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Abstract. This paper investigates the locality of the genotype-
phenotype mapping (representation) used in grammatical evolution
(GE). The results show that the representation used in GE has prob-
lems with locality as many neighboring genotypes do not correspond to
neighboring phenotypes. Experiments with a simple local search strat-
egy reveal that the GE representation leads to lower performance for
mutation-based search approaches in comparison to standard GP repre-
sentations. The results suggest that locality issues should be considered
for further development of the representation used in GE.

1 Introduction

Grammatical Evolution (GE) [1] is a variant of Genetic Programming (GP) [2]
that can evolve complete programs in an arbitrary language using a variable-
length binary string. In GE, phenotypic expressions are created from binary
genotypes by using a complex representation (genotype-phenotype mapping).
The representation selects production rules in a Backus-Naur form grammar and
thereby creates a phenotype. GE approaches have been applied to test problems
and real-world applications and good performance has been reported [1, 3, 4].

The locality of a genotype-phenotype mapping describes how well genotypic
neighbors correspond to phenotypic neighbors. Previous work has indicated that
a high locality of representations is necessary for efficient evolutionary search
[5, 6, 7, 8, 9]. Until now locality has mainly been used in the context of standard
genetic algorithms to explain performance differences.

The purpose of this paper is to investigate the locality of the genotype-
phenotype mapping used in GE. The design of high-locality genotype-phenotype
encodings is important to ensure high GE performance. We present experiments
for standard GE test problems that show that the mapping used in GE has
low locality leading to low performance of standard mutation operators. The
study at hand is an example of how basic GA design principles can be applied
to explain performance differences between different GP approaches and demon-
strates current challenges in the design of GE-based systems.

2 Representations, Locality and Mutation Operators

When using a representation, every optimization problem f can be decomposed
into a genotype-phenotype mapping fg (representation), and a phenotype-fitness
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mapping fp (problem) [10]. Φg is the genotypic search space where the search
operators are applied and Φp is the phenotypic search space. Consequently, we
distinguish between phenotypes xp ∈ Φp and genotypes xg ∈ Φg.

2.1 Metrics

When using search algorithms, a metric has to be defined on the search space
Φ. Based on the metric, the distance dxa,xb

between two individuals xa ∈ Φ
and xb ∈ Φ describes how different the two individuals are. The larger the
distance, the more different two individuals are. Two individuals are neighbors
if the distance between them is minimal.

If we use a representation fg there are two different search spaces, Φg and Φp.
Therefore, different metrics can be used for Φg and Φp. In general, the metric
used on Φp is determined by the specific problem that should be solved. For GP
approaches, common phenotypes are tree structures that describe programs or
expressions and possible distances are tree edit distances. In contrast, the metric
defined on Φg is not given a priori. Different GP variants use different types of
genotypes. For example, GE uses linear bitstrings and standard GP [2] uses tree
structures and applies search operators directly to trees.

2.2 Locality

The locality [5, 6, 10] of a representation describes how well neighboring geno-
types correspond to neighboring phenotypes. The locality of a representation
is high if all neighboring genotypes correspond to neighboring phenotypes. In
contrast, the locality of a representation is low if some neighboring genotypes do
not correspond to neighboring phenotypes.

We want to emphasize that the locality of a representation depends on the
representation fg and the metrics that are defined on Φg and Φp. fg only deter-
mines which phenotypes are represented by which genotypes and says nothing
about the similarity between solutions. To describe or measure the locality of a
representation, a metric must be defined on Φg and Φp.

2.3 Locality and Mutation-Based Search

The metric defined on Φg and the functionality of the search operators depend
on each other. In most search heuristics, mutation usually creates offspring that
have a small or sometimes even minimal distance to their parents. As the metric
used on Φg defines which genotypes are similar to each other, the used genotypic
metric directly determines the mutation operator.

In mutation-based search approaches, mutation steps must be small and
should result in similar solutions as larger search steps would result in a ran-
domization of the search. Then, guided search around good solutions would be-
come impossible as the mutation-based search algorithm would jump randomly
around the search space. However, low-locality representations show exactly this
behavior, as small changes in a genotype do not result in small changes of a phe-
notype. Therefore, for low-locality representations, guided search is no longer
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possible as local search steps in Φg result into random (large) search steps in
Φp. This leads to a low performance of EA approaches when using low-locality
encodings.

3 Grammatical Evolution

Grammatical evolution is a form of linear GP that employs linear genomes, uses
a grammar in Backus-Naur form (BNF) to define the phenotypic structures, and
performs an ontogenetic mapping from the genotype to the phenotype.

3.1 Functionality

GE is an EA variant that can evolve computer programs defined in BNF. In
contrast to standard GP [2], the genotypes are not parse trees but bitstrings of
a variable length. A genotype consists of groups of eight bits (denoted as codons)
that select production rules from a BNF grammar. For the construction of the
phenotype from the genotype, see Sect. 3.3.

The functionality of GE follows standard EA approaches using binary geno-
types. As simple binary strings are used as genotypes, no specific crossover
or mutation operators are necessary. Therefore, standard crossover opera-
tors like one-point or uniform crossover and standard mutation operators
like bit-flipping mutation can be used. A common metric for measuring the
similarity of binary strings (compare Sect. 2.1) is the Hamming distance.
Therefore, the application of bit-flipping mutation creates a new solution with
genotypic distance dg = 1. For selection, standard operators like tournament
selection or roulette-wheel selection can be used. Some GE implementations
use steady state replacement mechanisms and duplication operators that du-
plicate a random number of codons and insert these after the last codon po-
sition. As usual, selection decisions are performed based on the fitness of the
phenotypes.

GE has been successfully applied to a number of diverse problem domains such
as symbolic regression [1, 3], trigonometric identities [4], symbolic integration [3],
the Santa Fe trail [1], and others. The results indicate that GE can be applied to
a wide range of problems and validates the ability of GE to generate multi-line
functions in any language following BNF notation.

3.2 Backus-Naur-Form

In GE, the Backus-Naur form (BNF) grammar is used to define the grammar of a
language as production rules. Based on the information stored in the genotypes,
BNF-production rules are selected and form the phenotype. In BNF, it can be
distinguished between terminals, which are equivalent to leaf nodes in trees, and
non-terminals, which can be interpreted as interior nodes in a tree and can be
expanded. A grammar in BNF is defined by the quadruple {N, T, P, S}, where
N is the set of non-terminals, T is the set of terminals, P is a set of production
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rules that maps N to a set of elements of T and N , and S ∈ N is a start
symbol.

To apply GE to a problem, it is necessary to define the BNF grammar for the
problem. The BNF grammar must be defined such that the optimal solution for
a specific problem can be created from the elements defined by the grammar.

3.3 Genotype-Phenotype Mapping of Grammatical Evolution

In GE, a phenotype is created from binary genotypes in two steps. In a first
step, integer values are calculated from codons of eight bits. Therefore, from a
binary genotype xg,bin of length 8l we get an integer genotype xg,int of length
l, where each integer xg,int

i ∈ {0, . . . , 255}, for i ∈ {0, . . . , l − 1}. Beginning with
the start symbol S ∈ N , the integer value xg,int

i is used to select production rules
from the BNF grammar. We denote with nP the number of production rules in
P . To select a rule, we calculate the number of the used rule as xg,int

i mod nP ,
where mod denotes the modulo operation. In this manner, the mapping process
traverses the genome beginning from the left hand side (xg,int

0 ) until one of the
following situations arises:

– The mapping is complete. All non-terminals are transformed into terminals
and a complete phenotype xp is generated.

– The end of the genome is reached (i = l − 1) but the mapping process is
not yet finished. The individual is wrapped, the alleles are reused, and the
reading of codons continues. As genotypic alleles are used several times with
different meaning, wrapping can have a negative effect on locality. However,
without mapping a larger number of individuals is incomplete and invalid.

– An upper threshold on the number of wrapping events is reached and the
mapping is not yet complete. The mapping process is halted and the indi-
vidual is assigned the lowest possible fitness value.

The mapping is deterministic, as the same genotype always results in the same
phenotype. However, the interpretation of xg,int

i can be different if the genotype
is wrapped and a different type of rule is selected. A more detailed description
of the mapping process including illustrative examples can be found in [1, 3].

4 Test Problems

We investigate the locality and performance of GE for the Santa Fe Ant trail
and symbolic regression problem. Both problems are standard for GP and GE.

4.1 Santa Fe Ant Trail

In the Santa Fe Ant trail problem, 89 Pieces of food are located on a discontinu-
ous trail which is embedded in a 32 by 32 toroidal grid. The goal is to determine
rules that guide the movements of an artificial ant and allows the ant to collect
a maximum number of pieces of food in tmax search steps. In each search step,
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exactly one action can be performed. The ant can turn left (left()), turn right
(right()), move one square forward (move()), or look ahead one square in the
direction it is facing (food ahead()). The BNF grammar for the Santa Fe ant
trail problem is shown in Fig. 1(a).

N= {code,line,expr,if-stat,op},
T= {left(), right(), move(),

food ahead(), else, if, {,
}, (,), ;},

S= code.
Production rules P:
<code> ::= <line>

| <code><line>
<line> ::= <expr>
<expr> ::= <if-stat>

| <op>
<if-stat> ::= if(food ahead())

{<expr>} else
{<expr>}

<op> ::= left();
| right();
| move();

(a) Santa Fe Ant trail

N= {expr, op, pre op}
T= {sin,cos,exp,log,+,-,/,*,x,1,(,)}
S= <expr>

Production rules P:
<expr> ::= <expr><op><expr>

| (<expr><op><expr>)
| <pre-op>(<expr>)
| <var>

<op> ::= +
| -
| /
| *

<pre-op> ::= sin
| cos
| exp
| log

<op> ::= x
| 1

(b) symbolic regression

Fig. 1. BNF grammars for test problems

4.2 Symbolic Regression

In this example [2], a mathematical expression in symbolic form must be found
that approximates a given set of 20 data points (xi, yi). The function that should
be approximated is

f(x) = x4 + x3 + x2 + x, (1)

where x ∈ [−1; 1]. The used BNF grammar is shown in Fig. 1(b).

5 Locality of Grammatical Evolution

To measure the locality of a representation, we have to define a metric for Φg and
Φp. For binary genotypes, usually the Hamming distance is used. It measures
the number of different alleles in two genotypes xg and yg and is calculated as
dg

xg,yg =
∑

i |xg
i − yg

i |. A mutation (bit-flipping) of an individual x results in a
neighboring solution y with distance dg

x,y = 1.

5.1 Tree Edit Distance

It is more difficult to define appropriate metrics for phenotypes that are pro-
grams or expressions. In GE and GP, phenotypes can be described as expression
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trees. Therefore, edit distances can be used for measuring differences/similarities
between different phenotypes. In general, the edit distance between two trees
(phenotypes) is defined as the minimum cost sequence of elemental edit op-
erations that transform one tree into the other. There are the following three
elemental operations:

1. deletion: A node is removed from the tree. The children of this node become
children of their parent.

2. insertion: A single node is added.
3. replacement: The label of a node is changed.

To every operation a cost is assigned (usually the same for the different op-
erations). [11] presented an algorithm to calculate an edit distance where the
operations insertion and deletion may only be applied to the leaves. [12] intro-
duced an unrestricted edit distance and [13] developed a dynamic programming
algorithm to compute tree edit distances.

In the context of GP, tree edit distances have been used as a measurement for
the similarity of trees [14, 15, 16]. [17, 18] used tree edit distances for analyzing
the causality of GP approaches.

5.2 Results

For investigating the locality of the genotype-phenotype mapping used in GE, we
created 1,000 random genotypes. For the genotypes, we used standard parameter
settings. The length of an individual is 160 bits, the codon size is 8, the wrapping
operator is used, the upper bound for wrapping events is 10, and the maximum
number of elements in the phenotype is 1,000. For each individual x, we created
all 160 neighbors y, where dg

x,y = 1. The neighbors differ in exactly one bit
from the original solution. The locality of the genotype-phenotype mapping can
be determined by measuring the distance dp

x,y between the phenotypes that
correspond to the neighboring genotypes x and y. The phenotypic distance dp

x,y

is measured as the edit distance between xp and yp.
For the GE genotype-phenotype mapping, we use the version 1.01 written by

Michael O’Neill. The GE representation also contains the BNF Parser Gramma,
version 0.63 implemented by Miguel Nicolau. For calculating the tree edit dis-
tance, we used a dynamic programming approach implemented by [13].

As the representation used in GE is redundant, some changes of the genotypes
may not affect the corresponding phenotypes. We performed experiments for the
Santa Fe Ant trail problem and the symbolic regression problem and found that
either 81.98% (Santa Fe) or 94.01% of all genotypic neighbors are phenotypically
identical (dp

x,y = 0). Therefore, in about 90 % of cases a mutation of a geno-
type (resulting in a neighboring genotype) does not change the corresponding
phenotype.

What is important for the locality of GE are the remaining neighbors that
result in different phenotypes. The locality is high if the corresponding pheno-
types are similar to each other. Figure 2 shows the frequency and cumulative
frequency over the distance dp

x,y between expression trees for the two different
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Fig. 2. Distribution of tree edit distances dp
x,y for neighboring genotypes x and y, where

dg
x,y = 1. We show the frequency (left) and cumulative frequency (right) over dp

x,y for
the Santa Fe Ant trail problem and the symbolic regression problem.

test problems. We only consider the case where dp
x,y > 0. The results show that

for the Santa Fe Ant trail problem, many genotypic neighbors are also phenotypic
neighbors (about 78%). However, there are also a significant amount of geno-
typic neighbors where the corresponding phenotypes are completely different.
For example, more than 8% of all genotypic neighbors have a tree edit distance
dp

x,y ≥ 5. The situation is worse for symbolic regression. Only about 45% of all
genotypic neighbors correspond to phenotypic neighbors and about 14% of all
genotypic neighbors correspond to phenotypes where dp

x,y ≥ 5.
We see that the locality of the genotype-phenotype mapping used in GE is

not perfect. For the two test problems, a substantial percentage of neighboring
genotypes do not correspond to neighboring phenotypes. Therefore, we expect
some problems with the performance of mutation-based GE search approaches
in comparison to other approaches that use a high-locality encoding.

6 Influence of Locality on GE Performance

The previous results indicate some problems of GE with low locality. Therefore,
we investigate how strong the low locality of the genotype-phenotype mapping
influences the performance of GE. We focus the study on mutation only. How-
ever, we assume that the results for mutation are also relevant for crossover
operators (compare [8, 6, 10]).
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6.1 Experimental Setting

For the experiments, we want to make sure that we only examine the impact of
locality on GE performance and that no other factors blur the results. There-
fore, we implemented a simple local (1+1)-EA using only mutation as a search
operator. The search strategy starts with a randomly created genotype and it-
eratively applies bit-flipping mutations to the genotypes. If the offspring has a
higher fitness than the parent it replaces it. Otherwise the parent remains the
actual solution. The (1+1)-EA behaves like a simple local search.

We perform experiments for both test problems and compare an encoding
with high locality with the representation used in GE. In the runs, we randomly
generate a GE-encoded initial solution and use this solution as the initial solution
for both types of representations. For GE, a search step is the mutation of
one bit of the genotype, and the phenotype is created from the genotype using
the GE genotype-phenotype mapping process. Due to the low locality of the
representation, we expect problems when focusing the search on areas of the
search space where solutions with high fitness can be found. However, the low
locality increases the evolvability of GE what often makes it easier to escape
local optima. Furthermore, we should bear in mind that many genotypic search
steps do not result in a different phenotype.

We compare the representation used in GE with a standard representation
used in GP. We define the search operators in such a way that a mutation always
results in a neighboring phenotype (dp

x,y = 1). Therefore, the mutation operators
are directly applied to the trees xp. We use the following mutation operators:

– Santa Fe Ant trail
• Deletion: A leaf node from the set of terminals T is deleted.
• Insertion: A new leaf node from T is inserted.
• Replacement: A leaf node (from T ) is replaced by another leaf node.

– symbolic regression
• Deletion: Either two nodes (a leaf node that contains x and a preceding

node that contains sin, cos, exp, or log) or three nodes (two leaf nodes
x or 1 and the common preceding node that contains +, -, *, or /) are
replaced by a leaf node x.

• Insertion: Either sin, cos, exp, or log or +, -, *, or / (plus an additional
leaf node x or 1) are inserted at a leaf that contains x.

• Replacement: +, -, *, and / are replaced by each other; sin, cos, exp, and
log are replaced by each other; x and 1 are replaced by each other.

A mutation step (in the EA, the type of mutation operator is chosen randomly)
always results in a neighboring phenotype and we do not need an additional
genotype-phenotype mapping like in GE as we apply the search operators di-
rectly to the phenotypes.

Comparing these two different approaches, in GE, a mutation of a genotype
results in most cases in the same phenotype, sometimes in a neighboring pheno-
type, but also sometimes in phenotypes that are completely different (compare
the plots presented in Fig. 2). The standard GP representation is a high-locality
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Fig. 3. Performance of a mutation-based (1+1)-EA using either the GE encoding or a
high-locality encoding for the Santa Fe Ant trail problem and the symbolic regression
problem

representation as a mutation always results in a neighboring phenotype. There-
fore, the search can be focused on promising areas of the search space but the
search can never escape the local optima.

6.2 Performance Results

For the GE approach, we use the same parameter setting as described in Sect. 5.2.
For both problems, we perform 1,000 runs of the (1+1)-EA using randomly cre-
ated initial solutions. Each EA run is stopped after 1,000 search steps. Figure 3
compares the performance for the Santa Fe Ant trail (Fig. 3(a)) and the sym-
bolic regression problem (Fig. 3(b)) over the number of search steps. Figure 3(a)
shows the mean fitness of the found solution and Fig. 3(b) shows the mean error
1/20

∑19
i=0 |fj(xi) − f(xi)|), where f is defined in (1) and fj (j ∈ {0, . . . , 1000})

denotes the function found by the search in search step j. The results are aver-
aged over all 1,000 runs.

The results show that the (1+1)-EA using a high-locality representation out-
performs a (1+1)-EA using the GE representation. Therefore, the low-locality
of the encoding illustrated in Sect. 5 has a negative effect on the performance
of evolutionary search. Although the low locality of the GE encodings allows a
local search strategy to escape local optima, EAs using the GE encoding show
lower performance than a high-locality encoding.

The presented results show that using the GE encoding prolongs search as
more search steps are necessary to converge. This increase is expected as for the
GE encoding a search step often does not change the corresponding phenotypes.
However, the plots show that allowing the (1+1)-EA using the GE encoding to
run for a higher number of search steps does not increase its performance.

7 Conclusions

Previous work has shown that the locality of the genotype-phenotype mapping
(representation) is important for the success of EAs. This study analyzes the lo-
cality of the representation used in grammatical evolution (GE). GE differs from
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other GP approaches by using binary genotypes and constructing phenotypes by
choosing construction rules in Backus-Naur form grammar.

The results show that the GE representation has some problems with locality
as neighboring genotypes often do not correspond to neighboring phenotypes.
Therefore, a guided search around high-quality solutions can be difficult. How-
ever, due to the lower locality of the representation, it is easier to escape from
local optima. Comparing a simple (1+1)-EA using either the GE representation
with a standard GP encoding with high-locality reveals that the low locality of
the GE representation reduces the performance of local search.

The results of this study allow a better understanding of the functionality
of GE and can deliver some explanations for problems of GE that have been
observed in literature. We want to encourage GE researchers to consider locality
issues for further developments of the genotype-phenotype mapping. We believe
that increasing the locality of the GE representation can also increase the per-
formance and effectiveness of GE.
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