts of the tuples in 'Q
S . Formally,

1 { | (,) (,) (,)Ex z aVALUEOF z a TUPOF z x INSOF x NCΩ = ∃ ∀ ∧ ∧ →

(,) [(,) (,)]}E V VTUPOF z NC ISA NC a SYN NC a∧ ∨ .

6 Conclusions

Recently, there is a growing interest in ontologies for managing data in database and
information systems. In fact, ontologies provide good supports for understanding the
meaning of data. They are broadly used to optimize query processing among the dis-
tributed sources. In this paper, we use ontologies within XML database and present a
new approach of query optimization using semantic knowledge from a given ontology
to rewrite a user query in such way that the query answer is more meaningful to the
user. To this end, we propose a set of query rewriting rules and illustrate their effec-
tiveness by some running examples. Although these rules might not be ideal, we hope
that they can bring more insight into the nature of query answers. Our approach is
appropriate for database applications, where some attributes are enumerated from a
list of terms. In the future, we will develop additional rewriting rules and intend to
address the problem of how to establish mapping information between the database
objects and ontological concepts present in an ontology associated with a specific
database.

References

1. S. Amer-Yahia, S. Cho, L. V. Lakshmanan, and D. Srivastava. Minimization of Tree Pat-
tern Queries. In Proc. of SIGMOD(2001) 497–508

2. M. F. Fernandez, D. Suciu. Optimizing Regular Path Expressions Using Graph Schemas.
In Proc. of ICDE (1998) 14–23

3. Z. Chen, H. Jagadish and L.V.S. Lakshmanan et al. From Tree Patterns to Generalized
Tree Patterns; On Efficient Evaluation of XQuery. In Proc. of 29th VLDB (2003) 237-248

4. B. Amann, C. Beeri, I. Fundulaki, and M. Scholl. Ontology-Based Integration of XML
Web Resources. In Proceedings of the 1st International Semantic Web Conference (ISWC
2002) 117–131

represented by an id-concept, which is related to value-concepts through the
ValueOf-relationship and a relation-concept through the TupleOf and InstanceOf-

relationship, respectively. interprets the reformulation results of a given rule as
the existence of additional value-concepts, which are semantically related to those
representing terms in the condition of Q. For brevity, we describe only an example of
validation of the proposed rules using the available logical expressions from .

*O

5. B. Amann, I. Fundulaki, M. Scholl, C. Beeri, and A. Vercoustre. Mapping XML Frag-
ments to Community Web Ontologies. In Proceedings of the 4th International Workshop
on the Web and Databases (WebDB 2001) 97–102

W. Sun and D.-X. Liu

 Using Ontologies for Semantic Query Optimization of XML Database 73

6. S. D. Camillo, C. A. Heuser, and R. S. Mello. Querying Heterogeneous XML Sources
through a Conceptual Schema. In Proceedings of the 22nd International Conference on
Conceptual Modeling (ER2003 186–199

7. Gruber, T.: A translation approach to portable ontology specifications. In: Knowledge Ac-
quisition, 5(2) (1993) 199-220

8. Guarino, N., Giaretta, P.: Ontologies and knowledge bases: towards a terminological clari-
fication. In: Knowledge Building Knowledge Sharing,ION Press. (1995) 25-32

9. Noy, N., Hafner, C.D.: The state of the art in ontology design. AI Magazine 3(1997) 53-74
10. Chandrasekaran, B., Josephson, J., Benjamins, V.: What are ontologies, and why do we

need them? In: IEEE Intelligent Systems, (1999) 20-26
11. Hsu, C., Knoblock, C.A.: Semantic query optimization for query plans of heterogeneous

multidatabase systems. Knowledge and Data Engineering, 12 (2000) 959-978
12. Yu, C.T., Sun, W.: Automatic knowledge acquisition and maintenance for semantic query

optimization. IEEE Trans. Knowledge and Data Engineering, 1 (1989) 362-375
13. Sun, W., Yu, C.: Semantic query optimization for tree and chain queries. IEEE Trans. on

Data and Knowledge Engineering 1 (1994) 136-151
14. Hsu, C.: Learning effective and robust knowledge for semantic query optimization (1996)
15. Peim, M., Franconi, E., Paton, N., Goble, C.: Query processing with description logic on-

tologies over object-wrapped databases. technical report, University of Manchester (2001)
16. Bergamaschi, S., Sartori, C., Beneventano, D., Vincini, M.: ODB-tools: A description lo-

gics based tool for schema validation and semantic query optimization in object oriented
databases. Advances in Artificial Intelligence, 5th Congress of the Italian Association for
Artificial Intelligence, Rome, Italy (1997) 435-438

R. Nayak and M.J. Zaki (Eds.): KDXD 2006, LNCS 3915, pp. 74 – 84, 2006.
© Springer-Verlag Berlin Heidelberg 2006

The Expressive Language ALCNHR+K(D) for
Knowledge Reasoning*

Nizamuddin Channa1,2 and Shanping Li1

1 College of Computer Science, Zhejiang University,Hangzhou, P.R. China 310027
2 Institute of Business Administration, University of Sindh, Jamshoro, Pakistan 71000

nchanna68@yahoo.com, shan@cs.zju.edu.cn

Abstract. The Expressive Language ALCNHR+(D) provides conjunction, full
negation, quantifiers, number restrictions, role hierarchies, transitively closed
roles and concrete domains. In addition to the operators known from
ALCNHR+, a restricted existential predicate restriction operator for concrete
domains is supported. In order to capture the semantic of complicated knowl-
edge reasoning model, the expressive language ALCNHR+K(D) is introduced.
It cannot only be able to represent knowledge about concrete domain and
constraints, but also rules in some sense of closed world semantic model hy-
pothesis. The paper investigates an extension to description logic based knowl-
edge reasoning by means o f decomposing and rewriting complicated hybrid
concepts into partitions. We present an approach that automatically decomposes
the whole knowledge base into description logic compatible and constraints
solver. Our arguments are two-fold. First, complex description logics with pow-
erful representation ability lack effectively reasoning ability and second, how to
reason with the combination of inferences from distributed heterogeneous rea-
soner.

1 Introduction

Description logics (DLs) [1] are a family of logical formalisms that originated in the
field of artificial intelligence as a tool for the representation of conceptual knowledge.
Since then, DLs have been successfully used in a wide range of application areas such
as knowledge representation, reasoning about class based formalisms (e.g conceptual
database models and UML diagrams) and ontology engineering in the context of
semantic web [2]. The basic syntactic entities of description logics are concepts,
which are constructed from concept names (unary predicates) and role names (binary
relations). Furthermore, a set of axioms (also called Tbox) are used for modeling the
terminology of an application Knowledge about specific individuals and their
interrelationships is modeled with a set of additional axioms (so-called ABox). Using
different constructors defined with a uniform syntax and unambiguous semantics,
complex concept definitions and axioms can be built from simple components. There-
fore, DLs are particularly appealing both to represent ontological knowledge and to

* The research is funded by Natural Science foundation of China (No. 60174053, No.

60473052).

 The Expressive Language ALCNHR+K(D) for Knowledge Reasoning 75

reason with it. Unfortunately, Due to the inherent complexity with the product knowl-
edge, the expressive power needed to model complex real-world product ontologies is
quite high. Practical product ontology not only needs to represent abstract concept in
the application, but also the concrete domain and constrains roles [3]. Even in some
scene, such as expert system, procedural rules also need to be considered. During the
last few years, much research has been devoted to the development of more powerful
representation system in DL family [4] [5] [6]. Despite the diversity of their represen-
tations, most of them are based on ALC [7] and its expressive successors SHIQ [8],
extend the original tableau-based algorithm in different ways. It has been proved that
reasoning about extensions of ALC with concrete domains is generally intractable.
This problem can be moderated only if suitable restrictions are introduced in the way
of combining concept constructors [9]. Homogeneous reasoning systems (or systems
with homogeneous inference algorithms) have encountered the difficulty of finding
the right ‘trade-off’ between expressiveness and computational complexity. To take
advantage of the DLs popularity and flexibility in the context of semantic web, we
argue that consistent DLs representation pattern is necessary. But for reasoning abil-
ity, we need to decompose the product ontology into partitions, so that different rea-
soning paradigms can be jointly used. The benefits of such an approach in the context
of ontology sharing through the articulation of ontology interdependencies are high-
lighted in [10].

The rest of this paper is organized as follows: Section 2 presents the overview
of the expressive language ALCNHR+(D) and section 3 Concept definitions of

()ALCNHR K D+ knowledge base. Section 4 describes System architecture for knowl-

edge reasoning in detail. Section 4 draws the conclusion and future work.

2 Overview of the Expressive Language ALCNHR+(D)

In this section, we introduce the expressive language ALCNHR+(D)[11], which sup-
port practical modeling requirements and had been implemented in the RACER (Rea-
soner for ABoxes and Concept Expression Reasoner) system [12]. Based on
ALCNHR+(D), we further extend it by epistemic operator to capture rule knowledge
in product data. The following is it’s main syntax and semantics explanation. We
briefly introduce the syntax and semantics of the expressive language ALCNHR+(D).
We assume five disjoint sets: a set of concept names c , a set of role names R , a set
of feature names F , a set of individual names O and a set of concrete objects CO .
The mutually disjoint subsets P and T of R denote non-transitive and transitive
roles, respectively ().R P T= ∪ For presenting the syntax and semantics of the

language ()ALCNHR D+ , a few definitions are required.

Defination 1(Concrete Domain). A concrete domain D is a pair ,()D DΔ Φ , where

DΔ is a set called the domain and DΦ is a set of predicate names. The interpretation
name function maps each predicate name DP from DΦ with arity n to a subset

IP of n
DΔ . Concert objects from CO are mapped to an element of DΔ . A concrete

domain D is called admissible iff the set of predicate names DΦ is closed under

76 N. Channa and S. Li

negation and DΦ contains a name DT for DΔ and the satisfiability problem
1

11 1 11 (,....)n
nP x x Λ Λ 1... (,...)m

nm
m mnmP x x is decidable (m is finite, ∈ Φni

DiP , ni is the

arity of P and jkx is a name for concrete object from DΔ) . We assume that D⊥ is the
negation of the predicate DT .Using the definitions from above, the syntax of concept
terms in ()ALCNHR D+ is defined as follows.

Definition 2 (Concept Terms). Let C be a set of concept names with is disjoint form
R and F . Any elements of C is a concept term. If C and D are concept terms,

RR ∈ is an arbitrary role, SS ∈ is a simple role, , , 1n m n∈ ≥� and 0m ≥ , DP ∈ Φ is

a predicate of the concrete domain, 1, ,..., Fkf f f ∈ are features, then the following

expressions are also concept terms:

C D∩ (conjunction), C D∪ (disjunction), C¬ (negation), .R C∀ (concept value
restriction), .R C∃ (concept exists restriction), mS≤∃ (at most number restriction),

nS≥∃ (at least number restriction), 1, ,..., .kf f f P∃ (predicate exists restriction),

. Df∀ ⊥ (no concrete domain filler restriction).

Definition 3 (Terminological Axiom, TBox). If C and D are concept terms, then
C D⊆ is a terminological axiom. A terminological axiom is also called generalized
concept inclusion or GCI. A finite set of terminological axioms is called a terminol-
ogy or TBox. The next definition gives a model-theoretic semantics to the language
introduced above. Let (,)D DD = Δ Φ be a concrete domain.

Definition 4 (Semantics). An interpretation (, ,)I
D I DI = Δ Δ � consists of a set IΔ (the

abstract domain), a set DΔ (the domain of the ‘concrete domain’ D) and an interpre-

tation function I� . The interpretation function I� maps each concept name C to a sub-

set IC of IΔ , each role name R from R to a subset IR of I IΔ × Δ . Each fea-

ture f from F is mapped to a partial function If from IΔ to DΔ where ()If a x=

will be written as (,) Ia x f∈ . Each predicate name P from DΦ with arity n is mapped

to a subset IP of n
DΔ . Let the symbols C , D be concept expressions, R , S be role

names, 1, ,... nf f f be features and let P be a predicate name. Then, the interpretation

function is extended to arbitrary concept and role terms as follows (���denotes the
cardinality of a set):

() : , () : , () : \I I I I I I I IC D C D C D C D C CI∩ = ∩ ∪ = ∪ ¬ = Δ

(.) : { | : ,) , }I I IR C a b a b R b CI∃ = ∈ Δ ∃ (∈ ∈

(.) : { | : (,) , }I I IR C a b a b R b CI∀ = ∈ Δ ∀ ∈ ∈

() : { | (,) }|| }I IR a b a b R nn I∃ = ∈ Δ || { ∈ ≥≥

() : { | (,) }|| }I IR a b a b R mm I∃ = ∈ Δ ||{ ∈ ≤≤

|

|

 The Expressive Language ALCNHR+K(D) for Knowledge Reasoning 77

(,..., .) : { | ,...,1 1
If f P a x xn nI D∃ = ∈ Δ ∃ ∈ Δ

: (,) ,..., (,) , ,...,1 1 1
I I Ia x f a x f x x Pn n n ∈ ∈ ()∈ }

(. : { : (,1 1
If a x a x fD I D

Ι∀ ⊥) = ∈ Δ | ¬∃ ∈ Δ)∈ }

An interpretation DI is a model of a concept C iff DIC ≠ ∅ . An interpretation DI sat-

isfies a terminological axiom C D⊆ iff I IC D⊂ . DI is a model of a TBox iff it
satisfies all terminological axioms C D⊆ in TBox. An interpretation DI is a model

of an RBox iff I IR S⊆ for all role inclusions R S⊆ in R and, in addition,

() : ()I Itranstive R R R R +∀ ∈ =

Definition 5 (Assertional Axioms, ABox). Let O NO O O= ∪ be a set of individual
names (or individuals), where the set OO of “old” individuals is disjoint with the set

NO “new”individuals. Old individuals are those names that explicitly appear in an
ABox given as input to an algorithm for solving an inference problem, i.e. the initially
mentioned individuals must not be in NO . Elements of NO will be generated inter-
nally. Furthermore, let CO be a set of names for concrete objects ()CO O∩ = ∅ . If C

is a concept term, R R∈ ¸ a role name, f F∈ a feature, , Oa b O∈ ¸ are individual

names and 1, ,... n Cx x x O∈ , are names for concrete objects, then the following expres-
sions are assertional axioms or

ABox assertions:
:a C (concept assertion), (,) :a b R (role assertion), (,) :a x f (concrete domain feature

assertion) and 1(..) :nx x P (concrete domain predicate assertion).

For example, part of the product model, illustrated in figure 1, can be represented as
following:

_ . _ .PC has part HD has part FD⊆ ∀ ∩ ∀ ∩

_ . _ _ .has part Mother board has part OS∀ ∩ ∀ _ . . _ ,has part HD storag space∩∃

_ . . _ _ .has part OS storag space req more

HD storage_space.integerOS storage_space_requirment.integer⊆ ∀ ⊆ ∀ .

2.1 Epistemic Operation K

In some system, such as computer-aided process planning (CAPP) rules are used to
express knowledge, especial heuristic rules and default rules [13]. The simplest vari-
ant of such rules are expressions of the form C D , where C , D are concepts.
Operationally, a forward process can describe the semantics of a finite set of rules.
Starting with an initial knowledge base K , a series of knowledge
bases (0)K , (1)K , (2)K ,………. is constructed, where (0)K K= and (1)iK + is obtained
from ()iK by adding a new assertion ()D a whenever there exists a rule C D such

that () | ()iK C a= holds, but ()iK does not contain ()D a . These processes eventually

halt if the initial knowledge base contains only finitely many individuals and there are

78 N. Channa and S. Li

only finitely many rules. The difference between the rule C D and the inclusion
axiom C D⊆ is that the rule is not equivalent to its contra positive D C¬ ¬ . In
addition, when applying rules one does not make a case analysis. For example, the
inclusions C D⊆ and C D¬ ⊆ imply that every object belongs to D, whereas none of
the rules C D and C D¬ applies to an individual a for which neither ()C a

nor ()C a¬ can be proven. In order to capture the meaning of rules in a declarative

way, we must augment description logics by an operator K [14], which does not refer
to objects in the domain, but to what the knowledge base knows about the domain.
Therefore, K is an epistemic operator.

To introduce the K-operator, we enrich both the syntax and the semantics of de-
scription logic languages. Originally, the K-operator has been defined for ALC [15].
First, we add one case to the syntax rule that allows us to construct epistemic con-
cepts: , KC D C→ (epistemic concept). Intuitively, the concept KC denotes those
objects for which the knowledge base knows that they are instances of C . Next, us-
ing K , we translate rules C D into inclusion axioms KC D⊆ .

For example, rules like this: “in a computer, if the motherboard type is B1, then the
CPU is only limited to 386 types and the operation system is only limited to Linux
can be represented as:

(_ . 1) _ .∀ ∀K has part B has part linux . And it can be translated into:

(_ . 1) _ .∀ ⊆ ∀K has part B has part linux .

Intuitively, the K operator in front of the concept C has the effect that the axiom is
only applicable to individuals that appear in the ABox and for which ABox and TBox
imply that they are instances of C . Such a restricted applicability prevents the inclu-
sion axiom from influencing satisfiability or subsumption relationships between con-
cepts. In the sequel, we will define a formal semantics for the operator K that has
exactly this effect. A rule knowledge base is a triple (, ,K T A R=) , where T is a

TBox, A is an ABox, and R is a set of rules written as inclusion axioms of the form
as KC D⊆ . The procedural extension of such a triple is the knowledge-

base
_ _

(,K T A=) that is obtained from (,)T A by applying the trigger rules as described

above. We call the extended knowledge base ALCNHR+K(D) knowledge base, be-
cause it extended by the operator K . The semantics of epistemic inclusions will be
defined in such a way that it applies only to individuals in the knowledge base that
provably are instances of C , but not to arbitrary domain elements, which would be
the case if we dropped K . The semantics will go beyond first-order logic because we
not only have to interpret concepts, roles and individuals, but also have to model the
knowledge of a knowledge base. The fact that a knowledge base has knowledge about
the domain can be understood in such a way that it considers only a subset W of the
set of all interpretations as possible states of the world. Those individuals that are
interpreted, as elements of C under all interpretations in W are then “known” to be
in C . To make this formal, we modify the definition of ordinary (first-order) interpre-
tations by assuming that: There is a fixed countable infinite set Δ that is the domain
of every interpretation (Common Domain Assumption); There is a mapping from the
individuals to the domain elements that fixes the way individuals are interpreted

 The Expressive Language ALCNHR+K(D) for Knowledge Reasoning 79

(Rigid Term Assumption). The Common Domain Assumption guarantees that all
interpretations speak about the same domain. The Rigid Term Assumption allows us
to identify each individual symbols with exactly one domain element. These assump-
tions do not essentially reduce the number of possible interpretations. As a conse-
quence, properties like satisfiability and subsumption of concepts are the same inde-
pendently of whether we define them with respect to arbitrary interpretations or those
that satisfy the above assumptions. Now, we define an epistemic interpretation as a
pair (,)I W , where I is a first-order interpretation and W is a set of first-order inter-

pretations, all satisfying the above assumptions. Every epistemic interpretation gives
rise to a unique mapping ,�I W associating concepts and roles with subsets
of Δ and Δ × Δ , respectively. For , ⊥ for atomic concepts, negated atomic concepts,
and for atomic roles, ,�I W agrees with �I . For intersections, value restrictions, and
existential quantifications, the definition is similar to the one of �I .

, , ,()∩ = ∩I W I W I WC D C D , , ,(.) { | .(,) }I W I W I WR C a b a b R b C∀ = ∈ Δ ∀ ∈ → ∈

, ,(.) { | .(,) }I W I WR a b a b R∃ Τ = ∈ Δ ∃ ∈

For other constructors, ,�I W can be defined analogously. It would also be possible to
allow the operator K to occur in front of roles and to define the semantics of role
expressions of the form KR analogously. However, since epistemic roles are not
needed to explain the semantics of rules, we restrict ourselves to epistemic concepts.

3 Concept Definitions of ()ALCNHR K D+ Knowledge Base

After rules in ontology are eliminated through operator K , the ()+ALCNHR K D knowl-

edge base only includes concept definitions, which can be decomposed into three con-
cepts:

Atomic concepts, which define the ground, constructs for ontology modeling. Ob-
jects responding to atomic concepts in information system are directly implemented
by basic data structure, which connect the data level and semantic level in the hierar-
chy of knowledge representation. For example, in figure 1, i.e. part of a computer
configuration model, the concept “HD1” own an attribute “storage_space”, which is
inherited form the further concept, whose value is an integer value. So “stor-
age_space” is a concrete concept.

Abstract concepts, which are defined through relationships/attributes declarations
with hybrid concepts and other abstract concepts, such as “HD”.

Hybrid concepts, which are defined through relationships/attributes declarations with
atomic concepts and other abstract concepts or hybrid concepts, such as “HD1”. To
avoid the undecidable inferential problems brought by concrete domain, hybrid con-
cepts are decomposed into an abstract one, an image concrete concept which only
contains the concrete concepts and their constrains projected from the source hybrid
concept. The link relationship between image concrete concept and abstract concept is
implied by the name of image concrete concept. So ()+ALCNHR K D) knowledge

80 N. Channa and S. Li

base denoted as ΠKB can be divided into partitions as ΠDL, i.e. a set of DL-oriented
statements which do not exceed the expressive power of the selected DL-based sys-
tem, and ΠCS i.e. a set of non-DL statements which contains the concrete knowledge
filtered out to from ΠDL. As a result, instead of reasoning with constrains directly,
DL-based systems provide inferential services without being aware of the existence of
constraint reasoning. All the information related to concrete domains is removed form
concept definitions. Thus, only the proper DL-based constructors, which are admitted
by the selected DL-based inferential engines are left.

Fig. 1. Knowledge model for PC

For instance, let us supposed that the storage space of “HD1” type hard disk are to
be required to be more than 4 GB, and the “MS 2000” need at least 2 GB storage
space. In order to decompose the hybrid concept, we have

1 _⊆ ∩HD Hard disk _ . _ 1∀storage space storage spaceHD

⊆MS_2000 Operation_System ∩storage_space_req.storage_space_reqoper_system

In the above expression, the “storage space” restriction is replaced by an atomic con-
cept “storage_space” which has the same name with the attribute name, but with a
subscript which denote where the atomic concept comes from. Meanwhile, the restric-
tions on the hybrid concept is given as

30_ 4 21 ≥ ×storage spaceHD
302 2≥ ×storage_space_reqoper_system

Now, by normalizing the knowledge base we split the concepts definitions and restric-
tion into two parts. First, we replace all the hybrid concepts with the wrapper con-
cepts, which are rewrite only by relationship or attribute with abstract concepts, and
add new atomic concepts, such as “storage_apaceHD1” into the DL parts. Second, all
the image concrete concepts acting as constraints variables are stored in the non-DL
part together with their default domain, such as

1_ HDstorage space _storage_space_reqoper system

: type integer ……… … : type integer

30: 4 2 ≥ ×domain 30: 2 2 ≥ ×domain

In default, domain field is the range allowed by data type. The above statements are
translated into the underlying modeling languages of the cooperative inferential en-
gines. Subsequently, translated statements are loaded into DL and CPL inferential

 The Expressive Language ALCNHR+K(D) for Knowledge Reasoning 81

engines. According to the results from both inferential engines, a reasoning coordina-
tor creates hierarchical structures of hybrid concepts, which are introduced into DL
definitions through the atomic axioms concepts. In our example, after loading the
non-part into an external constraints solver, we obtain a new partial order:

storage_space_reqoperation_system _ 1⊆ storage spaceHD Sending such informa-

tion back to join the original DL part knowledge base, which can be used directly by
DLs reasoner. We can conclude that, between satisfying other constraints, if a com-
puter has a “HD1” type hard disk, operation system “linux” can be installed on it.

4 System Architecture for Knowledge Reasoning.

The STEP standard, ISO 10303, is the predominant international standard for the
definition, management, and interchange of product data, being used in a wide variety
of industries from aerospace, shipbuilding, oil and gas to power generation [16]. Cen-
tral to the standard is the product data model, which are specified in EXPRESS (ISO
10303-11), a modeling language combing ideas from the entity-attribute-relationship
family of modeling languages with object modeling concepts. To satisfy the large
number of sophisticated and complex requirements put forwards by large-scale indus-
try, the EXPRESS language has powerful expressing constructs to describe compli-
cated product information, and had been used to build up a family of robust and
time-tested standard application protocols, which had been, implemented in most
Product data management (PDM) and Computer-Aided-X (CAX) systems.

E X P R E S S b a se d P ro d u c t
K n o w le d g e b a se

T ra n s la to r fo r E X P R E S S
s c h e m a to D L s

C S re a so n e rD L s re a s o n e r

U se r In te r fa c e fo r P ro d u c t
K n o w le d g e R e a so n in g

D L s b a se d P ro d u c t
K n o w le d g e b a se

P a rse r fo r
A L C N H R + K (D)

D L s P a r t N o n D L s P a r t (C S)

R e a so n in g C o -o rd in to r

Fig. 1. Architecture for Knowledge Reasoning

82 N. Channa and S. Li

IPDM systems manages "data about data" or metadata and provides data manage-
ment and integration at the image, drawing and document levels of coarse-grain data.
CAX systems have provided engineering applications with high-performance
solutions.

In our former works [17] [18][19], we had proposed a translation mechanism,
which rewrites the EXPRESS, based product knowledge base into DL based. So the
system architecture for product data reasoning is composed of three modules, as
shows in figure2.

 The translator for EXPRESS schema to DLs;
 Parser for ALCNHR+K(D), divides DLs with constraints and concrete do-

main to DL∏ and CS∏ sub knowledge base.
 Reasoning co-coordinator, which is the link between DLs reasoner and

CS reasoner

The combined reasoning process is as follows:

1. Parse the input EXPRESS schema and translate it into the expressive DL lan-
guage-ALCNHR+K(D).

2. Parse the DL based product knowledge baseextract the concrete image concepts
form hybrid concepts and decompose it into homogeneous parts: DL, non-DL
(the concrete value and constraints).

3. Check the consistency of constraints and propagate them in order to maintain a
full path-consistency by reducing the set of possible values associated with each
constrained variable.

4. Update DL-based representation with the quasi-ordering between the atomic
concepts which are the corresponding image concept for each variable.

5. Update and classify the DL-based descriptions based on the new knowledge.

5 Conclusions and Future Work

In previous sections we presented architecture for reasoning on product knowledge,
which takes originally EXPRESS Schema as input. In order to capture the semantic of
complicated product data model, the expressive language ALCNHR+K (D) is intro-
duced. It cannot only represent knowledge about concrete domain and constraints, but
also rules in some sense of closed world semantic model hypothesis. To avoid the
undecidable inferential problems brought by the extension. A partition based reason-
ing approach is proposed. The usual reasoning problems, such as concept subsuming,
can be resolved by the combined reasoning systems, which take the DL reason engine
as the core part. Utilizing current Semantic Web technology, product knowledge can
be embedded inside Web resources. One feature of this capability is the data sources,
which are readily available for consumption by a wide variety of Semantic Web users.
Our proposed product knowledge reasoning architecture can be used to Semantic Web
based search engines and discovery services. For further work, we need to optimize
the hybrid reasoning system to adapt diverse application domain.

 The Expressive Language ALCNHR+K(D) for Knowledge Reasoning 83

References

1. Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D., and Rosati, R. 1998. Description
logic framework for information integration. In Proceedings of the 6th International Con-
ference on rinciples of Knowledge Representation and Reasoning (KR’98). 2–13.

2. The Semantic Web lifts off 'by Tim Berners-Lee and Eric Miller, W3C. ERCIM News No.
51, October 2002

3. Felix Metzger, “The challenge of capturing the semantics of STEP data models pre-
cisely”, Workshop on Product Knowledge Sharing for Integrated Enterprises
(ProKSI'96), 1996.

4. F. Baader and U. Sattler, “Description Logics with Concrete Domains and Aggregation”,
In H. Prade, editor, Proceedings of the 13th European Conference on Artificial Intelligence
(ECAI-98), pages 336-340. John Wiley & Sons Ltd, 1998.

5. F. Baader and R. Küsters, “Unification in a Description Logic with Transitive Closure of
Roles”. In R. Nieuwenhuis and A. Voronkov, editors, Proceedings of the 8th International
Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR
2001), volume 2250 of Lecture Notes in Computer Science, pages 217–232, Havana,
Cuba, 2001. Springer-Verlag.

6. V. Haarslev, C. Lutz, and R. Möller, “A Description Logic with Concrete Domains and
Role-forming Predicates”. Journal of Logic and Computation, 9(3):351–384, 1999.

7. The Description Logic Handbook, edited by F. Baader, D. Calvanese, DL McGuinness, D.
Nardi, PF Patel-Schneider, Cambridge University Press, 2002.

8. Ian Horrocks, Ulrike Sattler, “Optimised Reasoning for SHIQ”, ECAI 2002: 277-281.
9. I. Horrocks, U. Sattler, and S. Tobies, “Practical Reasoning for Very Expressive Descrip-

tion Logics”. Logic Journal of the IGPL, 8(3):239–264, May 2000.
10. E. Compatangelo, H. Meisel, “K-Share: an architecture for sharing heterogeneous concep-

tualizations”. In Intl. Workshop on Intelligent Knowledge Management Techniques
(I-KOMAT'2002) - Proc. of the 6th Intl. Conf. on Knowledge-Based Intelligent Informa-
tion & Engineering Systems (KES’2002), pages 1439–1443.

11. Volker Haarslev, Ralf Möller, Michael Wessel, “The Description Logic ALCNHR+ Ex-
tended with Concrete Domains: A Practically Motivated Approach”. IJCAR 2001: 29-44.

12. Domazet D., “The automatic tool selection with the production rules matrix method”. An-
nals of the CIRP, 1990, 39(1): 497 500.

13. Volker Haarselev and Ralf Moller. RACER system Description. In proceedings of the In-
ternational Joint Conference on Automated Reasoning(IJCAR 2001), Volume 2083, 2001.

14. Dretske, Fred, “Epistemic Operators, The Journal of Philosophy”, Vol. LXVII, No.24,
Dec. 24, pp.1007-1023.

15. Donini, F. M., Lenzerini, M., Nardi, D., Nutt, W., and Schaerf, A., “Adding epistemic op-
erators to concept languages”. In Proceedings of the 3rd International Conference on the
Principles of Knowledge Representation and Reasoning (KR’92). Morgan Kaufmann, Los
Altos, 342–353.

16. Mike Pratt, “Introduction to ISO 10303 - The STEP Standard for Product Data Ex-
change”, ASME Journal of Computing and Information Science in Engineering, No-
vember, 2000

17. Xiangjun Fu, Shanping Li, “Ontology Knowledge Representation for Product Data
Model”, Journal of Computer-Aided Design & Computer Graphics, to appear (in
Chinese).

84 N. Channa and S. Li

18. Xiangjun Fu, Shanping Li, Ming Guo, Nizamuddin Channa “Methodology for Semantic
Representing of Product Data in XML”, In Proceedings of Advance Workshop on Content
Computing, LNCS, 2004

19. Nizamuddin Channa, Shanping Li, Xiangjun Fu “Product Knowledge Reasoning: A DL-
based approach” In proceedings Seven International Conference on Electronic Commerce
(ICEC’05) Xi’an, China PP:692-697 © ACM 2005

R. Nayak and M.J. Zaki (Eds.): KDXD 2006, LNCS 3915, pp. 85 – 94, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A New Scheme to Fingerprint XML Data*

Fei Guo1, Jianmin Wang1, Zhihao Zhang1, and Deyi Li1, 2

1 School of Software, Tsinghua University, Beijing 100084, China
f-guo03@mails.tsinghua.edu.cn

jimwang@tsinghua.edu.cn
zhangzh02@mails.tsinghua.edu.cn

2 China Constitute of Electronic System Engineering,
Beijing 100039, China

ziqinli@public2.bta.net.cn

Abstract. Watermarking has been used for digital rights protection over
different types of contents on the Web. Since XML data is widely used and
distributed over the Internet, watermarking XML data is of great interest. In this
paper, we present a new watermarking scheme to embed different fingerprints
in XML data. The fingerprint can be used to trace illegal distributors. We also
take into consideration that XML data usually contains categorical elements
which can’t tolerant much modification, our scheme attempts to reduce
modifications without bringing down the robustness of the fingerprint.
Modifications could be reduced by choosing different patterns to insert. The
experiments show that our scheme is effective to make less distortion to the
original data and the fingerprint maintains the same robustness level at the same
time.

1 Introduction

Today, mass of data could be copied and distributed on the Web easily. Since
valuable data could be resold for illegal profit, it’s important to claim original
ownership of a redistributed copy and trace traitors as well. Watermarking is a class
of information hiding techniques to protect digital contents from unauthorized
duplication and distribution by introducing small errors into the object being marked.
These small errors constitute a watermark or fingerprint. Fingerprinting is often
discussed in comparison or extension to watermarking [5]. A watermark is used to
identify the owner while a fingerprint is used to identify illegal distributor. For
example, the owner embedded a unique fingerprint to each user (user1, user2, user3),
see figure 1. When an unauthorized copy on the web is found, the owner could detect
the user3’s fingerprint to argue ownership and track back to identify user3 to be the
illegal distributor out of other users.

Since XML is designed especially for applications on the Web and more and more
Internet contents are defined in XML, it’s of great significance to fingerprint valuable
XML documents.

* This research is supported by National Natural Science Foundation of China under Project

No. 60473077.

86 F. Guo et al.

Fig. 1. Using a fingerprint to identify illegal distributors

Wilfred Ng and Ho-Lam Lau [4] present a selective approach of watermarking
XML. It’s successful to insert a watermark to prove ownership over XML data, but it
can’t insert different fingerprints to help identify illegal distributors. Sion [2] presents
an even grouping method for fingerprinting relational data. We extend his techniques
into a varied-size grouping method to fingerprint XML data. Agrawal [1] presents an
effective watermarking technique for relational data to modify some bit positions of
some attributes of some tuples and gives good mathematic analysis. It gives the
foundation of our analysis on confidence level within each group.

In this paper, we introduce a scheme to embed fingerprints of ordered bits. We first
classify elements into groups and embed one bit of the fingerprint in each group. To
maintain the same grouping result for successful detection, we introduce a varied-size
grouping method. A value of “remainder” of each element is calculated to identify
which group it belongs to, and the ascending order of the “remainder” naturally
preserves the order of the groups, also the order of the fingerprint. Thus, only the
number of groups that equals the length of the fingerprint is needed to calculate the
same “remainder” when detecting the fingerprint. The even grouping method [2] has
to record extra classifying information for each group, which is of the same size of the
fingerprint or even more and is not necessary.

All robust watermarking schemes [1] [2] [4] have to make some distortions to the
original data. So it’s assumed that small errors will not decrease the usability of the
original data remarkably in all robust watermarking algorithms. For example, to
embed a mark, number <byteCount>5440</byteCount> can be modified to
<byteCount>5439</byteCount>, word <TEAM_CITY>Los Angeles</TEAM_CITY>
can be replaced by its synonym <TEAM_CITY>L.A.</TEAM_CITY>. But it’s hard
to define what change is within the acceptable level. In many real life cases, changes
tend to be too big to meet the assumption, especially for categorical data. In [7], the
distortion to each selected categorical item may be significant, for example, even one
bit error in such as social security number is not acceptable. However, [7] assumed
that it’s acceptable if only a small part of data is modified. So we attempt to find a
way to minimum the part to be modified to minimum the change to the original data,
meanwhile preserve the same robustness level of the fingerprint. We believe that data
with fewer errors is more valuable than data with more errors, both for categorical
data and numeric data. In our scheme, we use the fingerprint bit to be embedded to

Owner

User1 User2 User3 / Illegal Distributor

Illegal User

Authorized Authorized Authorized

Unauthorized

Illegal copy detected

Identify Traitor through fingerprint

 A New Scheme to Fingerprint XML Data 87

choose the inserting positions, thus different fingerprint bit is represented by different
positions, not by the value of the selected mark positions, so we have a choice to
either set the selected bit value or word value to “1” or “0”, corresponding to either
pattern1 or pattern0. Since some of the selected mark positions may meet the pattern
naturally, i.e., no need to be modified, we can choose a pattern that needs the
minimum modifications. In other words, we examine the original values of selected
mark positions, and choose a pattern that original values tend to be, thus minimum
modifications. So we don’t reduce the selected bit positions to minimum
modifications, which mean that we don’t bring down the mark ratio, thus the
fingerprint maintains the same robustness level. Our experiment shows that in some
cases, we can reduce the modifications by 1/4 compared with [4] at the same mark
ratio. For numeric data, it means less effect on mean and variance; for categorical
data, it means we reduce the probability of destroying an element (e.g. any distortion
on the social security number) to 3/4.

The rest of the paper is organized as follows: Part 2 provides our insertion
algorithm and detection algorithm. Part 3 gives the implementation of our
fingerprinting scheme and the analysis on modification amount and fingerprints’
robustness. We conclude with a summary and directions for future work in Part 4.

2 Scheme to Fingerprint XML data

In this section, we provide our insertion and detection algorithms. The notations used
in this paper are shown in Table 1:

Table 1. Notations

1/ Target fraction of elements marked / mark ratio

 Number of candidate bits to be modified

k The secret key

 Significance level for detecting a watermark

PA Primary Data in each element

N Number of elements in XML data

 Concatenating

2.1 Insertion Algorithm

A primary data (PA) used to identify each element should be predefined by the
owner; also the candidate bit positions and candidate word positions
num_of_word_in_value should be predefined. The primary data which is used as the
primary key in relational databases should be unique and unchanged. For example,
the <social_security_number> could be used as PA. If no such data exists, we can
construct a virtual PA as stated in [5]. For example, we may use the combination of
<SURNAME> and <GIVEN_NAME> instead. We use a one-way hash function

88 F. Guo et al.

value affected by the PA and the secret key k to decide the group position and mark
position. Since only the owner knows the secret key, it’s hard for an attacker to find
our fingerprint.

First we transform a fingerprint in any form (e.g. fingerprint of a picture) into a bit
flow and the length of the fingerprint should be recorded for detection. Then we
calculate the remainder i for each element at line 4 in our insertion algorithm below.
Then elements with same values of i and meet line 5 at the same time are collected
into the same ith group. The ith bit of the fingerprint will be inserted into elements in
the ith group. Thus we have fpt_length (bit number of the fingerprint) groups. The
ascending order of i ranging from 0 to fpt_length-1 naturally preserves the order of
the fingerprint. Since the hash result of MD5 we used is expected to be uniform
distributed, each group may have varied but similar number of elements.

Let’s see how a bit of fingerprint is inserted in each group. We use the fingerprint
bit value to choose the inserting positions, see line 5, 13 and 16. It decides which
element to mark, and which bit or word to be modified. The mark ratio is used to
choose the insertion granularity. Notice that the elements selected to mark and the
modification position j are different when the fingerprint to be embedded is “1” from
when it’s “0”. In subroutine pattern(subseti), we count the original values of each
selected position within a group and choose the mark pattern. Since most categorical
data is in textual form, we use the parity of the word’s Hash value to represent value
“1” or “0” corresponding to bit value for numeric data, see subroutine value(word).
For pattern1, we set each selected position value into “1”, and for pattern0, we set each
selected position value into “0”. For example, if the selected values are eight “1” and
two “0” in a group, pattern1 is chosen (see line 32) and only two elements have to be
changed. In the opposite situation, if the selected values are eight “0” and two “1” in a
group, pattern0 is chosen (see line 31) and only two elements have to be changed too.
Then subroutine embed(subseti) will modify the selected positions according to the
pattern chosen, two elements in the example. How to modify the selected position for
numeric and textual element is shown at line 14 and 18 respectively.

Algorithm 1. Insertion algorithm
// Only the owner of data knows the secret key k.
// R is the XML document to be marked.
// fpt_length is the length of the fingerprint embedded.
1) fpt[] = bit(fingerprint)
2) record fpt_length // length of the fingerprint is recorded for detection
3) foreach element R do {
4) i = Hash(PA k) mod fpt_length // fpt[i] to be inserted
5) if(Hash(fpt[i] PA k) mod equals 0) then // mark this element
6) subseti element }
7) foreach subseti
8) embed(subseti)
9) subroutine embed(subseti)
10) mask[i] = pattern(subseti)
11) foreach element in subseti do {
12) if(element is numeric)
13) j = Hash(PA k fpt[i]) mod
14) set the jth bit to mask[i] // modify the jth candidate bit

 A New Scheme to Fingerprint XML Data 89

15) else if(element is textual)
16) j = Hash(PA k fpt[i]) mod num_of_word_in_value
17) if(value(the jth word) is not equal to mask[i]) // modify the jth word
18) replace the jth word by a synonym s where value(s) equals mask[i]
19) else do nothing }

20) subroutine pattern(subseti) // choose a pattern for less modification
21) count0 = count1 = 0
22) foreach element in subseti do {
23) if(element is numeric)
24) j = Hash(PA k fpt[i]) mod
25) if(the jth bit equals 0) count0 increment
26) else count1 increment
27) else if(element is textual)
28) j = Hash(PA k fpt[i]) mod num_of_word_in_value
29) if(value(the jth word)) count0 increment
30) else count1 increment }
31) if(count0 > count1) mask = 0 // pattern0
32) else mask = 1 // pattern1
33) return mask

34) subroutine value(word)
35) if(Hash(word) is even)
36) value = 0
37) else value = 1
38) return value

2.2 Detection Algorithm

To detect a fingerprint, the owner has to use the same secret key, the same predefined
parameters, the fingerprint length recorded when inserting and choose a significance
level for detection.

First we form similar groups, see line 3 in our detection algorithm below, thus
preserve the same fingerprint order. Next we try to detect one bit of fingerprint from
each group. If the embedded fingerprint is “0”, compared with the insertion process,
we can find exactly the same elements at line 10, and the same selected positions at
line 13 and 17. For a non-marked document, because the positions are selected
randomly, the probabilities of a selected position value to be either “0” or “1” are both
1/2 approximately. But for a marked document, we are expected to see that the values
of each selected position are all the same, either “0” or “1”, i.e., match_count0 =
total_count0 or match_count0 = 0. We use the significance level set by the owner to
calculate a threshold (see line 35), such that either if match_count0 is larger than
threshold or is smaller than (total_count0 – threshold), we can claim that a fingerprint
bit of “0” has been embedded with the confidence level of (1 -), otherwise, we say a
fingerprint bit of “0” isn’t detected. Then we check if the embedded fingerprint is “1”
(see line 20), the process is almost the same. If both “1” and “0” haven’t be detected,
we conclude that no fingerprint has been embedded at the confidence level of (1 - .

90 F. Guo et al.

Algorithm 2. Detection algorithm
// k, , and num_of_word_in_value have the same values as in watermark insertion.
// fpt_length has the same value with recorded when inserting.
// is the significance level for detecting a fingerprint bit.
// S is a marked XML document.
1) foreach element S do {
2) i = Hash(PA k) mod fpt_length
3) subseti element }
4) foreach subseti
5) detect(subseti)
6) return fpt[]

7) subroutine detect(subseti) // recover one bit from each subset
8) total_count0 = match_count0 = total_count1 = match_count1 = 0
9) foreach element in subseti do
10) if(Hash(0 PA k) mod equals 0) then { // subset_0
11) total_count0 increment
12) if(element is numeric)
13) j = Hash(PA k 0) mod
14) if(the jth bit equals 0) then
15) match_count0 increment
16) else if(element is textual)
17) j = Hash(PA k 0) mod num_of_word_in_value
18) if(Hash(the jth word) is even) then
19) match_count0 increment }
20) if(Hash(1 PA k) mod equals 0) then { // subset_1
21) total_count1 increment
22) if(element is numeric)
23) j = Hash(PA k 1) mod
24) if(the jth bit equals 0)
25) match_count1 increment
26) else if(element is textual)
27) j = Hash(PA k 1) mod num_of_word_in_value
28) if(Hash(the jth word) is even)
29) match_count1 increment }
30) if(match_count0 > threshold(total_count0,)) or
 (match_count0 < total_count0 - threshold(total_count0,)) // pattern0?
31) return fpt[i] = 0
32) else if(match_count1 > threshold(total_count1,)) or
 (match_count1 < total_count1 - threshold(total_count1,)) // pattern1?
33) return fpt[i] = 1
34) else return False // no pattern
35) subroutine threshold(n,)

36) return minimum integer m that satisfies
22

1 α<
=

nn

mk

k

nc

 A New Scheme to Fingerprint XML Data 91

The selection process in our detection algorithm can be modeled as a Bernoulli
trial, thus the match_count in a non-marked document is a random variable that meets
a binominal distribution with parameters total_count and 1/2. Thus the threshold
should satisfy (1) below.

P{MATCH_COUNT > threshold | total_count } + P{MATCH_COUNT <
total_count – threshold | total_count} < (1)

Based on Agrawal’s mathematic analysis [1], the threshold for a given total_count
at confidence level of 1 - can be calculated using formula (2) shown below..

threshold = minimum integer m that satisfies
22

1
ttotal_counttotal_coun

_

α<
=mk

k

counttotalc (2)

Thresholds for total_count from 1 to 30 when = 0.01 are shown in figure 2
below. We can see that the bigger total_count is, the smaller portion of threshold is.
Thus, given a large total_count, it gives the potential to resist attacks. For example,
when total_count is 100, the threshold is only 64, which means with loss of nearly
40% of the mark, the fingerprint bit will still be detected successfully at the
confidence level of (1 -).

5 10 15 20 25 30

5

10

15

20

25

30

th
re

sh
ol

d

total_count

Fig. 2. The relationship between total_count and threshold when = 0.01

3 Experiments and Analysis

We ran experiments in Windows 2003 with 2.0 GHz CPU and 512MB RAM. The
XML data source is weblog.xml. For simplicity, we choose numeric elements to
modify, results for textual elements are almost the same. We set = 10, = 3 and =
0.01, insert a 100-bit long fingerprint which can identify 2100 different distributors. We
choose N1 = 100,000 and N2 = 10,000 of the records and experiment separately.

92 F. Guo et al.

First we see our varied-size grouping method in figure 3, we list 10 groups. It
shows that the total selected elements are almost 1/ of N and each group has varied
but similar sizes. It means no element or few elements are selected in a certain group
seldom happens. Some marks are expected in each group, thus we can have an entire
fingerprint.

0 1 2 3 4 5 6 7 8 9 10 11
0

10

20

30

40

50

60

70

80

90

100

110

120

130

m
ar

ke
d

el
em

en
ts

group

 N
1
=100,000

 N
2
=10,000

Fig. 3. Elements selected in each group

The situations in each group are alike with Wilfred Ng’s selective approach [4]. So
we can compare the amount of modifications in our scheme with Wilfred Ng’s
approach. We use the same secret key and the same other parameters to embed the
same fingerprints. We can see in table 2 that the selected elements are all the same.
Also the grouping results are the same. Because all parameters used in insertion
are the same. When N1 = 100,000, the elements needed to be modified are 4642 out
of 9995 selected positions in our method. Compared with Wilfred Ng’s method, it’s
4960 elements to be modified out of 9995 selected positions. We reduce modify-
cations by 6.4%. When N2 = 10,000, the elements needed to be modified are

Table 2. The amount of modifications compared with Wilfred Ng’s selective approach

 Modifications
(our method)

Selected
elements (our

method)

Modifications
(Ng’s)

Selected
elements
(Ng’s)

N1 =
100,000

4642 9995 4960 9995 93.6%

N2 =
10,000

374 984 491 984 76.1%

 A New Scheme to Fingerprint XML Data 93

374 out of 984 selected positions in our method. Compared with Wilfred Ng’s
method, it’s 491 elements to be modified out of 984 selected positions. We reduce
modifications by 23.9%.

We can see a significant reduction of modifications when N2 = 10,000, not too
significant when N1 = 100,000. The reason is that when N1 = 100,000, each group has
about 100 elements; when N2 = 10,000, each group has about 10 elements. It’s nearer
to 50% to be modified when N is bigger. It’s like throw a coin. For example, if you
throw 10 times, the number of times when head is up is fluctuating around 5 heavily.
If increased to 100 times, the number of times when head is up will be near 50. So the
bigger N is, the reduction of modifications is less significant, see figure 4, we show
10 groups.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

m
od

ifi
ca

tio
ns

 (
%

)

group

 N
1
 = 100,000

 N
2
 = 10,000

Fig. 4. Portion of elements needed to be modified

We can look at each group as an XML document input in Wilfred Ng’s selective
approach, thus we can compare the robustness level of our fingerprint bit in each
group with Ng’s approach. Because the confidence level is decided by the selected
positions, so the robustness level of our fingerprint bit in each group is the same with
Ng’s result. We can see in table 2 that although the modifications are reduced by
23.9% when N2 = 10,000, the number of selected positions are both 984 elements, so
the robustness level maintains the same.

4 Summary

In this paper, we present our new watermarking scheme to embed fingerprints in
XML data. Thus, we can not only prove ownership, but also identify illegal
distributors since a unique fingerprint is embedded in each copy delivered to different
distributors. We use a varied-size grouping method to preserve the order of the

94 F. Guo et al.

fingerprint’s bits. To solve the problem of some categorical elements in XML
document can’t tolerant much modification, we make our effort to reduce
modifications at the same insertion level, i.e., without bringing down the robustness
of the fingerprint. In our scheme, to minimum modifications, we use the fingerprint to
decide the inserting positions and then choose an inserting pattern. The experiments
show that our scheme is effective to make less distortion to the original data and the
fingerprint maintains the same robustness level at the same time. In some cases, we
can reduce the modifications by 1/4.

In the future, we would like to research on the confidence level of the whole
fingerprint, especially when part of the fingerprint has been destroyed; and how to
argue ownership and identify illegal distributors from a fragmentary fingerprint.

References

1. Rakesh Agrawal, Peter J. Haas, Jerry Kiernan.: Watermarking Relational Data: Framework,
Algorithms and Analysis. VLDB Journal. (2003).

2. Radu Sion, Mikhail Atallah, Sunil Prabhakar.: Rights Protection for Relational Data.
Proceedings of ACM SIGMOD. (2003) 98–109.

3. David Gross-Amblard.: Query-preserving Watermarking of Relational Databases and XML
Documents, PODS 2003, San Diego CA. (2003)191–201.

4. Wilfred Ng and Ho-Lam Lau.: Effective Approaches for Watermarking XML Data.
DASFAA 2005, LNCS 3453, pp. 68–80, 2005.

5. Yingjiu Li, Vipin Swarup, Sushil Jajodia.: Constructing a Virtual Primary Key for
Fingerprinting Relational Data. DRM’03, Washington, DC, USA. 2003.

6. Radu Sion, Mikhail Atallah, Sunil Prabhakar.: Resilient Information Hiding for Abstract
Semi-Structures. Proceedings of IWDW. 2004.

7. Radu Sion, Proving Ownership Over Categorical Data. Proceedings of ICDE 2004, 2004.
8. Yingjiu Li, Huiping Guo, Sushil Jajodia.: Tamper Detection and Localization for

Categorical Data Using Fragile Watermarks. DRM’04, Washington, DC, USA. 2004.

A Novel Labeling Scheme for Secure
Broadcasting of XML Data

Min-Jeong Kim, Hye-Kyeong Ko, and SangKeun Lee�

Department of Computer Science and Engineering,
Korea University, Seoul, South Korea

{cara2847, ellefgt, yalphy}@korea.ac.kr

Abstract. With the fast development of the Web, a web document
source periodically broadcasts its document to multiple users. The web
document could contain the sensitive information and it should be sent to
users who have an authority accessing the sensitive information. In a well-
known method, called XML Pool Encryption, the sensitive information
is separated from the document, and then, it is encrypted. Therefore,
reconstruction of a document is required when the document is shown
to a user. For the reconstruction, it is very important that we identify
the location of decrypted information effectively and efficiently. In this
paper, we propose a labeling scheme to support the fast reconstruction
of document, based on the use of encryption techniques. The proposed
labeling scheme supports the inference of structure information in any
portion of the document. In the experimental results, our labeling scheme
shows an efficiency in searching for the location of decrypted information.

1 Introduction

In the Web environment, XML (eXtensible Markup Language) [13] is rapidly
becoming the standard for data representation and exchange. XML data to be
broadcasted via the Web could contain between public information (all users
can see) and sensitive information (users who have the authority can see). On
this account, the demands for secure broadcasting of XML data are increasing.
Secure broadcasting of data means that only a user who has the authority for
the sensitive information can see that. In order to secure XML data, researches
related to XML security have been studied [3], [5], [11], [12]. In particular, nodes
(i.e., XML elements) that contain the sensitive information are selected, and
then the nodes are moved into a pool and encrypted in the XML Pool Encryption
approach [5]. A pool of encrypted nodes and unselected nodes are broadcasted
to multiple users. Each user could decrypt according to authority of oneself.
Because encrypted nodes were separated from the original XML document, the
reconstruction of document should be performed.

� Corresponding author.

R. Nayak and M.J. Zaki (Eds.): KDXD 2006, LNCS 3915, pp. 95–104, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

96 M.-J. Kim, H.-K. Ko, and S. Lee

1.1 Motivation

The biggest problem of document reconstruction is to search for locations of de-
crypted nodes. We should know location of nodes in the document to solve this
problem. In order to know location, the labels of nodes are needed. We can obtain
the relation of nodes through the label of nodes. To label an XML document, the
XML Pool Encryption [5] adopts the Modified Adjacency List Mode (MALM)
labeling scheme. In the MALM, the range of the ancestor node label include the
range of the descendant node label. By using the range-based labeling scheme,
we can easily identify the ancestor-descendant relationship among nodes. How-
ever, searching for the exact location of each node is difficult, because it only
represents the range of node label. In this paper, we propose a new labeling
scheme that labels a child node by extending the parent’s label to represent the
structural information of XML document. The proposed labeling scheme pro-
vides an easy identification of relationships among nodes (ancestor-descendant
as well as parent-child relationship).

The rest of the paper is organized as follows. Section 2 presents related work
of this paper. Section 3 defines the proposed labeling scheme. Section 4 details
the performance study and analysis by comparing the proposed labeling scheme
with the MALM. Section 5 presents conclusion and future work.

2 Related Work

The problem with security for XML document is increasingly gaining atten-
tion [3], [4], [11]. In relation to XML security, the World Wide Web Consortium
(W3C) is working on XML security standards. It provides a set of technical stan-
dard to meet security requirements. XML Signature Working Group created a
specification for defining digital signatures [12] in an XML format. In addition,
the XML Encryption Working Group of W3C [11] is developing a process for en-
crypting/decrypting XML documents and XML syntax is used to represent the
encrypted content. In the W3C XML Encryption [11], if the contents are over-
lapped, the same portions of XML document could be re-encrypted for multiple
users (Super-Encryption). However, it is not possible to encrypt an ancestor node
while leaving any of the descendants of this node. Also, in Super-Encryption,
there might be an information leakage between different users regarding their
capabilities when compared each other [5].

Christian Geuer-Pollmann [5] proposed the idea of bringing the property from
XML access control, which provides the granular access to an XML document
[2], [3] [4], to the XML Pool Encryption. It focuses on how to encrypt an XML
document at the granularity of nodes. The idea of XML Pool Encryption is to
encrypt each node separately and to move all encrypted nodes from their original
location in the document into a pool of encrypted nodes. The granularity of
encryption is provided which is different from the subtree-based encryption of
W3C XML Encryption.

A Novel Labeling Scheme for Secure Broadcasting of XML Data 97

3 A Novel Labeling Scheme to Handle Secure
Broadcasting of XML Data

In this section, first, we show an example about the identification of relation-
ships among nodes and present the architecture of secure broadcasting for XML
data. Then, we propose a new labeling scheme to identify the relationship among
nodes. The proposed labeling scheme supports easy handling of node relation-
ships.

Example 1. Company C provides various contents to their subscribers. They
broadcast two kinds of contents: paid contents and free contents. The subscribers
who pay the money can see paid contents. The payment records that who paid
the subscription rates are managed by the company. Fig. 1 shows “Contents”
example. The “game” contents in sports, and the “story” and “picture” contents
in culture are paid contents. User A who pays for the “sports” contents could see
both free contents and sport contents. User B pays for the “sports” and “art”
contents. The paid contents are moved into the pool and encrypted. The free
contents and pool are broadcasted to multiple subscribers.

Fig. 1. The example of XML data

3.1 An Architecture of a Secure Broadcasting System

In this section, we present a system architecture with the above example. We se-
lect the sensitive nodes (paid contents) according to Payment Record and these
are moved into a pool. Then, the nodes are encrypted separately by own keys.

Payment Record. We record about who charged the money for the paid con-
tents, because the user to pay the money has the access authority about paid
contents. The authorities of users to see the sensitive nodes are represented using
XPath [10]. For example, authorities of User A and B are represented like that:
Contents/sports/news/game, Contents/culture/art/picture.

Key Management. We encrypt the sensitive nodes in order to avoid the access
of users who do not have the authority accessing to the sensitive nodes. The keys
are assigned to each node.

98 M.-J. Kim, H.-K. Ko, and S. Lee

The document (free contents and encrypted paid contents) is broadcasted
to multiple users. We assume that the keys to decrypt the paid contents and
Payment Record are transferred to user devices through a secured channel.

Fig. 2. The whole process of secure broadcasting system

Fig. 2 illustrates an architecture of a secure broadcasting system, where pay-
ment record evaluator evaluates the record, and then the document is decrypted
using relevant keys. When requested, reconstruction of the document is desired
to view the portion with the access authority.

3.2 The Proposed Labeling Scheme

The proposed labeling scheme is capable of identifying the relationship among
nodes easily.

Labeling Construction. The labels of all nodes are constructed by three sig-
nificant components (C1, C2 and C3), which are unique.

1. Level component(C1) - It represents the level of node in the XML document.
The level of the tree from root to leaf is marked such that the level of root
is 1.

2. Inherited label component(C2) - The component that succeeds to the label of
parent node, which eliminates the level component from a parent node label,
is inherited. In succeeding the label of the parent node, the exact location
of the node can be identified.

3. Sibling order component(C3) - It represents the relative location among the
sibling nodes. A unique label is created by three components, which are
concatenated by a “delimiter (.)”.

A Novel Labeling Scheme for Secure Broadcasting of XML Data 99

Labeling Scheme for XML Document. The labeling for an XML document
is divided into root node and internal nodes.

Definition 1. (Label for root node r) The root node is the first level. Because
it does not have a sibling node and parent node, the value of the second
component is null. In addition, values of the first component and the third
component are 1, respectively.
L(x) = C1root r . C2root r . C3root r = 1.nil.1

Definition 2. (Label for internal node x) C1 is represented by the level of cor-
responding node. C2 is created by inheriting the parent node label which elim-
inates the level component. Lastly, C3 represents the order of sibling nodes.
L(x) = C1current node x . C2current node x . C3current node x

1. C1current node x = level of current node x
2. C2current node x = concatenate C2parent node and C3parent node

3. C3current node x = sibling order of C3current node

The below Fig. 3 is the labeled XML tree by applying the above definitions.

Fig. 3. Labeled XML data

The Location of Node in XML Tree. Identifying the relationship among
nodes is essential to searching for the proper location of encrypted nodes in the
pool. We propose a node labeling scheme to quickly identify the relationship
among nodes.

Lemma 1. (Parent-child relationship) If node x is a parent node of node y, the
two labels satisfy the following.
1. C1parent node x = decrease in the level of the C1child node y

2. C2parent node x = substring of C2child node x which eliminates the final
part of C2child node x

3. C3parent node x = the final part of C2child node x

4. C2child node y is a string which is concatenated into C2parent node x and
C3parent node x

100 M.-J. Kim, H.-K. Ko, and S. Lee

Lemma 2. (Ancestor-descendent relationship) If node x is an ancestor node of
node y, the two labels satisfy the following.
1. C1ancestor node x < C1descendant node y

2. C2ancestor node x = substring of C2descendant node y which corresponds
to the length of C1descendant node y - C1ancestor node x

3. C3ancestor node x = the last substring of a part of C2descendant node y

which corresponds to C1ancestor node x

4. C2ancestor node x ⊂ C2descendant node y

Lemma 3. (Sibling relationship) If node x and node y are sibling nodes, the two
labels satisfy the following.
1. C1right node x = C1left node y

2. C2right node x = C2left node y

3. C3right node x = C3left node y + 1

Algorithm 1 Searching a location of node
Input: L(pn) - label of nodes p1,p2, pn in the pool,

L(x) - label of comparing node x
Output: relationship between node pn and node x
For(i<n){

Cr is the comparing value of C1node pi and C1node x

if(Cr == 1) // parent-child relationship
compare the C2node pi and L(x) that is eliminated C1 from L(x);
if (the values are identical)
node x is a parent of node p ;

else if(Cr == 0) // sibling relationship
if(C1 and C2 of node x and y, respectively, are identical &&
C3node x is bigger than C3node p by one)
node x is a preceding sibling node of node p;

else if(Cr > 1) // ancestor-descendent relationship
if(C2node x and C3node x is included in C2node p)
node x is an ancestor node of node p;

else //no relationship
there is no relationship among nodes;

}

3.3 Labeling Scheme for Secure Broadcasting of XML Document

In this section, first, the process of XML Pool Encryption is focused on, then, the
proposed labeling scheme is applied to XML Pool Encryption in order to search
for the location of nodes. Algorithm 1 describes how to find the proper location
of nodes in the pool. The relationship of nodes is identified, using the above
algorithm when a user A requests to view an XML document. After identifying
relationship among nodes, the XML document is reconstructed.

A Novel Labeling Scheme for Secure Broadcasting of XML Data 101

4 Performance Evaluation

We have implemented the proposed labeling scheme and performed an exper-
iment in order to estimate the performance. We evaluated the time taken to
search for exact location of decrypted nodes and compared it with the MALM
labeling scheme used in the XML Pool Encryption.

4.1 Experimental Environment

According to the Algorithm 1, we implemented the labeling scheme using Java
2 [9] and XML Security Suite [6]. We used XMark [8] and DBLP [7] dataset
to generate XML documents. For XMark dataset, we selected various scaling
factors (0.001 ~ 0.06) to create from 0.1 MB to 6.9 MB of documents. For DBLP
dataset, we used IBM Generator [1] to create from 0.025 MB to 1.4 MB of
documents. For selecting the nodes to be encrypted, we used XPath [10]. Table 1
shows the XPath expression used to represent nodes to be encrypted.

Table 1. The Locations of node to be encrypted

XMark

P1 /africa/item/*
P2 /africa//*/text//*
P3 //*/text/keyword
P4 item/mailbox/mail/date
P5 parlist/listitem
P6 parlist/listitem/text
P7 parlist/listitem/text/keyword

DBLP
P1 title//*/sub
P2 sub/sup
P3 sub/sup/tt
P4 sub/sup/tt/ref

4.2 Evaluation Results

To evaluate the performance of the proposed labeling scheme, we measured the
location searching time of the nodes in the pool. In order to observe the relation-
ship between the location searching time and the number of nodes, we measured
the number of nodes to be compared while identifying the location of encrypted
nodes.

The Number of Nodes to Be Encrypted. Fig. 4 shows the number of nodes
to be encrypted according to the size of XML documents. In Fig. 4(a) and 4(b),
the number of encrypted nodes is maximized at P5 and P1 for XMark and DBLP
dataset, respectively. The number of encrypted nodes increases when the size of
XML document increases.

102 M.-J. Kim, H.-K. Ko, and S. Lee

Fig. 4. The number of nodes to be encrypted

Table 2. The number of nodes to be compared

XMark (0.1MB) DBLP (0.025MB)
Proposed scheme MALM Proposed scheme MALM

P1 12 84 P1 94 6,197
P2 3 21 P2 31 2,064
P3 79 22,452 P3 9 701
P4 20 2,514 P4 3 61
P5 91 42,572
P6 80 36,306
P7 55 24,557

The Number of Nodes to Be Compared to Search the Location in
a XML Document. To compare the location searching time of the proposed
labeling scheme with the MALM, we observed the number of encrypted nodes
to search for a location in XML document and measured the location searching
time. The number of nodes to be compared, when searching for the location, is
shown in Table 2. According to various location types, expressed by XPath, the
number of encrypted nodes and the number of nodes to be compared are differ-
ent. The above results demonstrated that the number of nodes to be encrypted
is related to the number of compared nodes to search for the location, and the
location searching time is affected. In the proposed labeling scheme, the label is
not compared with another label of nodes because the label of the parent and
ancestor nodes can be inferred from node, which searches for the location.

The result presented in the Fig. 5(a) and 5(b) indicate that the performance
of the proposed labeling scheme outperforms the existing MALM, on all size of
XML documents for location type P1 and P3 of XMark dataset and P1 and
P4 of DBLP dataset. This is because, with the MALM approach, the number
of encrypted nodes increases rapidly in all XML document sizes, therefore the
number of comparison of the label among nodes increases.

A Novel Labeling Scheme for Secure Broadcasting of XML Data 103

Fig. 5. Labeling time comparison according to the XML document size

5 Conclusion

With the advent of XML as a standard for data representation and exchange
over the Internet, the issues for security of XML are of paramount importance.
As the demands for security mechanisms are increased, W3C launched the XML
Encryption [11] working group in 2001, and proposed a specification for XML
Encryption. However, the W3C XML Encryption does not allow for encrypting
an ancestor, while leaving a descendant, because it supports the subtree based
encryption. In order to support the granularity of encryption, a pool encryption
is proposed in the XML Pool Encryption [5], encrypting each node separately and
moving all encrypted nodes from the XML document into a pool of encrypted
nodes.

In this paper, we proposed a novel labeling scheme for secure broadcasting
of XML document over the Internet. Similarly to the XML Pool Encryption,
encrypted nodes in the pool are broadcast with the unencrypted nodes of the
XML document to multiple users. In order to search for the proper location of
encrypted nodes in an XML document, the effective and efficient identification of
relationship among nodes has been presented. In particular, the proposed label-
ing scheme supports easy handling of the “parent-child”, “ancestor-descendant”,
and “sibling” relationships of nodes. In the proposed scheme, the labels of nodes
in an XML document contain the information regarding their parent and an-
cestor nodes as succeeding of the portions of the parent node label. Therefore,

104 M.-J. Kim, H.-K. Ko, and S. Lee

comparison with all labels of other nodes is not required when identifying rela-
tionship among nodes. The results of the experimental study are presented to
evaluate the performance of the proposed labeling scheme and the MALM. The
proposed labeling scheme is superior to the MALM in terms of the number of
nodes used to search for the proper location of a node, and the location searching
time according to the XML document.

We plan to devise other representation of the proposed labeling to reduce the
overhead, e.g., by converting string type into integer type.

References

1. S. Abiteboul, P. Bunneman, and D. Suciu. Data on the Web:From Relations to
Semi-structured Data and XML. Morgan Kaufmann, 1999.

2. E. Bertino, S. Castano, E. Ferrari, and M. Mesiti. Controlled access and dissemi-
nation of xml document. In ACM Web Information and Data Management, pages
22–27, 1999.

3. E. Damiani, S. D. C. di Vidercati, S. Paraboschi, and P. Samarati. Securing xml
documents. In EDBT, pages 121–135, 2000.

4. E. Damiani, S. D. C. di Vimercati, S. Paraboschi, and P. Samarati. A fine-grained
access control system for xml documents. ACM Transactions on Information and
System Security, 5(2):169–202, 2002.

5. C. Geuer-Pollmann. Xml pool encryption. In ACM Workshop on XML Security,
pages 1–9, 2002.

6. IBM. Xml security suite. http://www.alphawowks.ibm.com/tech/xmlsecuritysuite.
7. M. Ley. Dblp database web site, 2000. http://informatik.uni-trier.de/ley/db.
8. A. Schmidt, F. Wass, M. L. Kersten, M. J. Carey, I. Manolescu, and R. Busse.

Xmark : A benchmark for xml data management. In VLDB, pages 974–985, 2002.
9. Sun. Java, 2005. http://java.sun.com.

10. W3C. Xpath. http://www.w3c.org/TR/XPath.
11. W3C. Xml encryption wg, 2001. http://www.w3.org/Encryption/2001/.
12. W3C. Xml-signature syntax and processing, 2002. http://www.w3.org/TR/

xmldsig-core/.
13. W3C. extensible markup language (xml) 1.0, 2004. http://www.w3.org/TR/

REC-xml/.

Author Index

Bressan, Stephane 1
Brunzel, Marko 22

Channa, Nizamuddin 74
Choe, Guija 54

Goguen, Joseph 54
Guo, Fei 85

Hong-Minh, Tran 43

Kim, Min-Jeong 95
Ko, Hye-Kyeong 95
Kurt, Atakan 33

Lee, SangKeun 95
Li, Deyi 85
Li, Shanping 74
Lin, Xuan-Zuo 13
Ling, Tok Wang 2
Liu, Da-Xin 13, 64

Nam, Young-Kwang 54

Rahayu, Wenny 3
Rui, Yang 1
Rusu, Laura Irina 3

Smith, Dan 43
Spiliopoulou, Myra 22
Sun, Wei 64

Taniar, David 3
Tozal, Engin 33
Tung, Anthony 1

Wang, Guilian 54
Wang, Jianmin 85
Wang, Tong 13

Zhang, Zhihao 85

	Frontmatter
	Keynote Papers
	Opportunities for XML Data Mining in Modern Applications, or XML Data Mining: Where Is the Ore?
	Capturing Semantics in XML Documents

	XML Data Mining Methods
	Mining Changes from Versions of Dynamic XML Documents
	XML Document Clustering by Independent Component Analysis
	Discovering Multi Terms and Co-hyponymy from XHTML Documents with XTREEM
	Classification of XSLT-Generated Web Documents with Support Vector Machines
	Machine Learning Models: Combining Evidence of Similarity for XML Schema Matching

	XML Data Reasoning and Querying Methods
	Information Retrieval from Distributed Semistructured Documents Using Metadata Interface
	Using Ontologies for Semantic Query Optimization of XML Database
	The Expressive Language ALCNHR+K(D) for Knowledge Reasoning
	A New Scheme to Fingerprint XML Data
	A Novel Labeling Scheme for Secure Broadcasting of XML Data

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

