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Abstract. Security violations occur in systems even if security design
is carried out or security tools are deployed. Social engineering attacks,
vulnerabilities that can not be captured in the relatively abstract de-
sign model (as buffer-overflows), or unclear security requirements are
only some examples of such unpredictable or unexpected vulnerabilities.
One of the aims of autonomous systems is to react to these unexpected
events through the system itself. Subsequently, this goal demands fur-
ther research about how such behavior can be designed and sufficiently
supported throughout the software development process. We present an
approach to engineer self-protection rules for autonomous systems that
is integrated into a model-driven software engineering process and pro-
vides concepts to formally verify that a given intrusion response model
satisfies certain security requirements.

1 Introduction

Model building as a means of producing appropriated documentation, provid-
ing specifications, and code generation is a standard practice in software en-
gineering. Security, as an integral part of any modern software system that is
not used in completely trusted environments, demands systematic support for
software engineers who need to produce secure software. Considering security
aspects throughout the entire software development process (and not during the
requirements analysis and system integration phases only) by explicitly integrat-
ing security into the design models can aid in detecting and removing potential
security breaches. Furthermore, model-centric and generative approaches, as the
concept of Model Driven Architecture (MDA) [5], have led to advancing support
for software engineers. Most noticeably, the Model Driven Security approach (see
[3]) proves to not only define access-control languages (in this case SecureUML)
but to provide a basis for refinement down to code as well. Access control is
concerned with preventing unauthorized accesses to shared resources. Which ac-
cesses are authorized depends on specific security requirements and has to be
specified in access control policies.

A model is an abstract part of the real world which contains the aspects rel-
evant to the developer. It does not deal with any environment interaction. In
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particular from the viewpoint of security, not all possible attacks can be con-
sidered in a model. This may be because of the abstraction level of the model
(e.g. buffer overflows cannot be seen in class diagrams) or because of environ-
ment parts that are not considered in a model (e.g. social engineering) or other
reasons. Therefore, crucial functions must be monitored. Concerning security,
accesses to crucial data must be logged to see if unauthorized access occur de-
spite a given access control policy (e.g. by buffer overflows). In very sensitive
environments, intrusion detection systems (IDS) [19] and security engineering
[1], in practice, often need to be combined so that the occurrence of interactions
and system states not covered by the normal use cases raises an alarm in an
IDS. Consequently, the question of how to identify nonconforming or malicious
behavior and how to react to discovered security breaches arises.

Ever since IBM’s “call to arms” [6], called autonomous computing, research
increasingly focuses more effort on self-adapting, self-protecting, and self-healing
systems (i.e., autonoums systems) [18]. Monitoring the system is a necessary as-
pect in autonomous systems to detect system or environment changes and possi-
bly to react on these changes if necessary. Self-repairing/Self-protecting systems
are an ambitious goal whose realization concerns many aspects of software en-
gineering (for example Baresi et. al considered self-healing in service-oriented
systems in regard to dynamic binding of services in [2]). We consider in this
paper the self-protection of the system in the case of successful security attacks.

We take up the challenge of providing sufficient support to design and realize
self-protecting system. We present an approach to engineer self-protection rules
for autonomous systems, integrated into a model-driven development approach,
and capable to generate self-protecting access control aspects for XACML based
infrastructures. Furthermore, we provide concepts based on graph transforma-
tions [17] to formally verify that a given intrusion response model satisfies certain
security requirements.

The remainder of this article is organized as follows. We give next a description
of the model-driven development approach and the underlying concepts of our
access control model together with an operational semantic. Section 3 concerns
the specification of protection rules. Section 4 presents the concepts to verify
the satisfaction of security requirements. Finally, we present related work and
conclusion.

2 Model-Driven Development

We first present the integration of our approach into a model-driven development
approach namely, Model Driven Security and its underlying access control model
SecureUML. It concerns the development of XACML [11] based access control
policies and access control properties following an attribute based access control
approach which can be described by a mapping of the modeling elements of
SecureUML to XACML policies. Afterwards, an additional operational semantic
of the entity operations is given that serves as a starting point for our self-
protecting rules requirement analysis.
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Fig. 1. RBAC metamodel

As already stated above, we build up on the SecureUML metamodel presented
in [3]. Figure 1 presents the role based access control (RBAC) based metamodel
that defines the abstract syntax for SecureUML. Due to space constraints we
can not go in too much detail about the concrete syntax and semantics but
refer the interested reader to [3]. On the left-hand side of the diagram RBAC
is formalized. Users can be assigned to Groups. On the other side of the model,
permissions, which can be assigned to roles, are used to model the ability to
carry out actions on resources on behalf of a calling subject that is in a certain
role. Authorization constrains can be used to constrain that certain permissions
only hold in certain system states.

To this end, we require that subjects have or provide certain properties (cre-
dentials) to be assigned to roles. For example, a user name, a counter for logins, a
printer quota, location in mobile scenarios etc. This approach is called attribute-
based access control (ABAC) [16]. The main idea of ABAC is to dynamically de-
fine the authorization of subjects based on current property values of the calling
subjects and their targeted resources, respectively. In addition to the relatively
static defined roles, this attributes can be highly dynamic therefore, provide a
way to capture the needs of e-commerce as well as enterprise and e-government
applications in the internet ranging all the way to ubiquitous computing.

Fig. 2. ABAC model
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Figure 2 shows our base model of the applied ABAC approach. In general, we
enhance the aforementioned metamodel in Fig. 1 by this explicit specification of
subject and object attributes.

2.1 Generation of XACML Based Access Control Policies

Model Driven Security gives a means to integrate access control concerns into a
model and subsequently generate code out of this model elements. In [3] concrete
mappings for EJB and .Net are given. In addition, we focus on the generation
of XACML based access control policies since, policy based infrastructures are
more flexible and, more specific, are able to provide better support for policy
changes and management then the standard security architectures of todays
enterprise systems. To this end, we define and implemented a UML profile that
enables to generate XACML policies from security models (i.e., models that are
build using our ABAC enhanced SecureUML modeling elements).

2.2 Example and Operational Semantics of the Protection Model

In addition to the SecureUML concrete semantic, our protection model contains
an operation semantic of the entity operations. As a running example, we will
consider developing a simplified version of a system for administrating calendars.
Figure 3 shows the simple interface of the calendar application that basically,
allows to create a calendar and subsequently, create, update, delete, and read
entries (i.e., appointments).

showEntry(CID:String, EID:String):String

createCalendar(owner:String):String

newEntry(CID:String,time:String,day:String,room:String):String

updateEntry(CID:String, EID:String, time:String, day:String, room:String)

deleteEntry(CID:String, EID: String)

CalendarInterface

showEntries(CID:String): String[]

Fig. 3. Interface of the Calendar Application

Considering this simple interface, one may want to enforce some basic integrity
properties like, for example that the creator of a calendar becomes its owner
hence, is the only one that is allowed to delete entries. Arbitrary users are allowed
to read the entries of any calendar but modification is up to the owner of the
calendar or a substitute like a secretary. At the very least a secretary should be
able to make and manage appointments (i.e., create and update entries in the
calendar). Lets assume that the deletion of an entry is restricted to the owner of
the calendar only. These security requirements are implemented in the model in
Fig. 4 which is an instance of the SecureUML metamodel. We have three roles
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Fig. 4. security model

and three permissions. The permission Basic allows a subject in role User to
read calendar entries and to create calendars. The permission Manage allows
subjects in role Secretary to modify a calendar and permission Destroy allows
subjects in role CalendarOwner to delete calendar entries.

Once the security model is accomplished, the operational semantics of the
entity operations have to be specified. We define the notion of a protection model
as follows. A protection model is a pair of a security model (as described above)
and a set of transformation rules [17]. Considering our example we write, the
security model of figure 4 as M and the protection model as a pair (M, ORules).
Figure 5 gives the transformation rules for the creation of a calendar and the
deletion of entries in the calendar via the create() and deleteEntry() methods
of the Calendar entity. A transformation rule consists of two object diagrams.
The diagram on the left-hand side of a rule models the precondition to apply
the rule. The object diagram on the right-hand side models the transformed
object state. The left-hand side of rule create(x) requires a subject with name x
in a role and this role must have a permission with entity action create on the
calendar entity. If this object structure can be found in a system state, a new
calendar object for the subject with name x is created. The left-hand side of
rule deleteEntry requires a subject and a connected calendar object. The subject
must be in a role which has a permission for entity action deleteEntry. The
condition calendar.owner == x enforces that the rule can be only applied if the
subject is the owner of the calendar. The effect of the rule is the deletion of an
entry of the calendar object. Transformation rules can be mapped to graph rules
to give them a formal semantics [8, 17].

Ultimately, the transformation rules capture the aforementioned attributes of
our subject and object descriptors and more importantly, their changes during
the state changes of the system. Since we assume that state changes are triggered

calendar.owner == caller.name

<<Role>>
Secretary

<<Role>>
CalendarOwner

<<Role>>
User

<<EntryAction>>!Calendar: createCalendar

<<EntryAction>>!Calendar: showEntries
<<EntryAction>>!Calendar: showEntry

Basic

<<EntityAction>>!Calendar: updateEntry
<<EntityAction>>!Calendar: newEntry

Manage

<<perm
ission>>

<<perm
ission>>

<<perm
ission>>

<<Entity>>
Calendar

createCalendar(owner:String):String 
newEntry(CID:String,time:String,day:String,room:String):String
updateEntry(CID:String, EID:String, time:String, day:String, room:String)
deleteEntry(CID:String, EID: String)
showEntries(CID:String): String[]
showEntry(CID:String, EID:String):String

owner: String

<<EntityAction>>!Calendar: deleteEntry

Destroy

if
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Fig. 5. Operational semantics for calendar operations create() and deleteEntry()

by method calls our notion is sufficient to model their impact on the protection
model. In figure 5 for example, the create(x) call to the calendar interface sets
the owner attribute of the calendar to the name of the caller. In consequence, we
can build up on this attribute to restrict the deletion of an entry to the actual
creator of the calendar (i.e., its owner) by comparing the name attribute of the
caller with the owner attribute of a targeted calendar.

3 Specification of Self-protection Rules

The analysis of security requirements for a software system is a difficult design
task and recent research focuses on developing models and concepts to elicit,
analyze and document security requirements [9, 10]. We assume in this article,
that security requirements are documented and a risk assessment has given them
a priority. The following list shows the examples used in the remainder of this
article.

Security Requirement C1: Prevent that a calendar has more than one owner.
Security Requirement C2: Prevent that a user is logged into the system more

than once.
Security Requirement C3: Prevent denial of service attacks by creating more

than n calendars.

These in natural language formulated requirements can be specified in semi-
formal or formal constraint languages (e.g., OCL[13]) and models can be checked

if calendar.owner == x

<<EntityAction>>!Calendar: create

subject
name = x

<<Role>>

<<Entity>>
Calendar

<<permission>>

trans

<<EntityAction>>!Calendar: create

subject
name = x

<<Role>>

<<Entity>>
Calendar

calendar

CID = id
owner = x

<<permission>>

owner

<<Role>>

<<Entity>>
Calendar

<<Role>>

<<Entity>>
Calendar

CID = cid
entries = {...,eid,..}

calendar

id = create(x)

deleteEntry(cid,eid)
trans

<<permission>>

<<EntityAction>>!Calendar: 
deleteEntry

subject
name = x

owner
CID = cid
entries = {...}

calendar

trans

trans

<<permission>>

<<EntityAction>>!Calendar: 
deleteEntry

subject
name = x

owner

if calendar.owner == x
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if they satisfy these requirements. The focus of this article, however, is not this
static check of design models, but we are interested in the security vulnerabilities
that are detected during run-time even if the model is previously checked to be
secure.

Therefore, a crucial component of autonomous systems is a monitor which
observes the system states during run-time in order to detect constraint vio-
lations. When the monitor detects an insecure system state the system should
react by protection means (in the case of an autonomous system the system
reacts autonomously). One possible solution to protect the system would be a
system shutdown or to disconnect the whole system. This solution, however, is
quite rigid and restricts the availability of the system often more as necessary.
If the originator of a security violation can be determined it would possibly be
enough to eliminate this user from the system. If the originator is unknown, it
is sufficient to disconnect the attacked subsystem or restrict its functionality, so
that the remaining system can continue working in a restricted mode.

Before we present an approach to specify a more fine-grained protection,
we differentiate between self-protection and self-repairing of the system. Self-
protection changes the security model by revoking permissions as far as nec-
essary so that an intruder cannot do any harm with the acquired authoriza-
tion, but the system state remains unchanged. Self-repairing, on the other hand,
transforms the insecure system state into a secure state and lets the security
model unchanged. Self-repairing, i.e. an automatic modification of the system
state without any interaction with an administrator, is often difficult to imple-
ment. Consider as an example a violation of the requirement C1 from above,
i.e., the monitor detects two calendar owners for a calendar. Should we revoke
both owners from the calendar (but then we have calendars without owners)
or should we only revoke one calendar owner (but which one, which owner is
the ”real” owner)? In the case of a violation of requirement C3, calendars must
be removed to reach the maximum boundary of allowed calendars. But, which
calendar should be removed?

We focus next on the specification of self-protection. For each security
requirement, a set of protection rules models the reaction of the system to the
violation of the security requirement and transforms the protection model. The
transformation should restrict the model as far as necessary and should allow
system availability as far as possible. The protection rules are developed in two
steps:

1. Specify the response requirement. A response requirement for a security re-
quirement specifies the system functionality which must be restricted in the
case of a security requirement violation.

2. Specify the protection sets for the response requirement. A protection set
contains a set of transformation rules to restrict the security model. The
rules of a protection set for a response requirement shall satisfy the response
requirement.
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3.1 Development of the Intrusion Response

To support the system designer in finding the appropriate response requirements,
we suggest an approach which is driven by the UML models, since static dia-
grams (as class diagrams) contain the elements that should be protected (in our
example the calendars and their entries), the behavior diagrams (as sequence di-
agrams) show how the protected elements are accessed. Therefore, the designer
decides on the basis of these UML models the measures to do in the violation
response. Consider the security requirement C1 for at most one calendar owner
as an example. The designer has the class diagram in Fig. 4 and the sequence
diagrams in Fig. 6 as documentation and assumes now that requirement C1 can
be violated by a security vulnerability so that an attacker can become owner of
calendars of other persons. When the designer considers the sequence diagrams

deleteEntry(..,e)

caller

e in res

res=showEntries()

showEntry(e)

cal: Calendar

updateEntry(..,e,...)

caller

e in res

res=showEntries()

cal: Calendar

Fig. 6. Sequence diagrams for updating a calendar entry and for deleting an entry

in Fig. 6, (s)he realizes that the attacker can call the operations showEntries(),
showEntry(), updateEntry() and deleteEntry(). While an unauthorized call of the
operations showEntries() and showEntry() appears to be an acceptable (i.e., it
does not concern integrity) risk, compared to disabling read access for all (includ-
ing the trustworthy) users, an unauthorized call of the operations updateEntry()
and deleteEntry() cannot be tolerated. Therefore, the designer adds updateEn-
try() and deleteEntry() for calendar owner to the response requirement, i.e.,
both operations must not be called by calendar owners when requirement C1 is
violated. Analog, the response requirements for the other security requirements
are specified driven by the UML diagrams.

The list below shows the response requirements of our calendar example. A
response requirement is a set of pairs (Caller, Operations) consisting of a list of
callers Caller who are not allowed to call the operations in the set Operations
in the case of the corresponding security violation.

Response(C1)={(CalendarOwner,{deleteEntry(), newEntry(),
updateEnty()})}

Response(C2)={(User,{deleteEntry(), newEntry(),
updateEnty(), createCalendar()})}

Response(C3)={(User,{createCalendar()})}
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3.2 Specification of Self-protection

A first idea to satisfy the response requirement would be to generally disallow
callers to call the operations in the response requirement. Since the response
requirements are connected to certain callers, however, this general prohibition
is too strong. To restrict the operations to certain callers requires additional
operation conditions. Since operations are implemented and a code change dur-
ing run-time is not desirable, operations cannot be modified with respect to the
response requirement. Therefore, the security model must be modified so that
only the specific callers are affected. A change of the security model can be done
during run-time and is immediately enforced by the XACML infrastructure [11].

The security model transformation is specified by a set of graph rules (Fig. 7
shows a part of the graph rules for the calendar example). The protection sets for
a response requirement contain a subset of the protection rules. The protection
set Protect(C1) to satisfy the response requirement Response(C1) removes all
permissions from role calendar owner and adds a permission to calendar owner
to read calendars. The protection set Protect(C2) removes all permissions to
modify a calendar and introduces a restricted basic permission which allows the
user to read the calendars only. The protection set Protect(C3) removes the
permission to create calendars by adding a restricted basic view.

Protect(C1)={remove destroy(CalendarOwner), remove inheritance, add
basic(CalendarOwner)}.

Protect(C2)={remove destroy(CalendarOwner), remove manage(Sectretary),
replace basic, add basicrestricted(User)}.

Protect(C3)={replace basic, add basicrestricted(User)}.

Fig. 7. The protection rules

restrict basic
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Destroy

<<Role>>
Secretary

<<Role>>
CalendarOwner

<<Role>>
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<<Role>>
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When the system monitor detects a violation of a security requirement (e.g.,
C1) the rules in the protection sets are executed (e.g., Protect(C1)) to ensure
the response requirement (e.g., Response(C1)). Figure 8 shows the results of
applying the protection sets Protect(C1), Protect(C2) and Protect(C3), re-
spectively, to the security model in Fig. 4. When several security requirements

Protect(C3)

<<Role>>

Secretary
<<Role>>
User

Basic

Manage

<<Entity>>
Calendar

Destroy

<<Role>>

CalendarOwner

<<Role>>

Secretary
<<Role>>
User

Manage

<<Entity>>
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CalendarOwner

Destroy
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Secretary
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<
<
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<
<
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>

<
<
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>

Protect(C2)

<
<
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>

<
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>

<
<
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>

Fig. 8. The security models after execution of Protect(C1), Protect(C2) and
Protect(C3)

are violated at the same time, several protection sets are applied. The response
requirement for two security requirements C1 and C2 is Response(C1 + C2) =
Response(C1) ∪ Response(C2). We define the protection set as Protect(C1 +
C2) = Protect(C1) ∪ Protect(C2).

One could argue that, instead of specifying the protection rules, it would be
easier to specify immediately the restricted security models. Since there must
be a security model for each combination of violated security requirements, one
has to specify 2n − 1 security models in the case of n requirements. Therefore,
for a bigger n it is certainly more convenient to specify n rule sets which ensure
that each constructed security model is consistent. The next section concerns
this consistence statement.

4 Protection Satisfaction

A protection set contains rules which modify the security model in the case of
unexpected security requirement violations. By now, there is no restriction on
the ordering in which the rules of a protection set must be applied and one
can wonder if any order results in the same security model or if the ordering is
relevant. A second question is whether the security model constructed by the
rules of a protection set satisfy the response requirement. Therefore, this section
concerns the following questions.

1. Does the rule application ordering influence the final security model?
2. Does a protection set satisfies a response requirement?
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4.1 Dependencies Between Protection Rules

If a protection set becomes necessary to protect the system against a security
violation, each rule in the protection set is applied once. Since the ordering is by
default unrestricted, the following problems may occur (see also independence
of graph transformations in [17]).

Problem 1: Assume rules p1 and p2 which are both applicable to the security
model M , but rule p1 deletes elements required by p2, so that an application of
p1 prevents the applicability of p2. Dependent on the rule ordering, two different
security models M ′ are generated and, therefore, the two rules are in conflict.
To detect these conflicts, critical pair analysis of graph rules [15, 4] can be used.
The critical pairs for two rules are constructed by overlapping the rule left-hand
sides in all possible ways, such that the intersection contains at least one deleted
element. In this way, critical pairs show all the potential conflicts between the
rules in a minimal context. Each actual conflict in a bigger context will be
represented by one of the critical pairs.

There is tool support for generating the critical pairs for rules implemented
in the AGG tool [20]. Figure 9 shows the result of the critical pair analysis for
our example rules. The tool detects a critical pair for rules replaceBasic and
addBasic(CO). This bases on the fact, that rule replaceBasic deletes the permis-
sion Basic which in turn is required in the left-hand side of rule addBasic(CO).
Therefore, applying first rule replaceBasic prevents the application of rule ad-
dBasic(CO).

Fig. 9. Computation of critical pairs by AGG

After the computation of critical pairs for a protection set, the rule set
can be divided into conflict free rules (rules which do not have critical pairs)
and conflicting rules. Conflict free rules can be applied in any order (from the
viewpoint of problem 1, we will see next another problem which additionally
influences the rule application order) and the security engineer can use them
in any combination in the protection sets to get a single final security model.
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Conflicting rules should not be used together in a protection set or the security
engineer must specify the desired application order. In our example, (s)he could
specify that addBasic(CO) must always be applied before replaceBasic.

Problem 2: Assume now rules p1 and p2, so that p1 creates elements required by
p2. Then, rule p2 can be applied only after p1, but not before (see also sequential
dependence in [17]). These conflicts are called sequential dependence conflicts and
can be detected by considering the overlaps of the right-hand side of rule p1 and
the left-hand side of rule p2. There is no conflict if the left-hand side of p2 does not
require elements which are generated by p1. Otherwise, there is a conflict. If we
investigate the rules of our example, we see that the rule addBasicRestricted(U) is
sequential dependent of replaceBasic since replaceBasic generates the permission
BasicRestricted required by rule addBasicRestricted(U). All other rules are not
sequential dependent.

Analog to critical pair analysis, sequential dependencies between protection
rules can be automatically detected and presented to the security engineer who
uses this information in the specification of the protection sets.

4.2 Satisfaction of the Response Requirement

Applying a protection set to a protection model (M, ORules) results in a new
protection model (M ′, ORules) in which the security model is changed (from M
to M ′). The operation rules ORules remain unchanged under this transforma-
tion. The permission or denial of operation accesses must now be checked with
respect to the new security model M ′.

A protection set satisfies a response requirement Res, if for any pair
(Caller, Operations) in Res, none of the transformation rules for an operation
in Operations can be applied to Caller in the changed security model M ′. This
satisfaction can be checked by considering the left-hand sides of the transforma-
tion rules in the response requirement Res and the new model M ′. If the security
relevant part of the left-hand side (which consists of all elements with stereo-
type <<Role>>, <<EntityAction>>, <<Permission>> and <<Entity>>) of
a rule p in Res can be embedded into the security model M ′ then one can con-
struct a state for M ′ to which p can be applied (mainly the left-hand side itself).
Therefore, the response requirement is not satisfied. On the other hand, if the
security relevant part of the rule cannot be embedded into the security model,
this part can neither be embedded into a state for M ′. This means that the rule
is never applicable and the response requirement is satisfied.

Consider as an example the protection set Protect(C1) for the security re-
quirement C1. The modified security model M ′ is shown in Fig. 8 on the left-
hand side. The response requirement Response(C1) forbids a calendar owner
for example to call the operation deleteEntry(). The security relevant part of
the left-hand side of the transformation rule for deleteEntry() (bottom of Fig. 5)
cannot be embedded into the security model M ′, since the rule requires a role
which has a permission on the calendar entity, and the permission contains an
entity action deleteEntry. In the security model in Fig. 8, however, no role is
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connected to the permission Destroy (the only permission with entity action
deleteEntry). Therefore, the rule for deleteEntry() cannot be applied to any sys-
tem state corresponding to the security model M ′.

4.3 Benefits for the Security Engineer

At the end of this section, we summarize how the answers of the two questions
in the beginning of this section can support the security engineer in designing a
self-protection system.

1. Does the rule application ordering influence the final security model?
Paragraph 4.1 has shown that different rule application orderings may lead
to different security models. The security engineer, however, can use criti-
cal pair analysis (supported by the AGG tool) and sequential dependence
analysis to compute the conflicting rules. Considering these results in the
engineering process of the protection sets allows the security engineer to get
a deterministic behavior of the protection set response.

2. Does a protection set satisfies a response requirement?
Paragraph 4.2 has presented a way to check whether the rules in a protection
set satisfy a response requirement by considering the left-hand side of the
transformation rules which specify the operations in the response require-
ment. If the designer detects rules in a protection set which does not satisfy a
response requirement, (s)he must change the protection set or the protection
rules until all response requirements are satisfied.

5 Related Work

Our approach uses the security engineering model presented in [3] for which
tool support is given by an integration of the SecureUML metamodel into the
ArcStyler tool [12]. The analysis stage of the software process, however, is not
considered but the process starts with the design models. Jürjens presents in [7]
the integration of security into the UML. He shows how to model several security
aspects by UML model elements as, for example, stereotypes or tagged values.
His approach is more general than ours since it is not restricted to access control
but considers, for example, also security protocols. In [14, 21] approaches to de-
sign intrusion detection systems are presented. The design, however, focusses on
the detection of attackers, less on the design of the response of an attack. Baresi
et. al considered self-healing in service-oriented systems in regard to dynamic
binding of services in [2].

6 Conclusion and Future Work

We presented a model-driven approach to engineer self-protection for au-
tonomous systems. The approach is integrated into model driven security Se-
cureUML for modeling access control and supports the system designer in en-
gineering self-protection rules to react to unexpected security vulnerabilities.
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Self-protection is specified by a set of transformation rules which restrict the
security model. A graph-based semantics for the transformation rules allows us
to verify that security requirements are satisfied by the specified self-protection
rules.

We target an XACML based infrastructure which enforces the security model
transformation that result by the self-protection sets. Furthermore, the XACML
policies shall be generated from the models and protection rules. Another point of
future work is the specification of the cancelation of self-protection restrictions.
In other words, if the reason that causes the insecure state is eliminated, we
have rules which transform the restricted model back into an unrestricted safe
system.
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