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Foreword

ETAPS 2006 was the ninth instance of the European Joint Conferences on Theory and
Practice of Software. ETAPS is an annual federated conference that was established in
1998 by combining a number of existing and new conferences. This year it comprised
five conferences (CC, ESOP, FASE, FOSSACS, TACAS), 18 satellite workshops (AC-
CAT, AVIS, CMCS, COCV, DCC, EAAI, FESCA, FRCSS, GT-VMT, LDTA, MBT,
QAPL, SC, SLAP, SPIN, TERMGRAPH, WITS and WRLA), two tutorials, and seven
invited lectures (not including those that were specific to the satellite events). We re-
ceived over 550 submissions to the five conferences this year, giving an overall accep-
tance rate of 23%, with acceptance rates below 30% for each conference. Congratula-
tions to all the authors who made it to the final programme! I hope that most of the
other authors still found a way of participating in this exciting event and I hope you will
continue submitting.

The events that comprise ETAPS address various aspects of the system develop-
ment process, including specification, design, implementation, analysis and improve-
ment. The languages, methodologies and tools which support these activities are all
well within its scope. Different blends of theory and practice are represented, with an
inclination towards theory with a practical motivation on the one hand and soundly
based practice on the other. Many of the issues involved in software design apply to
systems in general, including hardware systems, and the emphasis on software is not
intended to be exclusive.

ETAPS is a loose confederation in which each event retains its own identity, with
a separate Program Committee and proceedings. Its format is open-ended, allowing
it to grow and evolve as time goes by. Contributed talks and system demonstrations
are in synchronized parallel sessions, with invited lectures in plenary sessions. Two of
the invited lectures are reserved for “unifying” talks on topics of interest to the whole
range of ETAPS attendees. The aim of cramming all this activity into a single one-week
meeting is to create a strong magnet for academic and industrial researchers working on
topics within its scope, giving them the opportunity to learn about research in related
areas, and thereby to foster new and existing links between work in areas that were
formerly addressed in separate meetings.

ETAPS 2006 was organized by the Vienna University of Technology, in cooperation
with:

- European Association for Theoretical Computer Science (EATCS);
- European Association for Programming Languages and Systems (EAPLS);
- European Association of Software Science and Technology (EASST);
- Institute for Computer Languages, Vienna;
- Austrian Computing Society;
- The Bürgermeister der Bundeshauptstadt Wien;
- Vienna Convention Bureau;
- Intel.



VI Foreword

The organizing team comprised:

Chair: Jens Knoop
Local Arrangements: Anton Ertl
Publicity: Joost-Pieter Katoen
Satellite Events: Andreas Krall
Industrial Liaison: Eva Kühn
Liaison with City of Vienna: Ulrich Neumerkel
Tutorials Chair, Website: Franz Puntigam
Website: Fabian Schmied
Local Organization, Workshops Proceedings: Markus Schordan

Overall planning for ETAPS conferences is the responsibility of its Steering Com-
mittee, whose current membership is:

Perdita Stevens (Edinburgh, Chair), Luca Aceto (Aalborg and Reykjavı́k), Rastislav
Bodı́k (Berkeley), Maura Cerioli (Genova), Matt Dwyer (Nebraska), Hartmut Ehrig
(Berlin), José Fiadeiro (Leicester), Marie-Claude Gaudel (Paris), Roberto Gorrieri
(Bologna), Reiko Heckel (Leicester), Michael Huth (London), Joost-Pieter Katoen
(Aachen), Paul Klint (Amsterdam), Jens Knoop (Vienna), Shriram Krishnamurthi
(Brown), Kim Larsen (Aalborg), Tiziana Margaria (Göttingen), Ugo Montanari (Pisa),
Rocco de Nicola (Florence), Hanne Riis Nielson (Copenhagen), Jens Palsberg (UCLA),
Mooly Sagiv (Tel-Aviv), João Saraiva (Minho), Don Sannella (Edinburgh), Vladimiro
Sassone (Southampton), Helmut Seidl (Munich), Peter Sestoft (Copenhagen), Andreas
Zeller (Saarbrücken).

I would like to express my sincere gratitude to all of these people and organizations,
the Program Committee chairs and PC members of the ETAPS conferences, the orga-
nizers of the satellite events, the speakers themselves, the many reviewers, and Springer
for agreeing to publish the ETAPS proceedings. Finally, I would like to thank the Or-
ganizing Chair of ETAPS 2006, Jens Knoop, for arranging for us to have ETAPS in the
beautiful city of Vienna.

Edinburgh Perdita Stevens
January 2006 ETAPS Steering Committee Chair



Preface

This volume contains 21 papers presented at ESOP 2006, the annual European
Symposium on Programming, in Vienna, Austria, 27–28 March 2006. The first
ESOP was organized in 1986 by Bernard Robinet and Reinhard Wilhelm in Saar-
brcken, so this marks the 20th anniversary of ESOP, but is the 15th symposium,
since the symposia were initially held biannually. On occasion of the anniver-
sary we are particularly happy that Reinhard Wilhelm agreed to join this year’s
program committee.

The goal of ESOP has always been to bridge the gap between theory and
practice, and the conferences continue to be devoted to addressing fundamental
issues in the specification, analysis, and implementation of programming lan-
guages and systems.

The volume begins with a summary of Sophia Drossopoulou’s ESOP invited
talk, continues with the contributed ESOP papers, and ends with the abstract of
Benjamin Pierce’s ETAPS joint invited talk. The 21 ESOP papers were selected
by the program committee from 87 full paper submissions, each reviewed by
three or more reviewers, with four being the typical number. The reviews were
done by the program committee and 143 additional referees, listed here. The
accepted papers were selected during a two-week electronic discussion within
the program committee.

Thanks go to the authors, the members of the program committee and the
external referees for their excellent work, to the ESOP steering committee chair
Hanne Riis Nielson, the ETAPS steering committee chair Perdita Stevens and
the ETAPS 2006 local organization chair Jens Knoop for providing infrastructure
and gentle reminders, and finally to the Online Conference System maintainer
Martin Karrusseit for fixing server problems and adding desirable functionality.

Copenhagen, January 2006 Peter Sestoft
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Types for Hierarchic Shapes�

(Summary)

Sophia Drossopoulou1, Dave Clarke2, and James Noble3

1 Imperial College London, UK
2 CWI, Amsterdam, The Netherlands

3 Victoria University of Wellington, Wellington, NZ

Abstract. Heap entities tend to contain complex references to each
other. To manage this complexity, types which express shapes and hi-
erarchies have been suggested. We survey type systems which describe
such hierarchic shapes, how these types are used for reasoning about
programs, and applications in concurrent programming.

Most imperative programs create and manipulate heap entities (objects, or
records) which contain references to each other forming intricate topologies.
This creates complexity, and makes programs difficult to understand and ma-
nipulate. Programmers, on the other hand, tend to think in terms of shapes,
categorizations and hierarchies.

Thus, in the last decade, types describing shapes and hierarchies have been
proposed to express programming intuitions, to support verification, and for syn-
chronization and optimizations. We will discuss types for hierarchic shapes in
terms of object oriented programming, because, even though the ideas are ap-
plicable to any imperative language, most of the related research was conducted
in the context of object oriented languages.

1 Types for Hierarchic Shapes

Information hiding [28] was suggested as early as the 1970s, as a means to
make programs more robust and easy to understand. Mechanisms that achieve
information hiding by restricting the visibility of names, e.g., private/protected
annotations, are useful but insufficient. They prevent the name of an entity from
being used outside a class or package, but do not prevent a reference to an entity
from being leaked out of a structure [26].

To prevent such leaking of references, type systems have been suggested
which give guarantees about the topology of the object graph, i.e., about which
objects may access which other objects.

Ownership types [15] introduce the concept of an object owning its nested
objects; an ownership context is the set of objects with a given common owner.

� Slides available from slurp.doc.ic.ac.uk/pubs.html#esop06.

P. Sestoft (Ed.): ESOP 2006, LNCS 3924, pp. 1–6, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 S. Drossopoulou, D. Clarke, and J. Noble

Objects have a unique owner, thus ownership contexts are organized hierarchi-
cally into a tree structure. Furthermore, the owner controls access to the owned
objects, because an object may only be accessed by its direct owner, or by ob-
jects (possibly indirectly) owned by the former object’s owner. Therefore, owners
are dominators [15], where o1 dominates o2, if any path from the “outside” (or
“root” of the object graph) to o2 goes through o1.

Ownership types can thus be used to characterize the runtime structure of
object graphs. Analysis of the heaps of programs has demonstrated that indeed,
object graphs tend to have structure: In [29] analysis of heap dumps for a corpus
of programs demonstrated that the average nesting (ownership) depth of objects
is 5. In [30] heap dumps for 60 object graphs from 35 programs demonstrated
that the number of incoming and outgoing references follow a power law, whereby
the log of the number of objects with k references is proportional to log of k,
thus challenging the common perception that oriented programs are built out of
layers of homogeneous components.

The owners as dominators approach, also known as deep ownership, gives
very strong encapsulation properties which are natural in containers and nested
structures [13]. The approach has been used in program visualization [25].

On the other hand, deep ownership makes coding some popular structures,
notably iterators, rather cumbersome. To alleviate this, shallow ownership has
given up on the notion of owners as dominators. In [10] inner classes have privi-
leged access to the objects enclosed by the corresponding outer class object; i.e.,
objects of an inner class may refer to objects owned by their outer class objects.
In [14, 2] objects on the stack are allowed to break deep ownership, and to refer
to the inside of an ownership context. A more refined approach [1] decouples
the encapsulation policy from the ownership mechanism, by allowing multiple
ownership domains (contexts in our terminology) per object, and by allowing
the programmer to specify permitted aliasing between pairs of contexts.

Ownership types usually cannot easily handle change of owner, except for
externally unique objects, i.e., for objects for which references from the outside
are unique [17].

The type of an object describes the owner of the object itself as well as
the owners of the fields of the object; because these may be distinct, types are
parameterized by ownership parameters which will be instantiated by objects
enclosing the current object. This requires all types to be annotated by a number
of ownership parameters.

Universes [22] suggest a more lightweight approach, whereby references to
owned objects, or references to objects with the same owner may be used for
modifications, and references to any other objects are readonly. Thus, universe
type systems do not require ownership parameters, and instead only distinguish
between rep for owned, peer for same owner, and readonly annotations. Types
are coarser: readonly are readonly references which may point into any context.

Confined types, on the other hand, introduce the concept of classes confined
to their defining package, and guarantee that instances of a confined class are
only accessible by instances of classes from the same package; thus, they are only
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manipulated by code belonging to the same package as the class [8]. The anno-
tations required for confined types are simple, and the object graph structure
is simpler in the sense that the ownership contexts represent the packages, and
thus are statically known.

1.1 Hierarchic Shapes for Program Verification

The decomposition of heaps into disjoint sets of objects allows these objects to
be treated together for the purposes of verification. Central issues in the context
of program verification are that an object’s properties may depend on other
objects’ properties, that objects’ invariants need to be temporarily broken and
later re-established, and the treatment of abstraction layers, e.g., when a Set is
implemented in terms of a List. The notion of ownership is primarily related to
the dependence of objects’ properties rather than the topology of object graphs.

Universes were developed with the aim to support modular program verifi-
cation; in [24] universe types were applied to JML for the description of frame
properties, where modifies clauses of method specifications define which objects
may be modified. Modularity is achieved by a form of “underspecification” of
the semantics, allowing method calls to modify objects outside the ownership
context of the receiver without being mentioned in the relevant modifies-clause.

In [6] a methodology for program specification and verification is proposed,
whereby an object’s invariants may depend on (possibly indirectly) owned ob-
jects. The state space of programs is enriched to express whether an object’s
validity holds (i.e., whether its invariant holds); there is support for explicitly
altering an object validity, and explicit ownership transfer. Subclassing means
that an object’s invariant may hold at the level of different superclasses of the
given object. This approach is refined and adapted to universes in [21], and is
implemented in Boogie, and further extended in [7] to allow invariants to be
expressed over shared state.

However, the necessity to explicitly manipulate an object’s validity increases
the overhead of verification; therefore, [23] defines implicitly in which execution
states an object’s invariants must hold, based on an ownership model which is
enforced by the type system.

Representation independence, which means that a class can safely be replaced
by another “equivalent” class provided it is encapsulated, i.e., its internal repre-
sentation is owned by instances of that class, is proven in [4]. In [5] the approach
is extended to deal with shared state, recursive methods and callbacks, and the
application to program equivalence.

In a more fundamental approach, [20] develops a logic for reasoning about
mutable data structures whereby the spatial conjunction operator ∗ splits the
heap into two disjoint parts, usually one representing the part necessary for
some execution, and the other representing the rest. In [19] the conjunction ∗
is used to separate the internal resources of a module from those accessed by
its client, to support verification in the context of information hiding. Work in
[27] introduces abstract predicates, which are treated atomically outside a data
structure, but whose definition may be used within the data structure, thus
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supporting reasoning about modules, ADTs and classes. In these approaches the
heap is split afresh in each verification step; there is no hierarchy in that the
heap is just split into two parts. The approaches are very flexible, but do not
yet handle issues around the dependency of objects’ properties and breaking/re-
establishing of objects’ invariants.

Using a simpler methodology, rather than attempt full-fledged verification,
[14] describes read-write effects of methods in terms of the ownership contexts,
and uses these to determine when method calls are independent, i.e., their ex-
ecution does affect each other. In [31] the approach is extended to describe
read-effects of predicates, and to infer when some execution does not affect the
validity of some predicate.

1.2 Applications of Hierarchic Shapes

Hierarchic shapes have successfully been applied in concurrent programming,
garbage collection, and in deployment time checks of architectural invariants.

Guava [3] introduces additional type rules to Java which control synchro-
nization by distinguishing between objects which can be shared across threads,
and those which cannot. The former are monitors, and the latter are either
thread-local, or encapsulated within a monitor.

In [11] race-free programs are obtained though an extension of ownership
types, where an object may be owned not only by another object (as in the
classical system) but also by the object itself, or by a thread (to express objects
local to threads). By acquiring the lock at the root of an ownership tree, a thread
acquires exclusive access to all the members of that tree. In [9] the approach is
extended to prevent deadlocks, by requiring a partial order among all locks, and
statically checking that threads holding more than one lock acquire them in
descending order.

In real-time Java, timely reclamation of memory is achieved through scoped
types [32, 12]. Scopes correspond to ownership contexts, in that they contain ob-
jects, are hierarchically organized into a tree, and outer scopes may not hold
references to objects within more deeply nested inner scopes. When a thread
working in scope S1 enters scope S2, then S1 becomes the owner of S2. When
a thread enters a scope it is dynamically checked that it originated in its owner
scope, thus guaranteeing nesting of scopes into a tree hierarchy. Scopes are re-
leased upon thread exit.

In [16] the architectural integrity constraints of the Enterprise Java Beans
architecture, which require beans to be confined within their wrappers, are en-
forced through a lightweight confinement model and a deployment checker.

1.3 Inference of Hierarchic Shapes

The various systems for hierarchic shapes impose an extra burden of annotation
to programmers, as they require each appearance of a class in a type description
to be annotated by ownership parameters or restrictions such as rep.
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Kacheck/J [18] is a tool which infers which classes are confined within a
package in the sense of [8]. Applied on a corpus of 46,000 classes, it could deduce
that around 25% of package scoped classes are confined.

In [2] an algorithm to infer ownership types is developed and successfully
applied to 408 classes of the Java standard library. However, inferred types often
contain too many ownership parameters, so precision needs to be improved.

2 Conclusions

Hierarchic shapes have successfully been used for program visualization and ver-
ification, in concurrent programming, garbage collection, and for architectural
integrity constraints. Hierarchic shapes come in different flavours, and differ
in whether they support change of owner, whether ownership implies restric-
tions on aliasing (through deep or shallow ownership) or dependence of proper-
ties, whether the ownership contexts correspond to objects, classes or packages,
whether the number of ownership contexts is statically or dynamically known,
whether ownership is checked statically or dynamically, how many annotations
are required, and whether inference is supported.

Further work is required to combine the different uses of the shapes, to de-
velop more lightweight yet powerful systems, to develop better inference tools to
alleviate the process of annotating programs, to combine shape types with new
trends in program development (most notably with aspect oriented program-
ming), and finally to combine the ease of use offered by types with the flexibility
offered by full-fledged verification as in separation logic.
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Abstract. The type-and-effects system of the Tofte-Talpin region calcu-
lus makes it possible to safely reclaim objects without a garbage collector.
However, it requires that regions have last-in-first-out (LIFO) lifetimes
following the block structure of the language. We introduce λrgnUL, a core
calculus that is powerful enough to encode Tofte-Talpin-like languages,
and that eliminates the LIFO restriction. The target language has an
extremely simple, substructural type system. To prove the power of the
language, we sketch how Tofte-Talpin-style regions, as well as the first-
class dynamic regions and unique pointers of the Cyclone programming
language can be encoded in λrgnUL.

1 Introduction

Most type-safe languages rely upon a garbage collector to reclaim storage safely.
But there are domains, such as device drivers and embedded systems, where
today’s garbage collection algorithms result in unacceptable space or latency
overheads. In these settings, programmers have been forced to use languages,
like C, where memory management can be tailored to the application, but where
the lack of type-safety has lead to numerous bugs. To address these concerns,
we have been developing Cyclone [1], a type-safe dialect of C that is intended to
give programmers as much control over memory management as possible while
retaining strong, static typing.

The initial design of Cyclone was based upon the region type system of
Tofte and Talpin [2]. Data are allocated within lexically-scoped regions and
all of the objects in a region are deallocated at the end of the region’s scope.
Unfortunately, the last-in-first-out (LIFO) lifetimes of lexically-scoped regions
place severe restrictions on when data can be effectively reclaimed, and we found
many programs that resulted in (unbounded) leaks when compared to a garbage
collected implementation.

To address these concerns, we added a number of new features to Cyclone,
including dynamic regions and unique pointers that provide more control over
memory management. Dynamic regions are not restricted to LIFO lifetimes and
can be treated as first-class objects. They are particularly well suited for it-
erative computations, CPS-based computations, and event-based servers where
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lexical regions do not suffice. Unique pointers are essentially lightweight, dy-
namic regions that hold exactly one object. To ensure soundness, both dynamic
regions and unique pointers depend upon a notion of linear capabilities which
must be carefully threaded through a program. To alleviate this tedium, Cy-
clone provides convenient mechanisms to temporarily “open” a dynamic region
or unique pointer and treat it as if it were in a freshly allocated, lexically-scoped
region.

The efficacy of these new memory management features was detailed in previ-
ous papers [3, 4], where we analyzed a range of applications, including a stream-
ing media server, a space-conscious web server, and a Scheme runtime system
with a copying garbage collector. And while the soundness of Cyclone’s lexical
regions and type-and-effects system has been established [5, 6], a model that
justifies the soundness of the new features has eluded our grasp, due to sheer
complexity.

Therefore, the goal of this work is to provide a simple model where we can
easily encode the key features of Cyclone in a uniform target language for which
type soundness may be easily established. The first step of our encoding was
detailed in a previous paper [6], where we gave a translation from a type-and-
effects, region-based language to a monadic variant of System F called FRGN. This
calculus is summarized in Section 2. The meat of this paper picks up where this
translation left off by further translating FRGN to a substructural polymorphic
lambda calculus where the internals of the indexed monad are exposed (Sec-
tion 3). The target language and translation are extremely simple, yielding a
relatively straightforward proof of soundness for lexically scoped regions. Then,
in Section 5, we sketch how the features in the target language allow us to encode
Cyclone’s dynamic regions and unique pointers, as well as their interactions with
lexically-scoped regions. Throughout, it is our intention that the target calculus
serve as a compiler intermediate language and as vehicle for formal reasoning,
not as a high-level programming language.

2 Source Calculus: FRGN

Launchbury and Peyton Jones introduced the ST monad to encapsulate stateful
computations within the pure functional language Haskell [7]. Three key insights
give rise to a safe and efficient implementation of stateful computations. First,
a stateful computation is represented as a store transformer, a description of
commands to be applied to an initial store to yield a final store. Second, the
store can not be duplicated, because the state type is opaque and all primitive
store transformers use the store in a single-threaded manner; hence, a stateful
computation can update the store in place. Third, parametric polymorphism can
be used to safely encapsulate and run a stateful computation.

All of these insights can be carried over to the region case, where we interpret
stores as stacks of regions. We introduce the types and operations associated with
the rgn monad:

τ ::= . . . | rgn s τ | ref s τ | hnd s | pf (s1 ≤ s2)
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return : ∀ς.∀α.α→ rgn ς α
then : ∀ς.∀α, β. rgn ς α→ (α→ rgn ς β) → rgn ς β
new : ∀ς.∀α. hnd ς → α→ rgn ς (ref ς α)
read : ∀ς.∀α. ref ς α→ rgn ς α
write : ∀ς.∀α. ref ς α→ α→ rgn ς 1

runRgn : ∀α. (∀ς. rgn ς α) → α
letRgn : ∀ς1.∀α. (∀ς2. pf (ς1 ≤ ς2) → hnd ς2 → rgn ς2 α) → rgn ς1 α

coerceRgn : ∀ς1, ς2.∀α. pf (ς1 ≤ ς2) → rgn ς1 α→ rgn ς2 α
reflSub : ∀ς.pf (ς ≤ ς)
transSub : ∀ς1, ς2, ς3. pf (ς1 ≤ ς2) → pf (ς2 ≤ ς3) → pf (ς1 ≤ ς3)

The type rgn s τ is the type of computations which transform a stack indexed by
s and deliver a value of type τ . The type ref s τ is the type of mutable references
allocated in the region at the top of the stack indexed by s and containing a
value of type τ . The type hnd s is the type of handles for the region at the top
of the stack indexed by s; we require a handle to allocate a reference in a region,
but do not require a handle to read or write a reference.

The operations return and then are the unit and bind operations of the rgn
monad, the former lifting a value to a computation and the latter sequencing
computations. The next three operations are primitive stack transformers. new
takes a region handle and an initial value and yields a stack transformer, which,
when applied to a stack of regions, allocates and initializes a fresh reference
in the appropriate region, and delivers the reference and the augmented stack.
Similarly, read and write yield computations that respectively query and update
the mappings of references to values in the current stack of regions. Note that
all of these operations require the stack index ς of rgn and ref to be equal.

Finally, the operation runRgn encapsulates a stateful computation. To do
so, it takes a stack transformer as its argument, applies it to an initial empty
stack of regions, and returns the result while discarding the final stack (which
should be empty). Note that to apply runRgn, we instantiate α with the type
of the result to be returned, and then supply a stack transformer, which is
polymorphic in the stack index ς. The effect of this universal quantification is
that the stack transformer makes no assumptions about the initial stack (e.g., the
existence of pre-allocated regions or references). Furthermore, the instantiation
of the type variable α occurs outside the scope of the stack variable ς; this
prevents the stack transformer from delivering a value whose type mentions ς.
Thus, references or computations depending on the final stack cannot escape
beyond the encapsulation of runRgn.

However, the above does not suffice to encode region-based languages. The
difficulty is that, in a region-based language, it is critical to allocate variables in
and read variables from an outer (older) region while in the scope of an inner
(younger) region. To accommodate this essential idiom, we include a powerful
letRgn operation that is similar to runRgn in the sense that it encapsulates a
stateful computation. Operationally, letRgn transforms a stack by (1) creating
a new region on the top of the stack, (2) applying a stack transformer to the
augmented stack to yield a transformed stack, (3) destroying the region on the
top of the transformed stack and yielding the bottom of the transformed stack.



10 M. Fluet, G. Morrisett, and A. Ahmed

Kinds κ ::= STACK | �

Type-level Variables ε, ς, α ::= TVars
Stack Indices s ::= ς
Types τ ::= α | τ1 → τ2 | 1 | τ1 × τ2 | ∀ε:κ. τ

rgn s τ | ref s τ | hnd s | pf (s1 ≤ s2)
Type-level Terms ε ::= s | τ
Type-level Contexts Δ ::= • | Δ, ε:κ

rgn Monad Operations ops ::= runRgn | coerceRgn | transSub |
return | then | letRgn | new | read | write

Expressions e ::= ops | x | λx:τ. e | e1 e2 | 〈〉 | let 〈〉 = e1 in e2 |
〈e1, e2〉 | let 〈x1, x2〉 = e1 in e2 | Λε:κ. e | e [ε]

Expression-level Contexts Γ ::= • | Γ, x:τ

Fig. 1. Syntax of FRGN

Ignoring for the moment the argument of type pf (ς1 ≤ ς2), we see that we
may apply exactly the same reasoning as applied to runRgn: the computation
makes no assumptions about the newly augmented stack ς2, nor can the newly
augmented stack ς2 be leaked through the return value.

What, then, is the role of the pf (ς1 ≤ ς2)? The answer lies in the fact that the
stack index ς2 does not denote an arbitrary stack; rather, it should denote a stack
that is related to ς1 by the addition of a newly created region (i.e., ς2 ≡ r::ς1). In
fact, we may consider ς1 to be a subtype of ς2, since every region in the stack ς1 is
also in the stack ς2; values of type pf (s1 ≤ s2) are witnesses of this relationship.
The operation coerceRgn applies a subtyping witness to a stack transformer
for the substack to yield a stack transformer for the superstack; intuitively, the
operation is sound as a stack transformer may simply ignore extra regions. The
operations reflSub and transSub are combinators witnessing the reflexivity and
transitivity of the subtyping relation.

Figure 1 gives the complete syntax for FRGN, which is a natural extension of
System F. We introduce a simple kind system to support abstraction over both
types and stack indices. (In the text, we often omit kind annotations, using the
convention that ς stands for a type-level variable of STACK kind, and α of �.)

We adopt the standard type system for System F; the only typing judgement
of interest is Δ;Γ � e : τ meaning that expression e has type τ , where Δ records
the free type-level variables and their kinds and Γ records the free expression-
level variables and their types. The types for the rgn monad operations are as
given in the text above.

Our previous work [6] gave an operational semantics for FRGN and proved the
type soundness of FRGN. However, the operational semantics of FRGN is somewhat
cumbersome, due to the intertwining of contexts for pure evaluation and monadic
evaluation. Hence, in the present setting, we will define the operational behavior
of FRGN by its translation into the target language of Section 3.
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3 Target Calculus: λrgnUL

In another line of work [8], we introduced λURAL, a core substructural polymor-
phic λ-calculus, and then extended it to λrefURAL by adding a rich collection of
mutable references. Providing four sorts of substructural qualifiers (unrestricted,
relevant, affine, and linear) allowed us to encode and study the interactions of
different forms of uniqueness that appear in other high-level programming lan-
guages. Notable features of λrefURAL include: deallocation of references; strong
(type-varying) updates; and storage of unique objects in shared references.

Here, we augment λrefURAL by adding region primitives, and also simplify the
language by removing features, such as the relevant and affine qualifiers, that do
not play a part in the translation. We call the resulting language λrgnUL.

In contrast to the letRgn operation of FRGN, which encapsulates the creation
and destruction of a region, the primitives of λrgnUL include newrgn and freergn
for separately creating and destroying a region. All access to a region (for allo-
cating, reading, and writing references) is mediated by a linear capability that is
produced by newrgn and consumed by freergn.

As noted above, λrgnUL is a substructural polymorphic λ-calculus. A substruc-
tural type system provides the core mechanisms necessary to restrict the number
and order of uses of data and operations. In our calculus, types and variables
are qualified as unrestricted (U) or linear (L). Essentially, unrestricted variables
are allowed to be used an arbitrary number of times, while linear variables are
allowed to be used exactly once.

Figure 2 gives the syntax for λrgnUL, excluding intermediate terms that would
appear in an operational semantics. Many of the types and expressions are based
on a traditional polymorphic λ-calculus.

We structure our types τ as a qualifier q applied to a pre-type τ , yielding the
two sorts of types noted above. The qualifier of a type dictates the number of uses
of variables of the type, while the pre-type dictates the introduction and elimina-
tion forms. The pre-types 1�, τ1 � · · ·� τn, and τ1 � τ2 correspond to the unit,
product, and function types of the polymorphic λ-calculus. Quantification over
qualifiers, region names, pre-types, and types is provided by the pre-types ∀ε:κ. τ
and ∃ε:κ. τ . (In the text, we often omit kind annotations, using the convention
that ξ stands for a type-level variable of QUAL kind, � of RGN, α of �, and α of �.)

The pre-types ref r τ and hnd r are similar to the corresponding types in FRGN;
the former is the type of mutable references allocated in the region r and the
latter is the type of handles for the region r. The pre-type cap r is the type of
capabilities for accessing the region named r. We shall shortly see how linear
capabilities effectively mediate access to a region.

Space precludes us from giving a detailed description of the type system for
λrgnUL; the major features are entirely standard for a substructural setting [9, 8].
First, in order to ensure the correct relationship between a data structure and
its components, we extend the lattice ordering on constant qualifiers to arbitrary
qualifiers (Δ � q � q′), types (Δ � τ � q′), and contexts (Δ � Γ � q′). Second,
we introduce a judgement Δ � Γ1 � Γ2 � Γ that splits the assumptions in Γ
between the contexts Γ1 and Γ2. Splitting the context is necessary to ensure that
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Kinds κ ::= QUAL | RGN | � | �

Type-level Variables ε, ξ, �, α, α ::= TVars
Constant Qualifiers q ∈ Quals ={U, L} U � L
Qualifiers q ::= ξ | q

Constant Region Names r ∈ RNames
Region Names r ::= � | r

PreTypes τ ::= α | τ1 � τ2 | 1� |
τ1 � · · ·� τn | ∀ε:κ. τ | ∃ε:κ. τ |
ref r τ | hnd r | cap r

Types τ ::= α | qτ
Type-level Terms ε ::= q | r | τ | τ
Type-level Contexts Δ ::= • | Δ, ε:κ

Region Primitives prims ::= newrgn | freergn | new | read | write
Expressions e ::= prims | x | qλx:τ. e | e1 e2 | q〈〉 | let 〈〉 = e1 in e2 |

q〈e1, . . . , en〉 | let 〈x1, . . . , xn〉 = e1 in e2 |
qΛε:κ. e | e [ε] | qpack(ε:κ, e) | let pack(ε:κ, x) = e1 in e2

Expression-level Contexts Γ ::= • | Γ, x:τ

Fig. 2. Syntax of λrgnUL

variables are used appropriately by sub-expressions. Note that � must ensure
that an L assumption appears in exactly one sub-context, while U assumptions
may appear in both sub-contexts.

The main typing judgement has the form Δ;Γ � e : τ ; Figure 3 gives typing
rules for each of the expression forms of λrgnUL.

Finally, we assign types for each of the region primitives of λrgnUL:

newrgn : U(L1� � L∃�. L(Lcap � � Uhnd �))
freergn : U∀�. U(L(Lcap � � Uhnd �) � L1�)

new : U∀�. U∀α. U(L(Lcap � � Uhnd � � Uα) � L(Lcap � � U(ref � Uα)))
read : U∀�. U∀α. U(L(Lcap � � U(ref � Uα)) � L(Lcap � � Uα))
write : U∀�. U∀α. U(L(Lcap � � U(ref � Uα) � Uα) � L(Lcap � � U1�))

We have purposefully “streamlined” the type of the reference primitives in or-
der to simplify the exposition. For example, note that we may only allocate,
read, and write references whose contents are unrestricted. However, there is
no fundamental difficulty in adopting a richer set of reference primitives (à la
λrefURAL [8]), which would allow references to contain arbitrary values.

Space again precludes us from giving a detailed description of the operational
semantics for λrgnUL; however, it is entirely standard for a region-based language.
The small-step operational semantics is defined by a relation between configu-
rations of the form (ψ, e), where ψ is a global heap mapping region names to
regions and regions are mappings from pointers to values.

The primitives newrgn and freergn perform the complementary actions of
creating and destroying a region in the global heap. Note that the type of newrgn
specifies that it returns an existential package, hiding the name of the fresh re-
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Δ;Γ 
 e : τ

Δ; •, x:τ 
 x : τ

Δ;Γ1 � Γ2 � Γ Δ 
 Γ1 � U Δ;Γ2 
 e : τ

Δ;Γ 
 e : τ

Δ 
 q : QUAL

Δ; • 
 q〈〉 : q1�

Δ 
 Γ1 � Γ2 � Γ Δ;Γ1 
 e1 : q1� Δ;Γ2 
 e2 : τ
Δ;Γ 
 let 〈〉 = e1 in e2 : τ

Δ 
 Γ1 � · · ·� Γn � Γ
Δ;Γ1 
 e1 : τ1 Δ 
 τ1 � q . . .

Δ;Γn 
 en : τn Δ 
 τn � q

Δ;Γ 
 q〈e1, . . . , en〉 : q(τ1 � · · ·� τn)

Δ 
 Γ1 � Γ2 � Γ
Δ;Γ1 
 e1 : q(τ1 � · · ·� τn)

Δ;Γ2, x1:τ1, . . . , xn:τn 
 e2 : τ
Δ;Γ 
 let 〈x1, . . . , xn〉 = e1 in e2 : τ

Δ 
 Γ � q
Δ;Γ, x:τx 
 e : τ

Δ;Γ 
 qλx:τx. e : q(τx � τ )

Δ 
 Γ1 � Γ2 � Γ
Δ;Γ1 
 e1 : q(τx � τ ) Δ;Γ2 
 e2 : τx

Δ;Γ 
 e1 e2 : τ

Δ 
 Γ � q Δ, ε:κ;Γ 
 e : τ
Δ;Γ 
 qΛε:κ. e : q(∀ε:κ. τ )

Δ;Γ 
 e1 : q(∀ε:κ. τ ) Δ 
 ε2 : κ
Δ;Γ 
 e1 [ε2] : τ [ε2/ε]

Δ 
 ε1 : κ Δ;Γ 
 e2 : τ [ε1/ε]
Δ 
 τ [ε1/ε] � q

Δ;Γ ;Σ 
 qpack(ε1:κ, e2) : q(∃ε:κ. τ )

Δ 
 Γ1 � Γ2 � Γ Δ 
 τ ′ : �
Δ;Γ1 
 e1 : q(∃ε:κ. τ )
Δ, ε:κ;Γ2, x:τ 
 e2 : τ ′

Δ;Γ 
 let pack(ε:κ, x) = e1 in e2 : τ ′

Fig. 3. Static Semantics of λrgnUL

gion. The primitives new, read, and write behave precisely as their counterparts
in any region-based language. Additionally, their types specify that they thread
Lcap � values through the evaluation; the capability is simply presented at each
access of a region and returned to allow future access. In the semantics, the
capability is represented as a dummy token, which has no run-time significance.

As expected, the type system for λrgnUL is sound with respect to its opera-
tional semantics:

Theorem 1 (λrgnUL Safety). If •; • 
 e1 : τ and ({}, e1) �−→∗ (ψ2, e2), then either
there exists v such that e2 ≡ v or there exists ψ3 and e3 such that (ψ2, e2) �−→ (ψ3, e3).

We have formally verified this result (for a rich superset of λrgnUL) in the Twelf sys-
tem [10] using its metatheoremchecker [11]. The mechanized proof can be obtained
at http://www.cs.cornell.edu/People/fluet/research/substruct-regions.

4 Translation: FRGN to λrgnUL

Having introduced both our source and target calculi, we are in a position to
consider a (type-preserving) translation from FRGN to λrgnUL. Before giving the
details, we discuss a few of the high-level issues.
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First, we note that FRGN has no notion of linearity in the syntax or type
system. Rather, all variables and types are implicitly considered unrestricted.
Hence, we can expect that the translation of all FRGN expressions will yield
λrgnUL expressions with a U qualified type.

On the other hand, we claimed that a stateful region computation could
be interpreted as a stack transformer. Recall that the type rgn s τ is the type
of computations which transform a stack indexed by s and deliver a value of
type τ . A key characteristic of FRGN is that all primitive stack transformers are
meant to use the stack in a single-threaded manner; hence, a stateful compu-
tation can update the stack in place. This single-threaded behavior is precisely
the sort of resource management that may be captured by a substructural type
system. Hence, we can expect that the representation of a stack of regions in
λrgnUL will be a value with L qualified type. In particular, we will represent a
stack of regions as a sequence of linear capabilities, formed out of nested linear
tuples.

Third, we must be mindful of a slight mismatch between the hnd and ref
types in FRGN and the corresponding types in λrgnUL. Recall that, in FRGN, hnd s
and ref s τ are handles for and references allocated in the region at the top of
the stack indexed by s. Whereas, in λrgnUL, hnd r and ref r τ explicitly name the
region of the handle or reference. This subtle distinction (whether the region is
implicit or explicit) will need to be handled by the translation.

Bearing these issues in mind, we turn our attention to the translation of
FRGN type-level terms given in Figure 4. S� �s� translates a FRGN term of STACK
kind to a λrgnUL term of � kind. As the STACK kind of FRGN is inhabited only
by variables, the translation is trivial: in λrgnUL, ς is considered a variable of �
kind.

FRGN STACK to λrgnUL �
S� �ς� = ς

FRGN � to λrgnUL �
T� �τ� = UT� �τ�

FRGN � to λrgnUL � (functional types)
T� �α� = α

T� �τ1 → τ2� = T� �τ1� � T� �τ2�
T� �1� = 1�

T� �τ1 × τ2� = T� �τ1� � T� �τ2�
T� �∀α: � . τ � = ∀α:�. T� �τ�

T� �∀ς:STACK. τ � = ∀ς: � . T� �τ�

FRGN � to λrgnUL � (rgn monad types)
T� �rgn s τ� = S� �s� � L(S� �s� � T� �τ�)

T� �pf (s1 ≤ s2)� = ∃β: � . Iso(S� �s2� ,
L(S� �s1� � β))

T� �hnd s� = ∃�:RGN. U(U∃β: � . Iso(S� �s� , L(β � L(cap �))) � U(hnd�))
T� �ref s τ� = ∃�:RGN. U(U∃β: � . Iso(S� �s� , L(β � L(cap �))) � U(ref � T� �τ�))

λrgnUL Type-level Macros
Iso(τ1, τ2) = U(U(τ1 � τ2) � U(τ2 � τ1))

Fig. 4. Type-level Translation
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T� �τ� and T� �τ� translate a FRGN term of � kind to λrgnUL terms of � and
� kinds, respectively. As we observed above, when we translate a FRGN type
to a λrgnUL type, we ensure that the result is a U qualified type. The T� �τ�
translation is straightforward on the functional types. (However, note that a
FRGN variable α of � kind is translated to a λrgnUL variable α of � kind; this
ensures that every type corresponding to a FRGN type is manifestly qualified
with U.)

More interesting are the translations of the types associated with the rgn
monad. In the translation of the rgn s τ type, we see the familiar store (stack)
passing interpretation of computations. Since the representation of a stack of
regions is linear, the resulting store/value pair is qualified with L. Next, consider
the translation of the pf (s1 ≤ s2) type. Recall that it is the type of witnesses
to the fact that the stack indexed by s1 is a subtype of the stack indexed by s2.
Hence, we translate to a type that expresses the isomorphism between S� �s2� and
L(S� �s1��β), for some “slack” β. Note that while the types S� �s2�, S� �s1�, and
β may be linear, the pair of functions witnessing the isomorphism is unrestricted.
This corresponds to the fact that the proof that s1 is a subtype of s2 is persistent,
while the existence of the stacks s1 and s2 are ephemeral.

The translation of the hnd s and ref s τ types are similar. An existentially
bound region name � fixes the region for the λrgnUL handle or reference, while
an isomorphism witnesses the fact that � may be found within the stack
S� �s�.

With the translation of FRGN type-level terms in place, the translation of
FRGN expressions follows almost directly. We elide the translation of the intro-
duction and elimination forms for the functional types in FRGN (it is simply the
homomorphic mapping of the given expression translations) and focus on the
translation of the rgn monad operations. For readability, we give translations for
fully applied region primitives only, assuming that partially applied primitives
have been eta-expanded. The translation of return and then follow directly
from our store (stack) passing interpretation of rgn s τ types:

E �return [s] [τα] e� =
let res :T� �τα� = E �e� in
Uλstk :S� �s� . L〈stk , res〉

E �then [s] [τα] [τβ] e1 e2� =
let f :T� �rgn s τα� = E �e1� in
let g:T� �τα → rgn s τβ� = E �e2� in
Uλstk :S� �s� . let 〈stk , res〉 = f stk in

g res stk

The translation of letRgn is the most complicated, but breaks down into
conceptually simple components. We bracket the execution of the inner com-
putation with a newrgn/freergn pair, creating and destroying a new region.
We construct the representation of the new stack stk2 for the inner compu-
tation by pairing the old stack stk1 with the new region capability cap. Fi-
nally, we construct isomorphisms witnessing the relationships between the new
region capability and the new stack and between the old stack and the new
stack. We carefully chose the isomorphism types so that the identity func-
tion suffices as a witness. Putting all of these pieces together, we have the
following:
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E �letRgn [s1] [τα] e� =
let f :T� �∀ς2:STACK. pf (s1 ≤ ς2) → hnd ς2 → rgn ς2 τα� = E �e� in
Uλstk1:S� �s1� . let pack(�:RGN, 〈cap, hnd〉) = newrgn L〈〉 in

let id = Uλstk :L(S� �s1� � Lcap �). stk in
let ppf = Upack(L(cap �):�, U〈id , id〉) in
let phnd = Upack(�:RGN, U〈Upack(S� �s1� :�, U〈id , id〉),hnd〉) in
let stk2 = L〈stk1, cap〉 in
let 〈stk2, res〉 = f [L(S� �s1� � L(cap �))] ppf phnd stk2 in
let 〈stk1, cap〉 = stk2 in
let 〈〉 = freergn [�] L〈cap, hnd〉 in
L〈stk1, res〉

We can see the isomorphisms in action in the translation of coerceRgn:

E �coerceRgn [s1] [s2] [τα] e1 e2� =
let ppf :T� �pf (s1 ≤ s2)� = E �e1� in
let f :T� �rgn s1 τα� = E �e2� in
Uλstk2:S� �s2� . let pack(β:�, 〈spl , cmb〉) = ppf in

let 〈stk1, stkβ〉 = spl stk2 in
let 〈stk1, res〉 = f stk1 in
let stk2 = cmb L〈stk1, stkβ〉 in
L〈stk2, res〉

Note how the the stack “slack” stkβ is split out and then combined in, bracketing
the execution of the rgn s1 τα computation.

As a final example, we can see an “empty” stack (represented by a L1� value)
being provided as the initial stack in the translation of runRgn:

E �runRgn [τα] e� =
let f :T� �∀ς:STACK. rgn ς τα� = E �e� in
let 〈〈〉, res〉 = f [L1�] L〈〉 in res

The translations of the remaining rgn monad primitives are given in Figure 5.
We strongly believe, but have not mechanically verified, that the translation is
type preserving.

5 Extensions

The primary advantage of working at the target level is that we can expose the
capabilities for regions as first-class objects instead of indirectly manipulating
a stack of regions. In turn, this allows us to avoid the last-in-first-out lifetimes
dictated by a lexically-scoped letRgn. For example, we can now explain the
semantics for Cyclone’s dynamic regions and unique pointers using the concepts
in the target language.

Dynamic Regions. In Cyclone, a dynamic region r is represented by a key
(key r) which is treated linearly by the type system. At the target level, a key
can be represented by a pair of the region’s capability and its handle:

key r = L(Lcap r � Uhnd r)

Then creating a new key is accomplished by calling newrgn, and destroying the
key is accomplished by calling freergn.
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E �new [s] [τα] e1 e2� =
let phnd :T� �hnd s� = E �e1� in
let x:T� �τα� = E �e2� in
Uλstk :S� �s� . let pack(�:RGN, 〈pack(β:�, 〈prj , inj 〉), hnd〉) = phnd in

let 〈stkβ , cap〉 = prj stk in
let 〈cap, ref 〉 = new [�] [T� �τα�] L〈cap, hnd , x〉 in
let pref = Upack(ρ:RGN, U〈Upack(β:�, U〈prj , inj 〉), ref 〉) in
let stk = inj L〈stkβ, cap〉 in
L〈stk , pref 〉

E �read [s] [τα] e� =
let pref :T� �ref s τα� = E �e� in
Uλstk :S� �s� . let pack(�:RGN, 〈pack(β:�, 〈prj , inj 〉), ref 〉) = pref in

let 〈stkβ , cap〉 = prj stk in
let 〈cap, res〉 = read [�] [T� �τα�] L〈cap, ref 〉 in
let stk = inj L〈stkβ, cap〉 in
L〈stk , res〉

E �write [s] [τα] e1 e2� =
let pref :T� �ref s τα� = E �e1� in
let x:T� �τα� = E �e2� in
Uλstk :S� �s� . let pack(�:RGN, 〈pack(β:�, 〈prj , inj 〉), ref 〉) = pref in

let 〈stkβ , cap〉 = prj stk in
let 〈cap, res〉 = write [�] [T� �τα�] L〈cap, ref , x〉 in
let stk = inj L〈stkβ, cap〉 in
L〈stk , res〉

E �reflSub [s]� =
let spl = Uλstk :S� �s� . let su = L〈stk , L〈〉〉 in su in
let cmb = Uλsu:L(S� �s� � L1�). let 〈stk , 〈〉〉 = su in stk in
Upack(L1�:�, U〈spl , cmb〉)

E �transSub [s1] [s2] [s3] e1�2 e2�3� =
let ppf 1�2:T� �pf (s1 ≤ s2)� = E �e1�2� in
let ppf 2�3:T� �pf (s2 ≤ s3)� = E �e2�3� in
let pack(α:�, 〈spl2�1�α, cmp1�α�2〉) = ppf 1�2 in
let pack(β:�, 〈spl3�2�β , cmp2�β�3〉) = ppf 2�3 in
let spl = Uλstk3:S� �s3� . let 〈stk2, stkβ〉 = spl3�2�β stk3 in

let 〈stk1, stkα〉 = spl2�1�α stk2 in
let sss = L〈stk 1,

L〈stkβ , stkα〉〉 in
sss in

let cmb = Uλsss :L(S� �s1� � L(β � α)). let 〈stk1, 〈stkβ , stkα〉〉 = sss in
let stk2 = cmb1�α�2

L〈stk1, stkα〉 in
let stk3 = cmb2�β�3

L〈stk2, stkβ〉 in
stk3 in

Upack(L(β � α):�, U〈spl , cmb〉)

Fig. 5. Translation of rgn Monad Operations



18 M. Fluet, G. Morrisett, and A. Ahmed

To access a value allocated in a dynamic region, or to allocate a value in a
dynamic region, Cyclone requires that the region be opened by presenting its
key. The openDRgn is similar to a letRgn in that it conceptually pushes the
dynamic region onto the stack of regions, executes the body, and then pops the
region off the stack. During execution of the openDRgn’s body, the key becomes
inaccessible, ensuring that the region cannot be deallocated. At the end of the
openDRgn scope, the key is given back. The programmer is then able to destroy
the region or later re-open it.

The openDRgn primitive can be implemented as a higher-order function with
a signature like this (eliding the L and U qualifiers, and using source-level rgn to
abbreviate the store passing translation):

openDRgn : ∀�, ς, α.key � � (hnd � � rgn (ς � cap �)α) � rgn ς (α � key �)

The function takes the key for � and a computation, which, when given the
handle for �, expects to run on a stack of the form ς � cap � for some ς. Once
applied, openDRgn returns a computation, which, when run on a stack ς, opens
up the key to get the capability and handle, pushes the capability for � on the
stack, passes the handle to the computation and runs it in the extended stack
to produce an α value. Then, it pops the capability, and returns a (linear) pair
of the result and the re-packaged key. (We leave the definition of openDRgn as
an exercise for the reader.)

Furthermore, since keys are first-class objects, they can be placed in data
structures. For example, in our space-conscious web server [3], we use a list of
dynamic regions, each of which holds data corresponding to a particular con-
nection. When we receive data from a connection, we find the corresponding
key, open it up, and then place the data in the region. When a connection is
terminated, we pull the corresponding key out of the queue, perform freeDRgn
on it, and thus deallocate all of the data associated with the connection. The
price paid for this flexibility is that the list of keys must be treated linearly to
avoid creating multiple aliases to the keys.

Unique Pointers. Cyclone’s unique pointers are anonymous dynamic regions,
without the handle. Like the keys of dynamic regions, they can be destroyed at
any time and the type system treats them linearly. At the target level, a unique
pointer to a τ object can be represented as a term with type:

L∃�. L(Lcap � � U(Lcap � � U1�) � U(ref � τ ))

Note that the actual reference is unrestricted, whereas the capability is linear; the
handle is not available for further allocations, but is caught up in the function
closure, which may be applied to free the region. This encoding allows us to
“open” a unique pointer, just as we do dynamic regions, and for a limited scope,
freely access (and duplicate) the underlying reference. Of course, during the
scope of the open, we temporarily lose the capability to deallocate the object,
but regain the capability upon exit from the scope.

In practice, the ability to open dynamic regions and unique pointers has
proven crucial for integrating these facilities into the language. They make it
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relatively easy to access a data structure and mitigate some of the pain of thread-
ing linear resources through the program. Furthermore, they make it possible
to write re-usable libraries that manipulate data allocated in lexically-scoped
regions, dynamic regions, or as unique objects.

Phase-Splitting. In our target language, we represented capabilities and proof
witnesses as explicit terms. But we have also crafted the language and transla-
tion so that these values are never actually needed at run-time. For instance,
our witnesses only manipulate (products of) capabilities, which are themselves
operationally irrelevant. These objects are only used to make the desired safety
properties easy to check statically. So in principle, we should be able to erase
the capabilities and witnesses before running a program.

To realize this goal, we should introduce a phase distinction via another
modality, where we treat capabilities and proof witnesses as static objects, and
all other terms as dynamic. The modality would demand that, as usual, static
computations cannot depend upon dynamic values. Furthermore, we must be
sure that witness functions (i.e., proof objects) are in fact total, effect-free func-
tions so that they and their applications to capabilities may be safely erased.
This sort of phase-splitting is effectively used in other settings that mix pro-
gramming languages and logics, such as Xi et al.’s Applied Type System [12]
and Sheard’s Omega [13]. Perhaps the most promising approach is suggested by
Mandelbaum, Walker, and Harper’s work [14], where they developed a two-level
language for reasoning about effectful programs.

Theprimaryreasonwedidnotintroducephasesplittinghereisthatitcomplicates
thetranslationandthetargetlanguage,andthusobscureswhatisactuallyarelatively
simpleandstraightforwardencoding.Asecondaryreasonisthat,asdemonstratedby
thecitedworkabove,therearemanydomainsthatwouldbenefitfromageneralsolution
totheproblemoftyperelevant,butoperationallyirrelevant,values.

6 Related Work and Open Issues

There has been much prior work aimed at relaxing the stack discipline imposed
on region lifetimes by the Tofte-Talpin (TT) approach. The ML Kit [15] uses a
storage-mode analysis to determine when it is safe to deallocate data in a region
(known as region resetting) prior to the deallocation of the region itself. The
safety of the storage-mode analysis has not been established formally.

Aiken et al. [16] eliminate the requirement that region allocation and deallo-
cation should coincide with the beginning and end of the scope of region variables
introduced by the letregion construct. They use a late allocation/early deallo-
cation approach that delays the allocation of a region until just before its first
access, and deallocates the region just after its last access. We believe that the
results of their analysis can be encoded explicitly in our target language.

Unlike the previous two approaches which build on TT, Henglein et al. [17]
present a region system that (like ours) replaces the letregion primitive with
explicit commands to create and free a region. To ensure safety, they use a Hoare-
logic-based region type system and consequently have no support for higher-order
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functions. While they provide an inference algorithm to annotate programs with
region manipulation commands, we intend for our system to serve as a target
language for programs annotated using TT region inference, or those written in
languages like Cyclone. The Calculus of Capabilities [18] is also intended as a
target for TT-annotated programs, but unlike λrgnUL, it is defined in terms of a
continuation-passing style language and does not support first-class regions.

The region system presented by Walker and Watkins [19] is perhaps the
most closely related work. Like our target, they require a linear capability to be
presented upon each access to a region. However, they provide a primitive, similar
to letregion, that allows a capability to be temporarily treated as unrestricted
for convenience’s sake. We have shown that no such primitive is needed. Rather,
we use a combination of monadic encapsulation (to thread capabilities) coupled
with unrestricted witnesses to achieve the same flexibility. In particular, our open
construct for dynamic regions (and unique pointers) achieves the same effect as
the Walker-Watkin’s primitive.

A related body of work has used regions as a low-level primitive on which to
build type-safe garbage collectors [20, 21, 22]. Each of these approaches requires
non-lexical regions, since, in a copying collector, the from- and to-spaces have
non-nested lifetimes. Hawblitzel et al. [22] introduce a very low-level language
in which they begin with a single linear array of words, construct lists and
arrays out of the basic linear memory primitives, introduce type sequences for
building regions of nonlinear data. Such a foundational approach is admirable,
but there is a large semantic gap between a high-level language and such a target.
Hence, λrgnUL serves as a useful intermediate point, and we may envision further
translation from λrgnUL to such a low-level language.

The Vault language [23, 24] includes many of the features described in our
target, including linear capabilities for accessing resources and a mechanism,
called adoption, for temporarily transferring ownership of a capability to another
capability, for a limited scope. But Vault also includes support for strong (i.e.,
type-changing) updates on linear resources, as well as features for temporarily
treating an unrestricted resource as if it were linear. On the other hand, to the
best of our knowledge, there exists no formal model that justifies the soundness
of all of these mechanisms. We believe that it may be possible to combine λrgnUL

with our previous work on strong updates [25, 26] to achieve this.
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Abstract. We present a type system for a compile-time analysis of
heap-space requirements of Java style object-oriented programs with ex-
plicit deallocation.

Our system is based on an amortised complexity analysis: the data is
arbitrarily assigned a potential related to its size and layout; allocations
must be “payed for” from this potential. The potential of each input then
furnishes an upper bound on the heap space usage for the computation
on this input.

We successfully treat inheritance, downcast, update and aliasing. Ex-
ample applications for the analysis include destination-passing style and
doubly-linked lists.

Type inference is explicitly not included; the contribution lies in the
system itself and the nontrivial soundness theorem. This extended ab-
stract elides most technical lemmas and proofs, even nontrivial ones,
due to space limitations. A full version is available at the authors’ web
pages.

1 Introduction

Consider a Java-like class-based object-oriented language without garbage col-
lection, but with explicit deallocation in the style of C’s free(). Such programs
may be evaluated by maintaining a set of free memory units, the freelist. Upon
object creation a number of heap units required to store the object is taken from
the 3 provided it contains enough units; each deallocated heap unit is returned
to the freelist. An attempt to create a new object with an insufficient freelist
causes unsuccessful abortion of the program. This also happens upon attempts
to access a deallocated object via a stale pointer.

It is now natural to ask what initial size the freelist must have so that a
given program may be executed without causing unsuccessful abortion due to
penury of memory. If we know such a bound on the initial freelist size we can
then execute our program within a fixed amount of memory which can be useful
in situations where memory is a scarce resource like embedded controllers or
SIM cards. It may also be useful to calculate such bounds for individual parts of
a program so that several applications can be run simultaneously even if their
maximum memory needs exceed the available capacity [6].

Typically, the required initial freelist size will depend on the data, for example
the size of some initial data structure, e.g., a phone book or an HTML document.
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We therefore seek to determine an upper bound on the required freelist size as
a function of the input size. We propose to approach this input dependency by
a type-based version of amortised analysis in the sense of Tarjan [17].

Amortised Analysis. In amortised analysis data structure(s) are assigned an
arbitrary nonnegative number, the potential. The amortised cost of an operation
is its total cost (time or space) plus the difference in potential before and after the
operation. The sum of the amortised costs plus the potential of the initial data
structure then bounds (from above) the actual cost of a sequence of operations. If
the potential is cleverly chosen then the amortised cost of individual operations
is zero or a constant even when their actual cost is difficult to determine. The
simplest example is an implementation of a queue using two stacks A and B.
Enqueuing is performed on A, dequeuing is performed on B unless B is empty
in which case the whole contents of A are moved to B prior to dequeuing. Thus,
dequeuing sometimes takes time proportional to the size of A. If we decree that
the size of A is the potential of the data then enqueuing has an amortised cost
of 2 (one for the actual cost, one for the increase in potential). Dequeuing on the
other hand has an amortised cost of 1 since the cost of moving A over to (the
empty stack) B cancels out against the decrease in potential. Thus, the actual
cost of a sequence of operations is bounded by the initial size of A plus twice the
number of enqueues plus the number of dequeues. In this case, one can also see
this directly by observing that each element is moved exactly three times: once
into A, once from A to B, once out of B.

Type-Based Potential. In the above queue example, both stacks have the
same type, but each element of A contributes 1 to the overall potential, whereas
each element of B contributes a potential of 0. We recorded this information
within the type by adding a number to each type constructor in our previous
work [9]. However, object-oriented languages require a more complex approach
due to aliasing and inheritance: Where in a purely functional setting a refined
type might consist of a simple type together with a number a refined (class)
type will consist of a number together with refined types for the attributes
and methods. In order to break the recursive nature of this requirement we
resort to explicit names for refined types as is common practice in Java (though
not in OCaml): we introduce a set of names, the views. A view on an object
shall determine its contribution to the potential. This is formally described in
Section 3, but we shall convey a good intuition here. A refined type then consists
of a class C and a view r and is written Cr. We sometimes conveniently use a
refined type where only a class or a view is needed.

The fact that views are in some sense orthogonal to class types caters for
typecasting. If, e.g., x has refined type Cr, then (D)x will have refined type Dr.1

1 Peter Thiemann, Freiburg, independently and simultaneously used a similar ap-
proach in as yet unpublished work on a generic type-based analysis for Java. His
main application is conformance of XML-document generators to standards and his
treatment of aliasing is different from ours.
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The meaning of views is given by three maps ♦ defining potentials, A defining
views of attributes, and M defining refined method types. More precisely, ♦ :
Class × View → Q+ assigns each class its potential according to the employed
view. Next, A : Class×View×Field→ View×View determines the refined types
of the fields. A different view may apply according to whether a field is read from
(get-view) or written to (set-view), hence the codomain View×View. Subtyping
of refined types is behavioural and covariant in the get-view and contravariant
in the set-view.

Finally, M : Class × View ×Method → P(Views of Arguments → Effect ×
View of Result) assigns refined types and effects to methods. The effect is a
pair of numbers representing the potential consumed before and released after
method invocation. We allow polymorphism in the sense that, as implied by the
powerset symbol P one method may have more than one (or no) refined typing.

One and the same runtime object can have several refined types at once, since
it can be regarded through different views at the same time. In fact, each access
path leading from the current scope via field access to an object will determine
its individual view on the object by the repeated application of A. The overall
potential of a runtime configuration is the (possibly infinite) sum over all access
paths in scope that lead to an actual object. Thus, if an object has several
access paths leading to it (aliasing) it may make several contributions to the
total potential. Our typesystem has an explicit contraction rule: If a variable is
used more often, the associated potential is split by assigning different views to
each use. The potential also depends on the dynamic class types of each object.
However, our runtime model is the standard one which does not include any
view/potential related information.

Our main contribution is the proof that the total potential plus the heap used
never increases during execution. In other words, any object creation must be
paid for from the potential in scope and the potential of the initial configuration
furnishes an upper bound on the total heap consumption.

In this way, we can model data-dependent memory usage without manipulat-
ing functions and recurrences, as is the case in approaches based on sized types
and also without any alteration to the runtime model.

We will now describe our approach in more detail using three suggestive
examples: a copying function for lists, imperative append in destination passing
style, and doubly-linked lists. These examples show many of the salient features
of our methods: heap usage proportional to input size (the copying example),
correct accounting for aliasing (destination passing style), circular data (doubly-
linked lists). Especially the last example seems to go beyond the scope of current
methods based on sized types or similar.

Example: Copying singly-inked lists in an object-oriented style:

abstract class List { abstract List copy(); }
class Nil extends List { List copy() { return this; }}
class Cons extends List { int elem; List next;

List copy() { Cons res = new Cons(); res.elem = this.elem;
res.next = this.next.copy(); return res; }}
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It is clear that the memory consumption of a call x.copy() will equal the length
of the list x. To calculate this formally we construct a view a which assigns to
List itself the potential 0, to Nil the potential 0 and to Cons the potential 1.
Another view is needed to describe the result of copy() for otherwise we could
repeatedly copy lists without paying for it. Thus, we introduce another view b
that assigns potential 0 to all classes. The complete specification of the two views
is shown here, together with other views used later:

♦(·) a b c d n
List 0 0 0 0 0
Nil 0 0 0 0 0
Cons 1 0 0 1 0

Consa Consb Consc Consd Consn

Aget(· , next) a b a n n
Aset(· , next) a b a a a

M
(
{Lista, Consa, Nila}, copy

)
= () 0/0−−−→b

(1.1)

The call x.copy() is well-typed and of type Listb if x has refined type Lista,
Nila or Consa. It is ill-typed if x has refined type, e.g., Listb. Its effect 0/0
will not decrement the freelist beyond the amount implicit in the potential of
x (which equals in this case the length of the list pointed to by x) and will not
return anything to the freelist beyond the amount implicit in the potential of
the result (which equals zero due to its refined type Listb). Thus, the typing
amounts to saying that the memory consumption of this call is equal to the
length of x.

Let us explain why the potential of x indeed equals its length. Suppose for
the sake of the example that x points to a list of length 2. The potential is worked
out as the sum over all access paths emanating from x and not leading to null
or being undefined. In this case, these access paths are p1 = x,p2 = x.next,
p3 = x.next.next. Each of these has a dynamic type: Cons for p1 and p2; Nil
for p3. Each of them also has a view worked out by chaining the view of x along
the get-views. Here it is view is a in each case. For each access paths we now
look up the potential annotation of its dynamic type under its view. It equals 1
in case of p1 and p2 given ♦(Lista) = 1 and 0 for p3 by ♦(Nila) = 0, yielding
a sum of 2. Notice that if the very same list had been accessed via a variable y
of type Listb the potential ascribed would have been 0.

The Typing Judgement. The type system allows us to derive assertions of the
form Γ

m
m′ e : Cr where e is an expression or program phrase, C is a Java class,

r is a view (so Cr is a refined type). Γ maps variables occurring in e to refined
types; we often write Γx instead of Γ (x). Finally m, m′ are nonnegative numbers.
The meaning of such a judgement is as follows. If e terminates successfully in
some environment η and heap σ with unbounded memory resources available
then it will also terminate successfully with a bounded freelist of size at least m
plus the potential ascribed to η, σ with respect to the typings in Γ . Furthermore,
the freelist size upon termination will be at least m′ plus the potential of the
result with respect to the view r.
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For the typing of copy() to be accepted we must derive the judgements

this:Nilc 0
0 eNil : Listb this:Consc 1

0 eCons : Listb (1.2)

where eNil and eCons are the bodies of copy in classes Nil and Cons, respectively.
View c is basically the view a with the toplevel potential 1 stripped off. In
exchange we get access to this toplevel potential in the form of the superscript 1
of the “turnstile”. This weaker typing of this allows us to read attributes from
this as if its typing were Lista but it precludes the use of any toplevel potential
which is right for otherwise there would be an unjustified duplication of potential.

Formally, this “stripping-off” is achieved through the coinductive definition
of a relation �(r |D ) between views r and multisets of views D which asserts
that a variable of view r may be used multiple times provided the different
occurrences are given the views in D and it is this relation that appears as a
side condition to the typing rule for methods. Entry of a method body is the
only point were potential becomes available for use, but it can be used anywhere
inside the method’s body and even passed on to further method calls.

In particular for the views listed in (1.1), we have �(a |{d, c}),
�(b |{b, b, . . . }), and �(a |{a, n, n . . . } ), but neither �(a |{a, a} ) (because 1+1 
=
1) nor �(c |{c, c} ) (because the get-view of next in c is a), nor �(a |{a, b} ) (be-
cause the set-view of next in b is not a, but the set-view has to be preserved
upon sharing).

Typing “Copy”. Let us now see how we can derive the required typings
in (1.2). The typing of eCons works as follows. The creation of a new object
of class Consb incurs a cost of 1 (zero potential plus one physical heap unit –
note that the physical cost of object creation can be chosen arbitrarily for each
class to suit the applicable memory model). Thus, it remains to justify

this:Consc, res:Consb 0
0

res.elem=this.elem; res.next=this.next.copy(); return res;

The threefold use of res in this term relies on the sharing relation �(b |{b, b, b}).
Let us now consider the assignments in order. The first assignment being of
scalar type is trivial. The set-view of res.next is b but so is the view of
this.next.copy() thus justifying the second assignment. The view of res
equals the announced return view b so we are done.

The body eNil of copy() in Nil is simply return this;. The type of this
is Nilc which is unfortunately not a subtype of the required type Listb, which
we ignore here for the sake of simplicity. A proper way to avoid this problem
would be to have non-unique Nil objects for each list, which makes sense if the
Nil-node has a function. Otherwise one could abandon the Nil class and use a
null pointer instead, which would somehow defeat our example. A third solution
would be to include mechanisms for static objects in our theory.
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Example: Destination Passing Style. We augment List by two methods:
abstract void appAux(List y, Cons dest);
List append(List y) { Cons dest = new Cons(); this.appAux(y,dest);

List result = dest.next; free(dest); return result; }

The call this.appAux(y,dest) to be implemented in the subclasses Nil and
Cons should imperatively append y to this and place the result into the
dest.next. The point is that appAux admits a tail-recursive implementation
which corresponds to a while-loop.
/* In Nil */ void appAux(List y, Cons dest){ dest.next <- y; }
/* In Cons */ void appAux(List y, Cons dest){ dest.next <- this;

this.next.appAux(y, this); }

We propose the following refined typings for these newly introduced methods:

M(Lista, append) = Lista 1/1−−−→ Lista

M(Lista, appAux) = (Lista, Consn) 0/0−−−→ void

We focus here on the most interesting judgement

this:Lista, dest:Listn 0
0 dest.next<-this;this.next.appAux(y,this):void

Here we have decided not to glean any potential from this in the method body so
that this is available as of type Lista. We split this:Lista using �(a |{a, n})
and dest:Listn. The set-view of dest.next is a coinciding with the view of
this thus the assignment is justified. This example shows that the potential is
correctly chained through the appAux method despite of heavy aliasing.

Example: Doubly-Linked Lists. Our final example illustrates doubly-linked
lists which brings more aliasing and even circular data.
abstract class DList { }
class DNil extends DList{ }
class DCons extends DList{ Object elem; DList next; DList previous;

int getNext() { return this.next;}}

We would like to be able to implement methods toList() and toDList()
which non-destructively transform singly-linked lists into doubly-linked ones and
vice versa. To make this possible we need views on doubly-linked lists defined in
such a way that the potential of a doubly-linked list is proportional to its length.
This can be achieved as follows with two views q and r.

♦(·) q r
DList 0 0
DNil 0 0
DCons 1 0

DConsq DConsr

Aget(· , next) q r
Aset(· , next) q q
Aget(· , previous) r r
Aset(· , previous) r r

(1.3)

It is irrelevant what these views are at the other classes Nil, Cons, List.
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The potential of a DListq equals its length, whereas the potential of a DListr

is zero. The potential is defined as an infinite sum ranging over all access paths,
i.e. p ∈ {next, previous}∗. However, due to the fact that field previous has
view r and that in r even the next attribute has view r, only access paths of
the form nexti for i < the length of the list make a nonzero contribution.

It is now possible to include and justify in DListq a method that computes
a singly-linked copy M(DListq, toList) = () 1/0−−−→Listb. The effect shows the
cost of the additional object of type Nilb that is required. Similarly, a method
toDList() can be defined.

We remark that a circular singly-linked list can be constructed, with any fixed
potential unrelated to its length, e.g. of type Listb with an overall potential 0.

Related Work. A commonly found approach to bound memory usage is the
use of sized types as initially proposed by Hughes and Pareto [10]. However,
as pointed out by Vasconcelos [21], these systems have difficulties, e.g. with
algorithms that divide and merge their input, such as the list splitting found
in the popular quick-sort algorithm: the chosen pivot could be already mini-
mal/maximal, hence each list originating from the splitting has its size bounded
by n− 1. Merging these lists then results in an overall size of 2n− 1 instead of n
and thus to an exponential size for the resulting list of the quick-sort algorithm.
Our amortised analysis does not suffer from this flaw, as the potential can be
properly split and merged without this kind of loss of information.

A system employing sized types for an object-oriented language is presented
by Rinard et al. [3]. Their system also depends upon a deallocation primitive like
ours and in addition incorporates an alias control via usage aspects. We think it
is fair to say that [3] bundles together known techniques into a single system to
form an actual implementation that can deal with sizeable examples. Due to the
lack of worked out examples in the paper it is difficult to compare exactly the
strengths and weaknesses of loc. cit. and our approach. In any case, we feel that
the topic is important and new enough to justify several competing approaches
for some time until it will eventually be found out which one is better.

Another widespread approach is the use of a region based memory manage-
ment as initially proposed by Tofte and Talpin [19] and realized in the ML Kit
Compiler [18], which primarily aims at efficient memory usage rather than ob-
taining provable bounds. However, Berger et al. suggest in [1] that region based
approaches suffer from increased memory consumption due to retarded deallo-
cation if the programmer is unwilling to adjust his or her programming style to
suit the region approach and they propose a more generalised version of regions.

Yet another way to obtain quantity bounds on memory usage is abstract
interpretation and symbolic evaluation [20, 7, 8], which aim at identifying code
portions which do not affect the overall memory usage of a program. An ex-
haustive search of all paths of computation is then performed on the remaining
abstracted code parts. However, this exhaustive search might still lead to per-
formance problems as reported in [20], which then leads to further abstraction
jeopardising provable bounds in favour of estimates.
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Finally, approaches based on formal specification and theorem proving are
beginning to emerge [14]. From our own experience the current state of theorem
provers does not suffice to automatically prove space assertions of the kind of
examples we are interested in and able to treat. However, it may be that future
progress in theorem proving will eventually make analyses like ours and indeed
most other program analyses redundant.

2 Featherweight Java with Update

Our formal model of Java, FJEU, is an extension of Featherweight Java (FJ) [11]
with attribute update, conditional and explicit deallocation. It is thus similar to
Flatt et al. Classic Java [5].

We refer to our full paper for a formal definition of its syntax and semantics
and content ourselves with an informal description here.

An FJEU program C is a partial finite map from class names to class defini-
tions, which we also refer to as class table. Each class table C implies a subtyping
relation <: among the class names in the standard way by inheritance. Through-
out the following sections we will consider a fixed (but arbitrary) class table C
for the ease of notation.

Each class consists of a super-class, a set of attributes (or fields) with their
types, and a set of methods with their types and bodies. A method body is an
expression in let normal form (nested expressions flattened out using a sequence
of let-definitions). Classes have only one implicit constructor that initialises all
attributes to a nil-value.

An access path is a list of attribute names, written a.b. · · · .c = p. It is
convenient to write A(C,p) for the class type reached by following the access
path p, i.e. A(C,p.b) = A(A(C,p) , a). The typing judgement of FJEU takes
the form Γ � e : C where Γ is a finite partial mapping from identifiers to class
names. It is defined as a standard extension of the FJ typing rules and is omitted
for lack of space.

For reasons of convenience, field update differs slightly and interdefinably
from Java: the term x.a<-y evaluates to the value of x after the update rather
than y as in Java.

One new feature of FJEU is the presence of an explicit deallocation construct
free(x) that deallocates the object pointed to by x.

The typing judgement of FJEU takes the form Γ � e : C where Γ is a finite
partial mapping from identifiers to class names. It is defined as a standard exten-
sion of the FJ typing rules. To illustrate FJEU we give here the corresponding
version of the list copy example from Sect. 1:

List copy(){ let re1 = new Cons in
let re2 = let elem = this.elem in re1.elem <- elem in
let re3 = let next = this.next in let nres = next.copy() in

re2.next <- nres in return re3; }
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The dynamic semantics of FJEU is based on a global store (“heap”) mapping
locations to object records as usual. We use the judgement η, σ e � v, τ shall
mean that the expression e evaluates successfully to the value v, beginning with
stack η, heap σ and ending with heap τ .

We also use the judgement η, σ
m
m′ e � v, τ to mean that the evaluation

succeeds with an initial freelist of size at least m and leaves a freelist of size at
least m′ upon completion.

Both judgements are given as an inductive definition which increase and
decrease resource counters m,m′ as expected.

Unsuccessful evaluations such as null pointer access are not modelled explic-
itly in the semantics. For example, when e is free(null) then η, σ

m
m′ e � v, τ

never holds. We assume that object creation new always returns a fresh loca-
tion never seen before (and increments m by the size of the allocated object).
Deallocation, on the other hand, overwrites an object record with a special value
(invalid). In addition, the counter m′ will be increased by the size of the deal-
located object. We allow pointers to such disposed objects (“stale pointers”),
however, any attempt to access a deallocated object via such a pointer leads to
unsuccessful termination just as a null pointer access.

This abstract and essentially storeless [15, 2, 4, 13] semantics abstracts away
from two important aspects of freelist based memory management: a) accidental
“reanimation” of stale pointers through recycling of previously issued locations
and b) fragmentation. Our strategy is to deal with those separately using known
or orthogonal approaches.

To counter the problem with recycled locations, we can employ indirect
pointers (symbolic handles) used by earlier implementations of the Sun JVM
for the compacting garbage collector. Alternatively, we can statically reject pro-
grams that might access stale pointers using the alias types by Walker and
Morrisett [22], or the bunched implication logic as practised by Ishtiaq and
O’Hearn [12]. For those programs, our abstract semantics coincides with a con-
crete implementation using a freelist.

In order to deal with fragmentation in the freelist model one has several
known possibilities that interact smoothly with the resource counting in the
abstract semantics: allocating all objects with the same size or as linked lists
of such blocks; maintaining several independent freelists for objects of various
sizes (a slight change to the typing rules is then required to prevent trading
objects of different sizes against each other), and, finally, compacting garbage
collection. In the last case, we would simply run a compacting garbage col-
lection as soon as the freelist does no longer contain a contiguous portion of
the required size. Of course, the total memory requirement would be twice
the one predicted by our analysis as usual with compacting garbage
collection.

We find that the abstract operational semantics used here provides an ade-
quate modular interface between the resource analysis and concrete implemen-
tation issues that have been and are being treated elsewhere.
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3 Definition of RAJA

We now extend FJEU to an annotated version, RAJA, (Resource Aware
JAva) as announced in the Introduction. A RAJA program is an anno-
tation of an FJEU class table C or more precisely a sextuple R =
(C ,V ,♦(·) ,Aget(· , ·) ,Aset(· , ·) ,M(· , ·)) specified as follows:

1. V is a possibly infinite set of views.
For each class C ∈ dom(C ) and for each view r ∈ V the pair Cr is called
a RAJA class (or refined type). If Cr is a RAJA type then we denote by
|Cr| = C the underlying FJEU type C and by 〈〈Cr〉〉 = r its view. However,
we allow ourselves to omit these projections if it is clear from the context
whether the view or the FJEU class is required.

2. ♦(·) assigns to each RAJA class Cr a number ♦(Cr) ∈ D.
This number will be used to define the potential of a heap configuration under
a given static RAJA typing. For convenience, we extend the notation ♦(·)
to possibly undefined meta-expressions by putting ♦(〈expr〉) = 0 if 〈expr〉 is
undefined.

3. Aget(· , ·) and Aset(· , ·) assign to each RAJA class Cr and attribute a ∈ A(C)
two views q = Aget(Cr, a) and s = Aset(Cr, a).
The intention is that if D = A(C, a) is the FJEU type of attribute a in C
then the RAJA type Dq will be the type of an access to a, whereas the
(intendedly stronger) type Ds must be used when updating a. The stronger
typing is needed since an update will possibly affect several aliases.

4. M(· , ·) assigns to each RAJA class Cr and method m ∈ M(C) having method
type E1, . . . , Ej → E0 of arity j a j-ary polymorphic RAJA method type
M(Cr,m).
A j-ary polymorphic RAJA method type is a (possibly empty or infinite) set
of j-ary monomorphic RAJA method types. A j-ary monomorphic RAJA
method type consists of j + 1 views and two numbers p, q ∈ D, written
r1, . . . , rj

p/q−→r0.
The idea is that if m (of FJEU-type E1, . . . , Ej → E0) has (among others)
the monomorphic RAJA method type r1, . . . , rj

p/q−→r0 then it may be called
with arguments v1:Er1

1 , . . . , vj :E
rj

j , whose associated potential will be con-
sumed, as well as an additional potential of p. Upon successful completion
the return value will be of type Er0

0 hence carry an according potential. In
addition to this a potential of another q units will be gained.
We note at this point that if a variable is to be used more than once, e.g.,
as an argument to a method, then the different occurrences must be given
different types which are chosen such that the individual potentials assigned
to each occurrence add up to the total potential available.
We sometimes write Er1

1 , . . . , E
rj

j
p/q−→Er0

0 to denote an FJEU method type
combined with a corresponding monomorphic RAJA method type.

We will now define when such a RAJA-annotation of an FJEU class table is
indeed valid; in particular this will require that each method body is typable
with each of the monomorphic RAJA method types given in the annotation.
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RAJA Subtyping Relation. We intend to define a preorder r � s on views
as a largest fixpoint. If �var⊆ V × V and C <: D in C and r, s ∈ V we define

Compat(�var , C,D, r, s) ⇐⇒
♦(Cr) ≥ ♦(Ds) (3.1)

∀a ∈ A(D) .Aget(Cr, a) �var Aget(Ds, a) (3.2)

∀a ∈ A(D) .Aset(Ds, a) �var Aset(Cr, a) (3.3)
∀m ∈ M(D) . ∀β ∈ M(Ds,m) . ∃α ∈ M(Cr,m) . α �var β (3.4)

where we extend �var to monomorphic RAJA method types as follows: if α =
r1, . . . , rj

p/q−→r0 and β = s1, . . . , sj
t/u−→s0 then α �var β is defined as p ≤ t and

q ≥ u and r0 �var s0 and si �var ri for i = 1, . . . j.
The subtyping relation r � s between views is now defined as the largest

relation � such that

r � s =⇒ Compat(�, C, C, r, s) for all C

It is easy to see that � is a preorder because if �var is a preorder, so is
∀C.Compat(�, C, C, ·, ·). We extend subtyping to RAJA-classes by

Cr <: Ds ⇐⇒ C <: D and r � s (3.5)

It is possible to define a more fine-grained subtyping relation directly on RAJA-
classes, which would in particular give the subtyping Nil<c> <: Nil<b> re-
quired in the copying example. We choose not to do this here because it unduly
clutters notation and clarity. A practical implementation should, however, in-
clude this feature. Note that since both � and <: on FJEU are reflexive and
transitive so is <: on RAJA.

Definition 1 (Sharing Relation). We define the sharing relation between a
single view r and a multiset of views D written �(r |D ) as the largest relation
�, such that if �(r |D ) then for all C ∈ C :

♦(Cr) ≥
∑
s∈D

♦(Cs) (3.6)

∀s ∈ D . r � s (3.7)

∀a ∈ dom(A(C)) .�
(
Aget(Cr, a)

∣∣Aget
(
CD, a

))
(3.8)

where Aget
(
CD, a

)
= {Aget(Cs, a) | s ∈ D}. When D = {s1, . . . , si} is a finite

multiset, we also write �(r |s1, . . . , si ) for �(r |D ). We remark that, it would be
possible to define �(· |· ) on the level of RAJA-classes rather than views.

Lemma 1.

�(r |∅ ) (3.9)
�(r |{r} ) (3.10)
�(r |D ) ⇐⇒ ∀ finite E ⊂ D .�(r |E ) (3.11)
�(r |D ∪ {s}) ∧ �(s |E ) =⇒ �(r |D ∪ E ) (3.12)
r′ � r ∧ s′ � s ∧ �(r |D ∪ {s′}) =⇒ �(r′ |D ∪ {s}) (3.13)
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Typing RAJA. We now give the formal definition of the RAJA-typing judge-
ment. RAJA-typing is defined in Curry style, i.e., the terms being typed contain
no RAJA-type annotations whatsoever. The intuitive meaning of the typing
judgement Γ n

n′ e : Cr has already been given in the introduction.

∅
♦(Cr) + Size(C)

0 new C : Cr
(♦New)

s = Aget(Cr, a) D = C.a

x:Cr 0
0 x.a : Ds

(♦Access)

C <: E

x:Er 0
0 (C)x : Cr

(♦Cast)

∅
0
0 null : Cr

(♦Null)

x:Cr 0
0 x : Cr

(♦Var)

x:Cr 0
♦(Cr) + Size(C) free(x) : Er

(♦Free)

Aset(Cr, a) = s C.a = D

x:Cr, y:Ds 0
0 x.a<-y : Cr

(♦Update)

�(s |q1, q2 ) Γ, y:Dq1 , z:Dq2
n
n′ e : Cr

Γ, x:Ds n
n′ e[x/y, x/z] : Cr

(♦Share)
Γ1

n
n′ e1 : Ds Γ2, x:Ds n′

n′′ e2 : Cr

Γ1, Γ2
n
n′′ let x = e1 in e2 : Cr

(♦Let)(
Eq1

1 , . . . , E
qj

j
n/n′
−−→Eq0

0

)
∈ M(Cr,m)

x:Cr, y1:E
q1
1 , . . . , yj :E

qj

j
n
n′ x.m(y1, . . . , yj) : Eq0

0
(♦Invocation)

x ∈ Γ Γ
n
n′ e1 : Cr Γ

n
n′ e2 : Cr

Γ
n
n′ if x instanceof E then e1 else e2 : Cr

(♦Conditional)

n ≥ u n+ u′ ≥ n′ + u Θ
u
u′ e : Ds ∀x ∈ Θ .Γx <: Θx Ds <: Cr

Γ
n
n′ e : Cr

(♦Waste)

Class Table. A RAJA-program R = (C ,V ,♦(·) ,Aget(· , ·) ,Aset(· , ·) ,M(·, ·)) is
well-typed if for all C ∈ C and r ∈ V the following conditions are satisfied:

S(C) = D =⇒ Compat(�, C,D, r, r) (3.14)
∀a ∈ A(C) .Aset(Cr, a) � Aget(Cr, a) (3.15)

∀m ∈ M(C) . ∀α ∈ M(Cr,m) . ∃q, s ∈ V .�(r |q, s ) ∧

this:Cq, x1:Er1
1 , . . . , xj :E

rj

j

n + ♦(Cs)
n′ Mbody(C,m) : Er0

0

where C.m = E1, . . . , Ej → E0 and α = r1, . . . , rj
n/n′
−−→r0

(3.16)

4 Main Result

Our main result involves the following concepts which we explain informally
here; the full version contains formal definitions and motivations. We write
���(v:r).p���statσ for the view on the object reached from v (of view r) via access
path p when accessed in this way. For example, if v points to a doubly-linked
list of length 2 in σ then ���(v:q).next.next���statσ = q.
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We write Φσ(v : r) and Φσ(η : Γ ) for the potentials of the data structures
reachable from v, resp. η when viewed through r, resp., Γ . For example,
Φσ(v : r) =

∑
p ♦(Ds), where D is the dynamic type of the record reached from

v in σ via p, whereas s = ���(v:r).p���statσ .
Finally, if Γ is a RAJA typing context with underlying FJEU context |Γ |,

we write σ � η : Γ to mean that σ |= η : |Γ | and, moreover, for each location �
reachable from η there exists a view r (its proto-view) such that �(r |Vσ,η,Γ (�) )
where Vσ,η,Γ (�) is the multiset consisting of all assumable views on location � by
σ, η, Γ , formally, Vσ,η,Γ (�) = {���(ηx:〈〈Γx〉〉).p���statσ | x ∈ Γ, �ηx.p�σ = �}.

This definition is a crucial invariant needed in the proof of the main result;
it does not appear in the corollary intended for end users.

Theorem 1. Fix a well-typed RAJA program R. If

Γ
n
n′ e : Cr (4.1)

η, σ ◦ e � v, τ (4.2)

σ � η : (Γ,Δ) (4.3)

then

η, σ
n + Φσ(η : Γ ) + Φσ(η : Δ)
n′ + Φτ(v : r) + Φτ(η : Δ)

◦ e � v, τ (4.1)

τ � η[xres �→ v] : (Δ,xres :Cr) (4.2)

where xres is assumed to be an unused auxiliary variable, i.e. xres /∈ Γ,Δ. Note
that (4.3) implies dom(Γ ) ∩ dom(Δ) = ∅ by definition of notation.

Proof. (Sketch) The proof is by induction on the operational semantics and a
subordinate induction on typing derivations. Several of the cases present inter-
esting difficulties. To give a flavour of the proof we sketch the case of field update
here where we essentially have to show that a field update leaves the total poten-
tial unchanged and that newly created aliases admit a “proto-view”. We describe
the crucial observation to give a flavour of the proof. Suppose that at runtime
the update is �.a := v, � being a location, a a field, v a value. For locations
�1, �2 let P (�1, �2) stand for access paths from �1 to �2 and Q(�1, �2 stand for the
subset of P (�1, �2) consisting of those paths that do not go through �.a and are
thus unaffected by the update. After the update we have

P (�1, �2) = Q(�1, �2) +Q(�1, �)(aQ(v, �))∗aQ(v, �2)

since any access path either does not meet the updated location at all or goes
through it a finite number of times. Since the right hand side of this identity
comprises paths that are not affected by the update, information about it can
be obtained from the assumptions that describe the situation before the update.
A number of technical lemmas about the sharing relation and potentials are of
course needed to flesh this out.
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The following corollary is a direct consequence of the main result and it is in this
form that we intend to use it. The apparently clumsy form of the main result is
needed in order to enable an inductive proof.

Corollary 1. Suppose that C is an FJEU program containing (in Java nota-
tion) a class List of singly-linked lists with boolean entries, a class C containing
a method void C.main(List args), and arbitrary other classes and methods.

Suppose furthermore, that there exists a RAJA-annotation of this program
containing a view a where ♦(Lista) = k ∈ N and Aget(Lista, next) = a then
evaluating C.main(args) in a heap where args points to a linked list of length l
requires at most kl memory cells.

5 Conclusion

We have presented a generic method for using potentials in the sense of amortised
complexity to count memory allocations and deallocations. Our method allows
for input dependent analysis without explicitly manipulating size expressions.
This sets it apart against more direct methods based on sized types. We have
stated and proved a nontrivial soundness property which shows that our typing
rules for sharing correctly account for aliased and even circular data.

Inference. We have not studied the problem of view inference and not even
algorithmic type checking since these two tasks are independent of soundness
which was our main concern here. But of course inference and automatic type
checking are of paramount importance for the viability of our method. We there-
fore briefly comment on how we plan to attack these issues.

First, we remark that if the structure of the views, i.e., the views without their
potential annotations are known, the latter quantities can be efficiently found
by LP-solving as was done in the precursor of this work [9]. Indeed, the system
presented there can be faithfully embedded into RAJA and for this fragment
automatic inference is unproblematic.

Likewise, the intermediate views that do not appear in class tables but only
within method bodies typically take the form of fragments of already declared
views in the sense that some fields are set to a zero view like n in Sect. 1. We are
confident that these views can be generated automatically and on the fly during
algorithmic type checking for example by reformulating the sharing rule in an
algorithmic fashion.

A simple kind of view polymorphism should also be within reach if one applies
the generic type and effect discipline [16] to our system.

Going beyond these low-hanging fruit will probably require the isolation of
several fragments or high-level systems built on top of RAJA, supporting for
example particular styles or patterns of programming.

Lastly, we mention that the possible access paths emanating from each
class define an infinite regular tree, e.g., the tree consisting of the paths in
next∗(elem ∪ {ε}) in the case of Cons. The set of views on a class in a (finite!)
RAJA program defines a regular tiling of that tree and can perhaps be found
using automata- or language-theoretic methods.
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Extensions. Our focusing on heap space usage was a rather arbitrary choice. We
believe that by slight modifications we can use the amortised method for other
quantitative resources such as stack size, multiple freelists, number of open files,
etc., in a similar fashion.

Limitations. Rule ♦Update contains a source of possible over-approximation
because it does not restitute the potential contained in the overwritten data.
This can lead to sound but not typable examples the simplest of which is as
follows: if a is an object with a field f whose get- and set-types differ then
a.f<-a.f is not typable yet obviously sound since its effect is zero.

Another limitation of the system stems from the fact that object types do
not change after a method invocation. This is mediated by the linear formula-
tion of the type system: after a call x.m() the reference x with its type is “used
up”; a further invocation of a method on the object referenced by x can only
happen through a prior invocation of ♦Share and hence in general with a dif-
ferent type. Nevertheless, exploring type change after method invocation could
be worthwhile.

We also note that our method estimates resource usage as a function of the
input. Thus, programs whose resource usage depends on other parameters cannot
be analysed. A concrete example is the numerical solution of a boundary value
problem by solving successively larger and larger linear systems of equations.

Other limitations stem from the type inference problem. While it is in many
cases possible to find a typing it might be difficult to come up with an inference
scheme that encompasses those. On a positive side we note that the earlier
system by the authors [9] can be faithfully mapped into the present system.
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Abstract. We present a typed calculus IL (“intermediate language”)
which supports the embedding of ML-like (strict, eager) and Haskell-like
(non-strict, lazy) languages, without favoring either. IL’s type system
includes negation (continuations), but not implication (function arrow).
Within IL we find that lifted sums and products can be represented as the
double negation of their unlifted counterparts. We exhibit a compilation
function from IL to AM—an abstract von Neumann machine—which
maps values of ordinary and doubly negated types to heap structures
resembling those found in practical implementations of languages in the
ML and Haskell families. Finally, we show that a small variation in the de-
sign of AM allows us to treat any ML value as a Haskell value at runtime
without cost, and project a Haskell value onto an ML type with only the
cost of a Haskell deepSeq. This suggests that IL and AM may be useful
as a compilation and execution model for a new language which combines
the best features of strict and non-strict functional programming.

1 Introduction

Every functional language in use today is either strict and eagerly evaluated or
non-strict and lazily evaluated. Though most languages make some provision for
both evaluation strategies, it is always clear which side their bread is buttered on:
one evaluation strategy is automatic and transparent, while the other requires
micromanagement by the programmer.

The dichotomy is surprising when one considers how similar lazy functional
programs and eager functional programs look in practice. Most of the differences
between SML and Haskell are independent of evaluation order (syntax, extensible
records, module systems, type classes, monadic effect system, rank-2 types. . . ).
Were it not for those differences, it would in many cases be difficult to tell which
language a given code fragment was actually written in. Why, then, is there no
hybrid language which can understand code like

foldl f z l = case l of [] -> z
(x:xs) -> foldl f (f z x) xs

in some way that abstracts over possible evaluation orders?
Designing such a language turns out to be quite difficult. Reducing the signif-

icant notational and cognitive burdens of mixed strict/non-strict programming
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is an open research problem, which we do not attempt to solve in this paper. In-
stead we address a prerequisite for the success of any hybrid language, which is the
possibility of implementing it easily and efficiently enough to be competitive with
dedicated strict and lazy languages. That is, we discuss the optimization and back
end phases of a hybrid language compiler, leaving the front end for future work.

In Section 2 we introduce a compiler intermediate language (“IL”) which can
support conventional strict and non-strict source languages through different
front-end translations. IL is the centerpiece and the main contribution of this
paper. Section 3 presents toy strict and non-strict languages (“SL” and “LL”)
and their translations to IL. SL and LL are entirely conventional in design,
and are included only as examples of translations to IL. Section 4 introduces an
abstract machine (“AM”) with a von Neumann architecture, which can act as an
execution environment for IL. Our goal is that compilation of SL or LL via IL to
AM should be competitive (in code size and execution speed) with compilation
of SL or LL to purpose-designed, incompatible abstract machines.

With this architecture we can compile ML-like and Haskell-like source code
to a common abstract machine with a single heap. The strict and non-strict lan-
guages cannot share data structures, since they have incompatible type systems,
but they can exchange data via appropriate marshalling code (written in IL).
In Section 5 we aim to get rid of the marshalling and enable direct sharing. By
carefully choosing the representation of the heap data, we can arrange that the
natural injection from ML values into Haskell values is a no-op at runtime, and
the natural projection from Haskell values to pointed ML values carries only the
cost of a Haskell deepSeq operation (in particular, it need not perform copying).

Space constraints have forced us to omit or gloss over many interesting fea-
tures of IL in this conference paper. Interested readers may find additional ma-
terial at the project website [7].

1.1 A Note on Types

We handle recursive types with a form να. T , which denotes the type T with
free occurrences of α replaced by T itself. The ν form can be seen as extending
the tree of types to a graph with cycles; να simply gives a name to the graph
node which it annotates. For example, να.¬α describes a single negation node
pointing to itself, while να. α is meaningless, since α refers to no node. In this
paper we will treat the ν form as a metasyntactic description of a type graph,
rather than a feature of the concrete syntax of types. This allows us to omit rules
for syntactic manipulation of ν forms, which would complicate the presentation
and yield no new insight.

Rather than attempt to distinguish between inductive types (à la ML) and
coinductive types (à la Haskell), we make all types coinductive, with the caveat
that types may contain values which have no representation as terms in the
language. This is already true of recursive datatypes in Haskell (for example,
uncountably many values inhabit the Haskell list type [Bool], but there are
only countably many expressions of type [Bool]) and it is true of functions in
both ML and Haskell (if S is infinite then S → Bool is uncountable).
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Deciding whether to include parametric polymorphism was difficult. There
are several cases in which we would like to speak of polymorphic types, and one
case in which we must do so; on the other hand the introduction of polymorphism
into our languages has no novel features, and would in most cases simply clutter
the discussion and the figures. Instead we adopt a compromise approach. Within
IL, SL and LL, type variables (except those quantified by ν) simply represent
unknown types; there is no instantiation rule and no polymorphic quantification.
We permit ourselves, however, to speak of instantiation within the text of the
paper. E.g. we may say that a term E has the “type” ∀α. (α&α), by which we
mean that for any type T , E[T/α] is well-typed and has the type (T &T ).

2 IL

IL is a continuation-passing calculus with a straightforward syntax and seman-
tics. It makes no explicit mention of strictness or non-strictness, but it contains
both notions in a way which will be explained in Section 2.3.

IL types are shown in Fig. 1, and IL expressions in Fig. 2. We will use the
words “expression” and “term” interchangeably in this paper. The type 0 has
a special role in IL; the distinction between 0 and non-0 types, and associ-
ated terms and values, will recur throughout this paper.1 Therefore we adopt
the convention that T ranges only over non-0 types (mnemonic T rue), while U
ranges over all types. For expressions, E ranges only over those of non-0 type; F
ranges over those of type 0 (mnemonic: False); and G ranges over all expressions
(General). Note in particular that Figs. 1 and 2 imply that we do not permit
types such as ¬0 and (0 ∨ 1): the only type containing 0 is 0 itself.

In the spirit of Martin-Löf type theory and the Curry-Howard isomorphism,
we give both a logical and an operational interpretation to IL types and expres-
sions. Logically, types are formulas, and expressions are proofs of those formulas;
operationally, types are sets of values and expressions evaluate to a value from
the set.

Syntax Logical meaning Operational meaning
0 Contradiction. The empty type.
1 Tautology. The unit type.
T1 &T2 Conjunction (there are proofs of T1 and T2). Unlifted product.
T1 ∨ T2 Disjunction (there is a proof of T1 or of T2). Unlifted sum.
¬T From T it is possible to argue a contradiction. Continuation (see text).
α, β, γ Free type variables (of non-0 type).

Fig. 1. Syntax and gloss of IL types

1 Our type 0 is conventionally called ⊥, but in this paper we use the symbol ⊥ for
another purpose.
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Syntax Logical meaning Operational meaning
x, y, k Free variables.
λ̄(x :T ). F A reductio ad absurdum proof of ¬T . Builds a closure.
E1 ��E2 Proves 0 (a contradiction) from E1, of type

¬T , and E2, of type T .
Enters a closure.

() Proves 1. Unit constructor.
(E1, E2) Proves a conjunction by proving its conjuncts. Pair constructor.
inl E Proves a disjunction by its left case. Union constructor.
inr E Proves a disjunction by its right case. Union constructor.
fst E Proves T1, where E : (T1 &T2). Pair deconstructor.
snd E Proves T2, where E : (T1 &T2). Pair deconstructor.
case . . . caseE {(x)G1; (y)G2} is a case analysis of a

disjunction.
Union deconstructor.

Fig. 2. Syntax and gloss of IL expressions

A striking feature of IL, when compared with most programming calculi,
is that its type system includes logical negation, but no implication (function
arrow). Operationally, ¬T is a continuation which takes a value of type T and
never returns. Logically, the only way to prove ¬T is by reductio ad absurdum:
to prove ¬T , we show that any proof of T can be used to construct a proof of
0. We introduce continuations with the symbol λ̄ and eliminate them with infix
��, reserving λ and juxtaposition for function types (used later in SL and LL).

In its use of ¬ rather than a function arrow, IL resembles Wadler’s dual
calculus [9]. IL, however, has only terms (no coterms), and is intuitionistic (not
classical).

To simplify the discussion, we will often omit type signatures when they are
uninteresting, and we will allow tuple-matching anywhere a variable is bound,
so for example λ̄(x, y). · · ·x · · · y · · · is short for λ̄w. · · · fst w · · · snd w · · · .

2.1 Typing and Operational Semantics of IL

Fig. 3 lists the typing rules for IL expressions, and Fig. 4 gives a small-step
operational semantics for IL, with the reduction relation �. These satisfy the
subject reduction property that if Γ � G : U and G � G′, then Γ � G′ : U . The
proof is straightforward.

We say that a term is a value if it has no free variables and is not subject to
any reduction rules. The values in IL are

V ::= () | (V, V ) | inl V | inr V | λ̄(x :T ). F

Note that there are no values of type 0.

2.2 Nontermination in IL

There is no fix or letrec form in IL, but we can construct nonterminating
expressions even without it. For example, let E be (λ̄(x : να.¬α). x �� x); then
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Γ, (x :T ) 
 x : T

Γ, (x :T ) 
 F : 0

Γ 
 λ̄(x :T ). F : ¬T

Γ 
 E1 : ¬T Γ 
 E2 : T

Γ 
 E1 ��E2 : 0

Γ 
 E1 : T1 Γ 
 E2 : T2

Γ 
 (E1, E2) : (T1 &T2)

Γ 
 E : (T1 &T2)

Γ 
 fst E : T1

Γ 
 E : (T1 &T2)

Γ 
 snd E : T2

Γ 
 E : T1

Γ 
 inl E : (T1 ∨ T2)

Γ 
 E : T2

Γ 
 inr E : (T1 ∨ T2) Γ 
 () : 1

Γ 
 E : (T1 ∨ T2) Γ, (x :T1) 
 G1 : U Γ, (y :T2) 
 G2 : U

Γ 
 caseE {(x)G1; (y)G2} : U

Fig. 3. Well-typed IL expressions

fst (E1, E2) � E1

snd (E1, E2) � E2

case (inl E) {(x)G1; (y)G2} � G1[E/x]
case (inr E) {(x)G1; (y)G2} � G2[E/y]

(λ̄x. F )��E � F [E/x]

G1 � G2

C[G1] � C[G2]

Evaluation context
C[ ] ::= [ ]
| C[ ]��E | E��C[ ]
| (C[ ], E) | (E,C[ ])
| inl C[ ] | inr C[ ]
| fst C[ ] | snd C[ ]
| caseC[ ] {(x)G1; (y)G2}

Fig. 4. Operational semantics of IL

E �� E is well-typed, and proves 0. We will refer to this term by the name
diverge. It is analogous to (λx. x x)(λx. x x) in the untyped lambda calculus.
It is well-typed in IL because we permit recursive types via the ν construct. In
its logical interpretation, this proof is known variously as Curry’s paradox or
Löb’s paradox; exorcising it from a formal system is not easy. In IL, we do not
try to exorcise it but rather welcome its presence, since any logically consistent
language would not be Turing-complete.

But in IL, unlike ML and Haskell, nontermination cannot be used to inhabit
arbitrary types. The type systems of ML and Haskell, interpreted logically, are
inconsistent in the classical sense of triviality: the expression (letrec x() =
x() in x()) can appear anywhere in a program, and can be given any type
whatsoever.2 IL is not trivial; rather, it is what is known as paraconsistent.
More precisely, IL has the following properties:

– Confluence: for all expressions G1, G2, G3, if G1
∗� G2 and G1

∗� G3, then
there is a G4 such that G2

∗� G4 and G3
∗� G4.

2 A similar expression can be constructed without letrec by using an auxiliary recur-
sive type, as in IL.
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– Strong normalization: for any expressionE (of non-0 type) there is an integer
n such that any sequence of reductions from E has length at most n.

Together these properties imply that any IL expression of non-0 type reduces
in finitely many steps to a value which does not depend on the order of reduction.
In contrast, we see that no IL expression of type 0 reduces to a value, since there
are no values of type 0. If evaluation terminates it can only be on a non-value,
such as x��E.

2.3 Lifted and Pointed Types in IL

For any type T , there is a natural map from the expressions (including values)
of type T into the values of type ¬¬T : we construct a continuation of type
¬¬T which, given a continuation of type ¬T , passes the value of type T to it.
Symbolically, we take E to (λ̄k. k��E). We will call this mapping lift.

Similarly, for any type T , there is a natural map from the values of type ¬¬¬T
onto the values of type ¬T : we construct a continuation of type ¬T which takes
a value of type T , converts it to a value of type ¬¬T by lift, and passes that to
the continuation of type ¬¬¬T . Symbolically, we take E to (λ̄x. E��(λ̄k. k��x)).
We will call this mapping colift. It is easy to see that colift ◦ lift is the identity
on types ¬T , so lift is an injection and colift is a surjection.

There is, however, no natural map from ¬¬T to T when T does not begin
with ¬ (i.e. when T is not of the form ¬T ′). In particular, (λ̄(x :¬T ).diverge)
of type ¬¬T has no counterpart in T , if T has no leading ¬.

If we say that types T1 and T2 are semantically equivalent if there exist
(co)lifting maps from T1 to T2 and from T2 to T1, then the types ¬kT for T
without a leading ¬ fall into the three semantic equivalence classes shown below,
where we write ¬kT for k successive negations of T .

1. ¬0T
2. ¬1T,¬3T,¬5T,¬7T, . . .
3. ¬2T,¬4T,¬6T,¬8T, . . .

There is a natural identification of classes 1 and 3 with the types of SL and
LL values, respectively, and of class 2 with evaluation contexts in both SL and
LL—more precisely, the types in class 2 are the types of the continuations which
receive the computed values. We will motivate this identification informally with
some examples; later, explicit translations from SL/LL to IL will make it precise.

We have already observed that lift is an injection: what values in ¬¬T does
it miss? A value of type ¬¬T is called with a continuation of type ¬T . It may,
perhaps after some computation, pass a result V of type T to the continua-
tion; because of IL’s purity, any such value is indistinguishable from lift V .
But there are also values of type ¬¬T which do not call the continuation at
all. In principle there may be many values in this category—one could imagine
aborting execution with a variety of error messages, or transferring control to
an exception-handling continuation—but following tradition we will lump all of
these together as a single value ⊥¬¬T . Clearly ⊥ exists not just in types ¬¬T but
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in any type ¬T : consider λ̄(x : T ).diverge. Types of the form ¬T are pointed,
and types of the form ¬¬T are lifted. This applies even if T itself begins with ¬,
so each successive double negation adds a level of lifting: e.g. the type ¬¬¬¬1
contains distinguishable values lift lift (), lift ⊥¬¬1, and ⊥¬¬¬¬1.

We have likewise observed that colift is a surjection, and by a similar argu-
ment we can show that it merges the two outermost levels of lifting: in the case
of ¬¬¬¬1 it maps lift lift () to lift () and maps both lift ⊥¬¬1 and ⊥¬¬¬¬1 to
the single value ⊥¬¬1.

The maps lift and colift resemble the unit and join operations of a lifting
monad, except that colift is slightly more general than join. In a lifting monad,
unit would map from T to ¬¬T and join from ¬¬¬¬T to ¬¬T .

Our discussion above overlooks the possibility that a continuation of type
¬T might be called more than once. Multiple calls passing the same value are
indistinguishable from a single call because of purity, but there are interesting
terms that pass two or more distinguishable values to their continuation. An
example is λ̄k. k �� inr (λ̄x. k �� inl x) of type ∀α.¬¬(α ∨ ¬α), which is an IL
interpretation of the story of the devil’s offer from [9]. Inasmuch as we intend to
use double negation to model Haskell lifting, we would like to forbid such values.
We do not discuss this problem further in this paper.

3 SL and LL

SL and LL are simple strict and non-strict programming languages which have
the same syntax, but different translations to IL. They are pure functional lan-
guages; side effects are assumed to be handled via monads or some comparable
approach. SL has no provision for lazy evaluation, and LL has no provision for
eager evaluation.

Fig. 5 shows the syntax of SL/LL expressions (ranged over by e) and types
(ranged over by t). The typing rules and operational semantics are standard, and
we will not give them here. We use case rather than fst and snd to deconstruct
pairs because it simplifies the translation slightly. The term error stands for a
generic divergent expression like 1/0 or Haskell’s undefined.

x, y, z Free variables
α, β Free type vars.

λ(x : t). e
e e

t→ t Functions

() 1 Unit
(e, e)
case e {(x, y)e} t⊗ t Pairs

inl e, inr e
case e {(x)e; (y)e} t⊕ t Unions

error Proves any type

Fig. 5. SL/LL expressions and types

SL/LL type SL to IL LL to IL
Dv �t� Db �t� ¬¬Db �t�

Dk �t� ¬Db �t�

Db �1� 1
Db �t1 ⊗ t2� Dv �t1� & Dv �t2�
Db �t1 ⊕ t2� Dv �t1� ∨ Dv �t2�
Db �t1 → t2� ¬(Dv �t1� & Dk �t2�)
Db �α� α

Fig. 6. Translation of SL/LL to IL
types
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3.1 Translation to IL

Translation of SL/LL types to IL types is shown in Fig. 6. In order to model
the distinction between values and expression contexts mentioned in Section 2.3
we use three different type translations, written Db �t�, Dv �t�, and Dk �t�. Dv �t�
is the type of values on the heap (and of bindings to variables). Dk �t� is the
type of a kontinuation which receives the result of evaluating an expression of
type t. Db �t� is a “bare” type which has not yet been converted to a value or
continuation type by suitable negation.

In the interest of simplicity, SL and LL support only anonymous sums and
products; there is no provision for declaring new datatypes. It is worth noting
that LL’s type system is consequently not quite expressive enough to represent
many Haskell datatypes, because Haskell does not lift at every opportunity. For
example, Haskell’s Bool type is isomorphic (as a “bare” type) to IL’s (1 ∨ 1),
while the closest LL equivalent, 1 ⊕ 1, maps to the IL type (¬¬1 ∨ ¬¬1). Ac-
commodating Haskell types requires a more complex translation, which, however,
introduces no new difficulties.

The representation of functions is interesting. Logical implication P ⇒ Q is
classically equivalent to ¬P ∨ Q, but this will not work as a function type in
our intuitionistic calculus. An IL value of type ¬P ∨ Q is either a value from
¬P or a value from Q; the former includes all divergent functions and the latter
all constant functions, but there are no values which can accept an argument
and return an answer that depends on that argument. The type ¬(P &¬Q),
again classically equivalent to implication, does not share this problem. Its oper-
ational interpretation is that a function is a continuation which takes two values,
one of type P (the argument) and one of type ¬Q (somewhere to send the re-
sult). This is exactly how function calls work in practical abstract machines: the
two arguments to this continuation are the two values—argument and return
address—pushed onto the stack before jumping to the function’s entry point.

The translations from SL and LL terms to IL terms are shown in Fig. 7.
These are the familiar continuation-passing translations of Plotkin [6]. Because

(In the LL to IL translation �e�v abbreviates λ̄k. �e� � k)

SL/LL term Translation (SL to IL) Translation (LL to IL)
�x� � E E��x x��E

�e e′� � E �e� � λ̄x. �e′� � λ̄x′. x��(x′, E) �e� � λ̄x. x��(�e′�v , E)
�(e, e′)� � E �e� � λ̄x. �e′� � λ̄x′. E�� (x, x′) E�� (�e�v , �e

′�v)
�inl e� � E �e� � λ̄x. E�� inl x E�� inl �e�v

�inr e� � E �e� � λ̄x. E�� inr x E�� inr �e�v

�λx. e� � E E��λ̄(x, k). �e� � k
�()� � E E�� ()
�error� � E diverge
�case e1 {(x)e2; (y)e3}� � E �e1� � λ̄z. case z {(x) �e2� � E; (y) �e3� � E}
�case e1 {(x, y)e2}� � E �e1� � λ̄(x, y). �e2� � E

Fig. 7. Translation of SL/LL to IL terms (type signatures omitted)
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IL has explicit continuations while the continuations in SL/LL are implicit, the
translation must be done in the context of an IL continuation. �e� � E denotes
the IL expression which passes e’s value on to the IL continuation E. This should
be treated as a syntactic unit; � has no meaning on its own. For LL we write
�e�v as a shorthand for λ̄k. �e��k; this notation will prove useful in Section 4.2.

Type signatures have been omitted for space and readability reasons. Restor-
ing the type signatures and adding standard typing rules for SL/LL terms, it
can be shown that the translation of a well-typed SL/LL term is a well-typed IL
term. In fact, we can show that if e : t and (�e��E) : 0, then E : Dk �t�, and (in
LL) that if e : t, then �e�v : Dv �t�. Note the translations of �x� �E, which cap-
ture the essential difference between “ML-like” and “Haskell-like” embeddings
in IL.

Translation Examples. For a first example we consider the SL/LL expression
inl error. In SL this expression will clearly always diverge when evaluated, and
our SL-to-IL translation turns out to yield diverge directly:

�inr error� � k = �error� � λ̄x. k�� inr x = diverge

The LL-to-IL translation instead boxes the divergence:

�inr error� � k = k�� inr (λ̄k′. �error� � k′) = k�� inr (λ̄k′.diverge)

The translations of the nested function application p (q r) are interesting. From
SL we have the following translation, where ∗= denotes a sequence of several (triv-
ial) translation steps, and ∗� denotes a sequence of “clean-up” beta reductions
after the translation proper.

�p (q r)� � k = �p� � λ̄f. �q r� � λ̄x. f ��(x, k)
= �p� � λ̄f. �q� � λ̄f ′. �r� � λ̄x′. f ′��(x′, λ̄x. f ��(x, k))
∗= (λ̄f. (λ̄f ′. (λ̄x′. f ′��(x′, λ̄x. f ��(x, k)))�� r)��q)��p
∗� q��(r, (λ̄x. p��(x, k)))

For LL we have

�p (q r)� � k = �p� � λ̄f. f ��((λ̄k′. �q r� � k′), k)
= �p� � λ̄f. f ��((λ̄k′. �q� � λ̄f ′. f ′��((λ̄k′′. �r� � k′′), k′)), k)
∗= p��λ̄f. f ��((λ̄k′. q��(λ̄f ′. f ′��((λ̄k′′. r��k′′), k′))), k)

Our operational semantics cannot simplify this term. But it can be shown
that η reduction is safe in IL (in the sense of contextual equivalence), so we may
reduce it to p�� λ̄f. f �� ((λ̄k′. q�� (λ̄f ′. f ′ �� (r, k′))), k). Using the lift operation
from section 2.3, and renaming k′ to x, we get p �� lift ((λ̄x. q �� lift (r, x)), k),
which, modulo lifting, is surprisingly similar to its SL counterpart.

4 AM

AM is an abstract machine designed to run IL code. The primitives of AM are
chosen to resemble machine-code or byte-code instructions. AM is untyped for
reasons of simplicity.
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The purpose of AM is to provide a framework for discussing the low-level opti-
mizations that make subtyping possible, which are described in Section 5. We are
not concerned with a formal treatment of compilation as such, nor are we inter-
ested in most of the optimizations found in existing abstract machines. Therefore
we will define AM only informally, and will gloss over most performance issues.

AM is a register machine. Throughout this section register names will be
written in typewriter face. There are two special registers env and arg, which
are used when entering a continuation, as well as a collection of compile-time
constants, which are never assigned to, but are otherwise indistinguishable from
registers. All other registers are local temporaries. There is never a need to save
registers across function calls, because every call is a tail call. AM has no stack.

Registers hold machine words, which can be pointers to heap objects, pointers
to addressable code, or tag values (which will be discussed later).

There are just five instructions in AM:

M ::= x← y Sets register x equal to register y.
| x← y[i] Indexed load: Register x gets the value at offset i

within the heap object pointed to by register y.
| x← new y1, . . . , yn Allocates n consecutive words from the heap,

places the address of the allocated memory in
register x, and stores the operands y1, . . . , yn at
locations x[0], . . . , x[n− 1].

| if x1 = x2
then M∗

else M∗

Compares two registers and executes the first in-
struction sequence if they are equal, the second
instruction sequence if they are not equal. M∗

denotes a sequence of zero or more instructions.
| jump x Transfers control to the instruction sequence

whose address is in register x.

To make code more concise, we allow indexed-load expressions r[i] wherever
a register operand is expected. For example, the instruction jump env[0] is
equivalent to the two-instruction sequence tmp← env[0] ; jump tmp.

While IL is indifferent as regards evaluation order, we choose to use eager
evaluation when we compile it to AM.

4.1 Compilation

We have already noted that IL expressions divide naturally into those of type 0
and those not of type 0. In AM this has the following concrete meaning:

– IL expressions of type 0 compile to addressable instruction sequences. These
have an entry point which we jump to when calling a continuation, and they
terminate by jumping to another addressable instruction sequence.

– IL expressions of other types compile to non-addressable instruction se-
quences : these appear within addressable instruction sequences and con-
struct values on the heap.
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Compilation form Expansion
F �E1 ��E2� Γ E �E1� Γ tmp1 ; E �E2� Γ tmp2

env← tmp1 ; arg← tmp2
jump env[0]

F �caseE {(x)F1; (y)F2}� Γ E �E� Γ tmp
if tmp[0] = tagLeft

then F �F1� (Γ [tmp[1]/x])
else F �F2� (Γ [tmp[1]/y])

E �x� Γ r r← Γ (x)
E �()� Γ r r← new tagUnit
E �(E1, E2)� Γ r E �E1� Γ tmp1 ; E �E2� Γ tmp2

r← new tagPair, tmp1, tmp2
E �inl E� Γ r E �E� Γ tmp ; r← new tagLeft, tmp
E �inr E� Γ r E �E� Γ tmp ; r← new tagRight, tmp
E �fst E� Γ r E �E� Γ tmp ; r← tmp[1]
E �snd E� Γ r E �E� Γ tmp ; r← tmp[2]
E �λ̄(x :T ). F � Γ r r← new code, Γ (v1), . . . , Γ (vn)

(see text)
E �caseE1 {(x)E2; (y)E3}� Γ r E �E1� Γ tmp

if tmp[0] = tagLeft
then E �E2� (Γ [tmp[1]/x]) r
else E �E3� (Γ [tmp[1]/y]) r

Fig. 8. AM compilation rules

Fig. 8 lists the rules for compiling an IL expression to an instruction sequence.
There is a separate set of rules for non-0 types (E) and type 0 (F). The E rules
take an extra parameter r, the register which receives the result value.

Within the context of each expansion, register names beginning tmp are in-
stantiated with fresh temporary register names. Each such register is assigned to
exactly once; thus the code is in SSA form as regards temporary registers. This
does not apply to the special registers env and arg, which are overwritten just
before each jump instruction. Note that there is no need to save the old values
of env and arg or of any temporary register, since continuations never return.

When expanding E �λ̄x. F � Γ r, the compiler also expands

F �F � (x �→ arg, y1 �→ env[1], . . . , yn �→ env[n]),

where {y1, . . . , yn} = fv(λ̄x. F ), and places the expanded code somewhere in the
code segment. The local (fresh) constant register code is set to the entry point
of this code.

4.2 Updating

There is one optimization that every non-strict language implementation must
perform, because compiled code may run exponentially slower without it. This
is thunk memoization or thunk updating, and it is the difference between lazy
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evaluation and normal-order reduction. It is described, for example, in [4]. The
details of this process are ugly, and a full treatment would complicate IL and
AM significantly; but we cannot ignore it entirely, since it interacts non-trivially
with the subtyping system of the next section.

For our purposes, a thunk is a heap object constructed by executing E �E�Γ r,
where E was produced by the �e�v rule during translation from LL to IL. Such
an expression has the form λ̄(k : ¬T ). F , where F either diverges or computes
a value V and passes it to k. If F successfully computes a value, then before
passing that value to k we must update the thunk by physically overwriting its
heap representation with a new object equivalent to (λ̄(k :¬T ). k��V ). The new
object is indistinguishable from the old as far as the programmer is concerned:
we know, by virtue of having just evaluated F , that its effect is just k��V . (And
since IL is referentially transparent it cannot have any side effect.)

We might model updating by extending AM with a new instruction

M ::= . . .
| x[i]← y Indexed store: Overwrites the word at index i in the

heap object pointed to by x with the word in y.

in terms of which the updating step may be written thunk[0] ← ret_payload;
thunk[1] ← val, where thunk points to the heap object to be updated, val
points to the heap representation of V , and ret_payload points to the code
F �k��v� (k �→ arg, v �→ env[1]). When ret_payload is called, env[1] will con-
tain the computed value that we stored in thunk[1]. This form of updating is
similar to updating with an indirection node in GHC [4].

5 Subtyping and Auto-Lifting

It turns out that with a small variation in the design of AM, the natural embed-
ding from unlifted to lifted types becomes a subtyping relationship, allowing us
to treat any ML value as a Haskell value at runtime without cost, and project a
Haskell value onto an ML type with only the cost of a Haskell deepSeq.

Suppose that we have a value V of type T , and wish to construct a value
V ′ of type ¬¬T , most likely for the purpose of marshalling data from eager to
lazy code. If T = (T1 &T2), then V can only be (V1, V2) for some values V1
and V2. Then V ′ = λ̄k. k �� (V1, V2). But we cannot compile a fresh address-
able instruction sequence k �� (V1, V2) for each V1 and V2, since V1 and V2 are
not known at compile time. Instead we compile a single instruction sequence
F �k��(v1, v2)� (k �→ arg, v1 �→ env[1], v2 �→ env[2]) and place pointers to V1
and V2 in the appropriate environment slots at run time.

Similarly, if T = (T1 ∨ T2), then V is inl V1 or inr V2, so we compile
F �k�� inl v1� (k �→ arg, v1 �→ env[1]) and F �k�� inr v2� (k �→arg, v2 �→ env[1]),
and place V1 or V2 in the environment slot.

In short, the lifted pair (λ̄k. k �� (V1, V2)) will be represented on the heap by
an object of three words, the first being a pointer to the code for k�� (v1, v2) and
the second and third being pointers to V1 and V2. The lifted left injection will
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be represented by an object of two words, the first being a pointer to the code for
k�� inl v1 and the second being a pointer toV1; and similarly for the right injection.
These heap objects are the same size as the heap objects we would construct for
the unlifted values V ; except for the first word, the layout is the same; and since
we compiled just three instruction sequences, the first word of the lifted values can
contain just three different pointers, which are in one-to-one correspondence with
the three tags tagPair, tagLeft, tagRight. So if we simply define our sum and
product tags to be pointers to the appropriate instruction sequence, then a heap
representation of any value of an IL sum or product type is also a value of that
type’s double negation. We will call this auto-lifting.

Auto-lifting also works for tagUnit, but a slightly different approach is
needed for function types, and more generally for any type beginning with ¬.
Further discussion of this may be found at the web site [7].

An obvious but nonetheless interesting observation about auto-lifting is that
it is often polynomially faster than explicit lifting. Explicitly converting from a
strict list to a non-strict list in IL is Θ(n) in the size of the list, while auto-lifting
is free of cost independently of n.

5.1 Coercing LL Values to SL Values

The function deepSeq is not built in to Haskell, but can be defined using type
classes. Its operational effect is to traverse a data structure, forcing each node
as it goes. By forcing we mean, in IL terms, calling each continuation ¬¬T
and ignoring the result T (except for purposes of further traversal). Applying
deepSeq to a data structure has the referentially transparent “side effect” of
causing all nodes in the data structure to be updated with values of the form
λ̄k. k��V (see Section 4.2). If there is no such value—if ⊥ is hiding anywhere in
the data structure—then deepSeq diverges.

We have already arranged that a fully-evaluated LL value is an SL value
in AM. It would seem that if we define our forcing operation in such a way
that it overwrites thunks with valid SL values, then provided deepSeq does not
diverge, we could subsequently treat its argument as having the corresponding
SL type.

Unfortunately, this does not quite work. The trouble is that we cannot al-
ways overwrite a thunk with a valid SL value. Consider, for example, the thunk
λ̄k. k �� (x, x). This has one free variable (x), and so its heap representation in
AM occupies two words (the other being the code pointer). Its SL counterpart, on
the other hand, requires three words (one for the tag and two for the fields of the
pair). We can solve this in some cases by setting aside extra space when we allo-
cate the thunk, but this is not always possible in a practical implementation with
larger tuples and polymorphism. To handle the remaining cases, we are forced to
(re-)introduce indirection nodes. But indirection nodes are not SL values!

Fortunately, the solution is not difficult. We must think of deepSeq not as
a procedure but as a function that returns an SL value as its result. If in-place
updating is possible, deepSeq returns its argument (which is then a valid SL
value); if in-place updating is not possible, deepSeq updates with an indirection
and returns the target of that indirection, which is again a valid SL value.
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A related complication arises when we use deepSeq on a data structure with
a mixture of strict and non-strict fields, such as might be defined in a hybrid
language. In such cases we must update not only thunks but also the fields of
SL values. Because of space constraints we do not discuss the details.

6 Conclusions

In this paper we defined an intermediate language IL, containing continuations
but not functions, which can encode naturally both strict and non-strict lan-
guages; and we exhibited an abstract machine, AM, which can execute IL (and,
via translation, strict and non-strict source languages) with an efficiency com-
parable to existing ML and Haskell implementations modulo known optimiza-
tion techniques, while also supporting efficient interconversion between ML data
structures and Haskell data structures.

IL seems to capture fundamental aspects of the relationship between strict
and non-strict languages which we had previously understood only in an ad hoc
manner. The fact that a structure resembling a lifting monad appears within IL,
without any attempt to place it there (Section 2.3) is one example of this. In fact
IL’s three negation classes do the lifting monad one better, since they predict
that lifting leads to a semantic distinction (in the sense of Section 2.3) only in a
value context, not in an expression (continuation) context. It follows that, in a
hybrid strict/lazy language, it makes sense to annotate the strictness of function
arguments, but not of function results—a fact that we recognized long before
discovering IL, but for which we had never had a satisfactory theoretical model.
In this and other ways IL seems to be predictive where previous systems were
phenomenological, and this is its primary appeal.

6.1 Related Work

The benefits of continuation-passing style for compilation, and the existence of
call-by-name and call-by-value CPS translations, have been known for decades
[6]. The notion of continuations as negations was introduced by Griffin [3]. Re-
cently several authors have introduced computational calculi to demonstrate
the call-by-value/call-by-name duality within a classical framework, including
Curien and Herbelin’s lambda-bar calculus [2], Wadler’s dual calculus [9], and
van Bakel, Lengrand, and Lescanne’s X [8]. Wadler explicitly defines the function
arrow in terms of negation, conjunction and disjunction. On the practical side,
a previous paper by Peyton Jones, Launchbury, Shields, and Tolmach [5] stud-
ies the same practical problem as the present work, proposing a monad-based
intermediate language also called IL.

The present work represents, we believe, a happy medium between the the-
oretical and practical sides of the problem we set out to solve. IL is straightfor-
wardly and efficiently implementable on stock hardware, while retaining some of
the interesting features of its theoretical cousins; it is also substantially sim-
pler than the previous proposal by Peyton Jones et al, while preserving its
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fundamental design goal. The notion of auto-lifting described in this paper may
also be new to the literature, though it was known to the authors before this
research began.

6.2 Future Work

The work described in this paper is part of an ongoing research project. Again
we invite interested readers to visit the project web site [7], which will con-
tain additional material omitted from this paper as well as updates on further
progress.

As of this writing, and undoubtedly as of publication time, a large amount of
work remains to be done. We have not implemented a compiler based on IL and
AM, and many issues must be investigated and resolved before we can do so.
Some optimizations can be accommodated quite well within IL as it stands—for
example, the “vectored return” optimization of the STG-machine [4] is valid as
a consequence of de Morgan’s law. Others require further work. The minimalist
design of AM can accommodate extensions for stack-based evaluation, register
arguments and the like, if these can be represented neatly in IL. Since the use
of continuation-passing calculi as intermediate languages is well understood [1],
it seems likely that this can be done using known techniques.

Adding polymorphism to IL is not difficult, and the translation from the
source language to IL remains straightforward as long as the source language is
strict or non-strict. Unfortunately, attempts to introduce unrestricted polymor-
phism into a hybrid language lead to subtle difficulties. IL does not cause these
difficulties, but only exposes them; we hope that further study of IL will expose
a sensible solution as well.
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Abstract. This paper illustrates the use of coinductive definitions and
proofs in big-step operational semantics, enabling the latter to describe
diverging evaluations in addition to terminating evaluations. We show
applications to proofs of type soundness and to proofs of semantic preser-
vation for compilers.

1 Introduction

There exist two popular styles of structured operational semantics: big-step se-
mantics, relating programs to final configurations, and small-step semantics,
where a one-step reduction relation is repeatedly applied to form reduction se-
quences. Small-step semantics is more expressive since it can describe the eval-
uation of both terminating and non-terminating programs, as finite or infinite
reduction sequences, respectively. In contrast, big-step semantics describes only
the evaluation of terminating programs, and fails to distinguish between non-
terminating programs and programs that “go wrong”. For this reason, small-step
semantics is generally preferred, in particular for proving the soundness of type
systems.

However, big-step semantics is more convenient than small-step semantics
for some applications. One that is dear to our heart is proving the correct-
ness (preservation of program behaviours) of program transformations, espe-
cially compilation of a high-level language down to a lower-level language. Our
experience and that of others [14, 12, 19] is that fairly complex, optimizing com-
pilation passes can be proved correct relatively easily using big-step semantics,
by induction on the structure of big-step evaluation derivations. In contrast,
compiler correctness proofs using small-step semantics are significantly harder
even for simple, non-optimizing compilation schemes [10, 8].

In this paper, we illustrate how coinductive definitions and proofs enable
big-step semantics to describe both finite and infinite evaluations. The target
of our study is a simple call-by-value functional language. We study two ap-
proaches: the first, initially proposed by Cousot and Cousot [4], complements
the normal inductive big-step evaluation rules for finite evaluations with coin-
ductive big-step rules describing diverging evaluations; the second simply inter-
prets coinductively the normal big-step evaluation rules, thus enabling them to
describe both terminating and non-terminating evaluations. These semantics are
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defined in section 2. The main technical results of the paper are: connections be-
tween coinductive big-step semantics and finite or infinite reduction sequences
in small-step semantics (section 3); a novel approach to stating and proving the
soundness of type systems (section 4); and proofs of semantic preservation for
compilation down to an abstract machine (section 5).

An originality of this paper is that all results were not only proved using a
proof assistant (the Coq system), but even developed in interaction with this
tool, and only then transcribed to standard mathematical notations in this pa-
per. The Coq proof assistant [3] provides built-in support for coinductive def-
initions and proofs by a limited form of coinduction called guarded structural
coinduction. (See [6, 2, 3] for descriptions of this approach to coinduction.) Such
proofs are easier than the standard, on-paper proofs by coinduction; in partic-
ular, there is no need to exhibit F -consistent relations [5]. This enables us to
play fast and loose with coinduction in the proof sketches given in this paper;
the skeptical reader is referred to the corresponding Coq development [13] for
details. Another benefit of using Coq is that our formalization and proofs use
rather modest mathematics: just syntactic definitions, no domain theory, and
constructive logic plus the axiom of excluded middle from classical logic. (The
proofs that use excluded middle are marked “classical”.)

2 The Language and Its Big-Step Semantics

The language we consider in this paper is the λ-calculus extended with constants:
the simplest functional language that exhibits run-time errors (terms that “go
wrong”). Its syntax is as follows:

Variables: x, y, z, . . .

Constants: c ::= 0 | 1 | . . .
Terms: a, b, v ::= x | c | λx.a | a b

We write a[x← b] for the capture-avoiding substitution1 of b for all free occur-
rences of x in a. We say that a term v is a value, and write v ∈ Values, if a is
either a constant c or an abstraction λx.b.

The standard call-by-value semantics in big-step style for this language is
defined by the following inference rules, interpreted inductively.

c⇒ c (⇒-const) λx.a⇒ λx.a (⇒-fun)

a1 ⇒ λx.b a2 ⇒ v2 b[x← v2]⇒ v
(⇒-app)

a1 a2 ⇒ v

More precisely, the relation a ⇒ v (read: “a evaluates to v”) is the smallest
fixpoint of the rules above. Equivalently, a ⇒ v holds if and only if it is the
conclusion of a finite derivation tree built from the rules above.
1 The Coq development does not treat terms modulo α-conversion, therefore the sub-

stitution a[x ← b] is capture-avoiding only if b is closed. However, this suffices to
define evaluation and reduction of closed source terms.
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Lemma 1. If a⇒ v, then v ∈ Values.

Proof sketch. Induction on the derivation of a⇒ v.

The rules above capture only terminating evaluations. Writing δ = λx. x x
and ω = δ δ, we have for instance:

Lemma 2. ω ⇒ v is false for all terms v.

Proof sketch. We show that a⇒ v implies a 
= ω by induction on the derivation
of a⇒ v.

Following Cousot and Cousot [4] and more recent work by Grall [7], we de-
fine divergence (infinite evaluations) by the following inference rules, interpreted
coinductively:2

a1
∞⇒

(∞⇒-app-l)
a1 a2

∞⇒

a1 ⇒ v a2
∞⇒

(∞⇒-app-r)
a1 a2

∞⇒

a1 ⇒ λx.b a2 ⇒ v b[x← v] ∞⇒
(∞⇒-app-f)

a1 a2
∞⇒

More precisely, the relation a
∞⇒ (read: “a diverges”) is the greatest fixpoint

of the rules above, or, equivalently, the conclusions of infinite derivation trees
built from these rules. Note that we have imposed (arbitrarily) a left-to-right
evaluation order for applications.

Lemma 3. ω
∞⇒ holds.

Proof sketch. By coinduction. Assume ω ∞⇒ as coinduction hypothesis. We can
derive ω

∞⇒ with rule (∞⇒-app-f), using the coinduction hypothesis as third
premise.

Lemma 4. a⇒ v and a
∞⇒ are mutually exclusive.

Proof sketch. By induction on the derivation of a⇒ v and inversion on a
∞⇒ .

An alternate attempt to describe both terminating and non-terminating eval-
uations at the same time is to interpret coinductively the standard evaluation
rules for terminating evaluations.

c
co⇒ c ( co⇒-const) λx.a

co⇒ λx.a ( co⇒-fun)

a1
co⇒ λx.b a2

co⇒ v2 b[x← v2]
co⇒ v

( co⇒-app)
a1 a2

co⇒ v

2 Throughout this paper, double horizontal lines in inference rules denote inference
rules that are to be interpreted coinductively; single horizontal lines denote the
inductive interpretation.
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The relation a
co⇒ b (read: “a coevaluates to b”) is therefore the greatest fixpoint

of the standard evaluation rules. It holds if and only if a co⇒ b is the conclusion
of a finite or infinite derivation tree built from these rules.

Naively, we could expect that co⇒ is the union of ⇒ and ∞⇒. This intuition is
supported by the following properties:

Lemma 5. If a⇒ v, then a
co⇒ v.

Proof sketch. By induction on the derivation of a⇒ v.

Lemma 6. ω
co⇒ v for all terms v.

Proof sketch. By coinduction, using rule ( co⇒-app) with the coinduction hypoth-
esis as third premise.

Lemma 7. If a co⇒ v, then either a⇒ v or a ∞⇒ .

Proof sketch (classical). We show that a co⇒ v and ¬(a ⇒ v) implies a ∞⇒ . The
result then follows by excluded middle on a ⇒ v. The auxiliary property is
proved by coinduction and case analysis on a. The cases for variables, constants
and abstractions trivially contradict one of the hypotheses. If a = a1 a2, inversion
on the hypothesis a co⇒ v shows that a1

co⇒ λx.b and a2
co⇒ v2 and b[x← v2]

co⇒ v.
Using excluded middle, it must be that at least one of these three terms does not
evaluate, otherwise, a ⇒ v would hold. The result follows by applying the rule
for ∞⇒ that matches which term does not evaluate, and using the coinduction
hypothesis.

However, the reverse implication does not hold: there exists terms that diverge
but do not coevaluate. Consider for instance a = ω (0 0). It is true that a ∞⇒ , but
there is no term v such that a co⇒ v, because the coevaluation of the argument
0 0 goes wrong (there is no v such that 0 0 co⇒ v).

Another unusual feature of coevaluation is that it is not deterministic. For
instance, ω co⇒ v for any term v. However, co⇒ is deterministic for terminating
terms, in the following sense:

Lemma 8. If a⇒ v and a
co⇒ v′, then v′ = v.

Proof sketch. By induction on the derivation of a⇒ v and inversion on a
co⇒ v′.

Moreover, there exists diverging terms that coevaluate to only one value. An
example is (λx.0) ω, which coevaluates to 0 but not to any other term.

3 Relation with Small-Step Semantics

The one-step reduction relation→ is defined by the call-by-value β-reduction ax-
iom plus two context rules for reducing under applications, assuming left-to-right
evaluation order.
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v ∈ Values
(→-β)

(λx.a) v → a[x← v]

a1 → a2 (→-app-l)
a1 b→ a2 b

a ∈ Values b1 → b2 (→-app-r)
a b1 → a b2

There are three kinds of reduction sequences of interest. The first, written
a

∗→ b (“a reduces to b in zero, one or several steps”), is the normal reflexive
transitive closure of →; it captures finite reductions. The second, a ∞→ (“a re-
duces infinitely”) captures infinite reductions. The third, a co∗→ b (“a reduces to b
in zero, one, several or infinitely many steps”) is the coinductive interpretation of
the rules for reflexive transitive closure; it captures both finite and infinite reduc-
tions. These relations are defined by the following rules, interpreted inductively
for ∗→ and coinductively for ∞→ and co∗→.

a
∗→ a a

co∗→ a

a→ b b
∗→ c

a
∗→ c

a→ b b
∞→

a
∞→

a→ b b
co∗→ c

a
co∗→ c

In contrast with the evaluation predicates of section 2, it is true that co∗→ is
the union of ∗→ and ∞→.

Lemma 9. a
co∗→ b if and only if a ∗→ b or a ∞→ .

Proof sketch (classical). For the “if” part, we show that a ∗→ b =⇒ a
co∗→ b by

induction on a
∗→ b, and that a ∞→ =⇒ a

co∗→ b by coinduction. For the “only
if” part, we show that a co∗→ b ∧ ¬(a ∗→ b) =⇒ a

∞→ by coinduction. The result
follows by excluded middle over a ∗→ b.

We now turn to relating the reduction relations (small-step) and the evalua-
tion relations (big-step). (Some of these results were proved earlier on paper by
Grall [7], using a variant of the F -consistent relation approach.) It is well known
that normal evaluation is equivalent to finite reduction to a value:

Lemma 10. a⇒ v if and only if a ∗→ v and v ∈ Values.

Proof sketch. The “only if” part is an easy induction on a ⇒ v. For the “if”
part, we first show the following two lemmas: (1) v ⇒ v if v ∈ Values, and (2)
a ⇒ v if a → b and b ⇒ v. The result follows by induction on the derivation of
a

∗→ v.

Similarly, divergence (∞⇒) is equivalent to infinite reduction (∞→). The proof
uses the following lemma:

Lemma 11. For all terms a, either a ∞→ , or there exists b such that a ∗→ b and
b 
→, that is, ∀c, ¬(b→ c).
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Proof sketch (classical). We first show that ∀b, a
∗→ b =⇒ ∃c, b → c implies

a
∞→ by coinduction. We then argue by excluded middle on a

∞→ .

Lemma 12. a
∞⇒ if and only if a ∞→ .

Proof sketch (classical). For the “only if” part, we first show that a ∞⇒ implies
∃b, a → b ∧ b

∞⇒ by structural induction on a, then conclude by coinduction.
For the “if” part, we proceed by coinduction and case analysis over a. The only
non-trivial case is a = a1 a2. Using lemma 11, we distinguish three cases: (1) a1
reduces infinitely; (2) a1 reduces to a value but a2 reduces infinitely; (3) a1 and
reduce to values λx.b and v respectively, and b[x ← v] reduces infinitely. The
result a ∞⇒ then follows from the coinduction hypothesis in all three cases.

For coevaluations co⇒ and coreductions co∗→, the equivalence holds in one di-
rection only.

Lemma 13. a
co⇒ v implies a co∗→ v.

Proof sketch. Using classical logic, this follows from lemmas 7, 10, 12 and 9.
However, the result can be proved directly in constructive logic. We first show
that a co⇒ v =⇒ a ∈ Values ∨ ∃b, a → b ∧ b

co⇒ v by induction on a. The result
follows by coinduction.

An example where the reverse implication does not hold is a = (λx. 0) ω and
v = 1. Since a ∞→ , we have a co∗→ v. However, a co⇒ v does not hold since the only
term to which a coevaluates is 0.

4 Type Soundness Proofs

We now turn to using our coinductive evaluation and reduction relations for
proving the soundness of type systems. To be more specific, we will use the
simply-typed λ-calculus with recursive types as our type system. We obtain re-
cursive types by interpreting the type algebra τ ::= int | τ1 → τ2 coinductively,
as in [5]. The typing rules are recalled below. Γ ranges over type environments,
that is, finite maps from variables to types.

E(x) = τ

E � x : τ
E � c : int

E + {x : τ ′} � a : τ

E � λx.a : τ ′ → τ

E � a1 : τ ′ → τ E � a2 : τ ′

E � a1 a2 : τ

Enabling recursive types makes the type system non-normalizing and allows
interesting programs to be written. In particular, the call-by-value fixpoint op-
erator Y = λf. (λx. f (x x)) (λx. f (λy. (x x) y)) is well-typed, with types
((τ → τ ′) → τ → τ ′)→ τ → τ ′ for all types τ , τ ′.
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4.1 Type Soundness Proofs Using Small-Step Semantics

Felleisen and Wright [20] introduced a proof technique for showing type sound-
ness that relies on small-step semantics and is standard nowadays. The proof
relies on the twin properties of type preservation (also called subject reduction)
and progress :

Lemma 14 (Preservation). If a→ b and ∅ � a : τ , then ∅ � b : τ

Lemma 15 (Progress). If ∅ � a : τ , then either a ∈ Values or ∃b, a→ b.

The formal statement of type soundness in Felleisen and Wright’s approach
is the following:

Lemma 16 (Type soundness, 1). If ∅ � a : τ and a
∗→ b, then either a ∈

Values or there exists b such that a→ b.

Proof sketch. We first show that ∅ � b : τ by induction over a ∗→ b, using the
preservation lemma. We then conclude with the progress lemma.

Authors that follow this approach then conclude that well-typed closed terms
either reduce to a value or reduce infinitely. However, this conclusion is generally
not expressed nor proved formally. In our approach, it is easy to do so:

Lemma 17 (Type soundness, 2). If ∅ � a : τ , then either a
∞→ , or there

exists v such that a ∗→ v and v ∈ Values.

Proof sketch (classical). By lemma 11, either a ∞→ or ∃v, a ∗→ v ∧ v 
→. The
result is obvious in the first case. In the second case, we note that ∅ � v : τ as a
consequence of the preservation lemma, then use the progress lemma to conclude
that v ∈ Values.

An alternate, equivalent formulation of this theorem uses the coreduction
relation co∗→.

Lemma 18 (Type soundness, 3). If ∅ � a : τ , then there exists v such that
a

co∗→ v and v ∈ Values.

Proof sketch (classical). Follows from lemmas 17 and 9.

An arguably nicer characterisation of “programs that do not go wrong” is
given by the relation a

safe→ (read: “a reduces safely”), defined coinductively by
the following rules:

v ∈ Values

v
safe→

a→ b b
safe→

a
safe→

These rules are interpreted coinductively so that a safe→ holds if a reduces infi-
nitely. We can then state and show type soundness without recourse to classical
logic:
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Lemma 19 (Type soundness, 4). If ∅ � a : τ , then a
safe→ .

Proof sketch. By coinduction. Applying the progress lemma, either a ∈ Values
and we are done, or a → b for some b. In the latter case, ∅ � b : τ by the
preservation property, and the result follows from the coinduction hypothesis.

4.2 Type Soundness Proofs Using Big-Step Semantics

The standard big-step semantics (the ⇒ relation) is awkward for proving type
soundness because it does not distinguish between terms that diverge and terms
that go wrong: in both cases, there is no value v such that a⇒ v. Consequently,
the obvious type soundness statement “if ∅ � a : τ , there exists v such that
a⇒ v” is false for all type systems that do not guarantee normalization. The best
result we can prove, then, is the following big-step equivalent to the preservation
lemma:

Lemma 20. If a⇒ v and ∅ � a : τ , then ∅ � v : τ .

The standard approach is to provide inductive inference rules to define a pred-
icate a ⇒ err characterizing terms that go wrong, and prove the weaker type
soundness statement “if ∅ � a : τ , then it is not the case that a ⇒ err”. This
approach is unsatisfactory for two reasons: (1) extra rules must be provided to
define a⇒ err, which increases the size of the semantics; (2) there is a risk that
the rules for a ⇒ err are incomplete and miss some cases of “going wrong”, in
which case the type soundness statement does not guarantee that well-typed
terms either evaluate to a value or diverge.

Let us revisit these trade-offs in the light of our characterizations of diver-
gence and coevaluation. We can now formally state what it means for a term to
evaluate or to diverge. This leads to the following alternate statement of type
soundness:

Lemma 21 (Type soundness, 5). If ∅ � a : τ , then either a
∞⇒ or there

exists v such that a⇒ v.

This result follows from the lemma below (a big-step analogue to the progress
lemma) and from excluded middle applied to ∃v. a⇒ v.

Lemma 22. If ∅ � a : τ and ∀v, ¬(a⇒ v), then a
∞⇒ .

Proof sketch (classical). The proof is by coinduction and case analysis over a.
The cases a = x, a = c and a = λx.b lead to contradictions: variables are
not typeable in the empty environment; constants and abstractions evaluate to
themselves. The interesting case is therefore a = a1 a2. By excluded middle,
either a1 evaluates to some value v1, or not. In the latter case, a ∞⇒ follows from
rule (∞⇒-app-l) and from a1

∞⇒ , which we obtain by coinduction hypothesis.
In the former case, v1 has a function type τ ′ → τ by lemma 20, and therefore
v1 = λx.b for some x and b. Moreover, {x : τ ′} � b : τ . Using excluded middle
again, either a2 evaluates to some value v2, or not. In the latter case, a ∞⇒
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follows from rule (∞⇒-app-r) and the coinduction hypothesis. In the former case,
∅ � v2 : τ ′. Since typing is stable by substitution, ∅ � b[x ← v2] : τ . Using
excluded middle for the third time, it must be that ∀v. ¬(b[x ← v2] ⇒ v),
otherwise a would evaluate to some value. The result a ∞⇒ then follows from
rule (∞⇒-app-f) and the coinduction hypothesis.

The proof above is an original alternative to the standard approach of showing
¬(a ⇒ err) for all well-typed terms a. From a methodological standpoint, our
proof addresses one of the shortcomings of the standard approach, namely the
risk of not putting enough error rules. If we forget some divergence rules, the
proof of lemma 22 will, in all likelihood, not go through. Moreover, it is im-
probable to put too many rules for divergence and still have the property that
a⇒ v and a

∞⇒ are mutually exclusive. Therefore, this novel approach to prov-
ing type soundness using big-step semantics appears rather robust with respect
to mistakes in the specification of the semantics.

The other methodological shortcoming remains, however: just like the “not
goes wrong” approach, our approach requires more evaluation rules than just
those for normal evaluations, namely the rules for divergence. This can easily
double the size of the specification of a dynamic semantics, which is a serious
concern for realistic languages where the normal evaluation rules number in
dozens.

The coevaluation relation co⇒ is attractive for these pragmatic reasons, as it
has the same number of rules as normal evaluation. Of course, we have seen that
a

co⇒ v is not equivalent to a ⇒ v ∨ a
∞⇒ , but the example we gave was for a

term a that is not typeable and where an early diverging evaluation “hides” a
later evaluation that goes wrong. Since type systems ensure that all subterms of
a term do not go wrong, we could hope that the following conjecture holds:

Conjecture 1 (Type soundness, 6). If ∅ � a : τ , there exists v such that a co⇒ v.

We were able to prove this conjecture for some uninteresting but nonetheless
non-normalizing type systems, such as simply-typed λ-calculus without recur-
sive types, but with a predefined constant of type int→ int that diverges when
applied. However, the conjecture is false for simply-typed λ-calculus with recur-
sive types, and probably for all type systems with a general fixpoint operator.
Andrzej Filinski provided the following counterexample. Consider

Y F 0 where F = λf.λx. (λg.λy. g y) (f x).

The term Y F 0 is well-typed with type int → int, yet it fails to coeval-
uate: the only possible value v such that Y F 0 co⇒ v is an infinite term,
λy. (λy. (λy. . . . y) y) y.

5 Compiler Correctness Proofs

We now return to the original motivation of this work: proving semantic preser-
vation for compilers both for terminating and diverging programs, using big-step
semantics. We demonstrate this approach on the compilation of call-by-value λ-
calculus down to a simple abstract machine.
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5.1 Big-Step Semantics with Environments and Closures

Our abstract machine uses closures and environments indexed by de Bruijn in-
dices. It is therefore convenient to reformulate the big-step evaluation predicates
in these terms. Variables, written xn, are now identified by their de Bruijn in-
dices n. Values (which are no longer a subset of terms) and environments are
defined as:

Values: v ::= c integer values
| (λa)[e] function closures

Environments: e ::= ε | v.e sequences of values

Figure 1 shows the inference rules defining the three evaluation relations:

e � a⇒ v finite evaluations (inductive)
e � a ∞⇒ infinite evaluations (coinductive)
e � a co⇒ v coevaluations (coinductive)

We will not formally study these relations, but note that they enjoy the same
properties as the environment-less relations studied in section 2.

5.2 The Abstract Machine and its Compilation Scheme

The abstract machine we use as target of compilation follows the call-by-value
strategy and the “eval-apply” model. It is close in spirit to the SECD, CAM,

e = v1 . . . vn . . .

e 
 xn ⇒ vn

e 
 c⇒ c e 
 λa⇒ (λa)[e]

e 
 a1 ⇒ (λb)[e′] e 
 a2 ⇒ v2 v2.e
′ 
 b⇒ v

e 
 a1 a2 ⇒ v

e 
 a1
∞⇒

e 
 a1 a2
∞⇒

e 
 a1 ⇒ v e 
 a2
∞⇒

e 
 a1 a2
∞⇒

e 
 a1 ⇒ (λb)[e′] e 
 a2 ⇒ v v.e′ 
 b
∞⇒

e 
 a1 a2
∞⇒

e = v1 . . . vn . . .

e 
 xn
co⇒ vn

e 
 c
co⇒ c e 
 λa

co⇒ (λa)[e]

e 
 a1
co⇒ (λb)[e′] e 
 a2

co⇒ v2 v2.e
′ 
 b

co⇒ v

e 
 a1 a2
co⇒ v

Fig. 1. Big-step evaluation rules with closures and environments
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FAM and CEK machines. The machine state has three components: a code
sequence, a stack and an environment. The syntax for these components is as
follows.

Instructions: I ::= Var(n) push the value of variable number n
| Const(c) push the constant c
| Clos(C) push a closure for code C
| App perform a function application
| Ret return to calling function

Code: C ::= ε | I, C instruction sequences
Machine values: V ::= n integer values

| C[E] code closures
Machine environments: E ::= ε | V.E
Stacks: S ::= ε empty stack

| V.S pushing a value
| (C,E).S pushing a return frame

The behaviour of the abstract machine is defined by the following rules, as
a transition relation C;S;E → C′;S′;E′ that relates the machine state before
(C;S;E) and after (C′;S′;E′) the execution of the first instruction of the codeC.

(Var(n), C); S; E → C; Vn.S; E if E = V1 . . . Vn . . .
(Const(c), C); S; E → C; c.S; E
(Clos(C′), C); S; E → C; C′[E].S; E
(App, C); V.C′[E′].S; E → C′; (C,E).S; V.E′

(Ret, C); V.(C′, E′).S; E → C′; V.S; E′

As in section 3, we consider the following closures of the one-step transition
relation:

C;S;E ∗→ C′;S′;E′ zero, one or several transitions (inductive)
C;S;E +→ C′;S′;E′ one or several transitions (inductive)
C;S;E ∞→ infinitely many transitions (coinductive)
C;S;E co∗→ C′;S′;E′ zero, one, several or infinitely many transitions (coind.)

The compilation scheme from terms to code is straightforward:

[[xn]] = Var(n) [[c]] = Const(c)
[[λa]] = Clos([[a]], Ret) [[a1 a2]] = [[a1]], [[a2]], App

The intended effect for the code [[a]] is to evaluate the term a and push its value
at the top of the machine stack, leaving the rest of the stack and the environment
unchanged.

5.3 Proofs of Semantic Preservation

We expect the compilation to abstract machine code to preserve the semantics
of the source term, in the following general sense. Consider a closed term a and
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start the abstract machine in the initial state corresponding to a. If a diverges,
the machine should perform infinitely many transitions. If a evaluates to the
value v, the machine should reach a final state corresponding to v in a finite
number of transitions. Here, the initial state corresponding to a is [[a]]; ε; ε. The
final state corresponding to the result value v is ε; [[v]].ε; ε, that is, the code has
been entirely consumed and the machine value [[v]] corresponding to the source-
level value v is left on top of the stack. The correspondence between source-level
and machine values is defined by:

[[c]] = c [[(λa)[e]]] = ([[a]], Ret)[[[e]]] [[v1 . . . vn]] = [[v1]] . . . [[vn]]

Semantic preservation is easy to show for terminating terms a using the big-
step semantics. We just need to strengthen the statement of preservation so
that it lends itself to induction over the derivation of e � a ⇒ v. (See the Coq
development [13] for the full proof.)

Lemma 23. If e � a ⇒ v, then ([[a]], C); S; [[e]] +→ C; [[v]].S; [[e]] for all codes
C and stacks S.

It is impossible, however, to prove semantic preservation for diverging terms
using only the standard big-step semantics. This led several authors to prove
semantic preservation for compilation to abstract machines using small-step se-
mantics with explicit substitutions [10, 17]. Such proofs are difficult, however,
because the obvious simulation property

If a[e]→ a′[e′] then [[a]]; S; [[e]] +→ [[a′]]; S′; [[e′]] (for some S′)

does not hold: the transitions of the abstract machine do not follow the reduc-
tions of the source term. Instead, the proofs in [10, 17] rely on a decompilation
relation that maps intermediate machine states back to source-level terms. With
the help of this decompilation relation, it is possible to prove simulation diagrams
that imply the desired semantic preservation properties. However, decompilation
relations are difficult to define, especially for optimizing compilation schemes (see
[8] for an example).

The coinductive big-step semantics studied in this paper provide a simpler
way to prove semantic preservation for non-terminating terms. Namely, the fol-
lowing two theorems hold, showing that compilation preserves divergence and
coevaluation as characterized by the ∞⇒ and co⇒ predicates.

Lemma 24. If e � a ∞⇒ , then ([[a]], C); S; [[e]] ∞→ .

Lemma 25. If e � a co⇒ v, then ([[a]], C); S; [[e]] co∗→ C; [[v]].S; [[e]].

The full proofs can be found in [13]. Both lemmas cannot be proved directly by
structural coinduction and case analysis over a. The problem is in the application
case a = a1 a2, where the code component of the initial machine state is of the
form [[a1]], [[a2]], App, C. It is not possible to invoke the coinduction hypothesis to
reason over the execution of [[a1]], because this use of the coinduction hypothesis



66 X. Leroy

is not guarded by an inference rule for the ∞→ relation, or in other terms because
no machine instruction is evaluated before invoking the hypothesis.

There are two ways to address this issue. The first is to modify the compi-
lation scheme for applications, in order to insert a “no operation” instruction
in front of the generated sequence: [[a1 a2]] = Nop, [[a1]], [[a2]]. The Nop operation
has the obvious machine transition (Nop, C); S; E → C; S; E. With this mod-
ification, the coinductive proof for lemma 24 performs a Nop transition before
invoking the coinduction hypothesis to deal with the evaluation of [[a1]]. This
makes the coinductive proof properly guarded and acceptable to Coq.

Of course, it is inelegant to pepper the generated code with Nop instructions
just to make one proof get through. We therefore used an alternate approach
where the compilation scheme for applications is unchanged, but we exploit the
fact that the number of such recursive calls that do not perform a machine
transition is necessarily finite, because our term algebra is finite. The proof of
lemma 24 exploits this fact by defining a variant of the ∞→ relation that enables a
finite number of “stuttering steps” (where no instructions are executed) between
executions of instructions. The finite number in question is the length of the left
application spine of the term being compiled. The problem and the solution are
similar to those described by Bertot [2] in his coinductive presentation and proof
of Eratosthenes’ sieve algorithm.

6 Related Work

There are few instances of coinductive definitions and proofs for big-step seman-
tics in the literature. Cousot and Cousot [4] proposed the coinductive big-step
characterization of divergence that we use in this paper and studied its applica-
bility for abstract interpretation. Grall [7] applied this approach to call-by-value
λ-calculus; unlike our ⇒ and ∞⇒ predicates, his big-step semantics also generate
finite or infinite traces of elementary computation steps, traces which he uses
to define observational equivalences. Gunter and Rémy [9] and Stoughton [18]
have the same initial goal as us, namely describe both terminating and diverg-
ing computations with big-step semantics, but use increasing sequences of finite,
incomplete derivations to do so, instead of infinite derivations. We do not know
yet how their approach relates to our ∞⇒ and co⇒ relations.

Milner and Tofte [16] and later Leroy and Rouaix [15] used coinduction in
the context of a big-step semantics for functional and imperative languages, not
to describe diverging evaluations, but to capture safety properties over possibly
cyclic memory stores.

Of course, coinductive techniques are routinely used in the context of small-
step semantics, especially for the labeled transition systems arising from process
calculi. The flavours of coinduction used there, especially proofs by bisimulations,
are quite different from the present work.

The infinitary λ-calculus [11, 1] studies diverging computations from a very
different angle: not only the authors use reduction semantics, but their terms are
also infinite, and they use topological tools (metrics, convergence, etc) instead
of coinduction.
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7 Conclusions

We investigated two coinductive approaches to giving big-step semantics for non-
terminating computations. The first, based on [4] and using separate evaluation
rules for terminating terms and diverging terms, appears very well-behaved: it
corresponds exactly to finite and infinite reduction sequences, and lends itself
well to type soundness proofs and to compiler correctness proofs. The second
approach, consisting in a coinductive interpretation of the standard evaluation
rules, is less satisfactory: while amenable to compiler correctness proofs as well,
it captures only a subset of the diverging computations of interest — and it is
not yet clear which subset exactly.

A natural continuation of this work, following Grall’s work [7], is to develop
coinductive, big-step, trace semantics for imperative languages that capture not
only the final outcome of the evaluation (divergence or result value), but also a
possibly infinite trace of the observable effects (such as input/output) performed
during evaluation. Such trace semantics would enable stronger statements of
observational equivalence between source code and compiled code in the context
of compiler certification. However, the existence of suitable traces for infinite
evaluations cannot be proved constructively, nor with just the axiom of excluded
middle. It is not clear yet what classical axioms (probably variants of the axiom
of choice) need to be added to Coq.
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Abstract. We present a sound and complete proof technique, based on
syntactic logical relations, for showing contextual equivalence of expres-
sions in a λ-calculus with recursive types and impredicative universal
and existential types. Our development builds on the step-indexed PER
model of recursive types presented by Appel and McAllester. We have
discovered that a direct proof of transitivity of that model does not go
through, leaving the “PER” status of the model in question. We show
how to extend the Appel-McAllester model to obtain a logical relation
that we can prove is transitive, as well as sound and complete with re-
spect to contextual equivalence. We then augment this model to support
relational reasoning in the presence of quantified types.

Step-indexed relations are indexed not just by types, but also by the
number of steps available for future evaluation. This stratification is es-
sential for handling various circularities, from recursive functions, to re-
cursive types, to impredicative polymorphism. The resulting construction
is more elementary than existing logical relations which require com-
plex machinery such as domain theory, admissibility, syntactic minimal
invariance, and ��-closure.

1 Introduction

Proving equivalence of programs is important for verifying the correctness of
compiler optimizations and other program transformations, as well as for estab-
lishing that program behavior is independent of the representation of an abstract
type. This representation independence principle guarantees that if one imple-
mentation of an abstraction is exchanged for another, client modules will not be
able to detect a difference.

Program equivalence is generally defined in terms of contextual equivalence.
We say that two programs are contextually equivalent if they have the same ob-
servable behavior when placed in any program context C. Unfortunately, proving
contextual equivalence is difficult in general, since it involves quantification over
all possible contexts. As a result, there’s been much work on finding tractable
techniques for proving contextual equivalence. Many of these are based on the
method of logical relations.

Logical relations specify relations on well-typed terms via structural induc-
tion on the syntax of types. Thus, for instance, logically related functions take
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logically related arguments to related results, while logically related pairs con-
sist of components that are related pairwise. Logical relations may be based
on denotational models (e.g. [1, 2, 3]) or on the operational semantics of a lan-
guage [4, 5, 6, 7]. The latter are also known as syntactic logical relations [8] and
it is this flavor that is the focus of this paper.

To prove the soundness of a logical relation, one must prove the Fundamental
Property (also called the Basic Lemma) which says that any well-typed term is
related to itself. For simple type systems, it is fairly straightforward to prove
the Fundamental Property in the absence of nontermination. The addition of
recursive functions, however, complicates matters: establishing the Fundamen-
tal Property now requires proving additional “unwinding” lemmas [9, 6, 7, 10]
which show that in any terminating computation a recursively defined function
is approximated by its finite unrollings. More challenging still is the addition of
recursive types and impredicative quantified types1 since the logical relation can
no longer be defined by induction on types. Thus, showing the existence of a
relational interpretation of recursive types requires proving a nontrivial minimal
invariance property [3, 10, 8, 11, 12].

Appel and McAllester [13] proposed a radically different solution to the prob-
lem of recursive types. They defined intensional types, based on the operational
semantics of the language, that are indexed by the number of available (future)
execution steps. This extra information is sufficient to solve recursive equations
on types. Appel and McAllester also presented a PER (relational) model of re-
cursive types, which we build on in this paper. The advantage of step-indexed
logical relations is that they avoid complex machinery like domain theory, ad-
missibility, syntactic minimal invariance, and   -closure (biorthogonality). The
approach is promising since unary step-indexed models have scaled well to ad-
vanced features like impredicative quantified types and general references (i.e.,
mutable references that can store functions, recursive types, other references,
and even impredicative quantified types) [14, 15].

Appel and McAllester proved the Fundamental Property for their PER model
of equi-recursive types, and conjectured that their model was sound with respect
to contextual equivalence. We show that their claim is correct — to be precise,
we show soundness for a calculus with iso-recursive types, but the essence of the
model is the same.

We discovered, however, that the expected proof of transitivity for the Appel-
McAllester model does not go through. To definitively show that their model is
not transitive we tried to find a counterexample, but could not. Thus, we note
that the transitivity of the Appel-McAllester model remains an open problem.

In Section 2 we consider a λ-calculus with iso-recursive types and present a
sound and complete logical relation for the language. We also show how a direct
proof of transitivity of the Appel-McAllester model fails, and discuss some of
the peculiarities of the step-indexed approach. In Section 3 we extend the logical
relation to support quantified types. Proofs of all lemmas in the paper and

1 A quantified type such as ∀α. τ is impredicative if α may be instantiated with any
type, including ∀α. τ itself.



Step-Indexed Syntactic Logical Relations for Recursive and Quantified Types 71

several examples to illustrate the use of our logical relation are given in the
accompanying technical report [16].

2 Recursive Types

We consider a call-by-value λ-calculus with iso-recursive types (dubbed the λrec-
calculus). Figure 1 presents the syntax and small-step operational semantics for
the language, which supports booleans and pairs in addition to recursive types.
We define the operational semantics for λrec as a relation between closed terms e.
We use evaluation contexts to lift the primitive rewriting rules to a standard, left-
to-right, innermost-to-outermost, call-by-value interpretation of the language.
We say that a term e is irreducible (irred(e)) if e is a value (val(e)) or if e is a
“stuck” expression to which no operational rule applies. We also use e ⇓ as an
abbreviation for ∃e′. e �−→∗ e′ ∧ val(e ′).

Types τ ::= bool | τ1 × τ2 | τ1 → τ2 | α | μα. τ
Expressions e ::= x | tt | ff | if e0, e1, e2 | 〈e1, e2〉 | let 〈x1, x2〉= e1 in e2 |

λx. e | e1 e2 | fold e | unfold e
Values v ::= tt | ff | 〈v1, v2〉 | λx. e | fold v

Eval Ctxts E ::= [·] | ifE, e1, e2 | let 〈x1, x2〉=E in e | E e | v E | foldE | unfoldE

(iftrue) if tt, e1, e2 �−→ e1

(iffalse) if ff, e1, e2 �−→ e2

(letpair) let 〈x1, x2〉= 〈v1, v2〉 in e �−→ e[v1/x1][v2/x2]

(app) (λx. e) v �−→ e[v/x]

(unfold) unfold (fold v) �−→ v

(ctxt)
e �−→ e′

E[e] �−→ E[e′]

Fig. 1. λrec Syntax and Operational Semantics

Typing judgments in λrec have the form Γ � e : τ where the context Γ is
defined as follows:

Value Context Γ ::= • | Γ, x:τ .

Thus, Γ is used to track the set of variables in scope, along with their (closed)
types. There may be at most one occurrence of a variable x in Γ . The λrec static
semantics is entirely conventional (see, e.g., [17]) so we only show selected rules
in Figure 2. We use the abbreviated judgment � e : τ when the value context is
empty.

Theorem 1 (λrec Safety). If • � e : τ and e �−→∗ e′, then either e′ is a value,
or there exists an e′′ such that e′ �−→ e′′.
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Γ 
 e : τ

(Var)
Γ 
 x : Γ (x)

(Fn)
Γ, x:τ1 
 e : τ2

Γ 
 λx. e : τ1 → τ2
(App)

Γ 
 e1 : τ1 → τ2 Γ 
 e2 : τ1
Γ 
 e1 e2 : τ2

(Fold)
Γ 
 e : τ [μα. τ/α]

Γ 
 fold e : μα. τ
(Unfold)

Γ 
 e : μα. τ

Γ 
 unfold e : τ [μα. τ/α]

Fig. 2. λrec Static Semantics (Selected Rules)

2.1 λrec: Contextual Equivalence

A context C is an expression with a single hole [·] in it. Typing judgments for
contexts have the form Γ1 � C : (Γ � τ) � τ1, where (Γ � τ) indicates the type
of the hole — that is, if Γ � e : τ , then Γ1 � C[e] : τ1.

Definition 2 (λrec Contextual Approximation �ctx & Equivalence "ctx).
If Γ � e : τ and Γ � e′ : τ , we write Γ � e �ctx e′ : τ to mean

∀C, τ1. • 
 C : (Γ � τ ) � τ1 ∧ C[e] ⇓ =⇒ C[e′] ⇓ .

Two terms are contextually equivalent if they contextually approximate one an-
other:

Γ 
 e �ctx e′ : τ def= Γ 
 e �ctx e′ : τ ∧ Γ 
 e′ �ctx e : τ .

2.2 λrec: Logical Relation

Our step-indexed logical relation for λrec is based on the PER model for equi-
recursive types presented by Appel and McAllester [13] (henceforth AM). The
latter claimed, but did not prove, that their PER model was sound with respect
to contextual equivalence. We have proved that this is indeed the case. However,
“PER” may be somewhat of misnomer for the AM model since the status of
transitivity is unclear, as we shall show.

In both models, the relational interpretation RV �τ� of a type τ is a set
of triples of the form (k, v, v′) where k is a natural number (called the ap-
proximation index or step index ), and v and v′ are (closed) values. Intuitively,
(k, v, v′) ∈ RV �τ� says that in any computation running for no more than k
steps, v approximates v′ at the type τ . Our model differs from the AM model
in that whenever (k, v, v′) ∈ RV �τ�, we additionally require that • � v′ : τ . This
additional constraint enables us to prove the transitivity of our logical relation.
Moreover, restricting the model to terms that are well-typed seems essential
for completeness with respect to contextual equivalence, as others have also
noted [12]. We defer an explanation of why we don’t also require • � v : τ till
Section 2.3.

Figure 3 gives the definition of our logical relation; shaded parts of the defini-
tions have no analog in the AM model. We use the meta-variable χ to denote sets
of tuples of the form (k, v, v′), where v and v′ are closed values (v, v′∈ CValues).
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Relτ
def= {χ ∈ 2Nat×CValues×CValues | ∀(j, v, v′) ∈ χ. • 
 v′ : τ ∧

∀i ≤ j. (i, v, v′) ∈ χ}
�χ�k

def= {(j, v, v′) | j < k ∧ (j, v, v′) ∈ χ}

RV �α�ρ = ρsem(α)

RV �bool�ρ = {(k, v, v′) | 
 v′ : bool ∧
(v = v′ = tt ∨ v = v′ = ff)}

RV �τ1 × τ2�ρ = {(k,〈v1, v2〉,〈v′
1, v

′
2〉) | 
 〈v′

1, v
′
2〉 : (τ1 × τ2)[ρ] ∧

(k, v1, v
′
1) ∈ RV �τ1�ρ ∧ (k, v2, v

′
2) ∈ RV �τ2�ρ}

RV �τ1→τ2�ρ = {(k, λx. e, λx. e′) | 
 λx. e′ : (τ1 → τ2)[ρ] ∧
∀j < k, v, v′.

(j, v, v′) ∈ RV �τ1�ρ =⇒
(j, e[v/x], e′[v′/x]) ∈ RC �τ2�ρ}

RV �μα. τ�ρ = {(k, fold v, fold v′) | 
 fold v′ : (μα. τ )[ρ] ∧
∀j < k.

let χ = �RV �μα. τ�ρ�j+1 in

(j, v, v′) ∈ RV �τ�ρ[α �→ (χ, (μα. τ )[ρ] )]}
RC �τ� ρ = {(k, e, e′) | ∀j < k, ef .

e �−→j ef ∧ irred(ef ) =⇒
∃e′

f . e
′ �−→∗ e′

f ∧ (k − j, ef , e
′
f ) ∈ RV �τ�ρ}

RG �•� = {(k, ∅, ∅)}
RG �Γ, x:τ� = {(k, γ[x �→ v], γ′[x �→ v′])| (k, γ, γ′)∈ RG �Γ � ∧ (k, v, v′) ∈ RV �τ�∅}

Γ 
 e ≤ e′ : τ def= Γ 
 e : τ ∧ Γ 
 e′ : τ ∧
∀k ≥ 0. ∀γ, γ′.

(k, γ, γ′) ∈ RG �Γ � =⇒ (k, γ(e), γ′(e′)) ∈ RC �τ�∅
Γ 
 e ∼ e′ : τ def= Γ 
 e ≤ e′ : τ ∧ Γ 
 e′ ≤ e : τ

Fig. 3. λrec Relational Model (Shaded �∈ Appel-McAllester)

For any set χ, we define the k-approximation of the set (written �χ�k) as the
subset of its elements whose indices are less than k.

We define Relτ (where τ is a closed syntactic type) as the set of those sets
χ ∈ 2Nat×CValues×CValues that have the following two properties: if (k, v, v′) ∈ χ,
then v′ must be well-typed with type τ , and χ must be closed with respect to a
decreasing step-index.

We use the meta-variable ρ to denote type substitutions. These are partial
maps from type variables α to pairs (χ, τ) where χ is the semantic substitution
for α and τ (a closed syntactic type) is the syntactic substitution for α. We note
that our definitions ensure that if ρ(α) = (χ, τ) then χ ∈ Relτ . Since types in λrec

may contain free type variables, the interpretation of a type τ is parametrized
by a type substitution ρ such that FTV (τ) ⊆ dom(ρ). We use the following
abbreviations:
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– Let ρ(α) = (χ, τ). Then ρsem(α) = χ and ρsyn(α) = τ .
– Let ρ = {α1 �→ (χ1, τ1), . . . , αn �→ (χn, τn)}.

Then τ [ρ] is an abbreviation for τ [τ1/α1, τ2/α2, . . . , τn/αn].

Next, we consider the relational interpretation RV �τ� ρ of each type τ . In
each case, note that if (k, v, v′) ∈ RV �τ� ρ then � v′ : (τ)[ρ].

Booleans. Two values are related at the type bool for any number of steps k ≥ 0,
if they are both tt or both ff.

Pairs. The pairs 〈v1, v2〉 and 〈v′1, v′2〉 are related at type τ1 × τ1 for k steps if vi

and v′i are related for k steps at the type τi (for i ∈ {1, 2}).

Functions. Since functions are suspended computations, their interpretation is
given in terms of the interpretation of types as computations (see below). Two
functions are related if they map related arguments to related results. Specif-
ically, λx. e and λx. e′ are related at the type τ1 → τ2 for k steps if, at some
point in the future, when there are j < k steps left to execute, and there are
arguments va and v′a that are related at the type τ1 for j steps, then e[va/x] and
e′[v′a/x] are related as computations of type τ2 for j steps.

Recursive Types. One would expect the values fold v and fold v′ to be related
at the type μα. τ for k steps if v and v′ are related at the type τ [μα. τ/α] for
j < k steps. We show that the latter is equivalent to what is required by the
definition in Figure 3. Note that by the definition of �·�k

(j, v, v′) ∈ RV �τ [μα. τ/α]]� ρ ⇔ (j, v, v′) ∈ �RV �τ [μα. τ/α]� ρ�j+1 .

We prove a type substitution lemma (see [16]) that allows us to conclude that if
χ = �RV �μα. τ� ρ�j+1 then:

�RV �τ [μα. τ/α]� ρ�j+1 = �RV �τ� ρ[α �→ (χ, (μα. τ )[ρ])]�j+1 .

Hence,

(j, v, v′) ∈ RV �τ [μα. τ/α]� ρ
⇔ (j, v, v′) ∈ �RV �τ [μα. τ/α]� ρ�j+1 by �·�k

⇔ (j, v, v′) ∈ �RV �τ� ρ[α �→ (χ, (μα. τ )[ρ])]�j+1 by type subst
⇔ (j, v, v′) ∈ RV �τ� ρ[α �→ (χ, (μα. τ )[ρ])] by �·�k

which is exactly what is required by the definition of RV �μα. τ� ρ.

Computations. Two closed expressions e and e′ are related as computations of
type τ for k steps as follows. If e steps to an irreducible term ef in j < k steps,
then e′ must also step to some irreducible e′f . Furthermore, both ef and e′f must
be values that are related for the remaining k − j steps.

What is surprising about this definition is that e must terminate in j < k
steps, while e′ may terminate in any number of steps, say i. Hence, i may be
greater than k. This has ramifications for transitivity in the AM model and we
shall return to this point shortly.
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Logical Relation. If Γ � e : τ and Γ � e′ : τ , then we write Γ � e ≤ e′ : τ to
mean that for all k ≥ 0, if γ and γ′ are mappings from variables x to closed
values that are related for k steps at Γ , then γ(e) and γ′(e′) are related for k
steps as computations of type τ . We say e and e′ are logically equivalent, written
Γ � e ∼ e′ : τ , if they logically approximate one another.

We now have to prove that each type τ is a valid type — that is, that the
relational interpretation of τ belongs to Relτ (i.e., RV �τ� ρ ∈ Relτ [ρ]). This
involves showing well-typedness and closure under decreasing step-index.

Next, we prove a number of nontrivial lemmas (see the technical report [16]).
Specifically, we prove that the logical relation defined in Figure 3 has the com-
patibility and substitutivity properties (see e.g., [9]). These allow us to show that
the λrec typing rules preserve the logical relation, and hence prove the following
lemma.

Lemma 3 (λrec Fundamental Property / Reflexivity).
If Γ � e : τ , then Γ � e ≤ e : τ .

2.3 Transitivity and the Appel-McAllester Model

Let us ignore the shaded parts of Figure 3 and try to prove the following lemma
with the resulting definitions.

Proposed Lemma (Transitivity: Appel-McAllester)
If Γ � e1 ≤ e2 : τ and Γ � e2 ≤ e3 : τ , then Γ � e1 ≤ e3 : τ .
Proof Attempt: Suppose k ≥ 0 and (k, γ, γ′) ∈ RG �Γ �.
Show (k, γ(e1), γ′(e3)) ∈ RC �τ� ∅. Suppose j < k, γ(e1) �−→j ef1 , and irred(ef1).
Show ∃ef3 .γ

′(e3) �−→∗ ef3 ∧ (k − j, ef1 , ef3) ∈ RV �τ� ∅.
Instantiate Γ � e1 ≤ e2 : τ with k ≥ 0 and (k, γ, γ′) ∈ RG �Γ �.
Hence, (k, γ(e1), γ′(e2)) ∈ RC �τ� ∅.
Instantiate this with j < k, γ(e1) �−→j ef1 , and irred(ef1).
Hence, ∃ef2 , i such that i ≥ 0, γ′(e2) �−→i ef2 , and (k − j, ef1 , ef2) ∈ RV �τ� ∅.
Now we need to use the premise Γ � e2 ≤ e3 : τ . But what should we instantiate
this with? We consider two ways we could proceed.

(i) Instantiate Γ � e2 ≤ e3 : τ with k, γ, γ′. Note that k ≥ 0 and (k, γ, γ′) ∈
RG �Γ �. Hence, (k, γ(e2), γ′(e3)) ∈ RC �τ� ∅.
Problem: We could instantiate this with i and ef2 , but at that point we are
stuck since we cannot show i < k (since i may be greater than k), and we
cannot show γ(e2) �−→i ef2 (we only have γ′(e2) �−→i ef2).

(ii) Instantiate Γ �e2≤ e3 :τ with i+ 1, γ′, γ′.
Problem: We cannot show (i + 1, γ′, γ′) ∈ RG �Γ �. All we know is that
(k, γ, γ′) ∈ Γ , where i may be greater than k.

We note that if we restrict our attention to closed terms e1, e2, e3, then
the above lemma can be proved. In the case of open terms, however, the status
of transitivity of the AM model is unclear as we have been unable to find a
counterexample.
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There are several things one could attempt in order to rectify the above
problem with the AM model (unshaded parts of Figure 3). One problem we
encountered was that i may be greater than k. To get around this, we could
change the definition of (k, e, e′) ∈ RC �τ� to require that e′ must terminate
in less than k steps. Unfortunately, if we step back and examine the resulting
meaning of Γ � e1 ∼ e2 : τ , we see that the latter now requires that both e1 and
e2 must terminate in exactly the same number of steps. Clearly such a logical
relation would not be very useful (unless we are concerned with reasoning about
timing leaks in an information-flow setting). Other formulations involving the
use of not one, but two step-indices (where the second bounds the number of
steps in which e′ must terminate) also lead to models where both terms are
required to terminate in exactly the same number of steps.

Since we want a logical relation that considers programs equivalent modulo
the number of steps they take, we will not change the definition of RC �τ�.
Instead we fix the problem with transitivity by moving to a typed setting where
(k, v, v′) ∈ RV �τ� ∅ implies � v′ : τ . Assuming the definitions in Figure 3,
including the shaded parts, let us again try to prove transitivity.

Lemma 4 (λrec : Transitivity). (Our model: Figure 3, including shaded parts)
If Γ � e1 ≤ e2 : τ and Γ � e2 ≤ e3 : τ , then Γ � e1 ≤ e3 : τ .

Proof. We start at the point where we got stuck before. Now from (k, γ, γ′) ∈
RG �Γ � we can conclude that � γ′ : Γ . By reflexivity (Fundamental Property,
Lemma 3) it follows that � γ′ ≤ γ′ : Γ . Hence, we can show that for all z ≥ 0,
(z, γ′, γ′) ∈ RG �Γ � holds. Now we may instantiate Γ � e2 ≤ e3 : τ above with
i+1 since we know that (i+1, γ′, γ′) ∈ RG �Γ �. The rest of the proof is relatively
straightforward and is given in the accompanying technical report [16].

Seemingly Asymmetric Well-Typedness Requirement. The definitions in Figure 3
may have left the reader with the impression that we only require terms on one
side of our logical relation to be well-typed. This, however, is not the case. In
particular, notice that in the definition of Γ � e ≤ e′ : τ , we require that both
e and e′ be well-typed. However, once we have picked a step-index k (i.e., once
we have moved under the ∀k quantifier), there is an asymmetry in the model in
that when (k, e, e′) ∈ RC �τ�, k pertains (as a bound) only to e and not to e′.
As a result of this asymmetry, when working with a specific k (in the definition
of RV �τ�) we do not need to know that v has type τ in the limit, while the
converse is true of v′. Hence, at the value interpretation level RV �τ�, we chose
only to require � v′ : τ . One could add the requirement � v : τ in the interest of
symmetry, but it would simply lead to additional proof obligations being shuffled
around. It would also complicate definitions when we get to quantified types as
Relτ would have to be replaced by Relτ1,τ2 (since in the presence of quantified
types we wish to relate values of different types).

2.4 λrec: Soundness

To prove that our logical relation is sound with respect to contextual equivalence,
we first define what it means for two contexts to be logically related.
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Definition 5 (λrec Logical Relation: Contexts).
Γ1 
 C ≤ C′ : (Γ � τ ) � τ1

def= ∀e, e′. Γ 
 e ≤ e′ : τ =⇒ Γ1 
 C[e] ≤ C′[e′] : τ1

Next, we prove the compatibility lemmas for contexts, which allows us to prove
the following.

Lemma 6 (λrec Reflexivity: Contexts).
If Γ1 � C : (Γ � τ) � τ1, then Γ1 � C ≤ C : (Γ � τ) � τ1.

Theorem 7 (λrec Soundness: ≤ ⊆ �ctx ).
If Γ � e ≤ e′ : τ then Γ � e �ctx e′ : τ .

Proof. Suppose • � C : (Γ � τ) � τ1 and C[e] ⇓. Hence, there exist vf , k such
that C[e] �−→k vf . We must show C[e′] ⇓.
Applying Lemma 6 to • � C : (Γ � τ) � τ1, we have • � C ≤ C : (Γ � τ) � τ1.
Instantiate this with Γ � e ≤ e′ : τ . Hence, • � C[e] ≤ C[e′] : τ1.
Instantiate this with k + 1 ≥ 0 and (k + 1, ∅, ∅) ∈ RG �•�.
Hence, (k + 1, C[e], C[e′]) ∈ RC �τ1� ∅.
Instantiate this with k < k + 1, C[e] �−→k vf , and irred(vf ).
Hence, exists v′f such that C[e′] �−→∗ v′f . Hence, C[e′] ⇓.

2.5 λrec: Completeness

To show that our logical relation is complete with respect to contextual equiva-
lence, we make use of the notion of ciu-equivalence introduced by Mason and Tal-
cott [18]. Two closed terms of the same closed type are said to be ciu-equivalent
if they have the same termination behavior in any evaluation context E (a use
of the term). The relation is extended to open terms via closing substitutions
(i.e., closed instantiations). We note that evaluation contexts E are a simply
a subset of general contexts C and that only closed terms can be placed in an
evaluation context.

Definition 8 (λrec Ciu Approximation �ciu & Equivalence "ciu). Let
Γ 
 e : τ and Γ 
 e′ : τ .

Γ 
 e �ciu e′ : τ def= ∀γ,E, τ1. • 
 γ : Γ ∧ • 
 E : (• � τ ) � τ1 ∧
E[γ(e)] ⇓ =⇒ E[γ(e′)] ⇓

Γ 
 e �ciu e′ : τ def= Γ 
 e �ciu e′ : τ ∧ Γ 
 e′ �ciu e : τ

Theorem 9 (λrec : �ctx ⊆ �ciu). If Γ � e �ctx e′ : τ then Γ � e �ciu e′ : τ .

To prove that two ciu-equivalent terms are logically related, we will need the
following lemma which shows that our logical relation respects ciu equivalence.
Pitts [9] proves a similar property which he calls “equivalence-respecting”.

Lemma 10 (λrec Equivalence-Respecting: Closed Values). If (k, v1, v2) ∈
RV �τ� ∅ and • � v2 �ciu v3 : τ , then (k, v1, v3) ∈ RV �τ� ∅.
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Proof. By induction on k and nested induction on the structure of the (closed)
type τ .

Theorem 11 (λrec : �ciu ⊆ ≤). If Γ � e �ciu e′ : τ then Γ � e ≤ e′ : τ .

Proof. Suppose k ≥ 0 and (k, γ, γ′) ∈ RG �Γ �. Show (k, γ(e), γ′(e′)) ∈ RC �τ� ∅.
Suppose j < k, γ(e) �−→j ef , and irred(ef ).
Show ∃e′′f . γ′(e′) �−→∗ e′′f ∧ (k − j, ef , e

′′
f) ∈ RV �τ� ∅.

From Γ � e �ciu e′ : τ , we have Γ � e : τ . Applying Lemma 3 to Γ � e : τ ,
we have Γ � e ≤ e : τ . Instantiate this with k ≥ 0 and (k, γ, γ′) ∈ RG �Γ �.
Hence, (k, γ(e), γ′(e)) ∈ RC �τ� ∅. Instantiate this with j < k, γ(e) �−→j ef , and
irred(ef ). Hence, ∃e′f such that γ′(e) �−→∗ e′f and (k − j, ef , e

′
f ) ∈ RV �τ� ∅.

Hence, ef ≡ vf and e′f ≡ v′f . Hence, γ′(e) ⇓ v′f .
Instantiate Γ � e �ciu e′ : τ with � γ′ : Γ (follows from (k, γ, γ′) ∈ RG �Γ �),
and • � [·] : (• � τ) � τ , and γ′(e) ⇓. Hence, ∃v′′f such that γ′(e′) �−→∗ v′′f .
Remains to show: (k − j, vf , v

′′
f ) ∈ RV �τ� ∅.

This follows from Lemma 10 applied to (k − j, vf , v
′
f ) ∈ RV �τ�∅ and

v′f �ciu v′′f : τ (which follows from Γ � e �ciu e′ : τ and γ′(e) ⇓ v′f and
γ′(e′) ⇓ v′′f ).

3 Type Abstraction

We now extend λrec with impredicative universal and existential types; we call
the extended language the λ∀∃-calculus. The syntactic extensions to support
quantified types are as follows:

Types τ ::= . . . | ∀α. τ | ∃α. τ
Values v ::= . . . | Λ. e | pack v
Expressions e ::= . . . | e [ ] | unpack e1 asx in e2

Note that terms are not decorated with types (which was also the case for λrec).
Here we let the vestigial operators remain in the untyped syntax in order to
preserve the operational semantics. For instance, the term Λ. e is a suspended
computation (normally written Λα.e); e [ ] runs the suspended computation. We
extend the λrec operational semantics as follows:

Evaluation Contexts E ::= . . . | E [ ] | unpackE asx in e

(inst) (Λ. e) [ ] �−→ e

(unpack) unpack (pack v) asx in e �−→ e[v/x]

λ∀∃ typing judgments have the form Δ;Γ � e : τ , where the context Γ is as
before, and the context Δ is defined as follows:

Type Context Δ ::= • | Δ,α .

The type context Δ is used to track the set of type variables in scope. We modify
the typing rules in Figure 2 by adding Δ to each typing judgment. Figure 4 gives
the typing rules for the additional terms in λ∀∃. We prove soundness of the λ∀∃

typing rules, show that value and type substitution hold, and prove type safety.
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Δ;Γ 
 e : τ

(All)
Δ,α;Γ 
 e : τ

Δ;Γ 
 Λ. e : ∀α. τ
(Inst)

Δ;Γ 
 e : ∀α. τ Δ 
 τ1

Δ;Γ 
 e [ ] : τ [τ1/α]

(Pack)
Δ 
 τ1 Δ;Γ 
 e : τ [τ1/α]

Δ;Γ 
 pack e : ∃α. τ
(Unpack)

Δ;Γ 
 e1 : ∃α. τ1 Δ 
 τ2
Δ,α;Γ, x : τ1 
 e2 : τ2

Δ;Γ 
 unpack e1 asx in e2 : τ2

Fig. 4. λ∀∃ Static Semantics

Theorem 12 (λ∀∃ Safety). If •; • � e : τ and e �−→∗ e′, then either e′ is a
value, or there exists an e′′ such that e′ �−→ e′′.

3.1 λ∀∃: Contextual Equivalence

Typing judgments for contexts C now have the form Δ1;Γ1 � C : (Δ;Γ �τ) � τ1
(where (Δ;Γ � τ) represents the type of the hole) indicating that whenever
Δ;Γ � e : τ , then Δ1;Γ1 � C[e] : τ1.

Definition 13 (λ∀∃ Contextual Approximation �ctx ).
If Δ;Γ � e : τ and Δ;Γ � e′ : τ , then we write Δ;Γ � e �ctx e′ : τ to mean

∀C, τ1. •; • 
 C : (Δ;Γ � τ ) � τ1 ∧ C[e] ⇓ =⇒ C[e′] ⇓ .

3.2 λ∀∃: Logical Relation

As in the case of λrec, the relational interpretation of a type RV �τ� ρ in λ∀∃

is a set of triples of the form (k, v, v′). However, there is now one additional
property (in addition to well-typedness of the second value of each tuple and
closure under decreasing step-index) that every set χ in Relτ must satisfy. To
motivate this property, we take the reader back to the proof of completeness
of λrec, specifically to Lemma 10 which establishes that the relational value
interpretationRV �τ� is equivalence-respecting. The proof of that lemma requires
induction on k and nested induction on the structure of the closed type τ . In
the case of λ∀∃, when we get to the proof of the corresponding lemma, τ may
have free type variables. Thus, one of the cases we must consider for the inner
induction is τ = α. Assuming that ρ(α) = (χ, τα), we will be required to show
that if (k, v1, v2) ∈ RV �α� ρ ≡ ρsem(α) ≡ χ and � v2 �ciu v3 : α[ρ] (where
α[ρ] ≡ τα), then (k, v1, v3) ∈ χ. Note that χ ∈ Relτα . Thus, we must add this
requirement directly to the definition of Relτ .

A more informal justification is that in the presence of quantified types, we
can instantiate a type variable with a relational interpretation of our own choos-
ing. Thus, we have to show that the relation we pick satisfies certain properties,
one of which is that it must be equivalence-respecting.

The modified definition of Relτ is given below. It makes use of a notion of
ciu-equivalence restricted to closed values.
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v ≺ciu v′ : τ def= ∀E, τ1. •; • 
 E : (•; • � τ ) � τ1 ∧ E[v] ⇓ =⇒ E[v′] ⇓

Relτ
def= {χ ∈ 2Nat×CValues×CValues |

∀(j, v, v′) ∈ χ. 
 v′ : τ ∧
∀i ≤ j. (i, v, v′) ∈ χ ∧
(∀v′′. v′ ≺ciu v′′ : τ =⇒ (j, v, v′′) ∈ χ)}

The relational interpretation of universal and existential types is given in
Figure 5. Two values pack v and pack v′ are related at the type ∃α. τ for k steps
if there exists a syntactic type τ2 and a semantic interpretation χ ∈ Relτ2 such
that for all j < k, (j, v, v′) ∈ RV �τ� ρ[α �→ (χ, τ2)]. Here we only pick a type τ2
for the second value v′ while the type of v is left unrestricted. Intuitively, this
suffices because when showing logical equivalence of two terms (Δ;Γ �e∼ e′ :τ),
we pick a type for v′ while proving Δ;Γ �e≤ e′ :τ and we pick a type for v while
proving Δ;Γ � e′ ≤ e : τ . The relational interpretation of universal types is the
dual of existential types.

RV �∀α. τ�ρ = {(k, Λ. e, Λ. e′) | 
 Λ. e′ : (∀α. τ )[ρ] ∧
∀τ2, χ. χ ∈ Relτ2 =⇒

∀j < k. (j, e, e′) ∈ RC �τ� ρ[α �→ (χ, τ2)]}

RV �∃α. τ�ρ = {(k, pack v, pack v′) | 
 pack v′ : (∃α. τ )[ρ] ∧
∃τ2, χ. χ ∈ Relτ2 ∧

∀j < k. (j, v, v′) ∈ RV �τ� ρ[α �→ (χ, τ2)]}

RD �•� = {∅}
RD �Δ,α� = {ρ[α �→ (χ, τ2)]) | ρ ∈ RD �Δ� ∧ χ ∈ Relτ2}

RG �•�ρ = {(k, ∅, ∅)}
RG �Γ, x:τ�ρ = {(k, γ[x �→ v], γ′[x �→ v′]) | (k, γ, γ′) ∈ RG �Γ �ρ ∧ (k, v, v′) ∈ RV �τ�ρ}

Δ;Γ 
 e ≤ e′ : τ def= Δ;Γ 
 e : τ ∧ Δ;Γ 
 e′ : τ ∧
∀k ≥ 0. ∀ρ, γ, γ′. ρ ∈ RD �Δ� ∧ (k, γ, γ′) ∈ RG �Γ �ρ =⇒

(k, γ(e), γ′(e′)) ∈ RC �τ�ρ

Fig. 5. λ∀∃ Relational Model

The relational interpretation of types as computations is defined exactly as
before. The definition of the logical relationΔ;Γ � e ≤ e′ : τ appears in Figure 5.

We prove that each type τ is a valid type: RV �τ� ρ ∈ Relτ [ρ] . Specifically,
we have to show well-typedness, closure under decreasing step-index, and the
following lemma.

Lemma 14 (λ∀∃ Rel Equivalence-Respecting). Let ρ ∈ RD �Δ� and Δ � τ .
If (k, v1, v2) ∈ RV �τ�ρ and v2 ≺ciu v3 : τ [ρ], then (k, v1, v3) ∈ RV �τ�ρ.

To show the Fundamental Property of the logical relation, we prove the new set
of compatibility lemmas, as well as value and type substitutivity.
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Lemma 15 (λ∀∃ Fundamental Property / Reflexivity).
If Δ;Γ � e : τ then Δ;Γ � e ≤ e : τ .

3.3 λ∀∃ Soundness and Completeness

We prove that the logical relation in Figure 5 is sound with respect to contextual
equivalence. The overall proof structure is the same as for λrec.

Theorem 16 (λ∀∃ : ≤ ⊆ �ctx ). If Δ;Γ � e ≤ e′ : τ then Δ;Γ � e �ctx e′ : τ .

To establish completeness, we again rely on the notion of ciu-equivalence, which
we define for λ∀∃ as follows.

Definition 17 (λ∀∃ Ciu Approximation �ciu).
Let Δ;Γ 
 e : τ and Δ;Γ 
 e′ : τ . If δ is a mapping from type variables α to closed
syntactic types τ , we write δ |= Δ whenever dom(δ) = Δ.

Δ;Γ 
 e �ciu e′ : τ def= ∀δ, γ, E, τ1. δ |= Δ ∧ 
 γ : δ(Γ ) ∧
•; • 
 E : (•; • � δ(τ )) � τ1 ∧
E[γ(e)] ⇓ =⇒ E[γ(e′)] ⇓

Theorem 18 (λ∀∃ : �ctx ⊆ �ciu ⊆ ≤).
If Δ;Γ � e �ctx e′ : τ then Δ;Γ � e �ciu e′ : τ .
If Δ;Γ � e �ciu e′ : τ then Δ;Γ � e ≤ e′ : τ .

3.4 Example: Simple Existential Packages

For lack of space, we present only one simple example (from Sumii and Pierce[19])
to illustrate the use of our logical relation to prove contextual equivalence. Addi-
tional examples involving existential packages, recursive types, and higher-order
functions are given in the technical report [16].

Notation: Let χ be a set of tuples of the form (k, v, v′) such that � v′ : τ . We
define the closure of χ under ciu approximation at type τ as follows:

χ∗
τ = {(k, v1, v2) | (k, v1, v2) ∈ χ ∨ ((k, v1, v) ∈ χ ∧ v �ciu v2 : τ )}

Example: Consider the following existential packages e and e′ of type τ :

e = pack 〈1, λx. x int= 0〉 e′ = pack 〈tt, λx.¬x〉 τ = ∃α.α× (α→ bool)

Show •; •�e∼e′ :τ . We only show •; •�e≤ e′ :τ . •; •�e′≤ e :τ is symmetric.
Suppose k ≥ 0. Unwinding definitions, we must show (k, e, e′) ∈ RV �τ� ≡

(k, pack 〈1, λx. x int= 0〉, pack 〈tt, λx.¬x〉) ∈ RV �∃α. α× (α→ bool)� ∅.
Let χ0 = {(k′, 1, tt) | k′ ≥ 0}. Take τ2 = bool and χ = (χ0)∗bool.
Note that χ ∈ Relbool (from defn of (χ0)∗bool). Suppose j < k.
Show (j, 〈1, λx. x int= 0〉, 〈tt, λx.¬x〉) ∈ RV �α× (α→ bool)� ∅[α �→ (χ, bool)],

which follows from:

– � 〈tt, λx.¬x〉 : (α× (α→ bool))[bool/α]
– (j, 1, tt) ∈ RV �α� ∅[α �→ (χ, bool)] ≡ (j, 1, tt) ∈ χ (by defn of RV �α� ρ)

which follows from χ ⊇ χ0 ⊇ {(j, 1, tt)}, which follows from defn of χ.



82 A. Ahmed

– (j, (λx. x int= 0), (λx.¬x))∈RV �α→bool�∅[α �→(χ, bool)], which follows from:
First, note that � λx.¬x : (α→ bool)[bool/α] ≡ � λx.¬x : bool→ bool.
Next, suppose i < j, and (i, v1, v

′
1) ∈ RV �α� ∅[α �→ (χ, bool)].

Note that RV �α�∅[α �→ (χ, bool)] ≡ χ by defn of RV �α�ρ. Hence,
(i, v1, v

′
1)∈χ.

Then, from defn of χ, v1 = 1 and, using more subtle reasoning, v′1 = tt.
Show: (i, (x int= 0)[v1/x], (¬x)[v′1/x]) ∈ RC �bool� ∅[α �→ (χ, bool)]

≡ (i, v1
int= 0,¬v′1) ∈ RC �bool� ∅[α �→ (χ, bool)]

≡ (i, 1 int= 0,¬tt) ∈ RC �bool� ∅[α �→ (χ, bool)] .

Note that (1 int= 0) �−→1 ff and (¬tt) �−→∗ ff. Hence, remains to show:
(i− 1, ff, ff) ∈ RV �bool� ∅[α �→ (χ, bool)], which is immediate.

4 Related Work and Conclusion

Logical relations were first developed for denotational semantics of typed λ-
calculi (e.g., [1, 2]). Early examples of the use of logical relations based on oper-
ational semantics include Tait’s [4] proof of strong normalization of the simply
typed λ-calculus, and Girard’s method of reducibility candidates [5] used to
prove normalization for System F.

Pitts [7, 6, 9] developed syntactic logical relations for a λ-calculus with re-
cursive functions and quantified types (but no recursive types). To support
recursive functions without using denotational techniques, Pitts makes use of
  -closure (or biorthogonality [12]). Relations that are   -closed can be im-
mediately shown to be equivalence-respecting and admissible [9]. In comparison,
we directly require that our relations be equivalence-respecting and closed under
decreasing step-index — the latter, effectively, gives us admissibility.

Birkedal and Harper [10] and Crary and Harper [8] extended syntactic log-
ical relations with recursive types (the latter also support polymorphic types)
by adapting Pitts’ minimal invariance [3] technique for use in a purely syntactic
setting. Melliès and Vouillon [12, 11] construct a realizability model of a lan-
guage with recursive types and polymorphism based on intuitions from the ideal
model of types [20]. They also present a relational model based on an orthogo-
nality relation between quadruples of terms and contexts [12]. We note that to
show completeness, they too must move to a typed setting. An issue that merits
further investigation is the relationship between the different notions of approx-
imation— i.e., syntactic projections [8], interval types [12], and step counts.

Contextual equivalence may also be proved using bisimulations. Sumii and
Pierce [19] present a bisimulation for recursive and quantified types. Using their
examples as a point of comparison (see [16]) we show that our logical relations
are somewhat easier to use when proving contextual equivalence. Also, unlike
logical relations, Sumii and Pierce note that their bisimulation cannot be used
to derive free theorems [21] based only on types.

We have presented a step-indexed logical relation for recursive and impred-
icative quantified types. The construction is far more elementary than that of
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existing logical relations for such types. In future work, we hope to scale this up
to support dynamically allocated (ML-style) mutable references.
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Abstract. X is a relatively new calculus, invented to give a Curry-Howard cor-
respondence with Classical Implicative Sequent Calculus. It is already known
to provide a very expressive language; embeddings have been defined of the λ-
calculus, Bloo and Rose’s λx, Parigot’s λμ and Curien and Herbelin’s λμμ̃.

We investigate various notions of polymorphism in the context of the X -
calculus. In particular, we examine the first class polymorphism of System F, and
the shallow polymorphism of ML. We define analogous systems based on the
X -calculus, and show that these are suitable for embedding the original calculi.

In the case of shallow polymorphism we obtain a more general calculus than
ML, while retaining its useful properties. A type-assignment algorithm is defined
for this system, which generalises Milner’s W .

1 Introduction

Polymorphism is a powerful aspect of most modern programming languages. It is a
mechanism for allowing a program to be applied with various different types for its
inputs (or outputs), and so allows flexibility and reuse of code. For example, in a poly-
morphic system, the identity function might be given the type ∀X.(X→X), where the
∀-bound type variable X ranges over all types. This correctly expresses that the iden-
tity may be typed with A→A for any and all formulasA. The rules for type-assignment
typically allow this type to be instantiated several different times, so that it would be
acceptable for the identity function to be applied to both an integer and a list in the same
program.
X is based on the work of [5] and [9], and has since been further studied in [10].

Like the λμ-calculus of Parigot [7], it has been designed to have a Curry-Howard cor-
respondence with Classical Logic. Unlike most existing calculi in this field (which, like
λμ are typically based on a Natural Deduction formulation of logic), X corresponds to
a Classical Sequent Calculus. The particular sequent calculus is defined by Urban [9].

In this paper we investigate various notions of polymorphism based on the logical ∀
connective, in the context of the X -calculus. We examine the first class polymorphism
of System F, and the shallow polymorphism of ML. We define analogous systems based
on the X -calculus, and show that these systems are suitable for encoding System F and
ML. In the case of shallow polymorphism we present a more general calculus than ML,
and show that all the useful properties of ML still hold.

P. Sestoft (Ed.): ESOP 2006, LNCS 3924, pp. 84–99, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Approaches to Polymorphism in Classical Sequent Calculus 85

2 The X -Calculus

In this section we will give a brief presentation of the X -calculus; a more detailed
description is given in [10]. We present here the syntax and reduction rules, and aim to
give an intuition of how the calculus behaves.

Although X provides a rather different computational behaviour to calculi based
on the λ-calculus, it has been shown that it can faithfully encode many such calculi,
including λ-calculus, λx, and the λμ-calculus [10]. These calculi incorporate variable-
symbols and (with the exception of λx) rely on an implicit concept of substitution
to perform the basic computational steps. X on the other hand features two separate
categories of ‘connectors’, plugs and sockets, that act as input and output channels, and
is defined without any notion of substitution.

Definition 1 (X -Terms). The terms of the X -calculus are defined by the following
syntax, where x, y range over the infinite set of sockets and α, β over the infinite set of
plugs (sockets and plugs together form the set of connectors).

P,Q ::= 〈x.α〉 capsule
| ŷP β̂ ·α export
| P β̂ [y] x̂Q mediator
| Pα̂ † x̂Q cut

The ·̂ symbolises that the connector underneath is bound in the circuit; notions of free
and bound connectors are defined as usual. We will use fp(P ) to denote the free plugs
of P , and similarly fs(P ) for free sockets.

The notion of reduction on X -terms corresponds to the process of cut elimination
on sequent calculus proofs. As such, the reduction rules define how cuts may be elim-
inated from an X -term. If a cut binds a connector which occurs several times in the
corresponding subterm, it may not be immediately eliminated, but rather must seek out
each of these occurrences and make a copy of itself for each one. For example, if there
are many occurrences of x in the term Q then the term Pα̂ † x̂Q can reduce by ‘push-
ing’ the cut into the structure of Q, and making a cut between a copy of P and each x
found. This process of ‘pushing’ is correctly referred to as propagation, in this example
right-propagation (since we propagate the cut into the right-hand term). Once the cut
reaches a level where a single α and x are immediately introduced in its two subterms, a
logical rule specifies how the two subterms can communicate with one another through
the cut. For example, a cut between an export and a mediator allows the body of the
function from the export to be inserted between the two subterms of the mediator.

Definition 2 (Logical Rules). The logical rules are presented by:

(cap) : 〈y.α〉α̂ † x̂〈x.β〉 → 〈y.β〉
(exp) : (ŷP β̂ ·α)α̂ † x̂〈x.γ〉 → ŷP β̂ ·γ α 
∈ fs(P )
(med) : 〈y.α〉α̂ † x̂(P β̂ [x] ẑQ) → P β̂ [y] ẑQ x 
∈ fs(P,Q)

(exp-med) : (ŷP β̂ ·α)α̂ † x̂(Qγ̂ [x] ẑR) →
{
Qγ̂ † ŷ(P β̂ † ẑR)
(Qγ̂ † ŷP )β̂ † ẑR

}
α 
∈ fs(P ),
x 
∈ fs(Q,R)
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The first three logical rules above specify a renaming (reconnecting) procedure, whereas
the last rule specifies the basic computational step: it links the exportation of a function,
available on the plug α, to an adjacent mediator via the socket x (the resulting cuts may
be bracketed either way, as shown).

A key element of the cut-elimination procedure of [9] is that cuts which are propa-
gated to the left or right are marked as such.

Definition 3 (Active Cuts). The syntax is extended with two flagged or active cuts:

P ::= . . . | P1α̂ † x̂P2 | P1α̂ † x̂P2

We define two cut-activation rules.

(act-L) : Pα̂ † x̂Q → Pα̂ † x̂Q if P does not introduce α
(act-R) : Pα̂ † x̂Q → Pα̂ † x̂Q if Q does not introduce x

where: P introduces x: Either P = Qβ̂ [x] ŷR and x 
∈ fs(Q,R), or P = 〈x.α〉.
P introduces α: Either P = x̂Qβ̂ ·α and α 
∈ fp(Q), or P = 〈x.α〉.

An activated cut is processed by ‘pushing’ it systematically through the syntactic struc-
ture of the circuit in the direction indicated by the tilting of the dagger. Whenever an
active cut meets a circuit exhibiting the connector it is trying to communicate with, a
new (inactive) cut is ‘deposited’, representing an attempt to communicate at this level.
The pushing of the active cut continues until the level of capsules is reached, where it
is either deactivated or destroyed. Once again, the inactive cut can reduce via a logical
rule, or pushing can continue in the other direction. This behaviour is expressed by the
following propagation rules.

Definition 4 (Propagation Rules).
Left Propagation:

(† †) : 〈y.α〉α̂ † x̂P → 〈y.α〉α̂ † x̂P
(† cap) : 〈y.β〉α̂ † x̂P → 〈y.β〉 β 
= α

(† exp-outs) : (ŷQβ̂ ·α)α̂ † x̂P → (ŷ(Qα̂ † x̂P )β̂ ·γ)γ̂ † x̂P , γ fresh
(† exp-ins) : (ŷQβ̂ ·γ)α̂ † x̂P → ŷ(Qα̂ † x̂P )β̂ ·γ, γ 
= α

(† med) : (Qβ̂ [z] ŷR)α̂ † x̂P → (Qα̂ † x̂P )β̂ [z] ŷ(Rα̂ † x̂P )
(† cut) : (Qβ̂ † ŷR)α̂ † x̂P → (Qα̂ † x̂P )β̂ † ŷ(Rα̂ † x̂P )

Right Propagation:

( ††) : Pα̂ † x̂〈x.β〉 → Pα̂ † x̂〈x.β〉
( †cap) : Pα̂ † x̂〈y.β〉 → 〈y.β〉, y 
= x

( †exp) : Pα̂ † x̂(ŷQβ̂ ·γ) → ŷ(Pα̂ † x̂Q)β̂ ·γ
( †med-outs) : Pα̂ † x̂(Qβ̂ [x] ŷR) → Pα̂ † ẑ((Pα̂ † x̂Q)β̂ [z] ŷ(Pα̂ † x̂R)),

z fresh
( †med-ins) : Pα̂ † x̂(Qβ̂ [z] ŷR) → (Pα̂ † x̂Q)β̂ [z] ŷ(Pα̂ † x̂R), z 
= x

( †cut) : Pα̂ † x̂(Qβ̂ † ŷR) → (Pα̂ † x̂Q)β̂ † ŷ(Pα̂ † x̂R)



Approaches to Polymorphism in Classical Sequent Calculus 87

The symmetry of the cut can be seen by these rules - it may (depending on the conditions
on the activation rules) be propagated to the left or right, making copies of the right
or left term respectively. Right-propagation is reminiscent of substitution of terms for
term-variables; left-propagation Pα̂ † x̂Q then is its dual: it expresses the connection
of the continuation Q, accessible via x, to all the ‘calls’ α in P .

We write → for the (reflexive, transitive, compatible) reduction relation generated
by the logical, propagation and activation rules. The reduction relation→ is not conflu-
ent; this comes in fact from the critical pair that activates a cut Pα̂ † x̂Q in two ways if
P does not introduce α and Q does not introduce x.

Definition 5 ([10]). The interpretation of lambda terms into circuits of X via the plug
α, &&M��αλ, is defined by:

&&x��αλ = 〈x.α〉
&&λx.M��αλ = x̂&&M��βλβ̂ ·α, β fresh
&&MN��αλ = &&M��γλγ̂ † x̂(&&N��βλβ̂ [x] ŷ〈y.α〉), x, y, β, γ fresh

In [10] it is shown that this interpretation respects (CBN/CBV) reduction and typeability.
Notice that every sub-circuit of &&M��αλ has exactly one free plug. This can be seen as

an explicit notation for the output of the lambda term (outputs are not explicitly labelled
in λ-calculus).

3 Type Assignment for X
The notion of type assignment on X that we present in this section is the basic implica-
tive system for Classical Logic. The Curry-Howard property is easily achieved.

Definition 6 (Types and Contexts).

1. The set of types TC, ranged over by A,B, is defined over a set of atomic types
V = {ϕ1, ϕ2, ϕ3, . . .} by the grammar:

A,B ::= ϕ | A→B

These types are normally known as Curry types.
2. A context of sockets Γ is a mapping from sockets to types, denoted as a finite set of

statements x:A, such that the subjects of the statements (the sockets) are distinct.
We write Γ, x:A for Γ ∪{x:A}. When writing a context as Γ, x:A, we indicate that
either Γ is not defined on x or contains the same statement x:A. We write Γ\x for
the context from which the statement concerning x, if any, has been removed.
Contexts of plugs Δ, and the notations α:A,Δ and Δ\α are defined in a similar
way.

3. A pair 〈Γ ;Δ〉 is usually referred to simply as a context, and is a shorthand for the
sequent Γ �Δ.

The notation Γ �Δ will still usually be used when discussing sequents.
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Definition 7 (Typing for X ).

1. Type judgements are expressed via a ternary relation P ··· Γ �Δ, where Γ is a
context of sockets and Δ is a context of plugs, and P is an X -term. We say that P
is the witness of this judgement.

2. Type assignment is defined by the following sequent calculus:

(cap) : 〈y.α〉 ··· Γ, y:A � α:A,Δ (med) :
P ··· Γ � α:A,Δ Q ··· Γ, x:B � Δ

Pα̂ [y] x̂Q ··· Γ, y:A→B �Δ

(exp) :
P ··· Γ, x:A � α:B,Δ

x̂P α̂·β ··· Γ � β:A→B,Δ
(cut) :

P ··· Γ � α:A,Δ Q ··· Γ, x:A � Δ
Pα̂ † x̂Q ··· Γ �Δ

We write P ··· Γ �Δ if there exists a derivation that has this judgement in the
bottom line.

Notice that, in P ··· Γ � Δ, Γ and Δ carry the types of the free connectors in P , as un-
ordered sets. By the Curry-Howard correspondence,P represents a proof of the sequent
Γ �Δ, so P is actually a witness to this sequent being derivable in the logic. Moreover,
there is no notion of a single type for P itself, instead the derivable statement shows the
consistency between the free connectors of P .

It is important to note that the typing rules include a notion of implicit contraction
(just as the original sequent rules do); if a new statement is introduced on the bottom
line of a rule, but it was already present in the context, then it is simply merged. We do
not consider duplicate statements, as we consider contexts to be unordered sets.

We have the following result:

Theorem 8 (Witness Reduction [10]). If P ··· Γ � Δ, and P → Q, then Q ··· Γ � Δ.

Also, the standard notion of Curry type assignment on lambda terms and the notion of
type assignment on X defined above are strongly linked:

Theorem 9 ([10]). If Γ �λ M :A, then &&M��αλ ··· Γ � α:A.

In [11] a notion of principal contexts (principal typings, in the language of [12]) is
defined by providing an algorithm pC that, given anX -termP , returns a context 〈Γ ;Δ〉,
with the following properties:

Theorem 10 (Soundness and Completeness of pC).

1. Soundness: If pC (P ) = 〈Γ ;Δ〉, then P ··· Γ �Δ.
2. Completeness: If P ··· Γ �Δ, then there exist Γp andΔp, and a substitution S such

that pC (P ) = 〈Γp;Δp〉, and (S Γp) ⊆ Γ and (S Δp) ⊆ Δ.

4 System F in X
In this section, we will examine the System F approach to polymorphism, and how it
may be incorporated into the X -calculus. We will present System F, and show it can
be expressed in an X setting, by giving an explicit encoding into a variant of the X -
calculus. We will show that typings and reductions are preserved by this encoding.
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4.1 System F

System F (also known as the Polymorphic λ-calculus) was invented independently by
Jean-Yves Girard [4] and John C. Reynolds [8]. We will give here a short overview of
its main definitions, based largely on those of [3].

Definition 11 (System F Types). The types of System F (ranged over by A,B) are
defined over an infinite set of atomic types (ranged over by ϕ), and one of type variable-
symbols (ranged over by X,Y ), in the following way:

A,B ::= ϕ | X | A→B | ∀X.A

A type is well-formed if and only if it contains no free type variable-symbols (i.e. every
such symbol X appears under a ∀X binder). It is useful to consider types modulo some
kind of alpha-conversion, for example we would like to identify the types ∀X.(X→X)
and ∀Y.(Y→Y ). From here on we will assume this.

Definition 12 (System F). The terms of System F (à la Church) are defined over an in-
finite set of typed term variable-symbols, {xA, yB, . . .}, where A,B can be any System
F type. They are defined by the following syntax:

M,N ::= xA | λxA.M1 |MN | Λϕ.M2 | MA

1: if xB appears free in M , then B = A.
2: ϕ does not appear in the type of a free term variable of M .

The syntax as described above is in fact rather too liberal; a notion of well-formed terms
will be employed, which insists that terms must have a well-formed type. It is simple to
derive the type of a particular System F term (unique, modulo alpha conversion) from
the type information within the syntax. We will write M :FA to denote that A is the type
of the term M .

Definition 13 (Type Derivation in System F). The procedure of type derivation is
defined as follows:

(Ax)
xA:FA

M :FB
(→I)

λxA.M :FA→B

M :FA→B N :FA
(→E)

(MN):FB

M :FA
(∀I)

Λϕ.M :F∀X.A[X/ϕ]

M :F∀X.A
(∀E)

(MB):FA[B/X ]

For example, we would not consider the term (xAyA) to be well-formed, since (accord-
ing to the rules above) it does not have a type. In addition, we would not consider the
term λxX .xX to be well-formed (its type is X→X where X is free). As an example
of a well-formed term, the identity function would be represented in System F by the
term Λϕ.λxϕ.xϕ, which has the type ∀X.(X→X). From here onwards we will assume
terms are well-formed unless otherwise stated.

Definition 14 (System F Reductions). There are two reduction rules:

(λxA.M) N →F M [N/xA]
(Λϕ.M) A →F M [A/ϕ]
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In general, we will write →F for the reflexive, transitive, compatible closure of the
relation generated by these rules.

System F à la Church possesses a Curry-Howard correspondence with the ‘∀,→’-
fragment of Intuitionistic Natural Deduction. Since each term carries only one type, the
correspondence between terms and proofs is in fact one-to-one.

To illustrate the polymorphism in this system, we can find a typeable term analogous
with the lambda term (λz.zz)(λx.x). The term we would use is

(λz∀Z.(Z→Z).Λϕ1.((z∀Z.(Z→Z) (ϕ1→ϕ1))(z∀Z.(Z→Z) ϕ1)))(Λϕ2.λx
ϕ2 .xϕ2)

4.2 Typed Polymorphic X
One possible method of introducing polymorphism to X is to go back to the sequent
calculus rules, and encode the quantifier rules there into the syntax of a typed version of
X . This gives typedX -terms which naturally carry polymorphic types. This approach is
analogous to that of System F, where the original implicative calculus (typed λ-calculus)
is extended with representations of the ‘∀’ rules.

The ∀-rules from the sequent calculus are as follows:

Γ,A[B/X ] �Δ
(∀L)

Γ, ∀X.A �Δ
Γ � A,Δ

(∀R)∗

Γ � ∀X.A[X/ϕ], Δ
* if ϕ does not occur in Γ,Δ.

Notice that (as is typical of the sequent calculus rules) quantifiers are only intro-
duced (and not eliminated), but may be introduced on the left of a sequent (which
approximately corresponds to elimination in a Natural Deduction setting).

We introduce two new terms, representing the rules (∀L) and (∀R), and give a
typed version of the existing syntax.

Definition 15 (Typed Polymorphic X ). The terms of Typed PolymorphicX (hereafter
denoted by X ∀) are defined by the following syntax:

P,Q ::= 〈xA.αA〉 | ŷAP β̂B · αA→B | P β̂A [yA→B] x̂BQ

| Pα̂A † x̂AQ | Pα̂A�
ϕ
β∀X.A[X/ϕ] (∗) | y∀X.A�

B
x̂A[B/X]Q

(∗) ϕ does not appear in the type of a free connector of P , except (possibly) αA.

The notation � is chosen to indicate the generalisation of the output α, whereas the
symbol � denotes the corresponding instantiation. Although instantiation is really a
‘Natural Deduction way’ of considering this mechanism (where there is an elimination
rule to do the job), the concept still makes sense in reading the term from left to right,
since this means reading the (∀L) rule from the bottom upwards.

Notice that no process of derivation is required in determining the type (context) of
an X ∀ term - the context may be immediately formed by taking a statement for each
free connector in the term, with the type it has there. This is because outputs are labelled
as well as inputs, so all of the pertinent information is present in the term. For example,

the X ∀ term ŷA〈xB .βB〉β̂B ·αA→B would be given the context x:B � α:A→B. We
write P ··· Γ �∀Δ to indicate that Γ �Δ is the context for the X ∀ term P .
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It is straightforward to convert the original X reduction rules into their typed ver-
sions. The extra rules required to deal with the new syntax constructs are given in Ap-
pendix A. We will write →∀ for the reduction relation for X ∀.

We have the following result:

Theorem 16 (Witness Reduction for X ∀). For all X ∀-terms P,Q, if P ··· ΓP �∀ΔP ,
and P →∀Q and Q ··· ΓQ �∀ΔQ, then ΓQ ⊆ ΓP and ΔQ ⊆ ΔP .

So our new formulation of the calculus is well-behaved with respect to the type-
assignment proposed.

It is possible to encode System F à la Church intoX ∀, just asX can encode the orig-
inal λ-calculus. The interpretation is based on the translation from Natural Deduction
to Sequent Calculus proofs, as originally given in [2].

The interpretation function takes as input a System F term and a plug α (used to
represent the output in the resulting X ∀ term) and returns the corresponding X ∀ term.
It makes use of the derivation of the (unique) type of a System F term, of Definition 13.

Definition 17 (Encoding System F à la Church). The interpretation of System F into
X ∀, via the plug α is defined recursively by:

&&xA��α∀ = 〈xA.αA〉
&&λxA.M��α∀ = x̂APβ̂B · αC

where M :F B
P = &&M��β∀
C = A→B

&&Λϕ.M��α∀ = P β̂A�
ϕ
αB

where M :F A
P = &&M��β∀
B = ∀X.A[X/ϕ]

&&MN��α∀ = P β̂C † x̂C(Qγ̂A [xC ] ŷB〈yB .αB〉)
where M :F A→B

N :F A
P = &&M��β∀

Q = &&N��γ∀
C = A→B

&&MB��α∀ = P β̂C † x̂C(xC �
B
ŷD〈yD.αD〉)

where M :F ∀X.A
P = &&M��β∀
C = ∀X.A
D = A[B/X ]

The following results show that we can simulate System F faithfully.

Theorem 18.

1. If M→F N then &&M��α∀→∀ &&N��α∀.
2. If M :FA then there exists a Γ such that &&M��α∀ ··· Γ �∀ α:A.

4.3 Untyped Polymorphic X
As an alternative to X ∀, it is possible to work in the style of System F à la Curry and
deal with the original syntax of X while allowing polymorphism to be represented only
in the type system. This is essentially achieved by employing System F types, and by
adding the following two type assignment rules to those standard for X .

P ··· Γ, x:A[B/X ] �P Δ
(∀L)

P ··· Γ, x:∀X.A �P Δ

P ··· Γ �P α:A,Δ
(∀R)∗

P ··· Γ �P α:∀X.A[X/ϕ], Δ
*if ϕ does not occur in Γ,Δ.
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We encode System F à la Curry by the usual encoding of the λ-calculus syntax into
X , as given in Definition 5. This encoding respects typeability and reductions.

5 Shallow Polymorphism

In this section, we will examine the style of polymorphism commonly associated with
ML, that of shallow polymorphism. We will show that a shallow polymorphic type
assignment can be naturally defined on X -terms without the need to extend the syntax
(in contrast to the case of the λ-calculus). We will show that ML can be encoded into
X , and that using this new type-assignment, typings and reductions are preserved. We
will discuss the notions of principal types and typings [12] with respect to our shallow
polymorphic version of X , and present a type inference algorithm in the style of the
algorithmW of [6].

ML [6] is a calculus based upon the λ-calculus, which uses a different approach
to System F for admitting polymorphism. To obtain decidability of type assignment, it
permits only shallow polymorphism, which means that types are allowed to contain the
∀ symbol only on the outside of their structure.

The syntax of the λ-calculus is extended the construct let x = M in N which
(along with its typing rule) is designed to give a workaround for the situation when an
application (λx.N)M would be untypeable, whereas the reduct N [M/x] can be typed.
The typing rule for let allows M to be given a shallow polymorphic type, and for this
type to be used for x when trying to derive a type for N . This way, it may be that several
instances of the polymorphic type are used for different occurrences of x within N .

Definition 19 (ML Expressions). The set LML of ML expressions is defined by:

M,N ::= x |MN | λx.M | Fix g.M | let x = M in N

The construct Fix g.M is included to allow recursion in the calculus. For simplicity
in our discussions of polymorphism we choose to study the subset of ML expressions
without Fix, and from hereon will consider ML expressions only within this subset.

Definition 20 (ML Reductions). The reduction rules in ML are as follows:

(λx.N)M →ML N [M/x]
(let x = M in N) →ML N [M/x]

The typing rules for let provide the polymorphism in this system - it is allowed for
each of the occurrences of x in N to be given a different instance of a polymorphic type
found for M . This is in contrast to the usual way in which the term (λx.N)M would
be treated, which would allow only one Curry type to be used for the variable x.

Definition 21 (Generic Types [6]). The set of generic types is built from the usual
Curry types by allowing ∀ quantifiers to be built on the outside. We will use A,B to
range over the usual Curry types, and ψ to range over generic types, as defined below.
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A ::= ϕ | X | (A→ B) Curry types
ψ ::= A | (∀X.ψ) generic types

As in the discussions in the previous section, we distinguish between atomic types ϕ
and type variable symbols X (whereas Milner chooses not to), and again consider only
types with no free type-variable symbols to be well-formed.

Definition 22 ([1]). ML-type assignment and ML-derivations are defined by the fol-
lowing deduction system.

(ax) : (x:ψ ∈ Γ )
Γ �MLx : ψ (let) :

Γ �MLM1 : ψ Γ, x:ψ �MLM2 : B

Γ �ML (let x = M1 inM2) : B

(→I) :
Γ, x:A�MLM : B

Γ �MLλx.M : A→B
(→E) :

Γ �MLM1 : A→B Γ �MLM2 : A

Γ �MLM1M2 : B

(∀I) :
Γ �MLM : ψ

(*)
Γ �MLM : ∀X.ψ[X/ϕ]

(∀E) :
Γ �MLM : ∀X.ψ
Γ �MLM : ψ[B/X ]

*If ϕ is not free in Γ .

Notice that generic types ψ may not be used in the (→I) or (→E) rules - this reflects
the fact that ∀-symbols may not appear inside an arrow type. However, when x is a
variable not occurring under an abstraction, the rules allow more freedom - if x has a
polymorphic type in the basis then the use of the (ax) and (∀E) rules allows a different
instance of this type to be chosen each time x is used.

Although ML admits less polymorphism than System F does, it has the advantage
of being very practical - not only is type assignment in ML decidable (in contrast to
System F), but it has a principal type property. Milner presents an algorithm (called
W) that takes as input a pair of (basis, term) and returns a pair of (substitution, type),
representing the most general typing for the term (if one exists) using a substitution
instance of the basis.

6 ML in X
The key to the use of polymorphism in ML is in the let construct, which is interpreted
as a substitution both syntactically (according to its reduction rule) and semantically
(see [6]). The polymorphism present in the (let)-rule essentially gives a way of typing
the substitution about to take place, such that the multiple occurrences of the name to
replace need not all be typed in the same way. The let-construct is a necessary exten-
sion to the syntax for a shallow polymorphic approach (short of allowing polymorphism
to be used directly with abstractions and applications, which leads to System F), since
there is nothing in the syntax of the λ-calculus to represent these substitutions.

In theX -calculus, there is a construct already present which can be seen to represent
substitution. The cut Pα̂ † x̂Q can, depending on the structure of P and Q, be seen to
represent the substitution of P for the x’s in Q, or symmetrically the substitution of Q
for α’s in P .
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A subtle problem occurs in defining a shallow polymorphic type assignment, which
motivates a relaxation of Definition 6 to allow multiple statements in a context with the
same subject. The main reason for this is in the manipulation of quantified types, when
we wish to take several instances of a type in the same derivation. It should be noted
that in a sequent calculus setting, instances are taken on the same side of the sequent as
the quantified type appeared (see the ∀L rule of Definition 23 below). We wish many
such instances to be available (to make full use of the polymorphism in the system), and
this causes us a difficulty, since all must be types for the same connector. For example
the (med)-rule

(med) :
P ··· Γ � α:A,Δ Q ··· Γ, x:B � Δ

Pα̂ [y] x̂Q ··· Γ, y:A→B �Δ
(which adds a type for y to the context Γ ) would be expressed awkwardly: assume y:C
already occurs in Γ , then, given the polymorphic character of types, we can accept that
A→B and C are different, as long as they are all instances of the same quantified type.
In other words, we can assume that y:∀ϕ.D ∈ Γ , and ask that A→B can be obtained
from D by instantiation. This would give a complicated side-condition to the rule.

Instead, we choose to relax Definition 6, in that we now allow multiple statements
in a context with the same subject. However, in order to retain soundness, we insist that
whenever the rules (exp), (med) and (cut) are employed, the connectors mentioned in
the top line of the rule (which are bound in the construction of the respective terms) have
a unique statement in the rule. This enforces that all the types for a connector disappear
from the contexts when the connector is bound. We also insist that a derivation is not
complete unless the subjects of the statements in the final sequent are unique (so the
relaxation is only usable temporarily within a derivation). As a consequence of these
restrictions, if several statements with the same subject (but different types) are used in
a derivation, it will be necessary for the ∀ rules to be applied until the types of these
statements match, and they are contracted into a single statement. Until this takes place,
it will be impossible to either bind the connective concerned, or complete the derivation.

Definition 23 (Shallow Polymorphic Type Assignment for X ). The shallow poly-
morphic type assignment for X is defined by the following rules (where ψ represents a
generic type of Definition 21):

(cap) : 〈y.α〉 ··· Γ, y:ψ 
SPα:ψ,Δ (med) :
P ··· Γ 
SPα:A,Δ Q ··· Γ, x:B 
Δ

(2)
Pα [y] xQ ··· Γ, y:A→B 
SPΔ

(exp) :
P ··· Γ, x:A
SPα:B,Δ

(1)
xPα·β ··· Γ 
SPβ:A→B,Δ

(cut) :
P ··· Γ 
SPα:ψ,Δ Q ··· Γ, x:ψ 
SPΔ

(3)
Pα †xQ ··· Γ 
SPΔ

(∀L) :
P ··· Γ, x:ψ[B/X]
SPΔ

P ··· Γ, x:∀X.ψ 
SPΔ
(∀R) :

P ··· Γ 
SPα:ψ,Δ
(4)

P ··· Γ 
SPα:∀X.ψ[X/ϕ],Δ

1: if x 
∈Γ and α 
∈Δ. 2,3: if x 
∈Γ and α 
∈Δ. 4: if ϕ does not occur in Γ,Δ.

We include a notion of implicit contraction in the above rules (as for the type system
presented in Section 3), so that if a derivation rule introduces a statement which was
already present in the context, it is simply merged.
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Notice that generic types are not used in the (exp) or (med) rules. This enforces
the restriction that the ∀-symbol may not appear to the left of an ‘→’ in a type, and is
similar to the way the (→I) and (→E) rules are treated in ML.

We have the following result:

Theorem 24 (Witness Reduction). If P ··· Γ �SPΔ, and P → Q, then Q ··· Γ �SPΔ.

Using our previous observation concerning the fact that let and a cut both explicitly
represent a substitution, we define an encoding of the language of ML into X .

Definition 25 (Encoding ML in X ).

&&x��αML = 〈x.α〉
&&λx.M��αML = x̂&&M��βML

β̂ ·α
&&MN��αML = &&M��βML

β̂ † ŷ(&&N��γML
γ̂ [y] ẑ〈z.α〉)

&&let x = M in N��αML = &&M��βMLβ̂ † x̂&&N��αML

where y, z, β, γ are fresh connectors.

We have the following results for our encoding:

Theorem 26. 1. &&M��βMLβ̂ † x̂&&N��αML → &&(N [M/x])��αML.
2. If M→ML N then &&M��αML → &&N��αML.
3. If Γ �ML M : ψ then &&M��βML

··· Γ �SPβ:ψ.

In fact, the converse of part 3 also holds if we restrict the right-context in our X typing
judgement to contain only a statement for β (any other information would be redundant
since β is the only free plug in such a term). This implies that the possible typings for
M in ML and &&M��βML in shallow-polymorphicX are essentially the same. Since Wells
proves in [12] that ML does not in general have principal typings (i.e. when the basis of
assumptions is unspecified, there is no pair of basis and type which represents all other
possible typings), this immediately implies that the same is the case of our shallow
polymorphic version of X .

On the other hand, it is well known that a notion of principal types for ML terms
exists (as presented by Milner), with respect to a fixed basis Γ . We can define principal
typings in our shallow polymorphic version ofX , with respect to a given context 〈Γ ;Δ〉
which gives a type to the free connectors in a term. Notice that such a context provides
types for the outputs as well as the inputs.

We define an algorithm, based on the W algorithm of [1], which takes as input
an X -term and a context 〈Γ ;Δ〉, and produces as output a substitution S, giving the
most general solution to the problem of typing the term with a (substitution) instance
of 〈Γ ;Δ〉. We require that no types in Δ contain the ∀ symbol - the intention is that
Γ provides any known licence to use polymorphism in the type search. In defining this
algorithm (which we will nameWX ), we require the following definition.

Definition 27 (∀-closure). The ∀-closure of type ψ with respect to a context 〈Γ ;Δ〉, is
defined by: ∀-closure ψ 〈Γ ;Δ〉 = ∀X1 . . .∀Xn.(ψ[Xi/ϕi]) where ϕ1, . . . , ϕn are the
atomic types occurring in ψ but not in 〈Γ ;Δ〉.

We are now in a position to define our type-inference algorithm.
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Definition 28 (WX ). The procedureWX :: 〈X , 〈Γ ;Δ〉〉 → S is defined by:

WX (〈x.α〉, 〈Γ ;Δ〉) = S
where A = instance x Γ

B = instance α Δ
S = unify A B

WX (x̂P α̂·β, 〈Γ ;Δ〉) = S2◦S1
where ϕ1 = fresh

ϕ2 = fresh

S1 = WX (P, 〈Γ ∪x:ϕ1;
Δ∪α:ϕ2〉

A = (S1 ϕ1)
B = (S1 ϕ2)
C = instance β (S1 Δ)
S2 = unify C A→B

WX (Pα̂ [y] x̂Q, 〈Γ ;Δ〉) = S3◦S2◦S1
where ϕ1 = fresh

ϕ2 = fresh

S1 = WX (P, 〈Γ ;Δ∪α:ϕ1〉)
S2 = WX (Q, (S1 〈Γ ∪x:ϕ2;Δ〉))
A = (S2◦S1 ϕ1)
B = (S2◦S1 ϕ2)
C = instance y (S2◦S1 Γ )
S3 = unify C A→B

WX (Pα̂ † x̂Q, 〈Γ ;Δ〉) = S2◦S1
where ϕ = fresh

S1 = WX (P, 〈Γ ;Δ∪α:ϕ〉)
ψ = ∀-closure (S1 ϕ) (S1 〈Γ ;Δ〉)
S2 = WX (Q, 〈(S1 Γ )∪x:ψ; (S1 Δ)〉)

where instance is a mapping that takes the type associated to the given connective in
the given context and replaces all ∀-bound type-variables by fresh atomic types. Note
that since we prohibit Δ from containing the ∀ symbol, our uses of instance on a plug
α merely extract the type for α from the context.

In order to reason about this context being truly principal, we need a notion of ‘more
general’ for quantified types.

Definition 29 (Generic Instance). A type scheme ψ = ∀X1 . . . ∀Xm.A has a generic
instance ψ′ = ∀Y1 . . .∀Yn.A

′ if there exists a type B such that:

1. There exist types B1, . . . , Bm with B = A[Bi/Xi].
2. There exist atomic types ϕ1, . . . , ϕn such that A′ = B[Yi/ϕi], and the ϕi are not

free in ψ.

We write ψ′ � ψ in this case, read “ψ′ is a generic instance of ψ”.
We extend this notion to contexts, by defining� on contexts to be the least preorder

such that:
ψ′ � ψ ⇒ 〈Γ ;Δ,α:ψ′〉 � 〈Γ ;Δ,α:ψ〉
ψ′ � ψ ⇒ 〈Γ, x:ψ;Δ〉 � 〈Γ, x:ψ′;Δ〉

∀-closure is extended to right-contexts by taking the closure of each statement.

Definition 30 (∀-closure for Contexts). We define the closure of a context 〈Γ ;Δ〉 by

closure 〈Γ ;Δ〉 = 〈Γ ;Δ′〉

where Δ′ = {α:ψ′ | α:ψ ∈ Δ and ψ′ = ∀-closure ψ 〈Γ ;Δ\α〉}

We can now define our notion of principal contexts for shallow polymorphic X , by
running the algorithm WX , applying the resulting substitution, and taking the closure
of the result.
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Definition 31 (Principal Contexts for Shallow Polymorphic X ). Given any X -term
P , and a context 〈Γ ;Δ〉 which provides types for exactly the free connectors in P , we
define the shallow polymorphic principal context for P with respect to a 〈Γ ;Δ〉 by:

sppc (P, 〈Γ ;Δ〉) = closure ((S 〈Γ ;Δ〉))
where S = WX (P, 〈Γ ;Δ〉)

Notice that sppc may or may not succeed, depending on whether the call toWX does.
The following result justifies this definition.

Theorem 32 (Soundness and Completeness of sppc). Given an X -term P and an
initial context 〈Γ1;Δ1〉,

1. If sppc (P, 〈Γ1;Δ1〉) succeeds and 〈Γ ;Δ〉 = sppc (P, 〈Γ1;Δ1〉) then P ··· Γ �SPΔ.
2. If 〈Γ2;Δ2〉 is an instance of 〈Γ1;Δ1〉 (i.e. can by obtained from the latter by sub-

stitution), and is such that P ··· Γ2 �SPΔ2 then:
(a) sppc (P, 〈Γ1;Δ1〉) succeeds.
(b) If 〈Γ ;Δ〉 = sppc (P, 〈Γ1;Δ1〉) then there is a substitution S such that

〈Γ2;Δ2〉 � (S 〈Γ ;Δ〉).

In summary, we have shown that in our shallow polymorphic formulation of X we
can faithfully simulate ML reductions, we have decideable type-assignment (at least
as strong as that of ML) and principal typings with respect to a fixed basis of assump-
tions (in the style of W). While we retain all these useful properties, our calculus is
more general than ML because of its basis on Classical Sequent Calculus. We can give
typeable programs which have no analogue in ML (for example, we can give a pro-
gram that has Pierce’s Law as a type), and can treat terms with multiple outputs. Fur-
thermore, since cut elimination is well-known to be non-confluent, we can simulate
non-determinism, a feature not present in ML. The precise computational content of
these various extensions is the subject of ongoing research.

7 Future Work

We are interested in investigating further useful programming features in the context of
X , like recursion.

At present, we only model polymorphism in the same style that ML does, in gener-
alising an output on the left of a cut and then taking instances for the various inputs on
the right. Since X is a very symmetric calculus, a natural idea to explore is the use of
polymorphism in the opposite direction: to generalise the input of the right-hand term,
and take instances for the (possibly several) outputs on the left. In logical terms, this can
be seen as introducing the ∃ connective to the system, and investigations into a system
based on this observation are ongoing. While a ‘dual’ notion of polymorphism is fairly
straightforward to define (where we allow ∃ in the type system instead of ∀), it is more
complicated to allow both kinds of polymorphism at once. This is a promising line of
future work, and is expected to yield a very powerful decideable type system for X .
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A New Reduction Rules for X ∀

The new key logical rule which is introduced, is the following:

(poly) : (Pα̂A�
ϕ
β∀X.A[X/ϕ])β̂∀X.A[X/ϕ] † ŷ∀X.A[X/ϕ](y∀X.A[X/ϕ]�

B
x̂A[B/ϕ]Q)

→ (P [B/ϕ])α̂A[B/ϕ] † x̂A[B/ϕ]Q if β 
∈ fp(P ), y 
∈ fs(Q)

This rule is complex, more so than the existing logical rules, because of the need to
account for the instantiation of the polymorphic type involved. It is necessary for a type
substitution to be made throughoutP , in order for the type of the output α to be able to
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agree with the type of the input x. This is where the instantiation happens - once a copy
of P has been propagated to meet a single term Q with which it can communicate, an
appropriate instance of P is taken. Of course, many such copies of P may have been
made by this stage, and it is the polymorphic type for α which allows each of these to
be instantiated in different (and possibly non-unifiable) ways.

We omit the type information from the following rules for brevity. However, except
in the case of the poly rule already described, the types are not necessary for under-
standing the operation of the rules.

Logical Rules

(gen) : (P β̂�α)α̂ † x̂〈x.γ〉 → P β̂�γ α 
∈ fp(P )
(inst) : 〈y.α〉α̂ † x̂(x�ẑP ) → y�ẑP x 
∈ fs(P )
(poly) : (P β̂�α)α̂ † x̂(x�ŷQ) → P β̂ † ŷQ α 
∈ fp(P ), x 
∈ fs(Q)

Activation Rules

(act-L) : Pα̂ † x̂Q → Pα̂ † x̂Q if P does not introduce α
(act-R) : Pα̂ † x̂Q → Pα̂ † x̂Q if Q does not introduce x

where:

P introduces x: P = Qβ̂ [x] ŷR and x 
∈ fs(Q,R), or P = x�ŷQ and x 
∈ fs(Q), or
P = 〈x.α〉.

P introduces α: P = x̂Qβ̂ ·α and α 
∈ fp(Q), or P = Qβ̂�α and α 
∈ fp(Q), or P =
〈x.α〉.

Left Propagation

(† gen-outs) : (Qβ̂�α)α̂ † x̂P → ((Qα̂ † x̂P )β̂�γ)γ̂ † x̂P , γ fresh
(† gen-ins) : (Qβ̂�γ)α̂ † x̂P → (Qα̂ † x̂P )β̂�γ, γ 
= α

(† inst) : (y�ẑQ)α̂ † x̂P → y�ẑ(Qα̂ † x̂P )

Right Propagation

( †gen) : Pα̂ † x̂(Qβ̂�γ) → (Pα̂ † x̂Q)β̂�γ
( †inst-outs) : Pα̂ † x̂(x�ŷQ) → Pα̂ † ẑ(z�ŷ(Pα̂ † x̂Q)), z fresh
( †inst-ins) : Pα̂ † x̂(z�ŷR) → z�ŷ(Pα̂ † x̂R), z 
= x
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Abstract. The pure pattern calculus generalises the pure lambda-cal-
culus by basing computation on pattern-matching instead of beta-reduc-
tion. The simplicity and power of the calculus derive from allowing any
term to be a pattern. As well as supporting a uniform approach to func-
tions, it supports a uniform approach to data structures which underpins
two new forms of polymorphism. Path polymorphism supports searches
or queries along all paths through an arbitrary data structure. Pattern
polymorphism supports the dynamic creation and evaluation of patterns,
so that queries can be customised in reaction to new information about
the structures to be encountered. In combination, these features provide
a natural account of tasks such as programming with XML paths.

As the variables used in matching can now be eliminated by reduc-
tion it is necessary to separate them from the binding variables used to
control scope. Then standard techniques suffice to ensure that reduction
progresses and to establish confluence of reduction.

1 Introduction

The lambda-calculus is a theory of functions which is powerful enough to model
arbitrary computations. In its pure form every term is a function, so that func-
tion arguments are themselves functions. Such higher-order functions give a clean
account of recursion as the application of the fixpoint function. Also data struc-
tures such as pairs, lists and trees can be modelled as higher-order functions
that take as arguments functions that are to act on the data stored within the
structure. Central to the expressive power of the lambda-calculus is that a single
rule, beta-reduction, is used to describe the evaluation of an arbitrary function.
This uniformity allows a single function to be applied in a variety of different
situations, i.e. supports function polymorphism. Unfortunately, the description
of data structures is not so uniform. Although the lambda-calculus supports
functions that act uniformly on all pairs, or all lists, it cannot support opera-
tions that exploit characteristics common to all data structures. These include
operations for searching, updating and aggregating that are at the heart of data
processing but do not make sense with lambda-abstractions.

In a way, this is surprising because such operations can be specified quite
simply. Every data structure is either an atom or a compound. For example,
every list is either empty or is compounded from a head and a tail, every tree

P. Sestoft (Ed.): ESOP 2006, LNCS 3924, pp. 100–114, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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is either a leaf or a node. With this characterisation, one can define searching a
data structure d as follows:

1. if d is the goal then return d;
2. else if d is a compound data structure then traverse its components;
3. else stop.

For example, consider the problem of listing all the points in a data structure.
Each point is represented by terms of the form Point t where Point is a constructor
used to represent points whose data is represented by t but the nature of the
structure holding the points is not known. Let the syntax [x1, . . . , xn] be used
for the list whose entries are given by x1, . . . , xn and let s@t be the result of
appending s to the front of t. Now the solution can be given by a pattern-
matching function defined by cases

letrec listPoints =
Point y → [Point y]
| x y → (listPoints x) @ (listPoints y)
| y → [ ]

The most interesting case of the three is the second, whose pattern x y is able
to match against an arbitrary compound data structure. For example, when
listPoints is applied to a pair Pair s t of points s and t we get

listPoints (Pair s t) = ((listPoints Pair) @ (listPoints s)) @ (listPoints t)
= ([ ] @ [s]) @ [t]
= [s, t]

This uniform approach to compound data structures supports path polymorphism
in which all paths through a data structure can be traversed.

Another example of path polymorphism is the function that updates point
data within an arbitrary data structure. It is given by

letrec updatePoint = f →
Point y → Point (f y)
| z y → (updatePoint f z) (updatePoint f y)
| y → y

Further generalisation is achieved by making Point a parameter to the generic
update function defined by

letrec update = x→ f →
x y →y x (f y)
| z y → (update x f z) (update x f y)
| y → y

This time the two variables in the pattern x y above behave quite differently as
x is a free variable ready to be substituted by, say, Point while y is a binding
variable, as usual. To distinguish these alternatives, the arrow in the case is
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decorated with a set of binding variables, in this case just y. Where no subscript
is specified then all the free variables of the pattern are assumed bound.

The function update is pattern polymorphic, as it contains the free variable x
in the pattern x y whose instantiation can produce a variety of different update
functions. For example, update Point reduces to updatePoint. Further, if update
is applied to a case then the pattern must be reduced before matching can occur.

Such flexibility in the use of patterns leads to the following leitmotiv:

any term can be a pattern.

This complements the view in lambda-calculus that any term can be a function.
Hence, the pure pattern calculus has term syntax

t ::= x | • | t t | t→θ t

consisting of variables, a constructor, applications and cases p →θ s where θ is
a set of variables, its binding variables. The sole reduction rule is motivated by
the equation

(p→θ s) u = {p/u}θ s (1)

where {p/u}θ is the match of p against u that produces either a substitution
with domain θ or a failure.

A key challenge is to determine when a pattern is irreducible, and so is ready
for matching. The difficulty arises from some pathological examples in which
reduction of the pattern is blocked by binding variables of its own case. That
resolved, the pure pattern calculus is fairly well behaved. In particular, every
closed term of the form (p→θ s) u is reducible. Also, reduction is confluent.

The simplicity of the pure pattern calculus is best appreciated by comparing
to previous approaches to pattern-matching. Popular functional programming
languages such as Standard ML [SML], OCAML [Oca] and Haskell [Has] only
support irreducible patterns which are either headed by a constructor or are a
binding variable. Recent research has sought to augment the collection of pat-
terns with new constructions [KPT96], reducible patterns [CK98] and free vari-
ables which do not bound occurrences in the body of the program [BCKL03], and
patterns for compound data structures [Jay04c]. Only the last of these supports
path polymorphism and none of them supports pattern polymorphic examples.

Moreover, the last of these underpinned the development of typed calculi
supporting pattern polymorphism (e.g. [Jay04a]) which sought to allow more
dynamic patterns (for us, polymorphism is about re-usability, which may be
formalised by typing). These have been used to support the generic update, and
its extension to handle arbitrary XML paths [HJS05a, HJS05b]. They have also
been used to support an object model able to support central goals of object-
orientation [Jay04b]. Again, they provide an account of structure polymorphism
[JC94, JBM98, Jay04c] necessary to support operations such as mapping and
folding in a uniform way, similar to polytypic or generic functional programming
[Jan00, BdMH96, GJ03].

All these calculi attempted to control variable binding by restricting the class
of patterns and their reduction. However, simplicity comes by treating binding
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separately from the pattern itself. It is expected that all of the applications above
can be re-engineered in the new, simpler, framework.

The structure of the rest of the paper is as follows. Section 2 introduces the
terms. Section 3 defines reduction. Section 4 considers some examples. Section 5
shows that matching does not get stuck. Section 6 proves reduction is confluent.
Section 7 draws conclusions and considers further work.

2 Terms

Fix a countable alphabet of variables (meta-variables . . . x, y, z). Let θ denote a
finite set of variables. The term syntax of the pure pattern calculus is

Terms t ::= x (variable)
• (constructor)
t t (application)
t→θ t (case)

The variables are available for binding, matching and substitution. The construc-
tor is used to build data structures. In practice, other primitive constructors
could be considered but we do not include them for simplicity. The application
r u applies the function r to its argument u. The case p →θ s is formed of a
pattern p and a body s linked by the set θ of binding variables. Application is left-
associative and case is right-associative. Application binds tighter than case. For
example x→ x y z →y y is equal to x→ (((x y) z)→y y). Lambda-abstraction
can be defined by setting λx.t to be x→x t.

Free variables of terms are defined by:

fv(x) = {x}
fv(•) = {}

fv(r u) = fv(r) ∪ fv(u)
fv(p→θ s) = (fv(p) ∪ fv(s)) \ θ.

Hence the binding variables of a case bind their free occurrences in both the
pattern and body. A term is closed if it has no free variables.

The notation p → s stands for p →fv(p) s. Hence programmers need never
actually mention binding variables explicitly unless they require free variables
in the pattern.

2.1 Matches

A substitution σ is a partial function from variables to terms. The notation
{x1/u1, . . . , xn/un} represents the substitution that maps xi to ui for i = 1 . . . n
and {} denotes the empty substitution. A match (meta-variable m) is either a
successful match, given by a substitution, or a failure, denoted by none. The
usual concepts and notation associated with substitutions will be defined for
arbitrary matches.
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The domain of σ is denoted dom(σ). The domain of none is the empty set.
The set of free variables of σ is given by the union of the sets fv(σx) where
x ∈ dom(σ). Also, none has no free variables. Define the variables of m to be
var(m) = dom(m) ∪ fv(m).

The application of a substitution σ to a term is defined by

σx = σx if x ∈ dom(σ)
σx = x if x /∈ dom(σ)
σ• = •
σ(r u) = (σr) (σu)
σ(p→θ s) = σp→θ σs if var(σ) ∩ θ = {}

The restriction on the definition of σ(p →θ s) is necessary to avoid a variable
clash which would change the semantics of the term. Variable clashes will be
handled by α-conversion.

If matching fails in Equation (1) then none will be applied to the body of the
case, which should be discarded. One possibility is to introduce a special error
term, but match failure provides a natural branching mechanism which can be
used to underpin the definitions of conditionals and pattern-matching functions.
Hence, we define

none t = x→x x.

Given matches m1 and m2 then m1 'm2 is the match defined as follows. If
m1 and m2 are substitutions σ1 and σ2 whose domains are disjoint then σ1 'σ2
is defined by

(σ1 ' σ2)x =

⎧⎨⎩σ1x if x ∈ dom(σ1)
σ2x if x ∈ dom(σ2)
undefined otherwise.

In all other circumstances m1 ' m2 = none. Disjoint domains will be used to
ensure that matching is deterministic.

The composition σ2 ◦ σ1 of two substitutions σ1 and σ2 is defined by (σ2 ◦
σ1)x = σ2(σ1x). Further, if m1 and m2 are matches of which at least one is none
then m2 ◦m1 is defined to be none.

The check mθ of a match m on a set of variables θ is m if m is a substitution
whose domain is exactly θ and is none otherwise.

2.2 Alpha Conversion

Let θ be a set of variables and x and y be variables. Then {x/y}θ is defined
to be the set obtained by replacing x by y in θ if x ∈ θ and y 
∈ θ, and to be
undefined otherwise.

Alpha conversion is the congruence relation generated by the following axiom

p→θ s =α {x/y}p→{x/y}θ {x/y}s if y /∈ fv(p) ∪ fv(s).

For example, x y →y x (f y) =α x z →z x (f z) if z is not free in f .
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Lemma 1. For every substitution σ and term t there is an α-equivalent term t′

such that σt′ is defined. If t1 and t2 are α-equivalent terms then fv(t1) = fv(t2)
and if u1 = σt1 and u2 = σt2 are both defined then u1 =α u2.

Proof. The proofs are by straightforward inductions.

From now on, a term is an α-equivalence class in the term syntax.

3 Reduction

Reduction proceeds in two stages: first generate a match and then apply it. The
richness of the class of patterns introduces some complexity to the matching
process, even in the handling of variables.

The most common situation is that the free variables of a pattern are binding
variables and so ready to be matched, as in (x→x x) • or (x y →{x,y} y) (• •)
where x and y both bind to •. In pattern polymorphic examples such as the
generic update a pattern may contain a free variable that is awaiting substitution.
Then matching of the pattern must be delayed until the value of the variable is
known, as in x→ (x y →y y) (• •). There is, however, a third possibility which
is illustrated by the following closed term

t = ((x→{} x) x→x x) (• •). (2)

The pattern p given by (x →{} x) x contains a free variable x which cannot
be replaced by substitution, as it is a binding variable of t. Hence there is no
way that p can ever be reduced and so it is natural to treat it as a compound
data structure in order to match against its parts. Then the match of x →{} x
against • will fail so that matching fails rather than gets stuck, as desired.

The difficulty with this approach is in determining that p is irreducible
within t. Of course, this depends upon the status of x, so the notion of data
structure must now be parametrised by a set of “fixed” variables ϕ and some
means found of characterising the irreducible applications such as p. The easiest
way we have found is to define the ϕ-data structures in terms of irreducibility
of their parts, which in turn depends upon the data structures within them, in
a virtuous cycle.

One can also consider matching of cases. Although feasible, it would require
that matching be parametrised by yet another set of variables, representing those
which are bound within the pattern itself, so is left for another occasion. In this
paper, case matching will always fail.

Finally, there is a substantial literature concerning the appropriate treatment
of non-linear patterns, i.e. those in which a binding variable x appears twice, such
as x x. One approach would be to allow x x to match with terms of the form u u.
However, this may cause a loss of confluence, as in [FK03, Kah03], for reasons
grounded in Klop’s observation that the combination of untyped λ-calculus with
non left-linear first-order rewriting systems breaks confluence [Klo80]. Since non-
linear patterns cannot be banned (any term can be a pattern) our solution is
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to prevent x x from matching anything, even a term of the form u u. This is
handled implicitly by the requirement that the union of substitutions is only
defined when their domains are disjoint.

3.1 Matching

The definitions of data structures, matchable forms, matching and reduction that
follow are all mutually recursive. That is, the definition of reduction depends
upon that of data structures which in turn depends on the irreducibility of some
sub-terms.

Let ϕ be a set of variables. Define the ϕ-data structures (meta-variable d) by

d ::= x if x ∈ ϕ
•
(p→θ s) u if (p→θ s) u is irreducible and all its free variables are in ϕ
d u.

For example, • u is a ϕ-data structure for any term u. Also, (x →{} x) x will
prove to be irreducible, and so to be a {x}-data structure.

Define the data structures to be the {}-data structures. The ϕ-matchable
forms are the ϕ-data structures and all cases. The matchable forms are the {}-
matchable forms.

The basic matching {p//u}θ of a term p (called the pattern) against a term
u (called the argument) relative to a set θ of binding variables is the partial
operation defined by the following equations

{x//u}θ = {x/u} if x ∈ θ
{•//•}θ = {}

{q p//v u}θ = {q//v}θ ' {p//u}θ if q p is a θ-matchable form
and v u is a matchable form

{p→ψ s//u}θ = none
{p//u}θ = none if p is a θ-matchable form

and u is a matchable form
{p//u} = undefined otherwise

where the equations are to be applied in order. That is, matching is always de-
fined if the pattern is a θ-matchable form and the argument is a matchable form,
and match failure can only arise if rules for successful matching do not apply. A
binding variable matches anything. The constructor matches itself. Matching of
compound data structures is component-wise, using (disjoint) union. Note that
the ordering of the equations can be avoided by expanding the definition into an
induction on the structure of the pattern.

For example, evaluation of t in (2) will use the match m={(x→{}x)x//••}{x}.
Now {x//x}{} is undefined and so (x →{} x) x turns out to be irreducible and
thus is an {x}-data structure. Hence m matches x→{} x against • but fails, and
so m is none.

Let p and u be terms and let θ be a set of variables. Define the matching
{p/u}θ of p against u with respect to binding variables θ to be the check of {p//u}θ
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on θ, where the check of a match is the function defined in Section 2. The check
is necessary to ensure that reduction does not allow bound variables to become
free. For example, {x/•}{x,y} = none since {x//•}{x,y} is not defined on y.

The pure pattern calculus has a match rule given by

(p→θ s) u �−→ {p/u}θ s. (3)

That is, if matching of the pattern against the argument produces a substitution
whose domain is the binding variables then apply this to the body. If the match-
ing fails then return the identity function. Of course, if {p/u}θ is undefined (e.g.
because p or u needs to be reduced) then the match rule does not apply.

The one-step reduction relation −→ is defined by applying the match rule to
a sub-term. The reduction relation −→∗ is the reflexive-transitive closure of −→.
A term t is irreducible if there is no reduction of the form t −→ t′.

4 Examples

λ-Calculus. There is a simple embedding of the pure λ-calculus into the pure
pattern calculus obtained by identifying the λ-abstraction λx.s with x →x s
or x → s. Pattern-matching for these terms is exactly the β-reduction of the
λ-calculus. For example, the fixpoint term

fix = (x→ f → f (x x f)) (x→ f → f (x x f))

can be used to define recursive functions. A term definition of the form letrec x =
t will be interpreted as giving f the value fix (x→ t) in the usual way.

Branching Constructs. Let False = • and True = • •. Define conditionals by

if b then s else r = (True→ x→ s) b r

where x 
∈ fv(s). Thus, if True then s else r reduces to (x → s) r and then to s
while if False then s else r reduces to (y → y) r and then to r. More generally,
the extension p→θ s | r extends the case p→θ s with a default r by

p→θ s | r = x→ (p→θ y → s) x (r x)

where x 
∈ fv(p →θ s) ∪ fv(r) and y 
∈ fv(s). When applied to some term u
it reduces to {p/u}θ(y → s) (r u). Now if {p/u}θ is some substitution σ then
this reduces to σ(y → s) (r u) = (y → σs) (r u) and then to σs as desired.
Alternatively, if {p/u}θ = none then the term reduces to (none (y → s)) (r u) =
(z → z) (r u) and then to r u as desired.

Extensions can be iterated to produce pattern-matching functions out of a
sequence of many cases. Make | right-associative so that

p1 → s1
| p2 → s2

...
| pn → sn
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is p1 → s1 | (p2 → s2 | (. . . | pn → sn)). For example, the function listPoints in
the introduction is defined in this way.

Arithmetic. The natural numbers can be defined as data structures built from
constructors Zero = • and Successor = •. Then recursive functions can be defined
using fix. This compares favourably with the representation of numbers as the
iterators used to define the Church numerals.

Constructors. In practice, it is natural to add a family of constructors c to
the calculus, to represent truth values, numbers, lists etc. Each constructor is an
atomic data structure that can be applied to an arbitrary number of arguments
to produce compound data structures. The match rule {c//c}θ = {} generalises
that for •.

Generic Equality. Now let us consider some novel programs. A generic equality
is defined by

equal = x→ (x→{} True | y → False)

where the first argument is used as the pattern for matching against the second.
For example, equal (• (• •)) (• (• •)) reduces to True. This is a simple example
of pattern polymorphism where the pattern is created dynamically.

The Generic Eliminator. The generic eliminator is given by

elim = x→ x y →y y

For example, elim Successor reduces to Successor y → y. Again, suppose that the
list constructors Nil and Cons are defined to be some data structures built from •.
Given singleton = x→ Cons x Nil then elim singleton reduces to Cons y Nil → y
by reduction of the pattern.

Generic Updating. Patterns of the form x y are used to access data along
arbitrary paths through a data structure, i.e. to support path polymorphism.
Combining the use of pattern and path polymorphism yields the generic update
function defined in the introduction. When applied to a constructor c, and a
function f and a data structure d it replaces sub-terms of d of the form c t by
c (f t). For example, update c f ((c u) (c v)) reduces to (c (f u)) (c (f v)). In
general, update can be applied to cases. For example, update singletonf reduces to

Cons y Nil→ Cons (f y) Nil
| z y → (update singleton f z) (update singleton f y)
| y → y

Also, updating can be iterated to give finer control. For example, given con-
structors Salary,Employee and Department and a function f then the program

update Department (update Employee (update Salary f))

updates departmental employee salaries. Note that it is not necessary to know
how employees are represented within departments for this to work, so that a
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new level of abstraction arises, similar to that which XML is intended to support.
The full range of XML paths can be handled by defining an appropriate abstract
data type, similar to that of signposts given in [HJS05a, HJS05b].

Wild-Cards. It is interesting to add a new constant denoted ? to the pure
pattern calculus, the wild-card. It has no free variables and is unaffected by
substitution. It is a data structure, is compatible with anything, and has the
matching rule

{?//u}θ = {}.
That is, it behaves like a fresh binding variable in a pattern but like a constructor
in a body. For example, the first and second projections from a pair can be
encoded as elim (Pair ?) and elim (x→ Pair x ?).

The following example uses recursion in the pattern. Define the function for
the extracting list entries by

letrec entrypattern =
Succ n→ x→ Cons ? (entrypattern n x)
| Zero → x→ Cons x ?

entry = n→ elim (entrypattern n)

For example, entry (Succ (Succ Zero)) reduces to Cons ? (Cons ? (Cons x ?)) → x
which recovers the second entry from a list. Note the standard approach, in
which each occurrence of the wild-card represents a distinct binding variable,
cannot support such recursion.

5 Progress

Lemma 2. An irreducible term t is a fv(t)-matchable form.

Proof. The proof is by a straightforward induction on the structure of t. If t is
of the form (p→θ s) u then it is either reducible or a fv(t)-data structure.

Theorem 1. Pattern-matching cannot get stuck. That is, a closed term of the
form (p→θ s) u is always reducible.

Proof. Assume that p and u are irreducible. Then p is a θ-matchable form and
u is a matchable form by Lemma 2. Hence {p/u}θ is defined and the whole term
can be reduced.

Corollary 1. The data structures are those terms headed by the constructor.

6 Confluence

Confluence of reduction is established using the parallel reduction technique due
to Tait and Martin-Löf [Bar84] which can be summarised in four steps: define
a parallel reduction relation denoted (; prove that (∗ and −→∗ are the same
relation (Lemma 3); show that ( has the diamond property (Theorem 2); and
use this to prove confluence. The parallel reduction relation is given in Figure 1.
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t! t

r ! r′ u! u′

r u! r′ u′
p! p′ s! s′

p→θ s! p′ →θ s′
p! p′ s! s′ u! u′

(p→θ s) u! {p′/u′}θ s′

Fig. 1. Parallel reduction

Lemma 3. Every one-step reduction is a parallel reduction. Also, every parallel
reduction is a reduction. Hence the reflexive-transitive closure (∗ of ( is the
reduction relation −→∗.

Proof. The proofs are by straightforward induction on the definitions.

The parallel reduction relation( between matches is defined as follows. Given
two substitutions σ and σ′ then σ ( σ′ if dom(σ) = dom(σ′) and σx( σ′x for
every x ∈ dom(σ). Also none ( none. Substitutions and none are not related.

Lemma 4. If t is a term and m is a match then fv(mt) ⊆ fv(m) ∪ (fv(t) \
dom(m)).

Proof. If m is none then the result is immediate so assume that m is a substi-
tution σ. The proof is by induction on the structure of t. If t is p →θ s where
θ ∩ var(σ) = {} then

fv(σp→θ σs) = (fv(σp) ∪ fv(σs)) \ θ
⊆ (fv(σ) ∪ ((fv(p) ∪ fv(s)) \ dom(σ))) \ θ (by induction)
= fv(σ) ∪ (fv(t) \ dom(σ)).

The other cases are straightforward.

Lemma 5. If m = {p/u}θ for some terms p and u and set of variables θ then
fv(m) ⊆ fv(u).

Proof. If m = none then there is nothing to prove. Otherwise the proof is by a
straightforward induction on the structure of p.

Lemma 6. If t( t′ is a parallel reduction then fv(t′) ⊆ fv(t). Hence, if m( m′

is a parallel match reduction then var(m′) ⊆ var(m).

Proof. By Lemma 3 it suffices to prove the result for the reduction rule (3). Then

fv(t′) = fv({p/u}θ s)
⊆ fv({p/u}θ) ∪ (fv(s) \ dom({p/u}θ)) (Lemma 4)
⊆ fv({p/u}θ) ∪ (fv(s) \ θ)
⊆ fv(u) ∪ (fv(p→θ s)) (Lemma 5)
= fv(t).

Lemma 7. Let m be a match and let θ be a set of variables such that var(m)∩θ =
{}. If p and u are terms such that {p//u}θ is defined then so is {m p//m u}θ and
{m p//m u}θ ◦m = m ◦ {p//u}θ. Hence

{m p/m u}θ ◦m = m ◦ {p/u}θ.
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Proof. The second statement follows directly from the first. If m is none then
both sides are none. So without loss of generality, assume that m is a substitution
σ. The proof is by induction on the structure of p. If p is a variable x ∈ θ
then both sides map x to σu and behave as σ on all other variables. If p is
the constructor and u is too then both sides are m. If p and u are compatible
applications then apply induction twice.

If {p//u}θ = none then {σp//σu}θ = none (since dom(σ) ∩ θ = {}) and so
both sides of the match equation are none.

Lemma 8. If p ( p′ and u ( u′ are parallel reductions on terms and {p/u}θ

is defined then so is {p′/u′}θ and {p/u}θ ( {p′/u′}θ.

Proof. The proof is by induction on the structure of p. If p is a variable then p′ is
the same variable and it must be in θ so that the result follows directly. If p is the
constructor then u is the constructor if and only if u′ is. If p is a case then both
matches will fail. Otherwise p must be a θ-matchable form p1 p2 and u must be
a matchable form. If u is not an application then it must be the constructor or a
case: either way, both matchings will fail. Alternatively, if u = u1 u2 then Corol-
lary 1 implies that u1 is also a data structure and thus u′ = u′1 u

′
2 where u1 ( u′1

and u2 ( u′2. We then have two possibilities for p1. If p1 is a θ-data structure
then p′ = p′1 p

′
2 where p1 ( p′1 and p2 ( p′2. Hence induction applies. Otherwise,

p1 is a case so that p is irreducible and both matches against it will fail.

Lemma 9. If m( m′ and t( t′ are parallel reductions of matches and terms
respectively then m t( m′ t′.

Proof. If m is none then m′ is none and so the result is immediate. So assume
that m and m′ are substitutions σ and σ′ respectively. The proof is by induction
on the derivation of t( t′. The only non-trivial case is when t = (p→θ s) u(
{p′/u′}θ s′ where p ( p′ and u ( u′ and s ( s′. Without loss of generality,
assume var(σ) ∩ θ = {}. By Lemma 6 and by the assumptions we have var(σ′)∩
θ ⊆ var(σ) ∩ θ = {}. Thus, σ′({p′/u′}θs

′) is equal to {σ′ p′/σ′ u′}θ(σ′ s′) by
Lemma 7 and so σ((p →θ s)u) = (σ p →θ σs) (σ u) ( {σ′p′/σ′ u′}θ(σ′ s′) =
σ′({p′/u′}θs

′).

Theorem 2. The relation ( has the diamond property. That is, t ( t1 and
t( t2 then there is t3 such that t1 ( t3 and t2 ( t3.

Proof. The proof is by induction on the definition of parallel reduction. Suppose

(p2 →θ s2) u2 ) (p→θ s) u( {p1/u1}θs1

where p ( p1 and p ( p2 and s ( s1 and s ( s2 and u ( u1 and u ( u2.
By induction, there are terms p3, s3 and u3 such that p1 ( p3 and p2 ( p3 and
s1 ( s3 and s2 ( s3 and u1 ( u3 and u2 ( u3. Now {p1/u1}θ ( {p3/u3}θ by
Lemma 8 and so {p1/u1}θs1 ( {p3/u3}θs3 by Lemma 9. Hence, the diamond is
completed by {p3/u3}θs3.
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Again, suppose (p →θ s) u ( {p2/u2}θs2 and (p →θ s) u ( {p1/u1}θs1
where p ( p1 and p ( p2 and s ( s1 and s ( s2 and u ( u1 and u ( u2.
By induction there are terms p3, s3 and u3 such that p1 ( p3 and p2 ( p3
and s1 ( s3 and s2 ( s3 and u1 ( u3 and u2 ( u3. Now {p1/u1}θ and
{p2/u2}θ both parallel reduce to {p3/u3}θ by Lemma 8 and so Lemma 9 implies
the diamond is completed by {p3/u3}θs3. The other cases are straightforward.

Corollary 2 (Confluence). The reduction relation is confluent.

Proof. Theorem 2 shows that ( has the diamond property and so the reflexive-
transitive closure of ( is confluent. Now apply Lemma 3.

7 Conclusion and Further Work

Pattern-matching provides a natural mechanism for computing with data struc-
tures; its expressive power is determined by the nature of the patterns that are
allowed. The pure pattern calculus maximises this expressive power by allowing
any term to be a pattern. The resulting language supports patterns that are able
to match with arbitrary compound data structures (path polymorphism), and
patterns that can be assembled dynamically (using free variables to represent
patterns) and simplified into a matchable form (pattern polymorphism). Such
patterns will prove useful when manipulating remote data whose structure is
only partially known, as illustrated by the example of updating.

There are a number of open questions concerning the pure pattern calculus
itself, and its connections to rewriting, logic, type theory and category theory.

The matching process may extend to consider matching of cases as well as of
data structures, provided the binding variables of cases are treated appropriately.
We have not pursued this here as the complexity of the development was not
justified by any new forms of polymorphism. However, it may prove useful in
program analysis and transformation.

It is not yet clear what extensional equality should be for the pattern calculus,
as earlier work on extensionally for pattern-matching [Kes97] does not take full
account of data structures. For example, the η-equality rule f = λx.f x does not
apply in our setting since a data structure is not a case.

Another issue concerns higher-order rewriting within a formalism with pat-
terns [FK03]. It seems natural to extend such languages to capture the rich
dynamics of the patterns presented here.

In the spirit of [KPT96] it would be interesting to explore a Curry-Howard
interpretation for the pure pattern calculus in order to recognise, or develop,
the corresponding logic. For example, matching against arbitrary compounds
appears to model structural induction [Bur69] in a uniform way.

The calculus presented here uses a meta-level (or implicit) pattern-matching
operation. One could also consider explicit pattern-matching, where the match
equations become themselves rewriting rules which can then be interleaved with
other reductions [CK99, For02, Kah03, Jay04c].
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It is straightforward to provide simple types and indeed to support paramet-
ric polymorphism. Of more interest will be the addition of type specialisations
[Jay04c] necessary to type the more complex examples. The calculus will then
provide a clean foundation for a typed account of XML paths, as described
in [HJS05a, HJS05b] and a platform upon which to model object-orientation,
along the lines proposed in [Jay04b].

The denotational semantics of the pattern calculus also awaits exploration. It
is not clear how to represent a case in a domain-theoretic setting. As a lambda-
abstraction is an arrow in a category then perhaps a case is a span in a category
or, rather, the internalisation of a span.

In conclusion, the pure pattern calculus provides a compact setting in which
to handle both functions and data structures in a uniform manner, and so sup-
port new forms of polymorphism.
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Abstract. Model fields are specification-only fields that encode abstractions of
the concrete state of a data structure. They allow specifications to describe the
behavior of object-oriented programs without exposing implementation details.

This paper presents a sound verification methodology for model fields that
handles object-oriented features, supports data abstraction, and can be applied to
a variety of realistic programs. The key innovation of the methodology is a novel
encoding of model fields, where updates of the concrete state do not automatically
change the values of model fields. Model fields are updated only by a special
pack statement. The methodology guarantees that the specified relation between
a model field and the concrete state of an object holds whenever the object is
valid, that is, is known to satisfy its invariant.

The methodology also improves on previous work in three significant ways:
First, the formalization of model fields prevents unsoundness, even if an interface
specification is inconsistent. Second, the methodology fully supports inheritance.
Third, the methodology enables modular reasoning about frame properties with-
out using explicit dependencies, which are not handled well by automatic theorem
provers.

1 Introduction

The development of object-oriented programs makes use of mutable objects, aliasing,
subtyping, and modularity. We are interested in verifying such programs. To do that,
we need specifications with data abstraction and a systematic way (a methodology) of
reasoning. Existing methodologies either do not address these characteristics of object-
oriented programming or do not support data abstraction in a satisfactory way. In this
paper, we present a methodology that addresses these problems and that can be applied
to a wide variety of realistic programs.

Specifications that are visible to client code must be expressed in an implemen-
tation-independent way to support information hiding. This can be achieved by using
data abstraction [11], that is, by mapping the concrete state of a data structure to an
abstract value. A standard example is to map the state of a singly-linked list to a mathe-
matical sequence. The behavior of the list class can be expressed in terms of the abstract
value of list objects, that is, in terms of the sequence. A convenient way to support data
abstraction in specification languages for object-oriented programs is by model fields
[5, 14, 15, 19]. In contrast to ordinary (concrete) fields, a program cannot directly as-
sign to model fields. Instead, model fields are specification-only fields whose values are
determined by mappings from an object’s concrete state.
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Class Rectangle in Fig. 1 illustrates how model fields are used in specifications. A
Rectangle object stores the coordinates of two opposite corners, as expressed by the
invariant. The model field width is used to refer to the width of the rectangle in specifi-
cations. The value of width is the difference between the x-coordinates of the corners,
x2 and x1 . This relation between the model field width and the concrete fields x1 and
x2—the so-called constraint for width —is expressed by the constrained by part
of the model field declaration. The declaration of the model field height is analogous.

Method ScaleH scales the rectangle horizontally by a given percentage. The en-
sures clause uses the model field width to express the functionality of ScaleH without
referring to the concrete implementation. The modifies clause allows method ScaleH
to change the values of the fields width and x2 . The second requires clause as well as
the unpack and pack statements are required by the methodology for object invariants
we build on and will be explained in Sec. 4.

class Rectangle {
int x1, y1, x2, y2 ; // lower left and upper right corner
invariant x1 ≤ x2 ∧ y1 ≤ y2 ;
model int width constrained by width = x2− x1 ;
model int height constrained by height = y2− y1 ;
Rectangle() {

x1 := 0 ; y1 := 0 ;
x2 := 1 ; y2 := 1 ;
pack this as Rectangle ;

}
voidScaleH (int factor)

requires 0 ≤ factor ;
requires inv = Rectangle ∧ ¬committed ;
modifies width, x2 ;
ensures width = old(width) ∗ factor/100 ;

{
unpack this from Rectangle ;
x2 := (x2− x1) ∗ factor/100 + x1 ;
pack this as Rectangle ;

}
}

Fig. 1. A specification with model fields

The basic concept of data abstraction is well-understood. However, existing ver-
ification techniques for model fields (including our own previous work) suffer from
soundness, modularity, expressiveness, or practicality problems. Our contribution in
this paper is a verification methodology that solves these problems. The key innovation
is to treat model fields as if they were stored in the heap and updated automatically
in a systematic way. This treatment reduces reasoning about model fields to simpler
concepts.

We illustrate the problems any verification methodology for model fields has to
address in the next section and explain our approach to their solution in Sec. 3. Our
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approach is based on the Boogie methodology for object invariants [1, 17], which we
summarize in Sec. 4. We present the details of our methodology for model fields in
Sec. 5. The rest of the paper discusses related work and offers some conclusions.

2 Problems

A verification methodology for model fields has to address two major issues: (a) the
meaning of model fields and their constraints, and (b) the meaning of frame properties
in the presence of model fields. We discuss these issues in the following.

2.1 Meaning of Model Fields

In existing methodologies [4, 15, 18, 19, 20], the meaning of a model field is defined by
an abstraction function that maps a receiver object and a heap to the model field’s value.
This abstraction function is specified by a programmer-provided constraint. The prob-
lem with this meaning is that if a programmer specifies inconsistent constraints, then
the abstraction functions are not well-defined, which lends itself to unsound reasoning.
Inconsistent constraints occur in two situations.

First, constraints can be unsatisfiable. For instance, consider the abstraction func-
tion abslen of an integer model field len of a class List . If the model field len is con-
strained by len = len + 1 , then abslen has to satisfy the unsatisfiable abslen(l ,H ) =
abslen(l ,H ) + 1 for any List object l and heap H . In practice, such ill-formed speci-
fications are far less obvious than this example, because they typically involve strength-
ening of inherited constraints or cyclic dependencies among several model fields.

Second, abstraction functions of model fields are typically well-defined only for
objects that satisfy their invariants. Applying an abstraction function to an object whose
invariant is temporarily violated can lead to inconsistencies. For instance, consider a
linked list implementation, where the invariant requires the list to be acyclic. In such an
implementation, the model field len for the length of the list could be constrained by a
conditional expression such as len = (next = null) ? 1 : next .len + 1 , where next
is the field that stores the next node of the list. This, too, is inconsistent if applied to a
cyclic list. For instance, if l = l .next for a list l , then abslen again has to satisfy the
unsatisfiable abslen(l ,H ) = abslen(l ,H ) + 1 .

Both kinds of inconsistent constraints can be avoided in carefully written specifica-
tions. However, specifications found in practice contain flaws. A verification method-
ology has to ensure that these flaws are detected during verification and do not lead to
unsound reasoning.

2.2 Meaning of Frame Properties

The frame properties of a method limit the effects the method may have on the program
state. This is crucial when reasoning about calls. Frame properties are typically speci-
fied using modifies clauses. Roughly speaking, a modifies clause lists the concrete and
model locations a method is allowed to modify.

Any update of a field x .f potentially affects each model field that depends on x .f .
A model field o.m depends on a field x .f if the value of x .f constrains the value
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of o.m . For instance, for a Rectangle object o , o.width depends on o.x1 and o.x2
because these fields are mentioned in the constraint for width .

When the meaning of a model field is given by an abstraction function, any mod-
ification of the heap, for instance, by an update of a field x .f , will have an instant
effect on all dependent model fields. That is, the value of these model fields is changed
simultaneously with the update of x .f .

Instant effects lead to a modularity problem, which is illustrated by class Legend in
Fig. 2. Legend objects display some text within a bounding box. The box is represented
by a Rectangle object. The rep modifier in the declaration of the field box is used to
express ownership and will be explained in Sec. 4. The model field maxChars yields
the maximum number of characters that fit into one line in the box at a given font
size.

The value of maxChars depends on the width of the Rectangle object box . There-
fore, if method ScaleH is executed on a Rectangle object r , it potentially modifies
maxChars for any Legend object that uses r . However, we cannot require ScaleH
to declare this potential modification in its modifies clause, since the implementor of
ScaleH need not be aware of class Legend (in fact, Legend might have been imple-
mented long after Rectangle ).

class Legend {
rep Rectangle box ;
int fontSize ;
invariant box �= null ∧ fontSize > 0 ;
model int maxChars constrained by maxChars = box .width/fontSize ;
voidReset()

requires inv = Legend ∧ ¬committed ;
modifies maxChars ;

{
unpack this from Legend ;
box .ScaleH (0) ;
pack this as Legend ;

}
// constructors and other methods omitted.

}

Fig. 2. A client of class Rectangle

An analogous modularity problem occurs when model field constraints refer to in-
herited fields. For instance, if a subclass MyRectangle of class Rectangle declares a
model field area that depends on the inherited field x2 , method ScaleH potentially
modifies area without listing the field in its modifies clause.

A useful verification methodology for model fields must address the modularity
problem of frame properties for aggregate objects (such as Legend objects) and sub-
classes (such as MyRectangle ).
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3 Approach

In this section, we explain the general ideas that allow us to solve the problems de-
scribed in the previous section. To focus on the essentials, we ignore subtyping in this
overview, but we will include it in Sec. 5 when we explain our methodology in detail.

Our methodology for model fields builds on the Boogie methodology for object
invariants [1, 17]. In the Boogie methodology, an object is either in a valid or a mutable
state. Only when in a valid state, an object is guaranteed to satisfy its invariant, and only
fields of objects in a mutable state can be assigned. The transition from valid to mutable
and back is performed by two special statements, unpack and pack .

Principles. Our methodology is based on the following three principles:

1. Validity principle: The declared constraint for a model field m constrains the value
of o.m only if the object o is valid, that is, if o ’s invariant is known to hold.

2. Decoupling principle: The change of the value of a model field is decoupled from
the updates of the fields it depends on. Instead of applying an abstraction function
to obtain the value of a model field o.m , a stored value is used. The stored value
of o.m is not updated instantly when a dependee field is modified, but only at the
point when o is being packed.

3. Mutable dependent principle: If a model field o.m depends on a field x .f , then
the dependent object o must be mutable whenever x is mutable.

The validity principle defines the meaning of model fields and avoids inconsis-
tencies due to temporarily broken invariants. Inconsistencies due to unsatisfiable con-
straints (e.g., len = len + 1 ) are avoided by assertions, as we explain in Sec. 5.2.

The decoupling principle solves the modularity problems of frame properties. Con-
sider a method M that updates a field x .f . Because of decoupling, this update does
not have an instant effect on a dependent model field o.m . That is, o.m remains un-
changed and, therefore, need not be mentioned in M ’s modifies clause (as long as M
does not pack o ).

The mutable dependent principle and the validity principle are prerequisites for de-
coupling to be sound. Consider a model field o.m that depends on a field x .f . Updating
x .f potentially causes o.m not to satisfy its constraint any more. However, the Boogie
methodology requires that x be mutable when x .f is updated. Therefore, the mutable
dependent principle implies that o is also mutable, and the validity principle allows
o.m not to satisfy its constraint.

There are several ways to enforce the mutable dependent principle. The one we use
in this paper is to organize objects in an ownership hierarchy [17]. A model field o.m
is allowed to depend on fields of an object x only if x is (transitively) owned by o . The
Boogie methodology guarantees that the (transitive) owner objects of a mutable object
are themselves mutable.

Example. To illustrate how these principles work, we revisit the Legend example
(Fig. 2). Let l be a Legend object and let r be the Rectangle object stored in l .box .
The modifier rep in the declaration of box indicates that l owns r . Thus, the Boogie
methodology guarantees that l is mutable whenever r is mutable. Since the model field
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l .maxChars depends on r .width , this ownership relation is required by the mutable
dependent principle.

Consider the execution of method ScaleH invoked from Legend ’s method Reset .
The first statement of ScaleH unpacks the receiver object (that is, r ) to permit updates
of its fields. By the decoupling principle, the subsequent update of x2 does not change
the value of the model field r .width , even though width depends on x2 . In the state
after the update, the value of r .width in general does not satisfy the specified constraint
because the concrete state has changed, but the value of the model field has not (yet)
been adapted. This discrepancy is permitted by the validity principle since r is mutable.

The value of r .width is brought up to date when r is packed. Again, by the decou-
pling principle, this update does not instantly affect the value of l .maxChars . Conse-
quently, this model field does not have to be mentioned in ScaleH ’s modifies clause,
which shows the modularity of the approach.

Updating r .width potentially causes l .maxChars not to satisfy its constraint.
However, since l is mutable, this discrepancy is permitted by the validity principle.
It will be resolved when l is packed in method Reset .

4 Background: The Boogie Methodology for Object Invariants

In this section, we summarize those parts of the Boogie methodology for object invari-
ants [1] that are needed in the rest of this paper. The motivation for the design and the
technical details are presented in our earlier paper [17].

Explicit Representation of When Invariants Have to Hold. To handle temporary
violations of object invariants and reentrant method calls, the Boogie methodology rep-
resents explicitly in every object’s state whether the object invariant is required to hold
or allowed to be violated. For this purpose, it introduces for every object a concrete
field inv that ranges over class names. If o.inv <: T for a T object o (where <: de-
notes the subtype relation), then o ’s invariants declared in class T and its superclasses
must hold and we say o is valid for T . If o is not valid for T then the invariant of o
declared in T are allowed to be temporarily violated and we say o is mutable for T .

The inv field can be used in method specifications, but cannot be assigned directly
by the program. Instead, the Boogie methodology provides two special statements:
unpack o from T and pack o as T change o.inv from T to T ’s direct super-
class and back, respectively. Before setting inv to T , the pack statement checks that
the object invariant declared in class T holds for o .

Since the update of a field o.f potentially breaks the invariant of o , o.f is allowed
to be assigned only at times when o is mutable for the class F that declares f . To
enforce this policy, each update of o.f is guarded by an assertion F �: o.inv . This
assertion is crucial for the soundness of our methodology, see Sec. 5.4.

Ownership. The Boogie methodology handles aggregate objects by guaranteeing that
the validity of an object implies the validity of its component objects. Providing this
guarantee requires some form of aliasing control, a discipline on the use of object ref-
erences. The Boogie methodology uses the notion of ownership for aliasing control,
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associating with every object a unique owner object. That is, an aggregate object is the
owner of its component objects. Objects outside the aggregate are allowed to reference
component objects, but these references are only of limited use.

To encode ownership, the Boogie methodology introduces two additional concrete
fields for every object: a field owner that ranges over pairs 〈o,T 〉 , where o is the
owner object and T is a superclass of the dynamic type of o at which the ownership
is established, and a boolean field committed . Like inv , these fields can be used in
method specifications, but cannot directly be assigned by the program. The owner of an
object is set when the object is created. Because it would be a distraction in this paper,
we omit a program statement for changing the owner field (but see [17]).

Let p be an object that is owned by 〈o,T 〉 . The fact that p is committed (that is,
p.committed = true ) expresses that p is valid for its dynamic type, and o is valid for
T . The committed field is used to implement a protocol that enforces that an owner
object is unpacked before the owned object is unpacked. Packing is done in the reverse
order. More precisely, this protocol ensures that the owner object o is mutable for the
owner type T whenever p is mutable.

In connection with the fact that field updates are allowed only for mutable objects,
this protocol guarantees that the following two program invariants hold in each reach-
able execution state of a program: If an object o is valid for a class T , then the object
invariants declared in T hold for o and all objects owned by 〈o,T 〉 are committed (see
J1 below). Committed objects are valid for their dynamic type (see J2 below). (Here and
throughout the paper, quantifications over object references range over non-null refer-
ences to allocated objects.)

J1: (∀ o,T • o.inv <: T ⇒ InvT (o) ∧
(∀object p • p.owner = 〈o,T 〉 ⇒ p.committed ))

J2: (∀ o • o.committed ⇒ o.inv = typeof(o) )

The protocol is implemented by the unpack and pack statements. The act of packing
an object o for a class T also commits the objects owned by 〈o,T 〉 by setting their
committed fields to true . This operation requires these owned objects to be previously
uncommitted and valid for their dynamic types. Unpacking an object o from a class T
requires o to be uncommitted and sets the committed field of the objects owned by
〈o,T 〉 to false . We formalize these statements by the pseudo code shown in Fig. 3.
InvT (o) denotes the expression that says that o satisfies the object invariant declared
in class T , typeof(o) is the dynamic type of object o , and Super(T ) denotes the
direct superclass of T .

To simplify the specification of aggregate objects, we allow the use of the modifier
rep . Applied to the declaration of a field f in class T , it gives rise to the implicit
object invariant f 
= null ⇒ f .owner = 〈this,T 〉 . This keyword also allows us to
prescribe syntactic checking of admissible model fields, as we shall see in Sec. 5.1.

Static Verification. The proof rules of the Boogie methodology are formulated in terms
of assertions, which cause the program execution to abort if evaluated to false . Asser-
tions appear in the following places: (a) before method calls for the requires clauses
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unpack o from T ≡
assert o �= null ∧ o.inv = T ∧ ¬o.committed ;
o.inv := Super(T ) ;
#foreach object p such that p.owner = 〈o,T 〉 { p.committed := false }

pack o as T ≡
assert o �= null ∧ o.inv = Super(T ) ;
assert ( ∀ object p • p.owner = 〈o,T 〉 ⇒ p.inv = typeof(p) ∧ ¬p.committed ) ;
assert InvT (o) ;
#foreach object p such that p.owner = 〈o,T 〉 { p.committed := true }
o.inv := T

Fig. 3. Pseudo code for unpack and pack

of the called method, (b) at the end of a method body for the method’s ensures and
modifies clauses, (c) in the pseudo code for unpack and pack , and (d) before field
updates. Proving the correctness of a program amounts to statically verifying that the
program does not abort due to a violated assertion. To do that, each assertion is turned
into a proof obligation. One can then use an appropriate program logic to show that
the assertions hold. All of the proof obligations can be generated and shown modularly.
That is, a class C can be verified based on the specifications of the classes used by C ,
but without knowing the complete program in which C will be used.

For the proof, one may assume that the program invariants J1 and J2 hold. This
assumption is justified by a soundness theorem for the Boogie methodology presented
in earlier work [17, 21].

5 Model Fields

In this section, we present the technical details of our methodology. We define which
model field declarations are admissible, present a novel encoding of model fields that
builds on the validity principle and enables decoupling, discuss how frame properties
are specified and proved in our methodology, and prove soundness. In the following,
we assume a programming language similar to the sequential subset of Java.

5.1 Declaration of Model Fields

The declaration of a model field m has the following form:

model T m constrained by E ;

where T is the type of the model field. The expression E specifies a constraint for
this.m . It is a boolean expression of the programming language, which is also allowed
to mention model fields. For simplicity, we disallow method calls in model field con-
straints, but an extension is possible.

A model field constraint may specify a unique value for the model field, as for
instance shown in Fig. 1. It is also allowed to underspecify the value of a model field,
which is useful to express abstraction relations and to constrain model fields in abstract
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classes and interfaces. For instance, an abstract superclass Shape of Rectangle might
constrain width by 0 � width .

A subclass can strengthen the constraint for an inherited model field by giving a dec-
laration of the above form that repeats the name of the model field and supplies a further
constraint. The effective constraint of a model field m in type T is the conjunction of
the constraints for m in T and T ’s supertypes.

The mutable dependent principle (see Sec. 3) limits what fields can be mentioned
in the constraint for a model field. The admissible model fields are summarized by the
following definition.

Definition 1. A model field m declared in type T is admissible if the constraint given
in m ’s declaration typechecks according to the rules of the programming language and
if each of the field access expressions in the constraint has one of the following forms:

1. this.m
2. this.f , where f is a concrete field
3. this.p.f , where p is a concrete rep field and f is a model or concrete field

The fields f and p must not be one of the predefined fields inv and committed (but
we allow f to be owner ).

Field accesses of Form 2 occur when the constraint for a model field refers to concrete
fields of the same object, for instance, in the constraint for width (Fig. 1). The standard
type rules require f to be declared in T or a superclass of T . That is, the constraint
is allowed to refer to inherited fields. The requirement that f be concrete is not strictly
necessary, but simplifies the formalization; dependencies between different model fields
of the same object could be permitted as long as they are not cyclic.

Field accesses of Form 3 are used for aggregate objects, for instance, in the con-
straint for maxChars (Fig. 2). The requirement that p be a rep field together with the
implicit object invariant for rep fields guarantees that the object referenced by this.p is
owned by 〈this,T 〉 when this is valid for T . It is imposed to adhere to the mutable
dependent principle. The field p is allowed to be an inherited field.

5.2 Encoding and Automatic Updates of Model Fields

Following the validity principle explained in Sec. 3, our methodology guarantees that a
model field o.m satisfies the effective constraint for m in a class T if o is valid for
T . That is, the following property is a program invariant:

J3: (∀ o,T ,m • o.inv <: T ⇒ RT
m(o, o.m) )

RT
m(o, r) denotes the effective constraint for m in T , where this.m is replaced by r

and this is then replaced by o . For instance, RRectangle
width (o, r) denotes r = o.x2−o.x1 .

To achieve decoupling, we store the value of a model field in the heap as if it were
an extra field of the class. Whenever a model field is read, that is, whenever a specifi-
cation refers to a model field, the stored value is used. With the value of a model field
being stored in the heap, any update of the values of a model field’s dependees may
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cause the stored value to become out-of-date. We arrange for the stored value to be
updated automatically, but we do so only at select times—eagerly updating the stored
value whenever a dependee is changed would not just be inefficient and clumsy, but it
would also retain the instant effect problems of using abstraction functions, that is the
modularity problems of frame properties.

Specifically, we include an automatic update of a model field in the pack operation
by inserting the following statements between the second and third assert statement of
the pseudo code for pack o as T (see Fig. 3):

#foreach m such that m is declared in or inherited by T {
if ¬RT

m(o, o.m) then
assert (∃ r • RT

m(o, r) ) ;
o.m := choose r such that RT

m(o, r)
end

}

The automatic updates nondeterministically assign to o.m any value of m ’s de-
clared type that satisfies the effective constraint for m in T . If no such value exists,
the assert statement will cause program execution to abort. This assertion allows us to
detect unsatifiable constraints such as the len = len + 1 example from Sec. 2. The
guard ¬RT

m(o, o.m) simply avoids updates that are not necessary.

5.3 Frame Properties

As explained in Sec. 2.2, methodologies for model fields based on abstraction functions
lead to difficult problems for the verification of frame properties. In our methodology,
a model field behaves essentially like a concrete field that is updated automatically by
pack statements. Therefore, model fields do not introduce additional complexity for the
verification of frame properties. In particular, the semantics of modifies clauses used in
the Boogie methodology [1] works also in the presence of model fields.

The modifies clause of a method M lists access expressions that, evaluated in the
method’s pre-state, give a set of locations that the method is allowed to modify. We
denote this set by mod(M ) . In addition to the locations in mod(M ) , method M is al-
lowed to modify fields of objects allocated during the execution of M as well as fields
of objects that are committed in M ’s pre-state. The latter policy lets the method mod-
ify the internal representation of valid aggregate objects without explicitly mentioning
these fields in the modifies clause, which enables information hiding. Clients of an ag-
gregate object should not access the internal representation directly. Therefore, they do
not have to know whether or not these fields are modified by the method. In summary,
M is allowed to modify a field o.f if at least one of the following conditions applies:

1. o.f is contained in mod(M )
2. o is not allocated in the pre-state of M
3. o is committed in the pre-state of M

Note that this interpretation of modifies clauses sometimes requires hidden fields to
be mentioned in modifies clauses. For instance, the modifies clause of method ScaleH
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of class Rectangle (Fig. 1) has to mention the concrete field x2 because this is allo-
cated and uncommitted in the pre-state of the method. We do not address this informa-
tion hiding problem in this paper, because existing solutions such as static data groups
[16] or more coarse-grained wildcards [1] can be combined with our methodology.

In our example, method ScaleH potentially modifies x2 and width . Both modifi-
cations are permitted by Case 1 because x2 and width are mentioned in the modifies
clause. We show that height is not modified as follows. By program invariant J3, we
have height = y2 − y1 in the pre-state of the method. Since ScaleH does not assign
to y1 and y2 , this property still holds before the pack statement. Therefore, height is
not updated when this is being packed.

Method Reset of class Legend (Fig. 2) potentially modifies fields of the Rectangle
object box by the call box .ScaleH (0) as well as maxChars by packing this . Since
box is a rep field and this is valid for Legend in the pre-state of Reset , program
invariant J1 and the implicit object invariant for rep fields imply that the object ref-
erenced by this.box is owned by 〈this,Legend〉 and committed in the pre-state of
Reset . Therefore, modification of its fields is permitted by Case 3. The modification of
maxChars is permitted by Case 1.

5.4 Soundness

As explained in Sec. 4, soundness of our methodology means that it is justified to as-
sume certain program invariants when proving the assertions introduced by the method-
ology. Program invariants J1 and J2 are guaranteed by the Boogie methodology. To en-
sure that the proofs of these program invariants remain valid, we disallow model fields
in object invariants. Our methodology is sound without this restriction, but we do not
have the space to present the required soundness proof here, nor does the proof give
additional insights. We now proceed with the proof of program invariant J3.

The proof runs by induction over the sequence of states of an execution of a program
P. The induction base is trivial since there are no allocated objects in the initial program
state.

For the induction step, we assume that the program invariant holds before the next
statement s to be executed, and show that s preserves it by proving that the following
property holds after the execution of s for any object o , type T , and model field m .

o.inv <: T ⇒ RT
m(o, o.m) (1)

We continue by case distinction on s . Only the statements that manipulate fields of
objects are interesting; we omit all other cases for brevity.

Concrete field update. Let f be a concrete field declared in a class F and consider
the effect of an update x .f := e . We show that if RT

m(o, o.m) contains an access ex-
pression that denotes x .f , then o is sufficiently unpacked: T �: o.inv (that is, the
left-hand side of implication 1 is false ). We follow the cases of Def. 1.

Form 1: Since f is a concrete field, RT
m(o, o.m) does not refer to x .f by access ex-

pressions of this form.



126 K.R.M. Leino and P. Müller

Form 2: RT
m(o, o.m) refers to o.f and x = o . The precondition of the field update

requires F �: o.inv . Since T is a subclass of F (otherwise the expression o.f would
not typecheck), we get T �: o.inv .

Form 3: RT
m(o, o.m) refers to o.p.f , where p is a rep field declared in a (not neces-

sarily proper) superclass S of T , and o.p = x . From the precondition of the update
of x .f and from J2, we know that x is not committed. If o were valid for S , then
J1, and the fact that p is a rep field, which translates into an implicit object invariant,
gives us o.p.owner = 〈o,S 〉 , and therefore o.p.committed —a contradiction, so we
conclude that o is mutable for S : S �: o.inv . Since T is a subclass of S , we have
T <: S �: o.inv .

Unpack. Consider the statement unpack x from S . This statement changes the inv
field of x as well as the committed fields of objects directly owned by x , but nothing
else. Since model fields must not refer to inv or committed fields (see Def. 1), the
value of RT

m(o, o.m) cannot be changed by the unpack statement.
If x = o , the value of o.inv after the statement is the direct superclass of S . Thus,

the value of o.inv <: T might only be changed from true to false . That is, Property 1
still holds after the unpack statement.

Pack. Consider the statement pack x as S . The only concrete fields that are changed
by a pack statement are inv and committed . Since model fields must not refer to these
fields, these updates do not have an effect on RT

m(o, o.m) .
One way the program can abort is if the implicit object invariants for rep mod-

ifiers (see Sec. 4) do not hold in the pre-state of a pack statement. This behavior is
independent of the automatic updates and the checking of the model field constraints.
Therefore, we may assume in the rest of the proof that these invariants hold.

For x 
= o , we can prove, analogously to the case for Form 3 of concrete field
updates, that the update of a model field x .f preserves RT

m(o, o.m) . Also, o.inv is not
changed by the pack statement. Consequently, the pack statement preserves Property 1.

For x = o , Property 1 holds trivially if T �: S because the pack statement sets
o.inv to S . For S <: T , we have to consider two cases:

1. RS
m(o, o.m) holds before the pack statement. In this case, o.m is not updated.

Since effective constraints include the constraints of supertypes, the implication
RS

m(o, o.m) ⇒ RT
m(o, o.m) holds.

2. RS
m(o, o.m) does not hold before the pack statement. By the assert statement, we

know that RS
m(o, o.m) is satisfiable, that is, there is a value to choose for the up-

date of o.m . Consequently, the update establishes RS
m(o, o.m) . Again, since ef-

fective constraints include the constraints of supertypes, we have RS
m(o, o.m) ⇒

RT
m(o, o.m) .

The automatic update of a model field o.m establishes RT
m(o, o.m) . It remains

to show that the subsequent update of any other model field o.n does not invali-
date RT

m(o, o.m) . This property follows from the fact that during the automatic up-
dates, RT

m(o, o.m) does not depend on o.n . By the definition of admissible model
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fields (Def. 1), RT
m(o, o.m) can only mention three forms of field access expressions.

Forms 1 and 2 cannot refer to o.n , since n is a model field distinct from m .
Form 3 could refer to o.n if there was a rep field p declared in T and o.p = o .

However, for any such p , we show that o.p 
= o :

(i) By the implicit invariant for rep fields, we have o.p.owner = 〈o,T 〉 ;
(ii) By (i) and the second assert statement of pack , we have o.p.inv = typeof(o.p) ;

(iii) By the first assert statement of pack , we have o.inv = S , where S is a proper
superclass of T ;

(iv) By type safety, we have typeof (o) <: T (otherwise, pack o as T would not
type check);

(v) By (iii) and (iv), we have o.inv 
= typeof(o) ;
(vi) By (ii) and (v), we have o.p 
= o . 	

6 Related Work

JML [5, 14] requires model fields to satisfy their constraints even for objects whose
invariants are temporarily violated. Therefore, programmers are supposed to provide
constraints that are satisfiable in all execution states. In our methodology, constraints
express properties of valid objects, which makes specifications more concise. JML and
ESC/Java2 [6] allow strengthening of constraints for inherited model fields, but do not
enforce consistency. This can lead to unsoundness.

Breunesse and Poll [4] address the soundness problem due to unsatisfiable con-
straints. They propose two solutions. Like ours, their first solution requires verifiers to
provide a witness to ensure that the constraint for a model field is satisfiable. How-
ever, their desugaring of model fields does not support recursive constraints, which are
often useful to handle recursive data structures. Our methodology supports recursive
constraints, provided that the pivot field in the recursive model field access is a rep
field. Breunesse and Poll’s second solution transforms model fields into parameterless
pure methods (that is, methods without side effects). However, they do not show how
to specify and prove frame properties in this solution.

The work closest to ours is the earlier work by Müller et al. [19, 20]. Like the
methodology presented here, that work uses ownership to solve the modularity prob-
lem of frame properties for aggregate objects. Ownership is expressed and enforced by
the Universe type system [9], which is more restrictive than the ownership encoding
of the Boogie methodology. Müller et al.’s work encodes model fields as abstraction
functions, which leads to the instant effect problem described earlier. Our methodology
avoids this problem by the decoupling principle.

Leino and Nelson [15, 18] require programmers to declare explicitly which fields a
model field constraint is allowed to depend on. They use these explicit dependencies for
three purposes: (a) to permit methods to modify certain model fields of aggregate ob-
jects without mentioning these model fields explicitly in the modifies clause. A method
is allowed to modify model fields that depend on a field listed in the modifies clause.
This solves the modularity problem of frame properties for aggregate objects. (b) as
an abstraction mechanism to permit methods to modify the components of aggregate
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objects without declaring these modifications explicitly. A method is allowed to mod-
ify all dependee fields of a model field listed in the modifies clause. (c) to determine
whether the modification of a field potentially affects a model field.

Explicit dependencies are not well suited for automatic program verifiers such as
ESC/Java [6, 10] and Boogie [2] because automatic theorem provers such as Simplify
[7] cannot easily determine how often the recursive predicate for the (transitive) de-
pends relation should be unfolded [8]. Our methodology avoids explicit dependencies
as follows: (a) Due to the decoupling principle, model fields of aggregate objects do not
change instantly when their dependees are modified. Avoiding these instant changes
solves the modularity problem of frame properties. (b) We allow methods to modify
fields of committed objects without mentioning these fields in the modifies clause. If an
aggregate object is valid, its components are committed. (c) Again due to the decoupling
principle, the modification of a field never changes the value of a model field. Whether
a dependent model field o.m will be updated by the next pack o as T statement can
be determined using the constraint for m in T .

Both Müller et al.’s and Leino and Nelson’s work [15, 18] need a strong authenticity
requirement for soundness. This requirement prevents model fields from depending on
inherited fields (such as MyRectangle in Sec. 2.2) and, therefore, limits the support for
inheritance. Moreover, they do not allow classes to strengthen inherited constraints. By
freeing model fields of mutable objects from the obligation to satisfy their constraints
(validity principle) and by (un-)packing objects for each superclass of their dynamic
type individually, these restrictions are not necessary in our methodology.

Other recent work use abstraction functions for model fields by exploring different
encodings of the programming logic [13, 12].

In this paper, we have used ownership to adhere to the mutable dependent principle.
There are extensions of the Boogie methodology that use alternatives to ownership. For
example, our visibility-based approach [17] adheres to the mutable dependent principle.
The update guards of Barnett and Naumann [3] adhere to a slightly weaker mutable
dependent principle, which we could have used here instead. These extensions allow
model fields to depend on non-owned state, which is useful in some implementations.

Separation logic uses new logical connectives to express that a predicate depends
only on certain objects in the heap. It has been used successfully to modularly verify
an invariant of a single class with a single instance [22]. Parkinson and Bierman [23]
extend separation logic to an object-oriented language, introducing abstract predicate
families to encapsulate an object’s state. They do not show, however, how to express
abstractions of aggregate objects such as the maxChars field in Fig. 2. Our method-
ology treats model fields like ordinary fields with automatic updates, which are both
handled by separation logic. Therefore, we hope that this contribution will help to im-
prove the support for data abstraction in separation logic.

7 Conclusions

We have presented a sound and modular verification methodology for reasoning about
model fields. Since our methodology supports subtyping, aggregate objects, and recur-
sive object structures, it can be applied to realistic programs. Our methodology is sig-
nificantly simpler and more expressive than previous approaches. These improvements
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are achieved by not making any guarantees about model fields of mutable objects (va-
lidity principle), by inserting automatic updates of model fields (decoupling principle),
and by imposing an ownership structure (mutable dependent principle).

Model fields are used to express abstractions of the concrete states of objects.
However, in our encoding, we have fully reduced the concept of a model field to other
concepts that are well-understood and well-behaved, namely fields with (automatic) up-
dates. Therefore, our treatment of model fields can be readily adopted by a variety of
programming logics.

As future work, we plan to implement our methodology as part of the .NET program
checker Boogie, which is part of the Spec# programming system [2].
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ILC: A Foundation for Automated Reasoning
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Abstract. This paper shows how to use Girard’s intuitionistic linear
logic extended with a classical sublogic to reason about pointer pro-
grams. More specifically, first, the paper defines the proof theory for ILC
(Intuitionistic Linear logic with Constraints) and shows it is well-defined
via a proof of cut elimination. Second, inspired by prior work of O’Hearn,
Reynolds, and Yang, the paper explains how to interpret linear logical
formulas as descriptions of a program store. Third, this paper defines a
simple imperative programming language with mutable references and
arrays and gives verification condition generation rules that produce as-
sertions in ILC. Finally, we identify a fragment of ILC, ILC−, that is
both decidable and closed under generation of verification conditions.
Since verification condition generation is syntax-directed, we obtain a
decidable procedure for checking properties of pointer programs.

1 Introduction

In the eighties and early nineties, formal program specification and verification
was left for dead: it was too difficult, too costly, too time-consuming, and com-
pletely unscalable. Amazingly, in 2005, Microsoft is using verification technology
in many of their internal projects and is currently planning to include a logical
specification and checking language in their next version of Visual C [1]. This re-
markable turnaround was made possible in part by moving away from complete
program verification to verification of a smaller selection of simple but useful pro-
gram properties, and in part by great improvements in abstract interpretation
and theorem proving technologies.

Some of the most successful recent verification projects include the Microsoft
assertion language mentioned above, Leino et al.’s extended static checking
project and its successors [2, 3, 4], and Necula and Lee’s proof-carrying code [5].
These tools have used conventional classical logic to specify and check program
properties. These conventional logics work exceptionally well for specifying arith-
metic conditions and verifying that array accesses are in bounds. One place
where there remains room for improvement is in specification and verification
of programs that manipulate pointers and manage resources. To better support
verification of pointer programs, O’Hearn, Reynolds, and Yang [6, 7] have advo-
cated using separation logic, which is the classical logic of bunched implications
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extended with a collection of domain-specific axioms about storage. The cru-
cial insight in this research is that the multiplicative connectives of the logic of
bunched implications encapsulate “separation” invariants commonly used when
reasoning about storage.

Inspired by the work of O’Hearn et al., we have begun to develop a new pro-
gram logic in which the proof theory used to reason about state and resources
is based on Girard’s linear logic as opposed to the logic of bunched implication.
There are several reasons why we decided to focus on linear logic as opposed
to bunched implications as a foundation for verifying programs. First, from a
practical standpoint, there are a number of tools available for our use including
logic programming engines Lolli [8] and Lollimon [9], theorem provers [10] and
logical frameworks such as Forum [11], LLF [12], and CLF [13]. Second, since
linear logic is older than BI, more is known about it. In particular, we have been
able to use known results on the complexity of various fragments of linear logic
to devise a useful decidable fragment of our logic. Third, we have recently looked
at generating proof-carrying code for programs with rich memory management
invariants [14, 15], and while we found encoding “single-pointer” invariants in
separation logic highly effective, we were unable to find a simple encoding for
general-purpose (typed) shared mutable references. Consequently, we fell back
on older ideas from the work on alias types [16], which implicitly, and in newer
work [17], explicitly, use linear logic’s unrestricted modality as part of the en-
coding. Though we do not focus on this issue in this paper, it is clear that ILC
can easily accommodate these encodings.

In addition, this paper is a starting point from which we can begin to study
the relative strengths and weaknesses of using the proof theory of intuitionistic
linear logic, which is based on sequents with a flat context for assumptions, as
opposed to the proof theory of BI, which is based on sequents with “bunched”
or tree-like contexts, as the foundation for verification of pointer programs.

To summarize, there are four central contributions of this paper. First (Sec-
tion 2), we propose ILC as opposed to bunched logic as a foundation for checking
safety properties of pointer programs. We outline the proof theory for ILC as
a sequent calculus and prove a cut-elimination theorem to show that it is well
defined. The proof theory is sound with respect to the storage model, but not
complete. As any automated program analysis will run up against incomplete-
ness somewhere, this lack of completeness is not an immediate practical concern
for us. However, an important element of future work will be understanding
the sources of the incompleteness. Logic of bunched implications does have cer-
tain completeness properties and therefore has an advantage over linear logic in
this respect. Our second contribution (Section 3) is to define a simple imperative
language with references and to give syntax-directed verification condition gener-
ation rules that use ILC as the assertion language. We prove that our verification
condition generation is sound with respect to our memory model. The third main
contribution (Section 2.6) is in the definition of a useful, and decidable fragment
of the logic, ILC−. The key property of ILC− is that it is closed under verifi-
cation condition generation: if loop invariants and pre- and post-conditions fall
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into ILC− then the generated verification conditions also fall into ILC−. The
decidable logic plus the syntax-directed verification condition generation give
rise to a terminating algorithm for verification of pointer programs. Fourth, we
have implemented a prototype verifier for our language. Our prototype generates
verification conditions in ILC. We then prove the validity of linear logic formulas
in MetaPRL [18], a manual process at this point, and discharge the constraints
using the CVC Lite [19] theorem prover. The examples in this paper have been
verified using our implementation. Due to space considerations, we have omitted
many technical details. Please see our technical report [20] for complete formal
rules and additional metatheory.

2 Intuitionistic Linear Logic with Constraints

In this section we introduce ILC, Intuitionistic Linear logic with Constraints.
After introducing the syntax, semantics, proof theory, and properties of ILC, we
will present a decidable fragment, ILC−.

2.1 Syntax

ILC formulas F include all of the first-order formulas present in multiplicative
and additive intuitionistic linear logic. In addition, a modality �A encapsulates
a language of classical constraints as a sublogic within ILC. For the purposes of
this paper, the constraint language involves arrays and Presburger arithmetic.

The basic predicates for reasoning about program state include (E1 ⇒ E2) ,
which describes a heap containing only one location, E1, and its contents E2; and
Array(E1, E2, α), which describes an array that has a starting address E1, number
of elements E2, and list of elements α. The classical constraints use E to range
over integer terms and α to range over array terms. The empty array is denoted
by Nil, sel(α,E) accesses the Eth element of α, and upd(α,E1, E2) generates a new
array with the element indexed by E1 replaced by E2.

Integer Terms E : : = n | x | E1 + E2 | −E | sel(α, E)
Array Terms α : : = Nil | x | upd(α, E1, E2)
Arithmetic Predicates Pa : : = E1 = E2 | E1 < E2
Classical Formulas A : : = true | false | Pa | A1 ∧ A2 | ¬A | A1 ∨ A2
State Predicates Ps : : = (E1 ⇒ E2) | Array(E1, E2, α)
Intuitionistic Formulas F : : = Ps | 1 | F1 ⊗ F2 | F1 � F2 | � | F1 & F2 | 0

| F1 ⊕ F2 | ! F | ∃b.F | ∀b.F | �A

2.2 Basic Concepts

We informally discuss the semantics of the connectives and highlight the key
ideas for reasoning about program states. All the examples in this section refer
to Figure 1, which shows a heap h containing two disjoint parts: h1 and h2. The
first part h1 contains location x, which contains integer 3; the second part h2
contains location y, which contains integer 4.

Emptiness. The connective 1 describes an empty heap. The counterpart in
separation logic is usually written emp.



134 L. Jia and D. Walker
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Fig. 1. A sample heap

Separation. Multiplicative conjunction ⊗ separates a
linear state into two disjoint parts. For example, the
heap h can be described by formula (x⇒ 3)⊗(y⇒ 4) .
Multiplicative conjunction does not allow weakening
or contraction. Therefore, we can uniquely identify
each part in the heap and track its state changes. The
multiplicative conjunction (∗) in separation logic has
the same properties.

Update. Multiplicative implication � is similar to the multiplicative implication
−∗ in separation logic. Formula F1 � F2 describes a heap h waiting for another
piece; if given another heap h′ that is described by F1, and if h′ is disjoint from
h, then the union of h and h′ can be described by F2. For example, h2 can be
described by (x ⇒ 3) � ( (x ⇒ 3) ⊗ (y ⇒ 4) ). A more interesting example is
that h satisfies formula F = (x ⇒ 3) ⊗ ( (x ⇒ 5) � ( (x ⇒ 5) ⊗ (y ⇒ 4) )).
This example brings out the idea of describing store updates using multiplicative
conjunction and implication.

No Information. The unit of additive conjunction  describes any linear state,
so it does not contain any specific information about the linear state it describes.
The counterpart of  in separation logic is usually written true.

Sharing. Formula F1 &F2 represents a state that can be described by (shared
between) both F1 and F2. For example, h is described by ( (x ⇒ 3) ⊗ �)&
( (y ⇒ 4) ⊗�). The additive conjunction in separation logic is written ∧. The
basic sharing properties of these two connectives are the same. But the behavior
of ∧ is closely connected to the additive implication→ and the bunched contexts,
which our logic does not have.

Heap Free Conditions. The unrestricted modality !F describes an empty heap
and asserts F is true. For instance, ! ( (x ⇒ 3) � ∃y. (x ⇒ y) ) says that given
no initial resources, if we add a heap in which location x holds 3 then we end
up with a heap in which location x holds some y. On the other hand, ! (x ⇒ 3)
cannot be satisfied. Note that !F is semantically equivalent to F&1. However, as
we will see in the next section, the two formulas have different proof-theoretic
properties. Formula !F satisfies weakening and contraction and therefore can be
used multiple times; F&1 does not satisfy these properties. Hence ! is used as
a simple syntactic marker that informs the theorem prover of the structural
properties to apply to the underlying formula. The equivalent idea in sepa-
ration logic is that of a “pure formula.” Rather than using a connective to
mark the purity attribute, a theorem prover analyzes the syntax of the formula
to determine its status. Pure formulas are specially axiomatized in separation
logic.

Classical Reasoning. In separation logic, the law of excluded middle holds in
the classical semantics. For instance, formula (x ⇒ 3) ∨ ¬ (x ⇒ 3) is valid.
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However, negations of “heapful” conditions, such as ¬ (x ⇒ 3) , appear very
rarely, but classical reasoning about constraints is ubiquitous. Consequently, we
add a classical sublogic to what we have already presented. The classical formulas
describe constraints and are confined under the modality �. For example, heap
h satisfies ∃e1.∃e2. (x ⇒ e1) ⊗ (y ⇒ e2)⊗ ! (�(¬(e1 = e2))). In separation logic
we would write ∃e1.∃e2.( (x ⇒ e1) ∗ (y ⇒ e2) ) ∧ (¬(e1 = e2)). The modality �
separates the classical reasoning about arithmetic or other constraints from the
intuitionistic linear reasoning making it possible to use an off-the-shelf theorem
prover or decision procedure for the constraints.

2.3 Semantics

Our logical formulas describe program stores that map locations to values. All
values are integers or integer tuples; some integers (an infinite collection of them)
are considered heap locations. We use metavariable n when referring to integers,
� when referring to locations, and v when referring to values.

We use dom(h) to denote the domain of store h, h(�) to denote the value
stored at location �, h [ � := v ] to denote a store h′ in which � maps to v but
is otherwise the same as h. We write h1 ' h2 to denote the union of disjoint
stores. The ' operation is undefined if the stores are not disjoint. We use |v| to
denote the number of elements in tuple v, v|i to denote the ith elements of v if
0 ≤ i < |v|, and v[i �→ v′] to denote the result of updating the ith element of v
with v′, if 0 ≤ i < |v|.

There are three semantic judgments:

M � A Classical formula A is valid in model M
M;h � F Store h together with model M satisfies formula F
h � F Store h satisfies formula F (exists a model M such that M;h � F )

M is a model for the first-order theories we consider. We write [[E]] for the
integer value that the closed expression E denotes. The denotation of an array
term [[α]]n is an integer tuple of length n. The semantics of classical formulas
is standard, and we omit it in this paper. The formal definition of M;h � F is
given in Figure 2.

– M; h � (E1 ⇒ E2) iff dom(h) = {[[E1]]}, h([[E1]]) = [[E2]].
– M; h � Array(E1, E2, Y ) iff {[[E1]]} = dom(h) and h([[E1]]) = [[Y ]]n, where n = [[E2]].
– M; h � 1 iff dom(h) = ∅
– M; h � F1 ⊗ F2 iff h = h1 � h2, and M; h1 � F1, and M; h2 � F2.
– M; h � F1 � F2 iff for all stores h′, M; h′ � F1 implies M; h � h′ � F2.
– M; h � � is true for all stores.
– M; h � F1 & F2 iff M; h � F1, and M; h � F2.
– M; h � 0 is false for all stores.
– M; h � F1 ⊕ F2 iff M; h � F1, or M; h � F2.
– M; h � ! F iff dom(h) = ∅, and M; h � F .
– M; h � ∃x.F iff there exists some value a such that M; h � F [a/x].
– M; h � ∀x.F iff for all values a, M; h � F [a/x].
– M; h � �A iff dom(h) = ∅, and M � A.

Fig. 2. The semantics of formulas
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2.4 Proof Theory

Our logical judgments make use of an unrestricted context Γ for classical con-
straints, an unrestricted context Θ for intuitionistic formulas, and a linear con-
text Δ, also for intuitionistic formulas. The first two contexts have contraction,
weakening, and exchange properties, while the last has only exchange. The con-
text Ω contains the set of variables free in the rest of the sequent.

Our logic has two sequent judgments.

Ω |Γ # Γ ′ classical sequent rules
Ω |Γ ; Θ ; Δ =⇒ F intuitionistic sequent rules

The sequent rules for classical logic follow the LK formalization [21]. An intuitive
reading of the intuitionistic sequent is that if a state is described by unrestricted
assumptions in Θ, linear assumptions Δ, and satisfies all the classical constraints
in Γ , then this state can also be described by F .

Our logic has the same sequent rules as those in intuitionistic linear logic
except that the classical context Γ is carried around. The interesting rules are
the left and right rule for the new modality � and the absurdity rule listed below.
These rules illustrate the interaction between the classical and the intuitionistic
part of the logic. The right rule for � says that if Γ contradicts the assertion
“A false” (which means A is true) then we can derive �A without using any
linear resources. If we read the left rule for � bottom up, it says that whenever
we have �A, we can put A together with other classical assumptions in Γ . The
absurdity rule is a peculiar one. The justification for this rule is that since Γ
is not consistent, no state can meet the constraints imposed by Γ ; therefore,
any statement based on the assumption that a state satisfies those constraints
is simply true.

Ω |Γ # A

Ω |Γ ; Θ ; · =⇒ �A
�R

Ω |Γ, A ; Θ ; Δ =⇒ F

Ω |Γ ; Θ ; Δ, �A =⇒ F
�L

Ω |Γ # ·
Ω |Γ ; Θ ; Δ =⇒ F

Absurdity

Interesting Theorems. The following axioms, all of which are provable in our
sequent calculus, illustrate some of the interactions between the classical and
intuitionistic connectives.

�true ⇐⇒ 1 �A ⊗ �B ⇐⇒ �(A ∧ B) �(A ∧ B) =⇒ �A & � B�false ⇐⇒ 0 �A ⊕ �B =⇒ �(A ∨ B)

It is also interesting to consider the proof theory for heap-free formulas,
which we represent using Girard’s unrestricted modality. The critical axioms here
are the structural properties of contraction and weakening: !F =⇒ 1, !F =⇒
!F⊗ !F . In separation logic, Reynolds [22] adds specialized axioms for relating
the additive conjunction of pure facts to the multiplicative conjunction of them:

P ∧Q =⇒ P ∗Q when P or Q is pure P ∗Q =⇒ P ∧Q when P and Q is pure

In our logic, we can prove !P⊗ !Q =⇒ !P & !Q but not the reverse. We forgo
these additional axioms for practical reasons: we wish to reuse a theorem prover
for first-order intuitionistic linear logic rather than building a new prover from
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scratch. One consequence of this choice is that programmers must write invari-
ants consistently in the form !P⊗ !Q instead of !P& !Q. So far, we have seen no
practical consequences of omitting this axiom.

2.5 Properties of ILC

We have proven a cut elimination theorem of our logic (Thm 1). We also proved
that the proof theory of our logic is sound with regard to its semantics (Thm 2).

We use the notion of semantics for logical contexts (written h � Γ ;Θ;Δ) in
Theorem 2. It means that store h satisfies all the constraints in Γ and h contains
all the unrestricted resources in Θ and all the linear resources in Δ.

Theorem 1 (Cut Elimination).

1. If Ω |Γ # A and Ω |Γ,A ; Θ ; Δ =⇒ F then Ω |Γ ; Θ ; Δ =⇒ F .
2. If Ω |Γ ; Θ ; · =⇒ F and Ω |Γ ; Θ,F ; Δ =⇒ F ′ then Ω |Γ ; Θ ; Δ =⇒ F ′.
3. If Ω |Γ ; Θ ; Δ =⇒ F and Ω |Γ ; Θ ; Δ′, F =⇒ F ′ then Ω |Γ ; Θ ; Δ,Δ′ =⇒ F ′.

Theorem 2 (Soundness of Logic Deduction).
If Ω |Γ ;Θ;Δ =⇒ F and σ is a grounding substitution for all the variables

Ω, and h � Γ [σ];Δ[σ];Δ[σ], then h � F [σ].

2.6 A Decidable Fragment: ILC−

We have identified a fragment of our logic, ILC−, which is decidable and sufficient
to encode many pre- and post-conditions for programs. One important property
of ILC− is that it is closed under the verification condition generation, which we
will present in the next section. In other words, if all the programmer supplied
program annotations fall into this fragment, then the whole process of program
verification is decidable.

The factors that contribute to the undecidability of ILC are that 1) it contains
Intuitionistic Linear Logic as a sub-logic which is undecidable, and 2) the validity
of arbitrarily quantified first-order classical formulas of equality and array theory
is undecidable. In order to obtain a decidable fragment of ILC, first we replace
the copy rule with the U-Init and ! �L rules (we use −=⇒ for sequents in ILC−):

Ω |Γ ; Θ, F ; Δ, F =⇒ F ′

Ω |Γ ; Θ, F ; Δ =⇒ F ′ Copy

Ω |Γ ; Θ, P ; · −
=⇒ P

U-Init
Ω |Γ, A ; Θ ; Δ

−
=⇒ F

Ω |Γ ; Θ ; Δ, ! � A
−

=⇒ F
! � L

Second, we syntactically restrict the logical formulas so that we don’t need
to decompose connectives in the unrestricted context. Now the two new rules
have the same power as the old copy rule. Furthermore, we only consider Pres-
burger Arithmetic to guarantee the decidability in classical reasoning part (any
decidable system of constraints will do). Each syntactic class in this decidable
fragment is defined as follows:
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Forms in Intuit. Unrestricted Ctx Du : : = Ps
Forms in Intuit. Linear Ctx Dl : : = Ps | ! Ps | ! � A | 1 | Dl ⊗ D′

l | � | Dl & D′
l

| 0 | Dl ⊕ D′
l | ∃x.Dl | ∀x.Dl

Goal Forms G : : = Ps | 1 | G1 ⊗ G2 | Dl � G | � | G1 & G2
| 0 | G1 ⊕ G2 | ! G | ∃b.G | ∀b.G | �A

We have proven that in the above fragment the sequent rules with U-Init and !�L
are sound and complete with regard to the original sequent rules in Section 2.4.

Theorem 3 (Soundness & Completeness of −=⇒). Ω |Γ ; Θ ; Δ −=⇒ G iff
Ω |Γ ; Θ ; Δ =⇒ G, provided that all the formulas in Γ are in A, all the formulas in
Θ are in Du, and all the formulas in Δ are in Dl.

The proof of the decidability of ILC− can be found in the technical report [20].
Informally, any proof search in ILC− can be reduced to two procedures: first,
a proof search in the sequent calculus of intuitionistic linear logic without the
copy rule, and second, the validity checking of Presburger Arithmetic formulas
with equality. The first part is decidable since every premise of each sequent
rule is strictly smaller than its consequent (by smaller we mean that the number
of connectives in the sequent decreases [23]). The second part is also decidable.
Therefore, the whole process is decidable.

Theorem 4 (Decidability). ILC− is decidable.

Discussion. Notice that we only consider the decidable Presburger Arithmetic
constraints in ILC−. More generally, the intuitionistic linear logic part of ILC−

is always decidable, and the decidability is sustained when we extend ILC− with
any decidable constraint domain.

3 Verifying Pointer Programs

In this section, we show how to verify an imperative language with pointer op-
erations using our logic. We present syntax-directed verification condition gen-
eration rules and give examples to show how they are used to verify programs.

3.1 Syntax and Operational Semantics

Now we introduce the syntax and operational semantics of an imperative lan-
guage that includes control flow, mutable references, and arrays.

Syntax. The syntactic constructs of our language are listed below. We use E
to range over integer expressions and B to range over boolean expressions. The
language has commands for allocation, deallocation, variable binding, derefer-
ence, assignment, array operations, sequencing, while loop, if branching, and
skip. The while loop expression while[I] R do C is annotated with loop invari-
ant I. The condition expression R computes a boolean that determines while
termination. These condition expressions have special structure and scoping
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rules to both simplify pre-condition generation and to provide ample expres-
sive power. The variables in the loop body of the while loop are bound by
the let expression in the condition R. For example, in the following command
while[�] let x = !y in x > 0 end do y := x − 1, variable x in the loop body is
bound by the let expression. In order to generate verification conditions properly
from expressions, we require them to be in A-Normal form. Naturally, an im-
plementation would allow programmers to write ordinary expressions and then
unwind them to A-Normal form for verification.

Int Exps E : : = n | x | E + E | −E
Boolean Exps B : : = true | false | E1 = E2 | E1 < E2 | B1 ∧ B2 | ¬B | B1 ∨ B2
Condition Exps R : : = B | let x = !E in R end
Command C : : = let x = new(E) in C end | free(E)

| let x = E in C end | let x = !E in C end | E1 := E2
| let x = newArray(E) in C end | let x = E1[E2] in C end
| E1[E2] := E3 | let x = Len(E) in C end | C1 ; C2
| while[I] R do C | if B then C1 else C2 | skip

Operational Semantics. A program state consists of a control stack S, a store
(or a heap) h, and an instruction ι being evaluated. An instruction ι can be a
command, a loop guardR followed by a command C, or the special instruction •,
which indicates the termination of certain commands. In our language, variables
are bound, and there is no imperative assignment to variables. We therefore
do not need a stack to map variables to values. We use (S, h, ι) �−→ (S′, h′, ι′)
to denote the small step operational semantics. The control stack S is a list of
evaluation contexts and is not crucial for the understanding of this paper, so we
omit its definition.

3.2 Verification Condition Generation

The program to be verified is annotated with pre- and post-condition and loop
invariants by the programmer. The verification condition generation scans the
program bottom-up and generates a formula (from the postcondition) such that
if the initial program states satisfy this formula then the program will exe-
cute safely, and if it terminates then the ending state will satisfy the specified
postcondition. The computed verification condition will be satisfied by the ini-
tial state if it is logically entailed by the programmer provided precondition,
which we assume will hold before the execution of the program. We have not
tackled the question of whether or not our verification conditions are weakest
preconditions.

There are two judgments involved in verification condition generation.

Δ 
 (∃x1 . . . ∃xn, F,A, ρ)R There exist values for variables x1 · · ·xn such that the
precondition of executing R is F , the core boolean
expression in R is A, and ρ is the substitution of logical
terms for the variables in R bound by let.

Δ 
 {P } C {Q } The precondition of C is P , and the postcondition is Q.
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Δ � {P } C {Q }
Δ, x � {P } C {Q } x /∈ FV (Q)

Δ � {∀y. (y ⇒ E) � P [y/x] } let x = new(E) in C end {Q } New

Δ � {∃y. (E ⇒ y) ⊗ Q} free(E) {Q} Free

Δ, x � {P } C {Q } x /∈ FV (Q)

Δ � {∃y.( (E ⇒ y) ⊗ �)& P [y/x] } let x = !E in C end {Q } Deref

Δ � {∃x. (E1 ⇒ x) ⊗ ( (E1 ⇒ E2) � Q) } E1 := E2 {Q } Assignment

Δ, x � {P } C {Q } x /∈ FV (Q)

Δ � { !� (¬(E < 0)) ⊗ ∀y.(Array(y, E, Nil) � P [y/x])}
let x = newArray(E) in C end {Q }

New Array

Δ, x � {P } C {Q } x /∈ FV (Q)

Δ �
{∃size.∃α.(Array(E1, size, α)⊗!� (¬(E2 < 0))⊗!� (E2 < size) ⊗ �)

&P [sel(α, E2)/x] }
let x = E1[E2] in C end {Q }

Subscript

Δ �
{∃size.∃α.Array(E1, size, α)⊗!� (¬(E2 < 0))⊗!� (E2 < size)
⊗(Array(E1, size, upd(α, E2, E3)) � Q) }
E1[E2] := E3 {Q }

Array Upd

Δ � {P1 } C1 {Q } Δ � {P2 } C2 {Q }
Δ � { ( ! � B � P1)& ( ! � ¬B � P2) } if B then C1 else C2 {Q } If

Δ � {P } C { I } Δ � (∃x1 . . . ∃xn, F, B, ρ) R

Δ � {
(∃x1 . . . ∃xn.F&(!� (¬B) � Q)&(!� (B) � P [ρ]))
⊗ ! (I � (∃x1 . . . ∃xn.F&(!� (B) � P [ρ])

&(!� (¬B) � Q))
} while[I] R do C {Q }

While

Fig. 3. Selected Rules for Verification Condition Generation

Commands. The verification condition generation rules are backward-reasoning
rules, and are syntax directed. Most of the rules are identical to O’Hearn’s weak-
est precondition generation [6] except that ∗ is replaced by ⊗, −∗ by � and ∧ by
&. We explain a few key rules here. The set of selected rules is shown in Figure 3.

The assignment command updates the cell at address E1 with the value of
E2. The precondition of this command asserts that the heap comprises two parts:
one that contains cell E1, and another that waits for the update.

The precondition of the array allocation command first asserts that the size
of the array is legal; the second part describes a heap that is waiting for the new
piece described by Array(y,E,Nil). After merging with the newly allocated array,
the heap satisfies the precondition of C with x substituted with the address of
the new array. The precondition of the array update command first checks that
E1 indeed points to an array on the heap (Array(E1, size, α)). Then it checks that
the index is in bounds (!� (¬(E2 < 0))⊗!� (E2 < size)). The last part in the
precondition describes a heap that requires the updated array to satisfy Q.

The if instruction branches on boolean expression B. The precondition for if
says that if B is true then the precondition of the true branch holds; otherwise
the precondition of the false branch holds. The additive conjunction is used to
give two possible descriptions to the same heap. Note that the precondition of
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the branch that is not taken will be proven using the absurdity rule. We will
give a concrete example in Section 3.3.

While loops are annotated with loop invariants. A while loop either exe-
cutes the loop body or exits the loop depending on the condition expression
R. There are two parts to the precondition of a while loop. The first part
(∃x1 . . . ∃xn.F&(!� (¬B) � Q)&(!� (B) � P [ρ])) asserts that when we execute
the loop for the first time, the precondition F for evaluating the condition ex-
pression must hold; if the condition is not true then the postcondition Q must
hold, otherwise the precondition P for the loop body C must hold. The second
part ( ! (I � (∃x1 . . . ∃xn.F&(!� (B) � P [ρ])&(!� (¬B) � Q))) asserts that each
time we re-enter the loop, the condition for entering the loop holds. Notice that
the second formula is wrapped by an unrestricted connective ( ! ). This implies
that this invariant cannot depend upon the current heap state. This is a critical
criterion as the heap state may be different each time around the loop.

3.3 Examples

In this section, we give two examples to demonstrate how we verify programs
using the verification condition generation rules defined in the previous section.
We prove the validity of ILC formulas in MetaPRL [18] and discharge the con-
straints using the CVC Lite [19] theorem prover. We do not have an automated
theorem prover for ILC yet, but it is technically feasible to develop one and
we are working with Frank Pfenning and Kaustuv Chaudhuri to develop the
theorem prover we need.

0

a x

0 3

0000

a x

1 y 3

y

F = (a ⇒ 0) ⊗ (( (x ⇒ 0) ⊗ (x + 1 ⇒ 3) )

⊕( (x ⇒ 1) ⊗∃y. (x+1 ⇒ y) ⊗ (y ⇒ 3) ))

Fig. 4. Example

If Branching. In this example, the
store is shown in Figure 4. Location a
contains 0. Depending on the contents
of location x, there are two possibili-
ties for the remainder of the store. If
x contains 0, then the location next to
x contains 3; if x contains an integer
other than 0, then the location next
to x contains another location y, and
y contains 3. The first case is illustrated in the figure above the dashed line, and
the second case is illustrated below the dashed line. Formula F describes the
store h. We use additive disjunction to describe the two cases.

The following piece of code branches on the contents of x. The true branch
looks up the value stored in location x+ 1 and stores it into a; the false branch
looks up the value stored in location y and stores the value into a. At the merge
point of the branch, a should contain 3.

{F = (a ⇒ 0) ⊗ (( (x ⇒ 0) ⊗ (x + 1 ⇒ 3) ) ⊕ ( (x ⇒ 1) ⊗ ∃y. (x + 1 ⇒ y) ⊗ (y ⇒ 3) ))}
let t = !x in
if (t = 0)
then let s = !(x + 1) in a := s end
else let s = !(x + 1) in

let r = !s in
a := r end end end

{ (a ⇒ 3) ⊗ �}
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To show this program is memory safe and will store 3 into a in the end
( (a ⇒ 3) ⊗ �), we first generate a verification condition. Next we prove that
the precondition describing the initial state entails the verification condition we
generated (Pre): x, a | ·; ·;F =⇒ Pre. According to our sequent rules, one of the
subgoals we need to prove is:

x, a | ·; ·; (a⇒ 0) , (x⇒ 0) , (x + 1 ⇒ 3) =⇒ ( ! � ¬(0 = 0)) � P2

where P2 = ∃u.( (x + 1 ⇒ u) ⊗�)&∃v.( (u⇒ v) ⊗�)
&∃w. (a⇒ w) ⊗ ( (a⇒ v) � ( (a⇒ 3) ⊗�))

After applying ! � L rule, we have

x, a | ¬(0 = 0); ·; (a⇒ 0) , (x⇒ 0) , (x + 1 ⇒ 3) =⇒ P2

Obviously, the resources in the linear context are not sufficient to prove P2, which
requires x+ 1 to contain another location. However, we have a contradiction in
the classical context (¬(0 = 0)), so we prove P2 using the absurdity rule. This is
the situation where we cannot establish the precondition required by the branch
that is not taken. Instead, we prove it by contradiction.
Array Copying. In this example, we prove the correctness of an array copying
program. The code is shown below. At the beginning of this program, there is an
array x with at least 2 elements. We will allocate a new array y that has exactly
one fewer element than x and copy the elements from x to y using while loop.
The postcondition specifies that at the end of the program we have two arrays,
that one is one element shorter than the other, and that their elements are the
same up to the length of the shorter array. The loop invariant says that the
loop induction variable is always between 0 and the length of the longer array,
and that from the first element up to the element indexed by the loop induction
variable the two arrays have the same elements.

{∃aArray(x, n, a)⊗!� (¬(n < 2))}
let len = arrayLen x in
let y = newArray[len -1] in
let i = newPtr(0) in
while let j = !i in j< len-1 end

[∃v.∃n2.∃a.∃b.Array(x, n, a) ⊗ Array(y, n2, b)
⊗!� (n = n2 + 1) ⊗ (i ⇒ v)⊗!� (¬(v < 0))⊗!� (v < n)
⊗∀j.!� ((¬(j < 0) ∧ (j < v)) ⊃ (sel(a, j) = sel(b, j)))]

do
let z = x[j] in
y[j] := z;
i:= j + 1
end ;

free(i) end end end
{∃m1.∃m2.∃c.∃d.∃lx∃ly.Array(lx, m1, c) ⊗ Array(ly, m2, d)

⊗!� (m1 = m2 + 1) ⊗ ∀i.!� ((¬(i < 0) ∧ (i < m2)) ⊃ (sel(c, i) = sel(d, i)))}

We remark that the proof obligations generated from this program involve
existentially quantified formulas of the array theory and are not in the obviously
decidable quantifier free fragment. However, CVC Lite handles them fine.

3.4 Soundness of Verification Generation

Finally, we proved that the rules for verification generation are sound with regard
to the semantics of the language.
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Theorem 5 (Soundenss of VC Gen). If Δ 
 {P } C {Q }, and σ is a grounding
substitution for all the variables in Δ, and h � P [σ], then

– either for all n ≥ 0, there exist S′, h′, and ι such that (·, h, C[σ]) �−→n (S′, h′, ι).
– or there exists k ≥ 0 such that (·, h, C[σ]) �−→k (·, h′, •), and h′ � Q[σ].

4 Related Work

The most closely related work to our own is O’Hearn, Reynolds, and Yang’s
separation logic [6, 7]. Their key insight was the fact that a substructural logic,
when used as the assertion language in a program logic, facilitates local reasoning
about state. Recently, Berdine, Calcagno, and O’Hearn [24, 25] have investigated
a decidable fragment of separation logic with equality, separating conjunction,
and lists. An important advantage of their proof theory is that it is complete
with respect to their model whereas our proof theory is incomplete. For us, this
means that programmers must reason syntactically using linear logic proof rules
as opposed to semantically. On the other hand, we consider a more extensive
logic that, unlike Berdine et al., includes additives (&, ), first-order quantifiers,
and an arbitrary classical sublogic, which we have instantiated with a theory
of arrays and arithmetic. If the sublogic used in loop invariants is decidable
then the verification conditions we generate and the overall program verification
procedure is also decidable.

As researchers have been investigating new program logics, the designers of
advanced type systems have been using similar techniques to check programs for
safety [16, 26, 27, 28, 17]. For instance, DeLine and Fähndrich’s Vault program-
ming language [26] uses a variation of alias types [16] to reason about memory
management and software protocols for device drivers. Alias types very much
resemble the fragment of separation logic containing the empty formula, the
points-to predicate, and separating conjunction. In addition, alias types have
a second points-to predicate that can be used to represent shared parts of the
heap, an idea that is not directly present in separation logic. We believe it is
straightforward to add this second form of points-to predicate to ILC and in-
clude it under Girard’s modality. The main difference between the program logics
and the type systems is that type systems, particularly Vault, support better
inferences while the logics include a wider variety of connectives and more so-
phisticated constraint systems, and therefore, are much more expressive.

More recently, Zhu and Xi [29] have shown how to blend the idea of alias
types with Xi’s previous work on Dependent ML [30] to produce a type system
with “stateful views.” The common link between this work and our own is that
they both allow a mixture of linear and unrestricted reasoning. There are also
many differences. Zhu and Xi define a type system to check for safety whereas
we define a program logic with verification condition generation. Zhu and Xi’s
type checking algorithm appears to require quite a number of annotations —
in general, when a programmer gets or sets a reference, they must bind a new
proof variable, though in some cases these annotations can be inferred. On the
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other hand, Zhu and Xi define facilities for handling recursive data structures,
something we do not attempt in this paper.

5 Conclusions

We have developed a sequent calculus for ILC, linear logic with constraints, and
proved a cut elimination theorem. We have also defined a collection of sound,
syntax-directed verification condition generation rules for a simple imperative
language that produce assertions in ILC. Lastly, we have identified a fragment
of ILC, ILC−, that is both decidable and closed under generation of verification
conditions. If loop invariants and pre-/post-conditions are specified in ILC−,
then the resulting verification conditions are also in ILC−. Since verification
condition generation is syntax-directed, we obtain a decidable procedure for
checking properties of pointer programs.
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Abstract. We present a sound and complete method for reasoning
about contextual equivalence in the untyped, imperative object calcu-
lus of Abadi and Cardelli [1]. Our method is based on bisimulations,
following the work of Sumii and Pierce [25, 26] and our own [14]. Using
our method we were able to prove equivalence in more complex examples
than the ones of Gordon, Hankin and Lassen [7] and Gordon and Rees
[8]. We can also write bisimulations in closed form in cases where similar
bisimulation methods [26] require an inductive specification. To derive
our bisimulations we follow the same technique as we did in [14], thus
indicating the extensibility of this method.

1 Introduction

Contextual equivalence, attributed to Morris in 1968 [19], is the standard relation
used to prove that two terms are operationally identical. Terms a and a′ are
contextually equivalent if and only if for any program context C, C[a] and C[a′ ]
co-terminate. CIU theorems [16] try to ease the quantification over all contexts
by examining only a subset of them (usually the reduction contexts).

In the presence of a store, though, an inductive proof of equivalence must
reason not only about the possible contexts under empty, or even equal stores,
but also under related stores. This is something that neither the standard de-
finition of contextual equivalence, nor CIU theorems take into account. Thus
using them to prove the equivalence of expressions that manipulate the store in
a sufficiently different way can become cumbersome.

Denotational approaches addressed this problem by translating terms to more
structured mathematical models (e.g. [18]). If two terms have the same denota-
tions in some model then they are equivalent. Unfortunately even some evident
equivalences do not hold in naive models [17], and finding fully-abstract mod-
els, in which all contextual equivalences hold, is generally difficult. For example
consider the two different implementations of a cell class shown in Figure 1.
The first is the usual implementation; the second stores the object in two fields
and its get method returns one of them, depending on the value of a counter.
These two programs have different denotations in most models, and thus can’t
be proven equivalent by a straightforward denotational method.

A more appropriate method to deal with such equivalences is by using bisim-
ulations. Bisimulations were introduced in process calculi by Hennessy and Mil-
ner [9, 10], and adapted later to sequential calculi by Abramsky [2]. They are
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class Cell {
private Object y;

Cell (Object x)
{y = x;}

public void set (Object z)
{y = z;}

public int get ()
{return y;}

}

class Cell {
private Object y1, y2;
private int p;
Cell (Object x)
{p = 0; y1 = x; y2 = x;}

public void set (Object z)
{p = p+1; y1 = z; y2 = z;}

public int get ()
{if ((p % 2) == 0) then return y1;

else return y2;}
}

Fig. 1. Cell Example

relations between entire program configurations, and thus the main difficulty of
using them as equivalence relations is to apply them to terms and show that they
are a congruence. Moreover bisimulations are often hard to write down explicitly
because they are usually infinite sets with little structure.

Sumii and Pierce in [25, 26] greatly simplified the use of bisimulations in se-
quential calculi. Their main innovation was to group the related pairs of config-
urations according to their conditions of knowledge (e.g. the type environment).
In this way they gave more structure to their bisimulations, thus making their
concrete definition easier. Similar ideas have also been used in process calculi
(eg. [5]).

In [14] we improved their method and provided a proof technique for equiv-
alence in an imperative, untyped λ-calculus. Our improvements aimed mainly
to reduce the size of bisimulations, and make possible a constructive proof even
in the presence of higher-order procedures and a general store, where previous
methods had shown limitations [3, 20, 26]. We achieved this by applying “up-to”
techniques usually used in process calculi [22, 21, 23], and by analyzing a direct
proof of equivalence to unveil weaker conditions for our bisimulations.

In this paper we follow the same methodology to create a bisimulation proof
technique for the imperative, untyped object calculus of Abadi and Cardelli [1]. In
contrast to [14], the values of this calculus do not have significant structure, and
thus an “up-to context” technique is not useful here. Instead we use an “up-to
store” technique to deal with the complex structure of the store. Using our frame-
work we are able to construct bisimulations to prove known examples [7, 8], as well
as more complex ones, which are hard to prove using the method in [7].

The rest of the paper is structured as follows: In Section 2 we review the
untyped, imperative object calculus impς. In Section 3 we define a notion of
contextual equivalence for values, and we connect it with the standard notion of
contextual equivalence. In Section 4 we attempt a proof of a set being included
in contextual equivalence, from which we derive the necessary conditions for the
elements of that set. In Section 5 we gather these conditions into a definition for
a bisimulation which we simplify in Section 6 by introducing an “up-to store”
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closure on sets. In Section 7 we use bisimulations to prove the equivalence of
some examples. Sections 8 and 9 summarize the related work and conclusions.

2 The Language impς

We develop our theory based on impς [1], an untyped, imperative object calculus.
The syntactic domains and the big-step environment semantics of the language
are shown in Fig. 2 and 3, respectively.

As in [14] we use an overbar notation to denote a syntactic sequence:

s = s1, . . . , sn

where s is a syntax fragment and si is the same fragment with i-subscripts
on all meta-identifiers it contains. Thus we write [l = ς(x)b], instead of [l1 =
ς(x1)b1, . . . , ln = ς(xn)bn ], and (v, v′) ∈ R instead of (v1, v

′
1), . . . , (vn, v

′
n) ∈ R.

The size of the sequence in the overbar notation is arbitrary, or implicitly defined
by the context.

In impς, objects are defined by the syntactic construct [l = ς(x)b], where li
and bi are the label and the body of the i-th method, respectively. The variable
xi is bound to the entire object when bi is evaluated. During the evaluation
bindings are kept in environments (called “stacks” in [1]).

Values in impς are objects that map method names to locations in the store;
they are denoted by [l = ι]. Locations range over an infinite, countable set. The
store maps locations to method closures, which consist of a method and the
appropriate environment, e.g. 〈ς(xi)bi, ρi〉.

We use the operational semantics of impς given in [1], with the addition of
an extra condition in the Env x rule which guarantees that there are no dan-
gling pointers in an environment. Furthermore, there is an implicit α-conversion
in the Red Select and Red Let rule, so that the identifiers added to the
environments are unique.

Expressions: a, b ::= x variables
| [l = ς(x)b] Objects
| a.l Method Invocation
| a.l⇐ ς(x)b Method update
| clone(a) Cloning
| let x=a in b Let

Locations: ι

Values: v, u ::= [l = ι]
Environments: ρ ::= (x �→v)

Stores: σ ::= (ι�→〈ς(x)b, ρ〉)

Fig. 2. The impς Language
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Judgments of the form σ; ρ� a⇓v; σ1 represent a big-step evaluation, where
expression a, under store σ and environment ρ, evaluates to value v and a new
store σ1. We also use the form σ; ρ� a⇓<k v; σ1 to denote that the evaluation
tree has height less than k.

Store and environment extensions are written as (σ, ι�→〈ς(x)b, ρ〉) and
(ρ, x �→ ι), respectively. Store update is written as (σ.ι←〈ς(x)b, ρ〉); the contents
of the location ι of store σ is given by σ(ι). The domain of a store or environ-

σ 
wf $

∅ 
wf $
Store ∅

σ; ρ
wf $ ι �∈ Dom(σ) FV (b) ⊆ Dom(ρ) ∪ {x}
(σ, ι�→〈ς(x)b, ρ〉) 
wf $

Store ι

σ; ρ 
wf $

σ 
wf $
σ; ∅ 
wf $

Env ∅
σ; ρ
wf $ x �∈ Dom(ρ) {ι} ⊆ Dom(σ)

σ; (ρ, x �→ [l = ι])
wf $
Env x

σ; ρ 
 a⇓v; σ′

σ; (ρ′, x �→v, ρ′′) 
wf $
σ; (ρ′, x �→v, ρ′′) 
 x⇓v; σ

Red x

σ; ρ
wf $ {ι} ∩Dom(σ) = ∅
σ; ρ
 [l = ς(x)b]⇓ [l = ι]; (σ, ι�→〈ς(x)b, ρ〉)

Red Object

σ; ρ 
 a⇓ [l = ι]; σ′ lj ∈ {l} σ′(ιj) = 〈ς(xj)bj, ρ
′〉

xj �∈ Dom(ρ′) σ′; (ρ′, xj �→ [l = ι]) 
 bj ⇓v; σ′′

σ; ρ 
 a.lj ⇓v; σ′′ Red Select

σ; ρ
 a⇓ [l = ι]; σ′ lj ∈ {l}
σ; ρ
 a.lj ⇐ ς(x)b⇓ [l = ι]; (σ′.ιj←〈ς(x)b, ρ〉)

Red Update

σ; ρ
 a⇓ [l = ι]; σ′ {ι′} �∈ Dom(σ′)

σ; ρ
 clone(a)⇓ [l = ι′ ]; (σ′, ι′ �→σ′(ι))
Red Clone

σ; ρ 
 a⇓v′; σ′ x �∈ Dom(ρ) σ′; (ρ, x �→v′)
 b⇓v′′; σ′′

σ; ρ
 let x=a in b⇓v′′; σ′′ Red Let

Fig. 3. Operational Semantics
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ment is given by Dom(σ) or Dom(ρ), and the locations of a value v are given
by Locs(v).

Judgments of the form σ �wf + define the well-formed stores, while judgments
σ; ρ�wf + define the well-formed environments under some store. We also call the
form σ; ρ� a a configuration, and define the notion of a well-formed configuration
as follows:

Definition 1. We say that σ; ρ� a is a well-formed configuration, and we write
σ; ρ�wf a, iff σ; ρ�wf + and FV (a) ⊆ Dom(ρ).

The following lemma states that the final value of a well-formed configuration
can create only well-formed configurations.

Lemma 1. If σ; ρ�wf a and σ; ρ� a⇓v; σ1, then for any environment ρ1, and
identifier x 
∈ Dom(ρ1), such that σ1; ρ1 �wf +, we have σ1; (ρ1, x �→v)�wf +.

Proof. By straightforward induction on the height of σ; ρ� a⇓v; σ1.

3 Contextual Equivalence

The first relation we define is the standard contextual equivalence for this cal-
culus.

Definition 2 (Standard Contextual Equivalence (≡std)). (a, a′) ∈ ≡std if
and only if for all contexts C such that ∅; ∅ �wf C[a] and ∅; ∅ �wf C[a′ ], we have:

∅; ∅ �C[a]⇓ ⇐⇒ ∅; ∅ �C[a′ ]⇓

Proving equivalence of two expressions using this definition is hard because car-
rying out the proof will require us to reason about equivalent expressions not just
under empty or even equal stores and environments, but also under equivalent
stores and environments.

To address this complication we first define a different notion of contextual
equivalence (≡) as a set of bisimulation states. A bisimulation state consists of
a pair of stores, and a set of pairs of values that are to be considered equivalent
in these states. Then we extend this equivalence to any expression and we show
that it coincides with standard contextual equivalence.

We reach this new definition of contextual equivalence by building on the
following two definitions of simpler relations.

Definition 3 (Value Relation). A value relation R is a set of pairs of values.

Value relations hold the related values, and implicitly the related store locations,
in some state of the equivalence. These objects and locations are also the only
ones that a context can access.
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Definition 4 (Environment Relation (Rε)). If R is a value relation, then
Rε is a relation on environments, defined by:

Rε = {(ρ, ρ′) |Dom(ρ) = Dom(ρ′) & ∀x ∈ Dom(ρ) . (ρ(x), ρ′(x)) ∈ R}

Since environments related by Rε contain objects from R, the locations in the
environments are in the domain of the stores of a state iff R contains locations
only in the domain of these stores. Therefore we define the notion of well-formed
bisimulation states:

Definition 5 (Well-Formed State). We call a state (σ, σ′, R) well-formed,
and we write σ, σ′ �wf R, iff the following holds:

∀(v, v′) ∈ R . (Locs(v) ⊆ Dom(σ)) ∧ (σ �wf +)
∧ (Locs(v′) ⊆ Dom(σ′)) ∧ (σ′ �wf +)

We now give the definition of contextual equivalence:

Definition 6 (Contextual Equivalence (≡)). Contextual equivalence is the
set of all states (σ, σ′, R) such that σ, σ′ are stores and R is a value relation,
and:

1. σ, σ′ �wf R,
2. if (ρ, ρ′) ∈ Rε, and a is any expression such that FV (a) ⊆ Dom(ρ) then:

σ; ρ� a⇓ iff σ′; ρ′ � a⇓

To extend ≡ to any pair of expressions, we create a one-method object for each
expression, such that the expression is the body of the method, and we relate
these objects in an appropriate state of ≡.

Definition 7 (Extension of (≡) to Any Expression). Two expressions a,
a′ are related by ≡, and we write a≡a′, iff:

∀σ, ρ. ∃l, ι : if σ1 = (σ, ι�→〈ς( )a, ρ〉)
∧ σ′

1 = (σ, ι�→〈ς( )a′, ρ〉)
then σ1, σ

′
1 �wf Id(σ)

∧ (σ1, σ
′
1, Id(σ)) ∈ ≡

where:
Id(σ) = {([l = ι], [l = ι]) | ι ∈ Dom(σ)}

The extended ≡ coincides with ≡std:

Theorem 1. a≡a′ if and only if a≡stda
′.

4 Deriving Obligations for an Equivalence Proof

As in [14] we attempt to prove that a set of triples (σ, σ′, R), namely X , is
included in ≡. In this proof we encounter sub-cases where X must satisfy specific
conditions in order for the proof to go through. These conditions will become
the necessary conditions of our bisimulations in the next section.
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For X to be included in ≡, one must prove that for all (σ, σ′, R) ∈ X :

1. σ, σ′ �wf R,
2. if (ρ, ρ′) ∈ Rε and a is an expression such that FV (a) ⊆ Dom(ρ) then:

σ; ρ� a⇓ iff σ′; ρ′ � a⇓

The proof of the first condition is straightforward. It suffices to inspect that
the environments of all stored methods and the values in R refer to locations in
the domains of σ and σ′. This condition will become the first condition of our
bisimulations.

Proving the second part requires an induction on the height of the derivations
of σ; ρ� a⇓ in the forward direction, and σ′; ρ′ � a⇓ in the reverse direction. We
show only the forward direction; the other is symmetric.

To carry out the induction we strengthen the induction hypothesis by relating
the final configurations under some state of X .

IH (k) = ∀σ, σ′, R, ρ, ρ′, a, v, σ1 .
((σ, σ′, R) ∈ X ) ∧ ((ρ, ρ′) ∈ Rε) ∧ (FV (a) ⊆ Dom(ρ))
∧ (σ; ρ� a⇓<k v; σ1)
=⇒ ∃v′, σ′

1, Q : (σ′; ρ′ � a⇓v′; σ′
1)

∧ ((v, v′) ∈ Q) ∧ (Q ⊇ R)
∧ ((σ1, σ

′
1, Q) ∈ X )

(1)

Using (1) as the induction hypothesis we proceed by induction on k, con-
sidering the cases of a. Most of the cases follow immediately by the induction
hypothesis; the rest will become the proof obligations for X , and furthermore
the conditions in the definition of bisimulations.

To demonstrate this we consider the case of method invocation (a = a1.l).
We assume (1) for k and we prove it for k + 1.

Let (σ, σ′, R) ∈ X , (ρ, ρ′) ∈ Rε, FV (a) = FV (a1) ⊆ Dom(ρ), and
σ; ρ� a1.lj ⇓<k+1 v; σ2. We have to show that:

∃v′, σ′
1, Q : (σ′; ρ′ � a1.l⇓v′; σ′

1)
∧ ((v, v′) ∈ Q) ∧ (Q ⊇ R)
∧ ((σ1, σ

′
1, Q) ∈ X )

The Red Select evaluation rule for the left-hand side gives:

σ; ρ� a1⇓<k [l = ι]; σ1 lj ∈ {l}
σ1(ιj) = 〈ς(x)bj , ρ1〉 x 
∈ Dom(ρ1) σ1; (ρ1, x �→ [l = ι])� bj ⇓<k v; σ2

σ; ρ� a1.lj ⇓<k+1 v; σ2

To show that σ′; ρ′ � a1.l⇓v′; σ′
1 we must establish the premises of Red Select

for the right-hand side as well.
By the induction hypothesis at a1 we get that there exist σ′

1, l′, ι′, Q, such
that:

σ′; ρ′ � a1⇓ [l′ = ι′ ]; σ′
1, Q ⊇ R, ([l = ι], [l′ = ι′ ]) ∈ Q, (σ1, σ

′
1, Q) ∈ X (2)
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We also need to show that {l′} ⊆ {l}. This does not follow from the induction
hypothesis and therefore we formulate it as a condition on X :

If (σ, σ′, R) ∈ X and ([l = ι], [l′ = ι′ ]) ∈ R, then {l} ⊆ {l′}.

By Lemma 1 and the first formula of (2) we get that σ′
1; (x �→ [l′ = ι′ ])�wf +,

and therefore there exist b′j, ρ
′
j , such that σ′

1(ι
′
j) = 〈ς(x)b′j , ρ

′
j〉.

Finally, to show that the right-hand side terminates and prove the inductive
step, we require the following condition to hold for X :

If (σ, σ′, R) ∈ X and ([l = ι], [l = ι′ ]) ∈ R, then for all lj ∈ {l}, with
σ(ιj) = 〈ς(x)b, ρ〉 and σ′(ι′j) = 〈ς(x)b′, ρ′〉, the following must be true:

If IH (k) holds, then:
σ; (ρ, x �→ [l = ι])� b⇓<k v; σ1

=⇒∃v′, σ′
1, Q : (σ′; (ρ′, x �→ [l = ι′ ])� b′⇓v′; σ′

1)
∧ ((v, v′) ∈ Q) ∧ (Q ⊇ R)
∧ ((σ1, σ

′
1, Q) ∈ X )

With a similar treatment for the rest of the cases we discover all the proof
obligations of X , which we will formulate as the conditions of bisimulations in
the following section.

5 Small Bisimulations

We first define some new notation to make the transfer of the induction hypoth-
esis from the direct proof into the definition of bisimulations easier.

Definition 8 (k-Approximation). We write (σ, σ′, R)�X a|ρ �k a
′|ρ′ to mean:

∀v, σ1 . σ; ρ� a⇓<k v; σ1
=⇒∃v′, σ′

1, Q : σ′; ρ′ � a′⇓v′; σ′
1

∧ ((v, v′) ∈ Q) ∧ (Q ⊇ R)
∧ ((σ1, σ

′
1, Q) ∈ X )

Similarly, in the other direction, we write (σ, σ′, R)�X a|ρ ,k a
′|ρ′ to mean:

∀v′, σ′
1 . σ

′; ρ′ � a′⇓<k v′; σ′
1

=⇒∃v, σ1, Q : σ; ρ� a⇓v; σ1
∧ ((v, v′) ∈ Q) ∧ (Q ⊇ R)
∧ ((σ1, σ

′
1, Q) ∈ X )

Note that the two directions are not converse, since they both contain (σ1, σ
′
1,

Q) ∈ X and (v, v′) ∈ Q. Similarly we give two versions of the full induction
hypothesis, one for each direction:
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Definition 9 (Induction Hypotheses).

IHL
X (k) �= ∀(σ, σ′, R) ∈ X .

∀(ρ, ρ′) ∈ Rε .
∀a :FV (a) ⊆ Dom(ρ) .
(σ, σ′, R)�X a|ρ �k a|ρ′

IHR
X (k) �= ∀(σ, σ′, R) ∈ X .

∀(ρ, ρ′) ∈ Rε .
∀a :FV (a) ⊆ Dom(ρ) .
(σ, σ′, R)�X a|ρ ,k a|ρ′

The induction hypotheses involve the k-approximation of the same terms a under
related stores and environments. The definition of bisimulations follows:

Definition 10 (Bisimulation). A set X of states (σ, σ′, R) is called a bisimu-
lation if and only if, for any (σ, σ′, R) ∈ X , the following conditions are satisfied:

1. σ, σ′ �wf R

2. For all ι 
∈ Dom(σ), ι′ 
∈ Dom(σ′), labels l, (ρ, ρ′) ∈ Rε, x 
∈ Dom(ρ), and
expressions b such that FV (b) ⊆ ρ ∪ {x} there exists Q ⊇ R with

([l = ι], [l = ι′ ]) ∈ Q and ((σ, ι�→〈ς(x)b, ρ〉), (σ′, ι′ �→〈ς(x)b, ρ′〉), Q) ∈ X

3. If ([l = ι], [l′ = ι′ ]) ∈ R, then {l} = {l′}.
4. If ([l = ι], [l = ι′ ]) ∈ R, then, for all lj ∈ {l}, (ρ, ρ′) ∈ Rε, x 
∈ Dom(ρ), and

expressions b such that FV (b) ⊆ Dom(ρ) ∪ {x}, there exists Q ⊇ R, with

((σ.ιj←〈ς(x)b, ρ〉), (σ′.ι′j←〈ς(x)b, ρ′〉), Q) ∈ X

5. If ([l = ι], [l = ι′ ]) ∈ R, then, for all ι1 
∈ Dom(σ), ι′1 
∈ Dom(σ′), there
exists Q ⊇ R with

([l = ι1 ], [l = ι′1 ]) ∈ Q and ((σ, ι1 �→σ(ι)), (σ′, ι′1 �→σ′(ι′)), Q) ∈ X

6. If ([l = ι], [l = ι′ ]) ∈ R, then, for any lj ∈ {l} with σ(ιj) = 〈ς(x)b, ρ〉 and
σ′(ι′j) = 〈ς(x)b′, ρ′〉, let ρ1 = (ρ, x �→ [l = ι]) and ρ′1 = (ρ′, x �→ [l = ι′ ]), we
have:

IHL
X (k) =⇒ (σ, σ′, R)�X b|ρ1 �k b

′|ρ′
1

IHR
X (k) =⇒ (σ, σ′, R)�X b|ρ1 ,k b

′|ρ′
1

The first condition of the definition allows only well-formed states in the bisim-
ulations. The second condition addresses the proof obligation for the case of
evaluating an object. Conditions 3 and 6 are the proof obligations for the case
of method invocation, as explained in Section 4. Conditions 4 and 5 address the
proof obligations for the cases of method update and cloning, respectively. The
case of let follows immediately from the induction hypothesis and generates no
condition for the bisimulations.

Next we show that our method is sound and complete, and that a maximal
bisimulation exists.

Theorem 2 (Completeness). Contextual equivalence is a bisimulation.
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Theorem 3 (Soundness). Any bisimulation X is included in Contextual
Equivalence.

Proof. This proof recapitulates the derivation of Section 4.

Theorem 4 (Bisimilarity). A maximal bisimulation, called Bisimilarity (∼),
exists and coincides with Contextual Equivalence.

Proof. By the definition of (≡) and Theorems 2 and 3, we get that (≡) is it-
self the largest sound bisimulation. Thus bisimilarity coincides with contextual
equivalence.

6 Up-to Store Closure

Conditions 2 and 4 of Definition 10 close bisimulations under any possible exten-
sions of the store with new object methods and any possible update of existing
methods. Writing down sets to satisfy these conditions can become cumbersome.

To eliminate the need of satisfying these conditions when one writes a bisim-
ulation in closed form, we introduce an up-to store closure operator on sets.
Then we give a new set of necessary conditions on the (smaller) sets, such that
their up-to store closure is a bisimulation.

Definition 11 (Up-to Store Extension of States). The state (σ1, σ
′
1, R1) is

an up to store extension of state (σ0, σ
′
0, R0), written (σ0, σ

′
0, R0) � (σ1, σ

′
1, R1),

iff it satisfies the rules of Figure 4.

The second rule of Figure 4 states that extending a bisimulation state with
arbitrary new pairs of related objects, and also extending the stores accordingly
to keep their methods, is a valid up-to store extension. The third rule states that
updating some known locations with related methods is also a valid up-to store
extension.

(σ, σ′, R) � (σ, σ′, R)

(σ, σ′, R) � (σ1, σ
′
1, R1) ιe, ι′e fresh (ρ, ρ′) ∈ Rε

(σ, σ′, R) � ((σ1, ιe �→〈ς(x)b, ρ〉), (σ′
1, ι′e �→〈ς(x)b, ρ′〉), R1 ∪ {([l = ιe ], [l = ι′e ])})

(σ, σ′, R) � (σ1, σ
′
1, R1)

([l = ι], [l = ι′ ]) ∈ R1 (ρ, ρ′) ∈ Rε ιu ∈ {ι} ι′u ∈ {ι′}
(σ, σ′, R) � ((σ1.ιu←〈ς(x)b, ρ〉), (σ′

1.ι
′
u←〈ς(x)b, ρ′〉), R1)

Fig. 4. Up-to Store Extension of States
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We now give the definition of an up-to store closure operator on sets, and the
necessary conditions for a set X such that its up-to store closure is a bisimulation:

Definition 12 (Up-to Store Closure of Sets).

X ∗ = {(σ, σ′, R)
∣∣ ∃(σ0, σ

′
0, R0) ∈ X : (σ0, σ

′
0, R0) � (σ, σ′, R)}

Theorem 5. X ∗ is a bisimulation if for all (σ, σ′, R) ∈ X , we have:

1. σ, σ′ �wf R

2. If ([l = ι], [l′ = ι′ ]) ∈ R, then {l} = {l′}.
3. If ([l = ι], [l = ι′ ]) ∈ R, then, for all ι1 
∈ Dom(σ), ι′1 
∈ Dom(σ′), there

exists Q ⊇ R with

([l = ι1 ], [l = ι′1 ]) ∈ Q and ((σ, ι1 �→σ(ι)), (σ′, ι′1 �→σ′(ι′)), Q) ∈ X ∗

4. If ([l = ι], [l = ι′ ]) ∈ R, then, for any lj ∈ {l} with σ(ιj) = 〈ς(x)b, ρ〉 and
σ′(ι′j) = 〈ς(x′)b′, ρ′〉, and for all (σ1, σ

′
1, R1) with (σ, σ′, R) � (σ1, σ

′
1, R1),

let ρ1 = (ρ, x �→ [l = ι]) and ρ′1 = (ρ′, x �→ [l = ι′ ]), we have:

IHL
X ∗(k) =⇒ (σ1, σ

′
1, R1)�X ∗ b|ρ1 �k b

′|ρ′
1

IHR
X ∗(k) =⇒ (σ1, σ

′
1, R1)�X ∗ b|ρ1 ,k b

′|ρ′
1

Proof. Straightforward by inspecting that X ∗ satisfies the conditions of Defini-
tion 10.

7 Example

Using our bisimulations and Theorem 5 we were able to prove the equivalences
in [7] and the untyped, imperative equivalent of the example in [8]. Due to space
limitations, we omit these examples here. Instead we prove equivalence in a more
interesting example that demonstrates the ability of our method to deal with
hidden imperative fields, different store manipulation, and higher-order methods.

Consider the two classes shown in Figure 1. Objects of these classes are
indistinguishable in any context (in the absence of reflection). To prove this we
encode the objects in impς. We simplify the encoding by extending impς in the
usual way with integers, arithmetic operators, and a conditional statement, and
we encode methods containing λ-abstractions as follows:

[· · · , f = ς(s)λy.e, · · ·] �= [arg = ς(s)s.arg , · · · , f = ς(s)e[s.arg/y], · · ·]

The context passes an argument to the body of method f by updating the
arg label and then selecting f . Because the arg label may be updated with
an arbitrary method, every argument is potentially arbitrary complicated. The
induction hypothesis in the last condition of Definition 10 and Theorem 5 is
crucial for reasoning about these arguments.
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The objects of the Cell classes are encoded as:

M = let o=[y = ς( )0]
in [arg = ς(s)s.arg, set = setM , get = getM ]

N = let o=[y1 = ς( )0, y2 = ς( )0, c = ς( )0]
in [arg = ς(s)s.arg, set = setN , get = getN ]

where:

setM
�= ς(s)let z=s.arg

in o.y ⇐ ς( )z

setN
�= ς(s)letn = o.c+ 1

z = s.arg
in (o.c⇐ ς( )n;

o.y1 ⇐ ς( )z;
o.y2 ⇐ ς( )z)

getM
�= ς( )o.y

getN
�= ς( )letx=even? (o.c)

in ifx then o.y1 else o.y2

By Theorem 1, to prove M≡stdN it is sufficient to show that M≡N . Thus we
have to construct a bisimulation that contains ((σ, ι0 �→〈ς( )M,ρ〉),
(σ, ι0 �→〈ς( )N, ρ〉), R), for all σ, ρ, and for some ι0, l0 and R, such that ([l0 =
ι0 ], [l0 = ι0 ]) ∈ R.

To do this we define the parameterized value relation:

Q(ιs, ιg, ιa, ι′s, ι′g, ι′a, ι0)
= {([arg = ιa, set = ιs, get = ιg ], [arg = ι′a, set = ι′s, get = ι′g ]),

([l0 = ι0 ], [l0 = ι0 ])}

the parameterized stores:

σ(ιs, ιg, ιa, ιy, ρM , ρ1, ι0, ρ0)
= (ι0 �→〈ς( )M,ρ0〉, ιa �→〈ς(s)s. arg, ρM 〉, ιs �→〈setM , ρM 〉, ιg �→〈getM , ρM 〉,

ιy �→〈ς( )x, ρ1〉)

σ′(ι′s, ι′g, ι′a, ιy1 , ιy2 , ιc, ρN , ρ′1, n, ι′0, ρ′0)
= (ι0 �→〈ς( )N, ρ′0〉, ι′a �→〈ς(s)s. arg, ρN 〉, ι′s �→〈setN , ρN 〉, ι′g �→〈getN , ρN 〉,

ιy1 �→〈ς( )x, ρ′1〉, ιy2 �→〈ς( )x, ρ′1〉, ιc �→〈ς( )n, ρ′1〉)

and the set:

X =
{
(σ, σ′, R) |∃ιs, ιg, ιa, ι′s, ι′g, ι′a, ιy, ιy1 , ιy2 , ιc, ρM , ρN , ρ1, ρ′1, n, ι0, ι

′
0, ρ0, ρ′0

: R = Q(ιs, ιg, ιa, ι′s, ι′g, ι′a, ι0)
∧ σ = σ(ιs, ιg, ιa, ιy, ρM , ρ1, ι0, ρ0)
∧ σ′ = σ′(ι′s, ι′g, ι′a, ιy1 , ιy2 , ιc, ρN , ρ′1, n, ι

′
0, ρ

′
0)

∧ ((ρ0, ρ′0) ∈ Rε) ∧ ((ρ1, ρ′1) ∈ Rε)
∧ ρM = (ρ1, y �→ ιy)
∧ ρN = (ρ′1, y1 �→ ιy1 , y2 �→ ιy2 , c �→ ιc)

}
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We have to show that X satisfies the conditions of Theorem 5, and thus X ∗

is a bisimulation. It is easy to check that conditions 1, 2, and 3 are satisfied. It
remains to prove Condition 4 for (ι0k

, ι′0k
), (ιsk

, ι′sk
), and (ιgk

, ι′gk
), for any k.

We consider (ιsk
, ι′sk

). Let (σ1, σ
′
1, R1) ∈ X ∗, and:

([arg = ιak
, set = ιsk

, get = ιgk
], [arg = ι′ak

, set = ι′sk
, get = ι′gk

]) ∈ R1

By the definition of up-to store extension for states, we observe that some of
the labels of the above objects may have been updated by the context. Thus we
have two cases:

Case 1. The labels ιsk
and ι′sk

have been updated: σ1(ιsk
) = 〈ς(x)b, ρ′〉, σ′

1(ι′sk
)=

〈ς(x)b, ρ′〉, (ρ, ρ′) ∈ Rε.
We have to show that if ρ1 = (ρ, x �→ [arg = ιak

, set = ιsk
, get = ιgk

]) and
ρ′1 = (ρ′, x �→ [arg = ι′ak

, set = ι′sk
, get = ι′gk

]), then:

IH L
X ∗(k) =⇒ (σ1, σ

′
1, R1)�X ∗ b|ρ1 �k b|ρ′

1

IH R
X ∗(k) =⇒ (σ1, σ

′
1, R1)�X ∗ b|ρ1 ,k b|ρ′

1

But these are immediately satisfied by IH L
X ∗(k) and IH R

X ∗(k), since (ρ1, ρ
′
1) ∈

Rε.

Case 2. The labels ιsk
and ι′sk

have not been updated: σ1(ιsk
) = 〈ς( )setM , ρMk

〉
σ′

1(ι
′
sk

) = 〈ς( )setN , ρNk
〉. We will show only the forward direction:

IH L
X ∗(k) =⇒ (σ1, σ

′
1, R1)�X ∗ setM |ρMk

�k setN |ρNk

Let:

σ1; ρMk
� setM ⇓<k [arg = ιak

, set = ιsk
, get = ιgk

]; σ2

This implies that (σ1; ρMk
� s.arg ⇓<k−1 v; σ3), σ2 = (σ3.ιyk

←〈ς( )z, ρ1〉), and
ρ1(z) = v. From IH L

X ∗(k) we get:

∃v′, σ′
3, R3 : σ′

1; ρNk
� s.arg ⇓v′; σ′

3
∧ ((v, v′) ∈ R3) ∧ (R3 ⊇ R1)
∧ ((σ3, σ

′
3, R3) ∈ X ∗)

thus:

σ′
1; ρNk

� setN ⇓ [arg = ι′ak
, set = ι′sk

, get = ι′gk
]; σ′

2
σ′

2 = (σ′
3.ιy1k

←〈ς( )z, ρ′1〉, ιy2k
←〈ς( )z, ρ′1〉, ιck

←〈ς( )m, ρ′1〉)

and by the definition of X and X ∗ we get that there exists R2 ⊇ R1 such that
(σ2, σ

′
2, R2) ∈ X ∗.

Similarly we prove Condition 4 for (ιgk
, ι′gk

), and (ι0k
, ι′0k

).



Bisimulations for Untyped Imperative Objects 159

8 Related Work

Gordon, Hankin and Lassen in [7] gave an operational equivalence for the same
calculus that we consider here, and they showed that it coincides with contextual
equivalence. This equivalence is a CIU theorem for this language. Their relation
does not provide a technique to prove difficult equivalences. For example, proving
the Cell example with their CIU theorem would require an induction over all
reduction contexts. Such an induction is not obvious because the stores and the
environments of the two sides may change in a different way in some of the cases.
Such a proof would be at least as difficult as the induction discussed in Section 4.
On the other hand, using our bisimulations we were able to prove equivalence
for all of their examples, as well as more complex ones, by a constructive proof.

Gordon and Rees in [8] proved for one of the stateless, typed, object calculi
of Abadi and Cardelli that bisimilarity coincides with contextual equivalence.
This was the first study of contextual equivalence in an object calculus. Their
method was quite different than ours, being closer to the original operational
bisimulations of Abramsky [2] and Howe’s proof of congruence [11]. Reasoning
about higher-order programs is easier with our method because of the use of the
induction hypotheses in the definition of bisimulation.

A different approach to studying equivalence in object calculi is by translat-
ing them to π-calculus. Kleist and Sangiorgi have done this in [13] for the typed
version of the calculus we study here, and Sangiorgi in [24] for the functional
version of this calculus. Similar work has been done for parallel object oriented
languages (e.g. [12, 15, 27]). This approach is in essence denotational and all of
these translations were not fully abstract, so none of these methods is complete.

9 Conclusions and Future Work

We have presented a method of deriving bisimulations for the untyped, imper-
ative object calculus of Abadi and Cardelli. To our knowledge this is the first
sound and complete method that uses bisimulations to prove equivalence for this
calculus, and successfully handles complex examples.

We hope to use our method to investigate contextual equivalence in more
realistic imperative object languages [4, 6]. We also plan to to investigate better
ways to express stylized bisimulations, like those in the example of Section 7.
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Abstract. Language-based information-flow analysis is promising in protecting
data confidentiality. Although much work has been carried out in this area, rela-
tively little has been done for assembly code. Source-level techniques do not eas-
ily generalize to assembly code, because assembly code does not readily present
certain abstraction about the program structure that is crucial to information-flow
analysis. Nonetheless, low-level information-flow analysis is desirable, because
it yields a small trusted computing base. Furthermore, many (untrusted) applica-
tions are distributed in native code; their verification should not be overlooked.

We present a simple yet effective solution for this problem. Our observation is
that the missing abstraction in assembly code can be restored using annotations.
Following the philosophy of certifying compilation, these annotations are gen-
erated by a compiler, used for static validation, and erased before execution. In
particular, we propose a type system for low-level information-flow analysis. Our
system is compatible with Typed Assembly Language, and models key features
including a call stack, memory tuples and first-class code pointers. A noninterfer-
ence theorem articulates that well-typed programs respect confidentiality.

1 Introduction

With the growing reliance on networked information systems, the protection of con-
fidential data becomes increasingly important. The problem is especially subtle for a
computing system which both manipulates sensitive data and requires access to public
information channels. Simple policies that restrict the access to either the sensitive data
or the public channels (or a combination) often prove too restrictive. A more desirable
policy is that no information about the sensitive data can be inferred from observing
the public channels, even though a computing system is granted access to both. Such
a regulation of the flow of information is often referred to as information flow, and the
policy that sensitive data should not affect public data is often called noninterference.

Whereas it is relatively easy to detect and prevent naive violations that directly give
out sensitive data, it is much more difficult to prevent applications from sending out
information that is sophisticatedly encoded. Conventional security mechanisms such as
access control, firewalls, encryption and anti-virus fall short on enforcing the nonin-
terference policy [14]. On the one hand, noninterference posts seemingly conflicting
requirements: it allows the access to sensitive information, but restricts the flow of it.
On the other hand, the violation of noninterference cannot be observed from monitor-
ing a single execution of the program [16], yet such execution monitoring is the basis
of many conventional mechanisms.

P. Sestoft (Ed.): ESOP 2006, LNCS 3924, pp. 162–179, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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In recent years, much effort has been put on enforcing noninterference using tech-
niques based on programming language theory and implementation. These techniques
are promising, because they directly inspect or instrument the program code, and hence
have the potential of learning all possible run-time behavior of the program. Unfortu-
nately, the vast amount of language-based research on information flow [14] does not
address well the problem for assembly code. The challenge there, as we will elaborate
later, largely lies in working with the lack of high-level abstractions and managing the
extreme flexibility offered by assembly code.

Nonetheless, it is desirable to enforce noninterference directly at a low-level. On
the one hand, high-level programs must be translated into low-level code before exe-
cuted on a real machine; compilation or optimization bugs may invalidate the security
guarantee established for the source programs. On the other hand, some applications
are distributed (e.g., native code for mobile computation) or even directly written (e.g.,
core libraries for embedded systems) in assembly; enforcement at a low-level is a must.

This paper presents some important steps of a project tackling information flow at
the assembly level. The contributions are:

– We propose a Typed Assembly Language for Confidentiality (TALC) and present
its proof of noninterference. Our abstract machine is generic and close to real archi-
tectures. To reuse existing results on low-level verification, our system is designed
to be compatible with Typed Assembly Language (TAL) [11]. It thus approaches a
unified framework for conventional type safety and security.

– Our system models key features of an assembly language, including heap, call stack
and register file, memory tuples (aliasing), and first-class code pointers (higher-
order functions). Because assembly code is often arduous to work with, we present
our formal result with a core language supporting the above features for ease of
understanding, but also informally discuss other extensions.

– Although desirable to directly verify at an assembly level, it is more practical to
develop programs in high-level languages. We briefly discuss a translation from a
system of linear continuations [24] to TALC . A companion technical report [23]
presents a translation from a security-typed imperative source language with first-
order procedures to TALC , illustrating certifying compilation for noninterference.

This paper does not address covert channels (e.g., termination [19, 1] and timing
[21, 2]) or abstract-violation attacks (e.g., cache [3]). Section 2 provides background
on language-based approaches for information flow, places our work in the context of
existing researches, and points out the extra difficulties for noninterference at an assem-
bly level. An informal overview of our approach is given in Section 3. Section 4 presents
the TALC system, focusing on core features that illustrate ideas pertinent to informa-
tion flow. Section 5 helps better understand TALC in comparison with work on linear
continuations. Orthogonal issues and practical extensions are discussed in Section 6.

2 Background

2.1 Information Flow

The problem of information flow can be abstracted as a program that operates on data
of different security levels, e.g., low and high. Low data are public data that may be
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observed by all principals; high data are secret data whose access is restricted. An
information-flow policy requires that no information about high inputs can be inferred
from observing low outputs. The security levels can also be generalized to a lattice [20].

Such a policy concerns tracking the flow of information inside a target system.
Whereas it is easy to detect explicit flows (e.g., through an assignment from a secret
h to a public l with l=h), it is much harder to detect various forms of implicit flow.
For example, the statement l=0; if h then l=1 involves an implicit flow from
h to l. At run-time, if the then branch is not taken, a conventional security mecha-
nism based on execution monitoring will not detect any violation. However, information
about h can indeed be inferred from the result of l.

Instead of observing a single execution, language-based techniques derive assur-
ance about a program’s behavior by examining, and possibly instrumenting, the pro-
gram code. In the above example, the information essentially leaks through the program
counter (often referred to as pc)—the fact that a branch is taken reflects information
about the guard of the conditional. In response, a security-type system typically tags
the pc with a security label. If the guard of a conditional concerns high data, then the
branches are verified under a pc with a high security label. Furthermore, assignments to
low variables are prohibited under such a high pc.

2.2 Related Work

Although there has been much work applying language-based techniques to informa-
tion flow [14], most of it focused on high-level languages. Many high-level abstrac-
tions have been formally studied, including functions [8], exceptions [13], objects [5],
and concurrency [18, 1], and practical implementation is within reach [12]. Nonethe-
less, enforcing information flow at only a high level puts the compiler into the trusted
computing base (TCB) [15]. Furthermore, we should not overlook the verification of
software distributed (or written) directly in low-level code.

Barthe et al. [6] presented a security-type system for a bytecode language and a
translation that preserves security types. Their stack-based language is much different
from the RISC architecture that we model. More importantly, their verification circum-
vents a main difficulty—the lack of program structures at a low-level—by introducing
a trusted component that computes the dependence regions and postdominators [4] for
conditionals. This component is inside the TCB and trusted.

Zdancewic and Myers [24] used linear continuations to enforce noninterference at
a low-level. Their language is based on variables and still much different from assem-
bly language. In particular, linear continuations, although useful in enforcing a stack
discipline that helps information-flow analysis, are absent from conventional assembly
code. Hence further (trusted) compilation to native code is required. Nonetheless, we
borrowed some ideas from Zdancewic and Myers, including the handling of memory
aliasing and code pointers, although these features are modeled as different constructs
in our system. A more thorough discussion of the connection between linear continua-
tions and our solution is given in Section 5, after presenting our system.

Bonelli et al. [7] explored the realization of linear continuations in an assembly
language SIFTAL. Two new instructions are introduced in correspondence with the
operations on linear continuations as proposed by Zdancewic and Myers [24]. These
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two instructions enforce structured control flows that are missing from normal assem-
bly code with the help of a continuation stack (this stack is different from the one for
function calls). One instruction pushes a linear continuation onto the stack, the other
pops a linear continuation off the stack and transfers the control to it. Such a mecha-
nism maintains structured control flow in assembly code, thus helps information-flow
analysis. Unfortunately, conventional assembly programming and machine models do
not contain such a special continuation stack and the instructions manipulating it.

Recently, Medel et al. [9] improved SIFTAL to SIF, using a stack of labels to sim-
plify the above approximation of linear continuations. Unlike SIFTAL, SIF resorts to
static type annotations to enforce noninterference, and no longer requires a stack of
linear continuations during execution. This is in spirit similar to our solution of TALC .
However, SIF supports only a minimal set of language features (arithmetic, memory
update, branching and direct jumps), and does not address how the type annotations
can be produced. In contrast, our language TALC further supports code pointers and a
call stack. The companion technical report [23] presents a type-preserving translation
to TALC from a security-typed source language, where the support for procedure calls
introduces extra subtleties for noninterference. Section 5 provides more details.

This paper targets RISC-style assembly code. We introduce a type system to verify
the unstructured control flow, which in turn helps information-flow analysis. Type an-
notations are used to recover information about high-level program structures, and no
trusted component is required for computing postdominators. This contrasts with the
above work on bytecode languages. Furthermore, we do not rely on extra constructs
such as linear continuations or a continuation stack. An erasure semantics trivially re-
duces programs in our language to normal assembly code.

2.3 Assembly Code

There are several challenges for enforcing information flow for assembly code.
First, high-level languages make use of a virtually infinite number of variables, each

of which can be assigned a fixed security label. In assembly code, the use of memory
cells is similar. However, a finite number of registers are reused for different source-
level variables. As a result, one cannot assign a fixed security label to a register.

Second, the control flow of an assembly program is not as structured. The body of
a conditional is often not obvious, and generally undecidable, from the program code.
Hence the idea of using a security context to prevent implicit flow through conditionals
cannot be easily carried out.

Third, assembly languages are very expressive. Aliasing between memory cells are
difficult to reason about [17]. The support for first-class code pointers (the reflection of
higher-order functions at the assembly level) is very subtle. A code pointer may direct
a program to different execution paths, even though no branching instruction is present.

Fourth, since it is not practical to always directly program in an assembly language,
a low-level type system must be designed so that the type annotations can be generated
automatically, e.g., through certifying compilation. The type system must be at least as
expressive as a high-level type system, so that any well-typed source program can be
translated into well-typed assembly code.



166 D. Yu and N. Islam

Finally, it is desirable to achieve an erasure semantics where type annotations have
no effect at runtime. A security mechanism can not be generally applied in practice if it
incurs too much overhead. Similarly, it is also undesirable to change the programming
model for accommodating the verification needs. Such a model change indicates either
a trusted compilation process or a different target machine.

3 Our Approach

3.1 Explicit Assignment

An obvious kind of information flow is through assignment. In a high-level language,
variables can be “tagged” with security labels; the security-type system prevents label
mismatch for assignments. At an assembly level, memory cells can be tagged similarly.
When storing into a memory cell, a typing rule ensures that the security label of the
source matches that of the target.

Registers need to be regulated differently, because they can be reused for different
variables with different security labels (registers cannot be aliased, which makes it safe
to update their types). Since variable and liveness information is not available at an
assembly level, one can not easily base the enforcement upon that.

In fact, a similar problem arises even for normal type safety. A register in TAL can
have different types at different program points. These types are essentially inferred
from the computation itself. For instance, in an addition instruction add rd, rs, rt, the
register rd is given the type int, because only int can be valid here. Similarly, when
loading from a memory cell, the target register is given the type of the source mem-
ory cell. Adapting such inference for security labels is straightforward. In the addition
add rd, rs, rt, the label of rd is obtained by joining the labels of rs and rt, because
the result in rd reflects information from both rs and rt. Moving and memory reading
instructions are handled similarly.

3.2 Program Structure

A conditional statement in a high-level program can be verified so that both sub-
commands respect the security level of the guard expression. Such verification becomes
difficult in assembly code, where the “flattened” control flow provides little help in
identifying the program structure. A conditional is typically translated into a branching
instruction and some code blocks, where the postdominator of the two branches are no
longer apparent.

We use annotations to restore the program structure by pointing out the postdomi-
nators whenever they are needed. Note that high-level programs provide sufficient in-
formation for deciding the postdominators, and these postdominators can always be
statically determined. For instance, the end of a conditional command is the postdomi-
nator of the two branches. Hence a compiler can generate the annotations automatically
based on a securely typed source program. In our system, our postdominator annotation
is essentially a static code label paired with a security label.

Since branching instructions (bnz r, l) are the only instructions that could directly
result in different execution paths, it would appear that one should enhance branching
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Fig. 1. Flow through program structure

instructions with postdominators. The typing rule then checks both branches under a
proper security context that takes into account the guard expression. Such a security
context terminates when the postdominator is reached.

Although plausible, this approach is awkward. Figure 1 demonstrates three scenar-
ios. Besides the conditional scenario, branching instructions are also used to implement
while-loops, where the postdominator is exactly the beginning of one of the branches.
In this case, only the other branch should be checked under a new security context. If
we directly annotate the branching instruction, the corresponding typing rule would be
“overloaded.” More importantly, an assembly program may contain “implicit branches”
where no branching instruction is present. The third scenario illustrates that an indirect
jump may lead the program to different paths based on the value of its operand register.
A concrete example will appear in Section 3.5.

Inspiration of a better solution lies in high-level security-type systems [23], which
typically use a subsumption rule to outline a region of computation where the security
level is raised from low to high. The end of the region is exactly a postdominator.
Following this, our approach is to mimic the high-level subsumption rule with two low-
level raising and lowering operations that explicitly manipulate the security context and
mark the beginning and the end of the secured region.

3.3 Memory Aliasing

Aliasing of memory cells present another channel for information transfer. In Figure 2,
a low pointer p_l and a high pointer p_h are aliases of the same cell. This is useful if a
high principal wishes to observe a low computation. The code in this figure may change
the aliasing relation based on some high variable h by letting p_h point to another cell.
Further modification through p_h may or may not change the value in the original cell.
As a result, observing through the low pointer p_l reveals information about the high
variable h.

The problem lies in the assignment through the high pointer p_h, because it re-
veals information about the aliasing relation. The solution, following Zdancewic and
Myers [24], is to tag pointers with two security labels. One is for the pointer itself,
and the other is for the data being referenced. Assignments to low data through high
pointers are not allowed. This is a conservative approach—all pointers are considered
as potential aliases.
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(* suppose p_h alias p_l *)
if (h=0) then p_h=new cell;

*p_h=1;
(* now *p_l reveals h *)

V

V’

p_l

p_h

Fig. 2. Flow through aliasing

fun f0 () = (l:=0; ())
fun f1 () = (l:=1; ())
let f = (if h then f1 else f0) in f()

Fig. 3. Flow through code pointer

3.4 Code Pointers

Code pointers further complicate information flow. Figure 3 shows a piece of functional
code where f represents different functions based on a high variable h. In its reflection
at an assembly level, different code blocks will be executed based on the value of h.
Naturally, f contains sensitive information and should be labeled high. However, the
actual functions f0 and f1 can only be executed under a low context, because they
modify a low variable l. In this case, the invocation to f should be prohibited.

In our system, similar to data pointers, code pointers are also given two security
labels. The typing rules ensure that no low function is called through a high code pointer.

3.5 Security Context Coercion

Finally, Figure 4 shows a piece of code where a mutable code pointer complicates the
flow analysis. Functions f0 and f1 only modify high data. A reference cell f is as-
signed different code pointers within a high conditional. Later, f is dereferenced and
invoked in a low context.

fun f0 () = (h’:=0; ())
fun f1 () = (h’:=1; ()) ...
if h then f := f1 else f := f0;
l:=1; !f(); l:=l*2; ...

Fig. 4. Context coercion without branching

This code is safe with respect to information flow. At a high level, a subsumption
rule allows calling the high function !f() in a low context. However, in its assembly
counterparts, both the calling to f and the returning from f are implemented as indirect
jumps. The calling sequence transfers the control from a low context to a high context,
whereas the returning sequence does the opposite. Since the function invocation is no
longer atomic at an assembly level, one cannot directly devise a subsumption rule. Fur-
thermore, there is no explicit branching instruction present when f is dereferenced and
invoked (the third scenario of Figure 1).
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In our system, the raising and lowering operations explicitly mark the boundary of
the subsumption rule. During certifying compilation, the source-level typing and pro-
gram structure provide sufficient information for generating the target-level annotations.
When a subsumption rule is applied in the source code, the corresponding target code
is generated within a pair of raising and lowering operations.

4 TALC

4.1 Abstract Machine

Our language TALC is designed to resemble TAL [11] for ease of understanding. We
introduce some new constructs for confidentiality, and accommodate a stack following
STAL [10] for supporting procedure calls. For simplicity, we omitted from TAL and
STAL some features (e.g., polymorphism, existential types and heap allocation) that
are orthogonal to our proposed security operations.

We assume that security labels form a lattice L. We use θ to range over elements of
L. We use ⊥ and  as the bottom and top of the lattice, ∪ and ∩ as the lattice join and
meet operations, and⊆ as the lattice ordering. The syntactic constructs of TALC can be
understood in three steps as follows.

Type Constructs. The top portion of Figure 5 presents the type constructs. Security
contexts κ follow the idea of Section 3.2. An empty security context (•) represents an
program counter with the lowest security label. A concrete context (θ � w) is made up
of a security label θ (the current security level) and a postdominator w. The postdomi-
nator w has the syntax of a word value, but its use is restricted by the semantics to be

(contexts) κ ::= •| θ � w
(pre-type) τ ::= int | 〈σ1, . . . , σn〉 | ∀[Δ].〈κ〉 Γ

(types) σ ::= τθ | ns
(stack ty) Σ ::= ρ | nil | σ ::Σ
(var env) Δ ::= ◦ | ρΔ | αΔ

(type arg) ψ ::= Σ | w
(heap ty) Ψ ::= {l1 : σ1, . . . ln : σn}

(reg file ty) Γ ::= {r1 : σ1, . . . rn : σn, sp : Σ}

(registers) r ::= r1 | r2 | . . .
(word val) w ::= α | l | i | ns | w[ψ]
(small val) v ::= r | w | v[ψ]
(heap val) h ::= 〈w1, . . . , wn〉 | code[Δ]〈κ〉Γ.I

(heaps) H ::= {l1 �→ h1, . . . , ln �→ hn}
(reg files) R ::= {r1 �→ w1, . . . , rn �→ wn, sp �→ S}
(stacks) S ::= nil | w ::S

(instr) ι ::= add rd, rs, v | ld rd, rs(i) | st rd(i), rs | mov rd, v | bnz r, v
| salloc i | sfree i | sld rd, sp(i) | sst sp(i), rs | raise κ

(instr seq) I ::= ι; I | lower w | jmp v | halt [σ]
(prog) P ::= (H,R, I)κ

Fig. 5. Syntax of TALC
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eventually an instantiated code label, i.e., the ending point of the current security level.
The postdominatorw could also be a variableα; this is useful for compiling procedures,
which can be called in different contexts with different postdominators.

Pre-types (τ ) reflect the normal types as seen in TAL, including integer types, tuple
types, and code types. In comparison with TAL, our code type requires an extra security
context (κ) as part of the interface. A type (σ) is either a pre-type tagged with a security
label or a nonsense type (ns) for uninitialized stack slots. A stack type (Σ) is either a
variable (ρ), or a (possibly empty) sequence of types. We sometimes use nature numbers
to refer to stack slots; slot 0 refers to the bottom-most element. The variable context
(Δ) is used for typing polymorphic code; it documents stack type variables (ρ) and
postdominator variables (α). Stack types and postdominators are also generally referred
to as type arguments ψ. Finally, heap types (Ψ ) or register file types (Γ ) are mappings
from heap labels or registers to types; the sp in the register file represents the stack.

Note that the type constructs provide two layers of security labels for a data pointer
(e.g., 〈intθ2〉θ1

; Section 3.3) or a code pointer (e.g., (∀[◦].〈θ2 � l〉Γ )θ1
; Section 3.4)—

one (θ1) for the pointer itself, the other (θ2) for the data or code being referenced.

Value Constructs. The middle portion of Figure 5 shows the value constructs. A word
value w is either a variable, a heap label l, an immediate integer i, a nonsense value
for an uninitialized stack slot, or another word value instantiated with a type argument.
Small values v serve as the operands of some instructions; they are either registers r,
word values w, or instantiated small values. Heap values h are either tuples or typed
code sequences; they are the building blocks of the heap H . Note that a value does
not carry a security label. This is consistent with the philosophy that a value is never
intrinsically sensitive—it is sensitive only if it comes from a sensitive location [20],
which is documented in the corresponding types (Ψ and Γ ). Finally, a register file R
stores the contents of all registers and the stack, where the stack is a (possibly empty)
sequence of word values.

Code Constructs. Code constructs are given in the bottom portion of Figure 5. We
retain a minimal set of instructions from TAL and STAL, and introduce two new in-
structions (raise κ and lower l) for manipulating the security context as discussed in
Section 3. A program is the usual triple tagged with a security context. The security
context facilitates the formal soundness proof, but does not affect the computation.

In the operational semantics (available in the technical report [23]), there are only
two cases that modify the security context: raise κ′ updates the security context to κ′,
and lower w picks up a new security context from the interface of the target code w.
In all other cases, the security context remains the same, and the semantics is standard.
It is easy to see that this operational semantics mimics the behavior of a real machine,
and does not prohibit bad flows. One can obtain a conventional machine by removing
the security contexts and raise κ instructions, and replacing lower w with jmp w.

4.2 Typing Rules

The static semantics consists of judgment forms summarized in Figure 6. A security
context appears in the judgment of a valid instruction sequence. Heap and register file
types are made explicit in the judgment of a valid program for facilitating the noninter-
ference theorem. All other judgment forms closely resemble those of TAL and STAL.
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Judgment Meaning

Δ 
 κ κ is a valid context
Δ 
 τ τ is a valid pre-type
Δ 
 σ σ is a valid type
Δ 
 Σ Σ is a valid stack type

 Ψ Ψ is a valid heap type
Δ 
 Γ Γ is a valid register file type

Δ 
 Γ1 ⊆ Γ2 Register file type Γ1 weakens Γ2


 H : Ψ Heap H has type Ψ
Ψ 
 S : Σ Stack S has type Σ

Ψ 
 R : Γ Register file R has type Γ
Ψ 
 h : σ Heap value h has type σ
Ψ ;Δ 
 w : σ Word value w has type σ
Ψ ;Δ;Γ 
 v : σ Small value v has type σ

Ψ ;Δ;Γ ;κ 
 I I is a valid sequence of instructions
Ψ ;Γ 
 P P is a valid program

Fig. 6. TALC typing judgments

The typing rules are available in the technical report [23]. Selected typing rules are
given in Figure 7. A type construct is valid (top six judgment forms in Figure 6) if all
free type variables are documented in the type environment. Heap values and integers
may have any security label. The types of heap labels and registers are as described in
the heap type and the register file type respectively. All other rules for non-instructions
are straightforward extensions of those in TAL and STAL.

We use SL(κ) to refer to the security label component of κ. SL(•) is defined to be
⊥. The typing rules for add, ld and mov instructions infer the security labels for the
destination registers; they take into account the security labels of the source and target
operands and the current security context.

The rule for bnz first checks that the guard register r is an integer and the target
value v is a code label. It then checks that the current security context is high enough
to cover the security levels of the guard (preventing flows through program structures;
Section 3.2) and the target code (preventing flows through code pointers; Section 3.4).
Lastly, the checks on the register file and the remainder instruction sequence make sure
that both branches are secure to execute.

The rule for st concerns four security labels. The label of the target cell must be
higher than or equal to those of the context (Section 3.2), the containing tuple (Sec-
tion 3.3), and the source value (Section 3.1).

The rules for the stack instructions follow similar ideas. In essence, the stack can
be viewed as an infinite number of registers. Instruction salloc or sfree add new
slots to or remove existing slots from the slot, so the rules check the remainder instruc-
tion sequence under an updated stack type. The rule for instruction sld or sst can be
understood following that of the mov instruction.

The rule for raise checks that the new security context is higher than the current
one. Moreover, it looks at the postdominatorw′ of the new context, and makes sure that



172 D. Yu and N. Islam

◦ 
 κ 
 H : Ψ Ψ 
 R : Γ Ψ ; ◦;Γ ;κ 
 I

Ψ ;Γ 
 (H,R, I)κ

SL(κ) = θ Γ (rs) = 〈σ1, . . . , σn〉θ1
σi = τθ2

Ψ ;Δ;Γ{rd : τθ∪θ1∪θ2};κ 
 I

Ψ ;Δ;Γ ;κ 
 ld rd, rs(i); I

SL(κ) = θ Γ (r) = intθ1 Ψ ;Δ;Γ 
 v : (∀[◦].〈κ〉 Γ ′)θ2

θ1 ∪ θ2 ⊆ θ Δ 
 Γ ′ ⊆ Γ Ψ ;Δ;Γ ;κ 
 I

Ψ ;Δ;Γ ;κ 
 bnz r, v; I

SL(κ) = θ Γ (rd) = 〈σ1, . . . , σn〉θ1
σi = τθ′

Γ (rs) = τθ2 θ ∪ θ1 ∪ θ2 ⊆ θ′ Ψ ;Δ;Γ ;κ 
 I

Ψ ;Δ;Γ ;κ 
 st rd(i), rs; I

Γ (sp) = Σ Ψ ;Δ;Γ{sp :
i

ns :: . . . ::ns ::Σ};κ 
 I

Ψ ;Δ;Γ ;κ 
 salloc i; I

SL(κ) = θ Γ (sp) = σ0 :: . . . ::σi ::Σ Γ (rs) = τθ′

Ψ ;Δ;Γ{sp : σ0 :: . . . ::σi−1 ::τθ∪θ′ ::Σ};κ 
 I

Ψ ;Δ;Γ ;κ 
 sst sp(i), rs; I

κ = θ � w κ′ = θ′ � w′ θ ⊆ θ′

Ψ ;Δ 
 w′ : (∀[◦].〈κ〉 Γ ′)θ1
Ψ ;Δ;Γ ;κ′ 
 I

Ψ ;Δ;Γ ;κ 
 raise κ′; I

κ = θ � w Ψ ;Δ 
 w : (∀[◦].〈κ′〉Γ ′)θ1

θ1 ⊆ SL(κ′) Δ 
 Γ ′ ⊆ Γ

Ψ ;Δ;Γ ;κ 
 lower w

Fig. 7. Selected typing rules of TALC

the security context at w′ matches the current one. The remainder instruction sequence
is checked under the new context.

Since the rule for raise already checked the validity of the ending label of a secured
region, the task for ending the region is relatively simple. The rule for lower checks that
its operand label matches that dictated by the security context. This guarantees that a
secured region be enclosed within a raise-lower pair. The rule also makes sure that the
code at w is safe to execute, which involves checking the security labels (Section 3.4)
and the register file types.

The rule for jmp checks that the target code is safe to execute. Similar checks also
appeared in the rule for bnz. In these two rules, the security context of the target code is
always the same as the current one. This is because context changes are separated from
conventional instructions in our system. For example, one may enclose high target code
within raise and lower before calling it in a low context.

Finally, halting is valid only if the security context is empty, and the value in r1 has
the expected type σ.

We note that supporting explicit heap allocations does not introduce new difficulties.
Although different program branches may exhibit different allocation behaviors under
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a high security context, they must agree at a common heap type when joining at a corre-
sponding lower instruction. Furthermore, we define the equivalence of heaps (stacks,
register files) based only on their elements of low security types (the next section).

4.3 Soundness

TALC enjoys conventional type safety (memory and control-flow safety), which can be
established following the preservation and progress lemmas.

Before presenting the noninterference theorem, we define the equivalence of two
programs with respect to a security level θ. Intuitively, two programs (heaps, stacks,
register files) are equivalent if and only if they agree on their low-security contents.

Definition 1 (Heap Equivalence). Ψ � H1 ≈θ H2 ⇐⇒ for every l ∈ dom(Ψ), if
Ψ(l) = τθ′ and θ′ ⊆ θ then H1(l) = H2(l).

Definition 2 (Stack Equivalence). Σ � S1 ≈θ S2 ⇐⇒ for every stack slot i, if
Σ(i) = τθ′ and θ′ ⊆ θ then S1(i) = S2(i).

Definition 3 (Register File Equivalence). Γ � R1 ≈θ R2 ⇐⇒ (1)
Γ (sp) � R1(sp) ≈θ R2(sp), and (2) for every r ∈ dom(Γ ), if Γ (r) = τθ′ and
θ′ ⊆ θ, then R1(r) = R2(r).

Definition 4 (Program Equivalence). Ψ ;Γ � P1 ≈θ P2 ⇐⇒ P1 = (H1, R1, I1)κ1 ,
P2 = (H2, R2, I2)κ2 , Ψ � H1 ≈θ H2, Γ � R1 ≈θ R2, and either:
(1) κ1=κ2, SL(κ1) ⊆ θ, and I1 = I2, or (2) SL(κ1)⊆/ θ, SL(κ2)⊆/ θ.

It is easy to see that the above relations are all reflexive, symmetrical, and transitive.
Our noninterference theorem relates the executions of two equivalent programs that
both start in a low security context (relative to the security level of concern). If both
executions terminate, then the result programs must also be equivalent.

The idea of the proof is intuitive. Given a security level of concern, the executions
can be phased into “low steps” and “high steps.” It is easy to relate the two executions
under a low step, because they involve the same instructions. Under a high step, the two
executions are no longer in lock step. Recall that raise and lower mark the beginning
and the end of a secured region. We relate the program states before the raise and after
the lower, circumventing directly relating two executions under high steps. Interested
readers are referred to the technical report [23] for more details.

Theorem 1 (Noninterference). If P = (H,R, I)κ, SL(κ) ⊆ θ, Ψ ;Γ � P , Ψ ;Γ � Q,
Ψ ;Γ � P ≈θ Q, P �−→∗ (Hp, Rp, halt [σp])•, and Q �−→∗ (Hq, Rq, halt [σq])•,
then exists Γ ′ such that Ψ ;Γ ′ � (Hp, Rp, halt [σp])• ≈θ (Hq, Rq, halt [σq])•.

4.4 Example

Figure 8 gives a simple example to demonstrate the use of security labels and contexts.
The high-level pseudo-code program involves a low variable a and two high variables
b and c. In a corresponding TALC program, we use heap cells labeled la, lb and lc
to represent these variables. The TALC program starts from the code labeled l0 in a
low security context. After the initial setup, it raises the security context to  � l3. The
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A pseudo-code program: a = 0; if (b <> 0) then c = 1 else c = 0; a = 1

A corresponding TALC program: (H, {sp : nil}, jmp l0)• where H = {(la, lb, lc omitted)

l0 �→ code[◦]〈•〉{sp : nil}.
mov r0, 0; % r0 ← 0
mov r1, la; % r1 ← la
mov r2, lb; % r2 ← lb
mov r3, lc; % r3 ← lc
st r1(0), r0; % la ← 0
raise � � l3; % raise security context
jmp l1

l1 �→ code[◦]〈� � l3〉{r0 : 〈int⊥〉⊥, r1 : 〈int⊥〉⊥, r2 : 〈int�〉⊥, r3 : 〈int�〉⊥, sp : nil}.
ld r4, r2(0);
bnz r4, l2; % go to l2 if content of lb is not zero
st r3(0), r0; % the else branch: lc ← 0
lower l3 % restore security context and go to l3

l2 �→ code[◦]〈� � l3〉{r0 : 〈int⊥〉⊥, r1 : 〈int⊥〉⊥, r2 : 〈int�〉⊥, r3 : 〈int�〉⊥, sp : nil}.
mov r0, 1;
st r3(0), r0; % the then branch: lc ← 1
lower l3 % restore security context and go to l3

l3 �→ code[◦]〈•〉{r1 : int⊥, sp : nil}.
mov r0, 1;
st r1(0), r0; % la ← 1
halt [int⊥] }

Fig. 8. TALC example

control is then transferred to the code labeled l1, which contains a test on the high
variable b and directs the execution to two separate branches. In either branch of the
conditional, the high variable c is updated, and the security context is restored with
lower l3. The code at l3 is then free to update the low variable a again.

A closer look at the code labeled l1 reveals several interesting issues. When check-
ing the first load instruction (ld r4, r2(0)), the security level for r4 is inferred to be
high ( ). The following branching instruction (bnz r4, l2) type-checks because the cur-
rent security context ( � l3) is high enough to cover the security level of r4. The next
store instruction (st r3(0), r0) is also valid, because it is ok to update a high variable
in a high context. In comparison, the store instruction would fail to type-check if c
was a low variable. Finally, the high security context is ended with a lower instruction
(lower l3) that directs the control flow to the postdominator of the conditional.

5 Discussions

Linear Continuations. Zdancewic and Myers [24] introduced a notion of ordered linear
continuations to facilitate the information-flow analysis at a low level (we use ZM to
refer to their system). An important requirement of such analysis is that one needs
to allow a high-security conditional to be surrounded by low-security computation. In
ZM, before the conditional statement, a linear continuation is created to capture the
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computation after the conditional. Such a linear continuation must be called exactly
once at the end of either branch of the conditional. Furthermore, the linear continuation
records the security context in which it is created, allowing the security context to be
reset properly when the branches meet.

As a higher-order analog to postdominators in a control-flow graph, ordered linear
continuations enforce a stack discipline that allows security contexts to be reset at the
join points of program branches. The static semantics ensures that the linear continu-
ations are properly nested, and at any time only the top continuation on the (virtual)
continuation stack is available. The linearity is enforced because the continuation is es-
sentially popped off the stack when used. In particular, every value in ZM is tagged with
a security label. The operational semantics keeps track of the security context during
the execution, and ensures that security labels of the values are propagated correctly.

It may help to view our solution as an adaptation of linear continuations for the RISC
architecture. A postdominator of program branches is essentially expressed as a static
code label. The security operations raise and lower correspond to the creation and
elimination of linear continuations. At any program point, our static semantics keeps
track of only the top element of the (virtual) continuation stack. The typing rule for
raise ensures that the security context at the postdominator matches the current one,
thus enforcing the stack discipline.

We wish to point out, nonetheless, that such an adaptation yields a simple, practi-
cal and well-grounded solution to the identified problem of information-flow analysis
for assembly code. In particular, it bridges the gap between the functional abstraction of
linear continuations and the raw assembly code running on actual machines. In compar-
ison with ZM, our system TALC models the use of registers and assembly instructions,
and hence is closer to the actual RISC architecture. We do not attach security labels to
values; this makes it trivial to see that security annotations do not affect computation.
In fact, the enforcement of noninterference in TALC is cleanly separated from normal
program execution. It is also obvious that security operations in TALC are orthogo-
nal from conventional instructions (e.g., branching and jumping) and mechanisms (e.g.,
call stack), which allows our approach to be carried further with other language exten-
sions. Consequently, we consider TALC as a good first step toward a scaled-up typed
assembly language for noninterference.

Translating Linear Continuations. It may appear that TALC is not as expressive as the
language of Zdancewic and Myers’ [24] (ZM), because the security context of TALC

uses static labels. Nonetheless, these static labels are only used to refer to code (e.g.,
that of linear continuations in ZM) whose locations can be statically determined. In-
deed, their source level counterparts are the ending points of conditional structures,
which are always statically known. Therefore, there is not a loss of expressiveness. We
demonstrate this by speculating a translation from ZM to TALC .

In ZM, there are two expressions manipulating linear continuations: creation and
elimination. The creation of a linear continuation essentially has the form letlin y =
λ〈pc〉(x :σ).e in e′. A corresponding elimination has the form lgoto y v.

The translation can be carried out following Morrisett et al. [11]. The step of CPS
conversion is not needed because ZM is already in CPS. During closure conversion, the
abstraction λ〈pc〉(x : σ).e (which corresponds to the code at a postdominator) will be
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assigned a static code label. This code label is exactly the static postdominator needed
for raising the security context in TALC . In a formal translation, this label can be used
to generate a raise instruction when a corresponding branching point is reached. The
typing (in particular, the security labels) of a ZM program is sufficient for identifying
the branching point.

The elimination of linear continuation (lgoto y v) is relatively straightforward.
Suppose the code of y (the lambda abstraction) declared using letlin is assigned
the heap label ly during closure conversion, the elimination expression lgoto y v
can be translated as a lower ly preceded with appropriate code computing the
argument v.

For better understanding the relationship between linear continuations in ZM and
security contexts in TALC , we further look into an example of nested letlin declara-
tions: letlin y1 = lv1 in letlin y2 = lv2 in e.Once the second letlin is declared,
the first linear continuation y1 should be accessible only from inside lv2. Therefore, ZM
requires that e type checks under y2, and lv2 type checks under y1. This essentially en-
forces a stack discipline.

TALC has a similar mechanism. Suppose the current security context is θ1 � l1 and
the current instruction sequence is raise θ2 � l2; I . The type system of TALC checks I
under θ2 � l2, and checks that the code type at l2 respects θ1 � l1. This enforces a similar
stack discipline as in ZM; note that only the top stack element is apparent at any time.

SIF. SIF [9] is developed independently from TALC . These two systems are similar in
spirit—both use static types for information-flow analysis. However, SIF is based on
a minimal language where relatively simple annotations, namely a stack of static code
labels, suffice. In a more realistic language, a single function (even if monomorphic
with respect to security levels) can be called at different program points. The security
contexts of these program points may be different with respect to (1) the postdominator
of the current context (SIF tracks this with the top stack element), and (2) the “enclosing
contexts” (SIF tracks these with the stack tail). Since the label stack of SIF is made up
of static code labels, one cannot reuse the same code at different program points with
different contexts.

TALC only maintains the current security context at any program point, and we
show that it suffices for establishing noninterference. With such a treatment, the code
types are naturally polymorphic with respect to enclosing contexts. We also allow post-
dominators to be polymorphic. The certifying compilation scheme in the technical re-
port [23] further demonstrates the expressiveness of TALC .

6 Extensions and Future Work

Orthogonal Features. For ease of understanding, TALC focuses on a minimal set of
language features. Nonetheless, polymorphic and existential types, as seen in TAL, are
orthogonal and can be introduced with little difficulty. Furthermore, since TALC is com-
patible with TAL, it is also possible to accommodate other features of the TAL family.
For instance, alias types [17] may provide a more accurate alias analysis, improving the
current conservative approach that considers every pointer as a potential alias. In the
following, we will also discuss the use of singleton types [22].
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Security Polymorphism. TALC relies on a security context θ � w to identify the current
security level θ and its ending point w. It is monomorphic with respect to security,
because the security level of a code block is fixed. In practice, security-polymorphic
code can also be useful.

int double(x:int) { x=x*2; } ...
if h<10 then double(h);
double(l); ...

Fig. 9. Security-polymorphic function

Figure 9 gives an example. The function double can be invoked with either low or
high input. It is safe to invoke double in a context if only the security level of the input
matches that of the context. In a security polymorphic TALC-like type system, double
can be given the type (∀[θ, α].〈θ � α〉{r1 : intθ, r0 : (∀[].〈θ � α〉{r1 : intθ})⊥})⊥.
Here r1 is the argument register, r0 stores the return pointer, and the meta-variable
θ is reused as a variable.

It is straightforward to support this kind of polymorphism. In fact, most of the re-
quired constructs are already present in TALC . We omitted such polymorphism simply
because it complicates the presentation without providing additional insights. Nonethe-
less, the expressiveness of such polymorphism is still limited. Since the label α is not
known until instantiated, the code of double has no knowledge about α. Hence the
security context θ � α cannot be discharged within the body of double.

It is not obvious why one would wish to discharge the security context within a poly-
morphic function. Indeed, it is always possible to wrap a function call inside a secured
region by symmetric raise and lower operations from the caller’s side. However, the
asymmetric discharging of security context may be desirable for certifying optimiza-
tion. For instance, in Figure 9, double is called as the last statement of the body of a
high conditional. In this case, directly discharging the security context when double
returns would remove a superfluous lower from the caller’s side. Such a discharging
requires lower to operate on small values—since the return label is not statically fixed,
it must be passed in through a register.

It may require singleton and intersection types to support such a lower operation.
For example, a double function that discharges its security context can have type(

∀[θ, α].〈θ � α〉
{
r1 : intθ,
r0 : sint(α)⊥ ∧ (∀[].〈•〉{r1 : intθ})⊥

})
⊥
.

At the end of the function, lower r0 discharges the security context and transfers
the control to the return code. For type checking, the singleton integer type sint(α)
matches the register r0 with the label in the security context, and the code type ensures
that the control flow to the return point is safe.

Full Erasure. With the powerful type constructs above, one can achieve a full erasure
for the lower operation. Instead of treating lower as an instruction, one can treat it
as a transformation on small values. This is in spirit similar to the pack operation of
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existential types in TAL. Such a lower transformation bridges the gap between the
current security context and the security level of the target label. The actual control flow
transfer is then completed with a conventional jump instruction (e.g., jmp (lower r0)).

One can also achieve a full erasure for lower even without singleton types. The
idea is to separate the jump instruction into direct jump and indirect jump. This is also
consistent with real machine architectures. The lower operation transforms word val-
ues (eventually, direct labels). Lowered labels, similar to packed values, may serve as
the operand of direct jump. Indirect jump, on the other hand, takes normal small val-
ues. This is expressive enough for certifying compilation, yet may not be sufficient for
certifying optimization as discussed above.

7 Conclusion

We have presented a language TALC for enforcing data confidentiality in assembly
code. The main idea is to use type annotations to restore high-level abstractions that are
crucial to information-flow analysis. In TALC , operations related to security are kept
orthogonal from other language features. As a result, it is possible to accommodate
existing results on low-level verification, such as the TAL family. Our technical report
presents a translation from a high-level security language with first-order procedures
to TALC . A soundness theorem shows that the translation preserves security types. We
consider this as a useful step toward a certifying compiler for noninterference.
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Flow Locks: Towards a Core Calculus
for Dynamic Flow Policies

Niklas Broberg and David Sands

Chalmers University of Technology and Göteborg University

Abstract. Security is rarely a static notion. What is considered to be confiden-
tial or untrusted data varies over time according to changing events and states.
The static verification of secure information flow has been a popular theme in
recent programming language research, but information flow policies considered
are based on multilevel security which presents a static view of security levels. In
this paper we introduce a very simple mechanism for specifying dynamic infor-
mation flow policies, flow locks, which specify conditions under which data may
be read by a certain actor. The interface between the policy and the code is via
instructions which open and close flow locks. We present a type and effect sys-
tem for an ML-like language with references which permits the completely static
verification of flow lock policies, and prove that the system satisfies a semantic
security property generalising noninterference. We show that this simple mech-
anism can represent a number of recently proposed information flow paradigms
for declassification.

1 Introduction

Unlike access control policies, enforcing an information flow policy at run time is dif-
ficult because information flow is not a runtime property; we cannot in general charac-
terise when an information leak is about to take place by simply observing the actions
of a running system. From this perspective, statically determining the information-flow
properties of a program is an appealing approach to ensuring secure information flow.
However, security policies, in practice, are rarely static: a piece of data might only be
untrusted until its signature has been verified; an activation key might be secret only
until it has been paid for.

This paper introduces a simple policy specification mechanism based on the idea
that the reading of storage location � by certain actors (principals, levels) is guarded by
boolean flags, which we call flow locks. For example, the policy �{High;paid⇒Low} says
that � can always be read by an actor with a high clearance level, and also by an actor
with a low clearance level providing the “paid” lock is open.

The interface between the flow lock policies and the security relevant parts of the
program is provided by simple instructions for opening and closing locks. The program
itself does not depend on the lock state, and the intention is that by statically verifying
that the dynamic flow policy will not be violated, the lock state does not need to be
computed at run time.1

1 The term dynamic flow policy could have different interpretations. We use it in the sense that
the flow policies vary over time, but they are still statically known at compile time.
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In addition to the introduction of flow locks, the main contributions of this paper
are:

• The definition of a type system for an ML-like language with references which
permits the completely static verification of flow lock policies.

• A formulation of the semantics of secure information flow for flow locks, and a
proof that well typed programs are flow-lock secure (the reader is referred to the
extended version of this article for the details).

• The demonstration that flow lock policies can represent a number of recently pro-
posed information flow paradigms.

Regarding the last point, the work presented here can be viewed as a study of declas-
sification mechanisms. In a recent study by Sabelfeld and Sands [18], declassification
mechanisms are classified along four dimensions: what information is released, who
releases information, where in the system information is released, and when informa-
tion can be released. One of the key challenges stated in that work is to combine these
dimensions. In fact, combination is perhaps not difficult; the real challenge is to com-
bine these dimensions without simply amassing the combined complexities of the con-
tributing approaches. Later in this paper we argue that flow locks can encode a number
of recently proposed “declassification” paradigms, including the lexically scoped flow
policies introduced by Almeida Matos and Boudol [2], Chong and Myers’ notion of
noninterference until declassification [5], and Zdancewic and Myers robust declassifi-
cation [22, 13]. These examples, represent the “where”, “when” and “who” dimensions
of declassification, respectively, suggesting that flow locks have the potential to provide
a core calculus of dynamic information flow policies.

The remainder of the paper is organised as follows. Section 2 gives an informal
introduction to flow locks by showing a few motivating examples. In Section 3 we then
present the system formally, and outline a semantic security condition in Section 4.
Section 5 discusses related systems, with an emphasis on how we can use flow locks to
encode them. Finally Section 6 concludes.

2 Motivating Examples

First let us assume we have a simple imperative language without any security control
mechanisms of any kind. Borrowing an example from Chong and Myers [5], suppose
we want to implement a system for online auctions with hidden bids in this language.
We could write part of this system as the code on the right.

1 int aBid = getABid();
2 int bBid = getBBid();
3 makePublic(aBid);
4 makePublic(bBid);
5 . . . decide winner + sell item

This surely works, but there is nothing in the lan-
guage that prevents us from committing a serious se-
curity error. We could for instance accidently switch
the lines 2 and 3, resulting in A’s bid being made
public before B places her bid, giving B the chance
to tailor her bid after A’s.

Flow locks are a mechanism to ensure that these and other kinds of programming
errors are caught and reported in a static check of the code.
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The basic idea is very similar to what many other systems offer. To deny the flow
of data to places where it was not meant to go, we annotate variables with policies
that govern how the data held by those variables may be used. Looking back on our
example, a proper policy annotation on the variable aBid could be {A; BBid ⇒ B}.
The intuitive interpretation of this policy is that the data held by variable aBid may
always be accessed by A, and may also be accessed by B whenever the condition BBid,
that B has placed a bid, is fulfilled. BBid here is a flow lock — only if the lock is open
can the data held by this variable flow to B. To know whether the lock is open or not
we must look at how the functions for getting the bids could be implemented.

function getABid(){
int {A; BBid⇒ B} x
= bidChanFromA;

open ABid;
return x;

}

The function shown on the right first fetches the bid sent
by A. We model the incoming channel as a global vari-
able that can be read from, one with the same policy
as aBid. When the bid has been read, the function sig-
nals this by opening the ABid lock—A has now placed
a bid and the program can act accordingly. The imple-
mentation of getBBid follows the same pattern, and
will result in BBid being open.

function makePublic(bid){
publicChannel = bid;

}

Now both bids have been placed and can thus be
released. The makePublic function would be
implemented as shown on the left. The outgoing
publicChannel is also modelled as a global

variable that can be written to. This one has the policy {A;B} attached to it, denot-
ing that both A and B will be able to access any data written into it. At the points in
the program where makePublic is applied, both A and B will have placed their bids,
the locks ABid and BBid will both be open, and the flows to the public channel will
both be allowed. However, if the lines 2 and 3 were now accidently switched, it would
be a different story. Then we would attempt to release A’s bid, guarded by the policy
{A; BBid⇒ B}, onto the public channel with policy {A;B}. Since the flow lock BBid
will then not yet be opened, this flow is illegal and the program can be rejected.

1 auctionItem(firstItem);
2 aBid = getABid();
3 bBid = getBBid();
4 makePublic(aBid);
5 makePublic(bBid);
6 . . . decide winner + sell item
7 auctionItem(secondItem);
8 aBid = getABid();
9 bBid = getBBid();

10 makePublic(aBid);
11 makePublic(bBid);
12 . . . decide winner + sell item

Taking the example one step further, assume
that we have two items up for auction, one
after the other. We can implement this rather
naively as the program to the right. The locks
ABid and BBid will both be opened on the
first calls to the getXBid functions. But un-
less we have some means to reset them, there is
again nothing to stop us from accidently switch-
ing lines to make our program insecure, this
time lines 9 and 10. The same problem could
also be seen from a different angle: what if
the locks were already open when we got to
this part of the program? Clearly we need a closing mechanism to go with the
open. The function auctionItem could then be implemented as shown here.
By closing the locks when an auction is initiated, we can rest assured that both A and
B must place new bids for the new item before either bid is made public.
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function auctionItem(item){
close ABid, BBid;
... present item ... }

It should be fairly easy to see that what we
have here is a kind of state machine. The state
at any program point is the set of locks that are
open at that point, and the open and close state-

ments form the state transitions. A clause σ ⇒ A in a policy means that A may access
any data guarded by that policy in any state where σ is open.

Our lock-based policies also give us an easy way to separate truly secret data from
data that is currently secret, but that may be released to other actors under certain cir-
cumstances. Assume for instance that payment for auctioned items is done by credit
card, and that the server stores credit card numbers in memory locations aCCNum and
bCCNum respectively. Assume further that the line aBid := aCCnum; is inserted,
either by sheer mistake or through malicious injection, just before where aBid is made
public. This would release A’s credit card number to B, however, the natural policy
on aCCNum would be {A}, meaning only A may view this data, ever. Thus when we
attempt the assignment above, it will be statically rejected since the policy on aBid is
too permissive.

All the above are examples of policies to track confidentiality. The dual of confiden-
tiality is integrity, i.e. deciding to what extent data can be trusted, and it should come as
no surprise that flow locks can handle both kinds.

Returning to the example with the credit card, we assume that when A gives her
credit card number, it must be validated (in some unspecified way) before we can trust it.
To this end we introduce a “pseudo” actor T (for “trusted”) who should only be allowed
to read data that is fully trusted. We then use an intermediate location tmpACCNum to
hold the credit card number when it is submitted by A. This location is given the policy
{A; ACCVal ⇒ T }, stating that this data is trusted only if the lock ACCVal is open,
which is done when the submitted number has been validated. Once validated we can
transfer the value to aCCNum, which now has the policy {A;T } stating that this data is
trusted.2

3 A Secure Type and Effect System

In the previous section we used a simple imperative language to give an easy introduc-
tion to the concept of flow locks. In this section we define the type system for flow locks
in the more general context of an ML-like language with recursion and references (but
without polymorphism).

3.1 The Language λF L

The terms and types of our language, dubbed λFL, are listed in Figure 1.
The policy language is worth some extra attention. The flow lock policies with

which we work assumes a set of actors (or levels, principals) ranged over by A, B,
and a set of flow locks ranged over by σ, with Σ for sets of locks. Both actors and flow
locks are global in a program. A policy is a set of clauses, where each clause of the form

2 In order to prevent overwriting this data with a new number that hasn’t been validated, we
should also be sure to close the lock ACCVal once the assignment is done.
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Policies: p ::= { c1; . . . ; cn} c ::= { σ1, . . . , σk} ⇒ A

Values and types: v ::= n | b | () | λx.M | �p,τ

τ ::= int | bool | unit | (τ, p)
Σ,p,p,Σ−−−−−→ τ | ref p τ

Terms: M ::= v | x |MM | if M then M else M | rec x.M
| ref p,τ M | !M |M := M | open σ | close σ

Derived forms: let x = M1 inM2 ≡ (λx.M2)M1 M1;M2 ≡ (λ .M2)M1

Fig. 1. The λF L language

Σ ⇒ A states the circumstances (Σ) under which A may view the data governed by
this policy.Σ is a set of locks which we name the guard of the clause, and interpret it as
a conjunction. Thus for the guard to be fulfilled, all the locks in Σ must be open. We can
however have more than one clause for the same A, in which case the separate clauses
also form a conjunction — A may read the data if either of the guards are fulfilled. In
the special case where the guard contains no locks, signifying that the corresponding
actor A may always view the data, we write the clause as only A instead of {} ⇒ A.
From a logical perspective a policy is just a conjunction of definite Horn clauses, i.e.∧

i{σi1 ∧ · · · ∧ σin ⇒ Ai}. We implicitly identify policies up to logical equivalence.3

Now we can continue with the language itself. Apart from the terms from standard
λ calculus with recursion, λFL has constructs for creating (ref), dereferencing (!) and
assigning to (:=) memory locations (�p,τ ) through references. In addition to the core
terms, we can also derive a few useful language constructs as is also shown in Figure 1.

The reference creation construct takes an extra parameter p which is the policy that
the contents should be governed by. The same parameter also shows up on the memory
locations themselves, together with the base type τ of the contents. In many cases this
τ is irrelevant, or clear from the context, and in those cases we omit it and just write �p.
Function types are annotated with read and write policies, and start and end states, and
arguments are annotated with a reading policy. We discuss the meaning of these when
we define the type system. There are also the open and close terms for manipulation
flow locks, thereby changing the state of the program.

The semantics of the language is standard, but apart from the termM and a memory
μ, the configurations include the current state Σ. This state is the set of currently open
locks, which are effected by the execution of open and close expressions. The small-
step semantics of these are simply:

〈Σ,open σ, μ〉 → 〈Σ ∪ {σ}, (), μ〉 〈Σ, close σ, μ〉 → 〈Σ \ {σ}, (), μ〉

It is important to note that the only interaction between a program and the lock state
is via the open and close instructions. This is because we are aiming for a completely
static verification — we include the lock state in the semantics only to be able to prove

3 It is worth noting that we do not allow negative flow policies. Our policy language is
monotonic, i.e. the more locks that are open, the more flows are allowed.
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properties about flows, but the state is not actually represented at runtime. For this
reason we also do not need to consider potential covert channels introduced by the flow
lock state.

3.2 Some Intuitions About Flow-Lock Security

Before we define our type system, it is useful to get some intuitions about which pro-
grams we deem secure/insecure. At this point we only concern ourselves with informa-
tion leaks arising from direct or indirect data flows. In particular we will not consider
timing or termination sensitivity.

�{A} := !m{B}(1)

�{A;B} := !m{B}(2)

�{A} := !m{A;B}(3)

�{σ⇒A;B} := !m{B}(4)

�{A} := !m{σ⇒A}(5)

A few small example programs are presented on the
right. All of these contain insecure direct data flows, ex-
cept (3). In (1) the contents of m{B} may only be read by
B, but we are attempting to leak them into a location read-
able by A. Same thing goes for (2) — even though B can
read the contents of the target location, we are still leaking
the contents of m{B} to A. The simple pattern is that we
may not write data to a memory location if that location may be read by someone who
cannot already access the data. What’s more, this should hold for future time as well.
Thus if a reader could access the data from the location we are writing to in some future
state, that reader must also have access to the data that is being written, in that same
state. Thus the example m{σ⇒A} :=!�{σ⇒A} is secure while program (4) is not. In pro-
gram (5) we attempt to take data not yet readable by A, and put it in a location where
A could read it right away. This should clearly not be allowed for the same reasons as
for (4).

open σ; �{A} := !m{σ⇒A}(6)

�{A} := (open σ; !m{σ⇒A})(7)

The lock state in effect at the point of the
assignment determines its validity, so the pro-
grams (6) and (7) are secure. However, we also
want a program like (8) below to be considered
secure, so we should take the policy of data read from some memory location to be the
policy on the location, but taking into account the current state.

(8) �{A} := let x = (open σ; !m{σ⇒A}) in (close σ;x)

In program (8) above, the data read from the reference will thus have the policy {A}
and not {σ ⇒ A}, since it is read in a state where σ is open.

Putting all this slightly more formally, data may be written to a memory location if
and only if the policy on the location is at least as restrictive as the one on the data, with
respect to the state in effect at the point of the assignment. We give a formal definition
of this in the next section.

We must also handle indirect flows that arise from various branching situations. A
very simple example program containing an invalid indirect flow is

(9) if !�{A} then m{B} := true else m{B} := false

This program is obviously insecure since it will leak the value of �{A} into m{B}, but
for some programs it is not so easy to tell. Consider the three programs
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if !�{σ⇒A} then (open σ;m{A} := true) else (open σ;m{A} := false)(10)

if !�{σ⇒A} then (open σ;m{A} := true; close σ) else ()(11)

if (open σ; !�{σ⇒A}) then (close σ;m{A} := true) else ()(12)

Program (10) could be argued correct since at the points where we leak the informa-
tion to A, i.e. the assignments, the state allows A to access the result of the branching
conditional directly, and hence the leak is secure.

However, as program (11) shows it is not that simple. If the second branch in (11)
is chosen, the value of the condition is still leaked to A by the absence of a write, but
at no point does the state allow the flow. The leaks come from knowing which of the
two branches is taken, which suggests that the leak actually occurs at the branch point.
Thus it is the policy of the condition, taken in the state in effect at the branch point, that
decides what writes the branches may perform. This means that (9), (10) and (11) are
all insecure, while (12) is secure even though the lock is closed again before the write.

Another possible source of indirect leaks is function application. If the function
itself is secret, an attacker could still get information about what that function is by
observing its effects, just like he could know which branch was taken by observing the
effects of a conditional expression. Thus in a sense we can view function application as
a kind of branching.

(!�{A}) ()(13)

(!�{σ⇒A}) ()(14)

(!�{σ⇒A}) (open σ; ())(15)

(!�{A}) := 0(16)

(!�{σ⇒A}) := (open σ; 0)(17)

(λx.�{B} := x) (!m{A})(18)

(λx.�{B} := 0) (!m{A})(19)

Consider the programs (13) – (19). In the
program (13) we must ensure that the func-
tion read from the reference does not write
to locations visible by anyone other than A,
otherwise we could leak information about
which function that was used. As an exam-
ple, if the function read from �{A} in (13) is
(λx.m{B} := 1) or (λx.m{B} := 2),B can
determine which of the two that was used by
reading m{B}. We treat the application point
in the same way as the branch point of a con-
ditional, so in program (14) the body of the function must not write to a location directly
visible to A, even if it first opens σ. However, since we have a call-by-value semantics,
in program (15) the function body may perform writes to locations directly visible to
A, even if it first closes σ, since σ will be open at the application point.

A similar situation is assignment to a reference that in turn has been read from a ref-
erence, as illustrated in program (16) which should be disallowed if the reference read
from �{A} is visible to anyone other than A. In particular, the contents of �{A} could be
m{B} or n{B}, in which case B can determine the contents of �{A} by checking which
of the two latter locations that contain the value 0. However, just as for application,
program (17) is secure if the reference assigned to has policy {A}, or any policy that is
more restrictive than {A}, since σ is opened before the assignment takes place.

We also need to look at how functions handle the values passed to them as argu-
ments. Clearly we want to rule out a direct leak in the function body, as the one in
example (18). One solution attempt could be to rule out all functions that write to “low”
memory, i.e. locations with less restrictive policies that the one placed on the argument.
But this also rules out perfectly secure programs such as (19) which in particular would
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mean that we could not derive a sequential composition form as in figure 1 without
placing too heavy restrictions on the writing capabilities of the second sub-program.
Thus we want our type system to treat these two programs differently — (18) should be
deemed insecure, but not (19).

Other issues such as whether our system is termination sensitive or timing sensitive
(see [16] for an overview of these concepts) are orthogonal to the above discussion. We
choose to develop a type system and semantics for termination and timing insensitive
security. Termination insensitivity makes the type system simpler but the semantics
more complex.

3.3 The Type System

Now we have all the intuition needed to construct the type system. We choose to model
our system as a type and effect system in the style of Almeida Matos and Boudol [2].
This means in particular that all expressions will be given a reading effect and a writing
effect. In our system the reading effect of an expression is a policy which states who
may read the result of that expression, and in what lock states they may do so. The
writing effect is also a policy, which records which actors and in what lock states they
can see the memory effect of the expression’s execution. Type judgments then have the
form

Γ ;Σ � M : τ, (r, w)⇒ Σ′

– Γ is a typing environment for variables giving a type and policy for each variable.
– Σ is the state, i.e. the set of locks currently open.
– τ is the type of the term.
– (r, w) are the reading and writing effects of the term, both on the form of policies
– Σ′ is the state the program will be in after evaluating the term

First we need to define a few operators on policies that we will use in the typing rules.
The aforementioned ordering of how restrictive policies are is defined as

p1 � p2 ≡ ∀(Σ2 ⇒ A) ∈ p2.∃(Σ1 ⇒ A) ∈ p1.Σ1 ⊆ Σ2

Read out, we say that p1 is less restrictive than p2 if and only if every clause in p2 is
matched by a clause in p1 for the same A with a less restrictive guard (one with no
additional locks). From the logical perspective, this ordering corresponds directly to
implication. The most restrictive policy is {}, also written  , and data with this policy
can never be accessed by anyone. On the other end of the spectrum is ⊥, defined as
the set of all actors in the system. In other words, data marked with ⊥ can be read by
everyone at all times.

To join two policies means combining their respective clauses, thereby forming the
logical disjunction. We define

p1 . p2 ≡ {Σ1 ∪Σ2 ⇒ A | Σ1 ⇒ A ∈ p1, Σ2 ⇒ A ∈ p2}
It should be intuitively clear that the join of two policies is at least as restrictive as each
of the two operands, i.e. p � p . p′ for all p, p′. In contrast, forming the union of two
policies, i.e. the meet, corresponding to / or logical conjunction, makes the result less
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Γ ;Σ 
 n : int, (⊥,�)⇒ Σ Γ ;Σ 
 b : bool, (⊥,�)⇒ Σ

Γ ;Σ 
 up,τ : ref p τ ), (⊥,�)⇒ Σ Γ ;Σ 
 () : unit, (⊥,�)⇒ Σ

Γ, x : (τ, rα);Δ 
 M : τ ′, (r, w)⇒ Δ′

Γ ;Σ 
 λx.M : (τ, rα)
Δ,r,w,Δ′
−−−−−−→ τ ′, (⊥,�)⇒ Σ

x : (τ, r) ∈ Γ

Γ ;Σ 
 x : τ, (r(Σ),�)⇒ Σ

Γ ;Σ 
 open σ : unit, (⊥,�)⇒ Σ ∪ {σ} Γ ;Σ 
 close σ : unit, (⊥,�)⇒ Σ \ {σ}

Γ, x : (τ, r);Σ 
 M : τ, (r,w)⇒ Σ

Γ ;Σ 
 rec x.M : τ, (r, w)⇒ Σ

Γ ;Σ 
 M : τ, (r, w)⇒ Σ′

Γ ;Σ 
 ref p M : ref p τ , (r,w)⇒ Σ′
Γ ;Σ 
 M : ref p τ , (r,w)⇒ Σ′

Γ ;Σ 
 !M : τ, (r ( p(Σ′), w)⇒ Σ′

Γ ;Σ 
 M1 : ref p τ , (r1, w1)⇒ Σ′ Γ ;Σ′ 
 M2 : τ, (r2, w2)⇒ Σ′′

Γ ;Σ 
 M1 := M2 : unit, (⊥, w1 ) w2 ) p)⇒ Σ′′ r1(Σ′′) ( r2(Σ′′) � p

Γ ;Σ 
 M0 : bool, (r0, w0)⇒ Σ′ Γ ;Σ′ 
 Mi : τ, (ri, wi)⇒ Σi r0(Σ′) � w1 ) w2

Γ ;Σ 
 if M0 then M1 else M2 : τ, (r0 ( r1 ( r2, w0 ) w1 ) w2)⇒ Σ1 ∩Σ2

r1(Σ2) � wf

Γ ;Σ 
 M1 : (τ, r2)
Σ2,rf ,wf ,Σ3−−−−−−−−→ τ ′, (r1, w1)⇒ Σ1 Γ ;Σ1 
 M2 : τ, (r2, w2)⇒ Σ2

Γ ;Σ 
 M1 M2 : τ ′, (r1 ( rf , w1 ) w2 ) wf )⇒ Σ3

Fig. 2. Type and Effect system

restrictive, so we have p / p′ � p for all p, p′. Both / and . are clearly commutative
and associative.

Finally we need to define using a policy with respect to a particular state, or nor-
malising to a state. We say that policy p normalised at state Σ is

p(Σ) ≡ {Σ′ \Σ ⇒ A | Σ′ ⇒ A ∈ p}

Informally, we remove all open locks from all guards in p, since these no longer restrict
data governed by p. This function is antimonotonic, so Σ ⊆ Σ′ =⇒ p(Σ′) � p(Σ),
and in particular p(Σ) � p for all Σ. Logically this operation is a partial evaluation,
where all variables (locks) that appear in Σ are set to true in p.

The type and effect system is presented in Figure 2. The rules for literal values
are straight-forward, giving all such values the reading effect bottom. However, from
the variable rule we see that variables are given a reading policy. This is used to keep
track of the reading policies of function arguments, as can be seen from the rules for
abstraction and application, and the purpose is to disallow programs like (18) while still
allowing (19). It is important to note that we do not check that r2(Σ2) � wf in the
application rule, since doing so would invalidate program (19). Instead we rely on the
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type checking of the body of the function to find any leaks inside it, with the help of the
annotation on its parameter.

In the rule for abstractions, we annotate the function arrow with the latent read and
write effects that will be accurate for the function body once it is applied. We also
annotate the arrow with the state that the program will be in at the application point,
and the state the program will be in after evaluating the body. The interpretation of

a function with type (τ, rα)
Δ,r,w,Δ′
−−−−−−→ τ ′ is thus that when applied in state Δ on an

argument of type τ and with reading policy rα, it will produce a result of type τ ′ with
reading policy r. The writing policy w states who could see that the function has been
applied, and the whole program will be in state Δ′ afterwards. This is all mirrored by
the appropriate states in the application rule.

Direct leaks, like the ones in programs (1), (2), (4) and (5), are handled by the check
r2(Σ′′) � p in the rule for assignment. Since we normalise the policy r2 of the assignee
to the state in effect at the point of the assignment, program (5) would be secure if run
in a state where σ is open, which is exactly what happens in programs (6) and (7). Also
the normalisation to the current state in the dereferencing rule, i.e. p(Σ′) in the reading
effect of the conclusion, means that program (8) will be deemed secure. The same kind
of normalisation also appears in the variable rule.

The check r0(Σ′) � w1 / w2 in the conditional rule will ensure that an indirect
leak like the one in (9) will not be allowed. The normalisation of r0 to Σ′ means that it
is the state at the branch point that is important, which disallows (10) and (11) but lets
(12) through. The branches may open and close different locks, so the end states can
differ. Since policies are monotonic, we can use the intersection of the end states as a
safe approximation for the following program.

The checks r1(Σ′′) � p in the assignment rule, and the corresponding r1(Σ2) � wf

in the application rule handle indirect flows like in (13), (14) and (16), but allow (15)
and (17).

In the assignment rule, the reading effect in the conclusion is ⊥. The reason is that
the result of an assignment is always (), independent of the result values of the two
expressions M1 and M2, so no information is leaked by making the () result public.
For similar reasons, r2 does not show up in the reading effect in the conclusion of the
application rule. Since function arguments are annotated with their reading effects, if
the result of M2 has any effect on the result of the whole application expression, this
fact will be seen through rf .4

4 Semantic Security Properties

For reasons of space this section gives only a brief outline of the semantic definitions
and results about flow-lock security. For details the reader is referred to the full version
of the paper. The main development is the definition of a notion of flow lock security
which

4 The rules involving functions are fairly restrictive as they are formulated here. One could easily
imagine various forms of subsumption, both for lock states and argument policies, that would
make the system less restrictive. however, adding subsumption would complicate the overall
formulation of the type system, so we leave it for the full version of the paper.
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– generalises a standard notion of noninterference, since amongst other things it guar-
antees that a noninterference property holds for computation between any changes
in the flow lock state.

– holds whenever a flow lock program is well-typed – i.e. well-typed programs are
flow-lock secure.

The two main challenges in generalising the notion of noninterference to the flow lock
setting are (i) dealing with policy change, in particular when a policy become less lib-
eral (i.e. when locks are closed), and (ii) coping with the “latency” of a language with
higher-order functions and state.

Before we can deal with policy change we must understand the underlying notion
of noninterference that we build upon in the definition of flow lock security. Suppose in
a computation that the set of locks Σ are open. This means that an actor A is permitted,
at that point, to read the contents of a location with policy c providing (Δ⇒ A) ∈ c for
some Δ ⊆ Σ. If the set of open locksΣ does not change, then the basic noninterference
property that we expect is the following: given two memories which agree on all A-
readable locations, the results of computing with these two respective memories should
also agree on A-readable locations. This means that the actor A does not learn anything
about the memory locations that were not visible initially.

Now to deal with change in the set of open locks we follow the “self-bisimulation”
approach from [17], whereby security is characterised by a more general property of
two programs being bisimilar with respect the the observable parts of memory. One
particular feature of the definition from [17] is that the bisimulation is defined over
programs and not configurations (program-memory pairs). The idea is that at each step
of the bisimulation the pair of programs under comparison are inspected in all pairs of
memory states which are indistinguishable to the attacker. This very strong requirement
was needed to make the definition of security compositional with respect to parallel
composition. But this approach of “resetting” the store at each step has another very
useful property: it enables us to reset the state in the event of a policy change. For
example, one particular difficulty is that when the current policy becomes more re-
strictive — in our case when locks are closed — then we need a way to reestablish
a stronger security requirement at that point in the execution. It is notable that two
previous semantic accounts of temporary policy weakening mechanisms, Mantel and
Sands’s language based intransitive noninterference condition [8], and Almeida Matos
and Boudol’s nondisclosure policy [2], both rely on such a “resetting” bisimulation not
only to deal with threads, but more importantly to provide a semantics to local policy
change mechanisms. Of these two earlier definitions, our definition is close in spirit to
Almeida Matos and Boudol’s – although we refer to the full paper for details.

A straightforward “resetting” bisimulation is not enough to define flow lock secu-
rity; it is not enough to consider just the locations which are currently visible to an
actor A. Consider a program such as �{σ⇒A} := !m{σ′⇒A} in a state where neither
σ nor σ′ are open. Since this assignment deals with locations not currently visible to
A then a simple resetting bisimulation would allow it. However it is clearly insecure
with respect to possible future states which may open σ. In order to detect the insecure
flow that might be revealed at some future time we must check the equivalence of the
two memories in a state where σ is open but σ′ is not. More generally, the definition
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of flow-lock security therefore takes into account all possible (more permissive) future
lock states.

For the full details of these developments the reader is referred to the extended
version of this paper.

5 Relating to Other Systems and Idioms

Standard Noninterference. As a first example of the expressiveness of our system,
consider a standard termination insensitive noninterference property for a lattice-based
security model in the standard Denning style [6].

In this setting we have a lattice of security levels 〈L,�,.〉, and a policy level :
Loc → L that fixes the intended security level of the storage locations in the program.
Given such a policy we can define noninterference. For simplicity we consider closed
programs of unit type which do not perform any storage allocation or lock open/close
operations. In what follows let metavariables P and Q range over such programs.

Definition 1 (Noninterference). Given two stores μ and ν, and a level k ∈ L, define μ
and ν to be indistinguishable at level k, written μ =k ν, iff for all � such that level(�) �
k we have μ(�) = ν(�).

Then we say that P is noninterfering if for all k, whenever 〈P, μ〉 →∗ 〈(), μ′〉 and
〈P, ν〉 →∗ 〈(), ν′〉, then μ =k ν implies μ′ =k ν

′.

To represent a lattice policy we do not need any locks; we represent the reading level
of a variable by the set of levels at which it may be read. Thus the policy for a storage
location � is the upwards closure of its lattice level, written ↑level(�), where ↑j =
{{} ⇒ k | k , j}. Given this, we have the following:

Theorem 1. If P is flow lock secure then P is noninterfering.

Thus whenever we show that P is secure in the flow lock setting then it is also
noninterfering. But it is perhaps not too surprising that our security specification is
stronger than standard noninterference. A reasonable concern might be that the defin-
ition, or indeed the type system, is too strong to be useful. Here we show that despite
being stronger, we are still able to type just as much as “typical” systems for regular
noninterference.

Figure 3 presents a simple type system for a while language which can be seen as
a straightforward reformulation of the typing system presented by Volpano, Irvine and
Smith [21].

p = ∈E level(�).


NI E : p

NI E : q p ( q � level(�)

p 
NI u := E

p 
NI C1 p 
NI C2

p 
NI C1;C2


NI E : q p ( q 
NI Ci i = 1, 2
p 
NI if E then C1 else C2


NI E : q p ( q 
NI C

p 
NI while (E) C

Fig. 3. Standard Noninterference Type System
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Define the following translation &·1 from terms in the while language to λFL:

&while (E) C1 = rec x.if &E1 then &C1;x else ()
&if E then C1 else C21 = if &E1 then &C11 else &C21

&C1;C21 = &C11; &C21
&� := E1 = �p := &E1 where p = ↑level(�)

&E1 = E′ where E′ is the result of replacing

each location � in E with �↑level(�).

To make our formulations easier, let us restrict the language of expressions to booleans
(so we do not have to consider typing issues). Now we can state that whenever some-
thing is typeable in the simple noninterference system, a corresponding derivation holds
for the flow locks system:

Theorem 2. Let Γ0 be the type environment that maps every storage location to bool .
Then

1. If �NI E : k then Γ0; ∅ � &E1 : bool , (r, )⇒ ∅ where r = ↑k
2. If pc �NI C then Γ0; ∅ � &C1 : unit , (r, w)⇒ ∅ where w ⊆ ↑pc

We also expect that a similar theorem holds for some suitable termination-insensitive
version of DCC [1], although we have not attempted to show this formally.

Simple Declassification. We can encode a simple declassification mechanism in the
same Denning-style setting as used in the previous example. The needed extra step is
to extend all policies with clauses to allow declassification. For each level j not in the
policy already, we introduce a flow lock σj representing a declassification to that level.
The new policies then look like

{k | k , level(�)} ∪ {σj ⇒ k | j 
, level(�), k , j}

We can now define a declassification operator to level j as

declassify j ≡ (λv.let x = (open σj ; v) in (close σj ;x))

It is easy to verify from the type system that the only effect of applying this function to
some value is that the value will then be readable also at level j, as was our intention.

Lexically Scoped Flows. In the setting of a multilevel security model, Almeida Matos
and Boudol describe how to build a system with lexically scoped dynamic flow policies
[2]. They start from a λ-calculus with recursion and references like we do, and introduce
a construct “flow α ≺ β in M” that extends the current global flow policy to also allow
flows from level α to β in the scope of M. These flows are transitive, so if the current
policy already allows flows from say β to γ, flows from α to γ would also be allowed
in M.
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Modelling scoped flows using flow locks is easy, but the global nature of policies
in Almeida Matos and Boudol’s system, as opposed to our local policies on memory
locations, needs special treatment. We introduce a lock σα≺β for each pair of levels α
and β that data could flow between. Each policy on some data must record the fact that
a future flow declaration could allow that data to flow to many new locations due to
the transitive nature of flows. Thus if a location in Almeida Matos and Boudol’s system
would have level A, we could represent that as

A ∪
{
σα≺β0 , σβ0≺β1 , . . . , σβk−1≺βk

⇒ βk | α ∈ A, βi /∈ A
}

where the /∈ is taken with respect to some universal set of levels. In effect, each location
records all possible future transitive flows from it. We then derive our representation of
the “flow” construct that opens a lock in the scope of some subprogram:

flow σ inM ≡ let x = (open σ;M) in (close σ;x)

Almeida Matos and Boudol also include parallel execution in their system, and as
a consequence make their type system and semantic security definition, called non-
disclosure, sensitive to possible non-termination. Our system has no parallel execution
so we cannot model their full system, only the sequential subset.

Intransitive Noninterference. Flow locks represent a lower level abstraction than
lattice-based information flow models in the sense that the lattice ordering is not “built
in” but must be represented explicitly. One advantage of such a lower level view is that
it can also represent intransitive noninterference policies [15, 14] — i.e. ones in which
the flow relation is intentionally not transitive. Since intransitive policies are the default
case for flow locks, it is straightforward to represent simple language-based intransitive
policies such as the one described by Mantel and Sands [8].

Noninterference Until Declassification. Chong and Myers’ [5] introduce a class of
temporal declassification policies. This is achieved by annotating variables with types
of the form k0

c1� · · · cn� kn, which intuitively means that a variable with such an anno-
tation may be successively declassified to the levels k1, . . . , kn, and that the conditions
c1, . . . , cn will hold at the execution of the corresponding declassification points. The
exact nature of the conditions are left unspecified, and it is assumed in the type system
that these conditions are verified at certain key program points by some external tool.

We can achieve a similar effect fairly naturally using flow locks, where we would
use a distinct lock Ci for each condition ci. One should then insert open Ci constructs
in the program at points where the intended declassification takes place, and verify
(with an external tool) that the corresponding condition ci does indeed hold at these
points, and that lock Ci−1 has been opened (we assume that locks are never closed in
this encoding). The policy above could then be represented as

{k0; {C1} ⇒ k1; · · · ; {C1, . . . , Cn} ⇒ kn}.

Robust Declassification. Information flow may be used to verify integrity properties,
to ensure that untrusted (low integrity) data does not influence the values of trusted
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(high integrity) data. Since flow lock policies are neutral with respect to whether we are
dealing with confidentiality or integrity properties it is no problem to add such integrity
policies to data, and we can easily have clauses for integrity and confidentiality in the
same policy. The interesting case, however, is the interaction between confidentiality
and integrity in the presence of dynamic policies.

Zdancewic and Myers [22] introduced the concept of robust declassification to char-
acterise the property that an attacker (who controls low integrity data) cannot influence
what is declassified. This guarantees that the attacker cannot manipulate the amount of
information which is released through declassification.

In the setting of flow lock policies, “declassification” can be thought of as the
process of opening locks, since whenever a lock is opened more flows are enabled.
Thus we can interpret robust declassification as the question of whether low integrity
data can influence the decision to open locks. 5

One possible way of enforcing robust declassification using flow locks is to observe
the following: since we cannot perform any computation with locks, the only way that
an open operation can be influenced by low integrity data is via indirect information
flow from low integrity data. Suppose that our policies use an indexed set of locks
σi, i ∈ I to control confidentiality. These are unguarded (i.e. we ignore endorsement).
Let us assume that in addition to the actors of the system we have the pseudo-actor
trusted used to track integrity information, just as we did in Section 2.

In order to prevent indirect flow from low integrity data to the opening of locks, we
will log each use of an open operation by writing to a variable log . An obvious way to
enforce this is to define a “robust” version of open:

ropen σi ≡ open σi; log := i

Now we give log the policy {trusted}. This ensures that the assignment is always
safe from a confidentiality perspective (since normal actors can never read it anyway),
and that the open operation can never have taken place in a low integrity context (since
otherwise the assignment would cause information to flow from untrusted to trusted
data). Finally, to additionally prevent the declassification of low integrity data we can
syntactically enforce that lock-guarded policies are only used on high integrity data.

The Decentralized Label Model. In the Decentralized Label Model (DLM) [10, 11, 12],
data is said to be owned by a set of principals. These principals may allow other princi-
pals to read the data, and the effective reader set is those principals that all owners agree
may read the data. Allowing a new reader roughly corresponds to declassification, and
we can model it similarly. The DLM also defines a global principal hierarchy, where
one principal may allow another principal to act for it, which means it may read all
the same things. This is very similar in spirit to introducing a new flow in the system
by Almeida Matos and Boudol, including transitivity, and we can model it in the same
way. Apart from clauses for declassification and hierarchic flows, the policies must also
include clauses for the combination of the two, e.g. A can read the data if B owns it,
has declassified it for C to read it, and A acts for C.

5 If we also take the view from [13], then we extend this concept with the requirement that we
should not be able to declassify low integrity data.
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A common extension of the DLM [22, 20, 19] deals with integrity and trust. The
interesting part for us is the integration with the principal hierarchy, where if A trusts
some data and A acts for B, then B also trusts that data. This can be modelled as the
reverse of the normal clauses for transitive flows, and the clauses will be very similar to
those for forward flows.

The complete general policy for a DLM variable encoded with flow locks would be
fairly large and awkward, so we do not show it here.

Other Related Work. The JFlow language [9], as well as several recent papers
[19, 23, 7], supports runtime mechanisms to enforce security in situations where this
cannot be determined statically, e.g. permissions on a file that cannot be known at com-
pile time. Our flow locks is a static, compile-time mechanism only, and thus cannot
handle these issues.

Banerjee and Naumann [4] describe a combination of stack-based access control
and information flow types to allow the static checking of policies such as “the method
returns a result at level L unless the caller has permission p”. It may be possible to en-
code these kinds of policies in a straightforward way using flow locks, but this remains
a topic for future work.

6 Conclusions and Future Work

Flow locks are a very simple mechanism that generalises many existing systems and
idioms for dynamic information flow policies. We have only just started looking at flow
locks however, and much remains to be done.

To really establish flow locks as a core calculus, we need to show more formally how
to embed other systems and idioms, and prove that our semantic condition is sufficiently
strong compared to the semantic conditions of these other systems. It would also be
worthwhile to look at extensions of our core system, in order to handle systems that
we definitely cannot model at this point. Examples of such systems include the parallel
execution of Almeida Matos and Boudol [2], and also systems that use various runtime
mechanisms [19, 23, 7].

Furthermore, we would need to investigate how to implement the flow locks sys-
tem as a programming language, and to determine what kinds of inference would be
needed for policies and locks. Also, flow locks are fairly low-level in nature, being
a raw mechanism for controlling data flows in a program. As such it is nontrivial to
write and maintain correct flow lock programs. It would therefore be useful to look
at what higher-level abstractions and design patterns that could be used together with
flow locks. There exists some work specifically targeting the question of patterns, for
instance the seal pattern by Askarov and Sabelfeld [3].

Acknowledgements. Thanks to Ulf Norell and our colleagues in the ProSec group for
helpful comments, and to the anonymous referees for numerous helpful comments and
suggestions. This work was partly supported by the Swedish research agencies SSF, VR
and Vinnova, and by the Information Society Technologies programme of the European
Commission, Future and Emerging Technologies under the IST-2005-015905 MOBIUS
project.



196 N. Broberg and D. Sands

References

1. M. Abadi, A. Banerjee, N. Heintze, and J. Riecke. A core calculus of dependency. In Proc.
ACM Symp. on Principles of Programming Languages, pages 147–160, Jan. 1999.

2. A. Almeida Matos and G. Boudol. On declassification and the non-disclosure policy. In
Proc. IEEE Computer Security Foundations Workshop, June 2005.

3. A. Askarov and A. Sabelfeld. Security-typed languages for implementation of cryptographic
protocols: A case study. In Proc. European Symp. on Research in Computer Security, volume
3679 of LNCS, 2005.

4. A. Banerjee and D. A. Naumann. Stack-based access control and secure information flow.
Journal of Functional Programming, 15(2):131–177, Mar. 2005.

5. S. Chong and A. C. Myers. Security policies for downgrading. In ACM Conference on
Computer and Communications Security, pages 198–209, Oct. 2004.

6. D. E. Denning and P. J. Denning. Certification of programs for secure information flow.
Comm. of the ACM, 20(7):504–513, July 1977.

7. M. Hicks, S. Tse, B. Hicks, and S. Zdancewic. Dynamic updating of information-flow poli-
cies. In Proc. Foundations of Computer Security Workshop, 2005.

8. H. Mantel and D. Sands. Controlled downgrading based on intransitive (non)interference. In
Proc. Asian Symp. on Programming Languages and Systems, volume 3302 of LNCS, pages
129–145. Springer-Verlag, Nov. 2004.

9. A. C. Myers. JFlow: Practical mostly-static information flow control. In Proc. ACM Symp.
on Principles of Programming Languages, pages 228–241, Jan. 1999.

10. A. C. Myers and B. Liskov. A decentralized model for information flow control. In Proc.
ACM Symp. on Operating System Principles, pages 129–142, Oct. 1997.

11. A. C. Myers and B. Liskov. Complete, safe information flow with decentralized labels. In
Proc. IEEE Symp. on Security and Privacy, pages 186–197, May 1998.

12. A. C. Myers and B. Liskov. Protecting privacy using the decentralized label model. ACM
Transactions on Software Engineering and Methodology, 9(4):410–442, 2000.

13. A. C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing robust declassification. In Proc.
IEEE Computer Security Foundations Workshop, pages 172–186, June 2004.

14. S. Pinsky. Absorbing covers and intransitive non-interference. In Proc. IEEE Symp. on
Security and Privacy, pages 102–113, May 1995.

15. J. M. Rushby. Noninterference, transitivity, and channel-control security policies. Technical
Report CSL-92-02, SRI International, 1992.

16. A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE J. Selected
Areas in Communications, 21(1):5–19, Jan. 2003.

17. A. Sabelfeld and D. Sands. Probabilistic noninterference for multi-threaded programs. In
Proc. IEEE Computer Security Foundations Workshop, pages 200–214, July 2000.

18. A. Sabelfeld and D. Sands. Dimensions and principles of declassification. In Proc. IEEE
Computer Security Foundations Workshop, 2005.

19. S. Tse and S. Zdancewic. Run-time principals in information-flow type systems. In Proc.
Symposium on Security and Privacy, 2004.

20. S. Tse and S. Zdancewic. Designing a security-typed language with certificate-based de-
classification. In Proc. European Symp. on Programming, volume 3444 of LNCS, pages
279–294. Springer-Verlag, Apr. 2005.

21. D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analysis. J.
Computer Security, 4(3):167–187, 1996.

22. S. Zdancewic and A. C. Myers. Robust declassification. In Proc. IEEE Computer Security
Foundations Workshop, pages 15–23, June 2001.

23. L. Zheng and A. Myers. Dynamic security labels and noninterference. In Proc. Workshop
on Formal Aspects in Security and Trust, 2004.



A Basic Contract Language for Web Services�

Samuele Carpineti and Cosimo Laneve

Department of Computer Science, University of Bologna, Italy
{carpinet, laneve}@cs.unibo.it

Abstract. We design a schema language that includes channel schemas
with capabilities of input, output, and input-output. These schemas may
describe documents containing references to operations of remote services
on the web. In this language, the subschema relation turns out to have an
exponential cost. We therefore discuss a language restriction that admits
a subschema relation with a polynomial cost.

1 Introduction

Several schema languages have been recently proposed for describing the tree-
structure of XML documents. We recall DTD [12], XML-Schema [9], RELAX
NG [5], and XDuce types [7] and we refer to [13] for an analysis of their expres-
siveness. These schema languages are used in WSDL [11, 10] documents that are
interfaces of web-services describing the messages sent and/or received by the
services and the informations for reaching the services (location, transport pro-
tocol, etc.). For example, the one-way operation in WSDL (we are omitting some
details)

<portType name="op-one-way">
<operation name="one-way">

<input message="Real"/>
</operation>
</portType>
<service name="one-way-service">

<port name="op-one-way">
<address location="http://example.com/op-one-way"/>

</port>
</service>

is expressing that the reference at http://example.com/op-one-waymay be in-
voked with documents of schema Real. WSDL documents are also used in repos-
itories for selecting appropriate referencesIn this context, “http://example.
com/op-one-way” may be returned to queries asking for references that can
be invoked with Integer (because integers are also reals). A client receiving
“http://example.com/op-one-way”, besides invoking it, might forward the ref-
erence to a third party that, in turn, could invoke op-one-way with Natural.

� Aspects of this investigation were supported in part by a Microsoft initiative in
concurrent computing and web services.
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Yet, web-services technologies also require the possibility to express and com-
municate references to operations of remote services [15] and to verify that the
receiver uses the service according to its contract (sending proper data and per-
forming the permitted operations). In facts, these requirements are recognized
in the new specification of WSDL [10], which extends the schemas with references
to interfaces of web-services (called portTypes). However this extension is by no
means satisfactory because no mechanism for comparing schemas with references
is provided at all.

We therefore design a basic schema language with references 〈S〉i, 〈S〉o, and
〈S〉io , called channel schemas, that collect references of schema S and being re-
spectively used to receive notifications, to invoke services, and for both. In our
notation, the channel http://example.com/op-one-way has schema 〈Real〉o.
The assessment that (channel) schemas are used according to the WSDL descrip-
tion is given by a subschema relation <: . Following [2, 14], <: is the largest
relation satisfying the closure property “if S <:T then every branch of the syn-
tax tree of S is matched by those of T yielding pairs that are still in <:”. This
matching is actually weakened for tag-labelled branches because, in our schema
language, union schemas may be nondeterministic. To illustrate the problem, let
S = a[Int+ String],c[Int] and T = a[Int],c[Int] + a[String],c[Int]. It turns
out that S <:T however, to demonstrate this, one has to pick one addend of T ,
let it be T ′ = a[Int],c[Int], compute the difference of S and T ′, and show that
this difference is still in T . In this case the difference is a[String],c[Int], which
is clearly contained in T .

The relation <: turns out to be computationally expensive – it has an expo-
nential cost with respect to the sizes of the schemas [8]. This is an issue in web-
services, where data coming from untrusted parties, such as WSDL documents,
might be validated at run-time before processing. While validation has a poly-
nomial cost with respect to the size of the datum in current schema languages,
this is not so when data carry references. In these cases, validation has to ver-
ify that the schema of the reference conforms with some expected schema, thus
reducing itself to the subschema relation. (In XDuce run-time subschema checks
are avoided because programs are strictly coupled and typechecking guarantees
that invalid values cannot be produced.)

To avoid significative run-time degradations of web-services technologies, we
impose a language restriction to diminish the cost of the subschema relation.
Specifically, following XML Schema, we constrain schemas to retain a determin-
istic model as regards tag-labelled transitions. The model is still nondetermin-
istic with respect to channel-labelled transitions. The resulting schemas, called
labelled-determined, are equipped with a subschema relation defined as a set of
syntax-directed rules. We prove the equivalence of this subschema relation with
<: and we demonstrate that it has a polynomial cost with respect to the sizes of
the schemas. This result extends to channel schemas the computational complex-
ity of language difference for deterministic tree automata (and XML Schemas)
computed in [8].
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Related Works. The schema language studied in this article is similar to those
introduced in languages extending π-calculus with XML datatypes [3, 1, 4]. The
design of the schema language of [3] has been strongly affected by this study.
As a minor difference, channel schemas in [3] only have output capabilities. The
schema language of [1] is simpler than the one in this paper. In particular labelled
schemas have singleton labels and the subschema relation seems not powerful
enough (for example a[b[ ] + c[ ]] <: a[b[ ]] + a[c[ ]] does not hold in [1]).

The types in [4] include channels with capabilities, union, product, inter-
section and negation. The definition of subschema is semantic, by means of a
set-inclusion on a set-theoretic model. Our schema language is simpler than [4]
and the notion of subschema is quite different. For example, in our case, top
and bottom are derived schemas and channel schemas may be nested at wish,
while this is problematic in presence of recursion and intersection. The contri-
bution [4] overlooks the restrictions for reducing the computational complexity
of the subschema relation that turns out to be hyperexponential.

Structure of the Paper. We proceed as follows. Section 2 reviews WSDL and de-
scribes how operations may be encoded in our schema language. The schema
language with channels is formally described in Section 3. In Section 4 we de-
fine the subschema relation <: and analyze some of its properties. In Section 5
we discuss the constraint of labelled-determinedness and design the alternative
syntax-directed subschema definition. We also analyze its algorithmic cost. The
appendix is devoted to the proof of equivalence of <: and the syntax-directed
subschema.

2 Encoding WSDL Interfaces

WSDL documents are XML documents that consist of several parts. Among these
parts, ports are logical groupings of operations that are defined by a name, an in-
teraction pattern, and the schema of messages for invoking the operations and re-
ceiving back the answers. Operations may use four interaction patterns: one-way,
notification, request-response, and solicit-response. The former twos model asyn-
chronous unidirectional communications and require a single schema: in one-way,
the schema describes the messages to invoke the operation; in notification, the
schema describes the messages returned by the invocation. Request-response and
solicit-response operations model two communication actions. Therefore they re-
quire two schemas. In request-response, the two schemas describe the messages to
invoke the operation and to receive the answer, respectively; in solicit-response,
schemas are in the other way around.

The one-way operation in WSDL1.1 (we are omitting some details of the WSDL
document)

<portType name="op-one-way">
<operation name="one-way">

<input message="InvokeScm"/>
</operation>
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</portType>
<service name="one-way-service">

<port name="op-one-way">
<address location="http://example.com/op-one-way"/>

</port>
</service>

is expressing that the reference at http://example.com/op-one-way may be
invoked with documents of schema InvokeScm. Technically, the tag <input
message="S"/> in the WSDL must be interpreted as a schema constructor collect-
ing references that may be invoked with values of schema S, or with subsets of
such values. Said otherwise, the constructor <input message="..."/> behaves
contravariantly with respect to the argument schema. In our notation, introduced
in the next section, the operation one-way has schema 〈InvokeScm〉o.

The notification operation is defined by

<operation name="notification">
<output message="ReturnScm"/>

</operation>

The intended meaning of this pattern is that the remote service is communicating
the schema of the messages it will send back. To receive this message, the client
service has to create a reference whose schema in our notation is (greater than)
〈ReturnScm〉i. It is worth to remark that, operationally, the notification is equiv-
alent to delivering a fresh reference of schema 〈ReturnScm〉i to the client. The
capability “i” constrains the client to use the reference for receiving messages.

The request-response operation is defined by (as usual, some details of the
WSDL document are omitted)

<portType name="op-request-response">
<operation name="request-response">

<input message="InvokeScm"/>
<output message="ReturnScm"/>

</operation>
</portType>
<service name="op-request-response">

<port name="op-request-response">
<address location="http://example.com/request-response"/>

</port>
</service>

In this case, the connection with the service at http://example.com/request
-response is bidirectional, that is two references are created: one for invoking
the service and the other for receiving the return value. The two have schemas
〈InvokeScm〉o and 〈ReturnScm〉i, respectively.

Finally, the solicit-response operation is described by

<operation name="solicit-response">
<output message="ReturnScm"/>
<input message="InvokeScm"/>

</operation>
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Also in this case two references are created during the connection. The first ref-
erence is for receiving solicitations and is described by the schema 〈ReturnScm〉i;
the second reference is for responses and is described by 〈InvokeScm〉o.

3 Schemas with Channels

We use two disjoint countably infinite sets: the tags, ranged over by a, b, · · · , and
the schema names, ranged over by U, V, · · · . The term κ is used to range over
i, o, and io. The syntax of our language includes the categories of labels and
schemas defined by the following rules

L ::= label
a (tag)
~ (wildcard label)
L+ L (union)
L \ L (difference)

S ::= schema
⊥ (empty schema)
() (void schema)
〈S〉κ (channel schema)
L[S],S (labelled sequence schema)
S + S (union schema)
U (schema name)

Labels. Labels specify collections of tags. The semantics of labels is defined by
the following function ·̂ :

â = {a} ~̂ = {a, b, c, · · · } L̂+ L′ = L̂ ∪ L̂′ L̂ \ L′ = L̂ \ L̂′

(~ represents the whole sets of tags). We write a ∈ L for a ∈ L̂.

Schema. Schemas describe (XML) documents that are structurally similar. The
schema ⊥ describes the empty set of documents; () describes the empty docu-
ment; 〈S〉κ describes references whose messages have schema S and that may be
used with capability κ ∈ {i, o, io}. The capabilities i, o, io mean that the reference
can be used for performing inputs, outputs, and both inputs and outputs, respec-
tively. The schema L[S],S′ describes a sequence starting with a document having
a tag in L̂ and a document of schema S as content, and followed by a document
of schema S′. Finally S+S′ describes the set of documents belonging to S or S′.
The schema name U describes the set of documents such that U = E(U), where
E is a fixed mapping from names to schemas that fulfills the following finiteness
and guardedness properties. Let names(S) be the least set containing the schema
names in S and such that if U ∈ names(S) then names(E(U)) ⊆ names(S). A map
E is finite if, for every U ∈ dom(E), the set names(U) is finite. A map E is guarded
if every occurrence of U in E(U) is underneath a channel or labelled sequence
schema constructor.

In the following, L[()] and L[S],() are always abbreviated into L[ ] and L[S],
respectively.

We illustrate the syntax by means of few sample schema name definitions.
Let Bool, Blist, and Btree be such that
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E(Bool) = true[ ] + false[ ]
E(Blist) = ()+ bool [Bool],Blist
E(Btree) = ()+ val [Bool],left [Btree],right [Btree]
E(Empty) = a[Empty]

The name Bool defines booleans that are encoded as tags true and false with
content (). The name Blist defines any flat sequence of labelled documents
containing booleans; Btree defines documents that are binary trees of booleans.
The name Empty defines an empty set of documents because this set is the least
solution of the equation Empty = a[Empty]. As such Empty is equal to ⊥.

As regards channel schemas, 〈Bool〉o describes references that may be invoked
with booleans; 〈Bool〉io contains references that may be invoked with booleans
and may receive notifications carrying booleans. The name NCbool defined as

E(NCbool) = 〈Bool〉o + 〈NCbool〉o

describes the references to be invoked with booleans or with references to be
invoked with booleans, etc., till some finite but not bound depth. (The nest-
ing of channel constructors in [4] is always bound.) We observe that a service
querying a repository for references of schema 〈Bool〉o may get back a service
of schema 〈Bool〉io or of schema NCbool. Conversely, if the query is about ref-
erences of schema 〈Bool〉io then the repository will never return references of
schema 〈Bool〉o nor NCbool.

Remarks.
1. According to the above grammar, sequences are lists of labelled elements

concluded either by the void schema (the empty sequence), or by a channel
schema, or by a name (we ignore sequences with a tailing ⊥ because they are
equivalent to ⊥, see the forthcoming relation of subschema). Since schema
names may only occur in tail position of sequences, it is not possible to define
context-free schemas like a[ ]n,b[ ]n. Said otherwise, our grammars defines
tree regular schemas, a class of languages that retain decision algorithms for
language inclusion – the subschema relation [8].

2. The subschema language without channel schemas is closed under union, dif-
ference, and intersection [7]. Union closure is a consequence of the presence
of union schemas; difference closure S \ T follows by the fact that labels are
represented as sets. For example L[S],S′ \L′[T ],T ′ is (L \L′)[S],S′ +L[S \
T ],S′+L[S],S′ \T ′. Intersection S∩T may be defined in terms of difference
as (S + T ) \ (S \ T ) \ (T \ S). This sublanguage has a decidable algorithm
testing the emptiness of a schema. Thereafter S <:T may be implemented
as an emptiness test on S \ T . Channel schemas does not preserve the clo-
sures under difference and intersection. For this reason these operators are
primitive in [4].

4 The Subschema Relation

The semantic definition of subschema in [6] does not adapt well to our lan-
guage. In that paper, a language for values was introduced and a schema S was
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considered a subschema of T if the set of values described by S was contained
in the set of values described by T . In our case values should contain references
that do not carry any “structural” information about their schema. Therefore,
in order to verify that a reference belongs to a schema S, we should verify the
schema of the reference is a subschema of S. To circumvent this circularity we
use an “operational” definition – a simulation relation – in the style of [2, 14].

The subschema relation uses handles to manifest all the branches of the
syntax tree of a schema. Let μ range over (), 〈〉κ(S), L(S ; T ) and let S ↓ μ,
read S has a handle μ, be the least relation such that:

() ↓ ()
〈S〉κ ↓ 〈〉κ(S)
L[S],T ↓ L(S ; T ) if L̂ 
= ∅ and there are μ, μ′ such that S ↓ μ and T ↓ μ′

S + T ↓ μ if S ↓ μ or T ↓ μ
U ↓ μ if E(U) ↓ μ

We observe that ⊥ has no handle. The schema a[ ],⊥ has no handle as well;
the reason is that a sequence has a handle provided that every element of the
sequence has a handle. We also remark that a channel 〈S〉κ always retains a
handle. A schema S is not-empty if and only if S has a handle; it is empty
otherwise.

In the following definition we use the intersection operator on labels: L∩L′ def=
~ \ ((~ \ L) + (~ \ L′)).

Definition 1. Let ≤ be the least partial order on capabilities such that io ≤ i
and io ≤ o. The subschema relation <: is the largest relation on schemas such
that S <:T implies:

1. if S ↓ () then T ↓ ();
2. if S ↓ 〈〉κ(S′) then T ↓ 〈〉κ′

(T ′) with κ ≤ κ′ and one of the followings holds:
(a) κ′ = o and T ′ <:S′;
(b) κ′ = i and S′ <:T ′;
(c) κ′ = io and S′ <:T ′ and T ′ <:S′;

3. if S ↓ L(S′ ; S′′) then T ↓ L′(T ′ ; T ′′) with L̂ ∩ L̂′ 
= ∅ and:
(a) either L̂ ⊆ L̂′, S′ <:T ′, and S′′ <:T ′′;
(b) or (L \L′)[S′],S′′ +(L∩L′)[R′],S′′ +(L∩L′)[S′],R′′ <:T , for some R′

and R′′ such that S′ <:T ′ +R′ and S′′ <:T ′′ + R′′.

The item 1 constraints greater schema to manifest a void handle if the smaller
one retains such a handle. The item 2 reduces the subschema relation on channel
schemas to the subschema of the arguments according to the capability. In case of
output capability the relation is inverted on the arguments (contravariance), in
case of input capability the relation is the same for the arguments (covariance),
in case of input-output capability the relation reduces to check the equivalence
of the arguments (invariance). The item 3.a allows one to reduce the subschema
relation to the schema arguments of handles -(- ; -) when the labels of the smaller
schema are contained into those of the greater schema. The item 3.b is the
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problematic one: it weakens the item 3.a to those cases when the smaller schema
shows up a handle L(S′ ; S′′) and the greater one has no handle L′(T ′ ; T ′′)
with L ⊆ L′ and S′ <:T ′ and S′′ <:T ′′. To explain item 3.a, we use a schema
difference operator “\”. (Contrary to [4], our schemas are not closed by difference.
This operator is only used for the sake of explanation.) If T ↓ L′(T ′ ; T ′′), in
order to prove L[S′],S′′ <:T one may reduce to demonstrate that (L[S′],S′′) \
(L′[T ′],T ′′) <:T . Such difference of labelled sequence schemas is equal to (L \
L′)[S′],S′′+(L∩L′)[S′\T ′],S′′+(L∩L′)[S′],(S′′\T ′′). We observe that proving

(L \ L′)[S′],S′′ + (L ∩ L′)[S′ \ T ′],S′′ + (L ∩ L′)[S′],(S′′ \ T ′′) <:T

is equivalent to proving

(L \ L′)[S′],S′′ + (L ∩ L′)[R′],S′′ + (L ∩ L′)[S′],R′′ <:T
and S′ <:T ′ +R′

and S′′ <:T ′′ +R′′

that does not mention the difference operator. This is exactly what 3.b says.
Let us illustrate 3.b for deriving c[a[ ] + b[ ]],(d[ ] + e[ ]) <:T , where T =
(c[a[ ]],d[ ])+(c[b[ ]],(d[ ]+e[ ])+(c[a[ ]],e[ ]). Since T ↓ c(a[ ] ; d[ ]), by 3.b, one
may reduce to verifying that c[R′],(d[ ]+e[ ])+c[a[ ]+b[ ]],R′′ <:T with R′ = b[ ]
and R′′ = e[ ]. The relationship c[b[ ]],(d[ ] + e[ ]) <:T follows by 3.a because
c[b[ ]],(d[ ] + e[ ]) is the second addend of T . As regards c[a[ ] + b[ ]],e[ ] <:T we
observe that T ↓ c(b[ ] ; d[ ] + e[ ]). This reduces to c[a[ ]],e[ ] <:T , which is true
because c[a[ ]],e[ ] is the third addend of T .

The schemas Chan and Any defined as:

E(Chan) = 〈⊥〉o + 〈Any〉i
E(Any) = () + ~[Any],Any+ Chan

own relevant properties. Chan collects all the channel schemas, no matter what
they can carry; Any collects all the documents, namely possibly empty sequences
of documents, including channel schemas, no matter how they are labelled (the
label “~”). We observe that 〈⊥〉o and 〈Any〉o are very different. 〈⊥〉o collects
every reference with either capability “o” or “io”, 〈Any〉o refers only to references
where that arbitrary data can be sent. For instance 〈a[ ]〉o is a subschema of
〈⊥〉o but not of 〈Any〉o. The channel schemas 〈Any〉i and 〈⊥〉i are different as
well. 〈Any〉i refers to references that may receive arbitrary data; 〈⊥〉i refers to a
reference that cannot receive anything.

We also remark about differences between labelled schemas and channel
schemas. Let R = a[Blist]+a[Btree] and R′ = a[Blist+Btree]. Then R <:R′

and R′ <:R. However Q = 〈Blist〉κ + 〈Btree〉κ is not subschema-equivalent to
Q′ = 〈Blist + Btree〉κ. Let us discuss the case κ = i that is similar to L[·]
because covariant. It is possible to prove that Q <:Q′. However the converse is
false because references in Q may be invoked only with documents that are lists
of booleans or only with documents that are trees of booleans. Channels in Q′

may be invoked with documents belonging either to Blist or to Btree.
A few properties of <: are in order.
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Proposition 1.

1. <: is reflexive and transitive;
2. (Contravariance of 〈·〉o) S <:T if and only if 〈T 〉o <: 〈S〉o;
3. (Covariance of 〈·〉i) S <:T if and only if 〈S〉i <: 〈T 〉i;
4. (Invariance of 〈·〉io) S <:T and T <:S if and only if 〈S〉io <: 〈T 〉io ;
5. If S is empty then S <:⊥;
6. For every S, ⊥ <:S <: Any and 〈S〉κ <: Chan and 〈Any〉io <: 〈S〉o and 〈⊥〉io

<: 〈S〉i.

We discuss Proposition 1.5. The name ⊥ (as well as Empty) has no handle;
thereafter it is a subschema of any other schema. To prove S <:Any, consider
the relation R = {(S, Any) | S is a schema}. It is easy to to prove that () <: Any
and that L[S],T <: Any, for every L, S, and T . As regards channel schemas
〈S〉κ, it sufficies to demonstrate that 〈S〉κ <: Chan. By definition of <: , if κ ≤ o
then 〈S〉κ ≤ 〈S〉o. This fact, ⊥ <:S, and Proposition 1.2 yield κ ≤ o implies
〈S〉κ <: 〈⊥〉o. If κ = i then 〈S〉i ↓ 〈〉i(S) and Chan ↓ 〈〉iAny, and we are reduced
to (S, Any) ∈ R, which is true. We are left with 〈Any〉io <: 〈S〉o and 〈⊥〉io <: 〈S〉i.
We detail the former, the last statement is similar. By Proposition 1.2 applied
to S <: Any we obtain 〈Any〉o <: 〈S〉o; then by Proposition 1.1 and definition of
<: , we derive 〈Any〉io <: 〈S〉o.

4.1 Primitive Types

The extension of our schema language with primitive types is not difficult. Con-
sider the new syntax:

T ::= primitive types
n (integer constant)
"s" (string constant)
Int (integers)
String (strings)

S ::= schema
· · ·
T (primitive types)

The primitive types n, "s", Int, and String respectively describe a specific
integer, a specific string, the set of integers, and the set of strings. For example,
the schema that collects integers and strings is Int + String; the schema that
collects references with integer messages is 〈Int〉i + 〈Int〉o. As in XML-Schema,
sequences of primitive types are not allowed: in our language every sequence
must be composed by labelled elements (except the tailing one).

As regards the subschema relation, the handles are extended with T ↓ T.
Let ≤p be the least partial order on primitive types such that n ≤p Int and
"s" ≤p String. To define the subschema relation for the new language it sufficies
to extend Definition 1 with

4. if S ↓ T then T ↓ T′ and T ≤p T′.

It follows that 1+ Int <: Int and a[1+ "bye"] <: a[1] + a["bye"] (the proofs
are left to the reader).
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5 Labelled-Determined Schema

The relation <: can be verified in exponential time [8]. As we have discussed in
the Introduction, this is problematic when <: must be computed at run time,
such as when received references must be validated. In this section we study a
restriction of the schema language that bears a polynomial subschema algorithm
(and validation program). The restriction prevents unions of schemas having a
common starting tag and is similar to the restriction used in single-type tree
grammars [13] such as XML-Schema. The restrictions also allows an alternative
definition of subschema that, instead of examining the potentiality to produce
handles, compares the syntactic structure of the schemas.

Definition 2. The set ldet of labelled-determined schemas is the least set con-
taining empty schemas and such that:

1. () ∈ ldet;
2. if S ∈ ldet then 〈S〉κ ∈ ldet;
3. if S ∈ ldet and T ∈ ldet then L[S],T ∈ ldet;
4. if S ∈ ldet and T ∈ ldet and, for every S ↓ L(S′ ; S′′) and T ↓ L′(T ′ ; T ′′),

L̂ ∩ L̂′ = ∅ then S + T ∈ ldet;
5. if E(U) ∈ ldet then U ∈ ldet.

For example, Empty ∈ ldet because ldet is closed by empty schemas; if S ∈ ldet
and T ∈ ldet then a[S] + (~ \ a)[T ] ∈ ldet and ~[S] + 〈S〉κ + 〈T 〉κ′ ∈ ldet.
The last example displays that union of channel schemas does not invalidate
labelled-determinedness. The schemas a[ ] + (a + b)[ ] and 〈a[ ] + ~[ ]〉κ are not
labelled-determined.

Of course, Definition 1 also holds for labelled-determined schemas. For these
schemas <: is much simpler. Item 3 of Definition 1 can be simplified to:

3. if S ↓ L(S′ ; S′′) then T ↓ L′(T ′ ; T ′′) with L̂∩L̂′ 
= ∅ and S′ <:T ′, S′′ <:T ′′,
and (L \ L′)[S′],S′′ <:T .

Alternatively, one may also consider the following formulation of item 3 (this is
the one that is used in the proof of Theorem 1):

3. if S ↓ L(S′ ; S′′) then there is I such that, for every i ∈ I, T ↓ Li(T ′
i ; T ′′

i ),
L̂ ∩ L̂i 
= ∅, L̂ ⊆

⋃
i∈I L̂i, S′ <:T ′

i , and S′′ <:T ′′
i .

However, labelled-determined schemas retain a different, more algorithmic
definition of subschema. This definition is presented below as a set of syntax-
directed rules defining a relation S 
A T ⇒ A′ where A and A′ are sets of pairs
(U, R) – the first element is always a schema name – that are used to detect
termination. In what follows we abbreviate S 
A T ⇒ A′ into S 
A T when we
are not interested in A′.

Let first(S) def=
∑

S↓L(S′ ; S′′) L.

Definition 3. The syntax-directed subschema relation 
A is the smallest rela-
tion closed under commutativity of unions and under the rules in Table 1.
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Table 1. The subschema relation 
A

(void)

() 
A ()⇒ A
(bot)

⊥ 
A T ⇒ A

(lbot)
S 
A ⊥ ⇒ A′

L[S],S′ 
A T ⇒ A′

(sbot)
S′ 
A ⊥ ⇒ A′

L[S],S′ 
A T ⇒ A′

(chan-i)
κ ≤ i S 
A T ⇒ A′

〈S〉κ 
A 〈T 〉i ⇒ A′

(chan-o)
κ ≤ o T 
A S ⇒ A′

〈S〉κ 
A 〈T 〉o ⇒ A′

(chan-io)
S 
A T ⇒ A′ T 
A′ S ⇒ A′′

〈S〉io 
A 〈T 〉io ⇒ A′′

(rseq)

L ⊆ L′

S 
A T ⇒ A′ S′ 
A′ T ′ ⇒ A′′

L[S],S′ 
A L
′[T ],T ′ ⇒ A′′

(unionr)
S 
A T ⇒ A′

S 
A T + T ′ ⇒ A′

(unionl)
S 
A T ⇒ A′ S′ 
A′ T ⇒ A′′

S + S′ 
A T ⇒ A′′

(lseq)

L′ = first(T ) ∅ � L ∩ L′ � L
(L ∩ L′)[S],S′ 
A T ⇒ A′ (L \ L′)[S],S′ 
A′ T ′ ⇒ A′′

L[S],S′ 
A T + T ′ ⇒ A′′

(namel)
(U, T ) ∈ A

U 
A T ⇒ A

(nameh)
A′ = A ∪ {(U, T )} E(U) 
A′ T ⇒ A′′

U 
A T ⇒ A′′

(namer)
S 
A E(U) ⇒ A′

S 
A U⇒ A′

The first four rules are simple and do not require any comment. Rules (chan-i),
(chan-o), and (chan-io) reduce subschema to the arguments of the channel
constructors; they respectively establish covariant, contravariant, and invariant
relationships on the arguments. Rules (rseq) and (lseq) define the subschema
relation for sequences. The former applies if the arguments are already sequences.
This rule, together with (unionr), permits to single out the sequence branch, if
any, of the right argument. However, rules (rseq) and (unionr) do not suffice for
proving that ~[()],() <: a[()],()+(~ \a)[()],(). In this case ~ needs to be par-
titioned and this operation is performed by (lseq). It is worth noticing that rule
(lseq), due to labelled-determinedness, only requires that (L ∩ L′)[S],S′ 
A T ,
not just (L∩L′)[R],R′ 
A T with S 

AR or S′ 

AR

′ (see item 3.b of Definition 1).
The last three rules are about schema names. Rule (namel) derives a subschema
U 
A T if the pair (U, T ) is in the (hypothesis) set A. Rule (namer) unfolds the
name U when it is the right argument. Rule (nameh) is the unique one that uses
an augmented set in the hypotheses. According to this rule, in order to prove
that U 
A T , one unfolds U and, at the same time, it is reminded that U 
A T
is being proved. This rimind is stored in A′. Such a machinery permits to avoid
loops: if, during the proof of U 
A T , one reduces to U 
A′ T then it is possible to
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terminate (by rule (namel)). This is the case, for example, when U 
∅ V must
be proved, with E(U) = () + U and E(V) = ()+ V.

The main result of this contribution is the equivalence between <: and 
A.
The proof is technical and detailed in the Appendix.

Theorem 1. Let S and T be labelled-determined and, for every (U, R) ∈ A, let
U and R be labelled-determined and U <:R. Then S 
A T if and only if S <:T .

5.1 The Code of the Syntax-Directed Subschema and Its
Computational Complexity

Next we design an algorithm for the syntax-directed subschema relationship and
discuss its computational complexity. The algorithm Alg is detailed in Table 2.
It is a boolean function using two sets of assumptions At and Af that are imple-
mented as bi-dimensional associative arrays. At, similarly to A, stores schemas
whose subschema relation is either verified or is being verified. However, unlike
A, At also stores generic pairs of schemas, not just pairs (U, T ). Af stores schemas
whose subschema relation have been already verified to be false. The arrays At
and Af improve the efficiency of Alg by preventing that the same subschema
relation is verified twice.

Alg is initially invoked with every entry of the arrays At and Af set to false–
Alg is computing S 
∅ T –, with an environment E and with the two schemas
S and T . Alg primarily verifies whether the subschema relation has been al-
ready computed – the checks on At[S][T] and on Af[S][T] at lines (2) and
(3) –, and in case returns immediately. These checks implement rule (namel).
Otherwise, Alg sets At[S][T] to true, meaning that the pair (S,T ) is being
verified, and begins the syntax-directed case analysis of the schemas (line (5)).
The alternatives of the case analysis from line (6) to line (15) respectively im-
plement the rules (void), (bot), (chan-i), (chan-o), (chan-io), (rseq) and
(lseq) and (unionr), (nameh), (unionr), and (namer).

Line (11) deserves to be spelled out. When S is a labelled schema L[S′],S′′,
the verification is delegated to the auxiliary boolean function aux Alg. This
function assumes that the label L is nonempty and is always contained into
first(T ), where T is the last argument of aux Alg. Then aux Alg verifies if
T may be decomposed into L′[T ′],T ′′ + R such that L ∩ L′ 
= ∅, S′ <:T ′, and
S′′ <:T ′′. In case, aux Alg is recursively invoked with L \L′ (see intruction (3)
of aux Alg, lines 3 and 4), otherwise aux Alg returns false. The assignment
At[S][T] := true in line (4) guarantees the termination of the algorithm in
case of nested recursive invocations of Alg (with same S and T ). This is sound
because, by the guardedness property of E , the recursive invocations in lines
(13) or (15) must reduce to execute an instruction from line (6) to (11).

We also remark that Alg has no instruction for rules (lbot) and (sbot). In-
deed, these rules entangle the algorithm (in (11) we should verify that schemas
are not empty) and are useless if we assume that every empty schema is rewrit-
ten to ⊥. Therefore, for the sake of correctness of Alg and its computational
complexity we assume that empty schemas are always ⊥. Later on, we discuss
how a schema can be rewritten in order to conform with this constraint.
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Table 2. The syntax-directed subschema algorithm

bool Alg(At, Af, E, S, T) {
(1) bool res:= false ;
(2) if (At[S][T]) res:= true ;
(3) else if (Af[S][T]) res:= false ;
(4) else At[S][T]:= true ;
(5) case S , T of
(6) () , (): res:= true ;
(7) ⊥ , : res:= true ;
(8) 〈S′〉κ , 〈T ′〉i: res:= (κ==i or κ==io) and Alg(At,Af,E,S′,T ′) ;
(9) 〈S′〉κ , 〈T ′〉o: res:= (κ==o or κ==io) and Alg(At,Af,E,T ′,S′) ;
(10) 〈S′〉io , 〈T ′〉io: res:= Alg(At,Af,E,S′,T ′) and Alg(At,Af,E,T ′,S′);
(11) L[S′],S′′ , : if (L ⊆ first(T)) then

res:= aux Alg(At,Af,E,L,S′,S′′,T) ;
else res:= false ;

(12) S′ + S′′ , : res:= Alg(At,Af,E,S′,T) and Alg(At,Af,E,S′′,T) ;
(13) U , : res:= Alg(At,Af,E,E(U),T) ;
(14) , T ′ + T ′′: res:= Alg(At,Af,E,S,T ′) or Alg(At,Af,E,S,T ′′) ;
(15) , U : res:= Alg(At,Af,E,S,E(U)) ;
(16) if (res == false) At[S][T]:= false ; Af[S][T]:= true ;
(17) return res;

}

bool aux Alg(At, Af, E, L, S′, S′′, T) {
(1) case T is
(2) L’[T ′],T ′′: return(Alg(At,Af,E,S′,T ′) and Alg(At,Af,E,S′′,T ′′)) ;
(3) T ′ + T ′′: if (L⊆first(T ′)) return(aux Alg(At,Af,E,L,S′,S′′,T ′)) ;

else if (L∩first(T ′) == ∅)
return(aux Alg(At,Af,E,L,S′,S′′,T ′′));

else return(aux Alg(At,Af,E,L∩first(T ′),S′,S′′,T ′)
and aux Alg(At,Af,E,L\first(T ′),S′,S′′,T ′′));

(4) U: return(aux Alg(At,Af,E,L,S′,S′′,E(U)) ;
}

Proposition 2. Alg terminates in polynomial time.

Proof. Let t(S) be the set of subterms of a schema S (see the Appendix for a
formal definition) and let | · | be the cardinality function. The dimensions of the
arrays At and Af is |t(S)∪ t(T )|× |t(S)∪ t(T )| = |t(S)∪ t(T )|2. The reason is due
to the contravariance of 〈·〉o that may reduce S <:T to T ′ <:S′ where T ′ ∈ t(T ).
Let &true1 = 1 and &false1 = 0.

Let Ati and Afi denote the arrays At and Af when one of them has been
modified exactly i times. The following invariants are preserved at the end of
every line of Alg and aux Alg:

1. for every S,T : (At[S][T] == false) or (Af[S][T] == false), that is
true is never stored both in Af[S][T] and in At[S][T];
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2. for every S,T : if (Afi[S][T] == true) then (Afi+1[S][T] == true), that
is true is never deleted from Af;

3.
∑

S,T
&Ati[S][T]1+&Afi[S][T]1 ≤

∑
S,T
&Ati+1[S][T]1+&Afi+1[S][T]1

(i.e. the total number of trues either grows or remains the same)
4. if

∑
S,T
&Ati[S][T]1 + &Afi[S][T]1 =

∑
S,T
&Ati+1[S] [T]1 + &Afi+1[S]

[T]1 then
∑

S,T
&Afi[S] [T]1 < &Afi+1[S][T]1 (i.e. when the total number

of trues remains the same then the trues in Af strictly increase).

We observe that, in the worst case, the algorithm terminates when
∑

S,T
&At[S]

[T]1+ &Af[S][T]1 is equal to |t(S) ∪ t(T )|2. Invariants 3 and 4 guarantee ter-
minations (the number of trues either grows or remains the same for at most
|t(S) ∪ t(T )|2 times before terminating). Invariants 1 and 2 state that true is
never set in the same entry twice and it is never assigned to the same entry of
the two arrays. Therefore, there may be at most |t(S) ∪ t(T )|2 stores of true
into At and each true may be “moved” at most once into Af. The cost of this
movement is proportional to max(|t(S)|, |t(T )|) because the body of Alg may
parse the structure of one of the schema (function aux Alg). This means that
the total cost of Alg is O(max(|t(S)|, |t(T )|)× |t(S) ∪ t(T )|2). /.

To rewrite empty schemas to ⊥ we define an algorithm similar to Alg. The
algorithm takes two associative boolean vectors of size t(S), Et and Ef, that
are initialized to false at the beginning. At each step true is either added to
Et or moved into Ef. Base cases are: ⊥, (), 〈S〉κ, and S when either Et[S] or
Ef[S]. In case of ⊥ and in case of Et[S], true is returned and Et is set to
true; in the other cases false is returned, Et is set to false, and Ef to true.
The recursive cases are for sequences, unions, and schema names. In every case
the corresponding value of Et is set to true and subterms are checked. If the
recursive calls determine that the schema is not empty (i.e. the schema definition
is not empty for schema names; one of the components is not empty for unions;
both the components are not empty for sequences) Et is set to false and Ef is
set to true, otherwise the schema is considered empty. The cost of this algorithm
is O(|t(S)|). Once Et has been computed, the algorithm Alg may be modified
to verify at every recursive call whether the arguments are empty or not, and in
case replace them with ⊥.

Acknowledgments. The authors thank Allen Brown for the interesting discus-
sions about XML schema languages.
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A The Equivalence of the Two Subschema Relationships

Let ‖S‖∅, called the size of S, be the function inductively defined as: ‖⊥‖X = 0,
‖U‖X = 0 if U ∈ X , ‖U‖X = ‖E(U)‖X∪{U} if U /∈ X , ‖〈S〉κ‖ = 1+ ‖S‖X, ‖S+S′‖X =
1 + ‖S‖X + ‖S′‖X, and ‖L[S],S′‖X = 1 + ‖S‖X + ‖S′‖X. It is easy to verify that
‖S‖∅ = 0 implies that S is empty. In the following ‖S‖∅ will be shortened into
‖S‖. Let also t(S), called the set of subterms of S, be the smallest set satisfying
the following equations: t(()) = {()}, t(⊥) = {⊥}, t(U) = {U} ∪ {t(E(U))},
t(〈S〉κ) = {〈S〉κ} ∪ t(S), t(L[S],T ) = {L[S],T } ∪ t(S) ∪ t(T ), and t(S + T ) =
{S + T } ∪ t(S) ∪ t(T ) We note that ‖S‖ and t(S) are different. For instance,
‖S + S‖ = 2 ∗ ‖S‖ + 1 whilst t(S + S) = t(S) ∪ {S + S}. We also note that
names(S) = {U | U ∈ t(S)}. Finally, let lsubt(S, T ) be the smallest set containing
t(S), t(T ), and closed under the following property: if L[Q],Q′ ∈ lsubt(S, T ) and
L′[Q′′],Q′′′ ∈ lsubt(S, T ) and ∅ � L\L′ � L then (L\L′)[Q],Q′ ∈ lsubt(S, T )
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and (L ∩ L′)[Q],Q′ ∈ lsubt(S, T ). We observe that ‖S‖, t(S), names(S), and
lsubt(S, T ) are always finite.

The following properties are immediate consequences of the definition of 
.

Proposition 3. (1)Let A ⊆ A′. If S 
A T then S 
A′ T ; (2) If S 
A T ⇒ A′

then A ⊆ A′.

Lemma 1. If S is empty then, for every A and T , S 
A T ⇒ A′

Proof. We construct a proof of S 
A T ⇒ A′. The proof is defined by induction
on ‖S‖+ |(names(S)× ‖T ‖) \ A|.

The base cases are: S = ⊥ and S = U with (U, T ) ∈ A. The first follows from
(bot), the second from (namel). The inductive cases are ‖S‖ + |(names(S) ×
‖T ‖) \ A| = n + 1 and either (1) S = S′ + S′′ where both S′ and S′′ are
empty, or (2) S = L[S′],S′′ where S′ is empty, or (3) S = L[S′],S′′ where
S′′ is empty, or (4) S = U where E(U) is empty. Case (1) follows from the
inductive hypothesis and from the rule (unionl). Cases (2) and (3) follow from
inductive hypothesis and from (lbot) and (sbot) respectively. As regards case
(4), note that, by definition of handle, E(U) is empty. Then we use either (namel)
and we conclude, or (nameh) and we are reduced to prove E(U) 
A′ T , with
A′ = A ∪ {(U,T )}. This relationship follows by inductive hypothesis because
‖S‖+ |(names(S)× ‖T ‖) \ A′| = n. /.

Theorem 1. Let S and T be labelled-determined and, for every (U, R) ∈ A, let
U and R be labelled-determined and U <:R. Then S 
A T ⇒ A′ if and only if
S <:T .

Proof. (⇒) To prove that S 
A T ⇒ A′ implies S <:T , we argue by induction
on the proof of S 
A T ⇒ A′. We focus on the interesting cases.

(lbot) According to (lbot), the conclusion L[S′],S′′ 
A T ⇒ A′ has premise
S′ 
A ⊥ ⇒ A′. By inductive hypothesis applied to such, S′ <:⊥. Thus
L[S′],S′′ is an empty schema and L[S′],S′′ <:T follows by Proposition 1
(items 1, 5 and 6).

(lseq) The conclusion L[S′],S′′ 
A T ′ + T ′′ of the proof is obtained by the
hyphothesis

(L ∩ L′)[S],S′ 
A T ⇒ A′ (1)
(L \ L′)[S],S′ 
A′ T ′ ⇒ A′′ (2)

By inductive hyphothesis applied to (1) and (2) we obtain (L ∩ L′)[S],
S′ <:T ′ and (L \ L′)[S],S′ <:T ′′. By definition of <: , the first sub-
schema implies T ′ ↓ Li(Ri ; R′

i) for i ∈ 1..h and (L̂ ∩ L̂′) ⊆
⋃

i∈1..h L̂i,
S′ <:Ri and S′′ <:R′

i. The subschema (L \ L′)[S],S′ <:T ′′ implies
T ′′ ↓ Lj(Qj ; Q′

j) for j ∈ 1..h′ and L̂ \ L′ ⊆
⋃

j∈1..h′ L̂′
i, S′ <:Qi

and S′′ <:Q′
i. (The definition of <: is reformulated in this way for

labelled-determined schemas: see Section 5.) Therefore, we can conclude
L[S′],S′′ <:T .
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(namer) According to (namer), the conclusion S 
A U has premise S 
A

E(U) ⇒ A′. By the inductive hyphothesis, S <: E(U). Being E(U) <: U,
we conclude S <: U by transitivity.

(⇐) Let S <:T and, for every (U, R) ∈ A: U <:R. To verify that S 
A T ⇒ A′

we construct a proof tree. The argument is by induction on the structure of the
triple (n, ‖S‖, ‖T ‖), where n is |(names(S + T ) × lsubt(S + T )) \ A|. The base
cases are: (1) S = ⊥, then, we conclude by (bot); (2) T = ⊥, then, by Lemma 1,
S is empty and S <:T is immediate; (3) S = U and n = 0, then (U, T ) ∈ A and
we conclude by (namel); (4) ‖S‖ = 0 then S is empty and lemma 1 applies.
The inductive cases are discussed with a case analysis on the structure of S.

– If S = () then T ↓ (). The proof of () 
A T ⇒ A′ is constructed by induction
on the derivation of T ↓ (). Every application of “T1 + T2 ↓ () if T1 ↓ ()
or T2 ↓ ()” corresponds to an instance of (unionr); every application of
“U ↓ () if E(U) ↓ ()” corresponds to an instance of (namer).

– If S = 〈S′〉κ then T ↓ 〈〉κ′
(T ′). The proof 〈S′〉κ 
A T distinguishes several

sub-cases depending on the capabilities. When κ = i, S′ <:T ′ and, by in-
ductive hypothesis, we obtain S′ 
A T

′ ⇒ A′. The proof of S′ 
A T
′ ⇒ A′

is extended to one of 〈S′〉κ 
A T ⇒ A′ by arguing on the derivation of
T ↓ 〈〉i(T ′). The details are similar to the case when the handle is (). Same
arguments apply when κ = o and κ = io.

– If S = L[S′],S′′, we assume that both S′ and S′′ are not empty, otherwise
we conclude by Lemma 1. There are two subcases: (1) T ↓ L′(T ′ ; T ′′) with
L̂ ⊆ L̂′, S′ <:T ′, and S′′ <:T ′′; (2) T ↓ Li(T ′

i ; T ′′
i ), L̂∩ L̂′

i 
= ∅. L ⊆
⋃

i∈I L̂i

with |I| > 1, S′ <:T ′
i , and S′′ <:T ′′

i . In case (1), S′ 
A T ′ ⇒ A′ and of
S′′ 
A′ T ′′ ⇒ A′′ follow by inductive hypothesis. Then we use the derivation
of T ↓ L′(T ′ ; T ′′) to complete the proof as in the case of ().
In case (2), T = T ′ + T ′′ with T ′ ↓ Li(T ′

i ; T ′′
i ), i ∈ I ′ and T ′′ ↓ Li(T ′

i ; T ′′
i ),

i ∈ I ′′ where I = I ′ ' I ′′ and the labels are pairwise disjoint (because T is
labelled-determined). We therefore have S′ <:T ′

i and S′′ <:T ′′
i for every i.

Let L̂′ =
⋃

i∈I′ L̂i, we may derive (L∩L′)[S′],S′′ <:T ′, (L\L′)[S′],S′′ <:T ′′,
∅ � L̂ ∩ L̂′ � L̂′. We conclude by inductive hypothesis and (lseq).

– If S = S′+S′′ then S′ <:T and S′′ <:T . By inductive hypothesis it is possible
to prove S′ 
A T ⇒ A′ and of S′′ 
A′ T ⇒ A′′. We conclude by (unionl).

– If S = U, we may use the rules (nameh) or (namel). (nameh) allows us to
close the branch of the proof tree, (namel) allows us to reduce to one of the
previous cases. (namel) unfolds the schema U. Since there are finitely many
constants in E(U) (because E is finite) (namel) may be used finitely many
times in a single branch of the proof tree of S 
A T ⇒ A′ before saturating
the set A. /.
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Abstract. We define a core language combining computational and architectural
primitives, and study how static typing may be used to ensure safety properties
of component composition and dynamic reconfiguration in object-based systems.
We show how our language can model typed entities analogous of configura-
tion scripts, makefiles, components, and component instances, where static typ-
ing combined with a dynamic type-directed test on the structure of objects can
enforce consistency of compositions and atomicity of reconfiguration.

1 Introduction

In current object-oriented programming practice, composition-based modularization
seems to have become the most common structuring mechanism, reflecting a shift of
programming style from a pure, inheritance-based object-oriented style, towards the so-
called “component-based programming” idioms, which favor blackbox composition.

Notwithstanding the proposal of many sophisticated type safe approaches to mod-
ule and class composition [2, 5, 6, 10], the mechanism most frequently used to structure
object-oriented applications in the “component-oriented” style is the ad-hoc assembly
of webs of objects, where individual elements refer to each other through references.
Since the code for construction of object structures is not distinguished at the program-
ming language level from any other code, static checking of architectural consistency
(of the kind found, for example, with ML functors or mix ins) is not performed dur-
ing type checking, and may cause hard to correct errors to show up only at runtime.
Moreover, the widespread use of sophisticated mechanisms such as dynamic loading,
and mobile code, in mainstream programming frameworks adds relevance to the issue
of finding expressive and safe programming constructs to dynamically build and recon-
figure applications by aggregation and replacement of components and objects.

In previous work [13], we had presented a programming calculus with the aim to
capture essential ingredients of object-oriented component programming styles, such
as explicit context dependence, subtype polymorphism at the level of both components
and objects, late composition, and avoidance of inheritance in favor of composition. A
type system was also defined, with types assigned to (first-class) components and ob-
jects, thus ensuring runtime safety of compositions. However, although in such a model
components may be dynamically composed, the structure of objects gets fixed once for
all at instantiation time, thus excluding any possibility of dynamic reconfiguration.

In this paper, we present a new core component-oriented programming language,
obtained by extending a λ-calculus with imperative records with a minimal set of archi-
tectural primitives. Moreover, we develop a type system that statically enforces, besides
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Fig. 1. Composition, Instantiation and Reconfiguration

the absence of more usual runtime errors, consistency of component compositions and
atomicity of dynamic reconfiguration.

Our design is semantically motivated by considering a domain of configurators,
components, and objects; all such entities are first-class in our model. Intuitively, con-
figurators correspond (by analogy) to the usual notion of “makefile”. Essentially, each
configurator contains a series of instructions (architectural primitives) about how to
assemble a component. Thus, language expressions that evaluate to configurator val-
ues may be seen as counterparts of configuration scripts, the kind of programs used in
software configuration management systems to dynamically generate makefiles. Con-
figurators which do not refer to external entities may generate components, by means of
a compose primitive. Components are linked pieces of code (cf., a class or a module),
that may be further composed with other components and scripting code, in configura-
tion scripts, or instantiated, by means of a new primitive, to yield objects. Methods can
then be called on the appropriate ports of an object, in order to invoke its services. Addi-
tionally, configurators may also be applied to objects, by means of a reconfig primitive,
to dynamically reconfigure their internal structure. The relation between configurators,
components and objects, w.r.t. is hinted to in Figure 1. Intuitively, the object o′ ob-
tained from instantiating a component constructed from a configurator c and afterwards
reconfigured by the configurator c′, is structurally indistinguishable from the object in-
stantiated from a component built from the composition of configurators c; c′ (although
of course not behaviorally indistinguishable, since objects are stateful).

In our language, expressions denoting configurators, components and objects are
distinguished at the level of typing, rather than at the syntax level, where they may be
freely combined. For example, configurator types carry not only extensional but also
intensional information, describing the internal architecture of the target component,
while component (and object) types are purely extensional as usual, describing only
the composition capabilities of a component in terms of required and provided service
interfaces. Intensional information is needed to type configurator values, and ensure
safety of component composition and dynamic reconfiguration.

It is expected that the soundness of any expressive notion of dynamic reconfigu-
ration will turn out hard to ensure by purely static typing means, if one also wants to
preserve object-level information hiding in the programming language. It is therefore
important to explore the language design space involving combinations of static and
dynamic checking, we believe to have isolated such an interesting combination. Thus,
in our present proposal, type checking statically ensures good behavior of configura-
tors, that is, that components built from well-typed configurators are architecturally
consistent, and that objects instantiated from well-typed components are free from
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runtime errors. Additionally, it is also ensured that objects reconfigured from well-
typed configurators will always be architecturally consistent and free from runtime
errors. These safety properties are crucial in our model, where both components and
configurators are stateless first-class values that can be freely manipulated and com-
posed in a language which is closed under abstraction and application. For example, it
is conceivable for a software distribution system to export both a component set and a
configuration script to a client, who will later on run the script, after composing it with
local configuration information, to produce a certain subsystem. Such a scenario can be
easily modeled in our language, in a typeful way.

We now illustrate the fundamental features of our language using a toy example; for
the effect we assume to be given notions such as interfaces and method declarations with
their standard meanings. Let ICounter be the interface type { tick : int→ int}, declaring
a method tick , and consider the following definition of a component Counter

l e t Counter = compose(
provides p : ICounter ;
x [ s : i n t =0 , t i c k : ( i n t → i n t )= fun y : i n t → x . s := s+y ] ;
plug x into p ) in . . .

As argument of the compose operation, we find a configuration expression, namely a
sequence of operations each of which introduces a particular element of a counter’s
architecture. First, a provided port named p, then a block of methods named x (im-
plementing the method tick ) and a state variable s, and finally a connection between
the two, using the plug operation. Hence, object instances of component Counter will
implement a port p conforming to the interface type ICounter. The type of Counter is
{} ⇒ {p:ICounter}, meaning that it has no required services to be instantiated, and that
their instances implement, at port p, the interface ICounter. Component Counter can
then be instantiated, yielding an object o, by the expression

l e t o = new Counter in ( o . p . t i c k ( 1 ) ; o . p . t i c k ( 1 ) )

Component Counter may also be used as an element to define other components, for ex-
ample, a ZeroCounter component, whose instances will count all calls to tick performed
with zero as argument.

l e t ZeroCounter = compose (
provides p :{ t i c k : i n t → i n t } ;
c [ Counter :{}⇒{p : ICounter } ] ;
x [ t i c k : i n t → i n t =

fun y→ i f y=0 then c . p . t i c k ( 1 ) ] ;
plug x into p ) in

Here, component Counter is inserted in the architecture of ZeroCounter under the name
c (in c [... ]), and used in the composition context (in c.p. tick (1)). The component
ZeroCounter may then be used to build other components, or instantiated as in

l e t zc = new ZeroCounter in . . .

Now, suppose that a ZeroCounter object, such as zc, is running in a server application,
and the need arises of extending it with a new service, to reset the inner counter, without
shutting it down: clearly, this is a situation calling for a dynamic reconfiguration facility.
Consider then the following (re)configuration script:
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l e t AddReset =
( provides r :{ r ese t : unit → unit } ;
y [ r e se t : unit → unit =

i f c . get ()>0 then c . p . t i c k (−1); y . r e se t ( ) ] ;
plug y into r ) in . . .

Configurator AddReset adds a provided port r, to expose the new reset method, im-
plemented by the method block y. Notice that the architectural operations used in the
definition of AddReset refer to elements (e.g., c) which are not declared in the static
context of definition (and thus may be seen as white-box operations). However, the
context of use is captured at the type level, with configurator AddReset being given
configurator type

{c•{p : ICounter}}=⇒
{c•{p : ICounter } , r�{ r ese t : unit → unit } , y•{ r ese t : unit → unit }}

Configurator types are of the formK =⇒ K ′, where the two bags of “resources”K and
K ′ describe the change of internal elements in a configuration; each resource is tagged
with its (object or interface) type. The type of AddReset states that the configurator may
be applied in every context where an element c of (object) type {p:ICounter} is present
(the • resource on the left hand side). It also says that, after application, c remains
available, alongside with a (new) provided port r (the � resource on the right hand side)
and a (new) method block y. The following expression

reconfig zcr = AddReset [ zc ] in ... use of zcr... else ... use of zc ...

has then the effect of actually reconfigure the object zc, returning a properly typed
reference zcr to the updated object that implements the reset service at a new port r. In
general, a reconfiguration may not be possible, due to a mismatch between the internal
structure of the object to be reconfigured (which is not visible to the type system) and
the precondition of the configurator. In any case, the type system ensures the atomicity
of reconfiguration, i.e. that either the reconfiguration is fully applied as specified by
the configurator, and the resulting object is well defined (in branch), or the object is
not modified (else branch). This property is a consequence of static typing, at the level
of configurator values, and of a simple and efficient test on type information recorded
inside objects, in the spirit of [1], realized at reconfiguration time.

Although not illustrated here, it is possible for a component’s implementation to
depend, through a required port, on some external implementations of an interface.
Whenever a component with required ports is instantiated or new required ports are
added through reconfiguration then both new and reconfig expressions must provide
compatible implementations to each required port. This is achieved by a special with
clause containing multiple assignments.

Related Work. To the best of our knowledge, the calculus presented in [13] was a first
proposal to integrate computation and (first-class) architectural definition in the context
of a object-oriented strongly typed programming language. Programming languages
supporting first-class components have been studied by several authors [2, 10, 17],
although not considering dynamic reconfiguration of instances. More related to our
model are the module calculi of [3, 11, 12, 19] which also introduce composition oper-
ations for first-class modules and mixins: in these approaches the module language is
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stratified on top of a core language. While relying on a different choice of primitives,
inherited from our early work [13], we believe that our approach is particularly suitable
as a basis for defining component-based languages where computational and configu-
ration / reconfiguration operations may be freely combined (modulo typing constraints)
at the same level. More recently, the work in [9] has extended the approach of [3] with a
form of dynamic reconfiguration that allows for the interleaved execution of the module
manipulation operations and the core language expressions. This seems to correspond
to some form of dynamic composition, while we consider the in-place modification of
the internal structure of (potentially aliased) stateful objects.

From the perspective of software evolution, several works [4, 8, 16] have addressed
the operational semantics and type structure of software systems that support dynamical
change of modules. In these approaches, modules implement ADTs, and the focus is on
version management of values of such abstract types. In our model, components do not
usually represent ADTs but rather service providers, and we concentrate on dynamic
reconfiguration of architectures, rather than on individual replacement of a module’s
implementations.

Forms of dynamic reconfiguration for object-oriented languages involving a fixed
predetermined number of future configurations, have also been considered by [7]. In this
work, we aimed to model unanticipated reconfiguration using first-class typed notions
of (re)configuration scripts, thus following an approach that does not seem to have been
explored before. In this context, the fundamental work of [18] on meta-programming
and staged programming languages also appears to bear some relation to our devel-
opment here, even if our focus is on isolating first class semantic entities related to
software assembly, rather than on how to express and type source (meta)level program
manipulations.

Outline. The remainder of the paper is organized as follows: Section 2 formally presents
the language syntax. The operational semantics is introduced in Section 3. In Section 4
we present the type system, and state the main type safety results. Finally, we conclude
with some remarks on this work, and suggest possible developments.

2 The Component Calculus

In this section, we introduce λχ, a component-based calculus aimed at capturing the
programming model motivated above. The language is a simply typed λ-calculus with
mutable records enriched with primitives to build and manipulate components. The
types of λχ are shown in Figure 2. Besides standard functional types, we include types
for interfaces and mutable records, components and configurators. Not all type expres-
sions are meaningful, for example, in a component type τ ⇒ σ, τ and σ are expected
to be object types, expressing the required and provided services of the component: the
type system presented below will only accept meaningful type expressions.

Configurator types describe the effects of configurators on compositions, expressed
in the form of required and provided resources (do not confuse with required and pro-
vided service ports). A resource is represented by a combination of a tag, a name, and
a type. The possible tags are: ◦ (open), meaning that the resource is unsatisfied, for in-
stance, that a provided port is not connected; •, meaning that the resource is available



Types for Dynamic Reconfiguration 219

τ, σ ::= types
τ → σ function

| {|�i : τi
i∈1..n|} record

| {�i : τi
i∈1..n} interface

| τ ⇒ σ component
| {ri

i∈1..n} =⇒ {ri
i∈1..m} configurator

r ::= π ◦ τ | π • τ | π � τ | π  τ resources

e ::= x | λx : τ .e | e(e) | [�i : τi = ei
i∈1..n] | e.� | e.� := e

| compose e | new e with �i := ei
i∈1..n

| reconfig x = e[e] with �i := ei
i∈1..n in e else e

| c
c ::= e; e | requires � : τ | provides � : τ | plug π : τ into π : τ

| x[e : τ ] | xK [�i : τi = λxi : τi.ei
i∈1..n]

π :: = x | � | x.�

Fig. 2. Types and terms for λχ

for connection, for instance a certain method block or inner component is present; �
denotes that a provided port is present, and # denotes that a required port is present.
Typically, at the level of typing, composition operation rewrites a bag of resources into
another bag of resources, reflecting the internal change that takes place in the compo-
nent architecture. In general, we use K to denote resource sets. We also define K∗ to
be the interface type containing all resources tagged with ∗ in K where ∗ may be ◦,
•, �, or #. For example, K• is {�i : τi

i∈1..n} where �i • τi for i = 1..n are all the •-
tagged elements in K . We use I , J for interface types and R, P for object types, i.e.
interfaces of the form {�i : Ii

i∈1..n}. We denote by −⊕− the concatenation operation
on interfaces, and by−#− the disjointness predicate for interfaces and resource sets.

We define the syntax of λχ on Figure 2, based on a standard formulation for an
imperative λ-calculus, enriched with three new imperative expressions of interest,
compose, new, and reconfig. Additionally, a set of primitive composition operations
are defined (under syntactic category c), each being a canonical configuration script
represented at runtime by a configurator. These configurators are typed stateless values
programmed to produce a specific structural effect on an architecture, either in the con-
struction of a component or in the reconfiguration of an instance. They are combined un-
der a white-box discipline by the composition operation (e1; e2), which means that any
element introduced by e1 can be referred and connected to elements introduced by e2.

The typed and named ports of a component are declared by (requires � : τ ) to im-
port a service and by (provides � : τ ) to declare a port exporting a service; (x[e : τ ])
to introduce in the architecture a component, resulting from evaluating e. Such an ele-
ment is referred in the composition context by the local name x. Basic building blocks
containing method implementations are introduced by (yK [�i : τi = λxi : τi.ei

i∈1..n])
and referred by the local name y. Notice that the set of resources K declares explicit
architectural dependencies from other elements at the same compositional level, allow-
ing references to them to be made inside the expressions of the methods. Connections
between elements in architectures are created by (plug π1 : τ1 into π2 : τ2) expressions,
declaring that method invocations at port π2 should be redirected to port π1.
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Given an expression e denoting a configurator with no required resources,
compose e yields a component value which “freezes” the configurator’s architecture
in a component value in such a way that it can only be further composed using black-
box operations (by means of a composition operation x[c : τ ]). Component values can
be instantiated, with new, to yield objects. Notice that these objects will be fully op-
erational only if all of their required ports get actually linked to compatible imple-
mentations. Such dependencies may either be satisfied in a composition context, or by
plug-assignments (with clause) in a instantiation expression.

In a reconfiguration expression reconfig x = e1[e2] with �i := e′i
i∈1..n in e3 else e4,

the distinguished occurrence of x is binding, with scope e3 and e4. If a reconfiguration
is successful, the e3 branch will be executed, with x denoting the reconfigured instance
(at the “new” type), otherwise the fail branch e4 will be chosen. Moreover, since the
configurator e1 may add new required ports to the instance new values must be assigned
to them by plug-assignments.

3 Operational Semantics

In this section, we present the semantics of our language. Technically, this will be ac-
complished with big-step operational semantics, using judgments of the form e;S ↓
v;S′, where e is an expression and S a heap, v is the value of e and S′ is the resulting
heap. An heap S is an assignment of values v to locations l from a set of locations Loc,
along standard lines. The values of λχ are listed in Figure 3.

v :: = λx : τ.e | r | conf(τ,c) | comp(c) | (r, r, r)Γ | l | nil
r :: = {�i �→ li

i∈1..n}

Fig. 3. Evaluation results

As expected, the more basic values are abstractions, and mutable records, which are
in our current context finite mappings from labels to locations. A configurator value,
of the form conf(τ, c), is a pair that packs the runtime representation of a sequence of
instructions to construct or change the architecture of a component, with a configurator
type τ that specifies a precondition on its application. Thus, configurators embed some
type information at runtime, to be used in a dynamic check during the evaluation of
reconfiguration expressions. A component value, of the form comp(c), is the runtime
representation of a sequence of instructions to construct or change the architecture of a
component. Notice that configurator and component values are pure values, while object
instances are (of course) stateful entities, constructed as specified by their generating
component. An object value (component instance), is a triple of records of the form
(r, e, p)Γ where the labels in r refer to its required ports, the labels in e refer to its
inner elements, and the labels in p their provided ports. Γ is a local typing environment
assigning types to the object’s internal elements, useful for checking the precondition
of a configurator. For the sake of simplicity we sometimes refer to an object value s
by the single record obtained by concatenating the three records r, e and p in s. Let
s = (r, e, p)Γ be an object, we write s� to denote the record r containing the required
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ports in s, Γs to denote Γ in s and s� ⊕ s• to denote the concatenation of the records r
and e. We write Γ (s�.�) = τ for s� = {. . . � �→ l . . .} and Γ (l) = τ .

We write {li �→vi
i∈1..n} to define a heap, S(l) to denote the value associated to

l in S, S[l �→ v] to denote a heap S updated with a new relation, and Dom(S) to
denote the domain set of S. We say that a heap S is closed if all locations occurring
in S are elements of Dom(S). We define new(S) � l such that l ∈ Loc\Dom(S),
and use it in the operational semantics to denote a fresh memory location. Notice that
since locations are values, cyclic chains of locations may potentially exist in a heap,
leading from a location to itself after a number of indirections. We say that a location
participating in such a cycle is undefined. Such cyclic reference chains may only
be introduced if components with vacuous connections, connecting a provided port to
a required port, are defined.

The rules defining the operational semantics of λχ are listed in Figures 4, 6, and 7.
The “main” judgment form is mutually dependent on a second judgment form, s; c;S ⇓
s′;S′. This defines the application of a composition operation c to a

(Eval Value)
v; S ↓ v; S

(Eval Call)
e1; S ↓ λx : τ.e; S′ e2; S′ ↓ v; S′′ e[x←v]; S′′ ↓ v′; S′′′

e1(e2); S ↓ v′; S′′′

(Eval Record) (l,li = new(S) ∀i∈1..n)
ei; Si−1 ↓ vi; Si ∀i∈1..n

[�i = ei
i∈1..n]; S0 ↓ l; Sn[l �→ {�i �→ li

i∈1..n}][li �→ vi
i∈1..n]

(Eval Assign)
e1; S ↓ l; S′ l′ = derefS′(l)

S′(l′) = {. . . , � �→ l′′, . . .}
e2; S′ ↓ v; S′′

e1.� := e2; S ↓ v; S′′[l′′ �→ v]

(Eval Select)
e; S ↓ l; S′ l′ = derefS(l)

S′(l′) = {. . . , � �→ l′′, . . .}
e.�; S ↓ S′(l′′); S′

(Eval Compose)
e; S ↓ conf(τ, c); S′

compose e; S ↓ comp(c); S′

(Eval New) (s� = {�i �→li
i∈1..n}, l = new(S))

e; S ↓ comp(c); S′ 0; c; S′ ⇓ s; S0 ei; Si−1 ↓ vi; Si ∀i∈1..n

new e with �i := ei
i∈1..n; S ↓ l; Sn[l �→ s][li �→vi

i∈1..n]

(Eval Reconfig) (s′
� = s� ⊕ {�i �→li

i∈1..n})

e1; S ↓ conf(K =⇒ K′, c); S′

e2; S′ ↓ l; S0 s = S0(l) s//K

s; c; Sn ⇓ s′; Sn+1

fi; Si−1 ↓ vi; Si ∀i∈1..n

e3[x←l′]; Sn+1[l′ �→ s′][li �→vi
i∈1..n] ↓ v; S′′′′

reconfig x = e1[e2]
with �i := fi

i∈1..n

in e3 else e4

; S ↓ v; S′′′

(Eval Reconfig Else)
e1; S ↓ conf(K =⇒ K′, c); S′

e2; S′ ↓ l; S′′ s = S′′(l) ¬s//K

e4[x←l]; S′′ ↓ v; S′′′

reconfig x = e1[e2]
with �i := fi

i∈1..n

in e3 else e4

; S ↓ v; S′′′

Fig. 4. Evaluation of computational expressions
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(Match Provides)
Γs(s�.�) = τ s//K

s//� � τ , K

(Match Requires)
Γs(s�.�) = τ s//K

s//� � τ , K

(Match Element)
Γs((s� ⊕ s•).�) = τ s//K

s//� • τ , K

(Match Element Port)
S(s•.x) = s′ Γs′(s′

�.�) = τ s//K

s//x.� • τ , K

(Match Unsatisfied)
Γs(s�.�) = τ s//K

s//� ◦ τ , K

(Match Unsatisfied Port)
S(s•.x) = s′ Γs′(s′

�.�) = τ s//K

s//x.� ◦ τ , K

Fig. 5. Rules for matching

(Eval Requires) (σ = ∅ =⇒ {� • τ, � � τ})

requires � : τ ;S ↓ conf(σ, requires � : τ );S

(Eval Provides) (σ = ∅ =⇒ {� ◦ τ, � � τ})

provides � : τ ;S ↓ conf(σ, provides � : τ ); S

(Eval Plug) (σ = {π2 ◦ τ, π1 • τ} =⇒ {π1 • τ})
plug π1 : τ into π2 : τ ;S ↓ conf(σ, plug π1 : τ into π2 : τ );S

(Eval Sequence)
e1; S ↓ conf((K =⇒ K′, Kc),c1); S′ e2; S ↓ conf((Kc, K

′′ =⇒ K′′′),c2); S′

(e1; e2); S ↓ conf((K, K′′ =⇒ K′, K′′′),(c1; c2)); S′

(Eval Uses)
τ = {�r

i : τi
i∈1..n}, σ = {�p

j : σj
j∈1..m}

K = {x • σ, x.�r
i ◦ τi

i∈1..n, x.�p
j • σj

j∈1..m}
e; S ↓ v; S′

x[e : τ ⇒ σ]; S ↓ conf(∅ =⇒ K, x[v : τ ⇒ σ]); S′

(Eval Method Block) (σ = K =⇒ K, x • {�i : τi
i∈1..n})

xK [�i : τi = vi
i∈1..n]; S0 ↓ conf(σ, xK [�i : τi = vi

i∈1..n]); S

Fig. 6. Evaluation of Composition Operations

composition context s with relation to a heap S, and resulting in a modified object
instance s′ and heap S′. s is a partially built instance where the effects of composition
operations get accumulated during composition. To dereference a chains of locations in
the heap to its target value we introduce the auxiliary function derefS(l) that denotes
the last location of a chain starting with l. derefS(−) is useful to make the mapping
from locations to values independent of the number of heap indirections, created during
plug operations.

We now discuss some key aspects of the operational semantics. For simplicity, in
the rules of Figure 6, the basic composition operations provides, requires, and plug,
evaluate to themselves, and are directly stored in configurator values along with appro-
priate intensional type information. Since the fields of method blocks (code) are, by
definition values of the language, they may also directly stored inside a configurator
value. In the case of the introduction of an inner component (x[e :τ ]) the resulting value
depends on the evaluation of the inner expression e to a component which then forms
a composition operation (x[v : τ ]) where v is again a value, then stored in a configura-
tor. The combination of two operations, Rule (Eval Sequence), produces a configurator
containing the composition of the two operands. Notice that the new type information
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in the sequential composition is obtained from the manifest information of both parts.
In general, the type annotations in configurators are constructed in a mechanical way,
we will later show that in well-typed programs this computations always succeed.

The evaluation of a compose, Rule (Eval Compose), simply tags a configurator as
being a closed architecture by means of a comp constructor, enclosing its composition
operation. Such a configurator may not be further combined by composition with other
configurators, but only to instantiate objects.

The evaluation of the instantiation expression new uses the configuration instruction
stored in the component value, applying them to an “empty” object instance, written 0.
This is expressed in Rule (Eval New) by the premise 0; c;S ⇓ s;S′. Required ports left
open by the application are satisfied by the values given by the plug-assignments.

A reconfiguration depends on a (runtime) test, to check that a configurator is in fact
compatible with the structure of a given instance. Formally, we specify that a configu-
rator with precondition type K is applicable to s if the matching s//K test (defined in
Figure 5) holds. Intuitively, an instance s = (r, e, p)Γ matches a set of resources K if
each one of the resources in K can be found, with compatible types, in r, e, or p.

The evaluation of reconfig expression, is thus defined by two rules (Eval Reconfig)
and (Eval Reconfig Else), that consider the two possible outcomes of a matching test.
Rule (Eval Reconfig) is applicable if the test s//K succeeds and the composition
operation c, taken from the configurator yield by e1 is applied to s, the instance ob-
tained from e2. The final result comes from evaluating e3. Rule (Eval Reconfig Else) is
applicable otherwise, it skips the application of the composition application and follows
by evaluating the else branch. Notice that only the required resources (in the precondi-
tion) in the runtime type information are used to test the instance. The added resources
(in the type’s post condition) are nevertheless important in the process of building the
type information (see (Eval Sequence)).

The rules in Figure 7, for the judgement form s; c;S ⇓ s′;S′, interpret the applica-
tion of a composition operation c to a partially built instance s, with relation to a heap
S, and incrementally build an object instance.

As expected, Rule (App Sequence) sequentially applies the two parts of the opera-
tion thus causing the combined effect of both. (App Requires) and (App Provides) both
create nil initialised references (empty placeholders) in the heap for ports, and establish
the corresponding connections in the records r or p.

The integration of a inner component instance inside an instance depends on the
(recursive) construction of the inner instance, and corresponding introduction as an in-
ner element of the instance in record e. Similarly, (App Method Block) takes the field
values and builds a record associated to its local name. Here, vi[(r, e, p)Γ ] denotes the
substitution of the object’s labels by their locations in the fields and therefore give ac-
cess to the elements already in the instance and that [x ← l] introduces the “self”
reference of the method block itself in the field expressions.

Finally, the application of a plug expression connects plug sources to target ports
by simply forming a chain between the two locations, Rule (App Plug). We use the
function selectS(o, π) to denote the location corresponding to port π. Notice how the
runtime type annotation of an object is progressively built on each rule, and added to the
Γ component. The resulting object is then a structured web of ports, other objects, and
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(App Requires) (l = new(S))

(r, e, p)Γ ; (requires � : τ );S ⇓ (r ⊕ {� �→ l}, e, p)Γ,l:τ ; S[l �→ nil]

(App Provides) (l = new(S))

(r, e, p)Γ ; (provides � : τ ); S ⇓ (r, e, p⊕ {� �→ l})Γ,l:τ ; S[l �→ nil]

(App Uses)
new v; S ↓ l; S′

(r, e, p)Γ ; x[v : τ ];S ⇓ (r, e⊕ {x �→ l}, p)Γ,l:τ ; S′

(App Sequence)
s; c1; S ⇓ s′; S′ s′; c2; S′ ⇓ s′′; S′′

s; (c1; c2); S ⇓ s′′; S′′

(App Method Block)

l,li
i∈1..n = new(S),

S′ = S[l �→ {�i �→li
i∈1..n}][li �→vi[(r, e, p)Γ ][x←l] i∈1..n]

(r, e, p)Γ ; xK [�i:τi = vi
i∈1..n]; S ⇓ (r, e⊕ {x �→ l}, p)Γ,l:{|�i:τi

i∈1..n|}; S
′

(App Plug)
s; plug π1:τ1 into π2:τ2; S ⇓ s; S[selectS(s, π2) �→ selectS(s, π1)]

Fig. 7. Application of Configurators

records containing variables and methods. Methods can be accessed through provided
ports, that lead to appropriate implementations as specified by the object’s architecture.

4 Type System

In this section we present a type system for λχ. Well-typed programs are ensured to be
well behaved, in the sense motivated in the introduction, and made precise below.

Our type system includes rules for typing computational expressions (Figure 8),
and rules for typing compositional expressions (Figure 9). Typing environments (Δ,Γ )
assign types to variables, as usual, and also to locations (this is only useful for stating
our subject reduction result). The rules for the λ-calculus and imperative records are
standard. Rule (Val Interface) allows us to coerce a record type to an interface type.

The architectural soundness of configurators, components and instances is ensured
by the combination of the typing of composition operations in Figure 9 together with
the typing of the compose, new and reconfig. On one hand, the typing of composition
operations intentionally describes and combines their effect, on the other hand, the typ-
ing of computational expressions uses that information in three levels of visibility. Rule
(Val Compose) ensures that components are only produced given a completed archi-
tecture, i.e. from configurators that do not depend on any existing resource (∅ =⇒ K)
and leave no unsatisfied resources left open (K◦ = ∅). The resulting component type
K� ⇒ K� reveals only the required and provided service types, hiding the remaining
intensional information about the component internal structure. Thus, a component is
indistinguishable from any other with the same type. Rule (Val New) types a new in-
stance with the object type containing the provided ports of its generator component
and checks for the proper satisfaction of all required ports, if there are any. Notice that
once again some type information gets hidden: here, the existing required ports are not
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(Val Var)
x : τ ∈ Δ

Δ 
 x : τ

(Val Abstraction)
Δ, x : τ 
 e : σ

Δ 
 λx : τ .e : τ → σ

(Val Application)
Δ 
 e1 : τ → σ

Δ 
 e2 : τ

Δ 
 e1(e2) : σ

(Val Interface) (m ≤ n)

Δ 
 e : {|�i : τi
i∈1..n|}

Δ 
 e : {�i : τi
i∈1..m}

(Val Record)
Δ 
 ei : τi ∀i ∈ 1..n

Δ 
 [�i : τi = ei
i∈1..n] : {|�i : τi

i∈1..n|}

(Val Select)
Δ 
 e : {. . . , � : τ, . . .}

Δ 
 e.� : τ

(Val Assign)
Δ 
 e1 : {| . . . , � : τ, . . . |}
Δ 
 e2 : τ

Δ 
 e1.� := e2 : τ

(Val Compose) (K◦ = ∅)
Δ 
 e : ∅ =⇒ K

Δ 
 compose e : K� ⇒ K�

(Val New)
Δ 
 e : {�i : τi

i∈1..n} ⇒ σ
Δ 
 ei : τi ∀i∈1..n

Δ 
 new e with �i := ei
i∈1..n : σ

(Val Reconfig) K′
◦ = ∅, K′

�#I, K′
� = {�i : σi

i∈1..n}

Δ 
 e1 : K =⇒ K′ Δ 
 e2 : I Δ 
 e′
i : σi ∀i∈1..n

Δ, x : I ⊕K′
� 
 e3 : δ Δ, x : I 
 e4 : δ

Δ 
 reconfig x = e1[e2] with �i := e′
i

i∈1..n in e3 else e4 : δ

Fig. 8. Typing Rules for Computational Expressions

included in the instance type. Hence, the type system does not distinguish instances of
components providing the same ports.

Despite the dependence of reconfiguration on a runtime check, some basic confor-
mance between the configurator type (K =⇒ K ′) and the type of the target object (τ )
is tested statically in the (Val Reconfig) rule. We basically use K ′ to ensure that the
continuations of reconfigurations are well-typed, in particular: that no dependencies are
left open after the application (K ′◦ = ∅); that the configurator does not override the
object’s ports (K ′

�#I); and that all new requirements must be correctly satisfied by the
existing plug assignments, (K ′

� −K� = {�ri : σi
i∈1..m}).

The rule system of Figure 9 assigns a type of the form K =⇒ K ′ to each compo-
sition operation to denote the required (K) and provided (K ′) resources. Basic compo-
sition operations get natural configurator types, which are then elaborated by means of
composition. For instance the type of (provides � : τ ) indicates the providing of an un-
satisfied resource (� ◦ τ ), i.e. a resource that must be satisfied before this configurator is
used to make a component or reconfigure an instance, and of a new provided port (� � τ ).
Symmetrically, (requires �:τ ) adds a new required port (� # τ ) and an available resource
(� • τ ) to a composition context. The typing of (x[e : τ ]) indicate that it adds available
resources corresponding to an instance of the inner component (x • {�pj : σj

j∈1..m})
and its provided ports (x.�pj • σj

j∈1..m), and unsatisfied resources that denote the in-
ternally required ports (x.�ri ◦ τi

i∈1..n). Similar type information is associated with
method blocks but using the required set of resources K . Notice the restricted typing
environment |Δ| in the premises of Rule (Comp Method Block), and (Comp Uses). |Δ|
denotes the typing environment retaining the type assignments in Δ that have com-
ponent or configurator type. This forbids any reference to the heap to be made from
well-typed method blocks, and therefore ensures that configurators are closed values.
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(Comp Requires)
Δ 
 (requires � : τ ) : ∅ =⇒ {� • τ, � � τ}

(Comp Provides)
Δ 
 (provides � : τ ) : ∅ =⇒ {� ◦ τ, � � τ}

(Comp Plug)
Δ 
 plug (π1 : τ ) into (π2 : τ ) : ({π2 ◦ τ, π1 • τ} =⇒ {π1 • τ})

(Comp Sequencing) (K′#K′′, K′#K′′′)
Δ 
 e1 : K =⇒ K′, Kc Δ 
 e2 : Kc, K

′′ =⇒ K′′′

Δ 
 (e1; e2) : K, K′′ =⇒ K′, K′′′

(Comp Uses) (τ = {�i : τi
i∈1..n}, σ = {�′

j : σj
j∈1..m})

|Δ| 
 e : τ ⇒ σ

Δ 
 x[e : τ ⇒ σ] : ∅ =⇒ x • σ, x.�i ◦ τi
i∈1..n, x.�′

j • σj
j∈1..m

(Comp Method Block)

|Δ|, x : {|�i : τi
i∈1..n|}, K• 
 ei : τi ∀i∈1..n

Δ 
 xK [�i : τi = ei
i∈1..n] : K =⇒ K, {x • {�i : τi

i∈1..n}}

Fig. 9. Typing Rules for Composition Expressions

Rule (Comp Sequencing) combines the effect of two expressions. This rule shows the
propagation of resources (Kc) from e1 to e2, meaning that e2 handles these resources
either by keeping them in K ′′′ or by consuming them.

For a sequence of composition operations to be accepted in a compose expression it
must denote a complete architecture, in particular the set of unsatisfied resources must
be empty (K◦ = ∅). The elimination of these resources from the types is captured by the
typing of plug operations: they are typed as having a required resource (π2 ◦ τ ) that is
not propagated to the set of provided resources. This denotes the satisfaction of internal
dependencies in a composition. We now state and characterize type safety in λχ.

Type safety is a corollary of our main theorem (Theorem 1) that, as a side effect
of the traditional progress and type preservation properties, implies the architectural
soundness of configurators, components and instances (before and after a reconfigura-
tion action). First, our language is extended with a distinguished value, wrong, to which
an expression evaluates whenever a runtime error occurs. A runtime error is defined to
occur whenever an operation is undefined, this includes usual cases such as: application
of a value which is not an abstraction, assignment to a value which is not a location,
selection of a field on a value which is not a record or does not possess the relevant
label (notice that this case includes calling a method on a null reference), and so on.
Essentially, we include all situations in which the operational semantics is undefined.

In order to prove subject reduction for expression evaluation, we rely on a auxiliary
lemma that establishes subject reduction with respect to the application of composition
operations, and is used when analysing the cases of the new and reconfig expressions,
where composition and reconfiguration steps take place. The proof of this lemma relies
on certain special type annotations, of the form [[τ ⇒ σ]], that keep track, during the
process of constructing an object instance from its generating component, of its unsat-
isfied required ports (τ ) on one hand, and of the declared provided ports on the other
hand (σ). The final type of the object being built is σ. The type τ is used to verify the
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satisfaction of the required ports. We also need to define a notion of conformance be-
tween the structure of object instances and resource sets, in order to specify an invariant
of the reconfiguration process, and relate such invariant with the result of the runtime
matching test performed by the reconfig operation. All these ingredients are presented
with full details in [15], and combined to prove Theorem 1.We write Γ � S to denote
that Γ types heap S.

Theorem 1 (Subject Reduction). Let e ∈ λχ\{nil} and S be a heap, such that e is a
closed expression in S, nil(S) = ∅. Let Γ � S and Γ � e : τ . If (e;S ↓ v;S′) then

a) There is a typing environment Γ ′ such that Γ � S′ and Γ ′ � v : τ ;
b) The value v is either an abstraction, a component, a configurator, or a location that

maps to a record or an object, and
c) nil(S′) = ∅.

Notice that the addition of required and provided ports to an instance introduces nil val-
ues in the heap (e.g., Rule App Requires). As expected, in well-formed architectures
all such ports must become plugged to compatible implementations. Thus, from the
theorem’s assumption that nil does not occur in the source program, from the invari-
ant nil(S) = ∅, and a correct typing of the heap, we conclude that all instances must
be structurally well-formed. From the fact that nil is not admissible as a result of an
evaluation, we also conclude that “nil dereferencing errors” cannot occur.

5 Concluding Remarks

We have presented a small object-oriented component programming language, by
adding to a λ-calculus with imperative records a arguably minimal set of language
constructs to express component definition, using method blocks, other components,
and connection operations as basic ingredients. Both configuration of components and
reconfiguration of objects are uniformly represented at the semantic level by configura-
tors, typed values that represent architectural change and play a role similar to makefiles
or project templates in software development support systems. However, configurators
and components are first-class values, that can constructed and manipulated dynami-
cally. Therefore, our language is expressive enough to model many sophisticated soft-
ware management operations, typical of component-based systems, involving dynamic
composition, configuration and reconfiguration, even if the well-typed architectural pro-
gramming fragment is computationally incomplete, for expected reasons. Our main re-
sult is a type system enforcing that well-typed programs do not go wrong; in our setting
this implies not only absence of “method not implemented” errors, but also architectural
consistency of dynamic composition and reconfiguration processes, as made precise by
Theorem 1.

Although defined from rather standard language constructs (a λ-calculus with im-
perative records), our language does not seem straightforwardly encodable, in a type
preserving way, in such a canonical language, due to the presence of intensional infor-
mation at the level of types, to the particular notion of “staging” involved, related with
architectural manipulations rather than with source level program manipulation, and to



228 J. Costa Seco and L. Caires

the particular combination of static and dynamic type checking used. In particular, con-
figurator values carry type information (e.g., as Java class files do) and evaluation of
configurator operations (Fig. 6) involve computing with intensional type information in
order to ensure soundness of configurator composition and reconfiguration.

It would be interesting to investigate more flexible typing relations, involving
subtyping and polymorphism, along the lines of [14], and particularly challenging to
identify a natural and useful notion of subtyping for configurator values, given the in-
tensional character of configurator types. At the level of the basic language, it is also
conceivable, in principle, to extend the application of reconfiguration not only to ob-
jects, but also to component values, we refrained from pursuing that, because that does
not seem to increase the expressiveness of our language, and lacks pragmatical motiva-
tion.
This work is partially supported by IST-3-016004-IP-09 Sensoria and by Microsoft Re-
search Grant 2002-73. We also acknowledge many useful comments by the reviewers.
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Abstract. Size-change termination analysis is a simple and powerful
technique successfully applied for a variety of programming paradigms.
A main advantage is that termination for size-change graphs is decidable
and based on simple linear ranking functions. A main disadvantage is
that the size-change termination problem is PSPACE-complete. Proving
size change termination may have to consider exponentially many size
change graphs. This paper is concerned with the representation of large
sets of size-change graphs. The approach is constraint based and the nov-
elty is that sets of size-change graphs are represented as disjunctions of
size-change constraints. A constraint solver to facilitate size-change ter-
mination analysis is obtained by interpreting size-change constraints over
a sufficiently large but finite non-negative integer domain. A Boolean k-
bit modeling of size change graphs using binary decision diagrams leads
to a concise representation. Experimental evaluation indicates that the
2-bit representation facilitates an efficient implementation which is guar-
anteed complete for our entire benchmark suite.

1 Introduction

Size-change termination analysis [8] is a simple and powerful technique to verify
program termination. First, the transition relation of a program is approximated
by a set of size-change graphs. Then, termination is guaranteed if all of the
idempotent size change graphs in the closure of this set under a composition
operation have (possibly different) ranking functions.

A typical example is the analysis of the Prolog program depicted in
Figure 1(a) which computes Ackermann’s function. The size-change graphs in
the figure describe all transitions in computations of this program. Between sub-
sequent function calls, either the first argument decreases in size (Figure 1(b)), or
else it does not increase and the second argument decreases in size (Figure 1(c)).
As formalised below, these graphs are idempotent, closed under composition and
have as ranking functions f(ū) = u1 and f ′(ū) = u2 respectively.
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ackerman(0, N, s(N)).
ackerman(s(M), 0, Res) ←

ackerman(M, s(0), Res).
ackerman(s(M), s(N), Res) ←

ackerman(s(M),N, Res1),
ackerman(M,Res1, Res).

x1

��

x2 x3

y1 y2 y3

x1

���
�
� x2

��

x3

y1 y2 y3

(a) (b) (c)

Fig. 1. Ackermann’s function with size-change graphs

A major strength of the technique is that for a given set of size-change
graphs termination is decidable. An idempotent size-change graph has a rank-
ing function if and only if it has one which indicates that a specific single
argument decreases in size. A major weakness is that size change termina-
tion is complete for PSPACE. While in practice this rarely occurs, closure
under composition may introduce exponentially many additional size-change
graphs.

This paper is concerned with the representation of large sets of size-change
graphs and supporting operations for closing these representations under com-
position and testing all graphs in the closure for the existence of ranking func-
tions. The key idea in our approach is to view sets of size-change graphs as
constraints. For individual size-change graphs this idea is not new. The Ter-
minWeb [9] analyser maintains sets of size-change graphs, each graph repre-
sented as a conjunction of constraints. The novelty in this paper is to illustrate
how sets of size-change graphs can be represented accurately through disjunc-
tion. For example the two graphs in Figure 1 are captured by the constraint
(x1 > y1) ∨ (x1 ≥ y1 ∧ x2 > y2). Given this view, a set of size change graphs
is equivalent to its set of solutions over the domain of non-negative integers,
much the same as a Boolean function is equivalent to its set of models. We draw
on the motivation that representing large sets of models for Boolean functions
is a well studied problem with readily available off-the-shelf tools. The main
difficulty is to provide set-based operations for size change termination which
operate accurately on these representations.

To support an operation to compose disjunctions of size-change graphs we
introduce a non-standard interpretation of the binary size-relations > and ≥.
This enables us to model composition of sets of size-change graphs as conjunc-
tion. To determine if each of the graphs in a set has a ranking function we apply
a previous result [3] to design a suitable test.

Another difficulty is to provide a constraint solver for size-change graphs and
their operations. This is achieved by interpreting constraints over a sufficiently
large but finite domain (of non-negative integers). Finite domain constraints are
then represented as Boolean functions as proposed in [6]. This Boolean repre-
sentation for finite domain constraints and operations leads to an efficient im-
plementation using binary decision diagrams. Experimental evaluation indicates
that the 2-bit representation is guaranteed complete for our entire extensive
benchmark suite. Of course the approach we describe does not ameliorate the
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PSPACE hardness of the termination problem for size change graphs, the re-
sulting binary decision diagrams can require exponential space and time.

2 Size-Change Termination

This section presents the standard definitions and results for size change graphs.
Our definitions are similar to those given in [8] except that they are given in
a language of constraints. The constraint representation naturally provides a
notion of ordering not present in the original definition [8].

Definition 1 (size-change graphs - I). A size-change graph is a binary clause
of the form p(x̄) ← c(x̄, ȳ), q(ȳ) where x̄ and ȳ are the disjoint vectors of argu-
ments and c(x̄, ȳ) is a conjunction of constraints of the form x 4b y with x ∈ x̄,
y ∈ ȳ and b ∈ {0, 1}. A constraint x 4b y corresponds to an edge and is inter-
preted as x ≥ y + b: strict (x > y) or non-strict (x ≥ y) when respectively b = 1
or b = 0.

Size-Change Graph Notation: Consider a size-change graph g = p(x̄) ←
c(x̄, ȳ), q(ȳ) with x̄ = 〈x1 . . . , xn〉 and ȳ = 〈y1 . . . , ym〉. We sometimes write g
in the form p/n(x̄) ← c(x̄, ȳ), q/m(ȳ) to make explicit the arities of x̄ and ȳ.
The parameter set of g, is denoted Par(g) = {p〈1〉, . . . , p〈n〉, q〈1〉, . . . , q〈m〉}. For
a set of size-change graphs G, we denote Par(G) = ∪

{
Par(g)

∣∣g ∈ G
}
. A

size change graph of the form p/n(x̄) ← c(x̄, ȳ), p/n(ȳ) is called a recursive size
change graph. When p and q are clear from the context we refer to g = c(x̄, ȳ) as
the size-change graph. In the examples, edges are depicted by solid and dashed
arrows corresponding to strict and non-strict edges. For each pair of nodes x ∈ x̄
and y ∈ ȳ the unique strictest constraint between x and y is depicted.

Example 1. The following size-change graphs are depicted in Figure 2 as c1(x̄, ȳ),
c2(x̄, ȳ) and c3(x̄, ȳ) respectively.

g1 = p(x1, x2, x3) ← x1 > y2, x2 ≥ y2, x3 > y3, p(y1, y2, y3).
g2 = p(x1, x2, x3) ← x1 > y1, x2 ≥ y1, p(y1, y2, y3).
g3 = p(x1, x2, x3) ← x1 > y2, x2 > y2, p(y1, y2, y3).

Note that by Definition 1 the size-change graph

g′
2 = p(x1, x2, x3) ← x1 > y1, x1 ≥ y1, x2 ≥ y1, p(y1, y2, y3).

is also depicted as c2(x̄, ȳ).
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��

x2
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x3

y1 y2 y3

c1(x̄, ȳ) c2(x̄, ȳ) c3(x̄, ȳ)

Fig. 2. Size-change graphs
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Definition 2 (size-change graph solution). A solution θ for a size-change
graph c(x̄, ȳ) is a valuation on the variables x̄ and ȳ, θ = {x1/a1, . . . , xn/an,
y1/b1, . . . , ym/bm} which is a solution of c(x̄, ȳ), i.e. c(ā, b̄) is valid.

Solutions can be written as two rows (ā, b̄) in a matrix, as illustrated in the
following example.

Example 2. Consider the following 8 solutions and the size-change graphs
c1(x̄, ȳ), c2(x̄, ȳ) and c3(x̄, ȳ) of Figure 2.

s1 =
[
8, 7, 3
9, 7, 2

]
s2 =

[
4, 3, 8
3, 7, 9

]
s3 =

[
8, 7, 2
9, 6, 3

]
s4 =

[
8, 7, 2
5, 6, 3

]
s′1 =

[
1, 0, 1
1, 0, 0

]
s′2 =

[
1, 0, 0
0, 1, 1

]
s′3 =

[
1, 1, 0
1, 0, 1

]
s′4 =

[
1, 1, 1
0, 0, 0

]
s1 and s′1 are solutions only for c1(x̄, ȳ), s2 and s′2 are solutions only for c2(x̄, ȳ),
s3 and s′3 are solutions only for c3(x̄, ȳ), s4 is a solution for c2(x̄, ȳ) and c3(x̄, ȳ)
but not for c1(x̄, ȳ) and s′4 is a solution for all three of the size-change graphs.

Definition 3 (order on size-change graphs). Size-change graphs on the
same parameter set are ordered by constraint entailment. A size change graph
c1(x̄, ȳ) is more general than c2(x̄, ȳ) if the solutions of c1 are a superset of the
solutions of c2, i.e., c2(x̄, ȳ) |= c1(x̄, ȳ). Size-change graphs are equivalent if they
have the same sets of solutions, i.e. c1(x̄, ȳ)↔ c2(x̄, ȳ).

Definition 4 (composition and idempotence of size-change graphs). Let
p(x̄) ← c1(x̄, ȳ), q(ȳ) and q(x̄)← c2(x̄, ȳ), r(ȳ) be size-change graphs. Their com-
position is the size-change graph p(x̄) ← c1(x̄, ȳ) ◦ c2(x̄, ȳ), r(ȳ) given by

c1(x̄, ȳ) ◦ c2(x̄, ȳ) =
∧ {

x 4b y

∣∣∣∣x ∈ x̄, y ∈ ȳ,
c1(x̄, z̄) ∧ c2(z̄, ȳ) |= x 4b y

}
.

Recursive size-change graph p(x̄) ← c(x̄, ȳ), p(ȳ) is idempotent if and only if
c(x̄, ȳ) ◦ c(x̄, ȳ) = c(x̄, ȳ). The pairwise composition of sets of size-change graphs
G1 and G2, respectively of the form p(x̄)← c(x̄, ȳ), q(ȳ) and q(x̄)← c(x̄, ȳ), r(ȳ)
is: G1 ◦G2 =

{
g1 ◦ g2

∣∣g1 ∈ G1, g2 ∈ G2
}
.

Definition 5 (closure under composition). Let G be a set of size-change
graphs. We denote by G∗ the closure of G under composition. This is the smallest
superset of G such that if p(x̄) ← c1(x̄, ȳ), q(ȳ) ∈ G∗ and q(x̄) ← c2(x̄, ȳ), r(ȳ) ∈
G∗ then also p(x̄)← c1(x̄, ȳ) ◦ c2(x̄, ȳ), r(ȳ) ∈ G∗.

Example 3. The set of size-change graphs depicted in Figure 1 is closed under
composition. Both graphs are idempotent. The graphs in Figure 2 are also idem-
potent. The graphs in Figure 3 are not idempotent.

Lee et al.[8] introduce the property of size change termination and prove that
a set of size-change graphsG has this property if and only if each idempotent size-
change graph p/n(x̄) ← c(x̄, ȳ), p/n(ȳ) in G∗ has a strict “vertical down arrow”
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Fig. 3. Non-idempotent size change graphs

of the form xi > yi. Each individual idempotent graph has a strict vertical down
arrow if and only if the following condition holds:

n∨
i=1

(c(x̄, ȳ) |= xi > yi) . (1)

For any (recursive) size change graph c(x̄, ȳ), a function f mapping tuples of
non-negative integers to a well founded domain and such that c(x̄, ȳ) |= f(x̄) >
f(ȳ) is called a ranking function for c(x̄, ȳ). Equation 1 implies that c(x̄, ȳ) has
a ranking function of the form f(u1, . . . , un) = ui.

The result of [8] is generalized in [3] where the authors show that a set of
size-change graphs G satisfies size-change termination if and only if the follow-
ing condition holds: for every recursive (not necessarily idempotent) size-change
graph p/n(x̄)← c(x̄, ȳ), p/n(ȳ) in G∗, each solution of c(x̄, ȳ) has a strict “verti-
cal down arrow” of the form xi > yi. In other words, each individual recursive
c(x̄, ȳ) in G∗ must satisfy the condition below:

c(x̄, ȳ) |=
n∨

i=1

(xi > yi). (2)

Equation 2 implies that c(x̄, ȳ) has a ranking function of the form f(u1, . . . , un) =
Σaiui with all coefficients ai ∈ {0, 1}. The distinction between the tests in
Equations 1 and 2 is exemplified by the size change graph c1(x̄, ȳ) of Figure 3
which is not idempotent and which has no strict vertical down arrow of the form
xi > yi. However, any solution of c1(x̄, ȳ) is also a solution of c2(x̄, ȳ) or of c3(x̄, ȳ)
(in the same figure) which do have vertical down arrows. Note that the function
f(ū) = u1 + u2 is a ranking function for c1(x̄, ȳ). Sidestepping the restriction to
idempotent graphs turns out to be important to facilitate the specification of a
set-based test for termination given in Section 3. In the following we refer to the
implicant in Equation 2 as the ranking constraint.

Definition 6 (size-change ranking constraint). Let p/n(x̄)←c(x̄, ȳ), p/n(ȳ)
be a recursive size-change graph. The corresponding ranking constraint is denoted

R(x̄, ȳ) =
n∨

i=1

xi 41 yi.

The application of size-change termination to proving termination is based on
the observation that if a set of size-change graphs G is a safe approximation of
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the transition relation for a program P , and G satisfies size-change termination,
then P terminates.

3 Set Based Size-Change Termination

In this section we propose a set based approach to size-change termination. The
basic idea is that sets of size-change graphs can be represented as disjunctions of
constraints with no loss of information for termination analysis. The contribution
is in the design of the set-based operations for size-change termination analysis.
The following definition provides the basic representation for a set of size-change
graphs as a disjunction of constraints.

Definition 7 (disjunctive representation). Let Gp,q be a set of size-change
graphs of the form p(x̄) ← c(x̄, ȳ), q(ȳ) (p and q are fixed). The disjunctive
representation of Gp,q is the binary clause denoted G∨

p,q = p(x̄) ← C(x̄, ȳ), q(ȳ)
where C(x̄, ȳ) = ∨

{
c(x̄, ȳ)

∣∣p(x̄)← c(x̄, ȳ), q(ȳ) ∈ Gp,q

}
. When clear from the

context we refer to C(x̄, ȳ) as the disjunctive representation.

This definition is easily extended to apply to sets of graphs with different source
and target (p and q). In this case the result is a set of disjunctive constraints,
(at most) one for each p and q.

Definition 8 (order on disjunctive size-change graphs). Disjunctive size-
change graphs with the same source and target are ordered by entailment. A
disjunctive size-change graph G1 is more general than G2 if the solutions of G1
include those of G2. Two disjunctive size-change graphs are equivalent if they
have the same sets of solutions.

Example 4. Consider the size-change graphs p(x̄) ← ci(x̄, ȳ), p(ȳ) for i ∈ {1, 2, 3}
depicted in Figure 3. The sets of graphs {c1(x̄, ȳ)} and {c2(x̄, ȳ), c3(x̄, ȳ)} are
equivalent. In one direction, graph c1(x̄, ȳ) is more general than each of the
graphs c2(x̄, ȳ) and c3(x̄, ȳ) which have fewer solutions (more constraints). In the
other direction, observe that c1(x̄, ȳ) |= x1 + x2 > y1 + y2 |= x1 > y1 ∨ x2 > y2
and so any solution of c1(x̄, ȳ) is either a solution of c2(x̄, ȳ) or of c3(x̄, ȳ).

When composing disjunctions of constraints we can no longer consider the
original disjuncts as these are not maintained as sets. However we may consider
all disjuncts that entail a given constraint. The following definition is intended
only as the specification of set-based composition. We do not propose to imple-
ment the operation based on this definition. That would be very inefficient.

Definition 9 (composing disjunctive representations). Let Gp,q and Gq,r

be sets of size-change graphs with disjunctive representations G∨
p,q = p(x̄) ←

C1(x̄, ȳ), q(ȳ) and G∨
q,r = q(x̄) ← C2(x̄, ȳ), r(ȳ) respectively. Their disjunctive

composition is the size-change graph G∨
p,q ◦G∨

q,r = p(x̄)← C(x̄, ȳ), r(ȳ) where

C(x̄, ȳ) =
∨{

c1(x̄, ȳ) ◦ c2(x̄, ȳ)
∣∣∣∣ c1(x̄, ȳ) |= C1(x̄, ȳ),
c2(x̄, ȳ) |= C2(x̄, ȳ)

}
.
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The following two lemmata justify viewing sets as disjunctions.

Lemma 1 (disjunctive termination). Consider a set of size-change graphs
Gp,p of the form p(x̄)← c(x̄, ȳ), p(ȳ) Then, all graphs in Gp,p satisfy the ranking
constraint of Definition 6 if and only if G∨

p,p |= R(x̄, ȳ).

Proof. Follows from (a ∨ b) |= c if and only if a |= c and b |= c.

Lemma 2 (disjunctive composition). Let Gp,q and Gq,r be sets of size-
change graphs. Then, (Gp,q ◦Gq,r)∨ ↔ G∨

p,q ◦G∨
q,r.

Proof. Let s be a solution of (Gp,q ◦Gq,r)∨. So there are graphs g1 ∈ Gp,q and
g2 ∈ Gq,r such that s is a solution of g1 ◦ g2. But g1 and g2 respectively entailed
G∨

p,q and G∨
q,r and hence s is also a solution for G∨

p,q ◦G∨
q,r. The other direction

is similar.

From here on we will not distinguish sets from disjunctions. We will view sets
of constraints modulo disjunction. We now proceed to provide a more practical
way to implement the composition of sets of size-change graphs. The following
example provides the intuition and motivation.
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Fig. 4. Constraints of Example 5: (a-b) c1(x̄, ȳ) ◦ c2(x̄, ȳ) = ∃z̄.c1(x̄, z̄) ∧ c2(z̄, ȳ);
(c-d) c2(x̄, ȳ)◦c1(x̄, ȳ) �= ∃z̄.c2(x̄, z̄)∧c1(z̄, ȳ). (since ∃z1.(x1>z1)∧(z1>y2) ≡ x1+1 > y2)

Example 5. Figure 4(a-b) illustrates the composition of individual size change
graphs c1(x̄, ȳ) ◦ c2(x̄, ȳ) = c2(x̄, ȳ) for the size change graphs of Figure 2. The
result of the composition is equivalent to the projected conjunction of the orig-
inal constraints: ∃z̄. c1(x̄, z̄) ∧ c2(z̄, ȳ). This correspondence follows because the
relations > and ≥ satisfy > ◦ ≥ = > and ≥ ◦ ≥ = ≥. This gives hope that
we might define the composition of size change graphs in terms of renaming,
conjunction and projection: c1(x̄, ȳ) ◦ c2(x̄, ȳ) = ∃z̄. c1(x̄, z̄) ∧ c2(z̄, ȳ), and lift
the resulting operations to sets defined by disjunctions. However the correspon-
dence does not hold when considering the composition of strict relations such as
in c2(x̄, ȳ) ◦ c1(x̄, ȳ) = c3(x̄, ȳ) as depicted in Figure 4(c-d). The corresponding
conjunction is ∃z̄. c2(x̄, z̄)∧ c1(z̄, ȳ) which is equivalent to x1 > y2 +1∧x2 > y2.
The problem is with the constraint x1 > y2 +1 which is not of the form xi 4b yj

and the source of the problem is that > ◦> 
= >.
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We now refine the interpretation of the constraints in a size-change graph so
that composition as well as set based composition can be defined in terms of
renaming, conjunction and projection. The key is to weaken the greater than
relation.

Definition 10 (weak greater-than). The binary relation ( over the non-
negative integers is given by ( = > ∪ {(a, a) | a is even}.

The intuition behind ( is the follows: It is stronger than ≥ yet weaker than >.
The projected conjunction ∃z.(x > z ∧ z > y) is not equivalent to x > y because
it misses the tuples (n+ 1, n). But one of n+ 1 or n is even. Hence, using ( we
can assign z to the even value, and we have that x( y ↔ ∃z.(x( z ∧ z ( y).

Definition 11 (size-change graphs - II). Reconsider Definition 1 of a size-
change graph and Definition 6 of the ranking constraint. But this time the rela-
tions 41 and 40 are interpreted as ( and ≥.

Lemma 3. Lemma 1 is not influenced when 41 is interpreted as ( instead of
as > in Definitions 8 and 6.

Proof. (Sketch) For an individual graph c(x̄, ȳ) |= R(x̄, ȳ) is equivalent to show-
ing there are no solutions of c(x̄, ȳ) ∧ ∧n

i=1(¬xi 41 yi). For 41≡>, this means
finding a loop including a strict arc in the size change graph c(x̄, ȳ) with ≥ arcs
added from each yi to xi (since ¬xi > yi ↔ yi ≥ xi). For 41≡( this amounts to
the same thing except the upwards arcs are( ≡ > ∪{(a, a) | a is odd}. Clearly
a loop including a ( arc and ( arc is not satisfiable since values taken by vari-
ables in a solution must be nonincreasing, and hence identical around the loop,
but then the ( arc requires that the value is even while ( requires it is odd.

In the remainder of the paper, size-change graphs and termination constraints
are to be interpreted in terms of ( and ≥ unless stated otherwise. We are now
in position to obtain set-based composition as conjunction.

Lemma 4 (set based composition). Let C1(x̄, ȳ) and C2(x̄, ȳ) be the dis-
junctive representations of sets of size-change graphs G1 and G2 respectively of
the forms p(x̄)← c(x̄, ȳ), q(ȳ) and q(x̄)← c(x̄, ȳ), r(ȳ). Then,

C1(x̄, ȳ) ◦ C2(x̄, ȳ) = ∃z̄.(C1(x̄, z̄)) ∧ (C2(z̄, ȳ)).

Proof. After distributing ∧ over ∨ it is left to show that the claim holds for
individual disjuncts c1(x̄, ȳ) and c2(x̄, ȳ). This follows because ( ◦ ( = ( and
( ◦ ≥ = ≥ ◦ ( = (.

Example 6. Consider the composition of the graphs depicted in Figure 4(c). We
have c1(x̄, ȳ) = (x1 ( y1) ∧ (x2 ≥ y1) and c2(x̄, ȳ) = (x1 ( y2) ∧ (x2 ≥ y2) ∧
(x3 ( y3). Consider the problematic (renamed) pair of relations (x1 ( z1) from
c1 and (z1 ( y2) from c2. The projected conjunction ∃z1.(x1 ( z1) ∧ (z1 ( y2)
in the composition c1(x̄, ȳ) ◦ c2(x̄, ȳ) now results in x1 ( y2 as required.

This completes the theoretical specification of all of the components required to
perform set-based size change termination analysis. To make this practical we
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still have to provide an adequate data structure to represent sets of size-change
graphs and support the set-based operations.

4 Finite Domain Size Change Graphs

We proceed to design an analyzer which computes the closure under composition
of the given set of size-change graphs and then tests each disjunctive constraint
C(x̄, ȳ) in the closure for the existence of a ranking function using the test
C(x̄, ȳ) |= R(x̄, ȳ) as provided by Lemma 1.

One idea is to apply a general-purpose constraint solver such as CLP(R) [7].
This is the choice taken in TerminWeb [4]. The problem is that CLP(R) does
not handle natively the disjunctions found in size-change constraints. TerminWeb
represents the disjunctions of size change graphs as sets of binary clauses, and
implements set-based operations by considering individual disjuncts.

The alternative approach presented in this paper is based on modeling (dis-
junctive) size-change graphs by finite-domain constraints. All atomic operations
of the analyzer take sets as objects.

To obtain a representation based on finite domain constraints we define the
restriction of a constraint to a finite non-negative integer domain.

Definition 12 (domain restriction). The restriction of a (size-change) con-
straint C(x̄, ȳ) to the first d non-negative integers [0 . . . d − 1] is denoted by
[C(x̄, ȳ)]d and given by:

[C(x̄, ȳ)]d ≡ C(x̄, ȳ) ∧
∧

i=1...n

xi, yi ∈ [0 . . . d− 1]

For all practical purposes there is no loss of information when restricting sets of
size change graphs to a sufficiently large domain. The intuition is that for any so-
lution of a set of size change graphs with d nodes, the same ordering between the
values can be represented with only d different non-negative integers. However,
there are subtleties. The next three lemmata illustrate that the representation
and operations are preserved.

Lemma 5. Let C1(x̄, ȳ) and C2(x̄, ȳ) be disjunctive size-change constraints with
|x̄| = m and |ȳ| = n. Then C1(x̄, ȳ) is equivalent to C2(x̄, ȳ) if and only if
[C1(x̄, ȳ)]m+n is equivalent to [C2(x̄, ȳ)]m+n.

Proof. If the constraints are equivalent then clearly the corresponding restric-
tions are as well. Consider the opposite direction and assume for the purpose
of contradiction that C1(x̄, ȳ) and C2(x̄, ȳ) define the same sets of solutions
over the domain of m + n values, but differ in at least one solution over the
infinite non-negative integer domain. Assume without loss of generality that
θ = {x1/v1, . . . , xm/vm, y1/vm+1, . . . , yn/vm+n} is a solution of C1(x̄, ȳ) but
not of C2(x̄, ȳ). Consider first the case where size change graphs are interpreted
in terms of the binary relations > and ≥. Define a solution θ′ which maps each
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variable of x̄ and ȳ to its index in the ascending order induced on the corre-
sponding values {v1, . . . , vm+n}. We also make sure that two (or more) variables
mapped by θ to the same value v are mapped to the same index by θ′. Clearly,
all pairwise relations imposed on x̄ and ȳ by θ are preserved intact by θ′. Thus,
θ′ is a solution of C1(x̄, ȳ) but not of C2(x̄, ȳ) in contradiction to the assumption
that they define the same set of solutions over the domain of m+ n values.

Now consider the case where size change graphs are interpreted over the
relations ( and ≥. We have an additional requirement on θ′ from the previous
case. If for a pair of variables x, y ∈ x̄ ∪ ȳ we have θ(x) = θ(y) = v and the
corresponding θ′(x) = θ′(y) = v′ then we require that v′ is even if and only if
v is even. Note that the domain of m + n distinct values is still sufficient for
defining θ′.

Lemma 6 (finite-domain termination test). Let p/n(x̄) ← C(x̄, ȳ), p/n(ȳ)
be a disjunctive (recursive) size change graph. Then,

C(x̄, ȳ) |= R(x̄, ȳ) ⇔ [C(x̄, ȳ)]2n |= [R(x̄, ȳ)]2n

Proof (sketch). We need to show that C(x̄, ȳ) ∧ ¬R(x̄, ȳ) is satisfiable if and
only if [C(x̄, ȳ) ∧ ¬R(x̄, ȳ)]2n is satisfiable. The constraint C(x̄, ȳ) ∧ ¬R(x̄, ȳ) =
C(x̄, ȳ) ∧

∧n
i=1 ¬(xi ( yi) is a constraint based on pairwise order relations be-

tween the elements of x̄ and ȳ. We assume a solution θ of that constraint and
show using the same mapping as in the proof of Lemma 5 that the constraint
is satisfiable if and only if it is satisfiable over the domain of 2n elements.1 The
claim follows by observing (through the straightforward transformation) that
[C(x̄, ȳ)]2n |= [R(x̄, ȳ)]2n is equivalent to [C(x̄, ȳ) |= R(x̄, ȳ)]2n.

Lemma 7 (finite domain composition). Let C1(x̄, z̄) and C2(z̄, ȳ) be dis-
junctive size-change constraints with |x̄| = m and |ȳ| = n. Then

[C1(x̄, z̄)]m+n ◦ [C2(z̄, ȳ)]m+n = [C1(x̄, z̄) ◦ C2(z̄, ȳ)]m+n

Proof (sketch). The proof technique is similar to that of Lemma 5. We assume
a solution φ on x̄ ∪ ȳ of C1(x̄, z̄) ◦ C2(z̄, ȳ). By definition there exist c1(x̄, z̄) |=
C1(x̄, z̄) and c2(z̄, ȳ) |= C2(z̄, ȳ) and solution

θ = {x1/vx1, . . . , xm/vxm, y1/vy1, . . . , yn/vyn, z1/vz1, . . . , zl/vzl}

of the conjunction c1(x̄, z̄) ∧ c2(z̄, ȳ) extending φ (i.e. φ(v) = θ(v), v ∈ x̄ ∪ ȳ)
and thus, of each of c1(x̄, z̄) and c2(z̄, ȳ) individually. We show that this solution
can be transformed to another solution θ′ with at most m+ n distinct values in
the range, yet preserving the “(”-order relations for each pair (x, z) ∈ (x̄ × z̄)
and (z, y) ∈ (z̄ × ȳ). So θ′ is a solution of [C1(x̄, z̄)]m+n and [C2(z̄, ȳ)]m+n. The
transformation starts by ordering the variables in x̄, ȳ and z̄ with respect to
1 Note that C(x̄, ȳ) ∧ ¬R(x̄, ȳ) is not a size-change graph and thus, it is not always

satisfiable. However, the proof technique of Lemma 5 applies to any constraints based
on pairwise order relations.
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their assigned values vi. Then we “shift” the values for the variables of x̄ and ȳ
until each variable of z̄ shares its assigned value with either a variable of x̄ or
a variable of ȳ. The transformation is always possible and thus, it is sufficient
to prove the claim only for the solutions with at most m + n distinct values in
the range of the substitution. In that case the operation of domain restriction
[·]m+n degenerates to an identity, and the two parts of the formula in the claim
become the same.

5 Size Change Termination with k Bits

To facilitate efficient size change termination analysis we observe that in practice
it is often sufficient to interpret size change constraints over a finite domain with
a smaller number of values than nodes in the graphs. As our implementation is
based on a Boolean representation of finite domain constraints we will consider
values in binary form and typically chose a number of values d of the form d = 2k.
Experimental results indicate that all of the size change termination problems
in our benchmark suite are guaranteed to be analysed correctly using a 2-bit
representation. The following example illustrates the main idea.

Example 7. Consider the disjunctive representation for the graphs in Figure 2:

(x1 ( y2 ∧ x2 ≥ y2 ∧ x3 ( y3) ∨ (x1 ( y1 ∧ x2 ≥ y1) ∨ (x1 ( y2 ∧ x2 ( y2).

From the results of the previous section we know that for termination analysis
we can consider solutions over 6 values. However, note that the constraints in
this example are “partitioned” in two blocks of nodes: I = {x1, x2, y1, y2} and
J = {x3, y3}. There are no constraints linking the nodes of I and J . As we shall
see we can interpret the constraint over the domain of 4 elements i.e., the size
of the larger partition.

Definition 13 (partitioning size-change constraints). We say that a (dis-
junctive) size-change constraint C(x̄, ȳ) can be partitioned if the set of arguments
x̄ ∪ ȳ can be partitioned into two disjoint non-trivial subsets I and J such that
C(x̄, ȳ) ≡ (∃I.C(x̄, ȳ)) ∧ (∃J.C(x̄, ȳ)).

We proceed to formalize the intuition of Example 7.

Lemma 8. Let C1(x̄, ȳ) and C2(x̄, ȳ) be size-change graphs that admit the same
partitioning induced by the sets I and J of nodes. Then C1(x̄, ȳ) is equivalent to
C2(x̄, ȳ) if and only if [C1(x̄, ȳ)]max(|I|,|J|) is equivalent to [C2(x̄, ȳ)]max(|I|,|J|).

Proof. Assume for the purpose of contradiction that C1(x̄, ȳ) and C2(x̄, ȳ) are
not equivalent while [C1(x̄, ȳ)]max(|I|,|J|) and [C2(x̄, ȳ)]max(|I|,|J|) are. That means
that either ∃I.C1(x̄, ȳ) is not equivalent to ∃I.C2(x̄, ȳ) or ∃J.C1(x̄, ȳ) is not equiv-
alent to ∃J.C2(x̄, ȳ). By Lemma 5 the equivalence of ∃I.C1(x̄, ȳ) and ∃I.C2(x̄, ȳ)
can be tested using a finite domain of at most |J | elements. Similarly, the equiv-
alence of ∃J.C1(x̄, ȳ) and ∃J.C2(x̄, ȳ) can be tested using a finite domain of at
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most |I| elements. Thus, if C1(x̄, ȳ) and C2(x̄, ȳ) are not equivalent, then there
must be a substitution over the domain of (at most) max(|I|, |J |) elements which
distinguishes between the two constraints. Hence, we have a contradiction.

In a similar way we can tighten the bounds of Lemma 6 and Lemma 7 which
show distributivity of domain restriction and the operations (composition and
testing for termination). Moreover, for correctness of the analysis there is now
an additional operation to consider: partitioning.

Lemma 9. Let size-change constraint C(x̄, ȳ) admit a partition (I, J) of argu-
ments such that max(|I|, |J |) = m > 2. Then the size-change graph [C(x̄, ȳ)]m
admits the same partition.

Lemma 9 does not hold for m = 2 because a constraint x ( y for x, y ∈ I in
the two-value domain implies y = 0 and hence, x′ ( y for any x′, including
x′ ∈ J (and vice versa). Hence, the restriction to two values introduces new
dependencies between the elements of I and J . For m > 2 and without loss of
generality for x ∈ I and y ∈ J , we can assign values to x and y so that either
x( y or ¬(x( y) holds.

In a recent paper [1] Ben-Amram and Lee provide the following definitions
which we will make use of.

Definition 14 (size relation graph [1]). Let G be a set of size change graphs.
The corresponding size-relation graph, denoted srg(G), is the annotated digraph
with vertex set Par(G) and an edge from p〈i〉 to q〈j〉 labelled by 〈b, g〉 if
g = p/n(x̄) ← c(x̄, ȳ), q/m(ȳ) is a graph in G and xi 4b yj an edge in g.

p〈1〉
�� �� p〈2〉

�� �
�

���� ��� p〈3〉
��

Fig. 5. Size relation graph for the graphs of Figure 2

Definition 15 (clean(G) [1]). For a set G of size change graphs, clean(G)
is the set of graphs G minus every arc not belonging to a strongly connected
component of srg(G) that contains a label b = 1. If G = clean(G) we say that
G is clean.

Example 8. Consider the set of graphs G from Figure 2. The corresponding size-
relation graph srg(G) is depicted as Figure 5. Observe that G is clean.

The following lemma enables us to restrict attention to sets of cleaned size-change
graphs.

Lemma 10 ([1]). A set of size change graphs G satisfies size change termina-
tion if and only if clean(G) does.
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To determine the number of bits required to perform size change termination
analysis for a set of graphs it is sufficient to check the size of the largest strongest
connected component in srg(clean(G)).

Definition 16 (diameter). Let G be a set of size change graphs. The diameter
of G is the largest number of parameters with the same predicate symbol in a
strongly connected component of srg(clean(G)).

Example 9. The diameter of the set of graphs depicted in Figure 2 is 2.

For a set of size-change graphs G, the strongly connected components of srg
(clean(G)) indicate a partitioning of the nodes of G. This provides a safe bound
on the number of values required to represent G.

6 Implementation and Experimentation

Boolean Encoding: We first illustrate how the binary relations ≥ and (
are modelled for k-bit non-negative integers. Let 〈vk−1, . . . , v0〉 denote the k-bit
binary representation of non-negative integer variable v with left most significant
binary digit. The k-bit relation v ≥ w is standardly modelled inductively by the
following Boolean function:

〈〉 ≥ 〈〉 ≡ 1 (true)
〈vk−1, . . . , v0〉 ≥ 〈wk−1, . . . , w0〉 ≡ (vk−1 ∧ ¬wk−1)

∨
((vk−1 ↔ wk−1) ∧ 〈vk−2, . . . , v0〉 ≥ 〈wk−2, . . . , w0〉)

The non-standard relation v ( w of Definition 10 is modelled as

v ( w ≡ v ≥ w ∧ ((v 
= w) ∨ even(v))

where (v 
= w) ≡ ¬
∧n

i=1(vi ↔ wi) and even(v) ≡ ¬v0 (the least significant bit
is 0). Note that the above formula is equivalent to Definition 10.

Example 10. For k = 2 the relation x ≥ y is modelled by (x1 ∧ ¬y1) ∨ ((x1 ↔
y1)∧(x0 → y0)). Note that the models of this formula correspond to the solutions
of the constraint x ≥ y on the set of four values {0, . . . , 3}.

The Boolean encodings of sets of size-change graphs and their set-based op-
erations are obtained from the encoding of the binary relations given above and
the set-based definitions of Sections 2 and 3. Size-change graphs are modelled
as conjunctions of binary relations. Sets of size-change graphs are modelled as
disjunctions of the models of individual size-change graphs. Composition of sets
of size-change graphs is modelled through renaming, conjunction and projection.
Finally, testing a set of size-change graphs for termination amounts to checking
the entailment on two Boolean formula.

A key strength of our approach is that all of the components of the size-
change termination analysis can be represented as Boolean formula and standard
Boolean operations. This facilitates an implementation based on well-studied
data structures and well-engineered tools for representing and manipulating
Boolean formulæ.
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Fig. 6. one-to-one, fan-in and fan-out

Prototype Implementation: To validate our ideas, we have constructed a
prototype size-change termination analyser. We use Reduced Ordered Binary De-
cision Diagrams [2] (ROBDDs, often just called BDDs) to represent size-change
graphs. ROBDDs are a standard — perhaps the standard — representation of
Boolean formulae for many applications. They have been applied successfully
to representation of sets of constraints over a finite domain [6]. In the context
of this work we apply ROBDDs to represent sets of size-change graphs and the
respective set-based operations.

Our analyzer comprises about 500 lines of Prolog code and is implemented in
SWI-Prolog [10]. It utilizes the freely available CUDD [5] package as a back-end
for manipulating BDDs and a previously developed module interfacing CUDD
with SWI-Prolog (around 650 lines of C-code.)

Results: The analyzer has been applied to a benchmark suite consisting of 339
size-change termination problems. These problems have been generated from
the benchmark suite of TerminWeb [9]. The problems can be obtained from
http://www.cs.bgu.ac.il/~mcodish/TerminWeb/scg.tgz. All 339 problems
have diameter two or less. The total analysis time for the benchmarking suite
and a 2-bit representation is 1.2 CPU seconds on a 1GHz machine running
GNU/Linux 2.4. The longest running single test takes 70 milliseconds. Prelimi-
nary comparison indicates that the performance of our analyzer is far superior
to the corresponding components of TerminWeb (orders of magnitude).

We note that our analyzer can also handle hard instances of the underly-
ing PSPACE-complete problem. For instance, the example used in the proof of
PSPACE-hardness in Theorem 5 of [8] takes 0.4 second to analyze. Unlike the
benchmarks of TerminWeb this example has a diameter of 5 and thus, 3-bit
encodings of graph nodes are required for its analysis.

7 Related Work

Ben-Amram and Lee introduce a polynomial algorithm (termed SCP) which cov-
ers many instances of size-change termination [1]. SCP is shown to be complete
for sets of size-change graphs which are “one-to-one” (the in- and out-degree
of all nodes is not more than 1). Their basic SCP algorithm is correct but not
complete for sets of graphs which are “fan-in free” (the in-degree of all nodes
is not more than 1) and several techniques to handle certain kinds of graphs
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with “fan-in” are also proposed. Experimental evaluation indicates that SCP is
complete for their benchmark suite (circa 90 SCT problems).

The set of graphs depicted as Figure 6(a) is one-to-one. The SCP algorithm
will detect that these graphs satisfy size change termination in polynomial time
without computing the expensive closure operation. The graphs in Figure 6(b)
have fan-in and SCP does not detect that they are terminating. The graph in
Figure 6(c) has both fan-in and fan-out. Its termination also cannot be detected
using SCP.

In contrast, our k-bit representation is always complete for any set of size
change graphs with diameter 2k−1 or less. Experimental evaluation indicates that
for our benchmark suite (which extends the one used by Ben-Amram and Lee
and consists of 339 SCT problems) all of the examples have diameter 2 or less
(after cleanup). Hence the 2-bit size-change termination analysis is guaranteed
to be complete. For the examples of Figure 6 our technique requires a 3-bit
analysis for (a) and (c) and a 2-bit analysis for (b).

8 Conclusion

This paper proposes a constraint-based approach to size-change termination
analysis. We model size-change graphs, sets of size-change graphs and operations
for size-change termination using Boolean functions. We draw on experience
from Boolean functions where representing large sets of models is well studied.
A key step in our design is the non-standard interpretation of size-change rela-
tions “>” and “≥”. This enables us to encode union and composition of sets of
size-change graphs by disjunction and conjunction. The proposed approach has
been implemented using BDD-based modeling and BDD operations. The initial
performance indicators are highly encouraging.
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Abstract. We present and solve a path optimization problem on programs. Given
a set of program nodes, called critical nodes, we find a shortest path through the
program’s control flow graph that touches the maximum number of these nodes.
Control flow graphs over-approximate real program behavior; by adding dataflow
analysis to the control flow graph, we narrow down on the program’s actual be-
havior and discard paths deemed infeasible by the dataflow analysis. We derive an
efficient algorithm for path optimization based on weighted pushdown systems.
We present an application for path optimization by integrating it with the Co-
operative Bug Isolation Project (CBI), a dynamic debugging system. CBI mines
instrumentation feedback data to find suspect program behaviors, called bug pre-
dictors, that are strongly associated with program failure. Instantiating critical
nodes as the nodes containing bug predictors, we solve for a shortest program
path that touches these predictors. This path can be used by a programmer to
debug his software. We present some early experience on using this hybrid sta-
tic/dynamic system for debugging.

1 Introduction

Static analysis of programs has been used for a variety of purposes including compiler
optimizations, verification of safety properties, and improving program understanding.
Static analysis has the advantage of considering all possible executions of a program,
thus giving strong guarantees on the program’s behavior. In this paper, we present a
static analysis technique for finding a program execution sequence that is optimal with
respect to some criteria. Given a set of program locations, which we call critical nodes,
we find a trace among all possible program execution traces that touches the maximum
number of these critical nodes and has the shortest length among all such traces. Since
reachability in programs is undecidable in general, we over-approximate the set of all
possible traces through a program by considering all paths in its control flow graph,
and solve the optimization problem on this collection of paths. We also consider how
to more closely approximate actual program behavior by discarding paths in the con-
trol flow graph deemed infeasible by dataflow analysis [1]. We show that the powerful
framework of weighted pushdown systems [2] can be used to represent and solve sev-
eral variations of the path optimization problem.
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Why is it important to find paths?int **a;

void main() {
init(a);
...
process(a);
...

}

void clear(int **a) {
for(...)
a[i] = NULL;

}

void process(int **a) {
switch(getchar()) {
case ’e’ :
clear(a);
break;

case ’p’ :
...

}
...
a[i][j]++;

}

Fig. 1. A buggy program fragment

Consider the program fragment shown
in Figure 1 and suppose that it crashes
on some input at line “a[i][j]++”.
While debugging the program, we
find out (using some analysis) that only
the statement “a[i] = NULL” in clear()
could have caused a null-pointer deference at
the crash site. However, looking at this line
in isolation gives no indication of what the
actual bug is. When we construct a path in
the program from the entry point of main()
to the crash site that visits this suspect line
in clear() we get a path that touches
statements shown in bold in Figure 1. It shows
that the program can call clear() from
process() and then continue execution
onto the crash site. Closer examination of this
path may suggest that the break statement
after clear() should have been a return
statement. Seeing paths allows a richer un-
derstanding of program behavior than merely
examining isolated statements or procedures.

We have implemented our path optimiza-
tion algorithm and integrated it with the
Cooperative Bug Isolation Project (CBI) [3] to

create the BTRACE debugging support tool. CBI adds lightweight dynamic instrumen-
tation to software to gather information about runtime behavior. Using this data, it iden-
tifies suspect program behaviors, called bug predictors, that are strongly associated
with program failure. Bug predictors expose the causes and circumstances of failure,
and have been used successfully to find previously unknown bugs [4]. CBI is primar-
ily a dynamic system based on mining feedback data from observed runs. Our work
on BTRACE represents the first major effort to combine CBI’s dynamic approach with
static program analysis.

BTRACE enhances CBI output by giving more context for interpreting bug predic-
tors. Using CBI bug predictors as our set of critical nodes, we construct a path from
the entry point of the program to the failure site that touches the maximum number of
these predictors. CBI associates a numerical score with each bug predictor, with higher
scores denoting stronger association with failure. We therefore extend BTRACE to find
a shortest path that maximizes the sum of the scores of the predictors it touches. That
is, BTRACE finds a path such that the sum of predictor scores of all predictors on the
path is maximal, and no shorter path has the same score. We also allow the user to re-
strict attention to paths that have unfinished calls exactly in the order they appear in a
stack trace left behind by the failed program, and to impose constraints on the order in
which predictors can be touched. These constraints enhance the utility of BTRACE for
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debugging purposes by producing a path that is close enough to the actual failing exe-
cution of the program to give the user substantial insight into the root causes of failure.
We present experimental results in Section 4 to support this claim.

Under the extra constraints described above, the path optimization problem solved
by BTRACE can be stated as follows:

THE BTRACE PROBLEM. Given the control flow graph (N,E) of a program having
nodes N and edges E; a single node n f ∈ N (representing the crash site of a program);
a set of critical nodes B ⊆ N (representing the bug predictors); and a function μ :
B→ R (representing predictor scores), find a path in the control flow graph that first
maximizes ∑n∈S μ(n) where S ⊆ B is the set of critical nodes that the path touches and
then minimizes its length. Furthermore, restrict the search for this optimal path to only
those paths that satisfy the following constraints:

1. Stack trace. Given a stack trace, consider only those paths that reach n f with un-
finished calls exactly in the order they appear in the stack trace.

2. Ordering. Given a list of node pairs (ni,mi) where ni,mi ∈ B and 0≤ i≤ k for some
k, consider only those paths that do not touch node mi before node ni.

3. Dataflow. Given a dataflow analysis framework, consider only those paths that
are not ruled out as infeasible by the dataflow analysis. The requirements on the
dataflow analysis framework are specified in Section 3.4.

Finding a feasible path through a program when one exists is, in general, undecid-
able. Therefore, even with powerful dataflow analysis, BTRACE can return a path that
will never appear in any real execution of the program. We consider this acceptable
as we judge the usefulness of a path by how much it helps a programmer debug her
program, rather than its feasibility.

The key contributions of this paper are as follows:

– We present an algorithm that optimizes path selection in a program according to the
criteria described above. We use weighted pushdown systems to provide a common
setting under which all of the mentioned optimization constraints can be satisfied.

– We describe a hybrid static/dynamic system that combines optimal path selection
with CBI bug predictors to support debugging.

The remainder of the paper is organized as follows: Section 2 presents a formal
theory for representing paths in a program. Section 3 derives our algorithm for finding
an optimal path. Section 4 considers how path optimization can be used in conjunction
with CBI for debugging programs and presents experimental results demonstrating that
the approach is feasible. Section 5 discusses some of the related work in this area, and
Section 6 concludes with some final remarks.

2 Describing Paths in a Program

This section introduces the basic theory behind our approach. In Section 2.1, we formal-
ize the set of paths in a program as a pushdown system. Section 2.2 introduces weighted
pushdown systems that have the added ability to associate a value with each path.
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emain

n1: x = 5

n3: call p

n7: ret from p

exitmain

n2: y = 1

n6: y = 3

ep

n5: y = 2

exitp

n4: if (. . .)

n8: call p

n9: ret from p

(a)

r1 = 〈p,emain〉 ↪→〈p,n1〉
r2 = 〈p,n1〉 ↪→〈p,n2〉
r3 = 〈p,n2〉 ↪→〈p,n3〉
r4 = 〈p,n3〉 ↪→〈p,ep n7〉
r5 = 〈p,n7〉 ↪→〈p,n8〉
r6 = 〈p,n8〉 ↪→〈p,ep n9〉
r7 = 〈p,n9〉 ↪→〈p,exitmain〉
r8 = 〈p,exitmain〉 ↪→ 〈p,ε〉
r9 = 〈p,ep〉 ↪→〈p,n4〉

r10 = 〈p,n4〉 ↪→〈p,n5〉
r11 = 〈p,n4〉 ↪→〈p,n6〉
r12 = 〈p,n5〉 ↪→〈p,exitp〉
r13 = 〈p,n6〉 ↪→〈p,exitp〉
r14 = 〈p,exitp〉 ↪→〈p,ε〉

(b)

Fig. 2. (a) A control flow graph. The e and exit nodes represent entry and exit points of procedures,
respectively. Dashed edges represent interprocedural control flow. (b) A pushdown system that
models the control flow graph shown in (a). It uses a single state p and has one rule per CFG
edge. Rules r4 and r6 correspond to procedure calls and save the return site on the stack. Rules r8
and r14 simply pop-off the top of the stack to reveal the most recent return site.

2.1 Paths in a Program

A control flow graph (CFG) of a program is a graph where nodes are program statements
and edges represent possible flow of control between statements. Figure 2a shows the
CFG of a program with two procedures. We adopt the convention that each procedure
call in the program is represented by two nodes: one is the source of an interprocedural
call edge to the callee’s entry node and the second is the target of an interprocedural
return edge from the callee’s exit node back to the caller. In Figure 2a, nodes n3 and n7

represent one call from main to p; nodes n8 and n9 represent a second call.
Not all paths (sequences of nodes connected by edges) in the CFG are valid. For

example, the path [emain n1 n2 n3 ep n4 n5 exitp n9] is invalid because the call at node n3

should return to node n7, not node n9. In general, the valid paths in a CFG are described
by a context-free language of matching call/return pairs: for each call, only the matching
return edge can be taken at the exit node. For this reason, it is natural to use pushdown
systems to describe valid paths in a program [2, 5].

Definition 1. A pushdown system (PDS) is a triple P = (P,Γ ,Δ) of finite sets where
P is the set of states, Γ is the set of stack symbols and Δ ⊆ P×Γ ×P×Γ ∗ is the set of
pushdown rules. A rule r = (p,γ,q,u) ∈ Δ is written as 〈p,γ〉 ↪→ 〈q,u〉.

A PDS is a finite automaton with a stack (Γ ∗). It does not take any input, as we are
interested in the transition system it describes, not the language it generates.
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Definition 2. A configuration of a pushdown system P = (P,Γ ,Δ) is a pair 〈p,u〉
where p ∈ P and u ∈ Γ ∗. The rules of the pushdown system describe a transition re-
lation ⇒ on configurations as follows: if r = 〈p,γ〉 ↪→ 〈q,u〉 is some rule in Δ , then
〈p,γu′〉 ⇒ 〈q,uu′〉 for all u′ ∈ Γ ∗.

The construction of a PDS to represent paths in a CFG is fairly straightforward [2]. An
example is shown in Figure 2b. The transition system of the constructed PDS mimics
control flow in the program. A sequence of transitions in the transition system end-
ing in a configuration 〈p,n1 n2 · · ·nk〉, where ni ∈ Γ , is said to have a stack trace of
〈n1, · · · ,nk〉: it describes a path in the CFG that is currently at n1 and has unfinished
calls corresponding to the return sites n2, · · · ,nk. In this sense, a configuration stores
an abstract run-time stack of the program, and the transition system describes valid
changes that the program can make to it.

2.2 Weighted Pushdown Systems

A weighted pushdown system (WPDS) is obtained by associating a weight with each
pushdown rule. The weights must come from a set that satisfies bounded idempotent
semiring properties [2, 6].

Definition 3. A bounded idempotent semiring is a quintuple (D,⊕,⊗,0,1), where D is
a set whose elements are called weights, 0 and 1 are elements of D, and⊕ (the combine
operation) and ⊗ (the extend operation) are binary operators on D such that

1. (D,⊕) is a commutative monoid with 0 as its neutral element, and where ⊕ is
idempotent (i.e., for all a ∈ D, a⊕a = a).

2. (D,⊗) is a monoid with 1 as its neutral element.
3. ⊗ distributes over⊕, i.e., for all a,b,c ∈ D we have

a⊗ (b⊕ c) = (a⊗b)⊕ (a⊗ c) and (a⊕b)⊗ c = (a⊗ c)⊕ (b⊗ c) .
4. 0 is an annihilator with respect to ⊗, i.e., for all a ∈ D, a⊗0 = 0 = 0⊗a.
5. In the partial order� defined by: ∀a,b∈D, a� b iff a⊕b = a, there are no infinite

descending chains.

Definition 4. A weighted pushdown system is a triple W = (P,S , f ) where P =
(P,Γ ,Δ) is a pushdown system, S = (D,⊕,⊗,0,1) is a bounded idempotent semiring
and f : Δ → D is a map that assigns a weight to each pushdown rule.

The ⊗ operation is used to compute the weight of concatenating two paths and the ⊕
operation is used to compute the weight of merging parallel paths. If σ is a sequence of
rules [r1,r2, · · · ,rn] ∈ Δ∗, then define the value of σ as val(σ) = f (r1)⊗ f (r2)⊗·· ·⊗
f (rn). In Definition 3, item 3 is required by WPDSs to efficiently explore all paths, and
item 5 is required for termination of WPDS algorithms.

For sets of pushdown configurations S and S′, let path(S,S′) be the set of all rule
sequences that transform a configuration in S to a configuration in S′. Let nΓ ∗ ⊆ Γ ∗
denote the set of all stacks that start with n. Existing work on WPDSs allows us to solve
the following problems [2]:
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Definition 5. Let W = (P,S , f ) be a weighted pushdown system with P = (P,Γ ,Δ)
and let c ∈ P×Γ ∗ be a configuration. The generalized pushdown predecessor (GPPc)
problem is to find for each regular set of configurations S⊆ (P×Γ ∗):

– δ (S) def=
⊕{val(σ) | σ ∈ path(S,c)}

– a witness set of paths ω(S)⊆ path(S,c) such that
⊕

σ∈ω(S)
val(σ) = δ (S).

The generalized pushdown successor (GPSc) problem is to find for each regular set of
configurations S ⊆ P×Γ ∗:

– δ (S) def=
⊕{val(σ) | σ ∈ path(c,S)}

– a witness set of paths ω(S)⊆ path(c,S) such that
⊕

σ∈ω(S)
val(σ) = δ (S).

For the above definition, we avoid defining a regular set of configurations by restricting
S to be either a single configuration {c′} or nΓ ∗ for some n ∈ Γ . The above problems
can be considered as backward and forward reachability problems, respectively. Each
aims to find the combine of values of all paths between given pairs of configurations
(δ (S)). Along with this value, we can also find a witness set of paths ω(S) that together
justify the reported value for δ (S). This set of paths is always finite because of item 5
in Definition 3. Note that the reachability problems do not require finding the smallest
witness set, but the WPDS algorithms always find a finite set.

3 Finding an Optimal Path

In this section we solve the specific BTRACE problem defined in Section 1. We begin
by developing a solution to the basic path optimization problem without considering
dataflow or ordering constraints and then add them back one by one.

3.1 Creating a WPDS

Let (N,E) be a CFG and P = (P,Γ ,Δ) be a pushdown system representing its paths,
constructed as described in Section 2.1. Let B⊆ N be the set of critical nodes. We will
use this notation throughout this section. We now construct a WPDS W = (P,S , f )
that can be solved to find the best path.

For each path, we need to keep track of its length and also the set of critical nodes it
touches. Let V = 2B×N be a set whose elements each consist of a subset of B (the crit-
ical nodes touched) and a natural number (the length of the path). We want to associate
each path with an element of V . This is accomplished by defining a weight, which will
summarize a set of paths, as a set of elements from V . The combine operation simply
takes a union of the weights, but eliminates an element if there is a better one around,
i.e., if there are elements (b,v1) and (b,v2), the one with shorter path length is chosen.
This drives the WPDS to only consider paths with shortest length. The extend operation
takes a union of the critical nodes and sums up path lengths for each pair of elements
from the two weights. This reflects the fact that when a path with length v1 that touches
the critical nodes in b1 is extended with a path of length v2 that touches the critical
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nodes in b2, we get a path of length v1 + v2 that touches the critical nodes in b1 ∪ b2.
The semiring constant 0 denotes an infeasible path, and the constant 1 denotes an empty
path that touches no critical nodes and crosses zero graph edges. This is formalized in
the following definition.

Definition 6. Let S = (D,⊕,⊗,0,1) be a bounded idempotent semiring where each
component is defined as follows:

– The set of weights D is 2V , the power set of V .
– For w1,w2 ∈D, define w1⊕w2 as reduce(w1∪w2), where

reduce(A) = {(b,v) ∈ A | �(b,v′) ∈ A with v′ < v}
– For w1,w2 ∈D, define w1⊗w2 as

reduce({(b1∪b2,v1 + v2) | (b1,v1) ∈ w1,(b2,v2) ∈ w2})
– The semiring constants 0,1 ∈D are 0 = /0 and 1 = {( /0,0)}.

To complete the description of the WPDS W , we need to associate each pushdown
rule with a weight. If r = 〈p,n〉 ↪→ 〈p,u〉 ∈ Δ , then associate it with the weight f (r) =
{({n}∩B,1)}. Whenever the rule r is used, the length of the path is increased by one
and the set of critical nodes grows to include n if n is a critical node. It is easy to see
that for a sequence of rules σ ∈ Δ∗ that describes a path in the CFG, val(σ) = {(b,v)}
where b is the set of critical nodes touched by the path and v is its length.

3.2 Solving the WPDS

An optimal path can be found by solving the generalized pushdown reachability prob-
lems on this WPDS. We consider two scenarios here: when we have the crash site but
do not have the stack trace of the crash, and when both the crash site and stack trace are
available. We start with just the crash site. Let ne ∈ N be the entry point of the program,
and n f ∈ N the crash site.

Theorem 1. In W , solving GPS〈p,ne〉 gives us δ (n f Γ ∗) = {(b,v) ∈ V | there is a path
from ne to n f that touches exactly the critical nodes in b, and the shortest such path has
length v }. Moreover, ω(n f Γ ∗) is a set of paths from ne to n f such that there is at least
one path for each (b,v) ∈ δ (n f Γ ∗) that touches exactly the critical nodes in b and has
length v.

The above theorem holds because paths(〈p,ne〉,〈p,n f Γ ∗〉) is exactly the set of paths
from ne to n f , which may or may not have unfinished calls. Taking a combine over the
values of such paths selects, for some subsets b⊆ B, a shortest path that touches exactly
the critical nodes in b, and discards the longer ones. The witness set must record paths
that justify the reported value of δ (n f Γ ∗). Since the value of a path is a singleton-set
weight, it must have at least one path for each member of δ (n f Γ ∗).

When we have a stack trace available as some s ∈ (n f Γ ∗), with n f being the top-
most element of s, we can use either GPS or GPP.

Theorem 2. In W , solving GPS〈p,ne〉 (GPP〈p,s〉) gives us the following values for Wδ =
δ (〈p,s〉) (δ (〈p,ne〉)) and Wω = ω(〈p,s〉) (ω(〈p,ne〉)): Wδ = {(b,v) ∈ V | there is a
valid path from ne to n f with stack trace s that touches all critical nodes in b, and the
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shortest such path has length v }. Wω = a set of paths from ne to n f , each with stack
trace s such that there is at least one path for each (b,v) ∈Wδ that touches exactly the
critical nodes in b and has length v.

The above theorem allows us to find the required values using either GPS or GPP. The
former uses forward reachability, starting from ne and going forward in the program,
and the latter uses backward reachability, starting from the stack trace s and going back-
wards. Appendix A presents a detailed discussion on the complexity of solving these
problems on our WPDS. The worst-case complexity is exponential in the number of
critical nodes and (practically) linear in the size of the program. The exponential com-
plexity in critical nodes is, unfortunately, unavoidable. The reason is that the path opti-
mization problem we are trying to solve is a strict generalization of the traveling sales-
man problem: our objective is to find a shortest path between two points that touches a
given set of nodes. However, we did not find this complexity to be a limitation in our
experiments.

Having obtained the above Wδ and Wω values, we can find an optimal path easily.
Let μ : B → R be a user-defined measure that associates a score with each critical
node. We compute a score for each (b,v) ∈Wδ by summing up the scores of all critical
nodes in b and then choose the pair with highest score. Extracting a path corresponding
to that pair in Wω gives us an optimal path. Some advantages of having such a user-
defined measure are that the user can specify bug predictor scores given by CBI, or
make up his own scores. The user can also give a negative score to critical nodes that
should be avoided by the path. Critical nodes with zero score can be added and used for
specifying ordering constraints (Section 3.3). This lets our tool work interactively with
the user to find a suitable path. More generally, we can allow the user to give a measure
μ̂ : (2B×N)→R that directly associates a score with a path. Using such a measure, the
user can decide to choose shorter paths instead of paths that touch more critical nodes.

3.3 Adding Ordering Constraints

We now add ordering constraints to the path optimization problem. Suppose that we
have a constraint “node n must be visited before node m,” which says that we can only
consider paths that do not visit m before visiting n. It is relatively easy to add such
constraints to the WPDS given above. The extend operation is used to compute the
value of a path. We simply change it to yield 0 for paths that do not satisfy the above
ordering constraint. For w1,w2 ∈ D, redefine w1⊗w2 as reduce(A) where

A = {(b1∪b2,v1 + v2) | (b1,v1) ∈ w1,(b2,v2) ∈ w2,¬(m ∈ b1,n ∈ b2)}
If we have more than one ordering constraint, then we simply add more clauses, one

for each constraint, to the above definition of extend.
These constraints do not change the worst case asymptotic complexity of solving

reachability problems in WPDS. However they do help prune down the paths that need
to be explored, because each constraint cuts down on the size of weights produced by
the extend operation.

3.4 Adding Dataflow Analysis

So far we have not considered interpreting the semantics of the program other than its
control flow. This implies that the WPDS can find infeasible paths: ones that cannot
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occur in any execution of the program. An example is a path that assigns x := 1
and then follows the true branch of the conditional if (x == 0). In general, it is
undecidable to restrict attention to paths that actually occur in some program execution,
but if we can rule out many infeasible paths, we increase the chances of presenting a
feasible or near-feasible path to the user. This can be done using dataflow analysis.

Dataflow analysis is carried out to approximate, for each program variable, the set
of values that the variable can take at each point in the program. When a dataflow
analysis satisfies certain conditions, it can be integrated into a WPDS by designing an
appropriate weight domain [2, 5]. Examples of such dataflow analyses include linear
constant propagation [7] and affine relation analysis [8, 9]. In particular, we can use any
bounded idempotent semiring weight domain Sd = (Dd ,⊕d ,⊗d ,0d ,1d) provided that
when given a function fd : Δ → Dd that associates each PDS rule (CFG edge) with a
weight, it satisfies the following property: given any (possibly infinite) set Σ ⊆ Δ∗ of
paths between the same pair of program nodes, we have

⊕
σ∈Σ vald(σ) = 0d only if all

paths in Σ are infeasible, where vald( [r1, · · · ,rk] ) = fd(r1)⊗d · · ·⊗d fd(rk). In partic-
ular this means that vald(σ) = 0d only if σ is an infeasible path. This imposes a sound-
ness guarantee on the dataflow analysis: it can only rule out infeasible paths. Details
on how classical dataflow analysis frameworks [1] can be encoded as weight domains
can be found in Reps et al. [2]. The basic idea is to encode dataflow transformers that
capture the effect of executing a program statement, or a sequence of statements, as
weights. The extend operation composes transformers and the combine operation takes
their meet in the dataflow value lattice.

Such a translation from dataflow transformers to a weight domain allows us to talk
about the meet-over-all-paths between configurations of a pushdown system. For exam-
ple, solving GPS〈p,ne〉 on this weight domain gives us δ (〈p,n1n2 · · ·nk〉) as the combine
(or meet) over the values of all paths from ne to n1 that have the stack trace n1n2 · · ·nk.
This is a unique advantage that we gain over conventional dataflow analysis by using
WPDSs.

Given Sd and fd as above, we change the weight domain of our WPDS as follows.

Definition 7. Let S = (D,⊕,⊗,0,1) be a bounded idempotent semiring where each
component is defined as follows:

– The set of weights D is 22B×N×Dd , the power set of the set 2B×N×Dd.
– For w1,w2 ∈ D, define w1⊕w2 as reduced(w1 ∪w2) where reduced(A) is defined

as {(b,min{v1, · · ·vn},d1⊕d · · ·⊕d dn) | (b,vi,di) ∈ A,1≤ i≤ n}
– For w1,w2 ∈D, define w1⊗w2 as reduced(A) where A is the set{

(b1∪b2,v1 + v2,d1⊗d d2)
∣∣∣∣ (b1,v1,d1) ∈ w1,(b2,v2,d2) ∈ w2,d1⊗d d2


= 0d ,(b1,b2) satisfy all ordering constraints

}
– The semiring constants 0,1 ∈D are 0 = /0 and 1 = {( /0,0,1d)}.

Here (b1,b2) satisfy all ordering constraints iff for each constraint “visit n before m,”
it is not the case that m ∈ b1 and n ∈ b2.

The weight associated with each rule r = 〈p,n〉 ↪→〈p,u〉 ∈Δ is given by f (r) = {({n}∩
B,1, fd(r))}. Each path is now associated with the set of predictors it touches, its length,
and its dataflow value. Infeasible paths are removed during the extend operation as
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weights with dataflow value 0d are discarded. More formally, for a path σ ∈ Δ∗ in
the CFG, val(σ) = {(b,v,wd)} if wd = vald(σ) 
= 0d is the dataflow value associated
with the path, v is the length of the path, b is the set of critical nodes touched by the
path, and the path satisfies all ordering constraints. If σ does not satisfy some ordering
constraint or if vald(σ) = 0d , then val(σ) = /0 = 0. Analysis using this weight domain
is similar to the “property simulation” used in ESP [10], where a distinct dataflow value
is maintained for each property-state. We maintain a distinct dataflow weight for each
subset of critical nodes.

Instead of repeating Theorems 1 and 2, we just present the case of using GPS when
the stack trace s ∈ (n f Γ ∗) is available. Results for other cases can be obtained similarly.

Theorem 3. In the WPDS obtained from the weight domain defined in Definition 7,
solving GPS〈p,ne〉 gives us the following values:

– δ (〈p,s〉) = {(b,v,wd) | there is a path from ne to n f with stack trace s that visits
exactly the critical nodes in b, satisfies all ordering constraints, is not infeasible
under the weight domain Sd, and the shortest such path has length v }.

– ω(〈p,s〉) contains at least one path for each (b,v,wd) ∈ δ (〈p,s〉) that goes from
ne to n f with stack trace s, visits exactly the predictors in b, satisfies all order-
ing constraints and has length v. More generally, for each (b,v,wd) ∈ δ (〈p,s〉) it
will have paths σi,1 ≤ i ≤ k for some constant k such that val(σi) = {(b,vi,wi)},
min{v1, · · · ,vk}= v, and w1⊕d · · ·⊕d wk = wd.

The worst case time complexity in the presence of dataflow analysis increases by a
factor of Hd(Cd + Ed) where Hd is height of Sd , Cd is time required for applying ⊕d ,
and Ed is the time required for applying⊗d .

Theorem 3 completely solves the BTRACE problem mentioned in Section 1. The
next section presents the dataflow weight domain that we used for our experiments.

3.5 Example and Extensions for Using Dataflow Analysis

Copy Constant Propagation. We now give an example of a weight domain that can
be used for dataflow analysis. We encode copy-constant propagation [11] as a weight
domain. A similar encoding is used by Sagiv, Reps, and Horwitz [7]. Copy-constant
propagation aims to determine if a variable has a fixed constant value at some point in
the program. It interprets constant-to-variable assignments (x := 1) and variable-to-
variable assignments (x := y) and abstracts all other assignments as x := ⊥, which
says that x may not have a constant value. We ignore conditions on branches for now.

Let Var be the set of all global (integer) variables of a given program. Let Z ⊥ =
Z∪{⊥, } and (Z ⊥,/) be the standard constant propagation meet semilattice obtained
from the partial order⊥�cp c�cp for all c∈Z. Then the set of weights of our weight
domain is Dd = Var→ (2Var×Z ⊥). Here, τ ∈Dd represents a dataflow transformer that
summarizes the effect of a executing a sequence of program statements as follows:
if env : Var → Z is the state of the program before the statements are executed and
τ(x) = ({x1, · · · ,xn},c) for c ∈ Z ⊥, then the value of a variable x after the statements
are executed is env(x1)/env(x2) · · · /env(xn)/c. Let τv(x) be the first component of
τ(x) and τc(x) be the second component. Then we can define the semiring operations
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as follows: the combine operation is a concatenation of expressions and the extend
operation is substitution. Formally, for τ1,τ2 ∈Dd ,

τ1⊕d τ2 = λx.(τv1 (x)∪ τv2 (x),τc1 (x)/ τc2 (x))

τ1⊗d τ2 = λx.(
⋃

y∈τv2 (x)

τv1 (y),τc2 (x)/ (
y∈τv2 (x)

τc1 (y)))

The semiring constants are given by 0d = λx.( /0, ) and 1d = λx.({x}, ).

Handling Conditionals. Handling branch conditions is problematic because dataflow
analysis in the presence of conditions is usually very hard. For example, finding whether
a branch condition can ever evaluate to true, even for copy-constant propagation, is
PSPACE-complete [12]. Therefore, we have to resort to approximate dataflow analy-
sis, i.e., we give up on computing meet-over-all-paths. This translates into relaxing the
distributivity requirement on the weight domain Sd . Fortunately, WPDSs can handle
non-distributive weight domains [2] by relaxing Definition 3 item 3 as follows. If D is
the set of weights, then for all d1,d2,d3 ∈ D,

d1⊗ (d2⊕d3)� (d1⊗d2)⊕ (d1⊗d3); (d1⊕d2)⊗d3 � (d1⊗d3)⊕ (d2⊗d3)
where � is the partial order defined by ⊕ : d1 � d2 iff d1⊕d2 = d1. Under this weaker
property, the generalized reachability problems can only be solved approximately, i.e.,
instead of obtaining δ (c) for a configuration c, we only obtain a weight w such that
w � δ (c). For our path optimization problem, this inaccuracy will be limited to the
dataflow analysis. We would only eliminate some of the paths that the dataflow analysis
can find infeasible and might find a path σ such that vald(σ) = 0d . This is acceptable
because it is not possible to rule out all infeasible paths anyway. Moreover, it allows us
the flexibility of putting in a simple treatment for conditions in most dataflow analyses.
The disadvantage is that we lose a strong characterization of the type of paths that will
be eliminated.

For copy-constant propagation, we extend the set of weights by {ρe | e is an arith-
metic condition}. We associate weight ρe with the rule 〈p,n〉 ↪→ 〈p,m〉 (n,m ∈ Γ )
if the corresponding CFG edge can only be taken when e evaluates to true on the
program state at n. For example, we associate the weight ρx=0 with the true branch
of the conditional if (x == 0) and weight ρx
=0 with its false branch. The ex-
tend operation is modified such that for τ ∈ Dd , τ ⊗ρe evaluates the condition e un-
der the information provided by τ and results to 0d if e evaluates to false. Other-
wise, the extend is simply τ . More details can be found in a companion technical
report [13].

Handling Local Variables. A recent extension to WPDSs [5] shows how local vari-
ables can be handled by using merge functions that allow for local variables to be saved
before a call and then merged with the information returned by the callee to compute
the effect of the call. This treatment for local variables allows us to restrict each weight
to manage the local variables of only one procedure. Details of the construction of these
merge functions are given in a companion technical report [13].
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4 Integrating BTRACE and CBI

The formalisms of Section 3 may be used for solving a variety of optimization problems
concerned with touching key program points along some path. BTRACE represents one
application of these ideas: an enhancement to the statistical debugging analysis per-
formed by the Cooperative Bug Isolation Project (CBI).

4.1 A Need for Failure Paths

CBI uses runtime instrumentation and statistical modeling techniques to diagnose bugs
in widely deployed software. CBI identifies suspect program behaviors, called bug pre-
dictors, that are strongly associated with program failure. Candidate behaviors may
include branch directions, function call results, values of variables, and other dynamic
properties [14]. Each bug predictor is assigned a numerical score in R+ that balances
two key factors: (1) how much this predictor increases the probability of failure, and (2)
how many failed runs this predictor accounts for. Thus, high-value predictors warrant
close examination both because they are highly correlated with failure and because they
account for a large portion of the overall failure rate seen by end users [4].

A key strength of CBI is that it samples behavior for the entire dynamic lifetime of
a run; however, interpreting the resulting predictors, which may be located anywhere in
the program prior to the failure point, can be very challenging. Rather than work with
isolated bug predictors, the programmer would like to navigate forward and backward
along the path that led to failure. BTRACE constructs a path that hits several high-ranked
predictors. This can help the programmer draw connections between sections of code
that, though seemingly unrelated, act in concert to bring the program down.

4.2 BTRACE Implementation

We have implemented BTRACE using the WPDS++ library [15]. To manage the ex-
ponential complexity in the number of bug predictors, we efficiently encode weights
using abstract decision diagrams (ADDs) provided by the CUDD library [16]. Addi-
tional details on how the semiring operations are implemented on ADDs may be found
in a companion technical report [13].

A BTRACE debugging session starts with a list of related bug predictors, believed
by CBI to represent a single bug. We designate this list (or some high-ranked prefix
thereof) as the critical nodes and insert them at their corresponding locations in the
CFG. Branch predictors, however, may be treated as a special case. These predictors
associate the direction of a conditional with failure, and therefore can be repositioned
on the appropriate branch. This can be seen as one example of exploiting not just the
location but also the semantic meaning of a bug predictor; branch predicates make this
easy because their semantic meaning directly corresponds to control flow.

For dataflow analysis, we track all integer- and pointer-valued variables and struc-
ture fields. We do not track the contents of memory and any write to memory via
a pointer is replaced with assignments of ⊥ to all variables whose address was ever
taken. Direct structure assignments are expanded into component-wise assignments to
all fields of the structure.
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4.3 Case Studies: Siemens Suite

We have applied BTRACE to three buggy programs from the Siemens test suite [17]:
TCAS v37, REPLACE v8, and PRINT_TOKENS2 v6. These programs do not crash; they
merely produce incorrect output. Thus our analysis is performed without a stack trace,
instead treating the exit from main() as the “failure” point. We find that BTRACE can
be useful even for non-fatal bugs.

TCAS has an array index error in a one-line function that contains no CBI instru-
mentation and thus might easily be overlooked. Without bug predictors, BTRACE pro-
duces the shortest possible path that exits main(), revealing nothing about the bug.
After adding the top-ranked predictor, BTRACE isolates lines with calls to the buggy
function.

REPLACE has an incorrect function return value. BTRACE with the top two pre-
dictors yields a path through the faulty statement. Each predictor is located within one
of two disjoint chains of function calls invoked from main(), and neither falls in the
same function as the bug. Thus, while the isolated predictors do not directly reveal the
bug, the BTRACE failure path through these predictors does.

PRINT_TOKENS2 has an off-by-one error. Again, two predictors suffice to steer
BTRACE to the faulty line. Repositioning of branch predictors is critical here. Even
with all nineteen CBI-suggested predictors and dataflow analysis enabled, a correct
failure path only results if branch predictors are repositioned to steer the path in the
proper direction.

4.4 Case Studies: CCRYPT and BC

We have also run BTRACE on two small open source utilities: CCRYPT v1.2 and BC

v1.06. CCRYPT is an encryption/decryption tool and BC is an arbitrary precision calcu-
lator. Both are written in C. Fatal bugs in each were first characterized in prior work
by Liblit et al. [14]. More detailed discussion of experimental results can be found in a
companion technical report [13].

CCRYPT has an input validation bug. Reading end-of-file yields a NULL string
(char *) that is subsequently dereferenced without being checked first. If given only
a stack trace, BTRACE builds an infeasible path that takes several impossible shortcuts
through initialization code. These shortcuts also yield NULL values, but in places that
are properly checked before use and therefore cannot be the real bug. The path remains
the same if we add dataflow analysis (but no bug predictors), or if we add up to fourteen
bug predictors (but no dataflow analysis).

However, if BTRACE uses both dataflow analysis and at least eleven bug predictors,
the failure path changes to a feasible path that correctly describes the bug: non-NULL
values in the well-checked initialization code, and a fatal unchecked NULL value later
on. This feasible path also arises from just a stack trace if one manually inserts order-
ing constraints to require that bug predictors appear after initialization code, e.g. if the
initialization code were assumed to be bug-free. The combination of dataflow analysis
and bug predictors make such manual, a priori assumptions unnecessary.

BC has a buffer overrun: a bad loop index in more_arrays() silently trashes
memory. The program keeps running but may eventually crash during a subsequent call
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to bc_malloc(). The stack trace at the point of failure suggests heap corruption but
provides no real clues as to when the corruption occurred or by what piece of code.
CBI-identified bug predictors are scattered across several files and their relationship
may not be clear on first examination.

Using one bug predictor, BTRACE builds a path that calls more_arrays() early
in execution. This path is feasible but misleading: more_arrays() is always called
early in execution, and only a second or subsequent call to more_arrays() can
cause failure. Using two or more bug predictors forces the path to include a fatal second
call to more_arrays(), correctly reflecting the true bug. By reading in-progress
calls out of the failure trace, we can easily reconstruct the entire stack at the call to
more_arrays() or any other point of interest and thereby give deeper context to the
frontier of the bad code.

CBI actually produces two ranked lists of related bug predictors for BC, suggesting
two distinct bugs. BTRACE produces the same path using either list, suggesting that they
correspond to a single bug. BTRACE is correct: the two lists do correspond to a single
bug. CBI can be confused by sampling noise, statistical approximation, incompleteness
of dynamic data, and other factors. BTRACE is a useful second check, letting us unify
equivalent bug lists that CBI has incorrectly held apart.

Section 3.2 mentioned that solving the WPDS may require time exponential in the
number of bug predictors. We find that the actual slowdown is gradual and that the
absolute performance of BTRACE is good. As expected, the GPS phase dominates; cre-
ating the initial WPDS and extracting a witness path from the solved system take negli-
gible time. The small CCRYPT application has 13,661 CFG nodes, with about 1,300 on
a typical failure path. BTRACE requires 0.10 seconds to find a path using zero CCRYPT

predictors, increasing gradually to 0.97 seconds with fifteen predictors. Adding more
predictors slows the analysis gradually, amplified only when adding a predictor forces
BTRACE to build a longer failure path. BC is larger at 45,234 CFG nodes, and a typical
failure path produced by BTRACE is about 3,000 nodes long. The complete analysis
takes from two to four seconds with up to four predictors.

Adding dataflow analysis slows the analysis by a factor of between four and twelve,
depending on configuration details. Analysis with dataflow and realistic numbers of bug
predictors takes about thirteen seconds for BC and less than two seconds for CCRYPT.

5 Related Work

The CodeSurfer Path Inspector tool [18, 19] uses weighted pushdown systems for veri-
fication: to see if a program can drive an automaton, summarizing a program property,
into a bad state. If this is possible, it uses witnesses to produce a faulty program path. It
can also use dataflow analyses by encoding them as weights to rule out infeasible paths.
We use WPDSs for optimizing a property instead of verifying it, which has not been
previously explored.

Liblit and Aiken directly consider the problem of finding likely failure paths through
a program [20]. They present a family of analysis techniques that exploit dynamic infor-
mation such as failure sites, stack traces, and event logs to construct the set of possible
paths that a program might have taken. They could not, however, optimize path length
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or the number of events touched when all of them might be unreachable in a single path.
Our approach is, therefore, more general. BTRACE incorporates these techniques, along
with dataflow analysis, within the unifying framework of weighted pushdown systems.
Another difference is that instead of using event logs, we use the output of CBI to guide
the path-finding analysis. The theory presented in Section 3 can be extended to incor-
porate event logs by adding ordering constraints to appropriately restrict the order in
which events must be visited by a path.

PSE is another tool for finding failing paths [21]. It requires a user-provided descrip-
tion of how the error could have occurred, e.g., “a pointer was assigned the value NULL,
and then dereferenced.” This description is in the form of a finite state automaton, and
the problem of finding a failing run is reduced to finding a backward path that drives
this automaton from its error state to its initial state. PSE solves this in the presence of
pointer-based data structures and aliasing. Our work does not require any user descrip-
tion of the bug that might have caused the crash, but we do not yet handle pointer-based
structures. Like PSE, we can use pointer analysis as a preprocessing step to produce
more accurate dataflow weights.

In Definitions 6 and 7, we define semirings that are the power set of the values we
want to associate with each path. This approach has been presented in a more general
setting by Lengauer and Theune [22]. The power set operation is used to add distrib-
utivity to the semiring, and a reduction function, such as our reduce, ensures that we
never form sets of more elements than necessary.

Our lists of bug predictors are derived using the iterative ranking and elimination
algorithm of Liblit et al. [4]. Several other statistical debugging algorithms for CBI-
style data have been proposed, including ones based on regularized curve fitting [23],
sparse disjunction learning [24], probability density function estimation [25], support
vector machines [26], and random forests [26]. BTRACE path reconstruction can use
predictors arising from any of these techniques; we require only a list of predictors and
numerical scores reflecting their importance. Further study may reveal whether certain
statistical debugging algorithms yield more useful BTRACE paths than others.

6 Conclusions

We have presented a static analysis technique to build BTRACE, a tool that can find
an optimal path in a program under various constraints imposed by a user. Using bug
predictors produced by CBI, BTRACE can perform a postmortem analysis of a program
and reconstruct a program path that reveals the circumstances and causes of failure.
The paths produced by BTRACE might not be feasible, but we intend for them to help
programmers understand the bug predictors produced by CBI and locate bugs more
quickly. BTRACE provides user options to supply additional constraints in the form
of stack traces and ordering constraints, the latter of which allow the user to guide
the tool interactively while locating a bug. Our case studies show that the BTRACE

path can isolate the chain of events leading to failure, and, given enough predictors,
has the ability to lead the programmer directly to the faulty code. More experiments
are required to prove the utility of BTRACE in debugging larger software systems, but
initial results look promising.
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A Complexity of Solving the WPDS

In this section, we discuss the worst-case running time complexity of solving the WPDS
constructed with the weight domain defined in Definition 6. Each of the methods out-
lined in Theorems 1 and 2 require solving either GPS or GPP and then reading the value
of δ (c) for some configuration c. We do not consider the time required for reading the
witness value as it can be factored into these two steps. Let |Δ | be the number of push-
down rules (or the size of the CFG), |Proc| the number of procedures in the program,
ne the entry point of the program, |B| the number of critical nodes, and L the length of
a shortest path to the most distant CFG node from ne. The height (length of the longest
descending chain) of the semiring we use is H = 2|B|L and the time required to perform
each semiring operation is T = 2|B|.

To avoid requiring more WPDS terminology, we specialize the complexity results
of solving reachability problems on WPDS [2] to our particular use. GPS〈p,ne〉 can be
solved in O(|Δ | |Proc| H T ) time and GPP〈p,s〉 requires O(|s| |Δ | H T ) time. Reading
the value of δ (〈p,ne〉) is constant time and δ (〈p,s〉) requires O(|s| T ) time. We can
now put these results together.

When no stack trace is available, the only option is to use Theorem 1. Obtaining
an optimal path in this case requires time O(|Δ | |Proc| 22|B| L). When a stack trace is
available, Theorem 2 gives us two options. Suppose we have k stack traces available to
us (corresponding to multiple failures caused by the same bug). In the first option, we
solve GPS〈p,ne〉, and then ask for the value of δ (〈p,s〉) for each stack trace available.

This has worst-case time complexity O(|Δ | |Proc| 22|B| L + k |s| 2|B|) where |s| is the
average length of the stack traces. The second option requires a stack trace s, solves
GPP〈p,s〉 and then asks for the value of δ (〈p,ne〉). This has worst-case time complexity

O(k |s| |Δ | 22|B| L). As is evident from these complexities, the second option should
be faster, but its complexity grows faster with an increase in k. Note that these are only
worst-case complexities, and comparisons based on them need not hold for the average
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case. In fact, in WPDS++ [15], the WPDS implementation that we use, solving GPS is
usually faster than solving GPP.1

Let us present some intuition into the com-

n5

n1

n3

n6

n2

n4

Fig. 3. A simple control flow graph

plexity results stated above. Consider the CFG
shown in Figure 3. If node n2 is a critical node,
then a path from n1 to n6 that takes the left branch
at n2 has length 4. The path that takes the right
branch has length 3, and touches the same critical
nodes as the first path. Therefore, at n6, the first
path can be discarded and we only need to re-
member the second path. In this way, branching
in the program, which increases the total num-
ber of paths through the program, only increases
the complexity linearly (|Δ |). Now, if node n3 is
also a critical node, then at n6 we need to remem-
ber both paths: one touches more critical nodes
and the other has shorter length. (For a path that
comes in at n1, and has already touched n3, it is

better to take the shorter right branch at n2.) In general, we need to remember a path
for each subset of the set of all critical nodes. This is reflected in the design of our
weight domain and is what contributes to the exponential complexity with respect to
the number of critical nodes.

1 The implementation does not take advantage of the fact that the PDS has been obtained from
a CFG. Backward reachability is easier on CFGs as there is at most one known predecessor of
a return-site node.
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Abstract. In previous work, we described a new approach to supporting user-
defined type qualifiers, which augment existing types to specify and check addi-
tional properties of interest. For each qualifier, users define a set of rules that are
enforced during static typechecking of programs. Separately, these rules are au-
tomatically validated with respect to a user-defined predicate that formalizes the
qualifier’s intended run-time invariant. We instantiated this approach as a frame-
work for user-defined type qualifiers in C programs, called CLARITY.

In this paper, we extend our earlier approach by resolving two usability is-
sues. First, we show how to perform qualifier inference in the presence of user-
defined rules by generating and solving a system of conditional set constraints,
thereby relieving users of the burden of explicitly annotating programs. Second,
we show how to automatically infer rules that respect a given user-defined invari-
ant, thereby relieving qualifier designers of the burden of manually producing
such rules. We have formalized both qualifier and rule inference and proven their
correctness. We have also extended CLARITY to support qualifier and rule infer-
ence, and we illustrate their utility in practice through experiments with several
type qualifiers and open-source C programs.

1 Introduction

Type systems are a natural and powerful discipline for specifying and statically
checking properties of programs. However, language designers cannot anticipate all
of the properties that programmers will wish to specify, nor can they anticipate all of
the practical ways in which such properties can be statically checked. Therefore, it is
desirable to allow programmers to refine existing types in order to specify and check
additional program properties. A practical form of refinement can be achieved through
user-defined type qualifiers [6, 7].

In previous work [2], we described a new approach to user-defined type qualifiers
that is more expressive and provides stronger guarantees than prior approaches. Users
provide a set of qualifier rules in a stylized language. These rules declaratively define
a qualifier’s associated programming discipline and are automatically enforced during
static typechecking of programs. Users may also provide a predicate that formalizes a
qualifier’s intended run-time invariant. This invariant is used to automatically validate
the correctness of the provided qualifier rules. We instantiated this approach as a frame-
work for user-defined type qualifiers in C programs, called CLARITY, and illustrated
its utility for a variety of qualifiers, including pos and neg for integers, nonnull for
pointers, and tainted and untainted for format strings.
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qualifier nonzero(int Expr E)
case E of

decl int Const C:
C, where C != 0

| decl int Expr E1:
E1, where pos(E1)

| decl int Expr E1, E2:
E1 * E2,
where nonzero(E1) && nonzero(E2)

restrict
decl int Expr E1, E2:

E1 / E2, where nonzero(E2)
invariant value(E) != 0

Fig. 1. A user-defined type qualifiers for nonzero integers.

In this paper, we extend our earlier approach by resolving two usability issues. First,
we show how to perform qualifier inference, relieving programmers of the burden of
explicitly annotating their programs. We describe an inference algorithm that is para-
meterized by a set of user-defined qualifier rules. The algorithm generates and solves
a system of conditional set constraints. We have formalized constraint generation and
proven that the constraint system is equivalent to the associated qualifier type system.
We have also extended CLARITY to support qualifier inference and have used it to infer
qualifiers on several open-source C programs.

Second, we show how to automatically infer rules that respect a given user-defined
invariant, relieving qualifier designers of the burden of manually producing such rules.
We define a partial order of candidate rules that formalizes the situation when one rule
subsumes another. We then describe an algorithm for walking this partial order to gener-
ate all valid rules that are not subsumed by any other valid rule. We have implemented
rule inference in CLARITY and used it to automatically generate all of our manually
produced qualifier rules as well as some valid rules we had not thought of.

The next section reviews our approach to user-defined type qualifiers in the context
of CLARITY. Sections 3 and 4 describe qualifier inference and rule inference, respec-
tively. Section 5 discusses our experiments with qualifier and rule inference in CLAR-
ITY. Section 6 compares with related work, and section 7 concludes.

2 An Overview of CLARITY

2.1 Qualifier Rules and Qualifier Checking

Figure 1 illustrates the definition of a simple user-defined qualifier for nonzero integers
in CLARITY.1 The first line defines the qualifier nonzero to be applicable to all ex-
pressions of type int. The case and restrict blocks provide the user-defined typing

1 This paper focuses on CLARITY’s “value” qualifiers; its “reference” qualifiers are not
considered [2].
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discipline associated with the new qualifier. Each clause in the case block represents
a qualifier rule, consisting of some metavariable declarations for use in the rest of the
rule, a pattern, and a condition. The first case clause in Figure 1 indicates that an inte-
ger constant can be given the qualifier nonzero if the constant is not equal to zero. The
second clause indicates that an expression can be given the qualifier nonzero if it can
be given another user-defined qualifier pos, whose definition is not shown. The third
clause indicates that the product of two nonzero expressions can also be considered
nonzero.

A restrict clause has the same syntax as a case clause, but the semantics is
different. Namely, a restrict clause indicates that whenever the pattern is matched by
some program expression, then the condition should also be satisfied by that expression.
Therefore, the restrict clause in Figure 1 indicates that all denominator expressions
in a division must have the qualifier nonzero.

CLARITY includes a qualifier checker that statically enforces user-defined qualifier
rules on programs. As a simple example, consider the statement

nonzero int prod = a*b;

where a and b are each declared to have the type pos int. Since prod is declared to
have the qualifier nonzero, the qualifier checker must ensure that a*b can be given
this qualifier. By the third case clause for nonzero in Figure 1, the check succeeds
if it can be shown that a and b each recursively has qualifier nonzero. Each of these
recursive checks succeeds by the second case clause for nonzero, since a and b are
each declared to have qualifier pos.

In general, each program expression can be associated with a set of qualifiers. Qual-
ifier checking employs a natural notion of subtyping in the presence of user-defined
qualifiers: a type Q1τ subtypes another type Q2τ, where Q1 and Q2 are sets of qualifiers
and τ is an unqualified type, if Q1 ⊇ Q2. We have formalized this notion of subtyping
and proven that it is sound for all user-defined qualifiers expressible in our rule lan-
guage [2]. There is no direct notion of subtyping between qualifiers, but this can be
encoded in the rules. For example, the second case clause for nonzero in Figure 1 has
the effect of making pos int a subtype of nonzero int.

2.2 Qualifier Invariants and Qualifier Validation

In addition to the qualifier rules, CLARITY allows users to provide a predicate that for-
malizes a qualifier’s intended run-time invariant. For example, the invariant clause for
nonzero in Figure 1 indicates that the value of an expression qualified with nonzero
should not equal zero, in all run-time execution states. The invariant makes use of a
value predicate that our framework provides. Given a qualifier’s invariant, CLARITY’s
qualifier validator component ensures that the qualifier’s rules are correct, in the sense
that they respect this invariant. Qualifier validation happens once, independent of any
particular program that uses the qualifier. For each case clause, the qualifier valida-
tor generates one proof obligation to be discharged.2 Our implementation discharges
obligations with the Simplify automatic theorem prover [5].

2 We do not validate restrict rules, whose correctness depends on a user-specific notion of
run-time error.
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Each proof obligation requires that a rule’s pattern and condition are sufficient to
ensure the qualifier’s invariant at run time. For example, the qualifier validator gener-
ates the following obligation for the first case clause for nonzero in figure 1: if an
expression E is an integer constant other than zero, then the value of E in an arbitrary
execution state is not equal to zero. For the third case clause, the qualifier validator gen-
erates the following obligation: if an expression E has the form E1 * E2 and both E1
and E2 satisfy nonzero’s invariant in an arbitrary execution state, then E also satisfies
nonzero’s invariant in that state. These obligations are easily discharged by Simplify.3

On the other hand, if the pattern in the third case clause were erroneously specified as
E1 + E2, the qualifier validator would catch the error, since it is not possible to prove
that the sum of two nonzero integers is always nonzero.

CLARITY’s qualifier validator is currently limited by the capabilities of Simplify,
which includes decision procedures for propositional logic, linear arithmetic, and equal-
ity with uninterpreted functions, and additionally includes heuristics for handling first-
order quantification. Simplify works well for many kinds of properties, for example
arithmetic invariants and simple invariants about pointers such as nonnullness. Sim-
plify is not tailored for reasoning about other useful kinds of invariants, for example
shape invariants on data structures. However, our approach to qualifier validation could
easily be adapted for use with other decision procedures and theorem provers, including
tools requiring some user interaction.

3 Qualifier Inference

The original CLARITY system supports qualifier checking: all variables must be explic-
itly annotated with their qualifiers. In this section, we show how to support qualifier
inference in the presence of user-defined qualifier rules. We formalize qualifier infer-
ence for a simply-typed lambda calculus with references and user-defined qualifiers, as
defined by the following grammar:

e ::= c | e1 + e2 | x | λx : τ.e | e1 e2 | ref e | e1 := e2 |!e | assert(e,q)
τ ::= int | τ1 → τ2 | ref τ

Let Q be the set {q1, . . . ,qn} of user-defined qualifiers in a program. Sets of quali-
fiers from Q form a natural lattice, with partial order ⊇, least-upper-bound function ∩,
and greatest-lower-bound function∪. We denote elements of this lattice by metavariable
l; qualified types are ranged over by metavariable ρ and are defined as follows:

ρ ::= l φ φ ::= int | ρ1 → ρ2 | ref ρ

We present both a type system and a constraint system for qualifier inference and prove
their equivalence, and we describe an algorithm for solving the generated constraints.
We assume the bound variables in expressions are annotated with unqualified types τ.
It is possible to combine qualifier inference with type inference, but separating them
simplifies the presentation.

3 Our qualifier validator currently does not properly model overflow.
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3.1 Formal Qualifier Rules

We formalize the case rules as defining two kinds of relations. First, some case clauses
have the effect of declaring a specificity relation between qualifiers. We formalize these
rules as defining axioms for a relation of the form q1 � q2. For example, the second
case clause in Figure 1 would be represented by the axiom pos�nonzero. We use �∗

to denote the reflexive, transitive closure of the user-defined � relation, and we require
�∗ to be a partial order.

The other kind of case clause uses a pattern to match on a constructor (e.g., +),
and the clause determines the qualifier of the entire expression based on the qualifiers
of the immediate subexpressions. We formalize these rules as defining relations of the
form Rq

p, where q is a qualifier and p represents one of the constructors in our formal
language, ranging over integer constants and the symbols +, λ, and ref. The arity of
each relation Rq

p is the number of immediate subexpressions of the constructor repre-
sented by p, and the domain of each argument to the relation is Q. Each case clause
is formalized through axioms for these relations. For example, the third case clause
in Figure 1 would be represented by the axiom Rnonzero

∗ (nonzero,nonzero) (if our
formal language contained multiplication). The first case clause in that figure would
be formalized through the (conceptually infinite) set of axioms Rnonzero

1 (), Rnonzero
2 (),

etc. For simplicity of presentation, we assume that each subexpression is required to
satisfy only a single qualifier. In fact, our implementation allows each subexpression to
be constrained to satisfy a set of qualifiers, and it would be straightforward to update
our formalism to support this ability.

Finally, we formalize the restrict rules with an expression of the form
assert(e,q), which requires the type system to ensure that the top-level qualifier
on expression e’s type includes qualifier q. For example, the restrict rule in Fig-
ure 1 is modeled by replacing each denominator expression e in a program with
assert(e,nonzero). The assert expression can also be used to model explicit
qualifier annotations in programs.

3.2 The Type System

We assume we are given an expression e along with a set A of axioms representing the
user-defined qualifier rules, as described above. The qualifier type system is presented
in Figure 3, and the axioms in A are implicitly considered to augment this formal sys-
tem. As usual, metavariable Γ ranges over type environments, which map variables to
qualified types. The rule for assert(e,q) infers a qualified type for e and then checks
that q is in the top-level qualifier of this type. The strip function used in the rule for
lambdas removes all qualifiers from a qualified type ρ, producing an unqualified type τ.

The main novelty in the type system is the consultation of the axioms in A to pro-
duce the top-level qualifiers for constructor expressions. For example, consider the first
rule in Figure 3, which infers the qualifiers for an integer constant c using a set compre-

hension notation. The resulting set l includes all qualifiers q′ such that the Rq′
c () relation

holds (according to the axioms in A), as well as all qualifiers q that are “less specific”
than such a q′ as defined by the �∗ relation. In this way, the rule finds all possible qual-
ifiers that can be proven to hold given the user-defined case clauses. The subsumption
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l1 ⊇ l2
l1int≤ l2int

l1 ⊇ l2 ρ≤ ρ′ ρ′ ≤ ρ
l1 ref ρ≤ l2 ref ρ′

l1 ⊇ l2 ρ2 ≤ ρ1 ρ′1 ≤ ρ′2
l1(ρ1 → ρ′1)≤ l2(ρ2 → ρ′2)

Fig. 2. Formal subtyping rules for qualified types

l = {q | Rq′
c ()∧q′ �∗ q}

Γ � c : l int

Γ � e1 : l1 int Γ � e2 : l2 int

l = {q | Rq′
+(q1,q2)∧q1 ∈ l1∧q2 ∈ l2∧q′ �∗ q}

Γ � e1 +e2 : l int

Γ(x) = ρ
Γ � x : ρ

strip(ρ1) = τ1 Γ,x : ρ1 � e : ρ2 ρ2 = l2 φ2

l = {q | Rq′

λ (q2)∧q2 ∈ l2∧q′ �∗ q}
Γ � λx : τ1.e : l(ρ1 → ρ2)

Γ � e1 : l(ρ2 → ρ) Γ � e2 : ρ2

Γ � e1 e2 : ρ

Γ � e : ρ ρ = l0 φ0

l = {q | Rq′

ref(q0)∧q0 ∈ l0∧q′ �∗ q}
Γ � ref e : l ref ρ

Γ � e1 : l ref ρ Γ � e2 : ρ
Γ � e1 := e2 : ρ

Γ � e : l ref ρ
Γ �!e : ρ

Γ � e : ρ ρ = l φ q ∈ l

Γ � assert(e,q) : ρ
Γ � e : ρ′ ρ′ ≤ ρ

Γ � e : ρ

Fig. 3. Formal qualifier inference rules

rule at the end of the figure can then be used to forget some of these qualifiers, via
the subtyping rules in Figure 2. The inference of top-level qualifiers is similar for the
other constructors, except that consultation of the R relation makes use of the top-level
qualifiers inferred for the immediate subexpressions.

3.3 The Constraint System

In this section we describe a constraint-based algorithm for qualifier inference. The
key novelty is the use of a specialized form of conditional constraints to represent the
effects of user-defined qualifier rules. The metavariable α represents qualifier variables,
and we generate constraints of the following forms:

α⊇ α q ∈ α q ∈ α⇒ ( q ∈ α)

Given a set C of constraints, let S be a mapping from the qualifier variables in C to sets
of qualifiers. We say that S is a solution to C if S satisfies all constraints in C. We say
that S is the least solution to C if for all solutions S′ and qualifier variables α in the
domain of S and S′, S(α)⊇ S′(α). It is easy to show that if a set of constraints C in the
above form has a solution, then it has a unique least solution.

Constraint Generation. We formalize constraint generation by a judgment of the form
κ � e : δ | C. Here C is a set of constraints in the above form, and the metavariable δ
represents qualified types whose qualifiers are all qualifier variables:

δ ::= α ϕ ϕ ::= int | δ1 → δ2 | ref δ
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α1int � α2int ≡ {α1 ⊇ α2}
α1ref δ1 � α2ref δ2 ≡ {α1 ⊇ α2}∪δ1 � δ2∪δ2 � δ1

α1(δ1 → δ′1)� α2(δ2 → δ′2) ≡ {α1 ⊇ α2}∪δ2 � δ1∪δ′1 � δ′2

Fig. 4. Converting type constraints into set constraints

α′ fresh δ′ = α′ int δ = refresh(δ′)
κ � c : δ | δ′ � δ∪{Cq

c (α′) | q ∈ Q}

κ � e1 : α1 int |C1 κ � e2 : α2 int |C2
α′ fresh δ′ = α′ int δ = refresh(δ′)

κ � e1 +e2 : δ |
C1∪C2∪δ′ � δ∪{Cq

+(α1,α2,α′) | q ∈ Q}

κ(x) = δ′ δ = refresh(δ′)
κ � x : δ | δ′ � δ

κ,x : δ1 � e : δ2 |C δ1 = embed(τ1) δ2 = α2 ϕ2
α′ fresh δ′ = α′(δ1 → δ2) δ = refresh(δ′)
κ � λx : τ1.e : δ |C∪δ′ � δ∪{Cq

λ(α2,α′) | q ∈ Q}

κ � e1 : α(δ2 → δ′) |C1 κ � e2 : δ′2 |C2
δ = refresh(δ′)
κ � e1 e2 : δ |

C1∪C2∪δ′2 � δ2∪δ′ � δ

κ � e : δ0 |C δ0 = α0 ϕ0
α′ fresh δ′ = α′ ref δ0 δ = refresh(δ′)

κ � ref e : δ |C∪δ′ � δ∪{Cq
ref(α0,α′) | q ∈Q}

κ � e1 : α ref δ′ |C1 κ � e2 : δ′′ |C2
δ = refresh(δ′)

κ � e1 := e2 : δ |
C1∪C2∪δ′′ � δ′ ∪δ′ � δ

κ � e : α ref δ′ |C
δ = refresh(δ′)

κ �!e : δ |C∪δ′ � δ

κ � e : δ′ |C δ′ = α φ
δ = refresh(δ′)

κ � assert(e,q) : δ |
C∪{q ∈ α}∪δ′ � δ

Fig. 5. Formal constraint generation rules for qualifier inference

The metavariable κ denotes type environments that map program variables to qualified
types of the form δ.

The inference rules defining this judgment are shown in Figure 5. The embed func-
tion adds fresh qualifier variables to an unqualified type τ in order to turn it into a
qualified type δ, and refresh(δ) is defined as embed(strip(δ)). To keep the constraint
generation purely syntax-directed, subsumption is “built in” to each rule: the refresh
function is used to create a fresh qualified type δ, which is constrained by a subtype
constraint of the form δ′ � δ. Subtype constraints are also generated for applications
and assignments, as usual. We treat a subtype constraint as a shorthand for a set of
qualifier-variable constraints, as shown in Figure 4.

Each rule for an expression with top-level constructor p produces one conditional
constraint per qualifier q in Q, denoted Cq

p. Informally, the constraint Cq
p inverts the user-

defined qualifier rules, indicating all the possible ways to prove that an expression with
constructor p can be given qualifier q according to the axioms in A. For example, both
the second and third case clauses in Figure 1 can be used to prove that a product a*b
has the qualifier nonzero, so our implementation of constraint generation in CLARITY

produces the following conditional constraint:
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nonzero∈ αa∗b⇒ ((nonzero∈ αa∧nonzero∈ αb)∨ (pos ∈ αa∗b))

More formally, let zip(Rq
p(q1, . . . ,qm),α1, . . . ,αm) denote the constraint q1 ∈ α1 ∧

. . . ∧ qm ∈ αm. Let {a1, . . . ,au} be all the axioms in A for the relation Rq
p, and let

{q1, . . . ,qv} = {q′ ∈ Q | q′ � q}. Then Cq
p(α1, . . . ,αm,α′) is the following conditional

constraint:
q ∈ α′ ⇒ (

1≤i≤u

zip(ai,α1, . . . ,αm)∨
1≤i≤v

qi ∈ α′)

We have proven the equivalence of our constraint system with the type system pre-
sented in the previous subsection; details are in our companion technical report [3].

Theorem: /0 � e : ρ if and only if /0 � e : δ |C and there exists a solution S to C such that
S(δ) = ρ.

Constraint Solving. We solve the constraints by a graph-based propagation algorithm,
which either determines that the constraints are unsatisfiable or produces the unique
least solution. Figure 6 shows a portion of the constraint graph generated for the state-
ment int prod = a*b;. On the left side, the graph includes one node for each qualifier
variable, which is labeled with the corresponding program expression. Each node con-
tains a bit string of length |Q| (not shown in the figure), representing the qualifiers that
may be given to the associated expression. All bits are initialized to true, indicating
that all expressions may be given all qualifiers. If bit i for node α ever becomes false
during constraint solving, this indicates that α cannot include the ith qualifier in any
solution.

Because our algorithm propagates the inability for an expression to have a qualifier,
the direction of flow is opposite what one might expect. For each generated constraint
of the form α1 ⊇ α2, the graph includes an edge from α1 to α2. For each conditional
constraint, the graph contains a representation of its contrapositive. For example, the
right side of Figure 6 shows an and-or tree that represents the following constraint:

((nonzero 
∈ αa∨nonzero 
∈ αb)∧ (pos /∈ αa∗b))⇒ nonzero /∈ αa∗b

The tree’s root has an outgoing edge to the nonzero bit of the node a*b, and the leaves
similarly have incoming nonzero-bit edges. In the figure, edges to and from individual

b

a

prod

a∗b

nonzero
/∈ a nonzero

/∈ b pos
/∈ a∗b

nonzero
/∈ a∗b
∧

∨

Fig. 6. An example constraint graph
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bits are dotted. The root of each and-or tree maintains a counter of the number of
subtrees it is waiting for before it can “fire.” Our example tree has a counter value of 2.

To solve the constraints, we visit the root of each and-or tree once. If its counter is
greater than 0, we do nothing. Otherwise, the outgoing edge from its root is traversed,
which falsifies the associated bit and propagates this falsehood to its successors recur-
sively until quiescence. For example, if the and-or tree in Figure 6 ever fires, that will
falsify the nonzero bit of a*b, which in turn will falsify the nonzero bit of prod.

After the propagation phase is complete, we employ the constraints of the form q ∈
α to check for satisfiability. For each such constraint, if the bit corresponding to qualifier
q in node α is false, then we have a contradiction and the constraints are unsatisfiable.
Otherwise, the least solution is formed by mapping each qualifier variable α to the set
of all qualifiers whose associated bit in node α is true.

Complexity Analysis. Let n be the size of a program, m be the size of the axioms in
A, and q be the number of user-defined qualifiers. There are O(n) qualifier variables,
O(n2) constraints of the form α ⊇ α, O(qn) constraints of the form q ∈ α, and O(qn)
conditional constraints generated, each with size O(m). Therefore, the constraint graph
has O(n2) edges between qualifier-variable nodes, each of which can be propagated
across q times. There are O(qnm) edges in total for the and-or trees, and there are
O(qnm) edges between the qualifier-variable nodes and the and-or trees, each of which
can be propagated across once. Therefore, the total number of propagations, and hence
the total time complexity, is O(qn(n + m)).

4 Rule Inference

Writing qualifier rules can be tedious and error prone. The qualifier validator that is
part of our framework reduces errors by checking that each user-defined rule respects
its associated qualifier’s invariant. However, other errors are possible. For example, a
user-defined rule may be correct but be overly specific, and there may be useful rules
that are completely omitted. To reduce the burden on qualifier designers and to reduce
these kinds of errors, we have created a technique for automatically inferring correct
case rules from a qualifier’s invariant.

A naive approach to rule inference is to generate each candidate rule and use the
qualifier validator to remove all candidates that do not respect the intended invariant.
However, since qualifier validation is relatively expensive, requiring usage of decision
procedures, and since there are an exponential number of candidates in the number of
qualifiers, it is desirable to minimize the number of candidates that need to be explicitly
considered.4 To efficiently search the space of candidate rules, we define a partial order
� that formalizes the situation when one candidate subsumes another.

The most precise partial ordering on case clauses is logical implication. For exam-
ple, the third case clause in Figure 1 corresponds to the following formula, obtained by
replacing qualifiers with their invariants:

4 Conceptually, there are an infinite number of candidates, due to constants. We handle constants
through a simple heuristic that works well in practice. For each qualifier, we only consider a
single candidate rule (possibly) containing constants, which is derived from the qualifier’s
invariant by replacing all references to value(E) with a metavariable ranging over constants.
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Fig. 7. An example of �S for four qualifiers

value(E1) 
= 0∧value(E2) 
= 0⇒ value(E1∗E2) 
= 0

The above clause subsumes a clause that requires both E1 and E2 to be pos instead of
nonzero, since the above formula logically implies the formula associated with the new
clause. Unfortunately, precisely computing this partial order requires an exponential
number of calls to decision procedures to reason about logical implication, which is
exactly what we are trying to avoid.

Instead, our approach is to use logical implication to define a partial ordering on
individual qualifiers, but to then lift this partial ordering to case clauses in a purely
syntactic way. Therefore, we need only make a quadratic number of calls to the deci-
sion procedures in order to compute the partial order. This approximation of the “true”
partial ordering is still guaranteed to completely exhaust the space of candidates, but it
is now possible to produce qualifier rules that are redundant. As we show in Section 5,
however, our approach works well in practice. The rest of this section formalizes our
partial order and describes the rule inference algorithm; more details are in our com-
panion technical report [3].

The Partial Order. We assume that every qualifier q ∈ Q has an invariant, which is a
unary predicate that we also denote q. We also assume that no two qualifiers have logi-
cally equivalent invariants. Then we define a partial order�Q on qualifiers as follows:

q1 �Q q2
Δ= ∀x.q1(x)⇒ q2(x)

This partial order is computed by |Q|2 queries to Simplify. We similarly use |Q|2 Sim-
plify queries to compute mutual exclusivity of pairs of qualifiers:

q1 ⊥Q q2
Δ= ∀x.¬(q1(x)∧q2(x))

Let S = P (Q). We lift �Q to sets of qualifiers (or qualsets) s1 and s2 in S as follows:

s1 �S s2
Δ= ∀q2 ∈ s2.∃q1 ∈ s1.q1 �Q q2

When considering qualsets for use in a candidate case clause, we restrict our atten-
tion to qualsets that are canonical. We define a set s ∈ S as canonical if the following
condition holds:
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∀q1,q2 ∈ s.¬(q1 ⊥Q q2)∧ (q1 �Q q2 ⇒ q1 = q2)

It is easy to prove that �S is a partial order on canonical qualsets. An example of the
�S partial order over canonical qualsets that may include any of the four qualifiers
nonzero, pos, neg, and withinThree (whose invariant requires the value to be ≥ −3
and ≤ 3) is shown in Figure 7. We lift �S to tuples of canonical qualsets in the obvious
way:

(s1, . . . ,sk)�T (t1, . . . ,tk)
Δ= ∀i ∈ {1, . . . ,k}.si �S ti

Finally, we can describe the partial order on candidate case clauses. A candidate c
can be considered to be a triple containing the constructor p used as the pattern; a tuple
of qualsets (s1, . . . ,sk), one per subexpression of p, representing the clause’s condition;
and the qualifier q that the clause is defined for. We define the partial ordering on case
clauses c1 and c2 as follows:

(p1,(s1, . . . ,sk),q1)� (p2,(t1, . . . ,t j),q2)
Δ=

p1 = p2∧ k = j∧ (t1, . . . ,tk)�T (s1, . . . ,sk)∧q1 �Q q2

We have proven that if c1 � c2 then in fact c1 logically implies c2 [3].

The Algorithm. Consider generating all valid case rules for a single qualifier q.
Further, fix a particular constructor p to use in the rule’s pattern, and assume that
this constructor has exactly one subexpression. Let W be a worklist of pairs of the
form (s, l) where s is a qualset and l is a list of qualifiers. Initialize the set W to
{( /0, [q1,q2,q3, . . .])}, where [q1,q2,q3, . . .] is an ordered list of all the qualifiers in re-
verse topological order according to �Q. Using reverse topological order ensures we
will generate qualsets for use in a case rule from most-general to most-specific, which
is necessary given the contravariance in the definition of�. We similarly maintain W in
sorted order according to a reverse topological sort of the first component of each pair.
We also maintain a set T of valid case rules, initialized to /0.

1. If W is empty, we are done and T contains all the valid non-redundant rules. Oth-
erwise, remove the first pair (s, l) in W .

2. If there is some candidate (p′,s′,q′) ∈ T such that (p′,s′,q′) � (p,s,q) then s is
redundant, so we drop the pair (s, l) and return to the previous step. Otherwise, we
continue to the next step.

3. We run our framework’s qualifier validator on (p,s,q). If it passes, we add (p,s,q)
to T . If not, then we need to check less-specific candidates. For each q ∈ l, we add
the pair (s∪{q}, l′) to W , where l′ is the suffix of l after q. These pairs are placed
appropriately in W to maintain its sortedness, as described earlier.

In the case when the constructor p has k > 1 subexpressions, we need to enumerate
k-ary multisets. To do so, the worklist W now contains k-tuples of pairs of the form (s, l).
When adding new elements to W , we apply the procedure described in Step 3 above to
each component of the k-tuple individually, keeping all other components unchanged.
The only subtlety is that we want to avoid generating redundant tuples. For example,
if q1 �Q q2, then the tuple ({q2},{q2}) could be a successor of both ({q1},{q2}) and
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Table 1. Qualifier inference results

qualifier sets nonnull nonnull/pos/neg/nz
program kloc vars cons gen solv cons gen solv

(s) (s) (s) (s)
identd-1.0 0.19 624 1381 0.09 0.01 2757 0.15 0.01
mingetty-0.9.4 0.21 488 646 0.04 0.01 1204 0.06 0.01
bftpd-1.0.11 2.15 1773 3768 0.39 0.05 6426 0.58 0.08
bc-1.04 4.75 4769 14913 1.21 0.13 27837 5.78 0.18
grep-2.5 10.43 4914 15719 0.75 0.55 28343 7.84 0.71
snort-2.06 52.11 29013 99957 36.39 46.81 176852 290.24 58.07

({q2},{q1}). To avoid this duplication, we only augment a component of a k-tuple
when generating new candidates for W in Step 3 if it is either the component that was
last augmented along this path of the search, or it is to the right of that component.
This rule ensures that once a component is augmented, the search cannot “go back” and
modify components to its left. In our example, ({q2},{q2}) would not be generated
from ({q1},{q2}) in Step 3, because the last component to have been augmented must
have been the second one (since all components begin with the empty set).

Finally we describe the full algorithm for candidate generation. We enumerate each
qualifier q in topological order according to �Q. For each such qualifier, we enumerate
each constructor p in any order and use the procedure described above to generate all
the valid non-redundant rules of the form (p,(s1, . . . ,sk),q). The set T is initialized to
/0 at the beginning of this algorithm and is augmented throughout the entire process. In
this way, candidates shown to be valid for some qualifier q can be used to find a later
candidate for a target q′ to be redundant. For example, a rule allowing the sum of two
pos expressions to be considered pos will be found to subsume a rule allowing the sum
of two pos expressions to be considered nonzero. When this algorithm completes, the
set T will contain all valid rules such that none is subsumed by any other valid rule
according to �. Finally, we augment T with rules that reflect the specificity relation
among qualifiers, such as the second case rule in Figure 1. These rules are derived
directly from the computed�Q relation.

5 Experiments

5.1 Qualifier Inference

We implemented qualifier inference in CLARITY and ran it on six open-source C pro-
grams, ranging from a few hundred to over 50,000 lines of code, as shown in Table 1.
Each test case was run through the inferencer twice. The first time, the inferencer was
given a definition only for a version of nonnull, with a case clause indicating that an
expression of the form &E can be considered nonnull and a restrict clause requiring
dereferences to be to nonnull expressions. The second time, the inferencer was addi-
tionally given versions of the qualifiers pos, neg, and nonzero for integers, each with
5 case rules similar to those in Figure 1. For each run, the table records the number
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of constraints produced as well as the time in seconds for constraint generation and
constraint solving.

Several pointer dereferences fail to satisfy the restrict clause for nonnull, caus-
ing qualifier inference to signal inconsistencies. We analyzed each of the signaled errors
for bc and inserted casts to nonnull where appropriate to allow inference to succeed.
In total, we found no real errors and inserted 107 casts. Of these, 98 were necessary due
to a lack of flow-sensitivity in our type system. We plan to explore the incorporation of
targeted forms of flow-sensitivity to handle commonly arising situations. Despite this
limitation, the qualifier rules were often powerful enough to deduce interesting invari-
ants. For example, on bc, 37% (163/446) of the integer lvalues were able to be given
the nonzero qualifier and 5% (24/446) the pos qualifier. For snort, 8% (561/7103) of
its integer lvalues were able to be given the nonzero qualifier, and 7% (317/4571) of
its pointer lvalues were able to be given the nonnull qualifier (without casts).

5.2 Rule Inference

We implemented rule inference in the context of CLARITY and performed two experi-
ments. First, we inferred rules for pos, neg, and nonzero, given only their invariants. In
the second experiment, we additionally inferred rules for withinThree. For the first ex-
periment, our rule inference algorithm automatically generated all of the case rules we
had originally hand-written for the three qualifiers. In addition, rule inference generated
several valid rules that we had not written. For example, one new rule allows the nega-
tion of a nonzero expression to also be nonzero. The second experiment produced no
new rules for nonzero, pos, and neg, indicating their orthogonality to the withinThree
qualifier. However, it did generate several nontrivial rules for withinThree that we had
not foreseen. For example, one rule allows a sum to be considered withinThree if one
operand is withinThree and pos while the other operand is withinThree and neg. In
both experiments, no redundant rules were generated.

The first experiment required 18 queries to the decision procedures in order to com-
pute the �Q and ⊥Q relations, for use in the overall � partial order, and 142 queries
to validate candidate rules. In contrast, the naive generate-and-test algorithm would re-
quire 600 queries. The second experiment required 32 queries to compute �Q and ⊥Q

as well as 715 queries for candidate validation, while the naive algorithm would require
3136 queries. The first experiment completed in under six minutes, and the second ex-
periment in under 26 minutes. The running times are quite reasonable, considering that
rule inference need only be performed once for a given set of qualifiers, independent of
the number of programs that employ these qualifiers.

6 Related Work

Our framework is most closely related to the CQUAL system, which also allows users to
define new type qualifiers for C programs [6]. The main novelty in our approach is the
incorporation of user-defined qualifier rules, which are not supported in CQUAL. Our
qualifier inference algorithm extends the technique used for inference in CQUAL [6]
to handle such user-defined rules via a form of conditional constraints. Our notion of
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rule inference has no analogue in CQUAL. CQUAL includes a form of qualifier poly-
morphism, and follow-on work extended CQUAL’s type system to be flow sensitive [7],
while CLARITY currently lacks both of these features.

Work on refinement types [8] allows programmers to create subtypes of ML datatype
definitions. Intersection types allow a function to have multiple type signatures with
varying refinements, playing a role analogous to our case rules. A refinement inference
algorithm is provided for a functional subset of ML. Later work [4] considered the
interaction of intersection types with computational effects, and recent work extends
these ideas to a flow-sensitive setting [10]. These two systems are more powerful than
our type qualifiers, but they do not support full type inference.

HM(X) [11] is a Hindley-Milner-style type inference system that is parameterized
by the form of constraints. Our situation is dual to that one: while HM(X) has a fixed
type system that is parameterized by a constraint system, qualifier inference in our
framework uses a fixed form of constraints but is parameterized by the qualifier rules.

Rule inference is related to work on predicate abstraction [9, 1] and on finding
the best transformer [12, 13]. These algorithms use decision procedures to precisely
abstract a program with respect to a set of predicates. Rule inference is similar, as it
produces an abstraction automatically from the user-defined invariants. However, this
abstraction is produced once, independent of any particular program.

7 Conclusions

We have described two forms of inference that reduce the burden on users of our ap-
proach to user-defined type qualifiers. Qualifier inference employs user-defined rules
to infer qualifiers on programs, obviating the need for manual program annotations.
We described an algorithm for qualifier inference based on generating and solving a
system of conditional set constraints. Rule inference employs decision procedures to
automatically produce qualifier rules that respect a qualifier’s user-defined invariant,
reducing the burden on qualifier designers. We described a partial order on candidate
qualifier rules that allows us to search the space of candidates efficiently without losing
completeness. We have implemented both qualifier and rule inference in the CLARITY

system for C, and our experimental results illustrate their utility in practice.
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Abstract. This paper presents results on the problem of checking equal-
ity assertions in programs whose expressions have been abstracted using
combination of linear arithmetic and uninterpreted functions, and whose
conditionals are treated as non-deterministic.

We first show that the problem of assertion checking for this com-
bined abstraction is coNP-hard, even for loop-free programs. This result
is quite surprising since assertion checking for the individual abstrac-
tions of linear arithmetic and uninterpreted functions can be performed
efficiently in polynomial time.

Next, we give an assertion checking algorithm for this combined ab-
straction, thereby proving decidability of this problem despite the un-
derlying lattice having infinite height. Our algorithm is based on an
important connection between unification theory and program analysis.
Specifically, we show that weakest preconditions can be strengthened by
replacing equalities by their unifiers, without losing any precision, during
backward analysis of programs.

1 Introduction

We use the term equality assertion or simply assertion to refer to an equal-
ity between two program expressions. By assertion checking, we mean checking
whether a given assertion is an invariant at a given program point.

Reasoning about assertions in programs is an undecidable problem. Hence,
assertion checking is typically performed over some (sound) abstraction of the
program. This may give rise to false positives, i.e., some assertions that are
true in the original program may not be true in the abstract version. There is
an efficiency-precision trade-off in the choice of the abstraction. A more precise
abstraction leads to fewer false positives but is also harder to reason about.

Linear arithmetic and uninterpreted functions1 are two most commonly used
expression languages for creating program abstractions. There are several
1 An uninterpreted function F of arity n satisfies only one axiom: If ei = e′

i for
1 ≤ i ≤ n, then F (e1, . . , en) = F (e′

1, . . , e
′
n). Uninterpreted functions are commonly

used to abstract programming language operators that are otherwise hard to reason
about. They are also used to abstract procedure calls.
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a1 := 0; a2 := 0;
b1 := 1; b2 := F(1);
c1 := 3; c2 := F(4);

a1 := a1+1; a2 := a2+2;
b1 := F(b1); b2 := F(b2);
c1 := F(1+c1); c2 := F(c2+1);

a1< 100

False

True

Assert(a2=2a1);
Assert(b2 = F(b1));
Assert(c2=F(c1+1));

Fig. 1. This program illustrates the difference between precision of performing analy-
sis over the abstractions of linear arithmetic (which can verify only the first assertion),
uninterpreted functions (which can verify only the second assertion), and their combina-
tion (which can verify all assertions). F denotes some function without any side-effects
and can be modeled as an uninterpreted function for purpose of proving the assertions.

papers that describe how to do assertion checking for each of these abstrac-
tions. (Section 6 on related work describes some of this work.) The combined
expression language of linear arithmetic and uninterpreted functions yields a
more precise abstraction than the ones obtained from either of these two expres-
sion languages. For example, consider the program shown in Figure 1. Note that
all assertions at the end of the program are true. If this program is analyzed over
the abstraction of linear arithmetic (using, for example, the abstract interpreter
described in [14] or [6]), then only the first assertion can be validated. This
is because discovering the relationship between b1 and b2, and between c1 and
c2, involves reasoning about uninterpreted functions. Similarly, if this program is
analyzed over the abstraction of uninterpreted functions (using, for example, the
abstract interpreter described in [10]), then only the second assertion can be val-
idated. However, an analysis over the combined abstraction of linear arithmetic
and uninterpreted functions can verify all assertions.

Even though there has been a lot of work for reasoning about the abstrac-
tions of linear arithmetic and that of uninterpreted functions, the problem of
assertion checking over the combined abstraction of linear arithmetic and unin-
terpreted functions has not been considered before. In this paper, we consider
the problem of checking equality assertions in programs whose expressions have
been abstracted using linear arithmetic and uninterpreted functions. We also
abstract all program conditionals as non-deterministic because otherwise the
problem is easily shown to be undecidable even for the individual abstractions
of linear arithmetic [17] and uninterpreted functions [16]. (An analysis that per-
forms an imprecise reasoning over the combined abstraction of linear arithmetic
and uninterpreted functions but takes conditional guards into account would



Assertion Checking over Combined Abstraction 281

also be useful in practice, and can be used, for example, for array bounds check-
ing. The related work section mentions our recent work on combining abstract
interpreters, which can be used to construct such an analysis.) The abstracted
program model is formally described in Section 2.

In Section 3, we show that the problem of assertion checking in the com-
bined abstraction of linear arithmetic and uninterpreted functions is coNP-hard.
This is true even for loop-free programs, in which case it is coNP-complete. This
result is quite surprising because assertion checking in the individual abstrac-
tions of linear arithmetic and uninterpreted functions entails polynomial-time
algorithms (even for programs with loops). Karr’s algorithm [14, 17] can be used
to perform assertion checking when program expressions have been abstracted
using linear arithmetic operators. Gulwani and Necula’s algorithm [9, 10] per-
forms assertion checking in programs whose expressions have been abstracted
using uninterpreted functions. Both these algorithms run in polynomial time.
However, our coNP-hardness result shows that there is no way to combine these
algorithms to do assertion checking for the combined abstraction in polynomial
time (unless P=coNP). A similar combination problem has been studied ex-
tensively in the context of decision procedures. Nelson and Oppen have given a
famous combination result for combining decision procedures for disjoint, convex
and quantifier-free theories with only polynomial-time overhead [20]. The the-
ories of linear arithmetic and uninterpreted functions are disjoint, convex, and
quantifier-free and have polynomial time decision procedures. Hence, the Nelson-
Oppen combination methodology can be used to construct a polynomial-time
decision procedure for the combination of these theories. In this paper, we show
that, unfortunately, there is no polynomial-time combination scheme for asser-
tion checking in the combined abstraction of linear arithmetic and uninterpreted
functions (unless P=coNP).

In Section 4, we give an assertion checking algorithm for the combined ab-
straction (of linear arithmetic and uninterpreted functions) thereby showing that
this problem is decidable. This result is again surprising because the underly-
ing abstract lattice has infinite height, which implies that a standard abstract
interpretation [6] based algorithm cannot terminate in a finite number of steps.
However, our algorithm leverages the fact that our goal is not to discover all
equality invariants, but to check whether a given assertion is an invariant. A
central component of our algorithm is a general result that allows replacement
of equalities generated in weakest precondition computation by their unifiers
(Lemma 2). For theories that admit a singleton or finite complete set of unifiers,
respectively called unitary and finitary theories, this replacement can be effec-
tively done. The significance of this connection between assertion checking and
unification is discussed further in Section 5. We make the paper self-contained
by presenting (in Section 4.1) a novel unification algorithm for the combined
theory of linear arithmetic and uninterpreted functions, which is used in our
assertion checking algorithm.
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2 Program Model

We assume that each procedure in a program is abstracted using the flowchart
nodes shown in Figure 2. In the assignment node, x refers to a program variable
while e denotes some expression in the underlying abstraction. We refer to the
language of such expressions as expression language of the program. The expres-
sion languages for the abstractions of linear arithmetic, uninterpreted functions
and their combination are as follows:

– Linear arithmetic:

e ::= y | c | e1 ± e2 | c× e

Here y denotes some variable while c denotes some arithmetic constant.
– Uninterpreted functions:

e ::= y | Fn(e1, . . , en)

Here Fn denotes some uninterpreted function of arity n. We allow n to be
zero (for representing nullary uninterpreted functions).

– Combination of linear arithmetic and uninterpreted functions:

e ::= y | c | e1 ± e2 | c× e | Fn(e1, . . , en)

A non-deterministic assignment x :=? denotes that the variable x can be
assigned any value. Such non-deterministic assignments are used as a safe ab-
straction of statements (in the original source program) that our abstraction
cannot handle precisely.

Non-deterministic conditionals, represented by ∗, denote that the control
can flow to either branch irrespective of the program state before the condi-
tional. They are used as a safe abstraction of guarded conditionals, which our
abstraction cannot handle precisely. We abstract away the guards in condition-
als because otherwise the problem of assertion checking (when the expression
language of the program involves combination of linear arithmetic and uninter-
preted functions) can be easily shown undecidable from either of the following
two results. Müller-Olm and Seidl have shown that the problem of assertion

21

(a) Assignment Node

x := e

0

x := ?

0

*True False

1 2

(d) Join Node(b) Non-deterministic 
Assignment Node

(c) Non-deterministic 
Conditional Node

Fig. 2. Flowchart nodes in our abstracted program model
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checking in programs that use guarded conditionals and linear arithmetic ex-
pressions is undecidable [17]. Müller-Olm, Rüthing, and Seidl have also proved a
similar undecidability result when the expression language involves uninterpreted
functions [16].

A join node has two incoming edges. Note that a join node with more than two
incoming edges canbe reduced tomultiple joinnodes eachwith two incoming edges.

3 coNP-Hardness of Assertion Checking

In this section, we show that the problem of assertion checking when the ex-
pression language of the program involves combination of linear arithmetic and
uninterpreted functions (and the flowchart representation of the program con-
sists of nodes shown in Figure 2) is coNP-hard.

The key observation in proving this result is that a disjunctive assertion
of the form g = a ∨ g = b can be encoded as the non-disjunctive assertion
F (a) + F (b) = F (g) + F (a + b− g). The procedure Check(g,m) generalizes this
encoding for the disjunctive assertion g = 0 ∨ . . ∨ g = m − 1 (which has m− 1
disjuncts), as stated in Lemma 1. Once such a disjunction can be encoded, we
can reduce the unsatisfiability problem to the problem of assertion checking as
follows.

Consider the program shown in Figure 3. We will show that the assert state-
ment in the program is true iff the input boolean formula ψ is unsatisfiable. Note
that, for a fixed ψ, the procedures IsUnSatisfiable and Check can be reduced
to one procedure whose flowchart representation consists of only the nodes shown
in Figure 2. (These procedures use procedure calls and loops with guarded con-
ditionals only for expository purposes.) This can be done by unrolling the loops
and inlining procedure Check inside procedure IsUnSatisfiable. The size of
the resulting procedure is polynomial in the size of the input boolean formula ψ.

The procedure IsUnSatisfiable contains k non-deterministic conditionals,
which together choose a truth value assignment for the k boolean variables in
the input boolean formula ψ, and accordingly set its clauses to true (1) or false
(0). The boolean formula ψ is unsatisfiable iff at least one of its clauses remains
unsatisfied in every truth value assignment to its variables, or equivalently, g ∈
{0, . . ,m−1} in all executions of the procedure IsUnSatisfiable. The procedure
Check(g,m) performs the desired check as stated in the following lemma.

Lemma 1. The assert statement in Check(g,m) is true iff g ∈ {0, . . ,m− 1}.

Proof. The following properties hold for all 0 ≤ i ≤ m− 1.

E1. If 0 ≤ j ≤ i, then hi,j = hi,0.
E2. If g ∈ {0, . . ,m− 1}, then hi = hi,g.
E3. If g 
∈ {0, . . ,m− 1}, then hi cannot be expressed as a linear combination of

hi,0, . . , hi,m−1.
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IsUnSatisfiable(ψ)
% Suppose formula ψ has k variables x1, . . , xk

% and m clauses numbered 1 to m.
% Let variable xi occur in positive form in clauses # Ai[0], . . , Ai[ci]
% and in negative form in clauses # Bi[0], . . , Bi[di].
for i = 1 to m do

ei := 0; % ei represents whether clause i is satisfiable or not.
for i = 1 to k do

if (*) then % set xi to true
for j = 0 to ci do

eAi[j] := 1;
else % set xi to false

for j = 0 to di do
eBi[j] := 1;

g := e1 + e2 + . . + em; % Count how many clauses have been satisfied.
Check(g, m);

Check(g,m)
% This procedure checks whether g ∈ {0, . . , m− 1}.
h0 := F (g);
for j = 0 to m− 1 do

h0,j := F (j);
for i = 1 to m− 1 do

si−1 := hi−1,0 + hi−1,i;
hi := F (hi−1) + F (si−1 − hi−1);
for j = 0 to m− 1 do

hi,j := F (hi−1,j) + F (si−1 − hi−1,j);
Assert(hm−1 = hm−1,0);

Fig. 3. A program that illustrates the coNP-hardness of assertion checking when the
expression language uses combination of linear arithmetic and uninterpreted functions.

The above properties can be proved easily by induction on i. If g ∈ {0, . . ,m−1},
then the assert statement is true because:

hm−1 = hm−1,g (follows from property E2)
= hm−1,0 (follows from property E1)

If g 
∈ {0, . . ,m− 1}, then it follows from property E3 that the assert statement
is falsified. �

Lemma 1 implies that the assert statement in procedure IsUnSatisfiable(ψ)
is true iff the input boolean formula ψ is unsatisfiable. Hence, the following
theorem holds.

Theorem 1. Assertion checking for programs with non-deterministic condition-
als and whose expression language is a combination of linear arithmetic and
uninterpreted functions is coNP-hard.
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Since IsUnSatisfiable can be represented as a loop-free program, Theorem 1
holds even for loop-free programs.

4 Algorithm for Assertion Checking

In this section, we give an assertion checking algorithm for our abstracted pro-
gram model when the expression language of the program involves combination
of linear arithmetic and uninterpreted functions. We prove that this algorithm
terminates, which establishes the decidability of assertion checking for the com-
bined abstraction. It remains an open problem to establish an upper complexity
bound for this algorithm.

For purpose of describing and proving correctness of our algorithm, we first
establish some results on unification in the combined theory of linear arithmetic
and uninterpreted functions in the next sub-section.

4.1 Unification in the Combined Theory

A substitution σ is a mapping that maps variables to expressions such that
for every variable x, the expression σ(x) contains variables only from the set
{y | σ(y) = y}. A substitution mapping σ can be (homomorphically) lifted to
expressions such that for every expression e, we define σ(e) to be the expres-
sion obtained from e by replacing every variable x by its mapping σ(x). Often,
we denote the application of a substitution σ to an expression e using postfix
notation as eσ. We sometimes treat a substitution mapping σ as the following
formula, which is a conjunction of non-trivial equalities between variables and
their mappings: ∧

x:x �=xσ

x = xσ

A substitution σ is a unifier for an equality e1 = e2 (in theory T ) if e1σ = e2σ
(in theory T ). A substitution σ is a unifier for a set of equalities E if σ is a unifier
for each equality in E. A substitution σ1 is more-general than a substitution σ2
if there exists a substitution σ such that xσ2 = (xσ1)σ for all variables x. 2 A set
C of unifiers for E is complete when for any unifier σ for E, there exists a unifier
σ′ ∈ C that is more-general than σ. Theories can be classified based on whether
all equalities in that theory have a complete set of unifiers whose cardinality is
at most 1 (unitary theory), or finite (finitary theory), or whether some equality
does not have any finite complete set of unifiers (infinitary theory).

In the remaining part of this section, we show that the combined theory of
linear arithmetic and uninterpreted functions is finitary. For this purpose, we
describe an algorithm that computes a complete set of unifiers for an equality
in the combined theory. We describe this algorithm using a set of inference rules
(listed in table 1) in the style of [4].

2 The more-general relation is reflexive, i.e., a substitution is more-general than itself.
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Table 1. Inference rules for unification in the combination theory

Unif0:
(E ∪ {e = e}, σ)

(E, σ)

Unif1:
(E ∪ {x = e}, σ)

(Eσ′, σσ′)
if x does not occur in e. Here σ′ = {x �→ e} and Eσ′ denotes {e1σ

′ = e2σ
′ | (e1 =

e2) ∈ E}.

Unif2:
(E ∪ {F (e1, . . , en) = F (e′

1, . . , e
′
n) + e}, σ)

(E ∪ {e1 = e′
1, . . , en = e′

n, e = 0}, σ)

Table 1 describes some inference rules that operate on states. A state (E, σ) is
a pair consisting of a set E of equalities (between expressions involving combina-
tion of linear arithmetic and uninterpreted functions) and a substitution σ. The
Unif0 rule removes trivial equalities from E. The Unif1 rule can be applied after
selecting some equality from E that can be rewritten in the form x = e such that
variable x does not occur in expression e. The Unif2 rule is applied after selecting
some equality that can be rewritten in the form F (e1, . . , en) = F (e′1, . . , e′n) + e
for some uninterpreted function F and expressions ei, e′i and e.

The notation {x1 �→ e1, . . , xk �→ ek} denotes the substitution mapping that
maps variable xi to ei (for 1 ≤ i ≤ k) and all other variables to themselves. We
use the notation (E, σ) � (E′, σ′) to denote that the state (E′, σ′) is obtained
from (E, σ) by applying some inference rule. Similarly, (E, σ) �∗ (E′, σ′) denotes
that the state (E′, σ′) can be obtained from the state (E, σ) by applying some
sequence of inference rules.

To generate a complete set of unifiers C for an equality e1 = e2, we start with
the state ({e1 = e2}, I), where I is the identity mapping, and apply the inference
rules repeatedly until no more inference rules can be applied. For all derivations
that end with some state of the form (∅, σ), we put σ in C. Theorem 2 stated
below implies that the set C thus obtained is indeed a set of unifiers for the
equality e1 = e2. Theorem 3 implies that this set C of unifiers is complete. The
proofs of these theorems are by induction on the length of the derivation and
are given in the full version of this paper [13].

Theorem 2 (Soundness). If (E, I) �∗ (∅, σ), then σ is a unifier for E.

Theorem 3 (Completeness). Suppose σ is a unifier for E. Then there is a
derivation (E, I) �∗ (∅, σ0) such that σ0 is a more-general unifier for E than σ.

The following theorem implies that the set C is finite.

Theorem 4 (Finite Complete Set of Unifiers). Every derivation (E, I) �∗
(E′, σ′) takes a finite number of steps. Consequently, E has a finite complete set
of unifiers.

The proof of Theorem 4 is given in the full version of this paper [13]. The key
proof idea is to show that every derivation (E, I) �∗ (E′, σ′) takes a finite
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number of steps and then use Konig’s lemma to bound the total number of
derivations.

We next illustrate the application of the inference system.

Example 1. Consider the following derivation of a unifier for the equality Fx+
Fy = Fa+ Fb.

({Fx+ Fy = Fa + Fb}, I)
({Fx = Fb, y = a}, I) Unif2
({x = b, y = a}, I) Unif2
(x = b, {y �→ a}) Unif1
(∅, {x �→ b, y �→ a}) Unif1

Thus {x �→ b, y �→ a} is a unifier for Fx+Fy = Fa+Fb. Note that the alternate
choice for the first Unif2 application yields another unifier {x �→ a, y �→ b} for
the given equality. No other unifier can be generated by applying the inference
rules. Hence, these two unifiers constitute a complete set of unifiers for the given
equality.

Example 2. As another example, consider generating a complete set of unifiers
for the equality x + Fx + Fy = a + Fa + F (a + 1). Since each variable occurs
below an uninterpreted symbol, only the Unif2 rule is applicable. There are four
choices, either x = a, or x = a+ 1, or y = a, or y = a+ 1. We show a derivation
for the second choice below.

({x+ Fx+ Fy = a+ Fa + F (a+ 1)}, I)
({x+ Fy = a+ Fa, x = a + 1}, I) Unif2
({a+ Fa− Fy = a+ 1}, {x �→ a + Fa− Fy}) Unif1
({a = a + 1, a = y}, {x �→ a+ Fa− Fy}) Unif2
({0 = 1}, {x �→ a+ Fa− Fy, y �→ a}) Unif1

The above derivation is now stuck with no inference rule being applicable. Note
that only the first choice x = a and the fourth choice y = a + 1 successfully
generate a unifier, which in both cases is {x �→ a, y �→ a+ 1}. This unifier yields
a singleton complete set of unifiers for the given equality.

4.2 Algorithm

Our algorithm for assertion checking over the combined abstraction is based
on weakest precondition computation. It represents invariants at each program
point by a formula that is a disjunction of substitution mappings. We show that
any program invariant in our abstracted program model can be represented using
such formulas (Lemma 2).

Suppose the goal is to check whether an assertion e1 = e2 is an invariant at
program point π. The algorithm performs a backward analysis of the program
computing a formula ψ (which is a disjunction of substitution mappings) at each
program point such that ψ must hold for the assertion e1 = e2 to be true at
program point π. This formula is computed at each program point from the
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formulas at the successor program points in an iterative manner. The algorithm
uses the transfer functions described below to compute these formulas across
the flowchart nodes shown in Figure 2. The algorithm declares e1 = e2 to be
an invariant at π if the formula computed at the beginning of the program
after fixed-point computation is a tautology in the combined theory of linear
arithmetic and uninterpreted functions.

In the following transfer functions, we use the notation Unif(E), where E is
some conjunction of equalities E, to denote the formula that is a disjunction of
all unifiers in some complete set of unifiers for E. (If E is unsatisfiable, then E
does not have any unifier and Unif(E) is simply false.) The formula Unif(E)
can be computed by using the algorithm described in Section 4.1.

Initialization: The formula at all program points except π is initialized to be
the trivial formula true. The formula at program point π is initialized to be
Unif(e1 = e2).

Assignment Node: See Figure 2 (a). The formula ψ′ before an assignment node
x := e is obtained from the formula ψ after the assignment node by substituting
x by e in ψ, and invoking Unif on each resulting disjunct.

ψ′ =
∨
i

Unif(ψi[e/x]), where ψ =
∨
i

ψi

Non-deterministic Assignment Node: See Figure 2 (b). The formula ψ′ before a
non-deterministic assignment node x :=? is obtained from the formula ψ after
the non-deterministic assignment node by substituting program variable x by
some fresh constant (i.e., a fresh nullary uninterpreted function symbol) α, and
invoking Unif on each resulting disjunct.

ψ′ =
∨
i

Unif(ψi[α/x]), where ψ =
∨
i

ψi

Non-deterministic Conditional Node: See Figure 2 (c). The formula ψ before a
non-deterministic conditional node is obtained by taking the conjunction of the
formulas ψ1 and ψ2 on the two branches of the conditional, and invoking Unif
on each resulting disjunct.

ψ =
∨
i,j

Unif(ψi
1 ∧ ψ

j
2), where ψ1 =

∨
i

ψi
1 and ψ2 =

∨
j

ψj
2

Join Node: See Figure 2 (d). The formulas ψ1 and ψ2 on the two predecessors
of a join node are same as the formula ψ after the join node.

ψ1 = ψ and ψ2 = ψ

Fixed-Point Computation: In presence of loops in procedures, the algorithm
goes around each loop until the formulas computed at each program point in
two successive iterations of a loop are equivalent, or if any formula becomes
false.
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Correctness. We now prove that the above algorithm is correct, i.e., an as-
sertion e1 = e2 holds at program point π iff the algorithm claims so. For this
purpose, we first state a useful lemma (Lemma 2) that states an interesting con-
nection between program analysis and unification theory. This lemma is true is
general: it is independent of the logical theory and also holds for programs with
guarded conditionals. The proof of this lemma is given in the full version of this
paper [13].

Lemma 2. An equality e1 = e2 holds at a program point π iff Unif(e1 = e2)
holds at π. In fact, a formula φ containing e1 = e2 holds at a program point π
iff φ[Unif(e1 = e2)/(e1 = e2)] holds at π.

Lemma 2 implies that the formula computed by our algorithm before the
flowchart is the (real) weakest precondition of the formula after those nodes.
Also, note that the algorithm starts with a formula which is an invariant at π iff
the given assertion is an invariant at π (follows from Lemma 2). The correctness
of the algorithm now follows from the fact that the algorithm starts with the
correct assertion at π and iteratively computes the correct weakest precondition
at each program point in a backward analysis.

Termination. We now prove that the above algorithm terminates in a finite
number of steps. It suffices to show that the weakest precondition computation
across a loop terminates in a finite number of iterations. This follows from the
following lemma.

Lemma 3. Let C be a chain ψ1, ψ2, . . of formulas that are disjunctions of sub-

stitutions. Let ψi =
mi∨
�=1

ψ�
i for some integer mi and substitutions ψ�

i . Suppose

(a) ψi+1 =
mi∨
�=1

ni∨
j=1

Unif(ψ�
i ∧ α

j
i ), for some substitutions αj

i .

(b) ψi 
⇒ ψi+1.

Then, C is finite.

The proof of Lemma 3 is by establishing a well founded ordering on ψ′
is, and

is given in the full version of this paper [13]. Lemma 3 implies termination of
our assertion checking algorithm. (Note that the weakest preconditions ψ1, ψ2, . .
generated by our algorithm at any given program point inside a loop in successive
iterations satisfy condition (a), and hence ψi+1 ⇒ ψi for all i. Lemma 3 implies
that there exists j such that ψj ⇒ ψj+1 and hence ψj ≡ ψj+1, at which point
the fixed-point computation across that loop terminates.) Hence, the following
theorem holds.

Theorem 5. Assertion checking for programs with non-deterministic condition-
als and whose expression language is a combination of linear arithmetic and
uninterpreted functions is decidable.

The decidability of assertion checking for the combined abstraction is rather sur-
prising given that the abstract lattice over sets of equalities between expressions
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in the combined theory has an infinite height. This suggests that an abstract
interpretation based forward analysis algorithm that operates over this lattice
may not terminate across loops (unless widening techniques are employed, which
may lead to imprecise analysis). For example, consider the following program.

InfiniteHeightExample()
x := 0;
while (*) do { x := x+ 1 };
Assert(x = 0 ∨ · · · ∨ x = m);

The disjunctive assertion at the end of the program can be encoded using
an equality assertion. The procedure Check(x,m) (on page 284) does exactly
this. Clearly, the assertion at the end of the program is not true. To invalidate
this assertion, the abstract interpreter will have to go around the loop m times.
Hence, it will not terminate across loops (because if it did terminate in say t
steps, then it will not be able to invalidate the assertion x = 0∨· · ·∨x = t). Our
algorithm terminates because it performs a backward analysis (which is good
enough for assertion checking) instead of performing a forward analysis (which
is required for discovering all valid equalities).

5 Assertion Checking and Unification

The results in this paper point out an interesting connection between assertion
checking in programs over a given abstraction and the unification problem for
the theory defining that abstraction. Lemma 2 implies that we can replace an
assertion by a formula representing a complete set of unifiers for that assertion.
This result is quite general and holds for programs with even guarded condi-
tionals and any expression language. This allows for strengthening of weakest
preconditions computed using standard transfer functions, by applying Unif()
to the result without losing any precision. This observation is the basis for the
close connection between assertion checking and unification.

The theories of linear arithmetic and uninterpreted functions are unitary.
However, equalities in the combined theory of linear arithmetic and uninter-
preted functions may not have a complete set of unifiers with a cardinality of
at most 1. This disparity appears to be responsible for the coNP-hardness of
assertion checking for the combined abstraction of linear arithmetic and un-
interpreted functions (as opposed to the fact that the abstractions of linear
arithmetic and uninterpreted functions have polynomial-time assertion checking
algorithms [14, 10]). The presence of multiple unifiers in a minimal complete set
allows for encoding of disjunctions in the combined abstraction. For example,
the assertion F (x)+F (3−x) = F (1)+F (2) has two unifiers x = 1 and x = 2 in
its minimal complete set of unifiers. This assertion will be true at any program
point iff x = 1 or x = 2 on all paths leading to this assertion.

The decidability of assertion checking for the combined abstraction (of linear
arithmetic and uninterpreted functions) can be attributed to fact that the com-
bined theory is finitary. Observe that the weakest precondition computation of
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an assertion, as described in Section 4.2, terminates across a loop because there
are only finitely many ways that the assertion can be true.

6 Related Work

We are not aware of any work related to assertion checking for the combined
abstraction of linear arithmetic and uninterpreted functions. However, there has
been a lot of work on assertion checking and invariant generation over individual
abstractions of linear arithmetic and uninterpreted functions.

Program Analysis over Abstraction of Linear Arithmetic. Karr described an al-
gorithm to reason about programs using the abstraction of linear equalities. This
algorithm performs a forward analysis of the program and computes a set of lin-
ear equalities at each program point [14, 17] in an iterative manner. Gulwani and
Necula gave a randomized algorithm that performs an equally precise reasoning
but more efficiently [8]. Cousot gave a more precise algorithm that reasons about
programs using the abstraction of linear inequalities wherein the facts computed
at each program point are linear inequality relationships between program vari-
ables [7]. Müller-Olm and Seidl have described a modular linear arithmetic analy-
sis to reason about finite-bit machine arithmetic [19]. There has also been some
work on extending some of these analyses to an interprocedural setting [18, 11].

Program Analysis over Abstraction of Uninterpreted Functions. Kildall’s algo-
rithm [15] performs abstract interpretation over the lattice of sets of Herbrand
equivalences (i.e., equivalences between expressions involving uninterpreted func-
tions) but it runs in exponential time. Alpern, Wegman, and Zadeck (AWZ) gave
a polynomial-time algorithm that reasons about programs treating all operators
as uninterpreted functions [1]. The AWZ algorithm is less precise than Kildall’s
algorithm, but is quite popularly used for global value numbering in compilers.
Rüthing, Knoop and Steffen’s (RKS) polynomial-time algorithm also reasons
about programs using the abstraction of uninterpreted functions. The RKS al-
gorithm is more precise than the AWZ algorithm but remains less precise than
Kildall’s algorithm. Recently, Gulwani and Necula gave a polynomial-time algo-
rithm that is as precise as Kildall’s algorithm with respect to assertion checking
in programs using the abstraction of uninterpreted functions [9, 10].

Combination of Abstract Interpreters. We have recently described a general
methodology to combine abstract interpreters for two abstractions to construct
an abstract interpreter for the combination of those abstractions [12]. This
methodology can be used to construct an efficient polynomial-time algorithm
that performs analysis over the combined abstraction of linear arithmetic and
uninterpreted functions and also takes conditional guards into account. However,
this algorithm does not perform the most precise reasoning over the combined
abstraction of linear arithmetic and uninterpreted functions. Note that the algo-
rithm that we have described in this paper performs the most precise reasoning
over the combined abstraction of linear arithmetic and uninterpreted functions,
but it does not take conditional guards into account.
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Unification for Combination of Theories. The unification problem for the com-
bined theory of linear arithmetic and uninterpreted functions is a simple variant
of the unification problem for abelian groups with additional uninterpreted func-
tions. This latter problem is usually referred to as the general unification problem
for abelian groups [3]. The first algorithm for generating unifiers for the general
unification problem for abelian groups was obtained as a corollary of the general
result for combining unification algorithms [21] and was later refined [2]. The
generic combination unification algorithm involves solving the so-called “unifi-
cation with constants” and “constant elimination” problems [21], or “unification
with linear constant restriction” [2] problem for the individual theories. In this
paper, we have presented a different unification algorithm for the combined the-
ory of linear arithmetic and uninterpreted functions. Our presentation of this
unification algorithm is using inference rules, which are simple to understand
and implement.

Decision Procedures for Combination of Theories. Nelson and Oppen gave a
general methodology for combining decision procedures for disjoint, convex and
quantifier-free theories with only polynomial-time overhead [20]. Shostak gave
an efficient variant of this algorithm for the specific case of solvable theories.
Clark, Dill and Levitt have described a decision procedure, based on Shostak’s
method, for combination of linear arithmetic and uninterpreted functions in
presence of boolean connectives [5]. It must be mentioned that the problem of
assertion checking in programs over a certain abstraction (and in particular for
combination of two abstractions) is harder than developing a decision procedure
for that abstraction. This is because even though a decision procedure can be
used to verify an assertion along a particular program path, a program can
potentially have an infinite number of paths. However, if a program is annotated
with appropriate invariants at all join points, then a decision procedure can be
easily used to verify those invariants as well as assertions across straight-line
program fragments.

7 Conclusion

In this paper, we show that assertion checking in programs whose expressions
have been abstracted using linear arithmetic and uninterpreted functions is
coNP-hard (even for loop-free programs). We also give an algorithm for assertion
checking for this abstraction, thereby proving decidability of this problem. These
results are obtained by closely analyzing the expressiveness of a theory and its
effect on the assertion checking problem. First, the ability to encode disjunc-
tions is identified to be an important factor in making assertion checking hard.
Second, the classification of a theory as unitary, finitary, or infinitary—based
on whether it admits a singleton, finite, or infinite complete set of unifiers has
bearing on the hardness and tractability of the assertion checking problem. We
show that assertions can be replaced by their unifiers for purpose of checking if
they are invariant. We believe that these observations will be significant when
other similar or more general abstractions are considered for program analysis.
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Abstract. This paper describes FrTime, an extension of Scheme designed for
writing interactive applications. Inspired by functional reactive programming, the
language embeds dynamic dataflow within a call-by-value functional language.
The essence of the embedding is to make program expressions evaluate to nodes
in a dataflow graph. This strategy eases importation of legacy code and permits in-
cremental program construction. We have integrated FrTime with the DrScheme
programming environment and have used it to develop several novel applications.
We describe FrTime’s design and implementation in detail and present a formal
semantics of its evaluation model.

1 Introduction

This paper describes FrTime (pronounced “father time”), a programming language built
atop the DrScheme environment [9]. FrTime is an exploration of an important point in
the design space of dynamic dataflow, or functional reactive [7, 16, 19], programming.

To make FrTime as familiar as possible to current programmers, the language reuses
much of the infrastructure, including the syntax, of an existing call-by-value language.
In this case the host language is a purely functional subset of Scheme, although the
strategy we describe could be applied to other call-by-value languages as well. The
embedding strategy reuses the host language’s evaluator to make program execution
construct a graph of dataflow dependencies; a dataflow engine subsequently reacts to
events and propagates changes through this graph. FrTime conservatively extends basic
language constructs to trigger graph creation when used in the context of time-varying
values. Pure Scheme programs are also FrTime programs with the same meaning they
have in Scheme and may be incorporated into FrTime programs without modification.

The design of FrTime reflects a desire to satisfy three main goals.

1. Programs should be able to respond to and process events from external sources.
For example, one application of FrTime is as a scripting language for a debug-
ger [15]. A debugger script must respond to events from the program under investi-
gation, which arrive at an unspecified frequency that cannot be known a priori. This
suggests that the language should embrace a push-driven implementation strategy,
where the arrival of an event triggers a computation that propagates up a tree of
dependencies.
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2. FrTime programs should be able to make maximal use of a programming environ-
ment for incremental development. This especially means that programmers must
be able to write expressions in the read-eval-print loop (REPL), observe and name
their values, use them to build larger expressions, and so on. With such support,
the REPL can serve as one of the primary interfaces for many programs, thereby
saving programmers from having to construct a separate, explicit interface. For ex-
ample, the paper about the scriptable debugger [15] discusses the debugging of a
shortest-paths algorithm by interactively adding script fragments that provide in-
creasingly better clues. FrTime’s support for dynamic dataflow graph construction
saves us the need to build an interaction mode for the debugger. Instead we reuse
the DrScheme REPL, inheriting its many features and also its careful handling of
many subtle issues [11].

3. As a practical matter, FrTime needs to reuse as much of an existing evaluator as
possible. In particular, the underlying evaluator in DrScheme is quite complex and
supports a large legacy codebase. Ideally, therefore, FrTime needs an evaluation
strategy that can reuse this evaluator and seamlessly integrate as much legacy code
as possible to inherit a large library of useful functionality. (For example, by in-
heriting DrScheme’s graphics library, the scriptable debugger supports graphical
display of the target program’s state.) A corollary is that legacy programs should be
incrementally convertible into FrTime. That is, it should be possible to begin with
an existing Scheme application and run it under FrTime, then gradually change
fragments of it to use dataflow features. This must not require a significant source
transformation (such as conversion into continuation-passing or monadic style).

In this paper we present the semantics and implementation of FrTime. In particu-
lar, we describe the language’s embedding strategy and how it satisfies the goals stated
above. We also provide an operational semantics that specifies the language’s evalua-
tion model. FrTime has been distributed with the DrScheme programming environment
since 2003 and has been used to develop several non-trivial applications, including a
scriptable debugger [15], a spreadsheet, and a version of the Slideshow [10] presenta-
tion system enhanced with interactive animations.

2 The FrTime Language

FrTime extends the language of DrScheme [9] with support for dynamic dataflow
through a notion of signals, or time-varying values. The language is inspired and in-
formed by work on functional reactive programming (FRP) [7, 16, 19], which extends
Haskell [14] with similar features.

The most basic signals are those that represent time itself. For example, there is a
signal called seconds, which counts the number of seconds elapsed since a specific point
in the past. Seconds is an example of a behavior—a signal that is defined at every point
in time, or continuous. If we apply a primitive function f to a behavior, the result is a
new behavior, whose value is computed by applying f to the argument at (conceptually)
every point in time.1 In other words, FrTime lifts primitive functions to the domain of

1 Operationally, the language only applies f to the argument initially and each time it changes.
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behaviors. For example, if we evaluate (even? seconds), the result is a new behavior
that indicates, at every moment, whether the current value of seconds is even.

In addition to behaviors, there are signals called event streams that carry sequences
of discrete values. For example, we have built an interface to the DrScheme window
toolkit that provides an event stream called key-strokes, which carries key events. Unlike
with behaviors, primitive procedures cannot be applied to event sources. FrTime instead
provides a collection of event-processing combinators that are analogous to common
list-processing routines. For example, the raw key-strokes stream contains events for
key presses and releases. Applications that don’t care about the releases can elide them
with (filter-e char? key-strokes). This produces a new event stream that only carries the
events whose values are characters.

There is similarly an analog of map called map-e, which we could use to convert
all of the alphabetic characters to upper case. Another combinator, called collect-e,
resembles Haskell’s scanl; it consumes an event stream, an initial accumulator, and
a transformer. For each event occurrence, collect-e applies the transformer to the new
event and the accumulator, yielding a new accumulator which is emitted on the resulting
event stream. By passing empty and cons as the second and third arguments, we can
build a list of all the occurrences of a given event.

FrTime provides primitives for converting between behaviors and event streams.
One is hold, which consumes an event stream and an initial value and returns a behavior
that starts with the initial value and changes to the last event value each time an event
occurs. Conversely, changes consumes a behavior and returns an event stream that emits
the value of the behavior each time it changes.

On the surface, signals bear some similarity to constructs found in other languages.
Behaviors change over time, like mutable data structures or the return values of impure
procedures, and event streams resemble the infinite lazy lists (also called streams) com-
mon to Haskell and other functional languages. The key difference is that FrTime tracks
dataflow relationships between signals and automatically recomputes them to maintain
programmer-specified invariants.

Fig. 1. Screenshots of a single interactive FrTime session, taken 17 seconds apart
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FrTime runs in the DrScheme programming environment. Figure 1 presents two
screenshots from the same interactive session in DrScheme, taken about seventeen sec-
onds apart. In this session we first evaluate seconds and (even? seconds). Then we load
the FrTime animation library, which creates a new, empty window (not shown). As we
type into this new window, key press and release events arrive on the key-strokes event
stream. We create chrs by filtering out the release events, and uchrs by converting these
to upper-case with map-e. We make collect-e accumulate a list of characters, then apply
hold to produce a behavior, which we reverse and convert to a string.

Evaluating a signal at the DrScheme prompt registers a dependency between that
signal and the graphical object that represents it in the interactions window. Thus, when
the signal’s value changes, FrTime automatically triggers an update of the display. This
explains why the two screenshots in Fig. 1 show different values for many expressions,
even though they are taken from the same session. This is an important example of
integrating the language with the environment in order to respect the language’s uncon-
ventional abstractions. Conversely, the language supports the environment’s notion of
interactive, incremental program construction. For example, as we build up the string of
key-strokes, we can name and observe each intermediate result, checking that it behaves
as we expect before adding the next piece.

3 Evaluation Strategy

In this section we describe FrTime’s evaluation strategy, which satisfies the goals set
forth in the Introduction. Firstly, it employs a push-driven update mechanism: events
initiate computation, and changes cause dependent parts of the program to recompute.
Secondly, the language supports incremental program construction; the programmer
can interleave program construction, evaluation, and observation. Finally, it reuses the
Scheme evaluator and permits reuse of existing Scheme library code, which supports
incremental conversion of Scheme programs to use FrTime’s dataflow features.

FrTime is a collection of syntactic abstractions and value definitions implemented
in Scheme. Executing a FrTime program means running the Scheme evaluator in an
environment containing the FrTime definitions. These definitions make executing the
program build a graph of its dataflow dependencies. The nodes of this graph cor-
respond to program expressions, and the arcs indicate flow of values from one ex-
pression to another. An expression that does not utilize any dataflow elements evalu-
ates as a standard, pure Scheme expression, yielding the same value it would have in
Scheme.

Because evaluation is push-driven, a program’s reactivity originates through de-
pendence on primitive event sources, for example a timer, a keyboard, a mouse, or a
network data stream. The FrTime engine listens to events from these sources and routes
them to the interested parts of the program’s dataflow graph. Values change at the cor-
responding nodes of the dataflow graph and propagate along the dependency arcs.

In the remainder of this section, we explain how evaluating a FrTime expression
constructs a graph of dataflow dependencies, and how the language implements reac-
tivity through subsequent traversal of this graph. We discuss some of the difficulties that
arise from a push-driven update model and how we solve them.



298 G.H. Cooper and S. Krishnamurthi

3.1 Dataflow Graph Construction and Manipulation

Suppose the programmer enters the expression (+ 3 4) at the FrTime REPL. Its evalu-
ation proceeds in the traditional call-by-value fashion, first reducing subexpressions to
values, then applying the specified operation to them.

FrTime is meant to extend pure Scheme with a notion of signals, so if we start with
a pure Scheme expression and replace some constant values with signals, the result
should be a legal FrTime program. For example, we should be able to refer to “the time 3
seconds from now” by writing (+ 3 seconds). However, evaluating such an expression
in a standard Scheme evaluator does not yield the desired dataflow semantics. Scheme
primitives like + only know how to process ordinary, constant Scheme values (in this
case numbers). At best, the result might be to add 3 to the current value of seconds.
This would produce a constant value reflecting the state of the system at the moment of
evaluating the expression, but it would fail to update with the passage of time. In reality,
the situation is worse; FrTime’s signals are implemented as data structures, so passing
seconds to + is a type mismatch and causes a runtime exception.

Clearly, ordinary Scheme evaluation does not work for FrTime. This means that
we must either write a new evaluator for FrTime, or extend Scheme evaluation to ac-
commodate FrTime’s novel features. Since we want to reuse as much of Scheme as
possible, we take the latter approach by interposing a mechanism that prevents the di-
rect application of Scheme primitives to signals. Specifically, we define the FrTime
evaluation environment so that the names of Scheme primitives refer to lifted versions
of the same. Lifting wraps a primitive with code that checks for signal arguments and, if
there are any, constructs and returns a new signal. For example, the FrTime expression
(+ 3 seconds) reduces to the following Scheme code:

(if (or (signal? 3) (signal? seconds))
(make-signal (λ () (+ (current-value 3) (current-value seconds))) 3 seconds)
(+ 3 seconds))

This first tests for signals among the argument subexpressions. Since seconds is a signal,
the conditional selects the first branch. The procedure make-signal consumes a thunk
(nullary procedure), boxed above, and any number of producer values to which the
thunk refers. It returns a new signal whose value is defined, at any point in time, by the
result of calling the thunk. In this case, it applies the addition primitive to the current
values of the constant 3 and the signal seconds. The procedure current-value acts like
the identity function on constant values, so (current-value 3) reduces to 3. On signals,
current-value projects the signal’s current value, an ordinary Scheme constant. Thus
the addition primitive inside the thunk sees only constants, so there are no errors. The
fact that signals like seconds change over time underscores the necessity of the thunk:
the language needs to re-evaluate the procedure to update the signal when any of the
producers change.

The additional arguments to make-signal (here 3 and seconds) are the producers
on which the new signal depends. They may include both constants and signals; make-
signal ignores the constants and registers a dependency with each of the signals. Regis-
tration gives the producers explicit references to the new signal (instead of the other way
around, as a reader might initially assume). These reverse references are essential to
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seconds: 10437

3

Fig. 2. Dataflow graph for (+ 3 seconds)

(* 2 (+ 3 seconds)): 20880
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Fig. 3. Dataflow graph for (* 2 (+ 3 seconds))

implementing push-driven evaluation: when a signal changes, the runtime system fol-
lows them to determine which signals need recomputation. Figure 2 shows the resulting
signal graph. Rounded boxes depict signals, solid arrows are normal data references,
and dashed arrows represent the reverse references needed for push-driven updates.

The addition of these reverse references would ordinarily expand reachability into
a symmetric relation, to the detriment of effective memory management. To solve this
problem, we make the reverse references weak, which tells the memory manager to
ignore them when computing reachability. If a signal is no longer reachable from the
application, it will be reclaimed. Since there may be a significant delay between objects’
becoming unreachable and their reclamation by the garbage-collector, it is possible that
the engine will continue recomputing such dead signals for some time. This strategy is
unacceptable in general, so we need a mechanism for deleting signals when they cease
to belong in the system. We describe such a mechanism in Sect. 3.3.

The FrTime evaluation model applies to all expressions, even those that do not use
signals. For example, the FrTime expression (+ 3 4) reduces to the following Scheme
expression:

(if (or (signal? 3) (signal? 4))
(make-signal (λ () (+ (current-value 3) (current-value 4))) 3 4)
(+ 3 4))

Because the constants 3 and 4 are not signals, the entire expression is clearly equivalent
to its raw Scheme counterpart, and yields the constant 7. This illustrates one of our
design goals: that pure Scheme expressions should evaluate in FrTime as they would
in standard Scheme. This means that programmers can easily mix pure Scheme and
FrTime code, which creates a smooth migration path for porting Scheme code.

Because user-defined signals like (+ 3 seconds) are indistinguishable from primitive
signals like seconds, evaluation of FrTime expressions works even when operations on
signals nest. For example, if a programmer writes (∗ 2 (+ 3 seconds)), the inner (+ . . . )
subexpression evaluates first, yielding a signal like the one described above. The evalua-
tion of the (∗ . . . ) application proceeds in an analogous manner, constructing a new sig-
nal that depends upon the value of (+ 3 seconds). We show the resulting graph in Fig. 3.

Expressions can arbitrarily nest and mix computations involving constants and sig-
nals. For example, if we write (+ (+ 1 2) seconds), the (+ 1 2) evaluates as in Scheme,
reducing to the constant 3, after which evaluation proceeds exactly as above for



300 G.H. Cooper and S. Krishnamurthi

(+ 3 seconds). Only one new signal is created, and the resulting dataflow graph is
identical to the one shown in Fig. 2.

The dataflow graph construction that occurs when a FrTime program runs is just the
first step in its evaluation. The interesting part—the program’s reactivity—begins once
the graph is constructed and continues as long as the system runs and events arrive.
This involves primitive signals changing in response to external events and propagating
through the dataflow graph. For example, once every second, a timer triggers a change
in seconds, which in turn triggers recomputation of every signal that depends on sec-
onds, such as (+ 3 seconds) in our example above. Changes then propagate to transitive
dependents, such as (∗ 2 (+ 3 seconds)).

When the engine recomputes a signal, it compares the new value with the previous
one. If they are the same (according to Scheme’s eq? procedure), the engine does not
schedule the signal’s dependents. For example, a signal defined by an expression like
(quotient seconds 10) depends on seconds but only changes after seconds increases by
ten. Consumers of this signal, like (> (quotient seconds 10) 100), only recompute every
ten seconds, not every second.

3.2 Glitch Prevention

Scheduling recomputation is an important semantic issue. For example, consider the
expression (< seconds (+ 1 seconds)). This evaluates to a signal that should always
have the value true, since n is always less than n+ 1.

However, life is not so simple in a push-driven update model. Each change in sec-
onds triggers recomputation of the overall expression and the inner (+ 1 seconds) sig-
nal, and the order in which FrTime recomputes these signals affects the answer. If it
updates the (+ 1 seconds) signal first, then the top-level < compares up-to-date ver-
sions of seconds and (+ 1 seconds), yielding true. On the other hand, if it updates
the top-level signal first, it then compares the up-to-date seconds with the stale (+ 1
seconds)—which is equal to the new value of seconds—yielding false.

This situation, where a signal is recomputed before all of its subordinate signals are
up-to-date, is called a glitch [5]. Such behavior is unacceptable as it results in redundant
computation and, much worse, causes signals to violate invariants.

We need a traversal strategy that prevents glitches. The crucial property is that no
signal should update until everything on which it depends is also up-to-date. Unfortu-
nately, the obvious candidates of depth-first and breadth-first search are susceptible to
glitches, as the preceding example shows. However, a slightly modified breadth-first
search achieves the goal. Specifically, we approximate the graph’s structure by assign-
ing each signal a height, which exceeds that of all its producers. To make a valid depth
assignment possible, the dataflow graph must be acyclic. This restriction has the benefit
of guaranteeing that update propagation terminates, but it also seems to impose a se-
vere limit on the language’s the expressive power. We explain in Sect. 3.5 how FrTime
supports programs with cyclic dependencies.

Computing signal heights is relatively simple. Since make-signal receives all of the
new signal’s producers, it only needs to compute their maximum and add 1 to it. Instead
of a standard first-in-first-out queue, the engine uses a priority queue to process nodes
in order of increasing height. Since each signal is higher than everything on which it
depends, this strategy guarantees the absence of glitches and redundant computation.



Embedding Dynamic Dataflow in a Call-by-Value Language 301

3.3 Dynamic Reconfiguration

The height-guided recomputation strategy works under the assumption that the dataflow
graph does not change in the middle of an update cycle. Unfortunately, this is an un-
reasonable assumption: the need to reconfigure the graph dynamically arises naturally
from combining behaviors with basic Scheme features.

We illustrate some of the intricacies of dynamic reconfiguration through a simple
example involving the use of a time-varying condition in an if expression:

(let∗ ([len (modulo seconds 4)]
[lst (build-list len add1)])

(if (zero? len)
0
(list-ref lst (sub1 len))))

In this program, len cycles through the values 0, 1, 2, 3, and lst is the list (1 . . . len).
When len is 0, the value of the whole expression is 0, and otherwise it is the last element
of lst, which is also equal to len.

Evaluating this program proves to be somewhat tricky. Since the if’s condition
is time-varying, the result of the whole expression needs to switch dynamically be-
tween the branches (either of which may also be time-varying), forwarding the value of
whichever branch the condition currently selects.

In general, evaluating a branch is only legal when the condition selects it. For exam-
ple, when the first branch is selected above, evaluating the second branch would raise an
exception by attempting to extract the element of lst at position −1. The threat of such
problems means that, when the condition changes, a new branch must be constructed
and the old one disabled, or deleted, before evaluation proceeds. Thus the structure
of the dataflow graph must change in the middle of an update cycle. In this example,
the need arises from the use of behaviors in conditionals; an analogous situation arises
when the function position of an application is time-varying.

Changing the structure of the dataflow graph in the middle of an update cycle cre-
ates a number of hazards that must be handled carefully. Constructing new dataflow
graph fragments is precarious because the existing graph may be in an inconsistent state,
with some signals updated but others stale. In this example, lst has a large height be-
cause build-list is a recursive procedure that constructs a complex fragment of dataflow
graph. However, since zero? is a primitive, (zero? len) has height 2, and when it be-
comes false (triggering construction of the second branch), lst still has the stale value
empty. Evaluating the new branch (which tries to extract an element from lst) would
raise an exception. To avoid this problem, FrTime constructs the new branch without
computing the initial node values. Instead it enqueues the new nodes for update, and
the recomputation algorithm initializes them after reaching the proper height.

Another problem is that the new fragment’s height may exceed that of the old one.
To prevent glitches, the engine needs to adjust height assignments to reflect the new
graph topology before performing any more updates. It must also notify the priority
queue of any changes in heights of signals that are already enqueued for update.

Deleting a fragment of the dataflow graph is also subtle. To prevent any unwanted
evaluation, FrTime must delete all of the signals in the dead branch, including those
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already enqueued for recomputation. This means that the height of all of these signals
must strictly exceed that of the condition. Deleting a signal involves removing all edges
incident on it, which makes it unreachable and ensures that it will not be scheduled for
recomputation again. However, since a change may have already scheduled the deleted
signal for recomputation, deletion replaces the signal’s update procedure with a no-op,
preventing ill effects from any final update attempt. (This technique is more efficient
than the alternative of removing the deleted signals from the priority queue.)

Determining which signals to delete can be tricky, too. It is not simply the set of all
signals reachable from the root of the deleted fragment; this would include many signals
merely referenced within the branch (in the example, signals like len and lst). However,
taking only the signals directly created by evaluation of the branch yields an underap-
proximation. This is because the branch may contain other dynamic expressions, which
in turn constructed signals after the creation of the enclosing branch. FrTime needs to
track construction within this extended notion of the expression’s dynamic extent. The
semantics presented in Sect. 4 provides an abstract model of this mechanism, but the
details involved in implementing it efficiently are beyond the scope of this paper.

3.4 Incremental Construction

FrTime’s evaluation model differs from the approaches taken in the Haskell FRP sys-
tems [7, 16]. In those, a program specifies the structure of a dynamic dataflow compu-
tation, but the actual reactivity is implemented in an interpreter called reactimate. This
interpreter runs in an infinite loop, blocking interaction through the REPL until the com-
putation is finished. In many applications, we need to support REPL-style interaction in
the middle of the reactive program’s execution.

FrTime supports REPL interaction by implementing reactivity in a separate thread.
The user is assigned one thread, typically corresponding to the DrScheme REPL, while
the FrTime dataflow engine, which constructs and manipulates the program’s dataflow
graph, runs in a separate thread. These threads communicate through a message queue;
at the beginning of each update cycle, the engine empties the queue and processes the
messages. Each message corresponds either to an event occurrence or to a request for
construction of a new dataflow graph fragment. When the user enters an expression at
the REPL prompt, the REPL sends a message to the dataflow engine, which evaluates it
and responds with the root of the resulting graph. Control returns to the REPL, which is-
sues a new prompt for the user, while in the background the engine continues processing
events and updating signals.

On the surface, it may appear that the Haskell systems could achieve similar be-
havior simply by spawning a new thread to evaluate the call to reactimate. Control flow
would return to the REPL, apparently allowing the user to extend or modify the program.
However, this background process would still not return a value or offer an interface for
probing or extending the running dataflow computation. The values of signals running
inside a reactimate session, like the dataflow program itself, reside in the procedure’s
scope and hence cannot escape or be affected from the outside. In contrast, FrTime’s
message queue allows users to submit new program fragments dynamically, and eval-
uating an expression returns a live signal which, because of the engine’s background
execution, reflects part of a running computation.
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x ∈ 〈var〉 ::= (variable names)

σ ∈ 〈loc〉 ::= (store locations)

p ∈ 〈prim〉 ::= + | - | * | / | < | > | . . .

t, n ∈ 〈num〉 ::= 0 | 1 | 2 | . . .

u, v ∈ 〈v〉 ::= ⊥ | true | false | 〈num〉 | 〈prim〉 | (λ( 〈var〉∗ ) 〈e〉) | 〈loc〉
e ∈ 〈e〉 ::= 〈v〉 | 〈var〉 | ( 〈e〉 〈e〉∗ ) | (delay 〈e〉 〈num〉) | (if 〈e〉 〈e〉 〈e〉)

E ∈ 〈E〉 ::= [] | ( 〈v〉∗ 〈E〉 〈e〉∗ ) | (delay 〈E〉 〈num〉) | (if 〈E〉 〈e〉 〈e〉)
s ∈ 〈sig-type〉 ::= (lift 〈prim〉 〈v〉∗ ) | (delay 〈loc〉 〈num〉 〈loc〉 ) | input

| (dyn(λ( 〈var〉) 〈e〉) 〈loc〉 〈loc〉 ) | (fwd 〈loc〉) | const

Fig. 4. Grammars for FrTime values, expressions, evaluation contexts, and signal types

3.5 Cycles

We explain in Sect. 3.2 how our height assignment strategy restricts the dataflow graph
to be acyclic. However, programs with cyclic signal networks arise naturally in many
applications. For example, in user interfaces, we often want two sets of widgets that
display and control the same underlying model, such as RGB and HSV views in a color-
selection window. Since either set of widgets must be able to influence the other, they
are mutually dependent. Forbidding cycles altogether would disallow expression of
such patterns, making the language unacceptably weak.

In the current implementation, we make a compromise consistent with that made by
other dataflow languages [4, 5, 16, 18, 19]. We provide a delay operator that reflects the
value that its argument had at a specific interval in the past. If a cycle includes a signal
created by delay, then that cycle cannot cause the system to enter a tight loop, since
the delay halts update propagation until the future. We therefore assign a height of 0
to delay-ed signals. As long as each cycle passes through a delay, a consistent height
assignment is possible, and evaluation is safe.

4 Semantics

We have developed a formal semantics of FrTime’s evaluation model, which highlights
the push-driven update strategy and the embedding in a call-by-value functional host
language. Figure 4 shows the grammars for values, expressions, evaluation contexts,
and signal types. Values include the undefined value (⊥), booleans, numbers, primi-
tive procedures, λ-abstractions, and store locations (which identify signals). Expres-
sions include values, procedure applications, delays, and conditionals. Evaluation
contexts [8] enforce a left-to-right, call-by-value order on subexpression evaluation.
Signal types, which we explain in detail below, describe the different signal variants.

Figure 5 presents semantic domains and operations over them. δ, a parameter to
the system, defines reduction for primitives. Σ denotes a set of signal locations and
X means a set of external events, each of which contains a location, a value, and an
occurrence time (when it enters the system). I refers to a set of internal events, which
contain only target locations and (optionally) values. A store S maps signal locations to
triples containing a current value, a signal type, and a set of dependents. For notational
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δ : 〈prim〉 × 〈v〉 × . . . → 〈v〉 (primitive evaluation)
Σ ⊂ 〈loc〉 (store location set)
I ⊂ 〈loc〉 ∪ (〈loc〉 × 〈v〉) (internal event set)

X ⊂ 〈loc〉 × 〈v〉 × 〈num〉 (external event set)

S : 〈v〉 → 〈v〉 × 〈sig-type〉 × 2〈loc〉 (signal in store)
VS(v) = v′, where S(v) = (v′, , ) (current value projection)

A(Σ, v0, v) =
Σ if v �= v0

∅ otherwise
(signals affected by change)

reg(σ, Σ, S) = S[σ′ �→ (v, s, Σ′ ∪ {σ})]∀σ′∈Σ|S(σ′)=(v,s,Σ′) (dependency registration)
DS(Σ) = σ∈Σ Σ′, where S(σ) = ( , , Σ′) (dependency lookup)

dfrdS(I) = D+
S ({σ | σ ∈ I ∨ (σ, ) ∈ I}) (deferred recomputations)

del(S, Σ) =
S[σ �→ (v, s, Σ′ \Σ)]∀σ|S(σ)=(v,s,Σ′),

σ∈Σ

Σ′ if S(σ) = ( , (dyn ), Σ′)
∅ otherwise

(dependency removal)

Fig. 5. Semantic domains and operations

convenience when dealing with behaviors and constants, the store permits lookup of
constants, which const signals. This simplifies the definition of VS , which projects the
current value of any signal or constant. Other important operations include reg, which
registers one signal’s dependence on a set of other signals, and DS , which computes
the set of signals dependent upon any of a set of signals. dfrd computes the set of stale
signals that are deferred, or not ready for immediate update (the + indicates transitive,
irreflexive closure). Finally, del eliminates references to deleted signals from a given
store. As explained in Sect. 3.3, FrTime needs to delete signals recursively from nested
dynamic branches. To facilitate this, del not only returns the modified store but also
finds all the nested dyn signals, whose children must be deleted.

FrTime’s evaluation model divides naturally into two layers. One is the context-
sensitive rewriting system that captures the call-by-value functional core and the ex-
tension that constructs the dataflow graph. Figure 6 shows the transformation rules that
comprise this layer. These construction rules reduce expressions in the context of a store
and a set of internal events. The δ, βv, and IF reductions are standard for languages de-
rived from the λ-calculus; they neither read nor change any of the additional elements
in the tuple. The LIFTed versions of these rules describe how the system extends the
dataflow graph when behaviors are used with primitive procedures, user-defined proce-
dures, and conditionals.

The LIFTed rules explain only the construction of the dataflow graph. The reactivity
is described by the layer of update rules, which are presented in Fig. 7. These specify
how the system evolves when each variety of signal updates:

lift Application of a primitive to one or more behaviors results in the lifting of the
application (rule δ-LIFT). This yields a new lift signal that records the primitive
and its arguments. The new signal is enqueued for update, which invokes rule U-
LIFT after all the arguments are up-to-date. The rule computes the signal’s value
by applying the primitive to the current values of the arguments. If the new value
differs from the old one, the signal’s dependents are enqueued for update.
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{v1, . . . , vn} ∧ 〈loc〉 = ∅
〈S, I ,E[(p v1 . . . vn)]〉 → 〈S, I ,E[δ(p, v1, . . . , vn)]〉

(δ)

{v1, . . . , vn} ∧ 〈loc〉 = {σ1, . . . , σk} �= ∅ ∀i ∈ [1..k].S(σi) = (vi, si, Σi)
S′ = reg(σ, {σ1, . . . , σk}, S[σ �→ (⊥, (lift p v1 . . . vn), ∅)])

〈S, I ,E[(p v1 . . . vn)]〉 → 〈S′, I ∪ {σ}, E[σ]〉
(δ-LIFT)

〈S, I ,E[((λ (x1 . . . xn) e) v1 . . . vn)]〉 → 〈S, I , E[e[v1/x1] . . . [vn/xn]]〉 (βv)

S′ = S[σ1 �→ (⊥, (dyn (λ (x) (x v1 . . . v1)) σ σ2), ∅)][σ2 �→ (⊥, (fwd ⊥), ∅)]
〈S, I ,E[(σ v1 . . . vn)]〉 → 〈reg(σ1, {σ}, S′), I ∪ {σ1}, E[σ2]〉

(βv -LIFT)

〈S, I , E[(if true e1 e2)]〉 → 〈S, I , E[e1]〉
〈S, I ,E[(if false e1 e2)]〉 → 〈S, I ,E[e2]〉 (IF)

S′ = S[σ1 �→ (⊥, (dyn (λ (x) (if x e1 e2)) σ σ2), ∅)][σ2 �→ (⊥, (fwd ⊥), ∅)]
〈S, I , E[(σ v1 . . . vn)]〉 → 〈reg(σ1, {σ}, S′), I ∪ {σ1}, E[σ2]〉

(IF-LIFT)

S′ = reg(σ2, {σ}, S[σ1 �→ (⊥,input, ∅)][σ2 �→ (⊥, (delay σ n σ1), ∅)])
〈S, I , E[(delay σ n)]〉 → 〈S′, I ∪ {σ2}, E[σ1]〉

(DELAY)

Fig. 6. Construction rules

delay, input Delaying a signal requires two new signals: a consumer (of type delay)
observes changes in the argument and directs events to a producer that arrive af-
ter the given interval (rule U-DELAY). The producer has type INPUT and simply
forwards the delayed value carried by the latest event (rule U-INPUT). Because
communication passes through the external event mechanism, there is no direct de-
pendence; this is why delay breaks cycles. In general, input signals can channel
values into the system from the external event queue. They are thus useful not only
for delay but can also model events from all manner of input sources, such as a
mouse or a network port.

dyn, fwd Signals of type dyn modify the structure of the dataflow graph in response
to changes in a given trigger signal. These signals are used to implement both
conditionals (if expressions) and applications with a signal in the function position.
For conditionals, the trigger is the condition, while for applications the trigger is
the function. Each dyn signal contains an update procedure (the u field in rule
U-DYN), which FrTime applies to the current value of the trigger (σ1) to yield a
new branch of dataflow graph (rooted at σ3). The branch is connected to the rest
of the graph by a permanent fwd signal, which forwards the value of the current
branch. The dyn signal’s Σ field, normally used to track dependents, tracks all the
signals created by the most recent invocation of the update procedure. These are the
signals that must be deleted when a change in the trigger invalidates the existing
branch. Each application of del removes references to these signals in the store and
accumulates the set of signals created by nested dyn signals. These also must be
deleted and may in turn have children requiring deletion. The language thus applies
del repeatedly until no deletions remain.

The rules described above leave the precise scheduling of updates non-deterministic.
However, they enforce a topological order, which guarantees the absence of glitches and
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I , σ �∈ dfrdS(I) S(σ) = (v0, (lift p v1 . . .), Σ) δ(p,VS(v1), . . .) = v

〈X, S, I , t〉 ↪→ 〈X, S[σ �→ (v, (lift p v1 . . .), Σ)], I \ {σ} ∪A(Σ, v0, v), t〉
(U-LIFT)

σ ∈ I S(σ) = (⊥, (delay σ n σ1), Σ)
〈X, S, I , t〉 ↪→ 〈X ∪ {(σ1,VS(σ), t + n)}, S, I \ {σ}, t〉

(U-DELAY)

(σ, v) ∈ I S(σ) = (v0,input, Σ)
〈X, S, I , t〉 ↪→ 〈X, S[σ �→ (v,input, Σ)], I \ {σ} ∪ A(Σ, v0, v), t〉

(U-INPUT)

σ ∈ I S(σ) = (⊥, (dyn u σ1 σ2), Σ)
S(σ2) = (v, (fwd ), Σ2) (S∗, ∅) = del∗(S, Σ)

〈S∗, I , (u VS(σ1))〉 →∗ 〈S′, I ′, σ3〉 Σ′ = dom(S′) \ dom(S)
S1 = reg(σ2, {σ3}, S′[σ �→ (⊥, (dyn u σ1 σ2), Σ′)][σ2 �→ (v, (fwd σ3), Σ2)])

〈X, S, I , t〉 ↪→ 〈X, S1, (I ′ \Σ) \ {σ}, t〉
(U-DYN)

σ ∈ I S(σ) = (v0, (fwd σ′), Σ) S(σ′) = (v, , )
〈X, S, I , t〉 ↪→ 〈X, S[σ �→ (v, (fwd σ′), Σ)], I \ {σ} ∪ A(Σ, v0, v), t〉

(U-FWD)

〈X, S, ∅, t〉 ↪→ 〈X, S, {(σ, v) | (σ, v, t + 1) ∈ X}, t + 1〉 (U-SHIFT)

Fig. 7. Update rules

makes the state at the end of each update cycle well-defined. When there are no more
internal update events to process, the system is stable and awaits the arrival of new
events. Time advances to the next step, and any external events scheduled for the new
time shift into the set of internal events (rule U-SHIFT).

5 Related Work

There is a large body of research on dataflow programming. An early language was Lu-
cid [18], a pure, first-order dataflow language based on synchronous streams. Lustre [4]
offers a similar programming model to that of Lucid, but with restrictions that support
compilation to finite automata and real-time performance guarantees. Lustre also adds
a notion of user-defined clocks, allowing streams to compute at different rates. Lucid
Synchrone [12] extends Lustre with ML-style type inference, pattern-matching, and
first-class functions. Signal [2] is similar to Lustre but is based on relations rather than
functions, so the evaluation model is non-deterministic. There are other synchronous
languages, such as Esterel [3], whose programming models are imperative.

Functional reactive programming (FRP) [7, 16, 17, 19] merges the model of syn-
chronous dataflow programming with the expressive power of Haskell, a statically-
typed, higher-order functional language. In addition, it adds support for switching (dy-
namically reconfiguring a program’s dataflow structure) and introduces a conceptual
separation of signals into (continuous) behaviors and (discrete) events.

There has been significant work on implementation models for FRP. Real-time
FRP [20] FRP is close in spirit to the synchronous dataflow languages, where the focus is
on bounding resource consumption. Parallel FRP [17] adds a notion of non-determinism
and explores compilation of FRP programs to parallel code. Elliott discusses several
functional implementation strategies for FRP systems [6], which suffer from various
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practical problems such as time- and space-leaks. A newer version, Yampa [16], fixes
these problems at the expense of some expressive power: while Fran [7] extended
Haskell with first-class signals, the Yampa programmer builds a network of signal func-
tions in a custom syntax, through a set of arrow combinators [13]. FrTime’s linguistic
goals are more in line with those of Fran—integrating signals with the Scheme lan-
guage in as seamless a manner as possible. Importantly, because Scheme is eager, the
implementation has precise control over when signals begin evaluating, which helps to
prevent time-leaks. In addition, the use of state in the implementation allows more con-
trol over memory usage, which helps to avoid space-leaks. The evaluation model leads
to several other differences, as described in Section 3.

Frappé [5] is a Java library for building FRP-style dynamic dataflow graphs. Its
evaluation model is similar to FrTime’s, in the sense that computation is driven by
external events, not by a central clock. However, the propagation strategy is based on a
“hybrid push-pull” algorithm, whereas FrTime’s is entirely push-driven, which makes
conditional evaluation more challenging. A more important difference from FrTime is
that Frappé is a library, not a language. It is intended less for end-user programming
than as runtime support for an FRP compiler that targets Java.

Adaptive functional programming (AFP) [1] supports incremental recomputation
of function results when their inputs change. As in FrTime, execution occurs in two
stages. First the program runs, constructing a graph of its data dependencies. The user
then changes input values and tells the system to recompute their dependents. The key
difference from FrTime is that AFP requires transforming the program into destination-
passing style. This prevents the easy import of legacy code and complicates the task
of porting existing libraries. The structure of AFP also leads to a more linear recom-
putation process, where the program re-executes from the first point affected by the
changes.

6 Conclusions and Future Work

We have presented FrTime, an implementation of functional reactive programming for
a call-by-value language. We have described its novel evaluation model, which accom-
plishes the goals set forth in the Introduction. We have also provided a formal semantic
model for reasoning about FrTime evaluation more abstractly. The language is inte-
grated and distributed with the DrScheme programming environment. We have devel-
oped interfaces for various libraries and built several non-trivial applications with it.

Our primary focus for future research is to improve performance of the update
strategy. Currently, there is significant overhead involved when moving from Scheme’s
top-down, stack-based execution model to FrTime’s push-driven, queue-based update
algorithm. In particular, we have noticed severe degradations in performance when run-
ning code from existing Scheme libraries under FrTime. FrTime permits fine control
(not described in this paper) over the boundary between the two execution strategies,
and we are interested in developing mechanical techniques for optimizing the decision.
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Abstract. We present a multi-lingual type inference system for check-
ing type safety of programs that use the Java Native Interface (JNI). The
JNI uses specially-formatted strings to represent class and field names
as well as method signatures, and so our type system tracks the flow of
string constants through the program. Our system embeds string vari-
ables in types, and as those variables are resolved to string constants
during inference they are replaced with the structured types the con-
stants represent. This restricted form of dependent types allows us to
directly assign type signatures to each of the more than 200 functions
in the JNI. Moreover, it allows us to infer types for user-defined func-
tions that are parameterized by Java type strings, which we have found
to be common practice. Our inference system allows such functions to
be treated polymorphically by using instantiation constraints, solved
with semi-unification, at function calls. Finally, we have implemented
our system and applied it to a small set of benchmarks. Although semi-
unification is undecidable, we found our system to be scalable and ef-
fective in practice. We discovered 155 errors and 36 cases of suspicious
programming practices in our benchmarks.

1 Introduction

Foreign function interfaces (FFIs) allow programs to call functions written in
other languages. FFIs are important because they let new languages access sys-
tem libraries and legacy code, but using FFIs correctly is difficult, as there is
usually little or no compile-time consistency checking between native and foreign
code. As a result, programs that use FFIs may produce run-time typing errors
or even violate type safety, thereby causing program crashes or data corruption.

In this paper we develop a multi-lingual type inference system that checks
for type safe usage of Java’s FFI to C, called the Java Native Interface (JNI).1

In the JNI, most of the work is done in C “glue code,” which translates data
between the two languages and then in turn invokes other routines, often in
system or user libraries. Java primitives can be accessed directly by C glue code
because they have the same representations as C primitives, e.g., a Java integer
can be given the C type int. However all Java objects, no matter what class they
are from, are assigned a single opaque type jobject by the JNI. Since jobject

� This research was supported in part by NSF CCF-0346982 and CCF-0430118.
1 The JNI also contains support for C++, but our system only analyzes C code.

P. Sestoft (Ed.): ESOP 2006, LNCS 3924, pp. 309–324, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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contains no further Java type information, it is easy for a programmer to use a
Java object at a wrong type without any compile-time warnings.

We present a new type inference system that embeds Java type information
in C types. When programmers manipulate Java objects, they use JNI functions
that take as arguments specially-formatted strings representing class names, field
names, and method signatures. Our inference system tracks the values of C string
constants through the code and translates them into Java type annotations on
the C jobject type, which is a simple form of dependent types.

We have found that JNI functions are often called with parameters that
are not constants—in particular, programmers often write “wrapper” functions
that group together common sequences of JNI operations, and the Java types
used by these functions depend on the strings passed in by callers. Thus a novel
feature of our system is its ability to represent partially-specified Java classes in
which class, field, and method names and type information may depend on string
variables in the program. During type inference these variables are resolved to
constants and replaced with the structured types they represent. This allows us
to handle wrapper functions and to directly assign type signatures to the more
than 200 functions in the JNI.

Our system also supports polymorphism for functions that are parameter-
ized by string variables and Java types. Our type inference algorithm generates
instantiation constraints [1] at calls to polymorphic functions, and we present
an algorithm based on semi-unification [2, 3] for solving the constraints.

We have implemented our system and applied it to a small set of benchmarks.
Although semi-unification is undecidable, we found our algorithm to be both
scalable and effective in practice. In our experiments, we found 155 errors and
36 suspicious but non-fatal programming mistakes in our benchmarks, suggesting
that programmers do misuse the JNI and that multi-lingual type inference can
reveal many mistakes.

In summary, the main contributions of this paper are as follows:

– We develop a multi-lingual type inference system that embeds Java types
inside of C. Our system uses a simple form of dependent types so that Java
object types may depend on the values of C string constants and variables.

– We present a constraint-based type inference algorithm for inferring multi-
lingual types for C glue code. During inference, as string variables are re-
solved to constant strings they are replaced with the structured Java types
they represent. Our system uses instantiation constraints to model polymor-
phism for JNI functions and user-defined wrapper functions.

– We describe an implementation of our type inference system. We have ap-
plied our implementation to a small set of benchmarks, and as a result, we
found a number of bugs in our benchmark suite.

This work complements and extends our previous work on the OCaml-to-C
FFI [4]. Our previous system was monomorphic and worked by tracking integers
and memory offsets into the OCaml heap. Our previous system also did not
model objects, which clearly limits its applicability to the JNI. Our new system



Polymorphic Type Inference for the JNI 311

can model accesses to Java objects using string constants and variables, and
performs parametric polymorphic type inference.

2 Background

In this section we motivate our system by briefly describing the JNI [5]. The JNI
is typically used to access low-level C libraries which are impractical to recode in
Java. Libraries may have a significant amount of development time invested and
interfacing it with Java via the JNI avoids duplicated programming work. Also,
low-level operating system functions are typically only provided by means of a C
library (libc) and so the JNI must be used to access them. To call a C function
from Java, the programmer first declares a Java method with the native keyword
and no body. When this native method is invoked, the Java runtime finds and
invokes the correspondingly-named C function. Since Java and C share the same
representation for primitive types such as integers and floating point numbers,
C glue code requires no special support to manipulate them. In contrast, Java
objects, such as instances of Object, Class, or int[], are all represented with a
single opaque C type jobject (often an alias of void *), and glue code invokes
functions in the JNI to manipulate jobjects. For example, to get the object
Point.class, which represents the class Point, a programmer might write the
following C code2:

jobject pointClass = FindClass("java/awt/Point");

Here the FindClass function looks up a class by name. The resulting object
pointClass is used to access fields and methods, as well as create new instances
of class Point. For example, to access a field, the programmer next writes

jfieldID fid = GetFieldID(pointClass, "x", "I");

After this call, fid contains a representation of the location of the field x with
type I (a Java int) in class Point. This last parameter is a terse encoding of
Java types called a field descriptor. Other examples are F for float, [I for array
of integers, and Ljava/lang/String; for class String. Notice this is a slightly
different encoding of class names than used by FindClass. Our implementation
enforces this difference, but we omit it from the formal system for simplicity.

Finally, to read this field from a Point object p, the programmer writes

jobject p = ...;
int y = GetIntField(p, fid);

The function GetIntField returns an int, and there is one such function for
each primitive type and one function GetObjectField for objects.

Thus we can see that a simple field access that would be written int y = p.x
in Java requires three JNI calls, each corresponding to one internal step of the
2 The JNI functions discussed in this section are actually invoked slightly differently

and take an additional parameter, as discussed in Section 4.
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int my getIntField(jobject obj, char *field) {
jobject cls = GetObjectClass(obj);
jfieldID fid = GetFieldID(cls, field, "I");
return GetIntField(obj, fid);

}

Fig. 1. JNI Wrapper Function Example

JVM: getting the type of the object, finding the offset of the field, and retrieving
its contents. And while a Java compiler only accepts the code y = p.x if it is
type correct, errors in C glue code, such as typos in the string java/awt/Point,
x, or I, will produce a run-time error. There are also several other places where
mistakes could hide. For example, the programmer must be careful to maintain
the dependence between the type of x and the call to GetIntField. If the type of
x were changed to float, then the call must also be changed, to GetFloatField,
something that is easy to overlook. Moreover, since pointClass and p both have
type jobject, either could be passed where the other is expected with no C
compiler warning, which we have seen happen in our benchmarks. Invoking a
Java method is similar to extracting a field. We omit the details due to lack of
space.

One common pattern we have seen in JNI code is wrapper functions that
specialize JNI routines to particular classes, fields, or methods. For example,
Fig. 1 contains a function my getIntField that extracts an integer field from an
object. This routine invokes the JNI function GetObjectClass, which returns an
object representing the class of its argument (as opposed to FindClass, which
looks up a class by name). Calling my getIntField is safe if the first parameter
has an integer field whose name is given by the second parameter. Thus this
function is parameterized by the object and by the name of the field, but not its
type. Since this wrapper function might be called multiple times with different
objects and different field names, we need to perform polymorphic type inference,
not only in the types of objects but also in the values of string parameters.

3 Type System

In this section, we describe our multi-lingual type inference system. The input
to our system is a collection of Java classes and a C program. Our type inference
system analyzes the C program and generates constraints that describe how it
uses Java objects. We also add constraints based on the type signatures of native
methods and the actual class definitions from Java. We then solve the constraints
to determine whether the C code uses Java objects consistently with the way
they are declared, and we report any discrepancies as type errors.

Extracting type information from Java class files is relatively straightforward.
Thus most of the work in our system occurs in the C analysis and constraint
resolution phases, so these are the focus of this section.
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3.1 Multi-lingual Types

To check that C glue code uses Java types correctly, we must reconstruct the
Java types for C variables that are declared with types like jobject, jfieldID,
and jmethodID. Before giving our type language formally, consider the function
my getIntField in Fig. 1. Our system will give this function the following type,
which corresponds to the informal description given at the end of Section 2:

my getIntField : {ν; 〈νfield : JInt〉 ◦ φ;μ} jobject × str{νfield} → JInt jobject

This is the type of a function that takes two parameters and returns a
Java integer (which has the same representation as a C int). Note we use the
constructor jobject to denote any Java type, not just objects. The second
parameter is a C string whose contents are represented by the variable νfield.
The first parameter is an object that contains a field with name νfield and Java
type int. Here we have embedded Java type information into the bare C type
in order to perform checking. The type of my getIntField places no constraints
on the class name ν of the first parameter or its other fields φ and methods μ.
In order to infer this type, we need to track intermediate information about cls
and fid as well. A detailed explanation of how this type is inferred is given in
Section 3.4.

Our formal type grammar is given in Fig. 2. C types ct include void, integers,
string types str{s} (corresponding to C types char *), and function types. In
type str{s}, the string s may be either a known constant string “Str” or a type
variable ν that is later resolved to a constant string. For example, in Fig. 1,
field is given type str{νfield}, and νfield is then used as a field name in the
type of my getIntField.

Our type language embeds a Java type jt in the C type jobject. In order
to model the various ways the JNI can be used to access objects, we need a
richer representation of Java types than just simple class names. For example,
the wrapper function in Fig. 1 may be safely called with mutually incompatible
classes as long as they all have the appropriate integer field. Thus our Java types
include type variables α, the primitives JVoid and JInt, and object descriptions
o of the form {s;F ;M}, which represents an object whose class is named s with
field set F and method set M . Since our inference system may discover the fields

ct ::= void | int | str{s} | (ct× · · · × ct) → ct
| jt jobject | (f, o) jfieldID | (m, o) jmethodID

jt ::= α | JVoid | JInt | o | jt JClass | JTStr{s}
o ::= {s; F ; M}
s ::= ν | “Str”
f ::= s : jt
F ::= φ | ∅ | 〈f ; · · · ; f〉 ◦ F
m ::= s : (jt × · · · × jt) → jt
M ::= μ | ∅ | 〈m; · · · ; m〉 ◦M

Fig. 2. Type Language
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FindClass : (str{ν}) → JTStr{ν} JClass jobject

GetObjectClass : ({ν; φ; μ} jobject) → {ν; φ; μ} JClass jobject

GetFieldID : (o JClass jobject × str{ν2} × str{ν3}) → (f, o) jfieldID jobject
where o = {ν1; 〈f〉 ◦ φ; μ} and f = ν2 : JTStr{ν3}

GetIntField : (o jobject × (f, o) jfieldID jobject) → JInt jobject
where o = {ν1; 〈f〉 ◦ φ; μ} and f = ν2 : JInt

Fig. 3. Sample JNI Type Signatures. All unconstrained variables are quantified

and methods of an object incrementally, we allow these sets to grow with the
composition operator ◦. A set is closed if it is composed with ∅, and it is open
if it is composed with a variable φ or μ. Since we never know just from C code
whether we have accessed all the fields and methods of a class, field and method
sets become closed only when unified with known Java types.

Instances of Java’s Class class are essential for using the JNI, and therefore
we distinguish them from other objects with the type jt JClass. For example,
in Fig. 1 the variable cls is given type {ν; 〈νfield : JInt〉 ◦ φ;μ} JClass jobject,
meaning it is the class of obj. This separation is required so that an instance
object is not passed to a function like GetFieldID which requires a class object.

Lastly, Java objects whose types are described by string s have type JTStr{s}.
During inference, when the value of s is determined, JTStr{s} will be replaced by
the appropriate type. For example, initially the result type of my getIntField
is determined to be JTStr{“I”}, which is immediately replaced by JInt.

The types (f, o) jfieldID and (m, o) jmethodID represent intermediate JNI
values for extracting field f or method m. The name of a field or method is a
string s. For example, fid in Fig. 1 has type (νfield : JInt, o) where o is our
representation of obj. We include o so that we can check that this field identifier
is used with an object of the correct type.

Given this type grammar, we can precisely describe the types of the JNI
functions. Fig. 3 gives the types for the functions we have seen so far in this
paper. For instance, the function GetIntField takes an object with a field f
and a jfieldID describing f , and returns an integer. Notice that the object
type o is open, because it may have other fields in addition to f . As we discussed
in Section 2, it is important that these functions be polymorphic. In the type
signatures in Fig. 3, any unconstrained variables are implicitly quantified.

3.2 Constraint Generation

The core of our system is a type inference algorithm that traverses C source
code and infers the types in Fig. 2. Due to lack of space, we omit explicit typing
rules for the source language, since they are mostly standard. Each C term of
type jobject is initially assigned type α jobject for fresh α, and similarly for
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jfieldID and jmethodID. As we traverse the program, we generate unification
constraints of the form a = b (where a and b range over ct, jt, etc) whenever
two terms must have the same type. For example, for the code in Fig. 1, we unify
the type of cls with the return type of GetObjectClass. Since the only way to
manipulate jobject types is through the JNI, in general our analysis only gen-
erates constraints at assignment, function definition, and function application.
Because we use unification for jt types rather than subtyping, our inference al-
gorithm could fail to unify two Java objects where one object is a subtype of the
other. However, we did not find this to be a problem in practice (see Section 4).

To support polymorphism, we use instantiation constraints of the form a �i b
to model substitutions for quantified variables for each instantiation site i [2, 3].
Formally, we use the following two rules for generalization and instantiation:

(Let)
Γ 
 e1 : t1

Γ [f �→ (t1, fv(Γ ))] 
 e2 : t2

Γ 
 let f = e1 in e2 : t2

(Inst)
Γ (f) = (t, �α)

(t, �α) �i (β, �α) β fresh
Γ 
 fi : β

In (Let), we represent a polymorphic type as a pair (t, &α), where t is the base
type and &α is the set of variables that may not be quantified. Then in (Inst),
we generate an instantiation constraint (t, &α) �i (β, &α) where i is unique to
this instantiation site. This constraint requires that there exist a substitution Si

such that Si(t) = β. Our type rule also demands that &α �i &α, i.e., Si does not
instantiate the free variables of the environment. The main advantage to this
notation for polymorphism is that it allows us to traverse the source code in
any order. In particular, we can generate instantiation constraints for a call to
function f before we have seen a definition of f . A full discussion of these rules
is beyond the scope of this paper and can be found elsewhere [3].

We have formalized a checking version of our type system in terms of lambda-
calculus extended with strings, let-bound polymorphism, and primitives repre-
senting Java objects. We also include as primitive a set of JNI functions for op-
erating on Java objects, and the small-step semantics for the language includes
a reduction rule for each of these functions. We believe it is straightforward to
prove that the reduction rules preserve solutions.

Theorem 1 (Soundness). If Γ � e : ct, then there exists a value v such that
e→∗ v and Γ � v : ct.

Proof. The proof is available in our companion technical report [6].

In our implementation, we do not keep track of the set fv(Γ ) for functions.
Since C does not have nested functions, we simply issue warnings at any uses of
global variables of type jobject. In general we have found that programmers
use few globals when interacting with the JNI. We do not issue warnings for
global char * types since these are common in C programs. While this makes
our implementation unsound, doing so would generate a very high rate of false
positives. Our current implementation also does not check for global variables of
type jfieldID, jmethodID, or any Java types embedded in C data structures.
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3.3 Constraint Solving

Our type inference algorithm generates a set of constraints that we need to solve
in order to decide if the program is well-typed. To solve the constraints, we use
a variant of Fähndrich et al’s worklist algorithm for semi-unification [2].

To simplify our constraint resolution rules below, whenever we refer to field
and method sets we always assume they have been flattened so that they are
composed with either ∅ or a variable. During the process of unification, unknown
strings ν will be replaced by known constant strings str{“Str”}. As this happens,
we need to ensure that our object types still make sense. In particular, Java
classes may not contain two fields with the same name but different types.3

Thus we also impose a well-formedness constraint on all field sets: any two fields
with the same name in a field set must have the same type. Formally, for a
field f = s : jt we define fname(f) = s and ftype(f) = jt. Then a field set
〈f1; · · · ; fn〉 is well-formed if fname(fi) = fname(fj) ⇒ ftype(fi) = ftype(fj) for
all i, j. Methods however, unlike fields, may be overloaded in Java, and so we do
not apply the above well-formedness condition to them.

During constraint solving, our system may unify a string variable ν with
a constant string “Str”. When this occurs, our system uses the Eval function
shown below to convert a type JTStr{s} into the Java type it represents:

Eval( JTStr{“V”}) ⇒ JVoid
Eval( JTStr{“I”}) ⇒ JInt

Eval( JTStr{“Ljava/lang/String;”}) ⇒ {“java/lang/String”; · · · ; · · · }
Eval( JTStr{“Ljava/awt/Point;”}) ⇒ {“java/awt/Point”; · · · ; · · · }

...

We use a similar function to convert the string representation of a method sig-
nature into a list of Java types.

We express constraint solving in terms of rewrite rules, shown in Fig. 4. Given
a set of constraints C, we apply these rules exhaustively, replacing the left-hand
side with the right-hand side until we reach a fixpoint. Technically because we
use semi-unification this algorithm may not terminate, but we have not found
a case of this in practice. The complete list of rewrite rules is long and mostly
standard, and so Fig. 4 contains only the interesting cases. The exhaustive set
of rules may be found in our companion technical report [6].

In Fig. 4, the (Closure) rule unifies two terms b and c when they are both
instantiations of the same variable a at the same instantiation site. Intuitively,
this rule enforces the property that substitution Si must replace variable a con-
sistently [3]. The rule (JTStr Ineq) applies the usual semi-unification rule for
constructed types. Since the substitution Si renames the left-hand side to yield
the right-hand side in a constraint �i, the right-hand side must have the same
shape. Thus in (JTStr Ineq), we unify jt with JTStr{ν} where ν is fresh and
then propagate the semi-unification constraint to s and ν.

3 Although an overloaded field via inheritance is possible, their manipulation in C is
not supported by our system and was not observed in our benchmarks.
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In (FieldSet InEq), we match up the fields of two non-empty field sets. We
directly propagate instantiation constraints to fields fk and f ′

j with the same
field name or variable. We then make an instantiation constraint to F ′ from the
remaining fields of the left-hand side for which there does not exist a field with
the same name on the right-hand side. Recall that we assume the sets have been
flattened, so that F ′ is either a variable or ∅. We then generate the analogous
constraint for F and the right-hand side. Notice that this process may result
in a field set with multiple fields with variables ν for names. Our implicit well-
formedness requirement from Section 3 will handle the case where these variables
are later unified with known strings.

We omit the rules for method sets due to lack of space. These rules are
similar to the field set rules except for one important detail. Suppose we have
an open method set 〈x : α→ α〉 ◦ μ which is unified with a closed method set
〈x : JInt→ JInt;x : JVoid→ JVoid〉 ◦ ∅. Since the method x is overloaded, we do
not know if α should unify with JInt or JVoid. Therefore, if this occurs during
unification, our tool emits a warning and removes the constraint. Also, we could
unify return types of methods with otherwise equal signatures, but do not do so
in our current implementation.

The next three rules handle strings. (Str Sub) replaces one string variable
by another. (Str Resolve) uses Eval to replace occurrences of JTStr{ν} with
their appropriate representations. (Str Eq) and (Str Neq) test string constants
for equality.

Because JTStr{} encodes its type as a string, we use a slightly different
rewrite rule for this case. In rule (JTStr Sub), if a JTStr{} type is unified with
a type variable, then the variable is replaced as normal. However, if a JTStr{s}
type is unified with a void type as in (JTStr Void), then we add the constraint
that the s = “V”, since Eval(s) must produce a void type. We use a similar
rule for integers. Similarly, the rule (JTStr Obj) adds the constraint that s must
have the same name as the object it unifies with.

3.4 Example

In this section, we demonstrate our inference system on the my getIntField
function from Fig. 1. Initially our analysis assigns each parameter and local
variable of this function a fresh type (we omit the variable fid for brevity as it
only provides redundant constraints on my getIntField):

obj : αobj jobject cls : αcls jobject field : str{νfield}

The first line of the function calls the GetObjectClass function (call this in-
stantiation site 1). After looking up its type in the environment (shown in
Fig. 3 with quantified type variables ν, φ, and μ), we add the following
constraints:

{ν; φ; μ} jobject �1 αobj jobject
{ν; φ;μ} JClass jobject �1 αcls jobject
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(Closure) C ∪ {a �i b} ∪ {a �i c} ⇒ C ∪ {a �i b} ∪ {b = c}

(JTStr Ineq) C ∪ { JTStr{s} �i jt} ⇒ C ∪ {jt = JTStr{ν}} ∪ {s �i ν}
ν fresh

(FieldSet InEq) C ∪ {〈f1; · · · ; fn〉 ◦ F �i 〈f ′
1; · · · ; f ′

m〉 ◦ F ′} ⇒
C ∪ {ftype(fk) �i ftype(f ′

j) | fname(fk) = fname(f ′
j)}

∪{ fk |� ∃j. fname(fk) = fname(f ′
j) �i F ′}

∪{F �i f ′
j |� ∃k. fname(fk) = fname(f ′

j) }

(Str Sub) C ∪ {ν1 = ν2} ⇒ C[ν1 �→ ν2]
(Str Resolve) C ∪ {ν = “Str”} ⇒ C[ν �→ “Str”][ JTStr{“Str”} �→ Eval(“Str”)]

(Str Eq) C ∪ {“Str1” = “Str2”} ⇒ C Str1 = Str2

(Str Neq) C ∪ {“Str1” = “Str2”} ⇒ error Str1 �= Str2

(JTStr Sub) C ∪ {α = JTStr{s}} ⇒ C[α �→ JTStr{s}]
(JTStr Void) C ∪ {JVoid = JTStr{s}} ⇒ C ∪ {s = “V”}
(JTStr Obj) C ∪ {{ν; F ; M} = JTStr{s}} ⇒ C ∪ {s = ν}

Fig. 4. Selected Constraint Rewrite Rules

Applying our constraint rewrite rules yields the following new constraints:

αobj = {ν2; φ2; μ2} αcls = {ν3; φ3; μ3} JClass
ν �1 ν2 ν �1 ν3

φ �1 φ2 φ �1 φ3

μ �1 μ2 μ �1 μ3

ν2, φ2, μ2 fresh ν3, φ3, μ3 fresh

Then rule (Closure) in Fig. 4 generates the constraints ν2 = ν3, φ2 = φ3, and
μ2 = μ3 to require that the substitution corresponding to this call is consistent.
Next, my getIntField calls GetFieldID, and after applying our constraint rules,
we discover (among other things): φ2 = 〈νfield : JTStr{“I”}〉 ◦ φ4 with φ4 fresh.
Now since we have a JTStr with a known string, our resolution rules call Eval
to replace it, yielding φ2 = 〈νfield : JInt〉 ◦φ4. The last call to GetIntField gen-
erates several new constraints, but they do not affect the types. Thus after the
function has been analyzed, it is given the type

my getIntField : {ν1; 〈νfield : JInt〉 ◦ φ4;μ} jobject × str{νfield}→ JInt jobject

In other words, this function accepts any object as the first parameter as long
as it has an integer field whose name is given by the second parameter, exactly
as intended.

4 Implementation and Experiments

We have implemented the inference system described in Section 3 in the form
of two tools used in sequence during the build process. The first tool is a light-
weight Java compiler wrapper. The wrapper intercepts calls to javac and records



Polymorphic Type Inference for the JNI 319

the class path so that the second tool can retrieve class files automatically. The
wrapper itself does not perform any code analysis. The second tool applies our
type inference algorithm to C code and issues warnings whenever it finds a type
error. Our tool uses CIL [7] to parse C source code and the OCaml JavaLib [8]
to extract Java type information from compiled class files.

Our implementation contains some additional features not discussed in the
formal system. In addition to the type jobject, the JNI contains a number
of typedefs (aliases) for other object types, such as jstring for Java Strings.
These are all aliases of jobject, and so their use is not required by the JNI,
and they do not result in any more checking by the C compiler. Our system
does not require their use either, but since they are a form of documentation
we enforce their intended meaning, e.g., values of type jstring are assigned a
type corresponding to String. We found 3 examples in our benchmarks where
programmers used the wrong alias. The JNI also defines types jvoid and jint,
representing Java voids and integers, as aliases of the C types void and int,
respectively. Our system does not distinguish between the C name and its j-
prefixed counterpart.

Rather than being called directly, JNI functions are actually stored in a
table that is passed as an extra argument (usually named env) to every C
function called from Java, and this table is in turn passed to every JNI
function. For example, the FindClass function is actually called with
(*env)->FindClass(env,...). Our system extracts FFI function names via
syntactic pattern matching, and we assume that the table is the same every-
where. Function pointers that are not part of the JNI are not handled by our
system, and we do not generate any constraints when they are used in a program.

The JNI functions for invoking Java methods must take a variable number
of arguments, since they may be used to invoke methods with any number of
parameters. Our system handles the commonly-used interface, which is JNI func-
tions declared to be varargs using the ... convention in C. However, the JNI
provides two other calling mechanisms that we do not model: passing arguments
as an array, and passing arguments using the special va list structure. We issue
warnings if either is used.

Although our type system is flow-insensitive, we treat the types of local
variables flow-sensitively. Each assignment updates the type of a variable in the
environment, and we add a unification constraint to variables of the same name
at join points in the control flow graph. See [4] for details.

Lastly, our implementation models strings in a very simple way to match how
they are used in practice in C glue code. We currently ignore string operations
like strcat or destructive updates via array operations. We also assume that
strings are always initialized before they are used, since most compilers produce
a warning when this is not the case.

We ran our analysis tool on a suite of 11 benchmarks that use the JNI. Fig. 5
shows our results. All benchmarks except pgpjava are glue code libraries that
connect Java to an external C library. The first 7 programs are taken from the
Java-Gnome project [9], and the remaining programs are unrelated. For each



320 M. Furr and J.S. Foster

Program C LOC Java LOC Time (s) Errs Warnings False Pos Impr
libgconf-java-2.10.1 1119 670 2.4 0 0 10 0
libglade-java-2.10.1 149 1022 6.9 0 0 0 1

libgnome-java-2.10.1 5606 5135 17.4 45 0 0 1
libgtk-java-2.6.2 27095 32395 36.3 74 8 34 18

libgtkhtml-java-2.6.0 455 729 2.9 27 0 0 0
libgtkmozembed-java-1.7.0 166 498 3.3 0 0 0 0

libvte-java-0.11.11 437 184 2.5 0 26 0 0
jnetfilter 1113 1599 17.3 9 0 0 0

libreadline-java-0.8.0 1459 324 2.2 0 0 0 1
pgpjava 10136 123 2.7 0 1 0 1
posix1.0 978 293 1.8 0 1 0 0

Total 155 36 44 22

Fig. 5. Experimental Results

program, Fig. 5 lists the number of lines of C and Java code, the analysis time
in seconds (average of 3 runs), and the number of messages reported by our
tool, divided manually into four categories as described below. The running
time includes the C code analysis (including extracting Java types from class
files) but not the parsing of C code. The measurements were performed on a 733
MHz Pentium III machine with 1GB of RAM.

Our tool reported 155 errors, which are programming mistakes that may
cause a program to crash or to emit an unexpected exception. Surprisingly, the
most common error was declaring a C function with the wrong arity, which
accounted for 68 errors (30 in libgtk and 38 in libgnome). All C functions called
from Java must start with one parameter for the JNI environment and a second
parameter for the invoking object or class. In many cases the second parameter
was omitted in the call, and hence any subsequent arguments would be retrieved
from the wrong stack location, which could easily cause a program crash.

56 of the errors were due to mistakes made during a software rewrite. Pro-
grams that use the JNI typically use one of two techniques to pass C pointers
(e.g., GUI window objects) through Java: they either pass the pointer directly
as an integer, or they embed the pointer as an integer field inside a Java ob-
ject. Several of the libraries in the Java-Gnome project appear to be switching
from the integer technique to the object technique, which requires changing Java
declarations in parallel with C declarations, an error-prone process. Our tool de-
tected many cases when a Java native method specified an Object parameter
but the corresponding C function specified an integer parameter, or vice-versa.
This accounted for 4 errors in libgnome, 25 in libgtk, and 27 in libgtkhtml.

Type mismatches accounted for 17 of the remaining errors. 6 errors occurred
because a native Java method was declared with a String argument, but the
C code took a byte array argument. In general Java strings must be translated
to C strings using special JNI functions, and hence this is a type error. Another
type error occurred because one C function passed a (non-array) Java object to
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another C function expecting a Java array. Since both of these are represented
with the type jobject in C, the C compiler did not catch this error.

Finally, 14 errors were due to incorrect namings. 11 of these errors (9 in jnet-
filter and 2 in libgtk) were caused by calls to FindClass with an incorrect string.
Ironically, all 9 jnetfilter errors occurred in code that was supposed to construct
a Java exception to throw—but since the string did not properly identify the
exception class, the JVM would throw a ClassNotFound exception instead. The
remaining 3 errors were due to giving incorrect names to C functions correspond-
ing to Java native methods; such functions must be given long names following
a particular naming scheme, and it is easy to get this wrong.

We also ran our tool on a development Java 1.6 compiler, code-named Mus-
tang. Our tool produced 480 messages, one of which was an actual error in which
the JNI glue code did not properly distinguish between the types int and long.
If used on a big-endian 64-bit machine, the C function would access only the
higher 32 bits of the value, creating a runtime error [10]. The remaining messages
were all false positives or imprecision messages. This program is not present in
Figure 5 because we had to play special tricks to use our tool on the source
code due to its intricate bootstrapping build process and were therefore unable
to calculate an accurate running time.

Most of the errors we found are easy to trigger with a small amount of code.
In cases such as incorrectly-named function, errors would likely be immediately
apparent as soon as the native method is called. Thus clearly many of the errors
are in code that has not been tested very much, most likely the parts of libraries
that have not yet been used by Java programmers.

Our tool also produced 36 warnings, which are suspicious programming prac-
tices that do not actually cause run-time errors. One warning arose when a
programmer called the function FindClass with a field descriptor of the form
Ljava/lang/String;rather than a fully qualified class name java/lang/String.
Technically this is an error [5], but the Sun JVM we tested allows both versions, so
we only consider this a warning. Another example that accounted for 2 warnings
was due to incorrectly declaring a function to return the wrong type, but then
returning the correct type in the function body.

Finally, 33 warnings were due to the declaration of C functions that appear
to implement a specific native method (because they have mangled names), but
do not correspond to any native Java method. In many cases there was a native
method in the Java code, but it had been commented out or moved without
deleting the C code. This will not cause any run-time errors, but it seems helpful
to notify the programmer about this dead code.

Our tool also produced 44 false positives, which are warnings about cor-
rect code, and 22 imprecision warnings, which occurred when the analysis had
insufficient information about the value of a string. All of the false positives
were caused by the use of subtyping inside of C code, which our analysis does
not model precisely because it uses unification. 16 of the warnings were due to
unification failures with partially specified methods that could not be resolved.
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The other 6 warnings occurred when the programmer called a Java method by
passing arguments via an array, which our analysis does not model.

5 Related Work

In prior work, we presented a system for inferring types for programs that use
the OCaml-to-C FFI [4]. Our new work on the JNI differs in several ways. To
infer types for the JNI, we need to track string values through the source code,
whereas for the OCaml FFI we mainly needed to track integers and pointer off-
sets. Our new system can directly assign polymorphic types to JNI functions
and to user-written wrapper functions, in contrast to our previous system which
did not track sufficient interprocedural information to allow this and was not
polymorphic. Our new system also includes support for indexing into records
using strings for field names and method signatures, and those strings may
not be known until constraint resolution. Our previous system did not support
objects.

Recently several researchers have developed sophisticated techniques to track
strings in programs [11, 12, 13, 14]. One goal of these systems is to check that
dynamically-generated SQL queries are well-formed by creating a language which
describes all possible strings for a given expression. For purposes of checking
clients of the JNI, we found that simple tracking of strings is sufficient.

Nishimura [15] presents an object calculus which can statically infer kinded-
types for first-class method names. Their system has similar restrictions to ours
like not supporting inheritance or overloaded methods. Our work differs in that
we are typing C code and must analyze the value of C strings instead of working
with a pure object calculus.

There are many different foreign function interfaces with various design trade-
offs [16, 17, 18, 19, 20, 5]. We believe that the techniques we develop in this paper
and in our previous work [4] can be adapted to many FFIs.

An alternative to using FFIs directly is to use automatic interface genera-
tors to produce glue code. SWIG [21] generates glue code based on an interface
specification file. Exu [22] provides programmers with a light-weight system for
automatically generating JNI-to-C++ glue code for the common cases. Mock-
ingbird [23] is a system for automatically finding matchings between two types
written in different languages and generating the appropriate glue code. Our
benchmark suite contained custom glue code that was generated by hand.

In addition to the JNI, there has been significant work on other approaches to
object-oriented language interoperation, such as the commercial solutions COM
[24], SOM [25] and CORBA [26]. Barret [27] proposes the PolySPIN system as an
alternative to CORBA. All of these systems check for errors mainly at run-time
(though in some cases interface generators can be used to provide some compile-
time checking). The Microsoft common-language runtime (CLR) [28, 29] provides
interoperation by being the target of compilers for multiple different languages,
and the CLR includes a strong static type system. However, the type system
only checks CLR code, and not unmanaged code that it may invoke.
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Grechanik et al [30] present a framework called ROOF that allows many
different languages to interact using a common syntax. This system includes
both run-time and static type checking for code that uses ROOF. It is unclear
whether ROOF supports polymorphism and whether it can infer types for glue
code in isolation.

6 Conclusion

We have presented a multi-lingual type inference system for checking that pro-
grams use the JNI safely. Our system tracks the values of C strings to determine
what names and type descriptors are passed to JNI functions. Thus we are able
to infer what type assumptions C glue code makes about Java objects and check
whether they are consistent with the actual Java class definitions. Our system
treats wrapper functions and JNI functions polymorphically, allowing them to
be parametric even in string arguments. Using an implementation of our sys-
tem, we found many errors and suspicious practices in our suite of benchmarks.
Our results suggest that our static checking system can be an important part of
ensuring that the JNI is used correctly, and we believe that the same ideas can
be applied to other object-oriented FFIs.
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Abstract. The Microsoft .NET Common Language Runtime (CLR) of-
fers support for generic types and methods. We develop a mathematical
specification for the generics design through a type system and a model
for the semantics of a subset of bytecode instructions with generics. We
formalize the type-consistency checks performed for the subset by the
CLR bytecode verifier. We then prove that adding support for generics
maintains the type safety of the CLR.

1 Introduction

We have proved in [5] the soundness of the CLR bytecode verifier. The soundness
proof takes advantage of the models for the CLR semantics [6, 7]. Kennedy and
Syme proposed adding support for generics in the .NET CLR [11]. Their proposal
was at the basis of the generics implementation in the .NET Framework v2.0 [1].
The official specification for the CLR generics support is given in prose form in
the ECMA Standard [4].

Several versions of Eiffel turned out to be unsafe also due to the variance
on generic parameters [3, 8]. Type holes [10] have been identified also in Generic
Java [9, 12]. Consequently, the following question arises: Is type safety preserved
after adding generics as specified in the ECMA Standard [4]?

So far, this question has only been addressed by Yu, Kennedy and Syme
in [13]. They focus on aspects of the generics implementation, e.g., specializa-
tion of generic code up to data representation, efficient support for runtime types.
As their goal was not the type safety, their formalization does not include: vari-
ance on generic parameters, constraint types and boxed types (critical for the
specification of constraint types). These are exactly the generics features due to
which the type safety might be violated.

In the context of generic parameter variance, virtual method calls are prob-
lematic in ensuring the type safety. Let us assume, for example, that the bytecode
contains a virtual call of the method C ::M . Let D ::M be the method that will
be invoked at runtime. The following aspects are critical for the type safety:
(1) due to the variance, the signature of D ::M does not necessarily match the
signature of C ::M ; (2) if C ::M is a generic method, D ::M shall also be generic
but its constraint types do not necessarily match the corresponding constraint
types of C ::M .

P. Sestoft (Ed.): ESOP 2006, LNCS 3924, pp. 325–341, 2006.
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This paper also considers generic parameter variance, constraint types, boxed
types, addresses the above aspects and answers positively through Theorem 1 to
the above question. A by-product of our work is the identification of a few bugs
and gaps in the ECMA Standard [4].

Notational Conventions. Beside the list operations pop, top, length, · (the
operation append for lists), we use two other operations: for a list L, drop(L,n)
returns the list resulting from dropping the last n elements from L and split(L,n)
splits off the last n elements of L, i.e., split(L,n) is the pair (L′,L′′) where
L′ · L′′ = L and length(L′′) = n.

The rest of the paper is organized as follows. Section 2 gives a formalization
of the polymorphic CLR type system. Section 3 provides a formal specification
for the statical and operational semantics of a subset of bytecode instructions
relevant for generics. Section 4 develops mathematical specifications for the type-
consistency checks performed by the verifier and for the statically well-typed
methods accepted by the verifier. Section 5 proves that the runtime execution
of well-typed methods (with generics) does not corrupt the memory. Section 6
concludes.

2 Type System

This section defines a mathematical framework for the polymorphic type system
of CLR. A type is a value type, a reference type or a generic parameter. A
value type is either a value class (whose objects are composite values, i.e., values
composed from other values) or a primitive type. The reference types are the
object classes (whose objects are reference objects), the interfaces, the pointer
types1 and the boxed types. For every value type T , there exists a reference
type boxed(T ) called boxed type. The value of a type boxed(T ) is a location
where a value of type T can be stored. Only the verifier has knowledge of the
boxed types. In the bytecode, a boxed type can only be referred to as object or
as interfaces implemented by the associated value type.

Type = ValueType ∪ RefType ∪GenericParam
ValueType = ValueClass ∪ PrimitiveType
RefType = ObjClass ∪ Interface ∪ PointerType ∪ BoxedType

Additionally, void can be used only as a method return type and Null (the type
of null) is used only in the bytecode verification.

The methods are identified through method references, i.e., elements of the
universe MRef . The references include the signatures consisting of the argument
types and return type. We consider only instance (including virtual) methods.

A class or an interface whose declaration is parameterized by one or more
types is called generic type. We denote by GenericType the universe of generic
1 As the pointer types have been studied in [5], their use is very limited in this paper: a

pointer (evaluated to an address) can be loaded on the stack by an Unbox instruction
and can be passed as the this pointer to a call through the instructions CallVirt
and Constrained .CallVirt .
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Table 1. Selector functions for generic types/methods

genParamNo : Map(GenericType ∪MRef , N) number of generic parameters
of a type/method

genArg : Map(GenericType ∪MRef , List(Type \ PointerType)) generic arguments
of a type/method

constrT
i : Type \ (PointerType ∪GenericParam) i-th constraint of generic type T

constrmref
i : Type \ PointerType i-th constraint of generic method mref

(varI ′n
i )n−1

i=0 : List({+, -, ∅}) variances array of generic interface I ′n

types: GenericType ⊆ ValueClass ∪ObjClass ∪ Interface . Typically, C ′n gives
the name of a generic type C with n type parameters. A method declared within
a type, whose signature includes one or more generic parameters (not present in
the type declaration itself) is called generic method. The class generic parameters
are written in the bytecode as !i whereas the method generic parameters are ad-
dressed as !!i . Thus, !i denotes the i -th class generic parameter (numbered from
left-to-right in the relevant class declaration). Similarly, !!i designates the i -th
method generic parameter (numbered from left-to-right in the relevant method
declaration). GenericParam denotes the universe of generic parameters.

Every generic parameter can have an optional constraint consisting of a type.
This differs slightly from [4] which allows a constraint to have more than one
type. The restriction does not reduce the complexity but simplifies the expo-
sition. The generic types and methods can be instantiated2 by replacing every
generic parameter with a generic argument. Every generic argument shall be
a subtype (when boxed) of the type given in the corresponding constraint (see
Definition 1 for the subtype relation).

The generic interfaces can be covariant or contravariant in one or more of its
generic parameters. A covariant generic parameter is marked with “+” in the
interface declaration whereas “-” is used to denote a contravariant generic para-
meter3. For the sake of notation, we mark with “∅” the non-variant parameters.

Table 1 gathers the selector functions which we define to deal with generics.
Definition 1 introduces the subtype relation. The relation is defined also for

open generic types, i.e., generic types involving generic parameters. We use “◦”
to denote a substitution. Thus, T ◦ [U i/X i]n−1

i=0 is the type T where each generic
parameter X i is substituted by the type U i.

Definition 1 (Subtype Relation). The subtype relation � is the least reflex-
ive and transitive relation such that

– if T1 is a non-generic object class which extends / implements the class /
interface T2, or

– if T1 is boxed(T) where T is a non-generic value class which extends / im-
plements the class / interface T2, or

2 GenericType has only instantiated generic types and not generic types’ raw names.
3 Examples of .NET languages that support contravariance are Java 5.0 (through

“wildcards” with lower bounds), Sather, Scala, OCaml.
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– if T1 is boxed(X) where X is a generic parameter constrained by T2, or
– if T1 is Null and T2 ∈ RefType, or
– if T1 ∈ RefType and T2 = object, or
– if T1 is C〈U0, . . . ,Un−1〉 where C ′n is a generic object class with the generic

parameters (Xi)n−1
i=0 which extends / implements the class / interface T and

T2 is given by T ◦ [Ui/Xi]n−1
i=0 , or

– if T1 is boxed(C〈U0, . . . ,Un−1〉) where C ′n is a generic value class with the
generic parameters (Xi)n−1

i=0 which extends / implements the class / inter-
face T and T2 is given by T ◦ [Ui/Xi]n−1

i=0 , or
– if T1 is T〈U0, . . . ,Un−1〉 and T2 is T〈V0, . . . ,Vn−1〉 and for every i = 0,n−1

the following conditions hold:
• if varT

′n
i = ∅ or Vi ∈ ValueType or Vi ∈ GenericParam, then Ui = Vi;

• if varT
′n

i = +, then Ui � Vi;
• if varT

′n
i = -, then Vi � Ui;

then T1 � T2.

To state Definition 2 and Definition 3, we need to define the negation −(var i)
of a variances array (var i): −var i is +, if var i = -, −var i is -, if var i = +, and
−var i is ∅, if var i = ∅.

To enforce type safety, the ECMA Standard [4] imposes, unlike [8], several
requirements on the instance methods declared by a generic interface which is
co-/contra-variant in at least one generic parameter. These methods shall be
valid according to Definition 3. However, that definition requires the notion of
valid type with respect to a variances array which we specify in Definition 2.

Definition 2 (Valid Type). The predicate validType checks the validity of a
type T with respect to an array (vari) of variances.

validType(T, (vari)) :⇐⇒
T �∈ GenericType ∩GenericParam ∨
T is a generic parameter !!j of the enclosing method ∨
T is a generic parameter !j of the enclosing type ∧ varj ∈ {+, ∅} ∨
T = C〈U0, . . . , Un−1〉 ∈ GenericType ∧
∀ k = 0,n− 1

(varC
′n

k = + =⇒ validType(Uk, (vari)))∧
(varC

′n
k = - =⇒ validType(Uk,−(vari)))∧

(varC
′n

k = ∅ =⇒ validType(Uk, (vari)) ∧ validType(Uk,−(vari)))

Closed Generic Types Not Valid? The ECMA Standard [4, Partition II,
§9.7] states that T = C 〈U 0, . . . ,U n−1〉 in the above definition shall refer to a
“closed” generic type. This does not make a lot of sense, since in this case the
definition has nothing to do with the array of variances. This remark and the
experiments we have run with CLR indicate that T shall not necessarily be a
closed type.

Definition 3 specifies when a method is valid with respect to a variances
array. A method is valid if its return type “behaves covariantly” whereas its
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argument types and possibly constraint types “behave contravariantly”. The
functions retType, argTypes and argNo (introduced in Table 3) are used for a
method to retrieve the return type, the list of argument types and its length,
respectively. Note that the argument indexed with 0 gives the this pointer.

Definition 3 (Valid Method). The predicate validMeth checks the validity
of the method mref declaration with respect to the array (vari) of variances.

validMeth(mref, (vari)) :⇐⇒
validType(retType(mref), (vari)) ∧
∀j = 1, argNo(mref)− 1 validType(argTypes(j),−(vari)) ∧
∀j = 0, genParamNo(mref)− 1 validType(constrmref

j ,−(vari))

The declaration of a generic interface is valid if all the instance methods declared
by the interface and all the implemented interface types are valid with respect
to the variances array of the given interface4.

Definition 4 (Valid Interface Declaration). The predicate validDecl checks
the validity of the generic interface I ′n declaration.

validDecl (I ′n) :⇐⇒ ∀I ′n::M validMeth(I ′n::M, (varI
′n

i ))∧
∀J implemented by I ′n validType(J, (varI

′n
i ))

The type safety proof in Section 5 takes advantage of the following lemmas.
Lemma 1 shows that the subtype relationship of a given type varies directly
with the relationship of the covariant generic parameters and inversely with the
relationship of the contravariant generic parameters.

Lemma 1. If the types T , (Ui)n−1
i=0 , (Vi)n−1

i=0 and the array (vari)n−1
i=0 of variances

are such that validType(T, (vari)n−1
i=0 ) and

∀i = 0, n−1((vari = + =⇒ Vi � Ui)∧(vari = - =⇒ Ui � Vi)∧(vari = ∅ =⇒ Vi = Ui))

then T ◦ [Vi/!i ]n−1
i=0 � T ◦ [Ui/!i ]n−1

i=0 .

Proof. By induction on the structure of the (possibly generic) type T . Definition 2
is applied. /.

Lemma 2 proves that, if T 1 � T 2, then the instantiation of the generic para-
meters (corresponding to an enclosing generic class and/or method) occuring
in T 1 and T 2 with generic arguments satisfying the corresponding constraints
preserves the subtype relation between T 1 and T 2.

4 [4, Partition II, §9.7] is unclear. It requires that “every inherited interface declara-
tion” shall be valid with respect to the variances array. Firstly, the interfaces are not
“inherited” but implemented. Secondly, it is not about the interface “declaration”
but about the interface type present in the extends clause of the given interface.
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Lemma 2. Let T1 and T2 be two types such that T1 � T2. Assume T1 and
T2 occur in the declaration of C ′n possibly in the declaration of a generic
method C ′n::M. Let (Ui)n−1

i=0 and (Vj)m−1
j=0 be generic arguments for C ′n and

C ′n::M, respectively, assumed to satisfy the constraints:

boxed(Ui) � constrC
′n

i ◦ [Ui/!i ]n−1
i=0 , for every i = 0, n− 1

boxed(Vj) � constrC
′n::M

j ◦ ([Ui/!i ]n−1
i=0 · [Vj/!!j ]m−1

j=0 ), for every j = 0,m− 1

It then holds T1 ◦ [Ui/!i ]n−1
i=0 · [Vj/!!j ]m−1

j=0 � T2 ◦ [Ui/!i ]n−1
i=0 · [Vj/!!j ]m−1

j=0 .

Proof. By induction on the structure of the (possibly generic) type T 1. Defini-
tion 1 is applied. /.

Since it is possible for different methods to have identical signatures when the
declaring types are instantiated, the method references have the signatures unin-
stantiated. Unlike the signatures, the type constraints are instantiated in our
approach unless explicitly stated otherwise. To get the instantiated return type
and argument types of a method reference, we define inst as the substitution
that shall be applied to the reference:

inst(C ::M ) :=
[genArg(C )(i)/!i ]genParamNo(C )−1

i=0 · [genArg(C ::M )(i)/!!i ]genParamNo(C ::M )−1
i=0

3 Bytecode Semantics

In this section we formally define the semantics of the instructions from Table 2
by means of a small-step operational semantics modeled in ASM5 syntax in
Table 5. The static semantics is given in terms of the functions defined in Table 3
while the dynamic state of the considered bytecode language is described by the
functions introduced in Table 4.

The reasons for considering only the instructions from Table 2 are the follow-
ing. Adding generic types increases the complexity of � on which CastClass and
IsInstance strongly depend. To give a flavor of the boxed types (possibly involv-
ing generic parameters) critical for handling generic arguments, we consider also
the instructions Box , Unbox and Unbox .Any. To accommodate method calls
on generic parameter values, we analyze also Constrained .CallVirt . The most
critical feature for type safety is the generic parameter variance. As this aspect
is reflected in virtual method calls, CallVirt and Return are also considered.
The other CLR instructions are left out since they do not pose any problems in
ensuring type safety of the generics features.

We briefly describe the instruction semantics defined in Table 5. Every
instruction is executed under the assumption that the current method meth is in-
stantiated, i.e., every generic parameter is replaced by the corresponding generic
argument. Consequently, inst(meth) is applied to every instruction. Every time
5 The definition of ASMs is skipped here, because ASMs can be correctly understood

as pseudo-code operating over abstract (domains of) data. See their definition in [2].
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Table 2. CLR instructions considered

Instr = CastClass(ObjClass ∪ Interface ∪ ValueClass)
| IsInstance(ObjClass ∪ Interface ∪ValueClass)
| Box(Type)
| Unbox (ValueType)
| Unbox .Any(Type)
| CallVirt(Type ,MRef )
| Constrained(GenericParam).CallVirt(Type,MRef )
| Return

Table 3. Static functions

code : Map(MRef ,List(Instr)) list of instructions of a method body
argTypes : Map(MRef ,List(Type)) argument types of a method
argNo : Map(MRef , N) number of arguments of a method
retType : Map(MRef ,Type) return type of a method
lookup : Map(Type ×MRef ,MRef ) dynamic binding function

Table 4. Dynamic functions

memVal : Map(Address × Type, Value) memory function
meth : MRef current method
pc : Pc current program counter of meth
argVal : Map(N,Value) argument values of meth
evalStack : List(Value) current evaluation stack of meth
actualTypeOf : Map(ObjRef , Type) runtime type of an object reference
addressOf : Map(ObjRef , Address) address of value type in a boxed object

an exception occurs, control is passed to the exception handling mechanism de-
fined in [7] which preserves type safety as proved in [5]. Since we do not consider
exceptions here, we do not model this control switching either.

The instruction CastClass(C ) checks if the topmost value of the evalStack
is of type C . If not, an exception is thrown. The instruction IsInstance(C ) pops
from the evalStack a reference to an (possibly boxed) object. If the object is
not an instance of C , null is pushed on the evalStack . The Box (T ) instruction
(where T can also be a generic parameter) turns a boxable value into its boxed
form. Applied to a value type, the instruction loads a boxed object created
through the macro NewBox defined below on the evalStack .

let r = NewBox (val ,T ) in P ≡ let r = new(ObjRef ) and adr = new (Address ,T ) in
WriteMem(adr ,T , val)
addressOf (r) := adr
actualTypeOf (r) := T

seq P
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Table 5. Execution of the bytecode instructions

match code(meth)(pc)
CastClass(C ) ◦ inst(meth) →

let r = top(evalStack) in
if r = null ∨ actualTypeOf (r) � C ◦ inst(meth) then

pc := pc + 1

IsInstance(C ) ◦ inst(meth) → let (evalStack ′, [r ]) = split(evalStack , 1) in
pc := pc + 1
if actualTypeOf (r) �� C ◦ inst(meth) then

evalStack := evalStack ′ · [null]

Box(T ) ◦ inst(meth) → pc := pc + 1
if T ◦ inst(meth) ∈ ValueType then

let (evalStack ′, [val ]) = split(evalStack , 1) in
let r = NewBox (val , T ◦ inst(meth)) in

evalStack := evalStack ′ · [r ]

Unbox (T ) ◦ inst(meth) → let (evalStack ′, [r ]) = split(evalStack , 1) in
if r �= null ∧ actualTypeOf (r) = T ◦ inst(meth) then

evalStack := evalStack ′ · [addressOf (r)]
pc := pc + 1

Unbox .Any(T ) ◦ inst(meth) →
let (evalStack ′, [r ]) = split(evalStack , 1) in

if T ◦ inst(meth) ∈ ValueType then
evalStack := evalStack ′ · [memVal(addressOf (r),T ◦ inst(meth))]
pc := pc + 1

elseif r = null ∨ actualTypeOf (r) � T ◦ inst(meth) then pc := pc + 1

CallVirt( ,C ::M ) ◦ inst(meth) →
let (evalStack ′, [r ] · vals) = split(evalStack , argNo(C ::M )) in

evalStack := evalStack ′

VirtCall(r ,C ::M ◦ inst(meth), vals)

Constrained(T ).
CallVirt( ,C ::M ) ◦ inst(meth) →

let (evalStack ′, [adr ] · vals) = split(evalStack , argNo(C ::M )) in
evalStack := evalStack ′

if T ◦ inst(meth) ∈ RefType then
let r = memVal(adr ,T ◦ inst(meth)) in

VirtCall(r ,C ::M ◦ inst(meth), vals)
elseif T ◦ inst(meth) ∈ ValueClass∧

T ::M ◦ inst(meth) implements C ::M ◦ inst(meth) then
Invoke(T ::M ◦ inst(meth), [adr ] · vals)

else let r = NewBox (memVal(adr ,T ◦ inst(meth)),T ◦ inst(meth)) in
VirtCall(r ,C ::M ◦ inst(meth), vals)

Return ◦ inst(meth) → if retType(meth) = void then Result([ ])
else Result([top(evalStack )])
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NewBox (val ,T ) creates a fresh object reference and allocates an address where
val of type T is stored through WriteMem. The definition of WriteMem
(which can be found in [6]) is beyond the scope of this paper.

The Unbox instruction takes a reference to a boxed object from the evalStack
and loads the address of the value embedded into the boxed object. An exception
is thrown if the object is not a boxed object or the value type of the value in
the box does not match the instantiation of the type operand of the instruction.
Unlike Unbox , for value types, the Unbox .Any instruction leaves the value, not
the address of the value, on the evalStack . Moreover, the type embedded in
Unbox can only represent value types and instantiations of generic value types.
The function memVal (whose definition is given in [6]) is used in Unbox .Any to
compute the value of a given type stored at a given address. For reference types,
Unbox .Any has the same effect as CastClass .

To specify the virtual method calls implied by the instructions CallVirt and
Constrained .CallVirt , we need to define the lookup function.

Definition 5 (Lookup). Given a type and a (possibly generic) method refer-
ence, the function lookup : Map(Type×MRef,MRef) determines the method to be
invoked at runtime when the given method is called on an object whose runtime
type is the given type.

lookup(C ,D ::M 〈T 0, . . . ,Tn−1〉) :=
if C ::M ∈ MRef ∧

(D ∈ ObjClass =⇒ C ::M overrides D ::M )∧
(D ∈ Interface \GenericType =⇒ C ::M implements D ::M )∧
(D = I 〈U0, . . . ,U m−1〉 ∈ Interface ∩GenericType =⇒

C ::M implements I 〈V 0, . . . ,V m−1〉::M ∧
∀ j = 0, m− 1 ((varI ′m

j = + =⇒ V j � U j)∧
(varI ′m

j = - =⇒ U j � V j)∧
(varI ′m

j = ∅ =⇒ U j = V j)))
then C ::M 〈T 0, . . . ,Tn−1〉
elseif C = object then undef
else lookup(C ′,D ::M 〈T 0, . . . ,Tn−1〉) where C ′ is the direct base class of C

The ECMA Standard [4] does not specify what is the effect of adding generic
parameter variance on the dynamical method lookup. As one can see in Defin-
ition 5, the definition of lookup becomes more complex: lookup( ,D ::M ) shall
not necessarily be a method which overrides or implements D ::M .

The instruction CallVirt(T ,C ::M ) calls the virtual method C ::M whose
(possibly open generic) return type is T . It pops the necessary number of ar-
guments from the evalStack . Based on the type of the this pointer, it looks up
the method to be invoked (through the Invoke macro defined in Table 6) with
the popped arguments dynamically by means of the lookup function. lookup is
applied to C ::M ◦ inst(meth), i.e., the method C ::M where only the generic pa-
rameters present in C or possibly in the generic argument list of M are replaced
by the generic arguments indicated in inst(meth).
VirtCall(r ,C ::M , vals) ≡ let D ::M = lookup(actualTypeOf (r),C ::M ) in

if r �= null then Invoke(D ::M , [r ] · vals)
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Table 6. Invoking a method and returning from a method

Invoke(C ::M , args) ≡
PushFrame
seq

pc := 0
evalStack := [ ]
meth := C ::M
SetArg(C ::M , args)

Result(vals) ≡
PopFrame
seq

pc := pc + 1
evalStack := evalStack · vals

The instruction Constrained(T ).CallVirt(S ,C ::M ) calls the virtual method
C ::M (whose return type is S ) on a value of a generic parameter T . It pops the
necessary number of arguments from the evalStack . The first value is expected
to be a pointer (evaluated to an address) adr . If T is a reference type, then adr
is dereferenced and passed as the this pointer to VirtCall. If T is a value type
and T implements C ::M , then adr is passed as the this pointer to the method
implemented by T which is then called with Invoke. If T is a value type which
does not implement C ::M , then adr is dereferenced, boxed, and passed as the
this pointer to a virtual call of C ::M . Normally, the above outlined transfor-
mation of the this pointer is performed at compile time, depending on the type
of adr and the method being called. However, such a transformation would not
be possible when the type of the this pointer is a generic type (unknown at
compile time). Thus, the prefix Constrained allows .NET compilers to make a
call to a virtual function in an uniform way independent of whether the this
pointer is a value type or reference type.

The Return instruction returns from the current method meth by means of
the Result macro which we define in Table 6. If the return type of meth is not
void, evalStack shall contain a value to be returned through Result.

The macros PushFrame and PopFrame in Table 6 are used to push a new
frame and to pop the current frame, respectively. The macro Set(C ::M ,args)
sets the arguments of C ::M , i.e., the argVal function, to the values args .

As stated at the end of Section 2, the method references have the signa-
tures uninstantiated. Therefore, for example, the return type (specified in the
signature) of a method which overrides/implements another method shall not
necessarily match the return type (specified in the signature) of the overrid-
den/implemented method. The conditions that shall actually be satisfied when
a generic method C ::M overrides/implements D ::M are listed below:

(at) for every i = 1, argNo(C ::M )− 1,

argTypes(C ::M )(i) ◦ inst(C ::M ) = argTypes(D ::M )(i) ◦ inst(D ::M )

(rt) retType(C ::M ) ◦ inst(C ::M ) = retType(D ::M ) ◦ inst(D ::M )

(ct) for every j = 0, genParamNo(D ::M )− 1,

constrC ::M
j is not defined or constrD::M

j � constrC ::M
j
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No More Restrictive? Concerning (ct), [4, Partition II,§9.9] states that any
constraint type specified by the overriding method shall be “no more restrictive”
than the corresponding constraint type specified in the overridden method. How-
ever, this does not match the Microsoft implementation [1]. It seems that the
Microsoft verifier checks whether one of the following conditions is satisfied: ei-
ther the constraint type in the overriding method is not defined, i.e., as it would
have been object, or the constraint types (assumed to be instantiated) coincide.

4 Bytecode Verification

The bytecode verification is performed on a per-method basis. The verifier sim-
ulates the bytecode execution. It attempts to associate a stack state evalStackT
with every instruction. The stack state is a list of types which specifies the num-
ber of values on the evalStack at that point in the code and for each slot of
the evalStack a required type that shall be present in that slot. Before simulat-
ing the execution of an instruction, the verifier performs several type-consistency
checks specified by means of the predicate check defined in Table 7. Its defini-
tion follows the specification of the ECMA Standard [4, Partition III]. The stack
state of an instruction is constrained by referring to the stack states of the next
instruction. Table 8 defines the function succ which, given an instruction and a
stack state, computes the stack states of the next instruction.

To deal with stack states, we introduce the relations �suf and �len . If L′

and L′′ are two lists of types of lengths m and n, respectively, then
L′ �suf L′′ :⇐⇒ m ≥ n and L′(m − n + i) � L′′(i) for every i = 0,n − 1.
L′ �len L′′ :⇐⇒ m = n and L′(i) � L′′(i) for every i = 0,m − 1.

To shorten the specification of check and succ, we use the following notation:

void(T ) := if T = void then [ ] else [T ]

Table 7. Type-consistency checks performed by the verifier

check(meth , pos , evalStackT ) :⇐⇒
match code(meth)(pos)

CastClass( ) → evalStackT �suf [object]
IsInstance( ) → evalStackT �suf [object]
Box (T ) → evalStackT �suf [T ]
Unbox ( ) → evalStackT �suf [object]
Unbox .Any( ) → evalStackT �suf [object]
CallVirt( ,C ::M ) → evalStackT �suf argTypes(C ::M ) ◦ inst(C ::M )
Constrained (T ).
CallVirt( ,C ::M ) → boxed(T ) � C ∧ evalStackT �suf

[T&] · [argTypes(C ::M )(i)]argNo(C ::M )−1
i=1 ◦ inst(C ::M )

Return → evalStackT �len void(retType(meth))
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Table 8. Determining successor stack states

succ(meth , pos , evalStackT ) :=
match code(meth)(pos)

CastClass(C ) → {pop(evalStackT ) · [C ]}
IsInstance(C ) → {pop(evalStackT ) · [C ], pop(evalStackT ) · [Null]}
Box (T ) → if T ∈ RefType then {pop(evalStackT ) · [T ]}

else {pop(evalStackT ) · [boxed (T )]}
Unbox (T ) → {pop(evalStackT ) · [T&]}
Unbox .Any(T ) → {pop(evalStackT ) · [T ]}
CallVirt(T ,C ::M ) → {drop(evalStackT , argNo(C ::M )) · void(T ◦ inst(C ::M ))}
Constrained ( ).
CallVirt(T ,C ::M ) → {drop(evalStackT , argNo(C ::M )) · void(T ◦ inst(C ::M ))}
Return → ∅

Since we have no definition of a particular bytecode verifier, we need a charac-
terization of the type properties of the bytecode that is accepted by the verifier.
This leads us to Definition 6. A method is well-typed if the verifier succeeds to
compute a valid stack state for every instruction of the method. Definition 6
makes this precise: a method is well-typed if there exists a stack state family
that satisfies an initial condition, the type-consistency checks and the relations
dictated by a top-down pass through the bytecode and by the rules for merging
stack states specified in [4, Partition III,§1.8.1.3].

Definition 6 (Well-typed Method). A method mref is well-typed if there
exists a family (evalStackTi)i of stack states satisfying the following conditions:

(wt1) evalStackT0 = [ ].

(wt2) check(mref, pos, evalStackTpos) holds for every position pos in mref.

(wt3) If evalStackT ′ ∈ succ(mref, pos, evalStackTpos), then
evalStackT ′ �len evalStackTpos+1.

5 Type Safety

We prove that the bytecode with generics is type safe. As the bytecode verifier
statically checks the type safety of the bytecode, we need to show that the verifier
is sound. That means that if the verifier succeeds to compute a valid stack state
for every instruction of a method, i.e., the method is well-typed according to
Definition 6, then several type safety properties are ensured to hold at runtime.
For example, the evalStack shall have at runtime values of the types assigned
in the stack state and the same length as the stack state. Furthermore, the
generic arguments of instantiated generic types and methods shall satisfy the
corresponding constraints.

For this section, we assume the following: (1) every method is well-typed;
(2) every generic interface declaration is valid; (3) the generic arguments of all
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the generic types and method references satisfy at verification time the corre-
sponding constraints. In particular, this means that every generic argument used
in the inst functions satisfies the corresponding constraints.

The following two lemmas establish relations between the argument types, re-
spectively the return type of the method called at compile time, i.e., the method
embedded in a CallVirt , and the argument types, respectively the return type
of the method that is determined through a lookup and is invoked at runtime.

Lemma 3. If D::M = lookup(T,C::M), then T � argTypes(D::M)(0) and for
every i = 1, argNo(C::M)− 1

argTypes(C::M)(i) ◦ inst(C::M) � argTypes(D::M)(i) ◦ inst(D::M)

Proof. By Definition 3, Definition 4, Definition 5, Lemma 1, Lemma 2, (at). /.

Lemma 4. If D::M = lookup(T,C::M) holds for some type T, then

retType(D::M) ◦ inst(D::M) � retType(C::M) ◦ inst(C::M)

Proof. By Definition 3, Definition 4, Definition 5, Lemma 1, Lemma 2, (rt). /.

Lemma 5 shows that a generic method determined through a lookup has the same
generic arguments as the original method and the generic arguments satisfy the
corresponding constraints.

Lemma 5. If D::M and C::M are generic methods and T is a type such that
D::M = lookup(T,C::M) and boxed(genArg(C::M)(i)) � constrC::M

i for every
i = 0, genParamNo(C::M) − 1, then genParamNo(D::M) = genParamNo(C::M)
and for every i = 0, genParamNo(C::M)− 1

boxed(genArg(C::M)(i)) = boxed(genArg(D::M)(i)) � constrD::M
i

Proof. By Definition 3, Definition 4, Definition 5, Lemma 1, Lemma 2, (ct). /.

We assume that the generic arguments of a (instantiated) generic type or generic
method satisfy at verification time the corresponding constraints. As the generic
arguments might be open generic types, the following question appears: Do they
satisfy the constraints also after the runtime instantiation? The following propo-
sition answers positively to this question.

Proposition 1 (Preserving Constraints). The instantiated (not necessarily
closed) type C〈T0, . . . ,Tn−1〉 occurs in the declaration of a generic type D ′m
possibly in the declaration of a generic method D ′m::M. Assume that (Ti)n−1

i=0
satisfy the constraints of C ′n. If D ′m and D ′m::M are instantiated at runtime
with the generic arguments (Uj)m−1

j=0 and (Vk)p−1
k=0 (which are assumed to satisfy

the constraints of D ′m and D ′m::M, respectively), then (Ti ◦ ρ)n−1
i=0 satisfy the

constraints of C ′n where ρ is the substitution ρ = [Uj/!j ]m−1
j=0 ·[Vk/!!k ]p−1

k=0 defined
in the context of D ′m and D ′m::M declarations. A similar result holds also for a
referenced generic method, i.e., C::M〈T0, . . . ,Tn−1〉 instead of C〈T0, . . . ,Tn−1〉.

Proof. By Lemma 2. /.
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The typing judgment � val : T is defined as follows. Thus, � val : T holds if at
least one of the following holds: (1) T ∈ RefType \ (PointerType ∪ BoxedType)
and either val is null or actualTypeOf (val ) � T ; (2) T = S& and ∃r ∈ ObjRef
such that addressOf (r ) = val and actualTypeOf (r) = S ; (3) boxed(S ) � T
where S ∈ ValueType and actualTypeOf (val ) = S . (4) the CLR type associated
(see [4, Partition III, §1.1]) to val is a value type which is a subtype of T .

We now extend the soundness proof done in [5] for the CLR without generics
to the CLR with generics. The theorem proved in [5] guarantees that several
type-safety invariants hold at runtime for well-typed methods without generics.
We consider here only the invariants which are affected upon adding generics.
Additionally, an invariant (constr) for generic methods is considered. The in-
variant (stack1) guarantees that evalStack has the same length as the assigned
stack state. The invariant (stack2) ensures that the values on the evalStack are
of the types assigned in the stack state. By (arg), we have that the arguments
contain values of the declared types. The invariant (constr) ensures that the
generic arguments of a generic method satisfy the declared constraints.

Theorem 1 (Type Safety). The following invariants are satisfied at runtime
for the current method meth:

(stack1) length(evalStack) = length(evalStackTpc).
(stack2) � evalStack(i) : evalStackTpc(i) ◦ inst(meth),

for every i = 0, length(evalStack)− 1.
(arg) � argVal(0) : argTypes(meth)(0). If meth takes at least two arguments,

� argVal(i) : argTypes(meth)(i)◦inst(meth), for every i = 1, argNo(meth)−1.
(constr) If meth is generic, boxed(genArg(meth)(i)) � constrmeth

i , for every
i = 0, genParamNo(meth)− 1.

Proof. The proof is by induction on the run of the model for the operational
semantics. The invariants obviously hold in the initial state of the virtual ma-
chine, i.e., for the entrypoint. Due to the lack of space, we consider here only
two critical cases for virtual method calls and method returns.

Case 1. code(meth)(pc) = CallVirt(T ,C ::M ) ◦ inst(meth): Since meth is well-
typed, we get check (meth, pc, evalStackT pc) from Definition 6 (wt2). Accord-
ing to the definition of check in Table 7, evalStackT pc �suf argTypes(C ::M ) ◦
inst(C ::M ). By (constr) and Lemma 2, we have6

evalStackT pc◦inst(meth) �suf (argTypes(C ::M )◦inst(C ::M ))◦inst(meth) (1)

By (1) and by the induction hypothesis – that is, by the invariants (stack1) and
(stack2) – there exists a list of values L, two lists of types L′ and L′′ and the
values (val i)

argNo(C ::M )−1
i=0 such that: evalStack = L · [val i]argNo(C ::M )−1

i=0 ,

evalStackT pc = L′ · L′′, length(L′′) = argNo(C ::M ), for every
i = 0, length(evalStack )− argNo(C ::M )− 1 � L(i) : L′(i) ◦ inst(meth) (2)

6 Note that evalStackT pc might involve generic parameters.
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for every i = 0, argNo(C ::M )− 1 � val i : L′′(i) ◦ inst(meth) (3)

By (1), (2) and (3), we have for every i = 0, argNo(C ::M )− 1

� val i : (argTypes(C ::M )(i) ◦ inst(C ::M )) ◦ inst(meth) (4)

When the instruction CallVirt (T ,C ::M ) ◦ inst(meth) is executed, the macro
VirtCall(val0,C ::M ◦ inst(meth), [val i]

argNo(C ::M )−1
i=1 ) is invoked. Assuming

that val0 is not null, Invoke does the following for the next current method,
i.e., D ::M = lookup(actualTypeOf (val0),C ::M ◦ inst(meth)):

– sets the pc to 0,
– sets the evalStack to [ ] (this, the above initialization of the pc and Defin-

ition 6 (wt1) ensure that the invariants (stack1) and (stack2) hold also
upon entering D ::M )

– sets through SetArg, the arguments (argVal (j ))argNo(D::M )−1
j=0 (correspond-

ing to D ::M ) to (val i)
argNo(C ::M )−1
i=0 . Note that we have argNo(C ::M ) =

argNo(D ::M ).

It remains to prove that the invariants (arg) and (constr) hold also for D ::M .
By Lemma 3, we have

actualTypeOf (val0) � argTypes(D ::M )(0) (5)

and the following relations for every i = 1, argNo(C ::M )− 1:

(argTypes(C ::M )(i) ◦ inst(C ::M )) ◦ inst(meth) =
argTypes(C ::M ◦ inst(meth))(i) ◦ inst(C ::M ◦ inst(meth)) �
argTypes(D ::M )(i) ◦ inst(D ::M )

(6)

The invariant (arg) for the first argument is ensured by (5) and the relation
argTypes(D ::M )(0) ◦ inst(D ::M ) = argTypes(D ::M )(0) (the type of the this
pointer is instantiated in contrast with the other argument types). For the other
arguments, (arg) follows from (4) and (6).

To prove (constr), we assume that D ::M is a generic method. This implies
that also the method C ::M is generic. By Lemma 5, we get genParamNo(D ::M )=
genParamNo(C ::M ) and for every i = 0, genParamNo(C ::M )− 1:

boxed(genArg(C ::M ◦ inst(meth))(i)) = boxed(genArg(D ::M )(i)) � constrD ::M
i

Proposition 1 applied to C ::M and the above relations imply (constr).

Case 2. code(meth)(pc) = Return◦inst(meth): Since the current method meth is
well-typed, Definition 6 (wt2) and the definition of check in Table 7 imply
evalStackT pc �len void(retType(meth)).

Let T ′ = retType(meth). If T ′ is void, then evalStackT pc shall be [ ]. If T ′ is
not void, then evalStackT pc = [T ′ ◦ inst(meth)]. Note that T ′ might be an
open generic type. The induction hypothesis – that is, the invariants (stack1)
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and (stack2) applied to meth – implies that evalStack is [ ] if the return type
of meth is void and evalStack = [val ] where � val : T ′ ◦ inst(meth) if the return
type of meth is not void. Let D ::M be the reference of meth. Accordingly,

� val : T ′ ◦ inst(D ::M ) (7)

If D ::M is the entrypoint, there is nothing to prove. Otherwise, let E ::M ′ be
the method which invoked D ::M through an instruction CallVirt(T ′′,C ::M )
(the case when the call is through a Constrained .CallVirt instruction is similar).
We need to show that the invariants (stack1) and (stack2) hold for E ::M ′

after D ::M returns.
When the instruction Return ◦ inst(D ::M ) is executed, the frame of D ::M

is popped off by Result, E ::M ′ becomes the current method meth, the pc of
E ::M ′ is incremented by 1 and val is pushed on the evalStack of E ::M ′.

The invariants held before VirtCall selected D ::M through a lookup applied
to C ::M . Similarly as in Case 1, there exists the lists of types L′ and L′′ that sat-
isfy the relations (2). By Definition 6 (wt3) and definition of succ for CallVirt , we
have: drop(evalStackT pc, argNo(C ::M )) ·void (T ′′ ◦ inst(C ::M )) = L′ ·void(T ′′ ◦
inst(C ::M )) �len evalStackT pc+1. By this, the invariant (constr) for meth and
Lemma 2, we get

(L′ · void(T ′′ ◦ inst(C ::M ))) ◦ inst(meth) �len evalStackT pc+1 ◦ inst(meth) (8)

If T ′′ is void, Lemma 4 implies that also T ′ is void. (stack1) and (stack2)
follow then from (8) and (2). If T ′′ is not void, by Lemma 4 we get T ′ ◦
inst(D ::M ) � T ′′ ◦ inst(C ::M ). This relation, (constr) and Lemma 2 imply
(T ′ ◦ inst(D ::M )) ◦ inst(meth) � (T ′′ ◦ inst(C ::M )) ◦ inst(meth). This, together
with (8), (2) and (7) guarantees the invariants (stack1) and (stack2). /.

6 Conclusion

We have provided a mathematical specification for the CLR generics design via
a type system and a model for the semantics of a subset of bytecode instructions
with generics. We have formalized the type-consistency tests checked for the
subset by the CLR bytecode verifier. Finally, we have proved that adding generics
maintains the type safety of the CLR.
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Abstract. Programs generally work in just one direction, from input to
answer. But sometimes we need a program to work in two directions: after
calculating an answer, we want to update the answer and then somehow
calculate backwards to find a correspondingly updated input. Of course,
in general, a given update to the answer may not correspond to a unique
update on the input, or to any at all; we need an “update translation
policy” that tells us which updates can be translated and how to choose
among translations when there are many possibilities. The question of
how to determine such a policy has been called the view update problem
in the database literature.

Many approaches to this problem have been devised over the years;
most have taken existing database query languages (such as SQL) as their
starting points and then proposed ways of describing or inferring update
policies. More recently, several groups have begun working to design
entirely new languages in which programs are inherently bi-directional –
i.e., in which every program can be read from left to right as a map from
inputs to answers and from right to left as (roughly) a map from updated
answers to updated inputs. Moreover, bi-directionality in these languages
is treated compositionally: each primitive works in both directions, and
the two directions of compound programs can be derived from the two
directions of their subcomponents.

This talk charts some interesting regions of the world of bidirectional
programming and bi-directional language design, using as a touchstone
our experiences at the University of Pennsylvania in the context of the
Harmony project, where bi-directional languages – one for transform-
ing trees and another for relational data – play a crucial role in the
architecture of a universal data synchronizer.
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