

Lecture Notes in Computer Science 3897
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Bart Preneel Stafford Tavares (Eds.)

Selected Areas
in Cryptography

12th International Workshop, SAC 2005
Kingston, ON, Canada, August 11-12, 2005
Revised Selected Papers

13

Volume Editors

Bart Preneel
Katholieke Universiteit Leuven
Department of Electrical Engineering-ESAT
Kasteelpark Arenberg 10, 3001 Leuven-Heverlee, Belgium
E-mail: Bart.Preneel@esat.kuleuven.be

Stafford Tavares
Queen’s University Kingston
Department of Electrical and Computer Engineering
Kingston, Ontario, K7L 3N6, Canada
E-mail: stafford.tavares@queensu.ca

Library of Congress Control Number: 2006922554

CR Subject Classification (1998): E.3, D.4.6, K.6.5, F.2.1-2, C.2, H.4.3

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-540-33108-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-33108-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11693383 06/3142 5 4 3 2 1 0

Preface

SAC 2005 was the 12th in a series of annual workshops on Selected Areas in
Cryptography. This was the 5th time the workshop was hosted by Queen’s Uni-
versity in Kingston (the previous workshops were held here in 1994, 1996, 1998
and 1999). Other SAC workshops have been organized at Carleton University in
Ottawa (1995, 1997 and 2003), the Fields Institute in Toronto (2001), Memorial
University of Newfoundland in St. John’s (2002) and the University of Waterloo
(2000 and 2004). The workshop provided a relaxed atmosphere in which re-
searchers in cryptography could present and discuss new work on selected areas
of current interest.

The themes for SAC 2005 were:

– design and analysis of symmetric key cryptosystems;
– primitives for symmetric key cryptography, including block and stream ci-

phers, hash functions, and MAC algorithms;
– efficient implementations of symmetric and public key algorithms;
– cryptographic algorithms and protocols for ubiquitous computing (sensor

networks, RFID).

A total of 96 papers were submitted. Three papers were not considered be-
cause they were identified as being multiple submissions. After an extensive
double-blind reviewing process, the program committee accepted 25 papers for
presentation at the workshop.

We were very fortunate to have two invited speakers at SAC 2005, who both
delivered thought-provoking and entertaining talks:

– Alfred Menezes: Another Look at Provable Security;
– Mike Wiener: The Full Cost of Cryptanalytic Attacks.

First and foremost we would like to thank the members of the program com-
mittee for the many days spent on reviewing and discussing the papers – thereby
producing more than 600 Kbytes of comments – and for helping us with the dif-
ficult decisions. We would also like to thank the numerous external reviewers
for their assistance. We are also indebted to Queen’s University, Stantive Solu-
tions Inc. and Sun Microsystems for their financial support of the workshop. We
also wish to thank Sheila Hutchison for her administrative support, Tom Harper
for developing and maintaining the SAC 2005 website and Thomas Herlea and
Robert Maier for managing the Web-based review site. Special thanks to Jasper
Scholten for his technical assistance during the editing of the preproceedings and
this volume.

Finally we would like to thank all the participants, submitters, authors and
presenters who all together made SAC 2005 a great success.

December 2005 Bart Preneel, Stafford Tavares

12th Annual Workshop on
Selected Areas in Cryptography

August 11-12, 2005, Kingston, Ontario, Canada

Program and General Co-chairs

Bart Preneel . Katholieke Universiteit Leuven, Belgium
Stafford Tavares . Queen’s University, Canada

Program Committee

Roberto Avanzi . Ruhr-University Bochum, Germany
John Black . University of Colorado at Boulder, USA
Henri Gilbert . France Telecom R&D, France
Guang Gong . University of Waterloo, Canada
Louis Granboulan . Ecole Normale Supérieure, France
Helena Handschuh . Gemplus, France
Howard Heys . Memorial University, Canada
Antoine Joux . DGA and University of Versailles, France
Ari Juels . RSA Laboratories, USA
Kaoru Kurosawa . Ibaraki University, Japan
Ilya Mironov . Microsoft Research, USA
Sean Murphy . Royal Holloway, University of London, UK
Vincent Rijmen . Graz University of Technology, Austria
Doug Stinson . University of Waterloo, Canada
Michael Wiener . Cryptographic Clarity, Canada
Amr Youssef . Concordia University, Canada

Local Arrangements Committee

Sheila Hutchison . Queen’s University, Canada
Tom Harper . Queen’s University, Canada

Sponsoring Institutions

Queen’s University
Sun Microsystems
Stantive Solutions Inc.

VIII Organization

External Referees

Masayuki Abe Takeshi Koshiba Jan Pelzl
Steve Babbage Ted Krovetz Norbert Pramstaller
Lejla Batina Tanja Lange Christian Rechberger
Côme Berbain Joseph Lano Matt Robshaw
Olivier Billet Dong Hoon Lee Rei Safavi-Naini
Alex Biryukov Jooyoung Lee Palash Sarkar
An Braeken Kerstin Lemke Erkay Savas
Carlos Cid Yi Lu Martin Schläffer
Mathieu Ciet Subhamoy Maitra Junji Shikata
Christophe Clavier Stefan Mangard Thomas Shrimpton
Christophe De Cannière Keith Martin Francesco Sica
Jacques Fournier Alexander May Jessica Staddon
Steven Galbraith Preda Mihăilescu Gelareh Taban
Kenneth Giuliani Atsuko Miyaji Tsuyoshi Takagi
Aline Gouget Bodo Möller Duong Quang Viet
Kishan Gupta David Molnar Frederik Vercauteren
Swee-Huay Heng Yassir Nawaz Dai Watanabe
Katrin Hoeper Khanh Nguyen Christopher Wolf
Tetsu Iwata Miyako Ohkubo Johannes Wolkerstorfer
Tetsuya Izu Yasuhiro Ohtaki Lu Xiao
Shaoquan Jiang Akira Ohtsuka Nam Yul Yu
Liam Keliher Francis Olivier
Kazukuni Kobara Elisabeth Oswald

Table of Contents

Stream Ciphers I

Conditional Estimators: An Effective Attack on A5/1
Elad Barkan, Eli Biham . 1

Cryptanalysis of the F-FCSR Stream Cipher Family
Éliane Jaulmes, Frédéric Muller . 20

Fault Attacks on Combiners with Memory
Frederik Armknecht, Willi Meier . 36

Block Ciphers

New Observation on Camellia
Duo Lei, Li Chao, Keqin Feng . 51

Proving the Security of AES Substitution-Permutation Network
Thomas Baignères, Serge Vaudenay . 65

Modes of Operation

An Attack on CFB Mode Encryption as Used by OpenPGP
Serge Mister, Robert Zuccherato . 82

Parallelizable Authentication Trees
W. Eric Hall, Charanjit S. Jutla . 95

Improved Time-Memory Trade-Offs with Multiple Data
Alex Biryukov, Sourav Mukhopadhyay, Palash Sarkar 110

Public Key Cryptography

A Space Efficient Backdoor in RSA and Its Applications
Adam Young, Moti Yung . 128

An Efficient Public Key Cryptosystem with a Privacy Enhanced Double
Decryption Mechanism

Taek-Young Youn, Young-Ho Park, Chang Han Kim,
Jongin Lim . 144

X Table of Contents

Stream Ciphers II

On the (Im)Possibility of Practical and Secure Nonlinear Filters and
Combiners

An Braeken, Joseph Lano . 159

Rekeying Issues in the MUGI Stream Cipher
Matt Henricksen, Ed Dawson . 175

Key Establishment Protocols and Access Control

Tree-Based Key Distribution Patterns
Jooyoung Lee, Douglas R. Stinson . 189

Provably Secure Tripartite Password Protected Key Exchange Protocol
Based on Elliptic Curves

Sanggon Lee, Yvonne Hitchcock, Youngho Park, Sangjae Moon 205

An Access Control Scheme for Partially Ordered Set Hierarchy with
Provable Security

Jiang Wu, Ruizhong Wei . 221

Hash Functions

Breaking a New Hash Function Design Strategy Called SMASH
Norbert Pramstaller, Christian Rechberger, Vincent Rijmen 233

Analysis of a SHA-256 Variant
Hirotaka Yoshida, Alex Biryukov . 245

Impact of Rotations in SHA-1 and Related Hash Functions
Norbert Pramstaller, Christian Rechberger, Vincent Rijmen 261

Protocols for RFID Tags

A Scalable, Delegatable Pseudonym Protocol Enabling Ownership
Transfer of RFID Tags

David Molnar, Andrea Soppera, David Wagner 276

Reducing Time Complexity in RFID Systems
Gildas Avoine, Etienne Dysli, Philippe Oechslin 291

Table of Contents XI

Efficient Implementations

Accelerated Verification of ECDSA Signatures
Adrian Antipa, Daniel Brown, Robert Gallant, Rob Lambert,
René Struik, Scott Vanstone . 307

Pairing-Friendly Elliptic Curves of Prime Order
Paulo S.L.M. Barreto, Michael Naehrig . 319

Minimality of the Hamming Weight of the τ -NAF for Koblitz Curves
and Improved Combination with Point Halving

Roberto Maria Avanzi, Clemens Heuberger, Helmut Prodinger 332

SPA Resistant Left-to-Right Integer Recodings
Nicolas Thériault . 345

Efficient FPGA-Based Karatsuba Multipliers for Polynomials over F2
Joachim von zur Gathen, Jamshid Shokrollahi . 359

Author Index . 371

Conditional Estimators: An Effective
Attack on A5/1

Elad Barkan and Eli Biham

Computer Science Department,
Technion – Israel Institute of Technology,

Haifa 32000, Israel
{barkan, biham}@cs.technion.ac.il
http://www.technion.ac.il/∼barkan/

http://www.cs.technion.ac.il/∼biham/

Abstract. Irregularly-clocked linear feedback shift registers (LFSRs)
are commonly used in stream ciphers. We propose to harness the power
of conditional estimators for correlation attacks on these ciphers. Condi-
tional estimators compensate for some of the obfuscating effects of the
irregular clocking, resulting in a correlation with a considerably higher
bias. On GSM’s cipher A5/1, a factor two is gained in the correlation
bias compared to previous correlation attacks. We mount an attack on
A5/1 using conditional estimators and using three weaknesses that we
observe in one of A5/1’s LFSRs (known as R2). The weaknesses imply
a new criterion that should be taken into account by cipher designers.
Given 1500–2000 known-frames (about 4.9–9.2 conversation seconds of
known keystream), our attack completes within a few tens of seconds to a
few minutes on a PC, with a success rate of about 91%. To complete our
attack, we present a source of known-keystream in GSM that can pro-
vide the keystream for our attack given 3–4 minutes of GSM ciphertext,
transforming our attack to a ciphertext-only attack.

1 Introduction

Correlation attacks are one of the prominent generic attacks on stream ciphers.
There were many improvements to correlation attacks after they were introduced
by Siegenthaler [13] in 1985. Many of them focus on stream ciphers composed
of one or more regularly clocked linear feedback shift registers (LFSRs) whose
output is filtered through a non-linear function. In this paper, we discuss stream
ciphers composed of irregularly-clocked linear feedback shift registers (LFSRs),
and in particular, on stream ciphers whose LFSRs’ clocking is controlled by the
mutual value of the LFSRs. The irregular clocking of the LFSRs is intended
to strengthen the encryption algorithm by hiding from the attacker whether
a specific register advances or stands still. Thus, it should be difficult for an
attacker to correlate the state of an LFSR at two different times (as he does not
know how many times the LFSR has been clocked in between).

Assume the attacker knows the number of clocks that the LFSRs have been
clocked until a specific output bit has been produced. The attacker can guess the

B. Preneel and S. Tavares (Eds.): SAC 2005, LNCS 3897, pp. 1–19, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 E. Barkan and E. Biham

number of clocks that the LFSRs are clocked during the generation of the next
output bit with some success probability p < 1. A better analysis that increases
the success probability of guessing the number of clocks for the next output
bit could prove devastating to the security of the stream cipher. Our proposed
conditional estimators are aimed at increasing this success probability.

In this paper, we introduce conditional estimators, aimed to increase the prob-
ability of guessing the clockings of the LFSRs correctly. We apply conditional
estimators to one of the most fielded irregularly clocked stream ciphers — A5/1,
which is used in the GSM cellular network. GSM is the most heavily deployed
cellular phone technology in the world. Over a billion customers world-wide own
a GSM mobile phone. The over-the-air privacy is currently protected by one of
two ciphers: A5/1 — GSM’s original cipher (which was export-restricted), or
A5/2 which is a weakened cipher designated for non-OECD (Organization for
Economic Co-operation and Development) countries. As A5/2 was discovered
to be completely insecure [3], the non-OECD countries are now switching to
A5/1. The internal design of A5/1 and A5/2 was kept secret until Briceno [6]
reverse engineered their internal design in 1999. Contrary to A5/1 and A5/2,
the internal design of the future GSM cipher A5/3 was officially published.

The first attacks on A5/1 were proposed by Golic [9] in 1997, when only
a rough design of the cipher was leaked. He proposed two known-keystream
attacks: the first is a guess and determine attack, and the second is a time-
memory tradeoff attack. In 2000, the second attack was significantly improved
by Biryukov, Shamir, and Wagner [5]. In some scenarios the improved attack can
find the key in less than a second. However, the attack requires four 74-gigabyte
disks and a lengthy precomputation. At the same time, Biham and Dunkel-
man [4] took a different approach. Their attack requires a few tens of seconds of
known-keystream and recovers the key with a time complexity of about 240 A5/1
cycles. In 2003, Barkan, Biham, and Keller [3] showed a ciphertext-only attack
that finds the encryption key of A5/2, using the fact that in GSM the error-
correction codes are employed before encryption. They converted this attack to
an active attack on A5/1 networks, and also presented a ciphertext-only time-
memory tradeoff attack on A5/1. However, the latter requires a very lengthy pre-
computation step. As for correlation attacks, in 2001, Ekdahl and Johansson [7]
applied ideas from correlation attacks to A5/1. Their attack requires a few min-
utes of known-keystream, and finds the key within minutes on a personal com-
puter. In 2004, Maximov, Johansson, and Babbage [11] discovered a correlation
between the internal state and the output bits and used it to improved the at-
tack. Given about 2000–5000 frames (about 9.2–23 seconds of known-plaintext),
their attack recovers the key within 0.5–10 minutes on a personal computer.

These attacks demonstrate that fielded GSM systems do not provide an ad-
equate level of privacy for their customers. However, breaking into fielded A5/1
GSM systems using these attacks requires either active attacks (e.g., man in the
middle), a lengthy (although doable) precomputation step, a high time complex-
ity, or a large amount of known keystream.

Conditional Estimators: An Effective Attack on A5/1 3

One advantage of correlation attacks on A5/1 over previous attacks is that
they require no long-term storage and no preprocessing, yet given a few sec-
onds of known-keystream, they can find the key within minutes on a personal
computer. Another advantage of correlation attacks over some of the previous
attacks is the immunity to transmission errors. Some of the previous attacks
are susceptible to transmission errors, e.g., a single flipped bit defeats Golic’s
first attack. Correlation attacks can naturally withstand transmission errors, and
even a high bit-error-rate can be accommodated for.

In this paper, we introduce conditional estimators, which can compensate for
some of the obfuscating effects caused by the irregular clocking. Using conditional
estimators, we improve the bias of the correlation equation that was observed
in [11] by a factor of two. In addition, we discover three weaknesses in one of
A5/1’s registers. We mount a new attack on A5/1 based on the conditional
estimators and the three weaknesses. Finally, we describe a source for known
keystream transforming our attack to a ciphertext-only attack.

One of the weaknesses relates to the fact that register R2 of A5/1 has only two
feedback taps, which are adjacent. This weakness enables us to make an optimal
use of the estimators by translating the problem of recovery of the internal state
of the register to a problem in graph theory. Thus, unlike previous attacks [7, 11],
which were forced to use heuristics, we can exactly calculate the list of most
probable internal states. We note that in 1988, Meier and Staffelbach [12] warned
against the use of LFSRs with few feedback taps. However, it seems that their
methods are difficult to apply to A5/1.

An alternative version of our attack can take some advantage of the fact that
many operators set the first bits of the key to zero (as reported in [6]); this
alternative version slightly simplifies the last step of our attack, and results with
a somewhat higher success rate. We are not aware of any other attack on A5/1
(except for exhaustive search) that could benefit from these ten zero bits.

Our last contribution is a new source for known-plaintext in GSM. We point
at the Slow Associated Control CHannel (SACCH) and show that its content can
be derived. We also discuss the frequency hopping in GSM and how to overcome
it. Using this new source for known-plaintext, our attacks can be converted to
ciphertext-only attacks. However, this is a slow channel, that provides only about
eight known frames each second.

We have performed simulations of our attacks. Given 2000 frames, our simu-
lations take between a few tens of seconds and a few minutes on a PC to find
the key with a success rate about 91%. For comparison, the simulations of [11]
with a similar number of frames take about four times longer to run and achieve
a lower success rate of about only 5%. A comparison of some of the results of
previous works and our results is given in Table 1. With our new source for
known keystream, the required 1500–2000 known frames can be obtained from
the ciphertext of about 3–4 minutes of conversation.

This paper is organized as follows: We give a short description of A5/1 in
Section 2, then, we set our notations and review some of the main ideas of
previous works in Section 3. In Section 4 we describe the conditional estimators

4 E. Barkan and E. Biham

Table 1. Comparison Between the Our Attacks and Previous Works. Only passive at-
tacks are included, i.e., the active attack of [3] is not shown. The attack time for [3, 4, 5]
is our estimate. As [3, 5] are time/memory/data tradeoff attacks, we give the tradeoff
point that uses data that is equivalent to four minutes of ciphertext.
∗ based on error-correction codes as described in [3] (not on Section 7).
� preprocessing time

Attack: Required Frames Average Time Success
(Configuration Known Ciphertext on a single Rate

explained in Section 6) Keystream Only PC (range)
(by Section 7)

Ekdahl & Johansson [7] 70000 (322 s) 140 min 5 min 76%
[7] 50000 (230 s) 99 min 4 min 33%
[7] 30000 (138 s) 60 min 3 min 3%

Biham & Dunkelman [4] 20500 (95 s) 40.8 min ≈ 1.5 days 63%

Maximov et al. [11] 10000 (46 s) 20 min 10 min 99.99%
[11] 10000 (46 s) 20 min 76 s 93%

[11] 5000 (23 s) 10 min 10 min 85%
[11] 5000 (23 s) 10 min 44 s 15%

[11] 2000 (9.2 s) 4 min 10 min 5%
[11] 2000 (9.2 s) 4 min 29 s 1%

Biryukov et al. [5] 2000 (9.2 s) 4 min � > 5 years
Ciphertext only attack of — 4 min∗ � > 2300 years

Barkan et al. [3]

This Paper 2000 (9.2 s) 4 min (6–10 min) 64%
early filtering 2000 (9.2 s) 4 min (55–300 s) 64%

(220000, 40000, 2000, 5200)
early filtering 2000 (9.2 s) 4 min (32–45 s) 48%

(100000, 15000, 200, 300)
improved estimators, 2000 (9.2 s) 4 min 74 s 86%

(200000, 17000, 900, 2000) (50–145 s)
improved estimators, 2000 (9.2 s) 4 min 133 s 91%

(200000, 36000, 1400, 11000) (55–626s)

early filtering 1500 (6.9 s) 3 min (39–78 s) 23%
(120000, 35000, 1000, 800)

improved estimators, 1500 (6.9 s) 3 min 82 s 48%
(88000, 52000, 700, 1200) (44–105 s)
improved estimators, 1500 (6.9 s) 3 min 7.2 min 54%

(88000, 52000, 3200, 15000) (44–780 s)

and three weaknesses, and then use them in our new attack in Section 5. The
results of our simulations are presented in Section 6. We describe the new source
of known-plaintext in Section 7. Finally, the paper is summarized in Section 8.

Conditional Estimators: An Effective Attack on A5/1 5

2 A Description of A5/1

The stream cipher A5/1 accepts a 64-bit session key Kc and a 22-bit publicly-
known frame number f . GSM communication is performed in frames, where
a frame is transmitted every 4.6 millisecond. In every frame, A5/1 is initial-
ized with the session key and the frame number. The resulting 228 bit output
(keystream) is divided into two halves: the first half is used to encrypt the data
from the network to the mobile phone, while the second half is used to encrypt
the data from the mobile phone to the network. The encryption is performed by
XORing the data with the appropriate half of the keystream.

A5/1 has a 64-bit internal state, composed of three maximal-length Linear
Feedback Shift Registers (LFSRs): R1, R2, and R3, with linear feedbacks as
shown in Figure 1. Before a register is clocked the feedback is calculated (as
the XOR of the feedback taps). Then, the register is shifted one bit to the
right (discarding the rightmost bit), and the feedback is stored into the leftmost
location (location zero).

A5/1 is initialized with Kc and f in three steps, as described in Figure 2.
This initialization is referred to as the key setup.

Observe that the key setup is linear in the bits of both Kc and f , i.e., once the
key setup is completed, every bit of the internal state is an XOR of bits in fixed
locations of Kc and f . This observation is very helpful in correlation attacks.

A5/1 works in cycles, where in each cycle one output bit is produced. A
cycle is composed of irregularly clocking R1, R2, and R3 according to a clocking
mechanism that we describe later, and then outputting the XOR of the rightmost
bits of the three registers (as shown in Figure 1). The first 100 bits of output are
discarded, i.e., the 228 bits that are used in GSM are output bits 100,. . . ,327.
The keystream generation can be summarized as follows:

1. Run the key setup with Kc and f (Figure 2).
2. Run A5/1 for 100 cycles and discard the output.
3. Run A5/1 for 228 cycles and use the output as keystream.

C3

0 22

Output

stream

Clocking Unit

R2 0 21

0 18R1

R3

C1

C2

Fig. 1. The A5/1 internal structure

6 E. Barkan and E. Biham

1. Set R1 = R2 = R3 = 0.
2. For i = 0 to 63

– Clock all three registers.
– R1[0] ← R1[0] ⊕ Kc[i]; R2[0] ← R2[0] ⊕ Kc[i]; R3[0] ← R3[0] ⊕ Kc[i].

3. For i = 0 to 21
– Clock all three registers.
– R1[0] ← R1[0] ⊕ f [i]; R2[0] ← R2[0] ⊕ f [i]; R3[0] ← R3[0] ⊕ f [i].

Fig. 2. The key setup of A5/1. The i’th bit of Kc is denoted by Kc[i], and the i’th bit
of f is denoted by f [i], where i = 0 is the least significant bit. We denote the internal
state after the key setup by (R1, R2, R3) = keysetup(Kc, f).

It remains to describe the clock control mechanism, which is responsible for
the irregular clocking. Each register has a special clocking tap near its middle
(in locations R1[8], R2[10], and R3[10]). The clocking mechanism algorithm:

1. Calculate the majority of the values in the three clocking taps.
2. Then, clock a register if and only if its clocking tap agrees with the majority.

For example, assume that R1[8] = R2[10] = c and R3 = 1−c for some c ∈ {0, 1}.
Clearly, the value of the majority is c. Therefore, R1 and R2 are clocked, and
R3 stands still.

Note that in each cycle of A5/1, either two or three registers are clocked (since
at least two bits agree with the majority). Assuming that the clocking taps are
uniformly distributed, each register has a probability of 1/4 for standing still
and a probability of 3/4 for being clocked.

3 Notations and Previous Works

In this section, we set our notations, and describe some of the main ideas of
the previous works. Let S1, S2, and S3 be the initial internal state of registers
R1, R2, and R3 after the key-setup (using the correct Kc), where the frame
number is chosen to be zero, i.e., (S1, S2, S3) = keysetup(Kc, 0). For i = 1, 2, 3,
denote by S̃i[li] the output bit of Ri after it is clocked li times from its initial
state Si.1 Similarly, let F j

1 , F j
2 , and F j

3 be the initial internal state of registers
R1, R2, and R3 after a key setup using all zeros as the key, but with frame
number j, i.e., (F j

1 , F j
2 , F j

3) = keysetup(0, j). For i = 1, 2, 3, denote by F̃ j
i [li]

the output of Ri after it is clocked li times from its initial state F j
i . Ekdahl

and Johansson [7] observed that due to the linearity of the key setup, the initial
internal value of Ri at frame j is given by Si ⊕ F j

i , i.e., keysetup(Kc, j) =
keysetup(Kc, 0) ⊕ keysetup(0, j) = (S1 ⊕ F j

1 , S2 ⊕ F j
2 , S3 ⊕ F j

3). Furthermore,

1 Note that as a register has a probability of 3/4 of being clocked in each cycle, it
takes about li + li/3 cycles to clock the register li times.

Conditional Estimators: An Effective Attack on A5/1 7

due to the linear feedback of the shift register, the output of LFSR i at frame j
after being clocked li times from its initial state is given by S̃i[li]⊕ F̃ j

i [li].
Maximov, Johansson, and Babbage [11] made the following assumptions:

1. clocking assumption (j, l1, l2, t): Given the keystream of frame j, registers
R1 and R2 were clocked exactly l1 and l2 times, respectively, until the
end of cycle t. The probability that this assumption holds is denoted by
Pr((l1, l2) at time t) (this probability can be easily computed, see [11]).

2. step assumption (j, t): Given the keystream of frame j, both R1 and R2 are
clocked in cycle t+1, but R3 stands still. Assuming the values in the clocking
taps are uniformly distributed, this assumption holds with probability 1/4
(the clocking mechanism ensures that if the values of the clocking taps are
uniformly distributed, each register stands still with probability 1/4).

They observed that under these two assumptions, R3’s contribution to the out-
put is fixed in output bits t and t + 1. Thus, R3 does not affect the difference
between these two output bits, and the following equation holds:

(S̃1[l1]⊕ S̃2[l2])⊕ (S̃1[l1 + 1]⊕ S̃2[l2 + 1]) =

Z̃j [t]⊕ Z̃j [t + 1]⊕ (F̃ j
1 [l1]⊕ F̃ j

2 [l2])⊕ (F̃ j
1 [l1 + 1]⊕ F̃ j

2 [l2 + 1]), (1)

where Z̃j[t] is the output bit of the cipher at time t of frame j. Thus, the value
of (S̃1[l1] ⊕ S̃2[l2]) ⊕ (S̃1[l1 + 1] ⊕ S̃2[l2 + 1]) can be estimated from the known
keystream and the publicly available frame numbers.

Equation (1) holds with probability 1 if both the clocking assumption and
the step assumption hold. If either or both assumptions do not hold, then Equa-
tion (1) is assumed to hold with probability 1/2 (i.e., it holds by pure chance).
Therefore, Equation (1) holds with probability (1 − Pr((l1, l2) at time t))/2 +
Pr((l1, l2) at time t)((3/4)/2 + 1/4) = 1/2 + Pr((l1, l2) at time t)/8. The bias
Pr((l1, l2) at time t)/8 is typically two to three times higher compared to the
bias shown in [7]. Such a difference in the bias is expected to result in an im-
provement of the number of frames needed by a factor between four and ten,
which is indeed the case in [11].

We simplify Equation (1) by introducing the notation S̃′
i[li] defined as S̃i[li]⊕

S̃i[li+1]. Similarly denote F̃ j
i [li]⊕F̃ j

i [li+1] by F̃ ′j
i [li], and denote Z̃j [t]⊕Z̃j [t+1]

by Z̃ ′j [t]. Thus, Equation (1) can be written as:

(S̃′
1[l1]⊕ S̃′

2[l2]) = Z̃ ′j [t]⊕ (F̃ ′j
1 [l1]⊕ F̃ ′j

2 [l2]) (2)

Observe that due to the linearity of the LFSR, S̃′
i[li] can be viewed as the output

of Ri after it has been clocked li times from the initial state S′
i � S+

i ⊕Si, where
S+

i denotes the internal state of Ri after it has been clocked once from the
internal state Si. Note that there is a one-to-one correspondence between Si and
S′

i, therefore, when we recover S′
i, we find Si.

In [11] it was observed that better results are obtained by working with d con-
secutive bits of the output of S′

i, where d is a small integer. A symbol is defined to
be the binary string of d consecutive bits S′

i[li] � S̃′
i[li]||S̃′

i[li+1]|| · · · ||S̃′
i[li+d−1],

8 E. Barkan and E. Biham

where “||” denotes concatenation. For example, S′
2[81] = S̃′

2[81] is a 1-bit symbol,
and S′

1[90] = S̃′
1[90]||S̃′

1[91] is a 2-bit symbol.
In the first step of [11], estimators are calculated based on the above correla-

tion and on the available keystream. For every pair of indices l1 and l2 for which
estimators are computed, and for every possible symbol difference δ = S′

1[l1] ⊕
S′

2[l2], the estimator El1,l2 [δ] is the logarithm of the a-posteriori probability that
S′

1[l1] ⊕ S′
2[l2] = δ. For example, for d = 1, the symbol is a single bit, thus, the

symbol difference can be either zero or one. Then, for l1 = 80 and l2 = 83, the es-
timator E80,83[0] is the logarithm of the probability that S′

1[80]⊕S′
2[83] = 0, and

E80,83[1] is the logarithm of the probability that S′
1[80]⊕ S′

2[83] = 1. For d = 2,
there are four estimator for every pair of indices, e.g., E80,83[002], E80,83[012],
E80,83[102], and E80,83[112] (where “2” denotes the fact that the number is writ-
ten in its binary representation, e.g., 112 is the binary representation of the num-
ber 3). The value of E80,83[102] is the logarithm of the probability that S′

1[80]⊕
S′

2[83] = 102, and so on. Note that the higher d is — the better the estimators
are expected to be (but the marginal benefit drops exponentially as d grows).

In order to save space, we do not describe here how to calculate the estimators
given the known-keystream and d. See [11] for the details. We would only note
that the time complexity of this step is proportional to 2d. With 2000 frames, the
simulation in [11] takes about eleven seconds to complete this step with d = 1,
and about 40 seconds with d = 4.

The rest of the details of previous works deal with how to decode the esti-
mators and to recover candidate values for S1, S2, and S3 (and thus recovering
the key). These methods are basically heuristic methods that decode the estima-
tors in short intervals of li of the output of S′

i, and then intersect the resulting
candidates to find candidates for S1, S2, and S3.

4 The New Observations

In this section, we describe tools and observations that we later combine to form
the new attack.

4.1 The New Correlation — Conditional Estimators

In Section 3, we reviewed the correlation equation used by Maximov, Johansson,
and Babbage. This correlation equation is based on two assumptions, the clock-
ing assumption and the step assumption. Recall that the step assumption (i.e.,
that the third register stands still) holds in a quarter of the cases (assuming that
the values in the clocking taps are independent and uniformly distributed).

Consider registers R1 and R2, and assume that for a given frame j and output
bit t the clocking assumption holds, i.e., we know that R1 and R2 were clocked
l1 and l2 times, respectively, from their initial state. Also assume that we know
the value of S̃1[l1 +10] and S̃2[l2 +11]. We use the publicly known frame number
j to find the value of the clocking taps C1 = S̃1[l1 + 10]⊕ F̃ j

1 [l1 + 10] of R1 and
C2 = S̃2[l2 + 11]⊕ F̃ j

2 [l2 + 11] of R2 at output bit t.

Conditional Estimators: An Effective Attack on A5/1 9

We observe that the bias of the correlation can be improved by a factor of
two by dividing the step assumption into two distinct cases. The first of the two
distinct cases is when C1 �= C2. Due to the clocking mechanism, R3 is always
clocked in this case along with either R1 or R2. The step assumption does not
hold, and therefore, Equation (2) is assumed to hold in half the cases. In other
words, the case where C1 �= C2 provides us no information.

However, in the second case, when C1 = C2, we gain a factor two increase in
the bias. In this case, both R1 and R2 are clocked (as c = C1 = C2 is the major-
ity), and R3 is clocked with probability 1/2, in case its clocking tap C3 = c (we
assume that the values of the clocking taps are uniformly distributed). There-
fore, when C1 = C2, the step assumption holds with probability 1/2 compared
to probability 1/4 in [11].

We analyze the probability that Equation (2) holds when C1 = C2. If either
the step assumption or the clocking assumption do not hold, then we expect
that Equation (2) holds with probability 1/2 (i.e., by pure chance). Together with
the probability that the assumptions hold, Equation (2) is expected to hold with
probability Pr((l1, l2) at time t)(1/2+1/2·1/2)+1/2(1−Pr((l1, l2) at time t)) =
1/2 + Pr((l1, l2) at time t)/4 compared to 1/2 + Pr((l1, l2) at time t)/8 in [11].
Therefore, when C1 = C2, we gain a factor two increase in the bias compared
to [11].2

We use the above observation to construct conditional estimators (which are
similar to conditional probabilities). We define a d-bit clock symbol Si[li] in index
li as the d-bit string: S̃i[li]||S̃i[li+1]|| · · · ||S̃i[li+d−1], where “||” denotes concate-
nation. The conditional estimator El1,l2 [x|Sc] for indices l1, l2 is computed for ev-
ery possible combination of a clock symbol difference Sc = S1[l1+10]⊕S2[l2+11]
and a symbol difference x = S′

1[l1]⊕S′
2[l2]. The estimator El1,l2 [x|Sc] is the log-

arithm of the a-posteriori probability that the value of the symbol difference
is x, given that the value of the clock symbol difference is Sc. The computa-
tion of conditional estimators is similar to the computation of the estimators
as described in [11], taking into account the above observations. The complete
description of the calculation of conditional estimators will be given in the full
version of this paper.

One way of using conditional estimators is to remove the conditional part
of the estimators, and use them as regular estimators, i.e., compute El1,l2 [x] =

log
(

1
2d

∑
y eEl1,l2 [x|y]

)
. Nevertheless, the benefit would not be large. A better

use of the conditional estimators is to use them directly in the attack as is shown
in Section 5.1.

4.2 First Weakness of R2 — The Alignment Property

The first weakness of R2 uses the fact that the feedback taps of R2 coincide
with the bits that are estimated by the correlation equation. Assume that the

2 As a refinement of these observations, note that it suffices to know the value of
S̃1[l1 + 10] ⊕ S̃2[l2 + 11], since we only consider C1 ⊕ C2 rather than the individual
value of C1 and C2.

10 E. Barkan and E. Biham

value of S1 is known. Then for every index i, the correlation equation estimates
the value of S2[i]⊕S2[i + 1]. On the other hand the linear feedback of R2 forces
S2[i]⊕ S2[i + 1] = S2[i + 22]. Thus, the correlation equation actually estimates
bits which are 22 bits away. Using our notations, this property can be written as

S′
2[i] = S2[i + 22].

4.3 Second Weakness of R2 — The Folding Property

The second weakness of R2 is that it has only two feedback taps, and these taps
are adjacent. Let X [∗] be a bit-string which is an output of R2, and let cost(i, x)
be a cost function that sets a cost for every possible d-bit string x in index i of
the string X [∗] (the cost function is independent of the specific stream X [∗]).
We calculate the total cost of a given string X [∗] (i.e., calculate its “score”) by∑

i

cost(i, X [i]||X [i + 1]|| · · · ||X [i + d− 1]). (3)

Given the cost function, we can also ask what is the string Xmax that maximizes
the above sum, i.e., the string with the highest score.

The folding property allows to create a new cost function cost′(i, x), where i is
one of the first 22 indices. The special property of cost′ is that the score calculated
on the first 22 indices using cost′ is equal to the score using Equation (3) over
all the indices (using cost). cost′ is very helpful in finding the highest scored
string Xmax for a given cost function cost. However, the transition from cost to
cost′ has the penalty that cost′(i, x) operates on d′-bit strings x that are slightly
longer than d. In general, every 22 additional indices (beyond the first 22 indices)
in X [∗] add one bit of length to x (in our simulation we work with strings of 66
indices, therefore, our cost′ operates on strings of length d′ = d + 2).

For every index i, it holds that X [i + 22] = X [i]⊕X [i + 1], due to the linear
feedback taps of R2. Therefore, the d′-bit string at index i determines a (d′−1)-
bit string at index i + 22, a (d′ − 2)-bit string at index i + 2 · 22, a (d′ − 3)-bit
string at index i+3 · 22, etc. Clearly, the contribution to the score of the strings
in these indices is also determined by the value of the d′-bit string at index i,
and thus can be “folded” into the cost function for index i.

For simplicity, we assume that the number of indices is divisible by 22, i.e.,
22k + d − 1 bits of X [∗] are included in the score computation (the attack can
easily be extended to cases where the number of indices is not divisible by 22).
The calculation of cost′ from cost is given in Figure 3. We call the d′-bit strings
representative symbols. Note that not every choice of 22 representative symbols
is a consistent output of R2, as the 22 representative symbols span 22 + d′ − 1
bits (and thus there are 222+d′−1 possibilities for these bits), while R2’s internal
state has 22 bits. Specifically, the last d′ − 1 bits are determined by the first d′

bits through the linear feedback. Denote these last d′ − 1 bits by w.
The linear feedback of R2 is actually calculating the difference between ad-

jacent bits. We denote this operation using the difference operator D, i.e.,
D(α1, α2, α3, . . . , αd′) = (α1 ⊕ α2, α2 ⊕ α3, . . . , αd′−1 ⊕ αd′).

Conditional Estimators: An Effective Attack on A5/1 11

For each i ∈ {is, . . . , is + 21}
For each e ∈ {0, 1}d+k−1

cost′(i, e) �
∑k−1

j=0 cost(i + 22k, lsbd(Dj(e))

Fig. 3. The folding property; calculating cost′ from cost. Denote the first index of X[∗]
by is, and the number of indices by 22k. D(x) is the difference function that calculates
the difference string — the parity of each two adjacent bits in x; Dj(x) is j applications
of D on x. lsbd(x) returns the d least significant bits of x, thus, lsbd(Dj(e)) is the d-bit
string in index i + 22k that is determined by e.

For the first bits to be consistent with the last bits w, we require that the
first bits are equal to D−1

0 (w) or D−1
1 (w), where D−1

0 (w) is the value such
that D(D−1

0 (w)) = w, and the first bit of D−1
0 (w) is zero (i.e., D−1

0 is one
of two inverses of D). D−1

1 (w) is the 1-complement of D−1
0 (w) (it also satisfies

D(D−1
1 (w)) = w, i.e., D−1

1 is the other inverse of D).

4.4 Third Weakness of R2 — The Symmetry Property

The third weakness in R2 is that its clock tap is exactly in its center. Combined
with the folding property, a symmetry between the clocking tap and the output
tap of R2 is formed. The symmetry property allows for an efficient attack using
conditional estimators. Assume that S1 is known. S2[i] is at the output tap of
R2 when S2[i + 11] is at the clock tap. When S2[i + 11] reaches the output tap,
S2[i+11+11] = S2[i+22] is at the clock tap. However, the representative symbol
at i determines both the bits of S2[i] and S2[i+22]. Therefore, the representative
symbols are divided into pairs, where each pair contains a representative symbol
of some index i and a representative symbol of index i+11. When the represen-
tative symbols of index i serve for clocking, the other representative symbol is
used for the output, and vice versa, i.e., the representative symbols in the pair
control the clocking of each other. If the clocking taps were not in the middle,
we could not divide the representative symbols into groups of two.

5 The New Attack

The attack is composed of three steps:

1. Compute the conditional estimators.
2. Decode the estimators to find list of best candidate pairs for S1, S2 values,

by translating the problem of finding the best candidates to a problem in
graph-theory.

3. For each candidate in the list, recover candidates for S3. When a triplet
S1, S2, S3 is found, the key is recovered and verified through trial encryptions.

The computation of conditional estimators is based on Section 4.1, and similar
to the computation of estimators in [11]. We will give a full description of this
computation in the full version of the paper. Step 2 is described in Section 5.1.

12 E. Barkan and E. Biham

In Step 3, given candidate pairs for S1 and S2, we work back candidates for
S3 from the keystream. The method is similar to the one briefly described by
Ross Anderson in [1]. However, some adjustments are needed as the method
in [1] requires the internal state right at the beginning of the keystream (after
discarding 100 bits of output), whereas Step 2 provides candidates for the in-
ternal state after the key setup but before discarding 100 bits of output (the
candidates for S1 and S2 XORed with F j

1 and F j
2 , respectively, are the internal

state right after the key-setup and before discarding 100 bits of output). An
alternative Step 3 exhaustively tries all 223 candidate values for S3. Taking into
account that many operators set ten bits of the key to zero (as reported in [6]),
we need to try only the 213 candidate values for S3 which are consistent with
the ten zero bits of the key. A more detailed description of Step 3 will be given
in the full version of this paper.

5.1 Step 2 — Decoding of Estimators

The aim of Step 2 is to find the list of best scored candidates for S1 and S2,
based on the conditional estimators. The score of s1 and s2 (candidate values
for S1 and S2, respectively) is simply the sum of their estimators (which is the
logarithm of the product of the a-posteriori probabilities), i.e.,

score(s1, s2) =
∑
l1,l2

El1,l2 [s
′
1[l1]⊕ s′2[l2] | s1[l1 + 10]⊕ s2[l2 + 11]].

The list of best candidates is the list of candidates {(s1, s2)} that receive the
highest values in this score. For the case of non-conditional estimators, the score
is defined in a similar manner but using non-conditional estimators (instead of
conditional estimators).

Surprisingly, the list of best candidate pairs can be efficiently computed using
the three weaknesses of R2. We translate the problem of calculating the list of
best scored candidates into a problem in graph theory. The problem is modeled
as a huge graph with a source node s and target node t, where each path in
the graph from s to t corresponds to a candidate value for S1 and S2, with the
score of the pair being the sum of the costs of the edges along the path (also,
for every candidate pair s1, s2, there is a single path in the graph from s to
t). Thus, the path with the heaviest score (“longest” path) corresponds to the
highest scored pair. A Dijkstra-like algorithm [2] (for finding shortest path) can
find the longest path, since the weights on the edges in our graph are negative
(logarithm of probability). The list of best candidates corresponds to the list of
paths which are near the heaviest. The literature for graph algorithms dealt with
finding N -shortest paths in a graph (e.g., [10]); these algorithms can be adapted
to our graph, and allow to find the heaviest paths.

Our graph contains 219 subgraphs, one for each candidate value for S1. All the
subgraphs have the same structure, but the weights on the edges are different.
Each such subgraph has one incoming edge entering the subgraph from the
source node s, and one outgoing edge from the subgraph to the target node t.
Both edges have a cost of zero.

Conditional Estimators: An Effective Attack on A5/1 13

5.1.1 The Structure of the Sub-graph Using Non-conditional
Estimators

Our method for decoding the estimators can be used with non-conditional es-
timators, and in fact the structure of the subgraph is best understood by first
describing the structure of the subgraph for the case of non-conditional estima-
tors. In this case, the subgraph for the jth candidate of S1 has a source node sj

and a target node tj . The subgraph is composed of 2d′−1 mini-subgraphs. Each
mini-subgraph corresponds to one combination w of the last d′−1 bits of the rep-
resentative symbol in index is + 21 (last representative symbol). Figure 4 shows
an example of a subgraph for d′ = 3, in which only the mini-subgraph for w = 01
is shown. The full subgraph contains a total of four mini-subgraphs, which differ
only in the locations of the two incoming edges (and their weight) and the out-
going edge. For each index i ∈ {is, . . . , is+21}, the mini-subgraph includes 2d′−1

nodes: one node for each combination of last d′ − 1 bits of the representative
symbols in index i. A single outgoing edge connects the mini-subgraph relevant
node 0

101 in index is + 21 to tj (the other nodes in index is + 21 can be erased
from the mini-subgraph). Two incoming edges (for D−1

0 (w) and D−1
1 (w)) con-

nect sj to relevant nodes in index is, which in our example are D−1
0 (01) = 001

and D−1
1 (01) = 110 (the nodes 0

100 and 0
111 in index is can be erased from

the mini-subgraph). Thus, any path that goes through the mini-subgraph must
include one of these incoming edges and the outgoing edge. This fact ensures
that each path corresponds to a consistent choice of representative symbols (as
discussed at the end of Section 4.3).

j

i

0001

0011

0101

0111

T

0001

0011

0101

0111

si +1 si +21

0001

0011

0101

0111

 s
r(i

 ,
00

1)
s

 sr
(i

,110)

s

S j

s

Fig. 4. The subgraph for the jth candidate value of S1

14 E. Barkan and E. Biham

Consistent transitions between representative symbols in adjacent indices are
modeled by edges that connect nodes of adjacent indices (in a way that reminds
a de-Bruijn graph). There is an edge from a first node to a second node if and
only if the last d′ − 1 bits of the first node are the same as the first d′ − 1
bits of the second node, which is the requirement for consistent choice of rep-
resentative symbols. For example, a transition between a representative symbol
a0a1 . . . ad′−1 in index i and a representative symbol a1a2 . . . ad′ in index i + 1
is modeled by an edge from node 0

1a1 . . . ad′−1 to node 0
1a2 . . . ad′ . The cost of

the edge is sr(i + 1, a1a2 . . . ad′) � cost′(i + 1, a1a2 . . . ad′), where cost′ is folded
using the folding property from cost(i, x) � funci,s1 [x] �

∑
l1

El1,i[s′1[l1] ⊕ x],
as described in Section 4.3, and s′1 is fixed for the given subgraph.

The total cost of edges along a path is
∑

i funci,s1 [s′2[i]] =
∑

l1,i El1,i[s′1[l1]⊕
s′2[i]] = score(s1, s2), where s′2 is the candidate for S′

2 that is implied by the
path, and s′1 is the appropriate value for the jth candidate for S1. After a quick
precomputation, the value of funci,s1 [x] can be calculated using a few table
lookups regardless of the value of s1.

5.1.2 The Structure of the Sub-graph Using Conditional Estimators
Similarly to the case of non-conditional estimators, in case conditional estimators
are used, the subgraph for candidate j has a source node sj , a target node tj ,
and the subgraph is composed of several mini-subgraphs, which differ only in the
location of the incoming edges (and their cost) and the location of the outgoing
edge. However, with conditional estimators, the structure of the mini-subgraphs
is different: each pair of indices i, i + 11 are unified to a single index, denoted by
i|i + 11.

We would like to combine the nodes in index i with nodes in index i + 11 by
computing their cartesian product: for each node a in index i and for each node
b in index i + 11, we form the unified node a|b in unified index i|i + 11. How-
ever, there is a technical difficulty: while (given S1) a non-conditional estimator
depends on a symbol candidate s′2[i], a conditional estimator depends on both a
symbol candidate s′2[i] and a clock symbol candidate s2[i + 11]. As a result, we
must apply the D−1 operator on nodes in index i + 11 (to transform them from
symbols to clock symbols). This operation divides node b =0

1 b1b2 . . . bd′−1 in
index i + 11 into two nodes 0

1D
−1
0 (b1b2 . . . bd′−1) and 0

1D
−1
1 (b1b2 . . . bd′−1). Only

then, we can perform the cartesian product between the nodes in index i and the
nodes that results from applying D−1. Thus, from a pair of a and b of the above
form, we have two nodes in the product (in index i|i+11): a|01D−1

0 (b1b2 . . . bd′−1)
and a|01D−1

1 (b1b2 . . . bd′−1). We refer to the bits on the left of the “|” in the node
as symbol bits, and the bits on the right of the “|” as clock bits. In total, there
are 2d′−1(2 · 2d′−1) = 22d′−1 nodes in each index i|i + 11.

There is an edge from node x1|y1 in index i|i + 11 to node x2|y2 in index i +
1|i+ 12 if and only if the last d′− 1 bits of x1 are equal to the first d′− 1 bits of
x2 and the last d′ bits of y1 are equal to the first d′ bits of y2. Figure 5 depicts
four nodes of a mini-subgraph using conditional estimators.

What should be the cost of an edge? the basic cost function is cost(i, x|y) �
funci,s1 [x|y] �

∑
l1

El1,i[s′1[l1] ⊕ x|s1[l1 + 10] ⊕ y], which is folded to the cost

Conditional Estimators: An Effective Attack on A5/1 15

i+1 | i+12

001
01101

0001
00101

0011
01001

0001
01001

nsr(i+1 , 001 | 0100)
nsr(i+1 , 000 | 0100)

nsr(i+
1 , 001 | 1100)

nsr(i+1 , 000 | 1100)

i | i+11

0

Fig. 5. Four nodes of the mini-subgraph using conditional estimators for d′ = 3

function cost′(i, x|y). Since each index i|i + 11 unifies two indices, the edge that
enters i|i+11 should contain the sum of contribution of indices i and i+11, i.e.,
the cost of the edge is nsr(i, s′2[i]|s2[i + 11]) � cost′(i, s′2[i]|lsbd′(s2[i + 11])) +
cost′(i+11, s′2[i+11]|s2[i+22]), where lsbd′(x) returns the d′ first bits of x. Note
that s′2[i + 11] = D(s2[i + 11]), and (due to the alignment property) s2[i + 22] =
s′2[i]. Therefore, nsr(i, s′2[i]|s2[i+11]) = cost′(i, s′2[i]|lsbd′(s2[i+11]))+ cost′(i+
11, D(s2[i + 11])|s′2[i]).

Like the case of non-conditional estimators, we create several mini-subgraphs
to ensure that the paths in the subgraph represent consistent choices for S1 and
S2. We include in the subgraph a mini-subgraph for each combination v of the
last d′ − 1 symbol bits and each combination w of the last d′ clock bits of the
last node (the node near tj). A single edge (with cost zero) connects the mini-
subgraph to tj from node 0

1v|01w. For consistency with the linear feedback, the
bits w must be identical to the symbol bits of the first node (both w and the
first symbol bits are d′-bit long). The bits v must be identical to the difference
of the first d′ bits of the first clock symbol. As v is (d′ − 1)-bit long, and as
the clock bits of the first symbol are (d′ + 1)-bit long, there are four possibili-
ties for the clock bits: D−1

0 (v)||0, D−1
1 (v)||0, D−1

0 (v)||1, and D−1
1 (v)||1. There-

fore, four edges w|D−1
0 (v)0, w|D−1

1 (v)0, w|D−1
0 (v)1, and w|D−1

1 (v)1 connect
sj to the mini-subgraph (the concatenation mark “||” was removed for clarity).
Their costs are nsr(is, w|D−1

0 (v)0), nsr(is, w|D−1
1 (v)0), nsr(is, w|D−1

0 (v)1), and
nsr(is, w|D−1

1 (v)1), respectively.
To reconstruct s′2 from a path in the mini-subgraph, we first concatenate the

symbol bits to form the first half of the path, and separately concatenate the
clock bits to form the second half of the path. Then, we compute the difference
between the clock bits, and combine the result with the symbol bits to obtain
a path of s′2 (similar to the path in the case of the mini-subgraph using un-
conditional estimators).

Note that in an efficient implementation there is no need to keep the en-
tire graph in memory, and needed parts of the graph can be reconstructed
on-the-fly.

16 E. Barkan and E. Biham

6 Simulations of Our Attacks

We have implemented our attack, and simulated it under various parameters.
Our simulations focus on 2000 frames of data, which is the lowest amount of
data that gives a non-negligible success rate in the simulations of Maximov,
Johansson, and Babbage [11]. We also simulated the attack with 1500 frames. A
comparison of simulations of previous attacks and simulations of our new attacks
is given in Table 1.

In the simulations we use d = 1, l1 ∈ {61, . . . , 144}, l2 ∈ {70, . . . , 135}, and
calculate estimators for | l1− l2 |< 10. We use the first version of Step 3 with 64-
bit keys.

We ran the simulations on a 1.8GHz Pentium-4 Mobile CPU with 512MB of
RAM. The operating system was Cygwin under Windows XP. In comparison,
the simulations of [11] were performed on a 2.4GHz Pentium-4 CPU with 256MB
of RAM under Windows XP, and the simulations of [7] were performed on
a 1.8GHz Pentium-4 CPU with 512MB of RAM under Linux.

In one simulation, we limited the size of the list of top (s1, s2) pairs to 5200.
The key was found in about 64 percent of the cases, compared to about 5 per-
cent in previous attacks with 2000 frames. Our attack takes about 7 seconds to
complete Step 1. Step 2 takes about 340 seconds for the first pair, after which it
can generate about 1500 pairs of candidates per second. Step 3 scans about 20.4
candidate pairs per second. Therefore, the total time complexity varies depend-
ing on the location of the correct pair in the list. It takes about 350 seconds (six
minutes) in the best case, and up to ten minutes in the worst case.

For better results, we employ two methods: early filtering and improved
estimators.

6.1 Early Filtering

In early filtering, we perform Step 2 several times, using less accurate (and faster)
methods. Thus, we discard many candidate values of S1 that are highly unlikely,
and we do not need to build a subgraph for these values. For example, we score
all the candidates of S1 (a score of a candidate s1 of S1 is maxs2 score(s1, s2))
using non-conditional estimators and a less accurate but faster method. Then,
we recalculate the score for the 220000 top candidates, using a similar method,
but with conditional estimators. The 40000 top scored candidates are re-scored
using conditional estimators with a variation using only one mini-subgraph.
Finally, we perform Step 2 of Section 5.1 with subgraphs only for the 2000
scored candidates of S1. The list of the 5200 top candidates of S1 and S2 is
generated and passed to Step 3. We denote this kind of configuration in a tu-
ple (220000, 40000, 2000, 5200). Simulation results using other configurations for
both 2000 and 1500 frames are given in Table 1.

6.2 Improved Estimators

A disadvantage of the described attack is that only information from the esti-
mators El1,l2 [·|·] is taken into consideration, while estimators involving R3, i.e.,

Conditional Estimators: An Effective Attack on A5/1 17

El1,l3 [·|·] and El2,l3 [·|·], are disregarded. In improved estimators, we improve our
results by adding to each estimator El1,l2 [x|y] the contributions of the estimators
of the other registers, i.e., we add to it

∑
l3

log

⎛⎝ ∑
α,β∈{0,1}d

eEl1,l3 [α|β]+El2,l3 [x⊕α|y⊕β]

⎞⎠ .

The resulting estimators include more information, and thus, are more accurate.
They significantly improve the success rate with a modest increase in the time
complexity of Step 1 (mostly, since we need to calculate three times the number of
estimators). This increase in time complexity is compensated by a large decrease
in the time complexity of Step 3 (as the correct S1, S2 are found earlier). The
results are summarized in Table 1.

7 New Source for Known-Keystream

Every traffic channel between the handset and the network is accompanied by
a slower control channel, which is referred to as the Slow Associated Control
CHannel (SACCH). The mobile uses the SACCH channel (on the uplink) to
report its reception of adjacent cells. The network uses this channel (on the
downlink) to send (general) system messages to the mobile, as well as to control
the power and timing of the current conversation.

The contents of the downlink SACCH can be inferred by passive eavesdrop-
ping: The network sends power-control commands to the mobile. These com-
mands can be inferred from the transmission power of the mobile. The timing
information that the network commands the mobile can be inferred from the
transmission timing of the mobile. The other contents of the SACCH is a cycli-
cal transmission of 2–4 “system messages”(see [8, Section 3.4.1]). These messages
can be obtained from several sources, for example by passively eavesdropping
the downlink at the beginning of a call (as the messages are not encrypted at
the beginning of a call), or by actively initiating a conversation with the network
using another mobile and recover these messages (these messages are identical
for all mobiles). There is no retransmission of messages on the SACCH, which
makes the task of the attacker easier, however, it should be noted that an SMS
received during an on-going conversation could disrupt the eavesdropper, as the
SMS can be transferred on the SACCH, when system messages are expected.

An attacker would still need to cope with the Frequency Hoping (FH) used
by GSM. Using a frequency analyzer the attacker can find the list of n frequen-
cies that the conversation hops on. Given n, GSM defines only 64n hopping
sequences (n cannot be large since the total number of frequencies in GSM is
only about 1000, of which only 124 belong to GSM 900). Thus, the hopping
sequence can be determined through a quick exhaustive search.

As the name of SACCH implies, it is a slow channel. Only about eight frames
are transmitted every second in each direction of the channel. Therefore, to col-
lect 1500–2000 SACCH frames transmitted from the network to mobile, about 3–
4 minutes of conversation are needed.

18 E. Barkan and E. Biham

8 Summary

Our contribution in this paper is multi-faced. We begin by introducing condi-
tional estimators that increase the bias of the correlation equation. Then, we
present three weaknesses in R2, which were not reported previously. The first
weakness — the alignment property — utilizes the fact that the correlation equa-
tion coincides with the feedback taps of R2. The second weakness — the folding
property — uses the fact that R2 has only two feedback taps, and they are adja-
cent. We use the folding property to decode the estimators in an optimal way. In
contrast, previous attacks were forced to use heuristics to decode the estimators.
Using this weakness, we present a novel method to efficiently calculate the list
of best candidate pairs for S1 and S2. Given S1 and S2, the value S3 can be
worked back from the keystream.

The last weakness that we report — the symmetry property — is based on
the fact that R2’s clocking tap is exactly in its middle, which together with the
folding property causes a symmetry between the clocking tap and the output of
R2. This property enables us to efficiently decode the conditional estimators.

Finally, we describe a new source for known-plaintext in GSM. This source
of known-plaintext transforms our attack to a practical ciphertext-only attack.
With 3–4 minutes of raw ciphertext, we can extract (from the SACCH) the
required amount of about 1500–2000 frames of known-plaintext.

We compare some of the previous results and our current simulation results in
Table 1. Compared to previous attacks on 1500–2000 frames, it can be seen that
our new attack has a significantly higher success rate (91% compared to 5%), it
is faster, and it does not require any precomputation.

Acknowledgments

We are pleased to thank Alexander Maximov for providing early versions of [11].

References

1. Ross J. Anderson, On Fibonacci Keystream Generators, proceedings of Fast Soft-
ware Encryption: Second International Workshop, Lecture Notes in Computer Sci-
ence 1008, Springer-Verlag, pp. 346–352, 1995.

2. Edsger W. Dijkstra, A Note on Two Problems in Connexion with Graphs, Nu-
merische Mathematik, Vol. 1, pp. 269–271, 1959.

3. Elad Barkan, Eli Biham, Nathan Keller, Instant Ciphertext-Only Cryptanaly-
sis of GSM Encrypted Communications, Advances in Cryptology, proceedings of
Crypto’03, Lecture Notes in Computer Science 2729, Springer-Verlag, pp. 600–616,
2003.

4. Eli Biham, Orr Dunkelman, Cryptanalysis of the A5/1 GSM Stream Cipher,
Progress in Cryptology, proceedings of Indocrypt’00, Lecture Notes in Computer
Science 1977, Springer-Verlag, pp. 43–51, 2000.

5. Alex Biryukov, Adi Shamir, David Wagner, Real Time Cryptanalysis of A5/1 on a
PC, Advances in Cryptology, proceedings of Fast Software Encryption’00, Lecture
Notes in Computer Science 1978, Springer-Verlag, pp. 1–18, 2001.

Conditional Estimators: An Effective Attack on A5/1 19

6. Marc Briceno, Ian Goldberg, David Wagner, A pedagogical implementation
of the GSM A5/1 and A5/2 “voice privacy” encryption algorithms, http://
cryptome.org/gsm-a512.htm (originally on www.scard.org), 1999.

7. Patrik Ekdahl, Thomas Johansson, Another Attack on A5/1, IEEE Transactions
on Information Theory, Volume 49, Issue 1, pp. 284-289, 2003.

8. European Telecommunications Standards Institute (ETSI), Digital cellular
telecommunications system (Phase 2+); Mobile radio interface; Layer 3 specifi-
cation, TS 100 940 (GSM 04.08), http://www.etsi.org.

9. Jovan Golic, Cryptanalysis of Alleged A5 Stream Cipher, Advances in Cryptology,
proceedings of Eurocrypt’97, LNCS 1233, pp. 239–255, Springer-Verlag, 1997.

10. Walter Hoffman, Richard Pavley, A Method for the Solution of the Nth Best Path
Problem, Journal of the ACM (JACM), Volume 6, Issue 4, pp. 506–514, 1959.

11. Alexander Maximov, Thomas Johansson, Steve Babbage, An improved correlation
attack on A5/1, proceedings of SAC’04, LNCS 3357, pp. 1–18, Springer-Verlag,
2005.

12. Willi Meier, Othmar Staffelbach, Fast Correlation Attacks on Certain Stream Ci-
phers, Journal of Cryptology, Volume 1, Issue 3, pp. 159–176, Springer-Verlag,
1989.

13. Thomas Siegenthaler, Decrypting a Class of Stream Ciphers Using Ciphertext Only,
IEEE Transactions on Computers, Volume 49, Issue 1, pp. 81–85, 1985.

Cryptanalysis of the F-FCSR Stream
Cipher Family

Éliane Jaulmes and Frédéric Muller

DCSSI Crypto Lab,
51, boulevard de La Tour-Maubourg,

75700 Paris-07 SP
{Eliane.Jaulmes, Frederic.Muller}@sgdn.pm.gouv.fr

Abstract. This paper focuses on F-FCSR, a new family of stream ci-
phers proposed by Arnault and Berger at FSE 2005. It uses a non-linear
primitive called the Feedback with Carry Shift Register (FCSR) as a
building block. Its security relies on some properties of the 2-adic num-
bers. The F-FCSR family contains several stream ciphers, each of them
proposing different features.

First, we show a resynchronization attack that breaks algorithms in
the family that support initialization vectors. The attack requires at most
216 chosen IV’s and a little offline processing to recover the full secret
key. We have implemented it with success on a standard PC.

Secondly, we show a time/memory/data trade-off attack which breaks
several algorithms in the F-FCSR family, even when initialization vec-
tors are not supported. Its complexity ranges from 264 to 280 operations
(depending on which algorithm in the family we consider), while the in-
ternal state has size 196 bits at least. Therefore this attack is better than
generic attacks.

Keywords: FCSR, Time/memory/data trade-off, stream cipher, resyn-
chronization attack.

1 Introduction

Stream ciphers are a special class of secret key cryptosystems. Their principle is
to generate a long pseudo-random sequence which is then XORed bitwise to the
message in order to produce the ciphertext. Thus, compared to a block cipher,
a secure stream cipher is expected to be much faster.

Yet the design of secure stream ciphers also seems to be more difficult. Indeed,
over the years, few proposals have withstood cryptanalysis. Many of the attacks
staged over stream ciphers exploit the mathematical structure of Linear Feedback
Shift Registers (LFSR) which are often used as building blocks. To avoid these
pitfalls, alternative constructions have been proposed recently. For instance, it
has been suggested to use irregularly-clocked registers or efficient non-linear
mapping. One of theses suggestions is to replace LFSR by Feedback with Carry
Shift Registers (FCSR). A FCSR is a binary register, similar to a LFSR, except

B. Preneel and S. Tavares (Eds.): SAC 2005, LNCS 3897, pp. 20–35, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Cryptanalysis of the F-FCSR Stream Cipher Family 21

that it performs operations with carries. This brings non-linearity, which is an
interesting property to thwart algebraic attacks [8] or correlation attacks [19, 20].
The idea of using FCSR in cryptography was originally proposed by Klapper et
al. in 1994 [16], but it was shown that they are not secure when used alone [17].
FCSR came back into flavor with recent works by Arnault and Berger [2, 3].
Some of their proposals were broken in 2004 [21]. Later, at FSE 2005, they
proposed a concrete family of stream ciphers based on FCSR. It is referred to
as the F-FCSR family and several variants are suggested. In this paper, we
investigate the security of this new family of stream ciphers.

The paper is constructed as follows: in a first section, we recall the principle
of the FCSR primitive and describe the proposals of [3].

Secondly, we describe resynchronization attacks against all variants that sup-
port Initialization Vectors (IV). We describe how to learn some information
about the secret key, by comparing the keystream generated with two related
IV’s. We manage to recover the full secret key with about 215 pairs of chosen
IV’s and little offline processing. These attacks have been implemented and take
time ranging from a few seconds to a few hours on a standard PC.

Finally, we describe a time/memory/data trade-off against some algorithms
in the family. Since the internal state has a size of n = 196 bits, the best generic
attack is expected to cost about 2n/2 = 298 computation steps. However we
show that the real entropy is only of 128 bits, due to the cycle structure of the
state-update function. Using this property, we attack some of the algorithms
with time, memory and data of the order of 264.

2 Stream Ciphers Based on FCSR

2.1 The FCSR Primitive

Feedback with Carry Shift Registers were introduced by Goresky and Klap-
per [16]. The underlying theory is related to the 2-adic fractions and more details
can be found in [3]. Here, we simply recall the main characteristics.

Let q be a negative integer such that −q is prime and let 0 ≤ p < −q. Let
q = 1− 2d. We write d =

∑k−1
i=0 di2i.

The FCSR generator with feedback prime q and initial value p produces the
2-adic expression of the fraction p/q. This corresponds to the infinite sequence
of bits ai ∈ {0, 1}, where p = q ·

∑∞
i=0 ai2i.

This sequence has good statistical properties (relative to its period in partic-
ular), provided q is prime and 2 is of order |q| − 1 modulo q. The sequence of ai

can also be computed in an iterative way through the sequence of integers pi,
defined as:

p0 = p , (1)
ai = pi mod 2 and pi+1 = pi−qai

2 ≡ pi

2 mod q . (2)

It is easy to verify that ∀i, 0 ≤ pi < −q. Also, the following relation holds
∀i ≥ 0,

pi

q
=
∑
j≥i

aj2j−i.

22 É. Jaulmes and F. Muller

The sequence of integers ai can be obtained in a register-oriented fashion.
Consider:

– a main register M with k binary memory cells,
– a carry register C with �− 1 binary memory cells, where � is the Hamming

weight of d. The set Id = {i|0 ≤ i ≤ k− 2 and di = 1} denotes the positions
of these cells.

The main register M is said to contain the integer m =
∑k−1

i=0 mi2i when the
values (m0 . . . mk−1) appear in the k cells of the register. Similarly, the carry
register is said to contain the integer c =

∑k−1
i=0 ci2i if, for i /∈ Id, ci = 0 and,

for i ∈ Id, ci appears in the corresponding carry cell. We say that, at time t, the
FCSR is in state (m(t), c(t)) if the main register contains the value m(t) and the
carry register contains c(t). The state (m(t + 1), c(t + 1)) is computed from the
state (m(t), c(t)) according to the following equations:

– For 0 ≤ i ≤ k − 2 and i /∈ Id

mi(t + 1) = mi+1(t)
– For 0 ≤ i ≤ k − 2 and i ∈ Id

mi(t + 1) = mi+1(t)⊕ ci(t)⊕m0(t)
ci(t + 1) = mi+1(t)ci(t)⊕ ci(t)m0(t)⊕m0(t)mi+1(t)

– For i = k − 1
mi(t + 1) = m0(t)

A small example of this register representation with q = −347 appears in the
Figure 1.

Let the initial state be given by m(0) = p and c(0) = 0. The next state
(m(t+1), c(t+1)) is computed from (m(t), c(t)) by looking at the least significant
bit m0(t) of M . The main register is always right-shifted, which corresponds to
a division by 2. The content of C is added to the result, as well as the number
d when m0(t) = 1. Thus,

m(t + 1) + 2c(t + 1) =
m(t)−m0(t)

2
+ c(t) + dm0(t)

=
m(t) + 2c(t)− qm0(t)

2

mmmmmmmm 01234567

c c c c 1235

1 1 1 1 1 00 0d

Fig. 1. Example of FCSR

Cryptanalysis of the F-FCSR Stream Cipher Family 23

Hence the following relations are always satisfied:

at = m0(t) and pt = m(t) + 2c(t).

So the register-oriented representation produces indeed the 2-adic representation
of the fraction p/q through the bit m0(t) - generally called the feedback bit.

2.2 The F-FCSR Family

Stream ciphers based on FCSR were already proposed in the past [2, 16]. However
it was shown that, despite the non-linearity, it is insecure to output directly bits
from the FCSR sequence. Efficient algorithms [17] have been proposed to retrieve
the initial state: when q is of size 128 bits, knowing 128 output bits is sufficient.

Arnault and Berger suggested [3] to apply a filtering function to the FCSR
state, in order to produce output bits. They argued that a linear filter is sufficient,
since the FCSR primitive is already non-linear by itself. At FSE 2005, they
presented a new family of stream ciphers based on this general idea. The following
parameters are chosen for all algorithms in the family: the main register has a
size k = 128 bits and the feedback prime is

−q = 493877400643443608888382048200783943827.

This choice guarantees the maximal period, because the order of 2 modulo q is
equal to |q| − 1. The Hamming weight of d = 1−q

2 is � = 69 so the carry register
has � − 1 = 68 memory cells. The secret key of the algorithm (of size 128 bits)
is the initial value p introduced in the main register.

Differences between the four proposed algorithms lie in the nature of the
output function. Two distinctions are made depending on

– the secrecy of the output taps. Two proposals use a fixed linear combination
of the FCSR state. The other two use a dynamic output function (i.e. the
taps are generated from the secret key, and are therefore unknown to an
attacker).

– the number of output bits per advance. The basic construction produces 1
bit at each advance of the FCSR. To improve the encryption speed, it is
possible to use 8 filtering functions in order to produce 8 output bits per
advance.

2.3 Description of the Proposals

The first proposal is called F-FCSR-SF1. SF stands for “Static Filter”. The
stream cipher is based on the FCSR described above. It produces one single
output bit at each advance of the FCSR. This output bit is computed through
a known linear filter function, called F , of the form:

f(m0, . . . , mk−1) =
k−1⊕
i=0

fimi,

24 É. Jaulmes and F. Muller

where fi ∈ {0, 1}. We call f the number
∑k−1

i=0 fi2i. In their paper, the authors
suggested to use the filter f = d. With this choice, the output bit of the stream
cipher is the XOR of all the main register cells located just after a carry cell.

The second proposal is called F-FCSR-SF8. The same FCSR is used but
eight output bits are produced at each advance. This is done quite naturally by
using eight different filters (Fi)1≤i≤8. The filters must be linearly independent
and respect other conditions detailed in [3]. In order to have a simple extraction
function for the 8 output bits, the authors suggest to use 8 filters with disjoint
supports. More precisely, they recommend filters Fi such that

∀i ∈ [1, 8], Supp(Fi) ⊂ {j|j ≡ i mod 8}. (3)

The filters (Fi)1≤i≤8 are public and part of the stream design.
The third proposal is called F-FCSR-DF1. DF stands for “Dynamic Filter”.

It works exactly as F-FCSR-SF1, except that the output filter F is kept se-
cret and derived from the key through an invertible function g. This artificially
increases the size of the cipher state from 196 = 128 + 68 to 324 bits.

The fourth proposal is called F-FCSR-DF8. It works exactly as F-FCSR-
SF8, except that the eight filters are kept secret and derived from the key. Here
also the filters verify the condition 3. Since the filters have disjoint supports, a
single invertible function g suffices to define the eight filters.

2.4 Initialization Vectors

Since stream ciphers produce bit sequences independently of the messages they
encrypt, it is customary to add an initialization vector (IV), that allows the
sequence to change from one encryption to the next. The IV is usually a public
value, transmitted alongside the ciphertext.

Support for IV is often impossible to avoid: applications deal with relatively
small messages (frames or data packets), which makes it highly inefficient to
rekey the cipher for each message. Using one long keystream sequence raises
important problems of synchronization. Therefore all new stream ciphers are
expected to support IV’s. For example, this is a requirement in the call for
stream ciphers published recently by the european project ECRYPT [10].

In the F-FCSR family, the authors propose to use the initial content of the
carry register as the initialization vector. Six advances are made before
the encryption starts, to guarantee the diffusion of the IV in the initial state.

There is a slight problem of dimension, not solved in the FSE paper: the carry
register has length 68 bits which is not a convenient IV size (64 bits would be
better for instance). In the later, we assume that the IV has length 68 bits. We
claim that variants of our attack could be envisaged even if another IV dimension
(64 or 128 bits) was used and it was somehow mapped to the carry register state.

2.5 Resynchronization Attacks

Building a good initialization mechanism for a stream cipher is not an easy task.
Indeed, the IV is a public value introduced inside the secret state of the cipher.

Cryptanalysis of the F-FCSR Stream Cipher Family 25

By looking at the link between the IV and the first keystream bits, some secret
information may be leaked. This family of attacks has first been called “resyn-
chronization attacks” [9], but its spectrum of applications has broaden [1, 13].
Practical applications have been shown for the 802.11 standard [18] or for the
GSM standard [6].

Most attacks require only known IV (which is always the case since the IV is
transmitted in clear). However, there are situations where we can envisage cho-
sen IV. Firstly, an active attacker may modify the IV while it is transmitted on
the communication channel. Secondly, the IV is often generated by an unspeci-
fied random generator, which might be partially controlled by the attacker.

Our attacks require pairs of related IV’s which typically differ by only one bit.
Since many implementations use a counter, such low-weight differences are likely
to appear rapidly. Such chosen IV attacks often turn up to be more practical
than expected (see the example of RC4 in the 802.11 standard [18]).

3 Resynchronization Attack with Static Filter

In this section, we describe an attack against the two proposals which use a
static filter. We focus on F-FCSR-SF1 but clearly the same attack applies to
F-FCSR-SF8.

3.1 Principle of the Attack

Our basic observation is that the 6 initial advances are not sufficient for all cells
of the main register to depend on the whole IV. Suppose we flip only one bit
of the IV (i.e. one bit in the initial state of the carry register), then after 6
advances, only a few cells in the main register may be affected. Our idea is to
predict the difference on the first keystream bit. To do that, only a small number
of key bits need to be guessed.

The initial state of the main register is just the key m(0) = K. Similarly, the
initial state of the carry register is denoted by c(0) and is just equal to c(0) = IV .
After 6 advances, the state of the carry register is c(6) and the state of the main
register is m(6). The first keystream bit z(0) is given by z(0) =

⊕127
i=0 fimi(6),

where the output filter f =
∑

i fi2i is known.
Let i ∈ Id be a position where a carry cell is present. Suppose we initially

replace ci(0) by ci(0)⊕ 1. We are interested in how the first keystream bit z(0)
is affected by this modification1. Note that this difference propagates through
the main register up to the end, one cell at a time, and will not disappear. Thus,
after n ≤ i + 1 advances of the FCSR, there will be a difference in the cell
i−n+1. Due to the carries, the difference may also linger on previous cells, but
the probability of a difference staying for a long time is low.

If i ≥ 5, then, only the bits mi(6), . . . , mi−5(6) of the main register may be
affected, after the 6 initial advances, by the initial flip. Bit mi−5(6) is always
flipped, and for the other bits, it depends on the initial state. This propagation
1 We assume that i ≥ 5, so the first 6 feedback bits are not affected.

26 É. Jaulmes and F. Muller

Flipped carry bit Cell whose content influence the propagation of the difference Cell that may contain a difference

6 advances

t+6

t
C

M

i i−1 i−2 i−3 i−4 i−5 i−6i+1i+2i+3i+4i+5i+6i+7 0123456

C

M

i i−1 i−2 i−3 i−4 i−5 i−6i+1i+2i+3i+4i+5i+6i+7 0123456

Fig. 2. Influence of state bits on the difference propagation

is illustrated in Figure 2. If i < 5, then the feedback bit is affected during the
6 initial advances and many bits in the main register may be affected. We want
to avoid this case.

Therefore, in order to predict the difference on the first keystream bit z(0),
it is sufficient to know:

– the first 6 feedback bits, which are fully determined by key bits m0(0), . . . ,
m5(0) and IV bits cj(0), j < 5 and j ∈ Id,

– the “neighborhood” of cell i, i.e. key bits mi−4(0), . . . , mi+6(0) and IV bits
cj(0), i− 4 ≤ j ≤ i + 5 and j ∈ Id.

The initial state of the carry register is known. So all we need to guess is 6+11 =
17 key bits, in order to predict the propagation of the initial difference during 6
rounds, and therefore the difference on the first keystream bit z(0).

If we guess correctly the 17 bits, we will observe the predicted difference.
But observing the difference on one keystream bit do not allow us to deduce
the correct guess among the 217 possibilities. We are only able to eliminate
roughly half of the candidates. So, this experiment provides roughly one bit of
information about the key. However, we may hope to find the right candidate
by iterating the process 17 times.

3.2 Limitations

In order to find the right guess on 17 key bits, we could think of using 17 indepen-
dent experiments. This can be achieved by randomizing the IV. As mentioned
above, the IV bits that are significant for the differential behavior are those lo-
cated at positions 0 to 4 and i − 4 to i + 5. The exact number of bits that we
can randomize depends on the set Id, but we observed that between 6 and 10
bits are usually available for all choices of i. So we expect to get between 26 and
210 possible experiments. In theory, this is enough to find the right guess.

Unfortunately, this does not work in practice. It is generally not possible to
identify the correct guess among the 217 candidates. As an illustration, suppose
that the output taps satisfy fj = 0 for j = i − 4, . . . , i. Then the only output
tap in the “influence window” is at position i − 5. The difference on the first
keystream bit is therefore always 1, for all values of the 17 key bits. In this case,
no information can be obtained by randomizing the IV.

Cryptanalysis of the F-FCSR Stream Cipher Family 27

Of course, this is the least favorable case. In most cases, we observed that
many candidates for the 17 key bits can be discarded using the previous differ-
ential conditions. However, a small number of candidates may remain.

3.3 Key-Recovery Algorithm

To overcome these difficulties, we propose a “sliding window” algorithm. After
considering a position i, a small number of candidates for 17 bits of the key
remains. Next, we examine position i−1, and guess a few extra key bits in order
to repeat the same attack2. From pairs of chosen IV’s, we obtain new conditions
which allow us to eliminate more candidates, and so on. Our goal is to keep the
number of candidates as low as possible alongside the execution of the attack.

The resulting algorithm may be described as follows:

– Guess the 6 rightmost bits (m0(0), . . . , m5(0)).
– Guess the 6 leftmost bits (m122(0), . . . , m127(0)).
– For i from 120 down to 5 do:

• Guess bit mi+1(0).
• If (i + 5) ∈ Id (a carry cell is present at the current position) do:

∗ Flip the corresponding IV bit, and do as much experiments as possi-
ble (depending on the number of carry bits that are able to influence
the output).

∗ Discard guesses that are not compatible with the observed difference
on the first keystream bit.

– Output the remaining correct guesses and test each of them to find the secret
key.

When no carry bit is present at position i (case where i �∈ Id), we cannot
eliminate any candidate, so the number of guesses to examine grows by a factor
of 2. This can be quite inconvenient, so we propose a simple improvement. We
flip the bit ci+6(0) (instead of ci+5(0)) and look at the second keystream bit
z(1) (instead of z(0)). This is roughly the same idea as before with 7 advances
instead of 6. Some technical details need to be fixed (for instance, we need to
predict one more feedback bit), but the idea remains the same. And so on with
more advances.

With this improvement, we can obtain conditions at every position (instead
of only the positions i ∈ Id) for little extra cost. This keeps the number of
candidates low and makes the attack feasible.

3.4 Efficiency and Results

We implemented this attack on a standard PC, and observed the behavior of the
previous algorithm on several randomly chosen keys. At each stage, the number
of possible solutions never climbed above the starting point of 213. The set of
2 Because of the overlapping between the two sets, only one new bit needs to be

guessed.

28 É. Jaulmes and F. Muller

solutions must be explored for each value of index i. Thus, the time complexity
of the algorithm is about 128×213 � 220. This represents a few seconds on a PC.

With the selected value of q, there is an average of 28 experiments for each
position, which means the number of possible experiments is about 128× 28 �
215. This means we need to process about 215 pairs of chosen IVs in order to
recover the full secret key. For each pair, we are only interested in learning the
differential on one keystream bit. Thus the attack is very efficient and does not
require a powerful adversary.

We also mention that some trade-offs are possible: if less than 215 pairs of
IV are available, we can stop the previous algorithm at any time, when only n
bits from the key have been guessed. Then we can go through all the remaining
correct guesses in the algorithm (at most 213) and also guess the remaining
128− n key bits.

3.5 Adapting the Attack to F-FCSR-SF8

The eight filters chosen to produce the eight output bits in the F-FCSR-SF8
version of the stream cipher have disjoint support. If we XOR the eight output
bits, we obtain exactly the one bit of output we had in the previous attack.
Thus, at worse, F-FCSR-SF8 can be attacked with the same complexity as
F-FCSR-SF1.

Moreover, it is also possible to use the extra information : 8 bits of information
about the internal state are outputted at a time. This allows us to reject more
candidates at each stage. We expect to discard everything but the correct guess
at each step, which would decrease the time complexity of the attack to about
216 as the total number of IV’s to process.

4 Resynchronization Attacks with Dynamic Filter

In this section, we describe an attack against the two proposals using a dynamic
filter. We will focus on F-FCSR-DF1 for our description of the attack but it
applies similarly on F-FCSR-DF8. As in Section 3, the attack is a chosen IV
attack and recovers the secret key with only 216 IV’s.

4.1 Principle of the Attack

In the F-FCSR-DF1 version of the stream cipher, the filter function is unknown
of the adversary. It is derived from the secret key through an invertible function
g. The function g, however, is public. This means that if the adversary is able to
reconstruct the filter, he can immediately recover the corresponding secret key.
Thus, our attack focuses on recovering the output filter.

As in Section 3, the principle of the attack is a differential cryptanalysis on
the initial carry vector. We observe that when we introduce a difference on the
bit i of the carry vector, after one clock of the register, this difference will be
on the bit i of the main register, after two clocks, it will be on the bit i− 1 of
the main register, and so on. The Figure 2 shows the cells that may contain a
difference after 6 advances of the FCSR.

Cryptanalysis of the F-FCSR Stream Cipher Family 29

Since we no longer know the output taps, it is pointless to try to predict the
state difference after 6 advances. However, we can try to predict whether or
not an output tap is present at each position. As observed previously, if
we flip the i-th carry bit, it is guaranteed to propagate to position i− 5 of the
main register after 6 advances. For positions i − 4 ≤ j ≤ i, the difference may
subsist depending on the carries, but these events are quite unlikely.

Thus, after six advances the output will be flipped with probability greater
than 1/2 if there is an output tap at position i− 5, and not flipped with proba-
bility greater than 1/2 otherwise. This observation opens a way of attack.

4.2 Details of the Attack

In order to predict the output tap number i − 5, we flip the carry bit number
i. Then we observe the difference on the first keystream bit z(0). For positions
i �∈ Id where there is no carry cell, our trick consists in targeting the first j ∈ Id

such that j > i and observing the keystream bit z(j − i).
With good probability, the presence of a difference in the output indicates

that fi = 1. Since we are interested in measuring a probability, we need several
such experiments. Like we did in Section 3, we vary the experiments by changing
the values of the carry bits in the influence zone. We obtain a ratio δi of the
number of differences observed by the number of total experiments for the bit i.

We first perform a gross prediction of the filter F , quite simply by saying
that fi = 1 if δi > 0.5, and fi = 0 otherwise. From the different random keys
we tried, we observed that this prediction already gives a quite accurate value
of F . Indeed, only 20 to 30 errors remain among the 128 filter bits. Since we
do not know the positions of these errors, it would be too long to enumerate all
candidates at this point.

In order to decrease the number of errors, we propose an iterative algorithm to
converge towards the correct filter. We modify locally some bits on the predicted
filter and test whether the result fits better to the reality. This algorithm may
be described as follows:

– Collect data on the stream cipher by doing the set of experiments described
above. Store the values of the δi in an array Δ.

– Based on the data, obtain a gross prediction F ′ for the filter and deduce the
corresponding key K ′ by inverting g.

– Reproduce the same set of experiments “offline”, on a stream cipher using
the current candidates for the key and the filter. Obtain an array Δ′.

– While Δ �= Δ′, do:
• Pick one byte from the filter and enumerate the 28 possible values. Keep

the current values of F ′ for the other bytes. Do the set of experiments for
each new guessed value. Keep the value that minimizes d(Δ, Δ′), where
d is some distance function (for instance, the euclidian function).

• If stuck on a wrong filter value, change the distance d.
– Output the filter and the corresponding key.

30 É. Jaulmes and F. Muller

The underlying idea is that the errors on the candidate filters are gen-
erally local. So it is interesting to modify just one byte of the filter and test
whether we obtain a better prediction. Random jumps are used in case we get
stuck at some point.

We observed in practice that this algorithm was quite efficient and converged
reasonably quickly towards the correct key and the correct filter.

4.3 Efficiency and Results

The first part of the algorithm consists in collecting data from the real stream
cipher. This requires 215 pairs of IV’s. As in Section 3, we are only interested in
learning the differential on one output bit. The rest of the attack is performed
offline.

The time complexity of the algorithm is trickier to evaluate since it depends
on the converging speed. Each step of the loop requires 224 operations. Our
experiments with random secret keys suggest that an average of 28 passes of the
loop are needed to find the correct secret key. Thus the time complexity observed
in practice is around 232. This attack runs in a few hours on a single PC.

4.4 Adapting the Attack to F-FCSR-SD8

The 8 filters are constructed as for F-FCSR-SF8. They verify equation 3. For
a filter Fi, we know that two bits equal to 1 are separated at least by eight bits.
Since the range of our experiments often affects only six or seven bits, we are
able to directly guess the correct value of the filter Fi for most of the bits (those
that correspond to an experiment with length less than 8). The remaining bits
will also have a better prediction than in the previous case. Thus, the attack
becomes more powerful and recovers the filter and the secret key much quicker.

5 Time/Memory/Data Trade-Off Attacks

5.1 Trade-Off Attacks Against Stream Ciphers

Since the internal state of a stream cipher changes during the encryption, a brute-
force attack has several possible targets. Knowing any value of the internal state
is often sufficient for an attacker. This is the main idea behind trade-off attacks:
only a small portion of the possible states is enumerated, and we hope, using
the birthday paradox, to find a match between the states encountered during
the encryption and the states enumerated offline.

The first attack proposed in the literature is generally referred to as Babbage-
Golic trade-off [5, 12]. Roughly, a stream cipher with internal state of n bits can
be attacked with time, memory and data of the order of 2n/2. An alternative is
to apply the famous Hellman time-memory trade-off [14] to the case of stream
ciphers [7]. This second attack allows many trade-offs, but its complexity always
remains above 2n/2 regarding the time complexity.

Because of these attacks, it is recommended for stream ciphers to use an
internal state, which is larger than the expected strength (usually twice the size

Cryptanalysis of the F-FCSR Stream Cipher Family 31

of the key). Accordingly, Arnault and Berger [3] argued that F-FCSR has a state
of n = 196 bits at least (it is even more when the output taps are secret), which
brings the attack to a complexity larger or equal to 298, which is not practical.
In this Section, we show that a better trade-off attack is possible against the
F-FCSR family, due to the mathematical properties of the state-update function.

5.2 Real Entropy of the F-FCSR State

Let s(t) = (m(t), c(t)) denote the state of the cipher at time t. There are
2k+�−1 = 2196 possible states, and as explained in Section 2.1, each state is
characterized by some integer pt < (−q) such that pt = m(t) + 2c(t).

A crucial observation is that the state-update function of a FCSR is not
invertible. Take the example of Figure 1. Suppose that m7(t) = 0 and m5(t) =
c5(t) = 1. Then the previous state must satisfy two incompatible constraints:

0 = m0(t− 1)
1 = m0(t− 1) = m6(t− 1) = c5(t− 1)

Therefore, as the encryption proceeds, the state looses entropy. It is known
that, provided the order of 2 modulo q is |q| − 1, the graph of the state-update
function had a unique cycle of length |q| − 1. Moreover, each state s = (m, c) in
the cycle corresponds uniquely to some integer x < (−q) such that m + 2c = x.
Alongside the unique cycle, the integer x takes successively all values between 1
and |q| − 1.

The question is how fast does the state reach this unique cycle. Consider any
pair of states (s, s′), that correspond to the same value x:

x = m + 2c = m′ + 2c′.

In section 5.3, we show that these two states converge to the same internal state
with very high probability, after 128 advances of the FCSR in average.

Now suppose that s was a state of the unique cycle. Since s′ becomes synchro-
nized with s in 128 advances in average, we know that any state is mapped
to a state of the unique cycle after 128 advances in average. Provided we
discard the first keystream bits, we can therefore assume that all internal states
we encounter are part of the unique cycle. So, the real entropy of the internal
state is only of log2(q − 1) � 128 bits.

5.3 Resynchronization in Probabilistic Time

We consider two states which satisfy x = m + 2c = m′ + 2c′. We say that a cell
in the main register is synchronized when its value is the same for these two
states. We want to determine how many advances are necessary before all cells
in the two states become synchronized.

First, we observe that the value of x remains identical for both states after any
number of iterations. This follows immediately from the definition of a FCSR.
Consequently, the feedback bit, i.e. the rightmost bit in the main register is
always synchronized. Indeed, x mod 2 = m mod 2 = m′ mod 2.

32 É. Jaulmes and F. Muller

In addition, suppose that the i leftmost cells of the main register are synchro-
nized at time t. Then, it is clear that they remain synchronized for all t′ > t (the
only propagation from right to left in the FCSR comes from the feedback bit,
which is synchronized). Moreover, if we are lucky the cell m127−i may become
synchronized at time t + 1.

If (127 − i) �∈ Id, there is no carry cell and m127−i(t + 1) = m127−i+1(t).
Therefore m127−i becomes synchronized at time t + 1.

Otherwise, if (127− i) ∈ Id, then there is a carry cell and

m127−i(t + 1) = m127−i+1(t)⊕ c127−i(t)⊕m0(t).

Remember that both bits m0 and m127−i+1 are already synchronized. Roughly,
m127−i becomes synchronized with probability 0.5 depending on the be-
havior of the carry register.

Therefore, the whole register is likely to be eventually synchronized. The
average time for this to happen is

T =
∑
i	∈Id

1 +
∑
i∈Id

2 = 68 + 60× 2 = 188

advances. Actually, a similar property holds if we consider the rightmost cells,
so the synchronization goes in both directions. Generally, it takes less than 128
advances. The phenomenon has been confirmed by our practical simulations.

5.4 Trade-Off Attack with Static Filters

Suppose that the output taps are known. Then the internal state has a “real”
entropy of 128 bits only. This allows to apply trade-off attacks on this reduced
space instead of the full space of internal states. We propose to apply a simple
variant of Babbage-Golic’s attack [5, 12]. It proceeds in two steps:

– The online phase
Observe D = 264 keystream bits produced from an unknown secret key K.
Discard the first 128 bits (hence it is very likely that we are not in the unique
cycle of the state-update function, according to section 5.3), and store in a
table each window of 128 keystream bits. There are D − 128 − 127 such
windows. Each one should uniquely correspond to some value of the internal
state3.

– The offline phase
We want to enumerate at random about 264 internal states located on the
unique cycle. For each state, we generate 128 keystream bits, and search for
a match with the D− 255 windows of the online phase. As soon as a match
is found, the attack stops.

3 A chance remains that from two different states, the same window of 128 keystream
bits is produced. It is customary to take an extra margin by considering windows
slightly larger than 128 bits.

Cryptanalysis of the F-FCSR Stream Cipher Family 33

There are two possibilities to make this enumeration. First, we can just pick
some internal states at random and apply 128 advances of the FCSR. Then
it is very likely that we select states of the unique cycle. The complexity of
the enumeration is 128× 264.
An improved solution is to pick internal states which are located at regular
interval on the unique cycle :
• First, pick a state s which is guaranteed to be on this cycle (for instance,

x = 1 is good since it has a unique representation, m = 1 and c = 0).
• Next, compute the 264-th iterate of the state-update function, starting

from s. We set the new value of s to this result. Computing such iterates
can be done efficiently.

• Generate 128 keystream bits from the actual state s, and search for a
match with the D−255 windows of the online phase. If a match is found,
we stop. Otherwise, we repeat the previous step.

Hence we need to compute about 264 times some 264-th iterates of the state-
update. Since iterates can be computed efficiently, the complexity of this enu-
meration is about T = 264. Moreover it is guaranteed that all enumerated states
are on the unique cycle.

When a match is found, we learn the value of the state at some time
t : s(t) = (m(t), c(t)). The state-update is not invertible, however, we can com-
pute pt = m(t) + 2c(t) and backtrack to the values of pt′ for t′ < t using
equation 2. Since p0 = m(0) + 2c(0) = K + 2IV, it is easy to deduce the value
of the secret key.

Other choices of D are possible. They result in different trade-offs between
time, data and memory complexity. We propose to choose D = 264, therefore
all complexities (time, memory and data) are of the order of 264. This attack is
applicable to F-FCSR-SF1 and F-FCSR-SF8.

5.5 Trade-Off Attack with Dynamic Filters

Now suppose that the output taps are unknown. We can no longer apply the
previous attack, since the size of the internal state is artifically increased by 128
bits. We would need to guess the output taps in order to apply the trade-off
attack.

In the case of F-FCSR-DF8, each keystream bit depends on only 16 output
taps. We discard the keystream bits such that i �= 0 mod 8. We need to guess
only 16 taps, in order to apply the previous attack. The extra cost is a factor 8
in data and memory and 216 in time. Therefore the resulting time complexity
is about 280, while the data and memory complexity become about 267. Other
trade-offs could be envisaged with more time and less data/memory.

6 Conclusion

We demonstrated several attacks against the new F-FCSR family of stream
ciphers. The first result is a resynchronization attack which breaks all algorithms

34 É. Jaulmes and F. Muller

in the family which support IV’s. The complexity corresponds to about 215 pairs
of chosen IV’s.

The second result concerns trade-off attacks which breaks several algorithms
in the family with time, memory and data of the order of 264. These attacks are
faster than generic attacks and demonstrate some undesirable properties of the
underlying primitive, the Feedback with Carry Shift Register (FCSR).

While these attacks do not totally discard the use of FCSR in stream ciphers,
they illustrate some important weaknesses in the F-FCSR family.

The European ECRYPT project [10] recently launched a call for primitives in
the field of stream ciphers. As a result, 34 new algorithms were proposed and are
currently under analysis [11]. Arnault and Berger proposed two algorithms called
F-FCSR-8 and F-FCSR-H, which are new variants of the F-FCSR family [4]. In
a paper posted on the ECRYPT server, we observed that these algorithms are
vulnerable to similar attacks than those described here, and we also pointed out
new weaknesses [15].

References

1. F. Armknecht, J. Lano, and B. Preneel. Extending the Resynchronization Attack.
In H. Handschuh and A. Hasan, editors, Selected Areas in Cryptography – 2004,
volume 3357 of Lectures Notes in Computer Science, pages 19–38. Springer, 2005.

2. F. Arnault and T. Berger. A new class of stream ciphers combining LFSR and
FCSR architectures. In A. Menezes and P. Sarkar, editors, Progress in Cryptology
– INDOCRYPT’02, volume 2551 of Lectures Notes in Computer Science, pages
22–33. Springer, 2002.

3. F. Arnault and T. Berger. F-FCSR: design of a new class of stream ciphers. In
H. Gilbert and H. Handschuh, editors, Fast Software Encryption – 2005, volume
3557 of Lectures Notes in Computer Science, pages 83–97. Springer, 2005.

4. F. Arnault, T. Berger, and C. Lauradoux. Description of F-FCSR-8 and F-FCSR-H
stream Ciphers. eSTREAM, ECRYPT Stream Cipher Project, Report 2005/008,
2005. http://www.ecrypt.eu.org/stream.

5. S. Babbage. A Space/Time Tradeoff in Exhaustive Search Attacks on Stream
Ciphers. In European Convention on Security and Detection, volume 408. IEE
Conference Publication, may 1995.

6. E. Barkan, E. Biham, and N. Keller. Instant Ciphertext-Only Cryptanalysis of
GSM Encrypted Communication. In D. Boneh, editor, Advances in Cryptology –
Crypto’03, volume 2729 of Lectures Notes in Computer Science, pages 600–616.
Springer, 2003.

7. A. Biryukov and A. Shamir. Cryptanalytic time/memory/data tradeoffs for stream
ciphers. In T. Okamoto, editor, Advances in Cryptology – Asiacrypt’00, volume
1976 of Lectures Notes in Computer Science, pages 1–13. Springer, 2000.

8. N. Courtois and W. Meier. Algebraic Attacks on Stream Ciphers with Linear
Feedback. In E. Biham, editor, Advances in Cryptology – Eurocrypt’03, volume
2656 of Lectures Notes in Computer Science, pages 345–359. Springer, 2003.

9. J. Daemen, R. Govaerts, and J. Vandewalle. Resynchronization Weaknesses in
Synchronous Stream Ciphers. In T. Helleseth, editor, Advances in Cryptology –
EUROCRYPT’93, volume 765 of Lectures Notes in Computer Science, pages 159–
167. Springer, 1994.

Cryptanalysis of the F-FCSR Stream Cipher Family 35

10. ECRYPT Network of Excellence in Cryptology
http://www.ecrypt.eu.org/index.html.

11. eSTREAM - The ECRYPT Stream Cipher Project
http://www.ecrypt.eu.org/stream/.

12. J. Golić. Cryptanalysis of Alleged A5 Stream Cipher. In W. Fumy, editor, Advances
in Cryptology – Eurocrypt’97, volume 1233 of Lectures Notes in Computer Science,
pages 239–255. Springer, 1997.

13. J. Golic and G. Morgari. On the Resynchronization Attack. In T. Johansson, editor,
Fast Software Encryption – 2003, volume 2887 of Lectures Notes in Computer
Science, pages 100–110. Springer, 2003.

14. M. Hellman. A Cryptanalytic Time-Memory Tradeoff. IEEE Transactions on
Information Theory, 26(4):401–406, July 1980.

15. E. Jaulmes and F. Muller. Cryptanalysis of ECRYPT Candidates F-FCSR-8 and
F-FCSR-H. eSTREAM, ECRYPT Stream Cipher Project, Report 2005/046, 2005.
http://www.ecrypt.eu.org/stream.

16. A. Klapper and M. Goresky. 2-adic shift registers. In R. Anderson, editor, Fast
Software Encryption – 2005, volume 809 of Lectures Notes in Computer Science,
pages 174–178. Springer, 1994.

17. A. Klapper and M. Goresky. Cryptanalysis based on 2-adic rational approximation.
In D. Coppersmith, editor, Advances in Cryptology – Crypto’95, volume 963 of
Lectures Notes in Computer Science, pages 262–274. Springer, 1995.

18. I. Mantin and A. Shamir. A Practical Attack on Broadcast RC4. In M. Matsui, ed-
itor, Fast Software Encryption – 2001, volume 2355 of Lectures Notes in Computer
Science, pages 152–164. Springer, 2002.

19. W. Meier and O. Staffelbach. Fast Correlations Attacks on Certain Stream Ciphers.
In Journal of Cryptology, pages 159–176. Springer, 1989.

20. T. Siegenthaler. Correlation-immunity of Nonlinear Combining Functions for Cryp-
tographic Applications. In IEEE Transactions on Information Theory, volume 30,
pages 776–780, 1984.

21. B. Zhang, H. Wu, D. Feng, and F. Bao. Chosen Ciphertext Attack on a New
Class of Self-Synchronizing Stream Ciphers. In A. Canteaut and K. Viswanathan,
editors, Progress in Cryptology – INDOCRYPT’04, volume 3348 of Lectures Notes
in Computer Science, pages 73–83. Springer, 2004.

Fault Attacks on Combiners with Memory�

Frederik Armknecht1 and Willi Meier2

1 Universität Mannheim, 68131 Mannheim, Germany
armknecht@th.informatik.uni-mannheim.de
2 FH Aargau, CH-5210 Windisch, Switzerland

meierw@fh-aargau.ch

Abstract. Fault attacks are powerful cryptanalytic tools that are appli-
cable to many types of cryptosystems. Recently, general techniques have
been developed which can be used to attack many standard constructions
of stream ciphers based on LFSR’s. Some more elaborated methods have
been invented to attack RC4. These fault attacks are not applicable in
general to combiners with memory.

In this paper, techniques are developed that specifically allow to at-
tack this class of stream ciphers. These methods are expected to work
against any LFSR-based construction that uses only a small memory
and few input bits in its output function. In particular, efficient attacks
are described against the stream cipher E0 used in Bluetooth, either by
inducing faults in the memory or in one of its LFSR’s. In both cases, the
outputs derived from the faulty runs finally allow to describe the secret
key by a system of linear equations. Computer simulations showed that
inducing 12 faults sufficed in most cases if about 2500 output bits were
available. Another specific fault attack is developed against the stream
cipher SNOW 2.0, whose output function has a 64-bit memory. Similar
to E0, the secret key is finally the solution of a system of linear equations.
We expect that one fault is enough if about 212 output words are known.

Keywords: Stream cipher, combiner with memory, LFSR, fault attack,
Bluetooth E0, SNOW 2.0.

1 Introduction

Fault analysis was first introduced in 1996 in [6] to attack number theoretic
public key cryptosystems such as RSA, and later in [7] to attack product block
ciphers such as DES. These attacks are practical, and various techniques have
been described that induce faults during cryptographic computations (cf. [17]).
More recently, fault analysis of stream ciphers has been introduced by Hoch and
Shamir in [12]. As for other cryptosystems, fault analysis on stream ciphers is a
powerful cryptanalytic tool which can work even if direct attacks are inefficient.
In [12], general techniques are applied to attack standard constructions of stream
ciphers based on LFSR’s, and some specialized techniques are introduced that

� The first author has been supported by grant Kr 1521/7-2 of the DFG (German
Research Foundation).

B. Preneel and S. Tavares (Eds.): SAC 2005, LNCS 3897, pp. 36–50, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Fault Attacks on Combiners with Memory 37

work, e.g., against RC4. In [4], different and improved fault analysis methods on
RC4 are derived. The methods developed in [12] apply for most schemes based
on memoryless filters and combiners. However, as pointed out in [12], they don’t
work in general for combiners with memory. Well known stream ciphers that use
a combiner with memory are E0, the keystream generator used in Bluetooth,
and SNOW 2.0, that is proposed for standardization.

In this paper, fault attacks against general combiners with memory based on
LFSR’s are developed. It is assumed that faults may be induced either in the
memory or in one of the LFSR’s. These methods are expected to work against
any LFSR-based stream cipher whose output function uses only a small amount
of memory. In particular, our methods are adapted and refined to an efficient
fault attack on E0, whose output function has a memory of only 4 bit. Our
attack heavily exploits the particular structure of E0. Another specific attack is
developed against the stream cipher SNOW 2.0 that uses a 64 bit memory.

2 Combiners with Memory

Keystream generators are used for the online encryption of bitstreams having
arbitrary length, e.g. between two mobile phones. Initialized with a secret value,
the key, they produce a bitstream Z = z1, z2, . . ., called the keystream. A plain-
text p1, p2, . . . is encrypted to c1, c2, . . . via ci := pi ⊕ zi where ⊕ denotes the
XOR-operation on two bits. A legal receiver who uses the same keystream gen-
erator and has knowledge of the key, can produce the keystream by himself and
decrypt the received bitstream by computing pi = ci ⊕ zi.

Many keystream generators used in practice and discussed in theory are com-
biners with memory or, more formally, (k, �)-combiners. A (k, �) - combiner
C = (f, ϕ) with k inputs and � memory bits is a finite state machine (FSM) which
is defined by an output function f : {0, 1}� × {0, 1}k −→ {0, 1} and a memory
update function ϕ : {0, 1}�×{0, 1}k −→ {0, 1}�. Given a stream (X1, X2, · · ·) of
inputs, Xi ∈ {0, 1}k, and an initial assignment Q1 ∈ {0, 1}� to the memory bits,
the corresponding output bitstream (z1, z2, · · ·) is defined according to

zt = f(Qt, Xt) and Qt+1 = ϕ(Qt, Xt), (1)

for all t ≥ 1. Using (1), we define fϕ(Q, X1, . . . , Xr) := (z1, . . . , zr) and
ϕ(Q, X1, . . . , Xr) := Qr+1 where zi = f(Qi, Xi), Qi+1 = ϕ(Qi,Xi) and Q1 := Q.

For keystream generation, the stream of inputs (X1, X2, . . .) is produced by
the output of k driving devices where the initial states are determined by the
secret key K ∈ {0, 1}n. We assume that these sequences are generated by LFSRs,
i.e., each input is computed by Xt = Lt(K) where Lt is a known linear function
{0, 1}n → {0, 1}k. Consequently, the initial state can be reconstructed, if enough
linear equations relating input bits Xt are known.

An example for a combiner with memory is the summation generator which
is based on the integer addition. In the case of k = 2 input bits Xt = (at, bt),
the number of memory bits is � = 1 and the functions are defined by zt =
f(Qt, at, bt) := at ⊕ bt ⊕ Qt and Qt+1 = ϕ(qt, at, bt) := atbt ⊕ atQt ⊕ btQt A

38 F. Armknecht and W. Meier

practical example for a combiner with memory using LFSRs is the keystream
generator E0 used in the Bluetooth standard. It is a (4, 4) combiner with a
128-bit key.

It is commonly accepted to evaluate the security of combiners with memory
in the following attack model.An adversary knows the functions f and ϕ and the
driving devices. In the case that LFSRs are incorporated, he knows the linear
functions Lt. Furtheron, he is able to observe the values of some keystream bits
zt. An attack is to use these informations to recover the secret key K.

It is clear from information theory that the knowledge of some keystream bits
zt must provide some information about the corresponding inputs Xt. This gives
rise to the following definition:

Definition 1. For a (k, �)-combiner C = (f, ϕ), r ≥ 1 and (z1, . . . , zr) ∈ {0, 1}r,
we define the set of possible inputs by

X(z1,...,zr) := {(X1, . . . , Xr) | ∃Q : fϕ(Q, X1, . . . , Xr) = (z1, . . . , zr)}. (2)

An important property of combiners with memory is the following result which
has been also essential in algebraic attacks [1]:

Theorem 1. Let C = (f, ϕ) be an arbitrary (k, �)-combiner with k inputs and
� memory bits. Then there exists at least one output (z1, . . . , z�+1) ∈ {0, 1}�+1

such that |X(z1,...,zr)| ≤ 1
2 · 2k·(�+1). This means that this specific output can be

generated by at most half of all possible inputs in {0, 1}k·(�+1). In particular this
allows to rule out some values for (X1, . . . , X�+1).

Proof. Note that (Q, X1, . . . , X�+1) uniquely determines the output Z =
(z1, . . . , z�+1) and therefore {0, 1}�+k·(�+1) =

.⋃
Z f−1

ϕ (Z). Furtheron, it is by def-
inition |f−1

ϕ (Z)| ≥ |XZ |.
Assume that the proposition is not true, i.e., |XZ | > 2k·(�+1)−1 for each Z ∈

{0, 1}�+1. This leads to the contradiction

2�+k(�+1) =
∑
Z

|f−1
ϕ (Z)| ≥

∑
Z

|XZ |

>
∑
Z

2k(�+1)−1 = 2�+1 · 2k(�+1)−1 = 2�+k(�+1).

3 A General Fault Attack on Combiners with Memory

The model assumptions for fault attacks are that an adversary has access to the
keystream generator as a physical device. Considering the proliferation of mobile
phones or devices using Bluetooth, this is certainly a realistic scenario.

Furthermore, the attacker can re-set the device to the same unknown initial
setting as often as he wants. As stream ciphers are descendants of the one-time
pad, the normal mode of operation would disallow to re-set the stream cipher and
to generate the same keystream more than once. On the other hand, an attacker

Fault Attacks on Combiners with Memory 39

which has acquired the pysical device is certainly more powerful than a normal
passive attacker. For example, consider the case of a stream cipher that uses a
resynchronization mechanism where the frame key is generated from a master
key and a public initial value IV (as for example it is the case in Bluetooth).
The attacker could feed the same IV into the device several times which would
practically re-set the stream cipher each time to the same unknown setting.

In addition, it is assumed that the attacker can cause an unknown fault into
one of the registers during the computations. He knows the affected register, but
can neither control the point in time of the disturbance nor the induced error.
We refer in this context to [17] where a low-tech, low-cost method to induce
faults at very specific locations were proposed.

A certainly important question is whether fault attacks on stream ciphers
can be considered to be practical or not. For the reasons mentioned above, we
would agree and believe that fault attacks on stream ciphers pose a potential
threat being worth to be investigated further. On the other hand, no practical
fault attacks on stream ciphers have been conducted so far and it might finally
turn out that the attack assumptions are too powerful. We hope that the results
in [12] and in this paper animate further research to finally settle this question
(positive or negative).

In this section, we introduce a fault attack which works in principle for every
(k, �)-combiner based on LFSRs if k and � are not too big. We assume the fault to
be either induced into the memory register or into one of the LFSRs. In the first
case our attack is directly applicable. This will be demonstrated by successful
fault attacks on the memory of E0 and of SNOW 2.0. In the second case the
additional problem to determine the induced fault in the LFSR is imposed. This
may be practically infeasible for certain keystream generators. On the other
hand, we will show in the next section that this problem can be solved for the
keystream generators E0.

Let Q1 ∈ {0, 1}�, and (X1, . . . , XR) ∈ {0, 1}k·R, R ≥ 1, be the output of
the k LFSRs, depending on an initial setting K. The keystream is denoted by
(z1, . . . , zR) := fϕ(Q1, X1, . . . , XR). The attacker is able to re-run the keystream
generator an arbitrary number of times with the same unknown initial states Q1
and K and to observe the produced keystream. During the run, he can induce
a unknown fault either into the memory register or into one of the LFSRs, but
has no control about the point in time t′. Let (z′1, . . . , z′R) be the corresponding
keystream. The keystream bits z′t and zt are equal for t < t′ but may be different
for t ≥ t′. By comparing both keystreams, the first clock t with zt �= z′t indicates
that the fault has already occurred.

Let X ′
t ∈ {0, 1}k be the output of the LFSRs at clock t of the faulty run and

δt := Xt ⊕ X ′
t the unknown differences. The location of the induced fault and

the kind of the keystream generator determine how to deal with the differences.
In the case where the memory register has been tampered, the LFSRs have

been left unchanged. Hence, in this case δt = 0 for all clocks t.
If the fault has been induced in one of the LFSRs, the situation is more

complicated. Some of the δt are different to zero but the attacker does not know

40 F. Armknecht and W. Meier

which. For general (k, �)-combiner, f(Qt, Xt) = zt �= z′t = f(Q′
t, X

′
t) does only

implicate that (Xt, Qt) �= (X ′
t, Q

′
t) but not that Xt �= X ′

t. Therefore, comparing
both keystreams does not reveal immediately information about the induced
fault. Nevertheless, the keystream generator may have additional properties,
allowing the detection of the whole fault. One such example is E0, as discussed
in the next two sections.

A special case are simple combiners. Simple combiner means that the combiner
is memoryless, e.g. � = 0, and that the k LFSRs are all distinct. As no memory
bits are present, zt �= z′t implies f(Xt) �= f(X ′

t) and therefore Xt �= X ′
t. Sampling

enough such time instances permit to compute the whole fault. Therefore, simple
combiners seem to be vulnerable to fault attacks in general.

Altogether, we assume that the adversary has the capability of finding out
the induced fault.

The proposed fault attack is related to algebraic attacks. After observing the
original keystream z1, . . . , zR, an attacker knows (for a fixed value τ ≥ 0) that

Xt+τ
t := (Xt, . . . , Xt+τ) ∈ Xzt,...,zt+τ , 1 ≤ t ≤ R− τ. (3)

In the positive case, he may use this information to derive algebraic equations
in Xt+τ

t . Because of Xt = Lt(K), this gives a system of equations in K. If the
equations are linear, Gaussian elimination can be used to find K. In the case of
non-linear equations, more sophisticated methods as relinearization or Gröbner
bases might be helpful, in particular, if the number of equations exceeds the
number of unknowns. It is known by [1] that for τ = �, algebraic equations of
degree at most �k·(�+1)

2 � always do exist.
However, with the additional information at hand by several runs, an attacker

can hope for equations of lower degree, or even linear equations. By observing
the faulty keystream z′1, . . . , z

′
R, the attacker can deduce that, additionally to

(3), it holds that

X ′t+τ
t ∈ Xz′

t,...,z
′
t+τ

, t′ ≤ t ≤ R− τ. (4)

If he can determine the differences δt := Xt ⊕X ′
t for t ≥ t′, combining (3) and

(4) reduces the set of possible assignments of Xt+τ
t even further. It is

Xt+τ
t ∈ Xzt,...,zt+τ ∩ (Xz′

t,...,z′
t+τ
⊕ (δt, . . . , δt+τ)) (5)

with

Xz′
t,...,z

′
t+τ
⊕(δt, . . . , δt+τ) := {(Y0⊕δt, . . . , Yτ⊕δt+τ)|(Y0, . . . , Yτ) ∈ Xz′

t,...,z
′
t+τ
}.

As explained above, if the fault was in the memory bits, it is δt = 0. This
simplifies (5) to

Xt+τ
t ∈ Xzt,...,zt+τ ∩Xz′

t,...,z
′
t+τ

. (6)

After each run, the adversary checks if the remaining possible values of Xt+τ
t

allow to set up equations of low degree in Xt+τ
t . Algorithms to find such equations

Fault Attacks on Combiners with Memory 41

have been used in several papers [8, 5, 1, 16], an explicit description is given in
[3, Alg. 1]. An alternative is to use Gröbner bases.

Repeating these steps sufficiently often can result in a system of low degree
(or even linear) functions. Thus, the final step consists in computing the solution
to derive the LFSR’s initial state. An example for this attack on the summation
generator with k = 2 LFSRs is given in appendix A.

The whole attack is summarized in the following pseudo code:

General fault attack on (k, l)-combiners

Input: A (k, l)-combiner C, and integers d, N ≥ 1 and τ ≥ 0
Task: Recover the initial state of the LFSRs
Algorithm:

– Derive for all possible outputs (z0, . . . , zτ) the sets X(z0,...,zτ) of possible
inputs

– Run the generator once and observe a keystream z1, . . . , zR.
– For t = 1, . . . , R−τ , initialize the sets of possible inputs Xt :=X(zt,...,zt+τ)
– While number of equations of degree ≤ d is less than N do

• Induce an unknown fault in the memory register and observe the
output (z′1, . . . , z

′
R).

• Look for the first clock t′ with zt �= z′t′ .
• Determine the differences δt := Xt ⊕X ′

t for t ≥ t′.
• For t ≥ t′, reduce the set of possible inputs Xt+τ

t according to (5) or
(6)

• Derive the number of equations on Xt of degree≤ d for t = 0, . . . , T−
τ and count them.

– end while;
– Recover the initial state by finding a solution to these equations.

4 Fault Attacks to the Bluetooth Keystream Generator

4.1 Preliminary Notes

In this section, we discuss fault attacks on the keystream generator E0, being
part of the Bluetooth encryption. E0 employs four LFSRs, named A, B, C and
D, of lengths 25, 31, 33 and 39, respectively. We denote their outputs at clock t
by at, bt, ct and dt, i.e., it is Xt = (at, bt, ct, dt). The memory bits Qt are referred
to as Qt = (pt, qt, pt−1, qt−1) and the output zt is computed via zt = qt⊕st where
st := at ⊕ bt ⊕ ct ⊕ dt. We assume that the attacker is always able to produce
and to observe R keystream bits z1, . . . , zR. In the Bluetooth standard, the key
changes after 2745 outputs. Hence, this value states a natural upper bound for
R, at least in respect of practical attacks.

Referring to section 3, we consider two different scenarios: the fault does
occur either in the memory register Qt or in one of the four LFSRs. In [1], it
was shown that for any four fixed successive outputs zt,zt+2,zt+3,zt+4, the set
X(zt,zt+2,zt+3,zt+4) of possible inputs Xt+3

t is a strict subset of {0, 1}4·4. Therefore,
every quadruple of four known successive outputs excludes some values for Xt+3

t .

42 F. Armknecht and W. Meier

We will show how the keystreams z′1, . . . , z
′
R derived from faulty runs can be

used to rule out as many inputs as possible. Computer tests showed that this does
not allow to single out the actual value of Xt+3

t directly, but the information
is nonetheless valuable for an attacker. It turned out that in every case, the
remaining set of possible values of Xt+3

t satisfied a linear equation L(Xt+3
t) = 0.

Implementing this for several clocks finally allows to describe the LFSRs’ initial
state by a system of linear equations.

4.2 Fault Attack on the Memory Register

In this section, we discuss the fault attack for the case that the memory register
is disturbed. Let t′ denote the point in time of the fault. As the LFSRs’ output
remain the same for all faulty runs, it is δt = 0 for all t. The keystream bits
z′t′ , . . . , z′R allow directly to reduce the set of possible keys as formulated in (6).

We simulated this attack on a computer. For 1000 times, we have chosen a ran-
dom initial setting and produced faulty keystreams until we were able to set up
128 different linear equations in the initial state. As the time instance t′ differs
from fault to fault, we made the moderate assumption of 500 generated faulted
keystreambits per fault. The results are displayed in Table 1. It shows in how many
test cases which number of faults were necessary to derive the system of linear equa-
tions. For example, in 17.3 percent of our test cases, 10 faults were required. We
see that in more than 90 percent of all simulations, 12 faults were enough.

Table 1. Simulation results for the fault attack on the memory register

induced faults 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Percentage 10.3 18.9 17.1 17.3 14.2 9.6 5.7 2.5 2.1 0.9 0.7 0.5 0.1 0 0 0.1

4.3 Fault Attack on One LFSR

Now we consider the second attack scenario, where the fault is induced into one
of the LFSRs. We assume that the affected LFSR is A which has the shortest
length. The state of A is altered at a certain uncontrollable point in time t′

and afterwards, some of the inputs Xt = (at, bt, ct, dt), memory states Qt and
keystream bits zt are changed to X ′

t = (at⊕ δ̃t, bt, ct, dt), Q′
t and z′t, respectively.

This is depicted in Table 2. Let s′t := st ⊕ δ̃t and Δ̃ be the unknown fault
δ̃1, . . . , δ̃R. Observe that the first clock t with zt �= z′t implies immediately that
δ̃t = 1. W.l.o.g., we assume that δ̃1 = 1. This is no restriction as we did not
specify the value of R.

The general attack described in section 3 requires to identify the values of δt.
We present an appropriate method, using correlations between linear combina-
tions of the known zt, z′t and the correct δt. More precisely, for certain coefficient
vectors Γ = (γ0, . . . , γr), it holds that

r⊕
i=0

γi · (zt+i ⊕ z′t+i) =
r⊕

i=0

γi · δt+i (7)

Fault Attacks on Combiners with Memory 43

Table 2. The fault attack on E0 with faulty LFSR. The grey marked entries may
change their values.

Clock 1 . . . t′ − 1 t′ t′ + 1 . . . R

Input X0 . . . Xt′−1 X ′
t′ X ′

t′+1 . . . X ′
R

Memory Q0 . . . Qt′−1 Qt′ Q′
t′+1 . . . Q′

R

Keystream z0 . . . zt′−1 z′
t′ z′

t′+1 . . . z′
R

is true with probability > 1/2 if the δt agree with the induced fault, i.e. δt = δ̃t

for all t. On the other hand, if the δt �= δ̃t, the value on the right hand side is
independent of the left side and (7) is true in only half of the cases. We use this
as a distinguishing feature to separate the value Δ̃ of the induced fault from all
possible fault values Δ.

Some Γ together with their probabilities that (7) is true are displayed in
Table 3. The probabilities were derived by simply counting the positive events for
all possible cases. These probabilities cannot be derived directly from the correla-
tions as determined in [11] for E0. However,Equation (7) is related to (conditional)
correlated linear combinations of the the memory bits qt which have proven to be
useful for the cryptanalysis of combiners with memory before, especially in the
case of E0 (cf. [13, 14, 15]).

Let keystreams Z and Z ′ be given and coefficient vectors Γ1, . . . , Γs be fixed.
For a potential fault Δ, we define the value ΣΓ (Δ) := ΣΓ (Z, Z ′, Δ) to be the
number of clocks where (7) holds. An example for computing Σ(Δ) is given in
appendix B.1. As explained above, we expect for the right Δ to have on average
a higher value ΣΓ (Δ) than for the wrong guesses.

Consequently, a logical approach is to use the values ΣΓ (Δ) to set up a rank-
ing list of all possible faults. This means that the value Δ with the highest value
ΣΓ (Δ) is the most probable fault an so on. Indeed, computer simulations showed
that if the ratio of number of possible keys and number of outputs is too small,
then the right fault was not amongst those values Δ at the top of the ranking lists.

Table 3. Some correlations together with their probabilities. * means that the proba-
bility is independent of the penultimate entry.

Γ Pr[
⊕

i γi · (zt+i ⊕ z′
t+i ⊕ δt+i) = 0]

(1, 0, ∗, 1) 0.508
(1, 1, ∗, 1) 0.523

(1, 0, 0, ∗, 1) 0.505
(1, 0, 1, ∗, 1) 0.505
(1, 1, 0, ∗, 1) 0.505
(1, 1, 1, ∗, 1) 0.524

(1, 0, 0, 0, ∗, 1) 0.530

44 F. Armknecht and W. Meier

Therefore, we refined this approach by using multiple ranking lists, defined
by the s coefficient vectors Γi. The idea is now to look for values Δ which occur
amongst the top elements of as many ranking lists as possible.

This is exactly our approach. For each Γ , we determine h different values Δ,
having the highest values ΣΓ (Δ). This gives so to speak a ranking list L(Γ) :=
L(Γ, h) in terms of the values ΣΓ (Δ), consisting of h different potential faults Δ.
The next step is to regroup these according to their occurrences in the ranking
lists. We define for each Δ its index by Ind(Δ) := IndZ,Z′(Δ) to be the number
of ranking lists L(Γ1), . . . , L(Γs) containing Δ. An example for computing the
index is given in appendix B.2. As explained above, if one candidate has a higher
index than the others, we assume it to be the unknown induced fault.

Computer experiments using a data of 2745 keystream bits showed that often
there was no unique Δ with maximum index. In this case, one can restart the
keystream generator, induce another fault and hope for a better result this time.

A more refined alternative is to combine the results from two different runs.
Let Z be the original keystream and Z ′ and Z ′′ be faulty keystreams, resulting
from unknown faults Δ̃′ and Δ̃′′, respectively. To keep the explanation simple,
we assume that both faults Δ̃′ and Δ̃′′ occurred at the same clock. The method
does work without this condition too.

Now we bring a new viewpoint into play. Z ′′ can be seen also as the faulty
keystream resulting from the “original” keystream Z ′ and the induced fault
Δ̃′ ⊕ Δ̃′′. This imposes additional conditions on the candidates for Δ̃′ and Δ̃′′.
Consequently, instead of looking for the most probable values for Δ̃′ and Δ̃′′ in-
dependently, one can search for the most probable pair for (Δ̃′, Δ̃′′). Candidates
(Δ1, Δ2) which have high indices IndZ,Z′ (Δ1), IndZ,Z′′(Δ2) and IndZ′,Z′′(Δ1 ⊕
Δ2) are therefore preferred. For our simulations, we simply considered the sum
of these three values.

The computer experiments with a reduced length LFSR A proved the prac-
ticability of our method, at least in the considered test cases. For our tests, we
assumed that the attacker is able to produce each time the whole 2745 keystream
bits and that all faults occurred during the first 245 clocks. This is no severe con-
dition. If after inducing the fault, the first clock t with zt �= z′t is ≤ 245, we can
be sure that the condition is met. If this is not the case, one discards this fault
and reattempts again. Therefore, the effort caused by useless runs is compara-
tively small. Furtheron, one can expect that in almost one out of ten attempts,
the faults occurs within the required bounds.

The first tests showed that if all Δ had an index of 2 or less, the event of
finding the right fault was very unlikely. Therefore, we restarted to induce faults
for a fixed unknown initial setting until at least on index was 3 or higher.

We did 21 tests for the case that LFSR A has length 19 (using some random
primitive polynomial for feedback). The correct pair (Δ̃′, Δ̃′′) was uniquely re-
constructed each time. In average, it was necessary to induce 13.86 faults whereas
the maximum was 41. Furthermore, we conducted 3 experiments where A has
length 20. Also here, the right pair was reconstructed every time. The average
number of faults was 27.66 with the maximum being 59. Experiments with the

Fault Attacks on Combiners with Memory 45

original length of 25 have been conducted but have always crashed, presumably
because of memory shortage. It remains as an open question whether faults of
length 25 could be recovered by a more efficient implementation.

The final step consists in reducing the set of possible inputs as described in
section 3, once the faults are determined. We simulated this attack 1000 times
and counted the number of faults needed to set up at least 128 linear equations
in the last 500 clocks (i.e, in XR−500, . . . , XR). Thereby, we always assumed that
we figured out the right fault Δ. It turned out that in 763 cases, 11 faults were
necessary, and it the remaining ones 12 faults. Similar to the attack where the
memory register is tampered, 12 faults seem to be enough whereas 11 faults are
always necessary.

4.4 Fault Attacks on Two-Level-E0

The keystream generator is only one part of the Bluetooth stream cipher. There-
fore, we shortly describe the whole system and point out the consequences of our
attacks. During Bluetooth encryption, the secret key is re-initialized frequently,
using a secret parameter K, denoted as the master key, and publicly known
values IV . The period using the same secret key is called a frame. The whole
Bluetooth keystream generation consists of the following steps:

1. Derive the frame key K = L(K, IV) where L is a known linear Boolean
function, K the master key and IV a publicly known parameter. This means
that the Bluetooth cipher uses a linear key schedule. Use K to initialize the
LFSRs in E0.

2. Clock E0 several times and compute 128 bit intermediate outputs y1,. . ., y128.
3. Permute the 128 bits using a fixed permutation.
4. Use the 128 bit output to re-initialize the four LFSRs of E0 and produce the

keystream z1, . . . , z2745

In [2], it was shown that if the intermediate outputs yi are known for several
frames, the master key K can be efficiently reconstructed. The proposed fault
attacks provide efficient methods to attack one instantiation of E0. Thus, our
attacks can be applied to the second call of E0 for several frames to determine
the yi’s. Afterwards, the methods in [2] can be used to reconstruct K. This shows
that the whole Bluetooth encryption is affected by the fault attacks.

5 Fault Attack on SNOW 2.0

SNOW 2.0 has been introduced in [9] and is proposed for standardization. It
consists of a length 16 LFSR with 32 bit words, feeding a finite state machine.
The FSM consists of two 32 bit memory registers, called R1 and R2, as well
as some operations to calculate the output and the next state (i.e., the next
values of R1 and R2). A schematic illustration is given in Figure 1. For a precise
description we refer to [9]. We only recall those facts that are needed in our
attack.

46 F. Armknecht and W. Meier

� �

��
��

� �
� �

�

�

�

� �� �

�

R2tS

zt

FSM

LFSR
s5

s0s15

R1t

Fig. 1. A schematic picture of SNOW 2.0

Denote the 16 words in the LFSR at clock t by st,...,st+15. The output word
zt at clock t is defined by

zt = (st+15 + R1t)⊕R2t ⊕ st

where “+” means integer addition of 32 bit words. The rule to update registers
R1 and R2 at clock t is given by

R2t+1 := S(R1t) and R1t+1 := R2t + st+5 (8)

where S is a nonlinear 32 bit to 32 bit bijection, which is composed of the S-box
and the MixColumn step in the AES block cipher. However, we don’t make use
of an explicit description of S.

Our fault attack on SNOW 2.0 assumes that one can induce a fault in the
memory register R2 (for a time instant t′ over which there is no control). Now
we point out a particular property of SNOW 2.0. Assume for one clock t that
either R2t or R1t is faulty but not both registers at the same time. Then due

Fault was induced into R2t′ before zt′ is computed
Clock . . . t′ − 1 t′ t′ + 1 t′ + 2 t′ + 1 . . .

Register R1 . . . R1t′−1 R1t′ R1′
t′+1 R1t′+2 R1′

t′+3 . . .

Register R2 . . . R2t′−1 R2′
t′ R2t′+1 R2′

t′+2 R2t′+3 . . .

Keystream . . . zt′−1 z′
t′ z′

t′+1 z′
t′+2 z′

t′+3 . . .

Fault was induced into R2t′−1 after zt′−1 has been computed
Clock . . . t′ − 1 t′ t′ + 1 t′ + 2 t′ + 1 . . .

Register R1 . . . R1t′−1 R1′
t′ R1t′+1 R1′

t′+2 R1t′+3 . . .

Register R2 . . . R2′
t′−1 R2t′ R2′

t′+1 R2t′+2 R2′
t′+3 . . .

Keystream . . . zt′−1 z′
t′ z′

t′+1 z′
t′+2 z′

t′+3 . . .

Fig. 2. The two different cases if inducing a fault into R2

Fault Attacks on Combiners with Memory 47

to (8), one clock later the perturbed register is now undisturbed and vice versa.
Therefore, for each clock t ≥ t′, either R2t or R1t is faulty but not both together.

Assume that after inducing the fault, the output is changed starting from
a clock t. Then, two different cases are possible. Either the value of R2t′ has
been changed before the computation of zt′ or R2t′−1 has been disturbed after
the computation of zt′−1. This is shown in Figure 2. The gray marked entries
indicate the faulty ones.

In both cases several outputs zt with faulty registers R2t are known. In the
first case, it is t ∈ {t′, t′+2, t′+4, . . .}, in the second t ∈ {t′+1, t′+3, t′+5, . . .}.
As we do not know which case is true, we have to do the attack once for each case.
Afterwards, the wrong solution can be easily discarded by computing additional
keystream and comparing it with the observed data.

We describe the attack for the case that R2t has been disturbed before zt

has been computed. The attack for the other case is straightforward. In a basic
version, the attack works as follows:

Consider a fault induced in R2t, that complements the least significant bit,
but does not complement the 2nd lowest bit in R2t. The fault in the higher bits
may be arbitrary. The faulty memory register is called R2′t. That is R2t⊕R2′t =
(∗, . . . , ∗, 0, 1). This fault is identically visible by comparing the output z′t of the
faulty generator by the original output zt.

Now the memory registers are updated to

R2t+1 = S(R1t)
R1t+1 = R2t + st+5

R1′t+1 = R2′t + st+5

In R1′t+1 a fault is induced that becomes visible by comparing zt+1 and z′t+1 (in
R2t+1 no difference has been induced). Thus we have

zt+1 = (st+16 + R2t + st+5)⊕R2t+1⊕ st+1 and z′t+1 = (st+16 + R2′t + st+5)⊕
R2t+1 ⊕ st+1. Focus now on S1 = st+16 + R2t + st+5 = st+16 + st+5 + R2t and
S2 = st+16 + R2′t + st+5 = st+16 + st+5 + R2′t. Then the XOR of S1 and S2
agrees with that of zt+1 and z′t+1. There are now two cases: Either the second
last bit of S1 agrees with that of S2. Then lsb(st+16 + st+5) = 0, otherwise
lsb(st+16 + st+5) = 1. In the first case there is thus no change of the carry,
and in the second case there is one. Anyway, this gives a linear equation in the
LFSR’s state bits.

Carry out these steps for at least 512 = 32 · 16 different clock, until we have
sufficiently many linear equations, so that we can solve for the contents of the
LFSR. Observe that some linear equations might be linearly dependent, so that it
might be necessary to consider more clocks. As in average every 4th fault induced
in R2t has the required form and as we can use only every second output, we
need at least 2 · 4 · 512 = 212 output words produced by the correct and 212

output words produced by the faulted generator.
One can modify and further relax the conditions on the fault induced, e.g.,

one could apply this attack on the 2nd lowest bit. Then one obtains quadratic
instead of linear equations.

48 F. Armknecht and W. Meier

6 Conclusion

We have shown that fault attacks can be successfully applied to LFSR-based
stream ciphers that use a combiner with memory. This is in particular demon-
strated by fault attacks against the stream cipher E0 used in Bluetooth and
against the stream cipher SNOW 2.0. As our general attack proposed in Sec-
tion 3 relies on computing the set of possible inputs X(z1,...,zr

), an obvious coun-
termeasure would be to choose the number k of inputs as well as the number � of
memory bits of the output function not too small (e.g., k, � ≥ 10). Furtheron, the
attack described in Section 4.3 would fail if LFSRs of greater length were used.
Together with the results from [12], it seems to be reasonable to use few long
LFSRs instead of many but short ones. Indeed, our attack on SNOW 2.0 shows
that these countermeasures are not sufficient. As a result, it would be interesting
to see if better countermeasures against fault attacks on stream ciphers exist. In
particular, it seems open whether fault attacks apply in general against stream
ciphers which are not based on LFSR’s and whose driving devices are nonlinear.

Acknowledgement

The second author receives partial funding through GEBERT RÜF STIFTUNG.
We would like to thank the anonymous reviewers which helped to improve the
presentation and Li Yu and Stefan Lucks for helpful discussions.

References

1. Armknecht, Krause: Algebraic Attacks on Combiners with Memory, Crypto 2003,
LNCS 2729, pp. 162-176, Springer, 2003.

2. Armknecht, Lano, Preneel: Extending the resynchronization attack, SAC 2004,
LNCS 3357, pp. 19-38, Springer, 2004.

3. Armknecht: On the existence of low-degree equations for algebraic attacks, Cryp-
tology ePrint Archive: Report 2004/185.

4. Biham, Granboulan, Nguyen: Impossible Fault Analysis of RC4 and Differential
Fault Analysis of RC4, FSE 2005, Springer, 2005.

5. Biryukov, De Cannière: Block Ciphers and Systems of Quadratic Equations, FSE
2003, LNCS 2887, pp. 274-289, Springer, 2003.

6. Boneh, DeMillo, R.J. Lipton: On the Importance of Checking Cryptographic Pro-
tocols for Faults, Eurocrypt 1997, LNCS 1233, pp. 37-51, Springer, 1997.

7. Biham, Shamir: Differential fault analysis of secret key cryptosystems, Crypto 1997,
LNCS 1294, pp. 513-525, Springer, 1997.

8. Courtois, Pieprzyk: Cryptanalysis of block ciphers with overdefined systems of equa-
tions, Asiacrypt 2002, LNCS 2501, pp. 267-287, Springer, 2002.

9. Ekdahl, Johansson: A new version of the stream cipher SNOW, SAC 2002, LNCS
2595, pp. 47-61, Springer, 2002.

10. Ekdahl: On LFSR-based Stream Ciphers - Analysis and Design, Ph.D. Thesis, Lund
University, Sveden, November 21, 2003.

11. Golić, Bagini, Morgari: Linear Cryptanalysis of Bluetooth Stream Cipher, Euro-
crypt 2002, LNCS 2332, pp. 238-255, Springer 2002.

Fault Attacks on Combiners with Memory 49

12. Hoch, Shamir: Fault Analysis of Stream Ciphers, CHES 2004, LNCS 3156, pp.
240-253, Springer, 2004.

13. Lu, Vaudenay: Faster Correlation Attack on the Bluetooth Keystream Generator,
Crypto 2004, LNCS 3152, pp. 407-425, Springer, 2004.

14. Lu, Vaudenay: Cryptanalysis of Bluetooth Keystream Generator Two-Level E0, Asi-
acrypt 2004, LNCS 3329, pp. 483-499, Springer, 2004.

15. Lu, Vaudenay, Meier: The Conditional Correlation Attack: A Practical Attack on
Bluetooth Encryption, Crypto 2005, to appear.

16. Meier, Pasalic, Carlet: Algebraic attacks and decomposition of Boolean functions,
Eurocrypt 2004, LNCS 3027, pp. 474-491, Springer, 2004.

17. Skorobogatov, Anderson, Optical Fault Induction Attacks, CHES 2002, LNCS 2523,
pp. 2-12, Springer, 2002.

A An Example for Fault Attack on the Summation
Generator with k = 2 Inputs

In this section we illustrate the general fault attack described in section 3 on the
summation generator with k = 2 inputs Xt = (at, bt) and � = 1 memory bits
from section 2. By theorem 1, not all outputs (zt, zt+1) ∈ {0, 1}2 can be produced
by all 16 possible inputs (Xt, Xt+1) ∈ {0, 1}4. Due to the small values of k and
�, it is possible to exhaustively compute all possible input-output combinations
over 2 clocks. From this, it is easy to derive for a given output (zt, zt+1) the set
of possible inputs.

X0,0 = {(0000), (0011), (1101), (1110), (0101), (0110), (1001), (1010)}
X0,1 = {(0001), (0010), (1100), (1111), (0100), (0111), (1000), (1011)}
X1,0 = {(0100), (0111), (1000), (1011), (0000), (0011), (1101), (1110)}
X1,1 = {(0101), (0110), (1001), (1010), (0001), (0010), (1100), (1111)}

Note that each output (zt, zt+1) can be produced by only half of the 16 possible
inputs (at, bt, at+1, bt+1), i.e., the property described in theorem 1 holds for each
possible output. Any observed output segment (zt, zt+1) provides the information
that (Xt, Xt+1) ∈ X(zt,zt+1). It is easy to see that for each (zt, zt+1), no linear
functions g �≡ 0 exists with g(Xt, Xt+1) = 0 for all (Xt, Xt+1) ∈ X(zt,zt+1).
More specifically, it is not possible for the adversary to derive a linear function
L : {0, 1}4 → {0, 1} such that L(Xt, Xt+1) = 0 holds.

In the fault attack scenario, the adversary can now re-run the keystream
generator with the same initial setting and induce a unknown fault in the mem-
ory register during the run. Let (z′t, z′t+1, . . .) be the keystream of this second
disturbed run, also observed by the adversary. He cannot choose the point in
time t′ of the disturbance, but estimate it by comparing the two keystreams
(z1, . . .) and (z′1, . . .). Suppose that the fault is induced in Qt′ with t′ ≤ t and
a different keystream segment (z′t, z

′
t+1) �= (zt, zt+1) has occurred. Hence, it is

Xt ∈ X(zt,zt+1)∩X(z′
tz

′
t+1) and the number of possible assignments of Xt is further

reduced. For example, if (zt, zt+1) = (0, 0) and (z′t, z
′
t+1) = (1, 0), then

Xt+1
t = (at, bt, at+1, bt+1) ∈ X(0,0) ∩X(1,0) = {(0000), (0011), (1101), (1110)}.

50 F. Armknecht and W. Meier

Xt+1
t is still not uniquely determined, but the adversary has gained the additional

information that at⊕bt = 0 is true in any case. Repeating these steps for several
clocks t, it is possible to derive a system of linear equations in Xt and hence in
K. By computing the solution, it is easily possible to determine the unknown
initial setting K.

B Examples Concerning Section 4.3

B.1 Example for Computing ΣΓ (Z, Z′Δ)

We demonstrate on an example how the value Σ(Δ) is computed. Let Γ =
(γ0, γ1, γ2) := (1, 1, 0, 1). Now we consider the following situation:

t 1 2 3 4 5 6 7 8 9 10
zt 1 1 0 0 0 1 1 1 0 0
z′t 0 1 1 0 1 1 0 1 1 1
δt 0 0 1 1 1 0 1 0 0 1

By definition, ΣΓ (Z, Z ′, Δ) is the number of clocks 1 ≤ t ≤ t with

(zt ⊕ z′t)⊕ (zt+1 ⊕ z′t+1)⊕ (zt+3 ⊕ z′t+3) = δt ⊕ δt+1 ⊕ δt+3.

In this case, the values of
⊕

γi(zt ⊕ z′t ⊕ δt) for t = 1, . . . , 7 are 0, 0, 1, 1, 0, 1
and 0, respectively. Hence, it is ΣΓ (Z, Z ′, Δ) = 4.

B.2 Example for Computing the Index Ind(Δ)

In our example we assume that altogether 8 different possible faults Δ exist,
denoted by Δ0,. . . ,Δ7. We use four different coefficient vectors Γ1, . . . , Γ4 and
consider for each of them the three Δ’s having the highest values ΣΓi(Z, Z ′, Δ)
(see also previous section). We abbreviate ΣΓi(Z, Z ′, Δj) by Σj

i .
Assume that computing the values Σj

i gives the following orderings:

Σ7
1 < Σ0

1 < Σ3
1 < Σ4

1 < Σ2
1 < Σ1

1 < Σ6
1 < Σ5

1
Σ1

2 < Σ5
2 < Σ0

2 < Σ3
2 < Σ7

2 < Σ6
2 < Σ2

2 < Σ4
2

Σ2
3 < Σ0

3 < Σ1
3 < Σ4

3 < Σ5
3 < Σ7

3 < Σ5
3 < Σ3

3
Σ7

4 < Σ2
4 < Σ5

4 < Σ1
4 < Σ3

4 < Σ0
4 < Σ4

4 < Σ6
4

The first Top-3-list L(Γ1) contains the three Δj having the highest values of Σ1.
In this case, these are Δ1, Δ6 and Δ5. L(Γ2), L(Γ3) and L(Γ4) are defined anal-
ogously. It is L(Γ1) = [Δ1, Δ6, Δ5], L(Γ2) = [Δ6, Δ2, Δ4], L(Γ3) = [Δ7, Δ5, Δ3]
and L(Γ4) = [Δ0, Δ4, Δ6].

The next step consists in counting for each Δj its number of occurrences in
L(Γ1), . . . , L(Γ4), called its index. As Δ6 has the highest index, namely 3, it is
an apparent candidate for the unknown guess. But simulations showed that this
strategy results in wrong guesses in significantly many cases. Hence, we imposed
a stronger condition for a guess: the index of the guess must be at least two
higher than the other indices.

New Observation on Camellia

Duo Lei1, Li Chao2, and Keqin Feng3

1 Department of Science, National University of Defense Technology,
Changsha, China

Duoduolei@163.com
2 Department of Science, National University of Defense Technology,

Changsha, China
3 Department of Math, Tsinghua University,

Beijing, China

Abstract. In this paper, some observations on Camellia are presented,
by which the Square attack and the Collision attack are improved. 11-
round 256-bit Camellia without FL function is breakable with complex-
ity of 2250 encryptions. 9-round 128-bit Camellia without FL function
is breakable with the complexity of 290 encryptions. And 10-round 256-
bit Camellia with FL function is breakable with the complexity of 2210

encryptions and 9-round 128-bit Camellia with FL function is breakable
with the complexity of 2122 encryptions. These results are better than
any other known results. It concludes that the most efficient attack on
Camellia is Square attack.

1 Introduction

Camellia [1] is a 128-bit block cipher proposed by NTT and Mitsubishi in 2000.
It has the modified Feistel structure with irregular rounds, which is called the
FL/FL−1 function layers. Camellia had been submitted to the standardization
and the evaluation projects such as ISO/IEC JTC 1/SC 27, CRYPTREC, and
NESSIE.

The most efficient methods analyzing Camellia are truncated differential
cryptanalysis[4][5][6] and higher order differential attack[7][9]. Camellia with
more than 11 rounds is secure against truncated differential cryptanalysis. Square
attack[11] is a most efficient attack on AES[11][12] . Y. He and S. Qing [2] showed
that 6-round Camellia is breakable by it. Y.Yeom, S. Park, and I. Kim [3] im-
proved the result to 8 rounds. Collision attack on Camellia was presented by WL
Wu[10].

In this paper, some observations on Camellia are presented, by which the
Square attack and the Collision attack are improved. Variant Square Attack
can break 11-round 256-bit Camellia without FL function with complexity of
2250 encryptions. 9-round 128-bit Camellia without FL function is breakable
with the complexity of 290 encryptions. And 10-round 256-bit Camellia with FL
function is breakable with the complexity of 2210 encryptions and 9-round 128-bit
Camellia with FL function is breakable with the complexity of 2122 encryptions.
These results are better than any other known results.

B. Preneel and S. Tavares (Eds.): SAC 2005, LNCS 3897, pp. 51–64, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

52 D. Lei, L. Chao, and K. Feng

Brief description of Camellia and some new structures equivalent to Camellia
are presented in section2. In section 3, active bytes transformations on Camellias
are illustrated and some new properties are demonstrated. Our attacking meth-
ods are described in section 4. Section 5 is some extension. The paper concludes
with our most important results.

2 Equivalent Structures of Camellia

2.1 Description of the Camellia

Camellia has a 128-bit block size and supports 128-, 192- and 256-bit keys.Camellia
with a 128-bit key and 256-bit key is written as 128-Camellia, 256-Camellia. The
design of Camellia is based on the Feistel structure and its number of rounds is
18(128-bit key) or 24(192-, 256-bit key). The FL/FL−1 function layer is inserted
in it every 6 rounds in order to thwart future unknown attacks. Before the first
round and after the last round, there are pre- and post-whitening layers. F function
contains key-addition, S-function and P-function. S-function contains 4 types of S-
boxes s1, s2, s3, and s4. s2,s3,s4 are variations of s1. The P-function:{0, 1}64 �→
{0, 1}64 maps (z1, ..., z8) to (z′1, ..., z

′
8), defined as:

z′1 = z1 ⊕ z3 ⊕ z4 ⊕ z6 ⊕ z7 ⊕ z8
z′2 = z1 ⊕ z2 ⊕ z4 ⊕ z5 ⊕ z7 ⊕ z8
z′3 = z1 ⊕ z2 ⊕ z3 ⊕ z5 ⊕ z6 ⊕ z8
z′4 = z2 ⊕ z3 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7
z′5 = z1 ⊕ z2 ⊕ z6 ⊕ z7 ⊕ z8
z′6 = z2 ⊕ z3 ⊕ z5 ⊕ z7 ⊕ z8
z′7 = z3 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z8
z′8 = z1 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7

We refer X(r), K(r) to the rth round input and subkey, refer XL
(r) and XR

(r) to the
left, right half bytes of X(r), which implies X(r) = (XL

(r), X
R
(r)). Let X(ri) is the

ith byte of X(r), PL and CP be the Plaintext and Ciphertext, and X(L) be the
last round output. The round function of Camellia is written as follows (named
as Camellia-1) , which is shown in Fig. 1:

XL
(1) = PLL, XR

(1) = PLR,

XL
(r+1) = XR

(r) ⊕ P (s(XL
(r) ⊕K(r))),

XR
(r+1) = XL

(r),

CPL = XL
(L), CPR = XR

(L)

rRoundPSK

Fig. 1. Round function of Camellia-1

New Observation on Camellia 53

2.2 Three Equivalent Structures of Camellia

We can write Camellia in following form called Camellia-2, where P−1 is the in-
verse transformation of P-function and X̄(r) is the rth round input of Camellia-2.
Figure illustration of Camellia-2 is given in Fig. 2:

X̄L
(1) = P−1(PLL), X̄R

(1) = P−1(PLR),
X̄L

(r+1) = X̄R
(r) ⊕ s(P (X̄L

(r))⊕K(r)),
X̄R

(r+1) = X̄L
(r),

CPL = P (X̄L
(L)), CPR = P (X̄R

(L))

P SK rRound

Fig. 2. Round function of Camellia-2

We can also write Camellia in the form of Camellia-3 where X̂(r) is the rth
round input. Figure illustration is given in Fig. 3:

X̂L
(1) = PLL, X̂R

(1) = P−1(PLR),

X̂L
(r+1) = X̂R

(r) ⊕ s(X̂L
(r) ⊕K(r)), where r is odd

X̂L
(r+1) = P (X̂R

(r) ⊕ s(P (X̂L
(r))⊕K(r))), where r is even

X̂R
(r+1) = X̂L

(r),

CPL = X̂L
(L), CPR = P (X̂R

(L))

12rRound

P SK

SK

P 22rRound

Fig. 3. Round function of Camellia-3

The structure of Camellia-4 is given as follows where X̃(r) is the rth round
input of that. Figure illustration is given in Fig. 4:

X̃L
(1) = P−1(PLL), X̃R

(1) = PLR,

X̃L
(r+1) = P (X̃R

(r) ⊕ s(P (X̃L
(r))⊕K(r))), where r is odd

X̃L
(r+1) = X̃R

(r) ⊕ s(X̃L
(r) ⊕K(r)), where r is even

X̃R
(r+1) = X̃L

(r),

CPL = P (X̃L
(L)), CPR = X̃R

(L)

54 D. Lei, L. Chao, and K. Feng

12rRoundP

SK

SK P

22rRound

Fig. 4. Round function of Camellia-4

3 New Observations on Camellia

3.1 Preliminaries

Let a Λ-set be a set of 256 states that are all different in some of the state bytes
(the active) and all equal in the other state bytes (the passive). We have:

∀x, y ∈ Λ : {xi �= yi

xi = yi

if xi is active
else

Let Γ -set be a set of 256 states that are all equal to zero in summation (the
balanced).

∀x ∈ Γ :
∑

xi = 0

Applying the S-function or Key-addition on a Λ-set results in a Λ-set with the
positions of the active bytes unchanged. The result set of applying P-function
to a Λ-set is not always a Λ-set but always a Γ -set.

Applying Key-addition or P-function on a Γ -set results in a Γ -set. Applying S-
function on a Γ -set results in the active bytes and passive bytes are still balanced.
Applying AND operation, OR operation or right shift operation on a Γ -set
results in a Γ -set.

Here, we give some definitions that are used in following sections.

F : A Λ − set has the form of {α1, α2, α3, α4, α5, α6, α7, α8, i, β2, β3, β4,
β5, β6, β7, β8}, in which αi, βj are constant, i ∈ {0, .., 255}.
Ft: A Λ − set has the form of {α1, α2, α3, α4, α5, α6, α7, α8, i, β2, β3, β4,

β5, β6, β7, γt}t, in which αi, βj , γk are constant, i ∈ {0, .., 255}.
F̃t: A Λ−set has the form of {i, β2, β3, β4, β5, β6, β7, γt, s1(i⊕k1), α2, α3, α4,

α5, α6, α7, s1(γt⊕ k2)}t, in which αi, βj , γk, k1, k2 are constant, i ∈ {0, .., 255}.
F̂t: A Λ − set has the form of {β1, i ⊕ β2, i ⊕ β3, i ⊕ β4, i ⊕ β5, β6, β7,

i ⊕ γt, s1(i ⊕ k1), s1(i ⊕ k1) ⊕ α2, s1(i ⊕ k1) ⊕ α3, α4, s1(i ⊕ k1) ⊕ α5, α6, α7,
s1(i⊕ k1)⊕ α8}t, in which αi, βj , γk, k1 are constant, i ∈ {0, .., 255}.˜̃F t: A Λ− set has the form of {s1(i⊕ k1), α2, α3, α4, α5, α6, α7, s1(γt ⊕ k2),
Δ1 ⊕ i,Δ2, Δ3, Δ4, Δ5, Δ6, Δ7, Δ8 ⊕ γt}, in which {Δ1, Δ2, Δ3, Δ4, Δ5, Δ6,
Δ7, Δ8} satisfy Eq.(1), αi, βj , γk, η1, η2, η3, η4, η5, η6, η7, η8 k1, k2, k3, k4, k5,
k6, k7, k8, k9 are constant, i ∈ {0, .., 255}.

New Observation on Camellia 55⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δ1
Δ2
Δ3
Δ4
Δ5
Δ6
Δ7
Δ8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 1 0 1 1 1
1 1 0 1 1 0 1 1
1 1 1 0 1 1 0 1
0 1 1 1 1 1 1 0
1 1 0 0 0 1 1 1
0 1 1 0 1 0 1 1
0 0 1 1 1 1 0 1
1 0 0 1 1 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1(s1(i⊕ k1)⊕ η1 ⊕ s1(γt ⊕ k2))
s2(s1(i⊕ k1)⊕ η2 ⊕ s1(γt ⊕ k2))
s3(s1(i⊕ k1)⊕ η3 ⊕ s1(γt ⊕ k2))

s4(η4)
s2(s1(i⊕ k1)⊕ η5 ⊕ s1(γt ⊕ k2))

s3(η6 ⊕ s1(γt ⊕ k2))
s4(η7 ⊕ s1(γt ⊕ k2))
s1(s1(i⊕ k1)⊕ η8)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(1)

̂̂F t: A Λ− set has the form of {s1(i⊕ k1), s1(i⊕ k1)⊕α2, s1(i⊕ k1)⊕α3, α4,
s1(i ⊕ k1) ⊕ α5, α6, α7, s1(i ⊕ k1), s1(s1(i ⊕ k1) ⊕ k2), s2(s1(i ⊕ k1) ⊕ k3) ⊕ i,
s3(s1(i⊕k1)⊕k4)⊕ i, α4⊕ i, s2(s1(i⊕k1)⊕k5)⊕ i, α6, α7, s1(s1(i⊕k1)⊕k6)⊕
i⊕ γt)}t, in which αi, βj , γk, k1, k2, k3, k4, k5, k6 are constant, i ∈ {0, .., 255}.

In next section, we trace the position changes of the active bytes through 5
rounds transformations of Camellia-1∼4 and the plaintext set {PL} is a Λ −
set F . We just describe the evolution of left half bytes of round outputs, for the
left half bytes of previous round pass to right half bytes of next round unchanged.

3.2 Active Bytes Changing Properties

In Camellia-1, XR
(1,1) is active byte, 1st round transformations convert the active

byte to XL
(2,1), other bytes are passive. In 2nd round transformations, P-function

converts the active byte to 5 active bytes which are XL
(31), XL

(32), XL
(33), X

L
(35),

XL
(38) and three passive bytes. In 3rd round transformation, P-function converts

the active bytes to 8 balanced bytes. In 4th round transformation, S-function
converts balanced bytes to unbalanced bytes. After 5th round transformation all
bytes are unbalanced. Evolutions of active bytes are illustrated in Fig. 5.

),...,,(PL 821
L),...,(A,PL 82

R

LCP RCP

PSK

PSK

PSK

PSK

PSK

Round1

Round2

Round3

Round4

Round5

BytePassive ByteBalanced ByteUnbalanced

Fig. 5. Round function of Camellia-1

In Camellia-2, 1st byte of {PL} is active, the pre-P−1-function converts the
active byte to 5 active bytes. 1st round transformations convert the 5 active
bytes and 3 passive bytes to 5 active bytes and 3 passive bytes. 2nd round

56 D. Lei, L. Chao, and K. Feng

transformations convert the 5 active bytes and 3 passive bytes to 1 active byte
and 7 passive bytes. 3rd round transformation convert the 5 active bytes and
3 passive bytes to 2 active bytes, 4 balanced bytes and 2 passive bytes, where
X̄L

(41), X̄
L
(42) are active, X̄L

(42), X̄
L
(43), X̄

L
(45), X̄

L
(48) are balanced and X̄L

(46), X̄
L
(47)

are passive. 4th round transformations convert those bytes to unbalanced bytes.
Evolutions of active bytes are illustrated in Fig. 6.

Details of 2nd and 3rd transformation are given in Eq.(2)and Eq.(3).

X̄L
(3) = X̄R

(2) ⊕ s(P (X̄L
(2) ⊕K(2))

= X̄L
(1) ⊕ s(P (X̄R

(1) ⊕ s(P (X̄L
(1))⊕K(1)))⊕K(2))

= X̄L
(1) ⊕ s(P (P−1(PLR)⊕ s(P (X̄L

(1))⊕K(1)))⊕K(2))
= X̄L

(1) ⊕ s((PLR ⊕ s(P (X̄L
(1))⊕K(1)))⊕K(2))

(2)

),...,,(PL 821
L),...,(A,PL 82

R

LCP RCP

P SK

P SK

P SK

P SK

P SK

Round1

Round2

Round3

Round4

Round5

ByteFixed byteBalanced byteUnbalanced

-1P-1P

P P

Fig. 6. Round function of Camellia-2

X̄L
(11) is the only active byte in {X̄L

(1)}, since applying addition and S-function
on it results in {X̄L

(3)} with position of active byte unchanged, demonstrated
in Eq.(2). Each byte of X̄L

(4) can be written in the form of Eq.(3), in which
X̄L

(41), X̄
L
(44) are influenced by an active byte X̄L

(31) so active, X̄L
(42), X̄L

(43), X̄L
(45),

X̄L
(48) are influenced by 2 active bytes thus balanced and X̄L

(46), X̄
L
(47) are derived

from passive bytes, still passive.

X̄L
(41) = s(X̄L

(31) ⊕ X̄L
(33) ⊕ X̄L

(34) ⊕ X̄L
(36) ⊕ X̄L

(37) ⊕ X̄L
(38) ⊕K(31))⊕ X̄R

(31)
X̄L

(42) = s(X̄L
(31) ⊕ X̄L

(32) ⊕ X̄L
(34) ⊕ X̄L

(35) ⊕ X̄L
(37) ⊕ X̄L

(38) ⊕K(32))⊕ X̄R
(32)

X̄L
(43) = s(X̄L

(31) ⊕ X̄L
(32) ⊕ X̄L

(33) ⊕ X̄L
(35) ⊕ X̄L

(36) ⊕ X̄L
(38) ⊕K(33))⊕ X̄R

(33)
X̄L

(44) = s(X̄L
(32) ⊕ X̄L

(33) ⊕ X̄L
(34) ⊕ X̄L

(35) ⊕ X̄L
(36) ⊕ X̄L

(37) ⊕K(34))⊕ X̄R
(34)

X̄L
(45) = s(X̄L

(31) ⊕ X̄L
(32) ⊕ X̄L

(36) ⊕ X̄L
(37) ⊕ X̄L

(38) ⊕K(35))⊕ X̄R
(35)

X̄L
(46) = s(X̄L

(32) ⊕ X̄L
(33) ⊕ X̄L

(35) ⊕ X̄L
(37) ⊕ X̄L

(38) ⊕K(36))⊕ X̄R
(36)

X̄L
(47) = s(X̄L

(33) ⊕ X̄L
(34) ⊕ X̄L

(35) ⊕ X̄L
(36) ⊕ X̄L

(38) ⊕K(37))⊕ X̄R
(37)

X̄L
(48) = s(X̄L

(31) ⊕ X̄L
(34) ⊕ X̄L

(35) ⊕ X̄L
(36) ⊕ X̄L

(37) ⊕K(38))⊕ X̄R
(38)

(3)

In Camellia-3, 1st byte of {PL} is active, the pre-P-function converts the
active byte to 5 active bytes. 1st round transformations convert the 5 active

New Observation on Camellia 57

bytes, 3 passive bytes to 5 active bytes,3 passive bytes. 2nd round transfor-
mations convert the 5 active bytes, 3 passive bytes to 5 active bytes, 3 active
bytes. 3rd round transformation convert 5 active bytes, 3 passive bytes to 2
active bytes, 4 balanced bytes and 2 passive bytes, where X̂L

(41), X̂
L
(42) are ac-

tive, X̂L
(42), X̂

L
(43), X̂

L
(45), X̂

L
(48) are balanced and X̂L

(46), X̂
L
(47) are passive.And 4th

round transformations convert those bytes to unbalanced bytes. The deducing
procedure is similar to that of Camellia-2. Figure illustration is given in Fig.7.

),...,,(PL 821
L),...,(A,PL 82

R

LCP RCP

P SK P

SK

SK

P SK

SK

Round1

Round2

Round3

Round4

Round5

ByteFixed byteBalanced byteUnbalanced

-1P

P

P

Fig. 7. Round function of Camellia-3

The outstanding properties of Camellia-3 are Eq.(4) and Eq.(5), that are
used in Improved Square attack and Improved Collision attack in section 4.2
and section 4.3.∑

PL∈F
X̂R

(5i) = 0⇒
∑

PL∈F
(s(X̂R

(6i) ⊕K(5i))⊕ X̂L
(6i) = 0, 6 ≤ i ≤ 7. (4)

X̂R
(5i) ≡ C ⇒ s(X̂R

(6i) ⊕K(5i))⊕ X̂L
(6i) ≡ C, PL ∈ F , 1 ≤ i ≤ 8. (5)

Camellia-3 also have the property of Eq.(6) that is used in section 4.4.

X̂R
(5i) = B ⇒ s(X̂R

(6i)⊕K(5i))⊕ X̂L
(6i) = B, PL ∈ F , B is active, i ∈ {1, 4}. (6)

In Camellia-4, XR
(11) is active, 1st round transformations convert the active

byte to an active byte, 2nd round transformations convert the active byte to
an active byte and 3rd round transformations convert the active byte to 8 ac-
tive bytes. Figure illustration is shown in Fig.8. The outstanding property of
Camellia-4 is that seven 3rd round output bytes are passive, which will be used
in variant Square attack in section 4.1.∑

PL∈F X̃L
(4i) ⊕K(4i) = 0, i �= 1, C̃i is a constant.

⇒
∑

PL∈F
(s−1(X̃L

(5i))⊕ C̃i) = 0, i �= 1, C̃i is a constant. (7)

58 D. Lei, L. Chao, and K. Feng

),...,,(PL 821
L),...,(A,PL 82

R

LCP
RCP

SK

PSK

P SK P

SK

P SK

Round1

Round2

Round3

Round4

Round5

ByteFixed ByteBalanced ByteUnbalanced

-1P

P

P

P

Fig. 8. Round function of Camellia-4

4 Some Attacks

In this section, we construct the attacks on Camellia without pre-, post- whiten-
ing and FL/FL−1 function. The influences of FL/FL−1 function are discussed
in section 5.

4.1 Variant Square Attack

The 6-round variant Square attack use the property of Eq.(8), which is derives
from Eq.(7), and use the structure of Camellia-4. This attack can be described
by the following steps.∑

PL∈Ft

(s−1(s(X̃(R)
(7i) ⊕K(6i))⊕ X̃L

(7i) ⊕ C̃i) = 0, C̃i is a constant, i �= 1. (8)

– Step 1: Select the Plaintext sets {PL}t as {PL}t = Ft, 1 ≤ t ≤ 3, calculate
the values of (XL

(7), X
R
(7)) and record them, which will be used in following

steps.
– Step 2: Guess k(65) and C̃5, then check whether Eq.(8) is satisfied or not,

where the Plaintext set is F1. If Eq.(8) is satisfied, record the values of k(65)

and C̃5 that may be the correct pair. Step 2 is ended until all possible values
are checked.

– Step 3: For all ’correct’ pairs from step 2, checks whether Eq.(8) is satisfied
or not, where the Plaintext set are Ft, 2 ≤ t ≤ 3. (γt does not influence the
value of C̃5).

In this 6-round attack, the time that step 1 takes is 3×28 6-round encryptions
takes. Since Eq.(8) has 256 + 256 × 3 additions, 256 × 2 substitutions, and 6-
round Camellia has 44× 6 additions, 8× 6 substitutions, the time Eq.(8) takes
is nearly 6 times of that 6-round encryptions of Camellia take. In step 2, Eq.(8)
repeats 28 × 28 times. The probability of wrong key passing the checking is 28,
so there is 28 pairs passing the checking in step 2, that implies the time of step

New Observation on Camellia 59

3 and 4 take 28 × 3 and 3 times of that 6-round encryptions take, respectively.
In this 6-round attack, we only do the step 1, step 2 and step 3 one time. So the
6-round attack’s complexity is 28 × 3 + 216 × 6 + 28 × 6× 2 ≈ 218.6. The counts
of selected Plaintexts are 28 × 3.

In 7-round attack, we add one round at the beginning, use the structure of
Camellia-3 and select the input sets {X̃(1)}t as F̃t, where k1 and k2 are guessing
key, for that: if k1 = k(11), k2 = k(18) then ∀X̃(1) ∈ F̃t ⇒ X̃(2) ∈ Ft.

This 7-round attack use Eq.(9) for checking and select the T as 7, for the
probability of all key bytes pass the checking is 2−8×T . The guessing step is as
follows: ∑

X̃(1)∈F̃t

(s−1(s(X̃(R)
(8i) ⊕K(7i))⊕ X̃L

8i ⊕ C̃i) = 0, i �= 1, 1 ≤ t ≤ T }. (9)

– Step 1: Guess the values of k(11) and k(18).
– Step 2: For each X(1) ∈ F̃t calculate the result of {X(8)}t .
– Step 3: Guess k(75) and C̃5, and record the values that pass the checking

Eq.(9),where the Plaintext set is F̃1.
– Step 4: For all ’correct’ pairs from step 3, checks whether Eq.(9) is satisfied

or not, where 2 ≤ t ≤ 7, if all the pairs can’t pass the check, go to step 1.

The attacking complexity is 216× (28 × 7 + 216× 6 + 28× 6× 6) ≈ 233.6. The
complexity of 256-Camellia is 225.6, since its 1st round key bits are the same as
7th round key bits.

The 8-round attack is similar to 7-round attack, the only difference is that
X̃

(R)
(8i) is unknown. Getting X̃

(R)
(8i) from X̃(9) needs five 8th round key bytes, then

complexity of this attack is 216 × (28 × 12 + 256 × 6 + 248 × 6× 11) � 274.6, the
complexity of 256-Camellia becomes 266.6.

In 9-round attack, we add one round at the beginning and use the structure of
Camellia-4, where the selected special plaintexts should satisfy the properties of

that {X̃(2)}t is a Γ − set with the from of F̃t. So we select {X̃(1)}t as ˜̃Ft, where
k1,...,k9 are guessing key. . The complexity of this attack is 272× (28×19+256×
4 + 248× 4× 18) ≈ 2130. In 256-Camellia, the 2nd round key bytes are the same
as 8th round key bytes, so the complexity of the attack is 2122. In 128-Camellia
1st round key bytes are the same as 9th round key, so the complexity is 290. In
10-round attack, we add 1 round at the end and use the structure of Camellia-4,
it will need to guess another 8 bytes key. The complexity is 2186. And attacking
on 11-round Camellia, the complexity is 2250.

4.2 Improved Square Attack

The best result of Square attack against Camellia was given by Y.Yeom, S. Park,
and I. Kim [3]. In this paper we improved the attacking result, since Camellia-3
satisfying Eq.(4), so called Improved Square attack.

The basic attack on 5-round camellia use the property of s(X̂R
(65) ⊕K(55))⊕

X̂L
(65) is balanced byte if the plaintext set is Ft, which is illustrated in Eq.(4),

60 D. Lei, L. Chao, and K. Feng

and the probability of wrong key pass the checking is 2−8. The attacking details
are as follows.

– Step 1: Choose Ft, 1 ≤ t ≤ 2 as plaintext sets, calculate the values of X̂L
(65)

and record them.
– Step 2: For each possible values of K(55), check whether Eq.(4) is satisfied or

not, where the Plaintext set is F1, and record the passed key bytes, which
may be the correct key byte. Go to next step until all possible values are
checked.

– Step 3: For all ’correct’ key bytes in step 2, checks whether Eq.(4) is satisfied
or not, where the Plaintext set is F2.

For this 5-round attack, the time that step 1 takes equals the time that 2×28

5-round encryptions takes. Since Eq.(4) has 256 × 2 + 256 additions and 256
substitutions, and 5-round Camellia has 44×5 additions and 8×5 substitutions,
so the time Eq.(4) takes is nearly 5 times of that 5-round Camellia encryptions
take. In step 2, Eq.(4) repeats 28 times. The probability of wrong key passing
the checking is 2−8, so there will be few passing the checking, that means the
time of step 3 takes 5 times of that 5-round encryptions take. So the complexity
of 5-round attack is 28 × 2 + 28 × 5 + 5 ≈ 210.6.

6-round attack add one round at the begin and select the F̂t, 1 ≤ t ≤ 5
as plaintext sets and use the structure of Camellia-4. If k1 in F̂t, 1 ≤ t ≤ 5
equals k(11), then s(X̂R

(75)⊕K(65))⊕ X̂L
(75) is balanced byte. So in this attack for

each guessing k1 we check wether the byte s(X̂R
(75) ⊕K(65))⊕ X̂L

(75) is balanced
or not, similar as 5-round attack. The complexity of the attack is 28 × (28 ×
5 + 28 × 4 + 4 × 4) ≈ 218. We extend 6 round attacks to 7-round by adding
one round at the end and select the plaintexs as 6-round attack. Then to get
to know X̂R

(75) we have to guess 5 7th round key bytes, so the complexity is
28 × (28 × 10 + 248 × 4 + 240 × 4) ≈ 258.

In 8-round attack, adding one round at the beginning, use the structure of

Camellia-4. The input sets {X̂(1}t is selected as ̂̂F t, 1 ≤ t ≤ 15. The key bytes are
used in attack. The complexity of the attack is 248×(28×15+248×4+240×14) ≈
298. The complexity of the attack on 256-Camellia is 282, since the 1st and 2nd
round key bytes are the same as 7th and 8th round key bytes, respectively. The
complexity of the attacks on 9 and 10 rounds are 2146 and 2212, respectively.

4.3 Improved Collision Attack

Collision attack on Camellia is given by WL wu[10]. We improve the attacking
results, called Improved Collision attack. In 5-round attack, Eq.(10) is used for
checking, which is derived from Eq.(5).

s(X̂R
(6i)⊕K(5i))⊕X̂L

(6i) ≡ s(X̂ ′R
(6i)⊕K(5i))⊕X̂ ′L

(6i), X̂(1), X̂ ′
(1) ∈ F , i ∈ {6, 7}. (10)

The procedure of this attack is similar to that of 5 round Improved Square
attack. The time Eq.(10) takes is nearly 1/4 times that of 1-round Camellia

New Observation on Camellia 61

encryptions take, then the complexity of 5 round attack is 4 + 4× 28/(4× 5) ≈
25.8. Similarly as section 4.2, The complexities of the attack on 6,7,8,9 rounds
are 28 × (5 + 5 × 28/(6 × 4)) ≈ 213.7, 28 × (10 + 10 × 248/(7 × 4)) ≈ 254.5,
248× (15 + 15× 248/(8× 4)) ≈ 294.9 and 248 × (23 + 23× 2112/(9× 4)) ≈ 2159.4.
The complexity of 9-round attack on 128-Camellia is 2119.4. The complexities of
the attack on 256-Camellia with 7,8,9 and 10 are 246.5, 278.9, 2143.4 and 2205.6.

4.4 Other Observations

We can build a new attack on Camellia based on Eq.(6), which implies the
result of s(X̂R

(6i) ⊕K(5i)) ⊕ (̂X)L
(6i) is a active byte. We select the Λ − set F as

plaintext sets,then check whether s(X̂R
(6i)⊕K(5i))⊕ (̂X)L

(6i) is active byte or not
for guessing key byte K(5i).

There is also an interesting property in Camellia-4. If we select the Plaintext
(X̃L

1 , X̃R
1) ∈ F ,then X̃R

(58) with the form of Eq.(11).

X̃R
(58) = s1(s1(B⊕ γ)⊕ s2(B⊕ γ)⊕ δ)⊕ ε, γ, δ, ε are passive, B is active (11)

5 The Influence of FL/FL−1

In this section, we construct the attacks on Camellia with FL/FL−1 function
and without pre- and post-whitening.

5.1 Variant Square Attack

In 7-round variant Square attack, we use the structure of Camellia-4 and select
the plaintexts {X̃L

(1), X̃
R
(1)}t as a series of Λ−sets ¯̄F t . The equation used in this

attack is Eq.(12).∑
X̃L

(1),X̃
R
(1)∈ ¯̄Ft

(s−1(X̃L
(7i) ⊕ C̃i) = 0, i ∈ {1, 2, ..., 8}, t ∈ {1, 2, ..., T}. (12)

If there is a FL/FL−1 function in Camellia-4, we have X̃L
(7i) �= X̃R

(8i). Getting
X̃L

(7i) from X̃R
(8i) needs to guess eight key bytes, which are used in FL−1 function.

Hence the attacking complexity is 272× (28×21+272×6+264×6×20)≈ 2146.6,
where the value of T is 21. In 128-Camellia,the complexity becomes 290.6, since
the key bytes used in FL−1 function are the same as 1st round key bytes.

In this 8-round attack, we add one round at the end. Then the attacking
complexity is 2146.6+64. It becomes 2194.6 in 256-Camellia, since in 256-Camellia
2nd round key bytes are the same as 8th round key.

5.2 Improved Square Attack

In 7-round Improved Square attack, we use the structure of Camellia-3 and select
the {X̂L

(1), X̂
R
(1)} as ¯̄F t, and use Eq.(13) for checking .∑

X(1)∈ ¯̄F
s(X̂R

(8i) ⊕K(7i))⊕ X̂L
(8i) = 0, i ∈ {1, 2, ..., 8}. (13)

62 D. Lei, L. Chao, and K. Feng

If there is a FL/FL−1 function in Camellia-3, we have to consider the prop-
erty of FL(X̂L

(7)). Since the FL function results a Γ −set in a Γ −set, we have a
conclusion that whether there is a FL/FL−1 or not Eq.(13) always holds. Hence
the complexity of that attack is 248 × (28 × 10 + 28 × 6 + 3× 9) ≈ 258.6, the key
bytes required in this attack are {k(11), k(12), k(13), k(15), k(18), k(21), k(75)}.

Table 1. The Summary of known attacks on Camellia

Rounds FL/FL−1 Methods
T ime

128 − bit
T ime

256 − bit
Notes

5 No SA 248 [2]
5 No SA 216 [3]
5 No Improved SA 210.6 This Paper
5 No Improved CA 25.8 This Paper
6 No SA 256 [3]
6 No Higher Order DC 218 [9]
6 No Improved SA 218 This Paper
6 No Improved CA 213.7 This Paper
6 No Variant SA 218.6 This Paper
7 No Truncated DC 192 [5]
7 No Higher Order DC 257 [9]
7 Yes SA — 257.2 [3]
7 No Improved SA 258 250 This Paper
7 No Improved CA 254.7 246.7 This Paper
7 No Variant SA 233.5 225.6 This Paper
7 Yes Improved SA 258.6 This Paper
7 Yes Variant SA 290.6 2146.6 This Paper
8 No Truncated DC 255.6 [5]
8 No Higher Order DC 2120 [9]
8 Yes SA — 2116 [3]
8 Yes Improved SA 298 282 This Paper
8 No Improved CA 294.9 278.9 This Paper
8 No Variant SA 274.6 266.6 This Paper
8 Yes Improved CA 274.6 266,6 This Paper
8 Yes Variant SA — 2194.6 This Paper
9 No Higher Order DC — 2188 [9]
9 Yes SA — 2181.4 [3]
9 Yes Improved SA 2122 2146 This Paper
9 No Improved CA 2119.4 2143.4 This Paper
9 No Variant SA 290 2122 This Paper
10 No Higher Order DC — 2252 [9]
10 Yes Improved SA — 2210 This Paper
10 No Improved CA — 2207.4 This Paper
10 No Variant SA — 2186 This Paper
11 No Higher Order DC — 2259.6 [9]
11 No Variant SA — 2250 This Paper

New Observation on Camellia 63

In 8-round attack, we add one round at the end and still use Eq.(13) for
checking, than the attacking procedure becomes the same as that of section 4.2.
The attacks on 9-and 10-round Camellia with FL function are also no difference
from that of without FL function, which have been described in section 4.2.

6 Conclusions

Variant Square attack can break 9-round 128bit Camellia, 11-round 256 bit
Camellia without FL function, further more, it is faster than exhaustive key
search. The conclusions can be made that key schedule and P-function influence
the security of Camellia and Square attack is still the best attack on Camellia.
Table(1) give a summary of known attacks on Camellia.

Acknowledgement. We would like to thank Vincent Rijmen for his help for
important comments and correctness of mistakes that improved the technical
quality of the paper. The reviewer has kindly pointed out many technical prob-
lems and give suggestions in the submitted version of this draft. We would also
like to thank the referees of the paper, for their constructive comments and
suggestions.

References

1. K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai, J. Nakajima and T. Tokita.:
Camellia: A 128-Bit Block Cipher Suitable for Multiple Platforms - Design and
Analysis. In: Proceedings of Selected Areas in Cryptography. Lecture Notes in
Computer Science, Vol. 1281. Springer-Verlag, Berlin Heidelberg New York (2000)
39-56.

2. Y. He and S. Qing: Square Attack on Reduced Camellia Cipher. In: ICICS 2001,
Lecture Notes in Computer Science, Vol. 2229. Springer-Verlag, Berlin Heidelberg
New York (2001) 238-245.

3. Y.Yeom, S. Park, and I. Kim.: On the security of Camellia against the Square
attack.: In: Proceed-ings of Fast Software Encryption. Lecture Notes in Computer
Science, Vol. 2365. Springer-Verlag, Berlin Heidelberg New York (2002) 89-99.

4. M. Kanda and T. Matsumoto.: Security of Camellia against Truncated Differen-
tial Cryptanalysis. In: Proceedings of Fast Software Encryption Lecture Notes in
Computer Science, Vol. 2355. Springer-Verlag, Berlin Heidelberg New York (2001)
286-299.

5. S. Lee, S. Hong, S. Lee, J. Lim and S. Yoon.: Truncated Differential Cryptanalysis of
Camellia. In: ICISC 2001, Lecture Notes in Computer Science, Vol. 2288. Springer-
Verlag, Berlin Heidel-berg New York (2001).32-38.

6. M. Sugita, K. Kobara and H. Imai.: Security of Reduced Version of the Block
Cipher Camellia against Truncated and Impossible Differential Cryptanalysis. In:
ASIACRYPT 2001, Lecture Notes in Computer Science, Vol. 2248. Springer-Verlag,
Berlin Heidelberg New York (2001) 193-207.

7. T. Kawabata and T. Kaneko.: A Study on Higher Order Differential Attack of
Camellia.: The 2nd open NESSIE workshop (2001).

64 D. Lei, L. Chao, and K. Feng

8. J. Daemen, L. R. Knudsen and V. Rijmen.: The Block Cipher SQUARE. In Fast
Software En-cryption, Lecture Notes in Computer Science, Vol. 1267. Springer-
Verlag, Berlin Heidelberg New York (1997) 149-165.

9. Y.Hatano,H.Sekine, and T.Kaneko.: Higher order differential attack of Camel-
lia(II). In: Proceed-ings of Selected Areas in Cryptography-SAC’02, Lecture Notes
in Computer Science, Vol. 2595. Springer-Verlag, Berlin Heidelberg New York
(2002) 39-56.

10. W.L.Wu,F. D.G. Feng: Collision attack on reduced-round Camellia, Science in
China Series F-Information Sciences, 2005, Vol.48, No.1pp.78-90.

11. Joan Daemen and Vincent Rijmen, The Design of Rijndael, AES - The Advanced
Encryption Standard, Springer-Verlag 2002, (238 pp.).

12. Niels Ferguson,John Kelsey,Stefan Lucks,Bruce Schneier,Mike Stay,David Wagner
and Doug : Improved Cryptanalysis of Rijndael Whiting. In Proceedings of Fast
Software Encryption-FSE’00, Vol 1978, Springer-Verlag, Berlin Heidelberg New
York (2000) 213-230.

Proving the Security of AES
Substitution-Permutation Network

Thomas Baignères� and Serge Vaudenay

EPFL
http://lasecwww.epfl.ch

Abstract. In this paper we study the substitution-permutation network
(SPN) on which AES is based. We introduce AES∗, a SPN identical to
AES except that fixed S-boxes are replaced by random and independent
permutations. We prove that this construction resists linear and differen-
tial cryptanalysis with 4 inner rounds only, despite the huge cumulative
effect of multipath characteristics that is induced by the symmetries of
AES. We show that the DP and LP terms both tend towards 1/(2128 −1)
very fast when the number of round increases. This proves a conjecture
by Keliher, Meijer, and Tavares. We further show that AES∗ is immune
to any iterated attack of order 1 after 10 rounds only, which substantially
improves a previous result by Moriai and Vaudenay.

Keywords: Differential Cryptanalysis, Linear Cryptanalysis, Differen-
tials, Linear Hulls, Provable Security, AES.

1 Preamble

When we refer to “cryptanalysis”, we usually think about its destructive side
which consists in breaking cryptographic algorithms. Cryptanalysis however
means “cryptographic analysis”, which includes a constructive side that consists
in proving the security of a system or the soundness of a construction. However,
this last side has not received as much attention for block ciphers. Indeed, secu-
rity proofs often rely on arguments derived from previous cryptanalytic attacks.

We can use linear and differential cryptanalysis [2, 3, 25, 24] (respectively de-
noted LC and DC) to illustrate this statement. If C denotes a block cipher, DC
and LC have a complexity which is inversely proportional to the differential prob-
ability1 (DP) [30] and to the linear probability2 (LP) [4] terms respectively. When
using an r-round Markov cipher [21], one can prove that the DP (resp. LP) is ex-
pressed as the sum of the product of the DP’s (resp. LP’s) in all possible inner
chains of differences [37] (resp. masks). We thus usually refer to multipath char-
acteristics or differentials [21] (resp. linear hull [31]). Typically, attacks make a
heuristic approximation of the DP (resp. LP) by considering only one (single path)
characteristic. If the LP or DP of such a characteristic is significant enough, then
� Supported by the Swiss National Science Foundation, 200021-107982/1.
1 Given an input/output difference of (a, b), DP(a, b) = Pr[C(X) ⊕ C(X ⊕ a) = b].
2 Given input/output masks (a, b), LP(a, b) = (2Pr[a · X = b · C(X)] − 1)2.

B. Preneel and S. Tavares (Eds.): SAC 2005, LNCS 3897, pp. 65–81, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

66 T. Baignères and S. Vaudenay

an attack can definitely be performed. In that situation, the cumulative effect of
the differentials (resp. linear hull) can only make the attack work better than ex-
pected. Similar approximations are also made in security proofs of block ciphers.
This could be acceptable only if one could make sure that, among the differentials
(resp. linear hull), one single path characteristic is overwhelming (so that the rest
can be neglected). Although this is actually the case for DES, this does not appear
to be true for AES [6, 7]. Indeed, the argument saying that all DP and LP terms
are at most 2−300 on 8 rounds [6, pp. 30–31] obviously cannot be true. Since for
any a, the sum over all the 2128 values DP(a, b) (resp. LP(a, b)) is equal to 1, at
least one value of the DP is larger than 2−128. Obviously, symmetries in AES are
likely to lead to a considerable cumulative effect when considering many equiva-
lent characteristics. Therefore, proving that there is no single path characteristic
with a significant DP (resp. LP) is not sufficient to prove the resistance of a block
cipher against DC (resp. LC).

In practice, however, differentials and linear hull are rarely taken into consid-
eration in security proofs, as evaluating the true DP or LP is computationally not
practical for a typical block cipher. One natural solution is to try to upper bound
these terms. This approach was chosen by Keliher, Meijer, and Tavares [19, 18]
who showed that the LP of AES is upper bounded by 2−75 for 7 or more rounds.
Park et al. showed [33, 34] that the DP and LP for four rounds are respectively
bounded by 1.144×2−111 and 1.075×2−106. Finally, in a recent work [17], Keliher
shows that the bound on the LP is 1.778× 2−107 for 8 or more rounds.

Another solution is to adopt a Luby-Rackoff-like approach. In their seminal
work [22], Luby and Rackoff showed how to construct a pseudo-random permu-
tation from any pseudo-random function. They provided an example based on
the Feistel scheme [8] (because it is the one on which DES is based). Since then,
the security of Feistel ciphers with random and independent round functions
received a considerable amount of attention (see [29,35,38,27,9], to name only a
few). Although Substitution-Permutation Network (SPN) schemes security has
already been widely studied (see for example [5, 13, 14, 19]), only a few papers
adopted a Luby-Rackoff-like approach to study the one on which AES is based
(see for example Moriai-Vaudenay [28] and Keliher-Meijer-Tavares [20]).

In this paper, we analyze the security of the SPN on which AES is based, where
fixed S-boxes are replacedby random and independent permutations.This scheme,
that we call AES∗, is introduced in Section 2, together with some of its properties
with respect to the LP and DP terms. This includes a discussion about keyed op-
erations, i.e., over the subkey addition and over the substitution boxes layer. In
Section 3, we give an expression of the expected LP over AES∗, depending on the
input/output masks and the number of rounds (see Theorem 6). Using this result,
we prove a conjecture made by Keliher, Meijer, and Tavares in [20], namely that
all DP’s and LP’s converge towards 1/(2128− 1) as the number of rounds increases
(see Theorem 8). This means that AES∗ behaves exactly like the perfect cipher (as
far as LC is concerned) when the number of rounds is high enough. The rest of Sec-
tion 3 shows how to reduce the computational complexity of the expression given
in Theorem 6 by exploiting some of the symmetries of AES∗ (see Theorem 12). We

Proving the Security of AES Substitution-Permutation Network 67

conclude the section by exhibiting results of practical experiments. We give the
expected LP over AES∗ for several number of rounds and several S-box sizes, and
deduce that AES∗ is protected against LC after four inner rounds only3. Section 4
shows how these results extend to differential cryptanalysis. In Section 5 we gener-
alize the results on LC by considering any iterated attack of order 1 [39]. Recall that
these kind of attacks are very similar to LC, except that the bit of information ex-
tracted from each plaintext/ciphertext pair is not necessarily computed by a linear
masking of text bits, but can be derived using any type of projection (in the sense
of [41,1]). Experimental results show that after 10 rounds, AES∗ is immune to iter-
ated attacks of order 1. This substantially improves a previous result of Moriai and
Vaudenay, who showed that 384 were sufficient [28]. Finally, we show in Section 6
by derandomization techniques that all security results onAES∗ remain valid when
the random S-boxes are replaced by S-boxes with perfect pairwise decorrelation.

2 Preliminaries

2.1 Description of AES

AES [6,7] is a block cipher with a fixed block length of 128 bits, supporting 128,
192, and 256 bit keys. It is iterated, meaning that it is made of a succession
of r identical rounds. It is byte oriented, meaning that each round takes as an
input a 128 bit long state that is considered as a one-dimensional vector of
16 bytes. Each round also takes a round key as an input, issued from a key
schedule that takes as an input the main 128 bit key. We do not detail the key
schedule here, since we will assume that all round keys are randomly selected and
independent. Each round is a succession of four operations (we use the notations
of [7]): SubBytes, that applies a fixed S-box to each of the 16 input state bytes,
ShiftRows, which shifts the rows of the state (considered as a 4× 4 array) over
four different offsets, MixColumns, that applies a linear transformation to each
state columns, and AddRoundKey, which is a bitwise XOR between the subkey
and the state. AES is made of 10 rounds (for a 128 bit key), where the last one
does not include the MixColumns operation. The first round is preceded by a
additional AddRoundKey operation.

2.2 Introducing AES∗

In the subsequent, we will be considering a family of block ciphers based on AES.
This family, that we call AES∗, almost follows the same SPN as AES, except for
the last round, which excludes both linear operations (that is, MixColumns and
ShiftRows). Although this modification does not have any influence on the se-
curity results, it simplifies the notations. Moreover, it does not involve a fixed
S-box. Following a Luby-Rackoff-like approach, each S-box will be considered as
an independent permutation chosen uniformly at random. Consequently, we de-
note by SubBytes∗ the confusion step in AES∗. In that sense, AES is a particular

3 Note that this result does take hulls effect into consideration.

68 T. Baignères and S. Vaudenay

instance of AES∗ where all the S-boxes have been chosen to be the one defined
in the specifications.

Clearly, a truly random S-box following the XOR of a random byte is equiv-
alent to a truly random S-box. Hence, we can completely ignore the addition of
round keys in AES∗.

2.3 States, Activity Patterns, and Notations

We denote by GF(q) the finite field with q elements and by S the set of AES∗

states, so that S = GF(q)16. In the case of AES, q = 28. AES∗ states (or equiva-
lently, masks on AES∗ states) will generally be denoted by bold small letters such
as a,b, etc. An arbitrary state a is a vector which can be viewed as a four by
four array with elements in GF(q) denoted (ai,j)1≤i,j≤4. The four by four array
of {0, 1}16 with 0’s at the positions where the entry of a is 0, and with 1’s where
the entry of a non-zero, is called the activity pattern [6] or support corresponding
to the state a. Supports will either be denoted by Greek letters or by supp(·).
For example, the support corresponding to a state a will either be denoted α
or supp(a). The (i, j) entry in the array α will be denoted αi,j . The Hamming
weight of a support α, denoted |α|, is the number of 1’s in this support (i.e.,
|α| =

∑
i,j αi,j), so that 0 ≤ |α| ≤ 16. When |α| = 0 it means that a is zero,

whereas when |α| = 16, it means that all entries of a are non-zero. In the latter
case, we say that a is a state of full-support. The set of states limited to some
specific support α will be denoted S|α, and thus #S|α = σ|α|, with σ = q − 1.
The set of states of full-support will be denoted Sfull so that #Sfull = σ16.

2.4 The Scalar Product and the LP Coefficient

The scalar product of a state (plaintext) x and a state (mask) a is usually
defined as the exclusive-or between several bits of x, chosen according to a
pattern specified by a mask a, which depends on the way the elements of GF(q)
are represented. We prefer here an equivalent definition in terms of the trace
function4 Tr, defined from GF(q) onto GF(2) by Tr(x) = x+x2 +x4 +x8 + · · ·+
x128. If a and b are two arbitrary states of AES, we define the scalar product
of a and b as a • b =

∑
i,j Tr(ai,jbi,j). We use the following well known linear

algebra property.

Lemma 1. Let M denote an arbitrary 16 by 16 matrix of elements in GF(q),
representing a linear transformation on AES states5. Let x be an input state to
this linear transformation M and let b be a non-zero output mask. Then b• (M×
x) = (MT × b) • x.

The efficiency of a linear cryptanalysis can be measured by means of the linear
probability [4]. With our definition of the scalar product, this quantity is defined

4 One advantage of this variant is that it does not depend on the way we represent
GF(q). Namely, even if we represent the cells of AES states by the Zech logarithm,
we can still define the scalar product in the same way.

5 AES states are indeed considered as column vectors.

Proving the Security of AES Substitution-Permutation Network 69

in the following way (here we use the notation introduced in [26]): if a and
b are two states and C is some fixed permutation on S, then LPC(a, b) =
(2 PrX∈S [a •X = b •C(X)]− 1)2, where the probability holds over the uniform
distribution of X.

2.5 Expected LP over Keyed Operations in AES∗

A round key, or simply a key, is an AES state. The only keyed operation in AES is
AddRoundKey. As stated in Section 2.2, we can ignore this operation in AES∗. We
can thus consider the choice of the random S-boxes as the only keyed operation
in AES∗. The following lemma evaluates the average LP over all possible random
S-boxes.

Lemma 2. Let a, b ∈ GF(q) \ {0} be two non-zero input/output masks on
the uniformly distributed random S-box S∗ and let σ = q − 1. The average
LP value over all possible random S-boxes is independent of a and b, and is
ES∗ [LPS∗

(a, b)] = σ−1.

Proof. See Lemma 14 in [39] for a direct proof. One can also use the explicit
distribution of the LP of S∗ [20], deduced from results available in [32]. ��

Note that for any S-box S we have LPS(a, 0) = LPS(0, b) = 0 (for non-zero a
and b) and LPS(0, 0) = 1. From this, we derive the expected LP over SubBytes∗.

Lemma 3. Let a and b be two non-zero masks in GF(q)16, and let α and β be
their respective supports. Let σ = q − 1. We have E[LPSubBytes∗

(a, b)] = σ−|α|

if α = β and 0 otherwise, where the mean is taken over all possible uniformly
distributed and independent random S-boxes.

3 Expected LP on AES∗

3.1 From Sums over Masks to Sums over Supports

The complexity of computing the expected LP of AES is prohibitive for the rea-
son that, once input/output masks are given, one has to sum over all possible
intermediate masks in order to take into account every possible characteris-
tic. We will see that AES∗ provides just enough randomization for this sum to
be made over intermediate supports. Consequently, we will need to count the
number of possible states succession corresponding to some given succession of
supports.

Definition 4. Let LT denote the linear transformation of AES, i.e., the oper-
ation corresponding to MixColumns ◦ ShiftRows. Let α and β be two supports
and

N[α, β] = #{(a, b) ∈ S|α × S|β : LTT × b = a},
where states a and b are considered as column vectors here. N[α, β] is the number
of ways of connecting a support α to a support β through LT.

70 T. Baignères and S. Vaudenay

From now on, we will consider an r-round version of AES∗, with r > 1. Round i ∈
{1, . . . , r} will be denoted by Round∗i , where the last round Round∗r excludes the
linear transformation LT. With these notations, AES∗ = Round∗r◦· · ·◦Round∗1. The
input/output masks on Round∗i will usually be denoted ci−1 and ci respectively,
while their corresponding supports will be denoted γi−1 and γi. Consequently,
c0 and cr will respectively denote the input and the output masks on a r-rounds
version of AES∗. Using Lemma 3, we can derive the expected LP over one round
and extend it to the full AES∗.

Lemma 5. Let ci−1 and ci be two non-zero masks in GF(q)16 of support γi−1
and γi respectively. Let σ = q − 1. For 1 ≤ i < r, the expected linear probability
over Round∗i is given by E[LPRound∗

i (ci−1, ci)] = σ−|γi−1| if γi−1 = supp(LTT ×
ci) and 0 otherwise. Similarly, the expected LP over the last round is given by
E[LPRound∗

r (cr−1, cr)] = σ−|γr−1| if γr−1 = γr and 0 otherwise.

Proof. We first consider the case where 1 ≤ i < r. Using Lemma 1, we have
E[LPRound∗

i (ci−1, ci)] = E[LPSubBytes∗
(ci−1, LT

T × ci)]. Lemma 3 allows to con-
clude. The proof for the i = r case is similar, except that we don’t make use of
Lemma 1 as the last round excludes LT. ��

Theorem 6. Let c0 and cr be two masks in GF(q)16 of support γ0 and γr

respectively. Let σ = q − 1. The expected linear probability over r > 1 rounds of
AES∗, when c0 is the input mask and cr the output mask is

E[LPAES∗
(c0, cr)] = σ−|γr | ×

(
Mr−1)

γ0,γr
,

where M is a 216×216 square matrix, indexed by pairs of masks (γi−1, γi), such
that Mγi−1,γi = σ−|γi−1|N[γi−1, γi].

Proof. Following Nyberg [31], E[LPAES∗
(c0, cr)] =

∑∏r
i=1 E[LPRound∗

i (ci−1, ci)],
where the sum is taken over all intermediate masks c1, . . . , cr−1. Using the results
(and the notations) of Lemma 5 this gives

E[LPAES∗
(c0, cr)] =

∑
c1,...,cr−1
δ1,...,δr−1

σ−|γr−1|1γr−1=γr

r−1∏
i=1

σ−|γi−1|1γi−1=supp(LTT ×ci)
δi=γi

,

where the sum is also taken over all possible intermediate supports. Taking
δ0 = γ0 and δr = γr and including the sum over the ci’s in the product,
we obtain E[LPAES∗

(c0, cr)] = σ−|δr|∑
δ1,...,δr−2

∏r−1
i=1 σ−|δi−1|N[δi−1, δi]. The

definition of the product of square matrices concludes the proof. ��

Using supports drops the matrix size from 2128 down to 216. As one matrix multi-
plication roughly takes (216)3 field operations6 and, using a square and multiply
technique, log r such multiplications are needed, the overall number of operations
needed to compute Mr−1 is roughly equal to 250 (for 8 rounds) by using 2× 232

6 Using Strassen’s algorithm, the complexity drops to (216)log 7 field operations [40].

Proving the Security of AES Substitution-Permutation Network 71

multiple precision rational number registers. This is still pretty hard to imple-
ment using ordinary hardware. Nevertheless, from one computation ofMr−1 we
could deduce all expected linear probability over all possible input/output masks
almost for free. In section 3.3, we show how to exploit symmetries of table N[·, ·]
in order to further reduce the matrix size.

3.2 Towards the True Random Cipher

For any non-zero mask c, LPAES∗
(c, 0) = LPAES∗

(0, c) = 0 and LPAES∗
(0, 0) = 1.

Thus, the 216 × 216 square matrix M of Theorem 6 has the following shape

M =
(

1 0
0 M′

)
(1)

whereM′ is a (216−1)× (216−1) square matrix, indexed by non-zero supports.
We can now notice from Theorem 6 that E[LPAES∗

(c0, c2)] = σ−|γ2|M′
γ0,γ2

for
any non-zero supports c0 and c2. Recall that

∑
c2

E[LPAES∗
(c0, c2)] = 1. Hence

1 =
∑
c2

σ−|γ2|M′
γ0,γ2

=
∑
γ2

σ|γ2|σ−|γ2|M′
γ0,γ2

=
∑
γ2

M′
γ0,γ2

.

We also note that M′
γ0,γ2

≥ 0 for any γ0 and γ2.

Lemma 7. The matrix M′ defined by (1) is the transition matrix of a Markov
chain, whose set of states is the set of non-zero supports and whose transition
probability from a non-zero support γ to a non-zero support γ′ is given byMγ,γ′ .

The transition graph of the Markov chain is the directed graph whose vertices
are the σ non-zero supports and such that there is an edge from γ to γ′ when
Mγ,γ′ > 0. From the study of supports propagation [6] (which is based on
the MDS criterion), it clearly appears that from any graph state, there is a path
towards the graph state corresponding to the full support γfull (for example, two
steps are required to go from a support of Hamming weight 1 to γfull). Moreover,
from the graph state corresponding to γfull one can reach any graph state. Hence,
from each graph state there is a sequence of arrows leading to any other graph
state. This means that the corresponding Markov chain is irreducible [12]. Since
there is an arrow from γfull to itself, one can find a sequence of arrows leading
from any graph state to any graph state, of any (yet long enough) length. This
means the Markov chain is aperiodic. We can deduce that there exists exactly
one stationary distribution (see for example chapter 5 in [12]), i.e., a 1×(216−1)
row vector π = (πγ)γ 	=0 indexed by non-zero supports such that πγ ≥ 0 for all
non-zero γ with

∑
γ 	=0 πγ = 1, and such that πM′ = π (which is to say that

πγ′ =
∑

γ 	=0 πγM′
γ,γ′ for all non zero γ′). It is easy to show that the row vector

π indexed by non-zero supports such that πγ = σ|γ|(q16 − 1)−1 is a stationary
distribution of the Markov chain described by the transition matrixM′. Indeed,

∑
γ 	=0

πγ =
1

q16 − 1

∑
γ 	=0

(
16∑

s=1

1s=|γ|

)
σ|γ| =

1
q16 − 1

16∑
s=1

(
16
s

)
σs = 1,

72 T. Baignères and S. Vaudenay

and therefore π is a probability distribution. Moreover, for any non-zero
γ′, (πM′)γ′ = (q16 − 1)−1∑

γ 	=0 N[γ, γ′] = (q16 − 1)−1σ|γ′| = πγ′ , as the sum
is simply the number of non-zero states that can be connected to some non-zero
support γ′ through LT, which is exactly the number of states of support equal
to γ′, as each state of support γ′ has one and only one preimage through LT.

It is known [11] that (M′r)γ,γ′ → πγ′ when r → ∞. As E[LPAES∗
(c0, cr)] =

σ−|γr|(M′r−1)γ0,γr for non-zero masks c0 and cr, we have proven the following
theorem (which corresponds to the conjecture in [20]).

Theorem 8. Let c0 and cr be two non-zero masks in GF(q)16. Then

lim
r→∞E[LPAES∗

(c0, cr)] =
1

q16 − 1
. (2)

We conclude this discussion by wondering how fast does the expected LP of AES∗

tends towards (q16 − 1)−1. As M′ is the transition matrix of a finite irreducible
and aperiodic chain, the Perron-Frobenius Theorem [11] states that λ1 = 1 is an
eigenvalue of M′, while the remaining eigenvalues λ2, . . . , λm satisfy |λj | < 1.
Assuming that λ1 > |λ2| ≥ · · · ≥ |λm|, the rate of the convergence depends on
|λ2|. If we let λ be any real value such that 1 > λ > |λ2|, we deduce that for any
non-zero masks c0 and cr, E[LPAES∗

(c0, cr)] = 1
q16−1 + O(λr) when r →∞.

Note that the same results can be obtained on AES itself with independent
round keys using almost the same proof. The only change is that one needs to
prove that for any non-zero masks a and b, there is a number of rounds r such
that LPRoundr◦···◦Round1(a, b) �= 0. Equivalently, we can prove it with DP’s by
using results by Wernsdorf et al. [15, 42].

3.3 Combinatorial Tables on Supports

We will see that, thanks to the properties of LT, N[γi−1, γi] only depends on the
weights of the diagonals of γi−1 and of the columns of γi. We introduce notations
to deal with Hamming weights of columns and diagonals. If γi is the ith support
in a characteristic, we denote by ci = (ci,1, ci,2, ci,3, ci,4) the vector of the four
weights of γi’s columns. Similarly, we denote by di = (di,1, di,2, di,3, di,4) the
four weights of γi’s diagonals. What we mean by columns and diagonals should
be clear from Figure 1. Finally, we denote by wi

j = (di, cj) the weight pattern
of a pair of supports (γi, γj). Note that |wi

j | = |γi| + |γj | and that this weight
pattern only includes the weights of the diagonals of γi and of the columns of γj .
Consequently, if γi−1 and γi are two successive masks in a characteristic, wi−1

i

di,1 di,2 di,3 di,4ci,1 ci,2 ci,3 ci,4

Fig. 1. The four column’s and diagonal’s weights of a state γ i

Proving the Security of AES Substitution-Permutation Network 73

contains enough information to compute N[γi−1, γi] (as we will see in Corollary
10). We now recall a known fact about the weight distribution of MDS codes.

Theorem 9 (Theorem 7.4.1 in [16]). Let C be an [n, k, d] MDS code over
GF(q). For i = 0, . . . , n, the number Ai of codewords of weight i is given by
A0 = 1, Ai = 0 for 1 ≤ i < d and Ai =

(
n
i

)∑i−d
j=0(−1)j

(
i
j

)
(qi+1−d−j − 1) for

d ≤ i ≤ n, where d = n− k + 1.

The MixColumns operation is a linear multipermutation [36], as the set of all
codewords (a, MixColumns(a)) is a [8, 4, 5] MDS code.

Corollary 10. Let γi−1 and γi be two successive supports of a characteristic
and let wi−1

i = (di−1, ci) be their weight pattern. We have

N[γi−1, γi] =
4∏

s=1

Adi−1,s+ci,s(8
di−1,s+ci,s

) .
Thus, wi−1

i is sufficient to compute N[γi−1, γi] so that we will denote this value
by N[wi−1

i]. By symmetry, it is clear that an arbitrary permutation applied on
both the diagonal’s and column’s weights of wi−1

i will not change the value of
N[wi−1

i], i.e., if two weight patterns w = (d, c) and w′ = (d′, c′) are such that

(d1, d2, d3, d4, c1, c2, c3, c4) = (d′π(1), d
′
π(2), d

′
π(3), d

′
π(4), c

′
π(1), c

′
π(2), c

′
π(3), c

′
π(4))

for some permutation π of [1, 4], then N[w] = N[w′]. It is natural to consider
such weight patterns as equivalent and to choose a unique representative for each
equivalence class. We arbitrarily choose to take the greatest element in the sense
of the lexicographic order as the representative and denote it w. The number of
elements in the equivalence class of w will be denoted C[w]. By the end of this
section, we will be summing over weight patterns of supports surrounding the
linear transformation LT (Theorem 12) instead of supports between individual
rounds (Theorem 6). It will be natural to link both concepts. Given two suc-
cessive weight patterns wi−1

i = (di−1, ci) and wi
i+1 = (di, ci+1), we denote by

P[wi−1
i ,wi

i+1] the number of supports γ (between rounds i and i+1) compatible
with these weight patterns, i.e., the number of supports γ of weight pattern (d, c)
such that d = di and c = ci (see Figure 2). In other words, table P[· , ·] gives
the number of possible supports with given Hamming weights of the columns
and of the diagonals. We note that by shifting columns, this is equivalent to
counting 4 × 4 binary matrices with given weights for every row and column.
Consequently, P[wi−1

i ,wi
i+1] remains unchanged by permuting the weight of the

diagonals given by ci and/or the weight of the columns given by di.

Lemma 11. Let (γi−1, γi, γi+1) be a characteristic of supports on two rounds,
let wi−1

i = (di−1, ci) and wi
i+1 = (di, ci+1) be the weight pattern of (γi−1, γi)

and (γi, γi+1) respectively, and let wi−1
i and wi

i+1 be their representatives. Then
N[wi−1

i] = N[wi−1
i], P[wi−1

i ,wi
i+1] = P[wi−1

i ,wi
i+1], and |wi−1

i | = |wi−1
i |.

74 T. Baignères and S. Vaudenay

Round∗
iwi−1

i = (di−1, ci)

Round∗
i+1wi

i+1 = (di, ci+1)

γ

γi−1 (diagonal weights given by di−1)

γi+1 (column weights given by ci+1)

Fig. 2. Given wi−1
i and wi

i+1, there are P[wi−1
i ,wi

i+1] compatible supports γ’s

3.4 From Sums over Supports to Sums over Weight Pattern
Representatives

Theorem 12. Let c0 and cr be two masks in GF(q)16 of support γ0 and γr

respectively. Let d0 denote the weight vector of γ0’s diagonals and let cr denote
the weight vector of γr’s columns. Let σ = q − 1. Let L be the square matrix
indexed by weight patterns representatives, defined by

Lu,v = R[u]P[u, v]R[v] where R[u] =
√

σ
1
2 |u|C[u]N[u] .

Finally, let U(d0) and V(cr) be the column vectors indexed by weight patterns
representatives, defined by

U(d0)v = σ− 1
2 |d0|R[v]C[v]−1

∑
u=(d,c)

1u=v1d=d0 and

V(cr)v = σ− 1
2 |cr |R[v]C[v]−1

∑
u=(d,c)

1u=v1c=cr .

Then the expected linear probability over r > 1 rounds of AES∗ is

E[LPAES∗
(c0, cr)] = U(d0)T × Lr−2 × V(cr) .

Proof. For simplicity, E[LPAES∗
(c0, cr)] will simply be denoted ELP(c0, cr) and

we will consider the case where r > 2. In Theorem 6, we had

ELP(c0, cr) = σ−|γr|
∑

γ1,...,γr−2

r−1∏
i=1

σ−|γi−1|N[γi−1, γi].

We notice that 2
∑r

i=1 |γi−1| = |wr
0|+
∑r−1

i=1 |w
i−1
i |, where we used the fact that,

as we do not need to take into account characteristics that give a zero linear prob-
ability, γr−1 = γr (see Lemma 5). From this and from Corollary 10, we deduce
that ELP(c0, cr) = σ− 1

2 |wr
0|∑

γ1,...,γr−2

∏r−1
i=1 D[wi−1

i], where D[w] = σ
1
2 |w|N[w].

As we want to consider weight patterns instead of supports, we introduce a new
sum and permute both sums to obtain

ELP(c0, cr) = σ− 1
2 |wr

0|
∑

u0
1,...,ur−2

r−1

⎛⎝ ∑
γ1,...,γr−2

r−1∏
j=1

1wj−1
j =uj−1

j

⎞⎠ r−1∏
i=1

D[ui−1
i] .

Proving the Security of AES Substitution-Permutation Network 75

Denoting uj−1
j = (d′

j−1, c
′
j), it is easy to show that

∑
γ1,...,γr−2

r−1∏
j=1

1uj−1
j =wj−1

j
= 1d′

0=d01c′
r−1=cr−1

r−2∏
j=1

∑
γj

1(dj,cj)=(d′
j,c′

j) .

As, by definition, P[uj−1
j ,uj

j+1] =
∑

γj
1(dj,cj)=(d′

j,c′
j), this gives

ELP(c0, cr) = σ− 1
2 |wr

0|
∑

u0
1,...,ur−2

r−1

1c′
r−1=cr−1

d′
0=d0

D[ur−2
r−1]

r−2∏
i=1

D[ui−1
i]P[ui−1

i ,ui
i+1] .

We denote Lu,v = C[u]
1
2 D[u]

1
2 P[u, v]C[v]

1
2 D[v]

1
2 and F[u] = D[u]

1
2 C[u]−

1
2 . Using

Lemma 11, the last expression becomes

ELP(c0, cr) = σ− 1
2 |wr

0|
∑

u0
1,ur−2

r−1

1d′
0=d01c′

r−1=cr−1F[u0
1]F[ur−2

r−1](Lr−2)u0
1,ur−2

r−1
.

Introducing (U(d0))u0
1

and (V(cr−1))ur−2
r−1

in the previous expression leads
(as cr−1 = cr) to the announced result. ��

In order to evaluate the complexity of the matrix multiplication of Theorem 12,
we need to evaluate the size of the matrices, i.e., the number of equivalence
classes. There are 20475 ≈ 214.33 such classes. Yet, it is not necessary to consider
those equivalence classes for which N[·] is 0. It can be checked that the number of
remaining equivalence classes is 1001 ≈ 210. The computation of Lr−1 therefore
roughly takes 230 · log r operations, which is feasible on standard computers.

3.5 Experimental Linear Hull for Various S-Box Sizes

Theorems 6 and 12 remain valid with several sizes of S-boxes. We implemented
the computation of Theorem 12 with various sizes, our experimental results were
obtained using GMP [10]. They are shown in Table 1. It appears that 4 rounds

Table 1. maxa,b E[LPAES∗
(a, b)] for various number of rounds r and S-box sizes

r 2 3 4 5 6 7 8 9

3 bits 2−13.2294 2−19.6515 2−44.9177 2−44.9177 2−47.3861 2−47.9966 2−47.9999 2−48.0

4 bits 2−17.6276 2−27.3482 2−62.5102 2−62.5102 2−63.9852 2−63.9999 2−63.9999 2−64.0

5 bits 2−21.8168 2−34.6793 2−79.2671 2−79.2671 2−79.9999 2−79.9999 2−79.9999 2−80.0

6 bits 2−25.9091 2−41.8409 2−95.6364 2−95.6364 2−95.9999 2−95.9999 2−96.0 2−96.0

7 bits 2−29.9547 2−48.9207 2−111.8189 2−111.8189 2−111.9999 2−111.9999 2−112.0 2−112.0

8 bits 2−33.9774 2−55.9605 2−127.9096 2−127.9096 2−127.9999 2−127.9999 2−128.0 2−128.0

76 T. Baignères and S. Vaudenay

are enough to provide security against LC. We do not provide any result for the
case where the S-box acts on 2 bit elements as it is impossible to find a 4 × 4
matrix with elements in GF(22) such that MixColumns stays a multipermutation.
A second independent implementation of the computation was implemented in
Maple [23] in order to obtain perfect results instead of floating point numbers.
It was used for the masks presenting the maximum expected LP in Table 1.

4 Expected DP on AES∗

Just as the efficiency of LC can be measured by means of LP’s, the efficiency of
DC can be measured by means of DP’s [30]. If C is some fixed permutation on S
and if a and b are two masks, the differential probability is given by DPC(a, b) =
PrX∈S [C(X ⊕ a) = C(X) ⊕ b], where the probability holds over the uniform
distribution of X. Here, a (resp. b) represents the input (resp. output) difference
between the pair of plaintexts (resp. ciphertexts). The computations that we per-
formed on the expected LP of AES∗ can be applied, with almost no modification,
in order to compute the expected DP. The major modification concerns Lemma
1. We provide here its version for the DP.

Lemma 13. Let M denote an arbitrary 16 by 16 matrix of elements in GF(q),
representing a linear transformation on AES states (considered as column vec-
tors). If the difference between two inputs of this transformation is equal to a,
then the output difference is equal to M× a.

We now follow the steps that lead to the final result on the LP coefficient and see
whether they apply to the DP coefficient. Lemma 2 applies to the DP coefficient,
and therefore, it is also the case for Lemma 3 (where we use the independence
of the the 16 inputs on the S-boxes in order to obtain a product of DP, instead
of using Matsui’s Piling-up Lemma). Because the relation between an input
difference on the linear transformation of AES and its output difference is not
the same as in the case where we considered input/output masks, it looks as
if we must replace LTT by LT−1 in Definition 4. But according to Theorem 9,
the actual values of N[·] do not depend on which multipermutation is used, it
just needs to be one. In other words, replacing LTT by LT−1 in the definition
of N[·] does not change its entries. The computations on the LP coefficient thus
still apply for the DP coefficient. Theorems 6, 8, and 12 apply to the DP, the
numerical results given in Table 1 being exactly the same.

5 Extension to Iterated Attacks of Order 1

In the Luby-Rackoff model [22], an adversary A has an unlimited computa-
tional power, but has limited access to an oracle O. The oracle implements
either an instance of a given cipher C (such as AES∗) or of the perfect ci-
pher C∗, the objective of the adversary being to guess which is the case (see
Figure 3). Eventually, the adversary will output 1 (resp. 0) if his guess is that
the oracle implements C (resp. C∗). Denoting by Pr[AO → 1] the probability

Proving the Security of AES Substitution-Permutation Network 77

C or C∗A O

x1, . . . , xd

y1, . . . , yd

1 or 0

Fig. 3. An adversary A limited to d questions to an oracle O

that the adversary outputs 1 depending on the oracle O, his ability to distin-
guish C from C∗ is measured by means of the advantage AdvA = |Pr[AC →
1] − Pr[AC∗ → 1]|. The most powerful adversary will select his d queries de-
pending on the previous answers of the oracle. Such an adversary is called a
d-limited adaptative distinguisher [39]. The advantage of the best distinguisher
of this type is such that AdvA = 1

2 ‖ [C]d − [C∗]d ‖a, where [C]d is the d-
wise distribution matrix7 of the random permutation C over S, and where
‖ M ‖a= maxx1

∑
y1
· · ·maxxd

∑
yd
|M(x1,...,xd),(y1,...,yd)| for any #Sd × #Sd

matrix M (Theorem 11 in [39]). Proving the resistance of C against such a
2d-limited distinguisher is sufficient to prove its resistance against any iterated
attacks of order d (Theorem 18 in [39]). Using Theorem 14, we bound the ad-
vantage of the best 2-limited adaptative distinguisher and deduce the number
rounds necessary to resist any iterated attacks of order 1.

Theorem 14. Let C be a random permutation over {0, 1}n. If ε is the non-
negative value such that ε = maxa	=0,b E[DPC(a, b)] − 1

2n−1 , we have ‖ [C′]2 −
[C∗]2 ‖a≤ 2nε where C′(x) = C(x ⊕ K1) ⊕ K2 with independent and uniformly
distributed K1 and K2.

Proof. Let x1, x2, y1, y2 ∈ {0, 1}n. Starting from the definition of [C′]2, we have

[C′]2(x1,x2),(y1,y2) =
∑

c

Pr
K1,K2

[
c(x1 ⊕K1) = y1 ⊕K2
c(x2 ⊕K1) = y2 ⊕K2

]
Pr[C = c],

as C is independent from (K1, K2). Furthermore, we have

Pr
K1,K2

[
c(x1 ⊕K1) = y1 ⊕K2
c(x2 ⊕K1) = y2 ⊕K2

]
=
∑
u,v

1x1 ⊕ x2 = u
y1 ⊕ y2 = v

Pr
K1,K2

[
c(K1) = K2

c(u⊕K1) = v ⊕K2

]
where the probability in the sum is equal to

2−2n
∑
k1,k2

1 c(k1 ⊕ u) = k2 ⊕ v
c(k1) = k2

= 2−n Pr
K1

[c(K1)⊕ c(K1 ⊕ u) = v] = 2−nDPc(u, v) .

Therefore, [C′]2(x1,x2),(y1,y2) = 2−nEC[DPC(x1 ⊕ x2, y1 ⊕ y2)]. As the sum of the

DPC∗
on the input mask is 1 (as C∗ is a permutation), EC∗ [DPC∗

(x1 ⊕ x2, y1 ⊕
7 Recall that the d-wise distribution matrix of a random function F is such that

[F]d(x1,...,xd),(y1,...,yd) is the probability that F (xi) = yi for all i = 1, . . . , d.

78 T. Baignères and S. Vaudenay

Table 2. Values of ε depending of the number of rounds r

r 2 3 4 5 6 7 8 9 10

ε 2−33.98 2−55.96 2−131.95 2−131.95 2−152.17 2−174.74 2−200.39 2−223.93 2−270.82

y2)] = 1
2n−1 when x1 �= x2 (when x1 = x2, the DP value is always 0, except when

y1⊕ y2 is also 0, in which case DP is 1). From the last two equations we deduce
[C′]2(x1,x2),(y1,y2) − [C∗]2(x1,x2),(y1,y2) = 2−n

(
EC[DPC(x1 ⊕ x2, y1 ⊕ y2)]− 1

2n−1

)
,

and thus, by definition of the || · ||a norm, ||[C′]2 − [C∗]2||a is upper bounded by
2−n

∑
y1,y2

maxx1 	=x2 |EC[DPC(x1 ⊕ x2, y1 ⊕ y2)]− (2n − 1)−1| = 2nε. ��

Such an ε always exists, as the maximum DP (or LP) value is always larger or
equal to 1/(2n − 1). Experimental results on ε (obtained both with our GMP
and Maple implementations) are given in Table 2 for several number of rounds.
We conclude that provable security is achieved for 10 rounds of AES∗ (which
substantially improves [28], where it is shown that 384 rounds are enough).

6 Derandomizing the S-Boxes

We note that all results presented so far hold if replace the uniformly dis-
tributed random S-box S∗ by any random S-box S, provided that it satis-
fies ES[LPS(a, b)] = σ−1 (which is proved for S∗ in Lemma 2). According to
Lemma 14 in [39],

ES[LPS(a, b)] = q−2
∑

x1,x2
y1,y2

(−1)(x1⊕x2)•a+(y1⊕y2)•b Pr[S(x1) = y1, S(x2) = y2].

Hence, ES[LPS(a, b)] only depends on the pairwise distribution. If S has a perfect
pairwise decorrelation, we deduce ES[LPS(a, b)] = σ−1. In order to construct
such a variant of AES, one can just insert a MulRoundKey operation before each
AddRoundKey of AES, with independent subkeys, where MulRoundKey is the
component-wise product in GF(q) of an input state and a subkey, i.e., considering
the three states a, b, k as a one-dimensional vectors of 16 bytes,

b = MulRoundKey(a, k) ⇔ bi = ai × ki for i = 1, . . . , 16.

Note that all the component of a subkey k used in a MulRoundKey operation
have to be non-zero to preserve bijectivity.

7 Discussion and Conclusion

We studied the SPN on which AES is based using a Luby-Rackoff-like approach.
Following [20] and [28], we considered that the only “round function” that can
reasonably be replaced by a random one is the S-box. We chose to replace the S-
boxes by random and independent permutations. In this model, we computed the

Proving the Security of AES Substitution-Permutation Network 79

exact (i.e., using neither heuristic approximations nor bounds) hull and differen-
tial average probabilities. Clearly, a better model (i.e., intuitively closer to the
real AES) would be to choose one permutation at random and use it throughout
the whole cipher, although it is not clear to us that one can easily prove similar
security results in that case. Obviously, we cannot draw direct consequences on
the security of AES. At least we get some increased confidence in its high-level
structure and claim that AES with independent keys has no useful linear hull nor
differentials, unless the S-box structure selection is really unfortunate. We also
pushed the analysis further by studying iterated attacks of order 1. We showed
that ten inner rounds are sufficient to ensure the security of AES∗ against any
attack of this kind. Finally, we proved the (non-surprising) convergence of AES∗

towards the perfect cipher (as far as LC and DC are concerned) as the number
of rounds increases, which was only conjectured so far.

Acknowledgments. We would like to thank the anonymous referees, Pascal
Junod, and Matthieu Finiasz for helpful comments, as well as Ralph Wernsdorf
for quite useful references.

References

[1] T. Baignères, P. Junod, and S. Vaudenay. How far can we go beyond linear crypt-
analysis? In P.J. Lee, editor, Advances in Cryptology - Asiacrypt’04, volume
3329 of LNCS, pages 432–450. Springer-Verlag, 2004.

[2] E. Biham and A. Shamir. Differential cryptanalysis of DES-like cryptosystems.
Journal of Cryptology, 4:3–72, 1991.

[3] E. Biham and A. Shamir. Differential cryptanalysis of the full 16-round DES. In
E.F. Brickell, editor, Advances in Cryptology - Crypto’92, volume 740 of LNCS,
pages 487–496. Springer-Verlag, 1993.

[4] F. Chabaud and S. Vaudenay. Links between differential and linear cryptanalysis.
In A. De Santis, editor, Advances in Cryptology - Eurocrypt’94, volume 950 of
LNCS, pages 356–365. Springer-Verlag, 1995.

[5] Z.G. Chen and S.E. Tavares. Towards provable security of substitution-
permutation encryption networks. In S.E. Tavares and H. Meijer, editors, Selected
Areas in Cryptography, SAC’98, volume 1556 of LNCS, pages 43–56. Springer-
Verlag, 1999.

[6] J. Daemen and V. Rijmen. AES proposal: Rijndael. NIST AES Proposal, 1998.
[7] J. Daemen and V. Rijmen. The Design of Rijndael. Information Security and

Cryptography. Springer-Verlag, 2002.
[8] H. Feistel. Cryptography and computer privacy. Scientific American, 228:15–23,

1973.
[9] H. Gilbert and M. Minier. New results on the pseudorandomness of some block-

cipher constructions. In M. Matsui, editor, Fast Software Encryption - FSE’01,
volume 2355 of LNCS, pages 248–266. Springer-Verlag, 2002.

[10] GMP. GNU Multiple Precision arithmetic library. http://www.swox.com/gmp.
[11] G. Grimmett and D. Stirzaker. Probability and Random Processes. Oxford Uni-

versity Press, 3d edition, 2001.
[12] O. Häggström. Finite Markov Chains and Algorithmic Applications. London

Mathematical Society Student Texts. Cambridge University Press, 2002.

80 T. Baignères and S. Vaudenay

[13] H.M. Heys and S.E. Tavares. Substitution-permutation networks resistant to
differential and linear cryptanalysis. Journal of Cryptology, 9(1):1–19, 1996.

[14] S. Hong, S. Lee, J. Lim, J. Sung, D. Cheon, and I. Cho. Provable security against
differential and linear cryptanalysis for the SPN structure. In B. Schneier, edi-
tor, Fast Software Encryption - FSE’00, volume 1978 of LNCS, pages 273–283.
Springer-Verlag, 2001.

[15] G. Hornauer, W. Stephan, and R. Wernsdorf. Markov ciphers and alternating
groups. In T. Helleseth, editor, Advances in Cryptology - Eurocrypt’93, volume
765 of LNCS, pages 453–460. Springer-Verlag, 1994.

[16] W.C. Huffman and V.S. Pless. Fundamentals of Error-Correcting Codes. Cam-
bridge University Press, 2003.

[17] L. Keliher. Refined analysis of bounds related to linear and differential crypt-
analysis for the AES. In H. Dobbertin, V. Rijmen, and A. Sowa, editors, Fourth
Conference on the Advanced Encryption Standard - AES4, volume 3373 of LNCS,
pages 42–57. Springer-Verlag, 2005.

[18] L. Keliher, H. Meijer, and S.E. Tavares. Improving the upper bound on the
maximum average linear hull probability for Rijndael. In S. Vaudenay and A.M.
Youssef, editors, Selected Areas in Cryptography, SAC’01, volume 2259 of LNCS,
pages 112–128. Springer-Verlag, 2001.

[19] L. Keliher, H. Meijer, and S.E. Tavares. New method for upper bounding the
maximum average linear hull probability for SPNs. In B. Pfitzmann, editor, Ad-
vances in Cryptology - Eurocrypt’01, volume 2045 of LNCS, pages 420–436.
Springer-Verlag, 2001.

[20] L. Keliher, H. Meijer, and S.E. Tavares. Toward the true random cipher: On
expected linear probability values for SPNs with randomly selected S-boxes. In
V. Bhargava, H.V. Poor, V. Tarokh, and S. Yoon, editors, Communication, In-
formation and Network Security, pages 123–146. Kluwer Academic Publishers,
2003.

[21] X. Lai, J. Massey, and S. Murphy. Markov ciphers and differential cryptanalysis.
In D.W. Davies, editor, Advances in Cryptology - Eurocrypt’91, volume 547 of
LNCS, pages 17–38. Springer-Verlag, 1991.

[22] M. Luby and C. Rackoff. How to construct pseudorandom permutations from
pseudorandom functions. SIAM Journal on Computing, 17(2):373–386, 1988.

[23] Maplesoft. Maple 9. http://www.maplesoft.com/.
[24] M. Matsui. The first experimental cryptanalysis of the Data Encryption Standard.

In Y.G. Desmedt, editor, Advances in Cryptology - Crypto’94, volume 839 of
LNCS, pages 1–11. Springer-Verlag, 1994.

[25] M. Matsui. Linear cryptanalysis method for DES cipher. In T. Helleseth, editor,
Advances in Cryptology - Eurocrypt’93, volume 765 of LNCS, pages 386–397.
Springer-Verlag, 1994.

[26] M. Matsui. New structure of block ciphers with provable security against differen-
tial and linear cryptanalysis. In D. Gollmann, editor, Fast Software Encryption -
FSE’96, volume 1039 of LNCS, pages 205–218. Springer-Verlag, 1996.

[27] U. Maurer and K. Pietrzak. The security of many-round Luby-Rackoff pseudo-
random permutations. In E. Biham, editor, Advances in Cryptology - Euro-
crypt’03, volume 2656 of LNCS, pages 544–561. Springer-Verlag, 2003.

[28] S. Moriai and S. Vaudenay. On the pseudorandomness of top-level schemes of
block ciphers. In T. Okamoto, editor, Advances in Cryptology - Asiacrypt’00,
volume 1976 of LNCS, pages 289–302. Springer-Verlag, 2000.

[29] M. Naor and O. Reingold. On the construction of pseudorandom permutations:
Luby-Rackoff revisited. Journal of Cryptology, 12(1):29–66, 1999.

Proving the Security of AES Substitution-Permutation Network 81

[30] K. Nyberg. Perfect nonlinear S-boxes. In D.W. Davies, editor, Advances in Cryp-
tology - Eurocrypt’91, volume 547 of LNCS, pages 378–386. Springer-Verlag,
1991.

[31] K. Nyberg. Linear approximation of block ciphers. In A. De Santis, editor,
Advances in Cryptology - Eurocrypt’94, volume 950 of LNCS, pages 439–444.
Springer-Verlag, 1995.

[32] L. O’Connor. Properties of linear approximation tables. In B. Preneel, editor, Fast
Software Encryption - FSE’94, volume 1008 of LNCS, pages 131–136. Springer-
Verlag, 1995.

[33] S. Park, S.H. Sung, S. Chee, E-J. Yoon, and J. Lim. On the security of Rijndael-
like structures against differential and linear cryptanalysis. In Y. Zheng, editor,
Advances in Cryptology - Asiacrypt’02, volume 2501 of LNCS, pages 176–191.
Springer-Verlag, 2002.

[34] S. Park, S.H. Sung, S. Lee, and J. Lim. Improving the upper bound on the
maximum differential and the maximum linear hull probability for SPN structures
and AES. In T. Johansson, editor, Fast Software Encryption - FSE’03, volume
2887 of LNCS, pages 247–260. Springer-Verlag, 2003.

[35] J. Patarin. Security of random Feistel schemes with 5 or more rounds. In
M. Franklin, editor, Advances in Cryptology - Crypto’04, volume 3152 of LNCS,
pages 106–122. Springer-Verlag, 2004.

[36] S. Vaudenay. On the need for multipermutations: Cryptanalysis of MD4 and
SAFER. In B. Preneel, editor, Fast Software Encryption - FSE’94, volume 1008
of LNCS, pages 286–297. Springer-Verlag, 1995.

[37] S. Vaudenay. On the security of CS-cipher. In L. Knudsen, editor, Fast Software
Encryption - FSE’99, volume 1636 of LNCS, pages 260–274. Springer-Verlag,
1999.

[38] S. Vaudenay. On the Lai-Massey scheme. In L. Kwok Yan, O. Eiji, and X. Chaop-
ing, editors, Advances in Cryptology - Asiacrypt’99, volume 1716 of LNCS, pages
8–19. Springer-Verlag, 2000.

[39] S. Vaudenay. Decorrelation: a theory for block cipher security. Journal of Cryp-
tology, 16(4):249–286, 2003.

[40] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge Uni-
versity Press, 2nd edition, 2003. First published 1999.

[41] D. Wagner. Towards a unifying view of block cipher cryptanalysis. In B. Roy and
W. Meier, editors, Fast Software Encryption - FSE’04, volume 3017 of LNCS,
pages 16–33. Springer-Verlag, 2004.

[42] R. Wernsdorf. The round functions of Rijndael generate the alternating group. In
J. Daemen and V. Rijmen, editors, Fast Software Encryption - FSE’02, volume
2365 of LNCS, pages 143–148. Springer-Verlag, 2002.

An Attack on CFB Mode Encryption as Used by
OpenPGP

Serge Mister and Robert Zuccherato

Entrust, Inc., 1000 Innovation Drive, Ottawa, Ontario, Canada K2K 3E7
{serge.mister, robert.zuccherato}@entrust.com

Abstract. This paper describes an adaptive chosen-ciphertext attack
on the Cipher Feedback (CFB) mode of encryption as used in OpenPGP.
In most circumstances it will allow an attacker to determine 16 bits of any
block of plaintext with about 215 oracle queries for the initial setup work
and 215 oracle queries for each block. Standard CFB mode encryption
does not appear to be affected by this attack. It applies to a particular
variation of CFB used by OpenPGP. In particular it exploits an ad-hoc
integrity check feature in OpenPGP which was meant as a “quick check”
to determine the correctness of the decrypting symmetric key.

Keywords: OpenPGP, Cipher-Feedback Mode, chosen-ciphertext at-
tacks, encryption.

1 Introduction

The OpenPGP Message Format is described in RFC 2440 [4]. It is a very popular
and commonly used format for signing and encrypting data files, particularly for
signing and encrypting email. The formats described in the OpenPGP RFC
have been implemented in a wide variety of popular freeware and commercial
encryption products. Symmetric encryption in OpenPGP is performed using a
variant of the standard Cipher-Feedback (CFB) Mode for block ciphers.

Adaptive chosen-ciphertext attacks on cryptographic protocols allow an at-
tacker to decrypt a ciphertext C, getting the plaintext M , by submitting a
series of chosen-ciphertexts C′ �= C to an oracle which returns information on
the decryption. The ciphertexts can be adaptively chosen so that information
on previous decryptions is available before the next chosen ciphertext is sub-
mitted. These attacks have been used in the past to attack the RSA PKCS
#1 v1.5 [12] encryption scheme [3], the Cipher-Block-Chaining (CBC) Mode
of encryption when used with certain exploitable redundancies (e.g. padding
schemes) [2, 5, 15, 16, 17] and the OpenPGP CFB mode [13, 11, 14] itself. The
attack on the OpenPGP CFB mode in [13, 11] was able to obtain the entire
plaintext using one oracle query which returned to the attacker the entire de-
cryption of C′ and the attacks in [14] were able to extend the previous attack to
adaptive scenarios.

This paper describes an adaptive chosen-ciphertext attack on the OpenPGP
CFB mode of encryption. However, the oracle required is much weaker than

B. Preneel and S. Tavares (Eds.): SAC 2005, LNCS 3897, pp. 82–94, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

An Attack on CFB Mode Encryption as Used by OpenPGP 83

in traditional chosen-ciphertext attacks. Access to the complete decryption of
the oracle queries is not required. Only access to the validity of the ciphertext
is required. Since the oracle is weaker, we suggest calling this a chosen-cipher
validation attack. The attack requires an oracle that returns information on an
ad-hoc integrity check in the OpenPGP CFB mode. We show that this oracle
is likely instantiated in most applications that include OpenPGP. With about
215 oracle queries for an initial setup and about 215 queries for each block, the
attacker can determine the first two bytes of plaintext in each block. The attack
does require that the attacker also know the first two bytes of plaintext of any
one block to bootstrap the process, but we show how to likely obtain these bytes
in the majority of circumstances.

2 Cipher-Feedback (CFB) Mode

This section will first describe the standard Cipher Feedback (CFB) mode of
operation for block ciphers. The particular variant of CFB mode that is used in
OpenPGP will then be described.

The standard CFB mode, by itself, does not appear to be affected by the results
in this paper. However, if the data that has been encrypted using standard CFB
mode has also been padded to produce an integer number of blocks of plaintext
and there exists an oracle for determining when an encrypted message has been
correctly padded, the techniques introduced in this paper along with the ideas
in [2, 15, 16, 17] can be used to decrypt part or all of any ciphertext block.

2.1 Standard CFB Mode

We describe the standard CFB mode of operation as described in ANSI X9.52 [1]
and NIST Special Publication 800-38A [8]. We will assume that the block size
of the underlying block cipher, the block size of the CFB mode and the size of
the feedback variable are all b bytes, since this is the case for the variant used
by OpenPGP. We are doing this simply for ease of explanation and note that
nothing in this paper depends upon this fact.

Let EK(·) be encryption with the symmetric key K by the underlying block
cipher. Let ⊕ be bitwise exclusive-or. The plaintext message to be encrypted
will be M = (M1, M2, . . . , Mn) where each Mi is b bytes long. A random b-
byte initialization vector IV is required in order to produce the ciphertext C =
(C0, C1, C2, . . . , Cn) as

C0 = IV

C1 = EK(IV)⊕M1

C2 = EK(C1)⊕M2

...
Ci = EK(Ci−1)⊕Mi

...
Cn = EK(Cn−1)⊕Mn.

84 S. Mister and R. Zuccherato

2.2 OpenPGP CFB Mode

The OpenPGP Message Format [4] uses a variant on the standard CFB mode.
The main difference with the OpenPGP variant is in the construction of the
initialization vector. A random block R is encrypted (described below) as the
first block of ciphertext, which serves as an IV for feedback. Two bytes of R are
then repeated in the second block in order to quickly check whether the session
key K is incorrect upon decryption. We note that this “quick check” is really
an integrity check on the key and it is this ad-hoc integrity mechanism, used in
a mode of operation that wasn’t designed to accommodate it, that allows the
attack.

Let 0 be the b-byte all zero block. By Xi,j or [X]i,j we will mean the ith
and jth bytes of the block X and by Xi−j or [X]i−j we will mean the ith
through jth bytes of X . The concatenation operation will be represented by
||. Then, using notation as introduced in the previous section, the ciphertext
C = (C1, C2, . . . , Cn+2) is computed as1

C1 = EK(0)⊕R

C2 = EK(C1)1,2 ⊕Rb−1,b

C3 = EK([C1]3−b||C2)⊕M1

C4 = EK(C3)⊕M2

...
Ci = EK(Ci−1)⊕Mi−2

...
Cn+2 = EK(Cn+1)⊕Mn.

We note here that C2 is not a full b-byte block, but instead consists of just 2
bytes. We will leave this slight abuse of notation as it will be useful later on.

The random number R is not sent to the receiver to use directly. Its purpose is
to provide a random initial value on which to apply the block cipher and encrypt
the first plaintext block M1. Note though that repetition of the two bytes of
R in the computation of C1 and C2 allows the recipient to quickly check, after
decrypting only blocks C1 and C2 whether or not the session key is likely correct.
This is done by comparing the b+1st and b+2nd blocks with the b−1st and bth
blocks. If they match, then the current key was likely the one used to encrypt the
data and the remaining blocks can be decrypted. If they don’t match, then the
key is likely in error, and decryption can be halted. The OpenPGP specification
(RFC 2440) describes this “quick check” and most implementations of OpenPGP
include it. However, this is really an ad-hoc integrity check that leaks crucial
information, as we shall see.

1 We note that the description of the OpenPGP CFB mode is incorrect in [13] where
they incorrectly describe how to compute C3.

An Attack on CFB Mode Encryption as Used by OpenPGP 85

3 Attacking the OpenPGP CFB Mode

This section will describe the attack in detail. First we will describe the oracle re-
quired and the information that can be obtained from a successful oracle query.
Thenwewill look at the format of theOpenPGPmessages that are being decrypted
and show that certain bits of M1 can be predicted. We will then use the oracle and
the known plaintext bits to determine 16 bits from any block of ciphertext.

3.1 The Oracle

This attack requires the presence of an oracle O that, when given a purported
ciphertext C′ encrypted using the OpenPGP CFB mode of operation with a
given key, will correctly determine whether or not the integrity check described
in Section 2.2 was successful. We note that this oracle is likely to be implemented
in practical implementations of OpenPGP. RFC 2440 requires that implementa-
tions implement this check to prevent obviously incorrect ciphertexts from being
decrypted. Further details on the practical aspects of implementing this oracle
will be discussed in Section 3.3.

Let’s assume that such an oracle does, in fact, exist. Then if the oracle query
is successful we know that for the purported ciphertext C′ = (C′

1, C
′
2, C

′
3, . . .),

[C′
1]b−1,b ⊕ [EK(0)]b−1,b = C′

2 ⊕ EK(C′
1)1,2. (1)

We note that C′
1 and C′

2 are known since they are part of the ciphertext C′. If we
knew EK(C′

1)1,2, then we could determine [EK(0)]b−1,b and similarly if we knew
[EK(0)]b−1,b, then we could determine EK(C′

1)1,2. The method for the attack is
now clear. We need to construct a message so that we know EK(C′

1)1,2, that will
allow us to obtain [EK(0)]b−1,b. This value is the same for all messages encrypted
using K. Then, we can use that information to determine EK(C′

1)1,2 in specially
constructed messages, from which we will get the first two bytes of any plaintext
block.

3.2 Obtaining Some Known Plaintext

In order for the attack described in this paper to work, the first two bytes of
any one message block Mi must be known by the attacker. In this section, we
will describe how an attacker can plausibly determine the first two bytes of M1
in the majority of circumstances.

According to RFC 2440, the message M that is encrypted using the OpenPGP
CFB mode consists entirely of a complete OpenPGP message. Both GnuPG
(available at http://www.gnupg.org) and PGP Freeware (available at
http://www.pgp.com) compress data by default before encrypting it. Thus, in
the vast majority of circumstances, the encrypted message will consist of a com-
pressed data packet. We will examine this situation first.

When the data being encrypted is a compressed data packet, the first two bytes
of this packet are very predictable. The first byte consists of a “packet tag”, which
indicates the format of the packet contents. If the packet is compressed, then this

86 S. Mister and R. Zuccherato

packet tag will typically take the value 0xA3. The second byte indicates the
compression algorithm used. Typically this will be 0x01 to represent the ZIP com-
pression algorithm. Other common values for the second byte are 0x00 for uncom-
pressed data, 0x02 for ZLIB compression and 0x03 for BZip2 compression. Thus, if
the attacker knows that the encrypted data is compressed, then the first two bytes
will either be known or can be determined by trying a small number of possible val-
ues. If it is not known that the data is a compressed data packet, then the attacker
can reasonably guess that it has been and thus guess the first two bytes.

If it is known that the encrypted data is not a compressed data packet, then
there are a small number of choices for the first two bytes of M1. The first
byte will again be a “packet tag” to indicate the format of the packet contents.
There are only a small number of possible packet tags likely to be used (14 are
defined in the OpenPGP RFC). The second byte will either be the length of the
encrypted message, or a portion of the length, depending upon whether or not
more than one byte is required to represent the length. It is not unreasonable to
assume that the attacker may know, or be able to guess, the packet type of the
encrypted message and will likely be able to deduce the length from the message
itself. Thus, it is not unreasonable to assume that the attacker will know, or be
able to deduce the first two bytes of M1.

Once the attacker knows [M1]1,2 then, from the definition of the OpenPGP
CFB mode, it immediately also knows [EK([C1]3−b||C2)]1,2. In the general case,
if the attacker knows [Mi+1]1,2 for i ≥ 1 then it also knows [EK(Ci+2)]1,2. We
will assume that the attacker knows one of these values.

3.3 The Initial Setup Work

In this section we will describe how the attacker can determine [EK(0)]b−1,b. We
will assume that the attacker has intercepted C = EK(M) and knows the first
two bytes of some plaintext block. As we saw in the last section, this is not an
unreasonable assumption. We will first consider the situation where the attacker
knows the first two bytes of M1, next we will consider the situation where the
attacker knows the first two bytes of Mi+1 for i ≥ 1.

When the attacker knows the first two bytes of M1, the attacker will construct
a ciphertext C′ = ([C1]3−b||C2, D, C3, C4, . . .) for particular values of D and
submit it to the oracle to determine whether or not it is a properly constructed
ciphertext. In other words, the oracle will determine whether or not the integrity
check in the OpenPGP CFB mode was successful. When it is successful, we can
use Equation (1) to determine [EK(0)]b−1,b.

In this situation, the attacker should use the following algorithm to determine
[EK(0)]b−1,b.

1. Let D be a two byte integer representing the value 0.
2. Construct C′ = ([C1]3−b||C2, D, C3, C4, . . .).
3. Submit C′ to the oracle O. If the oracle returns “success” then

[EK(0)]b−1,b = C2 ⊕D ⊕ [EK([C1]3−b||C2)]1,2.

Otherwise, let D = D + 1 and goto Step 1.

An Attack on CFB Mode Encryption as Used by OpenPGP 87

The correctness of this result follows immediately from Equation (1), the con-
struction of C′ and the fact that we are exhausting over all possible values of D.
We note that from the previous section, the attacker knows [EK([C1]3−b||C2)]1,2
and thus can, in fact compute [EK(0)]b−1,b.

We will now consider the more general case when the attacker knows the first
two bytes of Mi+1 for i ≥ 1. This time the attacker will construct a ciphertext
C′ = (Ci+2, D, C3, C4, . . .) and proceed as in the previous case. The attacker
would use the following algorithm to determine [EK(0)]b−1,b.

1. Let D be a two byte integer representing the value 0.
2. Construct C′ = (Ci+2, D, C3, C4, . . .).
3. Submit C′ to the oracle O. If the oracle returns “success” then

[EK(0)]b−1,b = [Ci+2]b−1,b ⊕D ⊕ [EK(Ci+2)]1,2.

Otherwise, let D = D + 1 and goto Step 1.

Here we note that the attacker knows [EK(Ci+2)]1,2 from the results in the
previous section and thus can also compute [EK(0)]b−1,b.

It is clear that in either of these situations the oracle will return “success”
for some value of D less than 216. Thus, we would expect that, on average, our
attacker would require about 215 = 32, 768 oracle queries in order to determine
[EK(0)]b−1,b. Alternatively, all 216 oracle queries (corresponding to all possible
values of D) could be precomputed and submitted in parallel, thereby making
the attack non-adaptive.

3.4 Determining 16 Bits of Any Plaintext Block

Once our attacker has determined [EK(0)]b−1,b, the first two bytes of any plain-
text block can be determined with about 215 queries to the oracle. It is a simple
variation on the algorithms in the previous section that provides it to the at-
tacker.

In order to determine [Mi+1]1,2 for any i ≥ 1 the attacker should use the
following algorithm.

1. Let D be a two byte integer representing the value 0.
2. Construct C′ = (Ci+2, D, C3, C4, . . .).
3. Submit C′ to the oracle O. If the oracle returns “success” then

[EK(Ci+2)]1,2 = [Ci+2]b−1,b ⊕D ⊕ [EK(0)]b−1,b.

Otherwise, let D = D + 1 and goto Step 1.
4. Then [Mi+1]1,2 = [EK(Ci+2)]1,2 ⊕ [Ci+3]1,2.

Again, the correctness of this result follows immediately from Equation (1), the
construction of C′ and the fact that we are exhausting over all possible values of D.
As in the previous section we would expect that the attackerwould require on aver-
age about 215 oracle queries to determine the first two bytes of any plaintext block.

88 S. Mister and R. Zuccherato

Also as in the previous section the attack can be made non-adaptive by computing
all 216 possible oracle queries and submitting them in parallel.

In the i = 0 case, where the first two bytes of M1 are not already known,
they can be obtained by a simple modification to the above algorithm by setting
i = 0 and replacing Ci+2 by [C1]3−b||C2.

Thus, we see that under the reasonable assumption that an attacker can
determine the first two bytes of any one message block, with one-time initial
work of about 215 oracle queries, the first two bytes of any other message block
can be determined with about 215 oracle queries per message block.

3.5 The Attack Without Plaintext

We note that the attack can be implemented even if it is not possible to know
the first two bytes of some plaintext block. In this situation, we can simply
replace the assumed known value [M1]1,2 with an indeterminate, say Z and im-
plement the algorithms in Sections 3.3 and 3.4. Note that all of the formulae still
carry through, including the “⊕Z” term. Now instead of actually determining
[Mi+1]1,2 for any i ≥ 1, we determine [Mi+1]1,2 ⊕ Z. For example, from the
definition of the OpenPGP CFB mode we get

[Ek([C1]3−b||C2)]1,2 = [C3]1,2 ⊕ Z.

Then, in Step 3 of the first algorithm in Section 3.3 we get

[EK(0)]b−1,b = C2 ⊕D ⊕ [C3]1,2 ⊕ Z.

Let A = C2 ⊕D⊕ [C3]1,2, which is a known value. In Step 3 of the algorithm in
Section 3.4 we get

[EK(Ci+2)]1,2 = [Ci+2]b−1,b ⊕D ⊕A⊕ Z.

Let B = [Ci+2]b−1,b ⊕D ⊕A, which is also now a known value. So,

[Mi+1]1,2 = B ⊕ Z ⊕ [Ci+3]1,2,

from which we can calculate [Mi+1]1,2 ⊕ Z for many values of i.
If enough of these values are recovered and if the values of the [Mi+1]1,2 can

be bounded, then Z can be determined, thus revealing the plaintext.
For example, if it is known that all of the Mi are ASCII text, then it wouldn’t

take very many values of [Mi+1]1,2 ⊕ Z to be recovered before Z could be
determined.

3.6 Extending the Attack to Other Modes

We note that this attack is not really an attack on CFB mode encryption, but
an attack on the two repeated bytes in the first two blocks of an OpenPGP
encrypted message. It is likely that similar attacks would be possible with any
non-authenticated encryption mode whenever the decryptor checks for repeated

An Attack on CFB Mode Encryption as Used by OpenPGP 89

bytes. For example, Hal Finney has pointed out that a similar attack is possible
against CBC mode if the decryptor checks for such a plaintext stutter [9].

As with the attack on padding in CBC mode [16], we note that in all of these
situations the decryptor is checking for a specific redundancy when using a non-
authenticated mode. This practice leaks too much information to the attacker.
Such checks should be disabled or an authenticated mode of operation should
be used whenever possible. (See also [15].)

4 The Attack in Practice

In previous sections we showed that if a certain oracle exists, then under reason-
able assumptions it is possible for an attacker to determine the first two bytes of
any plaintext block. This section will examine how likely it is that the required
oracle will exist in practice.

We first note that the required oracleO simply implements the integrity check
required in the OpenPGP standard. Thus it is not unreasonable to expect that
most implementations would leak this kind of information. This is not a very
“powerful” oracle in the sense that it is not leaking a great deal of information.
We contrast this with the oracle required in the attack on the OpenPGP CFB
mode described in [13, 11]. In that attack only a single oracle query is required to
determine the entire plaintext, however, the oracle must return the decryption
of the chosen ciphertext. In most environments it is not likely that the attacker
will actually have access to the decryption of the chosen ciphertext. It is not
unreasonable though to assume that error information is obtained either directly,
or through side-channels.

4.1 Non-server-Based OpenPGP Users

By a “non-server-based OpenPGP user” we refer to a human user interacting
with an OpenPGP-enabled application. This is, by far, the most common sce-
nario of OpenPGP-based applications. In this scenario it is not unreasonable to
assume that some error information regarding the decryption of any ciphertext
will be leaked to an attacker. However, it is not likely at all that a human user
will attempt to decrypt over 32,000 messages whose decryptions actually fail
without realizing that there is a problem and discontinuing.

Thus, we view an attack in this situation as unlikely and will not consider it
any further.

4.2 Server-Based OpenPGP Users

A “server-based OpenPGP user” is an automated process that responds to re-
quests that have been encrypted for it using OpenPGP. It attempts to decrypt
the request and respond to it appropriately. Few OpenPGP users are server-
based as compared with those in the previous section. In this situation, however,
it is more likely that information on errors (including decryption errors) will be
returned to the requester, which in this case could be an attacker.

90 S. Mister and R. Zuccherato

There are at least two ways in which an attacker could gain information that
would instantiate the oracle. The server could return an error directly to the
attacker that the integrity check in the OpenPGP CFB mode failed. As we will
see in the next section, some common OpenPGP toolkits do, in fact return error
codes which could allow server-based OpenPGP users to, unwittingly, instanti-
ate the oracle. Even if this error code is not returned, information on whether
or not the integrity check was successful can likely be obtained through timing
or other information. (See [5] for a similar attack that uses this kind of timing
information.) RFC 2440 says that the integrity check “allows the receiver to
immediately check whether the session key is incorrect”. Thus, most implemen-
tations would abandon the decryption process immediately if the check failed
thereby allowing timing attacks to determine the result of the check. As we will
see in the next section, this is what happens.

In fact, timing attacks can be made more feasible by constructing the cipher-
text C′ (in step 2 of Sections 3.3 and 3.4) so that the decryption process will
necessarily take a large amount of time. For example, after the fourth block of C′

the value of the ciphertext does not affect the values required for the attack and
the ciphertext can be as long as possible. Thus, if the attacker lets C5, C6, . . . be
an extremely large number of random blocks, then decrypting C′, in the event of
a succesful oracle query, will take a relatively large amount of time. This would
make detecting a successful oracle query more feasible in some applications.

We also need the oracle to use the same symmetric key K each time that it
is invoked. This is not difficult to do. After constructing the ciphertext C′ as
described in previous sections, this ciphertext should simply be packaged in a
standard OpenPGP message. The Public-Key Encrypted Session Key Packet in
this message should always contain the same value as in the original OpenPGP
message that is being attacked. This packet will contain the key K encrypted for
the victim. Each time that the chosen ciphertext is sent to the victim, he/she
will decrypt and thus use the same key K each time.

4.3 Common Toolkits May Instantiate the Oracle

To determine the likelihood of this oracle being instantiated we looked at two
common toolkits that implement the OpenPGP RFC. We considered GnuPG
1.2.6 [10] and Cryptix OpenPGP [7].2

In GnuPG 1.2.6, the integrity check is performed in the decrypt data() func-
tion call. If the integrity check is not successful, then the error G10ERR BAD KEY
is returned and decryption is abandoned. Thus, it is not unreasonable to expect
that some server-based applications based upon this toolkit would leak this error
information either directly, or based upon timing information.

In the Cryptix OpenPGP toolkit, the PGPEncryptedDataPacket.decrypt()
method performs the integrity check. If the integrity check is not successful then
2 We note that later versions of these toolkits than the ones examined here have since

incorporated countermeasures mentioned in the next section and thus no longer
instantiate the oracle. In fact, most implementations of OpenPGP have now incor-
porated these countermeasures.

An Attack on CFB Mode Encryption as Used by OpenPGP 91

an exception is thrown with “No good session key found” and decryption doesn’t
proceed. Thus, again, it is not unreasonable to expect that some server-based
applications based upon this toolkit would leak this error information either
directly, or based upon timing or other information.

4.4 Implementing the Attack

We implemented the attack on GnuPG 1.2.4. As it turns out, GnuPG is very
helpful in that it appears to display the error “decryption failed: bad key”
if and only if our oracle does not return success.

We encrypted data with compression turned off and without MDC (see next
Section). This was only for ease of implementation, as we have seen (and shall
see) this is not required. We then implemented the algorithms in Sections 3.3
and 3.4 as batch scripts cycling through all possible values of D. When we did
not get a “decryption failed: bad key” we knew that the integrity check
was successful and could utilize the given formulae to produce the plaintext. We
note that in all of our experiments we only received one value of D that did not
give a “decryption failed: bad key” error.

Implemented on a 1.8 GHz Pentium M processor running Windows XP Pro-
fessional, it took under 2 hours to exhaust all values of D. Thus, with less than
4 hours of work an attacker could obtain the first two bytes of any plaintext
block. The first two bytes of additional plaintext blocks could be obtained with
an additional 2 hours each.

4.5 The Effect of Compression

When 64-bit blocks are used an attacker can obtain at most 25% of the plaintext
and when 128-bit blocks are being used at most 12.5%. If the plaintext is uncom-
pressed data this would be devastating. However, typically plaintext OpenPGP
data is compressed. In this situation it is not clear if obtaining even 25% of the
compressed data will compromise any of the uncompressed data. This is a big
mitigating factor against the attack in practice.

5 Attack Prevention

In this section we examine two potential methods for avoiding this attack. One
method does not work, the other does.

5.1 Integrity Protected Data Packet Doesn’t Work

The OpenPGP RFC is currently up for revision [6] and a new packet type will
be included that provides additional integrity protection for encrypted data.
GnuPG also implements this additional packet type, called the Symmetrically
Encrypted Integrity Protected Data Packet. Encryption using this packet type
differs from the non-integrity protected version in two ways. First, the OpenPGP
CFB mode of encryption as described is not used. Instead b + 2 random bytes,

92 S. Mister and R. Zuccherato

with the b+1st and b+2nd bytes matching the b−1st and bth bytes, are prefixed
to the message and then the standard CFB mode is used to encrypt the prefixed
message. As previously, the repeated bytes should be checked and decryption
abandoned if they do not match. Second, the entire plaintext message, including
the prefix is hashed. The hash value, known as an MDC, is appended to the
message and encrypted using CFB mode as well.

Let us first consider the modified CFB mode of operation. We note that, in
general, the attack described still works with slight modifications (e.g. replace
C2 with [C2]1,2). However, it will likely now become more difficult for an attacker
to obtain the first two bytes of a plaintext message block in order to bootstrap
the attack. Notice that now the suggested known plaintext will be in bytes 3
and 4 of the plaintext corresponding to C2. If the first two bytes of any plaintext
message block is known, however, the attack will still be valid.

The purpose of the hash is to detect modifications of the message by the at-
tacker. The attack described in this paper involves modifications to the message
and the hash will, in fact, detect it. However, since the check of the hash occurs
after the decryption of the entire plaintext and the ad-hoc integrity check of
the bytes in C1 and C2 occurs before the decryption of the entire plaintext,
it is still likely that information that instantiates the oracle will be leaked. In
fact, since a hash will now need to be computed before determining whether or
not the plaintext is valid in addition to decrypting the message, it is likely that
timing attacks to determine the information will be more effective. We note that
GnuPG implements this new packet type and still returns different error codes
for the two errors and abandons decryption if the repeated bytes do not match.

Thus, this packet type, by itself, will not prevent this attack, although it may
make it more difficult to start.

5.2 The Solution

One obvious solution to prevent this attack is to switch to a true authenticated
mode of operation instead of CFB. However, assuming that PGP designers wish
to continue using CFB mode, the only method that appears to always work in
thwarting this attack is to not instantiate the required oracle. Thus, implemen-
tations should not do the check that the repeated bytes in the first two blocks
match. If the non-integrity protected packet type is being used, then the data
should all be decrypted and an attempt should be made at parsing it. If the
integrity protected packet type is being used, then the entire ciphertext should,
again, be decrypted and the hash calculated and checked. If it doesn’t match,
then an error can be thrown.

Unfortunately, for backwards compatibility with the substantial installed user-
base it is not possible to remove these random repeated bytes from the encrypted
data format. However, future versions should simply ignore these bytes.

If a similar “quick check” that would allow OpenPGP users to quickly de-
termine whether or not the given symmetric key is correct is required, then one
possible solution is to include a cryptographic hash of the symmetric key with the
ciphertext. The message recipient could then compute the hash of the purported

An Attack on CFB Mode Encryption as Used by OpenPGP 93

symmetric key and compare it with the given value before decrypting. Note that
this solution would not provide an integrity check on the entire message and
would require changes to the OpenPGP RFC.

6 Conclusion

We have described an attack on the OpenPGP CFB mode of operation. This
attack works under reasonable assumptions about the knowledge of certain plain-
text bytes and requires an oracle which is likely instantiated in most applications
using OpenPGP. However, since the attack requires 215 oracle queries, on aver-
age, for the initial setup and 215 oracle queries to determine the first two bytes
of any plaintext block, it likely won’t effect applications with human end users.
Server-based applications would be more vulnerable to attack though. In order
to thwart this attack, future implementations should not perform the ad-hoc
integrity check in the OpenPGP CFB mode.

Acknowledgements. We would like to thank Jon Callas, Hal Finney, Don
Johnson and the anonymous reviewers for their helpful comments.

References

1. ANSI X9.52 – 1998, “Triple Data Encryption Algorithm Modes Of Operation”,
American National Standards Institute, July 29, 1998.

2. J. Black and H. Urtubia, “Side-Channel Attacks on Symmetric Encryp-
tion Schemes: The Case for Authenticated Encryption,” In Proceedings of
the 11th USENIX Security Symposium, pp. 327-338, 2002. Available at
http://www.usenix.org/events/sec02/full papers/black/black html/

3. D. Bleichenbacher. “Chosen Ciphertext Attacks Against Protocols Based on the
RSA Encryption Standard PKCS #1.” In H. Krawczyk, editor, Advances in Cryp-
tology – Crypto ’98, volume 1462 of Lecture Notes in Computer Science, pp.
1 - 12. Springer Verlag, 1998.

4. J. Callas, L. Donnerhacke, H. Finney, and R. Thayer, “OpenPGP Message For-
mat,” RFC 2440, Nov 1998.

5. B. Canvel, A. Hiltgen, S. Vaudenay and M. Vuagnoux, “Password Interception in
a SSL/TLS Channel,” In Dan Boneh, editor Advances in Cryptology – CRYPTO
2003, volume 2729 of Lecture Notes in Computer Science, pp. 583-599, Springer-
Verlag, 2003.

6. J. Callas, L. Donnerhacke, H. Finney, and R. Thayer, “OpenPGP Message For-
mat,” draft-ietf-openpgp-rfc2440bis-XX.txt, work in progress.

7. Cryptix OpenPGP, 20041006 snapshot. Available at http://www.cryptix.org/
8. M. Dworkin, “Recommendation for Block Cipher Modes of Operation,” US De-

partment of Commerce, NIST Special Publication 800-38A, 2001. Available at
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

9. H. Finney, personal communications.
10. The GNU Privacy Guard, version 1.2.6. Available at http://www.gnupg.org/
11. K. Jallad, J. Katz, and B. Schneier, “Implementation of Chosen-Ciphertext Attacks

against PGP and GnuPG,” In Proceedings of the 5th International Conference on
Information Security, pp. 90-101, 2002.

94 S. Mister and R. Zuccherato

12. B. Kaliski, “PKCS #7: RSA Encryption, Version 1.5,” RFC 2313, Mar 1998.
13. J. Katz and B. Schneier, “A Chosen Ciphertext Attack against Several

E-Mail Encryption Protocols,” In Proceedings of the 9th USENIX Security Sym-
posium pp. 241-246, 2000. Available at http://www.usenix.org/publications/
library/proceedings/sec2000/katz.html

14. H.C. Lin, S.M. Yen and G.T. Chen, “Adaptive-CCA on OpenPGP Revisited,” In
Information and Communications Security: 6th International Conference – ICICS
2004, volume 3269 of Lecture Notes in Computer Science, pp. 452-464, Springer-
Verlag, 2004.

15. C.J. Mitchell, “Error Oracle Attacks on CBC Mode: Is There a Future for CBC
Mode Encryption?” to be presented at ISC 05, The 8th Information Security Con-
ference, Singapore, September 2005.
See also: Royal Holloway, University of London, Mathematics Department
Technical Report RHUL-MA-2005-7, April 2005, 18 pages. Available at
http://www.ma.rhul.ac.uk/techreports/2005/RHUL-MA-2005-7.pdf

16. S. Vaudenay, “Security Flaws Induced by CBC Padding-Applications to SSL,
IPSEC, WTLS . . .,” In Lars Knudsen, editor Advances in Cryptology – EURO-
CRYPT 2002, volume 2332 of Lecture Notes in Computer Science, pp. 534-545,
Springer-Verlag, 2002.

17. A.K.L. Yau, K.G. Paterson and C.J. Mitchell, “Padding oracle attacks on CBC-
mode encryption with random and secret IVs,” In H. Gilbert and H. Handschuh
(eds.) Fast Software Encryption: 12th International Workshop, FSE 2005, volume
3557 of Lecture Notes in Computer Science, pp.299-319, Springer-Verlag 2005.

Parallelizable Authentication Trees

W. Eric Hall and Charanjit S. Jutla

IBM T.J. Watson Research Center, Yorktown Heights, NY 10598-704

Abstract. We define a new authentication tree in the symmetric key
setting, which has the same computational time, storage and security
parameters as the well known Merkle authentication tree, but which un-
like the latter, allows for all the cryptographic operations required for an
update to be performed in parallel. As in Merkle authentication trees,
the cryptographic operations required for verification can also be paral-
lelized. In particular, we show a provably secure scheme for incremental
MAC with partial authentication secure against substitution and replay
attacks, which on total data of size 2n blocks, and given n cryptographic
engines, can compute incremental MACs and perform individual block
authentication with a critical path of only one cryptographic operation

1 Introduction

We design a novel incremental MAC (message authentication code) with partial
authentication secure against substitution and replay attacks. Before we give
detailed definitions, to motivate the definitions and as an application, consider
the following problem of checking correctness of memory [4].

In this application, a tamper proof processor uses an insecure storagedevice (e.g.
RAM), open to attack from an adversarywho can read and modify the RAM. How-
ever, the tamper proof processormay also have a small amount of internal memory
which can store a MAC of the whole unprotected RAM. The tamper proof proces-
sor is required to generate incremental MACs and authenticate individual blocks of
RAM (without computing the MAC on the whole RAM). Of course, these compu-
tations should not substantially deteriorate the performance of the overall system.
A similar situation arises in NAS (network attached storage) systems.

Clearly, there are two extreme (though impractical) solutions to this problem.
One is to store the whole RAM (say 2n blocks) inside the tamper proof device.
The other is to have 2n cryptographic engines (e.g. AES or SHA-1) inside the
tamper proof device which can compute/authenticate a MAC of the whole un-
protected memory using a parallel MAC scheme like XOR-MAC ([1], also see
section 6), with a critical path of one cryptographic operation. We stress here
that although XOR-MAC can compute incremental MACs with only one engine,
to verify an individual block of RAM, it must compute the MAC on the whole
RAM (i.e. XOR-MAC is not incremental with respect to verification). The abil-
ity to verify only a single block (without having to compute the whole MAC) is
a crucial requirement of our problem.

One could try a memory/processor tradeoff, by dividing the unprotected mem-
ory into super-blocks (say of size 2m blocks each), and storing an

B. Preneel and S. Tavares (Eds.): SAC 2005, LNCS 3897, pp. 95–109, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

96 W.E. Hall and C.S. Jutla

XOR-MAC (one block) of each super-block inside the tamper proof device, and
computing/authenticating an XOR-MAC in parallel using 2m cryptographic en-
gines. Now the tamper proof memory required to store the MACs has been
reduced to 2n−m blocks1. Note however, that the number of engines plus the
tamper proof memory required remains at least 2n/2.

The main contribution of this paper is a provably secure scheme for this
problem, which with only n cryptographic engines, and 1 block of tamper proof
memory, can compute incremental MACs (and do individual block authentica-
tion) with a critical path of one cryptographic operation. The only overhead is
an increase in size of the unprotected memory by a factor of two.

Before we describe our scheme, lets describe the other existing solution to
this problem. This solution of [4] uses Merkle authentication trees [13]. How-
ever, Merkle trees are not fully parallelizable (i.e. although a Merkle tree based
solution would only require n cryptographic engines, and 1 block of tamper
proof memory, the critical path of an incremental MAC computation would
be n cryptographic operations). Not surprisingly though, as we will soon see,
ours is also a tree based solution. In section 7 we contrast our scheme with
Merkle Trees in more practical settings, and also elaborate on other systems
issues.

Main Result. As for XOR-MAC, for every finite secure PRF (pseudorandom
function) family F , we construct an incremental MAC with partial authentication
secure against substitution and replay attacks. The key difference from XOR-
MAC is that our scheme does efficient parallel partial authentication. To achieve
our goal, the scheme we describe generates auxiliary data which can be stored
in unprotected memory. In other words, when provided with correct auxiliary
data a single block can be authenticated, whereas no adversary can get a wrong
block authenticated even with auxiliary data of its choice.

Surprisingly, the MAC is just a nonce value chosen independently of the data
to be authenticated! It is the auxiliary data which provides complete authenti-
cation, and in a way we are trying to make the naive solution of “storing MACs
outside in unprotected memory” work (see footnote). Informally, the scheme
works as follows. Each pair of data blocks is locally MACed along with a new
nonce value (chosen randomly or deterministically), and each pair of these nonce
values are locally MACed along with yet another new nonce value at a higher
level, and so on, till we reach the root of this tree. The new nonce value at the
root is the MAC of the scheme. The local MACs are all stored outside in unpro-
tected memory as auxiliary data. We stress that we are not locally MACing two
child nodes with the value at the parent as key, but rather MACing all three
values together using a global secret key. The former would lead to an insecure
solution, because the parent value (if used as the MAC key) would be available
to the adversary. The latter can be seen as a tweakable MAC (cf. tweakable block
ciphers [11], [10]), i.e. we use the parent value as a tweak.

1 Note that storing MACs outside in unprotected memory provides only integrity, and
not protection from replay attacks.

Parallelizable Authentication Trees 97

Note that all the local computations can be done in parallel once the nonces
have been chosen. Efficient incrementality follows as an update in a data block
only requires updates on the path from this leaf to the root. Efficient parallel
partial authentication, i.e. authentication of data at a leaf, follows as it requires
checking the local MACs on the path from this leaf to the root.

The only thing that remains to be seen is that we do not reuse nonce val-
ues, and that the adversary cannot move around the auxiliary data including
replaying old auxiliary data, which is the crux of the proof of security.

We finally describe how an XOR-MAC like scheme PMAC [3] (which uses
XOR universal hash function families [8], [5]) can be extended to provide efficient
partial authentication.

The rest of the paper is organized as follows. In section 2, we define a novel
notion of incremental MAC with partial authentication, and give its definition of
secutiy. In section 3, we define our scheme PAT, while the proofs of security are
given in section 4. Further optimizations are given in Section 5. In section 6, we de-
scribe PMAC Trees, an extension of PMAC which allows partial authentication.
In section 7, we discuss various practical issues like cache-based and pipelined sys-
tems, and contrast our scheme with both Merkle Trees and PMAC Trees.

2 Definitions

As is often conveniently done, for a function F with many parameters, if the first
parameter is a key then Fx will denote the function with the first parameter x.
The symbol || will denote concatenation of strings. For a message M consisting
of m blocks M1, ..., Mm, M〈i, a〉 will denote the modified message with the ith
block Mi replaced by a.

We now define simple Message Authentication Codes(MAC)and their security.

Definition 2.1. A simple MAC scheme consists of a function F which takes a
secret key x of k bits, a plaintext M of m bits and produces a value τ of h bits.

Security of the simple MAC scheme is defined using the following experiment. An
oracle adversary A is given access to the oracle Fx(·). After A queries Fx(·) on
plaintexts M1, M2, ..., Mq (adaptively), it outputs a pair M ′, τ ′, where M ′ is not
one of the queried plaintexts. The adversary’s success probability is given by

Prx[Fx(M ′) = τ ′]

Let Sec-MACF (q, t) be the maximum success probability of any adversary
running in time at most t, and making at most q queries.

The above security is known as security under the impersonation attack. There
is another notion of security called the substitution attack. In this model, the ad-
versary A works as follows. After A queries Fx(·) on plaintexts M1, M2, ..., Mq

(adaptively), and the algorithm returns τ1, τ2, ..., τq, the adversary then outputs
an M ′. The adversary’s success probability is given by

Pr[∃ j 1 ≤ j ≤ q : Fx(M ′) = τj ∧ M ′ �= Mj]

98 W.E. Hall and C.S. Jutla

Finally, there is a third notion of security called the replay attack. In this model,
the adversary works as follows. After A queries Fx(·) on plaintexts M1, M2, ..., Mq

(adaptively), and the algorithm returns τ1, τ2, ..., τq, the adversary then outputs a
pair M ′, τ ′, such that M ′ is just required to be different from Mq. The adversary’s
success probability is given by

Pr[Fx(M ′) = τ ′]

Of course, there is an adversary which always manages a replay attack. However,
the notion can be strengthened by requiring that τ ′ must agree with some portion
of τq. As we will see, this is an important notion for incremental MACs.

To the best of our knowledge the next two definitions are novel.

Definition 2.2. An incremental MAC with partial authentication and with aux-
iliary data (IMACAUX) consists of the following:

– MAC-AUX: MAC-AUX is a probabilistic function with arguments a key x of
k bits, and a plaintext M of size at most 2n blocks, each block being of size
m bits, and which produces a tuple < σ, τ >, where σ can be an arbitrarily
long string, and τ is of size h bits. The string σ will be called the auxiliary
data and τ will be called the authentication tag.
We will write [MAC-AUXx(M)] for all tuples < σ, τ > which have non-zero
probability of occurring as MAC-AUXx(M).

– Verify: Verify is a boolean function which takes a key x of k bits, an index
i ∈ [0..2n−1], an m bit block a, auxiliary data σ and tag τ , with the following
property: Verifyx(i, a, σ, τ) must return 1 if there exists an M , such that the
ith block of M is a, and < σ, τ > is in [MAC-AUXx(M)].

– INC-MAC-AUX (update): INC-MAC-AUX is a probabilistic function which
takes (apart from the key x) an index i, a block of plaintext a, auxiliary
data σ, and tag τ , and produces either a tuple < σ′, τ ′ > or ⊥. If there
exists an M such that < σ, τ > is in [MAC-AUXx(M)] then it must return
a < σ′, τ ′ > such that < σ′, τ ′ > is in [MAC-AUXx(M〈i, a〉)].

We note that one way to implement the above is to embed M in the auxiliary
data σ. We have said nothing about the security of IMACAUX, which we address
next.

Definition 2.3 (Security under substitution and replay attacks). The security
of an IMACAUX scheme 〈 MAC-AUX, Verify, INC-MAC-AUX〉 is defined using
the following experiment. A three oracle adversary A is given access to the or-
acles MAC-AUXx(·), Verifyx(·, ·, ·, ·), and INC-MAC-AUXx(·, ·, ·, ·). The adver-
sary first requests an initial MAC-AUXx to be computed on an initial plaintext
M0 of 2n blocks. Let MAC-AUXx(M0) return < σ0, τ0 >.

Subsequently, the adversary requests a sequence of q adaptive update operations,
each specifying a block number and a block of replacement text, along with
auxiliary data of its choice. However, τ supplied on each request must be same
as that produced in the previous request.

Parallelizable Authentication Trees 99

More precisely, for each j, 0 < j ≤ q, let ij be the block number for the jth
incremental update, with text aj. Let Ij = INC-MAC-AUXx(ij , aj , σ

′
j−1, τj−1),

where ij , aj , and σ′
j−1 are adaptively chosen by the adversary. As required in

definition 2.2, the return value Ij is either ⊥ or < σj , τj >. If the return value is
⊥, then we let M j = M j−1 and τj = τj−1. If the return value is < σj , τj > then
we let M j = M j−1〈ij , aj〉. In the latter case we also say the update was valid.

Finally, the adversary requests a verification on a block at index i, with text a,
such that a is different from M q

i . The adversary’s success probability is given by

Prx[Verifyx(i, a, σ′, τq) = 1]

Again, σ′ is adaptively chosen by the adversary. However, τq remains the
same as produced by the last valid update. We stress that a is only required to
be different from the last plaintext block at index i, and the adversary is allowed
to choose an a (along with a related σ′) which may have occurred at an earlier
point of time at index i.

Let Sec-IMACAUX〈MAC-AUX,Verify, INC-MAC-AUX〉(q, t) be the maxi-
mum success probability of any adversary running in time at most t, and making
at most q INC-MAC-AUX requests.

3 Parallelizable Authentication Tree

We now describe an IMACAUX scheme called PAT with a description of each of its
component functions, i.e. MAC-AUX, Verify and INC-MAC-AUX. The functions
will employ a simple MAC scheme F (see definition 2.1) with the same secret key
x as chosen for PAT. We will describe the various size parameters later (before
Theorem 1). All F computations (which will be the only cryptographic opera-
tions) in the computation of these functions can be done in parallel.

MAC-AUX. Given a 2n block plaintext M , we now describe a valid MAC-AUX
on it, i.e. all pairs < σ, τ > which are in [MAC-AUXx(M)]. MAC-AUXx(M) will
be an r-ary labeled tree (see Figure 1). For simplicity, we only consider r=2. The
tree will be balanced and will have 2n leaves. For a non-leaf node u, left(u) will
denote its left child and right(u) will denote its right child.

– Leaf nodes u will have as label a data value data(u) which will be the cor-
responding block from M .

– the labels at each non-leaf node u will be a nonce value V (u), and a local
mac value C(u) such that C(u) = Fx(V (left(u)) ||V (u) ||V (right(u))), where
|| is the concatenation operator (see Fig 1).

The auxiliary data σ is just the whole labeled tree except the root V label.
The authentication tag τ is just the V label of the root node. Thus, < σ, τ > is
the whole labeled tree. Any such < σ, τ >, which satisfies the local F constraints,
is in [MAC-AUX(M)].

Verify. Let the input to the function be (i, a, σ, τ).

100 W.E. Hall and C.S. Jutla

(v0,c0) (v1,c1)

(v00,c00) (v01,c01) (v10,c10) (v11,c11)

c_r = MAC(v0||r||v1)

 c0=MAC(v00||v0||v01) c1=MAC(v10||v1||v11)

(v10n−1, c10 n−1)

c10 =MAC(data(v10)||v10 ||data(v10 1))n n−1 n−1n−1

data(v10) data(v10 1)n n−1

(r, c_r) −− r kept in tamper proof memory

Fig. 1. Parallelizable Authentication Tree (PAT)

Since the boolean function Verify takes the leaf node index as an argument (i.e.
i), it just checks that the nonce values are consistent with C along the path from
the root to this leaf. We will give an algorithmic description of this function.

Parallelizable Authentication Trees 101

More precisely, let the path from the root to the specified leaf z (the ith leaf)
be u0 = r, u1, ..., un−1, un = z. Recall that V (u0) is τ .
If for all levels y = 0 to n− 2, C(uy) equals

Fx(V (left(uy)) || V (uy) || V (right(uy))), and
if un is the left child of un−1 then C(un−1) equals

Fx(a || V (un−1) || data(right(un−1))), and
if un is the right child of un−1 then C(un−1) equals

Fx(data(left(un−1)) || V (un−1) || a)
then return 1, else return 0.

Note that the nonce values V and the data values in the above verification
are given as part of σ.

INC-MAC-AUX (update). Let the input to the function be (i, a, σ, τ). We
will give an algorithmic description of this function.

Since the tree has 2n leaves, the root can be considered to be at the 0th level,
whereas the leaves are at the nth level. A path from root r to leaf z (the ith leaf)
can then be written as u0 = r, u1, ..., un−1, un = z. This will be called the update
path. Let v1, ...vn be the sibling path, i.e. for each y ∈ [1..n], vy is the sibling of
uy. The update algorithm first checks that the nonce values V provided as part
of σ of the update and sibling path nodes are correct. More precisely,

Step 1 : If for all y = 0 to n− 2,
C(uy) equals Fx(V (left(uy)) || V (uy) || V (right(uy))), and

C(un−1) equals Fx(data(left(un−1)) || V (un−1) || data(right(un−1))),
then perform the update below, else return ⊥.

Step 2 : For y = 0 to n− 1, update V (uy) = τ + n− y.
For y = 0 to n−2, update C(uy) = Fx(V (left(uy))||V (uy)||V (right(uy))).

Step 3 : At the leaf node z = un, update data(un) = a, and
update C(un−1) = Fx(data(left(un−1)) || V (un−1) || data(right(un−1))).

The newly re-labeled tree is returned as σ, τ . Note that τ is just the new
V (u0), i.e. old τ plus n. Note that all the F operations in steps 1 to 3 combined
can be done in parallel. If these steps are indeed done in parallel in some im-
plementation, there could be a possibility that Step 1 fails, in which case step 2
and 3 are abandoned, and the old σ, τ is reverted to. Since the chances of Step 1
failing are hopefully small, this does not incur much cost.

That finishes the description of INC-MAC-AUX.

4 Security of Parallelizable Authentication Tree

4.1 Optimized Initialization of the Authentication Tree

Since, in the definition of security which described the adversarial model (see
definition 2.3), the adversary only makes one initial call to MAC-AUX, our
scheme (i.e. MAC-AUX) will return a σ0, with all V values set to zero, and
similarly the τ0 set to zero. This can be seen as initializing the data structure.

102 W.E. Hall and C.S. Jutla

Moreover, with this simple initialization, all the internal node MAC values C
are the same, and hence need not be computed multiple times. Further still, we
will assume that the data values are also initialized to zero, in which case the
MAC values at the leaves will also be same.

This does not change the adversarial model, since if the adversary requested
a different initial plaintext M0, our algorithm could return the requested data
structure by simulating several updates.

For example, before the first update request, as mentioned all nonce values
are zero. After the first update request, the nonce value of the node closest to
the leaf, i.e. un−1 will be 1, and the nonce value of the node closest to the root,
i.e. u1 will be n− 1, and the nonce value of the root will just be n.

As we will see, this assures that in each incremental request, the nonce values
are chosen afresh, i.e. are never repeated.

Let d be the number of bits in the nonce labels V above.
Let h be the number of bits in the C label.
Let m be the number of bits in each block of data stored at a leaf.
Let k be the number of bits in the key.
Let 2n be the number of leaves in the balanced binary tree.
Let F be a function F : {0, 1}k × {0, 1}max{d,m}+d+1 → {0, 1}h

The above three algorithms together describe an IMACAUX scheme and will
be called PAT F (k, m, n, h, d) (parallelizable authentication tree) when using F
as its local MAC algorithm.

In the following theorem, Sec-MACF refers to the security under the imper-
sonation attack in definition 2.1.

Theorem 1: For any positive integers k, m, n, h, d, q, t and any function
F : {0, 1}k × {0, 1}max{d,m}+d+1 → {0, 1}h

Sec-MACF (2qn, t) ≥ Sec-IMACAUXPAT F (k,m,n,h,d)(q, t)

Proof: Let A be a three oracle adversary as in the experiment of Theorem 2.3. Let
B be an oracle adversary which participates in the experiment of Definition 2.1
(simple MAC scheme), and is given access to the oracle Fx(·), with x chosen
uniformly at random.

Adversary B will simulate the three oracles for A, i.e. MAC-AUX, Verify, and
INC-MAC-AUX of PAT using its own oracle Fx(·). B will then just imitate A.
During the simulation, B will make several oracle calls to Fx(·). It will also
maintain a List of pairs. Let Listj denote all pairs (a, b) till the end of the jth
INC-MAC-AUX (update) query made by A, such that B during its simulation
made a call to Fx with input a and Fx(a) returned b. Ultimately, while simulating
the final Verify query of A (or even during the INC-MAC-AUX queries’ step 1,
which is essentially a verify query), we show that for some a and b determined
by A, such that a has not been a query to Fx(·), the verify query returns 1 iff
Fx(a) equals b. This claim proves the theorem.

We will follow notation from definition 2.3 for all the queries of adversary A.

Parallelizable Authentication Trees 103

We say that a node u was assigned a value by the algorithm PAT in the jth
update query if the jth update is valid and this node is in the update path of the
jth query. Clearly, the root is assigned a value in each valid update query, and a
leaf is assigned a value in an update query only if it was the leaf being updated
and the update was valid. For each node v, let last(v, j) be the largest j′ ≤ j such
that v was assigned a value in the j′th query. If it was never assigned a value in
an update query (≤ j) then last(v, j) = 0. Let latest(v, j) be the V value assigned
to v by the algorithm INC-MAC-AUX (of PAT) in query last(v, j); if v is a leaf
node then latest(v, j) is just the data assigned to that leaf in the last(v, j) query.
The initial MAC-AUX query will be considered as the 0th query. Without loss of
generality, assume that all updates retuen non-⊥ values (i.e. are valid updates),
as updates which return ⊥ do not cause any change in state. Fact 1(a) below
follows from the optimized initialization of the authentication tree.

Fact 1: (a) For all u, latest(u, 0) = 0.
(b) For l ≥ 1, for all u if last(u, l) = l, then latest(u, l) = l ∗ n−level(u), where
level(u) is the distance of u from the root.
(c) For all u, j and l, if last(u, j) ≤ l, then latest(u, j) = latest(u, l).

Claim 2: for any non-leaf nodes u, v, u �= v, for all t, t′,
latest(u, t) �= latest(v, t′), or
latest(u, t) = latest(v, t′) = 0.

Proof: Suppose both values are non-zero. Then by fact 1(a) and 1(c), let
last(u, t) = l ≥ 1, and last(v, t′) = l′ ≥ 1. Then by Fact 1(b), latest(u, t) =
l ∗ n−level(u), and latest(v, t′) = l′ ∗ n−level(v). It follows that if these two val-
ues are same then level(u) = level(v), and l = l′ (as |level(u)− level(v)| < n).
But that is impossible, as in the lth update query only one node at each level
gets a new V value. �

In the algorithm INC-MAX-AUX, each node in the update path and the sibling
path is first verified. Define Sj (1 ≤ j ≤ q) to be the union of nodes in the update
and sibling path in the jth update query. We will also call the final Verify query
of adversary A, the (q +1)th query. We define Sq+1 to be the collection of nodes
in the path from the leaf being verified to the root.

Unless otherwise mentioned, whenever we refer to V (u) for some node, we
will mean the V value supplied for node u by adversary in the jth query. The
same will hold for data(u).

Claim 3: Either (a) for every j, 1 ≤ j ≤ q + 1, for all nodes u ∈ Sj , V (u) (or
data(u)) = latest(u, j − 1), or
(b) there exists a j, 1 ≤ j ≤ q + 1, and a non-leaf node u ∈ Sj such that
(V (left(u)) || V (u) || V (right(u))) is not in Listj−1 (i.e. is not equal to the first
entry of any pair in Listj−1).

Proof: Suppose (b) does not hold. Then we prove (a) by induction on j.

104 W.E. Hall and C.S. Jutla

Base case (j = 1). By Fact 1(a), for all u, latest(u, j − 1) = 0. Hence, the only
entry in List0 is the one corresponding to argument (0 || 0 || 0). Now, suppose (a)
does not hold for some u ∈ Sj (i.e. V(u) �= 0). If u is a non-leaf node then (b)
does not hold for that u (with j = 1). If u is a leaf node then (b) does not hold
for parent of u.
Suppose that the induction hypothesis holds for j − 1.

We do a nested induction on the nodes of the update path. If j < q + 1,
consider a non-leaf node u in Sj , but restricted to the update path. If j = q + 1,
then consider a non-leaf node u in Sq+1. Suppose its supplied V (u) is indeed
same as latest(u, j− 1). We will show that for v being either child of u, V (v) (or
data(v)) supplied in the jth query is indeed latest(v, j − 1).

Let last(u, j − 1) be l ≤ j − 1. If l = 0, then both its children v have V (v) =
0 = latest(v, j − 1). Otherwise u is in Sl and the lth update was valid. Now,
since last(u, j − 1) = l, neither of u’s children v have last(v, j − 1) > l. In
fact one of them, say v1, has last(v1, j − 1) = l, and the other, say v2, has
last(v2, j− 1) < l (i.e. v2 is in the sibling path in the lth query). Moreover, v2 is
also in Sl. Thus, by outer induction hypothesis, V value supplied for v2 in the
lth query is latest(v2, l− 1), which by Fact 1(c) is same as latest(v2, j − 1).

On the other hand, V value assigned to v1 in lth query is latest(v1, j − 1).
Without loss of generality, assume v1 is the left child. Then, (latest(v1, j −
1) || latest(u, j−1) || latest(v2, j−1)) was inserted in Listl. Moreover, by Claim 2,
and Fact 1(b), these are the only values in Listj−1, with middle value latest(u, j−
1). Now, suppose for one of these v (i.e. v1 or v2), V (v) (i.e. supplied in the jth
query) is not the same as latest(v, j − 1). But, by the claim that (b) does not
hold we have that (V (v1) || latest(u, j − 1) || V (v2)) is in Listj−1, which leads to
a contradiction.

Thus, for v being either child of u, V (v) supplied in the jth query is indeed
latest(v, j − 1). That completes the nested induction step.

But since, V (r) supplied in the jth query is indeed same as latest(r, j − 1) (as
the τ values are not altered by the adversary), the induction step is proven. �

We are now ready to complete the proof of Theorem 1. We point out again that
we use notation from Definition 2.3. Also, recall that we assume, w.l.o.g that all
updates returned non-⊥ values. Let Verified be the event Verifyx(j, a, σ′, τq) = 1.

Let u correspond to the leaf at index i as specified in the final Verify query of
A. Then M q

i = latest(u, q). This follows from the fact that either the ith leaf was
never validly updated, in which case M q

i = M0
i = latest(u, 0) = latest(u, q), or it

was updated at last(u, q) = l to be block al, in which case M q
i = al = latest(u, l)

= latest(u, q).
Since, data a to be verified at leaf node u corresponding to block number j is

different from M q
j , and hence is different from latest(u, q), Claim 3(a) does not

hold. Hence, Claim 3(b) must hold. Let j be the query and v be the non-leaf
node in Sj , such that (V (left(v)) || V (v) || V (right(v))) is not in Listj−1. Let
M ′ = (V (left(v)) || V (v) || V (right(v))), and τ ′ = C(v), where C(v) is the value
supplied by the adversary A in the jth query. Now Fx(M ′) = τ ′, for otherwise
PAT would return ⊥ (see step 1 of INC-MAC-AUX), which is not possible as we

Parallelizable Authentication Trees 105

had assumed w.l.o.g. that no update returns ⊥. Thus if Verified happens with
probability p, then in the experiment of Definition 2.1, Fx(M ′) = τ ′ happens
with probability at least p as well. �

5 Optimizations

The PAT scheme used a function F : {0, 1}k × {0, 1}max{d,m}+d+1 → {0, 1}h,
and the security of PAT required this function to be a secure MAC. It is well
know that if F is a secure pseudorandom function family, then it is also a secure
MAC (as in definition 2.1) [7]. The question then boils down to building an
efficient PRF from max{d, m}+ d + 1 bits to l bits.

First note that, a simple MAC scheme obtained from a PRF is susceptible to
birthday attacks, and hence it is secure only up to at most 2h/2 queries. This
implies, that d need only be h/2. Thus, one needs to implement a PRF from
3h/2 bits to h bits, with a key of size k. In fact, instead of considering a binary
tree, one could consider a 4-ary tree, in which case one needs a PRF from 5/2h to
h. HMAC [9] with SHA-1 is a reasonable option for such a PRF (with h = 160)
where the key is fed through the IV of SHA (see [9] for a discussion of keying
through the IV).

In such a 4-ary tree implementation, the number of leaf nodes is 4n. Thus,
the amount of data can be 4n ∗ (h/2), assuming each block of data is 80 bits,
i.e. m=80. The number of non-leaf nodes is (4n − 1)/3, and each internal node
has memory requirement of d + h = 3h/2 bits. Thus, the memory overhead for
auxiliary data is 100%.

In an 8 or 16 N-ary tree implementation, the storage overhead is reduced
for the intermediate nodes to a more practical level of less than 43% or 20%
respectively.

6 Alternative Schemes

Definition 6.1 (Universal Hash function family [5]). A set H of functions with
signature {0, 1}t →{0, 1}n is said to be a Universal Hash Function family if
PrH [H(i) = H(j)] ≤ 2−n for all i, j, where the probability is taken over H
chosen uniformly at random from H.

Definition 6.2 (XOR-universal function family [8]). A set H of functions with
signature {0, 1}t →{0, 1}n is said to be an XOR-universal family if PrH [H(i)⊕
H(j) = k] ≤ 2−n for all i, j, k, where the probability is taken over H chosen
uniformly at random from H.

In general, if h1 is an XOR-universal hash function family with key k1, from
c bits to c bits, then a+h1k1(b), is a universal hash function family from 2c bits
(〈a, b〉) to c bits.

Instead of describing XOR-MAC [1], we now briefly describe the essential idea
behind the PMAC [3] scheme, which is a more advanced version of XOR-MAC.

Let M be a plaintext of length 2n blocks, on which PMAC is to be computed.
Each block is of length m. For each block of M identify a node u with a unique

106 W.E. Hall and C.S. Jutla

address, namely address(u). The data at node u will be called M(u). The PMAC
scheme employs a pseudorandom permutation (PRP) E from m bits to m bits
with key x. The PMAC algorithm also picks a function H randomly and uni-
formly from a universal hash function family. Thus, the secret key of the PMAC
algorithm is x and the function H . The PMAC value of M is then just

Ex(
2n⊕
i=1

Ex(H(M(ui) || address(ui))))

In other words, the function H is used to hash the data value at each node,
along with its address, to be the input of the PRP Ex. The output of all the Ex

operations is xored and sent through Ex once again to obtain the mac value.
Note that this scheme has a critical path of length two (E operations) in a paral-

lel implementation. Moreover, it allows for fast incremental updates. For example,
if the PMAC value of M is τ , then the PMAC value of M〈i, a〉 is obtained by first
employing E−1

x on τ to get a temporary value s. Then, s is updated by xoring it
with Ex(H(M(ui) || address(ui))) and Ex(H(a || address(ui))), i.e.

s = s⊕ Ex(H(M(ui) || address(ui)))⊕ Ex(H(a || address(ui)))

Finally, the new PMAC value is computed as Ex(s).
In this section we point out that XOR-MAC can also be extended to be an

efficient and parallel IMACAUX scheme. Recall that XOR-MAC was deficient
in the sense that it did not allow efficient partial authentication. So to add that
feature, we first must use a version of XOR-MAC which uses universal hash
functions. The schemes PMAC ([3]) and XECB-MAC([6]) are such schemes.

We now show how to extend PMAC to allow efficient partial authentication.
This scheme will also have a binary tree structure as the auxiliary data, just

as in PAT. The leaves will just be the 2n nodes described above in PMAC. As
in PAT, each internal node has a C value and a V value. The V value is only
computed during updates or verification (i.e. it is secret), and is not stored as a
part of the tree (only C values are stored or returned as part of σ). The local
MAC is computed using PRP E. In particular, the V value at an internal node
is computed by an xor-sum of the V values of all its children, and then the C
label of this internal node is computed by encrypting the V value with E.

The V value at leafs is computed slightly differently. The function H is used
to hash the data value at each leaf, along with its address, to be the input of
the PRP E. The result of this application of E is the V value of the leaf.

We observe that the V value of any internal node u (including the root) is
the XOR-sum of the V values of all the leaf nodes under this internal node u.
By keeping the C labels of the internal node, we assure integrity of a leaf by just
checking the path from the leaf to the root. The “address sensitivity” is built
into the leaves using the function H .

This scheme however has the drawback of having a critical path of a decryp-
tion followed by encryption in a parallel implementation. Essentially, all the C
values on an update path and the sibling path must first be decrypted, and

Parallelizable Authentication Trees 107

then the V values are updated by the changed value at the leaf, and finally the
new C values are obtained by an encryption. Contrast this with INC-MAC-AUX
(update) of PAT where all the F operations in step 1 to 3 can be done in parallel.

7 Systems Issues

In this section we address several systems issues, which also highlights the moti-
vation behind PAT. Naturally, the comparison of this scheme with Merkle trees
and PMAC trees arises.

In any practical tamper proof system, we do not expect to fully parallelize
the operations involved in an update or memory authentication. Most likely, the
tamper proof system will have a reasonably large cache (i.e. inside the tamper
proof device). This would allow the updates to be done in a lazy fashion.

Thus, the PAT tree is never completely updated in the insecure memory after
the initialization (unless completely flushed from the cache – an atypical event).
When a new data node is brought into cache, all the nodes in the update path
between the leaf (i.e. data node) and the lowest ancestor which is already present
in the cache, must be brought in (or filled). When a modified (or dirty) node is
cast-out (cache cast-out), not only is it updated in the PAT representation in
the insecure memory, its parent even if it still remains in cache is assigned a new
V label. The nodes above this parent node are not required to get a new label
unless their children are themselves being cast out. Essentially, all nodes which
are in the insecure memory, must be consistent with the lowest ancestor which
is in cache – as all nodes in the cache are considered authentic.

We point out that entries at higher levels of the tree cover larger areas of
memory, eventually covering whole ”working sets” and benefiting from ”locality-
of-reference” effects in the caching. The highest levels of the tree will entirely
fit in the cache, and so after the initial verify for the first misses, will never be
cast-out (and so will never be updated in memory). This will appear as multiple
smaller trees with the ”root” V’s being updated and keep in the internal cache.

Having discussed the benefits of cache, practical high performance solutions
will still have to ”pipeline” memory and buses. Pipelined memories and buses tend
to reach their peak bandwidth when bursting blocks of data. This will imply au-
thentication trees with higher N-ary (8 or 16) structures to take advantage of the
burst bandwidth. Given the large block size of the nodes, it will be less costly (less
hardware buffering in the data path) if a block can be processed in a ”pipelined”
(higher bandwidth) verification engine as soon as it arrives from the bus.

For PAT this implies pipelining the intermediate level node blocks as a se-
quence of data bursts from the root to the leaf (top-down), thus having the
higher level V available for the processing of the next lower level. To reduce the
hardware buffering in the update (cache cast-out) path, the processing will need
to proceed in the same top-down manner phased slightly ahead of the top-down
verification (cache fill) so that the previous cache line contents have been saved
(update) to external memory before being overwritten by the new contents from
the verification path (cache fill).

108 W.E. Hall and C.S. Jutla

In contrast, Merkle Tree updates have a computational dependency from the
leaf nodes to the root node (bottom-up) and a top-down dependency only for
verifications. This again implies pipelining the intermediate level node blocks as
a sequence of data bursts, but this time from the leaf to the root (bottom-
up) for both verifications and updates. Again, with the bottom-up updates
(cache cast-out) phased slightly ahead of the bottom-up verifications (cache fill)
to avoid additional hardware buffering. The hash operations for verify can be
done in a pipelined or parallel manner, and the updates which were caused
by cast-outs at various levels in the tree cache will typically be unrelated and
so may also be pipelined. But additional complexity will be involved in the
handling of cases where a higher level parent node in the cast-out sequence
will require the result from a next lower level child node’s update (cast-out)
hash computation before being able to begin it’s own store and hash oper-
ations. This additional delay would then also be reflected in the verification
processing to maintain the update to verify or cache block save to fill phase
alignment. Observe that this effect is only reduced by hash engines with lower
individual block computation latencies; higher bandwidth engines will not reduce
the delay for an individual update, only the average delay for multiple parallel
updates.

Finally, PMAC Tree updates have a bottom-up computational dependency
that is similar to Merkle Trees (leaf to root), but this time only the leaf node
to the first intermediate level has the full latency of the crypto computation
(hash followed by encryption), the higher levels are simple XORs with very
small latency effects. The PMAC tree verification is a comparison between lev-
els and so is fully parallelizable. As in the Merkle Tree case, the pipelining of
the intermediate level nodes would be from the leaf to the root (bottom-up)
for both verify and update, again with the same phase requirements. Similarly,
the verify and the typically unrelated updates may be pipelined. In contrast to
Merkle Trees however, the additional complexity will only occur when handling
cases where the first intermediate level parent node in the cast-out sequence
requires the hash and encrypt result from a data level child’s update (cast-out)
before being able to begin it’s own encrypt and store operation. This addi-
tional delay would then need to be reflected in the verify processing to meet
the update to verify phase requirement, but in the PMAC case, this will only
occur at most once during a cache miss sequence. Unfortunately, the data level
processing involved in computing the encrypted hash values is the same for
both update (cast-out) and verify (fill), while the processing of the interme-
diate levels involve encryption for update (cast-out) and decryption for verify
(fill). This means that the verify (fill) path will require a crypto engine ca-
pable of both the forward and inverse version of the chosen cryptographic algo-
rithm, and this will typically require more gates and cause more potential timing
problems.

Acknowledgments. The authors would like to thank several anonymous ref-
erees for their helpful comments.

Parallelizable Authentication Trees 109

References

1. M. Bellare, R. Guerin and P. Rogaway, XOR MACs: New methods for message au-
thentication using finite pseudorandom functions, Advances in Cryptology - Crypto
95 Proceedings, Lecture Notes in Computer Science Vol. 963, D. Coppersmith ed,
Springer-Verlag, 1995.

2. M. Bellare, O. Goldreich, S. Goldwasser, “Incremental Cryptography with Appli-
cations to Virus Protection”, Proc. STOC 1995

3. John Black and Phillip Rogaway, “A Block-Cipher Mode of Operation for Paral-
lelizable Message Authentication”, Advances in Cryptology - EUROCRYPT ’02,
Lecture Notes in Computer Science, Springer-Verlag, 2002

4. M. Blum, W. Evans, P. Gemmell, S. Kannan, M. Naor, “ Checking the Correctness
of Memories”, Algorithmica, Vol 12, pp 223-244, 1994.

5. J. Carter, M. Wegman, “Universal Classes of Hash Functions”, JCSS, Vol. 18, 1979,
pp 143-154.

6. V.D. Gligor, P.Donescu, “eXtended Electronic Code Book MAC”, http://
csrc.nist.gov/encryption/modes/proposedmodes

7. O. Goldreich, S. Goldwasser, and S. Micali, “ How to construct random functions”,
J. ACM, vol. 33, no. 4, 1986.

8. Hugo Krawczyk, “LFSR-based Hashing and Authentication”, Proc. Crypto 94,
LNCS 839, 1994

9. M. Bellare, R. Canetti, and H. Krawczyk, “ Keying hash functions for message
authentication”, Advances in Cryptology—Crypto ’96, 1996.

10. C. S. Jutla, “ Encryption Modes with Almost Free Message Integrity”, Eurocrypt
2001, LNCS 2045.

11. Moses Liskov, Ronald L. Rivest, David Wagner: Tweakable Block Ciphers,
CRYPTO 2002: 31-46

12. M. Luby, “Pseudorandomness and Cryptographic Applications”, Princeton Com-
puter Science Notes, Princeton Univ. Press, 1996

13. R. Merkle, “A certified digital signature”, Crypto 89, LNCS 435, 1989.

Improved Time-Memory Trade-Offs
with Multiple Data

Alex Biryukov1, Sourav Mukhopadhyay2, and Palash Sarkar2

1 Katholieke Universiteit Leuven, Dept. ESAT/SCD-COSIC,
Kasteelpark Arenberg 10, B–3001 Heverlee, Belgium
http://www.esat.kuleuven.ac.be/∼abiryuko/

2 Cryptology Research Group, Applied Statistics Unit,
Indian Statistical Institute, 203, B.T. Road, Kolkata 700108, India

Abstract. In this paper we study time/memory/data trade-off attacks
from two points of view. We show that Time-Memory trade-off (TMTO)
by Hellman may be extended to Time/Memory/Key trade-off. For ex-
ample, AES with 128-bit key has only 85-bit security if 243 encryptions
of an arbitrary fixed text under different keys are available to the at-
tacker. Such attacks are generic and are more practical than some recent
high complexity chosen related-key attacks on round-reduced versions
of AES. They constitute a practical threat for any cipher with 80-bit or
shorter keys and are marginally practical for 128-bit key ciphers. We show
that UNIX password scheme even with carefully generated passwords is
vulnerable to practical trade-off attacks. Our second contribution is to
present a unifying framework for the analysis of multiple data trade-
offs. Both Babbage-Golic (BG) and Biryukov-Shamir (BS) formulas can
be obtained as special cases of this framework. Moreover we identify a
new class of single table multiple data trade-offs which cannot be ob-
tained either as BG or BS trade-off. Finally we consider the analysis of
the rainbow method of Oechslin and show that for multiple data, the
TMTO curve of the rainbow method is inferior to the TMTO curve of
the Hellman method.

Keywords: time/memory/data trade-off, block-cipher, key sizes.

1 Introduction

In 1980, Hellman [8] introduced the technique of time-memory trade-off (TMTO)
attack on block ciphers. In its more general form, it can be viewed as a general
one-way function inverter. The original work by Hellman considered inverting
a one-way function f at a single data point. Babbage [1] and Golic [7] (BG)
have shown that in the context of stream ciphers multiple data points can be
used by another trade-off attack relying on birthday paradox. Independently,
Biham [3, 2] has shown that birthday-paradox trade-off applies to block-ciphers
in a frequently changing key scenario. Both BG and Biham’s results show that
theoretical strength of a block or stream cipher without an IV (nonce) can not
exceed the square root of the size of the key space. However birthday trade-offs
suffer from a weakness: they lack flexibility due to strong binding of memory

B. Preneel and S. Tavares (Eds.): SAC 2005, LNCS 3897, pp. 110–127, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Improved Time-Memory Trade-Offs with Multiple Data 111

complexity with the data complexity which typically results in unrealistic data
or memory requirements. Later Biryukov and Shamir [5] (BS) have shown that
multiple data can be combined with Hellman’s tradeoff, resulting in a flexible
time/memory/data tradeoff formula.

In the context of block ciphers with reasonably long keys, the original Hellman
attack is typically not considered to be of a threat since its precomputation time
is the same as the exhaustive search of the key. Moreover, the attack works
for a single chosen plaintext encryption and cannot benefit if more plaintext-
ciphertext pairs are available to the attacker since the precomputed tables are
“wired” to a fixed plaintext. This is contrary to what happens in Babbage-Golic-
Biham or Biryukov-Shamir’s trade-off where precomputation time is way below
the exhaustive key search complexity.

At the rump session of ASIACRYPT 2004, Hong and Sarkar [9] have demon-
strated that streamcipherswith short IVs canbeattackedvia theBiryukov-Shamir
time/memory/data trade-off [5] in a frequent re-synchronization scenario. More
recently in [10] they also provide a careful study of time/memory/data trade-off
attack in the context of various modes of operation of block-ciphers noticing that
these essentially constitute a stream cipher. However, we believe that [10] does not
consider in sufficient details the important cases of ECB (a mode typically assumed
in theoretical cryptanalysis) or CBC with known IV’s or counter and OFB modes
in chosen IV scenarios, which directly lead to very powerful attacks. They also de-
scribe attacks which have preprocessing times higher than the complexity of ex-
haustive search and thus seem to be less relevant.

Our Contributions: Our contribution is two-fold. We present new applications
as well as a new analysis of time/memory/data trade-off attacks.

We describe three applications.

– The usual time/memory/data trade-off attack on stream ciphers can be con-
sidered to be a time/memory/key trade-off attack on block ciphers. This
attack applies to situations where the goal of the attacker is to obtain one
out of many possible keys. See Table 1 for a picture how various block and
stream cipher tradeoffs are related.

– We carefully consider the key size of block ciphers and conclude that in the
view of trade-off attacks one may no longer assume k-bit security even for
a good k-bit cipher. This is true for ECB mode but unfortunately also true
for CBC mode even with proper IV choice. Counter and OFB modes are
vulnerable to this attack in chosen IV scenarios.

– The last application is to Unix password scheme, where the short size of the
“salt” is insufficient to stop trade-off attacks. We describe practical attacks
on this scheme when a password file with reasonably many password hashes
is available to the attacker.

In the second part of the paper, we perform a new unified analysis of Hellman’s
attack in the presence of multiple data. The BG and the BS attacks are obtained
as special cases of the general attack. So far, it has been believed that any multi-
ple data TMTO is either BG or BS. Our work reveals that there are other possible

112 A. Biryukov, S. Mukhopadhyay, and P. Sarkar

Table 1. Relation between block and stream cipher trade-off attacks

Block ciphers (varying keys or IV’s) Stream ciphers (varying keys or IV’s)
Type of Biham’s collision [2] Babbage-Golic birthday [1, 7]
trade-off this paper and [10] Biryukov-Shamir TMD [5, 10]

desirable trade-offs for single table, multiple column attacks which are not obtain-
able from either the BG or the BS attack. The time required for table look-ups
can be reduced by using Rivest’s idea of distinguished point (DP) method. We
analyse this method in a general setting. Finally, we consider the rainbow method
and show that in the presence of multiple data, the TMTO curve of the rainbow
method is inferior to the TMTO curve of the Hellman+DP method.

2 Time/Memory/Data Trade-Off Methodology

In this section we give a quick introduction for the methodology behind Hell-
man’s [8] time/memory trade-off as well as for the closely related time/memory/
data trade-off attacks by Biryukov-Shamir [5].

Suppose that f : {0, 1}n → {0, 1}n is a one-way function, i.e. a function
which can be efficiently evaluated in forward direction, but which is hard to
invert. The goal of the attacker is to invert this function, i.e. given f(x) to find
x, while keeping complexity of the inversion algorithm (time T , data D, memory
M and preprocessing time P) as low as possible. Throughout this paper we will
denote by N = 2n the size of the domain of the function.

In [8] Hellman has proposed a general algorithm for inversion of an arbitrary
one-way function which obeyed the formula: N2 = TM2, D = 1, P = N . In [5]
Hellman’s algorithm has been generalized for the case of multiple data, which
resulted in a formula N2 = TM2D2, 1 ≤ D2 < T, P = N/D. Here we will
directly describe this generalized trade-off.

The algorithm consists of two stages: a one-time offline stage followed by an
online stage. In the online stage, we will be given D points y1, . . . , yD in the
range of f and our goal is to find the pre-image of any one of these points. In the
offline stage, a set of tables are prepared covering N/D of the domain points.
Since N/D domain points are covered and the online stage involves D domain
points, by the birthday bound, we are assured of constant probability of success
in finding the pre-image of one of the y’s.

Let f1, . . . , fr be simple output modifications of f (fi = gi◦f , where gi can be
a simple bit permutation of the output bits), such that the fi’s can be assumed
to be pairwise independent. In the offline stage r tables (one per fi) are prepared.
The ith table is prepared in the following manner. A total of m random domain
points are chosen. For each domain point, the function fi is iteratively applied
t times to reach an end point. The pairs (start-point, end-point) are stored as
part of the ith table sorted by the end points. The total storage requirement is
rm pairs of points, while the total coverage is rmt points.

In the online stage, for each data point yj we look for a pre-image in the set
of points covered by the tables. For searching in the ith table, we first apply gi

Improved Time-Memory Trade-Offs with Multiple Data 113

to yj to obtain y′
j , then we iteratively apply fi a total of t times to y′

j . After
each application of fi, we look in the end points of the ith table for a match.
If a match is found, we go to the corresponding start point and iterate fi until
we reach y′

j . The preceding point is a possible pre-image of y, which is verified
by applying f to it and checking whether we obtain y. This requires a total
of t applications of f and t table look-ups per table per data item. In order
to minimize the waste of table coverage due to birthday collisions the proper
choice of parameters m and t would typically satisfy N = mt2 (in Sec. 8 it will
be shown how to obtain a new trade-off formula by using sub-optimal choices of
m and t). Since a single matrix covers only mt points in order to cover the full
space one will need r = N/mt = t tables corresponding to different functions
fi, i = 1, . . . , r. However in generalized case we need to cover only a fraction N/D
of space, and thus r = t/D tables would suffice. By eliminating parameters r, m, t
one gets a tradeoff formula N2 = TM2D2, 1 ≤ D2 < T, P = N/D. For more
details regarding the method see [8, 5].

We discuss some general issues about TMTO. In Hellman’s original scheme,
D = 1; the table preparation time is disregarded and only the online time and
memory requirements are considered. The assumption is that the tables would
be prepared once for all in an offline phase. Once the tables are prepared, they
will not change and can be used to find different pre-images. In this scenario,
the table preparation time can be huge and even larger than exhaustive search.
Thus, the security of a cryptographic algorithm with respect to this kind of
TMTO has a hidden cost of offline (and one time) exhaustive search.

If multiple data is available, the actual table preparation time will be less
than exhaustive search. Since this is an offline activity, it might be reasonable
to expect the table preparation time to be more than the online time but less
than exhaustive search time.

The precomputation time will be in general more than the memory require-
ment. In the table preparation stage, the entire table will have to be computed
and only a fraction of it stored. This shows that the offline time will be at least as
large as the memory requirement. Hellman in his original paper [8], considered
the condition where the online time is equal to the memory requirement. In the
presence of multiple data, it is perhaps more practical to require the data and
memory requirement to be less than the online and offline time requirements.
This has been considered in [5].

3 Time/Memory/Key Trade-Offs

It is easy to see that all the reasoning from the Time/Memory/Data trade-off in
the case of stream ciphers [5] can be applied to the block-cipher “Time-Memory-
Key” case. Namely we no longer need a full coverage of the space N , but rather
can cover a fraction N/Dk, where we denote by Dk the number of possible keys
at the online stage. Thus, we will use t/Dk tables instead of t, which means
that memory requirements go down to M = mt/Dk (here m is the number of
Hellman’s tables). Our time requirements are T = t/Dk · t ·Dk = t2 (less tables
to check but for more data points), which is the same as in the original Hellman’s

114 A. Biryukov, S. Mukhopadhyay, and P. Sarkar

trade-off. Finally, the matrix stopping rule is again: N = mt2. Using the matrix
stopping rule and eliminating the parameters m and t we get a trade-off formula:

N2 = T (MDk)2.

This is exactly the same formula as the one derived in [5] for the case of stream
ciphers. For example, for the case of AES with 128-bit key, assuming that one
is given 232 encryptions of a plaintext “all zeroes” (or any other fixed text, like
16 spaces, “Hello Joe, ” etc.) under different unknown keys, one can recover one
of these keys after a single preprocessing of 296 steps, and using 256 memory
for table storage and 280 time for the actual key-search1. It is important to
note that unlike in Hellman’s original trade-off, the preprocessing time is much
lower than the exhaustive search and thus technically this is a break of cipher.
Though even better theoretical attacks for block-ciphers exist in this setting [2]
they are in direct correspondence to Babbage-Golic “birthday” trade-off attacks
and thus suffer from the same lack of flexibility due to T = D. Such attack
will require impractical amount of 264 fixed text encryptions as well as high
storage complexity of 264. We believe that if one would try to implement these
attacks he would prefer to use less data and less memory at the expense of more
preprocessing and longer attack time. In Table 2, we summarize complexities
of TMD attacks for various schemes. For example we believe that the attack
on full Skipjack with 232 fixed plaintexts and 248 preprocessing complexity, 232

memory and time is tempting to implement and to try in practice. Another
important observation is that the attack is not exactly a chosen plaintext attack –
since the specific value of the fixed plaintext is irrelevant. Thus, in order to
obtain the attack faster than exhaustive search the attacker will first check which
plaintext is the most frequently used in the specific application, collect the data
for various keys and then perform the attack. The attack is technically faster
than the exhaustive search even if the attacker obtains a relatively small number
of arbitrary fixed text encryptions. For example if the attacker obtains only 28

128-bit key AES encryptions, then after preprocessing of 2120 steps and using 260

memory and 2120 analysis steps, one of the keys would be recovered. In practical
applications, it might be a rather non-trivial task to ensure that the attacker
never obtains encryptions of 28 fixed known plaintexts. This attack is much
better than the existing state of the art attacks on 128-bit AES, which barely
break 7-rounds of this cipher. Note that Biham’s attack for the same amount
of fixed text would formally have the same 2120 total complexity but would
require unrealistic amount of memory 2120 which is probably the reason why such
trade-off attacks have not been viewed as a threat by the crypto community. In
addition to all said above note that intentionally malicious protocol design may
ensure that some fixed plaintext is always included into the encrypted stream
(for example by fixing a header in communication, using communication to a
fixed address or using fixed file header as is common in many applications).

1 At the moment of this writing 285 computations is approximately the power of all
computers on the internet during 1 year.

Improved Time-Memory Trade-Offs with Multiple Data 115

Table 2. Comparison of TMD attacks on various ciphers

Cipher Key size Keys (Data) Time Memory Preprocessing
DES 56 214 228 228 242

Triple-DES 168 242 284 284 2126

Skipjack 80 232 232 232 248

AES 128 232 280 256 296

AES 192 248 296 296 2144

AES 256 285 2170 285 2170

Any cipher k 2k/4 2k/2 2k/2 23k/4

Any cipher k 2k/3 22k/3 2k/3 22k/3

Any cipher[2] k 2k/2 2k/2 2k/2 2k/2

Table 3. Trade-off attacks on Skipjack (and any other 80-bit cipher)

Attack Data Type Keys (Data) Time Memory Preprocessing
BS TMD FKP 28 260 242 272

BS TMD FKP 220 240 240 260

BS TMD FKP 232 232 232 248

Biham[2] FKP 240 240 240 240

BBS Imp.Diff∗[4] CP 234 278 264 264

∗ — the attack breaks 31 out of 32 rounds of Skipjack, the data is encrypted under a
single key. FKP – fixed known plaintext, CP – chosen plaintext.

Table 4. Trade-off attacks on 128-bit key AES (and any other 128-bit key cipher)

Attack Data Type Keys (Data) Time Memory Preprocessing
BS TMD FKP 28 2120 260 2120

BS TMD FKP 220 2100 258 2108

BS TMD FKP 232 280 256 296

BS TMD FKP 243 284 243 285

Biham[2] FKP 264 264 264 264

GM collision∗ CP 232 2128 280 ?
FSW partial sum∗ CP 2128–2119 2120 264 ?

∗ — only 7 out of 10 rounds. FKP – fixed known plaintext, CP – chosen plaintext.

Table 5. Trade-off attacks on 192-bit key AES (and any other 192-bit key cipher)

Attack Data Type Keys (Data) Time Memory Preprocessing
BS TMD FKP 248 296 296 2144

BS TMD FKP 264 2128 264 2128

Biham[2] FKP 296 296 296 296

FKP – fixed known plaintext.

Results shown in Table 2 compare favorably to the best attacks on such ciphers
as DES, Triple-DES, Skipjack and AES. Moreover, the scenario of TMD attacks
is much more practical than that of related key attacks as is discussed in more

116 A. Biryukov, S. Mukhopadhyay, and P. Sarkar

Table 6. Tradeoff attacks on 256-bit key AES (and any other 256-bit key cipher)

Attack Data Type Keys (Data) Time Memory Preprocessing
BS TMD FKP 264 2128 2128 2192

BS TMD FKP 285 2170 285 2170

Biham[2] FKP 2128 2128 2128 2128

FKP – fixed known plaintext.

detail in Section 4. We believe that complexities of future cryptanalytic attacks
should be benchmarked against the time-memory-key attacks.

Due to the importance of some trade-off points we provide Tables 3–6 for
several important ciphers (key lengths) and compare them with best attacks
known so far.

4 Types of Cryptanalytic Attacks and Key-Size
Considerations

Cryptanalytic attacks may be divided into three main classes by the type of
access to an encryption/device. In the first class of attacks, which we call fixed
key attacks, we assume that a black box with the encryption/decryption device
is given to the attacker. The attacker is then able to make arbitrary number of
queries (with unknown, known or chosen inputs) to the device. The goal of the
attacker is to find the secret key of the box, which remains unchanged during
the attack. Note that the queries could be performed adaptively (i.e. based on
the results of previous queries). For example: differential, linear, boomerang or
multiset attacks are of this type. Moreover linear cryptanalysis requires a fixed
key scenario, while differential, boomerang or multiset attacks may tolerate key
changes which are not too frequent during the attack.

The second type of attack which we call variable key attacks, assumes that
the attacker is given both the black box with the encryption/decryption device
as well as a black box of the key-schedule device. The attacker can then perform
both the fixed key attacks as well as re-keying the cipher to a new secret key
value at any given moment. The goal of the attacker is to find one of the keys
of the device. This scenario is strictly more powerful than the fixed key scenario
and can be efficiently exploited for example in the “weak key” attacks or in
time/memory/key trade-off attacks.

The third type of attacks is what is called related key scenario. In this case
the attacker is not only allowed to change the keys of the device. He is essen-
tially given access to two or more encryption/decryption devices and he knows
or even chooses the relations between the keys used in these devices. This sce-
nario is highly unrealistic in practice but may identify undesirable certificational
weaknesses in the key-schedule of a cipher.

Applicability of the attack scenarios described above in practice may be hin-
dered by the use of certain mode of operation (which for example may preclude
the use of chosen plaintext queries) or by the key-change provision, which may

Improved Time-Memory Trade-Offs with Multiple Data 117

enforce a key-change every 1000 encryptions thus rendering statistical attacks
which assume fixed key scenario — impractical.

4.1 Key-Size Consideration

Modern symmetric ciphers typically have keys larger or equal to 128 bits and they
assume that exhaustive search is the best way one could recover a secret key2.

As this note shows however in a variable key scenario no k-bit cipher can offer
a k-bit security against some quite practical attacks. One may assume that this
problem can be cured by introducing the IV which has to be of the same size
as the key. However in such popular block-cipher modes of operation like CBC
due to a simple XOR of the known IV with the first plaintext block the attacker
capable of mounting chosen plaintext attack can easily obtain encryptions of
arbitrary fixed text under different keys. In the less likely but still not impossible
case of a chosen IV attack other modes of operation like CFB, OFB or counter
mode become vulnerable as well. A careful study of what should be the IV
size in order to avoid trade-off attacks is given in [10], however a simple rule
of a thumb is that the IV size should be at least equal to the key-size, since
the state of the cipher at any given moment has to be twice the key-size in
order to avoid birthday time-data attacks [2, 1, 7]. XORing of the IV into the
plaintext/ciphertext should be avoided.

Following these simple observations it is clear that 80-bit (or less) key ciphers
should not be used since they allow for practical attacks in real-life scenarios,
while 128-bit ciphers (which in practice provide security of about 80-bits) should
not be used when full 128-bit security is required. At least 192-bit keys should
be used for this security level.

One may argue that generic trade-off attacks do not exploit weaknesses of
specific designs and thus should be considered separately from other attacks.
There are two counter-arguments to this point: first of all we have at the moment
no proof that existing trade-off attacks (such as Hellman’s attack) are the best
possible and thus a popular maxim “The attacks only become better, they do
not get worse” may still apply. Moreover trade-off attacks may be sped up by
specific properties of the design, for example by what is called in a stream cipher
case — cipher’s sampling resistance [5]. In the case of stream cipher LILI-128 low
sampling resistance was used to obtain trade-off attack [13] with a complexity
much lower than a naive application of a trade-off technique would suggest.

It seems that we will have to give up the convenient world in which we assumed
a k-bit security for a good k-bit cipher.

5 Application to the Unix Password Scheme

The attacks described in this paper are not limited to block or stream ciphers, they
are applicable to other one-way constructions, for example to hash functions.
2 Depending on the mode of operation used, there are also distinguishing attacks which

may require about 264 fixed key data, and do not lead to key-recovery. Those attacks
are not considered to be of a threat by the community and are typically taken care
of by key-change provisions.

118 A. Biryukov, S. Mukhopadhyay, and P. Sarkar

Table 7. Trade-off attacks on UNIX password scheme

Passwords attacked State Size (bits) Data Time Memory Preprocessing
Alphanumeric 60 28 234 234 (128 Gb) 252

Alphanumeric 60 210 232 234 250

Full keyboard 63 210 236 235 (256 Gb) 253

Alphanumerica[11] 60 1 240 240 260

a The paper provides analysis for a single fixed salt value.

Time/memory/data trade-off [5] (N = TM2D2) could be used to analyze
Unix password scheme for example, if the attacker obtains access to a file storing
password hashes of a large organization (D = 1000 password hashes). Indeed
the trade-off space consists of 56-bits of the unknown key (i.e. password) and
12-bits of known salt. Since the salt size is much shorter than the key-size its
effect on making the trade-off harder is not very significant. Suppose that the
attacker knows that passwords are selected from a set of arbitrary 8-character
alphanumeric passwords, including capital letters and two additional symbols
like dot and comma which in total can be encoded in 48-bits. Thus together
with a 12-bit salt the state is N = 260 bits. For example the following attack
parameters seem quite practical: preprocessing time done once: P = N/D = 250

Unix hash computations, parallelizable. A memory of M = 234 8-byte entries
(12+48 bits) which takes one 128 Gbyte hard disk. This way we store 234 start-
end pointers. Attack time is then T = 232 Unix hash evaluations — about an
hour on a fast PC or about 8 seconds on a BEE2 FPGA [11]. The attack will
recover one password from about every 1000 new password hashes supplied. This
is two – three orders of magnitude faster than the results described in [11]. The
relatively lengthy preprocessing step may be performed in parallel on a network
of PC’s (hundred PC’s may take less than a month) or it may take about 1.5
months for a single BEE2 FPGA. The number of tables computed in parallel
may be as high as t/D = 217/1000 = 27. In order to reduce the number of
hard disk accesses the attack will need to use distinguished points with 16-bit
prefixes. This will allow to make only 216 disk accesses (which is less than 6
minutes).

In fact it is clear that such trade-off can analyze all passwords typable on a
keyboard. The space is N = 848 · 212 = 263. Assuming again D = 210, we get
precomputation time P = 253, M = 235 8-byte entries or one 256 Gb hard disk,
T = 236 hash evaluations.

6 A New Analysis

In this section, our goal is different from that of the previous sections. Here we
present a new analysis of the general TMTO methodology described in Section 2.
We show that the BG and the BS methods are special cases of the general
analysis. In particular, we show that there are certain interesting trade-offs which
were not known earlier. Some of these are summarized in Table 8.

Improved Time-Memory Trade-Offs with Multiple Data 119

Table 8. Some of the new trade-offs

N Precomputing time (P) Memory (M) Data (D) Run time (T)
280 250 230 230 250

246.6 233.3 233.3 246.6

2100 262.5 237.5 237.5 262.5

258.3 241.6 241.6 258.3

∗ N N
1+d
3 N

2−d
3 N

2−d
3 N

1+d
3

∗ Here d is a constant such that 1
2 < d < 1.

Recall from Section 2 that the general description of the TMTO methodology
uses r tables each of size m × t. In the BG attack, r = t = 1 and hence is not
very flexible. The BS attack is more flexible but assumes mt2 = N and r = t/D
leading to the constraint D2 ≤ T . The last restriction can prove to be a drawback
of the BS method when the amount of available data is high. From the Hellman
attack we have the following relations.

Tf = r(t− 1)D (# f invocations in the online phase)
Tt = rtD (# table look-ups in the online phase)
P = rmt (# f invocations in the pre-computation phase)

= N
D (coverage)

M = rm (memory)
mt2 ≤ N (birthday bound)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(1)

If t� 1, we can assume t− 1 ≈ t and Tf ≈ rtD = Tt. We will usually make this
assumption, except for the analysis of the BG attack, where t = 1. Let γ be the
ratio of the time required for performing one table look-up to the time required
for one invocation of f , i.e.,

γ =
time for one table look-up

time for one invocation of f
. (2)

We assume that one unit of time corresponds to one invocation of f (i.e., one unit
of time = time required for completing one invocation of f) and also γ ≥ 1. The
time required for the table look-ups is then γrtD. Define T = max(Tf , γTt) =
γrtD. The parameter T is a measure of the time required during the online
phase. The actual online time is proportional to Tf + γTt. However, this is only
at most twice the value of T . Thus, we will perform the analysis with T instead
of Tf + γTt.

For the present, we will assume that γ = 1 (and T = Tt ≈ Tf), i.e., the cost
of one invocation of f is equal to the cost of one table look-up. The value of γ
need not actually be one; even if it is a small constant (or a negligible fraction of
N), we can assume it to be one and that will not affect the asymptotic analysis.
On the other hand, [5] mentions that γ may be as large as one million (≈ 220).
If N is only moderately large (like 264 for A5/1), then γ can be a significant
proportion of N . In such a situation, we cannot assume γ = 1 and the cost of
table look-up will dominate the total online cost. This case will be considered
later.

120 A. Biryukov, S. Mukhopadhyay, and P. Sarkar

Using (1), we can solve for r, m and t as follows.

t = N
MD ≥ 1 (number of columns)

m = N
T (number of rows)

r = MT
N ≥ 1 (number of tables)

mt2 = N3

TM2D2 ≤ N (birthday bound)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3)

Note that all three of r, m and t must be at least 1. Since m = N/T and for
a valid attack we must have N > T , the condition on m is trivially satisfied.
The advantage of writing in the form of (3) is that given values for T , M and D
satisfying the proper constraints, we can immediately design a table structure
which achieves these values.

6.1 TMTO Curve

From Equations (3), we know MT ≥ N and mt2 ≤ N . Further, for a feasible
attack we must have 1 ≤ D < N and M, T < N . We capture these in the
following manner:

D = Na; MT = N b; M = N c; mt2 = Nd; (4)

with 0 ≤ a, c < 1, 0 ≤ d ≤ 1 and b ≥ 1. Consequently, we have P = N/D =
N1−a; T = N b/M = N b−c, with 0 ≤ b − c < 1. Further, t ≥ 1 implies MD ≤
N and hence a + c ≤ 1. Substituting in the last equation of (3), we obtain
2a + b + c + d = 3. Thus, any set of values for a, b, c and d which satisfy the
following constraints constitute a valid attack.

C1: 2a + b + c + d = 3
C2: 0 ≤ a < 1
C3: 0 ≤ c, b− c < 1 ≤ b
C4: a + c ≤ 1
C5: 0 ≤ d ≤ 1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(5)

The so-called TMTO curve can be obtained as the following relations.

TM2D2 = N3−d

PD = N
MD ≤ N ≤MT
M, D, T < N.

⎫⎪⎪⎬⎪⎪⎭ (6)

Also, we have the following values of r, m and t.

r = N b−1; m = N1−(b−c); t = N1−a−c. (7)

Since MT = N b ≥ N , we have r = 1 if and only if MT = N . With r = 1, we
have only one table and hence if there are more than one tables, then MT is
strictly greater than N .

Improved Time-Memory Trade-Offs with Multiple Data 121

BG Attack [1, 7]: In this case, we have r = t = 1. This implies Tf = 0, i.e.,
the online phase does not require invocation of f . The cost in the online phase
is T = Tt and we have MD = N = MT and hence T = D; M = N/D. This
corresponds to the conditions a + c = 1; b = 1; d = 1− a.

BS Attack [5]: In [5], r = t/D and d = 1 is used. Then T = t2, M = mt/D and
hence r = N−a+(b−c)/2. Since r ≥ 1, we have the restriction 0 ≤ 2a ≤ b− c (i.e.,
1 ≤ D2 ≤ T) in addition to (5).

The conditions d = 1 and r = t/D are related (e.g., if r = 1, then t = D
and T = t2 = D2). In the following analysis, we will proceed without these
two conditions. Later, we show the situation under which making these two
assumptions is useful.

7 Distinguished Point Method

We now consider the case where γ � 1. In this case, a direct application of the
Hellman method leads to T = γrtD, i.e., the time required for the table look-ups
dominate the online time. It is useful to consider the distinguished point method
of Rivest to reduce the number of table look-ups. See [5] for a description of the
DP method.

Using the distinguished point method results in reducing the number of table
look-ups from rtD to rD, i.e., one table look-up per table per data. Then Tt =
rD = Na+b−1. (Note Tt = Na = D, i.e., only one table look-up is required per
data item if and only if b = 1 = r, i.e., MT = N .)

The total cost of the table look-ups is γrD whereas the cost of invoking the
one-way function is rtD. In this case, the ratio of the two costs is γ/t. If t ≥ γ,
then the ratio is at most one. Hence, we can again ignore the cost of table look-up
and perform the analysis by considering simply the cost of invoking the one-way
function. The actual runtime will be at most twice the runtime obtained by such
an analysis.

Suppose t < γ. Then the analysis performed above does not hold. We now
investigate the situation under which t < γ holds. This certainly holds for t = 1
(the BG attack), but in the BG attack the entire online computation consists
of table look-ups and hence the general analysis is not required. Recall that
t = N1−(a+c) = 2n(1−(a+c)), D = Na and M = N c. Suppose γ = 2e. Then t ≥ γ
if and only if a+ c ≤ 1− (e/n). The value of e is a constant whereas n increases.
Hence, (1 − e/n) → 1 as n grows. Thus, we can have a + c > 1 − e/n only for
small values of n. The smallest value of n for which we can expect to have a
secure cryptographic algorithm is 64. Further, as mentioned in [5], e can be at
most around 20 and so 1− e/n ≥ 2/3 for n ≥ 64.

Consider a = c = 1/3, as in the solution (a, b, c, d) = (1/3, 1, 1/3, 1) corre-
sponding to P = T = N2/3; M = D = N1/3; r = 1 of [5]. If n ≥ 64, then
a + c = 2/3 ≤ 1 − e/n and the time analysis assuming T = rtD = tD holds.
On the other hand, for the solution (a, b, c, d) = (3/8, 1, 3/8, 7/8) corresponding
to P = T = N5/8; M = D = N3/8; r = 1 considered in Section 8, we have
a+ c = 3/4. For n = 64, a+ c > 1− e/n and we have to assume T = γrD = γD,

122 A. Biryukov, S. Mukhopadhyay, and P. Sarkar

whereas for n = 100, a + c ≤ 1− e/n and we can assume T = rtD = tD. Thus,
for relatively small n, we should solve (5) with the constraint a + c ≤ 1 − e/n
instead of a + c ≤ 1. This disallows some of the otherwise possible trade-offs.

There is another issue that needs to be considered. We have to ensure that
t is large enough to ensure the occurrence of a DP in a chain. Let 2−p be the
probability of a point being a DP. Hence, we can expect one DP in a random
collection of 2p points. Thus, if t ≥ 2p, we can expect a DP in a chain of length
t. This implies p ≤ log2 t. Any attempt to design the tables with t < 2p, will
mean that several trials will be required to obtain a chain terminating in a DP.
This will increase the pre-computation time. In fact, [5] has shown that use of
the DP method in the BG attack divides into two different trade-offs leading to
unrealistic requirements on data and memory.

Using (7), we have p/n ≤ 1−(a+c). This leads to the condition a+c ≤ 1−p/n
(MD ≤ N1−p) instead of the condition a + c ≤ 1 (resp. MD ≤ N) in (5)
(resp. (6)). For small n, this condition has to be combined with a + c ≤ 1− e/n
and we should solve (5) with the constraint a + c ≤ 1− 1/n×max(p, e) instead
of the constraint a + c ≤ 1. This puts further restrictions on otherwise allowed
trade-offs.

BSW Sampling. There is an elegant application of TMTO in [6], which uses
a special type of sampling technique called the BSW sampling. This technique
uses only part of the available online data and also reduces the search space.
The trade-off curve does not change, but the number of table look-ups reduces
significantly. Use of this technique allowed particularly efficient attacks on A5/1.

Use of the BSW technique reduces the amount of available online data. This
makes it difficult to use a single table to carry out the TMTO. In such a situation,
our analysis does not lead to any new insight into the BSW technique. On the
other hand, if the available online data (even after sampling) is large enough to
allow the use of a single table, then our analysis applies and one can consider a
wider variety of trade-offs.

8 Single Table Trade-Offs

The case N = 2100 has been considered in [5]. It has been mentioned in [5]
that the Hellman attack with D = 1; T = M = N2/3 = 266 requires unrealistic
amount of disk space and the BG attack with T = D = N2/3 = 266; M = N1/3 =
233 requires unrealistic amount of data. (Note T = M = D = N1/2 = 250 also
gives a BG attack. However, as mentioned in [5] in a different context, data
and memory requirement of more than 240 is unrealistic.) Further, [5] mentions
P = T = 266 and D = M = 233 to be a (barely) feasible attack. This corresponds
to the parameters (a, b, c, d) = (1/3, 1, 1/3, 1) and (r, m, t) = (1, N1/3, N1/3).

From Proposition 2, if we choose d = 7/8, then we obtain M = D = N3/8 =
237.5 and P = T = N5/8 = 262.5. The corresponding parameters are (a, b, c, d) =
(3/8, 1, 3/8, 7/8) and (r, m, t) = (1, N3/8, N1/4). This brings down the attack
time while keeping the data and memory within feasible limits. Since t > 1, this

Improved Time-Memory Trade-Offs with Multiple Data 123

cannot be obtained from the BG attack. Further, choosing d = 7/8 and D2 > T
ensures that this attack cannot also be obtained from the BS attack. We would
like to point out that [5] mentions that choosing d < 1 is “wasteful”. The above
example shows that this is not necessarily the case and choosing d < 1 can lead
to more flexible trade-offs. We show below the condition under which choosing
d < 1 is indeed “wasteful”.

As mentioned earlier, we have one table (i.e., r = 1) if and only if MT = N .
The reason for moving to more than one tables is when mt2 > N and we begin
to have more and more repetitions within a table.

Proposition 1. There is a solution to (6) with r = 1 = b (and hence MT =
N = PD) if and only if 2a + c ≥ 1.

Proof : Suppose r = 1. Then b = 1 and 2a + c + d = 2. Hence d = 2− (2a + c).
Since d ≤ 1, this shows 2a + c ≥ 1.

On the other hand assume that 2a + c ≥ 1. Choose b = 1 and set d =
2− (2a + c) ≤ 1. This choice satisfies the conditions of (6). Further, since b = 1,
we have r = 1. ��
Suppose 2a+c < 1. Then b+d > 2 and b > 2−d. Since MT = N b, we would like
to minimize b and hence we choose d = 1. We can now modify the suggestion
of [5] and say that it is “wasteful” to choose mt2 < N if there are more than
one tables. Since b > 1, we have 2a+ c < 1 < b and hence 2a < b− c which gives
D2 < T and we are back to the situation described in [5].

Thus, the analysis of [5] actually applies to the situation where the data
is small enough to require more than one tables. On the other hand, for the
case of one table, the restrictions of [5] are not required and removing these
restrictions provide more flexible trade-offs. We would like to point out that
there are interesting situations where a single table can be used. Apart from the
examples D = M = N1/3 and D = M = N3/8 already considered, other possible
examples are (D = N0.3, M = N0.4); (D = N0.25, M = N0.5), etcetera.

8.1 Small N

Consider N = 264, as in A5/1. It is mentioned in [6] that D ≈ 222 is a reasonable
choice. Further, M ≈ 240 is also feasible. We consider possible values of P and
T satisfying these values of M and D.

Trade-Off 1: (P, D, M, T) = (248, 216, 240, 224): The table parameters are
(r, m, t) = (1, 240, 28) and d = 7/8.
Trade-Off 2: (P, D, M, T) = (242, 222, 240, 224): The table parameters are
(r, m, t) = (1, 240, 24) and d = 11/16.

None of the above two trade-offs are obtainable as BG attacks, since in both
cases t > 1. Further, neither can any of them be obtained as BS trade-offs since
in both cases d < 1 and hence D2 > T . For both trade-offs, the data and memory
are within reasonable limits and the online times are the same. The offline time
is lower for the second trade-off and is within doable limits (especially as an
offline one-time activity), while for the first attack it is probably just outside the

124 A. Biryukov, S. Mukhopadhyay, and P. Sarkar

doable limit. Hence, both the attacks are feasible for any 64-bit function and
hence also for A5/1. However, as mentioned before, using special properties of
A5/1, it is possible to obtain faster attacks as in [6].

9 Certain Special Cases

Here we consider in detail two special cases. These should be considered to
be mainly of theoretical interest. The first condition of T = M was originally
considered by Hellman in the situation where D = 1, while the second condition
was briefly considered in [5] for the case N = 2100.

9.1 Condition T = M

The condition T = M was considered by Hellman [8]. We perform an analysis
of (6) with T = M . Then c = b − c, whence c = b/2. Condition C1 becomes
2a+ 3c+ d = 3 and so b

2 = c = 1− 2a+d
3 . Using a+ c ≤ 1, we obtain a ≤ d. Also

since b ≥ 1, we have c = b/2 ≥ 1/2. This gives d ≤ 3/2− 2a. Since, we already
know d ≤ 1, we obtain a ≤ d ≤ min(1, 3

2 − 2a). Thus, any non-negative solution
in a and d to this gives a valid attack with T = M = N c.

We are interested in minimizing the value of c. We see that the value of c is
minimized by maximizing the value of d. In fact, we can choose d = 1 as long
as 1 ≤ 3

2 − 2a, i.e., 2 − (1/2a) ≤ 0 or a ≤ 1/4. Thus, for a ≤ 1/4, we obtain
T = M = N b/2 = N (2−2a)/3.

In the case 3/2− 2a ≤ 1, we have a ≤ d ≤ 3/2− 2a. For the gap to be non-
empty we must have a ≤ 1/2. For minimizing c, we use the upper bound, i.e.,
d = 3/2−2a ≤ 1. Thus, for 1/4 ≤ a ≤ 1/2, we have c = 1/2 and T = M = N1/2.
Finally, we obtain the following result.

Theorem 1. If T = M , then D ≤ N1/2 and the following conditions hold.

1. N1/2 ≤ T = M = N (2−2a)/3 ≤ N2/3, for 1/4 ≥ a ≥ 0.
2. T = M = N1/2, for 1/4 ≤ a ≤ 1/2.

For the first case we have, (a, b, c, d) = (a, 2(2− 2a)/3, (2− 2a)/3, 1) and for the
second case we have (a, b, c, d) = (a, 1, 1/2, 3/2−2a). The corresponding values of
(r, m, t) are (N (1−4a)/3, N (1+2a)/3, N (1−a)/3) and (1, N1/2, N1/2−a) respectively.

In the second case of Theorem 1, exactly one table is required. However, it is
not the BG attack, since the number of columns can be more than one. Also,
we have T ≤ P ≤ N . The situation with T < P < N is interesting, since the
pre-computation time is less than exhaustive search. Even though P is more
than T , since it is an offline activity, we might wish to spend more time in the
pre-computation part than in the online attack.

In the second case of Theorem 1, we have r = 1 and M = T = N1/2. The
allowed range of a for this case is 1/4 ≤ a ≤ 1/2. The case a = 1/4 can be
obtained from the BS analysis and the case a = 1/2 can be obtained from the
BG analysis. However, the range 1/4 < a < 1/2 for which T = M = N1/2 can be
attained, cannot be obtained from either the BG or the BS analysis and provide

Improved Time-Memory Trade-Offs with Multiple Data 125

previously unknown trade-offs. The advantage is that the data can be increased
(thus lowering offline time) without increasing either time or memory.

9.2 Condition P = T

Since both P and T represent time, the case P = T puts equal emphasis on
both the offline and the online times. The condition P = T implies P = N1−a =
T = N b−c and so m = N1−(b−c) = Na = D. (On the other hand, P = M is
possible only if t = 1.) Since PD = N , we have T = N/D and so the curve
becomes M2D = N2−d. If P = T , then r = M/D. If further M = D, then
M = D = N (2−d)/3 and P = T = N (1+d)/3.

Proposition 2. If P = T and M = D in (6), then M = D = N (2−d)/3 and
P = T = N (1+d)/3. Further, r = 1, i.e., exactly one table is required.

Proposition 2 gives us a nice way to control the trade-off between time and
data/memory requirement by varying d. Choosing d = 1, corresponds to choos-
ing (P, D, M, T) = (N2/3, N1/3, N1/3, N2/3) and has been observed in [5]; choos-
ing d = 1/2 corresponds to (P, D, M, T) = (N1/2, N1/2, N1/2, N1/2) which is the
square root birthday (BG) attack.

From Proposition 2, we have r = 1, i.e., all trade-offs attaining this condition
use a single table. In the plausible situation, M = D ≤ P = T , we have 1/2 ≤
d ≤ 1. The case d = 1 can be obtained from the BS analysis. In the BG analysis,
we have d = 1 − a. Since a − (2 − d)/3, this condition leads to d = 1/2. Thus,
the range 1/2 < d < 1 for which the condition P = T = N (1+d)/3; M = D =
N (2−d)/3 can be attained was not known earlier.

10 The Rainbow Attack

The rainbow attack was introduced in [12]. The number of table look-ups of the
rainbow method is comparable to that of the Hellman+DP method. See [12] for
a discussion of the relative advantages of the rainbow method with respect to
the DP method.

In the rainbow attack, we use a table of size m× t and suppose there are D
online data points. Then the total number of invocations of the one-way function
is t2D/2 while the cost of the table look-ups is tD. Again, we will ignore the
factor of two in the runtime since it does not significantly affect the analysis.
Then, the total number of invocations of f is t2D and the total number of table
look-ups is tD. Also, we have mt = N/D.

If we assume γ ≈ 1, then the cost of invoking f dominates the online cost and
we have M = m and T = t2D. Assume D = Na and M = N c as in the case
of Hellman analysis. Then since mt = N/D = N1−a, we have t = N1−a−c and
T = t2D = N2−a−2c. Also, since t ≥ 1, we must have a + c ≤ 1. The TMTO
curve for rainbow in the presence of multiple data is TM2D = N2 which is
inferior to the Hellman TMTO curve when D > 1.

The rainbow parameters are (P, D, M, T) = (N1−a, Na, N c, N2−a−2c). We
now compare the rainbow parameters with the Hellman parameters for same data

126 A. Biryukov, S. Mukhopadhyay, and P. Sarkar

and memory. For multiple table Hellman, we choose d = 1 and hence the corre-
sponding Hellman parameters are (P, D, M, T) = (N1−a, Na, N c, N2−2a−2c). If
a > 0, i.e., if multiple data is available, then clearly Hellman time is less than
rainbow time.

If γ is a significant fraction of N , then the cost of table look-ups is γtD
while the cost of invoking f is still t2D. In the case γ > t, which happens
for relatively small N (around 264 or so), the cost of table look-up dominates
the online cost. To compare to the Hellman method we have to consider the
Hellman+DP algorithm. For the case γ > t, the online cost of the Hellman
method is also γtD. Hence, for this case, the costs of online time for the rainbow
and the Hellman+DP methods are equal. In this situation, one might prefer to
use the rainbow method for the possibly lower rate of false alarms compared to
the DP method [12].

Thus, we conclude that in the presence of multiple data, in general the Hell-
man attack is better than the rainbow attack. For the case of small N , the
online times of both attacks can be comparable and one might prefer rainbow
for obtaining other possible advantages.

11 Conclusion

In this paper, we have considered two aspects of time/memory/data trade-offs:3
new application and new analysis.

We show several applications to block-ciphers. By applying Biham-Biryukov
[5] multiple data trade-off to block ciphers we show that 80-bit ciphers allow
practical attacks in real world scenarios (232 data, memory and time, with 248

steps for preprocessing), while 128-bit ciphers provide only about 80-bits of se-
curity against attacks with practical amounts of data and memory. We further
show realistic attacks on Unix password hashing scheme even if strong random
passwords are chosen.

In the second part of the paper we provide general analysis which shows that
Hellman’s attack, Babbage-Golic attack and the Biryukov-Shamir all fit into a
single unifying general framework. Our new contribution is the identification of
a new class of single table trade-offs which are not obtainable as either the BG
or the BS attacks. Finally, we consider the rainbow attack of Oechslin and show
that with the utilization of multiple data, the TMTO curve of the rainbow attack
is inferior to the TMTO curve of the Hellman attack.

References

[1] S. Babbage, “Improved “exhaustive search” attacks on stream ciphers,” in ECOS
95 (European Convention on Security and Detection), no. 408 in IEE Conference
Publication, May 1995.

[2] E. Biham, “How to decrypt or even substitute DES-encrypted messages in 228

steps,” Information Processing Letters, vol. 84, pp. 117–124, 2002.
[3] Eli Biham, “How to Forge DES-Encrypted Messages in 228 Steps”, Technical

report CS 884, August 1996.

Improved Time-Memory Trade-Offs with Multiple Data 127

[4] E. Biham, A. Biryukov, and A. Shamir, “Cryptanalysis of Skipjack reduced to 31
rounds using impossible differentials,” in Proceedings of Eurocrypt’99 (J. Stern,
ed.), no. 1592 in Lecture Notes in Computer Science, pp. 12–23, Springer-Verlag,
1999. To appear in the Journal of Cryptology.

[5] A. Biryukov and A. Shamir, “Cryptanalytic time/memory/data trade-offs for
stream ciphers,” in Proceedings of Asiacrypt’00 (T. Okamoto, ed.), no. 1976 in
Lecture Notes in Computer Science, pp. 1–13, Springer-Verlag, 2000.

[6] A. Biryukov, A. Shamir and D. Wagner. Real Time Cryptanalysis of A5/1 on a
PC, Proceedings of Fast Software Encryption 2000.

[7] J. D. Golic, “Cryptanalysis of alleged A5 stream cipher,” in Advances in Cryptol-
ogy – EUROCRYPT’97 (W. Fumy, ed.), vol. 1233 of Lecture Notes in Computer
Science, pp. 239–255, Springer-Verlag, 1997.

[8] M. E. Hellman, “A cryptanalytic time-memory tradeoff,” IEEE Transactions on
Information Theory, vol. 26, pp. 401–406, 1980.

[9] J. Hong and P. Sarkar, “Time memory tradeoff attacks on streamciphers,” 2004.
Rump session talk at ASIACRYPT’04.

[10] J. Hong and P. Sarkar, “Rediscovery of time memory tradeoffs,” 2005.
http://eprint.iacr.org/2005/090 .

[11] N. Mentens, L. Batina, B. Preneel, and I. Verbauwhede, “Cracking Unix passwords
using FPGA platforms,” 2005. Presented at SHARCS’05, in submission.

[12] P. Oechslin, “Making a faster cryptanalytic time-memory trade-off,” in Advances
in Cryptology – CRYPTO 2003 (D. Boneh, ed.), vol. 2729 of Lecture Notes in
Computer Science, pp. 617–630, Springer-Verlag, 2003.

[13] M.-J. O. Saarinen, “A time-memory trade-off attack against LILI-128,” in Pro-
ceedings of Fast Software Encryption – FSE’02 (J. Daemen and V. Rijmen, eds.),
no. 2365 in Lecture Notes in Computer Science, pp. 231–236, Springer-Verlag,
2002.

A Space Efficient Backdoor in RSA
and Its Applications

Adam Young1 and Moti Yung2

1 LECG LLC�

ayoung@mitre.org
2 RSA Labs and Columbia University

moti@cs.columbia.edu

Abstract. In this paper we present an RSA backdoor that, for exam-
ple, can be used for a hardware-based RSA key recovery system. The
system is robust in the sense that a successful reverse-engineer is not
able to obtain previous nor future RSA private keys that have been/will
be generated within the key generation device. The construction employs
the notion of two elliptic curves in which one is the “twist” of the other.
We present a proof in the random oracle model that the generated RSA
key pairs that are produced by the cryptographic black-box are com-
putationally indistinguishable (under ECDDH) from “normal” RSA key
pairs, thus ensuring the integrity of the outputs. Furthermore, the se-
curity level of the key recovery mechanism is nearly identical to that of
the key pair being generated. Thus, the solution provides an “equitable”
level of security for the end user. This solution also gives a number of
new kleptographic applications.

Keywords: Key recovery, Diffie-Hellman, Decision Diffie-Hellman,
SETUP, tamper-resistance, RSA, black-box ciphers, elliptic curve cryp-
tography, twist on elliptic curves.

1 Introduction

The ability to be able to perform recovery is a necessity for large organizations
that need timely access to encrypted information assets. Conventional solutions
to the problem often involve the use of PKCS #12 files to store private keys for the
long-term in encrypted envelopes. For the RSA cryptosystem, it has been shown
that the transmission channel that exists in composites can be used to implement
a key recovery system that is transparent with respect to the end user [28], thereby
elimating the need for numerous PKCS#12 files and similar storage methods.

In this work we present a new and space efficient RSA [24] key recovery
system/backdoor in this transparent model that has a running time that is faster
than all previous approaches. Recall that a secretly embedded trapdoor with
universal protection (SETUP) in RSA key generation utilizes the public key of
the designer to “display” an asymmetric ciphertext in a channel1 in composites
� Author is now at MITRE Corporation.
1 About |n|/2 bits can be displayed in the bit representation of n.

B. Preneel and S. Tavares (Eds.): SAC 2005, LNCS 3897, pp. 128–143, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Space Efficient Backdoor in RSA and Its Applications 129

[9], thereby allowing an authorized escrow authority to access the RSA private
decryption key of the key owner. Furthermore, the reverse-engineer who breaches
the black-box and learns its internals is unable to factor the public keys of those
who used the key generation black-box.

The primary technical motivation of this work is the following. First, it is
a way to assess the consequences of elliptic curve (EC) technology in regards
to constructing hardware-based key recovery for RSA and related technologies.
The reason why current RSA SETUPs are deficient is the following. The first
RSA SETUP [28] in RSA-1024 that was presented in 1996 is no longer secure
since it requires that the designer’s embedded public key be 512-bits in size. The
security parameter of the designer’s public key is half that of the RSA key being
generated. So, the user’s 1024-bit key ends up being no more secure than RSA-
512 with respect to the reverse-engineer. This problem results from the fact that
a subexponential time algorithm is known that solves the integer factorization
problem and this leads to “bulky” embedded RSA ciphertexts (decryptable only
by the designer). Recall that in 1996 the 430-bit RSA composite for the RSA-
130 factoring challenge was solved [6] while the tougher challenges remained
unsolved.2 In December 2003, the 576-bit RSA composite RSA-576 was factored
[23]. So, whereas it was conceivable in 1996 that a 512-bit modulus provided
some security, this is certainly not the case now.

What this means is that there is currently no known way to implement a secure
SETUP in RSA-1024 key generation. In this paper we solve this practical prob-
lem.3 In fact, the use of a pair of twisted elliptic curves leads to a solution that
is so space efficient that it can be used to build a SETUP in RSA-768 key gen-
eration as well, provided that a sound cryptographic hash function is available.

Another technical motivation relates to run-time efficiency. It has been noted
that care must be taken to define the ensemble from which each of the RSA
primes p and q is chosen and ensure that the SETUP conforms to this ensemble
[27, 8]. An approach to doing so was presented [27] and we follow this approach.
However, the expected number of primality tests in [27] is about O((log p)2) (due
to the Prime Number Theorem). So, a second technical motivation is to develop
a recovery system that produces primes drawn from the correct distribution
while achieving an expected number of primality tests that is about O(log p) as
in normal key generation. Our technical contributions are as follows:

1. We present the first strong SETUP that is secure for RSA keys as small
as 768 bits (given the current strengths of factoring and ECC and given a
suitable hash function) and that has O(log p) expected primality tests.

2. We present the first SETUP in RSASSA-PSS that permits a 20-bit mes-
sage to be securely transmitted within the 160-bit padding field. This is
more robust than a straightforward channel [25], since previously transmit-
ted messages remain confidential (they are asymmetrically encrypted) even
after reverse-engineering.

2 At that time RSA Inc. used decimal to title their challenges.
3 To eliminate any possible confusion: “the problem” is one that the designer faces.

130 A. Young and M. Yung

A strong SETUP in RSA key generation [29] permits the key generation
“devices” (either hardware or software) to be manufactured identically (there
is no need for unique identifier strings). Consider the setting in which some
fraction of the deployed RSA key generators have the SETUP in them. A strong
SETUP makes the following possible: even if one of the devices with a SETUP is
reverse-engineered it is still not possible, given only oracle access, to distinguish
the remaining devices that have been SETUP from the “good” ones.4

The SETUP is made possible by the use of the elliptic curve Diffie-Hellman
(ECDH) key exchange algorithm. To date there is no publicly known subex-
ponential algorithm for solving the elliptic curve discrete logarithm problem
(ECDLP) [14]. As a result an ECDH key exchange value is very small, partic-
ularly when point-compression is used. This allows us to overcome the bulky
ciphertext that results from “displaying” an RSA ciphertext in the channel in
RSA composites, thereby allowing us to build a secure SETUP in RSA-1024 key
generation. In a nutshell our SETUP carries out a ECDH key exchange between
the device and the designer to permit the designer to factor the RSA modulus
that is produced. To achieve the indistinguishability requirements of a strong
SETUP two elliptic curves are used, one which is a “twist” of the other.

2 Background, Definitions, and Notation

A number of SETUPs in RSA key generation have been presented [28, 29, 27].
Also, approaches have been presented that emphasize speed [8]. This latter ap-
proach is intended to work even when Lenstra’s composite generation method
is used [20] whereas the former three will not. However, all of these approaches
fail when half of the bits of the composite are chosen pseudorandomly using
a seed [28] (this drives the need for improved public key standards, and forms
a major motivation for the present work). It should be noted that [8] does not
constitute a SETUP since it assumes that a secret key remains hidden even after
reverse-engineering.

We adapt the notion of a strong SETUP [29] to two games. For clarity this def-
inition is tailored after RSA key generation (as opposed to being more general).
The threat model involves: a designer, an eavesdropper, and an inquirer.

The designer builds the SETUP into some subset of all of the black-box key
generation devices that are deployed. The goal of the designer is to learn the
RSA private key of a user who generates a key pair using a device contained in
this subset when the designer only has access to the RSA public keys. Before the
games start, the eavesdropper and inquirer are given access to the SETUP algo-
rithm in its entirety.5 However, in the games they play they are not given access
to the internals of the particular devices that are used (they cannot reverse-
engineer them).

4 Timing analysis, power analysis, etc. are not considered here, but should be considered
in future work. Our goal is to lay the foundation for building a SETUP in RSA keys
wherein the security parameter of the user RSA key is at the lower end of being secure.

5 e.g., found in practice via the costly process of reverse-engineering one of the devices.

A Space Efficient Backdoor in RSA and Its Applications 131

Assumptions: It is assumed that the eavesdropper and inquirer are probabilis-
tic poly-time algorithms and that the RSA key generation algorithm is deployed
in tamper-proof black-boxes. It is traditional to supply an RSA key generator
with 1k where k is the security parameter (for theoretically meaningful run-
times). However, for simplicity we assume that the generator takes no input and
that the security parameter is fixed. It is straightforward to relax this assump-
tion. Let D be a device containing the SETUP mechanism.

Game 1: Let A and B be two key generation devices. A has a SETUP in it and
B does not (B is “normal”). One of these is selected uniformly at random and
then the inquirer is given oracle access to the selected machine. The inquirer
wins if he correctly determines whether or not the selected device has a SETUP
in it with probability significantly greater than 1/2.

Property 1: (indistinguishability) The inquirer fails Game 1 with overwhelming
probability.

Game 2: The eavesdropper may query D but is only given the public keys that
result, not the corresponding private keys. He wins if he can learn one of the
corresponding private keys.

Property 2: (confidentiality) The eavesdropper fails Game 2 with overwhelming
probability.

Property 3: (completeness) Let (y, x) be a public/private key generated using
D. With overwhelming probability the designer computes x on input y.

In a SETUP, the designer uses his or her own private key in conjunction with y to
recover x. In practice the designer may learn y by obtaining it from a Certificate
Authority.

Property 4: (uniformity) The SETUP is the same in every black-box crypto-
graphic device.

Property 4 implies that there are no unique identifiers in each device. The impor-
tance of a strong SETUP then, is that it permits the distribution of a compiled
binary program in which all of the instances of the “device” will necessarily be
identical without diminishing the security of the SETUP. In hardware imple-
mentations it simplifies the manufacturing process.

Definition 1. If an RSA key generation algorithm satisfies properties 1, 2, 3,
and 4 then it is a strong SETUP.

A method for displaying asymmetric ciphertexts in a fashion that is indistin-
guishable from random bit strings was put forth in [29]. This is accomplished
using the probabilistic bias removal method which was also employed in [1]. Other
recent work in this area includes [21].

The present work utilizes the notion of a “twist” on an elliptic curve over IFq.
For typical elliptic curves used in cryptography (e.g., the curves in FIPS 186-2)
only about half of IFq corresponds to x-coordinates on a given curve. However, by

132 A. Young and M. Yung

utilizing two curves—one which is a twist of the other, it is possible to implement
a trapdoor one-way permutation from IFq onto itself. The notion of a twist has
been used to implement these types of trapdoor one-way permutations which
have the (conjectured) property that inversion is exponential in the security
parameter [19]. For the RSA permutation inversion is subexponential in the
security parameter.

The notion of a twist has also been used to implement strong pseudorandom
bit generators and to achieve a simple embedding of plaintexts in the EC version
[17, 18] of ElGamal [12]. Recently, twists have been shown to be useful in the
problem of implementing a PKCS in which the ciphertexts appear to be uni-
formly distributed bit strings [21]. In a related fashion, we use the notion of a
twist to produce Diffie-Hellman (DH) [10] key exchange values that appear to
be uniformly distributed bit strings.

The following is some notation that is used. Let A
⊕

B denote the bitwise
exclusive-or of bit string A with bit string B where |A| = |B|. Let x ≈ y denote
that the integer x is approximately equal to y. Let x ∈R S denote the selection
of an element x uniformly at random from set S. Uppercase is used to denote a
point on an elliptic curve and lowercase is used to denote the multiplicand. So,
P = kG denotes the EC point P that results from adding the point G to itself
k times. Let #Ea,b(IFq) denote the number of points on the elliptic curve Ea,b

that is defined over IFq. In the pseudocode that is provided, logical indentation
will be used to show flow-control (e.g., the body of an “if” statement is indented
to the right).

3 System Setup

The key generation algorithm utilizes a pair of binary curves. Each curve is de-
scribed by the Weierstrass equation Ea,b given by y2+xy = x3 +ax2+b. Here the
coefficients a and b are in IF2m and b �= 0. We use the standard group operations
for binary elliptic curve cryptosystems. The value m should be an odd prime to
avoid the possibility of the GHS attack [13]. Also, these curves must provide a
suitable setting for the elliptic curve decision Diffie-Hellman problem (ECDDH).
We mention this since for certain elliptic curves, DDH is tractable [16].

It is well known that Hasse’s inequality implies that |#Ea,b(IF2m)−2m−1| <
2 ∗ 2m/2. Recall that if the trace TrIF2m/IF2(a) �= TrIF2m /IF2(a

′) then Ea,b and
Ea′,b are “twists” of one another. When two such curves are twists of one another
then for every x ∈ IF2m there exists a y ∈ IF2m such that (x, y) is a point on
Ea,b or Ea′,b. The two possibilities are as follows. Either (x, y) and (x, x+ y) are
points on the same curve or (x, y) = (0,

√
b) is on both curves.

The sum of the number of points on both curves is given by #Ea,b(IF2m) +
#Ea′,b(IF2m) which is equal to 2m+1 + 2. It follows from Hasse’s inequality that
#Ea,b(IF2m) ≈ #Ea′,b(IF2m) ≈ 2m.

Since m is odd TrIF2m/IF2(0) = 0 and TrIF2m/IF2(1) = 1. So, we use E0,b and
E1,b as a pair of twisted curves. It remains to choose suitable curves that resist
known cryptanalytic attacks (e.g., satisfying the MOV condition). Using point-
counting techniques it is known how to efficiently generate two curves E0,b and

A Space Efficient Backdoor in RSA and Its Applications 133

E1,b with orders 4q0 and 2q1, respectively, where q0 and q1 are prime. E0,b will
have a cofactor of 4 and E1,b will have a cofactor of 2.

Once two such curves are found, a base point G0 having order q0 that is
on E0,b(IF2m) is found as well as a base point G1 having order q1 that is on
E1,b(IF2m). Using these base points, the designer generates the EC private key
x0 ∈R {1, 2, ..., q0 − 1} and corresponding public key Y0 = x0G0. The designer
also generates x1 ∈R {1, 2, .., q1 − 1} and corresponding public key Y1 = x1G1.
The values (G0, G1, Y0, Y1) are included in the RSA key generation device.

4 Building Blocks

By using point compression, the SETUP is able to make efficient use of space.
The ECC point will be embedded in the upper order bits of the RSA modulus
that is being SETUP using a well known channel in composites (see [28]). A
point (x, y) on the binary curve over IF2m can be uniquely expressed using m+1
bits [26]. The compressed point is (x, ybit) where ybit ∈ {0, 1}.

We define PointCompress(Ev,b, P) to be a function that compresses the point
P = (x, y) on curve Ev,b and outputs (x || ybit) which is the compressed rep-
resentation of (x, y). Also, we define PointDecompress(Ev,b, x || ybit) to be a
function that decompresses (x || ybit) and outputs (P, w). If w = 1 then P is the
decompressed point on the curve Ev,b. If w = 0 then (x, ybit) is not a point on
the curve Ev,b and P is undefined.

The following algorithm is used to generate the DH key exchange parameter
and the DH shared secret. The algorithm effectively conducts an ECDH key
exchange between the device and the designer wherein: the shared secret is used
to generate one of the RSA primes, and the public DH paramter is displayed in
the upper order bits of the published RSA modulus. The function below returns
the public and private strings that the device uses for this “key exchange.”

GenDHParamAndDHSecret():
Input: none
Output: spub, spriv ∈ {0, 1}m+1

1. with probability 4q0−1
2m+1 set a = 0 and with probability 2q1−1

2m+1 set a = 1
2. choose k uniformly at random such that 0 < k < qa

3. choose μ ∈R {0, 1, 2, 3}
4. set P = kGa

5. solve for Q such that P = 2Q and Q has order 2qa

6. if a = 0 then
7. if μ = 1 then set P = Q
8. if μ ∈ {2, 3} then choose Q1 randomly such that Q = 2Q1

and set P = Q1
9. if a = 1 then
10. if μ ∈ {2, 3} then set P = Q
11. set spub = PointCompress(Ea,b, P)
12. set spriv = PointCompress(Ea,b, kYa) and return (spub, spriv)

134 A. Young and M. Yung

The “public” DH key exchange value is spub. The shared secret is spriv. The
following is used to recover the shared secret.

RecoverDHSecret(spub, x0, x1):
Input: spub ∈ {0, 1}m+1 and EC private keys x0, x1
Output: spriv ∈ {0, 1}m+1

1. set v = 0
2. (P1, w) = PointDecompress(E0,b, spub)
3. if (w = 0) then
4. compute (P1, w) = PointDecompress(E1,b, spub)
5. set v = 1
6. set P1 = 2iP1 where i ∈ {0, 1, 2} is the smallest value making P1

have prime order
7. compute P2 = xvP1
8. return spriv = PointCompress(Ev,b, P2)

Let Πθ be the set of all permutations from {0, 1}θ onto itself. We assume that
θ is even. The SETUP utilizes the family of permutations πθ : {0, 1}θ → {0, 1}θ

for i = 1, 2, 3, ... where πθ is chosen randomly from Πθ. We assume that πθ and
π−1

θ are efficiently computable public functions (e.g., they are oracles). Given
a random oracle H this family can be constructed. (We assume the Random
Oracle model).

In practice this family can be heuristically implemented using strong cryp-
tographic hash functions. For instance, let H : {0, 1}∗ → {0, 1}160 and F :
{0, 1}∗ → {0, 1}160 be distinct cryptographic hash functions.

π320(x):
Input: x ∈ {0, 1}320
Output: y ∈ {0, 1}320
1. let xu and x� be bit strings such that x = xu || x� and |xu| = 160
2. return y = (xu

⊕
F (x�

⊕
H(xu))) || (x�

⊕
H(xu))

π−1
320(x):

Input: y ∈ {0, 1}320
Output: x ∈ {0, 1}320
1. let yu and y� be bit strings such that y = yu || y� and |yu| = 160
2. return x = (yu

⊕
F (y�)) || (y�

⊕
H(yu

⊕
F (y�)))

Note that the transformations (πθ, π
−1
θ) are similar to the padding scheme

used in RSA-OAEP [3].
The following defines the “public” specification of allowable RSA primes. This

definition requires that each of the two most significant bits be set to 1.

IsAcceptablePrime(e, len, p1):
Input: RSA exponent e, required bit length len of p1, candidate prime p1
Output: true iff p1 is an acceptable prime, false otherwise
1. if (|p1| �= len) then halt with false
2. if the two uppermost bits of p1 are not 112 then halt with false

A Space Efficient Backdoor in RSA and Its Applications 135

3. if p1 is composite then halt with false
4. if (gcd(p1 − 1, e) �= 1) return false else return true

Let R : {0, 1}∗ → {0, 1}∞ be a random oracle as defined in [2]. The function
GetBlock(str, i, �) returns � consecutive bits of bit string str. The first such bit
is the bit at bit position i of str. The bits are ordered from left to right starting
with 0. For example, if str = R(s) = 01101001... then GetBlock(str, 0, 4) = 0110,
GetBlock(str, 1, 4) = 1101, and GetBlock(str, 4, 4) = 1001.

GenPrimeWithOracle(s, len, e):
Input: s ∈ {0, 1}m+1, required bit length len, RSA exponent e.
Output: Acceptable RSA prime p1 such that |p1| = len
1. set j = 0
2. let u = GetBlock(R(s), j ∗ T, T)
3. choose � ∈R {0, 1}len−T

4. let p1 be the integer corresonding to the bit string u || �
5. if (IsAcceptablePrime(e, len, p1) = true) then output p1 and halt
6. set j = j + 1 and goto step 2

The RSA modulus of the user is n = p1q1. We require that |n|/4 ≤ T ≤ len.
A selection for T is given in Section 5.

5 Application 1: Elliptic Curve SETUP in RSA Key
Generation

N/2 is the size in bits of each prime in n and e is the RSA exponent (this
variable q1 is different from the elliptic curve value q1 and should be clear from
the context). For simplicity we assume that N is even.

GetPrimesN,e(spub, spriv):
Input: spub, spriv ∈ {0, 1}m+1

Output: A pair of acceptable RSA primes (p1, q1)
1. set p1 = GenPrimeWithOracle(spriv, N/2, e)
2. choose s0 ∈R {0, 1}θ−(m+1)

3. compute t = πθ(s0 || spub)
4. choose r2 ∈R {0, 1}N−θ

5. set nc = (t || r2) /* θ + |r2| bits long */
6. solve for (q1, rc) in nc = q1p1 + rc /* find quotient q1 */
7. if (IsAcceptablePrime(e, N/2, q1) = false) then goto step 2
8. output (p1, q1) and halt

Since algorithm KleptoKeyGenN,e is deployed in this exact form in all black-
box devices, Property 4 of a strong SETUP holds.

KleptoKeyGenN,e():
Input: none
Output: A pair of acceptable RSA primes (p1, q1)

136 A. Young and M. Yung

1. (spub, spriv) = GenDHParamAndDHSecret()
2. output (p1, q1) = GetPrimesN,e(spub, spriv) and halt

Once p1 is found in step 1 it does not change. From the Prime Number
Theorem it follows that the expected number of primality tests is O(log n), the
same as in normal RSA key generation. Coppersmith showed that if the |n|/4
significant bits of p1 are known then n = p1q1 can be efficiently factored [7]. For
typical RSA key generation we can use T = |n|/4 in the SETUP. So, we use
Coppersmith’s method to factor n given the resulting upper order bits.

The value MAX is used to prevent the recovery algorithm from running for
too long when it is supplied with an RSA private key that was not generated
using the SETUP (e.g., a normal RSA key). By taking MAX = �N

2 ∗ 160∗ln 2�
it follows that if the SETUP was used then the factorization will be found with
overwhelming probability.

KleptoRecoveryKeyN,e(n, x0, x1):
Input: the user’s RSA modulus n and EC private keys (x0, x1)
Output: Factorization of n = p1q1 or “failure”
1. let ns be n represented as a binary string
2. let t = GetBlock(ns, 0, θ)
3. let t0 be the integer corresponding to t
4. for β = 0 to 1 do:
5. set t2 = t0 + β mod 2θ

6. let t3 be the bit string corresponding to t2
7. set spub = GetBlock(π−1

θ (t3), θ − (m + 1), m + 1)
8. s = RecoverDHSecret(spub, x0, x1)
9. set j = 0
10. let u = GetBlock(R(s), j ∗ T, T)
11. Attempt to factor n = p1q1 by supplying (u, n) to Coppersmith’s

algorithm [7] and halt with the factorization if it is found
12. set j = j + 1
13. if j < MAX then goto step 10
14. output “failure” and halt

The reseason that β is used is to account for a potontial borrow bit being taken
from the upper order bits in nc during the computation of n = nc− rc = q1p1. A
possible configuration of the attack is N = 768, m = 191, and θ = 320. Observe
that 768/2 − 320 = 64. So, it is not likely that t will have a borrow bit taken
from it. It is not hard to see that Property 3 holds. The security of the SETUP
is proven in Appendix A.

6 Application 2: Hardware Based Key Escrow

The strong SETUP from Section 5 can be used to implement a lightweight
hardware-based key escrow system. The EC private keys (x0, x1) are retained by
a key recovery authority or may be shared using threshold cryptography among
a set of trusted key recovery authorities.

A Space Efficient Backdoor in RSA and Its Applications 137

The SETUP is implemented in the hardware devices of the users. The presence
and details of the SETUP is publicly disclosed. To recover a given user’s RSA
private key, the escrow authority or authorities need only obtain the public key
of the user to derive the corresponding private key.

7 Application 3: SETUP in RSASSA-PSS

We now present a SETUP in RSASSA-PSS [22] when RSASSA-PSS utilizes
SHA-1. Recall that the RSASSA-PSS signature scheme is a Provably Secure
Signature (PSS) scheme [4] that constitutes a Signature Scheme with an Ap-
pendix (SSA). This scheme is compatible with the IFSSA scheme as amended
in the IEEE P1363a draft [15].

For concreteness we set m = 139. The use of IF2139 is based on the fact that the
most recently solved binary EC discrete-logarithm challenge was ECC2-109 [11]
and currently one of the easiest open challenges from Certicom is ECC2-131.6

So, we are admittedly cutting it close.
The encryption and decryption algorithms utilize the cryptographic hash

function H : {0, 1}∗ → {0, 1}20. The plaintext space is {0, 1}20 and the cipher-
text space is {0, 1}160. The asymmetric encryption algorithm E160(m) operates
as follows. Let m ∈ {0, 1}20 be the plaintext message. First, E160 computes the
value (spub, spriv) = GenDHParamAndDHSecret(). It then hashes spriv by com-
puting pad = H(spriv). The asymmetric ciphertext is c1 = (spub || (pad

⊕
m)).

The decryption algorithm D160(c1) operates as follows. It extracts spub from
the asymmetric ciphertext c1. Algorithm D160 then computes the value spriv =
RecoverDHSecret(spub, x0, x1). It then computes pad = H(spriv). This pad is
then XORed with the 20 least significant bits of c1 to reveal m.

The following is the SETUP in RSASSA-PSS. The signing algorithm can be
used to transmit any 20 bits of information m (e.g., bits of the RSA private key,
bits of a symmetric key, etc.) through RSASSA-PSS. It does so by computing
c1 = E160(m) and using c1 as the random 160-bit “salt” in RSASSA-PSS. The
salt/ciphertext is pseudorandom and can be recovered by anyone that is able
to perform digital signature verification. However, only the designer who knows
(x0, x1) can decrypt the salt and recover m.

Note that (E160, D160) is malleable and so does not achieve rigorous notions of
security for a PKCS. To see this note that an active adversary can flip plaintext
bit i where 0 ≤ i ≤ 19 by XORing “1” with the corresponding ciphertext bit.

However, for many applications this asymmetric cryptosystem may provide
sufficient security. In the SETUP in RSASSA-PSS, an active adversary that
changes a bit as such will with overwhelming probability invalidate the signature.
So, in this application of E160 non-malleability is achieved.

This SETUP differs in a fundamental way from most channels since confiden-
tiality of m holds even if the cryptographic black-box is opened and scrutinized.
Also, the approach of [21] cannot be used to implement this since it involves a

6 There is an open Koblitz curve challenge called ECC2K-130 as well.

138 A. Young and M. Yung

hash field. This hash makes security against chosen ciphertext attacks possible,
but causes the minimum-length ciphertext to exceed 160 bits.

This SETUP applies equally well to the padding field in RSA-OAEP. In that
scenario the designer must solicit an encrypted message from the user (since
in general OAEP padding is not publicly obtainable). In this scenario, when
a message is signed and encrypted using PKCS #1, it is possible to transmit
20+ 20 = 40 bits in a SETUP. This is enough transmit a 64-bit key used by the
user to secure other communications. Also, if the channel is repeated a constant
number of times many cryptographic secrets can be transmitted (while being
protected against reverse-engineering).

8 Conclusion

We presented a key recovery system for factoring based cryptosystems that uses
elliptic curve technology. Specifically, we updated SETUP algorithms for use
with RSA-1024. The SETUP achieves the notion of a strong SETUP and employs
the notion of twisted elliptic curves in a fundamental way. Finally, we showed a
SETUP in RSASSA-PSS and pointed out that the RSA digital signatures that
result have the added advantage of providing non-malleability of the SETUP
ciphertexts.

References

1. L. von Ahn, N. J. Hopper. Public-Key Steganography. In Advances in Cryptology—
Eurocrypt ’04, pages 323–341, 2004.

2. M. Bellare, P. Rogaway. Random Random oracles are practical: A paradigm for
designing efficient protocols. In 1st Annual ACM CCCS, pages 62–73, 1993.

3. M. Bellare, P. Rogaway. Optimal Asymmetric Encryption. In Advances in
Cryptology—Eurocrypt ’94, pages 92–111, 1995.

4. M. Bellare and P. Rogaway. PSS: Provably Secure Encoding Method for Digital
Signatures. Submission to IEEE P1363 working group, August 1998.

5. D. Boneh. The Decision Diffie-Hellman Problem. In Third Algorithmic Number
Theory Symposium, LNCS 1423, pages 48–63, 1998.

6. J. Cowie, B. Dodson, R.M. Elkenbracht-Huizing, A. K. Lenstra, P. L. Montgomery,
J. Zayer. A world wide number field sieve factoring record: On to 512 bits. In
Advances in Cryptology—Asiacrypt ’96, pages 382–394, 1996.

7. D. Coppersmith. Finding a small root of a bivariate integer equation; factoring
with high bits known. In Eurocrypt ’96, pages 178–189, 1996.

8. C. Crépeau, A. Slakmon. Simple Backdoors for RSA Key Generation. In The
Cryptographers’ Track at the RSA Conference, pages 403–416, 2003.

9. Y. Desmedt. Abuses in Cryptography and How to Fight Them. In Advances in
Cryptology—Crypto ’88, pages 375–389, 1988.

10. W. Diffie, M. Hellman. New Directions in Cryptography. In volume IT-22, n. 6 of
IEEE Transactions on Information Theory, pages 644–654, Nov. 1976.

11. eCompute ECC2-109 Project. ECC2-109 solved April, 2004. Details downloaded
from http://www.ecompute.org/ecc2.

A Space Efficient Backdoor in RSA and Its Applications 139

12. T. ElGamal. A Public-Key Cryptosystem and a Signature Scheme Based on Dis-
crete Logarithms. In Crypto ’84, pages 10–18, 1985.

13. P. Gaudry, F. Hess, N. Smart. Constructive and Destructive Facets of Weil Descent
on Elliptic Curves. In J. of Cryptology, v. 15, pages 19–46, 2002.

14. D. Hankerson, A. J. Menezes, S. Vanstone. Guide to Elliptic Curve Cryptography.
Preface, Springer-Verlag, Jan. 2004.

15. IEEE P1363 working group. IEEE P1363a D10: Standard Specifications for Public
Key Cryptography: Additional Techniques. Nov. 1, 2001.

16. A. Joux, K. Nguyen. Separating DDH from CDH in Cryptographic Groups. In
Journal of Cryptology, v. 16, n. 4, pages 239–247, 2003.

17. B. S. Kaliski. A Pseudo-Random Bit Generator Based on Elliptic Logarithms. In
Advances in Cryptology—Crypto ’86, pages 84–103, 1986.

18. B. S. Kaliski. Elliptic Curves and Cryptography: A Pseudorandom Bit Generator
and Other Tools. PhD Thesis, MIT, Feb. 1988.

19. B. S. Kaliski. One-Way Permutations on Elliptic Curves. In Journal of Cryptology,
v. 3, n. 3, pages 187–199, 1991.

20. A. K. Lenstra. Generating RSA Moduli with a Predetermined Portion. In Advances
in Cryptology—Asiacrypt ’98, pages 1–10, 1998.

21. B. Möller. A Public-Key Encryption Scheme with Pseudo-Random Ciphertexts.
In ESORICS ’04, pages 335–351, 2004

22. PKCS #1 v2.1: RSA Cryptography Standard. RSA Labs, Jun. 14, 2002.
23. E. Weisstein. RSA-576 Factored. MathWorld Headline News, Dec. 5, 2003. Fac-

tored by: J. Franke, T. Kleinjung, P. Montgomery, H. te Riele, F. Bahr and NFS-
NET (that consisted of D. Lecliar, P. Leyland, R. Wackerbarth).

24. R. Rivest, A. Shamir, L. Adleman. A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems. CACM, v. 21, n. 2, pages 120–126, Feb. 1978.

25. G. J. Simmons. Subliminal Channels: past and present. In European Trans. on
Telecommunications, v. 5, pages 459–473, 1994.

26. S. A. Vanstone, R. C. Mullin, G. B. Agnew. Elliptic curve encryption systems. US
Patent 6,141,420, Filed: Jan. 29, 1997.

27. A. Young. Kleptography: Using Cryptography Against Cryptography. PhD Thesis,
Columbia University, 2002.

28. A. Young, M. Yung. The Dark Side of Black-Box Cryptography, or: Should we
trust Capstone? In Advances in Cryptology—Crypto ’96, pages 89–103, 1996.

29. A. Young, M. Yung. Kleptography: Using Cryptography Against Cryptography.
In Advances in Cryptology—Eurocrypt ’97, pages 62–74, 1997.

A Security

In this section we prove that indistinguishability and confidentiality holds. Not
surprisingly, indistinguishability holds under the ECDDH assumption. The re-
duction algorithms utilize point halving (where we are interested in halving point
B to obtain a point C having composite order where B = 2C).

A.1 Indistinguishability

The proof below randomizes 3-tuples (see [5]).

Claim 1: (Random Oracle Model) If ECDDH is hard then the SETUP produces
prime pairs that are computationally indistinguishable from RSA prime pairs.

140 A. Young and M. Yung

Proof: (Sketch) It will be shown that if the SETUP produces primes that are
computationally distinguishable from pairs of RSA primes then ECDDH is easy.
So, let D be a distinguisher that distinguishes pairs of primes from the SETUP
from pairs of normal RSA primes.

Let t = GetBlock(ns, 0, θ) where ns is p1q1 represented as a binary string.
Consider s = GetBlock(π−1

θ (t), θ− (m+1), m+1). Note that s is on exactly one
of the two twisted curves. There are 3 possibilities. Either,

1. D distinguishes with non-negligible advantage for such points s on E0,b(IF2m)
but with negligible advantage when such points s are on E1,b(IF2m), or

2. D distinguishes with negligible advantage for such points s on E0,b(IF2m)
but with non-negligible advantage when such points s are on E1,b(IF2m), or

3. D distinguishes with non-negligible advantage for such points s that are on
E0,b(IF2m) or E1,b(IF2m).

Without loss of generality suppose that case (1) holds (a similar reduction ar-
gument holds for case (2)). For case (1) it follows that D distinguishes with
probability greater than 1

2 + 1
t
α1
1

for some fixed α1 > 0 and sufficiently large t1.
Consider machineM1 that takes as input an ECCDH problem instance given

by (A1, A2, G0, m, b) = (a1G0, a2G0, G0, m, b) where G0 has order q0 and a1, a2 ∈
{1, 2, ..., q0 − 1}. The problem is to compute a1a2G0.

M1(A1, A2, G0, m, b):
Input: points A1, A2 each having order q0 that are on curve E0,b(IF2m),

base point G0, EC parameters m and b
Output: point P having order q0 on curve E0,b(IF2m)
1. choose u1, u2 ∈R {1, 2, ..., q0 − 1} and μ ∈R {0, 1, 2, 3}
2. set (B1, B2) = (u1A1, u2A2)
3. set C1 = B1
4. solve for C2 in B1 = 2C2 such that C2 has order 2q0
5. choose C3 in C2 = 2C3 randomly (C3 has order 4q0)
6. if μ = 1 then set C1 = C2
7. if μ ∈ {2, 3} then set C1 = C3
8. set Y0 = B2
9. set spub = PointCompress(E0,b, C1)
10. choose spriv to be a random compressed point on E0,b(IF2m)

having order q0
11. randomly choose a base point G1 having order q1 that is on E1,b(IF2m)
12. choose x1 ∈R {1, 2, ..., q1 − 1} and set Y1 = x1G1
13. compute (p1, q1) = GetPrimesN,e(spub, spriv)
14. set L to be the empty list
15. step through the operation of D(p1, q1, G0, G1, Y0, Y1, m, b) while trapping

all calls to R, and for each call to R, add the argument to R to L
16. if L is non-empty then
17. choose s ∈R L and compute (P, w) = PointDecompress(E0,b, s)
18. if (w = 1) then

A Space Efficient Backdoor in RSA and Its Applications 141

19. if P has order q0 then output (u1u2)−1P and halt
20. output a random point with order q0 on E0,b(IF2m) and then halt

Clearly the running time of M1 is efficient. Note that D makes at most a
polynomial number of calls to random oracle R. So, the number of elements in
L is at most p2(m) where p2 is polynomial in m.

Consider the algorithmM2 that takes as input an ECDDH problem instance
(A1, A2, A3, G0, m, b) = (a1G0, a2G0, a3G0, G0, m, b) where G0 has order q0 and
a1, a2, a3 ∈ {1, 2, ..., q0 − 1}.

M2(A1, A2, A3, G0, m, b):
1. choose u1, u2, v ∈R {1, 2, ..., q0 − 1} and μ ∈R {0, 1, 2, 3}
2. set (B1, B2, B3) =

(vA1 + u1G0, A2 + u2G0, vA3 + u1A2 + vu2A1 + u1u2G0)
3. set C1 = B1
4. solve for C2 in B1 = 2C2 such that C2 has order 2q0
5. choose C3 in C2 = 2C3 randomly (C3 has order 4q0)
6. if μ = 1 then set C1 = C2
7. if μ ∈ {2, 3} then set C1 = C3
8. set Y0 = B2
9. set spub = PointCompress(E0,b, C1)
10. set spriv = PointCompress(E0,b, B3)
11. randomly choose a base point G1 having order q1 on curve E1,b(IF2m)
12. choose x1 ∈R {1, 2, ..., q1 − 1}
13. set Y1 = x1G1
14. compute (p1, q1) = GetPrimesN,e(spub, spriv)
15. return D(p1, q1, G0, G1, Y0, Y1, m, b) and halt

Clearly the running time of M2 is efficient. Observe that if (A1, A2, A3) is
an EC Diffie-Hellman triple then (B1, B2, B3) is an EC Diffie-Hellman triple. If
(A1, A2, A3) is not an EC Diffie-Hellman triple then (B1, B2, B3) is a random
3-tuple. If the input is not an EC Diffie-Hellman triple then with probability
(1− γ1(m)) the tuple (B1, B2, B3) will not be an EC Diffie-Hellman triple. Here
γ1 is a negligible function of m. Thus, with overwhelming probability (B1, B2, B3)
matches the input 3-tuple in regards to being a DH triple or not.

Let 1 − γ0(k0) denote the probability that s (recall that we are considering
case (1)) corresponds to the EC Diffie-Hellman key exchange value.7 Here γ0 is
a negligible function of k0.

Let ptrap denote the probability that D calls R with the DH shared secret
corresponding (B1, B2). There are two possible cases. Either, (1) ptrap > 1

t
α2
2

for some fixed α2 > 0 and sufficiently large t2, or (2) ptrap ≤ γ(m) where γ
is a negligible function of m. If it is case (1) then M1 solves the elliptic curve
Diffie-Hellman problem with probability at least

(
1
2 + 1

t
α1
1

)
1

p2(m)(1−γ0(k0)) 1
t
α2
2

.
If it is case (2) then M2 solves the ECDDH problem with probability at least
7 A borrow bit can be taken and prevent s from being the correct point.

142 A. Young and M. Yung

(1− γ(m)) (1− γ0(k0)) (1− γ1(m))
(

1
2 + 1

t
α1
1

)
. So, at least one of the machines

in the set {M1,M2} can be used to solve ECDDH efficiently. !
Claim 1 proves that Property 1 holds.

A.2 Confidentiality

Claim 2: (Random Oracle Model) If the factorization and the EC Computa-
tional Diffie-Hellman (ECCDH) problems are hard then confidentiality of the
SETUP holds.

Proof: (Sketch) It will be shown that if the confidentiality of the SETUP does
not hold then factoring or ECCDH is easy. Let A be an algorithm that foils the
confidentiality of the SETUP with non-negligible probability. More specifically,
with probability greater than 1

t
α1
1

for some fixed α1 > 0 and sufficiently large t1,
A(n, G0, G1, Y0, Y1, m, b) returns a prime factor p1 that divides n.

Consider the following efficient algorithm.

M1,0(A1, A2, G, m, b):
Input: points A1, A2 with order q0 on curve E0,b(IF2m), base point G0 having

order q0 on curve E0,b(IF2m), EC parameters m and b
Output: A point P on E0,b(IF2m) having order q0
1. choose u1, u2 ∈R {1, 2, ..., q0 − 1} and μ ∈R {0, 1, 2, 3}
2. set (B1, B2) = (u1A1, u2A2)
3. set C1 = B1
4. solve for C2 in B1 = 2C2 such that C2 has order 2q0
5. choose C3 in C2 = 2C3 randomly (C3 has order 4q0)
6. if μ = 1 then set C1 = C2
7. if μ ∈ {2, 3} then set C1 = C3
8. set Y0 = B2
9. set spub = PointCompress(E0,b, C1)
10. choose spriv to be a random compressed point

on E0,b(IF2m) having order q0
11. randomly choose a base point G1 having order q1 on curve E1,b(IF2m)
12. choose x1 ∈R {1, 2, ..., q1 − 1}
13. set Y1 = x1G1
14. compute (p1, q1) = GetPrimesN,e(spub, spriv)
15. set n = p1q1 and let L be the empty list
16. step through the operation of A(n, G0, G1, Y0, Y1, m, b) while trapping

all calls to R, and for each call to R, add the argument to R to L
17. if L is non-empty then
18. choose s ∈R L and compute (P, w) = PointDecompress(E0,b, s)
19. if (w = 1) then
20. if P has order q0 then output (u1u2)−1P and halt
21. output a random point on E0,b(IF2m) having order q0 and then halt

The size of list L is at most p2(m) where p2 is polynomial in m. A similar
reduction algorithm M1,1 can be constructed for the elliptic curve in which

A Space Efficient Backdoor in RSA and Its Applications 143

the value a = 1. The remainder of this proof considers EC Diffie-Hellman over
E0,b(IF2m) unless otherwise specified. Now consider the following algorithm.

M2(n):
1. randomly choose a base point G0 having order q0 on curve E0,b(IF2m)
2. randomly choose a base point G1 having order q1 on curve E1,b(IF2m)
3. choose x0 ∈R {1, 2, ...q0 − 1} and choose x1 ∈R {1, 2, ..., q1 − 1}
4. compute Y0 = x0G0 and Y1 = x1G1
5. output A(n, G0, G1, Y0, Y1, m, b)

Clearly the running time of M2 is efficient.
Let t = GetBlock(ns, 0, θ) where ns is p1q1 represented as a binary string.

Consider s = GetBlock(π−1
θ (t), θ − (m + 1), m + 1). Let 1 − γ0(k0) denote the

probability that s corresponds to the EC Diffie-Hellman key exchange value.
Here γ0 is a negligible function of k0.

Let ptrap denote the probability that A calls R with the DH shared secret
corresponding to (B1, B2). One of the following must occur: (1) ptrap > 1

t
α2
2

for
some fixed α2 > 0 and sufficiently large t2, or (2) ptrap ≤ γ(m) where γ is a
negligible function of m. If it is case (1) thenM1,0 (orM1,1) solves ECCDH with
probability at least 1

t
α1
1

1
t
α2
2

(1− γ0(k0)) 1
p2(m) . If it is case (2) then M2 factors

with probability at least (1− γ(m)) 1
t
α1
1

that is equal to 1
t
α1
1
− γ(m)

t
α1
1

. It follows
that ECCDH or factoring is efficiently solvable. !
Claim 2 proves that Property 2 of a strong SETUP holds. So, we have:

Theorem 1. (KleptoKeyGenN,e, KleptoRecoverKeyN,e) is a strong SETUP.

An Efficient Public Key Cryptosystem
with a Privacy Enhanced Double Decryption

Mechanism

Taek-Young Youn1,�, Young-Ho Park2, Chang Han Kim3, and Jongin Lim1

Graduate School of Information Security, Korea University, Seoul, Korea
{taekyoung, jilim}@cist.korea.ac.kr

Dept. of Information Security, Sejong Cyber University, Seoul, Korea
youngho@cybersejong.ac.kr

Dept. of Information Security, Semyung University, Jecheon, Korea
chkim@semyung.ac.kr

Abstract. A clue of double decryption mechanism was introduced at
Eurocrypt ’02 by Cramer and Shoup, and it was revisited at Asiacrypt
’03 by Bresson, Catalano and Pointcheval. Previous double decryption
schemes are designed based on Zn2 where n = pq for two primes, p and q.
Note that, they use the Paillier’s scheme as a primitive scheme to design
a double decryption mechanism. In this paper, we propose an efficient
public key scheme with double decryption mechanism based on Zp2q.
Our scheme is more efficient than the previous schemes. Moreover, we
review the previous schemes in a privacy point of view and propose a
privacy enhanced double decryption scheme.

Keywords: public key cryptosystem, double trapdoor decryption mech-
anism, semantic security, privacy.

1 Introduction

Public key cryptosystem (PKC) is regarded as a useful tool for secure communi-
cation, therefore designing a good PKC is an essential task for not only theoretic
purpose but also practical purpose. When designing a PKC, we have to consider
two conditions, security and efficiency.

In security point of view, two conditions are considered, one-wayness and se-
mantic security. One-wayness is regarded as a basic condition for secure scheme,
but it is not a sufficient condition to gain real security. In these days, the seman-
tic security is also required as a fundamental condition for the security of PKC.
In [2], some examples which illustrate the need of semantic security are listed.
For example, to design an authenticated key exchange protocol in the public-
key setting, the scheme has to meet IND-CCA2 security. However, even though
a scheme is secure, we have to check whether the scheme is efficient or not. In
general, the efficiency is regarded as an important condition as the security.
� This research was supported by the MIC (Ministry of Information and Communi-

cation), Korea, under the ITRC (Information Technology Research Center) support
program supervised by the IITA(Institute of Information Technology Assessment).

B. Preneel and S. Tavares (Eds.): SAC 2005, LNCS 3897, pp. 144–158, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

An Efficient Public Key Cryptosystem 145

In [4], Cramer and Shoup introduced a clue of double decryption mechanism.
After that, Bresson et al. revisited the mechanism and proposed a double de-
cryption scheme [1]. The previous double decryption mechanisms are derived
from Paillier’s scheme [13], which is designed based on Zn2 where n = pq for two
primes. Since the size of modulo of Paillier’s scheme is twice than that of stan-
dard RSA or ElGamal in same security level, the efficiency of Paillier’s scheme
is not favorable. Hence the efficiency of the previous double decryption scheme
is also not good. So, it is worth designing an efficient double decryption scheme.

In [1], Bresson et al. stated the necessity of double decryption scheme and
proposed a scheme that solves the following two scenarios.

1. The head of a group may want to be able to read any message sent to the
members of the group.

2. People may want to be able to recover the plaintexts even if they loose their
private key.

To solve above two scenarios simultaneously, we need a kind of super-key. In [1],
factoring information is given to authority as a super-key. But, in this scenario,
we have some apprehensions about an invasion of privacy, since authority can
decrypt any ciphertext without any consent of corresponding user. To prevent
the abuse of super-key, i.e., to enhance the privacy of users, we need a way to
restrict the excessive ability of authority.

In this paper, we propose an efficient double decryption scheme based on Zp2q.
Our scheme is efficient than the previous schemes [4, 1], since our scheme executes
the cryptographic operations, such as modulo multiplication and exponentiation,
on a smaller modulo than the previous schemes. Our basic scheme provides about
3 times faster encryption and decryption for ordinary user than the previous
scheme. Moreover, the authority can decrypt a ciphertext about 4 times faster
than the previous scheme. By modifying our basic scheme, we propose a scheme
which can get rid of the apprehension of the invasion of privacy without losing
the double decryption mechanism.

2 Preliminaries

From now, we review two previous schemes and describe the number-theoretic
framework underlying our scheme.

2.1 Previous Schemes

In [1], Bresson, Catalano and Pointcheval proposed a modification of Paillier’s
scheme, which provides double trapdoor decryption mechanism. Let n = pq be a
safe-prime modulo, i.e. p and q are primes of the form p = 2p′+1 and q = 2q′+1,
where p′ and q′ are also primes. Let G be the cyclic group of quadratic residues
modulo n2. Then ord(G) = λ(n2)/2 = nλ(n)/2. Note that every element of
order n is of the form α = 1 + kn for some k ∈ Zn.

Key generation. Choose two primes p and q (|p| = |q|), and let n = pq. Choose
a random α ∈ Zn2 , a random number a ∈ [1, ord(G)] and set g = α2 mod n2

146 T.-Y. Youn et al.

and h = ga mod n2. The public key is (n, g, h) while the corresponding
secret key is a. Two prime factors, p and q, are superkey-like secret key.

Encryption. Given a message m ∈ Zn, choose a random r ∈ Zn2 . Then the
ciphertext is computed as follows: C = (A, B) where A = gr mod n2 and
B = hr(1 + mn) mod n2.

Decryption1. First trapdoor is similar to that of ElGamal scheme. Knowing
a, decryption operation is executed as follows: m = (B/Aa − 1 mod n2)/n.

Decryption2. Second decryption mechanism uses the factoring information of
n as a secret key. If the prime factors are provided, a mod n and r mod n
are easily recovered (see [1] for details). If we write ar mod ord(G) by γ1 +
γ2n then γ1 = ar mod n. Firstly, compute

D = (B
gγ1)λ(n) = (gar(1 + mn))λ(n)

gγ1λ(n) = 1 + mλ(n)n mod n2.

Let π be the inverse of λ(n) in Z∗
n, then m is recovered by the following

simple computation: m = ((D − 1 mod n2)/n)π mod n.

By analyzing the scheme in [1], we can see that if a group has a mechanism
that solves the discrete logarithm problem, a double decryption scheme can be
designed based on the group.

In [12], a novel scheme proposed by Okamoto and Uchiyama as OU scheme
in short, is based on Zp2q. The scheme uses such a mechanism that solves the
discrete logarithm problem. Therefore we can design a double decryption scheme
based on Zp2q. So, it is meaningful to review the scheme [12].

OU scheme is based on a logarithmic function, L, defined over p-Sylow sub-
group of Z∗

p2 . Let Γ = {x ∈ Z∗
p2 |x ≡ 1 mod p}. Then, for x ∈ Γ , L is defined as

L(x) = x− 1
p . The function L is well-defined and has a homomorphic property

from multiplication to addition (see [12] for details). Let xp = xp−1 mod p2

for x ∈ Zn.

Key generation. Choose two primes p and q (|p| = |q| = k), and let n = p2q.
Choose a random g in Zn such that the order of gp−1 mod p2 is p. Let
h = gn mod n. The public key is (n, g, h, k) while the corresponding secret
key is (p, q).

Encryption. Given a message m ∈ [1, 2k−1], choose a random r ∈ Zn. Then
the ciphertext is computed as following: C = gmhr mod n.

Decryption. Compute Cp = Cp−1 mod p2 and gp = gp−1 mod p2. Then the
plaintext is computed as following: m = L(Cp)/L(gp) mod p.

2.2 Discrete Logarithm and Diffie-Hellman Problem over Zp2q

The Diffie-Hellman problem [6] is a well-known cryptographic primitive. Until
now, the Diffie-Hellman problem remains the most widely used cryptographic
technique. Our scheme is also designed based on a kinds of Diffie-Hellman prob-
lem, denoted by p-DHP.

Let P(k) be the set of prime numbers of length k. Choose two primes p and
q in P(k). From now, let n = p2q. Let Gp = {x ∈ Zn | order of xp−1 mod p2 is
p}. Formal definition of p-DHP is described below.

An Efficient Public Key Cryptosystem 147

Definition 1. (p-DHP) The p-DHP is defined as follows: Given a set Gp, an
element g of Gp and (ga mod n, gb mod n) for a, b ∈R [1, p − 1], find gab

mod n.

Although it is not known whether DHP over Z∗
p2q is more tractable than DHP

over Z∗
rs (r and s are prime numbers such that |r| = |s|) or vice versa, the security

of a prime order subgroup of Z∗
rs is studied in [10]. The attack described in [10]

is valid only on the prime order subgroup of Z∗
rs rather than composite order

subgroup. Note that, our scheme use a generator g whose order is composite
number. Moreover, there is no known attack for breaking the DHP over Z∗

p2q.
So, the hardness of p-DHP is based on the size of modulo. The size of exponent,
k bit, is not too small to be broken, since 160 bit of exponent is sufficient to gain
the desired security on DHP in these days.

Conjecture 1. For every probabilistic polynomial time algorithm A, there exists
a negligible function negl(·) such that for sufficiently large k,

Pr

⎡⎢⎢⎣
∣∣ p, q ← P(k); n = p2q;

A(n, A, B) = C
∣∣ g ← Gp; a, b ←R [1, p − 1];∣∣ A = ga mod n; B = gb mod n;∣∣ C = gab mod n;

⎤⎥⎥⎦ ≤ negl(k).

From now, we define a kind of DLP over Z∗
n, denoted by p-DLP. After that, we

will prove that the hardness of p-DLP is equivalent to factoring n.

Definition 2. (p-DLP) The p-DLP is defined as follows: Given a set Gp, an
element g of Gp and ga mod n for a ∈R Zn, find a mod p.

Theorem 1. p-DLP over Z∗
n is hard to solve if and only if the factoring as-

sumption holds.

Proof. (⇒) Suppose that the factoring assumption does not hold. Let A = ga

mod n for some a ∈ Zn. Since we can find the factoring of n, a mod p is recov-
ered as following: a′ = a mod p = L(Ap)/L(gp) mod p.

(⇐) Suppose that there exist an algorithm A which solves p-DLP over Zn.
Choose a random k ∈ [2k+1, n] and compute gk. Then, for given gk, A outputs
k′ = k mod p. Since k > p, we have k′ �= k. So, we get gcd(n, k − k′) = p, a
factor of n. ��
Remark 1. We proved that p-DLP over Zn is hard to solve if and only if the
factoring assumption holds by using the idea in [12]. In [12], it is proved that the
one-wayness of OU scheme is intractable if and only if the factoring assumption
holds. The hardness of p-DLP is equivalent to the one-wayness of OU scheme
and so we have the following relations: p-DLP ⇔ factoring assumption ⇔ one-
wayness of OU scheme.

2.3 Semantic Security

The notion of securities are firstly considered in [8, 5]. After the concept of se-
mantic securities are announced, many general conversion methods that make a
semantically secure scheme from a naive scheme are proposed in [7, 15, 3, 9].

148 T.-Y. Youn et al.

From now, we describe one of the previous general conversion methods. By
using the method, we can make a semantically secure double decryption scheme
from our naive double decryption scheme. Notice that, this is just a summary of
the general conversion method of Kiltz and Lee [9], so, any understanding reader
who knows the method need not see this section.

General Conversion Method of Kiltz and Lee. Kiltz and Lee proposed
a general construction for public key encryption schemes that are IND-CCA2
secure in the random oracle model [9]. The conversion method based on a general
hard problem called as Y-computational problem (YCP). They point out that
many of the most widely used cryptographic primitives, such as RSA and Diffie-
Hellman, are YCP.

Definition 3. An instance generator IY C(1k) for YC outputs a description of
(S1, S2, f1, f2, t). Here S1 and S2 are sets with |S1| = k, f1, f2 : S1 → S2 are
functions and t : S2 → S2 is a (trapdoor) function such that for all x ∈ S1,
t(f1(x)) = f2(x). The functions f1, f2 and t should be easy to evaluate and it
should be possible to sample efficiently from S1. Let A be an adversary and define

AdvA,IY C (1k) = Pr

[
(S1, S2, f1, f2, t) ← IY C(1k); x ∈ S1;

f2(x) ← A(S1, S2, f1, f2, f1(x));

]
.

We define the advantage function AdvIY C (1k, t) = max{AdvA,IY C (1k)} where
the maximum is taken over all adversaries that run for time t. We say that YCP
is hard for IY C(1k) if t being polynomial in k implies that the advantage function
AdvIY C (1k, t) is negligible in k.

Under YCP in the random oracle model, Kiltz and Lee propose a general con-
struction of an IND-CPA secure cryptosystem. The conversion model is com-
posed as following: Epk(m, r) = (f1(r), Eκ(m)) where E is symmetric encryption
function and κ = G(f2(r)) where G is an hash function. Let the converted en-
cryption scheme as Π0.

By applying the conversion method in [7], they convert the cryptosystem Π0
to a cryptosystem Π1 that is IND-CCA2 secure in the random oracle model.
The converted IND-CCA2 secure scheme is composed as following: Epk(m, r) =
(f1(H(m||r)), Eκ(m||r)). where E is a symmetric encryption function, H is an
hash function and κ = G(f2(H(m||r))) where G is an hash function.

2.4 User’s Privacy Against Authority

In general, a malicious authority of a system is not distinguished from other ad-
versaries. However, in some cases, the authority has more information than other
players. Hence, it needs to distinguish the malicious authority from other adver-
saries. The authority in the system of the previous double decryption scheme
also has such an information, the factoring. So, the authority can decrypt any
ciphertext without the consent of an user by using the factoring information. As
a result, any user can not expect a privacy against the authority. For this reason,
we define the privacy of an encryption scheme against a malicious authority as
the one-wayness and semantic security against the authority.

An Efficient Public Key Cryptosystem 149

Definition 4. (One-Wayness against Authority) Suppose that there is a system
with an authority. Let ssp be a secret system parameter only known to the au-
thority and psp be a public system parameter known to all users in the system.
Let Π = (K, E ,D) be an encryption scheme of an user. Let A be a malicious
authority that breaks the one-wayness of the scheme, then the advantage of A is
defined as following:

Advow−atk
A,Π,ssp

(1k) = Pr

[
A(C, pk, ssp)

∣∣ (sk, pk) ← K(psp); M ← {0, 1}n;
= M

∣∣ C ← Esk(M);

]
.

Then the scheme Π is one-way against the authority if and only if there exists
a negligible function negl(·) such that for sufficiently large k,

Advow−atk
A,Π,ssp

(1k) ≤ negl(k).

Definition 5. (Semantic Security against Authority) Under the same condition
of Definition 4, let A be the authority that breaks the semantic security of the
scheme, then the advantage of A is defined as following:

Advind−atk
A,Π,ssp

(1k) = 2Pr

[
A(c, pk, ssp)

∣∣ (sk, pk) ← K(psp); M0, M1 ← {0, 1}n;
= b

∣∣ b ← {0, 1}; C ← Esk(Mb);

]
− 1.

Then the scheme Π is semantically secure against the authority if and only if
there exists a negligible function negl(·) such that for sufficiently large k,

Advind−atk
A,Π,ssp

(1k) ≤ negl(k).

It is easy to grasp the notions, since the notions are defined based on the existing
notions of one-wayness and semantic security. A difference of these notions and
the existing notions is the information given to the adversary. If we think the
secret system parameters ssp as a public information, one-wayness and seman-
tic security against the authority are same as the previous notion of securities
against the ordinary adversary. So, in this case, only the secret key of a user sk

is secret information which does not given to the authority. Since the notion of
securities against the authority can be seen as the previous notions, the relation
of notion of securities [2] are holds equivalently.

In the previous scheme [1], the modulo n and the generator g is public system
parameters while the prime factors p and q are the secret system parameters.
Sometimes, the public system parameters are duplicated with the public key
information of an user. For example, the generator g is public system parameter
and also the public key information of all users. However, the secret system pa-
rameters are not duplicated and remains secret to the public, so the duplication
is not a matter for our definition.

3 A New Double Decryption Scheme

3.1 Description of the Proposed Scheme

Key generation. Choose two primes p and q (|p| = |q| = k), and let n = p2q.
Choose a random g in Z∗

n such that the order of gp−1 mod p2 is p. Choose a

150 T.-Y. Youn et al.

random k−1 bit a and compute h = ga mod n. The public key is (n, g, h, k)
while the corresponding secret key is a. Two prime factors, p and q, are
superkey-like secret key. Only the authority knows the factoring of n.

Encryption. Given a message m ∈ Zn, choose a random k− 1 bit r. Then the
ciphertext is computed as C = (A, B) where A = gr mod n and B = hrm
mod n.

Decryption 1. First trapdoor is similar to that of ElGamal scheme. With the
knowledge of a, one can decrypt m as following: m = B/Aa mod n.

Decryption 2. Second decryption mechanism depends on the factoring infor-
mation of n. Firstly, compute hp = hp−1 mod p2. Then the secret value a is
computed as following: a = L(hp)/L(gp) mod p. Compute Aa mod n with
a, then m is recovered by the following computation: m = B/Aa mod n.

3.2 Security Analysis of the Proposed Scheme

One-Wayness. Our scheme is broken if one can solves p-DHP or p-DLP. In
general, DLP is hard to solve than DHP. Therefore, it is sufficient to show that
the one-wayness of our scheme is equivalent to the hardness of p-DHP.

Theorem 2. Our double decryption scheme is one-way if and only if the p-DHP
is hard.

Proof. Assume that the p-DHP is not hard. Then there exists a polynomial
time algorithm B which can solve p-DHP with non-negligible probability. We
will construct a polynomial time algorithm A, with help of B, which can break
the one-wayness of our scheme. Let the challenge ciphertext and public key be
(A = gr mod n, B = garm mod n) and (n, g, ga), respectively. Since B can
compute gar mod n from (gr mod n, ga mod n), the corresponding plaintext
is computed as m = B/gar mod n. So, the scheme is not one-way.

Conversely, suppose that the proposed scheme is not one-way. Then for given
ciphertext, an adversary A can recover the plaintext with non-negligible proba-
bility. We can make a polynomial time adversary B, with help of A, which can
solve p-DHP. Let (ga mod n, gb mod n) be a challenge pair to compute gab

mod n. Set (n, g, ga) and (A = gb mod n, B = gk mod n) for some k ∈ Zn as
public key data and ciphertext, respectively. Note that k = ab+k′ for some k′. So
gk = gab+k′

= gabgk′
= gabm mod n. Note that m = gk′

mod n. Since the pro-
posed scheme is not one-way, A can recover the corresponding plaintext m from
(A = gb mod n, B = gk mod n). With help of A, B can compute gab = gk/m
mod n from (ga mod n, gb mod n). ��

Remark 2. When m is an element of Zn of order q − 1, m has no component
in Gp. In this case, the problem of inverting the encryption function for such
message is not reduced to the p-DHP. However, the probability that a randomly
chosen massage m has of order q − 1 is about 1

2k . So, the problem of inverting
the encryption function is completely reduced to the p-DHP except for negligible
probability 1

2k .

An Efficient Public Key Cryptosystem 151

Semantic Security. To apply the general conversion method proposed in [9],
the security of a scheme has to be based on a kind of YCP. As commented in
[9], DHP is a YCP. So, we can apply the conversion method to our scheme and
then our scheme is semantically secure against CCA2 adversary.

Let H, G be two hash functions, then the converted encryption function is
given as following: Epk(m, r) = (gH(m||r) mod n, Eκ(m||r)) where E is symmet-
ric encryption function and κ = G(hH(m||r) mod n). As commented in [9], we
can enhance the efficiency by using the one-time pad as the symmetric function
E (i.e., Eκ(m||r) = κ⊕ (m||r)).

In [9], the enhanced security of ElGamal encryption scheme is proved. Accord-
ing to their proof, ElGamal encryption scheme is secure against CCA2 attacker
if the corresponding computational DHP is intractable and the symmetric en-
cryption scheme is OTE1 secure.

Since our scheme is a ElGamal type encryption scheme which is based its
security on the computational p-DHP. We omit the proof of the semantic security
against CCA2 attack, since the security proof for ElGamal type is given in [9].

easyeasy

(g,ga,b)

gb gab

f1 f2

hard

Fig. 1. Y-computational problem: the case of Diffie-Hellman problem

Theorem 3. In the random oracle model, the converted our scheme is IND-
CCA2 secure if the computational p-DHP is intractable and the symmetric en-
cryption scheme E is OTE secure.

3.3 Efficiency

We denote a modular exponentiation under modulo M with exponent e by
ME(|M |, |e|) where |M | and |e| are the bit length of modulo M and expo-
nent e, respectively. Note that, the computational complexity of ME(a, b) and
ME(αa, βb) are in the ratio of 1 to α2β. For example, the calculation of ME(a, b)
is 12 = 223 times faster than that of ME(2a, 3b).

In [14], Rene Peralta claims that the hardness of factoring of 1600 bit integer of
the form p2q is equivalent to 1000 bit RSA integer. So, to compare the efficiency
in same security level, we have to compare 1600 bit integer of the form p2q with
1000 bit RSA modulo.

We compare our scheme with the previous double decryption scheme [1]. The
previous scheme is semantically secure in the standard model. On the other
1 Here, OTE means one time encryption. Since we use the term OTE to use the

previous conversion model [9], we did not explain the detailed explanation about the
OTE.

152 T.-Y. Youn et al.

Table 1. Efficiency Comparison

Scheme The scheme in [1] Proposed Scheme
Plaintext 1000 bit 1600 bit

Ciphertext 4000 bit 3200 bit
Encryption 2ME(2000, 1000) 2ME(1600, 533)
Decrytion 1 ME(2000, 1000) ME(1600, 533)
Decrytion 2 2ME(2000, 1000) ME(1066, 533) + ME(1600, 533)

hand, our scheme is semantically secure in the random oracle model. So, we
compare the efficiency of two double decryption schemes in the plain scheme
point of view. Here, the term plain scheme means the basic model that is not
transformed to CCA2 secure scheme.

Our scheme is more efficient than the previous double decryption schemes.
The scheme in [1] needs 4000 bit ciphertext to guarantee the same security as
1000 bit RSA. However, our scheme needs only 3200 bit ciphertext. Moreover, the
length of plaintext is larger than that of the scheme in [1]. From a computational
complexity point of view, our scheme is more efficient that that of [1]. The
encryption and decryption of our scheme is faster than the previous scheme
about 3 times. Moreover, the cost of authority’s decryption is about 4 times
cheaper than the previous scheme.

4 Privacy Enhanced Double Decryption Scheme

Our double decryption scheme, proposed in the section 3, involves the same
apprehension about the invasion of privacy as the previous double decryption
schemes, i.e., authority can decrypt any ciphertext without a consent of an user.
To solve the problem, we need some trick to restrict the ability of authority. In
this section, we propose a double decryption scheme which provides a way to
restrain the unlimited ability of authority.

From now, we give a detailed description of the scheme for a reader to gain a
better understanding of our idea, though there are many repetition.

4.1 Description of the Privacy Enhanced Double Decryption
Scheme

Key generation. Choose two primes p and q (|p| = |q| = k), and let n = p2q.
Choose a random g ∈ Z∗

n such that the order of gp−1 mod p2 is p. If an user
allows the authority to decrypt his ciphertext, he chooses a random k − 1
bit integer a and compute h = ga mod n. Otherwise, he choose a random
t bit a where t > k, and compute h = ga mod n. Then the public key is
(n, g, h, k) or (n, g, h, t) while the corresponding secret key is a. Two prime
factors, p and q, are superkey-like secret key. Only the authority knows the
factoring of n.

Encryption. Given a message m ∈ Zn, choose a random t bit r. Then the
ciphertext is computed as follows: C = (A, B) where A = (gr mod n and
B = hrm mod n).

An Efficient Public Key Cryptosystem 153

Decryption 1. With the knowledge of the secret value a, one can decrypt given
a ciphertext as following: m = B/Aa mod n.

Decryption 2. Second decryption mechanism depends on the factoring infor-
mation of n. The authority can decrypt a ciphertext with a corresponding
user’s consent. If the user permits the authority to decrypt, the authority
can recover the plaintext. Firstly, he computes hp = hp−1 mod p2. Then
the random k − 1 bit a is computed as following: a = L(hp)/L(gp) mod p.
The authority computes Aa mod n by using a. Then m is recovered by the
following simple computation: m = B/Aa mod n.

Remark 3. If the user does not consent, the authority can not recovers the secret
exponent a. The authority can find a′ = a mod p since he knows the factoring
of n. However, for sufficiently large k and t, it is hard to finding out a from a′. So
the authority can not recover the plaintext for given ciphertext. The hardness
of this problem will be discussed and proved in the next section.

Remark 4. When a sender want to permit the authority’s ability of decryption,
he choose k−1 bit r and compute gr mod n. Then the authority can decrypt the
ciphertext generated by the sender by computing the secret exponent r though
the corresponding receiver dose not consent the authority’s decryption. At first,
the authority computes (gr)p = (gr)p−1 mod p2. Then the random k − 1 bit r
is computed as following: r = L((gr)p)/L(gp) mod p.

Remark 5. In the case of the encrypted information is not important to an user’s
privacy, the user will consent the authority to decrypt his ciphertext to enjoy
the properties of double decryption mechanism.

4.2 Security Analysis of the Privacy Enhanced Double Decryption
Scheme

Since the privacy enhanced double decryption scheme is not based its security on
p-DHP, we introduce a variant of p-DHP, denoted by t-DHP. Formal definition
of t-DHP is given below.

Definition 6. (t-DHP) The t-DHP is defined as follows: Given a set Gp, an
element g of Gp and (ga mod n, gb mod n) for a, b ∈ [1, 2t − 1] where t > k,
find gab mod n where n = p2q.

Conjecture 2. For every probabilistic polynomial time algorithm A, there exists
a negligible function negl(·) such that for sufficiently large t and k,

Pr

⎡⎢⎢⎣
∣∣ p, q ← P(k); n = p2q;

A(n, A,B) = C
∣∣ g ← Gp; a, b ←R [1, 2t − 1];∣∣ A = ga mod n; B = gb mod n;∣∣ C = gab mod n;

⎤⎥⎥⎦ ≤ negl(t, k).

Intuitively, we can say that the t-DHP is harder than p-DHP, since the exponent
of t-DHP is larger than that of p-DHP. Under the hardness of t-DHP, we can
prove that the privacy enhanced double decryption scheme is intractable.

154 T.-Y. Youn et al.

Theorem 4. The privacy enhanced double decryption scheme is one-way if and
only if the t-DHP is hard to solve.

Proof. If the t-DHP is not hard, there exists a polynomial time algorithm B
which solves the t-DHP. By using B, we can construct a polynomial time al-
gorithm A that breaks the one-wayness of the privacy enhanced scheme. Let
(n, g, ga) be the public key parameters and let (A = gr mod n, B = garm
mod n) be a challenge ciphertext. Then, B can compute gar mod n from the
pair (ga mod n, gr mod n), so A can compute the corresponding plaintext as
following: m = B/gar mod n.

Suppose that the scheme is not one-way. Then there exists an adversaryA that
recovers the plaintext for given ciphertext. By using A, we can solve the t-DHP
in polynomial time. Let (ga mod n, gb mod n) be a challenge. Set (n, g, ga) as
the public key parameters. Then, compute (A = gb mod n, B = gk mod n) for
some k ∈ Zn and set the pair as the ciphertext which corresponds to the public
key parameters. In this case, k = ab + k′ for some k′. Then, the algorithm A
returns m = gk′

mod n as the plaintext of the ciphertext (A = gb mod n, B =
gk mod n) since gk = gab+k′

= gabgk′
= gabm mod n. We can solve the t-DHP

by computing gab = gk/m mod n with help of A. ��

We have to consider the security of the privacy enhanced scheme against the
authority since a malicious authority has more information than other adversary,
the factoring of n. So, we define a variant of t-DHP named as tp-DHP to
formalize the security of privacy enhanced scheme against the authority.

Definition 7. (tp-DHP) Given a set Gp, an element g of Gp and (ga mod n,
gb mod n) for a, b ∈ [1, 2t− 1] where t > k, compute gab mod n where n = p2q
and the prime factors are known.

We can simplify the tp-DHP to show that the problem is sufficiently hard to solve
against the authority. Consider a pair (ga, gb) where g ∈ Gp and a, b ∈ [1, 2t−1].
Let a′ = a mod p and b′ = b mod p, then a = a′+a′′p and b = b′+b′′p for some
integers a′′, b′′. Then, we can rewrite gab as following: gab = g(a′+a′′p)(b′+b′′p) =
ga′b′+(a′b′′+a′′b′)p+a′′b′′p2

mod n. Note that the authority knows the factoring of
n and so he can compute a′ and b′. Then three values ga′

, gb′
and ga′b′

are
easily computed. By using the values, ga′′p and gb′′p are computed as following:
ga/ga′

= ga′+a′′p/ga′
= ga′′p mod n and gb/gb′

= gb′+b′′p/gb′
= gb′′p mod n.

Then g(a′b′′+a′′b′)p is computed as following: (gb′′p)a′
(ga′′p)b′

= ga′b′′pga′′b′p =
g(a′b′′+a′′b′)p mod n. The authority can computes ga′b′

and g(a′b′′+a′′b′)p, so the
following equation shows that the tp-DHP is equal to the problem of solving
the DHP for (ga′′p, gb′′p): gab/ga′b′

g(a′b′′+a′′b′)p = ga′′b′′p2
mod n. The factoring

information permits the authority to compute partial information about the
secret exponent when the modulo has the form of n = p2q. However, if the
exponent is a multiple of p, the authority can not find any information about the
secret exponent. So, for the pair (ga′′p, gb′′p), he can not recover any information
about the secret exponent, i.e., the authority can not solve the DHP for given
(ga, gb) by computing the secret exponent, a and b.

An Efficient Public Key Cryptosystem 155

Since the authority knows the factoring, he can reduce the problem on Zn to
the problem on a subgroup of Zn. As commented in [11], the hardness of DLP
over Zn is equals to the hardness of DLP over the subgroup of Zn. Similarly,
the DHP over Zn is equals to the problem of the DHP over Zp2 and Zq and we
prove it in Theorem 5.

Lemma 1. Let n = p2q where p, q are primes, then the following equation holds
for some integer a: (αp2 + βq)a = (αp2)a + (βq)a mod n.

Proof. Recall that, (αp2 + βq)a =
∑a

i=0aCi(αp2)i(βq)a−i mod n. If i �= 0, a
then p2|(αp2)i and q|(βq)a−i, and so (αp2)i(βq)a−i = 0 mod n. So, we have
(αp2 + βq)a =aCa(αp2)a(βq)0+aC0(αp2)0(βq)a = (αp2)a + (βq)a mod n. ��

Lemma 2. Let n = p2q where p, q are primes, then the following equations hold
for some integer a: (p2(p−2 mod q))a = p2(p−2 mod q) mod n and (q(q−1

mod p2))a = q(q−1 mod p2) mod n.

Proof. Let l = p2(p−2 mod q) mod n. It suffices to show that l2 = l mod n.
Note that, l2 = l ⇔ l2 − l = 0 ⇔ l(l − 1) = 0 mod n. Since l = p2(p−2 mod q)
mod n, l(l − 1) can be expressed as following; l(l − 1) = (p2(p−2 mod q))(p2

(p−2 mod q)−1) mod n. Then l(l−1) = 0 mod n holds since p2(p−2 mod q) =
0 mod p2 and p2(p−2 mod q)− 1 = 0 mod q. ��

Theorem 5. Suppose that the factoring of n = p2q is known. Then the DHP
over Zn is intractable if and only if the DHP over Zp2 and Zq are intractable.

Proof. If there exists an algorithm A that solves the DHP over both Zp2 and Zq,
then we can solve the DHP over Zn by using the algorithm. Let (ga mod n, gb

mod n) be a challenge. Since the factoring of n is known, we can compute
(ga mod p2, gb mod p2) and (ga mod q, gb mod q) from given challenge. Then,
algorithm A computes gab mod p2 and gab mod q. Since gcd(p2, q) = 1, we can
compute gab mod n by using the Chinese Remainder Theorem.

Conversely, if there exist an algorithm B that solves the DHP over Zn, we can
solve the DHP over Zp2 and the DHP over Zq by using the algorithm. Without
lose of generality, suppose that (ga mod p2, gb mod p2) is given as a challenge
where g ∈ Z∗

p2 is the generator. Then we can make z, x and y as following:

z = (g mod p2)q(q−1 mod p2) + p2(p−2 mod q) mod n,
x = (ga mod p2)q(q−1 mod p2) + p2(p−2 mod q) mod n,
y = (gb mod p2)q(q−1 mod p2) + p2(p−2 mod q) mod n.

Then we compute za mod n and zb mod n as following by Lemma 1 and
Lemma 2:

za = ((g mod p2)q(q−1 mod p2) + p2(p−2 mod q))a mod n
= ((g mod p2)q(q−1 mod p2))a + (p2(p−2 mod q))a mod n
= (g mod p2)a(q(q−1 mod p2))a + (p2(p−2 mod q))a mod n
= (g mod p2)aq(q−1 mod p2) + p2(p−2 mod q) mod n,

156 T.-Y. Youn et al.

zb = ((g mod p2)q(q−1 mod p2) + p2(p−2 mod q))b mod n
= ((g mod p2)q(q−1 mod p2))b + (p2(p−2 mod q))b mod n
= (g mod p2)b(q(q−1 mod p2))b + (p2(p−2 mod q))b mod n
= (g mod p2)bq(q−1 mod p2) + p2(p−2 mod q) mod n.

Since x = za mod p2 and x = za mod q, x = za mod n. Similarly, y = zb

mod n. We compute zab mod n by using algorithm B for (za mod n, zb mod n)
where z is used as a generator. Then, gab mod p2 is computed as (zab mod n)
mod p2 = gab mod p2. We can solve the DHP over Zq in the same way. ��
The security of the tp-DHP is equal to the security of the DHP over Zp2 and
Zq. However, if the difference between t and k is small, the tp-DHP is not secure
against the authority, since the authority can recover a′ for given ga mod n
where a = a′ + a′′p and so the remained secret information is t − k bit integer
a′′. Hence, when t − k is small, the authority can find a′′ by brute-forcing. If
we choose large t to make it hard to guessing a′′ then the tp-DHP is sufficiently
hard to solve against the authority.

Conjecture 3. For every probabilistic polynomial time algorithm A, there exists
a negligible function negl(·) such that for sufficiently large t and k,

Pr

⎡⎢⎢⎣
∣∣ p, q ← P(k); n = p2q;

A(p, q, A, B) = C
∣∣ g ← Gp; a, b ←R [1, 2t − 1];∣∣ A = ga mod n; B = gb mod n;∣∣ C = gab mod n;

⎤⎥⎥⎦ ≤ negl(t, k).

Under the hardness of tp-DHP, we can prove that the privacy enhanced double
decryption scheme is secure against a malicious authority. Note that, to achieve
sufficient security against the authority, we should use large k than the scheme
proposed in Section 3. The proof of Theorem 6 is same to Theorem 4, except
the hard problem, the tp-DHP.

Theorem 6. The privacy enhanced double decryption scheme is one-way against
a malicious authority if and only if the tp-DHP is hard to solve.

The one-wayness of privacy enhanced scheme against the ordinary adversary and
the authority is based on the t-DHP and the tp-DHP, respectively. The t-DHP
and the tp-DHP are also YCP, so we can use the general conversion method
proposed in [9] to achieve the semantic security against adaptive chosen cipher-
text attack. The converted scheme of privacy enhanced scheme is as following:
Epk(m, r) = (gH(m||r) mod n, Eκ(m||r)) where E is symmetric encryption func-
tion, H and G are two hash functions, and κ = G(hH(m||r) mod n). Semantic
security of the converted scheme is proved similar to Theorem 3.

Theorem 7. In the random oracle model, the converted scheme is IND-CCA2
secure if the computational t-DHP is intractable and the symmetric encryption
scheme E is OTE secure. Especially, the scheme is IND-CCA2 secure against
the authority if the tp-DHP is intractable.

Remark 6. Since the authority has the factoring information, it looks like that the
semantic security of the privacy enhanced scheme can be defeated by the author-

An Efficient Public Key Cryptosystem 157

ity. However, the previous conversion method guarantee the semantic security of a
scheme if the one-wayness of the scheme is based on a kind of YCP. So, the privacy
enhanced double decryption scheme is secure against IND-CCA2 adversary.

Since the privacy enhanced scheme achieves the one-wayness and the semantic
security against the authority, the scheme is enhanced in the privacy point of
view. If an user want to get rid of the apprehension of invasion of privacy, he will
renounce the property, double decryption mechanism. However, he can choose
whether to use the property or not. The property is not duty anymore in our
scheme. So, we say that our scheme is enhanced in the privacy point of view
rather perfectly secure against the authority.

Obviously, the security of the privacy enhanced doubled decryption scheme
against the authority differs from the other adversaries. However, by choosing
sufficiently large k and t, we can make the scheme achieve enough security against
both the authority and ordinary adversaries.

5 Conclusion

In this paper, we have proposed an efficient public key cryptosystem with a
double decryption mechanism and a modification that offers to an user more
higher privacy than the previous double decryption scheme. Compared with [1],
our schemes have the following advantages:

1. Efficiency: The length of ciphertext is shorter than that of the previous
scheme in the same security level. Moreover, the encryption and decryption
of our scheme is faster than those of the previous scheme about 3 times.
Especially, the authority’s decryption is faster about 4 times than that of
the previous scheme.

2. Security (Privacy against the authority): The privacy enhanced double de-
cryption scheme is secure against the authority who knows the factoring of
n. In the previous scheme, the authority can recover any ciphertext by using
the factoring information. However, in our scheme, the authority’s excessive
ability is restricted.

However, the efficiency of the basic double decryption scheme that we pro-
posed is better than that of the previous scheme, but the privacy enhanced dou-
ble decryption scheme is not efficient than that of the previous scheme. So, it is
an open problem to design a double decryption scheme that raises the efficiency
and enhances the privacy against the authority simultaneously.

References

1. Emmanuel Bresson, Dario Catalano, and David Pointcheval, A Simple Public-Key
Cryptosystem with a Double Trapdoor Decryption Mechanism and Its Applications,
ASIACRYPT 2003, LNCS 2894, pp. 37-54, Springer-Verlag, 2003.

2. Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway, Relations
Among Notions of Security for Public-Key Encryption Schemes, CRYPTO’98,
LNCS 1462, pp. 26-46, Springer-Verlag, 1998.

158 T.-Y. Youn et al.

3. Joonsang Baek, Byoungcheon Lee, and Kwangjo Kim, Provably Secure Length-
Saving Public-Key Encryption Scheme under the Computational Diffie-Hellman
Assumption, ETRI Journal, Volume 22, Number 4, December 2000.

4. Ronald Cramer, and Victor Shoup, Universal Hash Proofs and a Paradigm for
Adaptive Chosen Ciphertext Secure Public-Key Encryption, EUROCRYPT 2002,
LNCS 2332, pp. 45-64, Springer-Verlag, 2002.

5. D. Dolev, C. Dwork, and M. Naor, Non-malleable cryptography, Proceedings of
the 23rd Annual Symposium on Theory of Computing, ACM, 1991.

6. W. Diffie, and M. E. Hellman, New Directions in Cryptography, IEEE Transactions
on Informaion Theory, 22(6), 644-654, 1976.

7. Eiichiro Fujisaki, and Tatsuaki Okamoto, How to Enhance the Security of Public-
Key Encryption at Minimum Cost, PKC’99, LNCS 1560, pp. 53-68, 1999.

8. S. Goldwasser, and S. Micali, Probabilistic encryption, Journal of Computer and
System Science, Vol.28, No.2, pp.270-299, 1984.

9. Eike Kiltz and John Malone-Lee, A General Construction of IND-CCA2 Secure
Public Key Encryption, Cryptography and Coding 2003, LNCS 2898, pp. 152-166,
2003.

10. Wenbo Mao, and Chae Hoon Lim, Cryptanalysis in Prime Order Subgroups of Z∗
n,

ASIACRYPT’98, LNCS 1514, pp. 214-226, 1998.
11. A.J. Menezes, P.C. Oorschot, and S.A. Vanstone, Handbook of Applied Cryptogra-

phy, CRC Press, Inc, (1999).
12. Tatsuaki Okamoto, Shigenori Uchiyama, A New Public-Key Cryptosystem as Se-

cure as Factoring, EUROCRYPT 98, LNCS 1403, pp. 308-318, Springer-Verlag,
1998.

13. Pascal Paillier, Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes, EUROCRYPT’99, LNCS 1592, pp. 223-238, Springer-Verlag, 1999.

14. Rene Peralta, Report on Integer Factorization, available at http://www.ipa.go.jp/
security/enc/CRYPTREC/fy15/doc/1025 report.pdf, 2001.

15. David Pointcheval, Chosen-Ciphertext Security for any One-Way Cryptosystem,
Proceedings of PKC’2000, LNCS 1751, pp. 129-146, 2000.

On the (Im)Possibility of Practical and Secure
Nonlinear Filters and Combiners�

An Braeken and Joseph Lano

Katholieke Universiteit Leuven, Dept. Elect. Eng.-ESAT/SCD-COSIC,
Kasteelpark Arenberg 10, 3001 Heverlee, Belgium
{an.braeken, joseph.lano}@esat.kuleuven.be

Abstract. A vast amount of literature on stream ciphers is directed to
the cryptanalysis of LFSR-based filters and combiners, resulting in vari-
ous cryptanalytic attacks. In this paper, we present a unified framework
for the security of a design against these attacks based on the proper-
ties of the LFSR(s) and the Boolean function used. It is explained why
building nonlinear filters seems more practical than building nonlinear
combiners. We also investigate concrete building blocks that offer a good
trade-off in their resistance against these various attacks, and can at the
same time be used to build a low-cost synchronous stream cipher for
hardware applications.

Keywords: Combination and filter generator, distinguishing attack, cor-
relation attack, algebraic attack, hardware complexity.

1 Introduction

For efficient encryption of data, cryptography mainly uses two types of sym-
metric algorithms, block ciphers and stream ciphers. In the past decades, block
ciphers have become the most widely used technology. However, as block ciphers
are often used in a stream cipher mode such as CTR and OFB, stream ciphers
may offer equivalent security at a lower cost.

Designing a secure stream cipher appears to be a hard task. In the NESSIE
competition, flaws have been found in all candidates. In fact, unexpected biases
are often detected in designs, especially if the design is based on relatively new
concepts or uses large vectorial Boolean functions of which it is impossible to
calculate all biases and correlations beforehand.

By far the most studied designs are the nonlinear filter and combiner gen-
erators, which are based on LFSRs in conjunction with a Boolean function. So
far, new developments were mostly restricted to the development of separate at-
tacks which were then applied to a design that is particularly vulnerable to the
� This work was supported in part by the Concerted Research Action (GOA) Ambior-

ics 2005/11 of the Flemish Government and by the European Commission through
the IST Programme under Contract IST2002507932 ECRYPT. An Braeken is a
F.W.O. Research Assistant, sponsored by the Fund for Scientific Research - Flanders
(Belgium), Joseph Lano is financed by a Ph.D. grant of the Institute for the Promo-
tion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen).

B. Preneel and S. Tavares (Eds.): SAC 2005, LNCS 3897, pp. 159–174, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

160 A. Braeken and J. Lano

new attack. Little attention has been given to the cryptographic design require-
ments that result from these attacks combined. The recent ECRYPT eSTREAM
project motivates us to investigate this further.

Although at first sight the vast amount of research on nonlinear filters and
combiners seems to put these designs at a disadvantage compared to newer design
principles, we believe that they can also benefit from the accumulated knowledge
of their underlying mathematics. In fact, if one can develop a stream cipher
that is resistant to all these attacks combined and is still easily implementable
in hardware, confidence in this classical and transparent design can be higher
(of course thorough public evaluation will still be necessary) and hence actual
application can be faster.

In this paper, we study the cryptographic design requirements for filters and
combiners. In Sect. 3, we study the impact of the most important attacks (dis-
tinguishing attacks, correlation attacks and algebraic attacks) on the building
blocks. By analyzing building blocks that offer optimal resistance against cer-
tain attacks, we establish minimal requirements for the internal state size, the
LFSR polynomials and the properties of the Boolean function (number of inputs,
Walsh transform, degree, nonlinearity, algebraic immunity, . . .). This analysis al-
lows to establish design criteria for filters and combiners respectively. We then
study, in Sect. 4, some Boolean functions such as power functions and symmetric
functions, which can be interesting design choices as they have some desirable
properties and are easy to implement in hardware.

Not all our results could be presented in this extended abstract. For an ex-
tended version of this paper containing more explanations, tables, and proofs,
please refer to [5].

2 Preliminaries

The two basic models of key stream generators are the combination and the filter
generator. A combination generator uses several LFSRs in parallel and combines
their outputs in a nonlinear way (by means of the combining function). If the
output is computed by a nonlinear function (filter function) of some taps of one
LFSR, a filter generator is obtained. In this section, we list some properties of
the two building blocks that are used in these generators, namely LFSRs and
Boolean functions.

2.1 Linear Feedback Shift Registers

Definition 1. A Linear Feedback Shift Register (LFSR) of length L is a collec-
tion of L 1-bit memory elements s0

t , s
1
t , . . . , s

L−1
t . At each time t the memory is

updated as follows: {
si

t = si+1
t−1 for i = 0, . . . , L− 2

sL−1
t =

⊕L
i=1 ci · sL−i

t−1 .
(1)

where the ci are fixed binary coefficients that define the feedback equation of the
LFSR. The LFSR stream (st)t≥0 consists of the successive values in the memory
element s0.

On the (Im)Possibility of Practical and Secure Nonlinear Filters 161

Associated with an L-bit LFSR is its feedback polynomial P(X) of degree d,
P (X) = 1 +

∑L
i=1 ci ·X i. The weight of the feedback polynomial is equal to its

number of nonzero terms. In practical designs, a feedback polynomial is chosen
to be primitive. This implies that every nonzero initial state produces an output
sequence with maximal period 2L − 1, which is also called a pn-sequence.

For many cryptanalytic attacks, it is useful to search low-weight multiples
of the feedback polynomial P (x), see [6, 19]. The number m(D, w) of multiples
Q(X) = 1+

∑D
i=1 ci ·X i of the polynomial P (X), with degree less than or equal

to D and with weight w, can be approximated by [6]:

m(D, w) ≈ Dw−1

(w − 1)! · 2L
. (2)

It is interesting to know from which Dmin we can expect a first multiple Q(X)
of weight w to start appearing. It follows from (2) that:

Dmin(w) ≈ (2L · (w − 1)!)
1

w−1 . (3)

The most efficient approach, known to date, to search for these low-weight
multiples is a birthday-like approach, see [19]. The precomputation complexity
P needed to find all multiples Q(X) of weight w and degree at most D can be
approximated by:

P (D, w) ≈ D�w−1
2 �

�w−1
2 �!

. (4)

2.2 Boolean Functions

A Boolean function f is a mapping from Fϕ
2 into F2. The support of f is defined

as sup(f) = {x ∈ Fϕ
2 : f(x) = 1}. The cardinality of sup(f) represents the weight

wt(f) of the function.
A Boolean function can be uniquely represented by means of its algebraic

normal form (ANF):

f(x) = f(x0, . . . xϕ−1) =
⊕

(a0,...,aϕ−1)∈F
ϕ
2

h(a0, . . . , aϕ−1)xa0
0 . . . x

aϕ−1
ϕ−1 , (5)

where f and h are Boolean functions on Fϕ
2 . The algebraic degree of f , denoted

by deg(f), is defined as the highest number of variables in the terms xa0
0 . . . x

aϕ−1
ϕ−1

in the ANF of f .
Alternatively, a Boolean function can be represented by its Walsh spectrum:

Wf (ω) =
∑

x∈F
ϕ
2

(−1)f(x)⊕x·ω = 2ϕ−1 − 2wt(f ⊕ x · ω) , (6)

where x · ω = x0ω0 ⊕ x1ω1 ⊕ · · · ⊕ xϕ−1ωϕ−1 is the dot product of x and ω. We
will use the following two well-known formulae for the Walsh values:{∑

ω∈F
ϕ
2

Wf (ω) = ±2ϕ∑
ω∈F

ϕ
2

W 2
f (ω) = 22·ϕ ,

(7)

where the second equality is known as Parseval’s theorem.

162 A. Braeken and J. Lano

Several properties are of importance for Boolean functions from a crypto-
graphic viewpoint. A function is said to be balanced if wt(f) = 2ϕ−1 and thus
Wf (0) = 0. The nonlinearity Nf of the function f is defined as the minimum
distance between f and any affine function; it can be calculated as Nf =
2ϕ−1 − 1

2 maxω∈Fn
2
|Wf (ω)|. The best affine approximation l(x) is associated

with this notion. We will say that f has bias ε if it has the same output as
its best affine approximation with probability 0.5 + ε. It is easy to see that

ε = Nf/2ϕ − 0.5 =
maxω∈Fn

2
|Wf (ω)|

2ϕ+1 . A function f is said to be correlation-
immune [34] of order ρ, CI(ρ), if and only if its Walsh transform Wf satisfies
Wf (ω) = 0, for 1 ≤ wt(ω) ≤ ρ. If the function is also balanced, then the function
is called ρ-resilient. Two important bounds hold for the bias ε:{

ε ≥ 2−ϕ/2−1

ε ≥ 2ρ+1−ϕ ,
(8)

where the first bound is due to Parseval’s theorem and equality holds only for
bent functions; the second bound reflects the trade-off between resiliency and
nonlinearity.

The lowest degree of the function g from Fϕ
2 into F2 for which f · g = 0 or

(f ⊕ 1) · g = 0 is called the algebraic immunity (AI) of the function f [24]. The
function g is said to be an annihilator of f if f · g = 0. It has been shown [11]
that any function f with ϕ inputs has algebraic immunity at most �ϕ

2 �.
A vectorial Boolean function F from Fn

2 into Fm
2 , also called (n, m) S-box,

can be represented by an m-tuple (f1, . . . , fm) of Boolean functions fi on Fn
2

(corresponding to the output bits).

3 Security Analysis

During the last two decades, several classes of attacks have been proposed on the
filter and combination generator. In this section, we will thoroughly investigate
these different attacks and will derive minimal requirements that the LFSRs and
Boolean functions should satisfy. Our goal is to investigate whether it is possible
to construct practical and secure filter or combination generators with 80-bit key
security and low hardware cost, which implies that we should keep it close to the
edge of the minimal requirements while at the same time keeping a reasonable
security margin.

For most attacks, our analysis reflects the currently known attacks described
in the literature, but we now relate these attacks directly to the mathematical
properties of the concrete building blocks used. Our treatment of distinguishing
attacks combines and extends the ideas of the recent work done in [25, 17] to
concrete distinguishing attacks on all filter and combination generators. It follows
that distinguishing attacks are very similar to correlation attacks but are often
stronger, as they can use many linear approximations simultaneously and do not
need a decoding algorithm. Note also that resynchronization mechanisms are not
discussed in this paper. A secure resynchronization mechanism of the scheme is
also necessary. We refer to [12, 2] for more details concerning resynchronization
attacks.

On the (Im)Possibility of Practical and Secure Nonlinear Filters 163

3.1 Tradeoff Attacks

Time-Memory-Data Tradeoff attacks [3] are generic attacks against stream ci-
phers. To prevent these attacks, the internal state should be at least twice the
key size. Consequently, with an 80-bit key, the LFSR has at least a length of 160
bits. In the following, we will investigate the security of filter and combination
generator with an internal state of 256 bits, and thus taking a sufficient security
margin. This allows us to quantify our analysis, but of course it is easy to adapt
the framework to other security parameters.

3.2 Berlekamp-Massey Attacks

The linear complexity of a bit stream (st)t≥0 is equal to the length of the shortest
LFSR generating that stream. For a Boolean function of degree d, the linear
complexity LC of the resulting key stream generated by a filter generator is
upper bounded by

∑d
i=0

(
L
i

)
. Moreover, it is very likely that the LC of the key

stream is lower bounded by
(
L
d

)
and that its period remains equal to 2L−1. If the

constituent LFSRs of the combination generator have distinct degrees greater
than 2 and initial state different from 0, then the LC of the key stream generated
by a combination is equal to f(L1, . . . , Ln), where the ANF of f is evaluated
over the integers. We refer to [33, 22] for more details.

The Berlekamp-Massey attack requires 2·LC data and has complexity of LC2.
For a key stream generator with internal size equal to 256 and a Boolean function
of sufficiently high degree, this attack is clearly of no concern. A degree-7 function
will be sufficient for a nonlinear filter. For combiners the calculation is more
complex as it depends on the size of the LFSRs and on the ANF of the Boolean
functions, but also here we start having resistance against the Berlekamp-Massey
attack from degree 7.

3.3 Distinguishing Attacks

The distinguishing attack we describe here is based on the framework devel-
oped in [17] combined with the mathematical results from [25]. We extend the
framework for the filter generator and also develop the attack for the combiner
generator.

Filter Generator. The idea of the attack is the following. The LFSR stream
has very good statistical properties, but of course there are linear relations, which
are determined by the feedback polynomial P (X) and its multiples Q(X), where
the cryptanalyst first needs to find the latter in a precomputation step.

Given a linear relation Q(X) of weight w in the LFSR stream, the same rela-
tion for the corresponding bits of the key stream will hold with some probability
different from one half, because the Boolean function f does not destroy all
linear properties. This probability is determined by the combined action of all
affine approximations of the Boolean function. This interaction is governed by
the piling-up lemma and can be expressed as [25]:

ε′ =
∑2ϕ−1

ω=0 (Wf (ω))w

2ϕ·w+1 . (9)

164 A. Braeken and J. Lano

To distinguish the key stream from random, the number of samples needed is
in the order of 1

ε′2 , which is also the time complexity of the attack. The data
complexity is the sum of the degree of the relation Q(X) and the number of
samples needed. It is possible to decrease the data complexity to some extent by
using multiple relations simultaneously.

We now study the impact of this attack on the bent functions, as these offer
the best resistance against this distinguishing attack. We assume our LFSR has
an internal state of 256 bits and investigate the data complexity of the attack
as a function of the number of inputs. By combining (7), (8) and (9), we can
calculate that the bias for bent functions can be written as:

ε′ = 2−(�w/2�−1)·ϕ−1 . (10)

A cryptanalyst is interested in finding the weight w for which the attack complex-
ity is minimal. For very low weight w, the degree of Q(X) will be prohibitively
high as shown by (3). For very high weight w, the bias (10) will be too small.
We hence expect an optimal tradeoff somewhere in between.

We have calculated these numbers, and it turns out that no 256-bit LFSR
with a Boolean function with less than 20 inputs can be made secure against this
distinguishing attack! However, we have to make two important observations:

– The precomputation time to find the necessary multiples Q(X) is very high
(in the order of 2150, governed by (3) and (4). A discussion on the amount
of precomputation we can allow is an important topic of discussion. Note
that this also applies to other attacks such as trade-off attacks, correlation
attacks and algebraic attacks.

– There has been some debate on the relevance of distinguishing attacks re-
quiring long key streams during NESSIE [32]. Whereas time complexity is
only a matter of resources at the attacker’s side, available data depends on
what has been encrypted by the sending party. Hence, we propose to limit
the maximum amount of key stream generated from a single key/iv pair to
240 bits (practical assumption), after which the scheme should resynchronize.
This measure prevents the appearance of low-weight multiples: from (3) it
follows that normally no multiples of weight less than 8 exist with degree less
than 240. Now, we can recalculate the best attack complexities, by adding
the extra constraint log2(Dmin) < 40. It follows that, under this practical
restriction, nonlinear filters can be built which are secure against distinguish-
ing attacks starting from 14 inputs. Note that the restriction of a single key
stream to 240 bits also provides some protection against other cryptanalytic
attacks, as explained below.

Combination Generator. For combination generators, the attack can be im-
proved by using a divide and conquer approach. Let us assume we have a com-
biner with ϕ LFSRs and that the Boolean function has resiliency ρ. The average
length of one LFSR is thus 256

ϕ . The attacker now mounts the same distinguish-
ing attack, restricting himself to r LFSRs, where r must be of course strictly

On the (Im)Possibility of Practical and Secure Nonlinear Filters 165

greater than the order of resiliency ρ. Again, we first search for a low-weight mul-
tiple of this equivalent 256·r

ϕ -length LFSR, and then try to detect the bias that
remains of this relation after the Boolean function. From the piling-up lemma,
it follows that this bias is as follows:

ε′ =
∑

ω∈S(Wf (ω))w

2ϕ·w+1 , (11)

where the set S is defined as:

S = {ω|wt(ω) > ρ and ω < 2r} , (12)

assuming, without loss of generality, that the attacked LFSRs are numbered
0, 1, . . . r − 1. This divide and conquer approach gives the attacker some advan-
tages compared to the case of the nonlinear filter:

– If the resiliency of the Boolean function is low, the length of the attacked
equivalent LFSR can be low. First, this will allow the attacker to perform the
precomputation step governed by (3) and (4) much faster. Second, the length
of the low-weight multiples will be much lower, making the data complexities
feasible for much lower weights, where the detectable biases will be much
larger as shown by (11). Note that when 256·r

ϕ is very small, we will even be
able to mount a powerful weight-2 attack without precomputation step: this
will just correspond to the period of the small equivalent LFSR. As shown
in [17], such an attack can be easily turned into a key recovery attack.

– If the resiliency of the Boolean function is high, we will still have the ad-
vantages explained in the above point, but to a lesser extent. But here the
tradeoff between resiliency and nonlinearity (8) will come into play, resulting
in higher Walsh values in (11) and hence a higher bias.

It follows that it is much harder to make the combiner model resistant to
this distinguishing attack. We have again calculated the best resistance that can
be achieved, and it turns out that 36 inputs and an optimally chosen Boolean
function would be needed to resist the attack.

Again, we propose to limit the maximum amount of key stream obtained from
a single key/iv pair to 240 bits. After recalculating the complexities with this
restriction, we now see that, under ideal assumptions for the cryptographer, he
can make a combiner which is secure starting from 18 inputs.

It is important to note that these lower bounds will be very hard to approach
in reality due to the difficulty of finding practical functions that have properties
close to the optimal case described here, and due to the fact that our lower
bounds consider equal LFSR lengths. In reality all LFSR lengths need to be
distinct, which will allow the attack to improve his attack significantly by at-
tacking the shortest LFSRs. The larger the number LFSRs, the more serious
this problem becomes. As a result of this, we believe it is not possible to design
a practical nonlinear combiner, with 256 bits internal state, that can resist to
this distinguishing attack. This in comparison to the case of the filter generator,
where we can succeed to get close to the bounds with actually implementable
functions, as evidenced by the power functions described in Sect. 4. We will now
develop a similar reasoning for the case of fast correlation attacks.

166 A. Braeken and J. Lano

3.4 Fast Correlation Attacks

Correlation and fast correlation attacks exploit the correlation between the LFSR
stream st and the key stream zt. These attacks can be seen as a decoding prob-
lem, since the key stream zt can be considered as the transmitted LFSR stream
st through a binary symmetric channel with error probability p = Pt≥0(zt �= st).
For the nonlinear filter generator, p is determined by 0.5+ε. For the combination
generator, a divide-and-conquer attack as in the case of a distinguishing attack is
possible. Consequently, it is sufficient to restrict the attack to a subset of LFSRs
{i0, . . . , iρ}, such that the following holds:

P (f(x) �= 0|xi0 = a0, . . . , xiρ = aρ, ∀(a0, . . . , aρ) ∈ Fρ+1
2) �= 1/2 . (13)

Here, as defined above, the parameter ρ corresponds with the order of resiliency
of the Boolean function.

Then, the attack consists of a fast decoding method for any LFSR code C
of length N (the amount of available key stream) and dimension L (the length
of the LFSR), where the length N of the code is lower bounded by Shannon’s
channel coding theorem:

N ≥ L

C(p)
=

L

1 + p log2 p + (1− p) log2(1 − p)
≈ ln(2)L

2ε2
. (14)

If we want to achieve perfect security against this attack for a 256-bit LFSR and
allowing at most 240 bits in a single key stream, the bias ε should be less than
or equal to 2−17. To achieve this, we would need a highly nonlinear Boolean
functions with more than 34 inputs. This can never be implemented efficiently
in hardware. However, the above criterion is far too stringent as actual decoding
algorithms are not able to do this decoding with a good time complexity. We
now look at the current complexities of these decoding algorithms. Besides the
maximum-likelihood (ML) decoding, which has very high complexity of L · 2L,
mainly two different approaches have been proposed in the literature. In the first
approach, the existence of sparse parity check equations for the LFSR code are
exploited. These parity check equations correspond with the low weight multiples
of the connection polynomial. In this way, the LFSR code can be seen as a low-
density parity-check (LDPC) code and has several efficient iterative decoding
algorithms. In the second approach, a smaller linear [n, l] code with l < L and
n > N is associated to the LFSR on which ML decoding is performed. The
complexity of both approaches highly depends on the existence of low degree
multiples. As shown above, the precomputation time for finding these low degree
multiples is very high. Moreover, the approach requires long key streams and
suffers from a high decoding complexity.

Note the very strong resemblance between this classical framework for the
correlation attacks and the framework we developed in the previous subsection
for distinguishing attacks. The main difference between the two is that in the
correlation attacks we need a decoding method, whereas in the distinguishing
attacks we just need to apply a simple distinguisher. Analysis of the above for-
mulae learns that the complexity of the decoding procedure is much higher than

On the (Im)Possibility of Practical and Secure Nonlinear Filters 167

for the distinguishing procedure. Even with huge improvements of the existing
decoding procedures, we do not expect this situation to change. Hence we can
conclude that a choice of parameters that makes the design resistant against
distinguishing attacks (explained above), will also make it resistant against cor-
relation attacks.

3.5 Algebraic Attacks

In algebraic attacks [11], a system of nonlinear equations between input and
output is constructed and subsequently solved. The complexity of solving this
system of equations highly depends on the degree of these equations. In the usual
algebraic attack, equations between one bit of the output of the filter or combi-
nation generator and the initial state of the LFSR are searched. These equations
are then solved by linearization. The lowest possible degree d of these equations,
also called the Algebraic Immunity (AI), is obtained by the annihilators of the
filter or combination function and its complement. The total complexity C(L, d)
of the algebraic attack on a stream cipher with a linear state of L bits and
equations of degree d is then determined by

C(L, d) =

(
d∑

i=0

(
L

i

))ω

= Dω , (15)

where ω corresponds to the coefficient of the most efficient solution method for
the linear system. We use here Strassen’s exponent [35] which is ω = log2(7) ≈
2.807. Clearly, the number of required key stream bits is equal to D. Note that
in the complexity analysis, the linearization method is used for solving the equa-
tions. It is an open question if other algorithms like the Buchberger algorithm,
F4 or F5 [18] can significantly improve this complexity. Also, the total number
of terms of degree less than or equal to d is considered in the complexity, while
in general nothing is known about the proportion of monomials of degree d that
appear in the system of equations. Therefore, a sufficient security margin should
be taken into account.

It can be calculated that an AI of 5 is currently sufficient to withstand stan-
dard algebraic attacks in our framework, for an LFSR of length 256 and aiming
at 80-bit security.

The implications for Boolean functions are the following. It has been shown
[11] that the AI of a Boolean function with ϕ inputs can be at most �ϕ

2 �. Our
Boolean function hence needs to have at least 9 inputs. We will of course need
to check that the AI of the Boolean function is large enough. The complexity
of the algorithm to check if there are equations of degree less than or equal to
d (corresponding to AI equal to d) is slightly better than

(
ϕ
d

)ω [24], which is
feasible for most practical functions of interest here.

Fast algebraic attacks can be much more efficient than the usual algebraic
attacks. In the fast algebraic attacks [9], the attacker tries to decrease the degree
d of the system of equations even further by searching for relations between the
initial state of the LFSR and several bits of the output function simultaneously.

168 A. Braeken and J. Lano

The equations where the highest degree terms do not involve the key stream bits
are considered. This is done in an additional precomputation step (complexity D·
log2 D [20]): linear combinations of the equations are searched which cancel out
the highest degree terms in order to obtain equations of degree e. The complexity
for solving these equations is now C(L, e). As shown in [20], we have to take
into account another complexity as well, namely that of substituting the key
stream into the system of equations. This complexity can be approximated by
2 ·E ·D · log D. The required key stream length is equal to D+E−1 ≈ D because
D >> E. If we have found C such relations of degree e, we can further reduce
the data complexity by a factor C, but at the cost of increasing the substitution
complexity by this same factor C because we have to repeat the substitution
step C times.

The problem with fast algebraic attacks is that, for the moment, very little
is known about whether these reductions are possible or not for some Boolean
function. The only way we can be sure is by searching for the existence of these
relations, but the complexity of this step may become prohibitively high.

Another approach to achieve resistance against fast algebraic attack, without
needing this precomputation, is by choosing a very high AI. In this case either
the complexity of the substitution step or the complexity of the solving step will
become prohibitively high. It can be calculated that we achieve such security
starting from an AI of 12. When restricting the amount of key stream bits to
240, the AI of the function should be greater than or equal to 9.

It should be stressed that not much is known about the strength and the
implementation of fast algebraic attacks, and it is hence probable that the al-
gorithms can be improved. The further investigation of fast algebraic attacks
is an interesting research topic, and designers are advised to take a reasonable
security margin, as evidenced by [10].

4 Boolean Functions for the Filter Generator

From the analysis in the previous section, it follows that the two most important
properties a good Boolean function should have are high algebraic immunity and
high nonlinearity. Besides, to be used in practice, they should be implementable
in hardware at a very low cost. We will now present two classes of functions that
have a low-cost hardware implementation.

4.1 Symmetric Functions

Symmetric functions [7] are functions with the very interesting property that
their hardware complexity is linear in the number of variables. A symmetric
function is a function of which the output is completely determined by the
weight of the input vector. Therefore, the truth table vf = (v0, . . . , vϕ), also
called value vector, of the symmetric function f on Fϕ

2 reduces to a vector of
length ϕ + 1, corresponding with the function values vi of the vectors of weight
i with 0 ≤ i ≤ ϕ. We have identified the following class of symmetric functions
with maximum AI:

On the (Im)Possibility of Practical and Secure Nonlinear Filters 169

Theorem 2. The symmetric function in Fϕ
2 with value vector

vf (i) =
{

0 for i <
⌈

ϕ
2

⌉
1 else (16)

has maximum AI. Let us denote this function by Fk where k is equal to the
threshold

⌈
ϕ
2

⌉
.

By Proposition 2 and Proposition 4 of [7], the degree of these functions are
determined as follows.

Theorem 3. The degree of the symmetric function F�ϕ
2 � on Fϕ

2 is equal to

2�log2 ϕ�.

If ϕ is odd, these functions are trivially balanced because vf (i) = vf (ϕ − i) for
0 ≤ i ≤

⌊
ϕ
2

⌋
. As shown in Proposition 5 of [7], trivially balanced functions satisfy

the following properties: The derivative D1f with respect to 1 is the constant
function, and Wf (x) = 0 for all x with wt(x) even. For ϕ even, the functions are
not balanced. But by XORing with an extra input variable from the LFSR, this
property is immediately obtained.

Another problem is that the nonlinearity of these functions is not high. In
particular, maxw∈F

ϕ
2
|Wf (w)| = 2

(ϕ−1
ϕ−1

2

)
for odd ϕ and equal to

(
ϕ
ϕ
2

)
for even ϕ.

Therefore, ε ≈ 2−3.15, 2−3.26, 2−3.348 for ϕ = 13, 15, 17 respectively. Note that
the nonlinearity increases very slowly with the number of inputs ϕ: even for 255
input bits, we only get a bias of 2−5.33.

Remark 1. The nonlinearity of this class of symmetric functions corresponds to
the nonlinearity of the functions with maximum AI that are obtained by means
of the construction described in [13]. This construction has the best nonlinearity
with respect to other constructions that have a provable lower bound on the AI
presented in literature so far. An extensive study on the AI and nonlinearity of
symmetric Boolean functions is performed in [4]. It has been shown that there
exists for some even dimensions n other classes of symmetric functions with
maximum AI which have slightly better nonlinearity, but still far too small to
be resistant against the distinguishing attack. Also, no symmetric function with
better bias in nonlinearity compared with the AI has been found in [4].

4.2 Power Functions

The idea of using a filter function f derived from a power function P on Fϕ
2

is as follows: we consider the ϕ input bits to the function P as a word x in
Fϕ

2 . We then compute the p-th power, y = xp, of this word. The output of our
Boolean function f is then one bit yi for i ∈ {0, . . . , ϕ− 1} of this output word
y = (y0, . . . , yϕ−1). Note that all these functions for i ∈ {0, . . . , ϕ−1} are linearly
equivalent to the trace of the power function P . We now discuss the nonlinearity,
algebraic immunity and implementation complexity of some interesting power
functions.

170 A. Braeken and J. Lano

Nonlinearity. We will investigate Boolean functions derived from highly non-
linear bijective power functions. These functions have bias ε = 2−

ϕ
2 for ϕ even

and 2−
ϕ
2 − 1

2 for ϕ odd, which is very close to the ideal case, the bent functions.
The known classes of such highly nonlinear power functions are the inverse [28],
Kasami [21], Dobbertin [14], Niho 1 [16] and Niho 2 [15] classes.

Algebraic Immunity. In [8], the AI of the Boolean functions derived from
the highly nonlinear power functions is computed up to dimension less than or
equal to 14. These results together with our simulations for higher dimensions
indicate that most of the highly nonlinear bijective power functions we study do
not achieve the optimal AI, but they do reasonably well on this criterion. For
instance, the AI of the Boolean function derived from the inverse power function
on F216 is equal to 6 (where 8 would be the maximum attainable). However, as
shown by Courtois [10], fast algebraic attacks can be efficiently applied on this
function. In particular, there exist 4 annihilators of degree 6 which reduce to
degree 4 and there exist 32 annihilators of degree 7 which reduce to degree 3.

Implementation. We now study implementation complexity of some concrete
functions and give the nonlinearity and AI of these practical functions. Effi-
cient implementations of the inverse function in the field F2i for i ≥ 3 has been
studied by several authors, due to the fact that this function is used in the Ad-
vanced Encryption Standard. An efficient approach can be obtained by working
in composite fields as described in [30]. Based on recursion, the inverse function
is decomposed into operations in the field F22 . A minimal hardware implemen-
tation for ϕ = 16 requires 398 XOR gates and 75 AND gates, and thus consists
of about 1107.5 NAND gates. It is also possible to increase the clock frequency
if necessary by pipelining the design.

Hardware implementation of exponentiation with general exponents in F2ϕ

has been well studied [1]. However, it turns out that all classes of bijective
highly nonlinear power functions with degree greater than or equal to 6 have
a very regular pattern in their exponent, which can be exploited for a more
efficient implementation: All exponents e satisfy the property that the vector e =
(e0, . . . , eϕ−1) defining its binary representation, i.e., e =

∑ϕ−1
i=0 ei2i, contains

a regular sequence consisting of ones together with at most one bit which is
separated of this sequence. The distance between two consecutive elements in
the sequence is equal to one except in the case of the Dobbertin functions for
k > 1. If the weight of this sequence is equal to a power of 2, than this property
can be exploited leading to a more efficient implementation.

We will demonstrate this improved implementation on the power function
X511 in F16

2 . The exponent 511 has binary representation 1111111112. Conse-
quently, it contains a sequence of weight 9, or also a sequence of weight 8 with
one extra digit. First, consider the normal basis {α, α2, α4, · · · , α2ϕ−1} of Fϕ

2 for
ϕ = 16 (a normal basis exists for every ϕ ≥ 1, see [29]). Computing the power
function in this basis will not change the properties of nonlinearity, degree, AI
and Walsh spectrum of the output functions, since power functions in different
bases are linearly equivalent. Squaring in this basis represents simply a cyclic

On the (Im)Possibility of Practical and Secure Nonlinear Filters 171

shift of the vector representation of that element. Consequently, computing the
power 511 of an element x ∈ F16

2 , can be computed as follows:

x511 = (x · x2) · (x4 · x8) · (x16 · x32) · (x64 · x128) · x256

= (y · y4) · (y16 · y64) · x256 with y = x · x2

= z · z16 · x256 with z = y · y4 .
(17)

Therefore, we only need to perform some shifts together with 4 multiplications
in the normal basis of F16

2 . These multiplications correspond with (x ·x2), (y ·y4),
and (z · z16 · x256). The hardware complexity of such multiplication depends on
the basis used to represent the field elements, or more precisely, on the number of
ones Cϕ in the multiplication matrix. It is known that Cϕ ≥ 2ϕ−1 with equality
if and only if the normal basis is optimal [26]. Note that optimal bases do not
exist for any dimension ϕ. The overall gate count of the multiplication is lower
bounded by ϕCϕ ≥ 2ϕ2−ϕ AND gates and (ϕ−1)Cϕ ≥ 2ϕ2−3ϕ+1 XOR gates
[23]. Other implementations may provide even better complexity. Also several
algorithms exist for performing normal basis multiplication in software efficiently
[27, 31]. Therefore, the number of NAND gates for a multiplication in normal
basis is lower bounded by 1906.5 for ϕ = 16, 2161.5 for ϕ = 17, and 2719.5
for ϕ = 19 respectively. If the vector containing the binary representation of
the exponent consists of a regular sequence with weight 2i, then the number of
multiplications is equal to i, or i + 1 if there is an additional digit defining the
complete exponent.

We can conclude that the power functions described here offer a very good
tradeoff between ease of implementation and cryptanalytic strength. Moreover,
we believe that the implementation of a complete S-box in the design has several
advantages. In the first place, we can increase the throughput of the generator
by outputting more bits m instead of outputting 1 bit. Therefore, a careful
study on the best bias in the affine approximation and the AI of all linear
and nonlinear combinations of m output bits need to be performed. Another
possibility, which makes the analysis harder but may increase the security, is
to destroy the linearity of the state. We could consider a filter generator with
memory by simply feeding some remaining bits from the S-box into a nonlinear
memory. Another possibility is to feedback bits of the S-box into the LFSR during
key stream generation. In both cases, it seems that the added nonlinearity may
allow us to increase the throughput. Finally, resynchronization can be performed
faster by using all bits of the S-box to destroy as rapidly as possible the linear
relations between the bits.

5 Conclusion

In this paper, we have presented a framework for the security of the classical
LFSR-based nonlinear filter and combiner generators. We have related the resis-
tance to the most important cryptanalytic attacks (distinguishing attacks, (fast)
correlation attacks and (fast) algebraic attacks) to the mathematical properties
of the LFSRs and the Boolean function. From our analysis, we are inclined to

172 A. Braeken and J. Lano

prefer the nonlinear filter generator, with a Boolean function having as most
important properties high nonlinearity and high algebraic immunity.

These classical and very transparent designs are the only stream cipher build-
ing blocks for which a complete analysis of the linear biases, correlations and
nonlinear relations is possible. A design that has been thoroughly analyzed with
respect to the presented framework could hence be more trustworthy than a
design that is based on a new, little studied design strategy.

We have also presented two classes of Boolean functions, the symmetric func-
tions and the power functions, that should be further analyzed as they possess
some desired properties and are at the same time easy to implement in hardware.

Further investigation of such LFSR-based schemes remains a necessity. No-
tably, the understanding of the existence of lower degree equations in fast alge-
braic attacks is missing. The aim of this paper is to be a step in the direction of
the unification of this interesting research field, in which until now too much at-
tention has been given to ad hoc attacks on some designs and not to the relations
between the mathematical properties and the attacks.

References

1. Gordon Agnew, Thomas Beth, Ronald Mullin, and Scott Vanstone. Arithmetic
operations in GF(2m). Journal of Cryptology, 6(1):3–13, 1993.

2. Frederik Armknecht, Joseph Lano, and Bart Preneel. Extending the resynchro-
nization attack. In Helena Handschuh and Anwar Hasan, editors, Selected Areas
in Cryptography, SAC 2004, number 3357 in Lecture Notes in Computer Science,
pages 19–38. Springer-Verlag, 2004.

3. Steve Babbage. Space/time trade-off in exhaustive search attacks on stream ci-
phers. Eurocrypt Rump session, 1996.

4. An Braeken. On the algebraic immunity of symmetric boolean functions. Technical
report, K.U. Leuven, 2005.

5. An Braeken and Joseph Lano. On the (im)possibility of practical and secure non-
linear filters and combiners (extended version). COSIC technical report, 2005.
https://www.cosic.esat.kuleuven.be/publications/.

6. Anne Canteaut and Michael Trabbia. Improved fast correlation attacks using
parity-check equations of weight 4 and 5. In B. Preneel, editor, Advances in Cryp-
tology - EUROCRYPT 2000, number 1807 in Lecture Notes in Computer Science,
pages 573–588. Springer-Verlag, 2000.

7. Anne Canteaut and Marion Videau. Symmetric Boolean functions. IEEE Trans.
Inform. Theory, 2004. Regular paper. To appear.

8. Claude Carlet and Philippe Gaborit. On the construction of balanced Boolean
functions with a good algebraic immunity. Proceedings of First Workshop on
Boolean Functions : Cryptography and Applications, Mars 2005, Rouen, 2005.

9. Nicolas Courtois. Fast algebraic attacks on stream ciphers with linear feedback.
In D. Boneh, editor, Advances in Cryptology - CRYPTO 2003, number 2729 in
Lecture Notes in Computer Science, pages 176–194. Springer-Verlag, 2003.

10. Nicolas Courtois. Cryptanalysis of sfinks. ECRYPT Stream Cipher Project, 2005.
11. Nicolas Courtois and Willi Meier. Algebraic attacks on stream ciphers with linear

feedback. In E. Biham, editor, Advances in Cryptology - EUROCRYPT 2003,
number 2656 in Lecture Notes in Computer Science, pages 345–359. Springer-
Verlag, 2003. extended version on eprint.

On the (Im)Possibility of Practical and Secure Nonlinear Filters 173

12. Joan Daemen, Rene Govaerts, and Joos Vandewalle. Resynchronization weaknesses
in synchronous stream ciphers. In T. Helleseth, editor, Advances in Cryptology -
EUROCRYPT 1993, number 765 in Lecture Notes in Computer Science, pages
159–167. Springer-Verlag, 1993.

13. Deepak Dalai, Kishan Gupta, and Subhamoy Maitra. Cryptographically signifi-
cant Boolean functions: Construction and analysis in terms of algebraic immunity.
In H. Gilbert and H. Handschuh, editors, Fast Software Encryption, FSE 2005,
Lecture Notes in Computer Science. Springer-Verlag, 2005.

14. Hans Dobbertin. One-to-one highly nonlinear power functions on GF(2n). Appli-
cable Algebra in Engineering, Communication, and Computation, 9:139–152, 1998.

15. Hans Dobbertin. Almost perfect nonlinear power functions on gf(2n): The Niho
case. Information and Computation, 151(1-2):57–72, 1999.

16. Hans Dobbertin, Thor Helleseth, Vijay Kumar, and Halvard Martinsen. Ternary
m-sequences with three-valued crosscorrelation: New decimations of Welch and
Niho type. IEEE Transactions on Information Theory, IT-47:1473–1481, November
2001.

17. Hakan Englund and Thomas Johansson. A new simple technique to attack filter
generators and related ciphers. In Helena Handschuh and Anwar Hasan, editors,
Selected Areas in Cryptography, SAC 2004, number 3357 in LNCS, pages 39–53.
Springer, 2004.

18. Jean-Charles Faugère. A new efficient algorithm for computing Gröbner bases
without reduction to zero (F5). In International Symposium on Symbolic and
Algebraic Computation — ISSAC 2002, pages 75–83. ACM Press, 2002.

19. Jovan Golic. Computation of low-weight parity-check polynomials. Electronics
Letters, 32(21):1981–1982, 1996.

20. Philip Hawkes and Gregory Rose. Rewriting variables: The complexity of fast
algebraic attacks on stream ciphers. In Matthew Franklin, editor, Advances in
Cryptology - CRYPTO 2004, number 3152 in Lecture Notes in Computer Science,
pages 390–406. Springer-Verlag, 2004.

21. Tadao Kasami. The weight enumerators for several classes of subcodes of the second
order binary Reed-Muller codes. Information and Control, 18:369–394, 1971.

22. Edwin Key. An analysis of the structure and complexity of nonlinear binary se-
quence generators. IEEE Transactions on Information Theory, 22:732–736, 1976.

23. James Massey and Jimmy Omura. Computational method and apparatus for finite
field arithmetic. US Patent No. 4, 587,627, 1986.

24. Willi Meier, Enes Pasalic, and Claude Carlet. Algebraic attacks and decomposition
of boolean functions. In C. Cachin and J. Camenisch, editors, Advances in Cryp-
tology - EUROCRYPT 2004, number 3027 in Lecture Notes in Computer Science,
pages 474–491. Springer-Verlag, 2004.

25. Havard Molland and Thor Helleseth. An improved correlation attack against ir-
regular clocked and filtered keystream generators. In Matthew Franklin, editor,
Advances in Cryptology - CRYPTO 2004, number 3152 in Lecture Notes in Com-
puter Science, pages 373–389. Springer-Verlag, 2004.

26. Ronald Mullin, I. Onyszchuk, and Scott Vanstone. Optimal normal bases in
GF(pn). Discrete Applied Mathematics, 22:149–161, 1989.

27. Peng Ning and Yiqun Lisa Yin. Efficient software implementation for finite field
multiplication in normal basis. In Sihan Qing, Tatsuaki Okamoto, and Jianying
Zhou, editors, Third International Conference on Information and Communica-
tions Security ICICS 2001, number 2229 in Lecture Notes in Computer Science,
pages 177–188. Springer-Verlag, 2001.

174 A. Braeken and J. Lano

28. Kaisa Nyberg. Differentially uniform mappings for cryptography. In T. Helleseth,
editor, Eurocrypt 1993, volume 950 of Lecture Notes in Computer Science, pages
55–64. Springer-Verlag, 1993.

29. Oystein Ore. On a special class of polynomials. Trans. Amer. Math.Soc., 35:559–
584, 1933.

30. Christopher Paar. Efficient VLSI Architectures for Bit-Parallel Computation in
Galois Fields. Doctoral dissertation, Institute for Experimental Mathematics, Uni-
versity of Essen, Germany, 1994.

31. Arash Reyhani-Masoleh and Anwar Hasan. Fast normal basis multiplication using
general purpose processors. IEEE Transaction on Computers, 52(3):1379–1390,
2003.

32. Greg Rose and Philip Hawkes. On the applicability of distinguishing attacks against
stream ciphers. In Proceedings of the 3rd NESSIE Workshop, page 6, 2002.

33. Rainer Rueppel. Stream ciphers. In G. Simmons, editor, Contemporary Cryptology.
The Science of Information Integrity, pages 65–134. IEEE Press, 1991.

34. Thomas Siegenthaler. Correlation-immunity of nonlinear combining functions
for cryptographic applications. IEEE Transactions on Information Theory, IT-
30(5):776–780, 1984.

35. Volker Strassen. Gaussian elimination is not optimal. Numerische Mathematik,
13:354–356, 1969.

Rekeying Issues in the MUGI Stream Cipher

Matt Henricksen and Ed Dawson

Information Security Institute, Queensland University of Technology,
GPO Box 2434, Brisbane, Queensland 4001, Australia

{m.henricksen, e.dawson}@qut.edu.au

Abstract. MUGI [15] is a word-based stream cipher designed for 64-
bit architectures. It uses a 128-bit master key and a 128-bit initialization
vector to populate a large non-linear feedback shift register (NLFSR) and
additional non-linear state (NLS). In standard benchmarks on 32-bit pro-
cessors, MUGI suffers from poor key agility because it is implemented
on an architecture for which it is not designed, and because its NLFSR
is too large relative to the size of its master key. This paper proposes
a variant of MUGI, entitled MUGI-M, to enhance key agility, and con-
cludes with an analysis of its security and performance characteristics.

Keywords: stream cipher, MUGI, MUGI-M, key initialization, key
agility.

1 Introduction

MUGI [15] is a Pseudo Random Number Generator (PRNG) designed for use as
a stream cipher. It uses a 128-bit master key and a 128-bit initialization vector.
Its design strength of 128 bits is commensurate with the length of the key.

MUGI’s structure is based on the PANAMA PRNG [5], which can be used ei-
ther as a stream cipher or hash function. A schematic generalization of PANAMA
and MUGI is shown in Figure 1. The update function Υ is composed of a lin-
ear sub-function λ and a non-linear sub-function ρ. The function λ updates the
buffer, using input from both the buffer and the state. The function ρ updates
the state, using additional input from the buffer. An output filter f operating
on the state produces the keystream.

MUGI is targeted to 64-bit architectures, which means that in terms of speed,
it is currently non-competitive with many recent word-based stream ciphers. On
the Intel Pentium 4, it has a throughput of 25.2 cycles per byte, compared to 3.7,
6.7 and 9.2 cycles per byte respectively for Rabbit [3], Dragon [4], and Turing
[13]. This is a situation that will almost certainly change when 64-bit architec-
tures finally become commonplace. MUGI’s mediocre performance in software
is not due entirely to the mismatch between the algorithmic requirements and
implementation characteristics. It has a large state space, which can lead to poor
key agility, through a complex and lengthy key initialization process.

In this paper, we show how to improve MUGI’s key agility for both 32- and
64-bit architectures. In Section 2, we describe the MUGI keystream generation
and key initialization algorithms. In Section 3, we review previous cryptanalysis

B. Preneel and S. Tavares (Eds.): SAC 2005, LNCS 3897, pp. 175–188, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

176 M. Henricksen and E. Dawson

Fig. 1. Generalization of the PANAMA and MUGI Structures

of MUGI, which leads to an interesting insight on the role of the buffer in the
cipher. In Section 4, we discuss a peculiarity with the key initialization algorithm.
In Section 5, we analyze further the performance of MUGI relative to other word-
based stream ciphers, and suggest strategies that could be used to improve it,
culminating in an algorithm for a “modified MUGI” in Section 6. In Section 7
we perform a security and implementation analysis for the new algorithm. In
Section 8, we summarize the contribution of paper.

2 The MUGI Algorithm

The MUGI algorithm uses 64-bit words. MUGI’s internal state contains a 3-stage
Non-linear Feedback Shift Register (NLFSR) denoted a, and a 16-stage Linear
Feedback Shift Register (LFSR), denoted b. The output filter produces 64 bits
of the output from state a at each iteration.

The non-linear function ρ is a target-heavy Feistel network structure:

a0[t + 1] = a1[t]
a1[t + 1] = a2[t]⊕ F (a1[t], b4[t])⊕ C1
a2[t + 1] = a0[t]⊕ F (a1[t], b10[t] ≪ 17)⊕ C2

where C1 and C2 are known constants, (M ≪ k) indicates leftwise k-bit rotation
of M , and F is a function that uses the components of the round function of the
Advanced Encryption Standard [6]. Note that the 192-bit state receives at most
128 bits of new material each time ρ is called. Each of the state words is used in
a different way: a0 is used to provide new material to the buffer; a1 is used for
mixing in the F function; and a2 is used for output and feedback.

The details of the F function are shown in Figure 2. The function has four
layers. In the first layer, which resembles key addition in an Substitution Per-
mutation Network (SPN), eight bytes from a buffer word are added to each

Rekeying Issues in the MUGI Stream Cipher 177

Fig. 2. MUGI F Function

of eight state bytes. In the second layer, the state is modified by eight paral-
lel applications of the AES s-box. The third layer contains a repeated Max-
imum Distance Separable (MDS) matrix. The final layer consists of a word-
based permutation. The polynomials used in the MDS are identical to those
used in AES.

Denoting stage i (0 ≤ i ≤ 15) of the buffer as bi and stage j (0 ≤ j ≤ 2) of
the state as aj , the details of function λ are as follows:

bi[t + 1] = bi−1[t](i �= 0, 4, 10)
b0[t + 1] = b15[t]⊕ a0[t]
b4[t + 1] = b3[t]⊕ b7[t]
b10[t + 1] = b9[t]⊕ (b13[t] ≪ 32)

where bi[t+1] and ai[t+1] are the content of stage i of buffer b and respectively
state a after the completion of t iterations.

Output Filter

Each application of the Υ function produces new values within the state a. The
output filter selects the 64-bit block a2 to output as the keystream.

Initialization and Rekeying

The initialization process of MUGI consists of five phases. All must be executed
in full during rekeying of a master key. Only phases three, four and five are
executed during rekeying of an initialization vector.

Phase 1: Master Key Injection. The 192-bit MUGI state a is initialized using
the 128-bit master key K. The key is divided into two segments K0 ‖ K1 and
state a set, using known constant C0, as follows:

178 M. Henricksen and E. Dawson

a0 = K0
a1 = K1
a2 = (K0 ≪ 7)⊕ (K1 ≫ 7)⊕ C0

Phase 2: State Mixing and Buffer Initialization. The non-linear state function
ρ is used to mix the state a a total of sixteen times, using a null buffer. After
each iteration, a stage in the NLFSR buffer is filled with key-dependent material
from the state word a0. The last stage in the buffer is filled first; therefore, the
first stage is filled using key material which has undergone the most mixing:

b(K)15−i = (ρi+1(a[−48], 0))0 0 ≤ i ≤ 15

Phase 3: Initialization Vector Injection. The 128-bit initialization vector I =
I0 ‖ I1 is added to the mixed state a in a similar way to the key injection.

a[−32]0 = a[−33]0 ⊕ I0
a[−32]1 = a[−33]1 ⊕ I1
a[−32]2 = a[−33]2 ⊕ (I0 ≪ 7)⊕ (I1 ≫ 7)⊕ C1

Phase 4: Further State Mixing. The state is again mixed, using a null buffer,
sixteen times. At the end of this phase, the state is represented by:

a[−16] = ρ16(a[−32], 0)

Phase 5: State and Buffer Mixing. The rekeying procedure is finished by iterat-
ing the state and buffer sixteen times using the Υ function, and discarding the
resulting keystream.

a[0] = Υ 16(a[−16]), b(K)).

3 Related Work

In [14] the designers of MUGI analyze their cipher. They claim that MUGI
is immune to linear cryptanalysis because the minimum number of active s-
boxes within an approximation is 22, and the maximum linear probability of
an s-box is 2−6. Consequently the maximum probability of an approximation
is 2−132; this is insufficient to attack the cipher given its design strength of
128 bits. They leverage the studied properties of the AES round function to
claim immunity against a resynchronization attack that uses differential, linear
or integral cryptanalysis.

In [7], it is shown that MUGI is not vulnerable to a linear masking attack
due to the difficulty in finding a biased linear combination of the inputs and
outputs of the non-linear function ρ. Also the large size of the state (1,216 bits)
precludes a time-memory-data attack. The dependence of the state and buffer
upon each other makes discovery of divide and conquer and correlation attacks
non-trivial, and to date, none have been discovered. They note that MUGI passes
all common statistical tests.

Rekeying Issues in the MUGI Stream Cipher 179

In [12], Mihaeljevic studies a variant of MUGI in which MDS matrices are
excluded from the F component of the ρ update function. Because MUGI uses
the AES s-box, which is well known to produce over-defined and sparse equations,
the simplified MUGI can be subjected to an XL attack. However, the report [12]
does not produce any definite conclusions about the complexity of the attack,
except that increasing the length of the key could increase the design strength
above the attack complexity (which would make the attack successful). Also
Mihaeljevic [12] need not exclude linear operations like the MDS from the attack;
these enable the production of additional equations which should reduce the
complexity of the attack, although increase the difficulty in rendering the over-
defined equations.

In [10], Golic analyses the linear function λ using a system of recurrences in
b4 and b10 , and solved using generating functions. From this, he discovers the
period of the subsequences related to the recurrences is equal to or less than 48,
and the linear complexity is 32. These properties are considered too small for use
in a cryptographic application, although no attack has been forthcoming on this
basis. Golic studies a simplified MUGI in which the buffer is made autonomous
by decoupling the feedback from the state. Linear cryptanalysis is applied to both
the simplified and full versions of MUGI — in both cases, the attack succeeds
when compared to the large state size, but requires greater complexity than brute
forcing the key. The attack is much easier on the simplified version, proving the
success of the non-linear feedback between the buffer and the state. Golic finds
that the algorithm is immune to the XL attack due to the large state and complex
rekeying algorithm.

In [2], Biryukov and Shamir analyze the non-linear state (NLS) of MUGI.
They find that the security of MUGI is very sensitive to small changes in the
design of the ρ function, and the output filter, both of which operate on the
NLS. For example, they describe practical attacks in which the output filter
selects from state words a0 or a1, or when a2 is chosen by the filter after the
evaluation of ρ. The work of [10] in determining buffer recurrences in b4 and
b10 greatly simplifies the complexity of this last attack. The main part of the
paper concerns an attack that allows the contents of the non-linear state to be
recovered knowing only words b4 and b10 of the buffer, given only three output
words and a time complexity of 232. However, guessing these buffer words is
equivalent in effort to guessing the secret key. Also, knowledge of the state at
any point in time does not automatically allow determination of the state at a
future point, since it is quickly mixed with unknown buffer words.

4 An Observation on Key Initialization

As seen in Section 2, MUGI rekeying involves five phases. In phase two, the
fifteenth word of the buffer (b15) is assigned the output (ρ1(a, 0))0, which is the
value of the state variable a0 after a single invocation of the ρ function. In the
ρ function, the a0 word is modified simply by replacing its value with that of
a1 (that is, one third of the state is not changed by the ρ function). Since each

180 M. Henricksen and E. Dawson

buffer word is only updated once in the second phase, at the end of phase two,
b15 contains the unmodified key word K1, which entered the state as a1.

Stages three and four of the initialization do not touch the buffer at all,
meaning that at the start of the final stage, after thirty-two rounds of the ρ
function, half of the key material is present in the buffer in its unmixed state.
An attacker has to work backwards through only sixteen rounds of ρ to obtain
K1. While there is no known way of doing this faster than brute force, this
is still significantly less effort than is suggested by the lengthy and complex
initialization process.

5 Improving Key Agility of MUGI

Compared to many other contemporary ciphers, MUGI has a large ratio of key
size to state size. This can be seen in Table 1, which is ordered by increasing
ratio of key to state size.

One implication of a large state size is reduced key agility, since the key
initialization algorithm needs to touch each element of the state. A rule of thumb
observed in SNOW, Dragon, HC-256 and MUGI, all of which mix the internal
state using the update function, is that the function should be called twice for
each element in the state. Scream chains each element in its masking table by
iterating the update function four times on the previous element. Consequently,
MUGI, Scream and HC-256, all of which have large states, also have lengthy key
initialization functions and are poor performers in terms of key agility. While
Dragon and MUGI have comparable state sizes, Dragon’s key is twice the length,
providing better security per byte of state. Its update function is much faster, so
the key initialization algorithm, at a throughput of 11 cycles/byte, is completed
in approximately twenty percent of the time required by MUGI.

There are two obvious strategies that can be considered to improve the per-
formance of MUGI. The first is to migrate the cipher from a 64- to 32-bit design,
by halving the size of each of the components, including the stages in the NLFSR
and the words within the non-linear state. This has the added advantage that

Table 1. Key to State Size of Modern Word Based Stream Ciphers

Cipher Key Size State Size Ratio
(bits) (bits)

Helix [9] 256 160 1:0.6
Turing [13] 256 544 1:2.1
SNOW [8] 256 576 1:2.2
Rabbit [3] 128 513 1:4.0
Dragon [4] 256 1,088 1:4.2
MUGI [15] 128 1,216 1:9.5
RC4 [1] 128 2,048 1:16.0
Scream [11] 128 2,432 1:19.0
HC-256 [16] 256 65,536 1:256.0

Rekeying Issues in the MUGI Stream Cipher 181

the design of MUGI now matches the architecture on which it is most likely to
be implemented. It has the fatal weakness that the non-linear state naturally
houses a 96-bit rather than 128-bit key. This key size is too small. Also the
reduction in size of components necessitates rethinking the design of the core
function F , which contains eight 8× 8 s-boxes and two 32× 32-bit MDS matri-
ces. Using eight 4× 4 s-boxes increases the maximum characteristic probability
across four rounds from 2−132 to 2−50, and using four 8×8 s-boxes increases the
maximum probability across four rounds to 2−100. In both cases, this is a signif-
icant loss of security. In this case the trade-off of security to benefit efficiency is
inappropriate.

An alternative strategy is to leave the non-linear state and its ρ update func-
tion as they are, and act upon the deficiencies of the buffer. By reducing the
buffer to 8 × 64-bit stages, for a total state size of 512 + 192 = 704 bits, the
speed of the rekeying strategy is increased significantly, the speed of the up-
date function is slightly increased, and the security is marginally decreased. The
state size is still more than five times the size of a 128-bit master key. This is
the strategy that will be adopted in the modification of MUGI.

Shrinking the buffer involves altering the taps used for feedback, and also the
indices to stages used by the non-linear filter function. As the size of the buffer
is halved, it is a natural progression to also halve the indices of the taps and
stages, leaving their order unaltered. One effect of this strategy is that some
stages receive feedback from adjacent stages.

Another improvement is to remove phase four of the keying scheme. This
mixes the non-linear state sixteen times. Consequently, by the end of the initial-
ization, each element of the non-linear state and the buffer has been modified
forty-eight and thirty-two times respectively. By removing this stage, each el-
ement of the non-linear state and buffer has been altered sixteen times. This
brings the cipher into line with the design principles of other ciphers, and the
rule of thumb that each element of the state should be touched by a non-linear
function (at least) twice.

To remove the property discussed in Section 4, we change the state word that
is fed into the buffer in phase two. If a1 is used as feedback to the buffer, then
the state word a0 reflects the contents of the buffer word last modified. This is a
benign property, since it is destroyed immediately upon commencement of phase
three. But using a2 as feedback in phase two avoids this relationship, with the
obvious proviso that as it is used post-initialization to generate output, its role in
providing feedback to the buffer is localized to the key initialization algorithm.

6 An Improvement: The MUGI-M Algorithm

In the modified algorithm, denoted MUGI-M, the only changes that effect the
update sub-function ρ are the changes in the buffer words used as inputs:

a0[t + 1] = a1[t]
a1[t + 1] = a2[t]⊕ F (a1[t], b2[t])⊕ C1
a2[t + 1] = a0[t]⊕ F (a1[t], b5[t] ≪ 17)⊕ C2

182 M. Henricksen and E. Dawson

The update sub-function λ operates on the buffer as follows:

bi[t + 1] = bi−1[t](i �= 0, 2, 5)
b0[t + 1] = b7[t]⊕ a0[t]
b2[t + 1] = b1[t]⊕ b3[t]
b5[t + 1] = b4[t]⊕ (b6[t] ≪ 32)

The initialization process of MUGI-M consists of four phases. All must be
executed in full during rekeying of a master key. Only phases three and four are
executed during rekeying of an initialization vector.

Phase 1: Master Key Injection. The 128-bit MUGI-M state a is initialized as
per Phase 1 of the MUGI algorithm.

Phase 2: State Mixing and Buffer Initialization. The non-linear state function
ρ is used to mix the state a a total of eight times, using a null buffer. After each
iteration, a stage in the buffer is filled with key-dependent material from the
state word a2. The last stage in the buffer is filled first; therefore, the first stage
is filled using key material which has undergone the most mixing:

b(K)7−i = (ρi+1(a[−16], 0))2 0 ≤ i ≤ 7

Phase 3: Initialization Vector Injection. The 128-bit initialization is added to
the mixed state a as per Phase 3 of the MUGI algorithm.

Phase 4: State and Buffer Mixing. The rekeying procedure finishes by iterating
the state and buffer eight times using the combined Υ function, and discarding
the resulting keystream.

a[0] = Υ 8(a[−8]), b(K))

Test vectors for this algorithm are presented in Appendix A. Code is available
from the authors upon request.

7 Analysis of MUGI-M

Table 2 shows the contrast in efficiency between MUGI and MUGI-M on the
Intel Pentium 4 (Northwood) processor. In particular, there is an improvement
in MUGI-M of 200% in the speed of rekeying an initialization vector, and 170%
in full rekeying. There is a modest 30% increase in the speed of the keystream
generation, due likely due to reduced register pressure and smaller buffer loops.

The attacks discussed in Section 3 are ineffective against MUGI for the fol-
lowing reasons: the effectiveness of the highly non-linear state function ρ, which
leverages the properties of the AES block cipher; the large size of the buffer;
the feedback between the internal state and the buffer; and the complex rekey-
ing strategy. None of the attacks rely on properties of the buffer other than

Rekeying Issues in the MUGI Stream Cipher 183

Table 2. Efficiency of MUGI and MUGI-M on the Intel Pentium 4

Cipher Keystream Key Initialization Key Initialization
Generation (IV) (Full)

Ratio

Cycles per iteration
MUGI 181 4987 7540 1:27.6:41.7
MUGI-M 140 1652 2784 1:11.8:20.0

Cycles per byte
MUGI 25.2 36.8 55.7 1:1.5:2.2
MUGI-M 19.4 12.2 20.6 1:0.6:1.1
Ratio 1.3:1 3.0:1 2.7:1

its size. Golic [10] argues that the properties of the buffer, when considered
autonomously, are cryptographically poor. This argument is deflected by the
fact that the buffer is coupled to the non-linear state, and that it is unrealis-
tic to map the buffer properties directly to those of the whole cipher. However,
from this it can be claimed that by changing the location of the taps in the
buffer, we are not altering any special properties of the buffer, which was con-
structed in an ad-hoc manner. We are aiming to repair the performance of MUGI
rather than engender it with additional security properties. In the remainder of
this section, the resistance of MUGI-M against classes of individual attacks is
considered.

Block-Cipher Style Attacks. Rely on the properties of the non-linear func-
tion: for example, the maximum differential and linear probabilities across the
function. Given that only the size of the buffer, and the location of its taps have
been changed, the analysis of MUGI in [7] remains unchanged. The analysis relies
extensively on the properties of the 64-bit F function, which is a modified AES
round function. It is well-known that this function is resistant against differential
and linear attacks. This is because the s-boxes in the F function have a maxi-
mum probability of 2−6, although almost half of the s-box characteristics have a
probability of 2−7. To launch a successful attack against the F function requires
a differential that incorporates fewer than ten active s-boxes, as 2−7×10 < 2−64.
The analysis in [7] of the intertwined MDS matrices indicates that they guaran-
tee at least eight active s-boxes over four rounds. If a differential style attack can
be launched against MUGI, it will need to use fewer than six words of keystream.
The F function exhibits a vulnerability to integral cryptanalysis across no fewer
than four, and no more than nine rounds. The synchronous nature of the cipher
means that the attacker does not have sufficient control over the inputs to launch
it on either MUGI or MUGI-M. The resilience of MUGI-M against block-cipher
style attacks appears to be the same as that of MUGI. If an attack of this style
affects one, it will presumably affect the other.

Linear Cryptanalysis. The self-evaluation report of MUGI [14] includes an
analysis of linear cryptanalysis incorporating both the non-linear state and the
buffer. This form of linear cryptanalysis consists of two phases: the first deter-

184 M. Henricksen and E. Dawson

mines a linear approximation of ρ. In the second, a path is searched to acquire an
approximation that consists only of output bits (as the internal state is not avail-
able to the attacker). For MUGI-M, the first phase remains unaltered from that
of MUGI: if an approximation can be found that includes fewer than twenty-two
active s-boxes, linear cryptanalysis may be possible. The second phase does not
depend upon the length of the buffer; since the nature of the buffer has not been
fundamentally altered, the analysis of MUGI applies equally to MUGI-M.

Time-Memory-Data Trade-Off Attacks. MUGI-M is immune to time-
memory-data trade-off attacks because it has a small key size relative to the size
of the buffer. For a brute-force equivalent attack with T = 2128, M2×D2 = 2896.
Assuming that a limit is placed on generating 2128 bits of keystream under one
key, then to launch an attack requires 2287 gigabytes of memory. This is clearly
infeasible.

Divide and Conquer Attacks. A successful divide and conquer attack on
MUGI in which the components are autonomous, and that determines the con-
tents of the components sequentially, has a complexity of 2192 + 21024 (rather
than the brute-force complexity of 2192 × 21024). The shorter buffer length of
MUGI-M reduces this complexity to 2192 + 2512. This analysis ignores the fact
that the components are not autonomous, and that the complexity may be much
higher. The complexity of the attack needs to be less than 2127 to be considered
successful, given the 128-bit design strength of MUGI. Therefore, divide and
conquer attacks are very unlikely to succeed against MUGI-M.

Correlation Attacks. A correlation attack on MUGI or MUGI-M requires a
measure of correlation between the NLS and the NLFSR. No measure has been
found in either cipher, due to the absence of a perceivable bias in the non-linear
filter, and to the feedback between the NLS and the NLFSR. A correlation attack
against MUGI-M seems unlikely.

Guess and determine attacks have been successful against a number of
word-based ciphers. In a guess and determine attack against a PANAMA-style
cipher, a cryptanalyst can adopt one of three approaches: fix elements within
the non-linear state and use them guess the contents of the NLFSR; fix elements
within the NLFSR and use them to guess the contents of the NLS; or a hybrid
approach in which elements from both components are guessed.

MUGI has shown resistance to guess and determine attacks because of the
high non-linearity in the ρ function, and the large sizes of both the state and
the buffer. Adopting either of the first two approaches outlined is fruitless, be-
cause the material guessed exceeds the number of bits in the master key, so a
hybrid approach needs to be adopted. While this may be possible, no guess and
determine attack has been possible, because no simple relationship between the
non-linear state and the buffer has been discovered. As the buffers in MUGI and
MUGI-M are similar in structure and size (relative to the master key size), and
the ρ function is essentially unchanged, a guess and determine attack on one of
the ciphers is likely to apply (with modifications) to the other.

Rekeying Issues in the MUGI Stream Cipher 185

Linear masking attacks depend on two factors: finding a linear approximation
to the non-linear filter, and finding a linear combination of the buffer that causes
the bias in the non-linear filter to vanish. To date, no effective bias has been
discovered in the non-linear filter ρ of MUGI, which is unaltered in MUGI-M.
We do not expect that MUGI-M is vulnerable to linear masking attacks.

Algebraic attacks depend upon developing systems of equations on the non-
linear components of ciphers. In MUGI-M, the sole non-linear component is the
AES s-box, which is well-known to be over-defined. The linear components of the
non-linear filter and buffer allow extra equations to be added to the system. In
principle, MUGI-M is vulnerable to an XL attack, with a complexity similar to
that on MUGI, which shares the same non-linear filter. However, in both cases,
the complexity of the XL attack exceeds the design strength of the 128-bit master
key [12], and is therefore not practical.

Rekeying Attacks. MUGI-M appears to be secure from rekeying attacks, de-
spite the fact that the key initialization algorithm mixes the non-linear state
sixteen instead of forty-eight times, and the buffer sixteen instead of thirty-two
times. The level of mixing per buffer stage remains the same.

Also the attacker has no control over any stage in the buffer, except indirectly
through the non-linear state. No raw key material enters the buffer at any time.

Consider a resynchronization attack using multiple master keys, in which
there are differences between the keys. For extra freedom, the attacker is allowed
to control the difference in the initial a2 state word. Because the F function is
optimized against differential cryptanalysis, and because each of the stages in the
buffer is chained to previous stages, the attacker very quickly loses the ability to
track differences within the keystream. No differentials through the F function
are possible after it has been iterated four times. After the population of b6
and b7 in phase two of the rekeying, subsequent words are affected by at least
four iterations of the F function and therefore activate too many s-boxes for an
effective related-key attack to be launched. In phase four, b6 and b7 are filled
with material dependent upon all buffer words, so the low non-linearity present
in these words in phase two is not a weakness.

8 Summary

In this paper we have reviewed past cryptanalysis of the MUGI stream cipher,
and pointed out a peculiarity in the key initialization algorithm, whereby one key
word was visible in the buffer after thirty-two out of forty-eight iterations of the
update function. We determined that MUGI had poor key agility, compared to
other word-based stream ciphers because its design targets 64-bit architectures,
which are not yet commonly available, and because its large state size requires a
lengthy key initialization process. The state size is large relative to the key size,
so does not serve well the security-efficiency trade-offs in MUGI’s design.

We suggested a variant of the MUGI algorithm, MUGI-M, in which the size of
the buffer was halved, and the key initialization algorithm reduced from forty-
eight to sixteen steps. This resulted in an improvement of 200% in the speed

186 M. Henricksen and E. Dawson

of rekeying an initialization vector, and 170% in full rekeying. We analysed
the new variant with respect to security and determined that it remains secure
against attacks, principally because we made no significant alterations to the
non-linear filter, because each stage in the buffer is sufficiently modified by the
key initialization algorithm, and because the buffer is still large relative to the
key size. This alteration will serve the security-performance trade-off of MUGI
well, both now and in the future, when 64-bit architectures, for which MUGI
was designed, become commonplace.

Acknowledgements

Many thanks to Minna Yao and the anonymous referees for their feedback on
this paper.

References

1. Anonymous. RC4 algorithm revealed. Posting to sci.crypt usenet group
on 14 September, 1994. Available at ftp://idea.sec.dsi.unimi.it/pub/security/
crypt/code/rc4.revealed.gz.

2. Alex Biryukov and Adi Shamir. Analysis of the non-linear part of MUGI. In
Serge Vaudenay, editor, Proceedings of the 12th International Workshop on Fast
Software Encryption, Lecture Notes in Computer Science. Springer-Verlag, 2005.
To appear.

3. Martin Boesgaard, Mette Vesterager, Thomas Pedersen, Jesper Christiansen, and
Ove Scavenius. Rabbit: a new high-performance stream cipher. In Joan Daemen
and Vincent Rijmen, editors, Proceedings of the 9th International Workshop on
Fast Software Encryption, volume 2365 of Lecture Notes in Computer Science,
pages 325–344. Springer-Verlag, 2003.

4. Kevin Chen, Matt Henricksen, Leonie Simpson, William Millian, and Ed Daw-
son. Dragon: A fast word based cipher. In Information Security and Cryptology -
ICISC ’04 - Seventh International Conference, 2004. To appear in Lecture Notes
in Computer Science.

5. Joan Daemen and Craig Clapp. Fast hashing and stream encryption with
PANAMA. In Serge Vaudenay, editor, Proceedings of the 5th International Work-
shop on Fast Software Encryption, volume 1372 of Lecture Notes in Computer
Science, pages 60–74. Springer-Verlag, 1998.

6. Joan Daemen and Vincent Rijmen. Rijndael. In Proceedings from the First Ad-
vanced Encryption Standard Candidate Conference, National Institute of Stan-
dards and Technology (NIST), August 1998. Available at http://csrc.nist.gov/
encryption/aes/.

7. Ed Dawson, Gary Carter, Helen Gustafson, Matt Henricksen, William Millan, and
Leonie Simpson. Evaluation of the MUGI psuedo-random number generator.
Technical report, CRYPTREC, Information Technology Promotion Agency (IPA),
Tokyo, Japan, 2002. Available at www.ipa.go.jp/security/enc/CRYPTREC/fy15/
doc/1035 IPA-MUGI report final.pdf.

8. Patrik Ekdahl and Thomas Johansson. Snow - a new stream cipher, 2000. Available
at http://www.it.lth.se/cryptology/snow/.

Rekeying Issues in the MUGI Stream Cipher 187

9. Niels Ferguson, Doug Whiting, Bruce Schneier, John Kelsey, Stefan Lucks, and Ta-
dayoshi Kohno. Helix: fast encryption and authentication in a single cryptographic
primitive. In Joan Daemen and Vincent Rijmen, editors, Proceedings of the 9th In-
ternational Workshop on Fast Software Encryption, volume 2365 of Lecture Notes
in Computer Science, pages 345–361. Springer-Verlag, 2003.

10. Jovan Golic. Security evaluation of MUGI. Technical report, CRYPTREC, Infor-
mation Technology Promotion Agency (IPA), Japan, Tokyo, 2002.

11. Shai Halevi, Don Coppersmith, and Charanjit Jutla. Scream: a software-efficient
stream cipher. In Joan Daemen and Vincent Rijmen, editors, Proceedings of the
9th International Workshop on Fast Software Encryption, volume 2365 of Lecture
Notes in Computer Science, pages 195–209. Springer-Verlag, 2003.

12. Mihodrag Mihaeljevic. Report on security evaluation of MUGI stream cipher.
Technical report, CRYPTREC, Information Technology Promotion Agency (IPA),
Tokyo, Japan, 2002.

13. Gregory Rose and Philip Hawkes. Turing: a fast stream cipher. In Joan Daemen
and Vincent Rijmen, editors, Proceedings of the 9th International Workshop on
Fast Software Encryption, volume 2365 of Lecture Notes in Computer Science,
pages 307–324. Springer-Verlag, 2003.

14. Dai Watanabe, Soichi Furuya, Hirotaka Yoshida, and Kazuo Takaragi.
MUGI psuedorandom number generator, self evaluation, 2001. Available at
http://www.sdl.hitachi.co.jp/crypto/mugi/index-e.html.

15. Dai Watanabe, Soichi Furuya, Hirotaka Yoshida, and Kazuo Takaragi. A new
keystream generator MUGI. In Joan Daemen and Vincent Rijmen, editors, Pro-
ceedings of the 9th International Workshop on Fast Software Encryption, vol-
ume 2365 of Lecture Notes in Computer Science, pages 179–194. Springer-Verlag,
2003.

16. Hongjun Wu. A New Stream Cipher HC-256, 2004. Available at http://
eprint.iacr.org/2004/092.pdf.

A Test Vectors for MUGI-M

The following little-endian test vectors for MUGI-M are presented:

Key = 00000000000000000000000000000000
IV = 00000000000000000000000000000000

Keystream =
0E850A7AD4E94A1C 5C97E7FBA492CC60 34738F8D04904D47
79CE86DC89D2E684 34050A91BC2555D0 8C8310A3E543DE40
F2B6B9F612381372 11036D8E55485B69 5323E5B6F05CBF32
389675E756BF490E D61618C9FAAFE00F 51BC3DA8A4C70E50
44147EFBDA308F4A D0AD8E5C38E85FD5 8F397AEA286A7761
C64694622A3599E5

Key = 0E850A7AD4E94A1C5C97E7FBA492CC60
IV = 34738F8D04904D4779CE86DC89D2E684

188 M. Henricksen and E. Dawson

Keystream =
8BB9E439BD1B632F C614E04066FAEA66 1820B17F2D7216B6
8986D48391441B8F E1B8A6D4C6A81815 B91207DC6138669A
2428795E4B67258A 7D6E0786559E0F32 E0B9DC8B34C5A6D8
C59E1BB3FD1ACA53 4395FF4AF7C9A1AC DFFDE7F86661D94D
7A37A985291598A1 AB554E72C2C7EAD2 C9125F4ACAEBE3B4
66DB2836BF75CC34

Key = 8BB9E439BD1B632FC614E04066FAEA66
IV = 1820B17F2D7216B68986D48391441B8F

Keystream =
F4EB67A12774D27D 6FE1F36A696E8D20 0017C6166A273176
A06F58F0FAEE1B5E C1A8F9081E85FE55 A2FC5569966650F8
C44F926DFEDD99D0 5B6ECCE80E4C2057 67A9F58EED1CABF5
0500EF8D4429B3F4 90F58F5C42F74028 8C4B9D15AA7DFCE1
668491546DC4D799 4D040BCFEB46706E 365E136FC31B8204
BF9CE27566C138B1

Tree-Based Key Distribution Patterns

Jooyoung Lee1 and Douglas R. Stinson2

1 Department of Combinatorics and Optimization
2 School of Computer Science, University of Waterloo,

Waterloo, Ontario, Canada N2L 3G1
{j3lee, dstinson}@uwaterloo.ca

Abstract. We revisit a key agreement scheme presented by Leighton
and Micali [11], generalize the scheme, and present a new framework of
tree-based key distribution pattern (TKDP). We presents a method of
constructing TKDPs from cover-free families. We show the existence of
TKDPs by probabilistic method. We can reduce the upper bounds on
the minimum number of rows of (t, w, T)-TKDPs, which are obtained
from probabilistic methods, asymptotically by a factor of w as compared
to Leighton and Micali’s schemes by choosing optimal trees T instead of
chains.

Keywords: key predistribution, cover-free family.

1 Introduction

In our model, the network consists of a trusted authority (TA) and a set of users
U = {U1, . . . , Un}. Let 2U denote the collection of all subsets of users. P ⊆ 2U

and F ⊆ 2U will denote the collection of privileged subsets and the collection of
forbidden subsets, respectively. Γ = (P ,F) is called an access structure. Roughly
speaking, a key predistribution scheme (KPS) with an access structure Γ is a
method for the TA to distribute secret shares to each user in the network, so
that any user in a privileged subset P can easily compute their group key KP ,
while any coalition F ∈ F disjoint from P can compute KP only with negligible
probability. In this paper, we will consider an access structure Γ(t,w) = (P ,F)
such that P = {P ⊆ U : |P | = t} and F = {F ⊆ U : |F | = w}. Thus any t users
can compute a common key while any coalition of at most w users can obtain
no information on the key. (Such KPSs are called (t, w)-KPSs.) One method
of constructing KPSs uses key distribution patterns (KDPs), due to Mitchell
and Piper [13]. We will extend the study of KDPs by allowing hashed shares of
information in the generation of secret keys.

1.1 Motivation: Leighton and Micali Scheme

This work is motivated by a key agreement scheme proposed by Leighton and
Micali [11]. Here we briefly describe their scheme (with slight modification):

1. The TA publishes a (one-way) hash function

h : {0, 1}l −→ {0, 1}l,

where l is a secret key length used for symmetric encryption.

B. Preneel and S. Tavares (Eds.): SAC 2005, LNCS 3897, pp. 189–204, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

190 J. Lee and D.R. Stinson

2. For each user Uj , a public sequence Aj ∈ {0, . . . , L − 1}b is chosen in a
uniformly random way, where b and L are positive integers. The public se-
quences act as public identities of users, and they comprise a b × n matrix
M = (AT

1 | · · · |AT
n) = (αi,j).

3. The TA chooses random seeds si = s(i, 0) ∈ {0, 1}l for i = 1, . . . , b and
computes hashed shares s(i, α) = hα(si) for α = 1, . . . , L−1. (hα(s) indicates
applying the function h iteratively α times on the input s.)

4. User Uj receives a set of secret shares s(i, αi,j) for i = 1, . . . , b. Therefore, b
is the number of secret shares assigned to each user.

5. A pairwise key between Uj1 and Uj2 is defined to be

Kj1,j2 = s(1, δ1) + . . . + s(b, δb),

where δi = max(αi,j1 , αi,j2). Addition is defined in (Zl
2, +).

We can easily derive a condition that a coalition of w users, Uj′
1
, . . . , Uj′

w

obtain a hashed key between innocent users Uj1 and Uj2 as follows:

min(αi,j′
1
, . . . , αi,j′

w
) ≤ max(αi,j1 , αi,j2),

for all i = 1, . . . , b. The authors of [11] computed the probability that a set of
randomly chosen sequences protects pairwise keys against adversarial coalitions
of size at most w. They claim that the probability becomes large enough when
w is about (b/e lnn)1/3.

Example 1.1. Suppose public sequences A1 = (5, 2, 1), A2 = (2, 3, 1) and A3 =
(1, 3, 3) are assigned to users U1, U2 and U3, respectively. Then U1, U2 and U3
receive key sets {h5(s1), h2(s2), h(s3)}, {h2(s1), h3(s2), h(s3)} and {h(s1), h3(s2),
h3(s3)}, respectively. U1 and U2 can communicate with each other with key
K1,2 = h5(s1)+h3(s2)+h(s3). An adversary U3 can compute h5(s1) and h3(s2),
but not h(s3); therefore the key K1,2 is secure against U3.

1.2 Extension of Leighton and Micali Scheme

We extend Leighton and Micali’s scheme in three directions.

Pairwise Key to Group Key. Any t users Uj1 , . . . , Ujt can define their group
key to be

Kj1,...,jt = s(1, δ1) + . . . + s(b, δb),

where δi = max(αi,j1 , . . . , αi,jt). In order for a coalition of w users, Uj′
1
, . . . , Uj′

w
,

to obtain the group key, the following should occur:

min(αi,j′
1
, . . . , αi,j′

w
) ≤ max(αi,j1 , . . . , αi,jt),

for all i = 1, . . . , b.

Linear Ordering to Tree Ordering. Suppose that a matrix M = (αi,j)
of public sequences is determined. For each row of the matrix, a “seed” secret

Tree-Based Key Distribution Patterns 191

s0=s

0 1 L-2 2 L-1
s1=h(s0)

s2=h(s1) sL-1=h(sL-2)

(a) Linear ordering

1

3

2
5

6

0

4

s1=h(s0||1)

s2=h(s0||2)

s3=h(s1||3)

s6=h(s2||6)

s5=h(s2||5)

s4=h(s1||4)

s0=s

(b) Tree-based ordering

Fig. 1. Orderings of symbols

share is generated and each entry represents the hash depth applied to the seed.
Therefore, we observe a hierarchy or an ordering between entries (symbols) in the
sense that one information is enough to compute the other, but not conversely.
For two symbols α1 and α2, we define α1 ≤ α2 if the information(= hα2(s))
associated with α2 is easily computed from the information(= hα1(s)) associated
with α1. We can represent the ordering of symbols for each row as a chain
structure (Fig. 1(a)), which coincides with the natural linear ordering of integers.

However we can also define nonlinear orderings based on rooted trees. For
example, Fig. 1(b) shows an ordering of symbols based on a balanced binary
tree of depth 2. Seven hashed shares are derived from a seed for each row,
using (public) symbols of the tree in the hash computation. (The symbols are
interpreted as binary sequences of a fixed length in the computation.)

Probabilistic Construction to Deterministic Construction. We can con-
struct a matrix M of public sequences in a deterministic way, instead of choosing
random columns. For example, cover-free families, orthogonal arrays or ordered
designs could be used. We also introduce a symbol ∞ as an entry of M , which
means “no information”. Based on a chain ordering, we can replace the largest
symbol L − 1 by ∞; since the corresponding hashed share h(L−1)(s) (for some
seed s) can be computed by any other single user, it makes no contribution to
secure communication. Therefore we would rather assign no information to the
symbol in order to save memory storage per user.

1.3 Other Related Works

Blom [3] presented key predistribution schemes that require each user store w+1
keys to protect each pairwise key against any coalition attack of at most w users.
Blundo et al. [4] generalized Blom’s scheme to allow for any group of size t to
establish its group key. For a group key to be secure against a coalition of w
users, each user has to store

(
t+w−1

t−1

)
keys. They also proved the key storage is

192 J. Lee and D.R. Stinson

information theoretically optimal. Mitchell and Piper [13] presented KPSs using
key predistribution patterns, which involve very little arithmetic computation.
The KDPs are equivalent to cover-free families, which are widely studied and
generalized (for example, [17] and [18]). Such unconditionally secure key pre-
distribution schemes are studied as special families of linear key predistribution
schemes [14].

The efficiency of KPSs can be improved by choosing orthogonal arrays or
perpendicular arrays as KDPs and then using resilient functions in the gener-
ation of keys [16]. Recently, Attrapadung et al. [2] studied key predistribution
schemes using key chains from pseudo-random sequence generators (PRSGs). In
a network of n users, each user stores O

(
2n−1

n

)
keys to establish group keys of

any size, which are secure against any coalition attacks, based on the security of
the PRSGs.

Since Eschenauer and Gligor’s work [8], a series of papers on (pairwise) key
predistribution for distributed sensor networks have been published ([5], [9], [10],
[12], [15]). The main difference of these KPSs from conventional ones is that
they allow certain pairs of nodes to share no common key. The attack model
and the metric to evaluate the resiliency are also different, which are based on
probabilistic analysis.

1.4 Our Contributions

By extending Leighton and Micali’s scheme, we present a new framework of
tree-based key distribution patterns (TKDPs). In section 3, we present a simple
method of constructing TKDPs from cover-free families. In section 4, we show
the existence of TKDPs by probabilistic methods, similar to [7]. Especially, the
upper bounds on the minimum number of rows of (t, w, T)-TKDPs, which are
obtained from probabilistic methods, are asymptotically w times smaller than
Leighton and Micali’s schemes (with the same parameters), when we choose
optimal trees T instead of chains. One advantage of TKDP-based KPSs over
Leighton and Micali’s schemes is smaller hash depths are applied to each secret
seed, which means less computation is required.

2 Tree-Based Key Distribution Pattern

We are now prepared to present a framework of a tree-based key distribution
pattern (TKDP). First, we define a rooted tree T on L vertices, labeled from
0 to L − 1. Especially, the root vertex is labeled by 0. As we observed in the
previous section, a rooted tree defines a partial ordering on L vertices. We say
j1 < j2 if a vertex j1 is an ancestor of j2. For example, we observe that 0 < 3
and 2 < 5 in Fig. 1(b). But there is no relation between 1 and 2. We also define
j < ∞ for every j ∈ {0, . . . , L − 1}. From now on, we will identify the set of
users with the integers from 1 to n.

Definition 2.1. Let T be a rooted tree labeled by {0, . . . , L − 1} and let
Γ = (P ,F) be an access structure. Let M = (αi,j) be a b × n matrix with

Tree-Based Key Distribution Patterns 193

αi,j ∈ {0, . . . , L − 1} ∪ {∞} for 1 ≤ i ≤ b and 1 ≤ j ≤ n. We say that M
is a tree-based key distribution pattern (Γ, T)-TKDP(b, n), provided that for
every disjoint pair of P ∈ P and F ∈ F , there exist 1 ≤ i∗ = i∗(P,F) ≤ b and
j∗ = j∗(P,F) ∈ P such that

1. αi∗,j ≤ αi∗,j∗ for all j ∈ P , and
2. αi∗,j � αi∗,j∗ for all j ∈ F .

The notation (t, w, T)-TKDP(b, n) will denote a (Γ(t,w), T)-TKDP(b, n).

KPS from TKDP. We construct a KPS with an access structure Γ from a
TKDP in the following manner:

1. The TA publishes a (Γ, T)-TKDP(b, n), denoted M = (αi,j), a hash function

h : {0, 1}l1+l2 −→ {0, 1}l1,

and a tree T on a set {0, . . . , L− 1} of vertices.
2. For 1 ≤ i ≤ b and 1 ≤ j ≤ L− 1, the TA chooses random values si = s(i, 0)

of length l1 and computes hashed shares s(i, j) recursively based on the tree
T ; if a vertex j2 is a child of j1, then s(i, j2) = h(s(i, j1) ‖ j2), where the
label of each vertex is represented as a binary sequence of length l2.

3. User j receives secret shares s(i, αi,j) for 1 ≤ i ≤ b, where s(i,∞) = ∅ by
definition.

4. Let
IP = {1 ≤ i ≤ b : ∃j̄ ∈ P such that αi,j ≤ αi,j̄ , ∀j ∈ P}.

The key KP for a privileged set P is defined to be

KP =
∑
i∈IP

s(i, αi,j̄).

For a given i ∈ IP , j̄ is not necessarily unique, but αi,j̄ is.

Any user j ∈ P can compute every term in KP by using the function h, while
a disjoint coalition F ∈ F cannot compute at least one term

s(i∗(P,F), αi∗
(P,F),j̄

),

since αi∗
(P,F),j

� αi∗
(P,F),j̄

for all j ∈ F (by Def. 2.1). In this case, we say row
i∗(P,F) protects P against F . If l1 is the bit length of a secure key for a symmet-
ric encryption, then we can say the KPS is secure with respect to the access
structure Γ .

Remark 2.1. We assume a random oracle model for the function h in the sense
that we cannot obtain the value of h(s) without query to the random oracle.

Remark 2.2. Each user should store bl1 bits, or equivalently, b secret keys. There-
fore, we would like to have TKDPs that minimize b with the other parameters
fixed.

194 J. Lee and D.R. Stinson

Example 2.1. As we will see in Example 3.1,

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 3 0 5 6 7
1 0 0 4 0 6 7
0 2 0 4 5 0 7
1 2 3 0 0 0 7
0 2 3 4 0 6 0
1 0 3 4 5 0 0
1 2 0 0 5 6 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
is a (2, 2, T7)-TKDP(7, 7), where T7 is a tree of depth 1 with 7 leaves (Fig. 2).

3

5

6
0

4

2

1

7

Fig. 2. Star-like tree: T7

The TA generates random secret seeds si for i = 1, . . . , 7. Two users U1 and U2
(corresponding to the first two columns) receive sets of keys

K1 = {s1, h(s2 ‖ 1), s3, h(s4 ‖ 1), s5, h(s6 ‖ 1), h(s7 ‖ 1)},

and
K2 = {s1, s2, h(s3 ‖ 2), h(s4 ‖ 2), h(s5 ‖ 2), s6, h(s7 ‖ 2)},

respectively. For P = {1, 2}, we have IP = {1, 2, 3, 5, 6}. Both U1 and U2 can
compute the group key

K1,2 = s1 + h(s2 ‖ 1) + h(s3 ‖ 2) + h(s5 ‖ 2) + h(s6 ‖ 1).

An adversarial coalition of two users, say, U3 and U4, cannot compute h(s5 ‖ 2)
and h(s6 ‖ 1). In fact, K1,2 is secure against any coalition of size 2.

3 Cover-Free Families and TKDPs

In this section, we will show some relations between cover-free families (or equiv-
alently, conventional key distribution patterns) and TKDPs. A set system is a
pair (X,A), where A is a finite set of subsets of X , called blocks.

Tree-Based Key Distribution Patterns 195

Definition 3.1. A set system (X,A) is called a (t, w)-cover-free family provided
that, for any t blocks B1, . . . , Bt ∈ A and any w other blocks A1, . . . , Aw ∈ A,
we have

t⋂
i=1

Bi �
w⋃

j=1

Aj .

A (t, w)-cover-free family will be denoted as a (t, w)-CFF(b, n) if |X | = b and
|A| = n. Let (X,A) be a (t, w)-CFF(b, n) such that X = {x1, . . . , xb} and
A = {A1, . . . , An}. The incidence matrix of (X,A) is defined to be a b × n
(0, 1)-matrix M = (βi,j) such that βi,j = 1 if xi ∈ Aj , and βi,j = 0, otherwise.

Now we can regard a cover-free family as a special case of TKDP, as seen in
the following lemma.

Lemma 3.1. Let L = 1, i.e., T consists of one vertex. Then (t, w, T)-TKDPs
are equivalent to (t, w)-cover-free families.

Proof. Let MT = (αi,j) be a (t, w, T)-TKDP(b, n). Since MT is a (0,∞)-matrix,
we can define a b× n matrix MC = (βi,j) such that{

βi,j = 1, if αi,j = 0;
βi,j = 0, if αi,j =∞.

Then MC is the incidence matrix of a (t, w)-CFF(b, n). The converse is proved
in a similar way.

There is a method of constructing TKDPs based on rooted trees of depth 1 from
CFFs. (From now on, rooted trees of depth 1 are called star-like trees.) Let Tn

be a star-like tree with root 0 and n leaves (labeled from 1 to n).

Theorem 3.1. If there exists a (t−1, w)-CFF(b, n), then there exists a (t, w, Tn)-
TKDP(b, n).

Proof. Let MC = (βi,j) be the incidence matrix of a (t− 1, w)-CFF(b, n). Then
we can define a b× n matrix MT = (αi,j) as follows;{

αi,j = 0, if βi,j = 1;
αi,j = j, if βi,j = 0.

We claim that MT is a (t, w, Tn)-TKDP(b, n).
The columns of MC and MT are indexed from 1 to n; the rows of MC and MT

are indexed from 1 to b. Let P = {j1, . . . , jt} and F = {j′1, . . . , j′w} be disjoint
subsets of columns. Since MC is the incidence matrix of a (t − 1, w)-CFF(b, n),
there exists a row i such that βi,j1 = . . . = βi,jt−1 = 1, and βi,j′

1
= . . . = βi,j′

w
=

0. Since αi,j1 = . . . = αi,jt−1 = 0, we have αi,j ≤ αi,jt for every j ∈ P . On
the other hand, we have αi,j′ � αi,jt for every j′ ∈ F since the symbols αi,j′

represent distinct leaves of the tree. (In the context of KPS, the group key of
P contains a hashed share h(si ‖ jt) as a summand, while the coalition of F
cannot compute it.)

196 J. Lee and D.R. Stinson

Example 3.1. Let t = w = 2 and b = n = 7. Then we can construct a (2, 2, T7)-
TKDP(7, 7), say MT , from the incidence matrix MC of a (1, 2)-CFF(7, 7), where

MC =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 0 1 0 0 1 0
0 0 0 1 1 1 0
1 0 0 0 1 0 1
0 1 0 0 0 1 1
0 0 1 1 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
and MT =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 3 0 5 6 7
1 0 0 4 0 6 7
0 2 0 4 5 0 7
1 2 3 0 0 0 7
0 2 3 4 0 6 0
1 0 3 4 5 0 0
1 2 0 0 5 6 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

4 Probabilistic Method to Construct TKDPs

We will show the existence of a (t, w, T)-TKDP(b, n), denoted M = (αi,j), by
using the probabilistic method [1]. We would like for the matrix M to have as
few rows as possible.

Now we fix a tree T on a set V = {0, . . . , L−1}. Let S = {0, . . . , L−1,∞}n be
the set of all possible rows of length n with symbols from {0, . . . , L− 1,∞}. We
define a probability distribution P on the set S, and a random variable X(P, F)
on S for any disjoint pair of P ∈ P and F ∈ F as follows:

X(P, F) =

{
0 if the row protects P against F

1 otherwise.

Let Mb×n be the set of all b × n matrices with symbols from {0, . . . , L −
1,∞}. By the probability distribution P, we pick uniformly at random b rows
to construct a matrix in Mb×n. The distribution P and the random variable
X(P, F) naturally define the inherited probability distribution Pb and random
variable

Xb(P, F) =

{
0 if there exists a row that protects P against F

1 otherwise.

on Mb×n. Then we have

Exp[Xb(P, F)] = Pr[Xb(P, F) = 0]× 0 + Pr[Xb(P, F) = 1]× 1

= (Pr[X(P, F) = 1])b .

Finally, we define a random variable

X =
∑

P∈P,F∈F ,P∩F=∅
Xb(P, F).

If Exp[X] < 1, then there exists a (t, w, T)-TKDP(b, n) in Mb×n. In order to
evaluate Exp[X], we define

p̄t,w = min
P∈P,F∈F ,P∩F=∅

Pr[X(P, F) = 0].

Tree-Based Key Distribution Patterns 197

Then it is easy to see that

Exp[X] =
∑

P∈P,F∈F ,P∩F=∅
Exp[Xb(P, F)]

=
(

n

t

)(
n− t

w

)
Exp[X(P, F)]b

≤ nt+w(1− p̄t,w)b.

A simple computation shows

b >
(t + w) ln n

− ln(1− p̄t,w)
=⇒ Exp[X] < 1, (1)

where
(t + w) ln n

− ln(1− p̄t,w)
≈ (t + w) ln n

p̄t,w
,

for sufficiently small p̄t,w. Note that p̄t,w is determined by the probability distri-
bution P on S and the tree T .

Example 4.1. Let T be a chain on n vertices. Suppose we define

P : {0, . . . , n− 1}n −→ [0, 1]
α �→ 1/n! if α is a permutation of the n distinct symbols,

0 otherwise.

Since
p̄t,w =

t!w!
(t + w)!

,

we have a (t, w, T)-TKDP(b, n) for

b ≈ (t + w)(t + w)! ln n

t!w!
.

In the following sections, we consider two kinds of probability distributions to
generate random rows.

4.1 Independent Random Selection of Symbols

In this section, we fix a tree T on V = {0, . . . , L − 1}, and find the optimal
probability distribution such that each symbol is chosen independently; each
symbol i ∈ V ∪ {∞} is selected with probability pi, where 0 ≤ pi ≤ 1 for
i = 0, . . . , L− 1,∞, and

p0 + . . . + pL−1 + p∞ = 1.

Then the probability distribution P on S = {0, . . . , L − 1,∞}n is derived as
follows:

P : S −→ [0, 1]
α �→

∏L−1
i=0 p

wti(α)
i ,

where wti(α) is the number of i’s appearing in α. Now we have the following
lemma.

198 J. Lee and D.R. Stinson

Lemma 4.1. Let P(v) denote the path from the root 0 to v ∈ V in T and let
prt(v) denote the parent of v. Then we have

Pr[X(P, F) = 0] =
∑
v∈V

⎛⎝⎛⎝ ∑
i∈P(v)

pi

⎞⎠t

−

⎛⎝ ∑
i∈P(prt(v))

pi

⎞⎠t⎞⎠⎛⎝1−
∑

i∈P(v)

pi

⎞⎠w

,

for any disjoint P ∈ P and F ∈ F .

Proof. Note that Pr[X(P, F) = 0] is the probability that a row(sequence) pro-
tects P against F when it is chosen by the probability distribution P. Suppose
that we pick up a sequence α = (α1, . . . , αn). If α protects P against F , then
there exists j∗ ∈ P such that αj ≤ αj∗ , for all j ∈ P and αj � αj∗ , for all j ∈ F .
Since the symbol αj∗ is unique, we can define max(α, P) = αj∗ for any sequence
α that protects P against F .

If max(α, P) = v, then the positions of P should consist of symbols of the
path from the root to the vertex v, and contain at least one symbol of v. On
the other hand, the positions of F should contain no symbol from the path.
Therefore we have

Pr[max(α, P) = v] =

⎛⎝⎛⎝ ∑
i∈P(v)

pi

⎞⎠t

−

⎛⎝ ∑
i∈P(prt(v))

pi

⎞⎠t⎞⎠⎛⎝1−
∑

i∈P(v)

pi

⎞⎠w

,

for every v ∈ V . Now the lemma is true since

Pr[X(P, F) = 0] =
∑
v∈V

Pr[max(α, P) = v].

By using the above lemma, we can find optimal probability distributions for
some special cases.

L = 2. We have a unique tree T on 2 vertices. We would like to maximize
the probability to construct a (t, w, T)-TKDP(b, n), denoted M = (αi,j). In this
model, symbols 0, 1 and ∞ are selected in a independent random way with
probabilities p0, p1 and p∞, respectively. By Lemma 4.1, we have

p̄t,w = pt
0(1− p0)w + ((p0 + p1)t − pt

0)(1− p0 − p1)w.

Removing p∞, we have to solve the following problem to find an optimal prob-
ability distribution:

Maximize p̄t,w = pt
0(1− p0)w + ((p0 + p1)t − pt

0)(1− p0 − p1)w

subject to p0 + p1 ≤ 1, p0, p1 ≥ 0.

Tree-Based Key Distribution Patterns 199

Example 4.2. Let t = 2, w = 1 and n = 1000. Then the above problem is reduced
to

Maximize p̄2,1 = −p3
0 − 2p2

0p1 + p2
0 − 3p0p

2
1 + 2p0p1 − p3

1 + p2
1

subject to p0 + p1 ≤ 1, p0, p1 ≥ 0.

By elementary calculus, we can show that p̄2,1 attains its maximum p̄∗2,1 ≈ 0.204
when

p0 =
12
23

, p1 =
6
23

, and p∞ =
5
23

.

By the condition (1), there exists a (2, 1, T)-TKDP(91, 1000). On the other hand,
if we use a probabilistic method [7] for cover-free families, we can show the exis-
tence of a (2, 1)-CFF(130,1000) at best. Therefore we have about 40% improve-
ment in the number of rows.

Star-Like Trees with Many Leaves. Suppose T is a star-like tree with a
leaves (labeled from 1 to a). We choose each leaf with the same probability
p1, and set p∞ = 0 and t = 2, for simple analysis. Then we have to solve the
following problem:

Maximize p̄2,w = p2
0(1− p0)w + a((p0 + p1)2 − p2

0)(1− p0 − p1)w

subject to p0 + ap1 = 1, p0, p1 ≥ 0.

Put x = p0 and y = ap1. For a sufficiently large a, we have the approximation

p̄2,w = (1− y)2 yw + a

((
x +

y

a

)2
− x2

)(
y − y

a

)w

= (1− y)2 yw +
(

2xy +
y2

a

)(
y − y

a

)w

≈
(
(1− y)2 + 2xy

)
yw

=
(
1− y2) yw.

Since
d

dy

((
1− y2) yw

)
= (−2y) yw + w

(
1− y2) yw−1

=
(
w − (w + 2) y2) yw−1,

we see that p̄2,w attains its (approximate) maximum

p̄∗2,w ≈
2

w + 2

(
w

w + 2

)w/2

,

when y =
√

w
w+2 , or equivalently,

p0 = 1−
√

w

w + 2
, p1 =

1
a

√
w

w + 2
, (and p∞ = 0).

200 J. Lee and D.R. Stinson

By the condition (1), we know there exists a (2, w, T)-TKDP(b, n) if

b >
1
2

(w + 2)2
(

1 +
2
w

)w/2

lnn,

for sufficiently large w. It is instructive to observe that a similar method shows
the existence of (2, w)-CFF(b, n) for

b >
1
4

(w + 2)3
(

1 +
2
w

)w

lnn.

4.2 Random Permutations

In this section, we fix a probabilistic distribution, and find the optimal tree
ordering. We extend Example 4.1 to a (general) tree T on a set V = {0, . . . , L−1}
of vertices such that L + 1 ≥ n. We define a probability distribution P on
S = {0, . . . , L− 1,∞}n as follows:

P : S −→ [0, 1]
α �→ (L+1−n)!/(L+1)! if α is a permutation of an n-subset of V ∪{∞},

0 otherwise.

Then we have the following lemma.

Lemma 4.2. Let md be the number of vertices whose distance from the root is
d. Then we have

Pr[X(P, F) = 0] =

∑
d≥t−1 md

((
d+1

t

)
−
(
d
t

)) (
L−d

w

)
t!w!(

L+1
t+w

)
(t + w)!

,

for any disjoint P ∈ P and F ∈ F .

Example 4.3. Let t = 2, w = 1, and let T be a binary tree on L = 7 vertices as
seen in Fig. 1(b). Since m0 = 1, m1 = 2 and m2 = 4, we have

Pr[X(P, F) = 0] =
2 ·
(2
2

)(6
1

)
· 2! + 4 · (

(3
2

)
−
(2
2

)
)
(5
1

)
· 2!(8

3

)
· 3!

=
31
84
≈ 0.369.

by Lemma 4.2. Therefore, when we choose a sequence from S = {0, . . . , 6,∞}n

by the probability distribution P (for any n ≤ 8), the sequence protects any two
users against another single user with the probability ≈ 0.369.

Proof. Note that Pr[X(P, F) = 0] is the probability that a row(sequence) pro-
tects P against F when it is chosen by the probability distribution P. Suppose
that we choose a sequence α = (α1, . . . , αn). If α protects P against F , then
there exists j∗ ∈ P such that αj ≤ αj∗ , for all j ∈ P and αj � αj∗ , for all j ∈ F .

Tree-Based Key Distribution Patterns 201

Since the symbol αj∗ is unique, we can define max(α, P) = αj∗ for any sequence
α that protects P against F .

If max(α, P) = v, then the positions of P should consist of symbols of the
path from the root to the vertex v, and contain exactly one symbol of v. On
the other hand, the positions of F should contain no symbol from the path.
Therefore we have

Pr[max(α, P) = v] =

((
d+1

t

)
−
(
d
t

)) (
L−d

w

)
t!w!(

L+1
t+w

)
(t + w)!

,

where d ≥ t− 1 is the distance from the root to the vertex v. If d < t− 1, then
Pr[max(α, P) = v] = 0 since the symbols of P cannot be all distinct. Now the
lemma follows since

Pr[X(P, F) = 0] =
∑
v∈V

Pr[max(α, P) = v].

In order to find an optimal tree which maximizes p̄t,w, we have to solve the
following optimization problem:

Maximize p̄t,w =

∑
d≥t−1 md

((
d+1

t

)
−
(
d
t

)) (
L−d

w

)
t!w!(

L+1
t+w

)
(t + w)!

(2)

subject to
D∑

d=1

md = L− 1, (3)

D, m1, . . . mD ∈ Z+. (4)

Let

Cd =

((
d+1

t

)
−
(
d
t

)) (
L−d

w

)
t!w!(

L+1
t+w

)
(t + w)!

=
(

(d + 1)!
(d + 1− t)!

− d!
(d− t)!

)
(L− d)!

(L− d− w)!
· (L + 1− t− w)!

(L + 1)!

=
t · d!

(d + 1− t)!
· (L− d)!
(L− d− w)!

· (L + 1− t− w)!
(L + 1)!

.

Cd increases at d (as a function of d) if

Cd−1 < Cd ⇔ d <
(L + 1)(t− 1)

t + w − 1
.

Therefore Cd attains its maximum at

d∗ =
⌈

(L + 1)(t− 1)
t + w − 1

− 1
⌉

,

202 J. Lee and D.R. Stinson

and we can solve the problem (2) with an optimal solution

(D∗, m∗
1, . . . , m

∗
D) = (d∗,

d∗−1︷ ︸︸ ︷
1, . . . , 1, L− d∗),

and the optimal value

p̄∗
t,w,L =

∑d∗
d=t−1 m∗

d

((
d+1

t

)
−
(

d
t

)) (
L−d

w

)
t!w!(

L+1
t+w

)
(t + w)!

=

∑d∗
d=t−1 m∗

d ((d + 1)!/ (d + 1 − t)! − d!/ (d − t)!) ((L − d)!/ (L − d − w)!)
(L + 1)!/ (L + 1 − t − w)!

=
(L + 1 − t − w)!

(L + 1)!

d∗∑
d=t−1

m∗
dt · d!

(d + 1 − t)!
· (L − d)!
(L − d − w)!

≥ (L + 1 − t − w)!
(L + 1)!

· (L − d∗)t · d∗!
(d∗ + 1 − t)!

· (L − d∗)!
(L − d∗ − w)!

=
(L−d∗)t ·

t−1︷ ︸︸ ︷
d∗(d∗ − 1) . . . (d∗ − t+2) ·

w︷ ︸︸ ︷
(L − d∗)(L − d∗ − 1) . . . (L − d∗ − w+1)

(L+1)L . . . (L−t−w+2)︸ ︷︷ ︸
t+w

= wΩ

(
t!w!

(t + w)!

)
,

since
d∗

L
≈ t

t + w

for a sufficiently large L.
The optimal tree looks like a claw, as seen in Fig. 3. Now we conclude that

1. the probability p̄t,w based on the optimal tree is greater than the one based
on a chain (asymptotically) by a factor of w, and

2. the maximum hash depth applied to a secret seed is d∗ = �(L+1)(t−1)/(t+
w − 1)− 1�, which is relatively small for a large w.

0 1 d*-1 2

L-d* leaves

Fig. 3. Optimal tree

Tree-Based Key Distribution Patterns 203

Example 4.4. Let n = L = 1000, t = 2 and w = 100. Then we have d∗ =⌈1001
101 − 1

⌉
= 9, and p̄∗t,w,L ≥ 0.00764, while t!w!

(t+w)! = 0.00019. By the condition
(1), there exists a (2, 100, T ∗)-TKDP(91872, 1000), where T ∗ is a claw of depth
d∗ = 9.

5 Conclusion

We presented a new framework of tree-based key distribution pattern (TKDP).
We constructed TKDPs from cover-free families. We note that other combina-
torial structures such as orthogonal arrays, ordered designs and covering arrays
also yield TKDPs. (This will be addressed in later work.) We showed the ex-
istence of TKDPs by the probabilistic method. Furthermore, we reduced the
upper bounds on the minimum number of rows of (t, w, T)-TKDPs, which are
obtained from probabilistic methods, asymptotically by a factor of w as com-
pared to Leighton and Micali’s schemes by choosing optimal trees T instead
of chains. The TKDP-based schemes are expected to have applications to sen-
sor networks since they involve only hash computations in the establishment of
pairwise keys, which are known to be more energy-efficient than RSA or elliptic
curve operations.

References

1. N. Alon and J. Spencer. The Probabilistic Method, Wiley, New York, 1992.
2. N. Attrapadung, K. Kobara and H. Imai. Sequential key derivation patterns for

broadcast encryption and key predistribution schemes, Lecture Notes in Computer
Science, 2894 (2003), 374-391 (Advances in Cryptology - ASIACRYPT ’03).

3. R. Blom. An Optimal Class of Symmetric Key Generation Systems, Lecture Notes
in Computer Science, 209 (1985), 335-338 (Advances in Cryptology - EURO-
CRYPT ’84).

4. C. Blundo, A. De Santis, A. Herzberg, S. Kutten, U. Vaccaro and M. Yung.
Perfectly-secure key distribution for dynamic conferences, Lecture Notes in Com-
puter Science, 740 (1993), 148-168 (Advances in Cryptology - EUROCRYPT ’92).

5. H. Chan, A. Perrig, and D. Song. Random Key Predistribution Schemes for Sensor
Networks, In IEEE Symposium on Research in Security and Privacy, 197–213, May
2003.

6. C.J. Colbourn and J.H. Dinitz, editors. The CRC Handbook of Combinatorial De-
signs, CRC Press, Boca Raton, 1996.

7. M. Dyer, T. Fenner, A. Frieze and A. Thomason, On key storage in secure networks.
Journal of Cryptology, 8 (1995), 189-200.

8. L. Eschenauer and V.D. Gligor. A Key-Management Scheme for Distributed Sensor
Networks, In Proceedings of the 9th ACM conference on Computer and communi-
cations security, 41–47, November 2002.

9. J. Lee and D.R. Stinson. A combinatorial approach to key predistribu-
tion for distributed sensor networks. the IEEE Wireless Communications
and Networking Conference, CD-ROM, 2005, paper PHY53-06, 6–11, http://
www.cacr.math.uwaterloo.ca/ dstinson/pubs.html.

204 J. Lee and D.R. Stinson

10. J. Lee and D.R. Stinson. Deterministic key predistribution schemes for distributed
sensor networks. Lecture Notes in Computer Science 3357 (2004), 294–307 (SAC
2004 Proceedings).

11. T. Leighton and S. Micali, Secret-key agreement without public-key cryptography,
Lecture Notes in Computer Science, 773 (1994), 456-479 (Advances in Cryptology -
CRYPTO ’93).

12. D. Liu and P. Ning, Establishing Pairwise Keys in Distributed Sensor Networks,
In Proceedings of the 10th ACM Conference on Computer and Communications
Security (CCS), 52–61, October 2003.

13. C.J. Mitchell and F.C. Piper, Key storage in secure networks. Discrete Applied
Mathematics, 21 (1988), 215-228.

14. C. Padró, I. Grasia, S.M. Mollev́ı and P. Morillo, Linear key predistribution
schemes. Designs, Codes and Cryptography, 25 (2002), 281-298.

15. M. Ramkumar and N. Memon, HARPS-Hashed Random Preloaded Sub-
set Key Distribution. Cryptology ePrint Archive, Report 2003/170 (2003),
http://eprint.iacr.org/2003/170.

16. D.R. Stinson and Tran van Trung, Some new results on key distribution patterns
and broadcast encryption. Designs, Codes and Cryptography, 14 (1998), 261-279.

17. D.R. Stinson and R. Wei, Generalized cover-free families. Discrete Mathematics,
279 (2004), 463-477.

18. R. Wei, On cover-free families. Discrete Mathematics, to appear.

Provably Secure Tripartite Password Protected
Key Exchange Protocol Based on Elliptic

Curves�

Sanggon Lee1, Yvonne Hitchcock2,��, Youngho Park3, and Sangjae Moon4

1 Division of Internet Engineering, Dongseo University,
Busan 617-716, Korea
nok60@dongseo.ac.kr

2 Information Security Institute, Queensland University of Technology,
GPO Box 2434 BRISBANE 4001 Australia

hitchcock@isrc.qut.edu.au
3 School of Electronics and Electrical Engineering,

Sangju National University, Sangju-si, Gyeongsangbuk-do 742-771, Korea
yhpark@sangju.ac.kr

4 School of Electrical Engineering and Computer Science,
Kyungpook National University, Daegu 702-701, Korea

sjmoon@ee.knu.ac.kr

Abstract. Joux’s tripartite key agreement protocol is one of the
most prominent developments in the area of key agreement. Although
certificate-based and ID-based authentication schemes have been pro-
posed to provide authentication for Joux’s protocol, no provably secure
password-based one round tripartite key agreement protocol has been
proposed yet. We propose a secure one round password-based tripartite
key agreement protocol that builds on Joux’s protocol and adapts PAK-
EC scheme for password-based authentication, and present a proof of its
security.

Keywords: Tripartite key agreement; password-based authentication;
provable security; bilinear Diffie-Hellman problem; Joux’s protocol.

1 Introduction

A Key agreement protocol is the mechanism by which two or more parties can
establish a common secret key over a network controlled by an adversary. This
secret key is commonly called a session key and can then be used to create a
secure communications channel among the parties.

The situation where three or more parties share a key is often called conference
keying. The three-party (or tripartite) case is of the most practical importance,
not only because it is the most common size for electronic conferences, but also

� This work was supported by University IT Research Center Project of MIC, Korea.
�� Research funded by Australian Research Council through Discovery Project

DP0345775.

B. Preneel and S. Tavares (Eds.): SAC 2005, LNCS 3897, pp. 205–220, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

206 S. Lee et al.

because it can be used to provide a range of services for two communicating par-
ties. For example, a third party can be added to chair, or referee a conversation
for ad hoc auditing. Also, a three-party key agreement protocol can be used for
tree based group key agreement protocols [12].

Joux’s tripartite key agreement protocol [10] is one of the most prominent
developments in the area of key agreement. This protocol makes use of pairings
on elliptic curves and requires each entity to transmit only a single broadcast
messages. This should be contrasted with the obvious extension of the Diffie-
Hellman protocol to three parties, which requires two broadcasts per entity.
However, like the basic Diffie-Hellman protocol, Joux’s protocol also suffers from
man-in-the-middle attacks because it does not provide key authentication.

To transform Joux’s protocol into a secure tripartite protocol that only re-
quires one round, many protocols have been proposed, both certificate-based
[1, 17] and ID-based [18]. Another method of authentication is to make use of
a password [4, 15, 16]. Certificate-based authentication requires a certificate au-
thority and ID-based authentication requires a trusted dealer with a universal
secret key. However, password based authentication does not require any trusted
third party. No provably secure password-based one round tripartite key agree-
ment protocol has been proposed so far in the literature.

PAK-EC [15] is a two party password authenticated key agreement protocol
built on elliptic curves. Our contribution is to present a provably secure one
round password-based tripartite key agreement protocol that builds on Joux’s
protocol and adapts the PAK-EC scheme for password-based authentication.

In Sect. 2, we describe the model used in the security proof, and in Sect. 3,
the proposed protocol is described. In Sect. 4, we prove the protocol secure, and
in Sect. 5, we compare the efficiency of our protocol with another one.

2 Security Model

For our proof of security we use the model of Bellare, Pointcheval and Rog-
away [3] (which is used by Kate et al. [11] and MacKenzie [16]), and adopt
MacKenzie’s approach [16]. Our model is for implicitly authenticated key ex-
change between parties A, B and C who share a secret. The goal is for them to
engage in a protocol such that after the protocol is completed, they each hold a
session key that is known to nobody but the three of them. In the following, we
will describe our model.

Let I be a nonempty set of participants. We assume each participant U ∈ I
is labeled by a string, and we simply use U to denote this string. We will also
use A,B,C,. . . to refer to protocol participants. Each group of three participants,
A, B, C ∈ I, who will set up a secret key shared amongst themselves are assumed
to share a secret password with each other, πABC , before the protocol begins.

For a protocol P, each participant is able to execute P multiple times with dif-
ferent partners, and we model this by allowing unlimited number of instances of
each participant. Instance i (or session number i) of participant U ∈ I is denoted∏U

i . To describe the security of the protocol, we assume there is an adversary

Provably Secure Tripartite Password Protected Key Exchange Protocol 207

A that has complete control over the environment (mainly the network), and
thus provides the input to instances of participants. Formally, the adversary is
a probabilistic algorithm with a distinguished query tape. Participants respond
to queries written to this tape according to P; the allowed queries are based on
and extend the model of Bellare et al. [3]. Oracles exist in one of several possible
states: Accept, Reject, or * . The state * means no decision has yet been reached.
In our protocol, an oracle accepts only after receipt of two correctly formatted
messages from the two other participants with whom the oracle wishes to estab-
lish a shared key, and the transmission of one message. When an oracle accepts,
we assume it accepts holding key K that is κ bits in length.

Send (U, i, M): Causes message M to be sent to instance
∏U

i . The instance
computes what the protocol says to, the oracle’s state is updated, and any
outgoing messages are given to A. If this query causes

∏U
i to accept or

terminate, this will also be shown to A. To initiate a session between three
participants, the adversary should send a message containing the names of
two participants to an unused instance of the other participant.

Execute(A,i,B,j,C,l): Causes P to be executed to completion between
∏A

i ,
∏B

j

and
∏C

l (where A,B ,C ∈ I), and outputs the transcript of the execution.
This query captures the intuition of a passive adversary who simply eaves-
drops on the execution of P.

Reveal(U,i): Causes the output of the session key held by
∏U

i .
Test(U,i): Causes

∏U
i to flip a bit b. if b = 1 the session key ski

U is output;
otherwise, a string is drawn uniformly from the space of session keys and
output. A Test query may be asked at any time during the execution of P,
but may only be asked once.

Corrupt(U): This query returns any passwords that U holds.
Partnering: A participant instance that accepts holds a partner-id pid, session-

id sid, and a session key sk. Then instances
∏A

i ,
∏B

j , and
∏C

l (where A, B, C
∈ I) are said to be partnered if all of them accept, they hold (pidA, sidA, skA),
(pidB, sidB, skB) and (pidC , sidC , skC), respectively, with pidA = 〈B, C〉,
pidB = 〈A, C〉, pidC = 〈A, B〉, sidA = sidB = sidC , and skA = skB = skC ,
and no other instance accepts with session-id equal to sidA, sidB or sidC .

Freshness: We define two notions of freshness, as in [3]. Specifically, an instance∏U
i is nfs-fresh (fresh with no requirement for forward secrecy) unless either

(1) a Reveal(U,i) query occurs, (2) a Reveal(U ′, j) query occurs where∏U ′

j is a partner of
∏U

i , or (3) a Corrupt(U ′) query occurs for any party U ′

(for convenience, when we do not make a requirement for forward secrecy,
we simply disallow Corrupt queries). An instance

∏U
i is fs-fresh (fresh

with forward secrecy) unless either (1) a Reveal(U , i) query occurs, (2)
a Reveal(U ′, j) query occurs where

∏U ′

j is the partner of
∏U

i , or (3) a
Corrupt(U ′) query occurs for any party U ′ before the Test query and a
Send(U , i ,M) query occurs for some string M.

We now formally define the authenticated key exchange (ake) advantage of the
adversary against protocol P. Let Succake

P (A) be the event that A makes a

208 S. Lee et al.

single Test query directed to some fresh instance
∏U

i that has terminated, and
eventually outputs a bit b′, where b′ = b for the bit b that was selected in the
Test query. The ake advantage of A attacking P is defined to be

Advake
P (A)

def
= 2Pr[Succake

P (A)]− 1.

The following fact is easily verified.

Fact 1. Pr
(
Succake

P (A)
)
=Pr

(
Succake

P ′ (A)
)
+ε⇔ Advake

P (A)=Advake
P ′ (A)+2ε.

3 Password and Pairings-Based Tripartite Key Exchange

We briefly describe some background on pairings on elliptic curves and the BDH
assumption, and then present our new tripartite PPK (password protected key
exchange) protocol based on Joux’s protocol [10].

3.1 Bilinear Pairings and the BDH Assumption

We use the same notation as in [5]. Let G1 be a cyclic additive group generated
by Q, whose order is a prime q, and G2 be a cyclic multiplicative group of the
same order q. We assume that the discrete logarithm problem (DLP) in both G1
and G2 is hard. Let e : G1 ×G1 → G2 be a pairing which satisfies the following
conditions (where W, X, Z ∈ G1):

1. Bilinear: e(W, X+Z) = e(W, X)·(W, Z) and e(W +X, Z) = e(W, Z)·(X, Z);
2. Non-degenerate: e(Q, Q) is a generator of G2 ;
3. Computability: e(P, Q) can be efficiently computed for all P, Q ∈ G1.

The Weil or Tate pairing on an elliptic curve can be used to derive e [8, 14].

Definition 1 (Bilinear Diffie-Hellman (BDH) Assumption). Let G1 and
G2 be as defined above with generators Q and e(Q, Q) respectively. Let
acceptable(υ) be a function that returns true if and only if υ ∈ G1. For three
values X, Y, and Z, if acceptable(Y), and acceptable(Z), and X = aQ,
let BDH(X, Y, Z) = BDH(X, Z, Y) = BDH(Y, X, Z) = BDH(Y, Z, X) =
BDH(Z, X, Y) = BDH(Z, Y, X) = e(Y, Z)a. (If X = aQ, Y = bQ, and Z = cQ,
then by the definition BDH(X, Y, Z) = e(Q, Q)abc.) Let D be an algorithm with
input (X,Y,Z). Let

AdvBDH
G1G2

(D)
def
= Pr

[
(a, b, c) R← Z∗

q ; X ← aQ; Y ← bQ; Z ← cQ

: BDH(X, Y, Z) ∈ D(X, Y, Z)
]

Let AdvBDH
G1G2

(t, n) = maxD
{
AdvBDH

G1G2
(D)
}
, where the maximum is taken over all

adversaries of time complexity at most t that output a list containing at most n
elements of G2. The BDH assumption states that for t and n polynomial in the
security parameter κ, AdvBDH

G1G2
(t, n) is negligible.

Provably Secure Tripartite Password Protected Key Exchange Protocol 209

3.2 One Round Tripartite PPK Based on Joux’s Protocol

Figure 1 presents a new tripartite PPK protocol based on Joux’s protocol. In the
protocol, fi(A, B, C, π) is defined to be a function generating a random point
on elliptic curve E from A, B, C, and π, as specified by MacKenzie [15], who
adapted it from IEEE Standard 1363 [9, Appendix A.11.1].

The protocol can be converted to one round by having A, B and C com-
pute and broadcast m, μ and υ respectively to begin the protocol. Each party
then waits for the other two parties’ messages and carries out its remaining
steps (i.e. B and C now carry out their protocol steps in the same order as
is currently specified for A). Such a reordering does not affect the security
proof.

We use the terminology “in a Participant U Action i query to
∏U

j ” to
mean “in a Send query to

∏U
j that results in the Participant U Action i

procedure being executed.” The possible actions with their associated inputs
and outputs are shown in Table 1, where A is the initiator, B is the second
participant and C is the third participant.

Precomputation by each party:
λA = r · f1(A,B, C, π); λB = r · f2(A,B, C, π); λC = r · f3(A, B, C, π).

Abbreviations: acc = acceptable; pid = partner ID.

Input: B, C, π A B Input: A,C, π;
pidA = 〈B, C〉 pidB = 〈A,C〉

1. a
R
← Zq ; α = aQ; 2. Abort if ¬acc(m)

m ← α + λA; α ← m − λA;
4. Abort if ¬acc(μ) b

R
← Zq ;β = bQ;

Abort if ¬acc(υ) μ ← β + λB

β ← μ − λB; C 5. Abort if ¬acc(υ)
γ ← υ − λC ; Input: A,B, π; pidC = 〈A, B〉 γ ← υ − λC ;
σ ← e(β, γ)a; 3. Abort if ¬acc(m); α ← m − λA; σ ← e(α, γ)b;

Abort if ¬acc(μ); β ← μ − λB ;
c

R
← Zq; γ ← cQ; υ ← γ + λC ;

σ ← e(α, β)c;

1. 〈A, m〉
2. 〈B,μ〉

1.
〈A, m〉

3.
〈C, υ〉

2.
〈B, μ〉

3.
〈C, υ〉

Fig. 1. Tripartite PPK protocol. Session ID is sid = A||B||C||m||μ||υ. Shared session
key is sk = H(〈A,B, C, m, μ, υ, σ, λA, λB , λC〉).

Table 1. Inputs and outputs for the participant queries

A (initiator) B (second participant) C (third participant)
Input Output Input Output Input Output

Action 0 〈B, C〉 〈A, m〉 〈A, m〉 〈B, μ〉 〈A,m, B, μ〉 〈C, v〉
Action 1 〈B,μ, C, υ〉 〈C, v〉

210 S. Lee et al.

Let κ be the cryptographic security parameter with |q| = κ. We use an elliptic
curve E over the integers modulo p with coefficients a, b in standard Weiestrass
form and #E = rq, with gcd(r, q) = 1. (Currently, |p| = 162 and |q| = 160 would
be considered reasonably secure [9]). The complete specification is below:

sid← pid← sk ← ε; acc← term← FALSE
if state = READY and (U ∈ I AND U is the initiator) then

{Participant A Action 0} 〈A〉 ← U ; 〈B, C〉 ← msg− in where B, C ∈ I;
a

R← Zq; α = aQ; λA = r ·f1(A, B, C, π); m← α+λA; state← 〈A, a, m, λA〉;
msg − out← 〈A, m〉; return (msg − out, acc, term, sid, pid, sk, state)

elseif state = READY and (U ∈ I AND U is the second participant) then
{Participant B Action 0} 〈B〉 ← U ; 〈A, m〉 ← msg−in, where A ∈ I and
acceptable(m); λA = r · f1(A, B, C, π); α ← m ← λA; b

R← Zq; β = bQ;
λB = r · f2(A, B, C, π); μ ← β + λB ; state ← 〈A, a, m, B, b, μ, λA, λB〉,
msg − out← 〈B, μ〉; return (msg − out, acc, term, sid, pid, sk, state)

elseif state = READY and (U ∈ I AND U is the third participant) then
{Participant C Action 0} 〈C〉 ← U ; 〈A, m, B, μ〉 ← msg − in, where
A, B ∈ I and acceptable(m) and acceptable(μ); λA = r · f1(A, B, C, π);
α ← m − λA; λB = r · f2(A, B, C, π); β ← μ − λB; c

R← Zq; γ = cQ;
λC = r · f3(A, B, C, π); υ ← γ + λC ; σ ← e(α, β)c; state ← DONE;
msg − out ← 〈C, υ〉; sid ← A||B||C||m||μ||υ; pid ← 〈A, B〉; sk ←
H(〈A, B, C, m, μ, υ, σ, λA, λB, λC〉); acc← term← TRUE; return (msg −
out, acc, term, sid, pid, sk, state)

elseif state = 〈A, a, m, λA〉 and (U ∈ I AND U is the initiator) then
{Participant A Action 1} 〈B, μ, C, υ〉 ← msg − in, where B, C ∈ I
and acceptable(μ) and acceptable(υ); λB = r · f2(A, B, C, π); λC =
r · f3(A, B, C, π); β ← μ − λB; γ ← υ − λC ; σ ← e(β, γ)a; state ←
DONE; msg − out ← ε; sid ← A||B||C||m||μ||υ; pid ← (〈B, C〉); sk ←
H(〈A, B, C, m, μ, υ, σ, λA, λB, λC〉); acc← term← TRUE; return (msg −
out, acc, term, sid, pid, sk, state)

elseif state = 〈A, a, m, B, b, μ, λA, λB〉 and (U ∈ I AND U is the second partic-
ipant) then
{Participant B Action 1} 〈C, υ〉 ← msg − in, where C ∈ I and ac-
ceptable(υ); λC = r · f3(A, B, C, π); γ ← υ − λc; σ ← e(α, γ)b; state ←
DONE; msg − out ← ε; sid ← A||B||C||m||μ||υ; pid ← 〈A, C〉; sk ←
H(〈A, B, C, m, μ, υ, σ, λA, λB, λC〉); acc← term← TRUE; return (msg −
out, acc, term, sid, pid, sk, state)

4 Security of the Protocol

Here we prove that the tripartite PPK protocol is secure, in the sense that an
adversary attacking the system cannot determine session keys of fresh instances
with greater advantage than that of an online dictionary attack.

Theorem 2. Let P be the protocol described in Fig. 1 (and formally described
above), using groups G1 and G2 of order q, with a password dictionary of size N .

Provably Secure Tripartite Password Protected Key Exchange Protocol 211

Fix an adversary A that runs in time t, and makes nse, nex, and nre queries of
type Send, Execute, and Reveal, respectively, and nro queries to the random
oracles. Let top be the time required to perform a scalar multiplication and a
pairing of elliptic curve point in G1 and an exponentiation in G2. Then for
t′ = O

(
t + (n3

ro + nse + nex)top

)
:

Advake
P (A) =

2nse

N
+ O

(
AdvBDH

G1G2

(
t′, n3

ro

)
+

(nse + nex)(nro + nse + nex)
q

)
Proof. The proof proceeds by introducing a series of protocols P0, P1, · · · , P8
related to P , with P0 = P . In P8, A is reduced to a simple online guessing attack
that admits straightforward analysis. For each i from 1 to 8, we will prove that
the advantage of A attacking protocol Pi−1 is at most negligibly more than the
advantage of A attacking protocol Pi. An informal description of the protocols
as well as a brief description in brackets of the basis for each proof follows:

P0 The original protocol P .
P1 If honest parties choose m, μ, or υ values used previously in the protocol, it

halts and A fails. (The probability of collision of nonces is negligible.)
P2 The protocol answers Send and Execute queries without making any ran-

dom oracle queries. Subsequent queries by A are backpatched, as much as
possible, to be consistent with responses to Send and Execute queries.
(This is consistent with P1 unless A guesses the output of fi(A, B, C, πABC)
queries correctly and uses the guesses in H(·) queries (for i ∈ {1, 2, 3}).
However, the probability of correctly guessing the outputs is negligible.)

P3 If an H(·) query is made, it is not checked for consistency against Execute
queries. That is, instead of backpatching to maintain consistency with an
Execute query, the protocol responds with a random output. (An instance
of the BDH problem can be embedded in the m μ and υ values so that if
backpatching would have been necessary, H(·) query inputs can be used to
solve the BDH problem.)

P4 If a correct password guess is made against any participant instance (deter-
mined by an H(·) query using the correct inputs to compute a session key),
the protocol halts and A automatically succeeds. (This is obvious.)

P5 If the adversary makes three password guesses against a Participant A in-
stance, the protocol halts and A fails. (This is shown by embedding an
instance of the BDH problem in the fi queries and A’s output. Inputs to
the three H(·) queries used to find the session keys can be used to solve the
BDH problem.)

P6 and P7 are similar to P5, but for B and C respectively, instead of A.
P8 The protocol uses an internal password oracle that holds all passwords and

only accepts simple queries that test whether a given password is correct
password for a given three parties. The test for correct password guesses
(from P4) is changed so that whenever the adversary makes a password
guess, a query is submitted to the oracle to determine if it is correct. (By
inspection P7 and P8 are indistinguishable.)

212 S. Lee et al.

We assume without loss of generality that nro and nse + nex are both at least
1. We make the standard assumption that random oracles are built “on the
fly,” that is, each new query to a random oracle is answered with a fresh random
output, and each query that is not new is answered consistently with the previous
queries. We also assume that the fj(·) query is answered in the following way:

In an fj(A, B, C, π) query for j ∈ {1, 2, 3}, output φj [A, B, C, π]Q,

where φj [A, B, C, π] R←− Zq. Also put ψj [A, B, C, π] = rφj [A, B, C, φ],
λA ← rφ1[A, B, C, π]Q, λB ← rφ2[A, B, C, π]Q, and λC ← rφ3[A, B, C, π]Q.
Denote ψj [A, B, C, π] and φj [A, B, C, π] as ψj [π] and φj [π] respectively. Thus
ψj [π] = rφj [π].

We now define some events, corresponding to the adversary making a pass-
word guess against a participant instance, and against three participant instances
that are partnered in an Execute query. In each case, we also define an associ-
ated value for the event, and we note that the associated value is actually fixed
by the protocol before the event occurs.

testpw (U, i, V, W, π): This is the event that the adversary makes a password
guess against

∏U
i with pidU = 〈V, W 〉. Let {U, V, W} = {A, B, C} where A is

initiator, B is the second participant and C is the third participant. For some
m, μ, υ, λA, λB, and λC , A makes an H(〈A, B, C, m, μ, υ, σ, λA, λB, λC〉)
query, and if U = A, A makes a Participant U Action 0 query with
input 〈B, C〉 and output 〈A, m〉, and a Participant U Action 1 query
with input 〈B, μ, C, υ〉 to

∏U
i . Otherwise, if U = B, A makes Partici-

pant U Action 0 query with input 〈A, m〉 and output 〈B, μ〉, and a Par-
ticipant U Action 1 query with input 〈C, υ〉 to

∏U
i . Otherwise, since

U = C, A makes Participant U Action 0 query with input 〈A, m, B, μ〉
and output 〈C, υ〉 to

∏U
i . A also makes an f1(A, B, C, π) query returning

φ1[π]Q, an f2(A, B, C, π) query returning φ2[π]Q, an f3(A, B, C, π) query
returning φ3[π]Q, where σ = BDH(α, β, γ), m = α + λA, μ = β + λB ,
υ = γ + λC , λA = ψ1[π]Q, λB = ψ2[π]Q, λC = ψ3[π]Q, acceptable
(m), acceptable (μ) and acceptable (υ). The event’s associated value is
ski

U = H(〈A, B, C, m, μ, υ, σ, λA, λB , λC〉).
testexecpw (A, i, B, j, C, l, π): This is the event that the adversary makes a

password guess against three instances that are partnered in an Execute
query. For some m, μ, υ, λA, λB and λC , A makes an H(〈A,B,C,m,μ,υ,σ,λA,
λB , λC〉) query, and previously A made an Execute(A, i, B, j, C, l) query
that generated m, μ, υ, and f1(A, B, C, π), f2(A, B, C, π), and f3(A, B, C, π)
queries returning φ1[π]Q, φ2[π]Q, and φ2[π]Q, where λA = ψ1[π]Q, λB =
ψ2[π]Q, λC = ψ3[π]Q, σ = BDH(α, β, γ), m = α + λA, μ = β + λB , and
υ = γ + λC . The associated value of this event is ski

A = skj
B = skl

C =
H(〈A, B, C, m, μ, υ, σ, λA, λB, λC〉).

correctpw: A testpw(U, i, V, W, πUV W) event occurred, for some U, i, V, W,
where πUV W is the password shared between U, V, and W .

correctpwexec: A testexecpw(A, i, B, j, C, l, πABC) event occured for A, i,
B, j, C, and l, where πABC is the password shared between A, B, and C.

Provably Secure Tripartite Password Protected Key Exchange Protocol 213

triplepw(U): A testpw(U, i, V, W, π) event, a testpw(U, i, V, W, π̂) event and a
testpw(U, i, V, W, π̃) occurred, for some U, i, V, W, π, π̂, and π̃ with π �= π̂ �=
π̃ �= π.

Protocol P1. Let E1 be the event that an m value generated in a Participant
A Action 0 or Execute query is equal an m value generated in a previous
Participant A Action 0 or Execute query, an m value sent as input in a
previous Participant B Action 0, or Participant C Action 0 query, or m
in a previous fi(·) query (made by the adversary). Let E2 be the event that a μ
value generated in a Participant B Action 0 or Execute query is equal to a
μ value generated in a previous Participant B Action 0 or Execute query,
a μ sent as input in a previous Participant A Action 1 or Participant C
Action 0, or μ value in a previous fj(·) query (made by the adversary). Let
E3 be the event that a υ value generated in a Participant C Action 0 or
Execute query is equal to a υ value generated in a previous Participant C
Action 0 or Execute query, a υ sent as input in a previous Participant A
Action 1 or Participant B Action 1 query, or υ value in a previous fj(·)
query (made by the adversary). Let E = E1 ∨ E2 ∨ E3. Let P1 be a protocol
that is identical to P0 except that if E occurs, the protocol aborts (and thus the
adversary fails).

Theorem 3. For an adversary A,

Advake
P0

(A) ≤ Advake
P1

(A) +
O
(
(nse + nex)(nro + nse + nex)

)
q

.

Proof. Consider the last m, μ, or υ value generated. There is a probability of
no more than nro+nse+nex

q that this value has previously been generated in a
Send, Execute or Random oracle query. There are nse + nex values that are
required to be unique if event E is not to occur. Hence the probability of any

of the m, μ, or υ values not being unique is
O
(
(nse+nex)(nse+nex+nro)

)
q , and the

theorem follows. ��

Protocol P2. Let P2 be a protocol that is identical to P1 except that Send and
Execute queries are answered without making any random oracle queries, and
subsequent random oracle queries by the adversary are backpatched, as much as
possible, to be consistent with the responses to the Send and Execute queries.
Specifically, the queries in P2 are changed as follows:

Execute (A, i, B, j, C, l): m ← τ [i, A]Q, where τ [i, A] R←− Zq, μ ← τ [j, B]Q,

where τ [j, B] R←− Zq, υ ← τ [l, C]Q, where τ [l, C] R←− Zq and ski
A ← skj

B ←
skl

C
R←− {0, 1}κ .

Participant A Action 0 to
∏A

i : m← τ [i, A]Q, where τ [i, A] R← Zq.
Participant B Action 0 to ΠB

j : μ← τ [j, B]Q, where τ [j, B] R← Zq.

Participant C Action 0 to ΠC
l : υ ← τ [l, C]Q, where τ [l, C] R← Zq, and

skl
C

R← {0, 1}κ.

214 S. Lee et al.

Participant A Action 1 to
∏A

i : if
∏C

l is paired with instance
∏A

i and
∏B

j ,
ski

A ← skj
B ← skl

C , else if
∏C

l is paired with instance
∏A

i , ski
A ← skl

C , else
if
∏B

j is paired with instance
∏A

i and have a session key skj
B, ski

A ← skj
B ,

else if this query causes a testpw(A, i, B, C, πABC) event to occur, set ski
A

to the value associated with that event, else set ski
A

R← {0, 1}κ.
Participant B Action 1 to

∏B
j : if

∏C
l is paired with instance

∏A
i and

∏B
j ,

ski
A ← skj

B ← skl
C , else if

∏C
l is paired with instance

∏B
j , skj

B ← skl
C , else

if
∏A

i is paired with instance
∏B

j and has a session key ski
A, skj

B ← ski
A,

else if this query causes a testpw(B, j, A, C, πABC) event to occur, set skj
B

to the value associated with that event, else set skj
B

R← {0, 1}κ.
H(〈A, B, C, m, υ, σ, λA, λB, λC〉): if this H(·) causes a testpw (A, i, B, C, πABC),

testpw (B, j, A, C, πABC), testpw (C, l, A, B, πABC), or testexecpw
(A, i, B, j, C, l, πABC) event to occur, output the associated value of that
event, else output a random value from {0, 1}κ.

Note that we can determine whether the appropriate event occurred using the
φ1[π], φ2[π], φ3[π], and τ values. Also note that by P1 and the fact that a
participant instance that is paired with any participant C instance copies the
session key of the participant C instance (or, if there is no paired participant
C instance, then it copies the key of its partner, if such a partner exists), there
will never be more than one associated value that needs to be considered in the
H(·) query.

Theorem 4. For any adversary A, Advake
P1

(A) = Advake
P2

(A) + O(nro)
q .

Proof. In P1, participant instance
∏C

l creates a session key skl
C that is uniformly

chosen from {0, 1}κ, independent of anything that previously occurred, since the
H(·) query that determines skl

C is new. Also in P1, for any participant A and B
instances

∏A
i and

∏B
j that have had an Action 1 query, either:

1. exactly one instance
∏C

l is paired with
∏A

i and
∏B

j , in which case
skl

C = ski
A = skj

B, or
2. only one instance

∏C
l is paired with

∏A
i or

∏B
j , in which case ski

A = skl
C

or skj
B = skl

C , or
3. no instance

∏C
l is paired with

∏A
i and/or

∏B
j , and

∏A
i and

∏B
j may or

may not be paired with each other. In both of these cases, either a testpw
(A, i, B, C, πABC) or testpw (B, j, A, C, πABC) event occurs, and ski

A or skj
B

is the value associated with that event (i.e. the output of the previous H(·)
query associated with that event) or ski

A and skj
B are uniformly chosen from

{0, 1}κ, independent of anything that previously occurred, since the H(·)
query that determines ski

A and skj
B is new.

Finally, for any H(〈A, B, C, ·, ·, ·, ·, λA, λB , λC〉) query, either (1) it causes a
testpw (A, i, B, C, πABC), testpw (B, j, A, C, πABC), testpw (C, l, A, B, πABC),

Provably Secure Tripartite Password Protected Key Exchange Protocol 215

or testexecpw (A, i, B, j, C, l, πABC) event to occur, in which case the output
is the associated value of that event, (2) λA = r · f1(A, B, C, πABC), λB = r ·
f2(A, B, C, πABC), and λC = r · f3(A, B, C, πABC), but the adversary has not
made f1(A, B, C, πABC), f2(A, B, C, πABC), and f3(A, B, C, πABC) queries, or
(3) the output of H(·) query is uniformly chosen from {0, 1}κ, independent of any-
thing that previously occurred, since this is a new H(·) query.

If the second case for the H(·) query described above occurs, P1 may be
inconsistent with P2, since the key associated with the relevant session may
need to have been returned by P2, instead of a random value. However, the
probability of the adversary correctly guessing the value of λA, λB, and λC in an
H(·) query is less than 1

q . Thus the total probability of an H(·) query causing
the second case above is bounded by nro

q . If this case never occurs, then P2 is
consistent with P1. ��

Protocol P3. Let P3 be identical to P2 except that in an H(〈A, B, C, m, μ, υ, σ,
λA, λB , λC〉) query, there is no testexecpw(A, i, B, j, C, l, πABC) event check.

Theorem 5. For any A running in time t, there is a t′ = O
(
t+(nro +nex)top

)
such that Advake

P2
(A) ≤ Advake

P3
(A) + 2AdvBDH

G1G2
(t′, nro).

Proof. Let E be the event that a correctpwexec event occurs. if E does not
occur, then P2 and P3 are indistinguishable. Let ε be the probability that
E occurs when A is running against protocol P2. Then Pr(Succake

P2
(A)) ≤

Pr(Succake
P3

(A)) + ε, and thus by Fact 1, Advake
P2

(A) ≤ Advake
P3

(A) + 2ε.

Now we construct algorithm D to solve BDH by running A on a simulation
of the protocol. Given (X, Y, Z), D simulates P3 for A with these changes.

1. In an Execute (A, i, B, j, C, l) query, set m← X + ρi,AQ, μ← Y + ρj,BQ,

υ ← Z + ρl,CQ, where ρi,A, ρj,B, ρl,C
R← Z1.

2. When A finishes, for every H(〈A, B, C, m, μ, υ, σ, λA, λB , λC〉) query, where
m, μ, and υ were generated in an Execute(A, i, B, j, C, l) query and a
f1(A, B, C, π)query returned φ1[π]Q and an f2(A, B, C, π) query returned
φ2[π]Q, an f3(A, B, C, π) query returned φ3[π]Q, and λA ← rφ1[π]Q, λB ←
rφ2[π]Q, λC ← rφ3[π]Q, add
σe(X, Z)ψ3[π]−ρl,C e

(
υ , (ρj,B − ψ2[π])X + (ρi,A − ψ1[π])Y

)−1·
e
(
υ, (ρj,B−ψ2[π])Q

)ψ1[π]−ρi,A
e
(
(ρj,B−ψ2[π])X+(ρi,A − ψ1[π])Y, ψ3[π]Q

)
·

e
(
(ρj,B − ψ2[π])Q, (ρj,A − ψ1[π])Q

)ψ3[π]

to the list of possible values for BDH(X, Y, Z), where ψi[π] = rφi[π], for
i = 1, 2, 3.

This simulation is perfectly indistinguishable from P3 until E occurs, and in this
case, D adds the correct BDH(X, Y, Z) to the list. After E occurs the simulation
may be distinguishable from P3, but E still occurs with probability ε. We assume
A still follows the appropriate time and query bounds (or that the simulator
stops A from exceeding them). D creates a list of size nro, and its advantage is

216 S. Lee et al.

ε. Let t′ be the running time of D, and note that t′ = O
(
t+(nro +nex)top

)
. The

theorem follows from the fact that AdvBDH
G1G2

(D) ≤ AdvBDH
G1G2

(
t′, nro

)
. ��

Protocol P4. Let P4 be a protocol that is identical to P3 except that if cor-
rectpw occurs then the protocol halts and the adversary automatically succeeds.
(P3 already checks for a correctpw event, in the Participant A or B Action
1 query to determine if the session key has already been determined, and in the
H(·) query, to see if the output has already been determined.)

Theorem 6. For any adversary A, Advake
P3

(A) ≤ Advake
P4

(A).

Proof. Obvious. ��

Note that in P4, until correctpw occurs, an H(〈A, B, C, ·, ·, ·, ·, ·, ·, ·〉) query will
output a value uniformly chosen from {0, 1}κ, and the session key for an unpaired
client instance will be uniformly chosen from {0, 1}κ.

Protocol P5. Let P5 be a protocol that is identical to P4 except that if
triplepw(A) occurs, the protocol halts and the adversary fails. We assume
that when a query is made, the test for triplepw(A) occurs before the test for
correctpw.

Theorem 7. For any adversary A running in time t, there is a t′ = O
(
t +

(n3
ro + nse + nex)top

)
such that Advake

P4
(A) ≤ Advake

P5
(A) + 9AdvBDH

G1G2
(t′, n3

ro).

Proof. Let ε be the probability that the triplepw(A) event occurs when A is
running against protocol P4. Then Pr

(
Succake

P4
(A)
)
≤ Pr

(
Succake

P5
(A)
)
+ ε, and

thus by Fact 1, Advake
P4

(A) ≤ Advake
P5

(A) + 2ε.
Now we construct algorithm D to solve BDH by running A on a simulation

of the protocol. Given (X, Y, Z), D simulates P4 for A with these changes:

1. In an f2(A, B, C, π) query and f3(A, B, C, π) query, set
f2(A, B, C, π) = ψ2[π]Y + ψ′

2[π]Q, where ψ′
2[π] R←− Zq,

f3(A, B, C, π) = ψ3[π]Z + ψ′
3[π]Q, where ψ′

3[π] R←− Zq,
and (ψ2[π], ψ3[π]) ∈R {(0, 1), (2, 0), (0, 2)}.

2. In a Participant A Action 0 query to a participant instance
∏A

i with
input 〈B, C〉, set m← X + ρi,AQ.

3. Tests for correctpw (from P4) are not made.
4. For every triple of queries H(〈A,B,C,m,μ,υ,σ,λ1 ,λ2,λ3〉),

H(〈A,B,C,m,μ,υ,σ̂,λ̂1,λ̂2,λ̂3〉), H(〈A,B,C,m,μ,υ,σ̃,λ̃1,λ̃2,λ̃3〉) where ac-
ceptable(σ), acceptable(σ̂) and acceptable(σ̃) are true, and there
was a Participant A Action 0 query to a participant instance

∏A
i with

input 〈B, C〉 and output 〈A, m〉, a Participant A Action 1 query to∏A
i with input 〈B, μ, C, υ〉, an fk(A, B, C, π) query that returned λk, an

fk(A, B, C, π̂) query that returned λ̂k, and an fk(A, B, C, π̃) query that
returned λ̃k, for k ∈ {1, 2, 3}, add

Provably Secure Tripartite Password Protected Key Exchange Protocol 217(
σ2σ̂−1σ̃−1e(μ, υ)r(2φ1[π]−φ1[π̂]−φ1[π̃])e(X, μ)r(2φ3[π]−φ3[π̂]−φ3[π̃])

e(X, υ)r(2φ2[π]−φ2[π̂]−φ2[π̃])e(Y, υ)−2r2(φ1[π]−φ1[π̂])e(Z, μ)−2r2(φ1[π]−φ1[π̃])

e(X, Y)−2r2(φ3[π]−φ3[π̂])e(X, Z)2r2(φ2[π]−φ2[π̃])e(Y, Z)2r2(rφ1[π]−ρi,A)

e(Q, μ)rρi,A(2φ3[π]−φ3[π̂]−φ3[π̃])−r2(2φ1[π]φ3[π]−φ1[π̂]φ3[π̂]−φ1[π̃]φ3[π̃])

e(Q, υ)rρi,A(2φ2[π]−φ2[π̂]−φ2[π̃])−r2(2φ1[π]φ2[π]−φ1[π̂]φ2[π̂]−φ1[π̃]φ2[π̃])

e(Q, X)−r2(2φ2[π]φ3[π]−φ2[π̂]φ3[π̂]−φ2[π̃]φ3[π̃])

e(Q, Y)−2r2ρi,A(φ3[π]−φ3[π̂])+2r3(φ1[π]φ3[π]−φ1[π̂]φ3[π̂])

e(Q, Z)−2r2ρi,A(φ2[π]−φ2[π̃])+2r3(φ1[π]φ2[π]−φ1[π̄]φ2[π̃])

e(Q, Q)−r2ρi,A(2φ2[π]φ3[π]−φ2[π̂]φ3[π̂]−φ2[π̃]φ3[π̃])

e(Q, Q)r3(2φ1[π]φ2[π]φ3[π]−φ1[π̂]φ2[π̂]φ3[π̂]−φ1[π̄]φ2[π̃]φ3[π̃])
) 1

2r2

to the list of possible values of BDH(X, Y, Z).

This simulation is perfectly indistinguishable from P4 until a triplepw(A) event
or a correctpw event occurs. If a triplepw(A) event occurs, then with proba-
bility 2

9 it occurs for three passwords π, π̂, and π̃ with:

{(ψ2[π], ψ3[π]), (ψ̂2[π], ψ̂3[π]), (ψ̃2[π], ψ̃3[π])} = {(1, 1), (0, 2), (2, 0)},
in this case D adds the correct BDH(X, Y, Z) to the list. If a correctpw event
occurs before a triplepw(A) event occurs, then the triplepw(A) event would
never have occurred in P4, since P4 would halt. Note that in this case, the
simulation may be distinguishable from P4, but this does not change the fact
that a triplepw(A) event will occur with probability at least ε in the simulation.
However, we do make the assumption that A still follows the appropriate time
and query bounds (or at least that the simulation can stop A from exceeding
these bounds), even if A distinguished the simulation from P4.
D creates a list of size less than n3

ro, and its advantage is 2
9ε. Let t′ be the

running time of D, and note that t′ = O
(
t +
(
n3

ro + nse + nex

)
top

)
. Then the

theorem follows from the fact that AdvBHD
G1G2

(D) ≤ AdvBHD
G1G2

(t′, n3
ro). ��

Protocol P6. Let P6 be a protocol that is identical to P5 except that if
triplepw(B) occurs, the protocol halts and the adversary fails. We assume
that when a query is made, the test for triplepw(B) occurs before the test for
correctpw.

Theorem 8. For any adversary A running in time t, there is a t′ = O
(
t +

(n3
ro + nse + nex)top

)
such that Advake

P5
(A) ≤ Advake

P6
(A) + 9AdvBHD

G1G2

(
t′, n3

ro

)
Proof. Omitted due to lack of space, but similar to that of Theorem 7. ��
Protocol P7. Let P7 be a protocol that is identical to P6 except that if
triplepw(C) occurs, the protocol halts and the adversary fails. We assume
that when a query is made, the test for triplepw(C) occurs before the test for
correctpw.

Theorem 9. For any adversary A running in time t, there is a t′ = O
(
t +

(n3
ro + nse + nex)top

)
such that Advake

P6
(A) ≤ Advake

P7
(A) + 9AdvBHD

G1G2
(t′, n3

ro)

Proof. Omitted due to lack of space, but similar to that of Theorem 7. ��

218 S. Lee et al.

Protocol P8. Let P8 be a protocol that is identical to P7 except that there is a
new internal oracle (i.e., not available to the adversary) that handles passwords,
called a password oracle. This oracle generates all passwords during initializa-
tion. Then it accepts queries of the form testpw(π) and returns TRUE if π is
correct, and FALSE otherwise. The protocol is changed only in the method for
determining correctpw. Specifically, to test if correctpw occurs, whenever a
testpw (A, i, B, C, π), a testpw (B, j, A, C, π) or a testpw (C, l, A, B, π) event
occurs, a testpw(π) query is made to password oracle to see if π is correct.

Theorem 10. For any adversary A, Advake
P7

(A) = Advake
P8

(A).

Proof. By inspection, P7 and P8 are perfectly indistinguishable. ��
The probability of the adversary A succeeding in P8 is bounded by:
Pr(Succake

P8
(A)) ≤ Pr(correctpw)+Pr(Succake

P8
(A)|¬correctpw) Pr(¬correctpw).

First, since there are at most 2nse queries to the password oracle, and passwords
are chosen uniformly from dictionary of size N, Pr(correctpw) ≤ 2nse

N .
Now we compute Pr(Succake

P8
(A)|¬correctpw). If correctpw does not occur,

then A succeeds by making a Test query to a fresh instance
∏U

i and guessing
the bit used in that Test query. We will show that the view of the adversary is
independent of ski

U , and thus the probability of success is exactly 1
2 .

First we examine Reveal queries. Recall that since
∏U

i is fresh, there could
be no Reveal(U, i) query, and if

∏U ′

i is partnered with
∏U

i , no Reveal(U ′, j)
query. Second note that since sid includes m and μ and υ values, if more than
three participant instances accept with the same sid, A fails (see P1). Thus the
output of Reveal queries is independent of ski

U .
Second we examine H(·) queries. As noted in the discussion following the

description of P4, an H(·) query returns random values independent of anything
that previously occurred. Thus any H(·) queries that occurs after ski

U is set
are independent of ski

U . But consider the following cases. (1) if U is the third
participant, ski

U is chosen independently of anything that previously occurred
(see P2). (2) if U is the first or second participant and is unpaired, ski

U is chosen
independently of anything that previously occurred (see the discussion after P4).
(3) if U is the first or second participant and is paired, then ski

U ← skj
U ′ ← skl

U ′′ ,
where

∏U ′

j and
∏U ′′

l are the partners of
∏U

i and U ′′ is the third participant and
skl

U ′′ is chosen independently of anything that previously occurred (see P2). This
implies that the adversary’s view is independent of ski

U , and thus the probability
of success is exactly 1

2 . Since Pr(¬correctpw) = 1− Pr(correctpw), we have:

Pr(Succake
P8

(A)) ≤ Pr(correctpw) +

Pr
(
Succake

P8
(A)|¬correctpw

)
Pr
(
¬correctpw

)
≤ Pr(correctpw) +

1
2
(
1− Pr(correctpw)

)
≤ 1

2
+

Pr(correctpw)
2

≤ 1
2

+
nse

N
.

Therefore Advake
P7
≤ 2nse

N . Theorem 2 follows from this and Theorems 3–10. ��

Provably Secure Tripartite Password Protected Key Exchange Protocol 219

5 Complexity Comparison

In this section we compare our protocol with Bresson et al.’s [7], which we call
BCP. Because BCP is a group protocol, we fixed the group size to 3 for the
comparison. Table 2 shows the total cost of computation and communication
required. However, the three (symmetric) encryptions and three decryptions us-
ing the password as the key in BCP are not shown. Parings are the most ex-
pensive type of computation, and normally scalar multiplication on an elliptic
curve is faster than exponentiation and finding a square root. We assume that
each pairing computation is approximately equal to three exponentiations [2, 8].
Considering this assumption, the sum of pairings and exponentiations of our
proposed protocol is about equal to the number of exponentiations of Bresson
et al.’s protocol. Our protocol requires extra computations, i.e. 3 scalar multipli-
cations and 18 square root computations. However, these can be pre-computed.
In terms of message length, our protocol is better than BCP.

Table 2. The complexity of protocols

Protocols Computation Communication

Pairings
Scalar
Multipli-
cations

Exponent-
iations

SQRT* Passes
Message
Length**

Precomp-
utation

Proposed 3 3 3 18 3 3|p| Y
Bresson et. al.’s - - 12 3 9|g| N

* Assume one application of fi(A, B, C, π) loops twice in MacKenzie’s algorithm [15].
** |p| is the bit size of finite field over which the elliptic curve is defined and |g| is the
bit size of the finite field over which the DLP is defined. When the base field is GF(2),
normally |p| ≈ 250 and |g| ≈ 1024.

6 Conclusion

In this paper we proposed a provably secure one round password-based tripartite
key agreement protocol, which builds on Joux’s protocol and adapts the PAK-
EC scheme for password-based authentication. We proved the security of the
proposed protocol using the random oracle model. It is better than an existing
protocol by Bresson et al. in terms of message length. Although it requires extra
computation compared to Bresson et al.’s, the extra part can be pre-computed.

Acknowledgements. We thank Colin Boyd and Juan Manuel González Nieto for
many helpful suggestons and discussions. We also thank the anonymous referees
of SAC 2005 for their comments.

References

1. S. Al-Riyami and K. Paterson, “Tripartite authenticated key agreement protocols
from pairings,” IMA Conference on Cryptography and Coding, LNCS vol. 2898,
Springer-Verlag, pp.332-359. 2003.

220 S. Lee et al.

2. P. Barreto, H. Kim, and M. Scott, “Efficient algorithms for pairing-based cryp-
tosystems,” CRYPTO 2002, LNCS 2442, Springer-Verlag, pp.354-368, 2002.

3. M. Bellare, D. Pointcheval, and P. Rogaway, “Authenticated key exchange secure
against dictionary attacks.” In EUROCRYPT 2000, LNCS vol. 1807, pp.139-155,
Springer-Verlag, 2000.

4. S. M. Bellovin and M. Merritt, “Encrypted key exchange: Password-based protocols
secure against dictionary attacks,” In IEEE Symposium on Research in Security
and Privacy, pp.72-84, 1992.

5. S. Blake-Wilson, D. Johnson, and A. Menezese, “Key agreement protocols and
their security analysis.” In proceedings of the sixth IMA International Conferences
on Cryptography and Coding, LNCS vol.1355, pp. 30-45, Springer-Verlag, 1997.

6. S. Blake-Wilson and A. Menezese, “Authenticated Diffie-Hellman key agreement
protocols.” In S. Tacares and H. Meijer, editors, Selected Areas in Cryptography
(SAC’98), LNCS 1556, pp. 339-361, Springer-Verlag, 1998.

7. E. Bresson, O. Chevassut and D. Pointcheval, ”Group Diffie-Hellman key exchange
secure against dictionary attacks,” Proceedings of Asiacrypt ’02, LNCS vol. 2501,
Springer-Verlag, pp.497-514, 2002.

8. S. Galbraith, K. Harrison and D. Soldera, “Implementing the Tate pairing,” Algo-
rithm Number Theory Symposium – ANTS V, LNCS vol. 2369, Springer-Verlag,
pp. 324-337, 2002.

9. IEEE, IEEE1363 Standard Specifications for public key cryptography, 2000.
10. A. Joux, “A one round protocol for tripartite Deffie-Hellman.” In W. Bosma, editor,

Proceedings of Algorithmic Number Theory Symposium – ANTS IV, LNCS vol.
1838, pp.385-394, Springer-Verlag, 2000.

11. J. Kate, R. Ostrovsky, ans M. Young, “Practical password-authenticated key ex-
change provably secure under standard assumptions.” In EUROCRYPT 2001,
LNCS vol. 2045, pp.475-494, 2001

12. Y. Kim, A. Perrig and G. Tsudik, “Communication-efficient group key agreement,”
IFIP SEC 2001, Jun 2001.

13. L. Law, A. Menezes, M. Qu, J. Solinas, and S.A. Vanstone, “An efficient protocol
for authenticated key agreement.” Technical Report CORR 98-05, Department of
C & O, University of Waterloo, 1998.

14. L. Law, A. Menezes, M. Qu, J. Solinas, and S.A. Vanstone, “An efficient protocol
for authenticated key agreement.” Designs, Codes and Cryptography, vol. 28, no.
2, pp.119-134, 2003.

15. P. MacKenzie, “More efficient password-authenticated key exchange.” CT–RSA
2001, LNCS vol. 2020, pp. 361-377, Springer-Verlag 2001.

16. P. MacKenzie, The PAK suit: Protocols for password-authenticated key exchange.
DIMACS Technical report 2002-46, October 2002.

17. K. Shim, ”Efficient one-round tripartite authenticated key agreement protocol from
Weil pairing,” Electronic Letters 39, pp.208-209, 2003.

18. F. Zhang, S. Liu and K. Kim, “ID-based one-round authenticated tripartite key
agreement protocol with pairings,” Cryptology ePrint archive, Report 2002/122.

An Access Control Scheme for Partially Ordered
Set Hierarchy with Provable Security

Jiang Wu1,� and Ruizhong Wei2,��

1 School of Computer Science, University of Waterloo,
200 University Ave. West, Waterloo, ON, N2L 3G1, Canada

2 Department of Computer Science, Lakehead University,
955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada

Abstract. In a hierarchical structure, an entity has access to another
if and only if the former is a superior of the later. The access control
scheme for a hierarchy represented by a partially ordered set (poset) has
been researched intensively in the past years. In this paper, we propose
a new scheme that achieves the best performance of previous schemes
and is provably secure under a comprehensive security model.

1 Introduction

In many situations, the hierarchical systems can be represented by a partially
ordered set (poset). In such a hierarchy, all users are allocated into a number of
disjoint sets of security classes p1, p2, · · · , pn. A binary relation≤ partially orders
the set P = {p1, p2, · · · , pn, }. The users in pj have access to the information
held by users in pi if and only if the relation pi ≤ pj held in the poset (P ,≤).
If pi ≤ pj, pi is called a successor of pj, and pj is called a predecessor of pi. If
there is no pk such that pi ≤ pk ≤ pj , the pi is called an immediate successor of
pj , and pj is called an immediate predecessor of Ci.

A straightforward access control scheme for poset hierarchy is to assign each
class with a key, and let a class have the keys of all its successors. The information
belonging to a class is encrypted with the key assigned to that class, therefore the
predecessors have access to the information of their successors. This is awkward
because the classes in higher hierarchy have to store a large number of keys. In
the past two decades, many schemes based on cryptography have been proposed
to ease the key management in the hierarchy. Generally, these schemes are aimed
to fully or partly achieve the following goals:

– Support any arbitrary poset. It is desirable that any arbitrary poset is sup-
ported. Some schemes only support special cases of poset such as a tree.
Such schemes are considered restrictive in application.

– Be secure under attacks. The schemes are supposed to withstand attacks.
For example, a user may try to derive the key of a class that is not his/her
successor. The schemes should be secure under all possible attacks.

� Research supported by NSERC PGS.
�� Research supported by NSERC grant 239135-01.

B. Preneel and S. Tavares (Eds.): SAC 2005, LNCS 3897, pp. 221–232, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

222 J. Wu and R. Wei

– Require small storage space. Any scheme needs a user in a class to store a
certain amount of secret or public parameters for key derivation. All the
schemes tried to reduce the amount of parameters stored.

– Support dynamic poset structures. The structure of a hierarchy may change.
Classes may be added to or deleted from the hierarchy. In these cases the
users in the classes (not only the ones being added and deleted) need to
update the parameters they store. It is desirable that when a change takes
place, the number of classes involved in updating their parameters is as small
as possible.

Several hierarchical access control schemes have been proposed in the last two
decades. [1, 5, 4] are direct access schemes based on the RSA problem. In a direct
access scheme, a predecessor can derive the key of a successor directly from the
public parameters of that successor. The disadvantages of this group of schemes
include large storage spaces and lack of dynamics. [6, 10, 11] are indirect access
schemes. In these schemes, to derive the key of a successor, a predecessor has to
derive the key of each class between them. The indirect schemes achieve smaller
storage spaces and better dynamics than the direct schemes. However, none
of the above schemes provided formal security proof under a secure model that
covers all possible cryptographic attacks, except in [10] such a model was defined
and a proof sketch was given. Yet [9] indicated that a rigorous proof can not be
obtained directly from this proof sketch; some possible attack scenarios are not
covered by the proof sketch.

In this paper, we propose a new scheme that is superior to the previous
schemes in that it provides both good performance and provable security, and
is easy to implement. When we talk about security of the hierarchical access
control scheme, we refer to the following security model:

Definition 1. A hierarchical access control scheme for poset hierarchy is secure
if for any group of classes in the poset, it is computationally infeasible to derive
the key of any class that is not a member of that group, nor a successor of any
member of that group.

Our scheme is an indirect access scheme, which has similar performance in stor-
age and dynamics to other indirect access schemes. The significant part of our
scheme is its formal security proof under this comprehensive security model,
which the previous indirect access schemes did not provide.

The rest of this paper is organized as follows: Section 2 presents the scheme,
Section 3 analyzes its security, Section 4 compares the performance of the schemes,
and Section 5 concludes this paper.

2 Proposed Scheme

2.1 Preliminary

Poset Representation. For a given hierarchy structure, its corresponding
poset (P ,≤) can be represented by a Hasse diagram, which is a graph whose

An Access Control Scheme for Partially Ordered Set Hierarchy 223

nodes are classes of P and the edges correspond to the ≤ relation (in the rest
of the paper we use “node” and “class” interchangeably)[7]. For distinct pj ∈ P
and pi ∈ P , an edge from pj to pi is present if pi ≤ pj and there is no pk ∈ P
such that pi ≤ pk and pk ≤ pj . When pi ≤ pj, pj is drawn higher than pi.
Because of that, the direction of the edges is not indicated in a Hasse diagram.
Fig. 1 shows an example of poset represented as a Hasse diagram.

1

2 3

4 5 6 7

8 9 10 11 12

Fig. 1. Example of a Hasse diagram

Auxiliary Function. We construct a function that will be used in our scheme
below. Let p = 2q + 1 where p, q are all odd primes. Let G be the subgroup of
Z∗

p of order q. We define a function f : G→ [1, q] as follows:

f(x) =

{
x; x ≤ q

p− x; x > q
(1)

For any x ∈ Z∗
p, if x ∈ G, then −x /∈ G. So the above function is a bijection. If x

is a random variable uniformly distributed on G, f(x) is uniformly distributed
on [1, q].

2.2 Key Management

The key management of the scheme consists of two procedures: the key genera-
tion and the key derivation.

Key Generation

1. The central authority (CA) chooses a group Z∗
p, where p = 2q + 1, p and q

are both large primes. G is the subgroup of Z∗
p of order q.

2. From the top-level classes, the CA traverses the Hasse diagram of the hi-
erarchy with width-first algorithm. For each node pi, run the following key
assignment algorithm to assign its public parameters gi, hi,j and a secret
key ki:

224 J. Wu and R. Wei

Algorithm 1. Key Assignment
set gi to be a unique generator of G
if pi does not have any immediate predecessor then

set ki to be a number chosen from [1, q] at random
else if pi has only one immediate predecessor pj then

ki = f(gkj

i)
else

{comment: pi has more than one immediate predecessors}
let X be the set of keys of pi’s immediate predecessors
x =

∏
xi∈X xi

ki = f(gx
i)

for all xj ∈ X do
hi,j = g

x/xj

i

end for
end if

For example, the nodes in Fig. 1 will be assigned with the following secret key
and public parameters:

Node ID secret key public parameters
1 k1 -
2 k2 = f(gk1

2) g2

3 k3 = f(gk1
3) g3

4 k4 = f(gk2k3
4) h4,2 = gk3

4 , h4,3 = gk2
4

5 k5 = f(gk2
5) g5

6 k6 = f(gk3
6) g6

7 k7 = f(gk3
7) g7

8 k8 = f(gk4
8) g8

9 k9 = f(gk4k5
9) h9,4 = gk5

9 , h9,5 = gk4
9

10 k10 = f(gk4k5
10) h10,4 = gk5

10 , h10,5 = gk4
10

11 k11 = f(gk6k7
11) h11,6 = gk7

11 , h11,7 = gk6
11

12 k12 = f(gk7
12) g12

KeyDerivation. When a node needs to compute the key of one successor, it finds
a path from itself to the successor in the Hasse diagram of the hierarchy. Starting
from its immediate successor in the path, the node goes through the path, and
computes ki of every successor pi along the path with the following algorithm:

Algorithm 2. Key Derivation
if pi has only one predecessor pj then

ki = f(gkj

i)
else

{comment: pj is the predecessor of pi that is on the path}
ki = f(hkj

i,j)
end if

An Access Control Scheme for Partially Ordered Set Hierarchy 225

For example, in Fig. 1, node 1 is to derive the key of node 4. It finds the path 1
→ 2 → 4, and does the following computations:

k2 = f(gk1
2)

k4 = f(hk2
4,2)

The correctness of the scheme is easy to be verified by reviewing the proce-
dures in key generation and key derivation.

3 Security Analysis

3.1 Preliminary

On the group G used in our scheme, two standard assumptions, the discrete
logarithm (DL) assumption and decisional Diffie-Hellman (DDH) assumption
are believed to hold [2]. Another assumption, named group decisional Diffie-
Hellman (GDDH) assumption is proven to hold based on DDH assumption on
G too [8, 3]. To be concrete, let g be a generater of G, a, b, c be random variables
uniform on [1, q], X be a set of random variables uniform on [1, q], l be the binary
length of q. Suppose |X | is polynomially bounded by l. Let

∏
(S) indicate the

product of all elements in the set S. For any probabilistic polynomial time (in l)
algorithms A, any polynomial Q, for l large enough, the three assumptions can
be formally expressed as follows:

DL assumption:

Pr[A(g, ga) = a] <
1

Q(l)
(2)

DDH assumption:

|Pr[A(g, ga, gb, gab) = 1]− Pr[A(g, ga, gb, gc) = 1]| < 1
Q(l)

(3)

GDDH assumption:

|Pr [A(g, g
∏

(X), g
∏

(S)|S ⊂ X) = 1]− Pr[A(g, gc, g
∏

(S)|S ⊂ X) = 1]| < 1
Q(l)

(4)

We give a simple example to explain GDDH intuitively. Suppose Alice, Bob
and Cathy are to negotiate a shared secret key among them, while all their
conversation are open to Eve. Alice chooses a secret number a for herself, in the
same way Bob chooses b and Cathy chooses c. They also choose a number g that
is known to all including Eve. First Alice computes and announces ga, Bob gb,
Cathy gc, then Alice computes and announces (gb)a, Bob (gc)b, Cathy (ga)c.
Now each of Alice, Bob and Cathy can computes gabc separately and use it as
their common secret key. The GDDH assumption says that, while Eve knows
g, ga, gb, gc, gab, gac, gbc, she cannot compute gabc; moreover, given with gabc and
a random number, Eve cannot even tell which one is the key and which one is
random. In this example, X = {a, b, c}, {

∏
(S)|S ⊂ X} = {a, b, c, ab, ac, bc}.

226 J. Wu and R. Wei

For convenience, we use the notation from [8] to simplify the expression of
(3) and (4), as well as other expressions that are of much greater length in the
following parts. When DDH assumption holds, we say that the probabilistic
distributions (g, ga, gb, gab) and (g, ga, gb, gc) in (3) are polynomially indistin-
guishable, and rewrite (3) as

(g, ga, gb, gab) ≈poly (g, ga, gb, gc).

Similarly, if GDDH assumption holds, we say (g, g
∏

(X), g
∏

(S)|S ⊂ X) and
(g, gc, g

∏
(S)|S ⊂ X) in (4) are indistinguishable, and rewrite (4) as

(g, g
∏

(X), g
∏

(S)|S ⊂ X) ≈poly (g, gc, g
∏

(S)|S ⊂ X).

3.2 Security Proof

The security of our scheme is based on the above three assumptions. In the
following parts, we prove the scheme is secure under Definition 1. We suppose
the number of nodes in P is polynomially bounded by l (the binary length of |G|),
and all the algorithms considered below are polynomial time (in l) algorithms.

We choose an arbitrary node pt ∈ P and suppose its secret key is kt. Let A
be the set of predecessors of pt. We need to prove that, even when all the nodes
in P −A−{pt} conspire, it is computationally intractable for them to derive kt.

We group the set P−A−{pt} into three subsets: B the set of nodes in P−A
which do not have predecessors in P−A, and which is not pt; D the set of nodes
that are immediate successors of pt; R = P −A− {pt} − B −D. The followings
relations between B, D and R are direct from their definitions:

– B ∪D ∪R = P −A− {pt}
– B ∩D = ∅, R∩ B = ∅ and R∩D = ∅
– the nodes in R are successors of the nodes in B, or D, or both

An example of the above partition is as follows: in Fig. 1, suppose node 4
is the one we choose as the node pt, then A = {1, 2, 3},B = {5, 6, 7},D =
{8, 9, 10},R = {11, 12}.

First we consider when all nodes in B conspire, what information about kt

they can learn. Suppose the generator assigned to node pt is gt, X is the set of
secret keys of the immediate predecessors of node pt. Let

∏
(S) be the product

of all elements in the set S. Let x =
∏

(X), then kt = gx
t . The public parameters

of pt are

{gt, g
∏

(S)
t |S ⊂ X and |S| = |X | − 1}

The nodes bi ∈ B with generators gbi , i ∈ [1, n] may share the same predeces-
sors with node pt, thus may hold a subset of {g

∏
(S)

bi
|S ⊆ X} as their public

parameters or secret keys. We assume that

{gbi, g
∏

(S)
bi

|S ⊆ X , i ∈ [1, n]}

An Access Control Scheme for Partially Ordered Set Hierarchy 227

is all the information possibly held by nodes in B that is related to kt. So the
public parameters of pt, plus the information pertaining to kt held by B is a
subset of

{gt, g
∏

(S)
t |S ⊂ X} ∪ {gbi, g

∏
(S)

bi
|S ⊆ X , i ∈ [1, n]}

The following result formally shows that even all nodes in B conspire, with the
above information, they can not distinguish kt from a random number on [1, q].

Theorem 1. Suppose DDH and GDDH assumptions hold on the group G. Let
c be a random variable uniform on [1, q]. The two distributions

Vbn =
(
gx

t , {gt, g
∏

(S)
t |S ⊂ X}, {gbi , g

∏
(S)

bi
|S ⊆ X , i ∈ [1, n]}

)
and

V ′
bn

=
(
gc

t , {gt, g
∏

(S)
t |S ⊂ X}, {gbi , g

∏
(S)

bi
|S ⊆ X , i ∈ [1, n]}

)
are indistinguishable.

Proof. From GDDH assumption we have(
gx

t , {gt, g
∏

(S)
t |S ⊂ X}

)
≈poly

(
gc

t , {gt, g
∏

(S)
t |S ⊂ X}

)
A polynomial time algorithm can choose z uniformly from [1, q] at random, and
reduce the above GDDH distribution pair to

Vb =
(
gx

t , {gt, g
∏

(S)
t |S ⊂ X}, gz

t , (gz
t)x, {(gz

t)
∏

(S)|S ⊂ X}
)

V ′
im =

(
gc

t , {gt, g
∏

(S)
t |S ⊂ X}, gz

t , (gz
t)c, {(gz

t)
∏

(S)|S ⊂ X}
)

respectively. It follows that
Vb ≈poly V ′

im. (5)

Let c1 be a random variable uniform on [1, q]. Since zc1 is independent of z and
c, from DDH, we have

(gt, g
z
t , gc

t , g
zc
t) ≈poly (gt, g

z
t , gc

t , g
zc1
t)

A polynomial time (in l) algorithm can choose X that is a set of random variables
uniform on [1, q], and whose order is polynomially bounded by l, and reduce the
above DDH distribution pair to

V ′
im =

(
gc

t , {gt, g
∏

(S)
t |S ⊂ X}, gz

t , (gz
t)c, {(gz

t)
∏

(S)|S ⊂ X}
)

V ′′
im =

(
gc

t , {gt, g
∏

(S)
t |S ⊂ X}, gz

t , (gz
t)c1 , {(gz

t)
∏

(S)|S ⊂ X}
)

respectively. It follows that
V ′

im ≈poly V ′′
im (6)

228 J. Wu and R. Wei

Similarly, by choosing z and c uniformly from [1, q] at random, a polynomial
time (in l) algorithm can reduce the GDDH distribution pair(

gc1
t , {gt, g

∏
(S)

t |S ⊂ X}
)
≈poly

(
gx

t , {gt, g
∏

(S)
t |S ⊂ X}

)
.

to
V ′′

im =
(
gc

t , {gt, g
∏

(S)
t |S ⊂ X}, gz

t , (gz
t)c1 , {(gz

t)
∏

(S)|S ⊂ X}
)

V ′
b =

(
gc

t , {gt, g
∏

(S)
t |S ⊂ X}, gz

t , (gz
t)x, {(gz

t)
∏

(S)|S ⊂ X}
)

.

respectively. It follows that
V ′′

im ≈poly V ′
b (7)

From (5), (6) and (7), We conclude

Vb ≈poly V ′
b

i.e., (
gx

t , {gt, g
∏

(S)
t |S ⊂ X}, gz

t , {(gz
t)
∏

(S)|S ⊆ X}
)

≈poly

(
gc

t , {gt, g
∏

(S)
t |S ⊆ X}, gz

t , {(gz
t)
∏

(S)|S ⊆ X}
)

.

By choosing zi, i ∈ [1, n] uniformly from [1, q] at random, a polynomial time
algorithm can reduce Vb and V ′

b to(
gx

t , {gt, g
∏

(S)
t |S ⊂ X}, {gzzi

t , (gzzi
t)

∏
(S)|S ⊆ X , i ∈ [1, n]}

)
(
gc

t , {gt, g
∏

(S)
t |S ⊂ X , {gzzi

t , (gzzi
t)

∏
(S)|S ⊆ X , i ∈ [1, n]}

)
It follows that

Vbn ≈poly V ′
bn

.

This completes our proof ��
Then we consider when the nodes in B and D conspire, what information about
kt they can learn. The nodes di ∈ D assigned with generator gdi , i ∈ [1, m] may
hold a subset of the following information pertaining to kt:

{gdi, g
kt

di
|i ∈ [1, m]}.

The following theorem shows that even all nodes in B and D conspire, with the
information they hold, they can not derive kt:
Theorem 2. It is intractable for any polynomial time (in l) algorithm to derive
gx

t from

I = {gt, g
∏

(S)
t |S ⊂ X} ∪ {gbi , g

∏
(S)

bi
|S ⊆ X , i ∈ [1, n]} ∪ {gdi, g

f(gx
t)

di
|i ∈ [1, m]},

i.e., for any polynomial time (in l) algorithm A, any polynomial Q, if l is suffi-
ciently large, then

Pr [A (I) = f(gx
t)] <

1
Q(l)

.

Proof. For convenience, let

V = {gt, g
∏

(S)
t |S ⊂ X} ∪ {gbi, g

∏
(S)

bi
|S ⊆ X , i ∈ [1, n]}.

An Access Control Scheme for Partially Ordered Set Hierarchy 229

Step 1. Assume that there exist a polynomial time (in l) algorithm B, a poly-
nomial Q1 and a number L, for l > L

Pr[B(V , gd, g
f(gx

t)
d) = f(gx

t)] ≥ 1
Q1(l)

(8)

where gd is a generator of G.
Let c be a random variable uniform on [1, q], Q2(l) = 2Q1(l). Suppose l is

large enough. We consider the following two cases

– Case 1: Pr[B(V , gd, g
f(gc

t)
d) = f(gc

t)] ≥ 1
Q2(l)

Notice that c is a random variable independent of V . Let z ∈ [1, q], we define
the following algorithm C(gd, g

z
d):

Algorithm 3. C(gd, g
z
d)

choose a generator of G as gt

choose a set of n distinct generators of G as B
choose a set of random variables uniform on [1, q] as X
compute V with gt, B and X
return B(V, gd, gz

d)

The algorithm C is a polynomial time (in l) algorithm. Since z = f(gc
t) for

some c ∈ [1, q] (though we do not know c), we have

Pr[C(gb, g
z
b) = z] = Pr[B(V , gd, g

f(gc
t)

d) = f(gc
t)]

≥ 1
Q2(l)

.

This contradicts the DL assumption.
– Case 2: Pr[B(V , gd, g

f(gc
t)

d) = f(gc
t)] < 1

Q2(l)
From this inequality and (8), we have

Pr[B(V , gd, g
f(gx

t)
d) = f(gx

t)]− Pr[B(V , gd, g
f(gc

t)
d) = f(gc

t)]

≥ 1
Q1(l)

− 1
Q2(l)

=
1

Q2(l)
(9)

Algorithm 4. D(V , z)
choose a generator of G as gb

if B(V, gd, g
f(z)
d) = f(z) then

return 1
else

return 0
end if

Let z ∈ G, we define the algorithm D(V , z) in Algorithm 4.

230 J. Wu and R. Wei

D is a polynomial time (in l) algorithm. From (9), we have

Pr[D(V , gx
t) = 1]− Pr[D(V , gc

t) = 1]

= Pr[B(V , gd, g
f(gx

t)
d) = f(gx

t)]− Pr[B(V , gd, g
f(gc

t)
d) = f(gc

t)]

≥ 1
Q2(l)

.

That means D can distinguish the two distributions:

(V , gx
t) and (V , gc

t) .

This contradicts to Theorem 1.

Combining Case 1 and Case 2, we conclude that for any polynomial time (in l)
algorithm B, any polynomial Q, for sufficiently large l,

Pr

[
B(V , gd, g

f(gx
t)

d) = f(gx
t)
]

<
1

Q(l)
(10)

Step 2. Assume there exist a polynomial time (in l) algorithm A, a polynomial
Q and a number L such that for l > L,

Pr

[
A
(
V , {gdi, g

f(gx
t)

di
|i ∈ [1, m]}

)
= f(gx

t)
]
≥ 1

Q(l)
.

Let B(V , gd, g
f(gx

t)
d) = A(V , {gzi

d , g
zif(gx

t)
d |i ∈ [1, m]}) where z1, · · · , zm are ran-

dom variables uniform on [1, q], and m is polynomially bounded by l. We have

Pr

[
B(V , gd, g

f(gx
t)

d) = f(gx
t)
]

= Pr

[
A(V , {gzi

d , (gzi

d)f(gx
t)|i ∈ [1, m]} = f(gx

t)
]

≥ 1
Q(l)

This contradicts (10). Therefore for any polynomial time (in l) algorithm A, any
polynomial Q, for sufficiently large l,

Pr

[
A
(
V , {gdi, g

f(gx
t)

di
|i ∈ [1, m]}

)
= f(gx

t)
]

<
1

Q(l)
,

i.e.,

Pr [A (I) = f(gx
t)] <

1
Q(l)

.

This completes our proof. ��

Finally, we consider when all the nodes in B, D, and R conspire, whether they
are able to derive kp. Since all the nodes in R are successors of B or D or both,
the information held by R can be derived by a polynomial time (in l) algorithm
from the information held by B and D. Thus if B ∪ D ∪ R can derive kp, then
B ∪ D can derive kp. This contradicts to Theorem (2). Therefore we conclude
that the scheme is secure under the security model defined in Definition (1).

An Access Control Scheme for Partially Ordered Set Hierarchy 231

4 Performance Analysis

4.1 Storage Requirement

Our scheme is an indirect access scheme, and has similar storage requirement
with other indirect schemes. In a hierarchy with N nodes where each node has
at most M direct predecessors, an indirect scheme assigns each node with one
secret key and at most M public parameters. For the direct schemes, to store
the public information of one node, the maximum storage is about N numbers,
or the product of the N numbers. In a real situation, N would be much greater
than M , and N will increase as the scale of the hierarchy increases, while M
usually keeps limited, therefore the indirect schemes tend to require less storage
than the direct schemes.

4.2 Dynamics

As an indirect hierarchical access scheme, the operation of adding, deleting a
node or link in our scheme is similar to other indirect access schemes. When
a node is added or deleted, or a link is added to or deleted from a node, only
the nodes that are successors of that node will be affected, i.e., the secret key
and public parameters of those nodes need to be updated. The direct schemes
are quite different. In Akl-Taylor scheme, when a node is added or deleted,
all the nodes except for its successors have to update their secret keys and
public parameters. In Harn-Lin scheme, when a node is added or deleted, all its
predecessors will be impacted. In addition, for these two schemes, to prevent a
deleted node to access its former successors, the keys of these successors have to
be changed too. In a practical hierarchy, there are much more low level nodes
than high level nodes, and it is more likely that the low level nodes will change.
Therefore in an indirect scheme, less nodes are affected than in a direct scheme
when the hierarchy structure changes. The indirect schemes are more suitable
than direct schemes for a dynamic hierarchy.

4.3 Performance Summary

In summary, in view of performance in storage and dynamics, although our
scheme does not improve previous indirect schemes, it inherits their perfor-
mances, which are better than those of the direct schemes.

5 Conclusion

In this paper we proposed a new access control scheme for poset hierarchy. This
scheme is concrete and practical for implementation. It supports any arbitrary
poset, achieves the best performance of previous schemes in storage and dynam-
ics, and provides a formal security proof under a comprehensive security model.
None of the previous schemes achieved all the properties as fully as ours does.
Our scheme provides a solution with both practical and theoretical significance
for the hierarchical access control problem.

232 J. Wu and R. Wei

Acknowledgment

The authors wish to thank David Wagner and Kristian Gjøteen for their helpful
discussions on the security proof of the scheme. The authors also would like to
thank the anonymous referees for their useful comments.

References

1. Selim G. Akl and Peter D. Taylor. Cryptographic solution to a problem of access
control in a hierarchy. ACM Trans. Comput. Syst., 1(3):239–248, 1983.

2. Dan Boneh. The decision diffie-hellman problem. In ANTS-III: Proceedings of
the Third International Symposium on Algorithmic Number Theory, pages 48–63.
Springer-Verlag, 1998.

3. Emmanuel Bresson, Olivier Chevassut, and David Pointcheval. The group diffie-
hellman problems. In Selected Areas in Cryptography, 9th Annual International
Workshop, SAC 2002, volume 2595 of Lecture Notes in Computer Science, pages
325–338. Springer, 2003.

4. L. Harn and H.-Y. Lin. A cryptographic key generation scheme for multilevel data
security. Comput. Secur., 9(6):539–546, 1990.

5. Stephen J. MacKinnon, Peter D. Taylor, Henk Meijer, and Selim G. Akl. An
optimal algorithm for assigning cryptographic keys to control access in a hierarchy.
IEEE Trans. Comput., 34(9):797–802, 1985.

6. Ravi S. Sandhu. Cryptographic implementation of a tree hierarchy for access
control. Inf. Process. Lett., 27(2):95–98, 1988.

7. Steven Skiena. Implementing Discrete Mathematics: Combinatorics and Graph
Theory With Mathematica. Perseus Books, 1990.

8. Michael Steiner, Gene Tsudik, and Michael Waidner. Diffie-hellman key distribu-
tion extended to group communication. In CCS ’96: Proceedings of the 3rd ACM
conference on Computer and communications security, pages 31–37. ACM Press,
1996.

9. Jiang Wu. An access control scheme for partially ordered set hierarchy with prov-
able security. Master’s thesis, Lakehead University, Thunder Bay, ON, Canada,
2005.

10. Y. Zheng, T. Hardjono, and J. Pieprzyk. The sibling intractable function family
(siff): notion, construction and applications. IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Science., E76-A(1):4–13, 1993.

11. Sheng Zhong. A practical key management scheme for access control in a user
hierarchy. Computers & Security, 21(8):750–759, 2002.

Breaking a New Hash Function Design Strategy
Called SMASH�

Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen

Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology, Austria

{Norbert.Pramstaller, Christian.Rechberger,
Vincent.Rijmen}@iaik.tugraz.at

Abstract. We present a collision attack on SMASH. SMASH was pro-
posed as a new hash function design strategy that does not rely on the
structure of the MD4 family. The presented attack method allows us to
produce almost any desired difference in the chaining variables of the
iterated hash function. Due to the absence of a secret key, we are able
to construct differences with probability 1. Furthermore, we get only few
constraints on the colliding messages, which allows us to construct mean-
ingful collisions. The presented collision attack uses negligible resources
and we conjecture that it works for all hash functions built following the
design strategy of SMASH.

Keywords: SMASH, hash functions, cryptanalysis, collision.

1 Introduction

A lot of progress has been made during the last 10 years in the cryptanalysis of
dedicated hash functions such as MD4, MD5, SHA-0, SHA-1 [2, 4, 5, 10, 12]. In
2004 and 2005, Wang et al. announced that they have broken the hash functions
MD4, MD5, RIPEMD, HAVAL-128, SHA-0, and SHA-1 [13, 14]. Due to these
recent developments we will have to work on the design and analysis of new hash
functions in the future.

A proposal for a new design strategy for dedicated hash functions, called
SMASH, has been presented at FSE 2005 by Lars Knudsen [7]. SMASH is a
hash function design-strategy that does not follow the structure of the MD4
family. As an example, two specific instances were presented: SMASH-256 and
SMASH-512. SMASH-256 and SMASH-512 can be seen as alternatives to SHA-
256 and SHA-512 proposed by NIST [9].

We present here a collision attack on SMASH that works independently of the
choice that is made for the compression function in the hash function. The attack
is based on an extension of the forward prediction property already observed in
the design document. Furthermore, we exploit the absence of a secret key to
construct differentials with probability 1. We are able to construct almost any
� The work in this paper has been supported by the Austrian Science Fund (FWF),

project P18138.

B. Preneel and S. Tavares (Eds.): SAC 2005, LNCS 3897, pp. 233–244, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

234 N. Pramstaller, C. Rechberger, and V. Rijmen

difference in the chaining variables and we have only few constraints on the
colliding messages. This fact allows us to produce meaningful collisions.

We present the collision attack on SMASH in three constructive steps with the
goal to break the two specific instances SMASH-256 and SMASH-512. In order
to explain the attack we also define two simple instances of SMASH, referred to
as SMASH-ORD3 and SMASH-ORDy.

Firstly, we apply the attack on a simple instance of SMASH, referred to
as SMASH-ORD3, by choosing the finite field element different than the one
for SMASH-256 and SMASH-512. Secondly, we extend this attack to break all
simple instances of SMASH, referred to as SMASH-ORDy, but show that it is
not successful for SMASH-256 and SMASH-512 due to the maximum message
length. Finally, a further extension of the collision attack leads to a collision for
SMASH-256 and SMASH-512.

This article is structured as follows. We recall the most important aspects of
the SMASH design method in Section 2. In Section 3, we introduce the underly-
ing principles of the attack and apply it to the simple instances SMASH-ORD3
and SMASH-ORDy. We extend the attack to cover SMASH-256 and SMASH-
512 in Section 4. We shortly present the most important aspects of SMASH-256
and give an example of a meaningful collision. Section 5, discusses some ideas
about how to modify the design-strategy SMASH such that it is immune to
the presented attack. We conclude in Section 6. In Appendix A we present the
equations and results to produce a collision for SMASH-512.

2 The SMASH Design Method

We present here an overview of the hash function design strategy presented in
[7]. Basically, we follow the notation of [7], except that we denote finite field
addition by ‘+’, and we stick to the convention of [3] to denote a difference by
h′ = h + h∗.

2.1 Definition of SMASH

Knudsen [7] proposes a new hash function model with a nonlinear compression
function f based on a bijective n-bit mapping. Let m = m1, m2, . . . , mt be the
message input after MD strengthening [8], where each block mi consists of n
bits. The hash output ht+1 is computed as follows:

h0 = f(iv) + iv (1)
hi = f(hi−1 + mi) + hi−1 + θmi for i = 1, . . . , t (2)

ht+1 = f(ht) + ht . (3)

Different to the design strategy of the MD4 family, SMASH applies the com-
pression function f also to the initial value (1) and to the final hash computation
(3). This is done in order to avoid pseudo-collision attacks, since the attacker
does not have full control over the chaining variable h0. Applying f also to the
final hash computation should make it impossible to predict the final hash value.

Breaking a New Hash Function Design Strategy Called SMASH 235

The multiplication by θ in (2) is defined as an operation in the finite field
GF(2n). Note, that for this section and Section 3, θ is an arbitrary field element
in GF(2n) with the only restriction that θ �= {0, 1} as mentioned in [7].

The structure of SMASH in (2) exhibits a forward prediction property as
already described in [7]. Let hi−1, h

∗
i−1 be two intermediate hash values with

difference h′
i−1 = hi−1 + h∗

i−1. Choose a value for mi and compute m∗
i = mi +

h′
i−1. Then

h′
i = hi + h∗

i = (1 + θ)h′
i−1 . (4)

2.2 Comparing SMASH with a Block Cipher Based Hash Function

The SMASH design can be compared to a block cipher based hash function
operating in the Matyas-Meyer-Oseas mode [11] as shown in Figure 1. In this
mode the intermediate hash value is computed as follows:

hi = Ehi−1(mi) + mi for i = 1, . . . , t . (5)

The underlaying block cipher Ehi−1(mi) in (5) can be replaced by the term
f(hi−1+mi)+hi−1 defined in (2). This is a block cipher following the Even-Mansour
construction [6]—more precisely, an Even-Mansour construction with key K =
K1K2 = hi−1hi−1. The only difference between the SMASH design and a block
cipher based hash function operating in the Matyas-Meyer-Oseasmode is that the
message mi is multiplied by θ prior to the addition to the chaining variable hi.

f

·

E

mi

hi-1

hi hi

mi

hi-1

E

Fig. 1. The Matyas-Meyer-Oseas scheme (left) and the SMASH scheme (right)

3 Observation on the SMASH Design Method

We present here an observation on the design method explained in [7, Section 2].
The observation can be used to break the simple instances SMASH-ORD3 and
SMASH-ORDy, but it does not break SMASH-256 nor SMASH-512. In Section 4,
we explain how to extend this observation in order to break SMASH-256 and
SMASH-512.

3.1 Target

In order to explain our attack, we first consider a simple instance of SMASH.
The instance, referred to as SMASH-ORD3, differs from SMASH in the choice
of the finite field element θ. We assume that we can choose a θ such that (1 + θ)
has order 3, i.e. (1 + θ)3 = 1. Such a choice is not explicitly forbidden in [7].

236 N. Pramstaller, C. Rechberger, and V. Rijmen

3.2 Result

For describing the attack method in Section 3.3 we define the following variables
(see also Figure 2):

x an arbitrary 256-bit value
f1 = f(m1 + h0)
f2 = f(m2 + h1)
f3 = f(m3 + h2)
a = f1 + f(m1 + h0 + x) + θx .

The variable x defines an arbitrary 256-bit difference. f1 . . . f3 are the output
values of f with message mi and intermediate chaining variable hi−1 as input,
i.e. without differences. a defines the difference in h1. Based on these definitions,
the following 4-block messages m = m1m2m3m4 and m∗ = m∗

1m
∗
2m

∗
3m

∗
4 result

in the same hash, for any value of z1, z2, z3, and x. Note that a depends on both
m1 and x. In particular, if x = 0 then a = 0, i.e. m = m∗.

m1 = z1
m2 = z2
m3 = z3
m4 = z1 + f1 + f2 + f3 + θ(m1 + m2 + m3)
m∗

1 = z1 + x
m∗

2 = z2 + a
m∗

3 = z3 + (1 + θ)a
m∗

4 = z1 + f1 + f2 + f3 + θ(m1 + m2 + m3) + (1 + θ)2a + x

(6)

3.3 Description of the Attack Method

We describe here why we have a collision between the two 4-block messages m
and m∗ defined in (6). The attack is illustrated in Figure 2.

f

·

f

·

f

·

f

·

f

iv

m1

h0 h1

m2

h2

m3

h3

f1 f2 f3

m4

h0

x (1+)2a

x

(1+)aa

a a(1+(1+)3)(1+)2a(1+)a

iteration 1 iteration 2 iteration 3 iteration 4

h1 h2 h3 h4

f4

Fig. 2. The attack on SMASH-ORD3. The dashed rectangles denote differences.

Breaking a New Hash Function Design Strategy Called SMASH 237

The attack is an extension of the forward prediction property observed in [7].
It can be verified that the value a is the difference in h1. We cannot predict
the value of a, but we can of course easily compute it once we have chosen an
arbitrary z1 and x.

The basic idea of the attack is to control the propagation of the difference such
that the input differences to the function f after the first iteration and prior to
the last iteration (iteration 2 and iteration 3 in Figure 2) equal zero. In this case
the nonlinearity of f does not have any impact on the difference propagation. For
the last message block (iteration 4) we ensure that the difference m′

4 = m4 +m∗
4

equals the difference m′
1 = m1 + m∗

1 and that f ′
1 = f ′

4. This can be achieved
as follows. By choosing the difference in the second message block equal to a,
we make sure that the input difference to f equals zero (differences cancel out).
Hence, we ensure that the difference in h2 equals (1+ θ)a. Similarly, by choosing
the difference in the third message block equal to (1 + θ)a, we ensure that the
difference in h3 equals (1 + θ)2a. This was already observed in [7].

Now we have to determine the last message block in each of the messages. We
choose the last message block of the first message, m4, in such a way that the
input of f in the last iteration equals the input of f in the first iteration.

m4 = m1 + h0 + h3

= m1 + h0 + f3 + h2 + θm3

= m1 + h0 + f3 + f2 + f1 + h0 + θ(m3 + m2 + m1)
= m1 + f3 + f2 + f1 + θ(m3 + m2 + m1)

The last block of the second message, m∗
4, is selected in such a way that the

difference in the last message block equals (1+θ)2a+x. This choice ensures that
the two inputs of f in the last iteration (iteration 4) equal the inputs in the first
iteration (iteration 1). Consequently, the outputs of f will be the same as in the
first iteration, hence they will have the same difference as in the first iteration:
a + θx. Working out the equations, we see that the difference in h4 becomes:

h′
4 = (f(m1 + h0) + h3 + θm4) + (f(m1 + h0 + x) + h3

+ (1 + θ)2a + θ(m4 + (1 + θ)2a + x))

= a + θx + (1 + θ)3a + θx

= a(1 + (1 + θ)3) .

(7)

Since we assumed a θ such that (1 + θ) has order 3, the difference in (7),
h′

4 = a(1 + (1 + θ)3), equals zero and we have produced a collision for our simple
SMASH instance SMASH-ORD3. Due to the collision after the last iteration
(h′

4 = 0), the final hash computation (3) has no impact on the result.
The attack on SMASH-ORD3 can be generalized to break the simple SMASH

instances, referred to as SMASH-ORDy. The instances SMASH-ORDy are de-
fined by choosing a θ such that ord(1+θ) = y, where y is an arbitrary value. For
a successful attack we then need at least y + 1 message blocks without counting
in the last message block that results from the MD strengthening. For instance,

238 N. Pramstaller, C. Rechberger, and V. Rijmen

for SMASH-ORD3 we have y = 3 and we have a collision in iteration y + 1 = 4.
We will see in the next section that for the specific instances SMASH-256 and
SMASH-512 this attack strategy does not work anymore. This is due to the
number of maximum message blocks that can be hashed with SMASH-256 and
SMASH-512.

4 Attacking SMASH-256 and SMASH-512

In this section we explain how the attack can be extended to break the pro-
posed SMASH hash functions. After a description of the general attack strategy,
we present some equations and solutions for the specific instance SMASH-256.
Furthermore, we present an example for a meaningful collision. Equations and
solutions for SMASH-512 are given in Appendix A.

4.1 SMASH-256

The hash function SMASH-256 is a specific instance of the design method
SMASH. SMASH-256 is specified by setting n = 256, by defining the finite
field GF(2256) via the irreducible polynomial q(θ),

q(θ) = θ256 + θ16 + θ3 + θ + 1, (8)

and by defining the compression function f . Due to the chosen padding method,
SMASH-256 can process messages with a bit length less than 2128.

Even if the properties of f are not relevant for our attack, we shortly repeat
them to give a basic understanding of the SMASH design strategy. The compres-
sion function f is composed of several rounds, called H-rounds and L-rounds:

f = H1 ◦H3 ◦H2 ◦ L ◦H1 ◦H2 ◦H3 ◦ L ◦H2 ◦H1 ◦H3 ◦ L ◦H3 ◦H2 ◦H1 .

Both the H-rounds and the L-rounds take as input a 256-bit value and produce
a 256-bit output. The underlaying operations are S-Boxes, some linear diffusion
layers and variable rotations. The S-Boxes are based on the S-Boxes used for the
block cipher Serpent [1]. An exact definition of the H-rounds and L-rounds can
be found in [7].

4.2 Brief Description of the Attack

For the attacks on SMASH-ORD3 and SMASH-ORDy we assumed that we
can choose a certain finite field element θ. This is not possible for the specific
instances of SMASH. For SMASH-256 the finite field element θ is defined as a
root of the irreducible polynomial q(θ) = θ256 + θ16 + θ3 + θ + 1, i.e. q(θ) = 0.
The irreducible polynomial for SMASH-512 is given in Appendix A. In order to
show whether the previously described attacks on SMASH-ORD3 and SMASH-
ORDy can be applied to SMASH-256 and SMASH-512, we have to compute
the order of (1 + θ) for the specified θ. For SMASH-256, the order of (1 + θ) is
((2256−1)/5) and for SMASH-512 the order of (1+θ) is (2512−1). Therefore, the

Breaking a New Hash Function Design Strategy Called SMASH 239

attack requires at least (((2256 − 1)/5) + 1) message blocks for SMASH-256 and
(2512) message blocks for SMASH-512, respectively. As specified in [7], SMASH-
256 can be used to hash messages of bit length less than 2128. This corresponds
to (2120 − 1) message blocks of 256 bits. SMASH-512 is specified for (2247 − 1)
message blocks of 512 bits. Hence, the order of (1+ θ) is for both hash functions
larger than the maximum number of message blocks. This means, that we can
still produce colliding messages but these messages are no longer valid inputs
according to the SMASH-256 and SMASH-512 specification.

However, the attack technique can be generalized further. Previously, we ex-
tended the forward prediction property by considering message pairs that intro-
duce a non-zero input difference x into f twice: once at the beginning and once
at the end of the message. We can extend the property further by considering
message pairs that introduce the difference x three or more times. Every time
the input difference to f is non-zero, we make sure that the absolute values of the
two message blocks equal the values in the first message blocks. Consequently,
the output difference of f will be every time the same, namely (a + θx). In
this way, we can produce almost any desired difference in the chaining variable
ht. In order to find a collision, we want to construct a difference of the form
h′

t = a · q(θ) = a · 0 = 0 (mod q(θ)).

4.3 Equations

In this section, we introduce some notations and list the equations that need
to be solved in order to construct pairs of messages that result in a specific
difference in ht. Without loss of generality, we will always work with messages
that differ already in the first block, i.e. m′

1 �= 0.
We define the following notation. Let d be a function defined for two input

values only: d(0) = 0, and d(x) = 1. Let m′
i denote the difference in message

block i. Let δ1 = 1 and let δi with 1 < i ≤ t, be defined as follows:

δi = d(m′
i +

i−1∑
j=1

(1 + θ)i−j−1aδj) . (9)

Then it is possible to construct two t-block messages with the differences defined
by (9), such that the difference in ht has the following value

h′
t = a

t∑
i=1

(1 + θ)t−iδi . (10)

The absolute values mi can be determined as follows. The first block, m1, can
always be selected arbitrarily. If δi = 0, then mi can be selected arbitrarily. If
δi = 1 and i > 1, then mi has to be equal to hi−1 + m1 + h0.

4.4 Solutions for SMASH-256

The field polynomial q(θ) can be written as follows:

θ256 + θ16 + θ3 + θ + 1 = 1 + (1 + θ)2 + (1 + θ)3 + (1 + θ)16 + (1 + θ)256 . (11)

240 N. Pramstaller, C. Rechberger, and V. Rijmen

Hence, the solution of (10) is given by δi = 1 for i = 1, 241, 254, 255, 257 and
δi = 0 for all other i ≤ t = 257. Given the δi, (9) can be solved for the differences
m′

i. This gives:

m′
1 = x

m′
i = (1 + θ)i−2a, 1 < i ≤ 240

m′
241 = x + (1 + θ)239a
m′

i = (1 + θ)i−2a + (1 + θ)i−242a, 241 < i < 254
m′

254 = x + (1 + θ)252a + (1 + θ)12a
m′

255 = x + (1 + θ)253a + (1 + θ)13a + a

m′
256 = (1 + θ)254a + (1 + θ)14a + (1 + θ)a + a

m′
257 = x + (1 + θ)255a + (1 + θ)15a + (1 + θ)2a + (1 + θ)a .

Here, x is an arbitrary 256-bit difference. All other differences are defined by the
attack method. As explained above, 253 of the message blocks mi can be chosen
arbitrarily, while the remaining 4 are determined by the attack.

The above-defined differences produce the following difference in the chaining
variable h257:

h′
257 = (1 + θ)256a + (1 + θ)16a + (1 + θ)3a + (1 + θ)2a + a .

It is clear that h′
257 = a · q(θ) = a · 0 = 0, and hence we have a collision after

iteration 257.

4.5 SMASH-256: Example of Colliding Messages m and m∗

In this section we give an example of two messages1, m and m∗ = m + m′, that
collide after 257 iterations.

Figure 3 shows the two colliding ASCII coded strings. Each message consists
of 258 message blocks. Even if we have already a collision after iteration 257
(see also Table 1), we added an additional message block, m258 = m∗

258, con-
taining the character ‘>’ (3ehex). We have chosen the two messages in this way,
because the message blocks m2 . . .m258 and m∗

2 . . . m∗
258 are inside the end tag

(< / m2 . . .m258 >) and hence are not displayed in a standard HTML viewer or
web browser (e.g. Mozilla Firefox 1.0.3). Therefore, at first sight, only the two
message blocks m1 and m∗

1 are visible.
Using hex notation, Table 1 shows the input message blocks mi and m∗

i for
i = 1, 241, 254, 255, 257, 258, the initial chaining variables h0 = h∗

0 = f(iv) + iv,
the chaining variables h257, h∗

257, h258, and h∗
258, and the colliding outputs h259

and h∗
259.

As described in Section 4.4, the messages m2 . . .m240, m242 . . .m253, and m256
can be chosen arbitrarily. In this simple example each of these message blocks
contains only space characters (20hex).

1 For this simple example we omitted padding.

Breaking a New Hash Function Design Strategy Called SMASH 241

<html>You owe me 1000.0€ </ >………………..

m1 m2…..m257 m258

<html>You owe me 100000€ </ >………………..

m*1 m*2…..m*257 m*258

Fig. 3. ASCII coded strings m and m∗

Table 1. Colliding messages m and m∗

h0= 55214e9e | 237290c2 | 3ff782f7 | c2073a8c | 2105c5f1 | 6ccb0855 | 9c71b7c1 | e7ecceac
h∗
0= 55214e9e | 237290c2 | 3ff782f7 | c2073a8c | 2105c5f1 | 6ccb0855 | 9c71b7c1 | e7ecceac

m1= 3c68746d | 6c3e596f | 75206f77 | 65206d65 | 20313030 | 302e3030 | 80202020 | 20203c2f
m∗

1= 3c68746d | 6c3e596f | 75206f77 | 65206d65 | 20313030 | 30303030 | 80202020 | 20203c2f
.

m241= 346a6100 | 4e3cbc5b | f472d355 | b41311b2 | 4b7df46d | e6b4028f | 6aaf9c4d | 97a6f169
m∗

241= 4afe2771 | dd8507d9 | a25082bc | dac25578 | f34abb1c | 5501e05e | d9874798 | 6aa679d3
.

m254= 60358467 | cfde2276 | 534a4038 | d3555d7e | 576415d4 | 5c151dbb | 7664ed09 | f97bb393
m∗

254= de2cdecd | 6e323f7e | de8e653b | 7d887168 | f94cebb5 | 7370fc51 | 0e2e0226 | 8f1e25ba
m255= 40088790 | 06da5567 | eb2a1d6e | 2869d96f | 02fb791a | dc8799ca | 0df2d9de | 9dec9799
m∗

255= f81b73fc | db0f8afe | 28947e42 | 699822e0 | 6de2b3b5 | 0b5536fe | c3d1ebb0 | 7744d316
.

m257= cc4a7c9c | 9b4a99e1 | 8d275de9 | 3a44a2e7 | 4640484b | 3cb2abb4 | f1af679f | 4e6e142f
m∗

257= 1a5d75eb | 71ea319e | be76a60e | abc9278b | 329ff04f | 5e932f4d | cc04996a | 9e6c4183
h257= ddc0b465 | b42b5072 | c34ad69d | b47c8e2c | 30a36a7b | 218a7bbe | 99ffd185 | 831e8ddf
h∗
257= ddc0b465 | b42b5072 | c34ad69d | b47c8e2c | 30a36a7b | 218a7bbe | 99ffd185 | 831e8ddf

m258= 20202020 | 20202020 | 20202020 | 20202020 | 20202020 | 20202020 | 20202020 | 2020203e
m∗

258= 20202020 | 20202020 | 20202020 | 20202020 | 20202020 | 20202020 | 20202020 | 2020203e
h258= da7c8fa1 | 4389e3c5 | 7299afdd | ad027de9 | 4c595315 | c981c2f8 | 95390053 | 37c2fa00
h∗
258= da7c8fa1 | 4389e3c5 | 7299afdd | ad027de9 | 4c595315 | c981c2f8 | 95390053 | 37c2fa00

h259= 2ffeac86 | 08bc1142 | a3ddf493 | 6455bcd8 | 673dea34 | c6365ec3 | 92b1bc79 | 15c1487e
h∗
259= 2ffeac86 | 08bc1142 | a3ddf493 | 6455bcd8 | 673dea34 | c6365ec3 | 92b1bc79 | 15c1487e

5 Discussion

In this section we discuss some observations on SMASH. Firstly, we propose a
way how to change the SMASH design strategy such that it is not vulnerable to
the presented attack. Secondly, we give some comments on block cipher based
hash functions relaying on the SMASH design strategy.

5.1 Using Different Functions f

If a different f is used in each iteration, the attack described in this article seems
not to work anymore. This is due to the fact that we expect the difference in
the chaining variable hi in iteration i, where δi = 1, to be (a + θx). If different
functions are used for each iteration this cannot be ensured anymore and hence
the presented attack is not successful. A simple method to modify SMASH could
for instance be the addition of a counter value in each iteration. However, we did
not further investigate these modifications and hence it should not be seen as a
solution for this hash function design strategy. Another idea to modify SMASH
such that it is immune against the presented attack is given in [7].

242 N. Pramstaller, C. Rechberger, and V. Rijmen

5.2 Block Cipher Based Hash Functions

In Section 2.2 we compared the SMASH design strategy with a block cipher
based hash function. We have shown that the Matyas-Meyer-Oseas operation
mode with a block cipher following the Even-Mansour construction is not secure.

6 Conclusion

We described a collision attack on SMASH-256 and SMASH-512. The attack
works independently of the choice of the nonlinear compression function f and
requires negligible computation power. We are able to construct meaningful colli-
sions due to the fact that we have only few restrictions on the colliding messages.
The attack is based on two observations. Firstly, the property of forward predic-
tion which was described in [7]. Secondly, a differential attack on a hash function
is easier than on a block cipher, because the attacker has control over the input
values. If the attacker ensures that the two inputs to two different instantia-
tions of the compression function are equal, then the two outputs (and hence
the output difference) will also be equal in both instantiations.

If the compression function f would be different in every iteration, then it
would not be possible to produce the same output difference twice.

Acknowledgements

We would like to thank Lars Knudsen for valuable conversations and for provid-
ing a reference implementation of SMASH-256.

References

1. Eli Biham, Ross J. Anderson, and Lars R. Knudsen. Serpent: A New Block Cipher
Proposal. In Serge Vaudenay, editor, Fast Software Encryption, 5th International
Workshop, FSE 1998, Paris, France, March 23-25, 1998, Proceedings, volume 1372
of LNCS, pages 222–238. Springer, 1998.

2. Eli Biham and Rafi Chen. Near-Collisions of SHA-0. In Matthew K. Franklin, edi-
tor, Advances in Cryptology - CRYPTO 2004, 24th Annual International Cryptol-
ogy Conference, Santa Barbara, California, USA, August 15-19, 2004, Proceedings,
volume 3152 of LNCS, pages 290–305. Springer, 2004.

3. Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Cryptosystems.
Journal of Cryptology, 4(1):3–72, 1991.

4. Florent Chabaud and Antoine Joux. Differential Collisions in SHA-0. In Hugo
Krawczyk, editor, Advances in Cryptology - CRYPTO ’98, 18th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 23-27,
1998, Proceedings, volume 1462, pages 56–71. Springer, 1998.

5. Hans Dobbertin. Cryptanalysis of MD4. In Bart Preneel, editor, Fast Software
Encryption, Third International Workshop, Cambridge, UK, February 21-23, 1996,
Proceedings, volume 1039 of LNCS, pages 53–69. Springer, 1996.

Breaking a New Hash Function Design Strategy Called SMASH 243

6. Shimon Even and Yishay Mansour. A Construction of a Cipher From a Single
Pseudorandom Permutation. In Hideki Imai, Ronald L. Rivest, and Tsutomu Mat-
sumoto, editors, Advances in Cryptology - ASIACRYPT ’91, International Confer-
ence on the Theory and Applications of Cryptology, Fujiyoshida, Japan, November
11-14, 1991, Proceedings, volume 739 of LNCS, pages 210–224. Springer, 1991.

7. Lars R. Knudsen. SMASH - A Cryptographic Hash Function. In Henri Gilbert and
Helena Handschuh, editors, Fast Software Encryption: 12th International Work-
shop, FSE 2005, Paris, France, February 21-23, 2005, Proceedings, volume 3557
of LNCS, pages 228–242. Springer, 2005.

8. Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1997. Available online at http://www.cacr.
math.uwaterloo.ca/hac/.

9. National Institute of Standards and Technology (NIST). FIPS-180-2: Secure
Hash Standard, August 2002. Available online at http://www.itl.nist.gov/
fipspubs/.

10. Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen. Exploiting Cod-
ing Theory for Collision Attacks on SHA-1. In Cryptography and Coding, 10th IMA
International Conference, Cirencester, UK, December 19-21, 2005, Proceedings to
appear, LNCS. Springer, 2005.

11. Bart Preneel. Analysis and design of cryptographic hash functions. PhD thesis,
Katholieke Universiteit Leuven, 1993.

12. Vincent Rijmen and Elisabeth Oswald. Update on SHA-1. In Alfred Menezes, ed-
itor, Topics in Cryptology - CT-RSA 2005, The Cryptographers’ Track at the RSA
Conference 2005, San Francisco, CA, USA, February 14-18, 2005, Proceedings,
volume 3376 of LNCS, pages 58–71. Springer, 2005.

13. Xiaoyun Wang, Dengguo Feng, Xuejia Lai, and Xiuyuan Yu. Collisions for Hash
Functions MD4, MD5, HAVAL-128 and RIPEMD, August 2004. Preprint, available
at http://eprint.iacr.org/2004/199.

14. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the Full
SHA-1. In Victor Shoup, editor, Advances in Cryptology - CRYPTO 2005, 25th
Annual International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 14-18, 2005, Proceedings, volume 3621 of LNCS, pages 17–36. Springer, 2005.

A SMASH-512: Equations and Solutions

To determine the differences m′
i that produce a collision for SMASH-512 we use

the same definitions and equations as presented in Section 4.3.
SMASH-512 is specified by setting n = 512 and by defining the finite field

GF(2512) vie the irreducible polynomial q(θ)

q(θ) = θ512 + θ8 + θ5 + θ2 + 1 . (12)

The polynomial q(θ) can be written as follows:

q(θ) = 1 + (1 + θ) + (1 + θ)2 + (1 + θ)4 + (1 + θ)5 + (1 + θ)8 + (1 + θ)512 . (13)

The solution of (10) is given by δi = 1 for i = 1, 505, 508, 509, 511, 512, 513
and δi = 0 for all other i ≤ t = 513. Given the δi, (9) can be solved for the
differences m′

i. This gives:

244 N. Pramstaller, C. Rechberger, and V. Rijmen

m′
1 = x

m′
i = (1 + θ)i−2a, 1 < i ≤ 504

m′
505 = x + (1 + θ)503a
m′

i = (1 + θ)i−2a + (1 + θ)i−506a, 505 < i < 508
m′

508 = x + (1 + θ)506a + (1 + θ)2a
m′

509 = x + (1 + θ)507a + (1 + θ)3a + a

m′
510 = (1 + θ)508a + (1 + θ)4a + (1 + θ)a + a

m′
511 = x + (1 + θ)509a + (1 + θ)5a + (1 + θ)2a + (1 + θ)a

m′
512 = x + (1 + θ)510a + (1 + θ)6a + (1 + θ)3a + (1 + θ)2a + a

m′
513 = x + (1 + θ)511a + (1 + θ)7a + (1 + θ)4a + (1 + θ)3a + (1 + θ)a + a .

Here x is an arbitrary 512-bit difference. All other differences are defined by the
attack method. For SMASH-512, 507 of the message blocks mi can be chosen
arbitrarily, while the remaining 6 are determined by the attack.

The above-defined differences produce the following difference in the chaining
variable h513:

h′
513 = (1 + θ)512a + (1 + θ)8a + (1 + θ)5a

+ (1 + θ)4a + (1 + θ)2a + (1 + θ)a + a .

It is clear that h′
513 = a · q(θ) = a · 0 = 0, and hence we have a collision for

SMASH-512 after iteration 513.

Analysis of a SHA-256 Variant�

Hirotaka Yoshida1 and Alex Biryukov2

1 Systems Development Laboratory, Hitachi, Ltd.,
1099 Ohzenji, Asao-ku, Kawasaki-shi, Kanagawa-ken, 215-0013 Japan

hyoshida@sdl.hitachi.co.jp
2 Katholieke Universiteit Leuven, Dept. ESAT/SCD-COSIC,
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

abiryuko@esat.kuleuven.ac.be

Abstract. SHA-256 is a cryptographic hash function which was pro-
posed in 2000 as a new generation of SHA functions and was adopted as
FIPS standard in 2002. In this paper we will consider a SHA-256 vari-
ant and a SHACAL-2 variant in which every arithmetic addition is re-
placed by XOR operation. We call the SHA-256 variant SHA-2-XOR and
the SHACAL-2 variant SHACAL-2-XOR respectively. We will present a
differential attack on these constructions by using one-round iterative
differential characteristics with probability 2−8 we identified. Our re-
sult shows that SHACAL-2-XOR with up to 31 rounds out of 64 has
a weakness of randomness and that SHA-2-XOR with up to 34 rounds
has a weakness of pseudo-collision resistance. Using the 31-round distin-
guisher, we present an attack on SHACAL-2-XOR with up to 32 rounds.
We also show that no 2-round iterative patterns with probability higher
than 2−16 exist.

Keywords: SHA-256,SHA-2-XOR, SHACAL-2-XOR, Differential
cryptanalysis, Pseudo-collision resistance, Iterative patterns.

1 Introduction

A cryptographic hash function is an algorithm that takes input strings of arbi-
trary (typically very large) length and maps these to short fixed length output
strings. The progress in cryptanalysis of cryptographic hash functions has been
quite slow until very recently, the cryptographic community has been surprised
at the progress of cryptanalysis of hash functions, such as an attack on MD5 [23]
for finding collisions and an attack with a new strategy on SHA-0 [2, 3] and an
attack for finding multi-collisions. However, these techniques are not applicable
to SHA-256 due to its more complex message schedule and round function.

SHA-256 is a cryptographic hash function which was proposed in 2000 as a
new generation of SHA functions and was adopted as FIPS standard in 2002 [18].
SHA-256 is constructed from MD(Merkle-Damg̊ard) -construction and Davis-
Meyer mode. The compression function of SHA-256 has 64 rounds, two kinds of
� This work was supported in part by the Concerted Research Action (GOA) Ambior-

ics 2005/11 of the Flemish Government.

B. Preneel and S. Tavares (Eds.): SAC 2005, LNCS 3897, pp. 245–260, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

246 H. Yoshida and A. Biryukov

non-linear functions, cyclic rotations, and round-dependent constants. The hash
value calculated by SHA-256 is 256 bits long.

The function obtained from the compression function of SHA-256 by removing
the feed-forward operation of the Davis-Meier mode is invertible. It was proposed
for use as a block cipher by Handschuh and Naccache and named SHACAL-2 [12].
The block cipher was selected as one of the NESSIE finalists. In cryptanalysis
of SHACAL-2, there have been several attacks on its reduced versions [14, 22],
but with time complexities around 2500 for 32 or less rounds.

Although several works have discussed the security of SHA-256[11] and re-
ported interesting differential properties of several consecutive round functions
[13], no weakness has been demonstrated for SHA-256 or any SHA-256 vari-
ant so far. In this paper we will consider a SHA-256 variant and a SHACAL-2
variant in both of which ADD operations are replaced by XOR operations. We
call the SHA-256 variant SHA-2-XOR and the SHACAL-2 variant SHACAL-2-
XOR respectively. We will present a differential attack [5] on these ciphers by
identifying iterative differential characteristics. We will show how to distinguish
the SHACAL-2-XOR from a random permutation. Our result will show that
SHACAL-2-XOR with up to 31 rounds has a weakness of randomness and that
SHA-2-XOR with up to 34 rounds has a weakness of pseudo-collision resistance.
In addition to that, it will also show a property that SHA-2-XOR with up to 31
rounds has a weakness in certain collision resistance we will define.

Hereafter we introduce three kinds of resistance of hash functions for the moti-
vation of our approach in the cryptanalysis of SHA-256: near-collision resistance,
pseudo-collision resistance, and randomness.

The importance of the first two requirements is related to collision resistance.
Near-collision resistance is resistance against attacks finding a pair of hash values
which differ in only small number of bit positions. Near-collisions of the SHA-0
hash function have been found, which is an undesirable property [2] for a hash
function. In fact, there has been presented a strategy to convert near-collisions
into full-collisions [1]. Therefore near-collision resistance is crucial for the colli-
sion resistance. Pseudo-collision resistance is resistance against finding a collision
obtained from more relaxed condition that different initial vectors can be cho-
sen. Pseudo-collision resistance has a particular importance for a hash function
constructed by the MD-construction because in this case pseudo-collision re-
sistance for the hash function can be translated into collision resistance for its
compression function. The theory of the MD-construction, on which the security
of many popular hash functions rely, does not guarantee collision resistance for
a hash function without pseudo-collision resistance for its compression function
[10]. Recently, a situation where pseudo-collisions could become practical has
been considered [16].

Pseudo-randomness of a function is its indistinguishability from a random
function. This resistance has a particular importance in some existing applica-
tions where one of the requirements for the hash function is randomness. Re-
cently, the strongest version of the HAVAL hash function (in encryption mode)
was shown to be non-random [24].

Analysis of a SHA-256 Variant 247

Although in the past these three types of resistance have received less atten-
tion than the collision resistance, we expect that situation will change in the
near future.

The outline of this paper is as follows. In Section 2, we give a brief description
of the SHA-2 algorithm published in [18]. In Section 3 we study the known results
on cryptanalysis of the SHA-256 algorithm and the SHACAL-2 algorithm. In
Section 4, we present our differential attack on the SHA-2-XOR and SHACAL-2-
XOR identifying iterative characteristics. Our conclusions are given in Section 5.

2 Description of the SHA-256 Hash Function and the
SHACAL-2 Block Cipher

In this section, we give a brief description of the SHA-256 hash function and the
SHACAL-2 block cipher, which is sufficient to understand the concepts intro-
duced in this paper. For a full description of SHA-256 we refer to [18].

SHA-256 is a hash function that is based on the well-known Davies-Meyer
construction of hash functions ([17], p. 341). The variable-length message M is
divided into 512-bit blocks M0, M1, . . . , Mn−1. The 256-bit hash value Vn is then
computed as follows:

V0 = IV ; Vs+1 = compress(Vs, Ms) = EMs(Vs) + Vs for 0 ≤ s < n,

where compress is the compression function, IV is a fixed initial value and
EK(X) is the block cipher, SHACAL-2. The function EK(X) is an iterated
design that only uses simple operations on 32-bit words. The 256-bit input Vj is
loaded into 8 registers (A, B, C, D, E, F, G, H) and the 512-bit message block is
divided into 16 words of 32 bits (W0 . . .W15) and these words are expanded to
a sequence of 64 words through the message schedule:

σ0(X) = ROTR7(X)⊕ROTR18(X)⊕ SHR3(X);
σ1(X) = ROTR17(X)⊕ ROTR19(X)⊕ SHR10(X);

Wt = σ1(Wt−2) + Wt−7 + σ0(Wt−15) + Wt−16

where ROTRn is right rotation by n bits. SHACAL-2 encrypts the initial value
using this sequence as a key.

The 8 registers are updated through a number of rounds. One round of the
compression function is depicted in Fig. 1. The SHA-256 compression function
consists of 64 rounds. Every round function has arithmetic addition, a round-
dependent constant Ki, two linear functions Σ0, Σ1, and two non-linear functions
CH, MJ .

CH(X, Y, Z) = (X ∧ Y)⊕ (X ∧ Z);
MJ(X, Y, Z) = (X ∧ Y)⊕ (Y ∧ Z)⊕ (Z ∧X);

Σ0(X) = ROTR2(X)⊕ROTR13(X)⊕ROTR22(X);
Σ1(X) = ROTR6(X)⊕ROTR11(X)⊕ROTR25(X),

248 H. Yoshida and A. Biryukov

A B C D E F G H

�

�

�
�

�

� � �
�� ��MJ

��

�

�
�
�

�
�Σ0

�
�

�

� � �
�� ��CH

��

�

�
�
�

�
�Σ1

�

�
Wt

�

�
Kt

�

�
��

�

�
�
�

�
�
�

											

�
�

�

�
�
�

�
�
�

											

� � � � � � � �
A B C D E F G H

Fig. 1. Round function for SHA-256

where X is bitwise complement of X . The t-th round of the compression func-
tion updates the 8 registers using the word Wt and the constant Ki as input.
The compression function updates the 8 registers according to the following
algorithm:

T 1t(Et, Ft, Gt, Ht, Kt, Wt) = Ht + Σ1(Et) + CH(Et, Ft, Gt) + Kt + Wt ;
T 2t(At, Bt, Ct) = Σ0(At) + MJ(At, Bt, Ct) ;

Ht+1 = Gt; Gt+1 = Ft; Ft+1 = Et; Et+1 = Dt + T 1t ;
Dt+1 = Ct; Ct+1 = Bt; Bt+1 = At; At+1 = T 1t + T 2t.

2.1 Our Variant of SHA-256

In our analysis, we simplify SHA-256 and SHACAL-2 by replacing all the arith-
metic addition used in its round function by the XOR operation. This analysis
tells us how much the carry propagation caused by the arithmetic addition affect
the security of the cipher. It is also interesting for designers to investigate the se-
curity of an arithmetic-addition free hash function, because such a hash function
has an advantage in its hardware implementation due to a lower gate count.

Analysis of a SHA-256 Variant 249

3 Previous Work

3.1 A Study on the Known Attacks on a Reduced Version of
SHACAL-2

In the literature, two kinds of attacks on SHACAL-2 have been demonstrated.
In [14], it was shown that the impossible differential attack [4] is applicable to
the reduced 30-round SHACAL-2 with a time complexity 2495.1 and a memory
complexity 214.5. In [22] it has been shown that the differential-linear attack is
applicable to the reduced 32-round SHACAL-2 with a complexity 2504.2 and a
memory complexity 248.4 which is the best attack so far. In the table 1, we list
the best previous result and our result1.

Table 1. The best previous result and our result

Attack type #R Data Time Memory
Impossible Differential attack on SHACAL-2[14] 30 744CP 2495.1 214.5

Differential-linear attack on SHACAL-2[22] 32 243.4CP 2504.2 248.4

Related-Key Rectangle attack on SHACAL-2[15] 37 243.2RK-CP 2484.95 2238.16

Distinguisher attack on SHACAL-2-XOR in this paper 31 2248CP 2248

Differential attack on SHACAL-2-XOR in this paper 32 2243.3CP 2246.3 222

#R: # of rounds, CP: Chosen Plaintexts, RK-CP: Related-Key Chosen Plaintexts,
Time: Encryption units, Memory: Bytes of memory

3.2 A Study on the Known Results on SHA-256

What has been known as results on cryptanalysis of the SHA-256 algorithm so
far are several properties related to resistance of the function against the known
attacks [11, 13] where none of the attacks have demonstrated any weakness in
SHA-256 or any SHA-256 variant.

Hereafter we study the known results on resistance of SHA-256 against a the-
oretical attack on SHA-0[8] which have been very important results so far in the
following sense: some strong attacks on the SHA algorithms have been devel-
oped by improving the attack. Two interesting strategies significantly reducing
the complexity in the attack found collisions or near-collisions for the SHA-0
hash functions [2, 3].

We explain the procedure of the attack which is divided into two steps. This
attack first finds a sequence of differences which is called local collision with a
high-probability. An attacker introduces a 1-bit difference into one message word
and then for the following rounds the attacker also introduced differences into the
following message words so that the differences in the registers are canceled out,
which results in a local collision with several rounds. As a result, the attacker has

1 This distinguisher uses a differential characteristic for 31 rounds, it can be made more
efficient by relaxing conditions of the final rounds. This is done for the differential
attack which improves complexity of the attack and allows to recover the secret key
bits.

250 H. Yoshida and A. Biryukov

obtained Recent works have given high-probabilities for the local collisions they
identified, a probability 2−66 in [11], a better probability 2−39 in [13]. What
we need to take into account in this step is that the attacker can choose the
differences he injects whatever he likes, which means he does not care about the
message schedule.

Secondly the attack analyzes the message schedule in an attempt to find two
messages such that the message schedule will result in the collision obtained in
the first step. However, it has been difficult to carry out this step for all the
SHA-algorithms except for SHA-0 because of the large influence of the message
schedule with respect to difference propagation.

4 Differential Cryptanalysis of SHA-2-XOR and
SHACAL-2-XOR

4.1 Search for One-Round Iterative Differential Characteristics

We will search for one round iterative differential characteristics for SHA-2-XOR.
We will first determine the constraints which an iterative characteristic should
satisfy. Then we will develop an efficient algorithm to find all the differential char-
acteristics satisfying the constraints and find one with the highest probability.

Let us denote the value in the register A at time t by At and the differ-
ence in this register at time t by dAt. The t-th round changes the value At

to At+1 in the register A. The one-round iterative translates into conditions
that in each register the differences at time t and at time t + 1 are the same:
dAt+1 = dAt, dBt+1 = dBt, dCt+1 = dCt, dDt+1 = dDt, dEt+1 = dEt, dFt+1 =
dFt, dGt+1 = dGt, dHt+1 = dHt.

Our purpose here is to translate the constraints into the conditions with
differences only at time t. There are 6 registers, in each of which value at time
t+1 is determined by only one register value at time t. This builds the following
simple relations between the differences at time t and the differences at time t+1:
dBt+1 = dAt, dCt+1 = dBt, dDt+1 = dCt, dFt+1 = dEt, dGt+1 = dFt, dHt+1 =
dGt. From these relations, 6 constraints dBt+1 = dBt, dCt+1 = dCt, dDt+1 =
dDt, dFt+1 = dFt, dGt+1 = dGt, dHt+1 = dHt are equivalent to the following
conditions: dAt = dBt = dCt = dDt, dEt = dFt = dGt = dHt.

Now we have two remaining constraints dAt+1 = dAt, dEt+1 = dEt to trans-
form. We introduce several functions dCH , dMJ ,dT 1t, dT 2t each of which is the
output difference of a sub-function used in the round function. These functions
are defined as follows:

dCH = CH(X, Y, Z)⊕ CH(X ′, Y ′, Z ′),
dMJ = MJ(X, Y, Z)⊕MJ(X ′, Y ′, Z ′),
dT 1t = T 1t(Et, Ft, Gt, Ht, Kt, Wt)⊕ T 1t(E′

t, F
′
t , G

′
t, H

′
t, Kt, Wt),

dT 2t = T 2t(At, Bt, Ct)⊕ T 2t(A′
t, B

′
t, C

′
t).

We rewrite the non-linear functions CH , MJ in terms of their input values and
input differences. Let’s denote the input differences to the non-linear functions by

Analysis of a SHA-256 Variant 251

dXt = Xt⊕X ′
t for two input values Xt, X ′

t. dCH is calculated as the following:

dCH = ((Y ⊕ Z) ∧ dX)⊕ (X ∧ dY)⊕ (X ∧ dZ)⊕ (dX ∧ dY)⊕
(dX ∧ dZ) (1)

In particular, if all the differences to CH are equal, dX = dY = dZ, then

dCH = (Y ⊕ Z) ∧ dX. (2)

dMJ is calculated as the following:

dMJ = MJ(dX, dY, dZ)⊕ ((Y ⊕ Z) ∧ dX)⊕ ((Z ⊕X) ∧ dY)⊕
((X ⊕ Y) ∧ dZ). (3)

In particular, if all the differences to MJ are equal, dX = dY = dZ, then

dMJ = dX (4)

This tells an important property on MJ that this function behaves linearly if
all the input differences are equal2.

By using the formulas (2),(4) and the constraints obtained so far, dT 1t, dT 2t,
dAt+1, dEt+1 are calculated as follows:

dT 1t = dEt ⊕Σ1(dEt)⊕ ((Ft ⊕Gt) ∧ dEt) (5)
dT 2t = Σ0(dAt)⊕ dMJ(At, Bt, Ct) = Σ0(dAt)⊕ dAt (6)

dAt+1 = dT 1t ⊕ dT 2t

dEt+1 = dDt ⊕ dT 1t = dAt ⊕ dT 1t

Therefore, the remaining constraints dAt+1 = dAt, dEt+1 = dEt are equivalent
to the following two conditions:

dAt = dT 1t ⊕ dT 2t

dEt = dAt ⊕ dT 1t.

We can from now on omit the time indexes of differences, e.g. dAt = dA. Then
these two conditions are equivalent to following conditions:

dA = dT 1t ⊕ dE (7)
dE = dT 2t. (8)

By the formula (6), the condition (8) is calculated as follows:

dE = Σ0(dA)⊕ dA.

2 This property has been noticed previously, for example see [11].

252 H. Yoshida and A. Biryukov

By the formula (5), the condition (7) is calculated as follows:

dA = dE ⊕Σ1(dE)⊕ ((F ⊕G) ∧ dE)⊕ dE.

Value F ⊕ G can be considered to be some random value X . This condition is
equivalent to the following condition:

dA = Σ1(dE)⊕ (X ∧ dE).

We have determined the conditions for the existence of iterative. We now are
interested in those iterative characteristic that have high probabilities. For an
iterative with differences dA, dE, if some register inputs make this condition
hold, they also make the other conditions hold. Therefore, we pay a probability
only for this condition to hold. We see that we have to pay probability for this
equation at bit position j to hold if and only if dE(j) is equal to 1. In particular,
an iterative where Hamming weight of dE is the smallest has the best probability.
This discussion leads us to the following theorem.

Theorem 1. For SHA-2-XOR, a differential characteristic with input differ-
ences (dA,dB,dC,dD,dE,dF,dG,dH) is a one round iterative if and only if for
some 32-bit value X, the input differences dA, dE satisfy the following:

dA = Σ1(dE)⊕ (X ∧ dE). (9)
dE = Σ0(dA) ⊕ dA. (10)

If this condition holds, the other differences in the characteristic are determined
by dA and dE as follows:

dB = dA, dC = dA, dD = dA, dF = dE, dG = dE, dH = dE.

Furthermore, iterative where the weight of dE is the smallest has the best
probability.

4.2 The Search Algorithm

We have to design an algorithm for practical use of the theorem. By substituting
the second condition into the first one, we obtain the following:

dA = Σ1(Σ0(dA) ⊕ dA)⊕ (X ∧ (Σ0(dA) ⊕ dA)).

It is sufficient for us to search for dA’s which make this equation solvable in terms
of X . Looking at this equation per bit leads us to consider a 1-bit equation
I = X ∧ R. We consider what is the condition on I that the equation has a
solution X = X0, in each of two cases, R = 0, R = 1. In the case of R equal to 1,
there always exists a solution. In the case of R equal to 0, there exists a solution
if and only if I is equal to 0. Based on this consideration, now we can develop
the following algorithm shown in Table 2 where for a bit string V , its value at
bit position j is denoted by V (j).

Analysis of a SHA-256 Variant 253

Table 2. The search algorithm

Step1: Choose a 32-bit value, dA
Step2: Compute R = Σ0(dA) ⊕ dA.
Step3: Set u to be 0.
Step4: For j=0 to 31 do:

If R(j) is equal to 0, do
Compute I(j) = (Σ1(Σ0(dA) ⊕ dA) ⊕ dA)(j)

If I(j) is equal to 1, increase u by 1.
Otherwise, do nothing.

Step5: If u is equal to 0, then output dA.
Step6: If all possible value for dA have been chosen, then end.

Otherwise go to step1.

4.3 The Best One-Round Iterative Differential Characteristics

The algorithm we designed has identified all one round iterative characteristics
for SHA-2. The running time was 30 min. Table 3 shows all the one-round
iterative differential characteristic with the best probability 2−8.

Table 3. One round iterative differential characteristic with the best probability 2−8

dA = dB = dC = dD dE = dF = dG = dH

3b3b3b3b c0c0c0c0
67676767 18181818
76767676 81818181
9d9d9d9d 60606060
b3b3b3b3 0c0c0c0c
cececece 30303030
d9d9d9d9 06060606
ecececec 03030303

It was confirmed that one of the best iterative with dA = b3b3b3b3, dE =
0c0c0c0c has an experimental probability 259/(216) which is around 2−8. We
can theoretically tell exactly what happens in one round. The only place where
probabilities are paid is the place where the CH function is applied. The dif-
ference at the input of CH , 0c0c0c0c becomes 08080808 at the output with a
probability 2−8, which is calculated using the following differential property of
CH per bit:

CH(0, 0, 0) = 0
CH(1, 1, 1) = 0/1 with probability 1/2.

Note that the eight iterative patterns given in Table 3 are cyclic rotations
of the same pattern. In the following section, we show that no 2-round it-
erative patterns better than a concatenation of two best one-round iteratives
exist.

254 H. Yoshida and A. Biryukov

4.4 Search for 2-Round Iterative Differential Characteristics

We search for two-round iterative differential characteristics for SHA-2-XOR.
However, we will show that no 2-round iterative patterns with probability higher
than 2−16. We first determine the constraints which an iterative pattern should
satisfy. Let’s denote the value(the difference) in the register A at time t by At(dAt).
The t-th first rounds change the value At to At+1 in the register A. The constraints
are translated into conditions that in each register its difference at time t and
its difference at time t + 2 are the same: dAt+2 = dAt, dBt+2 = dBt, dCt+2 =
dCt, dDt+2 = dDt, dEt+2 = dEt, dFt+2 = dFt, dGt+2 = dGt, dHt+2 = dHt.

Our purpose here is to translate the constraints into the conditions with
differences only at time t. There are 4 registers, in each of which value at time
t+1 is determined by only one register value at time t. This builds the following
simple relations between the differences at time t and the differences at time t+1:
dCt+2 = dAt, dDt+2 = dBt, dGt+2 = dEt, dHt+2 = dFt. From these relations, 4
constraints dCt+2 = dCt, dDt+2 = dDt, , dGt+2 = dGt, dHt+2 = dHt equivalent
to the following conditions: dCt = dAt, dDt = dBt, dGt = dEt, dHt = dFt.

Now we have 4 remaining constraints dFt+2 = dFt, dEt+2 = dEt, dAt+2 =
dAt, dBt+2 = dBt from which we can derive the following four conditions:

dBt ⊕Σ1dEt = dCH(Et, Ft, Gt), (11)
dAt ⊕Σ1dFt = dCH(Et+1, Et, Ft), (12)
dFt ⊕Σ0dAt = dMJ(At, Bt, Ct), (13)
dEt ⊕Σ0dBt = dMJ(At+1, At, Bt) (14)

In our case, the conditions dAt+1 = dBt, dEt+1 = dFt hold. Therefore we
need to know what is the differential property of non-linear functions with some
conditions on their input differences which is given in Table 4.

Table 4. A differential property on non-linear functions

dX = dZ dY dCJ dMJ

0 0 0 0
0 1 0/1 0/1
1 0 0/1 0/1
1 1 0/1 1

We assume that there is an iterative with differences (dA,dB,dC,dD,dE,dF ,
dG,dH) have a probability at least 2−16. Let us define α, β as follows:

α = dCH(Et, Ft, Gt)⊕ dCH(Et+1, Et, Ft).

β = dMJ(At, Bt, Ct)⊕ dMJ(At+1, At, Bt).

We know Ham(α)≤ 8 by studying (11) (12) and Table 4. We can assume Ham(α)
is more than 0, otherwise the search is reduced to the search for one-round

Analysis of a SHA-256 Variant 255

iterative pattens. We also know the following condition on dE ⊕ dF that holds
for any bit position j,

α(j) = 0 =⇒ (dEt ⊕ dFt)(j) = 0.

Hence, the number of possible values for dEt ⊕ dFt is 2Ham(α). By adding (11)
and (12) we have the following:

dAt ⊕ dBt = Σ1(dEt ⊕ dFt)⊕ α (15)

On the other hand, we have the following condition by adding (12) and (13),

dFt ⊕ dEt ⊕Σ0(dAt ⊕ dBt) = β

Finally we obtain the following condition:

dFt ⊕ dEt ⊕Σ0(Σ1(dEt ⊕ dFt)⊕ α) = β (16)

Now we can compute dA⊕dB and β from α. From the discussion above, we also
obtain the following property that holds for any bit position j,

(dAt ⊕ dBt)(j) = 0 =⇒ β(j) = 0.

However, it was confirmed that none of computed dAt ⊕ dBt and β satisfy this
property. This was done with 232 possible values for α. The total complexity is
232+Ham(α) = 240 elemental computations.

4.5 Pseudo-collision Attack on SHA-2-XOR Using Iterative
Differential Characteristic

We present attacks on SHA-2-XOR and SHACAL-2-XOR using iterative differ-
ential characteristic we identified. We present two kinds of attacks on SHA-2-
XOR.

By definition, to find a pseudo-collision, an attacker can inject differences both
into the message schedule and registers. The attacker would require a complexity
2128 to find a pseudo-collision for a ideal hash function. We obtain a 15-round
iterative with a probability 2−120 by concatenating one of the best one-round
iterative we identified. This leads to an attack finding a pseudo-collision with a
complexity 2120 for the 15-round SHA-2-XOR.

Our attack suggests a security model where an attacker can inject differences
only into registers. Taking into account the feed-forward operation of the Davis-
Meyer mode, to find a collision means to find a differential characteristic for the
underlying block cipher where an input difference and an output difference of are
same. In the ideal case, if both of an input difference and an output difference
are fixed, then the probability that a plaintext pair with the input difference
results in the output difference is 2−256. However, SHA-2-XOR with 31 rounds
has a probability 2−248 which means that 31 rounds of this hash function does
not behave as a random hash function.

256 H. Yoshida and A. Biryukov

4.6 Differential Attack on 32-Round SHACAL-2-XOR

As for SHACAL-2-XOR, we can build a 31-round characteristic with a prob-
ability 2−248 concatenating one of the best iterative differential characteristics
we identified. This shows SHACAL-2-XOR with 31 rounds is distinguished from
a random permutation. We now attack SHACAL-2-XOR with 32 rounds by
using the 30-round differential characteristic. Our goal here is to find the 32-
bit key W31. Let δ be the input difference in the 30-round characteristic(e.g.
dA0=dB0=dC0=dD0= 3b3b3b3b, dE0=dF0=dG0=dH0= c0c0c0c0). We de-
note a plaintext P at time t by Pt and the value of Pt in the register A by
At. We denote the difference between a pair of plaintexts (P, P ∗) at time t by
Δt and the difference of dt in the register A by dAt. Let (P, P ∗) be a pair of
plaintexts with the difference δ:Δ0 = δ The pair of corresponding ciphertexts is
(P32, P ∗

32). There are two steps to perform our attack, data collection step, data
analysis step. In the data collection step, we encrypt 2240 · 10 plaintext pairs.
Then we collect only 216 · 10 pairs needed for the next step by checking if the
corresponding ciphertexts pairs satisfy certain conditions. Let us see what this
condition looks like. For the right pairs, the condition Δ30 = δ holds. For the
last 2 rounds, we observe how this difference behaves in case of not paying any
probability. Even in this case, in the 4 registers, the differences at time 32 are
determined uniquely by the differences at time 30: dC32 = dA30, dD32 = dB30,
dG32 = dE30, dH32 = dF30. By studying how non-linear functions increase the
uncertainty of differences, we can see there are 216 candidates for the differences
in the other 4 registers at time 32: (dA32, dB32,dE32,dF32).

In the data analysis step, we find 8bits of 32-bit key W31 using 28 counters.
Each pair suggests one key therefore one counter is 28 in average, while the
counter for the correct key bits is 28 · 10. This enables us to detect the correct
key bits. Using another three iterative characteristics we identified, we can find
another 24 bits of W32.

The time complexity of this attack is 2246.3(= 2240·10·2·4) 32-round SHACAL-
2-XOR encryptions and the data complexity of this attack is 2243.3 chosen plain-
texts which are immediately discarded leaving only 217 for the analysis step.

4.7 Improvement of the Pseudo-collision Attack

In the previous section, we identified one-round iterative differential character-
istics. Using the best ones with the probability 2−8, we attacked 15 rounds of
SHA-2-XOR regarding pseudo-collision resistance. Here we will improve this re-
sult and add more rounds.

In the pseudo-collision attack model, the attacker choose any element from
the set Iall = {0, 1}256 × {0, 1}512, which is taken as input to the compression
function. The main idea in our improvement is to use a subset of Iall denoted by
Isub for which better probabilities for many rounds are obtained. This idea was
already indicated in [19] where it is pointed out that the attacker can choose the
message so that the first several rounds follow the characteristic with probability
1. It is quite natural to consider this idea in cryptanalysis of hash functions.
Recently, this idea was effectively used in the attacks in [23].

Analysis of a SHA-256 Variant 257

To realize this idea in practice, the attacker first randomly choose an input
from Iall and then modifies it in a way that certain condition on the register
values Et, Ft, Gt, t = 0, 1, . . . , 17 in the Table 5 is satisfied. Using the resulting
the set of modified inputs, we do not have to pay probability for the first 19
rounds.

Now we develop an algorithm of the input modification. Firstly, we fix one of
the iterative characteristic to δ as the previous section. Let L be the constant
value:0x08080808 and J be the set of bit positions: {2, 3, 10, 11, 18, 19, 26, 27}.
Studying the proof of the above theorem tells us the condition for register values
at each time to result in the required difference after 19 rounds.

Table 5. The condition for register values at each time to result in the required dif-
ference after 19 rounds

(F0 ⊕ G0)(j) = L(j) (j ∈ J)
(E0 ⊕ F0)(j) = L(j)

(Et ⊕ Et+1)(j) = L(j) (j ∈ J, t = 1, 2, . . . , 17)

Taking this condition into account, we develop the following algorithm shown
in Table 6 where for a bit string V , its value at the bit position j is denoted
by V (j).

Table 6. The input modification

Step1: Choose randomly an initial resister values: A0, B0, C0, D0, E0, F0, G0, H0

Step2: Choose randomly a message block of 16 words: W0, W1, . . . , W15

Step3: Replace 8 bits of G
(j)
0 and E

(j)
0 by 8 bits of (F0 ⊕ L)(j)(j ∈ J)

Step4: For t = 0 to 15 do:
Compute the value: α = Et+1 ⊕ Et ⊕ L

Replace 8 bits of W
(j)
t by 8bits of α(j)(j ∈ J)

Apply the t-th round function with the resulting Wt

Step5: Copy the value from W0 to the variable: W old
0

Step6: Compute the value:
β = D16 ⊕ H16 ⊕ Σ1(E16) ⊕ CH(E16, F16, G16) ⊕ K16 ⊕ L ⊕ E16

Step7: Compute W16 = σ1(W14) ⊕ W9 ⊕ σ0(W1) ⊕ W0.

Step8: Replace 8 bits of W
(j)
16 by 8 bits of β(j)(j ∈ J)

Step9: Replace W
(j)
0 by the value: (W16 ⊕ σ1(W14) ⊕ W9 ⊕ σ0(W1))(j)(j ∈ J)

Step10: Replace H
(j)
0 by the value: (H0 ⊕ W0 ⊕ W old

0)(j)(j ∈ J)

The algorithm involves a modification of 152 input bits(=19× 8 bits), that
is, E

(j)
0 , G

(j)
0 , H

(j)
0 , W

(j)
0 , W

(j)
1 , . . . , W

(j)
15 (j ∈ J). All the modified inputs with

the difference δ results in δ again after 19 rounds, which was experimentally
confirmed with 220 randomly chosen inputs. We use 120 input bits out of the
remaining 616 bits to add 15 rounds. This leads to an attack finding a pseudo-
collision with a complexity 2120 for the 34-round SHA-2-XOR.

258 H. Yoshida and A. Biryukov

4.8 An Example of a 23-Round Pseudo-collision for SHA-2-XOR

In the Table 7 Here we list an example of a pseudo-collision producing input
to SHA-2-XOR with reduced rounds. Our approach found a 23-round pseudo-
collision for SHA-2-XOR with a complexity 232.

Table 7. A Message and Register values producing a 23-round pseudo-collision for
SHA-2-XOR

Message words W0, W1, ..., W15:
0xe97ae8e7 0x695655dd 0x57e9383b 0x8c916172
0x68e61dd1 0x2bc71033 0x081dae0f 0x5546e057
0xfd1450ef 0xcb398b6a 0xa16bf40c 0xfc7bb645
0x14b17c9c 0x1b2a8265 0xa17f20c4 0xe8f96137
Register values (A0, B0, C0, D0, E0, F0, G0, H0):

0x4939a45a 0x79ec4172 0xf0ef5249 0x29b5bb6f
0xd92f76e4 0x21962dfe 0xd88e64f6 0x7b624d63

4.9 The Impact on Round-Reduced Versions of the Actual SHA-256

Since our attack on SHA-2-XOR is based on one-round iterative characteristic
whose Hamming weight is relatively high, it is unlikely to obtain a high prob-
ability for the same characteristic in the case of the actual the SHA-256 hash
function. Therefore it is not possible to apply our attack to the actual SHA-256
in a straightforward way.

5 Conclusions

We considered a SHA-256 variant and a SHACAL-2 variant. We presented a dif-
ferential attack on these ciphers. Our result shows that SHACAL-2-XOR with up
to 31 rounds has a weakness of randomness and that SHA-2-XOR with up to 34
rounds has a weakness of pseudo-collision resistance. We also presented an attack
on SHACAL-2-XOR with up to 32 rounds by using the 31-round distinguisher.

Acknowledgements

The authors would like to thank Bart Preneel for his suggestions towards this
analysis. We also would like to thank Joseph Lano and Souradyuti Paul for
helpful comments and useful discussions. We are also grateful to the anonymous
referees for their valuable remarks.

References

1. E. Biham, “New Results on SHA-0 and SHA-1,” Invited talk presented at SAC 2004.
2. E. Biham, R. Chen “Near-Collision of SHA-0,” in Proceedings of CRYPT 2004,

LNCS 3152, M. Franklin, Ed., pp.290–305, 2004.

Analysis of a SHA-256 Variant 259

3. E. Biham, R. Chen, A. Joux, P. Carribault, C. Lemuet, and W. Jalby, “Collisions
of SHA-0 and Reduced SHA-1,” in Proceedings of Eurocrypt 2005, LNCS 3494,
R. Cramer, Ed., Springer-Verlag, pp. 36–57, 2005.

4. E. Biham, A. Biryukov, A. Shamir, “Cryptanalysis of SkipJack Reduced to
31 Rounds Using Impossible Differentials,” in Proceedings of Eurocrypt’99,
LNCS 1592, pp.12–23, 1999.

5. E. Biham, A. Shamir, Differential Cryptanalysis of the Data Encryption Standard,
Springer-Verlag, 1993.

6. A. Biryukov, D. Wagner, “Advanced slide attacks,” in Proceedings of Eurocrypt
2000, LNCS 1807, B. Preneel, Ed., Springer-Verlag, pp. 589–606, 2000.

7. B. D. Boer, A. Bosselaers, “Collisions for the compression function of MD5,” in Pro-
ceedings of Eurocrypt 1993, LNCS 765, T. Helleseth, Ed., Springer-Verlag, pp. 293–
304, 1993.

8. F. Chabaud and A. Joux, “Differential Collisions in SHA-0,” in Proceedings of
CRYPTO’98, LNCS 1462, H. Krawczyk, Ed., pp.56-71, Springer-Verlag, 1998.

9. I. Damg̊ard, “A design principle for hash functions,” in Proceedings of Crypto’89,
LNCS 435, G. Brassard, Ed., Springer-Verlag, pp. 416–427, 1990.

10. H. Dobbertin, “The status of MD5 after a recent attack,”, Cryptobytes, Vol. 2,
No. 2, pp. 1–6, Summer 1996.

11. H. Gilbert, H. Handschuh, “Security Analysis of SHA-256 and Sisters,” in Proceed-
ings of SAC 2003, LNCS 3006, M. Matsui and R. Zuccherato, Eds., Springer-Verlag,
pp. 175–193, 2004.

12. H. Handschuh, D. Naccache, “SHACAL,” Submission to the NESSIE project, 2000.
Available from
http://www.gemplus.com/smart/r d/publications/pdf/HN00shac.pdf.

13. P. Hawkes, M. Paddon, and G.G. Rose, “On Corrective Patterns for the SHA-2
Family,” Cryptology ePrint Archive August 2004. Available from
http://eprint.iacr.org/.

14. S. Hong, J. Kim, G. Kim, J. Sung, C. Lee, and S. Lee, “Impossible Differential At-
tack on 30-Round SHACAL-2,” in Proceedings of INDOCRYPT 2003, LNCS 2904,
T. Johansson and S. Maitra, Ed., Springer-Verlag, pp. 97–106, 2003.

15. J. Kim, G. Kim , S. Lee, J. Lim, and J. Song, “Related-Key Attacks on Reduced
Rounds of SHACAL-2,”in Proceedings of INDOCRYPT 2004 , LNCS 3348, A. Can-
teaut and K. Viswanathan Ed., Springer-Verlag, pp. 175–189 2004.

16. L. R. Knudsen and J. E. Mathiassen, “Preimage and collision attacks on MD2,” in
Proceedings of FSE 2005, LNCS 3557, H. Gilbert and H. Handschuh Ed., Springer-
Verlag, pp. 255–267, 2005.

17. A. Menezes, P. van Oorschot and S. Vanstone, Handbook of Applied Cryptography,
CRC Press, 1997.

18. National Institute of Standards and Technology, FIPS-180-2: “Secure Hash Stan-
dard (SHS),” August 2002.

19. V. Rijmen, B. Preneel, “Improved characteristics for differential cryptanalysis of
hash functions based on block ciphers,” Fast Software Encryption, Lecture Notes
in Computer Science 1008, B. Preneel, Ed., Springer-Verlag, 1995, pp. 242-248.

20. R. Rivest, “The MD5 message-digest algorithm,” Request for Comments (RFC)
1321, Internet Activities Board, Internet Privacy Task Force, April 1992.

21. M. Saarinen, “Cryptanalysis of Block Ciphers Based on SHA-1 and MD5,” in
Proceedings of FSE 2003, LNCS 2887, T. Johansson, Ed., Springer-Verlag, pp.
36–44, 2003.

260 H. Yoshida and A. Biryukov

22. Y. Shin, J. Kim, G. Kim, S. Hong, and S. Lee, “Differential-Linear Type Attacks
on Reduced Rounds of SHACAL-2,” in Proceedings of ACISP 2004, LNCS 3108,
H. Wang, J. Pieprzyk, and V. Varadharajan, Ed., Springer-Verlag, pp. 110–122,
2004.

23. X. Wang, X. Lai, D. Feng, H. Chen, and X. Yu, “Cryptanalysis of the Hash
Functions MD4 and RIPEMD,” in Proceedings of Eurocrypt 2005, LNCS 3494,
R. Cramer, Ed., Springer-Verlag, pp. 1–18, 2005.

24. H. Yoshida, A. Biryukov, C. D. Cannière, J. Lano, and B. Preneel, “Non-
randomness of the Full 4 and 5-pass HAVAL,” in Proceedings of SCN 2004,
LNCS 3352, C. Blundo and S. Climato, Ed., Springer-Verlag, pp. 324–336, 2005.

Impact of Rotations in SHA-1 and Related
Hash Functions�

Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen

Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology, Austria

{Norbert.Pramstaller, Christian.Rechberger,
Vincent.Rijmen}@iaik.tugraz.at

Abstract. SHA-1 uses a single set of rotation constants within the com-
pression function. However, most other members of the MD4 family of
hash functions use multiple sets of rotation constants, i. e. the rotation
amounts change with the step being processed.

To our knowledge, no design rationales on the choice of rotation con-
stants are given on any of these hash functions. This is the first paper
that analyzes rotations in iterated hash functions. We focus on SHA-1-
like hash functions and use recent developments in the analysis of these
hash functions to evaluate the security implications of using multiple sets
of rotation constants in the compression function instead of a single set.
Additionally, we give some observations on the set of constants used in
SHA-0 and SHA-1.

1 Introduction

SHA-0 was introduced in 1993 and SHA-1 was introduced in 1995 without giving
any rationales on the design. Both are based on the MD4 design strategy, however
the used message expansions are more complex. Additionally, a single set of
rotation constants instead of multiple sets are used during state update, i. e.
the rotation constants remain the same for all steps. Later on, in 1998, the
hash function HAS-160 was specified for use in South Korea’s Digital Signature
Algorithm. The structure of HAS-160 is very similar to SHA-1. However, one
distinct feature is the use of multiple sets of rotation constants (as in MD4 and
MD5) instead of a single set. Several questions are open so far:

1. Why were the rotation constants for SHA-1 chosen as they are?
2. Would there be better choices for these constants from a security point of

view?
3. Is there a security advantage of using multiple sets of rotation constants

instead of a single set?

We attempt to give some answers to these questions. To our knowledge this is
the first article which deals with the issue of rotation constants in iterated hash
� The work in this paper has been supported by the Austrian Science Fund (FWF),

project P18138.

B. Preneel and S. Tavares (Eds.): SAC 2005, LNCS 3897, pp. 261–275, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

262 N. Pramstaller, C. Rechberger, and V. Rijmen

functions. The outline and main contributions of this article are as follows. In
Section 2, we give a short description of SHA-1 and HAS-160. Afterwards, in
Section 3, we review and comment on currently known analysis strategies for
SHA-1. This review serves as an important starting point for some comparisons
done later in this article. Looking at HAS-160, we see that due to its non-
recursive message expansion the basic building block for most of these strategies
(elementary collisions as introduced by [3]) can not be directly applied. However,
the Rijmen-Oswald extension [15] can be used to overcome these problems.

Afterwards we turn to the influence of multiple sets of rotation constants. We
analyze the effect of multiple sets of rotation constants in simplified models in
Section 4. We show that these multiple sets improve the avalanche effect in the
first steps of our simplified, linearized model.

Section 5 contains the main contribution. We compare single and multiple
sets of rotation constants in hash functions like SHA-1, HAS-160 and variations
thereof. We identify two reasons why the complexity of an attack increases when
multiple sets are used. Firstly, we show that the weight of collision-producing
differences increases and secondly, we show that more conditions are needed
due to an optimization trick which is less effective with multiple sets. Here, we
also give a first observation on the design of SHA-1. For 80 or more steps, the
benefits of multiple sets over a single set of rotation constants is negligible (in
terms of Hamming weight of a collision-producing difference). Additionally, we
analyze the attack complexity for variants of SHA-1 having different single sets
of rotation constants. We show that in the case of full SHA-1 (80 steps), rotating
the chaining variable A by 5 to the left and chaining variable B by 2 to the
right are the smallest possible values which do not impair security. Finally, we
discuss advantages of having these small constants.

1.1 Used Notation and Terminology

Table 1 contains a description of symbols used throughout this article. Note that
if negative integers are used as rotation constants, the rotation direction is re-
versed from left to right. Whenever we talk about Hamming weight of differential

Table 1. Used notation

notation description
A ⊕ B addition of A and B modulo 2 (XOR)
A + B addition of A and B modulo 232

A ∨ B logical OR of two bit-strings A and B
Mt input message word t (32-bits), index t starts with 0
Wt expanded input message word t (32-bits), index t starts with 0

A ≪ n bit-rotation of A by n positions to the left, 0 ≤ n ≤ 31
step the SHA-1 compression function consists of 80 steps

round the SHA-1 compression function consists of 4 rounds = 4 × 20 steps
N number of steps of the compression function

Impact of Rotations in SHA-1 and Related Hash Functions 263

patterns we refer to the smallest Hamming weight we found using an adapted
version [13] of Leon’s algorithm [7] for finding low-weight words in linear codes.

2 Description of Used Hash Functions

In this section, we shortly describe SHA-1 and the differences of HAS-160 com-
pared to SHA-1.

2.1 SHA-0 and SHA-1

The SHA family of hash functions is described in [11]. Briefly, their compression
function consists of two phases: a message expansion and a state update trans-
formation. These phases are explained in more detail in the following. SHA-0 and
SHA-1 share the same state update, but SHA-0 has a simpler message expan-
sion. Both SHA-0 and SHA-1 consist of 80 steps. Since we will study variable-step
versions in this article, we denote the number of steps by N .

Message Expansion. In SHA-1, the message expansion is defined as follows.
The input is a 512-bit message, denoted by a row vector m. The message is also
represented by 16 32-bit words, denoted by Mt, with t = 0, 1, . . . , 15.

In the message expansion, this input is expanded linearly into N 32-bit words
Wt, also denoted as the 32N -bit expanded message word w. The words Wt are
defined as follows.

Wt = Mt, t = 0, . . . , 15 (1)
Wt = (Wt−3 ⊕Wt−8 ⊕Wt−14 ⊕Wt−16) ≪ 1, t > 15 (2)

The message expansion of SHA-0 is very similar, but uses:

Wt = Wt−3 ⊕Wt−8 ⊕Wt−14 ⊕Wt−16, t > 15 . (3)

Consequently, a bit at a certain position i in one of the words of w only depends
on the bits at corresponding positions in the words of m.

State Update Transformation. The state update transformation starts from
a (fixed) initial state for 5 32-bit registers and updates them in N steps, using
one word Wt in every step. Figure 1 illustrates one step of the state update
transformation. The function f depends on the step number: steps 0 to 19 (round
1) use the IF-function and steps 40 to 59 (round 3) use the MAJ-function.

fif(B, C, D) = BC ⊕BD (4)
fmaj(B, C, D) = BC ⊕BD ⊕ CD (5)

The remaining rounds use a 3-input XOR. A round constant Kt is added in
every step. There are four different constants; one for each round. After the
last application of the state update transformation, the initial register values are

264 N. Pramstaller, C. Rechberger, and V. Rijmen

At Bt Ct Dt Et

Bt+1 Ct+1 Dt+1 Et+1

<< 5

At+1

>> 2

+

+

+

+

f

Wt

Kt

Fig. 1. One step of the state update transformation of SHA-1

added to the final values, and the result is either the input to the next iteration
function or the final digest.

2.2 HAS-160

HAS-160 [17] is designed for use with the South Korean KCDSA digital signature
algorithm [16]. The output length is 160 bits. A security evaluation of KCDSA by
Lim et al. can be found in [9, 5]. An independent English description of HAS-160
is available [10, 8]. HAS-160 can be seen as a predecessor of the HAS-V family
of hash functions proposed in [12]. The design is based on SHA-1, however some
features are distinct. Subsequently, only the differences to SHA-1 are described.

Round Constants. HAS-160 uses a different set of round constants. We do
not need their actual values in this article.

Message Expansion. In SHA-0 and SHA-1, 16 input message words Mt are
expanded into 80 expanded message words Wt using a recursive definition. In
HAS-160, the 16 input words are expanded into 20 words (differently for each
round) and permuted for each of the four rounds. For actual permutation tables
and expansion tables, refer to [10, 8].

Boolean Functions in the State Update. The only difference to SHA-1 is
the 3-input Boolean function used for steps 40-59. We denote this function fhas3.

fhas3(B, C, D) = C ⊕ (B ∨D) (6)

The impact of this difference with respect to collision-search attacks is analyzed
in Section 5.2.

Rotations in the State Update. In SHA-0 and SHA-1, the chaining variable
At is rotated by 5 bit-positions to the left before it is input to a modular addition.

Impact of Rotations in SHA-1 and Related Hash Functions 265

In HAS-160, this single rotation constant is replaced by multiple constants, i. e.
each step within a round rotates At differently. The actual values are

S1(t mod 20) = {5, 11, 7, 15, 6, 13, 8, 14, 7, 12, 9, 11, 8, 15, 6, 12, 9, 14, 5, 13} ,

0 � t � 79 .
(7)

In SHA-0 and SHA-1, the chaining variable Bt is rotated by 30 bit-positions
to the left before it becomes variable Ct+1. In HAS-160, this single rotation
constant is replaced by multiple rotation constants for each round. The actual
values are

S2(t) = 10, 0 � t � 19 ,

S2(t) = 17, 20 � t � 39 ,

S2(t) = 25, 40 � t � 59 ,

S2(t) = 30, 60 � t � 79 .

(8)

Note that this concept of having multiple sets of rotation constants is different
to what is referred to as data dependent rotations (DDR).

3 Outline of Recent Attacks on SHA-0 and SHA-1

In this section we give an overview and comment on all the analysis techniques
that were used in recent years to analyze SHA-0 or SHA-1. The content of this
section is the basis for our approach to compare variants of SHA-1 later in this
article.

3.1 Differential Characteristics

Most recent collision attacks use the following strategy. Firstly, a differential
characteristic through the compression function of the hash function is con-
structed. Secondly, messages are constructed, which follow the characteristic.

3.2 Original Chabaud-Joux Approach

In the original approach of Chabaud and Joux [3], the differential characteris-
tic is determined by constructing a linear approximation for all the nonlinear
elements of SHA. Subsequently, Chabaud and Joux look for a differential char-
acteristic through this linear approximation. Since a differential characteristic
propagates in a deterministic way through a linear function, the characteristic
is determined completely by the choice of input difference. Hence, there are 2512

different characteristics. A fraction of 2−160 of these, results in a zero output
difference (a collision).

Chabaud and Joux use the same linear approximation in every step. Con-
sequently, every local collision contains the same number of corrections, i. e.
5. They impose the additional constraint that the pattern of perturbations is
a valid expanded message, which accounts for another reduction factor 2−160.
Hence, there remain 192 “free” bits.

266 N. Pramstaller, C. Rechberger, and V. Rijmen

3.3 Rijmen-Oswald Extension

In [15], it is proposed to drop the condition that the perturbation pattern should
be a valid expanded message. Any collision-producing difference, i. e. input dif-
ference that produces output difference zero in the linearized model, can be used.
This approach increases the number of free bits to 352. The approach still re-
sults in collisions that are linear combinations of local collisions, each consisting
of a perturbation and 5 corrections, but there are now less restrictions on the
perturbation pattern.

Until now, it hasn’t been demonstrated that this extension can result in better
differential characteristics for SHA-1. However, for other hash functions, the
improvement could be significant.

3.4 Multi-block

In multi-block collisions, we can also use differentials that don’t result in a zero
output. For instance, in a two-block collision, all we require is that the output
difference in both blocks is equal, because then, final feed-forward will result in
cancelation of the differences (with a certain probability). For a z-block collision,
we get 512z−160 free bits (512z−320 if we require that the perturbation pattern
is a valid expanded message).

3.5 Exploiting Non-linearity—Improvements by Wang et al.

If we study the differentials used by Wang et al. [21, 19], then we see that they
create even more freedom by allowing differential characteristics that don’t fol-
low the linear approximation in the first steps. The propagation of differences
through nonlinear functions is non-deterministic and this can be exploited. The
possibility to exploit non-linear behavior is also observed in [2]. The Rijmen-
Oswald extension can be adapted to exploit this additional freedom.

3.6 Removing Conditions

For the second step of the attack, constructing a pair of messages that follows
this characteristic, a number of conditions on message words and intermediate
chaining variables need to be fulfilled. As already observed in [3], conditions
on the first steps can be pre-fulfilled. Using the fact that their exist neutral
bits in the compression function, this approach was extended to cover the first
20-22 steps of SHA-0 [1]. Wang et al. employ a different technique called mes-
sage modification in their collision-search attacks on SHA-0 [21] and SHA-1 [19]
to pre-fulfill the conditions in more than 20 steps. Note that a variant of this
technique is also used in the analysis of MD4 and MD5 [18, 20, 6].

3.7 Decrease Final Search Complexity

There are still several ways to speed up the attack. Firstly, it is advantageous
to choose the bit position of message differences to be in the MSB, since there a
possible change in the carry has no effect. The reason for this is that in this case

Impact of Rotations in SHA-1 and Related Hash Functions 267

no condition on message words and chaining variables are necessary to prevent
this carry. A simple optimization is therefore to rotate each word of the difference
such that the number of MSBs of value 1 is maximized.

A second trick deals with the implementation of the final search. After pre-
fulfilling some conditions, the remaining conditions can only be fulfilled using
random trials. There are two natural ways to talk about the time-complexity of
this final search. One is to use the numbers of message pairs needed. In this case,
the time complexity can be estimated by 2c, where c corresponds to the number
of conditions that cannot be pre-fulfilled. Another way of looking at it is to use
the number of steps as a means to express time complexity. It seems natural to
define the time-complexity 1 to be the N steps of the compression function.

A “good” pre-computed 13-word or 14-word message-pair can be used as a
starting point. Depending on the conditions on the message words m14, m15 and
m16 we get up to 96 degrees of freedom for our final search. If all degrees of
freedom are used without finding a collision, a new pre-computed message pair
is needed. However, we can stop our step-computations after the first condition
with probability p1 = 1/2, after the second condition p2 = 1/4 and so on. Since
we assume random trials for conditions we cannot pre-fulfill, we always estimate
the probability for fulfilling the conditions to be 0.5.

Starting from step 13 or 14, on average 10 steps are enough. Therefore we esti-
mate the time-complexity of our final search to be 2c−3 (for N = 80). Joux et al.
[4] use a similar reasoning and arrive at 2c−2. The difference is that there the
same amount of computation is assumed for the second message pair. However,
the steps for the second message pair are only needed if all conditions are fulfilled
in order to check if the messages really collide.

3.8 Application of Attacks to HAS-160

Due to the non-recursive structure of the message expansion of HAS-160, a
direct application of the Chabaud-Joux approach is not possible. However, using
the approach described in [15], generating a differential characteristic for HAS-
160 is straightforward. Some details on constructing messages that follow this
characteristic are given in Section 5.2.

4 Rotations During the Step Update—Analysis of
Simplified Models

The original step update function of HAS-160 is defined as follows:

At+5 = (At+4 ≪ S0) + f(At+3, At+2 ≪ S1, At+1 ≪ S1)
+At ≪ S1 + Wt + Kt,

(9)

whereas S0 has different values for each step of a round and S1 has different
values for different rounds as defined in Section 2.2. Note that the SHA-1 state
update has the same structure, but S0 has always a value of 5 and S1 has always
a value of 30.

268 N. Pramstaller, C. Rechberger, and V. Rijmen

In order to analyze the impact of the multiple constants in S0, we use a
simplified model of the state update. We replace the modular addition by an
XOR and the function f by a 3-input XOR. In a first approximation, we consider
only two chaining variables, and therefore only one bit-rotation.

At+2 = (At+1 ≪ S0)⊕At (10)

If we introduce a single-bit difference in one of the chaining variables of Equa-
tion 10, we observe an increase of the Hamming weight of this difference with
increased number of steps. Our first observation is that whenever S0 is constant
and a multiple of 2, the number of affected bits decreases. Summing over all 80
steps, we get a maximum of 283 affected bits in the chaining variables when we
apply a single-bit difference in the first chaining variable. When we do the same
computations for multiple rotation constants we get a total of 1077 affected bits.
Note that if half of the bits would be affected in each step, we would arrive at
80× 16 = 1280 affected bits.

10 20 30 40 50 60 70 80
0

5

10

15

20

number of steps N

nu
m

be
r

of
 fl

ip
pe

d
bi

ts
 p

er
 s

te
p

10 20 30 40 50 60 70 80
0

5

10

15

20

number of steps N

nu
m

be
r

of
 fl

ip
pe

d
bi

ts
 p

er
 s

te
p

Fig. 2. Number of affected bits per step for constant bit-rotations. The constant is not
a multiple of 2 in the left figure. In the right figure, the used constant is a multiple of 2.

Figure 2 gives another point of view: the number of affected bits per step for
a single rotation constant. Here we distinguish between cases where the value for
the bit-rotations is a multiple of 2, and where this is not the case. The symmetry
in Figure 2 can be explained by our simplified and linearized model. If we apply
the same method to compute the number of affected bits for the case of multiple
rotation constants, we get the result shown in Figure 3.

We observe a much steeper increase in the first rounds. Due to the multiple
rotation constants, differences do not cancel out early. Later on, the ideal 16
affected bits per round are reached.

Next, we extend our model to three chaining variables to contain the second
bit-rotation of variable B. The resulting equation is as follows:

At+3 = (At+2 ≪ S0)⊕At+1 ⊕At ≪ S1 . (11)

Our simulation results and conclusions are pretty similar to the case for two
chaining variables. Therefore we omit them. However, we found an example

Impact of Rotations in SHA-1 and Related Hash Functions 269

10 20 30 40 50 60 70 80
0

5

10

15

20

number of steps N

nu
m

be
r

of
 fl

ip
pe

d
bi

ts
 p

er
 s

te
p

Fig. 3. Number of affected bits per step for multiple rotation constants

were we “outperformed” the ideal case: we used a constant 24-bit rotation for
A and “pseudo-random” rotations for B. Using this setting, we arrived at 1352
bit-flips after 80 steps.

5 Impact of Multiple Rotation Constants on the Attack
Complexity

In this section, we are comparing several variants of SHA-1. We use the approach
described in [15] to find low-weight input differences, which in turn can be used
to analyze the complexity of a collision-search attack. Even if we consider the
recent results by Wang et al. , comparing Hamming weights using this method
is sound since the underlying principle is the same.

Quote from [12]: “The variable shift amount seems to provide better immunity
against attacks such as differential collision in SHA-0 [3]. The generalization of
inner collisions to a full compression function seemed to be harder with variable
shift amounts.”

The method of [3] assumes a message expansion defined by a recursion, which
is a reason for the difficulties of applying this approach to HAS-160. However,
these problems are overcome if the Rijmen-Oswald extension is applied.

Multiple rotation constants account for a slightly increased Hamming weight of
collision-producing differences, which in turn slightly increases the number of con-
ditions that have to be fulfilled in the final search for a collision. Later on, we will
show that this increase is negligible after 80 or more steps. There are two reasons
why multiple rotation constants result in higher collision-search complexity:

1. Higher Hamming weight of the collision-producing difference in the linearized
model

2. It is less likely to take advantage of some condition-reducing effects.

5.1 Higher Hamming Weight of the Collision-Producing Difference
in the Linearized Model

We consider the first point now. In order to study the effect of different rotation
constants in an actual design, we searched for low-weight collision-producing

270 N. Pramstaller, C. Rechberger, and V. Rijmen

20 40 60 80 100 120
0

100

200

300

400

500

600

700

800

number of steps N

H
am

m
in

g
w

ei
gh

t

variable rotation(HAS−160)
constant rotation (SHA−1)
variable rotation(new)

20 30 40 50 60 70 80 90 100 110 120
0

100

200

300

400

500

600

700

800

number of steps N

H
am

m
in

g
w

ei
gh

t

variable rotation (HAS−160)
constant rotation (SHA−1)
variable rotation (new)

Fig. 4. Weight of collision-producing differences for single and multiple sets of rotation
constants. On the left, the HAS-160 message expansion is computed for up to 80 steps.
On the right, the SHA-1 message expansion is computed for up to 120 steps.

differences in variants of SHA-1, where we slightly changed the state update
transformation.

Firstly, we compare the state update transformations used by SHA-1 and
HAS-160. The result is depicted in Figure 4.

We consider three different state update variations. The original HAS-160
state update having multiple sets of rotation constants, the original SHA-1 state
update having a single set of rotation constants and a new state update having
different multiple sets of rotation constants. These variations of the state update
are combined with both the HAS-160 message expansion (depicted on the left)
and the SHA-1 message expansion (depicted on the right).

When looking at the values, we observe that using the HAS-160 message ex-
pansion instead of the SHA-1 message expansion actually decreases the best found
Hamming weight. We also see that the lower Hamming weights for versions using
a single set of rotation constants catch up on the Hamming weights of the variants
with multiple sets with increased number of steps. In the case of the HAS-160 mes-
sage expansion, this happens after 30 steps. In the case of SHA-1 the difference
between single and multiple sets of rotation constants vanishes after 80 steps. This
gives us a first hint on the choice made by the designers of SHA.

Observation 1. The difference between a single set rotation constants and mul-
tiple sets of rotation constants vanishes with increased number of steps. In con-
trast to the HAS-160 message expansion, the SHA-1 message expansion delays
this process until step 80.

Secondly, we evaluate the effect of different single sets of rotation constants for
SHA-1. Instead of rotating variable A by 5 positions to the left, we evaluated
the attack complexity for all possibilities from 0-31. The results are depicted
in Figure 5. In the step-reduced version, we see considerable differences for the
chosen rotation constants of A. The constant 5, which was chosen for SHA-1,
is in this setting favorable for the attacker. However, with increased number

Impact of Rotations in SHA-1 and Related Hash Functions 271

5 10 15 20 25 30
0

100

200

300

400

500

600

700

800

rotation constant for A

H
am

m
in

g
w

ei
gh

t o
f c

ol
lis

io
n−

pr
od

uc
in

g
di

ffe
re

nc
e

80 steps

20 steps

120 steps

Fig. 5. Hamming weight of collision-producing differences for all possible bit-rotations
of A and 20 to 120 steps of SHA-1

of steps, this advantage vanishes. After 80 steps, five bit-rotations are already
enough to arrive at the plateau of Hamming weights found.

We apply the same technique for chaining variable B. Instead of rotating
variable B by 30 positions to the left, we again evaluated the attack complexity
for all possibilities from 0-31. The results are depicted in Figure 6.

5 10 15 20 25 30
0

100

200

300

400

500

600

700

800

H
am

m
in

g
w

ei
gh

t o
f c

ol
lis

io
n−

pr
od

uc
in

g
di

ffe
re

nc
e

30 steps

50 steps

80 steps

120 steps

rotation constant for B

Fig. 6. Hamming weight of collision-producing differences for all possible bit-rotations
of B and 30 to 120 steps of SHA-1

272 N. Pramstaller, C. Rechberger, and V. Rijmen

In the step-reduced version, we see considerable differences for the chosen
rotation constants of B. The constant 30, which was chosen for SHA-1, is in
this setting again favorable for the attacker. However, with increased number of
steps, this advantage vanishes. After 80 steps, the value 30 (or −2) is already
enough to arrive at the plateau of Hamming weights found.

Observation 2. In the case of full SHA-1 (80 steps), 5 is the lowest possible
value for rotating A and 30 is the highest possible value for rotating B to result
in comparatively high Hamming weights for collision-producing differences.

The advantage of having these constants is as follows: Let’s consider platforms
where constant-time shifters or rotators (see e. g. [14]) are neither implemented
in hardware nor as microcode. There, rotating B by e. g. 2 positions to the
right instead of more is faster. Note that these observations cannot be seen as a
design criterium for the SHA family since they do not apply to SHA-0. Refer to
Appendix A for details.

5.2 Impact of Multiple Rotation Constants on the Condition
Generating Phase

Let us now consider the second point mentioned above: the assumption, that it
is less likely to take advantage of some condition-reducing effects due to multiple
sets of rotation constants. This refers to the second step of our analysis: deriving
conditions on chaining variables and input message words to make the real hash
function behave like the linearized model.

Before looking at the effect of multiple sets of rotation constants, the effect
of the new non-linear Boolean function introduced in HAS-160 is analyzed: the
fMAJ function used in SHA-1 has the nice property (for an attacker) that what-
ever (non-zero) input difference is applied, it is always possible to find conditions
on the inputs which modifies the output difference towards an XOR-like behav-
ior. This ensures that every possible collision-producing message difference in the
linearized model can lead to a real collision, assuming a number of conditions is
fulfilled.

Table 2. Conditions that need to be fulfilled in order to have a differential behavior
identical to that of an XOR

input differences fxor fif fmaj fhas3

000 0 always always always
001 1 B = 0 B ⊕ C = 1 B = 0
010 1 B = 1 B ⊕ D = 1 always
011 0 never C ⊕ D = 1 B = 0
100 1 C ⊕ D = 1 C ⊕ D = 1 D = 1
101 0 B ⊕ C ⊕ D = 0 B ⊕ D = 1 B ⊕ D = 0
110 0 B ⊕ C ⊕ D = 0 B ⊕ C = 1 D = 1
111 1 C ⊕ D = 0 always B ⊕ D = 0

Impact of Rotations in SHA-1 and Related Hash Functions 273

As illustrated in Table 2, the new Boolean function does not increase the
difficulty for an attacker to find conditions. As opposed to fif (input difference
011), we can always find conditions on the inputs of fhas3 to make it behave like
an XOR for all input differences.

The new Boolean function does not put additional hurdles for an attack.
Due to multiple sets of rotation constants aligning differences to optimize the
carry-drop effect (see Section 3.7) is less effective. At this point, it is difficult to
estimate the influence on the attack complexity compared to SHA-1, since the
bit-rotation of the SHA-1 message expansion has a similar effect.

6 Conclusion

We have analyzed the effect of multiple sets of rotation constants in HAS-160
and compared them to the single set of rotation constants used in SHA-1. The
bottom line is that multiple sets increase the attack complexity, the difference to
a single set however vanishes for increased number of steps. In our comparisons,
the Hamming weight of collision-producing differences in a linearized model was
used as a means to compare attack complexities on a relative scale. We also gave
some observations on the design of the compression function of SHA-1. For 80 or
more steps of SHA-1, the benefits of having multiple sets of rotation constants
instead of a single set are negligible. We finally observe that the chosen values
for rotations used in the state update of SHA-1 are on the edge as far as the
provided security level is concerned. Without impairing security, rotating the
chaining variable A by 5 to the left and chaining variable B by 2 to the right
are the smallest possible values. Platforms without constant-time shifters benefit
from this choice.

References

1. Eli Biham and Rafi Chen. Near-Collisions of SHA-0. In Matthew K. Franklin, edi-
tor, Advances in Cryptology - CRYPTO 2004, 24th Annual International Cryptol-
ogy Conference, Santa Barbara, California, USA, August 15-19, 2004, Proceedings,
volume 3152 of LNCS, pages 290–305. Springer, 2004.

2. Eli Biham, Rafi Chen, Antoine Joux, Patrick Carribault, Christophe Lemuet, and
William Jalby. Collisions of SHA-0 and Reduced SHA-1. In Ronald Cramer, editor,
Advances in Cryptology - EUROCRYPT 2005: 24th Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Aarhus, Den-
mark, May 22-26, 2005. Proceedings, volume 3494 of LNCS, pages 36–57. Springer,
2005.

3. Florent Chabaud and Antoine Joux. Differential Collisions in SHA-0. In Hugo
Krawczyk, editor, Advances in Cryptology - CRYPTO ’98, 18th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 23-27,
1998, Proceedings, volume 1462, pages 56–71. Springer, 1998.

4. Antoine Joux, Patrick Carribault, William Jalby, and Christophe Lemuet. Full
iterative differential collisions in SHA-0, 2004. Preprint.

274 N. Pramstaller, C. Rechberger, and V. Rijmen

5. KCDSA Task Force Team. The Korean Certificate-based Digital Signature Al-
gorithm, 1998. Available at http://grouper.ieee.org/groups/1363/P1363a/
contributions/kcdsa1363.pdf .

6. Vlastimil Klima. Finding MD5 Collisions on a Notebook PC Using Multi-message
Modifications, 2005. Preprint, available at http://eprint.iacr.org/2005/102.

7. Jeffrey S. Leon. A probabilistic algorithm for computing minimum weights of large
error-correcting codes. IEEE Transactions on Information Theory, 34(5):1354–
1359, 1988.

8. Chae Hoon Lim. The revised version of KCDSA, 2000. Unpublished Manuscript,
available at http://dasan.sejong.ac.kr/∼chlim/pub/kcdsa1.ps.

9. Chae Hoon Lim and Pil Joong Lee. A Study on the Proposed Korean Digital
Signature Algorithm. In Kazuo Ohta and Dingyi Pei, editors, Advances in Cryp-
tology - ASIACRYPT ’98, International Conference on the Theory and Applica-
tions of Cryptology and Information Security, Beijing, China, October 18-22, 1998,
Proceedings, volume 1514 of Lecture Notes in Computer Science, pages 175–186.
Springer, 1998.

10. Jack Lloyd. A Description of HAS-160, 2003. Available at www.randombit.net/
papers/has160.html.

11. National Institute of Standards and Technology (NIST). FIPS-180-2: Secure
Hash Standard, August 2002. Available online at http://www.itl.nist.gov/
fipspubs/.

12. Nan Kyoung Park, Joon Ho Hwang, and Pil Joong Lee: HAS-V: A New Hash Func-
tion with Variable Output Length. In Douglas R. Stinson and Stafford E. Tavares,
editors, Advances in Cryptology - CRYPTO ’98, 18th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 23-27, 1998, Proceed-
ings, volume 2012, pages 202–216. Springer, 2001.

13. Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen. Exploiting Cod-
ing Theory for Collision Attacks on SHA-1. In Cryptography and Coding, 10th IMA
International Conference, Cirencester, UK, December 19-21, 2005, Proceedings to
appear, LNCS. Springer, 2005.

14. Jan M. Rabaey. Digital Integrated Circuits. Prentice Hall, 1996.
15. Vincent Rijmen and Elisabeth Oswald. Update on SHA-1. In Alfred Menezes, ed-

itor, Topics in Cryptology - CT-RSA 2005, The Cryptographers’ Track at the RSA
Conference 2005, San Francisco, CA, USA, February 14-18, 2005, Proceedings,
volume 3376 of LNCS, pages 58–71. Springer, 2005.

16. TTA. Digital Signature Mechanism with Appendix - Part 2 : Certificate-based
Digital Signature Algorithm, TTAS.KO-12.0011/R1, 2000.

17. TTA. Hash Function Standard - Part 2: Hash Function Algorithm Standard (HAS-
160), TTAS.KO-12.0011/R1, 2000.

18. Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu. Crypt-
analysis of the Hash Functions MD4 and RIPEMD. In Ronald Cramer, editor, Ad-
vances in Cryptology - EUROCRYPT 2005: 24th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Aarhus, Denmark,
May 22-26, 2005. Proceedings, volume 3494 of LNCS, pages 1–18. Springer, 2005.

19. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the Full
SHA-1. In Victor Shoup, editor, Advances in Cryptology - CRYPTO 2005, 25th
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 14-18, 2005, Proceedings, volume 3621 of LNCS, pages 17–36. Springer,
2005.

Impact of Rotations in SHA-1 and Related Hash Functions 275

20. Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Functions. In
Ronald Cramer, editor, Advances in Cryptology - EUROCRYPT 2005: 24th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Aarhus, Denmark, May 22-26, 2005. Proceedings, volume 3494 of LNCS,
pages 19–35. Springer, 2005.

21. Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin. Efficient Collision Search Attacks
on SHA-0. In Victor Shoup, editor, Advances in Cryptology - CRYPTO 2005, 25th
Annual International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 14-18, 2005, Proceedings, volume 3621 of LNCS, pages 1–16. Springer, 2005.

A Single Sets of Rotation Constants for SHA-0

We evaluate the effect of different single sets of rotation constants for SHA-0.
Instead of rotating variable A by 5 positions to the left, we evaluated the attack
complexity for all possibilities from 0-31. The results are depicted in Figure 7.

5 10 15 20 25 30
0

100

200

300

400

500

600

700

800

rotation constant for A

H
am

m
in

g
w

ei
gh

t o
f c

ol
lis

io
n−

pr
od

uc
in

g
di

ffe
re

nc
e

120 steps

80 steps

50 steps

20 steps
30 steps

Fig. 7. Hamming weight of collision-producing differences for all possible bit-rotations
of A and 20 to 120 steps of SHA-0

Using the Hamming weight for the rotation constant 5 as a starting point,
we see that higher as well as lower Hamming weights for collision-producing
differences are possible when choosing different rotation constants. This holds
for all considered variants from 20 to 120 steps.

A Scalable, Delegatable Pseudonym Protocol
Enabling Ownership Transfer of RFID Tags

(Extended Abstract)

David Molnar, Andrea Soppera, and David Wagner

UC Berkeley, British Telecom, and UC Berkeley
dmolnar@eecs.berkeley.edu, andrea.2.soppera@bt.com,

daw@eecs.berkeley.edu

Abstract. The ability to link two different sightings of the same Radio
Frequency Identification (RFID) tag enables invasions of privacy. The
problem is aggravated when an item, and the tag attached to it, changes
hands during the course of its lifetime. After such an ownership transfer,
the new owner should be able to read the tag but the old owner should
not.

We address these issues through an RFID pseudonym protocol. Each
time it is queried, the RFID tag emits a different pseudonym using a
pseudo-random function. Without consent of a special Trusted Center
that shares secrets with the tag, it is infeasible to map the pseudonym to
the tag’s real identity. We present a scheme for RFID pseudonyms that
works with legacy, untrusted readers, requires only one message from tag
to reader, and is scalable: decoding tag pseudonyms takes work logarith-
mic in the number of tags. Our scheme further allows for time-limited
delegation, so that we can give an RFID reader the power to disam-
biguate a limited number of pseudonyms without further help from the
Trusted Center. We show how RFID pseudonyms facilitate the transfer
of ownership of RFID tags between mutually distrustful parties.

Our scheme requires only limited cryptographic functionality from
the tag: we need a pseudo-random function (PRF) and the ability to
update tag state or to generate random numbers. Tag storage and com-
munication requirements are modest: we give example parameters for a
deployment of one million tags in which each tag stores only 128 bits,
makes 6 PRF evaluations, and sends 158 bits each time it is read.

Keywords: RFID, privacy, pseudonym protocol, cryptography.

1 Introduction

Radio Frequency Identification (RFID) technology holds great promise, but it
also raises significant privacy concerns. The term RFID represents a family of
emerging technologies that enable object identification without physical or visual
contact. The main idea is to give a unique identity to every object by attaching
a tag. A tag is a small chip, with an antenna, that stores a unique ID and other
information which can be sent to a reading device. The reading device uses a
database to link the tag ID with information about the object it is attached to.

B. Preneel and S. Tavares (Eds.): SAC 2005, LNCS 3897, pp. 276–290, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Scalable, Delegatable Pseudonym Protocol 277

Today’s RFID systems do not authenticate the tag, so it is easy for an attacker
to impersonate other tags. This allows an attacker to mislabel goods for illicit
gain, e.g. causing an expensive item to be reported as a cheap one at checkout
time. Future systems will need to provide a way for readers to authenticate tags
and prevent such impersonation attacks.

The other main concern in RFID systems is the privacy of the user. Today,
tags can be read remotely and invisibly by any reader. This leads to unwanted
consequences, such as the surreptitious tracking of objects and people through
time and space. For instance, any party could use the RFID tags to track people’s
movements without authorization, since the ability to recognize an RFID tag
allows for tracking items, and by extension, the people associated with them. A
future protocol should prevent unauthorized readers from violating the privacy
of users.

Some of the early work in this area has proposed protocols for mutual authen-
tication between the tag and the reader [9, 6]. Mutual authentication protects
privacy, because the tag can insist that the reader authenticate itself and prove
it is authorized before releasing the tag identity. However, mutual authentication
is overkill for many RFID applications, because in most cases we simply want to
know the tag’s identity, and mutual authentication incurs an unnecessarily high
performance overhead. Moreover, these mutual authentication schemes cannot
be used with existing standard reader protocols. It would be better to have so-
lutions that are compatible with legacy readers, which can only read and pass
along a tag identifier.

We propose a cryptographic scheme that protects privacy while retaining
many of the legitimate benefits of current RFID technology. The main idea is to
introduce an RFID pseudonym scheme and to use a Trusted Center (TC) to en-
force the desired privacy policy and limit which readers may read each tag. Each
time the tag is read, it generates a new pseudonym and sends this pseudonym to
the reader. The Trusted Center is able to decode this pseudonym and obtain the
tag’s identity. Online readers can simply contact the Trusted Center and request
that the pseudonym be decoded (if allowed by the privacy policy). In addition,
we provide mechanisms so that the decoding can be performed anywhere in the
network, enabling us to support legacy readers and offline operations.

Our scheme provides two new features not seen in prior RFID protocols,
namely time-limited delegation and ownership transfer. Delegation enables a
reader to decode a particular tag’s pseudonyms without any further assistance
from the Trusted Center, by transferring the secrets associated with that tag
to the reader. Time-limited delegation allows to provide a controlled form of
delegation, where the reader receives only the ability to recognize the next q
pseudonyms for this tag (where q can be chosen arbitrarily). We can use time-
limited delegation to reduce the exposure if an adversary breaks into the reader:
instead of losing the secrets for all tags for all time, we lose only what was
delegated to that particular reader. Delegation also gives us a way to tolerate
poor quality network connections between the reader and Trusted Center, since
the reader does not need network access once it has received its delegated secrets.

278 D. Molnar, A. Soppera, and D. Wagner

Finally, we show how to use delegation to help Alice and Bob, who both trust
the same Trusted Center but do not trust each other, securely transfer an RFID-
tagged item from one to the other. After the transfer, Bob has assurance that
Alice can no longer read the RFID tag on the item, even though she could before.
Our methods for ownership transfer require minimal or no online interaction by
the Trusted Center itself.

We present two versions of our scheme. The first version stores a counter on
the tag and provides all of the features discussed so far. For tags that do not
support any form of writable non-volatile state, we also design a second version
that requires only a random number generator and read-only state. However, this
second version does not support time-limited delegation or ownership transfer.

Our scheme seems to be practical. It can leverage the existing infrastructure of
readers. The tag need only provide support for symmetric-key cryptography and
either a counter or a random number generator. These requirements appear to be
reasonable for a large class of RFID applications, including many deployments
that have already raised significant privacy concerns.

2 Towards a Secure RFID Tag Protocol

We begin by outlining the features our protocol is designed to provide and some
of the key challenges in achieving these goals.

Pseudonyms. Our main goal is to allow authorized readers to identify and au-
thenticate the RFID tag, while preventing unauthorized readers from determin-
ing anything about the identity of tags they interact with. One possible approach
would be to require readers to authenticate themselves to the tag before they are
allowed to read its contents; however, this would require changing the commu-
nication protocol between tags and readers, and thus would mean that existing
readers would have to be replaced. Therefore, our approach is to build a RFID
pseudonym protocol [8]. In our scheme, the RFID tag replies with a unique
pseudonym that changes each time it is queried. The pseudonym is generated
based on some secret key that is stored on the tag and known to authorized
readers, so that authorized readers can identify the tag. However, without that
secret, the pseudonym provides no information about the tag’s identity. In par-
ticular, pseudonyms are unlinkable, so that unauthorized readers will be unable
to tell if two pseudonyms came from the same tag. In this way, possession of the
secret key controls the ability to link sightings of the same tag.

The tag-reader protocol is very simple: the reader interrogates the tag, and
the tag responds with its current pseudonym. Our use of pseudonyms allows the
scheme to be compatible with legacy readers, because the reader does not need
to know anything about the way that pseudonyms are generated or decoded.
Instead, the reader can forward the pseudonym it received to some other entity,
and that other entity can recover the tag’s identity from the pseudonym.

Privacy. It is important to be able to specify a privacy policy for each tag,
restricting which readers are authorized to read that tag. Our architecture in-

A Scalable, Delegatable Pseudonym Protocol 279

cludes a central trusted entity, which we call the Trusted Center (TC), whose
role is to manage and enforce these privacy policies. When a tag is enrolled into
the system, it is loaded with a secret key generated for it by the TC. The TC
keeps a database listing, for each tag, the secret key provided to that tag, the
information associated with that tag (such as its identity), and that tag’s pri-
vacy policy. Given any pseudonym from an enrolled tag, the TC can decode the
pseudonym and determine the identity of the tag using the secret keys stored in
its database.

Note that we do not require the existence of a single global Trusted Center
that is trusted by everyone in the world. Although it would be possible to set up
a worldwide key infrastructure with a single globally trusted root (e.g., adminis-
tered by a consortium of tag manufacturers), this is not necessary. For example,
a library deploying RFID could act as its own Trusted Center, enrolling a tag
and writing secrets to it when the tag is applied to a library book. If libraries
do not need to read each other’s tags, then no library need trust any other.

In our system, the Trusted Center acts as a trusted third party that manages
the privacy policy associated to tags. We envision that the Trusted Center might
provide a way for the owner of each tag to specify a privacy policy for that tag,
listing which readers are authorized to decode this tag’s pseudonyms. Manufac-
turers might also specify a default policy when the tag is created, allowing us to
support both opt-in and opt-out policies. When the Trusted Center receives a
request from some reader to decode a particular pseudonym, the Trusted Center
can decode the pseudonym, consult the tag’s privacy policy, and decide whether
to reveal the tag’s identity to this reader.

This provides a simple way for users to delegate access only to specific readers.
In the future, a RFID infrastructure might consist of thousands or even millions
of RFID readers deployed across the planet, and we need a way for legitimate
readers to read the tag. In a naive implementation, the Trusted Center might
give a copy of the tag’s secret key to each reader that is authorized to read the
tag. However, this form of delegation is too coarse-grained, because the reader
then permanently receives the ability to identify this tag for all time. We may
not wish to place this much trust in every RFID reader that ever encounters the
tag, because then compromise of any one reader could endanger the privacy of
many users. The challenge is to provide time-limited delegation, where a reader’s
ability to read a tag can be limited to a particular time period.

Time-limited Delegation. Controlling delegation is easy if all readers are online—
the reader can simply act as a dumb relay, passing on the pseudonym from the
tag to Trusted Center and letting the TC reply with the identity of the tag (if
permitted by this tag’s privacy policy). However, this approach requires a costly
interaction between the reader and TC every time a tag is read. Because today’s
readers may repeatedly broadcast queries to all tags within range at a rate of
50 times per second or so, the burden on the TC and the database may be very
high: if there are 10 tags within range, we require 500 round-trip interactions per
second with the TC, multiplied times the number of readers. We instead focus
on the problem of offline delegation.

280 D. Molnar, A. Soppera, and D. Wagner

00

0 S1

S0

S1

S1

S0

S1

S0

Trusted
Center

Reader A

Reader B

Tag

Tag

00

S

Fig. 1. The Trusted Center delegates access to two different readers

In our scheme, the TC can compute a time-limited secret that provides only
the ability to disambiguate pseudonyms for a particular tag for a limited number
of times. In particular, the TC computes a secret that allow to recognize the
next q pseudonyms from this tag, where q is arbitrary and can be specified
by the privacy policy. This secret can be communicated to the reader through
any secure channel, and for the next q tag-reads the reader does not need to
interact with the TC in any way. After reading the tag q times, the reader loses
the ability to link tag readings and must contact the Trusted Center to ask for
re-authorization. (See Figure 1.)

Delegation is helpful for cases where readers have intermittent or low-
bandwidth connectivity. When a reader first sees a tag it is unable to recog-
nize, the reader can send the pseudonym it received to the TC. If this reader is
authorized for this tag, the TC can return not only the tag’s identity but also
a secret that allows reading the tag for a limited time—say, for 1000 queries—
without requiring further interaction with the TC. Delegation provides benefits
even for online readers, because the locality in tag sightings can be used to
greatly improve performance and reduce communication with the TC.

Our scheme also supports recursive delegation: after we delegate to Alice
limited-access to the tag, she can further re-delegate to Bob the power to query
this tag, and Bob can further delegate to Carol, and so on. Moreover, the rights
delegated can be limited arbitrarily at each step. For instance, if Alice receives
a secret that lets her identify the tag for the next 100 queries, she can compute
a secret for Bob that will let him read the tag for the next 40 queries, a secret
for Bill that lets Bill read the tag for the 30 queries after that, and so on. To
the best of our knowledge, no previous protocol for RFID privacy has addressed
delegation, let alone provided support for recursive delegation.

Ownership Transfer. A related problem to delegation is that of ownership trans-
fer, where Alice gives an RFID-tagged item to Bob. After the transfer of own-
ership, Bob should be able to read the item but Alice should not. Pseudonyms
allow us to cleanly deal with ownership transfer from Alice to Bob. If Alice has
not been delegated the ability to disambiguate pseudonyms, no further work is
needed: once Bob registers his ownership of this tag, the TC can simply deny
any future requests from Alice to read this tag. If Alice has been delegated

A Scalable, Delegatable Pseudonym Protocol 281

Scheme TReader SReader TTC STC # Msg Comm Delegation?
OSK [8] O(N) O(N) NA NA 1 O(1) No
AO [1] O(N2/3) O(N2/3) NA NA 1 O(1) No
MW [6] O(log N) O(1) NA NA O(log N) O(log N) No
Basic O(D) O(D) O(log N) O(2d1) 1 O(log N) Yes

Optimized O(D) O(D) O(log N) O(1) 1 O(log N) Yes

Fig. 2. Comparison to previous RFID privacy schemes. Here TTC and STC stand for
the time and storage requirements of the Trusted Center, with the Reader requirements
marked similarly. N is the total number of tags in the system, d1 is the depth of the
Trusted Center’s tree, and D is the number of tags delegated to a particular reader. In
practice, we expect D � N . The Optimized Scheme uses a PRF to generate the TC’s
tree of secrets and truncates the tag outputs, as described in Section 6.

secrets that let her read this tag, we have two methods for ensuring Alice can
no longer link a tag after it is passed to Bob. Both are described in more detail
in Section 5.

Scalable Lookup. A major technical challenge in the design of such systems is how
to make them scale to a large number of tags. Consider a TC with a database
of N tags. Naively, decoding a pseudonym might require a linear scan through
all N tag keys, which may not be practical for an RFID system with N = 106

tags. Instead, we design a scheme with logarithmic complexity: the TC does
just O(log N) work to disambiguate a pseudonym. In Figure 2, we compare our
system to previous RFID pseudonym schemes.

Delegation incurs some performance overhead at the readers. In our scheme,
a reader that has received D delegations will require O(D) work per tag queried.
In practice we expect D will be small compared to the total number of tags; for
example, D might be the number of tags in a single shipment of goods. Therefore,
we expect this performance level to be adequate in practice.

3 Notation

We use a pseudo-random function (PRF) F : K × {0, 1}n → {0, 1}n and a
pseudo-random generator (PRG) G : K → K × K. Also, we use G0(k) and
G1(k) to denote the first and second part of G(k), respectively, so that G(k) =
(G0(k), G1(k)).

In practice we might use AES as the PRF. Recent results on low-gate-count
implementations of AES suggest that AES may be within reach for all but the
lowest-end RFID tags [2]. We might also define the PRG in terms of the PRF,
for instance defining G by Gb(k) = Fk(0n−1 b), so that the tag needs only a
single cryptographic primitive. One should be careful to ensure that the inputs
to the PRF when used for PRG-emulation are disjoint from the inputs to the
PRF elsewhere in the protocol, for instance by having the first bit of the PRF
input indicate which mode it is being used in.

282 D. Molnar, A. Soppera, and D. Wagner

If s ∈ {0, 1}∗ is a bitstring, we use s1..i to denote the first i bits of s, and len(s)
to denote the length of s (in bits). Also, we place the nodes of a complete depth-
d binary tree in one-to-one correspondence with {0, 1}≤d, the set of bitstrings
of length at most d. The empty string represents the root of the tree. If s is
any internal node, s 0 and s 1 are used to represent its left and right children,
respectively. Thus each bitstring of length ≤ d identifies a node in the binary
tree by specifying the path from the root that reaches it. We sometimes also use
s to refer to the integer s12n−1 + · · ·+ sn−12+ sn obtained by viewing the string
s as a number written in big-endian binary notation.

If f : S′ → T is a function and S ⊆ S′, let f |S : S → T denote the restriction
of f to S. When given a function H : {0, 1}≤d1 → K defined on {0, 1}≤d1,
we will extend it to a function defined on all of {0, 1}∗ using the recurrence
H(s b) = Gb(H(s)).

4 Our Protocol

Tree of Secrets. Our protocol is based around a tree of secrets of depth d = d1+d2
as shown in Figure 3. Each node in the tree has its own k-bit secret key. For
simplicity, we describe our scheme in terms of a complete binary tree {0, 1}≤d,
though we will later generalize this to larger branching factors.

The first d1 levels of the tree contain node secrets that are chosen uniformly
and independently at random by the Trusted Center during system initialization
(see algorithm TC.GenTC in Figure 5). Each node at depth d1 corresponds to

T1 T2 T3 T4

x

G0(x) G1(x)

G00(x) G01(x) G10(x) G11(x)

0 1

0 01 1

d1

d2

d

1 2 3 4

Fig. 3. An example tree of secrets for four tags in our RFID pseudonym scheme.
The nodes drawn with solid lines correspond to secrets shared only between the tags
T1,...,T4 and the Trusted Center. Each of these secrets is drawn uniformly at random
and independently of each other. The dashed line nodes are secrets in delegation trees,
where keys at child nodes are derived by the GGM construction from the key at their
parent. On each read, a tag updates its state to use the next leaf in the delegation tree
for its next pseudonym. To delegate limited-time access to a tag, the Trusted Center
can give out subtrees of the delegation tree; for example, the immediate parent of 1
and 2 allows learning T1’s identity in time periods 1 and 2, but not in time periods 3
and 4.

A Scalable, Delegatable Pseudonym Protocol 283

a unique tag. When the tag is enrolled into the system, it receives all keys on
the path from its node to the root. Therefore, each tag only needs capacity to
store d1 secrets.

The next d2 levels of the tree contain secrets that are derived using a GGM
tree construction [3]: each node is labelled with a secret, and the secrets for its
children are derived by applying a PRG. Knowing a secret at level ≥ d1 allows
computation of the secrets for every descendent in the subtree rooted at that
node, but nothing else.

Formally, the TC chooses a function H : {0, 1}≤d1 → K uniformly at random,
and H(s) denotes the key associated with node s in the tree. We extend the
function H : {0, 1}≤d1 → K to a function H : {0, 1}≤d → K by the rule
H(s b) = Gb(H(s)) for all s ∈ {0, 1}≥d1, b ∈ {0, 1}. For the rest of this paper,
we assume this extension is implicitly performed whereever necessary, and we
do not distinguish between H and its extended version.

Each tag receives H |S for some prefix-closed set S = {t1..1, . . . , t1..d1} corre-
sponding to the path to the root. This means that the tag effectively learns the
function H |S′ , where S′ = {t1..1, . . . , t1..d}, though it only needs to store the first
d1 secrets in this list.

Tag Responses. Each tag T keeps a counter T.c. The counter identifies a leaf
at level d of the tree; thus, each counter value corresponds to a new pseudonym
for this tag. The tag responds to a query from a reader by generating a random
number r and sending a pseudonym

(r, p) = (r, (Fh(c1..1)(r), Fh(c1..2)(r), ..., Fh(c1..d)(r)))

where the h(c1..i) values represent secrets along the path in the tree of secrets
from the root to the tag’s current leaf T.c. The tag then increments the counter
c. See Figure 4.

Notice that because the counter c is incremented on each query, the tag will
use a different path of secrets, and therefore a different pseudonym, for every
query. This is what enables delegation, because we can give the reader a subtree
of secrets that will expire after a certain number of tag reads. The tag’s workload
is quite modest: only d + d2 invocations of the PRF are needed per query. By

Tag State: (initialized by TC.EnrollTag)
c, a counter in {0, 1}d.
S, a set with S ⊆ {0, 1}≤d1 .
h, where h : S → K.

Algorithm Tag.Respond():
1. Pick r ∈R {0, 1}k uniformly at random.
2. Set p := (Fh(c1..1)(r), Fh(c1..2)(r), . . . , Fh(c1..d)(r)).
3. Set c := c + 1.
4. Return (r, p).

Fig. 4. Algorithms and state for the RFID tag

284 D. Molnar, A. Soppera, and D. Wagner

varying the branching factor and depth of the tree, we can trade off between the
complexity of Tag.Respond and the complexity for the reader. See Section 6.

Decoding Pseudonyms. Given a pseudonym (r, p), it is possible to use the tree
structure to efficiently decode this pseudonym and discover the identity of the
tag that generated this pseudonym. The main idea is to use a depth-first search
to find a path in the tree that matches the response p. We start at the root of
the tree of secrets. At each node s, we can check whether the left child s 0 or the
right child s 1 matches entry pi in the response by checking whether Fs0(r) = pi

or Fs1(r) = pi, respectively. In this way, wrong paths can be quickly pruned. See
TC.IdentifyTag in Figure 5.

Given a pseudonym, this procedure lets the TC identify the tag’s real identity
ID. Based on the identity of the tag, the identity of the reader, and the privacy
policy for this tag, the TC can then decide whether to reveal ID to the reader.
This provides a mechanism for enforcing a privacy policy regarding which readers
are allowed to learn which tag IDs.

Delegation. Our protocol also allows the TC to delegate access to a certain
interval of pseudonyms to an offline reader. This can be thought of as allowing
the reader to perform the mapping itself from a pseudonym (r, p) to the tag’s
identity ID, but only if the tag’s counter value is in a prescribed interval [L, R]
(for some 1 ≤ L ≤ R ≤ 2d).

Recall that each leaf of the tree corresponds to a different pseudonym for a
tag. To delegate access to leaves in an interval [L, R], the Trusted Center first
determines the smallest set S ⊆ {0, 1}≥d1 of tree nodes that cover the interval
[L, R]. We say that S covers [L, R] if for all x ∈ [L, R], there exists s ∈ S so that
s is a prefix of x. The Trusted Center then sends H |S to the reader along with
the tag’s identity. Now, when the reader sees the pseudonym (r, p), the reader
no longer needs to communicate with the Trusted Center. Instead, the reader
can perform a depth-first search starting at each node in S, since H |S contains
everything the reader needs to know to perform this search. See Figures 5 and 6.

After the tag updates itself past the leaf R, however, the reader can no longer
recognize any subsequent pseudonyms from this tag. This is because the counter
Tag.c will have updated past the subtree of secrets known to the reader. The
reader’s access to the tag has effectively expired, and at this point the reader
must re-apply to the TC if it wants continued access.

Note that decoding a pseudonym takes the reader O(D) invocations of the
PRF (for D = |S|), since the reader must check every value in its delegated
subset S for a match with the tag’s response.

Second Version: Eliminating the Counter. In low- and middle-end RFID tech-
nologies, writing permanent state such as a counter on each tag read may be
difficult, making our first protocol inapplicable. For example, the EPC Gen II
specification requires a random number generator, but EPC tags are read at a
distance of several meters and may not have enough power available for writes.

A Scalable, Delegatable Pseudonym Protocol 285

TC State:
H : {0, 1}≤d1 → K, a function.

Algorithm TC.GenTC():
1. Let H : {0, 1}≤d1 → K be a random function, i.e., pick H(s) ∈R K uniformly at

random for each bitstring s of length at most d1.

Algorithm TC.EnrollTag(ID):
1. Find the smallest integer t ∈ {0, 1}d1 that hasn’t been assigned to any other tag.

Assign t to this tag.
2. Set S := {t1..j : 1 ≤ j ≤ d1}.
3. Return (t 0d2 , S, H |S) as the state for this tag.

Algorithm TC.Delegate(L, R):
1. Let S denote the minimal subset of {0, 1}≥d1 such that for all x with L ≤ x ≤ R,

there exists s ∈ S so that s is a prefix of x.
2. Return H |S.

Algorithm TC.IdentifyTag(r, p):
1. Return DFS(r, p, 1, ε), where ε denotes the empty bitstring.

Algorithm DFS(r, p = (p1, .., pd), i, s):
1. If i = d + 1, return {s1..d1}.
2. Set ids := ∅.
3. If FH(s 0)(r) = pi then set ids := ids ∪ DFS(r, p, i + 1, s 0).
4. If FH(s 1)(r) = pi then set ids := ids ∪ DFS(r, p, i + 1, s 1).
5. Return ids.

Fig. 5. Algorithms and state for the Trusted Center

We now design a second version of the protocol that eliminates the need for
updateable non-volatile state, assuming the tag can generate random numbers
on demand. We replace the counter Tag.c with a d-bit value whose first d1 bits
are fixed at the unique value t (as before) and whose last d2 bits are chosen
uniformly at random for each query. Thus, the tag uses the same subtree to
generate pseudonyms, but instead of walking along the leaves from left to right
one at a time, it instead picks a random leaf each time it is read. The Trusted
Center’s algorithms remain unchanged in either case. Unfortunately, the second
version of our protocol does not support time-limited delegation or ownership
transfer.

Security and Privacy. Our protocol provides replay-only security against im-
personation attack and privacy against a radio-only adversary. Informally, this
is because each pseudonym emitted by a tag is indistinguishable from other
pseudonyms unless the secret keys are known; we give formal definitions and
proofs in the full version of the paper [5].

Our protocol provides replay-only security against impersonation attack even
if an adversary can compromise tags. This is because each tag has at least

286 D. Molnar, A. Soppera, and D. Wagner

Reader State: (updated by TC.Delegate)
h : S → K, for some S ⊆ {0, 1}≥d1 , with S initialized to ∅.

Algorithm Reader.IdentifyTag(r, p):
1. Set ids := ∅.
2. For each s ∈ S such that no prefix of s is in S, do:
3. Set ids := ids ∪ DFS(r, p, len(s) + 1, s).
4. Return ids.

Fig. 6. Algorithms and state for the reader

one secret not shared with any other tag; to perform a successful non-replayed
impersonation, the adversary would need to predict the value of a PRF keyed
with such a secret.

Privacy, on the other hand, degrades under tag compromise. This is because
tags may share secrets in the tree of secrets. The amount of degradation de-
pends on the branching factor of the tree. At one extreme, a single-level tree
with a branching factor of N loses no privacy under tag compromise. At the
other extreme, two randomly chosen tags in a binary tree have a chance of 1/2k

of sharing k secrets. Each deployment can pick the branching factor that makes
the best tradeoff between privacy loss under tag compromise and reader com-
plexity. Even at high branching factors, however, our scheme provides benefits
via delegation.

5 Ownership Transfer

Ownership transfer in RFID is the following problem: Alice gives an RFID tag
to Bob. How do we prevent Alice from later reading the RFID tag? This problem
is crucial for limiting the trust required in readers which may need to read tags
at some point in the tag’s lifetime.

In the case that Alice has not been delegated access to the RFID tag, own-
ership transfer in our model is simple. The Trusted Center is notified of the
transfer and updates a privacy policy associated with the tag. Afterwards, Al-
ice requests access to the tag’s ID. The Trusted Center then checks the privacy
policy, sees Alice no longer owns the item, and denies access. In case Alice has
been already been delegated access to the tag, we introduce two methods for
ownership transfer.

Soft Killing. In the first method, soft killing, Bob queries the Trusted Center
and learns how many leaves were delegated to Alice. Suppose this number is k.
Bob then reads the tag k +1 times. The tag will then have updated past Alice’s
access, so she will no longer be able to disambiguate the tag’s pseudonyms.
Notice that even if Bob knows how many leaves were delegated to Alice, he still
cannot distinguish a tag delegated to Alice from any other tag without Alice’s
help; this is because the tag will emit a new, pseudorandom, pseudonym on each
read. Therefore knowing the number of leaves delegated to Alice does not hurt
the privacy of our protocol.

A Scalable, Delegatable Pseudonym Protocol 287

The benefit of soft killing is that it does not require shared secrets between the
tag and reader. The downside is that soft killing requires many tag reads. Soft
killing also opens up the possibility for a denial of service attack if an adversary
reads the tag many times; Alice can recover from this by simply asking the
Trusted Center to delegate more access.

Increasing The Tag Counter. In the second method, we allow Bob to increase
the counter on a tag from c to c′. Bob does so by sending the tag a random seed
r, after which Bob and the tag can perform mutual authentication and establish
a secure channel with the shared secret Fh(c)(r). Bob then sends c′, plus a proof
that Bob knows the secret for the leaf c′, to the tag over the secure channel. The
tag checks that c′ > c, so Bob can only increase the tag’s counter, not decrease
it. By doing so, Bob can “leapfrog” the tag over Alice’s delegated leaves and be
sure that Alice can no longer read the tag. Increasing the counter requires only
one read, but also requires the tag to implement a substantially more complex
protocol.

6 Optimizations and Weakening Assumptions

Reducing TC Storage. In our protocol as described, the Trusted Center must
generate and store 2d1+1 independent random values. We can reduce this storage
to a single key by instead having the Trusted Center use a PRF with a master
key mk that is never revealed to any other party. The PRF evaluated at a nodeID
yields the secret for the node: H(s) = Fmk(s) for s ∈ {0, 1}≤d1.

Random Number Generation. In some RFID technologies, it may be difficult to
generate random numbers. If the tag can support writable non-volatile state, we
can replace the random number generator with a PRF run in counter mode. See
Figure 7. We stress that the key rk used for random-number generation is not
shared with any reader at any time.

Truncating PRF Values. Instead of sending full PRF values in a tag response,
it is more efficient to send truncated versions. This reduces communication
overhead at the cost of following false paths during the depth-first search. To
avoid misidentification of tags, we recommend truncating only at the inter-
nal nodes and sending the full-length PRF output at the leaves. If internal
nodes are truncated to a bits, the tag’s response becomes (r, p) where p :=
(Fh(c1..1)(r) mod 2a, ..., Fh(c1..d−1)(r) mod 2a, Fh(c1..d)(r)). With full-length val-
ues at the leaves, the probability of misidentification is negligible.

PRNG.Initialize()
1. Initialize ctr to 0.
2. Pick secret key rk ∈R K.

PRNG.GetNextNonce()
1. Return Frk(ctr++).

Fig. 7. Generating nonces with a PRF and a counter

288 D. Molnar, A. Soppera, and D. Wagner

Number of Tags Tag Storage Communication Tag Computation Reader Computation
220 128 bits 158 bits 6 6 · 210

230 192 bits 168 bits 7 7 · 210

240 256 bits 178 bits 8 8 · 210

Fig. 8. Concrete resource use of our scheme for some example parameters. We use a
branching factor of 210 in all cases, use a 64-bit r value with truncation, and we assume
tags will be read at most 220 times. Tag and reader computation are both measured
in expected number of PRF evaluations.

When PRF responses are truncated, identifying a tag requires searching
through the tree, and this search might follow false paths that do not corre-
spond to the true tag identity. If the branching factor is exactly 2a, it is possible
to show that the search process is a birth-death process and that the expected
complexity of the search is O(2a × lg N) = O(2a × d).

Branching Factor and Concrete Examples. Truncation greatly reduces commu-
nication overhead while only slightly impacting the complexity of tag identifica-
tion. For instance, with a binary tree of depth d = 40, we might truncate PRF
values to 1 bit at internal nodes and use a 64-bit PRF output at the leaves.
With these parameters, the response p will be 103 bits long, while the search
complexity remains minimal.

In practice, we would use trees with branching factors much larger than 2. A
larger branching factor reduces the depth of the tree, thus reducing tag storage
and computation, at the cost of more computation for the Trusted Center and
reader. For example, consider an RFID system with N = 220 tags, each of which
will be read at most 220 times. We construct a four-layer tree of secrets with
branching factor 1024 = 210 at all levels. Each tag stores two 64-bit secrets s1, s2,
with the second secret being the root of a GGM tree that covers the final two
tree levels. Each pseudonym requires two PRF invocations to compute s3, s4 and
four PRF invocations to compute the response. Total tag storage is 2 · 64 = 128
bits and total tag computation is 6 applications of the PRF. If we truncate the
tag’s responses to 10 bits at internal nodes and 64 bits at the leaf, and use a
64-bit r, the tag’s total communication is 64 + 30 + 64 = 158 bits. The work for
the reader, on the other hand, is only 6 · 210 applications of the PRF. We show
concrete parameters for this and some other examples in Figure 8.

7 Related Work

Weis et al. provide “hash lock” protocols for private mutual authentication [9].
As we have discussed, mutual authentication is not needed in scenarios when
only tag identification is required, and it incurs significant performance costs.
Their schemes also require readers to perform work linear in the number of total
tags and do not support time-limited delegation to offline readers. Because they
choose independent secrets for each tag, however, they do not suffer from privacy
loss under tag compromise.

A Scalable, Delegatable Pseudonym Protocol 289

Molnar et al. show how to use a tree of secrets to achieve mutual authen-
tication protocol with complexity logarithmic in the number of tags [6]. Their
scheme requires at least 3 rounds of communication between tag and reader,
while we use only one message from tag to reader. More importantly, their work
does not support delegation, nor does it work with legacy readers. Our work
uses a similar tree construction to achieve logarithmic work, but applies the idea
to RFID pseudonyms. Our recursive tree-walking scheme has some similarities
with the traitor tracing scheme of Naor et al. [7].

Ohkubo et al. introduce a scheme for RFID pseudonyms [8]. In their protocol,
recovering the tag identity requires work linear in the number of possible tags,
while we achieve logarithmic work. They propose storing the expected next out-
put of each RFID tag as an optimization, but this cannot be kept up to date
unless without online reader-TC interaction on every tag read. Avoine and Oech-
slin propose a time-space tradeoff technique that improves the complexity of the
Ohkubo et al. protocol to O(N2/3) time with a table of size O(N2/3), but their
protocol does not support delegation as ours does [1]. Both protocols could be
extended to support a form of delegation by giving out the individual secrets for
each time period, but this requires much more state on the reader. On the other
hand, both schemes avoid the problem of privacy loss under tag compromise,
because all tags have independently chosen secrets.

The time-memory tradeoff of Avoine and Oeschslin also requires picking a hash
chain length in advance. Once a tag exceeds the number of readings set by this
length, the entire table must be recomputed before that tag can be read. This is
a problem because readers may read a tag 50 times per second. Further, there are
active attacks that violate our privacy goals. An adversary that has the ability to
trigger a legitimate reader to query a tag and learn whether the reader accepts or
rejects can determine if the tag has been read more times than provided for by
the hash chain length; this would enable the adversary to distinguish tags. While
these concerns are alleviated by longer chain lengths, these lengths also increase
the amount of space and time required for the time-memory tradeoff.

Juels gives a scheme for one-use RFID pseudonyms [4]. Unlike our protocol,
Juels’s scheme does not require a PRF; a simple XOR is enough. Juels also
discusses methods for rotating and changing pseudonyms to support ownership
transfer. His protocol, however, only allows a tag to emit a limited number
of pseudonyms before it must be refreshed through interaction with a trusted
reader. Juels outlines an extension to the protocol which removes this restriction
using a PRG, but this method requires tight synchronization between reader
and tag. Further, his protocol does not work with legacy readers, and it does
not support delegation as ours does. Again, in Juels’s system, compromising one
tag does not aid the adversary in identifying another.

8 Conclusions

We have described a new cryptographic protocol for RFID privacy. In our
scheme, tags generate pseudonyms that can only be decoded with knowledge
of the appropriate secrets, and privacy is protected by controlling which parties

290 D. Molnar, A. Soppera, and D. Wagner

are given access to these secrets. The key ingredient of our protocol is a set of
secrets organized in a tree format. This tree structure enables many powerful
features, including support for legacy readers, disconnected operation, flexible
privacy policies, delegation to authorized readers, time-limited delegation, re-
cursive delegation, and ownership transfer between users. At the same time, our
scheme is practical and scalable: it requires only a few PRF invocations and
a modest amount of communication between the tag and reader, even for very
large deployments. We believe our protocol could enhance the privacy protection
for a wide range of current and future deployments of RFID technology.

Acknowledgements

We thank Gildas Avoine, Michael Backes, Trevor Burbridge, Etienne Dysli, Ar-
naud Jacquet, Pascal Junod, Vivekanand Korgaonkar, Philippe Oechslin, and
the anonymous reviewers for helpful comments. The authors also gratefully
acknowledge support from NSF grant CCR-0093337, the Sloan Research Fel-
lowship, and British Telecom. David Molnar was supported by an Intel OCR
Fellowship and an NSF Graduate Fellowship.

References

1. Gildas Avoine and Philippe Oechslin. A scalable and provably secure hash-based
RFID protocol. In IEEE PerSec, 2005.

2. Martin Feldhofer, Sandra Dominikus, and Johannes Wolkerstorfer. Strong authen-
tication for RFID systems using the AES algorithm. In CHES, 2004.

3. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. J. ACM, 33(4):792–807, 1986.

4. Ari Juels. Minimalist cryptography for RFID tags, 2003. http://www.rsasecurity.
com/rsalabs/staff/bios/ajuels/publications/minimalist/index.html .

5. David Molnar, Andrea Soppera, and David Wagner. A scalable, delegatable
pseudonym protocol enabling ownership transfer of RFID tags (full version). To
appear in Cryptology ePrint Archive, 2005. eprint.iacr.org/2005/.

6. David Molnar and David Wagner. Security and privacy in library RFID: Issues,
practices, and architectures. In ACM CCS, 2004.

7. D. Naor, M. Naor, and J. Lotspiech. Revocation and tracing schemes for stateless
receivers. In CRYPTO, 2001.

8. Miyako Ohkubo, Koutarou Suzuki, and Shingo Kinoshita. Cryptographic approach
to a privacy friendly tag. In RFID Privacy Workshop, MIT, 2003.

9. Stephen A. Weis, Sanjay E. Sarma, Ronald L. Rivest, and Daniel W. Engels. Secu-
rity and Privacy Aspects of Low-Cost Radio Frequency Identification Systems. In
Security in Pervasive Computing, 2004.

Reducing Time Complexity in RFID Systems

Gildas Avoine1, Etienne Dysli1, and Philippe Oechslin1,2

1 EPFL, Lausanne, Switzerland
2 Objectif Sécurité, Gland, Switzerland

Abstract. Radio frequency identification systems based on low-cost
computing devices is the new plaything that every company would like to
adopt. Its goal can be either to improve the productivity or to strengthen
the security. Specific identification protocols based on symmetric
challenge-response have been developed in order to assure the privacy of
the device bearers. Although these protocols fit the devices’ constraints,
they always suffer from a large time complexity. Existing protocols re-
quire O(n) cryptographic operations to identify one device among n.

Molnar and Wagner suggested a method to reduce this complexity to
O(log n). We show that their technique could degrade the privacy if the
attacker has the possibility to tamper with at least one device. Because
low-cost devices are not tamper-resistant, such an attack could be feasi-
ble. We give a detailed analysis of their protocol and evaluate the threat.
Next, we extend an approach based on time-memory trade-offs whose
goal is to improve Ohkubo, Suzuki, and Kinoshita’s protocol. We show
that in practice this approach reaches the same performances as Molnar
and Wagner’s method, without degrading privacy.

Keywords: RFID, time complexity, time-memory trade-off.

1 Introduction

Sometimes presented by the media as the next technological revolution after
the Internet, Radio Frequency Identification (RFID) aims to identify objects
remotely, with neither physical nor visual contact. They consist of transponders
inserted into objects, readers which communicate with the transponders using a
radio channel and a database which contains information on the objects.

This technology is not fundamentally new and concerns a whole range of
applications. The first RFID application may have been the Royal British Air
Force’s “Identify Friend or Foe” system, which was used during the Second
World War to identify friendly aircrafts. RFID systems have also been used
for a few years in commercial applications, for example in contactless smart
cards used on public transport. However, the boom that RFID technology enjoys
today is chiefly due to the standardization [12, 6] and development of low-cost
devices, so-called tags. This new generation of RFID tags has opened the door
to hitherto unexplored applications. For example in supply chains as suggested
by the EPC Global Inc. [6], to locate people in amusement parks [20], to combat
the counterfeiting of expensive items [14], to trace livestock [5], to label books
in libraries [16], etc.

B. Preneel and S. Tavares (Eds.): SAC 2005, LNCS 3897, pp. 291–306, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

292 G. Avoine, E. Dysli, and P. Oechslin

However, these tags also bring with them security and privacy issues. Secu-
rity issues rely on classic attacks, e.g., denial of service, impersonation of tags or
channel eavesdropping. These attacks are rendered more practicable because of
the tags’ lack of computational and storage capacity. More details on the tech-
nical aspects of the tags can be found for example in [14, 7, 8]. Current research
deals with these problems but most of them are inherent to the technology itself,
and applications have to make do with them. For these reasons, the RFID tech-
nology is more suited for bringing functionality (e.g., [6, 20, 5, 16]) rather than
security (e.g., [14, 4]).

Nevertheless, whether it has a security or a functionality goal, radio frequency
identification raises issues linked to privacy, in particular the problem of trace-
ability of objects and thus indirectly of people [2]. Other technologies also permit
the tracking of people, e.g., video surveillance, GSM, Bluetooth, and are exten-
sively used by law enforcement agencies among others. However, RFID tags
would permit everybody to track people using only low-cost equipment. This is
strengthened by the fact that tags cannot be switched off, they can be easily
hidden, their lifespan is not limited, and analyzing the collected data can be
efficiently automated. Whether the defenders of RFID minimize the problem of
privacy and its detractors amplify it, the fact that some companies have had to
renounce this technology after being boycotted by associations [21] which de-
fend individuals’ liberty shows that we need to address this problem. Several
palliative ways have been explored in order to solve this problem. For exam-
ple, Juels, Rivest, and Szydlo proposed the “blocker tag” [15] whose goal is to
prevent the readers from identifying the tags. With a very different approach,
Garfinkel stated the “RFID Bill of Rights” which relates the fundamental rights
of the tags’ bearers. Today’s challenge is to find protocols which allow authorized
parties to identify the tags without an adversary being able to track them, thus
getting to the root of the privacy problem.

The reason that we cannot use well-known authentication protocols comes
from the fact that such protocols do not preserve the privacy of the prover. In
other words, the verifier can check whether or not the identity claimed by the
prover is true, but he cannot guess it himself: the prover must send his identity
in clear which in turn allows an adversary to track him.

Asymmetric cryptography could easily solve this problem: the prover encrypts
his identity with the public key of the verifier. Thus, no eavesdropper is able
to identify the prover. Unfortunately, asymmetric cryptography is too heavy
to be implemented within a tag. Certain classes of tags are simply not able
to use cryptography, e.g., Class 0 and Class 1 tags (according to the EPC [6]
classification). Several protocols suited to these tags have been proposed (see for
example [13,22,11,9] or [1] for a more exhaustive list) but even if they can reduce
the capabilities of the attacker – which make them an attractive option – none of
them can assure strong privacy. Therefore, we will not consider these tags below;
instead, in this paper, we will focus on tags which are capable of embedding a
symmetric cryptographic function, either a hash function or a secret-key cipher,

Reducing Time Complexity in RFID Systems 293

as the suited implementation of AES suggested by Feldhofer, Dominikus, and
Wolkerstorfer [7].

The problem remains that both prover and verifier need to share a common
key if a secret-key cipher is used instead of a public-key one. In RFID systems,
provers (tags) are not tamper-resistant. Therefore an attacker who tampers with
a tag can track its past events if she had access to its previous interactions
with readers, e.g., from readers’ log files. One could point out that the ease
of tampering with a tag is counter-balanced by the difficulty of getting access
to it. That is the case with sub-dermal tags for example, or bracelet tags in
amusements parks which could be re-initialized when the customer gives back
his bracelet [20]. Nevertheless, using a common key for all the tags would be a
pity: an attacker who tampers with one tag, e.g., her own tag, would also be
able to track all the other tags in the system.

Consequently, another approach consists of using a unique key for each tag
such that only the verifier (system) knows all these keys. However, this approach,
which is the one taken by several reference papers [16, 19, 23], suffers from an
expensive time complexity on the system’s side. Indeed, because only symmet-
ric cryptographic functions can be used, the system needs to explore its entire
database in order to retrieve the identity of the tag it queries. If n is the num-
ber of tags managed by the system, O(n) cryptographic operations are required
in order to identify one tag. The advantage of the system over an attacker is
that the system knows in which subset of identifiers it needs to search while the
attacker has to explore the full range of identifiers.

We will address this problem in the rest of the paper. First of all, we will
introduce a real life example in a library. We will use this example to compare
the protocols which will be considered in this work. Section 3 will be devoted to
the basic secret-key challenge-response protocol, denoted CR and the technique
suggested by Molnar and Wagner [16], denoted CR/MW, whose goal is to reduce
the complexity of CR. We will prove that this technique degrades the privacy
when an attacker is able to tamper with at least one tag. In Section 5, we will
deal with the protocol of Ohkubo, Suzuki, and Kinoshita [18], denoted OSK.
Relying on a previous abstract [3], we will show in Section 6 how a time-memory
trade-off can significantly reduce the identification time of OSK. This variant,
called OSK/AO, is as efficient as CR/MW but does not degrade privacy. We will
finally summarize our results in Section 7.

2 A Practical Example in a Library

In order to illustrate our comparison between CR, CR/MW, OSK, and OSK/AO,
we consider a real life scenario in a library, where tags are used to identify books.
Several libraries already use this technology, for example the libraries of Santa
Clara (USA), Heiloo (Netherlands), Richmond Hill (Canada), and K.U. Leuven
(Belgium). In a library scenario, it is realistic to assume that the tags can
contain a secret-key cipher or a hash function because they are not disposable.
Thus, a slightly higher cost is conceivable.

294 G. Avoine, E. Dysli, and P. Oechslin

In the next sections, we assume that the system relies on a single computer
which takes θ = 2−23 seconds to carry out a cryptographic operation, either hash-
ing or encrypting a 128-bit blocks. The library manages 220 tags. As described
by Avoine and Oechslin in [2] and also by Molnar and Wagner in [16], we assume
that tag singulation and collision avoidance are private and performed at a lower
layer. Identification of several tags is therefore sequential. Current implementa-
tions allow a single reader to read several hundreds of tags per second, meaning
that the system should spend at the most a few milliseconds to identify one tag.
In the following sections, tP will denote the average time to identify one tag using
a protocol P. Because certain applications (in libraries, in amusement parks, etc.)
may use numerous readers, the system should not become a bottleneck in terms
of computation. Thus, the system should be capable of identifying the whole set
of tags it manages in a few seconds only (e.g., for real-time inventories).

3 Description of Molnar and Wagner’s Protocol

Several challenge-response protocols suited to RFID have been suggested during
the last years, e.g., [16, 19, 7, 23]. We describe below those suggested by Molnar
and Wagner, based on a pseudo-random function.

3.1 Challenge-Response Building Block

The Molnar and Wagner’s challenge-response building block (CR), depicted on
Figure 1, provides mutual authentication of the reader and the tag in a private
way. It shall prevent an attacker from impersonating, tracing or identifying tags.

System Tag

pick a random a
a−−−−−−−−−−−−−−−→

find (ID, s) in the database
s.t. ID = σ ⊕ fs(0, a, b)

b, σ=ID⊕fs(0,a,b)←−−−−−−−−−−−−−−− pick a random b compute
σ = ID ⊕ fs(0, a, b)

compute τ = ID ⊕ fs(1, a, b)
τ=ID⊕fs(1,a,b)−−−−−−−−−−−−−−−→ check that

ID = τ ⊕ fs(1, a, b)

Fig. 1. Challenge-response protocol of Molnar and Wagner

Let ID be the tag’s identifier which is stored in both the database of the system
and the tag. They also share a secret key s. To initiate the authentication, the
reader sends a nonce a to the tag. Next, the tag picks a random b and answers
σ := ID⊕fs(0, a, b), where fs is a pseudo-random function. The system retrieves
the identity of the tag by finding the pair (ID, s) in its database such that
ID = σ⊕ fs(0, a, b). This completes the authentication of the tag. Now, in order
to achieve mutual authentication, the system sends back τ := ID ⊕ fs(1, a, b)
to the tag. The tag can thus verify the identity of the reader by checking that
ID = τ ⊕ fs(1, a, b).

Reducing Time Complexity in RFID Systems 295

3.2 Efficiency

In order to identify a tag, the system must carry out an exhaustive search on the
n secrets stored in its database. Therefore the system’s workload is linear in the
number of tags. More precisely, the average number of cryptographic operations
required to identify one tag is n/2 and therefore we have tCR = nθ

2 . With the
parameters given in Section 2, we have tCR ≈ 62 ms which is too high in practice.
Since CR does not scale well in a system with many tags, we next examine the
three-based technique of Molnar and Wagner [16], whose main strength is the
reduction of the system’s workload from O(n) to O(log n).

3.3 Tree-Based Technique

The technique suggested by Molnar and Wagner [16], namely CR/MW, relies
on a tree structure in order to reduce the identification complexity. Instead
of searching a flat space of secrets, let’s arrange them in a balanced tree with
branching factor δ. The tags are the leaves of this tree and each edge is associated
with a value. Each tag has to store the values along the path from the root of
the tree to itself. This sequence makes up its secret, and each value is called a
block of secret. On the other side, the reader knows all secrets. We describe the
protocol below.

Setup. Let n be the number of tags managed by the system and � := �logδ n�
be the depth of the tree with a branching factor δ. Each edge in the tree is
valuated with a randomly chosen secret ri,j where i is the level in the tree and
j is the number of the branch. Figure 2 represents such a tree with parameters
n = 9 and δ = 3. The secret of a given tag is the list of the values ri,j from the
root to the leaf. For example, the secret of T5 on Figure 2 is [r1,1, r2,5].

r2,2

T0 T1 T2 T3 T4 T5 T6 T7 T8

r1,0 r1,2r1,1

r2,0 r2,1 r2,5r2,4r2,3 r2,7 r2,8r2,6

Fig. 2. Tree of tags’ secrets

Interrogation. The tag is queried level by level from the root to the leaves. At
each level i, CR/MW runs CR for each secret of the explored subtree. That is
the reader tries every edge in turn in order to know on which one the tag is. If
CR fails for all current level’s secrets, the tag rejects the reader and the protocol
stops. If the reader has been successfully authenticated at each level the protocol
succeeds. Note that CR inevitably does not need to be performed δ times per
level in practice. One run is enough if the reader checks the tag’s answer with
all current level’s secrets, as described below.

296 G. Avoine, E. Dysli, and P. Oechslin

Identification. At each level i, the system has to search in a set of δ secrets for
the one matching the tag’s secret. Given that [s1, . . . , s�] denotes a secret, the
system has thus to compute δ/2 times fsi(0, a, b) on average at level i, meaning
that δ

2� operations are required in order to identify one tag. Thus we have

tCR/MW =
δθ

2
logδ n.

The identification of one tag is far below the threshold of a few milliseconds.
Identifying the whole system takes more than 2 minutes when δ = 210 and
decreases to 2 seconds when δ = 2. However, we will see in Section 4 that having
a small branching factor enables to trace the tags.

4 Privacy-Weakening Attacks

4.1 Tampering with Only One Tag

We examine in this section how the tree technique suggested by Molnar and
Wagner allows tracing a tag when the attacker is able to tamper with some tag.
The attack consists of three phases:

1. The attacker has one tag T0 (e.g., her own) she can tamper with and thus
obtain its complete secret. For the sake of calculation simplicity, we assume
that T0 is put back into circulation. When the number of tags in the system
is large, this does not significantly affect the results.

2. She then chooses a target tag T . She can query it as much as she wants but
she cannot tamper with it.

3. Given two tags T1 and T2 such that T ∈ {T1, T2}, we say that the attacker
succeeds if she definitely knows which of T1 and T2 is T . We define the
probability to trace T as being the probability that the attacker succeeds.
To do that, the attacker can query T1 and T2 as many times as she wants
but, obviously, cannot tamper with them.

We assume that the underlying challenge-response protocol assures privacy when
all the blocks of secrets are chosen according to a uniform distribution. We
consequently assume that the attacker cannot carry out an exhaustive search
over the secret space. Hence, the only way for an attacker to guess a block of
secret of a given tag is to query it with the blocks of secret she obtained by
tampering with some tag. When she tampers with only one tag, she obtains
only one block of secret per level in the tree. Thus, she queries T , and then T1,
and T2 with this block. If either T1 or T2 (but not both) has the same block as
T0, she is able to determine which of them is T . If neither T1 nor T2 has the
same block as T0, she cannot answer. Finally, if both T1 and T2 have the same
block as T0, she cannot answer, but she can move on the next level of the tree
because the authentication of the reader succeeded. We formalize the analysis
below. We denote the secrets of T , T0, T1, and T2 by [s1, · · · , s�], [s0

1, · · · , s0
�],

[s1
1, · · · , s1

�], and [s2
1, · · · , s2

�] respectively. We consider a given level i where s1
i

and s2
i are in the same subtree. Four cases must be considered:

Reducing Time Complexity in RFID Systems 297

� C1
i = ((s0

i = s1
i) ∧ (s0

i �= s2
i)) then the attack succeeds,

� C2
i = ((s0

i �= s1
i) ∧ (s0

i = s2
i)) then the attack succeeds,

� C3
i = ((s0

i �= s1
i) ∧ (s0

i �= s2
i)) then the attacks definitively fails,

� C4
i = (s0

i = s1
i = s2

i) then the attacks fails at level i but can move onto level
i + 1.

When the number of tags in the system is large, we can assume that

Pr
(
C1

i

)
= Pr

(
(s0

i = s1
i)
)
× Pr

(
(s0

i �= s2
i)
)
.

The same assumption also applies to C2
i , C3

i , and C4
i . Thus we have

Pr
(
C1

i ∨ C2
i

)
=

2(δ − 1)
δ2 (1 ≤ i ≤ �) and Pr

(
C4

i

)
=

1
δ2 .

The overall probability P that the whole attack succeeds is therefore

P = Pr
(
C1

1 ∨ C2
1
)

+
�∑

i=2

⎛⎝Pr
(
C1

i ∨ C2
i

)
×

i−1∏
j=1

Pr
(
C4

j

)⎞⎠
=

2(δ − 1)
δ2 +

�∑
i=2

(
2(δ − 1)

δ2

(
1
δ2

)i−1
)

= 2(δ − 1)
1−
(1

δ2

)�
1− 1

δ2

1
δ2 .

Remembering that δ� = n yields P =
2

δ + 1

(
1− 1

n2

)
. The curve of P when

n = 220 is the curve plotted on Figure 3 with k0 = 1.

4.2 Tampering with Several Tags

We now consider the case where the attacker can tamper with more tags, e.g.,
she borrows several books in the library in order to tamper with their tags.
We examine the influence of the number of opened tags on the probability of
tracing the target tag. As before each opened tag is put back into circulation
to simplify calculations. When n is large, this does not affect the results. As
in the previous section, we denote the secrets of T , T1, and T2 by [s1, · · · , s�],
[s1

1, · · · , s1
�], and [s2

1, · · · , s2
�] respectively. We consider a given level i where s1

i

and s2
i are in the same (one-level) subtree. Let Ki denote the set of blocks of

this (one-level) subtree which are known by the attacker and let Ui denote the
set of those which are unknown by the attacker. ki denotes the number of blocks
in Ki. Five cases must be considered:

� C1
i = ((s1

i ∈ Ki) ∧ (s2
i ∈ Ui)) then the attack succeeds,

� C2
i = ((s1

i ∈ Ui) ∧ (s2
i ∈ Ki)) then the attack succeeds,

� C3
i = ((s1

i ∈ Ki) ∧ (s2
i ∈ Ki) ∧ (s1

i �= s2
i)) then the attack succeeds,

� C4
i = ((s1

i ∈ Ui) ∧ (s2
i ∈ Ui)) then the attacks definitively fails,

� C5
i = ((s1

i ∈ Ki) ∧ (s2
i ∈ Ki) ∧ (s1

i = s2
i)) then the attacks at level i fails but

can move onto level i + 1.

298 G. Avoine, E. Dysli, and P. Oechslin

Thus, we have for all i such that 1 ≤ i ≤ �:

Pr(C1
i ∨C2

i ∨ C3
i) =

2ki

δ

(
1− ki

δ

)
+
(

ki

δ

)2(
1− 1

ki

)
=

ki

δ2 (2δ − ki − 1),

and Pr(C5
i) =

ki

δ2 .

The overall probability P that the attack succeeds is therefore

P = Pr(C1
1 ∨ C2

1 ∨ C3
1) +

�∑
i=2

⎛⎝Pr
(
C1

i ∨C2
i ∨ C3

i

)
×

i−1∏
j=1

Pr
(
C5

j

)⎞⎠
=

k1

δ2 (2δ − k1 − 1) +
�∑

i=2

⎛⎝ki

δ2 (2δ − ki − 1)
i−1∏
j=1

kj

δ2

⎞⎠ .

We now compute k1, i.e., the number of different blocks known by the attacker
at level 1, given that k0 is the number of tags tampered with by the attacker.
We have

k1 = δ

(
1− (1 − 1

δ
)k0

)

and then ki = δ

(
1− (1− 1

δ
)g(ki)

)
(2 ≤ i ≤ �),

where g(ki) = k0

i−1∏
j=1

1
kj

.

Results are plotted on Figure 3. We would like to highlight the surprising behav-
ior of P when the branching factor is small. This is due to the fact that neither
Pr(C1

i ∨ C2
i ∨ C3

i) nor Pr(C5
i) are monotonous and they reach their optimum

at different values of δ. Table 1 supplies a few values in order to illustrate our
attack.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 200 300 400 500 600 700 800 900 1000

P
ro

ba
bi

lit
y

of
tr

ac
in

g
ta

g
T

Branching factor δ

k0 = 1

k0 = 20

k0 = 50

k0 = 100

k0 = 200

Fig. 3. Probability of tracing a tag when the attacker tampered with k0 tags

Reducing Time Complexity in RFID Systems 299

Table 1. Probability that the attack succeeds according to the branching factor δ,
given that k0 tags have been opened and the system contains 220 tags

k0

δ
2 20 100 500 1000

1 66.6% 9.5% 1.9% 0.3% 0.1%
20 95.5% 83.9% 32.9% 7.6% 3.9%
50 98.2% 94.9% 63.0% 18.1% 9.5%
100 99.1% 95.4% 85.0% 32.9% 18.1%
200 99.5% 96.2% 97.3% 55.0% 32.9%

4.3 Notes on the Original Tree-Based Technique

In the original tree-based scheme proposed by Molnar and Wagner in [16], the
blocks of secret of the tags were not chosen according to a uniform distribution.
Instead, subtrees of a given level have the same set of blocks of secrets. This
seems to be due to a typo in the setup algorithm of [16]. The attack is obviously
more efficient on this original scheme because, the kis are larger (for a same
value of k0).

5 Ohkubo, Suzuki, and Kinoshita’s Protocol

5.1 Description

The protocol proposed by Ohkubo, Suzuki, and Kinoshita [18] relies on hash
chains. When a tag is requested by a reader, it sends a hash of its current
identifier and then renews it using a second hash function. Obviously, only the
system is able to link all the values sent by the tag while an attacker cannot.
More precisely, the scheme works as follows.

Setup. The personalization of a tag Ti consists of storing in its memory a
random identifier s1

i , which is also recorded in the system’s database. Thus, the
database initially contains the set of random values {s1

i | 1 ≤ i ≤ n}. Two
hash functions G and H are chosen. One hash function is enough if a one-bit
parameter is added to the function.

Interrogation. When the system queries Ti, it sends an identification request
to the tag and receives back rk

i := G(sk
i) where sk

i is the current identifier of Ti.
While Ti is powered, it replaces sk

i by sk+1
i := H(sk

i). The exchanges between
the system and the tag are depicted on Figure 4.

Identification. From rk
i , the system has to identify the corresponding tag. In

order to do this, it constructs the hash chains from each n initial value s1
i until it

finds the expected rk
i or until it reaches a given maximum limit m on the chain

length. The lifetime of the tag is a priori limited to m identifications. However,
when a tag is scanned by a reader (in the library), its field in the database can

300 G. Avoine, E. Dysli, and P. Oechslin

System Tag

request−−−−−−−−−−−−−−−→

G(sk
i)←−−−−−−−−−−−−−−− sk+1

i = H(sk
i)

Fig. 4. Protocol of Ohkubo, Suzuki, and Kinoshita

be refreshed. The threshold m is therefore the number of read operations on a
single tag between two updates of the database. A suited size for m could be
128, meaning that a tag can be queried 128 times before updating its entry in
the database.

5.2 Replay Attack Avoidance and Reader Authentication

Like CR, OSK assures privacy because the information sent by the tag is indistin-
guishable from a random value, in the random oracle model. The main advantage
of OSK compared with CR is that it also assures forward privacy, meaning that
if an attacker can tamper with a tag, she is not able to track its past events.
However, OSK does not prevent replay attacks. Common techniques to avoid
replay attacks are usually incremental sequence number, clock synchronization,
or a fresh challenge sent by the verifier. This latter option is the most suited to
RFID tags. We propose therefore to modify OSK as depicted on Figure 5. Note
that OSK does not provide authentication of the reader. However, this feature
can be obtained if the system sends a third message containing G(sk+1

i ⊕ w)
where w is a fixed and public non-zero binary string.

System Tag
r−−−−−−−−−−−−−−−→

G(sk
i ⊕r)←−−−−−−−−−−−−−−− sk+1

i = H(sk
i)

Fig. 5. Modified protocol of Ohkubo, Suzuki, and Kinoshita

5.3 Efficiency of OSK

Outside the library, tags can be queried by foreign readers. This avoids maintain-
ing synchronization between the tag and the system. Therefore the complexity
in terms of hash operations in order to identify one tag is tOSK = mnθ on average
(2 hash operations are carried out mn/2 times). With the parameters given in
Section 2 and chains of length 128, we have tOSK ≈ 16 seconds. Note that if we
had considered that readers of the library may read foreign tags (hold by people
in the library), then the complexity would tend towards to 2mn because the

Reducing Time Complexity in RFID Systems 301

system would have to explore the whole database to determine whether or not a
tag is owned by the system. Note that even if tags and readers were able to stay
synchronized, the complexity of OSK cannot be better than CR if no additional
memory is used.

6 Using a Time-Memory Trade-Off to Improve OSK

We recall and detail in this section our previous work [3] on OSK. Thus we will
be able to compare CR/MW and OSK/AO.

6.1 Time-Memory Trade-Off

To reduce the complexity of OSK, we propose to improve how the data is man-
aged by the system, without modifying the exchanges between tags and readers;
so, the privacy of OSK remains. For that, we suggest to use a specific time-
memory trade-off based on Hellman’s original work [10] and Oechslin’s opti-
mizations [17]. This type of trade-off reduces the amount of work T needed to
invert any given value in a set of N outputs of a one-way function F with help
of M units of memory. The efficiency follows the rule T = N2γ/M2 where γ is a
small factor depending on the probability of success and the particular type of
trade-off being used. Compared to a brute-force attack, the trade-off can typi-
cally reduce the amount of work from N to N2/3 using N2/3 units of memory.

The basic idea of time-memory trade-off techniques consists in chaining (al-
most) all the possible outputs of F using a reduction function R which generates
an arbitrary input of F from one of its outputs. By alternating F and R on a cho-
sen initial value, a chain of inputs and outputs of F can be built. If enough chains
of a given length are generated, most outputs of F will appear at least once in any
chain. The trade-off comes from the fact that only the first and the last element
of each chain is stored. Thus, a substantial memory space is saved, but computa-
tions will be required on-the-fly to invert a given element. Given one output r of
F that should be inverted, a chain starting at r is generated. If r was part of any
stored chain, a last element of a chain in the table will eventually be reached.
Looking up the corresponding start of the chain, we can regenerate the complete
chain and find the input of F that yields the given output r. To assure a high suc-
cess rate, several tables have to be generated with different reduction functions.
The exact way of doing this is what differentiates existing trade-off schemes.

In what follows, we will use the perfect rainbow tables [17] which have been
shown to have better performances than other types of tables. The characteristic
of the rainbow tables is that each column of a table has a different reduction
function. So, when two chains collide, they do not merge (except if they collide at
the same position in the chain). When the residual merged chains are removed
during the precomputation step, the tables are said to be perfect. With such
tables and a probability of success of 99.9%, we have γ = 8.

6.2 Adapting the Trade-Off to Our Case

The time-memory trade-off technique described above cannot be directly applied
to our case. Indeed, the input of F must cover all the identifiers but no more.

302 G. Avoine, E. Dysli, and P. Oechslin

Otherwise, the system would have no advantage over the attacker. Consequently,
it is important to choose F such that its input space is as small as possible. We
define the function F as follows:

F : (i, k) �→ rk
i = G(Hk−1(s1

i))

where 1 ≤ i ≤ n and 1 ≤ k ≤ m. Thus, given the number of the tag and the
number of the identification, F outputs the value which will be sent by the tag.
We also need to define an arbitrary reduction function R such that

R : rk
i �→ (i′, k′)

where 1 ≤ i′ ≤ n, 1 ≤ k′ ≤ m. For example, we take

R(r) = (1 + (r mod n), 1 + (
⌊ r

n

⌋
mod m)).

There are still two important points that distinguish classical time-memory
trade-offs from ours.

Firstly, the brute force method of OSK needs n|s| units of memory to store
the n values s1

i while usual brute-force methods do not require any memory.
Thus, it makes sense to measure the amount of memory needed by the trade-
off in multiples of n|s|. We call c the ratio between the memory used by the
trade-off and the memory used by the brute-force. The memory used to store
the tables is a multiple of the size of a chain while it is a multiple of s in the
case of the brute-force. A stored chain is represented by its start and end points
which can be either the output of F or its input. In our case the input is smaller,
we therefore choose to store two pairs of (i, k), thus requiring 2(|n|+ |m|) bits of
memory. The conversion factor from units of brute-force to units of trade-off is
μ = |s|/(2|n|+2|m|). In the scenarios we are interested in, μ is typically between
2 and 4.

Secondly, when used in the trade-off, F is more complex than when used
in the brute-force. Indeed, in the brute-force, the hash chains are calculated
sequentially, thus needing just one H and one G calculation at each step. In the
trade-off, i and k are arbitrary results from R and have no incremental relation
with previous calculations. Thus, on average, each step computes (m− 1)/2 + 1
times the function F and G once. We can now rewrite the trade-off relation:

T =
N2

M2 γ =
n2m2

(c− 1)2μ2n2 (
m− 1

2
+ 1)γ ≈ m3γ

2(c− 1)2μ2 .

We now show how this issue can be mitigated. So far, among the c shares of
memory, (c− 1) shares are used to store the chains, and 1 share is used to store
the n values s1

i . If we not only store the first element of the chains, but also
the element at the middle of the chain, we sacrifice even more memory but we
reduce the average complexity of F . We will have only (c − 2) shares of the
memory available for the tables, but F will have a complexity of m−1

4 + 1 (we
need to generate only a quarter of a chain on average). We have therefore a

Reducing Time Complexity in RFID Systems 303

trade-off between the memory sacrificed to store the intermediary points and
the complexity of F . In general, if we store x values per chain, sacrificing x
shares of memory, the complexity of the trade-off becomes:

T =
n2m2

(c− x)2μ2n2 (
m

2x
+ 1)γ ≈ m3γ

2x(c− x)2μ2 .

The optimal complexity is achieved when x = c
3 . So we have

T ≈ 33

23

m3γ

c3μ2 .

Since a pair of (i, k) is 27 bits large (20 bits for i and 7 bits for k) we need
at most 54 bits to store one chain. We can thus store more than two chains in
the same amount of memory it takes to store one s (μ ≥ 2). Assuming that all
calculations are carried out on a single back-end equipped with c(n|s|)

8 = 224c
bytes of memory and that we choose a success rate of 99.9% (γ = 8) the time to
read a tag with our method is

tOSK/AO ≈
69θ

c3 seconds.

For example, with 1 GB of RAM (i.e., c=64), we have tOSK/AO ≈ 0.004 millisec-
onds. Precomputation takes nm2θ/2 seconds, that is to say about 17 minutes.
The technique used for that can be found in [3].

Note that the time-memory trade-off cannot be applied directly to the modified
OSK suggested in Section 5.2. This is due to the randomization of the tag’s answer.
In order to apply our time-memory technique on the modified version of OSK, the
tag must answer with both G(sk

i) and G(sk
i ⊕ r). The former value enables the

reader to identify the tag and the latter one allows detecting replay attacks.

7 Final Comparison and Conclusion

First of all, we consider the storage aspect. On the tag side, the storage of the
identifiers becomes a real problem with CR/MW when δ is small. Having a large
δ is therefore preferable. Storage is the main drawback of OSK/AO because pre-
computation and storage of tables is required. In the example given in Section 6,
1 GB of RAM is used. Today, such a memory is available on Joe Blow’s computer.

Next, we address the complexity question. Both CR/MW and OSK/AO are
parameterizable. CR/MW depends on δ which can be chosen between 2 and n.
Obviously, the case δ = n leads to CR. Having δ >

√
n is possible but in this

case the tree is no longer complete. Actually, a typical value could be δ =
√

n.
On the other hand, OSK/AO depends on the available memory. Table 2 gives a
numerical comparison of CR, CR/MW, OSK, and OSK/AO.

We now consider the privacy issue. While CR is secure, CR/MW degrades
the privacy because, when an attacker is able to tamper with at least one tag
(e.g., her own tag), she is also able to trace other tags in a probabilistic way. We

304 G. Avoine, E. Dysli, and P. Oechslin

Table 2. Time to identify one tag

Scheme Time
(parameter) (millisecond)

CR 62.500
CR/MW (δ = 210) 0.122
CR/MW (δ = 2) 0.002

OSK 16’000.000
OSK/AO (342 MB) 0.122
OSK/AO (1.25 GB) 0.002

have shown that the probability to trace tags decreases when the computation
complexity grows. Thus, CR/MW can be seen as a trade-off between privacy
and complexity. We proved that the probability to trace tags is far from being
negligible. For example, when the branching factor is δ = 210, the probability to
trace a tag is about 0.1% when only one tag has been opened, but it is about
32.9% when 200 tags have been tampered with (see Table 1). OSK/AO inherits
from the security proofs of OSK, in particular the fact that OSK is forward
private, because it modifies neither the information exchanged, nor the content
of the tag. It only improves the way the system manages and stores the data.

Thus, we can say that the main advantage of CR/MW rests on the fact that
it does not require precomputation. Moreover the number of tag readings with
OSK/AO is limited by the chain length while it is not with CR/MW (however over-
passing this threshold does not threaten the privacy).Hence,whenCR/MW is used,
we recommend using a large branching factor in order to limit the privacy threat.

Finally, one may think that trade-off techniques could be used to improve
CR/MW. Unfortunately, this seems difficult and cannot be done using the same
approach because the answers of the tags in CR/MW are randomized. This im-
plies carrying out a time-memory trade-off on a larger space.

Acknowledgment

The authors would like to thank Matthieu Finiasz and Serge Vaudenay for their
helpful comments on this work, as well as David Molnar and Andrea Soppera.
Gildas Avoine is supported by the National Competence Center in Research on
Mobile Information and Communication Systems (NCCR-MICS), a center sup-
ported by the Swiss National Science Foundation under grant number 5005-67322.

References

1. Gildas Avoine. Security and privacy in RFID systems. Online bibliography avail-
able at http://lasecwww.epfl.ch/∼gavoine/rfid/.

2. Gildas Avoine and Philippe Oechslin. RFID traceability: A multilayer problem. In
Andrew Patrick and Moti Yung, editors, Financial Cryptography – FC’05, volume
3570 of Lecture Notes in Computer Science, pages 125–140, Roseau, The Common-
wealth Of Dominica, February – March 2005. IFCA, Springer-Verlag.

Reducing Time Complexity in RFID Systems 305

3. Gildas Avoine and Philippe Oechslin. A scalable and provably secure hash based
RFID protocol. In International Workshop on Pervasive Computing and Com-
munication Security – PerSec 2005, pages 110–114, Kauai Island, Hawaii, USA,
March 2005. IEEE, IEEE Computer Society Press.

4. Steve Bono, Matthew Green, Adam Stubblefield, Ari Juels, Avi Rubin, and
Michael Szydlo. Security analysis of a cryptographically-enabled RFID device.
In 14th USENIX Security Symposium, pages 1–16, Baltimore, Maryland, USA,
July-August 2005. USENIX.

5. Susy d’Hont (Editor). International news letter of the TI RFID group. Electronic
Newsletter, Issue 20, November 2000.

6. Electronic Product Code Global Inc. http://www.epcglobalinc.org.
7. Martin Feldhofer, Sandra Dominikus, and Johannes Wolkerstorfer. Strong authen-

tication for RFID systems using the AES algorithm. In Marc Joye and Jean-Jacques
Quisquater, editors, Workshop on Cryptographic Hardware and Embedded Systems
– CHES 2004, volume 3156 of Lecture Notes in Computer Science, pages 357–370,
Boston, Massachusetts, USA, August 2004. IACR, Springer-Verlag.

8. Klaus Finkenzeller. RFID Handbook. Wiley, England, second edition, 2003.
9. Philippe Golle, Markus Jakobsson, Ari Juels, and Paul Syverson. Universal re-

encryption for mixnets. In Tatsuaki Okamoto, editor, The Cryptographers’ Track
at the RSA Conference – CT-RSA, volume 2964 of Lecture Notes in Computer
Science, pages 163–178, San Francisco, California, USA, February 2004. Springer-
Verlag.

10. Martin Hellman. A cryptanalytic time-memory trade off. IEEE Transactions on
Information Theory, IT-26(4):401–406, July 1980.

11. Dirk Henrici and Paul Müller. Tackling security and privacy issues in radio fre-
quency identification devices. In Alois Ferscha and Friedemann Mattern, editors,
Pervasive Computing, volume 3001 of Lecture Notes in Computer Science, pages
219–224, Vienna, Austria, April 2004. Springer-Verlag.

12. International Organization for Standardization. http://www.iso.org.
13. Ari Juels. Minimalist cryptography for low-cost RFID tags. In Carlo Blundo

and Stelvio Cimato, editors, The Fourth International Conference on Security in
Communication Networks – SCN 2004, volume 3352 of Lecture Notes in Computer
Science, pages 149–164, Amalfi, Italia, September 2004. Springer-Verlag.

14. Ari Juels and Ravikanth Pappu. Squealing euros: Privacy protection in RFID-
enabled banknotes. In Rebecca Wright, editor, Financial Cryptography – FC’03,
volume 2742 of Lecture Notes in Computer Science, pages 103–121, Le Gosier,
Guadeloupe, French West Indies, January 2003. IFCA, Springer-Verlag.

15. Ari Juels, Ronald Rivest, and Michael Szydlo. The blocker tag: Selective blocking of
RFID tags for consumer privacy. In Vijay Atluri, editor, Conference on Computer
and Communications Security – CCS’03, pages 103–111, Washington, DC, USA,
October 2003. ACM, ACM Press.

16. David Molnar and David Wagner. Privacy and security in library RFID: Issues,
practices, and architectures. In Birgit Pfitzmann and Peng Liu, editors, Conference
on Computer and Communications Security – CCS’04, pages 210–219, Washington,
DC, USA, October 2004. ACM, ACM Press.

17. Philippe Oechslin. Making a faster cryptanalytic time-memory trade-off. In Dan
Boneh, editor, Advances in Cryptology – CRYPTO’03, volume 2729 of Lecture
Notes in Computer Science, pages 617–630, Santa Barbara, California, USA, Au-
gust 2003. IACR, Springer-Verlag.

306 G. Avoine, E. Dysli, and P. Oechslin

18. Miyako Ohkubo, Koutarou Suzuki, and Shingo Kinoshita. Cryptographic approach
to “privacy-friendly” tags. In RFID Privacy Workshop, MIT, Massachusetts, USA,
November 2003.

19. Keunwoo Rhee, Jin Kwak, Seungjoo Kim, and Dongho Won. Challenge-response
based RFID authentication protocol for distributed database environment. In Di-
eter Hutter and Markus Ullmann, editors, International Conference on Security
in Pervasive Computing – SPC 2005, volume 3450 of Lecture Notes in Computer
Science, pages 70–84, Boppard, Germany, April 2005. Springer-Verlag.

20. SafeTzone. http://www.safetzone.com.
21. Stop RFID. http://www.stoprfid.org.
22. István Vajda and Levente Buttyán. Lightweight authentication protocols for low-

cost RFID tags. In Second Workshop on Security in Ubiquitous Computing –
Ubicomp 2003, Seattle, Washington, USA, October 2003.

23. Stephen Weis, Sanjay Sarma, Ronald Rivest, and Daniel Engels. Security and
privacy aspects of low-cost radio frequency identification systems. In Dieter Hut-
ter, Günter Müller, Werner Stephan, and Markus Ullmann, editors, International
Conference on Security in Pervasive Computing – SPC 2003, volume 2802 of Lec-
ture Notes in Computer Science, pages 454–469, Boppard, Germany, March 2003.
Springer-Verlag.

Accelerated Verification of ECDSA Signatures

Adrian Antipa1, Daniel Brown1, Robert Gallant1, Rob Lambert1,
René Struik1, and Scott Vanstone2

1 Certicom Research, Canada
{aantipa, dbrown, rgallant, rlambert, rstruik}@certicom.com

2 Dept. of Combinatorics and Optimization, University of Waterloo, Canada
savansto@uwaterloo.ca

Abstract. Verification of ECDSA signatures is considerably slower than
generation of ECDSA signatures. This paper describes a method that can
be used to accelerate verification of ECDSA signatures by more than 40%
with virtually no added implementation complexity. The method can
also be used to accelerate verification for other ElGamal-like signature
algorithms, including DSA.

1 Introduction

The elliptic curve digital signature algorithm (ECDSA) [1, 3, 7] is a widely stan-
dardized variant of the original ElGamal signature scheme. As is the case with
most ElGamal signature schemes, ECDSA has the property that signature ver-
ification is about twice as slow as signature generation (and many times slower
if the signer is afforded the luxury of precomputation). The opposite is true in
the RSA signature scheme with small encryption exponent e, where signature
verification is many times faster than generation. Thus speeding up ECDSA
signature verification is a problem of considerable practical importance.

This paper describes a new method that can be used to accelerate signature
verification for ECDSA and related signature schemes. The method is quite
simple, is independent of the techniques employed for field arithmetic and elliptic
curve arithmetic, and requires very little additional resources, such as memory or
code space. The advantages of the new method are most apparent for ECDSA∗, a
slightly modified version of ECDSA. However, the advantages can also be enjoyed
if the signer appends a small number of bits (“side information”) to standardized
ECDSA signatures. We emphasize that, other than this extra information, the
new method does not require any changes to the standardized specifications of
ECDSA. Thus, the extended signatures are still conformant with the existing
ECDSA standards.

In the most favorable setting, if one uses an elliptic curve of prime order over a
prime field, only 1 or 2 bits of side information are needed to accelerate signature
verification by about 40%.

The remainder of the paper is organized as follows. In §2 we describe ECDSA∗

and show that its security is equivalent to that of ECDSA. Some relevant mathe-
matical background is collected in §3. The new verification methods for ECDSA∗

and ECDSA are presented and analyzed in §4. Summary conclusions appear in §5.

B. Preneel and S. Tavares (Eds.): SAC 2005, LNCS 3897, pp. 307–318, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

308 A. Antipa et al.

2 Modified DSA and ECDSA

We next present a modification of DSA and ECDSA in the general setting of a
cyclic group.

1. System-wide parameters. Let G be a (cyclic) group of prime order n with
generator G and identity element O. Let f : G → Zn be a suitable conversion
function. Let H : {0, 1}∗ → Zn be a collision-resistant hash function.

2. Initial set-up. Each communicating party A selects a random integer d ∈
[1, n − 1] and publishes its public key Q = dG. The parameter d is kept
private to A.

3. Signature generation.
Input: Message m ∈ {0, 1}∗, private key d.
Output: Signature (R, s).
Actions:
(a) Select a random integer k ∈ [1, n−1]. Compute R := kG and r := f(R).
(b) Compute s ∈ Zn from the equation H(m) ≡ sk − dr (mod n).
(c) If r = 0 or s = 0, go to Step 3a; otherwise, return (R, s).

4. Signature verification.
Input: Signature (R, s), message m ∈ {0, 1}∗, public key Q ∈ G associated
with entity A.
Output: Acceptance or rejection of signature as originating from A.
Actions:
(a) Compute r := f(R).
(b) Verify that r and s are integers in the interval [1, n−1]. If any verification

fails, return ‘reject signature’.
(c) Verify that R = s−1(eG + rQ), where e := H(m). If verification fails,

return ‘reject signature’; otherwise, return ‘accept signature’.

Note 1. The function f is usually defined over a superset of G. If so, one can
usually evaluate f(R) without explicitly checking that R ∈ G first, since if the
verification equation holds and if s ∈ Z∗

n, then R ∈ G (since G, Q ∈ G).

Observe that if the signature verification equation holds, then s−1(eG+rQ) = R
and, in particular, f(s−1(eG + rQ)) = f(R) = r. The original scheme is the
one with signature (r, s) and verification equation f(s−1(eG + rQ)) = r, rather
than the corresponding quantities (R, s) and s−1(eG + rQ) = R in the modified
scheme.

It is easy to see that, in either scheme, a signature σ obtained from the
signature generation algorithm with input (m, d) is always accepted by the cor-
responding signature verification algorithm with input (σ, m, Q), where Q = dG.

The following result shows that the original and the modified schemes are
equally secure.

Theorem 2. Consider the original and the modified signature schemes. The
following statements are equivalent:

Accelerated Verification of ECDSA Signatures 309

1. (r, s) is a valid signature with respect to (m, Q) in the original signature
scheme;

2. (R, s) is a valid signature with respect to (m, Q) in the modified signature
scheme for precisely one point R in the set ϕ(r) := {X ∈ G | f(X) = r}.

Moreover, one can efficiently convert a valid signature in either scheme to a valid
one in the corresponding scheme. Thus, the original and the modified schemes
are equally secure.

Proof. Let R := s−1(eG+rQ) for some s ∈ Z∗
n. One has R ∈ G, since G, Q ∈ G.

It follows that R ∈ ϕ(r) if and only if f(R) = r. The result now follows by
comparing the conditions under which either scheme accepts signatures. ��

We will exploit the relationship between a signature scheme and its modified
scheme in the remainder of the paper. In particular, we are interested in specific
instantiations that correspond to DSA and ECDSA.

DSA and DSA∗. The DSA∗scheme is an instantiation of the modified signature
scheme with the following system-wide parameters: G ⊆ Z∗

p is a subgroup of
prime order n of the multiplicative group Z∗

p, where p is a suitably chosen prime
number, and |Z∗

p| = p− 1 = nh. The conversion function f : Zp → Zn is defined
by f(x) := ((x mod p) mod n). We define the hash function H by H(x) :=
SHA-1(x) (mod n). For these parameters, the original scheme corresponds to
the Digital Signature Algorithm (DSA) as standardized in [3].

ECDSA and ECDSA∗. The ECDSA∗scheme is an instantiation of the modified
signature scheme with the following system-wide parameters: G ⊆ E(Fq) is a
subgroup of prime order n of some suitably chosen elliptic curve group E(Fq),
Fq is a finite field, and |E(Fq)| = nh. (We assume h is small, so n ≈ q.) The
conversion function f : E(Fq) → Zn is defined by f(x, y) := x (mod n), where
(x, y) is an elliptic curve point in affine representation and where x is the stan-
dard1 integer representation of the field element x ∈ Fq. We define the hash
function H by H(x) := SHA-1(x) (mod n). For these parameters, the original
scheme corresponds to the Elliptic Curve Digital Signature Algorithm (ECDSA)
as standardized in [1, 3].

3 Mathematical Preliminaries

In this section, we introduce some well-known results from number theory that
facilitate the exposition in the rest of the paper.

Definition 3. (Simultaneous Diophantine Approximation Problem)
Let ξ1, . . . , ξ� ∈ R, let ε > 0, and let B be a positive integer. Find integers
p1, . . . , p�, q with q ∈ [1, B] such that

1 see, e.g., [1].

310 A. Antipa et al.

∣∣∣∣ξi −
pi

q

∣∣∣∣ ≤ ε

q
for all i, 1 ≤ i ≤ �. (1)

This problem has a solution with ε ≥ B−1/�, as was shown by Dirichlet [2] based
on an argument involving the pigeon-hole principle.

Theorem 4. [2], [6, Theorem 200] Let ξ1, . . . , ξ� ∈ R and let B be a positive
integer. Then the system of inequalities∣∣∣∣ξi −

pi

q

∣∣∣∣ < 1
qB

for all i, 1 ≤ i ≤ �

has an integer solution with p1, . . . , p�, q ∈ Z and q ∈ [1, B�].

We are mainly interested in the following corollary, which states that integers in
Zn can be written as rational numbers involving integers that are significantly
smaller (in absolute value) than n.

Corollary 5. Let α1, . . . , α� ∈ Z and let B be a positive integer. Then the sys-
tem of congruence relationships

v(α1, . . . , α�) ≡ (u1, . . . , u�) (mod n)

has an integer solution with |u1|, . . . , |u�| < n/B and v ∈ [1, B�].

Proof. We apply Theorem 4 with ξi := αi/n. Let p1, . . . , p�, q be integers with
q ∈ [1, B�], such that ∣∣∣∣αi

n
− pi

q

∣∣∣∣ < 1
qB

for all i, 1 ≤ i ≤ �.

Consequently, one has

|qαi − pin| < n/B for all i, 1 ≤ i ≤ �.

Now, define ui := qαi − pin and v := q. Since vαi ≡ ui (mod n), the result
follows. ��
We give some examples that turn out to be useful later on. All examples assume
that n is a prime number and that B� < n, so as to ensure that v is invertible
modulo n. We will ignore rounding issues involving the parameter B, since these
obscure the exposition and are irrelevant in our applications (which use very
large integers n).

Example 6. (� = 1) Let n be a prime number. Any integer x ∈ Zn can be
written as x ≡ u/v (mod n), where u and v are integers such that |u| < n1−ε

and 1 ≤ v ≤ nε (take B := nε with 0 < ε < 1). In particular, one may have
|u| <

√
n and 1 ≤ v ≤

√
n (take ε := 1

2) or |u| < n2/3 and 1 ≤ v ≤ 3
√

n (take
ε := 1/3).

This example can be generalized as follows.

Accelerated Verification of ECDSA Signatures 311

Example 7. (� ≥ 1) Let n be a prime number. Any integers x1, . . . , x� ∈ Zn

can be written as xi ≡ ui/v (mod n) (1 ≤ i ≤ �), where u1, . . . , u�, and v are
integers such that |u1|, . . . , |u�| < n1−ε and 1 ≤ v ≤ n�ε (take B := nε with
0 < ε < 1/�). In particular, one may have |u1|, . . . , |u�| < n�/(�+1) and 1 ≤ v ≤
n�/(�+1) (take ε := 1/(� + 1)) or |u1|, . . . , |u�| < n2�/(2�+1) and 1 ≤ v ≤ n�/(2�+1)

(take ε := 1/(2� + 1)).

It is well-known that the problem of finding good solutions to the simultane-
ous Diophantine approximation problem is equivalent to the problem of finding
‘short’ vectors in a particular lattice. We make this statement more precise and
(for completeness) provide a short proof.

Theorem 8. [8] Let ξ1, . . . , ξ� ∈ R, let 0 < ε < 1, and let B be a positive
integer. Consider the lattice L(A) = {xA | x ∈ Z�+1} that is generated by the
rows of the matrix A defined by

A =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 · · · 0
0 1 0 · · · 0
...

.
...

0 · · · 0 1 0
ξ1 ξ2 · · · ξ� ε/B

⎞⎟⎟⎟⎟⎟⎠
The lattice L(A) has a nonzero vector y with (small) norm ||y||∞ ≤ ε if and only
if the simultaneous Diophantine approximation problem defined by Equation (1)
has an integer solution p1, . . . , p�, q ∈ Z with q ∈ [1, B].

Proof. Let p1, . . . , p�, q be integers, with q ∈ [1, B], such that the system of
inequalities defined by Equation (1) is satisfied. Then y = xA, with x :=
(−p1, . . . ,−p�, q), has norm ||y||∞ ≤ ε, since y = (qξ1 − p1, . . . , qξ� − p�, qε/B).
Conversely, if y = (qξ1 − p1, . . . , qξ� − p�, qε/B) has norm ||y||∞ ≤ ε, then
|q| ∈ [1, B] and p1, . . . , p�, q (or their negatives, if q < 0) are a solution to the
system of inequalities defined by Equation (1). ��
Thus, one can use any algorithm that finds ‘short’ vectors in lattices to find good
solutions to the simultaneous diophantine approximation problem.

Although the L3 lattice basis reduction algorithm is commonly used to find
short vectors, our ultimate goal is to improve the time to verify a signature,
and the L3 algorithm may be too cumbersome to meet this goal. Later, we wish
to write an element x ∈ Zn as x ≡ u/v (mod n), where u and v are integers
such that |u| <

√
n and |v| <

√
n, as in Example 6. We outline how to use the

Euclidean algorithm directly to find u and v, and refer the reader to [4] for more
details.

When the Extended Euclidean Algorithm is used to find the greatest common
divisor of n and x (which is 1, since n is prime), the algorithm produces a
sequence of equations

sin + tix = ri for i = 0, 1, 2, . . ., (2)

312 A. Antipa et al.

where s0 = 1, t0 = 0, r0 = n, s1 = 0, t1 = 1, r1 = x, and ri ≥ 0 for all i. At each
step of the algorithm, the value of |ri| decreases, and the extended Euclidean
algorithm stops when this value becomes 1. At that iteration i of the algorithm
when ri first becomes less than

√
n, it can be shown that very likely the value

of |ti| is also close to
√

n. Choosing u = ri and v = ti, we see from (2) that
x ≡ u/v (mod n), and so we have found appropriate values of u and v.

The procedure above produces integers u and v with |u|, |v| ∼
√

n such that
x ≡ u/v (mod n). It is easy to see that the same procedure can be used to
write x ≡ u/v (mod n) with |u| ∼ n2/3 and |v| ∼ n1/3 or, more generally, with
|u| ∼ n1−ε and |v| ∼ nε (where 0 < ε < 1). Thus, all representations of an inte-
ger x ∈ Zn described in Example 6 can be realized using the extended Euclidean
algorithm. This procedure can be generalized to produce simultaneous represen-
tations of integers x1, . . . , x� ∈ Zn in this format, as described in Example 7,
using lattice basis reduction techniques for (�+1)-dimensional lattices. This can
be done quite efficiently for � = 1, 2, 3 using, e.g., the techniques described in [9].

4 Fast Verification of ElGamal-Like Signatures

In this section, we describe a method for considerably speeding up the verifi-
cation of signatures in ElGamal-like signature schemes, as described in §2. We
then exploit the relationship between these signature schemes and their modified
schemes to explore speed-ups of signature verifications in the latter. Although
our method applies quite generally, we are mainly interested in the concrete
speed-ups of signature verifications in ECDSA∗(§4.1) and ECDSA (§4.2).

For the modified signature schemes, checking a signature (R, s) over some
message m relative to public key Q involves checking that s−1(eG + rQ) = R,
where e := H(m). Here, the point G is a system-wide parameter and can be
considered fixed, while the points Q and R cannot be considered fixed, since these
vary according to signer and message. The main idea of the paper is that one
may replace this equation by any (nonzero) scalar multiple hereof and evaluate
the transformed equation instead. Thus, one may replace the original signature
verification equation by

(ves−1)G + (vrs−1)Q− vR = O (3)

for any v ∈ Z∗
n. In particular, if one chooses v such that both v and u :=

vrs−1(mod n) are integers that are significantly smaller than n, such as having
only half the bit-length of n, one can often considerably speed-up the computa-
tion of the left-hand side of this equation and, thereby, the verification itself. The
potential acceleration is suggested by the observation that for most groups G of
practical interest to us, the cost of computing a multiple kP of some unknown
point P ∈ G is proportional to the bit-size of the scalar multiple k involved. If
P is a fixed point and some storage is available, one can accelerate the point
multiplication kP by precomputing some data that depends solely on P and
storing this for subsequent use. If P is an unknown point, similar acceleration
techniques can be used, but are less effective, since one cannot amortize their

Accelerated Verification of ECDSA Signatures 313

cost over time. A similar observation can be made regarding the cost of multiple
point multiplications, where one computes a linear combination of points in G
and can accelerate the computation by carrying out common elements hereof
only once, rather than for several points separately. Also here, the cost of com-
puting a multiple point multiplication usually depends on the maximum bit-size
over all scalar multiples corresponding to unknown points. This suggests that
one can indeed considerably accelerate the verification of Equation (3) by choos-
ing v ∈ Z∗

n such that the scalars u := vrs−1(mod n) and v corresponding to
variable points Q and −R, respectively, both have relatively small bit-size.

One can find a suitable value for v by writing x := r/s (mod n) as x ≡
u/v (mod n), where u and v are integers of approximately half the bit-size of
n or, more generally, of 1 − ε and ε times the bit-size of n, respectively, where
0 < ε < 1 (see Example 6). For efficient algorithms for computing u and v of
this form, see §3.

We now compare in more detail the cost of checking the original signature
verification equation with that of checking the transformed equation discussed
above, to give some more insight into the potential acceleration. We then give
some concrete speed-ups for ECDSA∗and ECDSA in §4.1 and §4.2.

We denote by t the bit-length of n, i.e., t := �log2(n + 1)�, where n is the
order of the group G. For convenience, we denote k ∼ L iff |k| � L. We assume
that sufficient storage is available to store a few points of G.

We distinguish two cases, depending on whether a (nontrivial) fixed multiple
of the public key Q is available. This multiple of Q may be made available to
the verifier by including it in the signer’s certificate for Q.

Case 1: Only one point multiple of Q available (Q itself)
One can write the original signature verification equation in the following form:

λG + μQ = R, where λ, μ ∼ n, (4)

Similarly, one can write the transformed signature verification equation in the
following form:

λ0G0 + λ1G1 + uQ− vR = O, where λ0, λ1, u, v ∼
√

n, (5)

where G0 := G and where G1 := 2�t/2�G is a precomputed multiple of G.
Notice that the transformed equation involves 4 half-size point multiplica-

tions, whereas the original equation involves 2 full-size point multiplications.

Case 2: Two point multiples of Q available (Q itself and another multiple of
this point)
One can write the original signature verification equation in the following form:

λ0G0 + λ1G1 + μ0Q0 + μ1Q1 = R, where λ0, λ1, μ0, μ1 ∼
√

n, (6)

where G0 := G, where G1 := 2�t/2�G is a precomputed multiple of G, where
Q0 := Q, and where Q1 := 2�t/2�Q is a precomputed multiple of Q.

Similarly, one can write the transformed signature verification equation in the
following form:

314 A. Antipa et al.

λ0G0 +λ1G1 +λ2G2 +u0Q0 +u1Q1− vR = O, where λ0, λ1, λ2, u0, u1, v ∼ 3
√

n,
(7)

where G0 := G, where G1 := 2�t/3�G and G2 := 22�t/3�G are precomputed
multiples of G, where Q0 := Q, and where Q1 := 2�t/3�Q is a precomputed
multiple of Q.

Notice that the transformed equation involves 6 third-size point multiplica-
tions, whereas the original equation involves 4 half-size point multiplications.

4.1 Fast Verification of ECDSA∗Signatures

In the previous section, we obtained a potential acceleration of signature veri-
fications for a family of ElGamal-like signature schemes. Here, we explore the
concrete speed-up for ECDSA∗.

From the case analysis in the previous section, it follows that the transfor-
mation of the signature verification equation significantly reduces the size of the
scalar multiples involved in this equation (if one can store a single precomputed
multiple of the generator of G). As a result, we might expect a considerable
speed-up of signature verifications, since this eliminates a large number of point
doubling operations, a common element in multiple point multiplications. We
expect significant improvements, both for prime curves and for random binary
curves. For Koblitz curves, we can only expect a marginal improvement, since
for those curves the Frobenius map (which assumes the role of point doubling)
comes almost for free.

A precise analysis is difficult to give, due to the large number of point multi-
plication methods available. We compare the cost of checking the original signa-
ture verification with that of checking the transformed equation by combining
the Non-Adjacent Form (NAF) representation for scalars with the multiple point
multiplication method, and using the Joint Sparse Form (JSF); for details, see
[10], [5, Chapter 3, §3.3.3]. We distinguish the same two cases as in the previous
section.

We adopt the following notation: By A and D, we denote the cost of a single
point addition and point doubling operation, respectively. By m, we denote the
bit-length of finite field elements in Fq, i.e., m := �log2 q�. We assume the elliptic
curve E(Fq) to have a small co-factor h, so that m ≈ �log2 n�. As before, we
denote k ∼ L iff |k| � L.

Case 1: Only one point multiple of Q available (Q itself)
Consider the original signature verification equation in the format of Equa-
tion (4) and represent λ and μ in JSF. Compute the left-hand side of this equation
via multiple point multiplication. Since λ, μ ∼ n, this gives a running time of
approximately (m/2+2)A+mD operations. Similarly, consider the transformed
signature verification equation in the format of Equation (5) and represent λ0
and λ1, resp. u and v, in JSF. Compute the left-hand side of this equation via
multiple point multiplication. Since λ0, λ1, u, v ∼

√
n, this gives a running time

of approximately (m/2+4)A+(m/2)D = (2 ·m/4+4)A+(m/2)D operations2.
2 Here, 4 point additions account for computing G0 ± G1 and Q0 ± Q1, which is

necessary for using the 2 JSFs.

Accelerated Verification of ECDSA Signatures 315

Case 2: Two point multiples of Q available (Q itself and another multiple of
this point)
Consider the original signature verification equation in the format of Equa-
tion (6) and represent λ0 and λ1, resp. μ0 and μ1, in JSF. Compute the left-hand
side of this equation via multiple point multiplication. Since λ0, λ1, μ0, μ1 ∼

√
n,

this gives a running time of approximately (m/2 + 4)A + (m/2)D = (2 ·m/4 +
4)A+(m/2)D operations. Similarly, consider the transformed signature verifica-
tion equation in the format of Equation (7) and represent λ0 and λ1, λ2 and u0,
resp. u1 and v, in JSF. Compute the left-hand side of this equation via multiple
point multiplication. Since λ0, λ1, λ2, u0, u1, v ∼ 3

√
n, this gives a running time

of approximately (m/2 + 6)A + (m/3)D = (3 ·m/6 + 6)A + (m/3)D operations.

Rough analysis for P-384 curve. We provide a rough analysis of the relative
efficiency of the ECDSA∗verification procedure described in this paper compared
to the traditional procedure for ECDSA verification. Our analysis is based on
the elliptic curve curve P-384 defined over a 384-bit prime field and specified by
NIST [3]. All NIST prime curves have co-factor h = 1, so by Hasse’s theorem,
the bit-size of the order of the cyclic group G is approximately m = 384. We
consider each of the scenarios described under Case 1 and Case 2 above. We
ignore the relatively minor cost of running the Extended Euclidean Algorithm
to compute the half-size integers u and v.

We assume the points to be represented using Jacobian coordinates and that
the cost S of a squaring in Zq is slightly less than the cost M of a multiplication
(we take S ≈ 0.8M). With Jacobian coordinates, one has A ≈ 8M + 3S and
D ≈ 4M + 4S (see [5, Table 3.3]). Substitution of S ≈ 0.8M now yields A ≈
10.4M and D ≈ 7.2M and, hence, D/A ≈ 0.69.

If the verifier has access only to the public key Q of the signer and not to a
multiple hereof (Case 1), the cost of verifying the signature using the traditional
verification method is roughly 194A + 384D ≈ 459A, while the corresponding
figure for the new method is 196A+192D ≈ 328A. As a result, the new method
yields a speed-up of 40% over the old method.

Similarly, if the verifier has access to the public key Q of the signer and a
suitable multiple hereof (Case 2), the corresponding figures are roughly 196A +
192D ≈ 328A for the traditional method and 198A + 128D ≈ 286A for the new
method. Thus, in this case, the new method yields a speed-up of 15% over the
old method.

Implementation on ARM7TDMI platform. We implemented the fast verifica-
tion procedure of ECDSA∗signatures on an ARM7TDMI processor running at
a 50MHz clock rate and compared this with the traditional ECDSA verification
procedure. We assumed the same scenario as considered in the rough analysis
above (in particular, we chose the same curve P-384), but did consider the cost
of computing the half-size integers u and v required for fast verification. We
restricted ourselves to Case 1. The following data was obtained:

316 A. Antipa et al.

signature generation time: ∼100 ms;
traditional ECDSA verification time: 209 ms;
fast ECDSA∗verification time: 154 ms.

speed-up: 36%.

The experimental data supports the rough analysis we did above for the signature
verification step.

4.2 Fast Verification of ECDSA Signatures

In the previous section, we obtained a speed-up of ECDSA∗signature verification.
To make this efficiency improvement applicable to ECDSA as well, one needs
to convert the ECDSA signature (r, s) over some message m to a corresponding
ECDSA∗signature (R, s) over the same message, i.e., one needs to reconstruct
the ephemeral elliptic curve point R from the signature component r. Obviously,
one could compute R := s−1(eG + rQ) directly, but this has the same computa-
tional cost as the traditional method for ECDSA signature verification and can,
therefore, never yield an acceleration of signature verification. In this section, we
consider alternative and more efficient mechanisms for reconstructing R from r.
First, however, we provide a general framework.

By Theorem 2, one has R ∈ {(x, y) ∈ G | f(x) = r} (the set of candidate
points). Notice that for each r �= 0, the set of candidate points has even cardinal-
ity, since elliptic curve points and their inverses have the same x-coordinate (and
G has no points of order 2). Thus, one cannot uniquely extract the value of R from
the set of candidate points alone, since candidate points come in pairs (R,−R). It
turns out, however, that in most cases there is only 1 candidate point (up to taking
inverses in G). In all cases, one can apply the fast ECDSA∗verification procedure
for each candidate point that is not discarded based on some side information and
accept the ECDSA signature if and only if any verification using such an admissi-
ble point succeeds. By Theorem 2, this alternative procedure is equivalent to the
original signature verification procedure for ECDSA.

The ECDSA verification cost via this procedure depends on the number of
admissible points. In particular, if the set of admissible points is a singleton
set, then ECDSA signature verification has the same cost as ECDSA∗signature
verification and the speed-up determined in §4.1 is attainable. We are now ready
to discuss alternative mechanisms for reconstructing R from r.

Append explicit side information to ECDSA signatures. A simple method to
make sure that the set of admissible points contains only one point is to supple-
ment a traditional ECDSA signature (r, s) with some additional information, so
as to ensure that one can uniquely (and efficiently) reconstruct R from r and
this side information.

To illustrate this, consider an elliptic curve E(Zq) of prime order n defined
over the prime field Zq. We consider two cases. If n > q, the x-coordinate of
R is equal to r. Thus, a single bit of side information is sufficient to efficiently
determine the y-coordinate of R. If n < q, one can deduce from Hasse’s theorem
that q < 2n. Hence, the x-coordinate of R is equal to r or r+n, with the correct

Accelerated Verification of ECDSA Signatures 317

value being determined by a single extra bit of information. Thus, in this case,
two bits of side information are sufficient to efficiently determine the point R.

More generally, if the elliptic curve E(Fq) defined over the finite field Fq

has co-factor h, the x-coordinate of R can assume at most h + 1 values (h if
|E(Fq)| > q). Thus, �log2(h + 1)� + 1 bits of side information are sufficient to
efficiently determine the point R.

Since most elliptic curves used in practice have a small co-factor (e.g., the
NIST curves [3] have co-factor h = 1 (for prime curves) or h = 2, 4 (for binary
curves)), adding a few bits of side information suffices to uniquely reconstruct
R from r.

Observe that sending r with side information is similar to sending R in com-
pressed form, but allows the use of ECDSA, rather than requiring the use of the
modified scheme ECDSA∗.

The general procedure for ECDSA signature is described below.

Accelerated ECDSA signature verification.
Input: Signature (r, s), message m ∈ {0, 1}∗, public key Q ∈ G.
Output: Acceptance or rejection of signature relative to Q.
Actions:
1. Verify that r and s are integers in the interval [1, n− 1]. If any verification

fails, return ‘reject signature’.
2. Compute the set of candidate points ϕ(r) := {(x, y) ∈ G | f(x) = r}.
3. Determine the set of admissible points R := ϕ(r) ⊆ ϕ(r) by filtering out

those candidate points that do not satisfy side constraints. If this set is
empty, return ‘reject signature’.

4. Compute e := H(m).
5. Write x := r/s as x ≡ u/v (mod n), where u and v are integers that are

significantly smaller than n.
6. Select an arbitrary point R ∈ R. Compute S := (v · es−1)G + uQ− vR. Set
R := R \ {R}.

7. While (S �= O and R �= ∅) do the following:
(a) Select an arbitrary point R′ ∈ R.
(b) Compute S′ := S + v(R−R′).
(c) Set (R, S) := (R′, S′) and R := R \ {R}.

8. IfS =O, return ‘accept signature’; otherwise, return ‘reject signature’.

Analysis of computational workload. The computational workload of the above
algorithm is determined by the cost of computing admissible points and the
cost of ECDSA∗signature verifications. If an ECDSA signature gives rise to t
admissible candidate points, then the expected workload of the above algorithm
is (t + 1)/2 ECDSA∗verifies. For example, if h = 1 and no side information is
available, then t = 2 and the average workload is 1 1

2 ECDSA∗verifies, which
is still less than a traditional verification. If side information is available and
t = 1 then only a single ECDSA∗verification is required. In general, it can be
shown that there are at most 2(h + 1) possible choices for the R-value. Clearly,
the most favourable case is where t = 1. Note that the incremental cost of
computing another ECDSA∗verification is the cost of computing v(R −R′).

318 A. Antipa et al.

5 Conclusions

We have presented a method for accelerating ECDSA verification by roughly
40%. The only price one pays for the speedup is that a small number of bits
needs to be appended to traditional ECDSA signatures. We emphasize that this
change does not affect conformance to the existing ECDSA standards.

The speedups are also applicable to verification of DSA signatures σ = (r, s).
However, the side information one needs to efficiently recover R from r will be
greater than the size of σ itself. Thus the advantage that DSA enjoys over RSA
in terms of signature size is lost.

It is also evident that the speedups apply to the elliptic curve versions of
many other variants of the ElGamal signature scheme.

References

1. ANSI X9.62-1998, Public Key Cryptography for the Financial Services Industry:
The Elliptic Curve Digital Signature Algorithm (ECDSA), American National
Standard for Financial Services, American Bankers Association, January 7, 1999.

2. G.L. Dirichlet, ‘Verallgemeinerung eines Satzes aus der Lehrere von Kettenbrüchen
nebst einigen Anwendungen auf die Theorie der Zahlen,’ Bericht über die zur
Bekanntmachung geeigneter Verhandlungen der Königlich Preussischen Akademie
der Wissenschaften zu Berlin, pp. 93-95, 1842.

3. FIPS Pub 186-2, Digital Signature Standard (DSS), Federal Information Process-
ing Standards Publication 186-2, US Department of Commerce/National Institute
of Standards and Technology, Gaithersburg, Maryland, USA, January 27, 2000.
(Includes change notice, October 5, 2001.)

4. R. Gallant, R. Lambert, S.A. Vanstone, ‘Fast Point Multiplication on Elliptic
Curves with Efficient Endomorphisms,’ in Proceedings of Advances in Cryptology –
CRYPTO 2001, Lecture Notes in Computer Science, Vol. 2139, pp. 190-200, 2001.

5. D.R. Hankerson, A.J. Menezes, S.A. Vanstone, Guide to Elliptic Curve Cryptogra-
phy, New York: Springer, 2003.

6. G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers, Fifth Edition,
Oxford: Oxford University Press, 2000.

7. D.J. Johnson, A.J. Menezes, S.A. Vanstone, ‘The Elliptic Curve Digital Signature
Algorithm (ECDSA),’ International Journal of Information Security, Vol. 1, pp. 36-
63, 2001.

8. L. Lovász, ‘An Algorithmic Theory of Numbers, Graphs and Convexity,’ CBMS-
NSF Regional Conference Series in Applied Mathematics, Band 50, SIAM Publi-
cations, 1986.

9. P. Nguyen, D. Stehlé, ‘Low-Dimensional Lattice-Basis Reduction Revisited,’ in
Proceedings of Algorithmic Number Theory – ANTS VI, Lecture Notes in Computer
Science, Vol. 3076, pp. 338-357, 2004.

10. J. Solinas, ‘Low-Weight Binary Representations for Pairs of Integers,’ Centre for
Applied Cryptographic Research, Corr 2001-41, University of Waterloo, Ontario,
Canada, 2001.

Pairing-Friendly Elliptic Curves of Prime Order

Paulo S.L.M. Barreto1 and Michael Naehrig2

1 Escola Politécnica, Universidade de São Paulo,
Av. Prof. Luciano Gualberto, tr. 3, n. 158,

BR 05508-900, São Paulo (SP), Brazil
pbarreto@larc.usp.br

2 Lehrstuhl für Theoretische Informationstechnik,
Rheinisch-Westfälische Technische Hochschule Aachen,

Sommerfeldstr. 24, D-52074 Aachen, Germany
mnaehrig@ti.rwth-aachen.de

Abstract. Previously known techniques to construct pairing-friendly
curves of prime or near-prime order are restricted to embedding degree
k � 6. More general methods produce curves over Fp where the
bit length of p is often twice as large as that of the order r of the
subgroup with embedding degree k; the best published results achieve
ρ ≡ log(p)/ log(r) ∼ 5/4. In this paper we make the first step towards
surpassing these limitations by describing a method to construct elliptic
curves of prime order and embedding degree k = 12. The new curves
lead to very efficient implementation: non-pairing operations need no
more than Fp4 arithmetic, and pairing values can be compressed to
one third of their length in a way compatible with point reduction
techniques. We also discuss the role of large CM discriminants D to
minimize ρ; in particular, for embedding degree k = 2q where q is prime
we show that the ability to handle log(D)/ log(r) ∼ (q − 3)/(q − 1)
enables building curves with ρ ∼ q/(q − 1).

Keywords: elliptic curves, pairing-based cryptosystems.

1 Introduction

A non-supersingular elliptic curve over Fp is called pairing-friendly if it contains
a subgroup of order r whose embedding degree k is not too large, which means
that computations in the field Fpk are feasible. The optimal case occurs when
the entire curve has prime order and the desired embedding degree.

Pairing-friendly curves of prime or near-prime order are absolutely essential
in certain pairing-based schemes like short signatures with longer useful life.
For instance, the length of BLS signatures [6] is the size of the base field p;
at the 128-bit security level the scheme should be defined on a group of 256-
bit order r and be mapped to a finite field of roughly 3072-bit size pk. In the
optimal case, the embedding degree should be k = 12. Of course, other systems
would benefit as well, since the space requirements for all quantities involved
in cryptographic protocols except pairing values would be kept to a minimum

B. Preneel and S. Tavares (Eds.): SAC 2005, LNCS 3897, pp. 319–331, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

320 P.S.L.M. Barreto and M. Naehrig

(pairing compression techniques [18, 11] would help reducing the bandwidth for
pairing values as well).

The pioneering work of Miyaji, Nakabayashi, and Takano [15] describes how
to construct elliptic curves of prime order and embedding degree k ∈ {3, 4, 6}.
Such curves are now dubbed MNT curves, and satisfy p ∼ r by the Hasse bound.
Extensions of the original MNT construction to curves of near-prime order were
investigated by Scott and Barreto [19], and more recently by Galbraith, McKee,
and Valença [10]1. Unfortunately, those methods are restricted to k � 6 and
hence only allow for a tradeoff: one has to choose between increasing the base
field to a 512-bit prime p (thus doubling the signature size, which ceases to be
“short”) or contenting oneself with the lower security level of a 1536-bit finite
field Fp6 .

Let ρ ≡ log(p)/ log(r) be the ratio between the bit lengths of the finite field
and the order of the subgroup with embedding degree k. Several methods have
been proposed to construct curves with arbitrary k, including an algorithm cred-
ited to Cocks and Pinch [4, chapter 9] and related methods due to Barreto, Lynn,
and Scott [1] and to Dupont, Enge, and Morain [9]. In general these algorithms
only achieve ρ ∼ 2.

Algebraic methods may produce curves with ρ closer to unity for certain
values of k. Such techniques include the families of curves described by Barreto,
Lynn, and Scott [3], and by Brezing and Weng [8]. The latter presents the best
known results, achieving ρ ∼ 5/4 for families of curves with k = 8 or k = 24,
and ρ ∼ (k + 2)/(k − 1) for prime k (hence ρ � 5/4 for prime k � 13). Such
ratios are already useful under many circumstances. Still, for most embedding
degrees the value of ρ is larger than this; for instance, the best published value
for k = 12 is ρ ∼ 3/2. Besides, the use of prime k precludes many optimizations
that are only possible for even k [2], making the computation of pairings much
less efficient.

In spite of all these efforts, constructing pairing-friendly curves with prime
order has remained an elusive open problem since it was posed by Boneh et
al. [6, section 3.5] (see also [7, section 4.5]).

This paper is organised as follows.
Our main contribution, described in section 2, is a surprisingly simple algo-

rithm to construct curves of prime order and embedding degree k = 12. The
resulting security enhancement is even better than the lower bound of k = 10
required by Boneh et al.. Using the proposed method, even a 160-bit signature
maps to 1920-bit field, where the best algorithms to compute discrete logarithms
are worse than Pollard-rho in the elliptic group itself.

We next discuss how to compress the representations of points and pairing
values for the proposed curves in section 3. It turns out that non-pairing oper-
ations need arithmetic over fields no larger than Fp4 ; in some cases, this can be
improved to only Fp and Fp2 arithmetic. Besides, it is possible to compute pair-

1 Interestingly, the latter work also considers the construction of hyperelliptic curves
of genus g = 2 analogous to MNT elliptic curves, for which the range of embedding
degrees is k ∈ {5, 8, 10, 12}, but the security ratio k/g is still bound by 6.

Pairing-Friendly Elliptic Curves of Prime Order 321

ings compressed to one third of their length without resorting to full arithmetic
on fields larger than Fp4 ; again, under certain circumstances one can restrict
field operations to Fp2 , and attain sixfold compression.

Finally, we show in section 4 that the ability to handle large complex multi-
plication (CM) discriminants may have a positive influence on the minimization
of ρ. In particular, for embedding degree k = 2q where q is prime we describe
how to build curves with ρ ∼ q/(q−1) and log(D)/ log(r) ∼ (q−3)/(q−1). Such
discriminants are thus much smaller than expected from random curves with the
same embedding degree. We also briefly discuss the possibility of building curves
of nearly-prime order over extension fields.

We conclude and summarise our results in section 5.

2 The Proposed Method for k = 12

Theorem 1. There exists an efficient algorithm to construct elliptic curves of
prime order (of nearly arbitrary bitlength) and embedding degree k = 12 over a
prime field.

Proof. We follow the strategy of parametrising p(x), n(x) and t(x), and using
the property that n | Φk(t − 1) as in [1]. Since Φ12 is quartic and we know
from the Hasse bound that n ∼ p ∼ t2, we must take t(x) to be a quadratic
polynomial such that n(x) is a quartic factor of Φ12(t− 1).

Galbraith et al. showed [10] that the only quadratic polynomials u(x) such
that Φ12(u(x)) splits into two irreducible quartic factors are u(x) = 2x2 and
u(x) = 6x2. Setting the trace of the Frobenius to be t(x) = 6x2 + 1, we obtain

Φ12(t(x) − 1) = n(x)n(−x),

where n(x) = 36x4 +36x3 +18x2 +6x+1. From the relation n = p+1− t we get
the irreducible polynomial p(x) = n(x)+ t(x)−1 = 36x4 +36x3 +24x2 +6x+1.
The CM norm equation becomes

DV 2 = 4p− t2 = 3(6x2 + 4x + 1)2.

Assuming that, for some x0, both n = n(x0) and p = p(x0) evaluate to prime
numbers, the CM method for discriminant D = 3 [13, 16] produces curves of
form E(Fp) : y2 = x3 + b, with b �= 0.

Finding b is actually very simple: take the smallest b �= 0 such that b + 1 is a
quadratic residue modp and the point G = (1,

√
b + 1 mod p), which is clearly

on the curve2, satisfies nG = O. This method is a simplification of the technique
described in [12, section A.14.4] and quickly converges to a suitable b.

We see that the bitlength m of the curve order can be easily tailored by a
suitable choice of x0, namely, start with the smallest x ∼ 2m/4 such that n(x)
has bitlength m and increase it until finding some x0 such that n(x0) and p(x0)
are prime. ��
2 Since the curve order n(x) is a large prime, there is no point of form (0, y), which

would necessarily have order 3.

322 P.S.L.M. Barreto and M. Naehrig

In summary, we have the following parametrisation, where x may take either
positive or negative values:

t = 6x2 + 1,

n = 36x4 + 36x3 + 18x2 + 6x + 1,

p = 36x4 + 36x3 + 24x2 + 6x + 1,

DV 2 = 108x4 + 144x3 + 84x2 + 24x + 3 = 3(6x2 + 4x + 1)2.

The choice u(x) = 2x2 as indicated in [10] is not considered, since in this case
DV 2 factors as a square free product of irreducible polynomials which in general
leads to an enormous CM discriminant D and therefore is not practical. This
would also be the case if one took u(x) to be a linear polynomial. So far the only
known choice leading to a favourable factorization of the CM norm equation is
t(x) = 6x2 + 1.

Algorithm 1 shows how the CM method simplifies in our setting. The
algorithm takes as input value the desired bitlength of the primes p and n,
and returns instances of these primes computed as indicated in the proof of the-
orem 1, plus a parameter b ∈ Fp such that the curve E(Fp) : y2 = x3+b has order
n over the field Fp, and the coordinate y of a sample generator G = (1, y). Notice
that the CM construction only ensures that the order of a curve satisfying the
norm equation 3V 2 = 4p−t2 has one of the six forms {p+1±t, p+1±(t±3V)/2}
[12, section A.14.2.3, item 6], meaning that not all choices of b will produce a
curve with the prescribed order n and making it necessary to filter a suitable b
by checking the curve order, as done on line 22. Since the probability that b + 1
is a quadratic residue on line 19 is about 1/2 and a fraction about 1/6 of all
values of b produce a curve of the right order, it is expected that the algorithm
will test about 12 values of b (and compute nG about six times on line 22) until
it stops.

Appendix A gives a few examples of cryptographic interest. Algorithm 1 tends
to produce the smallest p and n of the desired bitlength, but it is straightfor-
ward to modify it so that the output parameters meet other simple criteria (for
instance, the examples in appendix A were selected to maximize p and n while
keeping all other parameters as simple as possible). It is still an open problem to
determine the distribution of prime pairs (n, p) and hence the expected number
of times the loop between lines 3 and 14 will be executed. Empirical evidence
suggests that finding such pairs is fairly easy, taking only a fraction of a second
on a common PC.

The parametrisation given above may also be expressed in the language of [8].
Choosing a polynomial u(x) such that Φk(u(x)) splits may then be interpreted as
choosing a suitable number field in the following way. Let l(x) be an irreducible
factor of Φk(u(x)) and consider the number field

K = Q[x]/(l(x)).

As u(x) is a root of Φk over K it is a primitive k-th root of unity modulo l. If
D is chosen such that −D is a square in K we set t(x) ← u(x)i + 1 mod l(x)

Pairing-Friendly Elliptic Curves of Prime Order 323

Algorithm 1. Constructing a curve of prime order with k = 12
Input: the approximate desired size m of the curve order (in bits).
Output: parameters p, n, b, y such that the curve y2 = x3 + b has order n over Fp and

the point G = (1, y) is a generator of the curve.
1: Let P (x) ≡ 36x4 + 36x3 + 24x2 + 6x + 1
2: Compute the smallest x ≈ 2m/4 such that �log2 P (−x)� = m.
3: loop
4: t ← 6x2 + 1
5: p ← P (−x), n ← p + 1 − t
6: if p and n are prime then
7: exit loop
8: end if
9: p ← P (x), n ← p + 1 − t

10: if p and n are prime then
11: exit loop
12: end if
13: x ← x + 1
14: end loop
15: b ← 0
16: repeat
17: repeat
18: b ← b + 1
19: until b + 1 is a quadratic residue mod p
20: Compute y such that y2 = b + 1 mod p
21: G ← (1, y) on the curve E : y2 = x3 + b
22: until nG = O
23: return p, n, b, y.

and V (x) ← (u(x)i − 1)/
√
−D mod l(x) where i ∈ {1, . . . , k − 1}. If p(x) =

(t(x)2 −DV (x)2)/4 is irreducible, one sets n = p + 1 − t. We are able to check
for the ratio deg(p)/deg(l) to be less than a certain given bound. Choosing
u(x) = 6x2 and D = 3 yields the above parametrisation as well.

Contrary to the case k = 12, finding parametrisations when ϕ(k) > 4 (but
keeping k reasonably small) seems a rather difficult problem. The method sug-
gested in [10] to find quadratic polynomials u(x) such that Φk(u(x)) splits, im-
plies finding integer or rational points on an elliptic curve. Increasing ϕ(k) leads
to a higher number of indeterminates and also increases the number of equations
to deal with. To combine them into a single equation of an elliptic curve may
in this case be impossible. The computation of a resultant as suggested in [10]
only reduces the number of indeterminates by one and thus in general will not
help. One may try to find polynomials u(x) of degree greater than two such that
Φk(u(x)) splits, but this results in higher degree equations to be solved. We leave
it as an open problem the task of buidling curves of prime order and ϕ(k) > 4.

Furthermore, for efficiency reasons in the pairing computation it is desirable
to generate curves of prime order n such that n has a low Hamming weight.
Constructing such curves for k = 12 or ϕ(k) > 4 is still a research problem.

324 P.S.L.M. Barreto and M. Naehrig

3 Point and Pairing Compression

We now consider two efficiency improvements enabled by the proposed curves,
namely, point compression and pairing compression, both in general to about
one third, and in some cases to one sixth, of the requirements one would expect
in näıve implementations.

The basic idea for point compression is not only to restrict the first pairing
argument to E(Fp), but also to take the second argument Q ∈ E(Fp12) as the
image ψ(Q′) of a point on a sextic twist E′(Fp2) such that n | #E′(Fp2), where
ψ : E′(Fp2) → E(Fp12) is an injective group homomorphism. This way one
would work only with E(Fp) and E′(Fp2) for non-pairing operations like key
generation, and map from E′(Fp2) to E(Fp12) only when actually computing
‘twisted’ pairings e′(P, Q′) ≡ e(P, ψ(Q)). As it turns out, it is possible to do
better than this, namely, to work with smaller fields, as we will show.

Lemma 1. There exists ξ ∈ F∗
p2 such that X6 − ξ is irreducible over Fp2 [X]

whenever p ≡ 1 (mod 6).

Proof. Since p2 ≡ 1 (mod 6), the order of Fp2 = p2 − 1 is a multiple of 6.
Thus for any primitive root a ∈ Fp2 , the cube roots of unity are {1, ζ, ζ2} where
ζ ≡ a(p2−1)/3. Hence every cube u3 ∈ F∗

p2 has three distinct cube roots, namely,
{u, ζu, ζ2u}, which means that only one third of the elements of F∗

p2 are cubes.
Analogously, only one half of the elements of F∗

p2 are squares. Therefore, there
must be some element ξ ∈ F∗

p2 that is neither a square nor a cube, and hence
X6 − ξ is irreducible over Fp2 [X]. ��
A sensible strategy to obtain ξ without resorting to full Fp12 arithmetic is to set
1/ξ = λ2μ3 where λ ∈ Fp is a noncube and μ ∈ Fp2 is a nonsquare. Although any
ξ ∈ F∗

p2 provided by lemma 1 may be used to represent Fp12 as Fp2 [X]/(X6− ξ)
and to define a sextic twist E′(Fp2) : y′2 = x′3 + b/ξ, one must choose it so as
to ensure that n | E′(Fp2). If a particular ξ produces a twist of wrong order, an
easily computable alternative is ξ5 (note that ξ2, ξ3, and ξ4 are not suitable since
they produce quadratic and cubic twists). We leave it as an exercise for the reader
to show that the correct twist order is #E′(Fp2) = (p+1−t)(p−1+t) = n(2p−n).

Let z ∈ Fp12 be a root of X6 − ξ. The corresponding map ψ : E′(Fp2) →
E(Fp12) is (x′, y′) �→ (z2x′, z3y′). Notice that x = z2x′ ∈ Fp6 and y = z3y′ ∈ Fp4 .
Also, since any element of Fp12 has the form a5z

5 +a4z
4 +a3z

3 +a2z
2 +a1z +a0

the computation of ψ(Q′) does not incur any multiplication overhead, and its
rather sparse structure favours efficient implementation of the pairing algorithm.

These considerations open the way to compressing pairing values to one third
or even one sixth of their length in a way that is compatible with point compres-
sion or point reduction, i.e. the techniques of keeping only one point coordinate
and respectively keeping a small fraction of the other coordinate or discarding it
entirely. Notice that the map (x′, y′) �→ (z2x′, z3y′) produces a point on E(Fp12)
whose x-coordinate is in Fp6 and whose y-coordinate is in Fp4 .

Now suppose that we keep only the y-coordinate of the point Q′ = (x′, y′)
on the twist E′(Fp2) : y′2 = x′3 + b/ξ (this is contrary to the conventional

Pairing-Friendly Elliptic Curves of Prime Order 325

choice of keeping only the x-coordinate). There are three points associated to
this y-coordinate corresponding to the three cube roots of y′2 − b/ξ. One of
the points is Q′. Upon mapping onto E(Fp12), it turns out that those points
map to conjugates over Fp4 (i.e. their images are of form Q, [p4]Q and [p8]Q)
provided Q′ is an n-torsion point, which already exists because of the choice
of the twist E′(Fp2). Let φ be the p-th power Frobenius endomorphism and
trFp6 : E(Fp12) → E(Fp6), R �→ R + φ6(R) the trace map over Fp6 . An explicit
computation leads to the following lemma.

Lemma 2. Let Q′ = (x′, y′) ∈ E′(Fp2) and let Q = ψ(Q′). Then trFp6 (Q) =
Q + φ6(Q) = O.

The Frobenius endomorphism has two eigenspaces in E(Fp12)[n] for the eigenval-
ues 1, p. The 1-eigenspace consists of all points in E(Fp) while the p-Eigenspace
is the set of points of trace zero. Therefore we obtain the following lemma which
shows that for an n-torsion point whose Fp6 -trace is O computing the p-multiple
is the same as computing the Frobenius endomorphism.

Lemma 3. Let Q ∈ E(Fp12)[n]. Then trFp6 (Q) = O iff φ(Q) = [p]Q.

Let Q = ψ(Q′) for an n-torsion point Q′ on the sextic twist. From lemma 2 we
see that we may apply lemma 3 and compute [p4]Q = φ4(Q) = ((z2)p4

x′, z3y′)
as well as [p8]Q = φ8(Q) = ((z2)p2

x′, z3y′). The points Q, [p4]Q, and [p8]Q share
the same y-coordinate and therefore have to be the images under ψ of the above
mentioned three points corresponding to the given y-coordinate on the twist.

The above shows that the pairing values computed from the three points
are also conjugates over Fp4 (i.e. they are of the form e, ep4

and ep8
). Thus,

the Fp4-trace of these pairing values is the same for any of the three points. In
other words, the choice of the cube root is irrelevant to compute the compressed
pairing trFp4 (e′(P, Q′)) = e′(P, Q′) + e′(P, Q′)p4

+ e′(P, Q′)p8
, whose length is

one third of the length of e′(P, Q′). This reduction also allows for implicit trace
exponentiation analogous to the laddering techniques described in [18]; similar
effects may be achieved in a torus-based setting as suggested in [11]. Threefold
pairing compression may thus be used in the identity-based encryption scheme
by Boneh and Franklin [5] for example.

One even may go one step further and discard not only the x-coordinate of Q′

but also one bit of its y-coordinate so as not to distinguish between y′ and −y′

(or, equivalently, between Q′ and −Q′). Doing so means working with equivalence
classes of points rather than with the points themselves. The equivalence classes
are defined by the isomorphism (x′, y′) �→ (ζ3x

′,−y′) where ζ3
3 = 1, hence each

class contains six finite points Q′ ≡ {(x′,±y′), (ζ3x
′,±y′), (ζ2

3x′,±y′)}, except
for the zero class O′ which contains only the point at infinity O′. With help of
the following lemma we can show that pairing compression up to one sixth of
the actual pairing length is possible.

Lemma 4. Let ζ be an n-th root of unity in Fp12 and trFp2 : Fp12 → Fp2 the
finite field trace over Fp2 . Then trFp2 (ζ−1) = trFp2 (ζ).

326 P.S.L.M. Barreto and M. Naehrig

Proof. Since n divides Φ12(t−1) it divides Φ12(p) = p4−p2+1. So n also divides
p6 + 1 = (p2 + 1)(p4− p2 + 1). Therefore since ζ is an n-th root of unity we have
ζ−1 = ζp6

. We now see that trFp2 (ζ−1) = ζ−1+ζ−p2
+ζ−p4

+ζ−p6
+ζ−p8

+ζ−p10
=

ζp6
+ ζp8

+ ζp10
+ ζ + ζp2

+ ζp4
= trFp2 (ζ). ��

Since all pairing values are n-th roots of unity in Fp12 it follows that
trFp2 (e′(P, Q′)) = trFp2 (e′(P, Q′)−1) = trFp2 (e′(P,−Q′)). Together with the
transitivity of traces using the above condition on Fp4- traces, this yields that
the Fp2 -traces of the pairing values are equal for all points in Q′. Therefore
it makes sense to define the compressed pairing ε(P, Q′) ≡ trFp2 (e(P, ψ(Q′))),
whose second argument is an equivalence class of points on the sextic twist of
the base curve containing the first argument.

The advantage of this approach is that one can not only work exclusively
on Fp and Fp2 for non-pairing operations, but also represent points on E′(Fp2)
using less storage than one Fp2 element, yet obtain a unique compressed pairing
value over Fp2 . We point out that the compression ratio of 1/6 is better than
what is attainable on any practical supersingular Abelian variety, namely, 8/30,
as shown by Rubin and Silverberg [17]. This observation also suggests that the
proposed prime pairs (p, n) might define an extension of XTR [14] with a sixfold
(rather than threefold) compression ratio, but obtaining the required method
for implicit exponentiation remains an open problem. Therefore, sixfold pairing
compression is currently indicated for cryptographic schemes where the pairing
value is not meant to be further processed like in the BLS signature scheme [6].

3.1 Computing Cube Roots

If the x-coordinate corresponding to a point on E(Fp) or E′(Fp2) with a given
y-coordinate is needed, one may obtain it by simply computing a cube root of
u = y2 − b/ξ. We now briefly discuss how to efficiently compute cube roots in
half of the fields of interest for the proposed curves with k = 12.

Each prime number of form p(x) = 36x4 + 36x3 + 24x2 + 6x + 1 is congruent
to 6x2 + 6x + 1 (mod 9) and hence p(x) ≡ 1 (mod 9) or p(x) ≡ 4 (mod 9) for
all x ∈ Z.

In the latter case, if u ∈ F∗
p is a cube then u(p−1)/3 = 1. Since (2p + 1)/9 is

the inverse of 3 (mod (p− 1)/3), one cube root r ∈ F∗
p of u is clearly given by

r ← u(2p+1)/9.

Therefore, computing cube roots modulo p ≡ 4 (mod 9) only takes one expo-
nentiation. Notice that all examples given in appendix A fall into this category.

For recovering the x-coordinate of points on E′(Fp2) given only their y-
coordinate one needs to compute a cube root in F∗

p2 , and for p ≡ 4 (mod 9)

we have p2 ≡ 7 (mod 9). Now if u ∈ F∗
p2 is a cube then u(p2−1)/3 = 1. Since

(p2 + 2)/9 is the inverse of 3 (mod (p2 − 1)/3), one cube root r ∈ F∗
p2 of u is

given by
r ← u(p2+2)/9.

Thus again the computation of a cube root only takes one exponentiation.

Pairing-Friendly Elliptic Curves of Prime Order 327

In both cases, if it is not known whether u is a cube one must check that the
result is correct, i.e. that r3 = u.

4 Considerations on Composite Order

Under some circumstances, a reasonably small cofactor may be quite acceptable.
For instance, if 256-bit prime fields do not have a substantial impact on band-
width occupation, the Brezing-Weng family of curves for k = 8 and ρ ∼ 5/4
could provide roughly 200-bit group orders and map the discrete logarithm on
the curve to a 2048-bit finite field. Besides, as we already pointed out even val-
ues of k are advantageous from the point of view of efficient implementation of
the pairing algorithm. It is thus interesting to investigate ways to produce more
curves that meet the conditions that k be even and ρ > 1 be as small as possible
(say, ρ � 5/4).

A näıve approach to solving the norm equation DV 2 = 4hΦk(t−1)− (t−2)2,
namely, by choosing t and hoping to be able to handle the resulting D, is in
general bound to failure since D ∼ tϕ(k), where ϕ(k) is Euler’s totient function.
For instance, for k = 2q where q is an odd prime we expect to find D ∼ tq−1.

However, it would be quite simple to obtain curves with k = 2q if we could
handle a CM discriminant D as large as tq−3, attaining ρ ≡ log(p)/ log(r) ∼
q/(q− 1) as the following reasoning reveals. Let the trace of Frobenius have the
form t = −4u2 + 2 for some u (notice that t is negative), and let x = t − 1.
Assume that Φk(x) takes a prime value. Then set:

h = −(x− 1)/4,

r = Φk(x)
= xq−1 − xq−2 + xq−3 − xq−4 + xq−5 − · · · − x + 1
= xq−1 − xq−3(x− 1)− xq−5(x − 1)− · · · − x2(x− 1)− (x− 1),

p = hr + t− 1,

DV 2 = 4hr − (t− 2)2

= −(x− 1)xq−1 + xq−3(x − 1)2 + xq−5(x− 1)2 + · · ·+ (x− 1)2 − (x− 1)2

= −(x− 1)x2[xq−3 − (x− 1)(xq−5 + xq−7 + · · ·+ 1)].

By construction, the −(x−1)x2 factor is a square, so D is the square-free part
of z = xq−3 − (x− 1)(xq−5 + xq−7 + · · ·+ 1). Since p = hr + t− 1, it is also clear
that ρ ∼ q/(q − 1). For instance, if k = 10 (i.e. ρ ∼ 5/4) we get z = x2 − x + 1,
and a simple search produces parameters like these:

t = −931556989582: 40 bits

r = 753074106157227719531468778253698105623799226081: 160 bits

p = 175382861816372173247473133505975362972517516867279787545493: 197 bits

ρ ∼ 1.237425

D = 867798424841873127503473: 80 bits

328 P.S.L.M. Barreto and M. Naehrig

Another example, now for k = 14 (i.e. ρ ∼ 7/6) where z = x4−x3+x2−x+1:

t = −82011134: 27 bits

r = 304254450525046050085067914513460261078757135361: 158 bits

p = 6238063280153705754947329076599940825481364534683333889: 183 bits

ρ ∼ 1.153987

D = 45236739484946456935793243535361: 106 bits

Unfortunately, with currently available CM technology the only case where
this construction is tractable occurs for k = 6, where we get D = 1 but also
ρ ∼ 3/2, much worse than plain MNT curves that attain ρ ∼ 1.

4.1 Curves over Extension Fields

Another interesting observation is that, while none of the currently known
methods to construct pairing-friendly curves for arbitrary k is able to produce
curves over an extension field Fpm , it may be possible to fill this gap if suffi-
ciently large D can be handled. As Galbraith et al. point out [10], parametris-
ing t = 5x2 + 1 causes Φ5(t − 1) to split as Φ5(t − 1) = r(x)r(−x), where
r(x) = 25x4 + 25x3 + 15x2 + 5x + 1. We observe that with cofactor h = 4, this
gives hr + t − 1 = (10x2 + 5x + 2)2, a perfect square. This means that finding
an odd value x ∈ Z such that r and p = 10x2 + 5x + 2 are both prime enables
constructing an elliptic curve over a finite field Fp2 with near-prime order n = 4r.

The CM equation here has the form DV 2 = 5(5x2± 2x + 1)(15x2± 10x+ 3).
Solving a Pell-like equation can make one but not both of the factors 5x2±2x+1
or 15x2±10x+3 to assume the form dy2 for small d and some y. One might hope
that techniques like Hensel lifting could reduce the square-free part of the other
factor to O(x), but it is not clear how to harmonise such techniques to solutions
of the Pell-like equation. As a consequence, we expect that D ∼ p ∼ r1/2;
practical values of p would need D ∼ 2100 at least.

Nevertheless, such a parametrisation hints that algebraic methods to build
ordinary pairing-friendly curves over extension fields might exist for other em-
bedding degrees, and deserved further research.

5 Conclusion

We have presented a very simple algorithm to construct pairing-friendly curves
of prime order and embedding degree k = 12. This closes (and actually exceeds)
an open problem proposed by Boneh et al. [6, section 3.5], increasing the security
level of most pairing-based cryptosystems, while also reducing up to sixfold the
bandwidth requirements of either points or pairing values. Such levels of secu-
rity and compression are better than what is attainable with any supersingular
Abelian variety up to at least genus 6. We leave it as an open problem the task
of extending the method for higher values of k.

Pairing-Friendly Elliptic Curves of Prime Order 329

We have also discussed ways to produce curves of composite order and rea-
sonably small cofactor as long as large discriminants fall within reach of CM
methods, and pointed out the possibility of closing yet another problem, namely,
building pairing-friendly curves of nearly-prime order over extension fields. Fur-
ther exploration of such possibilities is left for future research.

Acknowledgments

We are grateful to Peter Birkner, Dan Boneh, Steven Galbraith, Florian Heß,
Tanja Lange, Ben Lynn, Alfred Menezes, Mike Scott, Fré Vercauteren, and Felipe
Voloch for their valuable comments on an earlier version of this work.

References

1. P. S. L. M. Barreto, B. Lynn, and M. Scott. Constructing elliptic curves with pre-
scribed embedding degrees. In Security in Communication Networks – SCN’2002,
volume 2576 of Lecture Notes in Computer Science, pages 263–273. Springer-
Verlag, 2002.

2. P. S. L. M. Barreto, B. Lynn, and M. Scott. On the selection of pairing-friendly
groups. In Selected Areas in Cryptography – SAC’2003, volume 3006 of Lecture
Notes in Computer Science, pages 17–25. Springer-Verlag, 2003.

3. P. S. L. M. Barreto, B. Lynn, and M. Scott. Efficient implementation of pairing-
based cryptosystems. Journal of Cryptology, 17(4):321–334, 2004.

4. I. Blake, G. Seroussi, and N. Smart. Advances in Elliptic Curve Cryptography.
Number 317 in London Mathematical Society Lecture Note Series. Cambridge Uni-
versity Press, Cambridge, UK, 2005.

5. D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. SIAM
Journal of Computing, 32(3):586–615, 2003.

6. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. In
Advances in Cryptology – Asiacrypt’2001, volume 2248 of Lecture Notes in Com-
puter Science, pages 514–532. Springer-Verlag, 2002.

7. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing.
Journal of Cryptology, 17(4):297–319, 2004.

8. F. Brezing and A. Weng. Elliptic curves suitable for pairing based cryptog-
raphy. Cryptology ePrint Archive, Report 2003/143, 2003. Available from
http://eprint.iacr.org/2003/143.

9. R. Dupont, A. Enge, and F. Morain. Building curves with arbitrary small MOV
degree over finite prime fields. Journal of Cryptology, 18(2):79–89, 2005.

10. S. Galbraith, J. McKee, and P. Valença. Ordinary abelian varieties having small
embedding degree. Cryptology ePrint Archive, Report 2004/365, 2004. Available
from http://eprint.iacr.org/2004/365.

11. R. Granger, D. Page, and M. Stam. On small characteristic algebraic tori in
pairing-based cryptography. Cryptology ePrint Archive, Report 2004/132, 2004.
Available from http://eprint.iacr.org/2004/132.

12. IEEE Computer Society, New York, USA. IEEE Standard Specifications for Public-
Key Cryptography – IEEE Std 1363-2000, 2000.

330 P.S.L.M. Barreto and M. Naehrig

13. G.-J. Lay and H. G. Zimmer. Constructing elliptic curves with given group order
over large finite fields. In Algorithmic Number Theory Symposium – ANTS-I,
volume 877 of Lecture Notes in Computer Science, pages 250–263. Springer-Verlag,
1994.

14. A. K. Lenstra and E. R. Verheul. The xtr public key system. In Advances in
Cryptology – Crypto’2000, volume 1880 of Lecture Notes in Computer Science,
pages 1–19, Santa Barbara, USA, 2000. Springer-Verlag.

15. A. Miyaji, M. Nakabayashi, and S. Takano. New explicit conditions of elliptic curve
traces for FR-reduction. IEICE Transactions on Fundamentals, E84-A(5):1234–
1243, 2001.

16. F. Morain. Building cyclic elliptic curves modulo large primes. In Advances in
Cryptology – Eurocrypt’1991, volume 547 of Lecture Notes in Computer Science,
pages 328–336. Springer-Verlag, 1991.

17. K. Rubin and A. Silverberg. Supersingular abelian varieties in cryptology. In
Advances in Cryptology – Crypto’2002, volume 2442 of Lecture Notes in Computer
Science, pages 336–353. Springer-Verlag, 2002.

18. M. Scott and P. S. L. M. Barreto. Compressed pairings. In Advances in Cryptology –
Crypto’2004, volume 3152 of Lecture Notes in Computer Science, pages 140–156,
Santa Barbara, USA, 2004. Springer-Verlag.

19. M. Scott and P. S. L. M. Barreto. Generating more MNT elliptic curves. Designs,
Codes and Cryptography, 2005. To appear.

A Some Curves of Prime Order and k = 12

All of the following curves satisfy the equation E(Fp) : y2 = x3 + 3, with prime
order n and trace of the Frobenius t. A sample generator for any of them is
G = (1, 2). In all cases p ≡ 3 (mod 4) and p ≡ 4 (mod 9) (to simplify the
computation of square and cube roots), and the bitlengths of p and n are equal.
The field Fp2 is represented as Fp[X]/(X2 + 1), and i is a root of X2 + 1. The
sextic twist for all examples has the form E′(Fp2) : y′2 = x′3 + 3/ξ, where
1/ξ = λ2μ3 = −8 + 8i, λ = 2, and μ = 1 + i. The field Fp12 , if desired, can be
represented as Fp2 [X]/(X6 − ξ).

160 Bits

p = 1461501624496790265145448589920785493717258890819

n = 1461501624496790265145447380994971188499300027613

t = 1208925814305217958863207

192 Bits

p = 6277101719531269400517043710060892862318604713139674509723

n = 6277101719531269400517043709981664699904401744160036556389

t = 79228162414202968979637953335

Pairing-Friendly Elliptic Curves of Prime Order 331

224 Bits

p = 26959946667149205758383469736921695435015736735261155141423417423923

n = 26959946667149205758383469736921690242718878200571531029749235996909

t = 5192296858534689624111674181427015

256 Bits

p = 115792089237314936872688561244471742058375878355761205198700409522629\
664518163

n = 115792089237314936872688561244471742058035595988840268584488757999429\
535617037

t = 340282366920936614211651523200128901127

Minimality of the Hamming Weight of the
τ -NAF for Koblitz Curves and Improved

Combination with Point Halving

Roberto Maria Avanzi1,�, Clemens Heuberger2,��, and Helmut Prodinger3,���

1 Faculty of Mathematics and Horst Görtz Institute for IT Security,
Ruhr-University Bochum, Germany

roberto.avanzi@ruhr-uni-bochum.de
2 Institut für Mathematik B, Technische Universität Graz, Austria

clemens.heuberger@tugraz.at
3 Department of Mathematics, University of Stellenbosch, South Africa

hproding@sun.ac.za

Abstract. In order to efficiently perform scalar multiplications on ellip-
tic Koblitz curves, expansions of the scalar to a complex base associated
with the Frobenius endomorphism are commonly used. One such expan-
sion is the τ -adic NAF, introduced by Solinas. Some properties of this
expansion, such as the average weight, are well known, but in the liter-
ature there is no proof of its optimality, i.e. that it always has minimal
weight. In this paper we provide the first proof of this fact.

Point halving, being faster than doubling, is also used to perform
fast scalar multiplications on generic elliptic curves over binary fields.
Since its computation is more expensive than that of the Frobenius,
halving was thought to be uninteresting for Koblitz curves. At PKC 2004,
Avanzi, Ciet, and Sica combined Frobenius operations with one point
halving to compute scalar multiplications on Koblitz curves using on
average 14% less group additions than with the usual τ -and-add method
without increasing memory usage. The second result of this paper is an
improvement over their expansion. The new representation, called the
wide-double-NAF, is not only simpler to compute, but it is also optimal
in a suitable sense. In fact, it has minimal Hamming weight among all τ -
adic expansions with digits {0, ±1} that allow one halving to be inserted
in the corresponding scalar multiplication algorithm. The resulting scalar
multiplication requires on average 25% less group operations than the

� This paper was in part written while this author was visiting the Institut für Math-
ematik, Technische Universität Graz, supported by the START-project Y96-MAT
of the Austrian Science Fund. The author’s research described in this paper has
been supported in part by the European Commission through the IST Programme
under Contract IST-2002-507932 ECRYPT. The information in this document re-
flects only the author’s views, is provided as is and no guarantee or warranty is
given that the information is fit for any particular purpose. The user thereof uses
the information at its sole risk and liability.

�� Supported by the grant S8307-MAT of the Austrian Science Fund.
��� Supported by the grant NRF 2053748 of the South African National Research

Foundation.

B. Preneel and S. Tavares (Eds.): SAC 2005, LNCS 3897, pp. 332–344, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Minimality of the Hamming Weight of the τ -NAF 333

Frobenius method, and is thus 12.5% faster than the previously known
combination.

Keywords. Koblitz curves, scalar multiplication, point halving, τ -adic
expansion, integer decomposition.

1 Introduction

The use of elliptic curves to design cryptosystems [8, 6] has become increasingly
relevant in the last years and it is nowadays regulated by standards [15, 16]. The
basic operation of such a cryptosystem is the scalar multiplication, i.e. given a
point P and an integer s, to compute sP . Such an operation is usually per-
formed by a method called double-and-add: it consists in writing the scalar s as∑�

i=0 si2i and in evaluating sP =
∑�

i=0 si2iP by a Horner-like scheme.
Some families of elliptic curves have arithmetic properties that permit very

fast implementations of the scalar multiplication, making them especially attrac-
tive for the applications. Among them, the Koblitz curves [7] defined by

Ea : y2 + xy = x3 + ax2 + 1 with a ∈ {0, 1} (1)

over a finite field F2n are of particular relevance. The good performance of
Koblitz curves is due to the Frobenius endomorphism τ . This is the map induced
on the curve by the Frobenius automorphism of the field extension F2n/F2, that
maps a field element to its square. The evaluation of τ is much faster than the
usual group law on the curve: τ is performed by squaring the coordinates, and if
a suitable representation of the field F2n is chosen, this operation has almost neg-
ligible computational cost. The basic idea is to rewrite the scalar to the “base
of τ” instead of to the base of 2, so that a “τ -and-add” scalar multiplication
method using τ in place of doublings [13, 14] can be deployed. In this paper we
give a proof that the commonly used expansion to the base of τ , Solinas’ τ-NAF,
is optimal, i.e. its weight is minimal among all the τ-adic representations of the
same integer with digits {0,±1} – in fact we prove the stronger result that the
sum of the absolute values of its digits is minimal among all τ-adic expansions
with rational integer coefficients.

Point halving [5, 10] is the inverse operation to point doubling and applies to
all elliptic curves over binary fields, not only to Koblitz curves. Its evaluation is
2 to 3 times faster than that of a doubling and it is possible to rewrite the scalar
multiplication algorithm using halving instead of doubling. The resulting method
is very fast, but on Koblitz curves it is slower than the τ -and-add method.

In [2] it is proposed to insert a halving in the “τ -and-add” method to further
speed up scalar multiplication. This approach brings a non-negligible speedup
(on average 14% with suitable representations of the fields) with respect to the
use of the τ -NAF, but it is not optimal. We show how to get an optimal represen-
tation of the scalar under the same assumptions, and we analyse the complexity.
The scalar multiplication performed using our representation is now on average
25% faster than the Frobenius method, up from 14%.

334 R.M. Avanzi, C. Heuberger, and H. Prodinger

In the next section some mathematical background is recalled. Sections 3
and 4 are respectively devoted to the minimality of the τ -NAF and to the wide-
double-NAF, our optimal improvement of the results from [2]. In particular § 4.5
contains a simple analysis of the Hamming weight of the wide-double-NAF. In
Section 5 we conclude.

2 Background

2.1 Koblitz Curves

We consider a curve Ea defined over F2n by equation (1), with a (unique) sub-
group G of large prime order p (standards require the cofactor to be at most 4).
Set μ = (−1)1−a. Recall that τ is induced by the map x �→ x2. The equation of
Ea is invariant under τ , hence the map permutes the F2n-rational points on it.
G is invariant, too. It is well-known [14, Section 4.1] that for each P ∈ Ea(F2n),
we have (τ2 + 2)P = μτ(P). Thus we can identify τ with a complex number
satisfying

τ2 + 2 = μτ . (2)

For z∈Z[τ], a τ -expansion of z is an expression s = (. . . , s2, s1, s0) ∈ {−1, 0, 1}N0

where only finitely many sj �= 0 and valτ (s) :=
∑

j≥0 sjτ
j = z. The Hamming

weight of s is the number of j ≥ 0 such that sj �= 0.

For simplicity, when there is no risk of ambiguity, we write sP in place of
val(s)P =

∑
j≥0 siτ

i(P), for any point P and τ-adic expansion s.

The τ -adic non-adjacent form (τ -NAF for short) of an integer z ∈ Z[τ] is a
decomposition s as above with the non-adjacency property sjsj+1 = 0 for j ≥ 0,
similarly to the classical NAF [9]. The average density (that is the average ratio
of non-zero bits related to the total number of bits) of a τ -NAF is 1/3. Each
integer z admits a unique τ -NAF. Its computation is easy (see for example [14]).

If m ∈ Z has a τ -expansion s and P ∈ Ea(F2n), mP can be computed
by evaluating

∑
j≥0 sjτ

j(P) by a Horner-like scheme called τ -and-add. Clearly,
the Hamming weight corresponds to the number (plus 1) of additions on the
curve Ea.

Before using the τ -adic expansion in scalar multiplication we have to reduce
the integer m modulo (τn − 1)/(τ − 1) (note that τn is the identity on the curve)
to keep the length of the expansion bounded by n plus a small constant. The τ -
NAF of m mod (τn − 1)/(τ − 1) is called the reduced τ -NAF of m. Solinas [13, 14]
has a different, in practice faster approach.

2.2 Point Halving

Let now E/F2n be a generic elliptic curve defined by an equation

E : y2 + xy = x3 + ax2 + b with a, b ∈ F2n

(it is not necessarily a Koblitz curve) and a subgroup G ≤ E(F2n) of large prime
order. Halving a point P means to find a point R such that 2R = P . As de-
scribed in [5, 10, 11], point halving can be performed by two field multiplications

Minimality of the Hamming Weight of the τ -NAF 335

(denoted by M) in the field F2n , solving an equation of the type λ2 +λ = c for λ
(EQ) and extraction of a square root (

√
). An elliptic curve addition (in affine

coordinates, usually the fastest system for elliptic curves in even characteristic)
is done by one field inversion (I), two multiplications and one squaring (S). A
point doubling requires I + 2M + 2S.

With a polynomial basis, according to [4], S ≈ 1
7.5M for n = 163 and 1

9M for
n = 233. Following [3] we assume that, on average, I ≈ 8 M when n = 163 and
I ≈ 10 M when n = 233. In F2233 , a field defined by a trinomial, a square root
can be computed in ≈ 1

8M [3, Example 3.12]. For F2163 only a generic method
is currently known, so

√
≈ 1

2M . EQ takes, experimentally ≈ 2
3M . If a normal

basis is used S,
√

and EQ have negligible costs, I ≈ 3 M . It is then clear that a
point halving can be performed in a fraction of the time required by an addition
or of a doubling.

According to the very thorough analysis in [3], halving is about two times
faster than doubling. We refer the interested reader to [5, 10, 11, 3] for details.

2.3 Frobenius-Cum-Halving

Avanzi, Ciet, and Sica [2] combine the τ -NAF with a single point halving, thereby
reducing the amount of point additions from n/3 to 2n/7. They can therefore
claim an asymptotic speed-up of ≈ 14.29% on average. Their fundamental idea
is that it is possible, using a single point halving, to replace some sequences of
a τ -NAF having density 1/2 and containing at least three non-zero coefficients
with sequences having weight 2. Their starting point is the observation that (2)
implies τ3 + 2τ = μτ2 = μ(μτ − 2) = τ − 2μ, hence

2 = −μ
(
1 + τ2)τ . (3)

Therefore 2P can be computed as −μ
(
1+τ2

)
τP – which is in fact computation-

ally more expensive, hence this relation is per se not useful. But it can be used
to build telescopic sums: In fact, if P = 2R and Q = τR, then, for example,
(1−τ2 +τ4−τ6 +τ8)P = −μ(1+τ10)Q, and the second expression requires less
group operations than the first one even if we consider the cost of computing Q.

In [2] there are three different types of sums like the one we have just seen,
each of arbitrary length. For example, the first such family is of the following
form (k−1∑

j=0

(−1)jτ2j

)
P = −μ(1 + (−1)k−1τ2k)Q .

Their algorithm takes an input τ -NAF s. The output is a pair of τ -adic
expressions s(1) and s(2) with the property that

sP = s(1)P + s(2)Q = ((−μ)(1 + τ2)s(1) + s(2))Q

= ((μ− τ)s(1) + s(2))Q = (τ̄s(1) + s(2))Q ,
(4)

where τ̄ denotes the complex conjugate of τ . Because of this, we call the expres-
sion

(s(1)
s(2)
)

a (τ̄ , 1)-double expansion. Note that τ̄ , being an element of Z[τ],

336 R.M. Avanzi, C. Heuberger, and H. Prodinger

operates on the points of the curve, and it is natural to ask what it does:
It corresponds to the operation, which we may also denote by τ̄ , such that
τ(τ̄P) = τ̄ (τP) = 2P .

The Hamming weight of a double expansion
(s(1)
s(2)
)

is defined to be the sum
of the Hamming weights of s(1) and s(2). The input is scanned from right to left
and whenever one of the above blocks is found in s, then it is removed from s
and the corresponding equivalent expression for Q placed in s(2). At the end,
what “remains” of s constitutes s(1). We call the resulting expansion

(s(1)
s(2)
)

the
ACS expansion, from the initials of its inventors. The ACS expansion has an
average density of 2/7.

The method can be interleaved with the τ -NAF recoding, because the latter
also operated from right to left, and can be performed twice to generate s(1) and
s(2) independently without having to store them. A variant of the τ -and-add
method is proposed that uses s(1) and s(2) independently to perform the scalar
multiplication without precomputing Q or storing intermediate representations.
We present it as Algorithm 1 in a simpler “non interleaved” form for ease of read-
ing, but also because we shall use it with a different recoding in Subsection 4.2.
Note that it uses the inverse Frobenius operation τ−1 in place of τ , which is fine
because it is an operation of negligible cost (like squaring) in the cases when a
normal basis for F2n is used [1], and still very fast if the field extension is defined
by a trinomial [3, § 3.2].

Note that the values �i are NOT needed in advance. In fact, the recoding of
s into s(2) first and s(1) later can be done without knowing �i in advance: the
results in [14] guarantee that the length of s will be ≈ n, those in [2] that �i ≈ n
and the value will be known at the end of the recoding (and of the corresponding
τ -and-add loop) so that they can be used immediately after that.

For the other cases, a right-to-left method based on τ is proposed. In this case
the recoding must be stored first.

3 Optimality of the τ -NAF

Let τ -NAF(s) denote the τ -NAF of valτ (s). For any τ -expansion s with any
(rational) integer digits, define its cost function as c(s) :=

∑
j≥0 |sj |. As in the

case of the binary nonadjacent form introduced by Reitwiesner [9], the τ -NAF
minimizes the Hamming weight. In fact, we prove the following stronger result.

Theorem 1. Let z ∈ Z[τ]. The cost of the τ-NAF of z is minimum over all τ-
expansions of z. In particular, the τ-NAF has minimal Hamming weight among
all expansions with digits {0,±1}.

Proof. We prove this claim by induction on c(s).
Without loss of generality, we may assume that s0 > 0. We choose k ∈ Z such

that 1 ≤ s0 − 2k ≤ 2. We have

valτ (. . . , s3, s2, s1, s0) = valτ (. . . , s3, s2 − k, s1 + μk, s0 − 2k) =: valτ (s′).

Minimality of the Hamming Weight of the τ -NAF 337

Algorithm 1. Scalar multiplication algorithm from [2]

INPUT: A Koblitz curve Ea with corresponding parameter μ = (−1)1−a, a point P

of odd order on Ea and a joint expansion
(s(1)
s(2)
)

of length approximately n

OUTPUT: s(1)P + s(2)Q

1. �i will contain the length of s(i)

2. X ← s
(2)
0 P

3. for j = 1 to �2 − 1 do

4. X ← τ−1X , and X ← X + s
(2)
j P

[
Now X = τ−�2+1s(2)P

]
5. X ← τ �2−nX , X ← 1

2X
[
Now X = s(2)τ

(1
2P
)]

6. X ← X + s
(1)
0 P

7. for j = 1 to �1 − 1 do

8. X ← τ−1X , and X ← X + s
(1)
j P[

Now X = τ−�1+1(s(1)P + s(2)τ
(1

2P
))

= τ−�1+1sP
]

9. X ← τ �1−1−nX

10. return (X)

Of course, c(s′) = c(s) + |s2 − k| − |s2|+ |s1 + μk| − |s1|+ (s0 − 2k)− s0 ≤ c(s).
Since c(. . . , s′3, s

′
2, s

′
1) < c(s′) ≤ c(s), we may replace this expansion by its τ -

NAF by induction hypothesis without increasing its cost c. We conclude that
valτ (s) = valτ (s′′) for some s′′ such that s′′0 ∈ {1, 2}, (. . . , s′′3 , s′′2 , s′′1) is in τ -NAF
and c(s′′) ≤ c(s).

We note that for arbitrary t3, t4, we have

valτ (1, 0, 2) = valτ (0, μ, 0), (5a)
valτ (0,−μ, 2) = valτ (−1, 0, 0), (5b)

valτ (t3, 0, μ, 2) = valτ (−μ + t3, 0, 0, 0) (5c)

(note that the cost c of the left hand side is always larger than that of the right
hand side) and

valτ (t3, 0, 0, 2) = valτ (−μ + t3, 0,−μ, 0), (6a)
valτ (t4, 0,−1, 0, 2) = valτ (1 + t4,−μ, 0, μ, 0), (6b)

valτ (t3, 0, μ, 1) = valτ (−μ + t3, 0, 0,−1), (6c)
valτ (0,−μ, 1) = valτ (−1, 0,−1). (6d)

In the last four equalities, the cost c of the left hand side is not smaller than that
of the right hand side and the last three or two digits of the right hand side are

338 R.M. Avanzi, C. Heuberger, and H. Prodinger

already in nonadjacent form. We consider the equivalences (5) and (6) as replace-
ment rules: “replace an occurrence of the left hand side by the corresponding
right hand side”. Applying these rules on s′′ and then using the induction hy-
pothesis for the resulting expansion (in the case of the rules in (5)) or on the
left part of the resulting expansion (i.e., excluding the last two or three digits)
in the case of the rules in (6), our claim is proved.

4 The Wide-Double-NAF

4.1 Definition and Uniqueness

We consider (τ̄ , 1)-double expansions
(s(1)
s(2)
)
, where s(1) and s(2) are just any τ -

expansions of arbitrary elements of Z[τ]. We say that two such expansions
(s(1)
s(2)
)

and
(s′(1)

s′(2)
)

are equivalent if τ̄ valτ (s(1)) + valτ (s(2)) = τ̄ valτ (s′(1)) + valτ (s′(2));

in this case we write
(s(1)
s(2)
)
≡
(s′(1)

s′(2)
)
.

If we have a point P ∈ Ea(F2n) and set Q = τ(1
2P), the relation

(s(1)
s(2)
)
≡(s′(1)

s′(2)
)

implies that valτ (s(1))P + valτ (s(2))Q = valτ (s′(1))P + valτ (s′(2))Q.

The Hamming weight of a double expansion
(s(1)
s(2)
)

is defined to be the sum
of the Hamming weights of s(1) and s(2).

Let now s be the τ -NAF of an m ∈ Z. We will construct a double expansion(s(1)
s(2)
)

such that
(s
0

)
≡
(s(1)
s(2)
)

and with minimal Hamming weight.

Definition 1. A double expansion
(s(1)
s(2)
)

is called a wide-double-NAF, if s
(i)
j =

±1 implies that sj+2 = sj+1 =
(0

0

)
and s

(i′)
j = 0, where i′ = 3− i and j ≥ 0.

This means that in the language of regular expressions, a wide-double-NAF can
be written as(

ε+
1
0

+
1̄
0

+
0
1

+
0
1̄

+
0
0

1
0

+
0
0

1̄
0

+
0
0

0
1

+
0
0

0
1̄

)(
0
0

+
0
0

0
0

1
0

+
0
0

0
0

1̄
0

+
0
0

0
0

0
1

+
0
0

0
0

0
1̄

)∗
. (7)

where as customary 1̄ denotes −1 (here, and in what follows the bar over 1 and
μ will denote negation and not complex conjugation).

We first prove a uniqueness result.

Theorem 2. If s and s′ are equivalent wide-double-NAFs, then they are equal.

The proof relies on the following extension of Solinas’ [14] Lemma 28, that he
used to prove the uniqueness of the τ -NAF.

Lemma 1. Consider z =
∑

j≥0 sjτ
j ∈ Z[τ]. Then

(i) z is divisible by τ in Z[τ] if and only if s0 ≡ 0 (mod 2),
(ii) z is divisible by τ2 in Z[τ] if and only if s0 + 2s1 ≡ 0 (mod 4),
(iii) z is divisible by τ3 in Z[τ] if and only if s0 − 2μs1 − 4s2 ≡ 0 (mod 8).

Minimality of the Hamming Weight of the τ -NAF 339

The first two assertions of Lemma 1 are in Solinas’ paper, the proof of the third
one is straightforward and we omit it.

Proof of Theorem 2. Let
(s(1)
s(2)
)
≡
(s′(1)

s′(2)
)

be two wide-double-NAFs. Without loss

of generality, we may assume that
(

s
(1)
0

s
(2)
0

)
�=
(

s′(1)
0

s′(2)
0

)
and that s

(i)
0 = 1 for some

i ∈ {1, 2}, which implies s
(i′)
0 = 0 for i′ = 3 − i by definition of a wide-double-

NAF. By (4), we have∑
j≥0

(
s
(1)
j − s′(1)j

)
(−μ)(1 + τ2)τ j +

∑
j≥0

(
s
(2)
j − s′(2)j

)
τ j = 0 . (8)

From Lemma 1(i) we conclude that
(
s
(1)
0 −s′(1)0

)
(−μ)+

(
s
(2)
0 −s′(2)0

)
≡ 0 (mod 2).

Since s
(i)
0 = 1 and s

(i′)
0 = 0, we conclude that

(
s′(1)

0

s′(2)
0

)
�=
(0

0

)
. This implies that

s
(k)
j = s′(k)

j = 0 for 1 ≤ j, k ≤ 2. We set c = −μ(s(1)
0 −s′(1)0) and d = (s(2)

0 −s′(2)0).
From (8) we conclude that c(1 + τ2) + d is divisible by τ3. Hence by Lemma 1

0 ≡ (c + d)− 4c ≡ d− 3c (mod 8) (9)

but, by assumption, (c, d) �= (0, 0) and |c|+ |d| = 2. This contradicts (9).

4.2 Existence and Use

One important property of the ACS expansion
(s(1)
s(2)
)

is that for each column
at most one digit is not vanishing. The same property is, by definition, satisfied
by the wide-double-NAF. Any (τ̄ , 1)-double expansion with this property can be
easily viewed, by virtue of (4), as a recoding of the number 2

τ z to the base τ
with digit set {0,±1,±τ̄}. This allows us to make a very simple computation of
the wide-double-NAF.

We have the following result:

Lemma 2. Consider z = s0 + s1τ ∈ Z[τ]. Then 2
τ z = (μs0 + 2s1)− s0τ . Also

(i) z ≡ 1 (mod τ3) if and only if s0 − 2μs1 ≡ 1 (mod 8),
(ii) z ≡ −1 (mod τ3) if and only if s0 − 2μs1 ≡ −1 (mod 8),
(iii) z ≡ τ̄ (mod τ3) if and only if s0 − 2μs1 ≡ 3μ (mod 8),
(iv) z ≡ −τ̄ (mod τ3) if and only if s0 − 2μs1 ≡ −3μ (mod 8).

Sketch of the proof. The first assertion is easily verified. For (i) we have s0+s1τ ≡
1 (mod τ3) if and only if τ3 divides (s0 − 1) + s1τ , and at this point Lemma 1
can be applied. To prove (iii) and (iv) it is better to work with μ − τ in place
of τ̄ .

Note that there are eight congruence classes modulo τ3 (cfr. [14]) of which
four correspond to elements that are divisible by τ (see Lemma 1 above). It is
now clear how we can produce the wide-double-NAF of any element of Z[τ]:
Algorithm 2 serves the purpose thereby giving also an existence proof.

The correctness is easy to prove (it is an almost immediate consequence of
Lemmas 1 and 2 and of the definition of wide-double-NAF). The termination

340 R.M. Avanzi, C. Heuberger, and H. Prodinger

Algorithm 2. Wide-double-NAF recoding

INPUT: An integer s0 + s1τ ∈ Z[τ]

OUTPUT: Its wide-double-NAF
(s(1)
s(2)
)

1. (s0, s1) ← (μs0 + 2s1, −s0)
[
Multiply by 2

τ

]
2. while ((s0, s1) != (0, 0)) do

3. if s0 ≡ 0 (mod 2)

4. output
(0

0

)
5. (s0, s1) ← (μ s0

2 + s1, − s0
2) [Divide by τ]

6. else

7. switch (s0 − 2μs1 (mod 8))

8. case 1 : s0 ← s0 − 1, output
(0

0
0
0

0
1

)
9. case −1 : s0 ← s0 + 1, output

(0
0

0
0

0
1̄

)
10. case 3μ : s0 ← s0−μ, s1 ← s1+1, output

(0
0

0
0

1
0

)
11. case −3μ : s0 ← s0+μ, s1 ← s1−1, output

(0
0

0
0

1̄
0

)
12. (s0, s1) ←

(1
8 (−3μs0 − 2s1), 1

8 (s0 − 2μs1)
)[

Divide by τ 3]

proof follows the same arguments as in Solinas’ paper [14] and in fact the length
has a similar bound than that for the τ -NAF. The recoding is easy to implement
and can be used with Algorithm 1, because all remarks following Algorithm 1
apply also here.

It must be noted that, in order for this recoding to be used efficiently, the
quantity s0 + s1τ should be reduced modulo τn − 1 as for the NAF and the
width-w τ -NAF, as explained in [14] (even partial reduction is fine).

4.3 Optimality

In this section we prove that the wide-double-NAF minimizes the Hamming
weight in its equivalence class. This provides also a second, but more complicated,
construction of the form.

Theorem 3. Let s be a (τ̄ , 1)-double expansion. Then there exists a wide-double-
NAF that is equivalent to s. Its Hamming weight is not larger than that of s.

Proof. We allow arbitrary (rational) integer digits in s and prove the theorem
by induction on

c(s) :=
∑
j≥0

(∣∣s(1)
j

∣∣+ ∣∣s(2)
j

∣∣) .

By the proof of Theorem 1, we may replace (s(i)
j)j≥0 by its τ -NAF (s′(i)j)j≥0 for

i ∈ {1, 2} without increasing the costs c. Of course, we have s ≡ s′.

Minimality of the Hamming Weight of the τ -NAF 341

We easily check that for all t
(i)
j , we have

(
t
(1)
2

t
(2)
2

0

0

1

μ

)
≡
(

t
(1)
2

(μ̄+t
(2)
2)

0

0

0

0

)
,(

0

0

1

μ̄

)
≡
(

0

1̄

0

0

)
,(

0

1

t
(1)
1

0

0

1

)
≡
(

0

0

t
(1)
1

0

μ̄

0

)
,

(
0

t
(2)
2

1̄

0

0

1

)
≡
(

0

t
(2)
2

0

0

0

1̄

)
,(

t
(1)
2

0

0

1

1

0

)
≡
(

t
(1)
2

0

0

0

0

μ

)
,(

0

μ

0

0

1

0

)
≡
(

0

0

0

0

0

μ̄

)
,

(
t
(1)
5

t
(2)
5

t
(1)
4

t
(2)
4

t
(1)
3

0

0

1̄

1

0

0

1

)
≡
(

t
(1)
5

(μ+t
(2)
5)

t
(1)
4

t
(2)
4

t
(1)
3

0

0

0

0

0

0

1̄

)
.

(10)

We note that in all the above equivalences, the costs c decrease from the left
hand side to the right hand side (even if, occasionally, digits with absolute value
2 may appear on the r.h.s). This means that if we find one of the left hand
sides (or its negatives, of course) as subblocks in our double expansion s′, we
can replace this subblock by the corresponding right hand side and use the
induction hypothesis to convert the resulting expansion to a wide-double-NAF
not increasing the costs.

So we may assume that the left hand sides of (10) do not occur (at least in
the rightmost digits). Furthermore, we have

(
t
(1)
4

t
(2)
4

t
(1)
3

t
(2)
3

0

0

0

1̄

1

0

)
≡
(

t
(1)
4

(μ+t
(2)
4)

t
(1)
3

t
(2)
3

0

0

0

0

1̄

0

)
,(

t
(1)
3

t
(2)
3

0

0

1

0

0

1

)
≡
(

t
(1)
3

(μ̄+t
(2)
3)

0

0

0

0

μ

0

)
,(

t
(1)
3

0

0

μ̄

0

0

1

0

)
≡
(

(μ̄+t
(1)
3)

0

0

0

0

0

0

μ̄

)
,(

t
(1)
4

t
(2)
4

0

t
(2)
3

1̄

0

0

0

1

0

)
≡
(

t
(1)
4

(μ+t
(2)
4)

0

t
(2)
3

0

0

0

0

0

μ̄

)
,

(
0

t
(2)
3

1

0

0

0

1

0

)
≡
(

0

(1̄+t
(2)
3)

0

0

0

0

0

μ̄

)
,(

t
(1)
3

0

0

1̄

0

0

0

1

)
≡
(

(1̄+t
(1)
3)

0

0

0

0

0

μ̄

0

)
,(

0

t
(2)
3

μ

0

0

0

0

1

)
≡
(

0

(μ̄+t
(2)
3)

0

0

0

0

μ̄

0

)
,(

t
(1)
4

t
(2)
4

0

t
(2)
3

μ̄

0

0

0

0

1

)
≡
(

t
(1)
4

(1+t
(2)
4)

0

t
(2)
3

0

0

0

0

μ̄

0

)
,(

t
(1)
6

t
(2)
6

t
(1)
5

t
(2)
5

t
(1)
4

t
(2)
4

0

t
(2)
3

1̄

0

0

1̄

1

0

)
≡
(

t
(1)
6

(μ̄+t
(2)
6)

t
(1)
5

t
(2)
5

t
(1)
4

t
(2)
4

0

(1̄+t
(2)
3)

0

0

0

0

0

μ

)
.

(11)

Note that for every s′ found above, the least significant columns of s′ are
found in the l.h.s. of exactly one of the equivalences (11). Thus we can replace
them with the corresponding block in the r.h.s. to obtain a new expansion s′′.
In each of these equivalences, the costs do not increase from left to right and
the last three digits of the right hand side always form a block that is allowed in
a wide-double-NAF. In particular s′′ has cost not larger than s′ (and thus not
larger than the cost of s). Hence we can apply the induction hypothesis to s′′

with the last three digits removed. This proves the Theorem. (Note that after
applying one of the replacements (11), patterns of the l.h.s.’s of (10) may appear
again and these should be replaced with the corresponding r.h.s.’s too, should
one desire to formulate a constructive version of this theorem.)

342 R.M. Avanzi, C. Heuberger, and H. Prodinger

4.4 An Example

Let us consider the rational integer 195. If a = 1 in (1), then the τ -NAF of 195
is τ16 + τ14 + τ10 + τ7 − τ5 + τ2 − 1 or

valτ (101000100101̄00101̄) = 195 .

The weight is 7 and the ACS recoding has also weight 7 (in fact, no subsequence
of the given τ -NAF can be simplified by the ACS method, hence the output is
identical with the input).

However, Algorithm 2 gives the following wide-double-NAF(
0
0

0
0

0
1̄

0
0

0
0

0
1̄

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

1̄
0

0
0

0
0

0
0

0
1

)
,

that has weight 5.

4.5 Analysis

We now analyze the wide-double-NAF using methods from average case analysis
of algorithms, cf. for instance [12].

To calculate the asymptotic density of the wide-double-NAF it is sufficient
to sum up the Hamming weights of all wide-double-NAF’s of a certain length
N and divide it by the number of all wide-double-NAF’s of the same length. A
more detailed analysis based on the τ -NAF or the unique expansion with digits
{0, 1} for the input statistics is beyond the scope of this paper, but the main
term would agree.

We define aM,N to be the number of wide-double-NAF’s of length N and
Hamming weight M and consider the generating function

G(Y, Z) :=
∑
N≥0

∑
M≥0

aM,NY MZN .

This function can be derived from our regular expression in (7) by labelling
contributions to the Hamming weight by Y and to the length by Z and by
transforming (· · ·)∗ to (1− (· · ·))−1. Thus we get

G(Y, Z) =
1 + 4Y Z + 4Y Z2

1− (Z + 4Y Z3)
.

Obviously, the number WN of wide-double-NAF’s of length N equals the
coefficient of ZN in

G(1, Z) =
1 + 4Z + 4Z2

1− Z − 4Z3 =
2

1− 2 Z
− 1

1 + Z + 2 Z2 .

We obtain
WN = 2N+1 + O(2N/2) .

Minimality of the Hamming Weight of the τ -NAF 343

We differentiate G(Y, Z) with respect to Y and set Y = 1,

∂G(Y, Z)
∂Y

∣∣∣∣
Y =1

=
1

2(1− 2Z)2
+

1
4(1− 2Z)

+
−3− Z

4(1 + Z + 2Z2)2
+

Z

4(1 + Z + 2Z2)
,

and extract the coefficient of ZN to obtain the sum HN of the Hamming weights
of all wide-double-NAF’s of length N as

HN =
(

N +
3
2

)
· 2N−1 + O(N2N/2) .

Dividing HN by WN , we proved

Theorem 4. The expected Hamming weight of a wide-double-NAF of length N
equals

1
4
N +

3
8

+ O

(
N

2N/2

)
.

Hence the wide-double-NAF achieves an average improvement of 25 % over the
τ -and-add algorithm.

5 Final Remarks and Conclusions

In this paper we consider a few problems related to τ -adic expansions associated
to Koblitz curves.

The first problem is the optimality of Solinas’ τ -NAF. We give the first proof
that the τ -NAF has minimal weight among all the τ -adic expansions with digit
set {0,±1}. In fact we prove a stronger result, namely that the τ -NAF has cost
(sum of the absolute values of the digits) minimal among the costs of all τ -adic
representations with arbitrary rational integer digits (Theorem 1).

Then we consider a result presented at PKC 2004. There, Avanzi, Ciet, and
Sica [2] showed that one could perform a scalar multiplication on Koblitz curves
by “inserting” a point halving in a τ -and-add scalar multiplications, thereby re-
ducing the number of group additions required. They attained, under suitable
conditions, a reduction of 14.3% of the number of group additions with respect
to the plain τ -and-add method on average without increasing memory require-
ments. The method is thus just a faster drop-in replacement for the τ -and-add
method. We improve on this result under the same assumptions they made,
bringing the reduction to 25% on average. The corresponding expansion of the
scalar is the wide-double-NAF : we construct it (cf. Subsection 4.2), we prove its
uniqueness (Theorem 2) and a suitable minimality property (Theorem 3), and
we carefully analyse its expected Hamming weight (Theorem 4).

A speed-up is achieved using the new recoding together with the scalarmultipli-
cation algorithm from [2] (cf. Algorithm 1). Due to the increased number of Frobe-
nius applications, the speed-up in a real world implementations may be smaller

344 R.M. Avanzi, C. Heuberger, and H. Prodinger

than 25%: in [2] an effective speedup of 12.5% was found on standard Koblitz
curves over the field F2233 using normal bases. By repeating the computations done
in [2, § 4.2] using the new density 1/4 in place of 2/7 we expect our method to bring
at least an improvement of 23% on average under the same conditions. Like the
method in [2] it is a drop-in replacement for the τ -and-add method.

We also note that the decrease of group operations from 2/7n to 1/4n repre-
sents a reduction of 12.5%, i.e. our method can perform on average 12.5% faster
than the previous combination of the Frobenius with the halving.

Acknowledgements. The authors wish to express their gratitude to the anony-
mous reviewers for their remarks and suggestions.

References

1. D.W. Ash, I. F. Blake and S. Vanstone. Low complexity normal bases. Discrete
Applied Math. 25, pp. 191–210, 1989.

2. R.M. Avanzi, M. Ciet, and F. Sica. Faster Scalar Multiplication on Koblitz Curves
combining Point Halving with the Frobenius Endomorphism. Proceedings of PKC
2004, LNCS 2947, 28–40. Springer, 2004.

3. K. Fong, D. Hankerson, J. Lopez and A. Menezes. Field inversion and point halving
revisited. IEEE Trans. on Computers 53 (8), pp. 1047–1059. August 2004.

4. D. Hankerson, J. Lopez-Hernandez, and A. Menezes. Software Implementatin of
Elliptic Curve Cryprography over Binary Fields. In: Proceedings of CHES 2000.
LNCS 1965, pp. 1–24. Springer, 2001.

5. E. W. Knudsen. Elliptic Scalar Multiplication Using Point Halving. In: Proocedings
of ASIACRYPT 1999, LNCS 1716, pp. 135–149. Springer, 1999.

6. N. Koblitz. Elliptic curve cryptosystems. Mathematics of computation 48, pp. 203–
209, 1987.

7. N. Koblitz. CM-curves with good cryptographic properties. In: Proceedings of
CRYPTO 1991, LNCS 576, pp. 279–287. Springer, 1991.

8. V. S. Miller. Use of elliptic curves in cryptography. In: Proceedings of CRYPTO
’85. LNCS 218, pp. 417–426. Springer, 1986.

9. G. W. Reitwiesner. Binary arithmetic. Advances in Computers 1, pp. 231–308, 1960.
10. R. Schroeppel. Point halving wins big. Talks at: (i) Midwest Arithmetical Geom-

etry in Cryptography Workshop, November 17–19, 2000, University of Illinois at
Urbana-Champaign; and (ii) ECC 2001 Workshop, October 29–31, 2001, University
of Waterloo, Ontario, Canada.

11. R. Schroeppel. Elliptic curve point ambiguity resolution apparatus and method.
International Application Number PCT/US00/31014, filed 9 November 2000.

12. R. Sedgewick and P. Flajolet. An Introduction to the Analysis of Algorithms.
Addison-Wesley, 1996.

13. J. A. Solinas. An improved algorithm for arithmetic on a family of elliptic curves.
In: Proceedings of CRYPTO 1997, LNCS 1294, pp. 357–371. Springer, 1997.

14. J. A. Solinas. Efficient Arithmetic on Koblitz Curves. Designs, Codes and Cryp-
tography 19 (2/3), pp. 125–179, 2000.

15. IEEE Std 1363-2000. IEEE Standard Specifications for Public-Key Cryptography.
IEEE Computer Society, August 29, 2000.

16. National Institute of Standards and Technology. Digital Signature Standard. FIPS
Publication 186-2, February 2000.

SPA Resistant Left-to-Right Integer Recodings

Nicolas Thériault

Department of Combinatorics and Optimization, University of Waterloo
ntheriau@math.uwaterloo.ca

Abstract. We present two left-to-right integer recodings which can be
used to perform scalar multiplication with a fixed sequence of opera-
tions. These recodings make it possible to have a simple power analysis
resistant implementation of a group-based cryptosystem without using
unified formulas or introducing dummy operations. This approach is very
useful for groups in which the doubling step are less expensive than the
addition step, for example with hyperelliptic curves over binary fields or
elliptic curves with mixed coordinates.

1 Introduction

Side channel attacks are a constant threat to the implementations of a cryp-
tosystem. This is particularly true for most discrete log based cryptosystems
where the basic group operations are often easily distinguishable depending on
the nature of their inputs. As a general practice, countermeasures must always
be used against simple side channel analysis, even if using one-time keys.

In this paper, we look at the impact of integer recoding for cryptosystems
based on the discrete logarithm problem in additive groups. We are particu-
larly interested in groups where the doubling operation is significantly cheaper
than the addition. Examples of such groups are hyperelliptic curves over binary
fields [22, 23, 10, 14] (where additions are often more than twice as expensive as
doublings) or elliptic curves with mixed coordinates [8]. For these groups, the
standard countermeasures against SPA attacks are particularly disappointing as
they remove most of the saving due to efficient implementations of the group
operations. Another particularity of many of these additive groups (and which
we take advantage of) is that the addition and the subtraction operations are
almost identical.

We introduce the general situation of scalar multiplication for additive
groups in Section 2. In Section 3 we describe some of the basic countermeasures
to SPA attacks. We then present the most common forms of integer recoding
in Section 4 and introduce our recodings in Section 5. Finally, we compare the
efficiency of the different recodings in Section 6.

2 Scalar Multiplication

Many discrete log based public key cryptosystems are done on additive groups
and required the multiplication of a group element D by a scalar e (the secret

B. Preneel and S. Tavares (Eds.): SAC 2005, LNCS 3897, pp. 345–358, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

346 N. Thériault

key). It is therefore very important to compute [e]D as efficiently and as securely
as possible. This is usually done through a variation of the double-and-add al-
gorithm which relies on two basic group operations: Adding two distinct group
elements (addition) and adding a group element to itself (doubling).

2.1 Double-and-Add Algorithms

For this paper, we are interested in the left-to-right version of the double-and-
add algorithm (i.e. most significant bit first). Right-to-left double-and-add can
also be used, but the left-to-right version is often more interesting, in particular
when combined with integer recodings and applied to a fixed group element
(using precomputations). For right-to-left recodings, one might also consider
Yao’s algorithm [28], although it does not take advantage of precomputations.

Given a n-bits integer e =
∑n−1

j=0 ej2j (with the ej in {0, 1}), let fn−i =∑n−1
j=i ej2j−(n−i), i.e. the number formed by the n− i most significant bits of the

binary expansion of e. Then fn−i can be obtained from fn−i−1 and ei via the
relation fn−i = 2fn−i−1 + ei. In terms of scalar multiplication, this becomes:
[fn−i]D = [2]([fn−i−1]D)+[ei]D. The left-to-right double-and-add algorithm fol-
lows easily from this relation and its general form proceeds as in Algorithm 1. This
algorithm is written in its most general form to cover most of the cases encoun-
tered in this paper. If we consider only the “classical” double-and-add algorithm
on the binary representation, there is no recoding step, no precomputation ([1]D
is already known) and the addition step when rj �= 0 is simply D0 + D1.

Algorithm 1. Generic double-and-add algorithm

Input: D, e
Output: [e]D
recode e as

∑m
j=0 rj2j recoding

precompute [r]D for every digit r �= 0 precomputations
D0 ← [rm]D
for j = m− 1 down to 0 do

D0 ← [2]D0 doubling
if rj �= 0 then

D0 ← D0 + [rj]D addition
return D0

3 Simple Side Channel Analysis Attacks

Power traces [13] and electromagnetic emissions of processors [1] can be used as
sources of information for simple side channel analysis (we will refer to both as SPA
attacks for simplicity). SPA attacksmay exploit even small differences between the
addition and the doubling operations on group elements to discover the sequence
in which they are used in the double-and-add algorithm. If successful, this gives
the binary expansion of e, hence the secret key. It is therefore essential to secure
implementations of public key cryptosystems against this type of attack.

SPA Resistant Left-to-Right Integer Recodings 347

As a general rule, countermeasures against simple side channel attacks do not
secure the encryption against differential side channel analysis (DPA). If DPA is
a potential threat, i.e. if the scalar is used more than once, this problem can be
resolved by combining SPA and DPA countermeasure when possible (see [3] for
details). On the other hand, DPA countermeasures are useless if the encryption
is insecure against simple side channel attacks, so SPA countermeasures should
always be used.

3.1 Standard Countermeasures

There are two standard countermeasures against SPA attacks: Dummy opera-
tions and unified formulas. Both approach attempt to make the power traces of
the two group operations (addition and doubling) indistinguishable.

The first approach consists in adding extra or “dummy” operations in the
addition and doubling algorithms where the sequences of operations differ [9].
The result is an addition and a doubling formula which use the same sequence
of operations, so they will appear identical to SPA attacks. Obviously this will
increase the cost of the group operations (or at least the cheapest of the two),
having a negative impact on the efficiency of the encryption algorithm.

Although this is a very simple countermeasure to implement, it is not always
safe: If the secret key is used multiple times, dummy operations can be revealed
by adaptive fault analysis [29, 30], and further countermeasures are required to
prevent this attack.

The second approach consist in rewriting the two group operations into a
unified formula. Since both operations will then use the same set of operations,
the two operations will have the same power trace.

Unified formulas tend to be more costly to use than dummy operations, but
they prevent adaptive fault analysis (but not DPA). The main disadvantage of
unified formulas is that they are group specific and so far they have only been
developed for elliptic curves [11, 15, 5, 4, 6].

Moreover, some of these formulas have been shown to be weak because some
field multiplications are performed twice with the same inputs in the doubling
formula but not in the addition formula, making the system potentially vulner-
able [27] (the same can sometimes be said of dummy operations [17]).

3.2 Montgomery Ladders

Another countermeasure against SPA is the use of a Montgomery ladder [12].
The algorithm proceeds from left-to-right, computing two elements at each step:
[fj]D and [fj + 1]D, where fj is the partial sum of the n − j most significant
bits of e, i.e. fj =

∑n
i=j ei2i−j .

Since fj = 2fj+1 + ej, the pair (fj , fj + 1) can be obtained from the pair
(fj+1, fj+1 + 1) (computed at the previous step) using the rules:

ej fj fj + 1
0 2fj+1 fj+1 + (fj+1 + 1)
1 fj+1 + (fj+1 + 1) 2(fj+1 + 1)

348 N. Thériault

which gives Algorithm 2 for scalar multiplication (where D0 = [fj]D and D1 =
[fj +1]D). Since all the steps use the same set of operations the two group oper-
ations do not have to be secured against SPA attacks. As no dummy operations
are introduced, the risk posed by adaptive fault analysis is minimal.

Algorithm 2. Montgomery ladder

Input: D, e =
∑n

i=0 ei2i

Output: [e]D
D0 ← 0; D1 ← D
for j = n down to 0 do

if ej = 0 then
D1 ← D0 + D1; D0 ← 2D0 ej = 0

else
D0 ← D0 + D1; D1 ← 2D1 ej = 1

return D0

One drawback of the Montgomery ladder is the high count of group operations
since every step requires one doubling and one addition. Since at any given
step the two group operations are independent from each other, it is sometimes
possible to offset part of the high operation count by combining the them. For
example, with elliptic curves in affine coordinates it is possible to combine the
field inversions of the group addition and doubling into one field inversion and
three field multiplication. Unfortunately, for most groups used in cryptographic
applications this approach is unlikely to give enough savings to justify using a
Montgomery ladder instead of other SPA countermeasures.

4 Integer Recoding

A common approach to improve the efficiency of the scalar multiplication is to
use integer recoding to reduce the number of operations required in the double-
and-add algorithm. By allowing integers other than 0 or 1 to be used in the
expansion of e, it becomes possible to recode e =

∑n
i=0 ei2i as e =

∑n′

i=0 ri2i.
The double-and-add algorithm will still work as in Algorithm 1, but the term

added may now be different from D. If the weight (number of non-zero digits)
of the recoding of e is smaller than the weight of its binary expansion, then
Algorithm 1 will require fewer additions to compute [e]D (and possibly fewer
doublings if n′ < n). The main difference is that unlike the double-and-add
algorithm on the binary representation, the elements [s]D must be precomputed
for all the possible digits s.

Most recodings can be divided into two categories depending on the order in
which the bits are processed. Right-to-left recodings, i.e. from the least signifi-
cant bit to the most significant one, are more natural but they must be computed
before the double-and-add algorithm and the storage required for the recoding
is usually greater than that of the integer itself. Left-to-right recodings are com-
puted from the most significant bits down to the least significant bit, hence the

SPA Resistant Left-to-Right Integer Recodings 349

recoding can be done at the same time as the left-to-right double-and-add mul-
tiplication, avoiding the need to record the new representation. This makes left-
to-right recodings somewhat more interesting for implementations in restricted
environments, especially if the group element is fixed (so the precomputed values
[s]D for the digits s can be reused for a number of scalar multiplications).

For a number of groups used in cryptography, and in particular for Elliptic
and Jacobians of hyperelliptic curves, recodings can take advantage of symme-
tries. For these groups, the group subtraction is almost identical to the group
addition, up to a few sign changes in the field operations. Since field additions
and subtractions are indistinguishable under SPA attacks, the performance and
security of the cryptosystem are unaffected if we subtract [s]D instead of adding
[−s]D, but the storage requirement for the double and add algorithm can be
reduced. This makes it very interesting to use digit sets which are symmetric
around 0 since only half of the points must be precomputed (for example those
corresponding to the positive digits).

4.1 Recodings and SPA Attacks

In general, SPA attacks are much less effective on double-and-add algorithms
using integer recodings than those using the binary representation directly. From
the power trace of a double-and-add algorithm, it is possible to know which digits
in the recoding are non-zero, but not their values.

If the recoding has a density (weight of the recoding divided by its length)
which is too low or if it contains long sequences of zero digits, the attacker may
be able to restrict the portion of the keyspace the secret key could be in. The
size of the keyspace to consider may then become small enough for the attacker
to find the key using other methods (for example Shanks’ Baby-step Giant-step
algorithm, Pollard’s Rho algorithm, etc). When this is the case, the implementa-
tion of the double-and-add algorithm must also include a countermeasure against
SPA attacks (see Section 3).

On the other hand, if the weight of the representation is high enough and
the non-zero digits are distributed uniformly enough, the recoding is inherently
secure and act as a SPA countermeasures. This is the idea behind the fixed
recodings in Subsection 4.4 and Section 5.

4.2 w-NAF

The most commonly used recodings are the Non Adjacent Form (NAF) [25] and
its extension the w-NAF [7, 26]. For this paper, we will denote the w-NAF as
using the digit set {±1,±3, . . . ,±(2w−1)}∪{0} and such that any pairs of non-
zero digits are separated by at least w zeros. This is also called the (w−1)-NAF
and sometimes denoted NAFw−1. The w-NAF recoding is computed from right
to left and has average density 1/(w + 2).

To use the negative digits, we consider sequences of up to w bits and a carry
cj (just as in a base 2 addition). To a sequence of w bits starting from the j-th
bit of e, we associate the integer sj =

∑w
i=0 ei+j2i. Starting with j = 0 and

c0 = 0, each step of the recoding follows the rules

350 N. Thériault

ej + cj sj + cj k cj+k rj rj+1, . . . , rj+k−1

0 – 1 0 0 –
2 – 1 1 0 –
1 < 2w w + 1 0 sj + cj 0
1 > 2w w + 1 1 sj + cj − 2w+1 0

where the next bit to be encoded is the (j+k)-th bit of the binary representation.
Although the w-NAF gives a recoding of the smallest possible weight for

the given digit set (see [2]), which is advantageous for the performance of the
encryption, the key is weakened by the low density and by the knowledge of the
variable positions of the non-zero digits. Since there are 2w possible values for
the non-zero digits and the recodings have an average density of 1/(w+2), there
are (on average) 2wn/(w+2) keys of n bits with a given sequence of doublings and
additions. Compared to the 2n possible keys of length n, we get a reduction by
a factor of 22n/(w+2) in the number of possible keys. We can see that unless SPA
countermeasures are used, the w-NAF is not intended for applications such as
restricted environments which are susceptible of side channel attacks.

4.3 Minimal Weight Left-to-Right Recoding

Avanzi [2] and Muir and Stinson [18] developed left-to-right equivalents of the
w-NAF (see also [19]). Although the recodings in [2] and [18] are not always
identical, they differ only in some special cases and their outputs always have
the same weight. These recodings give the same advantage as the w-NAF, i.e.
they give a recoding of minimal weight for the digit set, but with the added
bonus that they proceed from the most significant bit downward so they can be
interleaved with the left-to-right scalar multiplication.

Let vj,k = sj−k + ej−k − ej2k and let tj,k be the highest power of 2 dividing
vj,k, then the recoding step in [2] follows the rule:

ej − ej−1 k rj , . . . , rj−k+1 rj−k+t

0 1 0 –
±1 min{w, j + 1} 0 vj,k/2tj,k

where the next recoding step is for the bit j− k (and lower). We refer to [2] and
[18] for the proof of correctness of the recoding process.

As was the case with the w-NAF, the group operations will also have to be
secured against SPA attacks.

4.4 Fixed Right-to-Left Recoding

In [17], Möller introduced a new fixed right-to-left recoding. The idea consists in
computing a 2w-ary expansion of e, but in such a way that none of the digits are
0 (hence producing a “regular” or “fixed” expansion). The recoding we present
here is from the extended version of [17].

Since a 2w-ary recoding requires a set of at least 2w digits to be able to rep-
resent every possible integer, the digit 0 is replaced by −2w (to ensure a regular
addition structure), while the digits {2w−1+1, 2w−1+2, . . . , 2w−1} are replaced

SPA Resistant Left-to-Right Integer Recodings 351

by {−(2w−1−1),−(2w−1−2), . . . ,−1} (to take advantage of symmetries), giving
the digit set {±1,±2,±3, . . . , 2w−1 − 1} ∪ {2w−1,−2w}.

As with the w-NAF, we need to introduce a carry to do the recoding but, to
cover all the possible situations, it can take the values 0, 1 and 2. The recoding
goes from right to left by blocks of w bits, starting with a carry of 0. Given
sj =

∑w−1
i=0 ei+wj2i, the recoding steps follows the rule:

sj + cj rj cj+1

0 −2w 1
2w −2w 2

2w + 1 1 1
1, 2, 3, . . . , 2w−1 sj + cj 0

(2w−1 + 1), . . . , (2w − 1) sj + cj − 2w 1

Once the scalar is recoded (and stored), the scalar multiplication works very
much like a left-to-right “2w and add” algorithm on the recoding. Rather than
computing [2]D0 (where D0 is the partial sum at the previous step of the scalar
multiplication) and then adding [ej]D, the algorithm computes [2w]D0 (by dou-
bling w times) and then adds [rj]D.

Since the sequence of doublings and additions is fixed and is the same for all
integers of the same size, this recoding is resistant against SPA attacks and the
fastest implementations of the group operations can be used even if they are
very unbalanced.

A side effect of this approach is that even leading zero digits can (and will)
be recoded as non-zero. The length of the recoding must then be decided before-
hand – usually to fit the longest possible key – with the added bonus that short
scalars are indistinguishable from longer ones.

5 Fixed Left-to-Right Recodings

The main disadvantage of Möller’s recoding algorithm is that it is right-to-left,
so it must be computed and stored before the scalar multiplication. To obtain a
left-to-right recodings (which can be interleaved with the scalar multiplication)
and to use symmetries (to save space and precomputations), we use digit sets
which are symmetric around 0.

Since the recoding goes from the highest powers of 2w down to the lowest,
the carry will not behave as usual: Instead of delaying the addition of 2w and
replacing it by the addition of 1 at the next (higher) power of 2w, the carry (if
different from 0) will delay the subtraction of 1 and replace it by the subtraction
of 2w at the next (lower) power of 2w. For simplicity, the values of the carry will
still be denoted 0 and 1 as in the w-NAF, but with the understanding that it
has the new meaning.

To simplify the notation, we define sj as
∑w−1

i=0 ei+wj2i: The coefficient of 2wj

in the 2w-ary expansion (using the digit set {0, 1, . . . , 2w − 1}). As was the case
with the fixed right-to-left recoding, the length of the representation must be
decided beforehand.

352 N. Thériault

5.1 Groups of Odd Order

The recoding presented in this section is equivalent to a recoding suggested by
Martin Seysen (unpublished work), which is also described in [20], [21] and [16].

The digit set {±1,±3, . . . ,±(2w−1)} is a quite natural choice: Since the carry
produces a shift of +1 on sj , this is the smallest symmetric set of integer not
containing 0 for which all possible values of sj and sj − 2w (to take into account
the previous carry) can be recoded using a carry of either 0 or 1. With this digit
set, the general recoding step is described by the following rule:

sj rj cj−1

even sj + 1− cj2w 1
odd sj − cj2w 0

It is easy to verify that at every step rj = sj − cj2w + cj−1, so the fi-
nal recoding is

∑m
j=0 rj2wj = e + c−1. A nice aspect of this rule is that for

j < m it can be rewritten as: rj = 1 − 2w +
∑w

i=1 ei+wj2i (with cj−1 =
1−ewj), making it very straightforward to implement and requires no conditional
statement.

Since the recoding goes from left to right, the final recoding step takes place
at the w least significant bits. We could use the same recoding system for the
final step, but one must then decide what to do if there is a carry after that
step (a “rightward” carry at the unit level would require a fractional expansion,
which is incompatible with the scalar multiplication). One solution consists in
taking the result obtained at the final step and apply the carry directly to it
(without any extra doubling) instead of delaying it. But in the case of a SPA
attack, this would reveal the final bit.

Although this problem cannot be fixed in general, it can be avoided in most
cryptographic applications. From a cryptographic point of view, there is no dis-
advantage to consider that the order of the group used is a large prime. This is
because the discrete logarithm problem in a group can be reduced to the discrete
log problem in its subgroups using the Chinese Remainder Theorem [24]. We can
therefore make the assumption that the group in which the scalar multiplication
is done has odd order.

Under this condition, it is always possible to force the secret key to be an
odd integer: If e is even, it can be replaced by e′ = e + #G (since [e′]D = [e]D).
Since we can ensure the scalar is always odd, the left-to-right recoding using
digits ±1,±3, . . . ,±(2w − 1) will have a final carry c−1 equal to zero and the
recoding will always terminate correctly. Interleaving the recoding and the scalar
multiplication gives us Algorithm 3.

5.2 General Case

We now consider another digit set that could be used for the fixed left-to-right
recoding, but this time without any restriction on the group order. The argument
used here is by no means the only one possible and other digit sets could also
give a valid recoding with the same properties.

SPA Resistant Left-to-Right Integer Recodings 353

Algorithm 3. fixed left-to-right (odd) scalar multiplication

Input: D, w, e = 1 +
∑wm

i=1 ei2i (odd)
Output: [e]D
precompute [1]D, [3]D, . . . , [2w − 1]D
rj ← 1 +

∑w−1
i=1 ei+wm2i recoding

D0 ← [rm]D
for j = m− 1 down to 0 do

for k = 0 to w − 1 do
D0 ← [2]D0 w doublings

rj ← 1− 2w +
∑w

i=1 ei+wj2i recoding
D0 ← D0 + [rj]D addition

return D0

As the carry is done downward, we must be able to recode all the possible val-
ues of sj and sj−2w, i.e. all the integers in [−2w, 2w−1]. Since the introduction of
a carry of one to the next (lower) power of 2w will increase the current coefficient
by 1, the possible values (after the carry) are −2w,−(2w − 1), . . . , 2w − 1, 2w,
so the set of even integers 0,±2,±4,±6, . . . ,±2w seems like a reasonable choice.
However, we want to remove the possibility of a zero digit in the 2w-ary expan-
sion. Since the carry is either 0 or 1, the only possible choice for the recoding of 0
is 1 (with a new carry of 1). Similarly, −1 is also necessary since it cannot be re-
coded as 0 with a new carry of 1, so ±1 must also be allowed as digits instead of 0.
Bringing all this together, we obtain the digit set {±1}∪{±2,±4,±6, . . . ,±2w}.

If with start with a carry of 0 for the leftmost bit recoded, the general recoding
rule can be written as follows:

sj − cj2w rj cj−1

even, �= 0 sj − cj2w 0
0 1 1

odd, �= −1 (sj − cj2w) + 1 1
−1 −1 0

It is easy to verify that at every step of the recoding rj = sj − cj2w + cj−1, so
that

∑m
j=0 rj2wj =

∑m
j=0 sj2wj − 2(m+1)wcm + c−1 = e + c−1.

Remark: With the residue system {±1} ∪ {±2,±4,±6, . . . ,±2w}, there are
multiple choices for the recodings of −2 and 1:

• −2 can be recoded as −2 without a carry, or as −1 with a carry;
• 1 can be recoded as 1 without a carry, or as 2 with a carry.

The recodings rules given above were chosen for simplicity.
Once again, we must choose what to do with the final carry. We could apply

the carry directly at the end of the computation, but this would reveal the last
bit of the scalar (with the possible exception of a recoding of 0 or −1).

A better alternative consists in replacing the final recoding step so that the
final step of the encryption always consists of two additions (with r0 + r′0 =
s0 − c02w):

354 N. Thériault

s0 − c02w r0 r′0
even, �= −2 (s0 − c02w) + 2 −2

−2 −1 −1
odd, �= −1 (s0 − c02w) + 1 −1
−1 1 −2

Remark: With the exceptions of ±1 (and −4 if w = 2), there exists multiple
choices for the recodings of all the possible values of s0 − c02w. The recodings
rules given above were chosen for simplicity.

Note that this approach was not possible with the previous recoding. Since
the parity of a sum of odd digits depends only on the number of additions, not
which digits are added, there was no regular sum that could give both even and
odd results.

The computation of the scalar multiplication proceeds as in Algorithm 1 (with
w doublings between every two additions since we have a fixed 2w-ary expansion,
as in Subsection 4.4) except for the final step which becomes: D0 ← D0 +
[r0]D + [r′0] D.

6 Performance Comparison

We can now summarize and compare the efficiency of the different scalar mul-
tiplication and recoding algorithms to get a better idea of which ones are more
interesting depending on the situation. To compare equivalent security levels, we
assume that SPA countermeasures (for example unified formulas) are used on
the group operations in the cases where SPA attacks could reveal even partial
information on the secret key.

6.1 Unrestricted Environment

We first consider the case of applications where there is no restriction on the
memory used by the algorithm and where the group element is assumed fixed
for every scalar multiplication while the scalar varies. Under these conditions,
we can assume that the precomputations are already done when the double-
and-add algorithm is used, so their cost does not have to be taken into account.
To have a common basis for the comparison, we assume that the recodings all
have the same (average) density of 1/t, with the exception of the double-and-
add algorithm on the binary representation (average density of 1/2) and the
Montgomery ladders (density of 1).

We express the costs as “group operations (on average) per bit of the scalar”.
We denote by r the cost (in normal group addition) of an optimized group
doubling, and by c the cost of indistinguishable group operations (either using
uniform formulas or dummy operations). Note that c ≥ 1 and should ideally be
very close to 1.

By memory, we mean the number of precomputed elements which must be in
memory for the double-and-add algorithms, including [1]D. Since Montgomery

SPA Resistant Left-to-Right Integer Recodings 355

ladders do not require any precomputations but compute two group elements
instead of one, we write its memory requirement as 1.

We get the following table:

method section w cost memory direction
double-and-add 2.1 1 3

2c 1 left-to-right
Montgomery Ladder 3.2 1 r + 1 1 left-to-right

w-NAF 4.2 t− 2 c(1 + 1
t) 2t−3 right-to-left

minimal LtoR 4.3 t− 2 c(1 + 1
t) 2t−3 left-to-right

Möller 4.4 t r + 1
t 2t−1 + 1 right-to-left

fixed LtoR (odd order) 5.1 t r + 1
t 2t−1 left-to-right

fixed LtoR (general) 5.2 t r + 1
t 2t−1 + 1 left-to-right

We can see that for the same density, the three fixed recodings require four
times as much memory and precomputations than the w-NAF (a little more in
the case of general group orders and the right-to-left recoding). If r < 1 + c−1

t ,
the three fixed recodings are more efficient, but if r > 1 + c−1

t , the w-NAF and
the minimal weight left-to-right recoding become more efficient.

6.2 Restricted Memory

In some applications (such as restricted environments and implementations
where the secret key is used more than once but on different group elements), it
is really unfair to compare recodings which require different number of precom-
putations. The easiest way to compare the different recodings in these situations
is to assume that a fixed number of precomputations are done (here we assume
either 2t or 2t + 1) and compare the cost of the multiplications without taking
into account the precomputation cost (which is the same for all the recodings,
even thought they use different digit sets).

To make the comparisons uniform, we do not consider the double-and-add on
the binary expansion and Montgomery ladders. Using the same notation as in
the previous subsection, we find:

method section memory average density cost direction
w-NAF 4.2 2t 1

t+3 c(1 + 1
t+3) right-to-left

minimal LtoR 4.3 2t 1
t+3 c(1 + 1

t+3) left-to-right
Möller 4.4 2t + 1 1

t+1 r + 1
t+1 right-to-left

fixed LtoR 5.2 2t + 1 1
t+1 r + 1

t+1 left-to-right
fixed LtoR 5.1 2t 1

t+1 r + 1
t+1 left-to-right

This time the comparisons are much more clearly delimited. If we let γ =
c
(
1 + 1

t+3

)
− 1

t+1 , we get the following rules:

• The fixed left-to-right recodings are at least as efficient as Möller’s fixed
right-to-left recoding.

• If r < γ, the fixed recodings are faster than the w-NAF or the minimal
weight left-to-right recoding.

356 N. Thériault

• If r > γ, the w-NAF and the minimal weight left-to-right recoding are faster
than the fixed recodings, even though SPA countermeasures must be added
in the implementation of these algorithms.

• Although the recodings from Sections 4.4 and 5.2 require one more step of
precomputation, the use of even integers as coefficients is often advantageous.
If doublings are faster than additions, the total cost of the precomputations
can be lower than for the other coefficient sets (to be precise, when r < 1/(1+
21−t) since 2t−1 + 1 of the precomputations can be done by group doublings
rather than group additions). These recodings may be more interesting than
the recoding of Section 5.1 if having to store one more group element is an
acceptable compromise.

7 Conclusion

We presented two integers recodings which are resistant to SPA attacks. These
recodings are left-to-right so they can be interleaved with a left-to-right scalar
multiplication, removing the need to store both the scalar and its recoding.
In groups where the doubling operations can be implemented with significant
savings compared to a group addition, these algorithms become faster than a w-
NAF (or its left-to-right equivalent) which has been secured against SPA attacks.
It should be kept in mind that these implementation do not ensure in any way
the security against differential side channel analysis, so countermeasures against
these attacks should also be used if the secret key is used more than once.

Acknowledgements

The author would like to thank Roberto Avanzi and Bodo Möller for their useful
comments and remarks.

References

1. D. Agrawal, B. Archambeault, J.R. Rao, and P. Rohatgi. The em side-channel(s).
In B.S. Kaliski Jr., Ç.K. Koç, and C. Paar, editors, Cryptographic Hardware and
Embedded Systems – CHES 2002, volume 2523 of LNCS, pages 29–45. Springer–
Verlag, 2003.

2. R.M. Avanzi. A note on the signed sliding window integer recoding and a left-
to-right analogue. In H. Handschuh and M.A. Hasan, editors, Selected Areas in
Cryptography – SAC 2004, volume 3357 of LNCS, pages 130–143. Springer–Verlag,
2005.

3. R.M. Avanzi. Side channel attacks on implementations of curve-based crypto-
graphic primitives. Cryptology ePrint Archive, Report 2005/017, 2005. Available
at: <http://eprint.iacr.org/>.

4. O. Billet and M. Joye. The jacobi model of an elliptic curve and side-channel
analysis. In M. Fossorier, T. Høholdt, and A. Poli, editors, Applied Algebra, Alge-
braic Algorithms and Error-Correcting Codes – AAECC-15, volume 2643 of LNCS,
pages 34–42. Springer–Verlag, 2003.

SPA Resistant Left-to-Right Integer Recodings 357

5. É. Brier and M. Joye. Weierstraßelliptic curves and side-channel attacks. In D. Nac-
cache and P. Paillier, editors, Public Key Cryptography – PKC 2002, volume 2274
of LNCS, pages 335–345. Springer–Verlag, 2002.

6. É. Brier, M. Joye, and I. Déchène. Unified point addition formulæfor elliptic curve
cryptosystems. In N. Nedjah and L. de Macedo Mourelle, editors, Embedded Cryp-
tographic Hardware: Methodologies & Architectures. Nova Science Publishers, 2004.

7. H. Cohen, A. Miyaji, and T. Ono. Efficient elliptic curve exponentiation. In
ICICS’97, volume 1334 of LNCS, pages 282–290. Springer–Verlag, 1997.

8. H. Cohen, A. Miyaji, and T. Ono. Efficient elliptic curve exponentiation us-
ing mixed coordinates. In K. Ohta and D. Pei, editors, Advances in Cryp-
tology - ASIACRYPT’98, volume 1514 of LNCS, pages 51–65. Springer–Verlag,
1998.

9. J.-S. Coron. Resistance against differential power analysis for elliptic curve cryp-
tosystems. In Ç.K. Koç and C. Paar, editors, Cryptographic Hardware and Embed-
ded Systems – CHES’99, volume 1717 of LNCS, pages 292–302. Springer–Verlag,
1999.

10. C. Guyot, K. Kaveh, and V. Patankar. Explicit algorithm for the arithmetic on the
hyperelliptic jacobians of genus 3. J. Ramanujan Math. Soc., 19(2):75–115, 2004.

11. M. Joye and J.-J. Quisquater. Hessian elliptic curves and side-channel attacks.
In Ç.K. Koç, D. Naccache, and C. Paar, editors, Cryptographic Hardware and
Embedded Systems – CHES 2001, volume 2162 of LNCS, pages 402–410. Springer–
Verlag, 2001.

12. M. Joye and S.-M. Yen. The montgomery powering ladder. In B.S. Kaliski Jr.,
Ç.K. Koç, and C. Paar, editors, Cryptographic Hardware and Embedded Systems –
CHES 2002, volume 2523 of LNCS, pages 291–302. Springer–Verlag, 2003.

13. P. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In M. Wiener, editor,
Advances in Cryptology – CRYPTO’99, volume 1666 of LNCS, pages 388–397.
Springer–Verlag, 1999.

14. T. Lange and M. Stevens. Efficient doubling on genus two curves over binary fields.
In H. Handschuh and M.A. Hasan, editors, Selected Areas in Cryptography – SAC
2004, volume 3357 of LNCS, pages 170–181. Springer–Verlag, 2005.

15. P.-Y. Liardet and N.P. Smart. Preventing spa/dpa in ecc systems using the jacobi
form. In Ç.K. Koç, D. Naccache, and C. Paar, editors, Cryptographic Hardware and
Embedded Systems – CHES 2001, volume 2162 of LNCS, pages 391–401. Springer–
Verlag, 2001.

16. C. H. Lim. A new method for securing elliptic scalar multiplication against side-
channel attacks. In H. Wang, J. Pieprzyk, and V. Varadharajan, editors, Informa-
tion Security and Privacy – ACISP 2004, volume 3108 of LNCS, pages 289–300.
Springer–Verlag, 2004.

17. B. Möller. Securing elliptic curve point multiplication against side-channel attacks.
In G.I. Davida and Y. Frankel, editors, Information Security: 4th International
Conference – ISC 2001, volume 2200 of LNCS, pages 324–334. Springer–Verlag,
2001. Extended version available at: <http://www.bmoeller.de/#ecc-sca>.

18. J. Muir and D. Stinson. New minimal weight representations for left-to-right win-
dow methods. CACR Technical Report, CORR 2004-19, 2004. Available at:
<http://www.cacr.math.uwaterloo.ca/techreports/2004/corr2004-19.pdf>.

19. K. Okeya, K. Schmidt-Samoa, C. Spahn, and T. Takagi. Signed binary represen-
tations revisited. In M. Franklin, editor, Advances in Cryptology - CRYPTO 2004,
volume 3152 of LNCS, pages 123–139. Springer–Verlag, 2004.

358 N. Thériault

20. K. Okeya and T. Takagi. The width-w naf method provides small memory and
fast elliptic scalar multiplications secure against side channel attacks. In M. Joye,
editor, Topics in Cryptology – CT-RSA 2003, volume 2612 of LNCS, pages 328–
343. Springer–Verlag, 2003.

21. K. Okeya, T. Takagi, and C. Vuillaume. On the exact flexibility of the flexible coun-
termeasure against side channel attacks. In H. Wang, J. Pieprzyk, and V. Varad-
harajan, editors, Information Security and Privacy – ACISP 2004, volume 3108 of
LNCS, pages 466–477. Springer–Verlag, 2004.

22. J. Pelzl, T. Wollinger, J. Guajardo, and C. Paar. Hyperelliptic curve cryptosystems:
Closing the performance gap to elliptic curves. In Cryptographic Hardware and
Embedded Systems – CHES 2003, volume 2779 of LNCS, pages 351–365. Springer–
Verlag, 2003.

23. J. Pelzl, T. Wollinger, and C. Paar. Low cost security: Explicit formulae for genus-
4 hyperelliptic curves. In M. Matsui and R. Zuccherato, editors, Selected Areas
in Cryptography – SAC 2003, volume 3006 of LNCS, pages 1–16. Springer–Verlag,
2004.

24. S.C. Pohlig and M.E. Hellman. An improved algorithm for computing logarithms
over gf(p) and its cryptographic significance. IEEE Trans. Information Theory,
24(1):106–110, 1978.

25. G.W. Reitwiesner. Binary arithmetic. In Advances in computers, volume 1, pages
231–308. Academic Press, New York, 1960.

26. J.A. Solinas. An improved algorithm for arithmetic on a family of elliptic curves.
In B.S. Kaliski Jr., editor, Advances in Cryptology - CRYPTO ’97, volume 1294 of
LNCS, pages 357–371. Springer–Verlag, 1997.

27. C.D. Walter. Simple power analysis of unified code for ecc double and add. In
M. Joye and J.-J. Quisquater, editors, Cryptographic Hardware and Embedded Sys-
tems – CHES 2004, volume 3156 of LNCS, pages 191–204. Springer–Verlag, 2004.

28. A.C.C. Yao. On the evaluation of powers. SIAM J. Comput., 5(1):100–103, 1976.
29. S.-M. Yen and M. Joye. Checking before output may not be enough against fault-

based cryptanalysis. IEEE Trans. on Computers, 49(9):967–970, Sept. 2000.
30. S.-M. Yen, S. Kim, S. Lim, and S. Moon. A countermeasure against one physical

cryptanalysis may benefit another attack. In K. Kim, editor, Information Security
and Cryptology – ICISC 2001, volume 2288 of LNCS, pages 414–427. Springer–
Verlag, 2002.

Efficient FPGA-Based Karatsuba Multipliers
for Polynomials over F2

Joachim von zur Gathen and Jamshid Shokrollahi

B-IT, Görresstr. 13, Universität Bonn, 53113 Bonn, Germany
gathen@bit.uni-bonn.de
jamshid@bit.uni-bonn.de

Abstract. We study different possibilities of implementing the Karat-
suba multiplier for polynomials over F2 on FPGAs.

This is a core task for implementing finite fields of characteristic 2.
Algorithmic and platform dependent optimizations yield efficient hard-
ware designs. The resulting structure is hybrid in two different aspects.
On the one hand, a combination of the classical and the Karatsuba meth-
ods decreases the number of bit operations. On the other hand, a mix-
ture of sequential and combinational circuit design techniques includes
pipelining and can be adapted flexibly to time-area constraints. The
approach—both theory and implementation—can be viewed as a further
step towards taming the machinery of fast algorithmics for hardware ap-
plications.

Keywords: Finite field arithmetic, fast multiplication, asymptotically
fast algorithms, Karatsuba method, hardware, FPGA.

1 Introduction

Arithmetic in finite fields is a central algorithmic task in cryptography. There
are two types of groups associated to such fields: their multiplicative group of
invertible elements, and elliptic (or hyperelliptic) curves. These can then be used
in group-based cryptography, relying on the difficulty of computing discrete loga-
rithms. Here we focus on fields of characteristic 2. The most fundamental task in
arithmetic is multiplication. In our case, this amounts to multiplication of poly-
nomials over F2, followed by a reduction modulo the fixed polynomial defining
the field extension. This reduction can itself be performed by using multiplica-
tion routines or by a small hardware circuit when the polynomial is sparse. A
trinomial can be used in many cases, and it is conjectured that otherwise a pen-
tanomial can be found (see [6]). As to the other arithmetic operations, addition
is bitwise XORing of vectors, squaring a special case of multiplication (much
simplified by using a normal basis), and inversion more expensive and usually
kept to a minimum.

Classical methods to multiply two n-bit polynomials require O(n2) bit oper-
ations. The Karatsuba algorithm reduces this to O(nlog2 3), and fast Fourier
transformations to O(n log n loglog n). The Cantor multiplier with a cost of
O(n(log n)2(loglog n)3) is designed for fields of characteristic 2, but we do not

B. Preneel and S. Tavares (Eds.): SAC 2005, LNCS 3897, pp. 359–369, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

360 J. von zur Gathen and J. Shokrollahi

study it here (see [3] and [4]). Traditional lore held that asymptotically fast
methods are not suitable for hardware. We disprove this view in the present
paper, continuing our work in [7].

Our methods are asymptotically good and thus efficient for large degrees.
Sophisticated implementation strategies decrease the crossover points between
different algorithms and make them efficient for practical applications. Much
care is required for software implementations (see [5], chapter 8, and Shoup’s
NTL software). The Karatsuba method has the lowest crossover point with the
classical algorithm.

In hardware, the methods used are either platform independent or platform
dependent. The first group consists of algorithmic optimizations which reduce the
total number of operations, whereas the second approach uses specific properties
of implementation environments to achieve higher performance.

The Karatsuba algorithme, for multiplication of large integers, was intro-
duced in [10]. This algorithm is based on a formula for multiplying two
linear polynomials which uses only 3 multiplications and 4 additions, as com-
pared to 4 multiplications and 1 addition in the classical formula. The extra
number of additions disappears asymptotically. This method can be applied
recursively to 2m-bit polynomials, where m is an integer. Here we optimize
and adapt the Karatsuba algorithm for hardware realization of cryptographic
algorithms.

FPGAs provide useful implementation platforms for cryptographic algorithms
both for prototyping where early error finding is possible, and as systems on
chips where system parameters can easily be changed to satisfy evolving security
requirements.

Efficient software implementations of Karatsuba multipliers using general pur-
pose processors have been discussed thoroughly in the literature (see [12], [1],
[11], [8], chapter 2, and [5], chapter 8), but hardware implementations have at-
tracted less attention. The only works known to us are [9], [14], and our previous
paper [7]. [9] and [14] suggest to use algorithms with O(n2) operations to multi-
ply polynomials which contain a prime number of bits. Their proposed number
of bit operations is by a constant factor smaller than the classical method but
asymptotically larger than those for the Karatsuba method. [7] contains a hy-
brid implementation of the Karatsuba method which reduces the latency by
pipelining and by mixing sequential and combinational circuits.

The present work is to our knowledge the first one which tries to decrease
the resource usage of polynomial multipliers using both known algorithmic and
platform dependent methods. We present the best choice of hybrid multiplica-
tion algorithms for polynomials with at most 128 bits, as long as the choice
is restricted to three (recursive) methods, namely classical, Karatsuba, and a
variant of Karatsuba for quadratic polynomials. The “best” refers to minimizing
the area measure. This is an algorithmic and machine independent optimiza-
tion. In an earlier implementation ([7]) we had designed a 240-bit multiplier
on a XC2V6000-4FF1517-4 FPGA. We re-use this structure to illustrate a sec-
ond type of optimization, which is machine-dependent. Our goal is a 240-bit

Efficient FPGA-Based Karatsuba Multipliers for Polynomials over F2 361

multiplier with small area-time cost. This measure may be thought as the time
on a single-bit processor. We now put a single 30-bit multiplier on our FPGA
and use three Karatsuba steps to get from 240 = 23 · 30 to 30 bits. This requires
judicious application of multiplexer and adder circuitry, but the major compu-
tational cost still resides in the multiplier. 27 = 33 small multiplications are
required for one 240-bit product, and these inputs are fed into the single small
multiplier in a pipelined fashion. This has the pleasant effect of keeping the total
delay small and the area reduced, with correspondingly small propagation de-
lays. Using this 240-bit multiplier we cover in particular the 233-bit polynomials
proposed by NIST for elliptic curve cryptography in [13].

One reviewer wrote: The idea of using such a generalization of Karatsuba’s
method is not new, but it is usually dismissed for operands of relatively small
sizes because of lower performance in software implementations. The fact that
some area on an FPGA is saved is an interesting and new remark: the kind of
remark usually “obvious” after one has seen it, but that only few seem able to
see in the first place.

The structure of this paper is as follows. First the Karatsuba method and its
cost are studied in Section 2. Section 3 is devoted to optimized hybrid Karat-
suba implementations. Section 4 shows how a hybrid structure and pipelining
improves resource usage in our circuit from [7]. Section 5 analyzes the effect of
the number of recursion levels on the performance, and Section 6 concludes the
paper.

2 The Karatsuba Algorithm

The three coefficients of the product (a1x + a0)(b1x + b0) = a1b1x
2 + (a1b0 +

a0b1)x + a0b0 are “classically” computed with 4 multiplications and 1 addition
from the four input coefficients a1, a0, b1, and b0. The following formula uses
only 3 multiplications and 4 additions:

(a1x + a0)(b1x + b0) = a1b1x
2 + ((a1 + a0)(b1 + b0)− a1b1 − a0b0)x + a0b0. (1)

We call this the 2-segment Karatsuba method or K2. Setting m = �n/2�, two
n-bit polynomials (thus of degrees less than n) can be rewritten and multiplied
using the formula:

(f1x
m + f0)(g1x

m + g0) = h2x
2m + h1x

m + h0,

where f0, f1, g0, and g1 are m-bit polynomials respectively. The polynomials h0,
h1, and h2 are computed by applying the Karatsuba algorithm to the polynomials
f0, f1, g0, and g1 as single coefficients and adding coefficients of common powers
of x together. This method can be applied recursively. The circuit to perform a
single stage is shown in Figure 1.

The “Overlap circuit” adds common powers of x in the three generated prod-
ucts. For example if n = 8, then the input polynomials have degree at most 7,
each of the polynomials f0, f1, g0, and g1 is 4 bits long and thus of degree at

362 J. von zur Gathen and J. Shokrollahi

f1 f0 g1 g0

×High multiplier + + × Low multiplier

× Middle multiplier

+ −

+−

Overlap circuit

h2 h1 h0

Fig. 1. The circuit to perform one level of the Karatsuba multiplication

f1g1

f0g1 + f1g0

f0g0

x14 x13 x12 x11 x10 x9 x8

x10 x9 x8 x7 x6 x5 x4

x6 x5 x4 x3 x2 x1 x0

Fig. 2. The overlap circuit for the 8-bit Karatsuba multiplier

most 3, and their products will be of degree at most 6. The effect of the overlap
module in this case is represented in Figure 2, where coefficients to be added
together are shown in the same columns.

Figures 1 and 2 show that we need three recursive multiplication calls and
some additions: 2m for input adders, 2(2m− 1) for output adders, and 2(m− 1)
for the overlap module; where m = �n/2�. If M(2)

n is the total number of bit
operations to multiply two n-bit polynomials, then

M(2)
n ≤ 3 M(2)

m + 8m− 4. (2)

When n is a power of 2, with the initial values of M(2)
1 = 1 we get:

M(2)
n ≤ 7 �nlog2 3� − 8n + 2. (3)

The gain in Karatsuba’s method is visually illustrated in Figure 8.2 of [5]. The
delay of the circuit for n ≥ 2 is at most

4�log2 n� (4)

times the delay of a single gate. On the other hand, a classical multiplier for
n-bit polynomials requires

2n2 − 2n + 1 (5)

Efficient FPGA-Based Karatsuba Multipliers for Polynomials over F2 363

gates and has a propagation delay of

1 + �log2 n�. (6)

To multiply two quadratic polynomials, we use the following formula from
[2] which we call 3-segment Karatsuba or K3. It uses 6 multiplications and 12
additions when used for fields of characteristic 2, compared to 9 multiplications
and 4 additions in the classical method:

(a2x
2 + a1x + a0)(b2x

2 + b1x + b0) =

a2b2x
4 + ((a1 + a2)(b1 + b2)− a1b1 − a2b2)x3

+ ((a2 + a0)(b2 + b0)− a0b0 + a1b1 − a2b2)x2 (7)
+ ((a1 + a0)(b1 + b0)− a0b0 − a1b1)x + a0b0.

Similar to (2) we can write the recursive costs of K3 as:

M(3)
n ≤ 6 M(3)

m + 22m− 10, (8)

where m = �n/3�.
Since log2 3 ≈ 1.5850 < 1.6309 ≈ log3 6, this approach is asymptotically infe-

rior to the original Karatsuba method. One result of this paper is to determine
the range of usefulness for this method (namely some n ≤ 81) on our type of
hardware.

3 Hybrid Design

For fast multiplication software, a judicious mixture of table look-up and classi-
cal, Karatsuba and even faster (FFT) algorithms must be used (see [5], chapter
8, and [8], chapter 2). The corresponding issues for hardware implementations
have not been discussed in the literature, except that our previous paper [7] uses
classical multipliers for polynomials with up to 40 bits.

We present a general methodology and execute it in the special case of a
toolbox with these algorithms: classical, K2, and K3. The general idea is that we
have a toolbox A of recursive multiplication algorithms. Each algorithm A ∈ A
computes the product of two polynomials of degree less than n, for any n. The
cost of A consists in some arithmetic operations plus recursive multiplications.
For simplicity, we assume that the optimal hybrid multiplication routine using
A is built from the bottom up. For each n ≥ 1, we determine the best method
for n-bit polynomials, starting with a single arithmetic operation (namely, a
multiplication) for constant polynomials (n = 1). For n ≥ 2, we compute the
cost of applying each A ∈ A to n-bit polynomials, using the already computed
optimal values for the recursive calls. We then enter into our table one of the
algorithms with minimal cost.

We now execute this general approach on our toolbox A = {classical,K2,K3}.
The costs are given in (2) and (8). Whenever necessary, polynomials are padded
with leading zeros. The results are shown in Table 1.

364 J. von zur Gathen and J. Shokrollahi

Table 1. The number of operations for the hybrid method for polynomial degrees
below 128, and Karatsuba’s algorithm according to [14]

length hybrid Karatsuba length hybrid Karatsuba
rec cost ratio rec cost ratio

3 C 13 0.404 19 66 2 4886 1.131 5402
4 C 25 0.492 33 67 2 4894 1.106 5675
5 C 41 0.567 61 68 2 4894 1.081 5812
6 2 59 0.611 77 69 2 4926 1.063 6091
7 C 85 0.689 110 70 2 4926 1.039 6231
8 2 103 0.676 127 71 2 4934 1.017 6374
9 3 134 0.730 175 72 2 4934 0.995 6041
10 2 159 0.733 219 73 2 5713 1.127 6737
11 C 221 0.875 257 74 2 5713 1.103 6883
12 2 221 0.763 275 75 2 5721 1.081 7032
13 2 307 0.933 346 76 2 5721 1.059 7107
14 2 307 0.830 382 77 2 5753 1.043 7262
15 3 346 0.838 421 78 2 5753 1.022 7340
16 2 369 0.807 441 79 2 5761 1.003 7421
17 2 470 0.934 572 80 2 5761 0.983 7381
18 2 470 0.853 593 81 3 6536 1.094 7777
19 2 553 0.921 707 82 2 6702 1.100 7935
20 2 553 0.849 733 83 2 6710 1.080 8096
21 3 654 0.930 817 84 2 6710 1.060 8177
22 2 747 0.986 855 85 2 7528 1.167 8344
23 2 755 0.929 896 86 2 7528 1.146 8428
24 2 755 0.869 917 87 2 7536 1.126 8515
25 3 992 1.070 1064 88 2 7536 1.106 8559
26 3 992 1.005 1138 89 2 7544 1.087 8738
27 3 992 0.947 1215 90 2 7544 1.068 8828
28 2 1029 0.927 1254 91 2 7699 1.071 8921
29 2 1154 0.984 1337 92 2 7699 1.053 8968
30 2 1154 0.932 1379 93 2 7731 1.039 9067
31 2 1231 0.944 1424 94 2 7731 1.022 9117
32 2 1231 0.898 1447 95 2 7739 1.006 9170
33 2 1542 1.071 1714 96 2 7739 0.989 9197
34 2 1542 1.021 1848 97 2 9904 1.245 9800
35 2 1550 0.981 1985 98 2 9904 1.225 10102
36 2 1550 0.938 2054 99 2 9912 1.207 10407
37 2 1807 1.047 2197 100 2 9912 1.188 10560
38 2 1807 1.003 2269 101 2 9944 1.173 10871
39 2 1815 0.967 2344 102 2 9944 1.155 11027
40 2 1815 0.929 2355 103 2 9952 1.138 11186
41 2 2126 1.047 2537 104 2 9952 1.121 11266
42 2 2126 1.007 2615 105 2 9984 1.107 11589
43 3 2396 1.094 2696 106 2 9984 1.091 11751
44 3 2396 1.055 2737 107 2 9992 1.075 11916
45 3 2396 1.018 2824 108 2 9992 1.060 11999
46 2 2445 1.003 2868 109 2 10357 1.082 12170
47 2 2453 0.973 2915 110 2 10357 1.067 12256
48 2 2453 0.941 2939 111 2 10365 1.053 12345
49 2 3172 1.177 3238 112 2 10365 1.038 12390
50 2 3172 1.140 3388 113 2 11522 1.137 12737
51 2 3180 1.108 3541 114 2 11522 1.122 12911
52 2 3180 1.074 3618 115 2 11530 1.107 13088
53 2 3188 1.045 3777 116 2 11530 1.092 13177
54 2 3188 1.014 3857 117 2 11562 1.080 13360
55 2 3307 1.022 3940 118 2 11562 1.066 13452
56 2 3307 0.993 3982 119 2 11570 1.052 13547
57 2 3690 1.078 4153 120 2 11570 1.038 13595
58 2 3690 1.048 4239 121 2 12295 1.089 13790
59 2 3698 1.022 4328 122 2 12295 1.075 13888
60 2 3698 0.996 4373 123 2 12303 1.062 13989
61 2 3937 1.033 4468 124 2 12303 1.048 14040
62 2 3937 1.006 4516 125 2 12335 1.038 14147
63 2 3945 0.983 4567 126 2 12335 1.025 14201
64 2 3945 0.959 4593 127 2 12343 1.013 14258
65 2 4886 1.159 5132 128 2 12343 1.000 14288

The first column gives the number n of bits, so that we deal with polynomials
of degree up to n− 1. The second column “rec” specifies the first recursive level,
that is the algorithm from A = {classical,K2,K3} to be used, abbreviated as
{C, 2, 3}. The column “cost” gives the total number of arithmetic operations.
The next column states the “ratio” of practice to theory, namely c · cost/nlog2 3,
where the constant c is chosen so that the last entry is 1. The asymptotic regime
visibly takes over already at the fairly small values that we consider. The final

Efficient FPGA-Based Karatsuba Multipliers for Polynomials over F2 365

column gives the cost of algorithm from [14], which is Karatsuba-based. We know
of no other implementation that can be easily compared with ours.

For example, the entry n = 41 refers to polynomials of degree up to 40. The
entry 2 in column “A” says that K2 is to be employed at the top of the recursion.
Since m = �41/2� = 21, (2) says that three pairs of 21-bit polynomials need to
be multiplied, plus 8 ·21−4 = 164 operations. One has to look up the algorithm
for 21 bits in the table. Continuing in this way, the prescription for 41 bits is:

n 41 21 7
algorithm K2 K3 C

add 164 144 85
total = 164 + 3 · (144 + 6 · 85) = 2126.

In the recursive call of K2 at n = 41, the inputs are split into two pieces of 20
and 21 bits. It is tempting to single out one of the three recursive multiplications
as a 20-bit operation, and indeed this view is taken in [14]. They pad input
polynomials with enough zero coefficients and apply the Karatsuba method in
a recursive manner. Operations involving a coefficient known to be zero are
neglected. In our designs, we use three 21-bit multiplications, for a small loss in
the operations count but a huge gain in modularity: we only implement a single
21-bit multiplier, thus simplifying the design and enabling pipelining. Section 4
exemplifies this (with 30 rather than 21 bits).

We note that designers of fast arithmetic software have used the general
methodology sketched above, in particular formulating it as breakpoint between
different algorithms. The classical algorithm can also be viewed recursively, which
is used for some results in Table 2 below.

The goal of our hybrid design is to minimize the total arithmetic cost. The
same methodology can, of course, also be applied to multi-objective applications,
say minimizing A and AT. A concern with them would be to limit the number
of table entries that are kept.

4 Hardware Structure

According to (4) and (6), the delay of a fully parallel combinational Karatsuba
multiplier is almost 4 times that of a classical multiplier. It is the main disad-
vantage of the Karatsuba method for hardware implementations. In [7], we have
suggested as solution a pipelined Karatsuba multiplier for 240-bit polynomials,
shown in Figure 3.

The innermost part of the design is a combinational pipelined 40-bit classical
multiplier equipped with 40-bit and 79-bit adders. The multiplier, these adders,
and the overlap module, together with a control circuit, constitute a 120-bit
multiplier. The algorithm is based on a modification of a Karatsuba formula for
3-segment polynomials which is similar to but slightly different from (7). (We
were not aware of this better formula at that time.)

Another suitable control circuit performs the 2-segment Karatsuba method
for 240 bits by means of a 120-bit recursion, 239-bit adders, and an overlap
circuit.

366 J. von zur Gathen and J. Shokrollahi

240-bit multiplier

120-bit multiplier

40-bit
multiplier

40-bit adder
· · ·

79-bit adder
· · ·

Overlap module

120-bit adder
· · ·

239-bit adder
· · ·

Overlap module

Fig. 3. The 240-bit multiplier in [7]

This multiplier can be seen as implementing the factorization 240 = 2 · 3 · 40.
Table 1 implies that it is usually best to apply the 2-segment Karatsuba, except
for small inputs. Translating this into hardware reality, we now present a better
design based on the factorization 240 = 2 · 2 · 2 · 30. The resulting structure is
shown in Figure 4.

The 30-bit multiplier follows the recipe of Table 1. It is a combinational circuit
without feedback and the design goal was to minimize its area. In general, k
pipeline stages can perform n parallel multiplications in n + k− 1 instead of nk
clock cycles without pipelining.

We have implemented our design, the structure of [7], and a purely classical
implementation, on an XC2V6000-4FF1517-4 FPGA. The classical design has
a classical 30-bit multiplier and applies the three classical recursion steps. The
results after place and route are shown in Table 2. The second column shows
the number of clock cycles for a multiplication. The third column represents the

240-bit multiplier

120-bit multiplier

60-bit multiplier

30-bit
multiplier

30-bit adder
· · ·

59-bit adder
· · ·

Overlap module

60-bit adder
· · ·

119-bit adder
· · ·

Overlap module

120-bit adder
· · ·

239-bit adder
· · ·

Overlap module

Fig. 4. The new 240-bit multiplier

Efficient FPGA-Based Karatsuba Multipliers for Polynomials over F2 367

Table 2. Time and area of different multipliers for 240-bit polynomials

Multiplier Number of Number of Multiplication AT
type clock cycles slices time Slices × μs

classical 106 1328 1.029μs 1367
The circuit of [7] (Fig. 3) 54 1660 0.655μs 1087
Hybrid Karatsuba (Fig. 4) 55 1513 0.670μs 1014

area in terms of number of slices. This measure contains both logic elements, or
LUTs, and flip-flops used for pipelining. The fourth column is the multiplication
time as returned by the hardware synthesis tool. Finally the last column shows
the product of area and time in order to compare the AT measures of our designs.

The synchronization is set so that the 30-bit multipliers require 1 and 4 clock
cycles for classical and hybrid Karatsuba implementations, respectively. The
new structure is smaller than the implementation in [7] but requires more area
than the classical one. This drawback is due to the complicated structure of the
Karatsuba method but is compensated by speed as seen in the time and AT
measures. In the next section we further improve our structure by decreasing
the number of recursions.

5 Hybrid Polynomial Multiplier with Few Recursions

In the recursive Karatsuba multiplier of [7], the core of the system, namely
the combinational multipliers, is idle for about half of the time. To improve

Input1 Input2

a(x) b(x)

mux1 mux2

mux3 mux4

mux5 mux6

30 bit

multiplier

Decoder

acc0 acc1 · · · acc14

Overlap circuit

C
o
n
tr
o
l
m

o
d
u
le

Output

Fig. 5. The structure of the Karatsuba multiplier with fewer number of recursions

368 J. von zur Gathen and J. Shokrollahi

Table 3. Time and area of different 240-bit multipliers with reduced number of recur-
sion levels

Multiplier Number of Number of Multiplication AT
type clock cycles slices time Slices × μs

classical 56 1582 0.523μs 827
The circuit of [7](Fig. 3) 54 1660 0.655μs 1087
Hybrid Karatsuba (Fig. 5) 30 1480 0.378μs 559

resource usage, we reduce the communication overhead by decreasing the lev-
els of recursion. In this new 240-bit multiplier, an 8-segment Karatsuba is ap-
plied at once to 30-bit polynomials. We computed symbolically the formulas
describing three recursive levels of Karatsuba, and implemented these formulas
directly.

The new circuit is shown in Figure 5. The multiplexers mux1 to mux6 are
adders at the same time. Their inputs are 30-bit sections of the two original
240-bit polynomials which are added according to the Karatsuba rules. Now
their 27 output pairs are pipelined as inputs into the 30-bit multiplier. The 27
corresponding 59-bit polynomials are subsequently combined according to the
overlap rules to yield the final result. Time and space consumptions are shown
in Table 3 and compared with the results of [7]. The columns are as in Table 2.
We see that this design improves on the previous ones in all respects.

6 Conclusion

In this paper we have shown how combining algorithmic techniques with platform
dependent strategies can be used to develop designs which are highly optimized
for FPGAs. These modules have been considered as appropriate implementation
targets for cryptographic purposes both as prototyping platforms and as system
on chips.

We improved the structure proposed in [7] in both time and area aspects.
The time has been improved by decreasing the number of recursion stages. To
minimize the area we have further improved the results of [14], as witnessed
in Table 1, by applying the Karatsuba method in a hybrid manner. The ben-
efits of hybrid implementations are well known for software implementations,
where the crossover points between subquadratic and classical methods depend
on the available memory and processor word size. There seems to be no previous
systematic investigation on how to apply these methods efficiently for hard-
ware implementations. In this paper we have shown that a hybrid implementa-
tion mixing classical and two Karatsuba methods can result in significant area
savings.

Comparisons with the work of [7] are shown in Table 3. The asymptotic
methods are better than classical multipliers both with respect to time and area
measures. An obvious open question is to optimize a larger class of recursive
algorithms than our K2 and K3.

Efficient FPGA-Based Karatsuba Multipliers for Polynomials over F2 369

Acknowledgements

We thank Roberto Avanzi for various pointers to the literature and for pointing
out to us the formula from [2].

References

1. Bailey, D.V., Paar, C.: Optimal extension fields for fast arithmetic in public-
key algorithms. In Krawczyk, H., ed.: Advances in Cryptology: Proceedings of
CRYPTO ’98, Santa Barbara CA. Number 1462 in Lecture Notes in Computer
Science, Springer-Verlag (1998) 472–485

2. Blahut, R.E.: Fast Algorithms for Digital Signal Processing. Addison-Wesley,
Reading MA (1985)

3. Cantor, D.G.: On arithmetical algorithms over finite fields. Journal of Combina-
torial Theory, Series A 50 (1989) 285–300

4. von zur Gathen, J., Gerhard, J.: Arithmetic and factorization of polynomials over
F2. In Lakshman, Y.N., ed.: Proceedings of the 1996 International Symposium
on Symbolic and Algebraic Computation ISSAC ’96, Zürich, Switzerland, ACM
Press (1996) 1–9 Technical report tr-rsfb-96-018, University of Paderborn, Ger-
many, 1996, 43 pages. Final version in Mathematics of Computation.

5. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Second edn. Cam-
bridge University Press, Cambridge, UK (2003) First edition 1999.

6. von zur Gathen, J., Nöcker, M.: Polynomial and normal bases for finite fields.
Journal of Cryptology (2005) to appear.

7. Grabbe, C., Bednara, M., Shokrollahi, J., Teich, J., von zur Gathen, J.: FPGA
designs of parallel high performance GF (2233) multipliers. In: Proc. of the IEEE In-
ternational Symposium on Circuits and Systems (ISCAS-03). Volume II., Bangkok,
Thailand (2003) 268–271

8. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer-Verlag (2003)

9. Jung, M., Madlener, F., Ernst, M., Huss, S.: A Reconfigurable Coprocessor for
Finite Field Multiplication in GF (2n). In: Workshop on Cryptographic Hardware
and Embedded Systems, Hamburg, IEEE (2002)

10. Karatsuba, A., Ofman, Y.: Multiplication of multidigit numbers on automata.
Soviet Physics–Doklady 7 (1963) 595–596 translated from Doklady Akademii Nauk
SSSR, Vol. 145, No. 2, pp. 293–294, July, 1962.

11. Koç, Ç.K., Erdem, S.S.: Improved Karatsuba-Ofman Multiplication in GF (2m).
US Patent Application (2002)

12. Paar, C.: Efficient VLSI Architectures for Bit-Parallel Computation in Galois
Fields. PhD thesis, Institute for Experimental Mathematics, University of Essen,
Essen, Germany (1994)

13. U.S. Department of Commerce / National Institute of Standards and Technol-
ogy: Digital Signature Standard (DSS). (2000) Federal Information Processings
Standards Publication 186-2.

14. Weimerskirch, A., Paar, C.: Generalizations of the karatsuba algorithm for efficient
implementations. Technical report, Ruhr-Universität-Bochum, Germany (2003)

Author Index

Antipa, Adrian 307
Armknecht, Frederik 36
Avanzi, Roberto Maria 332
Avoine, Gildas 291

Baignères, Thomas 65
Barkan, Elad 1
Barreto, Paulo S.L.M. 319
Biham, Eli 1
Biryukov, Alex 110, 245
Braeken, An 159
Brown, Daniel 307

Chao, Li 51

Dawson, Ed 175
Dysli, Etienne 291

Feng, Keqin 51

Gallant, Robert 307

Hall, W. Eric 95
Henricksen, Matt 175
Heuberger, Clemens 332
Hitchcock, Yvonne 205

Jaulmes, Éliane 20
Jutla, Charanjit S. 95

Kim, Chang Han 144

Lambert, Rob 307
Lano, Joseph 159
Lee, Jooyoung 189
Lee, Sanggon 205
Lei, Duo 51
Lim, Jongin 144

Meier, Willi 36
Mister, Serge 82

Molnar, David 276
Moon, Sangjae 205
Mukhopadhyay, Sourav 110
Muller, Frédéric 20

Naehrig, Michael 319

Oechslin, Philippe 291

Park, Young-Ho 144
Park, Youngho 205
Pramstaller, Norbert 233, 261
Prodinger, Helmut 332

Rechberger, Christian 233, 261
Rijmen, Vincent 233, 261

Sarkar, Palash 110
Shokrollahi, Jamshid 359
Soppera, Andrea 276
Stinson, Douglas R. 189
Struik, René 307

Thériault, Nicolas 345

Vanstone, Scott 307
Vaudenay, Serge 65
von zur Gathen, Joachim 359

Wagner, David 276
Wei, Ruizhong 221
Wu, Jiang 221

Yoshida, Hirotaka 245
Youn, Taek-Young 144
Young, Adam 128
Yung, Moti 128

Zuccherato, Robert 82

	Frontmatter
	Stream Ciphers I
	Conditional Estimators: An Effective Attack on A5/1
	Cryptanalysis of the F-FCSR Stream Cipher Family
	Fault Attacks on Combiners with Memory

	Block Ciphers
	New Observation on Camellia
	Proving the Security of AES Substitution-Permutation Network

	Modes of Operation
	An Attack on CFB Mode Encryption as Used by OpenPGP
	Parallelizable Authentication Trees
	Improved Time-Memory Trade-Offs with Multiple Data

	Public Key Cryptography
	A Space Efficient Backdoor in RSA and Its Applications
	An Efficient Public Key Cryptosystem with a Privacy Enhanced Double Decryption Mechanism

	Stream Ciphers II
	On the (Im)Possibility of Practical and Secure Nonlinear Filters and Combiners
	Rekeying Issues in the MUGI Stream Cipher

	Key Establishment Protocols and Access Control
	Tree-Based Key Distribution Patterns
	Provably Secure Tripartite Password Protected Key Exchange Protocol Based on Elliptic Curves
	An Access Control Scheme for Partially Ordered Set Hierarchy with Provable Security

	Hash Functions
	Breaking a New Hash Function Design Strategy Called SMASH
	Analysis of a SHA-256 Variant
	Impact of Rotations in SHA-1 and Related Hash Functions

	Protocols for RFID Tags
	A Scalable, Delegatable Pseudonym Protocol Enabling Ownership Transfer of RFID Tags
	Reducing Time Complexity in RFID Systems

	Efficient Implementations
	Accelerated Verification of ECDSA Signatures
	Pairing-Friendly Elliptic Curves of Prime Order
	Minimality of the Hamming Weight of the τ-NAF for Koblitz Curves and Improved Combination with Point Halving
	SPA Resistant Left-to-Right Integer Recodings
	Efficient FPGA-Based Karatsuba Multipliers for Polynomials over ${\mathbb F}_{2}$

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

