
Evolving Crossover Operators for Function
Optimization

Laura Dioşan and Mihai Oltean

Department of Computer Science,
Faculty of Mathematics and Computer Science,
Babeş-Bolyai University, Cluj-Napoca, Romania

{lauras, moltean}@cs.ubbcluj.ro

Abstract. A new model for evolving crossover operators for evolution-
ary function optimization is proposed in this paper. The model is a hybrid
technique that combines a Genetic Programming (GP) algorithm and a
Genetic Algorithm (GA). Each GP chromosome is a tree encoding a
crossover operator used for function optimization. The evolved crossover
is embedded into a standard Genetic Algorithm which is used for solv-
ing a particular problem. Several crossover operators for function opti-
mization are evolved using the considered model. The evolved crossover
operators are compared to the human-designed convex crossover. Nu-
merical experiments show that the evolved crossover operators perform
similarly or sometimes even better than standard approaches for several
well-known benchmarking problems.

1 Introduction

Evolutionary algorithms are relatively robust over many different types of search
spaces. This is why they are often chosen for use where there is little domain
knowledge.

However, for particular problem domains, their performance can often be
improved by tuning their parameters (such as type of operators, probabilities
of applying the genetic operators, population size etc). One possible way to
obtain good parameters is to let them to be adjusted along with the population
of solutions. Another possibility is to evolve a population of parameters (or
operators) which are applied for solving a particular problem. This is usually
referred in the literature as Meta EA (or Meta GP) and it has been successfully
applied for evolving complex structures (such as computer programs) [4], [8],
[10], [12], [13].

Usually the genetic operators are fixed by the programmer and are not modi-
fied during the search process. Moreover, the same particular operators are used
for a wide range of problems. This could lead to non-optimal behavior of the
considered algorithms for some particular problems.

Our purpose is to find (by using evolutionary techniques) genetic operators
which are suitable for solving particular problems. Roughly speaking, we will let
the problem find by itself the genetic operators that correspond to its structure.

P. Collet et al. (Eds.): EuroGP 2006, LNCS 3905, pp. 97–108, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

98 L. Dioşan and M. Oltean

A new model for evolving crossover operators is proposed in this paper1. The
model is a hybrid technique that combines Genetic Programming (GP) [6] and
Genetic Algorithms (GAs) [5] within a two-level model. Each GP chromosome
encodes a crossover operator which contains standard symbols (mathematical
operators, constants and some variables). The evolved crossover is embedded
into a standard Genetic Algorithm which is used for solving a particular problem
(function optimization in our case).

The evolved crossover operators are compared to the human-designed convex
crossover. For numerical experiments we have used ten artificially constructed
functions and one real-world problem. Results show that the evolved crossover
operators perform similarly or sometimes even better than standard approaches
for several well-known benchmarking problems.

This research was motivated by the need of answering several important ques-
tions concerning genetic operators. The most important question is: Can genetic
operators be automatically synthesized by using only the information about the
problem being solved? And, if yes, which are the symbols that have to be used
within a genetic operator (for a given problem)? We better let the evolution find
the answer for us.

The paper is structured as follows: section 2 discusses work related to the
evolution of evolutionary structures (such as genetic operators or evolutionary
algorithms). The proposed model is described in section 3. Several numerical
experiments are performed in section 4. Conclusions and further work directions
are discussed in section 5.

2 Related Work

Several attempts for evolving variation operators for different techniques were
made in the past.

Teller [13] describes a procedure for automatic design and the use of new
genetic operators for GP. These SMART operators are co-evolved with the main
population of programs and they learn to recombine the new population better
than random genetic recombination. The SMART operators are programs that
learn to do a graph crossover better than standard GP crossover.

Meta-Genetic Programming (MGP) [4] encodes the genetic operators as trees.
These operators “act” on other tree structures to produce the next generation of
individuals. In his paper on Meta-Genetic Programming [4], Edmonds used two
populations: a standard GP population and a co-evolved population of operators
that act on the main population. This technique introduces extra computational
cost, which must be weighed against any advantage gained. Also the technique
turns out to be very sensitive to biases in the syntax, from which the operators
are generated, therefore it is less robust.

Peter Angeline [1] investigated the possibility of a “self-adaptive” crossover
operator. In this work, the basic operator action is fixed (as a crossover) but
1 The source code for evolving crossover operators and all the evolved operators will

be available on www.eea.cs.ubbcluj.ro

Evolving Crossover Operators for Function Optimization 99

probabilistic guidance is used to help the operator to choose the crossover nodes
so that the operation is more productive.

Note that all these approaches are focused on evolving a crossover operator for
GP technique. Their purpose was to obtain a better GP crossover. Our approach
is quite different: we use a standard GP technique (with standard GP crossover)
for evolving a crossover operator for evolutionary function optimization. We have
trained our GP algorithm to find the expression of a crossover operator using
one test function, and then we test this operator for other 10 functions.

3 Proposed Model

3.1 Representation

Consider the standard convex crossover operator [2], [5], [9]:

Offspring = x ∗ α + (1 − α) ∗ y.

The right-hand expression may be easily represented as a GP individual de-
picted in Figure 1.

+

*

X

1

Y

*

_

Fig. 1. Convex crossover. Two parents x and y are recombined in order to obtain an
offspring. α is a real value randomly generated between 0 and 1. If the function to be
optimized has multiple dimensions, the convex crossover operator will be applied for
each of them.

Our purpose is to evolve a crossover operator (for function optimization)
based on the information taken from a function to be optimized. The evolved
crossover will be represented as a GP tree. The set of GP function symbols will
consist in mathematical operators that can appear into a crossover operator:

F = {+, −, ∗, sin, cos, exp}
Our aim is to design a crossover operator which is able to optimize func-

tions defined over any real domain. Not all genetic operators can do that. For
instance, a genetic operator defined as sin(x) + sin(y) will considerably reduce
the search space to the interval [-2, 2]. If the optimal solution is not in that
interval, our algorithm, which uses only that variation operator, will not be able
to find it.

100 L. Dioşan and M. Oltean

An idea is to have a crossover operator whose inputs (the parents and any
other values placed in the leaves of the tree) are real values between 0 and 1.
The output of that chromosome should also be a real number between 0 and 1.
When we apply this operator for a particular problem, first we need to scale
the parents to the [0, 1] interval and then we need to scale the output of the
crossover to the definition domain of the function to be optimized. For instance,
if the domain of the function to be optimized is [-5, 5], we need to scale down
the parents to the interval [0, 1] and then we apply crossover and then we need
to scale up the [0, 1] result to the interval [-5, 5].

Because we are dealing with real-valued definition domains (e.g. [0,1]) we have
to find a way of protecting against overflowing these limits. For instance if we
employ a standard addition of two numbers greater than 0.5 we would get a result
greater than 1 (domain upper bound). Thus, each operator has been redefined in
order to output result in the standard interval [0,1]. The redefinitions are given
in Table 1.

Table 1. The redefinitions of the operators so that the output should always be between
0 and 1 if the inputs are between 0 and 1

Operator Definition�+ (x + y)/2�− |x − y|�∗ None (If you multiply two numbers between 0 and 1 you will
always get a number between 0 and 1.)�sin sin(x)/sin(1)�cos cos(x)/cos(1)�exp exp(x)/exp(1)

The terminal set is composed by several, uniformly distributed, constants
between 0 and 1. Our purpose is to design a genetic operator that recombines
two parents. Thus, the terminal set should also contain two symbols reserved for
parents (x and y).

T = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, x, y, R},

where R is actually a function with no arguments that always outputs a random
value between 0 and 1. This terminal symbol was added in order to simulate the
α parameter from the convex crossover. Note that if the function has multiple
dimensions the evolved crossover operator will be applied for each of them.

3.2 The Model

The proposed approach is a hybrid technique divided in two levels: a macro
level and a micro level. The macro level is a GP algorithm that evolves crossover
operators for function optimization. The micro level is a GA used for computing
the quality of a GP individual.

Evolving Crossover Operators for Function Optimization 101

When we compute the quality of a GP chromosome we actually have to com-
pute the quality of the crossover operator encoded in that GP tree. For assessing
the performance of a crossover operator we have to embed that operator within
an evolutionary algorithm and we have to run the obtained algorithm for a par-
ticular problem. Since our problem is a function optimization we embed the
evolved crossover within as standard Genetic Algorithm as described in [2], [9].

The fitness of a GP individual is equal to the fitness of the best solution
generated by the Genetic Algorithm which uses the GP tree as the crossover
operator. But, since the GA uses pseudo-random numbers, it is very likely that
successive runs of the same algorithm will generate completely different solu-
tions. This problem can be fixed in a standard manner: the GA embedding the
GP individual is run more times (200 runs in fact) and the fitness of the GP
chromosome is averaged over all runs.

3.3 The Algorithms

The algorithms used for evolving a crossover operator are described in this sec-
tion. As we said before we are dealing with a hybrid technique which has a macro
level and a micro level.

The Macro-level Algorithm. The macro level algorithm is standard GP al-
gorithm [6] used for evolving crossover operators for function optimization.

We use steady-state evolutionary model as underlying mechanism for our
GP implementation. The GP algorithm starts by creating a random population
of individuals (trees). The following steps are repeated until a given number
of generations is reached: Two parents are selected using a standard selection
procedure. The parents are recombined in order to obtain two offspring. The
offspring are considered for mutation. The best offspring O replaces the worst
individual W in the current population if O is better than W .

The Micro-level Algorithm. The micro level algorithm is a Genetic Algorithm
[5] used for computing the fitness of each GP individual from the macro level.
The GA starts by creating a random population of individuals. Each individual
is a real-valued array whose number of dimensions is equal to the number of
dimensions of the function to be optimized. The entire process is run along a
fixed number of generations. The best individual in the current population is
automatically copied to the next generation. The following steps are repeated
until the new population is filled: two parents are selected randomly and are
recombined in order to obtain one offspring which will be added to the new
population.

We have removed the mutation operator and we have performed random
selections. In this way, the performance of the algorithm will mainly be guided
by the crossover operator only.

The recombination operator is evolved by the macro level algorithm. During
the training stage, the micro-level algorithm is run multiple times and the results
are averaged (see section 3.2).

102 L. Dioşan and M. Oltean

4 Numerical Experiments

In this section, several numerical experiments for evolving crossover operators
for function optimization are performed. After evolving it, the crossover oper-
ator is embedded into a Genetic Algorithm and used to solve eleven difficult
benchmarking problems. Ten functions are artificially constructed and one test
problem (the Portfolio Selection Problem) is an important real-world problem
(Table 2). Several numerical experiments, with a standard Genetic Algorithm
[5] that use a convex crossover for function optimization, are also performed.
Finally the results are compared.

The Portfolio Selection Problem. Modern computational finance has its
historical roots in the pioneering portfolio theory of Markowitz [7]. This theory
is based on the assumption that investors have an intrinsic desire to maximize
return and minimize risk on investment. Mean or expected return is employed
as a measure of return, and variance or standard deviation of return is employed
as a measure of risk. This framework captures the risk-return tradeoff between
a single linear return measure and a single convex nonlinear risk measure.

The solution typically proceeds as a two-objective optimization problem where
the return is maximized while the risk is constrained to be below a certain
threshold. The well-known risk-return efficient frontier is obtained by varying
the risk target and maximizing on the return measure.

The Markowitz mean-variance model [7] gives a multi-objective optimization
problem, with two output dimensions. A portfolio p consisting of N assets with
specific volumes for each asset given by weights wi is to be found, which mini-
mizes the variance of the portfolio:

σp =
N∑

i=1

N∑

j=1

wiwjσij (1)

maximizes the return of the portfolio:

µp =
N∑

i=1

wiµi (2)

subject to:
∑N

i=1 wi = 1, 0 ≤ wi ≤ 1, where i = 1...N is the index of the asset,
N represents the number of assets available, µi the estimated return of asset i
and σij the estimated covariance between two assets. Usually, µi and σij are to
be estimated from historic data. While the optimization problem given in (1)
and (2) is a quadratic optimization problem for which computationally effective
algorithms exist, this is not the case if real world constraints are added. In this
paper we treat only the cardinality constraints problem [11].

Cardinality constraints restrict the maximal number of assets used in the
portfolio

N∑

i=1

zi = K, (3)

Evolving Crossover Operators for Function Optimization 103

where zi = sign(wi). Let K be the desired number of assets in the portfolio, εi be
the minimum proportion that must be held of asset i, (i = 1, ..., N) if any of asset
i is held, δi be the maximum proportion that can be held of asset i, (i = 1, ..., N)
if any of asset i is held, where we must have 0 ≤ εi ≤ δi ≤ 1(i = 1, ..., N). In
practice, εi represents a “min-buy” of “minimum transaction level” for asset i
and δi limits the exposure of the portfolio to asset i.

εizi ≤ wi ≤ δizi, i = 1...N (4)
wi ∈ [0, 1], i = 1...N. (5)

Eq. (3) ensures that exactly K assets are held. Eq. (4) ensures that if any of
asset i is held (zi = 1) its proportion wi must lie between εi and δi, whilst if
none of asset is held (zi = 0) its proportion wi is zero. Eq. (5) is the integrality
constraint. The objective function (Eq. (1)), involving as it does the covariance
matrix, is positive semi-definite and hence we are minimizing a convex function.
The chromosome - within the GA heuristic - supposes (conform to [3]) a set Q
of K distinct assets and K real numbers si, (0 ≤ si ≤ 1), i ∈ Q.

Now, given a set Q of K assets, a fraction
∑

j∈Q εj of the total portfolio is
already accounted for and so we interpret si as relating to the share of the free
portfolio proportion (1 −

∑
j∈Q εj) associated with asset i ∈ Q.

Thus, our GA chromosome will encode real numbers si and the proportion of
asset i from Q in portfolio will be:

wi = εi +
si∑

j∈Q sj
(1 −

∑

j∈Q

εj) (6)

For this experiment we have used the daily rate of exchange for a set of assets
quoted to Euronext Stock [16] during June to December, 2002.

4.1 Experimental Results

We evolve a crossover operator (used by Genetic Algorithm for function opti-
mization) and then we assess its performance by comparing it with the standard
convex crossover.

Experiment 1. A crossover operator is evolved in this experiment. For evolving
this kind of genetic operator we use a modified version of function f1 as the
training problem. We need this modification to function f1 because its optimal
solution is x∗ = (0, 0, ..., 0). This means that a crossover (obtained by evo-
lution) which always outputs value 0 will be able to solve this problem in one
generation (in fact after the first crossover operation). An example of this kind
of crossover is x−x or 0.3−0.3 or other similar structures. The same issue could
appear for all training problems whose optimal solution is an array containing
the same constant (e.g. x∗ = (1.56, 1.56... 1.56)). In all these cases the macro
level algorithm could evolve a tree (crossover operator) whose output is always
a constant value.

104 L. Dioşan and M. Oltean

Table 2. Test functions used in our experimental study. The parameter n is the space
dimension (n = 5 in our numerical experiments) and fmin is the minimum value of the
function. All functions should be minimized.

Test function Domain fmin

f1(x) =
n�

i=1
(i · x2

i). [-10, 10]n 0

f2(x) =
n�

i=1
x2

i . [-100, 100]n 0

f3(x) =
n�

i=1
|xi| +

n�
i=1

|xi|. [-10, 10]n 0

f4(x) =
n�

i=1

�
i�

j=1
xj

�2

. [-100, 100]n 0

f5(x) = maxi{xi, 1 ≤ i ≤ n}. [-100, 100]n 0

f6(x) =
n−1�
i=1

100 · (xi+1 − x2
i)2 + (1 − xi)2. [-30, 30]n 0

f7(x) = 10 · n +
n�

i=1
(x2

i − 10 · cos(2 · π · xi)) [-5, 5]n 0

f8(x) = −a · e
−b

����
n�

i=1
x2

i

n − e

�
cos(c·xi)

n + a + e. [-32, 32]n

a = 20, b = 0.2, c =
2π.

0

f9(x) = 1
4000 ·

n�
i=1

x2
i −

n�
i=1

cos(xi√
i
) + 1. [-500, 500]n 0

f10(x) =
n�

i=1
(−xi · sin(

�
|xi|)) [-500, 500]n -n∗ 418.98

f11 = The Portfolio Selection Problem [0, 1]n 0

In order to avoid this problem we have to modify the training function. We
do this by adding some randomly generated constants to each variable xi. We

obtain the function: f1(x) =
n∑

i=1
(i · (xi − ri)2), where ri are some randomly

generated constants between -10 and 10. In this case the optimal solution is
x∗ = (r1, r2...rn).

We have two possibilities for generating the constants: we could keep them
fixed during training or we could generate new constants each time the function
is called. The second strategy seems to be more general. However, we have tested
both strategies, but, for our simple case, both provided similar results.

Note that the modified function is used in the training stage only. During
testing stage we use the unmodified (see Table 2) version of the function.

The parameters of the GP algorithm (macro level) are given in Table 3. For
GA we use a population with 200 individuals,each of them with 5 dimensions.
During 50 generations we apply random selection and recombination (using the
evolved crossover) with probability 0.8.

We performed 30 independent runs for evolving operators. In all runs we
obtained a very good crossover operator able to compete with the standard

Evolving Crossover Operators for Function Optimization 105

Table 3. The parameters of the GP algorithm (the macro level algorithm) used for
evolving genetic operators

Parameter Value
Population size 50
Number of generations 100
Maximum size (depth) for a tree 10
Initialization Ramped half and half
Crossover probability 0.8
Mutation probability 0.1
Function set F = {�+, �−, �∗, �sin, �cos, �exp}
Terminal set T = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6,

0.7, 0.8, 0.9, 1.0, x, y, R}

Fig. 2. The evolution of the fitness of the best/worst GP individual, and the average
fitness (of all GP individuals in the population) in a particular run. We have depicted
a window of 25 generations for a better visualization of the results.

convex crossover. The results obtained in one of the runs (randomly selected
from the set of 30 runs) are presented in Figure 2.

Crossover operators of different complexities have been evolved. The sim-
plest operators contain 5 nodes, whereas the most complex evolved operator
has 17 nodes. One of the simplest evolved operators is depicted (as GP tree) in
Figure 3. We can see that the complexity of the evolved operator is similar to
the complexity of the standard convex crossover.

The crossover operator (given in Figure 3) will be used in the numerical
experiments performed in the next section.

Experiment 2. This experiment serves our purpose to compare the evolved
crossover operator with a convex crossover operator [5]. A Genetic Algorithm [5]
is used for testing the quality of the crossover operators. This algorithm has the
same structure as the one used in the previous experiment (the micro level al-
gorithm), the only difference being the employed recombination operators. First

106 L. Dioşan and M. Oltean

+

x

Y

+

R

Fig. 3. One of the evolved crossover operators represented as a GP tree. The function
symbols have been defined in Table 1.

Table 4. The results obtained by applying the evolved operator and the standard
convex crossover to the considered test functions. Best/Worst stands for the fitness of
the best individual in the best/worst run. The results are averaged over 500 runs.

Func- Evolved crossover Convex crossover
tions Best Worst Mean StdDev Best Worst Mean StdDev
f1 0.036 1.157 0.513 0.215 0.093 16.320 2.945 2.490
f2 3.630 194.718 78.036 32.348 12.796 2884.690 438.121 343.631
f3 0.415 2.590 1.561 0.342 0.644 9.586 3.589 1.514
f4 5.263 202.777 76.756 34.022 14.588 4512.660 496.383 524.641
f5 1.325 9.496 6.030 1.355 1.720 37.528 13.243 5.286
f6 58.786 4936.8 1198.430 833.183 102 1.65E+0657400 1.33E+05
f7 1.387 16.745 8.881 2.600 2.007 34.621 16.877 5.973
f8 2.681 8.272 5.986 0.895 3.497 17.300 9.719 72.452
f9 0.557 2.223 1.426 0.250 0.619 19.568 3.576 2.188
f10 -1436.21 -417.259 -849.782 189.805 -1470.00 -454.968 -884.159 198.569
f11 1.49E-04 1.98E-04 1.64E-04 8.75E-06 1.47E-04 3.32E-04 1.87E-04 3.12E-05

Table 5. The results of F-test and t-test

Functions F-test t-test Functions F-test t-test
f1 7.48E-03 2.32E-15 f7 1.89E-01 5.16E-42
f2 8.86E-03 4.91E-13 f8 1.33E-01 1.77E-43
f3 5.10E-02 5.41E-33 f9 1.31E-02 1.46E-12
f4 4.21E-03 2.99E-08 f10 9.14E-01 1.45E-01
f5 6.57E-02 1.42E-31 f11 3.71E-51 1.96E-143
f6 3.95E-05 1.77E-03

we run the GA employing the evolved crossover and later we run the same GA,
with the same parameters, using the convex crossover this time. The results of
this experiment are presented in Table 4.

Taking into account the average values presented in Table 4 we can conclude
that the evolved operator performs significantly better than the classical recom-
bination in 10 out of 11 cases. Taking into account the best values we can see

Evolving Crossover Operators for Function Optimization 107

that the evolved crossover performs better than the convex crossover in 10 cases
(out of 11).

In order to determine whether the differences between the evolved crossover
and the convex crossover are statistically significant, we use a t-test with a 0.05
level of significance. Before applying the t-test, an F-test is used for determining
whether the compared data have the same variance. The P-values of a two-tailed
t-test with 499 degrees of freedom are given in Table 5. Table 5 shows that the
differences between the results obtained by standard convex crossover and by
the evolved crossover are statistically significant (P < 0.05) in 9 cases.

5 Conclusions and Further Work

A new hybrid technique for evolving crossover operators has been proposed in
this paper. The model has been used for evolving crossover operators for function
optimization. Numerical experiments have shown that the evolved crossover per-
forms better than the standard convex crossover for most of the test problems.
However, taking into account the No Free Lunch theorems for Search and Opti-
mization [15] we cannot make any assumption about the generalization ability of
the evolved crossover operators. Further numerical experiments are required in
order to assess the power of the evolved operators. Further work will be focused
on: evolving better crossover operators for real encoding, evolving more complex
genetic operators which can act as both crossover and mutation, evolving genetic
operators for other problems.

References

1. P. J. Angeline, “Two self-adaptive crossover operators for genetic programming”,
Advances in Genetic Programming II, pp. 89-110, MIT Press, 1996.

2. H. J. Bremermann, “Optimization through evolution and recombination”, M.C.
Yovits, G.T. Jacobi, and G.D. Goldstein, editors, Self-Organizing Systems 1962,
Proceedings of the Conference on Self-Organizing Systems, Chicago, Illinois,
22.- 24.5.1962, pp. 93-106, 1962.

3. T. -J. Chang, N. Meade, J. E. Beasley, and Y. M. Sharaiha, “Heuristics for cardi-
nality constrained portfolio optimisation” Comp. & Opns. Res. 27, pp. 1271-1302,
2000.

4. B. Edmonds, “Meta-genetic programming: coevolving the operators of variation”,
Electrik on AI, Vol. 9, pp. 13-29, 2001.

5. D. Goldberg, Genetic algorithms in search, optimization and machine learning,
Addison-Wesley, 1989.

6. J. R. Koza, Genetic programming, On the programming of computers by means of
natural selection, MIT Press, Cambridge, MA, 1992.

7. H. Markowitz, “Portfolio Selection”, Journal of Finance, 7, pp. 77-91, 1952.
8. M. Oltean and C. Grosan, “Evolving EAs using Multi Expression Programming”,

European Conference on Artificial Life, pp. 651-658, Springer-Verlag, 2003.
9. H.-P. Schwefel, Numerical optimization of computer models, John Wiley & Sons,

New York, 1981.

108 L. Dioşan and M. Oltean

10. L. Spector and A. Robinson, A., “Genetic Programming and Autoconstructive Evo-
lution with the Push Programming Language”, Genetic Programming and Evolv-
able Machines, Issue 1, pp. 7-40, Kluwer, 2002.

11. F. Streichert, H. Ulmer, and A. Zell, “Comparing Discrete and Continuous Geno-
types on the Constrained Portfolio Selection Problem”, Genetic and Evolutionary
Computation Conference - GECCO 2004, Proceedings, Part II., pp. 1239-1250,
Springer-Verlag, 2004.

12. J. Tavares, P. Machado,A. Cardoso, F.-B. Pereira and E. Costa, “On the evolution
of evolutionary algorithms”, in Keijzer, M. (et al.) editors, European Conference
on Genetic Programming, pp. 389-398, Springer-Verlag, Berlin, 2004.

13. A. Teller, “Evolving programmers: the co-evolution of intelligent recombination
operators”, Advances in Genetic Programming II, pp. 45-68, MIT Press, USA,
1996.

14. X. Yao, Y. Liu and G. Lin, “Evolutionary programming made faster”, IEEE Trans-
action on Evolutionary Computation, pp. 82-102, IEEE Press, 1999.

15. D. H. Wolpert and W. G. McReady, “No Free Lunch Theorems for Search”, Tech-
nical Report SFI-TR-05-010, Santa Fe Institute, USA, 1995.

16. http://www.euronext.com

	Introduction
	Related Work
	Proposed Model
	Representation
	The Model
	The Algorithms

	Numerical Experiments
	Experimental Results

	Conclusions and Further Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

