Impact of Rotations in SHA-1 and Related
Hash Functions*

Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen

Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology, Austria
{Norbert.Pramstaller, Christian.Rechberger,
Vincent.Rijmen}@iaik.tugraz.at

Abstract. SHA-1 uses a single set of rotation constants within the com-
pression function. However, most other members of the MD4 family of
hash functions use multiple sets of rotation constants, i. e. the rotation
amounts change with the step being processed.

To our knowledge, no design rationales on the choice of rotation con-
stants are given on any of these hash functions. This is the first paper
that analyzes rotations in iterated hash functions. We focus on SHA-1-
like hash functions and use recent developments in the analysis of these
hash functions to evaluate the security implications of using multiple sets
of rotation constants in the compression function instead of a single set.
Additionally, we give some observations on the set of constants used in
SHA-0 and SHA-1.

1 Introduction

SHA-0 was introduced in 1993 and SHA-1 was introduced in 1995 without giving
any rationales on the design. Both are based on the MD4 design strategy, however
the used message expansions are more complex. Additionally, a single set of
rotation constants instead of multiple sets are used during state update, i. e.
the rotation constants remain the same for all steps. Later on, in 1998, the
hash function HAS-160 was specified for use in South Korea’s Digital Signature
Algorithm. The structure of HAS-160 is very similar to SHA-1. However, one
distinct feature is the use of multiple sets of rotation constants (as in MD4 and
MD5) instead of a single set. Several questions are open so far:

1. Why were the rotation constants for SHA-1 chosen as they are?

2. Would there be better choices for these constants from a security point of
view?

3. Is there a security advantage of using multiple sets of rotation constants
instead of a single set?

We attempt to give some answers to these questions. To our knowledge this is
the first article which deals with the issue of rotation constants in iterated hash

* The work in this paper has been supported by the Austrian Science Fund (FWF),
project P18138.

B. Preneel and S. Tavares (Eds.): SAC 2005, LNCS 3897, pp. 261-Z75] 2006.
© Springer-Verlag Berlin Heidelberg 2006



262 N. Pramstaller, C. Rechberger, and V. Rijmen

functions. The outline and main contributions of this article are as follows. In
Section 2, we give a short description of SHA-1 and HAS-160. Afterwards, in
Section [B we review and comment on currently known analysis strategies for
SHA-1. This review serves as an important starting point for some comparisons
done later in this article. Looking at HAS-160, we see that due to its non-
recursive message expansion the basic building block for most of these strategies
(elementary collisions as introduced by [3]) can not be directly applied. However,
the Rijmen-Oswald extension [15] can be used to overcome these problems.

Afterwards we turn to the influence of multiple sets of rotation constants. We
analyze the effect of multiple sets of rotation constants in simplified models in
Section @l We show that these multiple sets improve the avalanche effect in the
first steps of our simplified, linearized model.

Section [B] contains the main contribution. We compare single and multiple
sets of rotation constants in hash functions like SHA-1, HAS-160 and variations
thereof. We identify two reasons why the complexity of an attack increases when
multiple sets are used. Firstly, we show that the weight of collision-producing
differences increases and secondly, we show that more conditions are needed
due to an optimization trick which is less effective with multiple sets. Here, we
also give a first observation on the design of SHA-1. For 80 or more steps, the
benefits of multiple sets over a single set of rotation constants is negligible (in
terms of Hamming weight of a collision-producing difference). Additionally, we
analyze the attack complexity for variants of SHA-1 having different single sets
of rotation constants. We show that in the case of full SHA-1 (80 steps), rotating
the chaining variable A by 5 to the left and chaining variable B by 2 to the
right are the smallest possible values which do not impair security. Finally, we
discuss advantages of having these small constants.

1.1 Used Notation and Terminology

Table[dl contains a description of symbols used throughout this article. Note that
if negative integers are used as rotation constants, the rotation direction is re-
versed from left to right. Whenever we talk about Hamming weight of differential

Table 1. Used notation

notation description
A @ B addition of A and B modulo 2 (XOR)
A+ B addition of A and B modulo 2°
AV B logical OR of two bit-strings A and B
M,  input message word ¢ (32-bits), index ¢ starts with 0
W:  expanded input message word ¢ (32-bits), index ¢ starts with 0
A < n bit-rotation of A by n positions to the left, 0 <n < 31
step the SHA-1 compression function consists of 80 steps
round the SHA-1 compression function consists of 4 rounds = 4 x 20 steps
N number of steps of the compression function



Impact of Rotations in SHA-1 and Related Hash Functions 263

patterns we refer to the smallest Hamming weight we found using an adapted
version [I3] of Leon’s algorithm [7] for finding low-weight words in linear codes.

2 Description of Used Hash Functions

In this section, we shortly describe SHA-1 and the differences of HAS-160 com-
pared to SHA-1.

2.1 SHA-0 and SHA-1

The SHA family of hash functions is described in [I1]. Briefly, their compression
function consists of two phases: a message expansion and a state update trans-
formation. These phases are explained in more detail in the following. SHA-0 and
SHA-1 share the same state update, but SHA-0 has a simpler message expan-
sion. Both SHA-0 and SHA-1 consist of 80 steps. Since we will study variable-step
versions in this article, we denote the number of steps by N.

Message Expansion. In SHA-1, the message expansion is defined as follows.
The input is a 512-bit message, denoted by a row vector m. The message is also
represented by 16 32-bit words, denoted by M;, with t =0,1,...,15.

In the message expansion, this input is expanded linearly into N 32-bit words
Wy, also denoted as the 32N-bit expanded message word w. The words W; are
defined as follows.

W, =M, t=0,...,15 (1)
Wi=Wis@W, s @Wi1u@Wig6) <1, t>15 (2)

The message expansion of SHA-0 is very similar, but uses:
Wi =Wi_3®Wi_g ®Wi_14 ®Wi_16, t>15. (3)

Consequently, a bit at a certain position ¢ in one of the words of w only depends
on the bits at corresponding positions in the words of m.

State Update Transformation. The state update transformation starts from
a (fixed) initial state for 5 32-bit registers and updates them in N steps, using
one word W, in every step. Figure [ illustrates one step of the state update
transformation. The function f depends on the step number: steps 0 to 19 (round
1) use the IF-function and steps 40 to 59 (round 3) use the MAJ-function.

fie(B,C,D) = BC ® BD (4)
fmaj(B,C,D)=BC&®BD&CD (5)
The remaining rounds use a 3-input XOR. A round constant K; is added in

every step. There are four different constants; one for each round. After the
last application of the state update transformation, the initial register values are



264 N. Pramstaller, C. Rechberger, and V. Rijmen

ST R R R

Y Y
‘ At+1 ‘ Bt+1 ‘ Ct+1 ‘ Dt+1 ‘ Et+1 ‘

Fig. 1. One step of the state update transformation of SHA-1

added to the final values, and the result is either the input to the next iteration
function or the final digest.

2.2 HAS-160

HAS-160 [I7] is designed for use with the South Korean KCDSA digital signature
algorithm [I6]. The output length is 160 bits. A security evaluation of KCDSA by
Lim et al. can be found in [9,5]. An independent English description of HAS-160
is available [10,[8]. HAS-160 can be seen as a predecessor of the HAS-V family
of hash functions proposed in [12]. The design is based on SHA-1, however some
features are distinct. Subsequently, only the differences to SHA-1 are described.

Round Constants. HAS-160 uses a different set of round constants. We do
not need their actual values in this article.

Message Expansion. In SHA-0 and SHA-1, 16 input message words M; are
expanded into 80 expanded message words W, using a recursive definition. In
HAS-160, the 16 input words are expanded into 20 words (differently for each
round) and permuted for each of the four rounds. For actual permutation tables
and expansion tables, refer to [I0,[].

Boolean Functions in the State Update. The only difference to SHA-1 is
the 3-input Boolean function used for steps 40-59. We denote this function fas3-

fhasS(BvC7D):C@(BVD) (6>

The impact of this difference with respect to collision-search attacks is analyzed
in Section

Rotations in the State Update. In SHA-0 and SHA-1, the chaining variable
Ay is rotated by 5 bit-positions to the left before it is input to a modular addition.



Impact of Rotations in SHA-1 and Related Hash Functions 265

In HAS-160, this single rotation constant is replaced by multiple constants, i. e.
each step within a round rotates A; differently. The actual values are

Sy (t mod 20) = {5,11,7,15,6,13,8,14,7,12,9,11,8,15,6,12,9,14,5,13} ,
0<t<T79.
In SHA-0 and SHA-1, the chaining variable B; is rotated by 30 bit-positions
to the left before it becomes variable Cyy;. In HAS-160, this single rotation

constant is replaced by multiple rotation constants for each round. The actual
values are

Sa(t) =10, 0<t<19,
SH(t) =17, 20<t<39, ®
Sy(t) =25, 40<t<59,
Sy(t) =30, 60<t<T9.

Note that this concept of having multiple sets of rotation constants is different
to what is referred to as data dependent rotations (DDR).

3 Outline of Recent Attacks on SHA-0 and SHA-1

In this section we give an overview and comment on all the analysis techniques
that were used in recent years to analyze SHA-0 or SHA-1. The content of this
section is the basis for our approach to compare variants of SHA-1 later in this
article.

3.1 Differential Characteristics

Most recent collision attacks use the following strategy. Firstly, a differential
characteristic through the compression function of the hash function is con-
structed. Secondly, messages are constructed, which follow the characteristic.

3.2 Original Chabaud-Joux Approach

In the original approach of Chabaud and Joux [3], the differential characteris-
tic is determined by constructing a linear approximation for all the nonlinear
elements of SHA. Subsequently, Chabaud and Joux look for a differential char-
acteristic through this linear approximation. Since a differential characteristic
propagates in a deterministic way through a linear function, the characteristic
is determined completely by the choice of input difference. Hence, there are 2°'2
different characteristics. A fraction of 27169 of these, results in a zero output
difference (a collision).

Chabaud and Joux use the same linear approximation in every step. Con-
sequently, every local collision contains the same number of corrections, i. e.
5. They impose the additional constraint that the pattern of perturbations is
a valid expanded message, which accounts for another reduction factor 27169,
Hence, there remain 192 “free” bits.



266 N. Pramstaller, C. Rechberger, and V. Rijmen

3.3 Rijmen-Oswald Extension

In [15], it is proposed to drop the condition that the perturbation pattern should
be a valid expanded message. Any collision-producing difference, i. e. input dif-
ference that produces output difference zero in the linearized model, can be used.
This approach increases the number of free bits to 352. The approach still re-
sults in collisions that are linear combinations of local collisions, each consisting
of a perturbation and 5 corrections, but there are now less restrictions on the
perturbation pattern.

Until now, it hasn’t been demonstrated that this extension can result in better
differential characteristics for SHA-1. However, for other hash functions, the
improvement could be significant.

3.4 Multi-block

In multi-block collisions, we can also use differentials that don’t result in a zero
output. For instance, in a two-block collision, all we require is that the output
difference in both blocks is equal, because then, final feed-forward will result in
cancelation of the differences (with a certain probability). For a z-block collision,
we get 512z — 160 free bits (5122 — 320 if we require that the perturbation pattern
is a valid expanded message).

3.5 Exploiting Non-linearity—Improvements by Wang et al.

If we study the differentials used by Wang et al. [21L[19], then we see that they
create even more freedom by allowing differential characteristics that don’t fol-
low the linear approximation in the first steps. The propagation of differences
through nonlinear functions is non-deterministic and this can be exploited. The
possibility to exploit non-linear behavior is also observed in [2]. The Rijmen-
Oswald extension can be adapted to exploit this additional freedom.

3.6 Removing Conditions

For the second step of the attack, constructing a pair of messages that follows
this characteristic, a number of conditions on message words and intermediate
chaining variables need to be fulfilled. As already observed in [3], conditions
on the first steps can be pre-fulfilled. Using the fact that their exist neutral
bits in the compression function, this approach was extended to cover the first
20-22 steps of SHA-0 [1]. Wang et al. employ a different technique called mes-
sage modification in their collision-search attacks on SHA-0 [21] and SHA-1 [19]
to pre-fulfill the conditions in more than 20 steps. Note that a variant of this
technique is also used in the analysis of MD4 and MD5 [18,[20.[6].

3.7 Decrease Final Search Complexity

There are still several ways to speed up the attack. Firstly, it is advantageous
to choose the bit position of message differences to be in the MSB, since there a
possible change in the carry has no effect. The reason for this is that in this case



Impact of Rotations in SHA-1 and Related Hash Functions 267

no condition on message words and chaining variables are necessary to prevent
this carry. A simple optimization is therefore to rotate each word of the difference
such that the number of MSBs of value 1 is maximized.

A second trick deals with the implementation of the final search. After pre-
fulfilling some conditions, the remaining conditions can only be fulfilled using
random trials. There are two natural ways to talk about the time-complexity of
this final search. One is to use the numbers of message pairs needed. In this case,
the time complexity can be estimated by 2¢, where ¢ corresponds to the number
of conditions that cannot be pre-fulfilled. Another way of looking at it is to use
the number of steps as a means to express time complexity. It seems natural to
define the time-complexity 1 to be the N steps of the compression function.

A “good” pre-computed 13-word or 14-word message-pair can be used as a
starting point. Depending on the conditions on the message words mi4, m15 and
mig we get up to 96 degrees of freedom for our final search. If all degrees of
freedom are used without finding a collision, a new pre-computed message pair
is needed. However, we can stop our step-computations after the first condition
with probability p; = 1/2, after the second condition ps = 1/4 and so on. Since
we assume random trials for conditions we cannot pre-fulfill, we always estimate
the probability for fulfilling the conditions to be 0.5.

Starting from step 13 or 14, on average 10 steps are enough. Therefore we esti-
mate the time-complexity of our final search to be 2¢=2 (for N = 80). Joux et al.
[4] use a similar reasoning and arrive at 2°~2. The difference is that there the
same amount of computation is assumed for the second message pair. However,
the steps for the second message pair are only needed if all conditions are fulfilled
in order to check if the messages really collide.

3.8 Application of Attacks to HAS-160

Due to the non-recursive structure of the message expansion of HAS-160, a
direct application of the Chabaud-Joux approach is not possible. However, using
the approach described in [I5], generating a differential characteristic for HAS-
160 is straightforward. Some details on constructing messages that follow this
characteristic are given in Section

4 Rotations During the Step Update—Analysis of
Simplified Models

The original step update function of HAS-160 is defined as follows:

Apys = (Appa <K So) + [(Apgs, Ao <K 51, Ay K 51)

9
+A S+ W + Ky, ©)

whereas Sy has different values for each step of a round and S; has different
values for different rounds as defined in Section Note that the SHA-1 state
update has the same structure, but Sy has always a value of 5 and S; has always
a value of 30.



268 N. Pramstaller, C. Rechberger, and V. Rijmen

In order to analyze the impact of the multiple constants in Sy, we use a
simplified model of the state update. We replace the modular addition by an
XOR and the function f by a 3-input XOR. In a first approximation, we consider
only two chaining variables, and therefore only one bit-rotation.

Apss = (App1 <€ So) ® Ay (10)

If we introduce a single-bit difference in one of the chaining variables of Equa-
tion [T0, we observe an increase of the Hamming weight of this difference with
increased number of steps. Our first observation is that whenever Sy is constant
and a multiple of 2, the number of affected bits decreases. Summing over all 80
steps, we get a maximum of 283 affected bits in the chaining variables when we
apply a single-bit difference in the first chaining variable. When we do the same
computations for multiple rotation constants we get a total of 1077 affected bits.
Note that if half of the bits would be affected in each step, we would arrive at
80 x 16 = 1280 affected bits.

- N
o S
N
S

=)

number of flipped bits per step
number of flipped bits per step

o
o

10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
number of steps N number of steps N

Fig. 2. Number of affected bits per step for constant bit-rotations. The constant is not
a multiple of 2 in the left figure. In the right figure, the used constant is a multiple of 2.

Figure 2] gives another point of view: the number of affected bits per step for
a single rotation constant. Here we distinguish between cases where the value for
the bit-rotations is a multiple of 2, and where this is not the case. The symmetry
in Figure 2l can be explained by our simplified and linearized model. If we apply
the same method to compute the number of affected bits for the case of multiple
rotation constants, we get the result shown in Figure

We observe a much steeper increase in the first rounds. Due to the multiple
rotation constants, differences do not cancel out early. Later on, the ideal 16
affected bits per round are reached.

Next, we extend our model to three chaining variables to contain the second
bit-rotation of variable B. The resulting equation is as follows:

Az = (App2 K 80) @ A1 ® Ay K 51 (11)

Our simulation results and conclusions are pretty similar to the case for two
chaining variables. Therefore we omit them. However, we found an example



Impact of Rotations in SHA-1 and Related Hash Functions 269

o - o
> ) S

number of fiipped bits per step

@

10 20 30 40 50 60 70 80
number of steps N

Fig. 3. Number of affected bits per step for multiple rotation constants

were we “outperformed” the ideal case: we used a constant 24-bit rotation for
A and “pseudo-random” rotations for B. Using this setting, we arrived at 1352
bit-flips after 80 steps.

5 Impact of Multiple Rotation Constants on the Attack
Complexity

In this section, we are comparing several variants of SHA-1. We use the approach
described in [I5] to find low-weight input differences, which in turn can be used
to analyze the complexity of a collision-search attack. Even if we consider the
recent results by Wang et al. , comparing Hamming weights using this method
is sound since the underlying principle is the same.

Quote from [12]: “The variable shift amount seems to provide better immunity
against attacks such as differential collision in SHA-0 [3]. The generalization of
inner collisions to a full compression function seemed to be harder with variable
shift amounts.”

The method of [3] assumes a message expansion defined by a recursion, which
is a reason for the difficulties of applying this approach to HAS-160. However,
these problems are overcome if the Rijmen-Oswald extension is applied.

Multiple rotation constants account for a slightly increased Hamming weight of
collision-producing differences, which in turn slightly increases the number of con-
ditions that have to be fulfilled in the final search for a collision. Later on, we will
show that this increase is negligible after 80 or more steps. There are two reasons
why multiple rotation constants result in higher collision-search complexity:

1. Higher Hamming weight of the collision-producing difference in the linearized
model
2. It is less likely to take advantage of some condition-reducing effects.

5.1 Higher Hamming Weight of the Collision-Producing Difference
in the Linearized Model

We consider the first point now. In order to study the effect of different rotation
constants in an actual design, we searched for low-weight collision-producing



270 N. Pramstaller, C. Rechberger, and V. Rijmen

800— T T T T T T T T T y
— variable rotation(HAS-160) — variable rotation (HAS-160)
—— constant rotation (SHA-1) —— constant rotation((sHA—i) )
7001 — variable rotation(new) 1 700F | variable rotation (new)

600 ] 600

5001

4001

Hamming weight
Hamming weight
s
8

300-
2001 ] 200

(-
100F 1 100

20 40 60 80 100 120 20 30 40 50 60 70 80 90 100 110 120
number of steps N number of steps N

Fig. 4. Weight of collision-producing differences for single and multiple sets of rotation
constants. On the left, the HAS-160 message expansion is computed for up to 80 steps.
On the right, the SHA-1 message expansion is computed for up to 120 steps.

differences in variants of SHA-1, where we slightly changed the state update
transformation.

Firstly, we compare the state update transformations used by SHA-1 and
HAS-160. The result is depicted in Figure [l

We consider three different state update variations. The original HAS-160
state update having multiple sets of rotation constants, the original SHA-1 state
update having a single set of rotation constants and a new state update having
different multiple sets of rotation constants. These variations of the state update
are combined with both the HAS-160 message expansion (depicted on the left)
and the SHA-1 message expansion (depicted on the right).

When looking at the values, we observe that using the HAS-160 message ex-
pansion instead of the SHA-1 message expansion actually decreases the best found
Hamming weight. We also see that the lower Hamming weights for versions using
a single set of rotation constants catch up on the Hamming weights of the variants
with multiple sets with increased number of steps. In the case of the HAS-160 mes-
sage expansion, this happens after 30 steps. In the case of SHA-1 the difference
between single and multiple sets of rotation constants vanishes after 80 steps. This
gives us a first hint on the choice made by the designers of SHA.

Observation 1. The difference between a single set rotation constants and mul-
tiple sets of rotation constants vanishes with increased number of steps. In con-
trast to the HAS-160 message expansion, the SHA-1 message expansion delays
this process until step 80.

Secondly, we evaluate the effect of different single sets of rotation constants for
SHA-1. Instead of rotating variable A by 5 positions to the left, we evaluated
the attack complexity for all possibilities from 0-31. The results are depicted
in Figure Bl In the step-reduced version, we see considerable differences for the
chosen rotation constants of A. The constant 5, which was chosen for SHA-1,
is in this setting favorable for the attacker. However, with increased number



Impact of Rotations in SHA-1 and Related Hash Functions

/ 80 steps

Hamming weight of collision-producing difference

—— o~

— T N\~

5 10 15 20 25

rotation constant for A

271

Fig. 5. Hamming weight of collision-producing differences for all possible bit-rotations

of A and 20 to 120 steps of SHA-1

of steps, this advantage vanishes. After 80 steps, five bit-rotations are already
enough to arrive at the plateau of Hamming weights found.

We apply the same technique for chaining variable B. Instead of rotating
variable B by 30 positions to the left, we again evaluated the attack complexity
for all possibilities from 0-31. The results are depicted in Figure

800 T

T T
f—" — T T T

120 steps
700
600 -
500 -
—
400 / 80 steps

300 -

200 50 steps

Hamming weight of collision-producing difference

100 = 30 steps

—_——

0 I I I
5 10 15

rotation constant for B

20 25

Fig. 6. Hamming weight of collision-producing differences for all possible bit-rotations

of B and 30 to 120 steps of SHA-1



272 N. Pramstaller, C. Rechberger, and V. Rijmen

In the step-reduced version, we see considerable differences for the chosen
rotation constants of B. The constant 30, which was chosen for SHA-1, is in
this setting again favorable for the attacker. However, with increased number of
steps, this advantage vanishes. After 80 steps, the value 30 (or —2) is already
enough to arrive at the plateau of Hamming weights found.

Observation 2. In the case of full SHA-1 (80 steps), 5 is the lowest possible
value for rotating A and 30 is the highest possible value for rotating B to result
in comparatively high Hamming weights for collision-producing differences.

The advantage of having these constants is as follows: Let’s consider platforms
where constant-time shifters or rotators (see e. g. [14]) are neither implemented
in hardware nor as microcode. There, rotating B by e.g. 2 positions to the
right instead of more is faster. Note that these observations cannot be seen as a
design criterium for the SHA family since they do not apply to SHA-0. Refer to
Appendix [A] for details.

5.2 Impact of Multiple Rotation Constants on the Condition
Generating Phase

Let us now consider the second point mentioned above: the assumption, that it
is less likely to take advantage of some condition-reducing effects due to multiple
sets of rotation constants. This refers to the second step of our analysis: deriving
conditions on chaining variables and input message words to make the real hash
function behave like the linearized model.

Before looking at the effect of multiple sets of rotation constants, the effect
of the new non-linear Boolean function introduced in HAS-160 is analyzed: the
frrag function used in SHA-1 has the nice property (for an attacker) that what-
ever (non-zero) input difference is applied, it is always possible to find conditions
on the inputs which modifies the output difference towards an XOR-like behav-
ior. This ensures that every possible collision-producing message difference in the
linearized model can lead to a real collision, assuming a number of conditions is
fulfilled.

Table 2. Conditions that need to be fulfilled in order to have a differential behavior
identical to that of an XOR

input differences fyor fir frmaj Shas3
000 0 always always always
001 1 B=0 BpC=1 B=0
010 1 B=1 B® D=1 always
011 0 never CeD=1 B=0
100 1 CeD=1 CeD=1 D=1
101 0 BaCopD=0Be®D=1B®D=0
110 0 BaCeD=0BpC=1 D=1
111 1 CeD=0 always B® D =0



Impact of Rotations in SHA-1 and Related Hash Functions 273

As illustrated in Table 2, the new Boolean function does not increase the
difficulty for an attacker to find conditions. As opposed to fis (input difference
011), we can always find conditions on the inputs of fh4s3 to make it behave like
an XOR for all input differences.

The new Boolean function does not put additional hurdles for an attack.
Due to multiple sets of rotation constants aligning differences to optimize the
carry-drop effect (see Section B7) is less effective. At this point, it is difficult to
estimate the influence on the attack complexity compared to SHA-1, since the
bit-rotation of the SHA-1 message expansion has a similar effect.

6 Conclusion

We have analyzed the effect of multiple sets of rotation constants in HAS-160
and compared them to the single set of rotation constants used in SHA-1. The
bottom line is that multiple sets increase the attack complexity, the difference to
a single set however vanishes for increased number of steps. In our comparisons,
the Hamming weight of collision-producing differences in a linearized model was
used as a means to compare attack complexities on a relative scale. We also gave
some observations on the design of the compression function of SHA-1. For 80 or
more steps of SHA-1, the benefits of having multiple sets of rotation constants
instead of a single set are negligible. We finally observe that the chosen values
for rotations used in the state update of SHA-1 are on the edge as far as the
provided security level is concerned. Without impairing security, rotating the
chaining variable A by 5 to the left and chaining variable B by 2 to the right
are the smallest possible values. Platforms without constant-time shifters benefit
from this choice.

References

1. Eli Biham and Rafi Chen. Near-Collisions of SHA-0. In Matthew K. Franklin, edi-
tor, Advances in Cryptology - CRYPTO 2004, 24th Annual International Cryptol-
ogy Conference, Santa Barbara, California, USA, August 15-19, 2004, Proceedings,
volume 3152 of LNCS, pages 290-305. Springer, 2004.

2. Eli Biham, Rafi Chen, Antoine Joux, Patrick Carribault, Christophe Lemuet, and
William Jalby. Collisions of SHA-0 and Reduced SHA-1. In Ronald Cramer, editor,
Advances in Cryptology - EUROCRYPT 2005: 24th Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Aarhus, Den-
mark, May 22-26, 2005. Proceedings, volume 3494 of LNCS, pages 36—57. Springer,
2005.

3. Florent Chabaud and Antoine Joux. Differential Collisions in SHA-0. In Hugo
Krawczyk, editor, Advances in Cryptology - CRYPTO 98, 18th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 23-27,
1998, Proceedings, volume 1462, pages 56—71. Springer, 1998.

4. Antoine Joux, Patrick Carribault, William Jalby, and Christophe Lemuet. Full
iterative differential collisions in SHA-0, 2004. Preprint.



274

5.

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

N. Pramstaller, C. Rechberger, and V. Rijmen

KCDSA Task Force Team. The Korean Certificate-based Digital Signature Al-
gorithm, 1998. Available at http://grouper.ieee.org/groups/1363/P1363a/
contributions/kcdsal363.pdf.

. Vlastimil Klima. Finding MD5 Collisions on a Notebook PC Using Multi-message

Modifications, 2005. Preprint, available at http://eprint.iacr.org/2005/102.

. Jeffrey S. Leon. A probabilistic algorithm for computing minimum weights of large

error-correcting codes. IEEE Transactions on Information Theory, 34(5):1354—
1359, 1988.

. Chae Hoon Lim. The revised version of KCDSA, 2000. Unpublished Manuscript,

available at http://dasan.sejong.ac.kr/~chlim/pub/kcdsal.ps.

. Chae Hoon Lim and Pil Joong Lee. A Study on the Proposed Korean Digital

Signature Algorithm. In Kazuo Ohta and Dingyi Pei, editors, Advances in Cryp-
tology - ASIACRYPT 98, International Conference on the Theory and Applica-
tions of Cryptology and Information Security, Beijing, China, October 18-22, 1998,
Proceedings, volume 1514 of Lecture Notes in Computer Science, pages 175-186.
Springer, 1998.

Jack Lloyd. A Description of HAS-160, 2003. Available at www.randombit.net/
papers/has160.html.

National Institute of Standards and Technology (NIST). FIPS-180-2: Secure
Hash Standard, August 2002. Available online at http://www.itl.nist.gov/
fipspubs/.

Nan Kyoung Park, Joon Ho Hwang, and Pil Joong Lee: HAS-V: A New Hash Func-
tion with Variable Output Length. In Douglas R. Stinson and Stafford E. Tavares,
editors, Advances in Cryptology - CRYPTO ’98, 18th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 23-27, 1998, Proceed-
ings, volume 2012, pages 202-216. Springer, 2001.

Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen. Exploiting Cod-
ing Theory for Collision Attacks on SHA-1. In Cryptography and Coding, 10th IMA
International Conference, Cirencester, UK, December 19-21, 2005, Proceedings to
appear, LNCS. Springer, 2005.

Jan M. Rabaey. Digital Integrated Clircuits. Prentice Hall, 1996.

Vincent Rijmen and Elisabeth Oswald. Update on SHA-1. In Alfred Menezes, ed-
itor, Topics in Cryptology - CT-RSA 2005, The Cryptographers’ Track at the RSA
Conference 2005, San Francisco, CA, USA, February 14-18, 2005, Proceedings,
volume 3376 of LNCS, pages 58-71. Springer, 2005.

TTA. Digital Signature Mechanism with Appendix - Part 2 : Certificate-based
Digital Signature Algorithm, TTAS.KO-12.0011/R1, 2000.

TTA. Hash Function Standard - Part 2: Hash Function Algorithm Standard (HAS-
160), TTAS.KO-12.0011/R1, 2000.

Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu. Crypt-
analysis of the Hash Functions MD4 and RIPEMD. In Ronald Cramer, editor, Ad-
vances in Cryptology - EUROCRYPT 2005: 24th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Aarhus, Denmark,
May 22-26, 2005. Proceedings, volume 3494 of LNCS, pages 1-18. Springer, 2005.
Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the Full
SHA-1. In Victor Shoup, editor, Advances in Cryptology - CRYPTO 2005, 25th
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 14-18, 2005, Proceedings, volume 3621 of LNCS, pages 17-36. Springer,
2005.


http://grouper.ieee.org/groups/1363/P1363a/
contributions/kcdsa1363.pdf
http://eprint.iacr.org/2005/102
http://dasan.sejong.ac.kr/~chlim/pub/kcdsa1.ps
www.randombit.net/
papers/has160.html
http://www.itl.nist.gov/
fipspubs/

Impact of Rotations in SHA-1 and Related Hash Functions 275

20. Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Functions. In
Ronald Cramer, editor, Advances in Cryptology - EUROCRYPT 2005: 24th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Aarhus, Denmark, May 22-26, 2005. Proceedings, volume 3494 of LNCS,
pages 19-35. Springer, 2005.

21. Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin. Efficient Collision Search Attacks
on SHA-0. In Victor Shoup, editor, Advances in Cryptology - CRYPTO 2005, 25th
Annual International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 14-18, 2005, Proceedings, volume 3621 of LNCS, pages 1-16. Springer, 2005.

A Single Sets of Rotation Constants for SHA-0

We evaluate the effect of different single sets of rotation constants for SHA-Q.
Instead of rotating variable A by 5 positions to the left, we evaluated the attack
complexity for all possibilities from 0-31. The results are depicted in Figure [1l

800

700 T

600 b

500

Hamming weight of collision—producing difference
8
o
T

120 steps

100 80 steps i
50 steps
o ; i - 20 steps, n
5 10 15 20 25 30

rotation constant for A

Fig. 7. Hamming weight of collision-producing differences for all possible bit-rotations
of A and 20 to 120 steps of SHA-0

Using the Hamming weight for the rotation constant 5 as a starting point,
we see that higher as well as lower Hamming weights for collision-producing
differences are possible when choosing different rotation constants. This holds
for all considered variants from 20 to 120 steps.



	Introduction
	Used Notation and Terminology

	Description of Used Hash Functions
	SHA-0 and SHA-1
	HAS-160

	Outline of Recent Attacks on SHA-0 and SHA-1
	Differential Characteristics
	Original Chabaud-Joux Approach
	Rijmen-Oswald Extension
	Multi-block
	Exploiting Non-linearity---Improvements by Wang $et al.$ 
	Removing Conditions
	Decrease Final Search Complexity
	Application of Attacks to HAS-160

	Rotations During the Step Update---Analysis of Simplified Models
	Impact of Multiple Rotation Constants on the Attack Complexity
	Higher Hamming Weight of the Collision-Producing Difference in the Linearized Model
	Impact of Multiple Rotation Constants on the Condition Generating Phase

	Conclusion
	Single Sets of Rotation Constants for SHA-0


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




