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Foreword

ETAPS 2006 was the ninth instance of the European Joint Conferences on Theory and
Practice of Software. ETAPS is an annual federated conference that was established in
1998 by combining a number of existing and new conferences. This year it comprised
five conferences (CC, ESOP, FASE, FOSSACS, TACAS), 18 satellite workshops (AC-
CAT, AVIS, CMCS, COCYV, DCC, EAAI, FESCA, FRCSS, GT-VMT, LDTA, MBT,
QAPL, SC, SLAP, SPIN, TERMGRAPH, WITS and WRLA), two tutorials, and seven
invited lectures (not including those that were specific to the satellite events). We re-
ceived over 550 submissions to the five conferences this year, giving an overall accep-
tance rate of 23%, with acceptance rates below 30% for each conference. Congratula-
tions to all the authors who made it to the final programme! I hope that most of the
other authors still found a way of participating in this exciting event and I hope you will
continue submitting.

The events that comprise ETAPS address various aspects of the system develop-
ment process, including specification, design, implementation, analysis and improve-
ment. The languages, methodologies and tools which support these activities are all
well within its scope. Different blends of theory and practice are represented, with an
inclination towards theory with a practical motivation on the one hand and soundly
based practice on the other. Many of the issues involved in software design apply to
systems in general, including hardware systems, and the emphasis on software is not
intended to be exclusive.

ETAPS is a loose confederation in which each event retains its own identity, with
a separate Program Committee and proceedings. Its format is open-ended, allowing
it to grow and evolve as time goes by. Contributed talks and system demonstrations
are in synchronized parallel sessions, with invited lectures in plenary sessions. Two of
the invited lectures are reserved for “unifying” talks on topics of interest to the whole
range of ETAPS attendees. The aim of cramming all this activity into a single one-week
meeting is to create a strong magnet for academic and industrial researchers working on
topics within its scope, giving them the opportunity to learn about research in related
areas, and thereby to foster new and existing links between work in areas that were
formerly addressed in separate meetings.

ETAPS 2006 was organized by the Vienna University of Technology, in cooperation
with:

- European Association for Theoretical Computer Science (EATCS);

- European Association for Programming Languages and Systems (EAPLS);

- European Association of Software Science and Technology (EASST);

- Institute for Computer Languages, Vienna;

- Austrian Computing Society;

- The Biirgermeister der Bundeshauptstadt Wien;

- Vienna Convention Bureau;

- Intel.



VI Foreword

The organizing team comprised:

Chair: Jens Knoop

Local Arrangements: Anton Ertl
Publicity: Joost-Pieter Katoen
Satellite Events: Andreas Krall
Industrial Liaison: Eva Kiihn

Liaison with City of Vienna: Ulrich Neumerkel
Tutorials Chair, Website: Franz Puntigam
Website: Fabian Schmied

Local Organization, Workshops Proceedings: Markus Schordan

Overall planning for ETAPS conferences is the responsibility of its Steering Com-
mittee, whose current membership is:

Perdita Stevens (Edinburgh, Chair), Luca Aceto (Aalborg and Reykjavik), Rastislav
Bodik (Berkeley), Maura Cerioli (Genova), Matt Dwyer (Nebraska), Hartmut Ehrig
(Berlin), José Fiadeiro (Leicester), Marie-Claude Gaudel (Paris), Roberto Gorrieri
(Bologna), Reiko Heckel (Leicester), Michael Huth (London), Joost-Pieter Katoen
(Aachen), Paul Klint (Amsterdam), Jens Knoop (Vienna), Shriram Krishnamurthi
(Brown), Kim Larsen (Aalborg), Tiziana Margaria (Géttingen), Ugo Montanari (Pisa),
Rocco de Nicola (Florence), Hanne Riis Nielson (Copenhagen), Jens Palsberg (UCLA),
Mooly Sagiv (Tel-Aviv), Jodo Saraiva (Minho), Don Sannella (Edinburgh), Vladimiro
Sassone (Southampton), Helmut Seidl (Munich), Peter Sestoft (Copenhagen), Andreas
Zeller (Saarbriicken).

I would like to express my sincere gratitude to all of these people and organizations,
the Program Committee chairs and PC members of the ETAPS conferences, the orga-
nizers of the satellite events, the speakers themselves, the many reviewers, and Springer
for agreeing to publish the ETAPS proceedings. Finally, I would like to thank the Or-
ganizing Chair of ETAPS 2006, Jens Knoop, for arranging for us to have ETAPS in the
beautiful city of Vienna.

Edinburgh, January 2006 Perdita Stevens
ETAPS Steering Committee Chair



Preface

Software engineering aims to create a feedback cycle between academia and industry,
proposing new solutions and identifying those that “work” in practical contexts. The
conference on Fundamental Approaches to Software Engineering (FASE) —as one of
the European Joint Conferences on Theory and Practice of Software (ETAPS)—is com-
mitted to this aim.

With the society increasingly relying on software, the ability to produce low-cost
and high-quality software systems is crucial to technological and social progress. FASE
provides software engineers with a forum for discussing theories, languages, methods,
and tools derived from the interaction of academic research and real-world experience.

Contributions were sought targeting problems of practical relevance through fun-
damental contributions, based on solid mathematical or conceptual foundations, which
could lead to improved engineering practices.

The response of the scientific community was overwhelming, with record submis-
sion numbers of 166 research papers and 7 tool papers. From these, 27 research papers
and 2 tool papers were selected for publication, with an overall acceptance rate of 17%.
The international character of the conference is underlined by the fact that just about
one third of the authors are from European countries, while the others come from North
America, Asia and Australia.

Accepted papers address topics like distributed and service-oriented computing,
measurement and empirical software engineering, methods and tools for software devel-
opment, validation and verification, model-based development, and software evolution.
The scientific programme is complemented by the invited lecture of Francisco Curbera
on “A Programming Model for Service Oriented Applications” and of Carlo Ghezzi on
“Software Engineering: Emerging Goals and Lasting Problems”.

We are deeply indebted to the 24 members of the Program Committee and the 123
additional reviewers for their invaluable time, spent reading and discussing a large num-
ber of papers and producing more then 500 reviews.

FASE 2006 was held in Vienna (Austria), hosted and organized by the Institute for
Computer Languages at the Vienna University of Technology. Next year FASE will
take place in Braga (Portugal). Being part of ETAPS, FASE shares the sponsoring and
support acknowledged in the foreword. Heartfelt thanks are also due to Perdita Stevens
for excellent and efficient global coordination and to Jens Knoop and his staff for their
wonderful job as local organizers.

Finally, special thanks to all contributors and participants who, at the end of the day,
are what this is all about.

Milano and Leicester, January 2006 Luciano Baresi
Reiko Heckel
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A Programming Model for
Service Oriented Applications

Francisco Curbera

IBM Research, USA

curbera@us.ibm.com

Service oriented computing (SOC) and service oriented architectures introduce a
model for distributed software components. Full inter-component interoperabil-
ity, based on Web services standards, is a core assumption of the SOC model.
SOC, as a platform independent approach to software development and manage-
ment, is not limited to a particular distributed computing stack (Web services),
since the benefits of a distributed component model extend to legacy protocols
and platforms as well. Web services has successfully stressed the notion that
implementation characteristics should be decoupled from interoperability con-
cerns, and has focused on defining an XML based interoperability stack. SOC
is directly concerned with the implementation and management of service ori-
ented applications and stresses the ability to incorporate multiple runtimes and
programming models into an architecture of distributed software components.

The Service Component Architecture (SCA) is the first realization of SOC
as an explicit component model. Just as and Web Services provide the common
abstraction of interoperability concerns, SCA provides a common abstraction of
implementation concerns. SCA introduces a common notion of service compo-
nents, service types and service implementations as well as an assembly model
for service oriented applications. SCA’s goal is to be able to accommodate mul-
tiple implementation platforms into a single set of component oriented abstrac-
tions. J2EE, BPELAWS, COBOL, SQL or XML components are only part of
the possible implementation artifacts that SCA intends to support. Portability
of component assemblies and implementations is an important concern of SCA.
SCA is already backed by a Java open source initiative in Apache.

An initiative so ambitious necessarily raises many open issues. Foremost
among them is the formalization of an SCA runtime model sufficiently com-
plete to ensure portability of implementations, but at the same time generic
enough that it can be supported by multiple platforms and programming mod-
els. Once an SCA runtime model is defined, the question arises of whether a
"native SCA” platform would be able to provide better support for the execu-
tion and deployment of SOC applications. Other significant issues include the
possibility of formalizing the component and assembly models beyond their cur-
rent state, and the support for non-functional requirements and capabilities in
the definition and assembly of components.

This talk will review the motivation and major elements of the SCA model,
and will discuss the main open issues surrounding the SCA effort.

L. Baresi and R. Heckel (Eds.): FASE 2006, LNCS 3922, p. 1, 2006.
© Springer-Verlag Berlin Heidelberg 2006



Software Engineering:
Emerging Goals and Lasting Problems

Carlo Ghezzi

Dipartimento di Elettronica e Informazione - Politecnico di Milano,
Piazza L. da Vinci 32, 1-20133 Milano, Italy
carlo.ghezzi@polimi.it

Software has been evolving from pre-defined, monolithic, centralized architec-
tures to increasingly decentralized, distributed, dynamically composed federa-
tions of components. Software processes have been evolving along similar lines,
from pre-specified sequential work- flows to decentralized and multi-organization
endeavors. The organizations to which software solutions are targeted have also
been evolving from highly structured corporates to agile and networked enter-
prises. All this is affecting the way software is engineered (i.e., conceived, ar-
chitected, and produced). New difficult challenges arise, while old fundamental
problems are still with us. The talk surveys this evolution and tries to identify
achievements, challenges, and research directions.

L. Baresi and R. Heckel (Eds.): FASE 2006, LNCS 3922, p. 2, 2006.
© Springer-Verlag Berlin Heidelberg 2006



GPSL: A Programming Language for Service
Implementation

Dominic Cooney, Marlon Dumas, and Paul Roe

ueensland University of Technology, Australia
g
{d.cooney, m.dumas, p.roe}@qut.edu.au

Abstract. At present, there is a dichotomy of approaches to support-
ing web service implementation: extending mainstream programming
languages with libraries and metadata notations vs. designing new lan-
guages. While the former approach has proven suitable for interconnect-
ing services on a simple point-to-point fashion, it turns to be unsuitable
for coding concurrent, multi-party, and interrelated interactions requiring
extensive XML manipulation. As a result, various web service program-
ming languages have been proposed, most notably (WS-)BPEL. How-
ever, these languages still do not meet the needs of highly concurrent
and dynamic interactions due to their bias towards statically-bounded
concurrency. In this paper we introduce a new web service programming
language with a set of features designed to address this gap. We describe
the implementations in this language of non-trivial scenarios of service
interaction and contrast them to the corresponding BPEL implementa-
tions. We also define a formal semantics for the language by translation
to the join calculus. A compiler for the language has been implemented
based on this semantics.

1 Introduction

There is an increasing acceptance of Service-Oriented Architectures as a
paradigm for software application integration. In this paradigm, independently
developed and operated applications are exposed as (web) services that are then
interconnected using standard protocols and languages [1]. While the technology
for developing basic services and interconnecting them on a point-to-point basis
has attained some maturity, there remain open challenges when it comes to im-
plementing service interactions that go beyond simple sequences of requests and
responses or that involve many participants.

A number of recent and ongoing initiatives aim at tackling these challenges.
These initiatives can be classified into conservative extensions to mainstream
programming languages and novel service-oriented programming languages. The
former provide metadata-based extensions for web service development on top
of object-oriented programming languages. For example Microsoft Web Services
Extensions, Windows Communication Foundation, Apache Axis and JSR-181,
can be placed in this category. While these extensions are suitable for deal-
ing with bilateral interactions and simple forms of concurrency and correlation,

L. Baresi and R. Heckel (Eds.): FASE 2006, LNCS 3922, pp. 3-17, 2006.
© Springer-Verlag Berlin Heidelberg 2006



4 D. Cooney, M. Dumas, and P. Roe

capturing complex interactions with these libraries remains daunting. On the
other hand, a number of service-oriented languages have been proposed, ranging
from research proposals (e.g. XL [2,3]) down to standardisation initiatives, most
notably the Business Process Execution Language for Web Services (BPEL) [4].

BPEL facilitates the development of services that engage in concurrent inter-
actions and incorporates a declarative correlation mechanism, thus addressing
some limitations of bespoke conservative language extensions. Nonetheless, it
fails to provide direct support for typical service interaction scenarios. In [5], a
number of patterns of service interaction are proposed. It is shown that while
BPEL directly supports the most basic of these patterns, it fails to address the
needs of more complex scenarios. In particular, BPEL has problems dealing with
one-to-many interaction scenarios with partial synchronisation especially when
the set of partner services is not known in advance.

The analysis of BPEL in [5] suggests that web service implementation requires
novel programming abstractions for dealing with advanced forms of concurrency,
synchronisation, and message correlation. Accordingly, this paper presents a pro-
gramming language, Gardens Point Service Language (GPSL), that integrates
concepts and constructs from join calculus [6], a declarative correlation mecha-
nism with greater flexibility than BPEL’s one, and direct support for complex
XML data manipulation. Specifically, GPSL incorporates:

— Dedicated messaging constructs, both for interacting with the other services
via SOAP, and for structuring the internal implementation of services

— A stratified integration of XQuery [7] expressions with imperative constructs.

— A join calculus-style approach to concurrent web service messaging, and an
embodiment of this concurrency style as a programming language construct.

— An approach to message correlation that provides direct support for both
point-to-point and one-to-many web service conversations [8].

A compiler implementation of GPSL can be found in [9]. The suitability of
GPSL has been tested by implementing a number of scenarios, ranging from
simple scenarios (e.g. an Amazon.com Queue Service client [10]) to scenarios
corresponding to the more complicated service interaction patterns of [5]. In
this paper, we sketch the implementations of three of these patterns.

The paper is structured as follows: Section 2 provides an overview of GPSL.
Next, Section 3 describes the abstract syntax and formal semantics of GPSL.
Section 4 illustrates how the language supports advanced service interaction
patterns. Section 5 then briefly describes the compiler implementation of GPSL
focusing on the code generation. Finally, Section 6 reviews related work while
Section 7 concludes.

2 Overview of GPSL

To illustrate the basic features of GPSL, we consider the implementation of a
simple ‘echo’ service and its client:
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declare interface Echo {
declare operation Shout in action = ’urn:echo:shout’ out
}

declare service EchoService implements Echo {
Shout ($doc, Reply) { Reply($doc) }
}
declare service EchoClient {
do {
let $x := ’soap.tcp://localhost:4000/echo’ in
$x: Shout(element Say { ’Hello’ }, Dome)
}
Done($doc) { (: comment -- do nothing :) }
}

GPSL has explicit contract and service declaration elements. Metadata from
contracts are used by the compiler to provide types to operations. For exam-
ple, the Echo contract has one operation, Shout. Shout is declared as an in-out
operation and by convention in GPSL has two parameters: one for data, and
the other for a channel to send the reply on. When a Shout operation message
is received, in the case of EchoService, or sent, in the case of the EchoClient,
the first parameter is bound to the body of the SOAP envelope and the second
parameter is bound to the WS-Addressing (WS-A) reply-to SOAP header.

EchoService declares implements Echo and includes a block guarded by a
label Shout that takes two parameters. The Shout label refers to an operation
in the Echo contract, so whenever the service receives a message with SOAP
action urn:echo:shout the service executes the corresponding block of code. The
language enforces a convention where variables bound to XML data are prefixed
with a $. The $doc parameter is bound to the body of the SOAP message and
the Reply parameter is bound to the WS-A reply-to header. Reply, although
derived from XML in the SOAP envelope, describes the capability for sending a
message and we do not prefix it with $. Reply is opaque and the capability can
only be passed to another service or exercised to send a message. The syntax
for sending a message is to write the channel variable and a parameter list in
parentheses. In this example, EchoService sends in the reply the data it received
in the request.

The data model of GPSL has two kinds of values: XML data, such as the
element Say, and channels, such as Reply. All XML expressions in GPSL are
XQuery expressions. For example, element Say is an example of the XQuery
computed element constructor. This ability to construct new XML data distin-
guishes XQuery from the less powerful XPath. However XQuery alone is not
sufficient for implementing services because it is a pure functional language with
no messaging constructs. Moreover, there are some semantic tensions between
XQuery’s flexible evaluation semantics and messaging, because it is difficult to
determine when a message will be sent or received. To avoid these tensions,
GPSL is based on a stratified approach in which imperative constructs are used
for messaging whereas XQuery is used for expressions.
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Now let us consider the implementation of FchoClient. It contains a do block;
do blocks are executed when a service starts up and can initialise state like
a constructor in an object-oriented language. Here EchoClient sends a Shout
message. For the first parameter it constructs an element Say that contains
the text Hello. By convention, the second parameter becomes the WS-A reply-
to header. Here EchoClient provides the label of a block, Done, as the second
parameter. Done is a “private” label of EchoClient, and does not refer to any
operation in a contract.

Messaging in GPSL is asynchronous; this encourages programmers to
write services that make concurrent requests rather than sequences of re-
quest/responses, although this RPC programming style is also possible in GPSL.
GPSL’s means of spawning concurrent threads derives from asynchronous mes-
saging. Using a private label to send an internal message starts the corresponding
block of code which is executed concurrently with subsequent instructions.

M(); (: sends local message, asynchronously :)
. (: subsequent instructions go here :)
}
MO {

(: this code executes concurrently when a message is sent on M :)

}

Synchronisation is achieved through blocks of code guarded by multiple labels.
Such multi-label guards are called concurrency patterns and are inspired by the
join calculus. A block of code guarded by a concurrency pattern is executed when
messages are available on all labels. For example, in the following code snippet,
local messages ResultA and ResultB are sent in two different blocks of code A()
and B() which we assume are executed concurrently (although their spawning
is not shown). When both messages are available, then the rule at the bottom
is reduced and the corresponding block of code is executed.

AQO {

ResultA(...) (: produce message ResultA :)
}
BO {

ResultB(...) (: produce message ResultB :)

}

ResultA($a) & ResultB($b) (* this is a join pattern *) {
(: executed when ResultA and ResultB are available :)

}

3 Syntax and Semantics

The syntax of GPSL statements and expressions is shown in Figure 1. For space
reasons we focus on statements and expressions omitting the service and contract
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S, T:= statement
€ empty
Sy T sequence
if £ then Selse Tend conditional
let v:i=Fin S let-binding
for vin F do S end iteration
E(G,rc]) send (2nd argument may be used for reply channel)
E:m(G,---) endpoint send
def Din S receive rules
D, F:= definitions
J{S} receive rule
DF composition
J, K= pattern
z(y, ) internal message receive
receive y where E external message receive
z(y)[where E] contract receive: x is an “in” operation def-
ined in a contract
z(y, rc)[where E| contract receive: x is an “in-out” operation def-
ined in a contract (rc stands for “reply channel”)
J& K synchronisation
E G:= expression
m label

XQuery expression

Where m, v, z, y and rc are identifiers.

Fig. 1. Abstract syntax of the imperative GPSL statements

elements; these elements provide metadata about the SOAP action and message
exchange patterns of operations and do not have a direct operational semantics.

We sketch the semantics of GPSL in Figure 2 via an operational encoding in
the join calculus [6]. Since GPSL’s concurrency feature is based directly on the
join calculus this encoding is often straightforward syntax translation.

For our encoding we assume a join calculus with XQuery expressions
and values. Where XQuery has flexible evaluation semantics related to lazi-
ness/strictness and raising errors, GPSL needs predictable behaviour for mes-
sage sending. We introduce an explicit channel, eval, to specify precisely when
XQuery evaluation occurs. eval forces XQuery evaulation in its first argument
and passes the result on its second argument. cond, for implementing condition-
als, is like eval except it chooses a continuation based on the result.

For sending messages on internal channels (rule “Int. Snd” in Figure 2) we
only give the encoding of the single-argument case. Other arities follow the same
pattern, where the message receiver and arguments are evaluated left-to-right.
Likewise, for sending messages to other services (Ext. Snd,) we only give the
case when the operation is expected to reply, where by convention in GPSL the
first argument becomes the body of the message, and the second argument is
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Empty:
Seq:

If:

Let:
For:

Int. Snd:

Ext. Snd:

Recv:
Reaction:
Composition:
Synch:

Int. Recv:
Ext. Recv:
Contract
Recv:

Init Reaction:
Init Comp.:
Init Synch:
Init Int. Recv:
Init Ext Recv:

Init Contract
Recv:

[e] -0
[S:T1] — [S1.I71
[if E then S else T end]— def t() > [S] | f() > [T] in cond(E,t, f)
[let v := E in S] — def s(v) > [S] in eval(E, s)
[for vin F do S end] — def test(es,s)>
def t()r>
def hd(e)>

def ti(es) > s(e, es) in
eval{es[position() > 1],tl) in
eval(es[position() = 1], hd) in
def f()>0in
cond(es = nil(),t, f) in
def s(v, es) > [S].test(es, s) in
def init(es) > test(es, s) in
eval(E, init)

[EG)] — def receiver(e)r>
def actuali(f) > e(f) in
eval (G, actualy) in
eval(E, receiver)

[Em(G, H)] — [let receiver :== E in

let actual := G in

let reply := H in

let id := gensym in

def receive env
where Header/RelatesTo = id {
reply(env)

}in

send(receiver, Maction, id, actual)]

[def D in S] — def [D] in [D]1n.[S]
[/{s}1 = [J]>[9]

[D F] —~ DAF

[D & F] — D|F

[z(y)] — z(y)

[receive y where EJ — x(y), z is fresh
[z(y) where E] — z(y)
[[J{S}]]Inii i [Jﬂlm't

IID F]]Init - [[D]]Init-[[F]]Init
[D & Flirnit — [Dlinit-[Flinit
[ (y)]nie -0

[receive y where Elrnit — def ztest(y,t, f) > cond(E,t, f) in
subscribe(z, Tiest)

[z(y) where E]rnit — [def receive env
where Header/Action = Taction and
E { z(env) } in
-+-], for the first occurence of z(y) where E

Fig. 2. Partial semantics by translation into join calculus
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a channel to use for replies. It is the metadata from a contract element that
dictates whether a reply is expected and the SOAP action mgction. Correlating
replies involves generating a new message 1D, establishing a closure to listen for
incoming messages with a matching message ID, and then sending the message.
We write send for this latter step; send formats a SOAP envelope and sends it
over the network.

Definitions and patterns follow predictable syntactic translation, except for
external message receive which has no parallel in the join calculus. External
message receive is responsible for marshalling SOAP messages received from the
outside world into a GPSL program. This raises the important semantical issue
of precisely what point in a program messages are delivered to. GPSL is more
flexible and powerful than most contemporary programming languages in that
it supports a where clause for filtering incoming messages. This feature is akin to
filtering capabilities in message-oriented middleware and enables, among other
things, to correlate any sent or received message with follow-up messages.

To encode external message receives, we create fresh internal channels and
bind them to the SOAP messaging machinery via a message to subscribe when
the closure is created. subscribe is a global internal channel with a complete
join-calculus definition in Figure 3. This gives a precise semantics to receiving
messages in GPSL: there is no race condition between receiving and sending mes-
sages in a closure as a closure is created, because of the continuation k£ threaded
through subscribe, which is important for the correctness of closures initiating
conversations; messages are routed into matching closures; concurrently active
receive statements cause a runtime error if they compete for a particular message;
and messages that have no active receive to process them are silently dropped.

There is syntactic sugar for receiving messages from an operation of an im-
plemented contract (Init Ctrct Recv) which includes a test against the SOAP
action specified in the contract. Our translation omits one detail in that the
recetve clause constructed for an in-out operation also creates a channel carrying
the reply. The translation in Figure 2 is for an in operation.

def subscribe(msg, predicate, k)|subscribers(f)r
def g(z, found, done)r>
def true() > found(msg, f) in
def false() > f(z, found, done) in
predicate(zx,true, false) in
subscribers(g).k()
A external{env)|subscribers{f)r>
subscribers(f)|
def done()|single(msg) > msg(env) in
def fail(msg, k) > error in
def found(msg, k) > single(msg).k{env, fail, done) in
f{env, found, done) in
def nil{z, found, done) 1> done() in
subscribers(nil)

Fig. 3. Join-calculus definition of subscribe
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4 Service Interaction Patterns in GPSL

In this section, we compare GPSL with BPEL by implementing scenarios corre-
sponding to two of the service interaction patterns of [5]. Using the nomenclature
and numbering of [5] we have chosen: one-to-many send/receive (pattern 7), and
contingent requests (pattern 8). We choose not to illustrate patterns 1 to 4 since
they correspond to simple point-to-point interactions and do not put forward
significant differences between GPSL and other service-oriented programming
languages such as BPEL; patterns 5 and 6 are partly subsumed by pattern 7;
pattern 9 makes appeal to similar features as patterns 4 and 7; pattern 10 deals
with transactional issues beyond the scope of GPSL and BPEL; and patterns 11
through 13 deal with interconnecting groups of services rather than implement-
ing individual ones.

4.1 One-to-Many Send-Receive

We consider an interaction pattern where a service sends messages and collects
responses before continuing. In this example we implement a broker service that
solicits bids from a set of bidders, and collects responses, keeping track of the
best (in this example, lowest) bid received. Bids are collected until a time-out
occurs.

declare interface BrokerContract {
declare operation InitiateAuction in action = ’urn:broker:init’;

}

declare service Broker implements BrokerContract {
InitiateAuction($env) {
(: solicit bids :)
for $bidder in $env/Bidders do
$bidder: SolicitBid($env/Item, Reply)
done;
OutstandingBids(util:length($env/Bidders));

(: start timer :)
let $timeout := ’soap.inproc://timer’ in
$timeout: Time (10000, TimedOut);

NoBids ()
}
OutstandingBids($n) & Reply($bid) & NoBids() {
Winning($bid) ;
Decrement ($n)
}
OutstandingBids($n) & Reply($bid) & Winning($best) {
if xs:decimal($bid/Amount) < xs:decimal ($best/Amount) then
Winning($bid)
else
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Winning($best)
end;
Decrement ($n)
}
Decrement ($n) {
let $n := xs:int($n) - 1 in
if xs:int($n) = O then
BiddingFinished()
else
OutstandingBids($n)
end
}
BiddingFinished() & Winning($bid) { (:
TimedOut () & Winning($bid) { G
TimedOut () & NoBids() { C

process winning bid :) }
fault or process winning bid :) }
fault :) 7

This program sends n Solicit Bid messages. Although the forloop is sequential,
the Solicit Bid messages are sent in a non-blocking manner. The first bid received
consumes the NoBids message and becomes the winning bid. Subsequent bids
are compared to the winning bid. Messages OutstandingBids and WinningBid
are used to capture state. They carry data for the number of outstanding bids
and the best bid received. It is possible to check that this service correctly treats
concurrent bids because contention for the WinningBid message acts as a mutual
exclusion.

In previous work [8], we have sketched a more complicated variant of this sce-
nario where the service stops after either receiving the first n-out-of-m responses
or after the time-out, whichever occurs first.

Coding the above scenario in BPEL is complicated by several factors. First,
given that the set of partners to which bid requests are sent is not known in
advance, dynamic addressing is required. In GPSL, this is achieved by treating
channels as first-class citizens. In BPEL, dynamic addressing is possible but re-
quires manual assignment of endpoint references to partner links. Second, BPEL
lacks high-level constructs for manipulating collections. Thus, capturing this sce-
nario requires the use of while loops and additional book-keeping. Third, there
is no direct support in BPEL for interrupting the execution of a block when a
given event (e.g. a timeout) occurs. To achieve this, it is necessary to combine
an event handler with a fault handler, such that the event handler raises a fault
when the nominated event occurs and the fault handler catches this artificially
created fault. This causes the immediately enclosing scope to be stopped. In
GPSL, such interruption can be achieved simply by adding a join pattern that
matches the event in question (in this case, the timeout). Finally, a further com-
plication arises if explicit correlation using correlation sets is necessary. In this
case, the first message needs to be treated differently from the following mes-
sages (at least in BPEL 1.1) since the first message initialises the correlation
set. BPEL pseudo-code for this scenario is given below. The full version of this
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pseudo-code is considerably longer than the corresponding GPSL solution. The
interested reader will find the full BPEL implementation of a similar scenario in
the code repository of the service interaction patterns site.! This implementa-
tion comprises around 150 lines of BPEL code excluding comments, partly due
to the verbosity of the XML syntax, but also because of the more fundamental
drawbacks of BPEL mentioned above.

set partner link to the address of the first bidder;
send first bid request and initialise correlation set;
while (more partners)
set partner link to the address of next bidder;
send next bid request;
begin scope
onAlarm timeLimit : throw timeoutFault
catch timeoutFault : set flag to indicate time-out
while (not stopCondition)
receive a bid;
update winning bid
end scope
(* process time-out or winning bid *)

4.2 Contingent Requests

In this pattern, a service sends a message and if a response is not received
within a given timeframe, a message is sent to a second service, and so on. If
while waiting for a response from the second service, the first service happens to
respond, this response is accepted and the response from the second service is no
longer needed. This implements a fail-over process. An example of this pattern is
a conference that provides redundant services to accept a paper submission. The
client submits the paper via the first service, and if a response is not received
within ten seconds, it submits the paper via the second service, and so on. Here
is the implementation of the “client” in GPSL.

declare variable $timeout := ’soap.inproc://timer’;
declare interface PaperSubmission {
declare operation Submit in action = ’urn:paper:submit’ out
}
declare service PaperSubmitter {
do {
let $submission-points := element Point { ... }, ... in
let $paper := ... in
Submit ($paper, $submission-points)
}
Submit ($paper, $submission-points) {
let $uri := $submission-points[1] in
let $submission-points := $submission-points[position()>1] in

1 See code sample “One-to-many send /receive with dynamically determined partners”
at http://www.serviceinteraction.com
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$uri: Submit($paper, Response);
$timeout: Time (10000, TimedOut);
Waiting($paper, $submission-points)
}
Waiting($paper, $submission-points) & Response($doc) { (: success! :) }
Waiting($paper, $submission-points) & TimedOut ($doc) {
(: submit to the next server :)
Submit ($paper, $submission-points)
}
}

The PaperSubmitter service has knowledge of a list of services that accept
submissions. Submit strips a URI from the head of the list and sets up a race
between Response and TimedOut messages. If a TimedOut message is available
first, PaperSubmitter submits to the next service. After a response is received
from any of the contacted services, PaperSubmitter does not wait for other re-
sponses, unless the code in the “success” block issues a new Waiting message.

This example shows the PaperSubmitter service interacting with a timer ser-
vice at a known URI through Time (an operation to arm the timer) and Timed-
Out (an internal channel that receives time-out messages from the timer). This
timer service does not need to be located outside PaperSubmitter’'s memory
space. Our implementation supports an efficient in-process transport for SOAP
messaging, namely soap.inproc. This way, we can extend the language by adding
services implemented in (e.g.) C#, rather than adding new constructs for every
required feature. This is similar to a library, except that GSPL’s library calling
convention is based on messaging rather than function or method calls.

Capturing this example in BPEL in all its details is complicated by two fac-
tors: (i) the lack of direct support for interruptions due to an event as discussed
previously; and (ii) the lack of support for maintaining an a priori unknown
number of conversations in parallel. Indeed, this pattern puts forward a case
where a requester may start a new conversation with a partner, but keep an-
other ongoing conversation alive. There is only one construct in BPEL that
supports an unbounded number of threads to be entertained concurrently: event
handlers. However, using event handlers to capture the scenario at hand leads
to an unintuitive solution. In this solution, the code for submitting a paper to
a given server is embedded in an event handler. To start this event handler for
the first server, the process sends a message to itself. This starts a first instance
of the event handler. This event handler is terminated if a response is received
(to do so, a fault indicating this is thrown). If a time-out occurs within this first
instance of the event handler, the process sends a second message to itself to
activate a second instance of the event handler (without stopping the previous
instance since a late response from the first server may still arrive). This pro-
cess of starting new instances of the event handler continues until a response is
received or all servers have been tried.

The BPEL pseudo-code for this scenario is given below. Again, the full BPEL
code is considerably more verbose, partly due to the need to define and configure
the partner link through which the process sends messages to itself. The full
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BPEL code for a similar scenario available at the serviceinteraction.com site
comprises around 120 lines of code.

responseReceived := false
begin scope
onMessage X :
begin scope
onAlarm timeLimit :
if (more servers) send a message of type X to myself
else throw allServersTimedOut
catch allServersTimedOut: do nothing (* terminates scope *)
catch responseReceived: do nothing (* terminates scope *)
send request to next server and wait for response;
responseReceived := true;
throw responseReceived
end scope
send a message of type X to myself
end scope
if (not responseReceived) (* deal with case where no response received *)

5 Code Generation

We have prototyped a compiler that produces Microsoft Intermediate Language
(MSIL), from GPSL programs. MSIL is similar to Java byte code although dif-
fering from it in various respects. Despite these differences though, our prototype
proves that the feasibility of compiling GPSL for modern virtual machines.

Despite the novelty in the programming language, the compiler operates in
traditional parsing, analysis, and code generation phases. The parser must han-
dle XQuery for expressions. For our prototype we found ignoring XQuery direct
constructors—the angle-brackets syntax for synthesizing XML which require spe-
cial handling of whitespace—greatly simplifies parser development. Because syn-
tactically simpler computed constructors can do the job of direct constructors,
the expressive power of XQuery is unimpeded.

Most of the complexity in the compiler is in the code generator, and specifi-
cally in the creation of closures and in the delivery of messages sent on internal
labels (i.e. messages from a service to itself). For each def we create a class with
a method for each concurrency rule, a field for each captured variable, and a
method and field for each label. This field holds a queue of pending messages;
the method takes a message to that label, tests whether any rules are satisfied,
and if so, calls the method for the rule. We perform the rule testing on the caller
thread and only spawn a thread when a rule is satisfied, which avoids spawning
many threads. The rule testing follows the join calculus semantics and the def-
inition for the subscribe reaction rule given in Figures 2 and 3 for internal and
external messages respectively.

We do not compile XQuery expressions because implementing an XQuery
compiler is a daunting task. Instead we generate code to call an external XQuery
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library at runtime. One critical criterion for the programming language imple-
menter integrating an XQuery implementation is how that XQuery implemen-
tation accepts external variables and provides results. GPSL requires access to
expression results as a sequence of XQuery data model values—which is dis-
tinctly different from an XML document—to behave consistently with XQuery
when those values that are used later in subsequent expressions. We use an in-
teroperability layer over the C API of Galax?, which has exactly the kind of
interface for providing external values and examining results that we want. Our
biggest complaint about Galax is that evaluating expressions must be serialized
because Galax is non-reentrant.

GPSL programs also rely on the Microsoft Web Services Extensions® (WSE)
for SOAP messaging. WSE has a low-level messaging interface which is suffi-
cient for GPSL’s needs except for the fact that WSE does not support SOAP
RPC/encoded. In the case of synchronous operations, the GPSL compiler gener-
ates some bookkeeping code to make SOAP over synchronous-HTTP work using
the WSE messaging interface.

6 Related Work

Mainstream approaches to web service implementation are based on the use of
Java, C#, and C++ in conjunction with libraries, such as Axis, and metadata
annotations as in JSR181 and Windows Communication Foundation. Putting
aside the mismatch between object-oriented and XML-based data manipula-
tion, this approach has proven fairly suitable for programming point-to-point
service interactions. However, it does not properly serve the requirements of
multilateral interactions, especially those requiring partial synchronisation and
message correlation beyond simple “request-response” scenarios. Message pass-
ing interfaces, like MPI [11], alleviate some of these issues, but even MPI’s scatter
and gather primitives assume barrier synchronisation and message correlation
requires careful programming.

BPEL departs from mainstream web service implementation approaches by
providing an XML data model, a set of message exchange primitives, concur-
rency constructs inspired from workflow languages, and a message correlation
mechanism based on lexically scoped “static” variables. However, while BPEL
supports high-level concurrency and barrier synchronisation constructs for fixed
numbers of threads (for example through the “flow” construct), it does not sup-
port partial synchronisation nor unbounded numbers of threads, and thus, the
expression of patterns such as one-to-many send-receive, multi-responses and
contingent requests is cumbersome. Also, support for message correlation in
BPEL is limited: BPEL’s correlation sets can not be used to capture the type
of correlation required by the one-to-many send-receive pattern.

Similar comments apply to XL, which provides a correlation mechanism suit-
able for 1:1 conversations, but not for 1 : n scenarios. Similarly, XL is suitable for

2 http://www.galaxquery.org
3 http://msdn.microsoft.com /webservices/building/wse
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barrier synchronisation of conversations but not for partial synchronisation. Fi-
nally, XL relies on in-place updates of XML nodes through extensions to XQuery,
while GPSL adopts a stratified approach where XQuery is only used as an ex-
pression language, orthogonal to the imperative part of the language. A more
detailed comparison of XL and an earlier version of GPSL can be found in [8].

GPSL draws one of its main constructs, concurrency patterns, from the join
calculus. The join calculus has inspired several extensions of object-oriented
programming languages with concurrency features, namely Join Java [12] and
Polyphonic C# [13]. Compared to these languages, GPSL adds XML data ma-
nipulation, messaging and message correlation. An extension to Polyphonic C#,
Cw?*, adds XML data manipulation, but retains the legacy object data model
and does not have explicit support for messaging or message correlation.

7 Conclusion

We have presented the syntax and semantics of the GPSL language and illus-
trated its suitability for service implementation using scenarios corresponding to
patterns identified elsewhere. This exercise showed how simple features based on
SOAP messaging, join-calculus style declarative concurrency, and XQuery can
be combined to implement non-trivial patterns of service interaction in a way
that arguably leads to simpler solutions than in BPEL. Also, GPSL’s formal
semantics is much simpler than corresponding semantics of BPEL? thus provid-
ing a solid basis for program analysis. The compiler implementation of GPSL,
especially with respect to compiling rules with where statements, mirrors the
formal semantics.

GPSL integrates messaging, concurrency, and XML data manipulation cohe-
sively. Examples of the cohesive fit are the interplay between sending messages
and spawning concurrent threads on the one hand, and receiving messages and
synchronising threads on the other; dynamic XML data describing message re-
cipients; concurrency patterns describing thread-safe access to XML data; and
the consistent treatment of inter- and intra-service messages. Sometimes the co-
hesion is imperfect. For example, channels and channel variables can not appear
in arbitrary XQuery expressions. This is a deliberate restriction which provides
a simple way to preserve strong typing for internal message sending, and to con-
trol when an internal channel has to be connected to the machinery for receiving
SOAP messages from the outside world. However channels are reified to XML
when they appear in a WS-A “reply-to” header.

GPSL could be extended to address other difficult aspects of service imple-
mentation such as transactions and faults. We expect to address these areas by
leveraging the messaging and concurrency features, for example, by surfacing
faults as messages. We also plan to introduce a garbage collection technique to
reclaim resources when it is detected that a given message will not be consumed.

* http:/ /research.microsoft.com/Comega
® For a semantics of BPEL see e.g. [14].
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Abstract. We develop a formal approach to event-based architectures that
serves two main purposes: to characterise the modularisation properties that re-
sult from the algebraic structures induced on systems by this discipline of coor-
dination; and to further validate and extend the CommUnity approach to archi-
tectural modelling with “implicit invocation”, or “publish/subscribe” interac-
tions. This is a first step towards a formal integration of architectural styles.

1 Introduction

Event-based interactions are now established as a major paradigm for large-scale dis-
tributed applications (e.g. [1,3,5,10,12]). In this paradigm, components may declare
their interest in being notified when certain events are published by other components
of the system. Typically, components publish events in order to inform their environ-
ment that something has occurred that is relevant for the behaviour of the entire sys-
tem. Events can be generated either in the internal state of the components or in the
state of other components with which they interact.

Although Sullivan and Notkin’s seminal paper [14] focuses on tool integration and
software evolution, the paradigm is much more general: components can be all sorts
of runtime entities. What is important is that components do not know the identity, or
even the existence, of the publishers of the events they subscribe, or the subscribers of
the events that they publish. In particular, event notification and propagation are per-
formed asynchronously, i.e. the publisher cannot be prevented from generating an
event by the fact that given subscribers are not ready to react to the notification.

Event-based interaction has also been recognised as an “abstract” architectural
style, i.e. as a means of coordinating the behaviour of components during high-level
design. The advantages of adopting such a style so early in the development process
stem from exactly the same properties recognised for middleware: loose coupling
allows better control on the structural and behavioural complexity of the application
domain; domain components can be modelled independently and easily integrated or
removed without disturbing the whole system.

However, in spite of these advantages and its wide acceptance, implicit invocation
remains relatively poorly understood. In particular, its structural properties as an
architectural style remain to be clearly stated and formally verified. One has to
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acknowledge the merit of several efforts towards providing methodological principles
and formal semantics (e.g. [14]), including recent incursions on using model-checking
techniques for reasoning about such systems [2,9]. However, we are still far from an
accepted “canonical” semantic model over which all these efforts can be brought
together to provide effective support and formulate methodological principles that can
steer development independently of specific choices of middleware.

This paper makes another contribution in this direction by investigating how event-
based interactions can be formalised in a categorical setting similar to the one that we
developed in [7] for i/o-communication and action synchronisation (rendez-vous)
around the language CommUnity. Our formalisation addresses the architectural prop-
erties, i.e. the discipline of decomposition and interconnection, not the notification
and subscription mechanisms that support them. More precisely, it serves two main
purposes. On the one hand, to characterise the modularisation properties that result
from the algebraic structures induced on systems by this discipline of coordination.
In particular, we justify a claim made in [14] about the externalisation of mediators:
“Applying this approach yields a system composed of a set of independent and visible
[tool] components plus a set of separate, or externalised, integration components,
which we call mediators”. Our interest is in investigating and assigning a formal
meaning to notions such as “independent”, “separate” and “externalised”, and in char-
acterising the way they can be derived from implicit invocation. On the other hand,
we wish to further validate and refine the categorical approach that we have been
developing to support architectural modelling by investigating how the “implicit in-
vocation” architectural style can be captured as a coordinated category [6]. This is a
first step towards a formal approach to the integration of architectural styles.

In section 2, we introduce our primitives for modelling publish/subscribe interac-
tions using a minimal language in the style of CommUnity [7]. In section 3, we de-
fine the category over which we formalise our approach. We show how the notion of
morphism can be used to identify components within systems and the way they can
subscribe events published by other components. In section 4, we show how event
bindings can be externalised and made explicit in configuration diagrams. In section
5, we give a necessarily brief account of how we can use the categorical formalisation
to bring several architectural styles together.

2 Event-Based Designs

We model components that keep a local state and subscribe to a number of events.
Upon notification that one such event has taken place, a component invokes one or
more services. If, when invoked, a service is enabled, it is executed, which may
change the local state of the component and publish new events.

We start discussing our approach by showing how we can model what is consid-
ered to be the “canonical” example of event-based interactions: the set-counter. We
start with the design of a component Ser that keeps a set elems of natural numbers as
part of its local state. This component subscribes two kinds of events — dolnsert and
doDelete — each of which carries a natural number as a parameter. Two other kinds of
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events — inserted and deleted — are published by Ser. Each of these events also carries
a natural number as a parameter.

As a component, Set can perform two kinds of services — insert and delete. These
services are invoked upon notification of events dolnsert and doDelete, respectively.
When invoked, insert checks if the parameter of dolnsert is already in elems; if not, it
adds it to elems and publishes an inserted event with the same parameter. The in-
vocation of delete has a similar behaviour.

design Set is

publish inserted
par which:nat

publish deleted
par which:nat

store elems: set(nat)

provide insert
par lm:nat
assignsTo elems
guardedBy lm¢elms

subscribe.dolnsert publishes inserted
par whlch:nat effects elems’={lm}uelems A
invokes insert inserted! A inserted.which=1m

handledBy insert? A

provide delete

which=insert.lm
par lm:nat

subscribe doDelete assignsTo elems
par which:nat guardedBy lmeelms
invokes delete publishes deleted
handlgdBy delete? A effects elems’=elems\{lm} A
which=delete.lm deleted! A deleted.which=1m

Even if the notation is self-explanatory, we need to discuss some of its features:

When declaring the events that a component subscribes, we identify under
invokes the services that may be invoked when a notification is received.
Under handledBy, we specify the different ways in which a notification is
handled, using s? to denote the invocation of service s.

Parameter passing is made explicit through expressions within specifications.
For instance, the clause inserted.which=Im in the definition of the effects of
insert means that the event inserted is published with its parameter which
equal to the value of the parameter Im of insert.

Under store we identify the state variables of the component; state is local in
the sense that the services of a component cannot change the state variables
of other components.

Through assignsTo we identify the state variables that a service may change
and, through publishes, we identify the events that a service may publish.
When specifying the effects of a service, v’ denotes the value that state vari-
able v takes after it is executed, and e/ denotes the publication of event e.
Through guardedBy we identify the enabling condition of a service, i.e. the
set of states in which its invocation is accepted and the service is executed.
Designs can be underspecifed, leaving room for further design decisions to
be made during development. Therefore, we allow for arbitrary expressions
to be used when specifying how parameters are passed, events are handled
and services change the state.

Consider now the design of a system in which a counter subscribes inserted and
deleted to count the number of elements in the set:
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design Set&Counter is

store elems: set(nat),

value:nat
publish&subscribe inserted

par which:nat

invokes inc

handledBy inc?
publish&subscribe deleted

par which:nat

invokes dec

handledBy dec?
subscribe doInsert

par which:nat

invokes insert

handledBy insert? A

which=insert.lm

subscribe doDelete

par which:nat

invokes delete

handledBy delete? A

which=delete.lm

provide insert
par lm:nat
assignsTo elems
guardedBy lm¢elms
publishes inserted
effects elems’'={lm}uelems A
inserted! A inserted.which=1m

provide delete

par lm:nat

assignsTo elems

guardedBy lmeelms

publishes deleted

effects elems’=elems\{1lm} A

deleted! A deleted.which=1m

provide inc

assignsTo value

effects value’=value+l
provide dec

assignsTo value

effects value’=value-1

We can keep extending the design by bringing in new components that subscribe
given events. For instance, we may wish to keep a record of the sum of all elements of
the set by adding an adder that also subscribes inserted and deleted.

design Set&Counter&Adder is

store elems: set(nat),
value:nat, sum:nat

publish&subscribe inserted
par which:nat
invokes inc, add
handledBy inc?
handledBy add? A
which=add.lm

publish&subscribe deleted
par which:nat
invokes dec, sub
handledBy dec?
handledBy sub? A
which=sub.lm

subscribe doInsert
par which:nat
invokes insert
handledBy insert? A
which=insert.lm
subscribe doDelete
par which:nat
invokes delete
handledBy delete? A
which=delete.lm

provide insert
par lm:nat
assignsTo elems
guardedBy lmgelms
publishes inserted
effects elems’={lm}uelems A
inserted! A inserted.which=1m

provide delete

par lm:nat

assignsTo elems

guardedBy lmeelms

publishes deleted

effects elems’=elems\{1lm} A

deleted! A deleted.which=1m

provide inc

assignsTo value

effects value’=value+l
provide add

par lm:nat

assignsTo sum

effects sum’=sum+lm
provide sub

par lm:nat

assignsTo sum

effects sum’=sum-1lm
provide dec

assignsTo value

effects value’=value-1

This example illustrates how we can declare more than one handler for a given
event subscription. For instance, the event inserted has two handlers: one invokes add
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and the other invokes inc. Both invocations are independent in the sense that they can
take place at different times. This is different from declaring just one handler of the
form inc? A add? A which=add.lm; such a handler would require synchronous invo-
cation of both services. The latter is useful when one wants to make sure that separate
state components are updated simultaneously, say to ensure that the values of sum and
count apply to the same set of elements.

As a design of a system, Set&Counter&Add seems to be highly unstructured: we
seem to have lost the original Set; and where is the Counter? and the Adder? In the
next section, we show how Set&Counter&Add can be designed by interconnecting
separate and independent components, including mediators in the sense of [14].

3 Structuring Event-Based Designs

In order to discuss the structuring of event-based designs, we adopt the categorical
approach that we have been developing for architectural modelling [6,7]. In Category
Theory, the structure of objects such as the designs introduced in the previous section
is formalised in terms of morphisms. A morphism is simply a mechanism for recog-
nising a component within a larger system.

In the examples discussed in the previous section, we used a number of data types
and data type constructors. In order to remain independent of any specific language
for the definition of the data component of designs, we assume a data signature
2=<D, (2>, where D is a set (of sorts) and £2is a D’ xD-indexed family of sets (of
operations), to be given together with a collection @ of first-order sentences specify-
ing the functionality of the operations. We refer to this data type specification by 6.

From a mathematical point of view, designs are structures defined over signatures.

Definition: A signature is a tuple Q=<V,E,S,P,T,A,B,G,H> where

V is a D-indexed family of finite sets (of state variables).

E is a finite set (of events).

S is a finite set (of services).

P assigns to every service s€S and event ecE, a D-indexed family of mutu-
ally disjoint finite sets (of parameters).

o T: E—{pub,sub,pubsub} is a function classifying events as published, sub-
scribed, or both published and subscribed. We denote by Pub(E) the set of
events {ecE: T(e)#sub} and by Sub(E) the set of events {ecE: T(e)#pub).

A: §—2" is a function returning the write-frame (or domain) of each service.
B: §—2""") is 4 function returning the events published by each service.

G: Sub(E)—2° is a function returning the services invoked by each event.

H assigns to every subscribed event eeSub(E), a set (of handlers).

The mapping P defines, for every event and service, the name and the type of its pa-
rameters. Every variable and parameter v is typed with a sort sort(v)eD. The sets
Viep, E, S, Pyes and P, g are assumed to be mutually disjoint. This is why the “offi-
cial” name of, for instance, parameter which of event inserted is inserted.which.
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We use T to classify events as pub (published only), sub (subscribed only) or pub-
sub (both published and subscribed). For instance, in Set&Counter&Adder (SCA):

Esca={inserted, deleted, doInsert, doDelete}
Tsca(inserted)=Tsca(deleted)=pubsub; Tsca(dolnsert)=Tsca(doDeleted)=sub
Subscs(E)={inserted, deleted, dolnsert, doDelete}

Pubscs(E)= {inserted, deleted}

And in Set (S) we have

Es={inserted, deleted, doInsert, doDelete}
Ts(inserted)=Ts(deleted)=pub; Ts(dolnsert)=Ts(doDeleted)=sub
Subgy(E)={dolnsert, doDelete}

Pubg(E)= {inserted, deleted)

Events are published by services. We declare the events that each service may
publish through the mapping B. For instance,

o Bg(insert)=Bgc(insert)=Bsca(insert)={inserted)
o By(delete)=Bgc(delete)=Bscu(delete)={deleted}

For every service s, another set A(s) is defined that consists of the state variables
that can be affected by instances of s. These are the variables indicated under assign-
sTo. For instance, Ag(insert)={elems}. We extend the notation to state variables so
that A(v) is taken to denote the set of services that have v in their write-frame. Hence,
Ag(elems)={insert,delete].

When a notification that a subscribed event has been published is received, a com-
ponent reacts by invoking services. For every subscribed event e, we denote by G(e)
the set of services that may be invoked. For instance,

o  Gg(dolnsert)=Gsc(insert)=Gsca(insert)={insert}
o Gg(finserted)={inc}
o Ggca(inserted)={inc,add}

Notice that the functions A, B, and G just declare the state variables, events and
services that can be changed, published, and invoked, respectively. Nothing in a
signature states how state variables are changed, or how and in which circumstances
events are published or services invoked. In brief, signatures need to include all and
only the typing information required for establishing interconnections. Hence, for
instance, it is important to include in the signature information about which state
variables are in the domain of which services but not the way services affect the state
variables; it is equally important to know the structure of handlers for each subscribed
event but not the way each subscription is handled. This additional information that
pertains to the individual behaviour of components is defined in the bodies of designs:

Definition: A design is a pair <Q,A> where Q is a signature and A, the body of the
design, is a tuple <n,p, > where:

e 7 assigns to every handler heH(e) of a subscribed event ecSub(E), a propo-
sition in the language of V (state variables), the parameters of e, the services
declared in G(e) and their parameters.
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e p assigns to every service S€S, a proposition in the language of 'V, the pa-
rameters of s, the primed variables in the domain of s, as well as the events —
B(e) — that may be published by the service and their parameters.

e yassigns to every service S€S, a proposition in the language of V (state vari-
ables) and the parameters of s.

By “the language of X” we mean the first-order language generated by using X as
atomic terms. Given this, the body of a design is defined in terms of:

e for every subscribed event e, a set — H(e) — of handling requirements ex-
pressed through propositions 7j(h) for every handler e H(e). For instance, in
Set&Counter &Adder, we have Hgca(inserted) given by two handlers whose
requirements are inc? and (add? A inserted.which=add.lm). Every handling
requirement (handling for short) is enforced when the event is published.
Each handling consists of service invocations and other properties that need
to be observed on invocation (e.g. for parameter passing) or as a pre-
condition for invocation (e.g. in the case of filters for discarding notifica-
tions). A typical handling is of the form > (s?A @) establishing that s is
invoked with property ¢ if condition y holds on notification.

e for every service s, an enabling condition — )s) — defining the states in
which the invocation of s can be accepted. This is the condition that we
specify under guardedBy.

e for every service s, a proposition — p(s) — defining the state changes that can
be observed due to the execution of s. As shown in the examples, this
proposition may include the publication of events and parameter passing.
This is the condition that we specify under effects.

The language over which propositions used in 75, yand p are written extends that
used for the data type specification with state variables (and their primed versions in
the case of p) as nullary operators. Qualified parameters of events and services are
also taken as nullary operators. In the case of p(s) this extension also comprises the
events of B(s) as nullary operators that represent the publication of the corresponding
event. This is why psca(insert) includes the expression inserted! indicating the publi-
cation of the event inserted. In the case of 7(e) the extension includes services
aeG(e) as nullary operators that represent their invocation, what we denote with a?.

As already mentioned, the structure of designs is captured through morphisms.
These are maps between designs that identify ways in which the source is a compo-
nent of the target. We define first how morphisms act on signatures:

Deﬁnition/Proposition: A morphism O?Q] HQZ for Q1:<V1,E1,S1,P1, T],A],B], G],H1>
and Q2: < VZ’ EZ)SZ)PZ) TZ)AZ;BZ; GZ’H2> is a tuple <Oy, Ocy, Oy O;mr-ew O;mr-.vw Oly-ev>
where

e 0, V=V, is a function on state variables that preserves their sorts, i.e.
sorty(0y(v))=sort,(v) for every veV,

e 0, E,—FE, is a function on events that preserves kinds, i.e. o,(e)ePub(E,)
for every eePub(E;) and o,,(e)eSub(E;) for every eeSub(E;), as well as in-
voked services, i.e. 0,(G(e))SG(0,(¢)) for every eeSub(E;).
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e 0, S;3S, is a function that preserves domains, i.e Ay 0Cy(v))=0,,(A;(v)) for
every veVy, as well as published events, i.e. 0,,(B;(s))CB2(0,(s))

®  Ohurer Maps every event e to a function Cpar.ev.: Pi(e)—Py(0,(e)) that pre-
serves the sorts of parameters, i.e. SOTty( Opar-eve(p))=S0rt,(p) for peP(e)

® O o0perates like Oy, but on service parameters

®  Oj,..,maps every subscribed event e to a function Oj,...,.: H,(e)—> Hy(0,/(e)).

Signatures and their morphisms constitute a category SIGN.

A morphism ofrom Q; to O, is intended to support the identification of a way in
which a component with signature Q; is embedded in a larger system with signature
0,. Morphisms map state variables, services and events of the component to corre-
sponding state variables, services and events of the system, preserving data sorts and
kinds. An example is the inclusion of Set in Set&Counter &Adder.

Notice that is possible that an event that the component subscribes is bound to an
event published by some other component in the system, thus becoming pubsub in the
system. This is why we have T(inserted)=sub but Tsca(inserted)=pubsub.

The constraints on domains imply that new services of the system cannot assign to
variables of the component. This is what makes state variables “private” to compo-
nents. As a result, we cannot identify components of a system by grouping state vari-
ables, services and events in an arbitrary way. For instance, we can identify a counter
as a component of Set&Counter &Adder as follows. Consider the following design:

design Counter is store value: nat
subscribe doInc provide inc
invokes inc assignsTo value
handledBy inc? effects value’=value+l
subscribe doDec provide dec
invokes dec assignsTo value
handledBy dec? effects value’=value-1

It we map dolnc to inserted and doDec to deleted, we do define a morphism be-
tween the signatures of Counter and Set&Counter&Adder. Indeed, sorts of state
variables are preserved, and so are the kinds of the events. The domain of the state
variable value 1is also preserved because the other services available in
Set&Counter &Adder do not assign to it.

Components are meant to be “reusable” in the sense that they are designed without
a specific system or class of systems in mind. In particular, the components that are
responsible for publishing events, as well as those that will subscribe published
events, are not fixed at design time. This is why, in our language, all names are local
and morphisms have to account for any renamings that are necessary to establish the
bindings that may be required. For instance, the morphism that identifies Counter as a
component of Set&Counter &Adder is not just an injection. Do notice that the binding
also implies that inserted and deleted are subscribed within Set&Counter &Adder. As
a result, our components are independent in the sense of [14]: they do not explicitly
invoke any component other than themselves.

In order to identify components in systems, the bodies of their designs also have to
be taken into account, i.e. the “semantics” of the components have to be preserved.
We recall that we denote by @ the specification of the data sorts and operations.
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Definition/Proposition: A superposition morphism 0:<Q;,A;>—><Q, 4> consists of
a signature morphism o:Q,;—Q, such that:

1. Handling requirements are preserved: for every event ec E; and handling
heH (e), @ =114 Oir.ev ()2 A 1,(h))

2. Effects are preserved: @ I—(pz(og.v(s))D o1pi(s)) for every seS

3. Guards are preserved: @ \=(1(0,,(s))> ol ¥i(s)) for every s€S,

Designs constitute a category DSGN. We denote by sign the forgetful functor from
DSGN to SIGN that forgets everything from designs except their signatures.

Notice that the first condition allows for more handling requirements to be added and,
for each handling, subscription conditions to be strengthened. In other words, as a
result of being embedded in a bigger system, a component that publishes a given
event may acquire more handling requirements but also more constraints on how to
handle previous requirements, for instance on how to pass new parameters.

It is easy to see that these conditions are satisfied by the signature morphisms that
identify Set and Counter as components of Set&Counter&Adder. However, in gen-
eral, it may not be trivial to prove that a signature morphism extends to a morphism
between designs. After all, such a proof corresponds to recognising a component
within a system, which is likely to be a highly complex task unless we have further
information on how the system was put together. This is why it is important to sup-
port an architectural approach to design through which systems are put together by
interconnecting independent components. This is the topic of the next section.

4 Externalising the Bindings

As explained in [7], one of the advantages of the categorical formalisation is that it
supports a design approach based on superposing separate components (connectors)
over independent units. These separate components are called mediators in [14]: for
instance, Set as used for connecting a Counter and independent components that pub-
lish insertions and deletions. Morphisms, as defined in the previous section, enable
the definition of such a design approach by supporting the externalisation of bindings.

For instance, using a graphical notation for the interfaces of components — the
events they publish and subscribe, and the services that they can perform — we are
able to start from separate Set and Counter components and superpose, externally, the
bindings through which Counter subscribes the events published by Set:

inserted! doInc ?

Set Counter

il

deleted ! doDec?

Like in [6], we explore the “graphical” nature of Category Theory to model inter-
connections as “boxes and lines”. In our case, the lines need to be accounted for by
special components that perform the bindings between the event published by one
component and subscribed by the other:
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design Binding 0 is
publish&subscribe event

The binding has a single event that is both published and subscribed. The intercon-
nection between Set, Binding_0 and Counter is performed by an even simpler kind of
component: cables that attach the bindings to the events of the components.

design CableP is design CableS is
publish - subscribe °

Because names are local, the identities of events in cables are not relevant: they are
just placeholders for the projections to define the relevant bindings. Hence, we repre-
sented them through the symbol .. The configuration given above corresponds to the
following diagram (labelled graph) in the category DSGN of designs:

CableP Cables
\ /
Arted(—°—>event Binding_0 event<—e—dolnc
Set Counter
deleted<—e*—event Binding 0 evented—adoiii///)'
CableP /v v\ Cables

In Category Theory, diagrams are mathematical objects and, as such, can be ma-
nipulated in a formal way. One of the constructs that are available on certain dia-
grams internalises the connections in a single (composite) component. In the case
above, this consists in computing the colimit of the diagram [6], which returns the
design Set&Counter discussed in section 2. In fact, the colimit returns the morphisms
that identify both Ser and Counter as components of Set&Counter.

Bindings can be more complex. Just for illustration, consider the case in which we
want to count only the even elements that are inserted. Instead of using Binding_0 we
would use a more elaborate connector Filter defined as follows:

design Filter is

publish&subscribe target publish&subscribe source

provide service par n:nat .
publishes target invokes service .
effects target! handledBy iseven(n) O service?

This connector is made explicit in the configuration as a mediator:

source ?

inserted! doInc ?

Set Counter

deleted ! doDec?

source ? target !

Filter
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The same design approach can be applied to the addition of an Adder:

design Adder is store sum:nat
provide add subscribe doAdd

par lm:nat par which:nat

assignsTo sum invokes add

effects sum’=sum+lm handledBy add? A which=add.lm
provide sub subscribe doSub

par lm:nat par which:nat

assignsTo sum invokes sub

effects sum’=sum-1lm handledBy sub? A which=sub.lm

The required configuration is:

Counter

doInc @
-

deleted !

Set

inserted!

Adder
doadd P

We abstain from translating the configuration to a categorical diagram. The colimit
of that diagram returns the design Set&Counter&Adder discussed in section 2 and the
morphisms that identify Set, Adder and Counter as components.

S Combining Architectural Styles

Another advantage of the categorical formalisation of publish/subscribe is that it al-
lows us to use this style in conjunction with other architectural modelling techniques,
namely synchronous interactions as in CommUnity [6]. For instance, consider that we
are now interested in restricting the insertion of elements in a set to keep the sum
below a certain limit LIM. Changing the service add of Adder to

provide add
par lm:nat
assignsTo sum

guardedBy sum+1lm<LIM
effects sum’=sum+lm

does not solve the problem because Adder subscribes to inserted which is published
after the element has been inserted in the set. What we need is to strengthen the ena-
bling condition of insert in Set with sum+Im<LIM and ensure that sum is updated by
insert and delete. However, to do so within DSGN we would have to redesign the
whole system. Ideally, we would like to remain within the incremental approach
through which we superpose separate components to induce required behaviour.

One possibility is to use action synchronisation and i/o communication as in Com-
mUnity [6]. More precisely, the idea is to synchronise Set and Adder to ensure that
sum is updated when insertions and deletions are made, and superpose a regulator to
check the sum before allowing the insertion invocation to proceed.
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Consider the synchronisation of Set and Adder first. In CommUnity, actions cap-
ture synchronisation sets of service invocations, something that is not intrinsic to
implicit invocation as an architectural style and, therefore, cannot be expressed in the
formalism presented in the previous sections. Our first step is to extend the notion of
design with synchronisation constraints and communication channels.

Definition: We call an extended signature Q"° a signature Q together with two
D-indexed families I and O of mutually disjoint finite sets (of input and output chan-
nels, respectively). An extended design over Q"° is a wple <n, pP.YB > where
<np > is a design for Q in which I can be used in the languages of p and ¥, and:

o fis a proposition establishing what observations of the local state (variables)
are made available through the output channels.

e yis a proposition in the language of services and their parameters establish-
ing dependencies that need to be observed on execution.

As an example, consider the following revision of Set&Counter &Adder:

design syncSet&Counter&Adder is provide insert
store elems: set(nat), par lm:nat
value:nat, sum:nat assignsTo elems
publishes inserted
guardedBy lm¢elms A 1lm+sum<LIM
effects elems’={Ilm}uelems A
inserted! A inserted.which=1m

output mysum:nat

publish&subscribe inserted
par which:nat
invokes inc

handledBy inc? provide delete
) par lm:nat

publish&subscribe deleted assignsTo elems

par which:nat publishes deleted

invokes dec guardedBy lmeelms

handledBy dec? effects elems’'=elems\{lm} A
subscribe doInsert deleted! A deleted.which=1m

par which:nat

invokes insert

handledBy insert? A

which=insert.lm

provide inc
assignsTo value
effects value’=value+l
provide add
par lm:nat
assignsTo sum
effects sum’=sum+lm

subscribe doDelete
par which:nat
invokes delete
handledBy delete? A
which=delete.lm
synchronise insert=add A
insert.lm=add.lm A
sub=delete A
sub.lm=delete.lm

convey mysSum=sum

provide sub
par lm:nat
assignsTo sum
effects sum’=sum-1lm

provide dec

assignsTo value

effects value’=value-1

Through synchronise we provide a proposition that defines the synchronisation sets
of service activation that can be observed during execution. For instance, through
a=b, we can specify that two given services a and b are always activated simultane-
ously. Hence, in the example, insert and add are always performed synchronously.

Through convey we establish how the output channels relate to the state variables.
In the example, we are just making the sum directly available to be read by the envi-
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ronment through mysum. Notice that we have also strengthened the guard of insert
with the condition Im+sum<LIM.

It remains to show how we can externalise the extension. The following design
captures the synchronisation:

provide a

design sync is
par p:nat

synchronise a=b

A a.p=b.p provide b

par p:nat
For strengthening the guard of insert we need a component that reads the state of
Adder to determine if insert can proceed:

provide s
par n:nat
guardedBy n+i<LIM

design control is
input i:nat

This leads us to the following configuration:

doDec ? F)
delnc ? F}

deleted |

Counter

inserted!

insert

i econtrol s

Notice that syncAdder is given by the following design:

design syncAdder is
provide add
par lm:nat

assignsTo sum
effects sum’=sum+lm convey mysum=sum

store sum:nat
output mysum:nat

provide sub
par lm:nat
assignsTo sum
effects sum’=sum-1lm
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The proposed extension is supported by the following notion of morphism:

Definition: A morphism © between extended signatures <V,E;S; P, T;,H,1;,,0;>
and <V, E5, S5, Py, T5,H,,15,0,> is a morphism between signatures <V, E;,S;,P;,T;,H;>
and <V2,E2,S2,P2, Tz,H2> together with O-,'n.'I] ﬁ]gL}Oz and O-out-OI ﬁOg.

That is, as in CommUnity [6], input channels may become output channels of the
system but not the other way around.

Definition: A morphism between <1, %,Bux1> and <1, 1, B2 }2> is a mor-
phism between <1,0,, %> and <10, %> such that the observation and synchroni-
sation dependencies are preserved: @\ ,o0(3;) and @ 12000 71)

Notice that this is an extension of the previous notion, i.e. morphisms between de-
signs that do not involve communication channels and synchronisations are as before.
Further details on this extension, including the way it relates to CommUnity, can be
found in a companion paper.

6 Conclusions and Further Work

In this paper, we presented a formalisation of the architectural style known as “pub-
lish/subscribe” or “implicit invocation”. Full details on the mathematics involved as
well as the semantics of publication and notification can be found in a companion
paper. This formalisation allowed us to further validate the approach to software ar-
chitecture introduced in [7].

Other formal models [e.g., 4,9] exist that abstract away from concrete notions of
event and related notification mechanisms. However, they address the computational
aspects of the paradigm, which is necessary for supporting, for instance, several forms
of analysis. Our work addresses primarily the architectural properties of the paradigm,
i.e. what concerns the way connectors can be defined and superposed over compo-
nents to coordinate their interactions.

In particular, our formalisation allowed us to characterise key structural properties
of the architectural style in what concerns the externalisation of bindings and media-
tors previously claimed in papers like [14]. These properties derive from the fact that
the (forgetful) functor that maps the category of designs to that of signatures has the
strong structural property of being coordinated, as explained in [6]. We should stress
that these structural properties result from the nature of the morphisms that we de-
fined in section 3, which may leave some readers who are not aware of the complex-
ity of the mathematics involved somewhat disappointed and wishing to have seen
more results... It is true that, in this paper, we have “only” defined a category and a
(forgetful) functor, but both satisfy very strong properties that can be used for further
exploring implicit invocation as an architectural style.

Furthermore, the proposed categorical semantics allows us to investigate how this
style can be used in conjunction with other architectural techniques. In section 5, we
addressed the way implicit invocation can be used together with synchronous forms
of interconnection as previously formalised through the language CommUnity [6].
CommUnity itself has been extended in other ways, for instance with primitives that
capture distribution and mobility [8] as well as context awareness [11]. Further work
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is going on towards exploiting this categorical framework to support the integration of
several architectural styles.
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Abstract. Security violations occur in systems even if security design
is carried out or security tools are deployed. Social engineering attacks,
vulnerabilities that can not be captured in the relatively abstract de-
sign model (as buffer-overflows), or unclear security requirements are
only some examples of such unpredictable or unexpected vulnerabilities.
One of the aims of autonomous systems is to react to these unexpected
events through the system itself. Subsequently, this goal demands fur-
ther research about how such behavior can be designed and sufficiently
supported throughout the software development process. We present an
approach to engineer self-protection rules for autonomous systems that
is integrated into a model-driven software engineering process and pro-
vides concepts to formally verify that a given intrusion response model
satisfies certain security requirements.

1 Introduction

Model building as a means of producing appropriated documentation, provid-
ing specifications, and code generation is a standard practice in software en-
gineering. Security, as an integral part of any modern software system that is
not used in completely trusted environments, demands systematic support for
software engineers who need to produce secure software. Considering security
aspects throughout the entire software development process (and not during the
requirements analysis and system integration phases only) by explicitly integrat-
ing security into the design models can aid in detecting and removing potential
security breaches. Furthermore, model-centric and generative approaches, as the
concept of Model Driven Architecture (MDA) [5], have led to advancing support
for software engineers. Most noticeably, the Model Driven Security approach (see
[3]) proves to not only define access-control languages (in this case SecureUML)
but to provide a basis for refinement down to code as well. Access control is
concerned with preventing unauthorized accesses to shared resources. Which ac-
cesses are authorized depends on specific security requirements and has to be
specified in access control policies.

A model is an abstract part of the real world which contains the aspects rel-
evant to the developer. It does not deal with any environment interaction. In

L. Baresi and R. Heckel (Eds.): FASE 2006, LNCS 3922, pp. 33-47, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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particular from the viewpoint of security, not all possible attacks can be con-
sidered in a model. This may be because of the abstraction level of the model
(e.g. buffer overflows cannot be seen in class diagrams) or because of environ-
ment parts that are not considered in a model (e.g. social engineering) or other
reasons. Therefore, crucial functions must be monitored. Concerning security,
accesses to crucial data must be logged to see if unauthorized access occur de-
spite a given access control policy (e.g. by buffer overflows). In very sensitive
environments, intrusion detection systems (IDS) [19] and security engineering
[1], in practice, often need to be combined so that the occurrence of interactions
and system states not covered by the normal use cases raises an alarm in an
IDS. Consequently, the question of how to identify nonconforming or malicious
behavior and how to react to discovered security breaches arises.

Ever since IBM’s “call to arms” [6], called autonomous computing, research
increasingly focuses more effort on self-adapting, self-protecting, and self-healing
systems (i.e., autonoums systems) [18]. Monitoring the system is a necessary as-
pect in autonomous systems to detect system or environment changes and possi-
bly to react on these changes if necessary. Self-repairing/Self-protecting systems
are an ambitious goal whose realization concerns many aspects of software en-
gineering (for example Baresi et. al considered self-healing in service-oriented
systems in regard to dynamic binding of services in [2]). We consider in this
paper the self-protection of the system in the case of successful security attacks.

We take up the challenge of providing sufficient support to design and realize
self-protecting system. We present an approach to engineer self-protection rules
for autonomous systems, integrated into a model-driven development approach,
and capable to generate self-protecting access control aspects for XACML based
infrastructures. Furthermore, we provide concepts based on graph transforma-
tions [17] to formally verify that a given intrusion response model satisfies certain
security requirements.

The remainder of this article is organized as follows. We give next a description
of the model-driven development approach and the underlying concepts of our
access control model together with an operational semantic. Section 3 concerns
the specification of protection rules. Section 4 presents the concepts to verify
the satisfaction of security requirements. Finally, we present related work and
conclusion.

2 Model-Driven Development

We first present the integration of our approach into a model-driven development
approach namely, Model Driven Security and its underlying access control model
SecureUML. It concerns the development of XACML [11] based access control
policies and access control properties following an attribute based access control
approach which can be described by a mapping of the modeling elements of
SecureUML to XACML policies. Afterwards, an additional operational semantic
of the entity operations is given that serves as a starting point for our self-
protecting rules requirement analysis.
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Fig. 1. RBAC metamodel

As already stated above, we build up on the Secure UML metamodel presented
in [3]. Figure 1 presents the role based access control (RBAC) based metamodel
that defines the abstract syntax for SecureUML. Due to space constraints we
can not go in too much detail about the concrete syntax and semantics but
refer the interested reader to [3]. On the left-hand side of the diagram RBAC
is formalized. Users can be assigned to Groups. On the other side of the model,
permissions, which can be assigned to roles, are used to model the ability to
carry out actions on resources on behalf of a calling subject that is in a certain
role. Authorization constrains can be used to constrain that certain permissions
only hold in certain system states.

To this end, we require that subjects have or provide certain properties (cre-
dentials) to be assigned to roles. For example, a user name, a counter for logins, a
printer quota, location in mobile scenarios etc. This approach is called attribute-
based access control (ABAC) [16]. The main idea of ABAC is to dynamically de-
fine the authorization of subjects based on current property values of the calling
subjects and their targeted resources, respectively. In addition to the relatively
static defined roles, this attributes can be highly dynamic therefore, provide a
way to capture the needs of e-commerce as well as enterprise and e-government
applications in the internet ranging all the way to ubiquitous computing.
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Fig. 2. ABAC model
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Figure 2 shows our base model of the applied ABAC approach. In general, we
enhance the aforementioned metamodel in Fig. 1 by this explicit specification of
subject and object attributes.

2.1 Generation of XACML Based Access Control Policies

Model Driven Security gives a means to integrate access control concerns into a
model and subsequently generate code out of this model elements. In [3] concrete
mappings for EJB and .Net are given. In addition, we focus on the generation
of XACML based access control policies since, policy based infrastructures are
more flexible and, more specific, are able to provide better support for policy
changes and management then the standard security architectures of todays
enterprise systems. To this end, we define and implemented a UML profile that
enables to generate XACML policies from security models (i.e., models that are
build using our ABAC enhanced Secure UML modeling elements).

2.2 Example and Operational Semantics of the Protection Model

In addition to the SecureUML concrete semantic, our protection model contains
an operation semantic of the entity operations. As a running example, we will
consider developing a simplified version of a system for administrating calendars.
Figure 3 shows the simple interface of the calendar application that basically,
allows to create a calendar and subsequently, create, update, delete, and read
entries (i.e., appointments).

Calendarinterface

createCalendar(owner:String):String
newEntry(CID:String,time:String,day:String,room:String):String
updateEntry(CID:String, EID:String, time:String, day:String, room:String)
deleteEntry(CID:String, EID: String)

showEntries(CID:String): String[]

showEntry(CID:String, EID:String):String

Fig. 3. Interface of the Calendar Application

Considering this simple interface, one may want to enforce some basic integrity
properties like, for example that the creator of a calendar becomes its owner
hence, is the only one that is allowed to delete entries. Arbitrary users are allowed
to read the entries of any calendar but modification is up to the owner of the
calendar or a substitute like a secretary. At the very least a secretary should be
able to make and manage appointments (i.e., create and update entries in the
calendar). Lets assume that the deletion of an entry is restricted to the owner of
the calendar only. These security requirements are implemented in the model in
Fig. 4 which is an instance of the Secure UML metamodel. We have three roles
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Fig. 4. security model

and three permissions. The permission Basic allows a subject in role User to
read calendar entries and to create calendars. The permission Manage allows
subjects in role Secretary to modify a calendar and permission Destroy allows
subjects in role CalendarOwner to delete calendar entries.

Once the security model is accomplished, the operational semantics of the
entity operations have to be specified. We define the notion of a protection model
as follows. A protection model is a pair of a security model (as described above)
and a set of transformation rules [17]. Considering our example we write, the
security model of figure 4 as M and the protection model as a pair (M, ORules).
Figure 5 gives the transformation rules for the creation of a calendar and the
deletion of entries in the calendar via the create() and delete Entry() methods
of the Calendar entity. A transformation rule consists of two object diagrams.
The diagram on the left-hand side of a rule models the precondition to apply
the rule. The object diagram on the right-hand side models the transformed
object state. The left-hand side of rule create(z) requires a subject with name x
in a role and this role must have a permission with entity action create on the
calendar entity. If this object structure can be found in a system state, a new
calendar object for the subject with name x is created. The left-hand side of
rule deleteEntry requires a subject and a connected calendar object. The subject
must be in a role which has a permission for entity action deleteEntry. The
condition calendar.owner == x enforces that the rule can be only applied if the
subject is the owner of the calendar. The effect of the rule is the deletion of an
entry of the calendar object. Transformation rules can be mapped to graph rules
to give them a formal semantics [8,17].

Ultimately, the transformation rules capture the aforementioned attributes of
our subject and object descriptors and more importantly, their changes during
the state changes of the system. Since we assume that state changes are triggered
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Fig. 5. Operational semantics for calendar operations create() and deleteEntry()

by method calls our notion is sufficient to model their impact on the protection
model. In figure 5 for example, the create(x) call to the calendar interface sets
the owner attribute of the calendar to the name of the caller. In consequence, we
can build up on this attribute to restrict the deletion of an entry to the actual
creator of the calendar (i.e., its owner) by comparing the name attribute of the
caller with the owner attribute of a targeted calendar.

3 Specification of Self-protection Rules

The analysis of security requirements for a software system is a difficult design
task and recent research focuses on developing models and concepts to elicit,
analyze and document security requirements [9,10]. We assume in this article,
that security requirements are documented and a risk assessment has given them
a priority. The following list shows the examples used in the remainder of this
article.

Security Requirement C1: Prevent that a calendar has more than one owner.

Security Requirement C2: Prevent that a user is logged into the system more
than once.

Security Requirement C3: Prevent denial of service attacks by creating more
than n calendars.

These in natural language formulated requirements can be specified in semi-
formal or formal constraint languages (e.g., OCL[13]) and models can be checked
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if they satisfy these requirements. The focus of this article, however, is not this
static check of design models, but we are interested in the security vulnerabilities
that are detected during run-time even if the model is previously checked to be
secure.

Therefore, a crucial component of autonomous systems is a monitor which
observes the system states during run-time in order to detect constraint vio-
lations. When the monitor detects an insecure system state the system should
react by protection means (in the case of an autonomous system the system
reacts autonomously). One possible solution to protect the system would be a
system shutdown or to disconnect the whole system. This solution, however, is
quite rigid and restricts the availability of the system often more as necessary.
If the originator of a security violation can be determined it would possibly be
enough to eliminate this user from the system. If the originator is unknown, it
is sufficient to disconnect the attacked subsystem or restrict its functionality, so
that the remaining system can continue working in a restricted mode.

Before we present an approach to specify a more fine-grained protection,
we differentiate between self-protection and self-repairing of the system. Self-
protection changes the security model by revoking permissions as far as nec-
essary so that an intruder cannot do any harm with the acquired authoriza-
tion, but the system state remains unchanged. Self-repairing, on the other hand,
transforms the insecure system state into a secure state and lets the security
model unchanged. Self-repairing, i.e. an automatic modification of the system
state without any interaction with an administrator, is often difficult to imple-
ment. Consider as an example a violation of the requirement C1 from above,
i.e., the monitor detects two calendar owners for a calendar. Should we revoke
both owners from the calendar (but then we have calendars without owners)
or should we only revoke one calendar owner (but which one, which owner is
the "real” owner)? In the case of a violation of requirement C'3, calendars must
be removed to reach the maximum boundary of allowed calendars. But, which
calendar should be removed?

We focus next on the specification of self-protection. For each security
requirement, a set of protection rules models the reaction of the system to the
violation of the security requirement and transforms the protection model. The
transformation should restrict the model as far as necessary and should allow
system availability as far as possible. The protection rules are developed in two
steps:

1. Specify the response requirement. A response requirement for a security re-
quirement specifies the system functionality which must be restricted in the
case of a security requirement violation.

2. Specify the protection sets for the response requirement. A protection set
contains a set of transformation rules to restrict the security model. The
rules of a protection set for a response requirement shall satisfy the response
requirement.
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3.1 Development of the Intrusion Response

To support the system designer in finding the appropriate response requirements,
we suggest an approach which is driven by the UML models, since static dia-
grams (as class diagrams) contain the elements that should be protected (in our
example the calendars and their entries), the behavior diagrams (as sequence di-
agrams) show how the protected elements are accessed. Therefore, the designer
decides on the basis of these UML models the measures to do in the violation
response. Consider the security requirement C'1 for at most one calendar owner
as an example. The designer has the class diagram in Fig. 4 and the sequence
diagrams in Fig. 6 as documentation and assumes now that requirement C'1 can
be violated by a security vulnerability so that an attacker can become owner of
calendars of other persons. When the designer considers the sequence diagrams

caller cal: Calendar caller cal: Calendar

res=showEntries() res=showEntries()

showEntry(e) deleteEntry(...e)

updateEntry(..,e,...)

Fig. 6. Sequence diagrams for updating a calendar entry and for deleting an entry

in Fig. 6, (s)he realizes that the attacker can call the operations showEntries(),
showEntry(), updateEntry() and deleteEntry(). While an unauthorized call of the
operations showEntries() and showEntry() appears to be an acceptable (i.e., it
does not concern integrity) risk, compared to disabling read access for all (includ-
ing the trustworthy) users, an unauthorized call of the operations updateEntry()
and deleteEntry() cannot be tolerated. Therefore, the designer adds updateEn-
try() and deleteEntry() for calendar owner to the response requirement, i.e.,
both operations must not be called by calendar owners when requirement C'1 is
violated. Analog, the response requirements for the other security requirements
are specified driven by the UML diagrams.

The list below shows the response requirements of our calendar example. A
response requirement is a set of pairs (Caller, Operations) consisting of a list of
callers Claller who are not allowed to call the operations in the set Operations
in the case of the corresponding security violation.

Response(C1)={(CalendarOwner,{delete Entry(), newEntry(),
update Enty()})}
Response(C2)={(User,{delete Entry(), newEntry(),
updateEnty(), createCalendar()})}
Response(C3)={(User,{createCalendar()})}
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3.2 Specification of Self-protection

A first idea to satisfy the response requirement would be to generally disallow
callers to call the operations in the response requirement. Since the response
requirements are connected to certain callers, however, this general prohibition
is too strong. To restrict the operations to certain callers requires additional
operation conditions. Since operations are implemented and a code change dur-
ing run-time is not desirable, operations cannot be modified with respect to the
response requirement. Therefore, the security model must be modified so that
only the specific callers are affected. A change of the security model can be done
during run-time and is immediately enforced by the XACML infrastructure [11].

The security model transformation is specified by a set of graph rules (Fig. 7
shows a part of the graph rules for the calendar example). The protection sets for
a response requirement contain a subset of the protection rules. The protection
set Protect(C1) to satisfy the response requirement Response(C1) removes all
permissions from role calendar owner and adds a permission to calendar owner
to read calendars. The protection set Protect(C2) removes all permissions to
modify a calendar and introduces a restricted basic permission which allows the
user to read the calendars only. The protection set Protect(C3) removes the
permission to create calendars by adding a restricted basic view.

Protect(C1l)={remove destroy(CalendarOwner), remove inheritance, add
basic(CalendarOwner)}.

Protect(C2)={remove destroy(CalendarOwner), remove manage(Sectretary),
replace basic, add basicrestricted(User)}.

Protect(C3)={replace basic, add basicrestricted(User)}.

BBp o XX BBpel @pon: : <<Enriry>> Bp ove BBp o@XX BBhNoA :
X : CalendaC ERS X BatenoaB
Del ridy oeprid( (X) BehriA
BBp o XX BBhnroA: : aooX ape(X) BBp oeXX BBpeb pp@nXX BBh oA
X BatenoaB — X : BatenoaB
Bape Bapa
O $move SSROROO
DDRofe>> SSRoR>> el SSRoRCO
Sec®ry SaRnoa$wneS — Sec@ray SaRnoafDwneS
mhe@ance
Baha Bapep eprizzreo
SShnreMcron: : —SatenoaS:hhowhnreh restrict basic | | BBpnrBAcr®n: : ~BagnoaB:ppowp nriep
SShnrg\cren: : —~SatenoaS:hhowhnréA :> BBpnrBVAcron: : ~BagnoaB:ppowp nrB\
SShnr\AcrmnO0-SafenoaS:c®areSatenoaS

Fig. 7. The protection rules
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When the system monitor detects a violation of a security requirement (e.g.,
C1) the rules in the protection sets are executed (e.g., Protect(C1)) to ensure
the response requirement (e.g., Response(C1)). Figure 8 shows the results of
applying the protection sets Protect(C1), Protect(C2) and Protect(C3), re-
spectively, to the security model in Fig. 4. When several security requirements

Protect(C1) Protect(C2) Protect(C3)
<<Role>> <<Role>> <<Role>> <<Role>> <<Role>> <<Role>>
User Secretary User Secretary User < Secretary [
I—/\ I A I—
A A A
E <<Role>> s <<Role>> é
E CalendarOwner BasicResticted |----| 3. BasicResticted |----| 3 <<Role>>
........... [ - 8. CalendarOwner 3 CalendarOwner
Iy S S |a A
s |44 ] S A
v I8 v vy |8 8
Vilg|e v V|8 3
3|3 Destro; e 2
----- | el | ] | el | (e
a2 & &
HE g g
vy vy
<<Entity>> <<Entity>> <<Entity>>
Calendar Calendar Calendar

Fig.8. The security models after execution of Protect(C1), Protect(C2) and
Protect(C3)

are violated at the same time, several protection sets are applied. The response
requirement for two security requirements C'1 and C2 is Response(C1 + C2) =
Response(C1) U Response(C2). We define the protection set as Protect(C1 +
C2) = Protect(C1) U Protect(C2).

One could argue that, instead of specifying the protection rules, it would be
easier to specify immediately the restricted security models. Since there must
be a security model for each combination of violated security requirements, one
has to specify 2 — 1 security models in the case of n requirements. Therefore,
for a bigger n it is certainly more convenient to specify n rule sets which ensure
that each constructed security model is consistent. The next section concerns
this consistence statement.

4 Protection Satisfaction

A protection set contains rules which modify the security model in the case of
unexpected security requirement violations. By now, there is no restriction on
the ordering in which the rules of a protection set must be applied and one
can wonder if any order results in the same security model or if the ordering is
relevant. A second question is whether the security model constructed by the
rules of a protection set satisfy the response requirement. Therefore, this section
concerns the following questions.

1. Does the rule application ordering influence the final security model?
2. Does a protection set satisfies a response requirement?
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4.1 Dependencies Between Protection Rules

If a protection set becomes necessary to protect the system against a security
violation, each rule in the protection set is applied once. Since the ordering is by
default unrestricted, the following problems may occur (see also independence
of graph transformations in [17]).

Problem 1: Assume rules p; and ps which are both applicable to the security
model M, but rule p; deletes elements required by p2, so that an application of
p1 prevents the applicability of po. Dependent on the rule ordering, two different
security models M’ are generated and, therefore, the two rules are in conflict.
To detect these conflicts, critical pair analysis of graph rules [15,4] can be used.
The critical pairs for two rules are constructed by overlapping the rule left-hand
sides in all possible ways, such that the intersection contains at least one deleted
element. In this way, critical pairs show all the potential conflicts between the
rules in a minimal context. Each actual conflict in a bigger context will be
represented by one of the critical pairs.

There is tool support for generating the critical pairs for rules implemented
in the AGG tool [20]. Figure 9 shows the result of the critical pair analysis for
our example rules. The tool detects a critical pair for rules replaceBasic and
addBasic(CO). This bases on the fact, that rule replaceBasic deletes the permis-
sion Basic which in turn is required in the left-hand side of rule addBasic(CO).
Therefore, applying first rule replaceBasic prevents the application of rule ad-

dBasic(CO).

(nee |,/ Critical Pairs )

first \ second 1: removeDestro... 2: addBasic(CO)  3: removelnherit... 4: replaceBasic 5 M. 6: addBasicRestri
1: removeDestroy(CO) 0 “ 0 !l 1] | 1] 0 “ 0 i
2: addBasic(CO) 0 ” 0 :l 0 || 1 | 0 “ 0 |
3: removelnheritance o 0 jl a |[ 1] J 1] ” o ‘
4: replaceBasic 0 | 1 | 0 ” 0 ‘: 0 “ o ‘

i =5 i i

5: removeManage(Sec) [ 0 [ 0 J| 0 l 0 l 0 “ 0 J
6: lddBasicllestricled(UJ! 0 [ 0 ” 0 Jl 0 | 0 || 0 |

Fig. 9. Computation of critical pairs by AGG

After the computation of critical pairs for a protection set, the rule set
can be divided into conflict free rules (rules which do not have critical pairs)
and conflicting rules. Conflict free rules can be applied in any order (from the
viewpoint of problem 1, we will see next another problem which additionally
influences the rule application order) and the security engineer can use them
in any combination in the protection sets to get a single final security model.
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Conflicting rules should not be used together in a protection set or the security
engineer must specify the desired application order. In our example, (s)he could
specify that addBasic(CO) must always be applied before replaceBasic.

Problem 2: Assume now rules p; and po, so that p; creates elements required by
p2. Then, rule ps can be applied only after p;, but not before (see also sequential
dependence in [17]). These conflicts are called sequential dependence conflicts and
can be detected by considering the overlaps of the right-hand side of rule p; and
the left-hand side of rule ps. There is no conflict if the left-hand side of py does not
require elements which are generated by p;. Otherwise, there is a conflict. If we
investigate the rules of our example, we see that the rule addBasicRestricted(U) is
sequential dependent of replaceBasic since replaceBasic generates the permission
BasicRestricted required by rule addBasicRestricted(U). All other rules are not
sequential dependent.

Analog to critical pair analysis, sequential dependencies between protection
rules can be automatically detected and presented to the security engineer who
uses this information in the specification of the protection sets.

4.2 Satisfaction of the Response Requirement

Applying a protection set to a protection model (M, ORules) results in a new
protection model (M’ ORules) in which the security model is changed (from M
to M'). The operation rules ORules remain unchanged under this transforma-
tion. The permission or denial of operation accesses must now be checked with
respect to the new security model M’.

A protection set satisfies a response requirement Res, if for any pair
(Caller, Operations) in Res, none of the transformation rules for an operation
in Operations can be applied to Caller in the changed security model M’. This
satisfaction can be checked by considering the left-hand sides of the transforma-
tion rules in the response requirement Res and the new model M’. If the security
relevant part of the left-hand side (which consists of all elements with stereo-
type <<Role>>, <<EntityAction>>, <<Permission>> and <<Entity>>) of
a rule p in Res can be embedded into the security model M’ then one can con-
struct a state for M’ to which p can be applied (mainly the left-hand side itself).
Therefore, the response requirement is not satisfied. On the other hand, if the
security relevant part of the rule cannot be embedded into the security model,
this part can neither be embedded into a state for M’. This means that the rule
is never applicable and the response requirement is satisfied.

Consider as an example the protection set Protect(C1) for the security re-
quirement C'1. The modified security model M’ is shown in Fig. 8 on the left-
hand side. The response requirement Response(C1) forbids a calendar owner
for example to call the operation deleteEntry(). The security relevant part of
the left-hand side of the transformation rule for deleteEntry() (bottom of Fig. 5)
cannot be embedded into the security model M’, since the rule requires a role
which has a permission on the calendar entity, and the permission contains an
entity action deleteEntry. In the security model in Fig. 8, however, no role is
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connected to the permission Destroy (the only permission with entity action
deleteEntry). Therefore, the rule for deleteEntry() cannot be applied to any sys-
tem state corresponding to the security model M’.

4.3 Benefits for the Security Engineer

At the end of this section, we summarize how the answers of the two questions
in the beginning of this section can support the security engineer in designing a
self-protection system.

1. Does the rule application ordering influence the final security model?
Paragraph 4.1 has shown that different rule application orderings may lead
to different security models. The security engineer, however, can use criti-
cal pair analysis (supported by the AGG tool) and sequential dependence
analysis to compute the conflicting rules. Considering these results in the
engineering process of the protection sets allows the security engineer to get
a deterministic behavior of the protection set response.

2. Does a protection set satisfies a response requirement?

Paragraph 4.2 has presented a way to check whether the rules in a protection
set satisfy a response requirement by considering the left-hand side of the
transformation rules which specify the operations in the response require-
ment. If the designer detects rules in a protection set which does not satisfy a
response requirement, (s)he must change the protection set or the protection
rules until all response requirements are satisfied.

5 Related Work

Our approach uses the security engineering model presented in [3] for which
tool support is given by an integration of the SecureUML metamodel into the
ArcStyler tool [12]. The analysis stage of the software process, however, is not
considered but the process starts with the design models. Jiirjens presents in [7]
the integration of security into the UML. He shows how to model several security
aspects by UML model elements as, for example, stereotypes or tagged values.
His approach is more general than ours since it is not restricted to access control
but considers, for example, also security protocols. In [14,21] approaches to de-
sign intrusion detection systems are presented. The design, however, focusses on
the detection of attackers, less on the design of the response of an attack. Baresi
et. al considered self-healing in service-oriented systems in regard to dynamic
binding of services in [2].

6 Conclusion and Future Work

We presented a model-driven approach to engineer self-protection for au-
tonomous systems. The approach is integrated into model driven security Se-
cureUML for modeling access control and supports the system designer in en-
gineering self-protection rules to react to unexpected security vulnerabilities.
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Self-protection is specified by a set of transformation rules which restrict the
security model. A graph-based semantics for the transformation rules allows us
to verify that security requirements are satisfied by the specified self-protection
rules.

We target an XACML based infrastructure which enforces the security model
transformation that result by the self-protection sets. Furthermore, the XACML
policies shall be generated from the models and protection rules. Another point of
future work is the specification of the cancelation of self-protection restrictions.
In other words, if the reason that causes the insecure state is eliminated, we
have rules which transform the restricted model back into an unrestricted safe
system.
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Abstract. As XML diffusion keeps increasing, it is today common prac-
tice for most developers to deal with XML parsing and transformation.
XML is used as format to e.g. render data, query documents, deal with
Web services, generate code from a model or perform model transforma-
tion. Nowadays XSLT is the most common language for XML transfor-
mation. But, although meant to be simple, coding in XSLT can become
quite a challenge, if the coding approach does not only depend on the
structure of the source document, but the order of template application
is also dictated by target document structure. This is the case especially
when dealing with transformations between visual models. We propose
to use a graph-based approach to simplify the transformation definition
process where graphs representing documents are transformed in a rule-
based manner, as in XSLT. The differences to XSLT are mainly that
rules can be developed visually, are more abstract (since the order of
execution does not depend on the target document), IDREFs are dealt
with much more naturally, and due to typed transformations, the output
document is guaranteed to be valid with respect to the target schema.
Moreover, graph-based transformation definitions can be automatically
reversed in most cases. This is especially useful in model transformation
(e.g. in OMG’s MDA approach).

1 Introduction

When XML (Extensible Markup Language) [14] was being developed, the propos-
ing working group at W3C had clear design goals in mind: they wanted to come
up with a language which was at the same time formal, concise, easy to process
for applications and to read and write for human beings. Today XML is used in
virtually any IT domain as the most natural form to represent structured or (es-
pecially) semi-structured data. This includes usage of XML to store information,
serialize models, communicate over the Internet, etc. As a consequence of this dif-
fusion, it is common practice for most of today’s programmers to deal with XML
parsing and transformation, be it to render data, query documents, deal with web
services, generate code from a model or perform model transformation.

L. Baresi and R. Heckel (Eds.): FASE 2006, LNCS 3922, pp. 48-62, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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XSLT (the Extensible Stylesheet Language Transformations [16]) is the lan-
guage proposed by the W3C to deal with XML document transformation. Al-
though developed to enable most I'T developers to easily specify transformations,
there are cases in which writing XSLT can be quite hard. The reasons are that,
especially when dealing with model to model transformation, the coding ap-
proach does not only depend on the structure of the source document, but the
order of template application is also dictated by target document structure. In
addition to this, extensive use of IDREFs (i.e. references to other elements) can
force developers to complicated composition of recursion, variables or keys to
hop around the XML tree representation looking for some element.

We propose to use a graph-based approach to simplify the transformation
definition process. Whether or not XML documents conform to a given docu-
ment type definition (DTD) or XML Schema, typing information can be inferred
and represented by so-called type graphs. Any XML document can therefore be
represented as a typed graph and transformed in a rule-based manner, as in
XSLT. The differences toward XSLT are mainly that rules can be depicted vi-
sually, are more abstract (so the order of execution does not depend on target
document), IDREF's are dealt with much more naturally, and because of typing,
the transformation output is guaranteed valid with respect to the target schema.

Often transformations between XML formats are needed back and forth, e.g.
a UML model is translated to some semantic domain (for example Petri nets)
to do some validation and the result which might be a change proposal, has to
be translated back. We show that graph rules can be automatically reversed in
certain cases, to formulate a reverse XML transformation.

The new approach for XML transformations has been tested at a variety of
different transformations. Throughout this paper we discuss the transformation
of class diagrams in XMI [18] format to entity-relationship diagrams in WebML
[13] format, and back.

The paper is organized as follows: Section 2 introduces to the main con-
cepts of XML and XSLT and illustrates them at the running example, an XML
transformation from XMI to WebML. Section 3 gives an introduction into the
basic graph transformation concepts which is used in section 4 to define our
graph-based approach to XML transformation. This approach is applied to the
running example in section 5. Thereafter, we discuss the possibilities to reverse
XML transformations automatically in section 6. Related approaches and a short
conclusion can be found in section 7.

2 XML and XSLT

XML Documents. The Extensible Markup Language (XML) [14] is a simple, very
flexible text format derived from SGML (ISO 8879 [11]). Originally designed to
meet the challenges of large-scale electronic publishing, XML is playing an in-
creasingly important role in the exchange of a wide variety of data on the Web
and elsewhere. XML documents are composed of markup and content, a snippet
of an XML document is shown below. This example is an extract of a WebML
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(Web Modeling Language [13]) document representing an Entity-Relationship
diagram.

<?xml version="1.0" encoding="IS0-8859-1"7>
<!DOCTYPE WebML SYSTEM "WebML.dtd">
<WebML xmlns:auxiliary="http://www.webml.org/auxiliary"
xmlns:graphmetadata="http://www.webml.org/graphmetadata"
xmlns:presentation="http://www.webml.org/presentation"
siteName="Acme" version="3.0.18">
<Structure graphmetadata:go="Structure_go" id="Structure">
<ENTITY auxiliary:testCaseCount="20"
graphmetadata:go="User_go" id="User" name="User">
<ATTRIBUTE id="userName" name="UserName" type="String"/>
<ATTRIBUTE id="password" name="Password" type="Password"/>
<ATTRIBUTE id="email" name="EMail" type="String"/>
<RELATIONSHIP id="User2Group" inverse="Group2User" maxCard="N"
minCard="1" name="User_Group" roleName="User2Group" to="Group"/>
<RELATIONSHIP id="User2DefaultGroup" inverse="DefaultGroup2User"
maxCard="1" minCard="1" name="User_DefaultGroup"
roleName="User2DefaultGroup" to="Group"/>
</ENTITY>

</Structure>
</WebML>

The basic kinds of markup which can occur in the XML document content
are the following:

— FElements are indicated by opening and closing tags (with angle brackets) and
may contain other nested elements. If they don’t they may also be written
as a single in-line tag (e.g. <elem/>).

— Attributes are pairs composed of a name and a quoted-value inside start-tags
after the element name.

Additionally, entities, comments, and CDATA sections are allowed as building
blocks of XML (besides processing instructions).

XSL Transformations. Two W3C Recommendations, XSLT and XPath (the
XML Path Language [15]), are provided to allow for transformation of a source
XML document into another document written in any language. We use XSLT,
which itself uses XPath, to specify how an implementation of an XSLT processor
is to create our desired output from our given marked-up input. XML documents
are represented as trees: XSLT provides constructs to navigate through nodes,
iterate, and eventually produce new nodes in the output document, XPATH pro-
vides a way to select or express conditions regarding a node given a starting con-
text of application. XSLT is a declarative language, the XSLT processor is not
told how to perform the transformation, rather XSLT describes the expected re-
sult with respect to the source document structure. This allows a stylesheet to be
applicable to a wide class of documents that have similar source tree structures.
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There are two approaches to stylesheet design: 'push’ and 'pull’. In the first
one, the XSLT processor is instructed with templates (rules) to be performed
when, during parser navigation, a certain element is encountered. It is called
push because each node visited by the parser is ” pushed” through the stylesheet
to be caught by template rules. The output will be dictated by the source docu-
ment. The push style is considered by many experts the most scalable approach,
although some critics claim that code maintenance is hard. Push is the only way
to go when the order in which XML elements will be encountered by the parser
is not known a priori, like in text-oriented XML documents.

In the pull approach instead, source document nodes are selected (”pulled”)
from the source document by means of XPATH expressions as they are needed.
The pull approach is usually composed by a single template containing a list of
steps to perform, this more declarative approach is preferred by developers that
never really got too much acquainted with functional programming style at the
bottom of XSLT [9]. Pull is better suited for data-oriented documents as the
developer can somehow anticipate the order of the information.

Most XSLT stylesheets use a combination of both approaches, the most com-
mon practice has push templates containing some pull instructions. In the code
snippet below we use a template to transform a UML Association from XMI into
a WebML Relationship. It uses a template to match a UML:Class (push) and
produce an ENTITY element with the appropriate attributes. As in WebML a
RELATIONSHIP element has to be nested inside an ENTITY, in this trans-
formation we’re forced to use the pull approach in order to retrieve the related
association information before the production of the closing ENTITY tag. Thus,
the structure of the target document limits our choice of coding approach.

Associations in XMI are represented by a quite verbose tree, two nodes called
AssociationEnd identify the end points of the association by means of the at-
tribute ”participant”. The attribute contains a reference to the identifier of an-
other XML element. References to IDs are very common in XML: they are called
IDREFSs, and provide a way to express relations between elements that differs
from nesting as it supports multiple cardinalities. The retrieval of all the as-
sociation instances that end up in the UML:Class we are currently matching
has to leverage the IDREF in attribute ” participant” of element AssociationEnd.
Therefore the apply-templates statement of line 4 uses an XPATH expression to
select all association ends having an attribute called ” participant” whose value is
equal to the attribute ”xmi.id” of the XML element we are currently matching.
Note how the XPATH expression also considers the navigation path from the
current element to the element we want to match. We could also have used a
more general navigation path (worsening parser performance) or a "key” con-
struct if we wanted to match all UML:AssociationEnd elements no matter their
position in the source document. The example we provided is fairly simple, but
gives a basic idea of the way IDREFs are handled in XSLT. Transformations
that require navigating chains of IDREFs are much more complex and require
either declaration of multiple keys, usage of variables, or invocation of multiple
templates. Consider for instance the existence of the attribute ”package” on the
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UML:Class element being an IDREF to a UML:Package ID. If for any reason we
wanted to translate into relationships only associations between classes in the
same package we would necessarily have to use a key, a variable or a paramet-
ric template. In the following sections we will show the benefits of using graph
transformation to handle IDREF's.

<xsl:template match="UML:Class">
<ENTITY name="{@namel}"id="{@xmi.id}">
<xsl:apply-templates/>
<xsl:apply-templates
select="../*/*/UML:AssociationEnd
[eparticipant = current()/@xmi.id]"/>
</ENTITY>
</xsl:template>

<xsl:template match="UML:AssociationEnd">
<RELATIONSHIP id="{@xmi.id}" name="{@name}" roleName="{@namel}">
<xsl:attribute name="inverse">
<xsl:value-of select="../UML:AssociationEnd
[@xmi.id '= current()/@xmi.id]/@xmi.id"/>
</xsl:attribute>
<xsl:attribute name="maxCard">
<xsl:value-of select="UML:AssociationEnd.multiplicity/
UML:Multiplicity/UML:Multiplicity.range/
UML:MultiplicityRange/@upper"/>
</xsl:attribute>
<xsl:attribute name="minCard">

</xsl:attribute>
<xsl:attribute name="to">
<xsl:value-of select="../UML:AssociationEnd
[@xmi.id != current()/@xmi.id]/@participant"/>
</xsl:attribute>
</RELATIONSHIP>
</xsl:template>

3 Graph Transformation

Graphs are a general means to represent any kind of data structures. Especially,
they are well-suited to show the structure of XML documents. Visualizing an
XML document by a graph, it usually resembles a DOM tree and can be en-
hanced by edges which represent references to other identities, in addition. For
an example, see Fig. 1 where part of a WebML document is visualized.

If XML documents conform to a given DTD or XML Schema, this typing
information can be represented by typed graphs. The DTD or XML Schema
is translated to a type graph which looks similar to class diagrams (without
additional constraints). As in object-oriented modelling, types can be structured
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Fig. 1. Graph which represents the example WebML document in Section 2

by an inheritance relation [6]. Instances of a type graph are structure graphs
equipped with a structure-compatible mapping to the type graph.

Formally, structure graphs are described by typed attributed graphs [7]. An
attribute is declared just like a variable in a conventional programming language:
we specify a name and a certain type for the attribute, and then we may assign
any value of the specified type to it. All graph objects of the same type also
share their attribute declarations, i.e. the list of attribute types and names;
only the values of the attributes may be chosen individually. From a conceptual
point of view, attribute declarations have to be considered as an integral part
of the definition of a type. In theory [7], the attribute values are defined by
separate data nodes which are elements of some algebra. In the AGG [1] tool,
the attribution is based on Java (see below).

A graph transformation rule r : L — R consists of a pair of T-typed graphs
L, R such that the union LUR is defined. In this case, LUR forms a graph again,
i.e. the union is compatible with source, target and type settings. The left-hand
side L represents the pre-conditions of the rule, while the right-hand side R de-
scribes the post-conditions. LN R defines a graph part which has to exist to apply
the rule, but which is not changed. L \ (L N R) defines the part which shall be
deleted, and R\ (LN R) defines the part to be created. To make sure that newly
created items are not already in the graph, we have to generate new vertex and
edge identifiers whenever a rule is applied. Formally, for each application a new
rule instance is created. Furthermore, a rule may specify attribute computations.
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For this purpose, the rule graphs can be attributed by elements of term algebras
which are instantiated by concrete values in the graphs when the rule is applied.

Two sample rules are given in Figures 3 and 5, created with AGG. Both figures
show the LHS (left-hand side) L and RHS (right-hand side) R separately. All
elements of (LN R) are numbered correspondingly in L and R. Both rules do not
delete anything, thus all elements in the LHS are numbered. The non-numbered
elements in the RHS are the elements to be created. Both rules use a lot of
variables as attribute values which indicates that arbitrary values are allowed.
If several attributes have the same variable as value, the corresponding matched
values in the host graph have to be equal. This is the case, e.g. in the rule in
Figure 5 where attribute xmi.id of node 14:UML:Class has the same variable as
value as node attribute participant in node 4:UML:AssociationEnd.

A graph transformation step is defined by first finding a match m of the left-
hand side L in the current host graph G such that m is structure-preserving
and type compatible. If a vertex embedded into the context, shall be deleted,
dangling edges can occur. These are edges which would not have a source or
target vertex after rule application. There are mainly two ways to handle this
problem: either the rule is not applied at match m, or it is applied and all
dangling edges are also deleted.

The applicability of a rule can be further restricted, if additional application
conditions have to be satisfied. A special kind of application conditions are neg-
ative application conditions which are pre-conditions prohibiting certain graph
parts.

Performing a graph transformation step with rule r at match m, all the ver-
tices and edges which are matched by L\ (L N R) are removed from G. The
removed part is not a graph in general, but the remaining structure D :=
G\ m(L\ (LN R)) still has to be a legal graph, i.e., no edges should be left
dangling. This means if dangling edges occur during a rule application, they
have to be deleted in addition. In the second step of a graph transformation,
graph D is glued with R\ (L N R) to obtain the derived graph H. Since L and
R can overlap in a common graph, its match occurs in the original graph G
and is not deleted in the first step, i.e. it also occurs in the intermediate graph
D. For gluing newly created vertices and edges into D, graph L N R is used. It
defines the gluing items at which R is inserted into D. A graph transformation,
more precisely a graph transformation sequence, consists of zero or more graph
transformation steps.

Given a host graph and a set of graph rules, two kinds of non-determinism
can occur: first several rules might be applicable and one of them is chosen
arbitrarily. Second, given a certain rule several matches might be possible and
one of them has to be chosen. There are techniques to restrict both kinds of
choices. Some kind of control flow on rules can be defined by applying them in
a certain order or using explicit control constructs, priorities, etc. Moreover, the
choice of matches can be restricted by specifying partial matches using input
parameters. A common form of controlled rule application is the following one:
One rule is selected from outside (e.g. the user) and triggers the application of
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a number of other rules which become applicable after the first rule has been
applied.

The graph transformation approach presented is supported by AGG [1] which
is an integrated development tool for typed attributed graph transformation,
implemented in Java. It offers the visual development of graph transformation
systems including visual editing and simulation as well as a number of validation
tools. The internal graph transformation engine can also be used by a Java API
and thus, can be integrated into other tool environments. Several XML based
input and output formats are available to the integration of AGG with other
tools.

4 The Graph-Based Approach

The approach we propose aims at simplifying the process by letting the developer
design the transformation visually and abstracting from document structure and
element production order.

Relation between XML Documents and AGG Graphs. To be able to use graph
transformation for the transformation of XML documents, there must be transla-
tions between XML documents and graphs. A simple solution is to provide univer-
sal XSL transformations from XML documents (without DTD or XMLSchema) to
AGG graphs in the proprietary XML format for AGG, GGX, and back from GGX
to XML. Once provided the user can completely concentrate on graph transfor-
mation and does not have to deal with XSL transformations at all. This idea can
be extended to XML documents which conform to a DTD or XML Schema. In this
case, the universal XSL transformation also transforms the DTD or XML Schema
into a corresponding type graph. In this case the type graph may be enhanced by
stronger constraints such as multiplicities.

These XSL transformations are applicable to any XML documents. A result-
ing AGG graph shows the structure of the corresponding XML document and
resembles a DOM tree enhanced by additional edges which represent references
to other identities.

The translation between XML documents and AGG graphs can also be ob-
tained on the basis of a Java API for AGG which can be used to construct and
read graphs.

XML Transformation by Graph Transformation. Describing an XML transfor-
mation by graph transformation, the source and target documents are visualized
by graphs as discussed above. Performing XML transformation by graph trans-
formation means to take the structure graph of an XML source document, and to
transform it according to certain transformation rules. The result is the structure
graph of the XML target document.

An XML transformation can be precisely defined by a graph transformation
system GT'S = (T, R) consisting of a type graph T and a set of transformation
rules R. The structure graphs of the source documents can be specified by a
subset of instance graphs over a type graph Ts. Correspondingly, the structure
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Fig. 2. Typing in the transformation process

graphs of the target documents are specified by a subset of instance graphs over a
type graph 7. Both type graphs T's and T have to be subgraphs of the common
type graph T. See Figure 2. Starting the XML transformation with instance
graph Gg typed over Tg, it is also typed over T. During the transformation
process, the intermediate graphs are typed over T'. Please note that this type
graph may contain not only Ts and Tp, but also additional types and relations
which are needed for the transformation process only. The result graph Gr is
automatically typed over T If it is also typed over T, it fulfills the requirement
to be valid.

5 Example: From XMI to WebML

In this section, we take up the running example again and show how graph
transformation can be used to transform UML class diagrams in XMI format
into entity-relationship diagrams in WebML.

The type graph for the transformation consists of three parts. Figure 4 shows
the main section of type graph. The left part represents the type graph for
WebML structures. The right part shows the type graph for XMI structures. In
the middle, is one node type transf for relating XML nodes in both structures.

The transformation system contains five rules connecting nodes of the XMI
document to newly created nodes in the WebML document (one rule for each
element in the target document). Rules are quite simple and generally map a
set of nodes (XMI is particularly verbose) into a target document node. Figure

|1 :UML:r-Jamespac-‘:.awne-:IEIement| |4:Structure| |1 :UML:r-Jamespace.awne-:IEIement| |4:Structure|
5 f 5/
¥ ¥
2IUML:Class 2IUML.Class EMTITY
pos=pos pos=pos pos=pos
name=name name=name text=""
xmiid=id xmiid=id auxiliary: attributesvisible="

auxiliarytestCaseCount=""
graphmetadata:go=""
id=id

name=name

Fig. 3. Graph rule which translates classes to entities
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Fig.4
3 shows the rule converting a class node into an entity node. The left hand side

matches a UML:Class node child of a UML:Namespace.ownedElement, the latter
has already been translated into a Structure element to which it is connected by
a transf node and two edges. The RHS of the rule adds a new entity, connects
it to the parent node with a child edge, and to the originating UML:Class node
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Graph rule which translates associations to relations

Fig. 5.

via a transf node and edges. Since this transformation should be performed only

once for each class, the rule is equipped with a negative application condition

which is structurally equal to the RHS. That means before inserting a new entity
for some class, we check that this class is not already related to some entity. This



A Graph-Based Approach to Transform XML Documents 59

visual approach simplifies the design of the transformation giving the user a clear
representation of what each rule will produce.

The rule in Figure 5 is used to create two relationship nodes starting from
a UML:Association subtree. In LHS, we search for a pattern consisting of an
association with association ends which refer to the participating classes by
attribute participant in UML:AssociationEnd nodes. The references are enforced
by variables partl and part2, to be matched with class IDs. Please note that
this rule inserts two relationships, i.e. translates the association completely in
one step, something not achievable in XSLT. Moreover, the use of variables to
resolve IDREFs makes the rule clear at first sight. Again, this rule has a negative
application condition structurally equal to the RHS, which prevents the rule from
being applied twice to the same association.

In addition to the example presented here, we successfully experimented our
approach also in transforming XML graph representation into Scalable Vector
Graphics (SVG), rendering XML documents in HTML and reverse, performing
WebML model to Struts configuration files transformation. We report on these
experiments as examples for graph transformation applications on the AGG
home page [1].

Discussion. The advantages of using graph rules instead of an XSLT transfor-
mation are multiple: first of all the result graph is typed, therefore enforcing
the validity of the output with respect to the target document schema. This
can be obtained in XSLT only by using schema-aware processors. Second, the
representation of the type graph allows for an easier visual definition of the rules
by matching subtrees, rule application conditions and behaviour are evident at
first sight. Third, the use of variables (or edges) to deal with IDREF's is much
more straightforward than any other construct in XSLT as we don’t have to look
for elements considering current context but we can naturally compose chains of
IDREFs without having to declare multiple keys or complex (context-dependent)
navigation XPATHs. The disadvantages of using graph transformations reside in
the fact that in general the matching of the LHS of a rule in an instance graph
is NP-complete, and basic graph transformation systems don’t have a "natural”
way of expressing a sequence of execution. But more elaborated forms of graph
transformation systems provide different kinds of control on rule applications,
as e.g. execution layers, priorities, control flows, etc. Some powerful constructs
could also be inspired by XSLT (e.g. implicit and explicit rule priorities) or the
new XSLT2 proposal [17], such as the ”xslinext-match” instruction.

6 Reversal of XML Transformations

Automatic Reversal of Graph-Based XML Transformations. Due to the fact that
they are at a higher level of abstraction, graph-based XML transformations are
composed of rules that do not depend on the parsing order of the source docu-
ment or order of nesting of the output. For this reason, under certain conditions,
they can be automatically reversed to produce the inverse transformation, that
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|1:UML:NamESpace.c-wn-‘:-:lEIem-‘:nt| |3:Structure| |1 :Urv1L:Namespac-‘:.c-wne-:IEIement| |3:Strurc.ture|
B v
UML:Class
4ENTITY pos=pos 4:ENTITY
pos=pos tet="" pos=pos
id=id name=name id=id
name=name visibility="" name=name
ami.id=id

Fig. 6. Graph rule which translates entities to classes

is from the target document structure to the source one: this is not achievable
with XSLT where each transformation is inherently uni-directional.

Obviously, to be fully reversible, a transformation would need to be infor-
mation lossless: alas, this is not the case in most real applications where target
documents simply do not require some data. Anyhow, the proposed approach is
able to provide a reverse transformation as close as possible. Moreover, once a
transformation is performed, the result graph preserves information about ele-
ments related by the transformation.

The graph rules performing the reverse transformation are based on the same
type graph as the original rules, no changes are needed. The first observation
when reversing rules is that all XML transformation rules we used are non-
deleting: they only add elements. All transformation rules have a context which
contains a relation between source and target elements already established. This
context is preserved in forward and backward transformation rules. In addition,
the LHS of the forward rule contains some source part, while the backward rule
contains some target part. As RHS of the backward rule we take the RHS of the
forward rule. It remains almost unaltered as it represents the completed relation
between the source document and the target one.

The computation of attribute values is inverted accordingly, with slight dif-
ferences: Each attribute of a new element in a RHS must be provided with an
initial value. If an attribute values cannot be restored, a default value has to
be used. If target attributes are computed by functions on source attributes, in
the reverse RHS, source attributes are calculated by inverse functions on target
attributes.

Ezample: From WebML to XMI. This example shows one of the rules automati-
cally obtained by inverting our example rules given in Section 5. Figure 6 shows
the rule transforming an entity into a class, being the inverse rule of the one in
Figure 3. The RHS of the rule is obtained from the original RHS by defining at-
tributes of source document elements in terms (or functions) of target document
attributes. As not all Class attributes are preserved in the WebML representa-
tion, just those attribute values that can be retrieved are used, therefore some
Class attributes are left empty. Attribute values which were left empty in the En-
tity element of the original rule are discarded. The LHS is derived from the new
RHS by deleting the new ”transf” node and all the source document elements
that were connected to it (and to no other ”transf” node).
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7 Related Work and Conclusion

Even though XSLT is a popular and well supported XML transformation lan-
guage, other approaches might be better suited to perform some kind of trans-
formations (or might better suit personal tastes). In the current paper we pro-
posed a graph based approach that simplifies the specification of XML document
transformations with respect to XSLT by being visual and independent of node
writing order, by providing a "natural” way to deal with IDREFs and by al-
lowing for a unique specification for bi-directional transformation. This makes
the proposed solution especially suitable for the OMG’s MDA methodology. We
developed a prototype implementation of the approach based on AGG.

Different proposals exist for using visual approaches to query, perform syntax-
checking, infer DTDs and schemas, and transform XML documents. XML-GL
[5] uses graphs both for representing XML documents and queries on them, but
it does not perform document transformation between different vocabularies.
XQBE (XQuery by example [4]) provides a visual language to specify queries
on XML documents and translates it into XQuery or XSLT. VXT [10] is a
visual methodology to specify uni-directional XML document transformation,
while XMLTrans [19] is a Java based transformation language. Xing [8] is a
visual language to query XML documents. In [2] a graph grammar for inferring
the DTD of an XML document is proposed. In [20] and [21] the authors use
a context-sensitive graph grammar for both defining the schema of an XML
document and the rules to translate it into another vocabulary. Bezivin et.al.
[3] propose a model transformation approach to obtain tool interoperability in
the context of certain applications. This approach shows some similarities to
ours in the sense that it is based on EMF models and uses a more abstract
transformation approach which is QVT-like [12].

Apart from using a different formalism w.r.t. other approaches our proposal per-
forms DTD inference when needed, XML document transformation between differ-
ent vocabularies with advantages w.r.t. XSLT regarding typing, visual matching
and IDREFSs, plus it allows reverse transformations. Future work will deal with
performance issues and focus specifically on formalizing the requirements for a
transformation to be fully reversible.
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Abstract. Modern software codebases are frequently large, heteroge-
neous, and constantly evolving. The languages and tools for software
construction, including code builds and configuration management, have
not been well-studied. Developers are often faced with using 1) older
tools (like make) that do not scale well, 2) custom build scripts that
tend to be fragile, or 3) proprietary tools that are not portable.

In this paper, we study the build issue as a domain-specific program-
ming problem. There are a number of challenges that are unique to the do-
main of build systems. We argue that a central goal is compositionality—
that is, it should be possible to specify a software component in isolation
and add it to a project with an assurance that the global specification will
not be compromised. The next important goal is to cover the full range of
complexity—from allowing very concise specifications for the most com-
mon cases to providing the flexibility to encompass projects with unusual
needs. Dependency analysis, which is a prerequisite for incremental builds,
must be automated in order to achieve compositionality an reliability; it
also spans the full range of complexity.

We develop a language for describing software builds and configura-
tion. We also develop an implementation (called OMake), that addresses
all the above challenges efficiently and portably. It also provides a num-
ber of features that help streamline the edit/compile development cycle.

OMake is freely available under the GNU General Public License, and
is actively being used in several large projects.

1 Introduction and Problem Definition

The general objective of a build system is to automate the construction of a
software product from a set of inputs. For example, the product might be an
application executable, where the inputs are the source files; in this case, the
executable is usually constructed by compiling and linking the source files. The
software product might also have several parts, for example it might be a web
site that is to be constructed from a set of source scripts and document files. The
process of generating the product from the inputs is called building the product;
each run is called a build; and the tool used to manage the build is called a build
system.

* An extended version of this paper is available as a California Institute of Technology
Technical Report CaltechCSTR:2006.001.

L. Baresi and R. Heckel (Eds.): FASE 2006, LNCS 3922, pp. 63-78, 2006.
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1.1 Specification of the Build Process

In general, we will assume that both the inputs and the results of a build are rep-
resented as files. A complete build is usually composed of several steps, including
actions like 1) compiling source files, 2) linking object files to construct libraries
or executables, 3) generating documentation, 4) and packaging the results. In
the interest of modularity, and also to allow incremental builds, we would like to
specify a build in terms of steps, where each individual step involves executing
a script or application, such as a compiler, to generate a set of output files from
a set of input files. We call the output files targets; the input files are called
dependencies. In some cases we also refer to named tasks as targets.

We assume that each step can be specified as a build rule with the following
parts.

— a set of targets to be built,

— a set of dependencies,

— a set of files, called side-effects, that may be modified during execution of
the rule; the targets are always side-effects of the rule,

— a function or script, called the build commands, that may be called to con-
struct the targets from the dependencies. We say that a rule is executed when
its build commands are executed.

For the purpose of incremental builds, smaller steps are often preferable.

We further classify the dependencies: explicit dependencies are part of the
rule specification, and implicit dependencies are all other factors that may affect
the outcome of a rule execution. For example, if a dependency file.c contains a
line #include *file.h”, then file.h is an implicit dependency of the rule if it is not
already explicit. Strictly speaking, the compiler binary is also a dependency.

A build specification for a project defines a set of build rules that form a
dependency graph. The leaves of the graph are the files that do not appear as
targets; they correspond to source files. A target is considered up-to-date if all
of the following hold:

1. it has been built at least once, and the most recent rule execution was suc-
cessful,

2. all of its dependencies are up-to-date,

3. the dependencies and commands have not changed since the previous time
it was built,

4. none of the effects (the side-effects and the target itself) have changed since
the previous time the rule was executed.

Leaf files are always up-to-date, if they exist. The task of a build system is to
bring the desired targets up-to-date by executing a (preferably minimal) set of
rules.

This definition of “up-of-date” has several noteworthy properties. First, it
does not refer to such unreliable properties as file timestamps; even a file with
a very recent timestamp may be considered out-of-date if it was produced by
something external to the build system and the build system has no way of
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knowing for sure whether it was produced correctly. Second, the definition ex-
plicitly states that the target has to be rebuilt when the corresponding command
changes. This means that when a user updates the build configuration (for ex-
ample, the compiler flags), the build system will be required to rebuild all the
targets that have to be built differently under the new configuration (again, re-
gardless of how fresh the timestamps are). Finally, it allows for not propagating
the changes that do not affect the outcome. For example, if a program myprog de-
pends on file.o, which in turn depends on file.c, then insignificant changes to file.c
(such as a white space or comment change) will cause only file.o to be rebuilt,
but myprog does not have to be rebuilt unless file.o changes too.

1.2 Constraints and Requirements

Not every build graph defines a well-formed project. We impose the following
constraints.

1. The dependency graph must be acyclic.

2. Each target is the target of exactly one rule.

3. If the transitive dependencies of a rule are up-to-date, then executing a rule
successfully brings the targets of the rule up-to-date.

4. Rules may be executed in parallel if their side-effects do not intersect.

The acyclic requirement is used to help ensure termination of the build. If ter-
mination is not a concern, the acyclic requirement can be relaxed, and the build
process becomes a fixpoint calculation. The second and third requirements are
constraints on the programmer of the build. In order for the build specification
to be robust and maintainable, there must be exactly one way to build each
target, and the command to build it must be correct. The final requirement is
for performance and is not strict. If interferences between rules are not specified
accurately, the build user is limited to serial rule execution.

2 Design Requirements

As specified, the build system implementation might appear to be a straight-
forward task of providing a solver that takes a dependency graph and executes
rules in some order to bring all targets up-to-date. Indeed, the solver is reason-
ably straightforward and algorithmically unsurprising. The interesting issues are
on either side of it. First, how should the dependency graph be specified; and
second, how may build commands be specified and executed portably? Before
answering these questions, we introduce the design requirements.

— There should be a single build specification (perhaps in multiple files) for an
entire project.

— Build specifications must be configurable. In other words, it should be pos-
sible to parameterize them by properties like project requirements and ver-
sions, by the availability of tools, by the target platform, and other properties
of the build environment.
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— The build specification should be stable relative to project evolution. That
is, maintenance of the build specification should be insignificant relative to
the project development and maintenance effort.

— Specifications must be compositional. That is, the sub-specifications for the
components of a project may be expressed independently, and combined
without interference.

— The build system should be general, not specific to a particular application
domain.

— The system should not require that all dependencies be stated explicitly;
instead it should provide an automated mechanism for discovery of implicit
dependencies.

These requirements rule out some naive solutions. For example, requiring that
the programmer provide the full, literal, dependency graph is not possible be-
cause for large projects the specification would be large, repetitive, and difficult
to maintain; in addition the specification would not be parameterizable or con-
figurable.

What is clear is that the language of the build should be general enough
to support specification definitions that are both concise and configurable. One
approach is to use a general-purpose scripting language to construct the depen-
dency graph. This is the approach taken, for example, in both Cons [10] (which
uses Perl) and SCons [8] (which uses Python). However, the expressive power of
these languages often acts to tempt programmers away from simple declarative
specifications. In particular, there is no guarantee of compositionality in these
languages; the build specifications in different parts of a project may exhibit
unforeseen interference unless programmers are strictly disciplined.

We take the opposite approach, working from the bottom up, including fea-
tures in the language only when they satisfy the design requirements. In the
next section, we begin the task with rule specifications, and work towards each
of the design goals.

3 Language

3.1 Rule Specifications

The primary goal of a build specification is to define a dependency graph, which
is a set of build rules. A build rule has a set of targets, dependencies, side-
effects, and some build commands. For this purpose, the rule syntax used in the
ubiquitous Unix make program!® is ideal. A rule has the following form, where
the targets, dependencies, and side-effects are lists of filenames, and the commands
define a script to build the targets from the dependencies (we will use standard
“command-line” syntax for the commands). The notation [- - -] indicates that the
syntactic form is optional—the brackets are not part of the concrete syntax.
targets: dependencies [ :effects: side-effects ]
commands

1 Although indentation is not restricted to tabs.



OMake: Designing a Scalable Build Process 67

For example, using a standard shell syntax for the commands, the following
rule specifies how to construct a grammar implementation from its specification
using the yacc application.

grammar.h grammar.c: grammar.y :effects: y.tab.c y.tab.h
yacc grammar.y
mv y.tab.c grammar.c
mv y.tab.h grammar.h

We call these explicit rules because the targets, dependencies, and side-effects
are all specified with explicit filenames.

Implicit rules. One of the main issues with explicit rules is that they are overly
verbose and repetitive. For example, a project might have many C source files
that are all the be compiled with the cc compiler, and it is inefficient to define
a separate rule for each file. Implicit rules address the issue by defining rule
patterns. In an implicit rule, the % character represents a “wildcard” pattern that
stands for an arbitrary string of text. All occurrences of the wildcard represent
the same string throughout a rule (in other words, the wildcard is universally
quantified).

With implicit rules, generic rules can be specified by pattern matching. For
the example in the previous paragraph, the following implicit rule specifies that
the cc compiler may be executed to compile any file with suffix .c, producing a
file with a .o suffix.

# Use cc to compile a .c file, producing a .o file
%.0: %.C
CC -C -0 %.0 %.C

Rule selection. One of the requirements of the dependency graph is that there
be exactly one rule for each target. For explicit rules, it is an error for a file to
occur as the target of more than one explicit rule. However, with implicit rules,
it is desirable to allow multiple potential matches (although at most one rule
may be selected for use in the dependency graph). For example, one might define
an implicit rule that specifies a “default” build action, and then define explicit
rules for any special cases where the default is inadequate.
We define rule selection by policy. Given a specific target with name T,

— if T is the target of an explicit rule, that rule is used,

— otherwise, if 7' matches an implicit rule in scope (we define the concept of
scope in the next section), then the most recently defined implicit rule that
matches T is chosen,

— otherwise, the source file T must exist, and it is a leaf in the dependency
graph.

3.2 Variables, Scoping, Compositionality, and Parameterization

Even with implicit rules, there is a great deal of duplication. Many related rules
(such as compiling and linking rules) will want to ensure that they are con-
structed by the same application or compiler, with the same options. In addition,
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it is usually desirable to allow the specification to be easily reconfigured. The
obvious solution here is to introduce variables that represent values that may
be used in multiple rules. Once again, we adopt the standard syntax, using the
notation $(- - -) for variable references, and single-line definitions using =. For ex-
ample, the following two rules specify that program p is generated by compiling
and linking two files x.c and y.c. The compiler is defined with the variable CC,
and the options are defined with the CFLAGS variable.

CC =gcc
CFLAGS =-g
%.0: %.C
$(CC) $(CFLAGS) -C -0 %.0 %.Cc
p: X.0 y.0

$(CC) $(CFLAGS) -0 $@ $+

For convenience, within the rule commands, the variable $Q is defined as the
target of the rule, and $+ are its explicit dependencies.

Scoping and compositionality. Before the introduction of variables, build
specifications were purely declarative and compositional. That is, suppose two
developers had defined build specifications for two sub-projects. We could com-
bine their build specifications simply by concatenating them. As long as the
two did not share targets (which might violate target uniqueness), the combined
specification would be valid and correct relative to the sub-project specifications.

With variables, the situation changes. Suppose the concatenated specification
happens to share variables, as follows.

# Developer 1 # Developer 2
CC=cc CC=gcc
CFLAGS =-g CFLAGS = -06 # (unsafe in general)
filel.o: file1.c file2.0: file2.c
$(CC) $(CFLAGS) -c file1.c $(CC) $(CFLAGS) -c file2.c

In the concatenated specification, the CC and CFLAGS variables are defined
twice—which value is the right one? Furthermore, it is known that the -O6 option
is a bit dangerous with gcc. If the values defined by developer 2 “win,” then the
code for developer 1 might be compromised.

So far, we have more-or-less adhered to tradition. The GNU version of make [9]
includes explicit rules, implicit rules, and variables in the form we have described.
However, at this point we take a radical departure. In make/GNUmake, one of
the values would “win,” and for example, CFLAGS would be either -g (debug
mode) or -06 (unsafe-optimizing mode) for the entire project, with unintended
consequences for the other developer.

Our approach is radical to some and natural to others. As we see it, both
developers are right, and the correct interpretation is the pure one (“purity” in
the sense of functional programming). That is, the definition of a variable, like
CFLAGS =-086, is a definition, not an assignment. Each rule is a closure (another
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concept from functional programming) that pairs the rule with its environment.
The file file1.c is compiled with cc -g, and the file file2.c is compiled with gcc -06.
The choice of pure specifications has two major consequences. As a benefit,
specifications are always compositional, because there is no way for one part of a
project to interfere with another by side-effect. In consequence, there is no easy
way in general for a programmer to collect global information through side-effects
on a global variable. As an aside, the pure vs. impure debate has been present for
many decades, but we argue that for build specifications in particular, impure
programming is more often by accident than by intention, and the benefits of
compositionality far outweigh the benefits of shared, mutable state.

3.3 Programming and Configurability

At this point, we have explicit rules, implicit rules, and variables. While this
might encompass many applications, it is still insufficient. For example, while
implicit rules can be used to describe a great deal of build procedures, they
cannot describe rules in which the dependency names are not literally textually
related to the targets. In addition, build specifications are not easily configurable,
because there is no way to state that the set of build rules depends on compile-
time configuration parameters.

To address these issues, we introduce a simple core programming language
with functions, function application, and conditionals.? The syntax of our lan-
guage is shown in Figure 1. It is still modeled on the language for GNU make,
with user-defined functions. Here, we use braces {p} to represent block structure
as defined by indentation—that is, the program p must be indented from the
enclosing context; the braces do not appear in the concrete syntax.

The structure of the language is quite simple. A program is a sequence of
statements, and each statement is either a command line to be executed by the
shell, or a language directive such as a variable/function definition, function ap-
plication, conditional expression, or rule definition. A rule definition may include
options, like the :effects: we have seen earlier. There are other options as well,
including :value: for dependencies on computed values, rather than files.

Functions, simplification, and configuration. The use of functions can
often significantly simplify build specifications. As an example, let’s consider
the problem of building a static library from a set of object files. The rules to
do this differ slightly between Win32 and Unix platforms, so we would like to
define a function that computes the appropriate build rule based on the platform.
Consider the following program.

? Expressivity is a double-edged sword. The traditional make/GNUmake programs do
not include user-defined functions, most likely because such languages are Turing
complete—even termination is not decidable. However, the loss of completeness in
these languages has a heavy cost, leading many programmers to resort to meta-
programming, such as imake [2], autoconf/automake [6, 7], or other build specification
generators.
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e = expressions
| text text
| $(v) variables
| $(vei,...,en) function application
| eies concatenation
S = statements
| e shell commands
| v=e variable definitions
| v(vi,...,vn) = {p} function definitions
| wv(ei,...,en) function applications
| ife{p1}else{p2} conditionals
| section{p} | export scoping directives
|

€targs : €deps (0ption: eqpr)” {p} rule definitions

programs
empty program

nS ™

sequencing (line endings act as sequence separators)

Fig. 1. The build programming language

# Platform-independent library construction
StaticLibrary(target, deps) =
if $(equal $(OSTYPE), Win32)
ofiles = $(addsuffix .obj, $(deps))
$(target).lib: $(ofiles)
lib /Fo$(target).lib $(ofiles)
else
ofiles = $(addsuffix .o, $(deps))
$(target).a: $(ofiles)
rm -f $(target).a
ar cq $(target).a $(ofiles)
# An example library with 3 object files
StaticLibrary(mylib, file1 file2 file3)

The StaticLibrary function takes two arguments. The target is the name of the static
library, and the deps are the object files to be included. Both arguments are
provided without suffixes, since the actual file suffixes depend on the platform.
The first step in the function is to determine the platform using a conditional.
The OSTYPE variable defines the name of the platform, and the builtin equal
function is used to determine if the platform is Win32. If so, the library has the
Jlib suffix, the object files have the .obj suffix, and the application for constructing
the library is called lib. The addsuffix function is used to append the suffix to each
of the names in the deps argument. The other case is similar.

The construction of a static library is now reduced to a single function call
that specifies only the name of the library and its dependencies, with the usual
benefits. The platform-dependent configuration is now located within a single
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function, and the remainder of the build specification can be significantly simpli-
fied and need not be cluttered with platform tests. By defining a general set of
such functions in a shared standard library, we obtain very concise specifications
for simple projects.

Scoping and block structure. The introduction of block structure imposes a
new twist on scoping. For example, in the previous section the StaticLibrary func-
tion defined the ofiles variable (twice). According to our scoping policy, these two
definitions do not conflict since rules always use the most recent variable defini-
tions in scope. The next question is whether the ofiles variable remains defined
after the StaticLibrary function is called. Clearly, doing so would be undesirable
because it would violate the abstraction provided by the function.

We adopt the usual scoping policy where each block in the program defines
a scope, scopes are nested, and variables defined in inner scopes are not visible
to outer scopes. Syntactically, blocks are determined by indentation, so for our
example, the ofiles variable is not defined after the StaticLibrary function is called,
because it is defined within an inner scope.

The section allows the introduction of a new nested block (with its corre-
sponding scope), and it is frequently used to isolate variable definitions that
are valid in only part of a project. For example, the following code fragment
illustrates the common usage. The syntax CFLAGS += -g is equivalent to the
expression CFLAGS = $(CFLAGS) -g, so the inner value of CFLAGS is “-O -g”.3

CFLAGS = -O # Pass the “optimizing” flag to the C compiler

section
CFLAGS += -g # Also add the “debugging” flag for the following targets
.. .rules- - -

# CFLAGS has the original value “-O”

...rules- - -

When combined, purity and strict scoping can be awkward. For example,
consider the following program fragment, where the intent is to define the name
of the C compiler and its default options on a platform-dependent basis.

# The compiler and flags are platform-dependent
if $(equal $(OSTYPE), Win32)

CC=cl

CFLAGS = /DWIN32

OSUFFIX = .obj
else

CC=gcc

3 In our implementation, the system state including environment variables and the
current directory are handled similarly—the extent of modifications is limited to the
current scope.
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Unfortunately, this program does not work as expected because the variable
definitions are not visible outside the conditional. The export directive is de-
signed to export variable definitions from an inner scope to its enclosing scope,
canceling the nested scoping status of the block. In the example, the problem
is solved by placing an export as the final statement in the branches of the
conditional.

if $(equal $(OSTYPE), Win32)

CC=cl

CFLAGS = /DWIN32
OSUFFIX = .obj
export

else

3.4 Functions and Dynamic Scoping

One configuration pattern that arises often is to define the parameters of a
project as variables, using the variables to define the rules that describe how to
build the project. For an example, let’s consider the rules for building applica-
tions in Objective Caml [5], which have the following general form.

OCAMLC = ocamic # Byte-code compiler
OCAMLCFLAGS = # Compiler options (initially empty)
# Compile an OCaml file
%.cmo: Y%.ml

$(OCAMLC) $(OCAMLCFLAGS) -¢ %.ml
# Link a program
OCamlProgram(target, deps) =

cmofiles = $(addsuffix .cmo, $(deps))

$(target): $(cmofiles)

$(OCAMLC) $(OCAMLCFLAGS) -o $(target) $(cmofiles)

In this definition, we intend these rules to be the default rules. For example,
even though the default compiler options OCAMLCFLAGS are empty, sub-projects
should be able to redefine the variable if they require particular options. This
presents a problem because, as we have stated, rules use the “most recent” defi-
nitions for variables, and these definitions are apparently fixed. Furthermore, the
number of parameter variables can be quite large, and it would be unreasonable
to require programmers to memorize them all.

The solution here is to use a definition of “most recent” as the most recent
dynamic definition, not the most recent static one. That is, we adopt the use of
dynamic scoping, rather than static scoping. With dynamic scoping, users of a
build library need only be aware of the variables that need to be specialized. For
example, the following code-fragment illustrates the temporary redefinition of
the OCAMLFLAGS variable. In this case, the OCamlProgram is called in a context
where the “-g” options has been added to OCAMLCFLAGS.
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section
# Compile the program with “-g” flag
OCAMLCFLAGS += -g
OCamlProgram(myprog, file1 file2 file3)

3.5 Automated Dependency Analysis

One of our design objectives is that it should be possible to automate the infer-
ence of implicit dependencies. There are several reasons, but the most important
is that rule re-use becomes much more difficult when every rule is required to
state all of its dependencies explicitly.

Implicit dependencies arise through many factors, including references to files
in source code or applications, and they may change frequently as a project
is developed. Traditionally, programmers have used ad-hoc meta-programming
techniques, using a tool/compiler to generate the set of implicit dependencies,
and then grafting them into the build specification textually.

In fact, the tools for dependency analysis already exist in many cases, and it
takes very little for the build system to support them. To illustrate, the following
program fragment specifies a rule for dependency analysis of C program files.
The .SCANNER target is a directive, in this case indicating that the implicit
dependencies of an object file can be extracted by compiling the C source file
with the -MM option.

.SCANNER: scan-%.c: %.c

$(CC) $(CFLAGS) -MM %.c
%.0: %.C :scanner: scan-%.c

$(CC) $(CFLAGS) -C -0 %.0 %.Cc

The target of a scanner rule, in this case scan-%.c, is called a scanner-target,
and represents the dependencies generated by the build commands. The com-
mand itself prints the dependencies (for one or more targets) to its standard
output in make format.

Given a normal rule with targets targets and scanner dependencies deps, the
complete set of dependencies is the union of the explicit dependencies, the de-
pendencies generated by the scanner rules for each individual dependency, as
well as the scanner targets themselves, or

explicit-dependencies U  deps U U scanned-dependencies(targets, d).
dedeps

3.6 Managing Subprojects

Our final design goal is that there must be a single build specification for an
entire project. In most software projects, the software codebase is divided among
several subdirectories, often, but not necessarily, along the lines of the software
components. Similarly, it is impractical for the build specification to be placed



74 J. Hickey and A. Nogin

in a single file—instead it is more desirable to partition the specification along
directory lines.

We adopt guidelines as follows. Each project must have a single directory,
called the “root directory” (this is usually the root directory of the project). The
root directory contains a file named OMakeroot that defines the build specification.
Each build file may contain references to other directories of the project using a
rule of the form .SUBDIRS: dir1, . . ., dir,, where each subdirectory diry, ..., dir,
defines its own build specification in a file named OMakefile.

Semantically, a .SUBDIRS directive acts as program inclusion in a nested scope.
That is, variables and rule definitions are passed down to subdirectories, but
definitions within a subdirectory are not propagated back to the parent. This
prevents interference between the build specifications in separate subdirectories,
and preserves compositionality. In addition, the ability to inherit values means
that parent directories can define default behavior that can be specialized within
the subdirectories.

3.7 Language Summary

At this point, it is worthwhile to revisit the design goals to see whether we have
achieved our objectives. One of our primary objectives is compositionality, which
we help ensure through the use of a pure language with well-defined scoping
rules (even parts of the system state are treated purely). While it is possible
for a programmer to achieve interference externally, for example through the
filesystem, the risk of inadvertent interference is greatly reduced.

Another of our goals is configurability and generality. In this case, although
the language is designed specifically for builds, it is general enough to cover a
wide range of tasks. The expressivity and simplicity of the language also help in
maintaining the build system. We have developed several large projects using a
variety of build systems including GNU make, Cons, and SCons. In our expe-
rience, specifications based on the designs presented here are significantly more
concise and easier to maintain. In addition, the .SUBDIRS approach to linking
subprojects (also a feature of the Cons and SCons systems), has been enormously
helpful for constructing simple, maintainable build specifications.

Finally, automated inference of implicit dependencies is important for ensur-
ing consistency and accuracy of builds. Our approach allows the leveraging of
existing dependency analyzers. In addition, the fact that the .SCANNER rules
have the same properties as the normal build rules allows the use of the full
build specification machinery, leading to concise, simple, yet flexible, and pow-
erful dependency analysis.

4 Implementation: The OMake Build System

We have implemented a build tool, called OMake, that follows the design require-
ments stated in the previous section. OMake is freely available at the OMake home
page http://omake.metaprl.org/ under the GNU General Public License, and
is actively being used in several large projects.
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The OMake system has four major components. The first of them is a compiler
that translates OMake specifications from the source language to an intermedi-
ate representation (IR). The second part is the interpreter capable of evaluating
OMake programs in their intermediate representation form. The third part of the
system is the build manager that keeps track of targets, dependencies and build
rules (in their explicit and implicit forms). The build manager is also responsible
for instantiating the implicit rules when needed and scheduling the build com-
mands for execution. Finally, the fourth component of the build system is the
shell interpreter that is responsible for executing individual build commands,
spawning external processes as necessary, and passing the control back to the
IR interpreter for commands that are to be executed internally.

Compiler. When performing a build, the OMake systems begins by reading the
specification files, starting with the OMakeroot file. Each file that is part of the
project specification is parsed and the code is transformed into an intermedi-
ate representation (IR). The translation process is straightforward; the IR is a
slightly simplified, slightly more explicit version of the source language; there
is little difference between the two. For every specification file, the resulting IR
is cached on disk; this allows skipping the parsing and compilation of that file
on subsequent executions of OMake (provided the given file does not change, of
course).

Interpreter. Once a specification file is read and its IR is generated (or loaded
from the cache), the OMake interpreter evaluates the IR. For the most part,
the interpreter implementation is fairly straightforward. One of the least trivial
parts of the interpreter is its handling of the variable environments. The variable
environment data structure is implemented as a functional immutable lookup
table where updates operate by partially copying the table. Each time a rule
(whether implicit or explicit) is encountered during evaluation, the interpreter
passes the rule and the current variable environment to the build manager as a
closure. The rule itself is not evaluated immediately. Thus, many versions of the
environment will be saved by the build manager. This approach is made cost-
effective through the use of functional data structures and extensive sharing.

Build manager. Once the build specification has been evaluated, control is
passed to the build manager, which now has a complete collection of build rules.
This is not yet a dependency graph because some of the rules are implicit, and
automated dependency analysis has not yet been performed. The build manager
is responsible for building the dependency tree and making sure that the goal
targets* are brought up-to-date. Note that it is not always possible to fully
discover the dependency tree before the build process starts—it may be the case
that in order to discover the full set of implicit dependencies the build manager
will need to execute a number of .SCANNER rules and those rules may in turn
depend on targets that need to be built first. Because of this, the build manager
constructs the dependency tree in parallel with the main build process.

4 If the goal targets are not specified on the command line, the .DEFAULT target is the
goal.
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The build manager works by keeping a worklist of targets that need to be
brought up-to-date, each marked with a state specifying how far along the build
process for the particular target has progressed.

For each project, the build manager maintains a database where it stores
information about each rule that was successfully executed, including the full
set of dependencies, the commands text, side-effects, and targets. On successive
runs, the database is used to determine which targets are already up-to-date.

The shell interpreter. For portability, and a degree of efficiency, OMake in-
cludes a built-in command interpreter (this shell can be used both as part of the
build system and also as a standalone command interpreter). For the most part,
this is a straightforward task, involving standard methods for process creation
and management. However, one of our primary goals is to provide transparent
portability—OMake should behave similarly on all platforms, and Win32 in par-
ticular is problematic. Among the difficulties are the lack of a fork system call,
signals, process control, and terminal management. As a result, we developed a
compatibility library that emulates most of these features. The use of functional,
immutable data structures allows us to emulate the fork system call using threads
without the need for address space duplication.

Built-in functions and standard library. OMake provides a broad set of
functions for string and string arrays manipulation, input/output, including
functions that mirror the Unix standard 10 library.

In addition, OMake provides a set of higher-level functions that can be used
in order to make a project work correctly on platforms like Win32 that do
not provide Unix-style file processing tools. The toolset includes functions that
mirror the core functionality of the Unix programs grep, sed, awk, and test.

As mentioned in Section 3.3, OMake includes a shared standard library of
variables, functions and implicit rules that can be used to significantly simplify
the build specifications for commonly used languages. Using the standard library,
simple projects in languages like C, OCaml, and I4TEX can often be specified
with just a few lines of code, sometimes as little as one line.

5 Related Work

On Unix systems, the make program [3], originally designed by Feldman in 1979,
is the ubiquitous build system, especially for open source projects. There are at
least two reasons why make retains its popularity. First, the model is extremely
simple. Second, make does not require any particular project style, nor is it tied
to any particular programming language.

Since 1979, software projects have grown tremendously in size, and new ver-
sions of make have been developed, notably GNU make [9]. The usual model
with large projects is to split a project into multiple subdirectories, each with its
own Makefile describing how to build files in that subdirectory. Although this is
adequate in many cases, there are several issues with regard to scalability. First,
dependency analysis is based on timestamps. When a file is modified in any way,
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it may cause large portions of the project to be rebuilt even if the modification
was innocuous (for example, a change to a comment). Second, dependency infor-
mation is local to each Makefile in each subdirectory. One result of this is that the
subdirectories must be built in a specific order, and the graph of dependencies
between subdirectories must be acyclic. A third problem is that each Makefile
may have to duplicate a substantial portion of code also used in other Makefiles
(for example, one of the main features of the imake utility [2] is automated code
duplication).

A number of tools address some of these limitations. The Jam build system [11]
addresses the problem of cross-directory dependencies, by performing a global
dependency analysis and automating it so that dependency information is always
up-to-date. The Odin system [1] provides a truly global environment by using a
single cache for each user. In addition, Odin provides extensive support for build
variants based on the concept of a derived object that couples properties with a
file name.

The Cons tool [10], written in Perl, the SCons tool [8], written in Python,
go further by adding configurable dependency scanners and adopting the use
of MD5 digests instead of file timestamps. In both Cons and SCons, the build
system is closely integrated with the implementation language. That is, in order
to use these tools effectively, one must write build specifications in Perl (for
Cons), or Python (for SCons). One advantage is that the use of a general-purpose
programming language can reduce the amount of code duplication. However,
there are also disadvantages of these tools when compared with the make model.
In make, there is a clear separation between the language of Makefiles and the
implementation language (C). The make language was designed specifically for
specifying builds—it is clear and concise, it is widely used, and it is easy to
understand. The make language is better suited for build specifications than the
Perl or Python languages.

The Ant build system [4] takes another approach, where the build specifica-
tion is written declaratively as an XML specification. The Ant system allows
extensions written in Java.

We believe that one of the principal features that distinguishes OMake from
all of the above systems is the use of a language that is Turing complete, yet
preserves compositionality of build specifications. In addition, the language pre-
serves the basic spirit, model, and syntax of make, preserving its strengths while
addressing limitations of scalability and reliability.

6 Future Directions

While we are very satisfied with the convenience provided by the OMake tool,
there are a number of further enhancements that we are hoping to explore in
the future.

One of them is support for fixpoint builds (where certain dependency cycles
are allowed). Examples of projects that could benefit from this feature include
building self-hosting compilers (when a new version of a compiler is built using
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an older binary, one often wants to arrive at a fixpoint) and IWTEX compilation
(one may need to re-run latex several times if the .aux file is changing).

In addition, we are investigating the use of modular namespaces as a means
of further improving scalability.

While OMake has some initial support for distributing builds over several dif-
ferent computers, it will probably require additional work before it is fully usable.
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Abstract. Recent complicated software functions have made it difficult
for end users to operate them. Thus, it becomes important to learn how
to operate them easily and effectively. Employing a tutorial system is the
most suitable approach for learning how to operate software functions.
A tutorial system demonstrates the how to operate using the actual soft-
ware. As a result, end users can learn the usage as if they were actually
using the software. However, development of tutorial systems requires
much time and costs. Therefore, we propose a method of generating tu-
torial systems based on use case diagrams, sequence diagrams and test
cases. In our method, a generated tutorial system shows function names
extracted from use case diagrams, the how to operate along with sequence
diagrams, and text string input and item selection using data from test
cases. The generated tutorial system is then added to the source code
for use in AOP (aspect-oriented programming).

1 Introduction

Recently, computer usage has become widespread, and various tasks have been
computerized. Many kinds of software have been developed with many functions.
Therefore, software usage tends to be complicated due to these many functions.
It becomes more difficult for end users to learn how to operate software. It is im-
portant to provide support methods by which end users can learn the operation
of the software. Now, there are some support methods for end user learning, such
as online manuals, help systems, animated demonstrations and tutorial systems.
In this paper, among the many end user learning methods, we particularly focus
on tutorial systems.

A tutorial system has been used by end users for learning how to operate
software. A tutorial system demonstrates the usage on the running software.
When end users learn the usage of the software using a tutorial system, they
can learn the sequences of operations as if they were actually using the software
without interruption.

There are some advantages of a tutorial system over other many support
methods:

L. Baresi and R. Heckel (Eds.): FASE 2006, LNCS 3922, pp. 79-92, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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— End users can easily understand the purpose of each operation and the re-
lationships among the operations.

— End users can interactively learn the software operation with the tutorial
system. Thus, they can understand software operation using the tutorial
system better than using an animated demonstration system.

However, currently, there are few built-in tutorial systems for software. Be-
cause the structures of software have now become highly complicated and have
many functions, the development of tutorial systems places a heavy burden on
software developers, and the cost is high.

In this paper, we propose a method for automatically generating a tuto-
rial system based on use case diagrams, sequence diagrams [1] and test data
provided by developers. These diagrams and data are made in the software
development process. A generated tutorial system is woven into the software
using AspectJ [2]. Using our method, it becomes easier to develop a tutorial
system.

2 Tutorial System in Our Method

As an example, a tutorial system of address book software is shown in Figure
1. The right-hand window is a window of the tutorial system generated by our
method. The left-hand window is a window of the address book software.

The software into which a generated tutorial system is woven is called target
software in this paper.

Hare is address book soffwara Wtorial system

1 Please salact Add bulon 1o acd sddrass

2 Please input name.

.Please input nickname.

LB R 4 Please salact s

Address 5 Please Input address.

Tel - | 6 Please inpul leephane nurmber
- 7 Pleasze input mail sddress

B Please click Ok

Name Halime Iwats

Sex * Male 0 Fermale

somy | Goar || cancer | Tulorial for Add Adikess

| Target Software |

Fig. 1. Tutorial for address book software

Tutorial System
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In our method, the generated tutorial system, has the following features:

Showing Software Functions and Operations

In our method, the use case names are extracted from the use case diagrams for
use as software function names in the tutorial system. The names of functions
available in the software are shown in the tutorial system, and end users select
the function they wish to learn. Then, the sequences of required operation steps
extracted from sequence diagrams are shown step by step. The sequence of op-
eration steps is described using itemized sentences in the tutorial system. End
users can watch how the software function is operated, as well as the reaction of
the software, continuously without any interruption. The sentence that explains
the current operation is changed to have a vivid color and a large character size
in the tutorial system window. Thus, it is easy to understand how to operate
the software.

Showing Examples of Software Usage

The tutorial system shows a mouse pointer on a widget (Each part of a GUI,
such as buttons, is called a widget.) in the target software at the same time
highlighting the sentence explaining the current operation. At the same time,
the required mouse operations are shown, such as clicking a button and choosing
the radio button. End users can easily understand the sequences of operation
steps required for the function by watching the software demonstration without
interruption.

Demonstrating Input Texts

When it is necessary to input text for text fields, the tutorial system demon-
strates an actual text input. The input text is not meaningless text but suitable

Mouse pointer

inix]

Heere i ardress book softwane torial systern
iNickname) k 1.Please select Add button to add ad:l]
Sex = Male O Female G ;

inpul nicknarne
o select sex
Address | inpu acdres
Tol [ input telepnone
,7: inpat mail agdne:
mail | Flease chek O

it

Tutorial for Add Addess

[ ooty || ctear || concel  fuuae It

Present operation
(changed to have vivid color
\___ and large character size)

Fig. 2. Tutorial ” Add Address”
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The sample input name |
and the mouse pointer

L5154 —Iix]
Here is adiiss book sofwean hional syskm

[ t Plaass select A bution 1 add address

pd 7 Please Inputname.

3.Please input nickname.

IEE— FPleass seact sex

Adiress 5.Plzass input address.

Tel ook Plass# inpul lalephons numibe

7 Plaase Input mal adoress

[ Plaasa click Ok

Tutoreal for Add Address

Fig. 3. Tutorial for sample input name

text extracted from the test data. We assume that the input text is the typical
data in using the function. Therefore, end users can understand examples of
actual data and how to input text for pertinent text fields.

In Figure 2, a user selects the tutorial “Add Address” is shown and how to
operate for adding a new address.

The sequence of operations is displayed in the tutorial window as itemized
sentences describing the steps in sequential order, and each step is numbered.
When the end user selects the tutorial “Add Address”, the explaining text which
is “Please select Add button to add address.” in Figure 2 is changed to have a
vivid color and a large character size in the tutorial system window. Similarly,
“Taro Waseda”, the sample input name extracted from the test data, is entered
automatically by the tutorial system. Also, the mouse pointer is moved to this
text field. This example is shown in Figure 3.

3 Features of Our Work

3.1 Development Specification for Generated Tutorial System

In this paper, we propose a method for automatically generating a tutorial sys-
tem for target software. Generating a tutorial system allows end users to effi-
ciently learn how to operate the target software. The tutorial system is generated
automatically on the basis of these specifications, which are use case diagrams,
sequence diagrams and test data. Use case diagrams are used in the analysis
phase of object-oriented software development, to describe software functions.
Sequence diagrams are used for describing interaction between objects in order.
An example of a use case diagram for the address book software in section 2
is shown in Figure 4, and an example of a sequence diagram in the case of the
”Add Address” function is shown in Figure 5.
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— Address book software —

InputAddressData

LookAddressData

\ EditAddressData

DeleteAddressData

il

Fig. 4. Example of use case diagram

| :User | :AddressbookManager‘

[ Jbutton addBtn | liAddressInputForm

Click to Adds buttory

new |

Explanatory note.

: Window
JTextField nameTxt Object Name

Taro Waseda

P Widgets
Input address - Variable name

Okubo,Shinjuku- Text input data
ku, Tokyo,Japan L (Test data)

Fig. 5. Example of sequence diagram

In our system, diagrams described by the XMI (XML Metadata Interchange)
[3] format are used. The XMI format is the standard file format for describing
UML diagrams. Using the XMI format, use case diagrams and sequence diagrams
provided by the existing UML modeling software can be generated for a tutorial
system. Examples of UML modeling software supporting the XMI format are
Rational Rose [4] and IIOSS [5].

In our research, the flows of procedures within use cases are described using
sequence diagrams, and extra descriptions are added in the sequence diagrams.
Target software developers combine the widget name, presentation sentence, and
test data for input text, with the messages of sequence diagrams, and specify
the window objects of sequence diagrams.
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Window Objects

Target software developers are required to specify objects, which have widgets
on GUI windows in the sequence diagrams. Thus, our system can specify the
widgets that correspond to the objects, and our method can operate the tutorial
system for the software. These objects are called window objects in our method.
For example, ”:AddressbookManager” and ”:AddressInputForm” are the window
objects seen in Figure 5.

Presentation Sentences

Target software developers are required to add extra descriptions to the messages
of sequence diagrams. The extra descriptions are texts, which explain to users
how to operate software functions. These extra descriptions are displayed to
end users as explanations of the usage when the tutorial system is generated.
For example, ‘Click the "add” button to add the address’ and ”Please input
the name” are the extra descriptions seen in Figure 5. These texts are called
presentation sentences in our method.

Widget Variables

The names of the widget variables in a source code must be added to the messages
of a sequence diagram. These widgets are operated by the end user, such as input
text and select an item.

In our method, we assume the Java Swing set to be widgets. Typical wid-
get variables that must be added are buttons (JButton), menus (JMenultem),
and check boxes (JCheckBox). For example, “addBtn”, “nameTxt” and “ad-
dressTxt” are shown in Figure 5. However, widgets that are not operated by the
end user, such as labels (JLabel) and panels (JPanel), do not need to be added
to messages. Using a widget name, the coordinates of each widget in a window
can be calculated. A demonstration of mouse pointer movement based on the
coordinates of each widget is performed.

Also, each widget has a method that substitutes for the end user operation.
For example, “JButton” has a method called “doClick()” which substitutes for a
mouse click of the end user, and “JTextFields” has a method called “setText()”
which substitutes for a data input of the end user. The tutorial system calls
these widget methods for widget operation.

Test Data for Input Text

When widgets require text data, the tutorial system should show an example of
the input. For this purpose, existing test data is used. In our method, we assume
that the required test data is typical data for using the function. In this paper,
we use the test data of JFCUnit [6]. JFCUnit is a software testing tool for Java
Swing. The test data of JFCUnit is described as the correspondence a widget
variable and a text datum. Therefore, the tutorial system can use the input text
data by checking widget variables in sequence diagrams and in test data.
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3.2 Added Tutorial System

The generated tutorial system is described using the AspectJ code. Aspectd is
the one of the software tools that use aspect-oriented programming (AOP) [7].
To implement the tutorial system, the following two processes need to be added
to the target software:

— Get the coordinates of widgets on the screen for showing the mouse pointer.
— Operate each widget, such as a mouse click and a text input

These two processes have to be added to each widget in the software. That is,
they cannot be created as one class. They have to be added to many classes which
process widget generation. Therefore, these two processes can be considered as
crosscut concerns of AspectJ. Thus, these two processes are generated as AspectJ
code in our method. It is possible to weave a tutorial system into target software
without modifying the source code. Therefore, developers can easily maintain
software.

4 System Architecture of ACTS

The system architecture of our system, called ACTS (Automatic Creation of Tu-
torial System), is shown in Figure 6. ACTS consists of the following five steps.

Adding extra description to sequence diagrams

Extracting function name from use case diagrams
Extracting operation information from sequence diagrams
Generating tutorial system automatically

Weaving tutorial system into target software automatically

Gk o

4.1 Adding Extra Description to Sequence Diagrams

Target software developers output the use case diagrams and sequence diagrams
described using various UML tools. Outputted data is written in the XMI for-
mat. ACTS creates a file in which required descriptions for generating a tutorial
system are added to XMI-formatted sequence diagrams. The required descrip-
tions are the widget variables, presentation sentences and test data for input
text, and combined with the messages of sequence diagrams. Also, the window
objects are specified in sequence diagrams. These extra descriptions are added
by the target software developers. And ACTS adds test data of JFCUnit as input
text to sequence diagrams.

4.2 Extracting Function Name from Use Case Diagrams

From the described use case diagrams, ACTS extracts the use case names of soft-
ware functions used by the tutorial system. End users can watch an explanation
of usage for a function by selecting the function name.
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Fig. 6. System architecture of ACTS

4.3 Extracting Operation Information from Sequence Diagrams

ACTS extracts window object names and widget names from the described se-
quence diagrams. By using a widget name, the coordinates of each widget in a
window can be calculated. A demonstration of mouse pointer movement based
on the coordinates of each widget is performed. In our method, a mouse pointer
is created as a visual image, and it is moved to each widget. Thus, our system
can implement a demonstration of mouse pointer movement virtually.

The order in which the operations of the function are carried out is extracted
from the flow of messages described in the sequence diagrams. By adding the
explanation sentences of operations to the sequence diagrams, a suitable timing
for displaying the explanation of an operation can be extracted.

4.4 Generating Tutorial System Automatically

A tutorial system is automatically generated by extracting function names from
use case diagrams and information on how to operate the functions from sequence
diagrams.

The procedure is shown as follows:

1. A process for displaying the function based on the extracted function name
is generated for a tutorial.
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2. An operation procedure based on the flow of the operation information in
the messages of the sequence diagrams is constructed.

3. According to the constructed operation procedure, a process for the demon-
stration of mouse pointer movement from the location of the GUI widgets
and end user operation is generated.

4. A process for displaying the explanation of the operation following the
demonstration of mouse pointer movement is generated.

Generated source codes based on above the procedure include following
contents.

— ACTS generates Java source codes creating a window. This window consists
of buttons for representing function names of the target software and a text
area for displaying the presentation sentences for the tutorial system.

— ACTS generates Aspectd source codes which demonstrate mouse pointer
movement virtually based on the coordinates of widgets in the target soft-
ware.

— ACTS generates Java source codes which display presentation sentences
based on the operation procedure extracted from sequence diagrams.

4.5 Weaving Tutorial System into Target Software Automatically

Target software developers can add tutorial system to the target software by
compiling generated Java source codes and weaving generated AspectJ source
codes into the target software.

Widget names described in sequence diagrams are written in these AspectJ
source codes. AspectJ software searches the target software for the same widget

Source code of Generated AspectJ
T Address book software | | source code

panel_button= new JPanel(); pointeut addButinstance(JButton
panel_button. setLayout{n 1.Search dBtn)-args{adcBn)
GridLayout(5.1)); €& set(JButton

JBuﬂo|| addBtn I‘new JButton(); AddressbookManager|addBin);

addBt=new JBUtEQ”,N\“'J:)Z after{JButton o). addButinstance(o) {
addBtn. add ActishiLis Fr(trr\is]: button01 = &;
L !
A \"--L Lows s
getContentPane(J.addB\_\H Vector infoTextList = new Vectar():

on '
) infoTextList.add{"Please select Add
2.Insert button to add address");

mltem.adclLecation{addBut.getLocation
OnScreen(}y;

mitem. addWidgetsObj{buttond1);
mitem.addWidgetsMame("button017);

Fig. 7. A summary of clicking the button of ”Add Address”
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names as the widget names written in generated AspectJ source code, and weaves
necessary codes into the target software, such as the procedure of getting the
coordinates of widgets and displays the presentation sentences.

The summary of weaving generated AspectJ source code into target software
is shown in Figure7. This is an example of clicking the button of 7 Add Address”
in address book software.

In the example of address book software, AspectJ searches the widget name
”addBtn” from the target software, because ”"addBtn” is written in the Point-
cut of generated AspectJ source code(Figure7). AspectJ software adds following
procedures to the found widget ”addBtn” button.

— Get the coordinates of this button on the screen

— Show a mouse pointer on this button

— Highlight the presentation sentences when the current operation step of
demonstration is about this button.

5 Evaluation

5.1 Add Some Extra Descriptions

Using the sequence diagrams of the following three types of software, we evalu-
ate the burden placed on developers by the requirement of generating tutorial
systems.

— Address book system software
— Mail-order system [8]
— Video rental system [9]

We counted the number of use cases, sequence diagrams, objects in each
sequence diagram, and messages in each sequence diagram. The results are shown
in Table 1. In this table, " Address” represents address book software, ”Mail”
represents mail-order system, and ”Video” represents video rental system.

In our method, developers are required to add some extra descriptions to
sequence diagrams. The required descriptions of sequence diagrams are the fol-
lowing three

— Specifying window objects
— Adding widget variables and explanation sentences of operations
— Adding text input examples for widgets

As shown in Table 1, “Window objects” indicates the number of specified
window objects. “Extra descriptions” indicates the number of messages added as
explanation sentences of operations and widget variables. “Extra text” indicates
the number of messages added as examples of input text.

We verified that the rate of specified window objects per total number of
objects is about 50% - 60%. The number of messages with extra descriptions
added per total number of messages is about 50% - 60%. In these evaluations,
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Table 1. Number of descriptions

Address Mail Video

Use cases 4 15 7

Sequence diagrams 6 19 31
Objects 19 50 165
Window objects 13 28 95
Messages 53 102 379
Extra descriptions 32 51 138
Extra text 12 14 39

required extra descriptions for generating a tutorial system are of the same rate
for other software tutorial systems.

Moreover, the number of messages with text input per total number of mes-
sages is about 10% - 20%. Input text is extracted from test data. Developers
only select suitable test data. Therefore, developers are not required to create
new input data for our method. The target software developers’ burden does not
become so big.

5.2 Correctness of Software Operation

Using the address book system software and video rental system, we evaluated
whether the tutorial system generated by our method performs software opera-
tion correctly.

While executing the tutorial system, the following use cases were always per-
forming correctly.

— “Add address data” in address book system software
— “Record new video” in video rental system
— “Record new cast” in video rental system

However, when the software did not have saved data, some use cases were not
performed. For example, the following use cases were not performed.

— “Edit address data” in address book system software
— “Search video” in video rental system
— “Search cast” in video rental system

Therefore, when a use case needs some saved data, it is necessary to prepare
the saved data for tutorial execution, or to specify the order in which tutorial
execution is performed.

Next, we evaluate the correctness of performing the operations. The result is
shown in Table 2. “Widgets” indicates the number of widgets, “Operating wid-
gets” indicates the number of widgets operated by end users, “Performed operat-
ing widgets” indicates the number of widgets performing the operations correctly.

While executing the tutorial system, typical operations, such as clicking but-
tons (JButton), checking check boxes (JCheckBox) and selecting radio buttons
(JRadioButton), were always performed correctly.
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Table 2. Number of widgets and performed widgets

Address Video
Widgets 26 234
Operating widgets 14 77
Performed operating widgets 14 74

For the widgets that require input text data from end users, for example, text
fields (JTextField) and text areas (JTextArea), the text data was automatically
entered into the widget.

However, for the dialog boxes using JOptionPane, the tutorial system could
not operate the widgets in the dialog boxes. The reason for this is as follows:
Software with a GUI extended objects such as JFrame and JDialog often cre-
ates widgets in the constructor. That is, an instance of the extended object for
displaying a GUI window on the screen is created.

At the same time, to display a dialog box on the screen an instance of JOp-
tionPane is created. On JOptionPane, at least, some buttons are prepared as part
of JOptionPane. The tutorial system cannot operate these prepared buttons on
JOptionPane. Therefore, we should consider methods for operating JOptionPane.

6 Related Works

There are some existing methods for supporting the process of learning how to
operate software. These include the user navigation system, the support system
for learning how to operate software on the basis of operation logs, the GUI
cover system, and other tutorial generation systems.

User Navigation System

The support system for learning how to operate software on the basis of operation
logs takes the logs of user operations and uses them to understand the target
function. This system analyzes the users’ operations according to the goal. The
next time the user uses the software, this system can show operations for that
goal.

The following study is proposed for this method: development of a system
which stores a log of a user’s operations on a HCI (Human Computer Interaction)
server, creates a model of the operations from this log, and then shows the
operation [10].

The support system for learning how to operate software on the basis of
recorded operation logs has the advantage of being able to allow user operation
habits to be reflected in the next learning support session.

However, since it cannot determine which operation should be performed for
the entire set of end users, this support system cannot perform an analysis using
the end users operation log. Moreover, it is not necessarily that other users’
operation logs are suitable for end user learning.
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That is, this method is for users using the software many times; it is unsuitable
as a learning aid for end users who use the software for the first time.

GUI Cover System

The GUI cover system [12] is a system that creates a new GUI screen which is
different from the software’s original GUI, and which makes operation possible on
the new GUI. The new GUI screen is presented by hiding the software’s original
GUI; the new GUI screen, which functions as a substitute for the software’s
original GUI, link end user operations to software functions.

The GUI cover system involves preparing a GUI that can only be used for
basic functions, even if it is for on advanced piece of software. The end users can
change the GUI according to their preferences.

However, when a GUI cover is removed, it is noted as a disability that end
users cannot operate the equivalent software function. That is, for end users
who do not know how to use a new piece of software, a GUI cover system can
reduce the burden on end users for learning the operations. However, when end
users must use the software’s original GUI, the learning effect is found to be
inadequate.

Jedemo

Jedemo is a demonstration-authoring tool for Java applets [11].

In this method, developers add event-driven functions to a Java applet. The
recorded event-driven functions operate the software automatically. Moreover,
the event for automation is recordable from an operation. This method creates
the help functions for Java applet software.

These are the advantages Jedemo:

— Since animated help functions can be created, new examination texts that
software developers have to write are reduced.

— End users only need to push one button to see a demonstration of a concrete
operation method.

Although these advantages do fulfill the aims of this method, the following
points are noted as disadvantages. In order to generate a tutorial system, it
is necessary to describe a new rule for introducing the concept of event-driven
functions. In our method, a tutorial system is generated on the basis of use
case diagrams and sequence diagrams, and these diagrams have already been
described in the development stage. Therefore, our method imposes a smaller
burden than this method.

7 Conclusions

In this paper, we propose a method for enabling developers to automatically
weave a tutorial system into existing software, on the basis of use case diagrams,
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sequence diagrams and test data. Using the tutorial system, end users can easily
learn the operation of the software.

The following subjects remain for future work:

— Improvement of operation replication. A generated tutorial system in our

method will support more GUI widgets.

— Supporting more test data formats. In this paper, at this moment, we use

the test data for JFCUnit. We will support more GUI test tools.
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Abstract. Software project managers use a variety of informal methods
to track the progress of development and refine project schedules. Previ-
ous formal techniques have generally assumed a constant implementation
pace. This is at odds with the experience and intuition of many project
managers. We present a simple model for charting the pace of software
development and helping managers understand the changing implemen-
tation pace of a project. The model was validated against data collected
from the implementation of several large projects.

1 Introduction

Modern software development practices rely on periodically collected software
metrics derived from a code base to provide management with feedback about
the project and the process used to develop it [1,2]. Well-defined and proven
code metrics exist for some areas of software development [3,4, 5], however the
pace of implementation has no such established metrics based on code attributes.
Several alternative, non-code-based progress metrics, such as function points [6]
and earned value [1, 7], have been proposed and widely used. We believe it is
possible to leverage existing size metrics to directly monitor progress in a code
base, but to date such an approach has not been widely employed.

Here we propose implementation progress model based on development arti-
facts to interpret metrics and bridge the gap between concrete sampled data and
expectations or beliefs about the underlaying process. On a small scale, this type
of model may act as a predictor to set expectations over the next few data sam-
ples. This small-scale prediction helps provide timely feedback to management
on the state of a project. Viewing a whole project, a model provides a portrait
of the entire implementation process.

Without a formal, code-based implementation model management must rely
on evidence other than implementation artifacts when making decisions about a
project. In contrast, a formal implementation progress model based on implemen-
tation artifacts does not rely on external evidence yet establishes critical parame-
ters and allows objectively evaluation based on inherent artifact attributes. Here
we propose an implementation progress model based on implementation artifact
metrics that matches our intuitive understanding of implementation progress.

L. Baresi and R. Heckel (Eds.): FASE 2006, LNCS 3922, pp. 93-106, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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The next section discusses supporting work. Section 3 describes the hypothe-
sis, proposed implementation progress model, and research process. Results from
actual projects are presented in Section 4. Finally, conclusions and directions for
future study are in Section 5.

2 Related Work

Schneidewind uses time-series metrics to create a method for evaluating process
stability [8]. Schneidewind asserts that metric trends are an indicator of the
underlying process and that monitoring the trends can support managing the
process. He suggests the shape of time-series data can be used to identify critical
moments within a project. To further quantify project trends, an indirect metric
based on time-series data is used. He defines a change metric as the difference
between consecutive measurements of a primary metric. The model proposed
here introduces a growth metric appropriate in the context of measuring project
progress.

While discussing project progress, McConnell defines code growth for a project
as the total size of project (source code) as a function of project time [2]. Code
growth of traditional iterative development contains three distinct phases. In the
first phase, architectural development and detailed design generate little code.
The second phase provides staged deliveries and includes detailed design, coding,
and unit testing. During this phase code growth is very high. Approaching initial
delivery, the third phase, code growth slows to a crawl. Typical phase transitions
occur at approximately 25% and 85% of the total implementation time for well-
managed projects [2]. Specific details are not provided about metrics, but source
lines of code, or a similar size metric, is assumed.

McConnell encourages the collection of time-series data to provide feedback
supporting project management. Specifically, he recommends that collected data
be viewed graphically since the shape can be used to diagnose project health. He
graphically depicts the typical code growth pattern for a well-managed project,
but acknowledges that its details varies to some degree. Our proposed progress
model provides an empirical representation of the overall project shape and
provides a specific interpretation of the three phases documented by McConnell.

3 Defining a Formal Progress Model

3.1 Informal Progress Models

Informal (non-mathematical) progress models already exist; as seen in project
vocabulary and assumptions. Informal models are commonly used to answer
project status queries, such as:

When will it be done, based on the current pace?

What was the size of the total effort for that project?

What fraction of the total effort has been spent?
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Such informal progress models capture another key attribute of implemen-
tation progress. The informal model acknowledges that project speed is not
constant throughout a project; projects “ramp up” and “slow down”. These
phrases refer to project speed and suggest the ability or desire to determine
implementation velocity. As envisioned by experienced project managers, this
velocity increases at the beginning and decreases near the end [2]. This is pos-
sibly an instance of the ”S” shape progress or growth curse which is observed
not only in projects but also in many other domains. A formal implementation
progress model should be informed by this experience and capture the variations
in velocity during implementation.

A formal implementation model should serve the same purpose as the informal
model. The model must help answers questions about implementation speed and
progress of current projects and provide a framework for making predictions
about the future of the project. For example, changes in the rate of progress in
an otherwise stable environment may indicate the project has transitioned to a
new phase. This assumes the rate of progress is dependent on the project state.

3.2 Requirements for a Formal Progress Model

The interpretive power of an implementation progress model is important to
consider. Interpretation of metric data relies on some understanding of our belief
about the underlying process. In general, model parameters should be few in
number, directly interpretable, and measured in existing units. These properties
give the model parameters the most meaning and thus give the model the most
explanatory power.

An implementation progress model should approximate actual project data
collected. Figure 1 shows accumulated source lines of code sampled from the
implementation phase of one project studied. The data in Figure 1 is very similar
to the S-like curve described by McConnell [2].

This graph demonstrates the important characteristics of typical progress
data. Overall progress is not linear with time; the fastest pace occurs during the
middle of the project, while the ends are slower paced. The slope of the progress
curve indicates the speed of progress.

3.3 Formal Implementation Progress Model

The primary goal of software implementation is creation of artifacts which con-
tribute to delivering a working system. Implementation progress can be measured
as change in an artifact. Progress over time can be measured as the sum of in-
dividual changes. We define implementation progress as the accumulated effort
captured in code, which will eventually be delivered to the customer. For environ-
ments and development phases that emphasize code as the primary engineering
delivery, we feel this is an appropriate definition.

Implementation metrics, traditionally used to measure size, can be employed
to measure progress. Here we define a growth metric as the absolute difference
between consecutive samples of a size metric, as shown in (1).
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Fig. 1. Accumulated source lines of code changed for a sample project by day

Ap, = |my —my1| (1)

Where 4A,,, is the growth in a metric m at time ¢.

Also useful is the idea of implementation velocity [9]; the rate at which
progress is being made on a project. Evidence suggests implementation velocity
begins and ends at zero while being at its highest in the middle. The simplest im-
plementation velocity graph, consistent with experience, consists of three linear
segments. Implementation velocity begins at zero. It increases linearly until the
maximum sustainable velocity for implementation has been reached. The veloc-
ity remains constant until near the end of implementation when it begins to de-
crease. Then, implementation velocity constantly decreases until it reaches zero.

Figure 2 shows the idealized implementation velocity for a project as a func-
tion of time. The horizontal, center phase represents the steady, efficient devel-
opment observed in the middle of the implementation phase. The positive slope
at the left represents increasing velocity as implementation “gathers speed”. The
negative slope at the end of the graph shows the implementation phase decreas-
ing speed as the end approaches.

The idealized graph shown here is symmetric; however, symmetry is not com-
mon in practice and is not required by the model presented. The idealized ve-
locity as a function of time (v;) can be described using three parameters.

st 0<t<t,
P
w=q ty <t <tg (2)
t—t
Sy i tg<t<ty

In (2) the velocity is given as a function of time, where s is the maximum
sustained velocity, t, and t, are the times of the phase transitions, and ¢y is
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Fig. 2. Idealized implementation velocity as a function of time

the time at the end of implementation. Time may be measured in any real unit,
such as days. Velocity is measured in size of metric change per time unit, such
as lines of code per day.

Integration of the idealized velocity for a project produces idealized progress
as a function of time (p;).

t2
51,0 0<t<t,
pp = { st— 3stp, ty <t <tg (3)
(P —2tpt+t2+tpty—tpty)
R

The idealized implementation progress curve as a function of time is shown in
(3). Progress is measured in accumulated metric growth to date, such as total
lines of code changed.

4 Model Validation

We examined several size metrics as the basis for the growth metric used in
our model [10]. Source lines of code (SLOC) is frequently used for estimating
resources needed and should be readily available in most development environ-
ments [6,11,12,13]. In this study, lines containing only white space and lines
consisting of comment characters without any alphabetic characters were not
counted. In addition, physical lines containing both code and comments were
counted as two lines.

Two variations on the SLOC metric were considered. The simplest form counts
the SLOC change (SLOCC) for each file. SLOCC is the absolute difference in
SLOC between source files consecutively committed to the project repository;
it counts SLOC added or deleted from the previous version. This assumes the
correct removal of code artifacts is equivalent in terms of effort as correctly
adding to the code base. We realize this may not strictly be the case, but it is
difficult to determine what an appropriate weighting factor should be. To avoid
introducing a weighting factor for this study, we assume all changes represent
equal effort.
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The second form measures the number of lines actually changed between
submissions by comparing the files. This second measure is sometimes referred
to as code churn (CHURN) [14]. CHURN is the count of source lines inserted,
deleted, or changed between consecutively committed source files. It is probably
a better change metric than SLOCC since CHURN captures more effort.

4.1 Alternative Models

Parameterized models provide an approximation of the sampled data for a par-
ticular data set. The model curve which most closely fits the data is considered
the best; it introduces the least error. Model fit can be measured using the
squared residual after subtracting the model curve from the sample data. To
allow comparisons between models the average squared residual error (R2) is
used. The model with the lowest R? for a particular data set provides the closest
approximation.

In addition to the proposed implementation progress model, three alternative
models were chosen to provide a context for evaluating the fit of the proposed
model.

The first model was a linear approximation. The linear model curve is given
by (4). Linear approximation, with only two parameters, represents a practical
lower-bound on the number of model parameters and the model with the highest
expected R2.

linear, = at + b (4)

The second alternative model chosen was a multiphase, piecewise parabolic
approximation. It contains eleven parameters; its model curve is shown in (5).
This model was chosen to represent a practical lower-bound on R2.

at? +bt+c, 0<t<t,
multiphase, = § dt? +et+ f, t, <t<t, (5)
gt? +ht+i, ty<t<ty

The multiphase model was chosen to provide an highly data-conforming
model. The proposed model is a special case of (5).

The third model was a third-degree polynomial approximation, with four
parameters as shown in (6). A third-degree polynomial approximation provides
just enough flexibility to model the S-curve observed. It also provides a model
of approximately the same number of parameters as the proposed model.

polynomial; = at® + bt> + ct +d (6)

4.2 Experimental Data

Seventeen projects from a single company were studied. All projects were devel-
oped using the same iterative process. They were six weeks to eighteen months in
length and involved one to eight engineers. All projects produced entertainment
and education oriented software designed to be marketed to consumers for use
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with Microsoft® Windows® and on Macintosh® personal computers between
1995 and 2002. In this environment, before the prevalence of the Internet, once
this type of consumer product was released to manufacturing, no maintenance
changes were possible due to economic considerations. Manufacturing and dis-
tribution costs meant the projects had clear delivery dates after which no work
was to be done. This is unlike other environments, where software is delivered
in near real-time or deployed, and implementation evolves into a continuous
cycle of maintenance. The progress model studied is expected to be meaningful
when applied to each release of on-going projects, however additional studies will
be needed to establish this. We expect results from this homogeneous group of
projects will apply to initial development efforts of iteratively developed projects
and to projects without maintenance phases.

4.3 Model Fitting Results

Evaluations of both metrics for each project were performed. The three alter-
native models described above and the proposed model were used. A numerical
fitting routine was used to find parameter values that minimized R2.

Figure 3 shows progress measured via accumulated SLOCC and model curves
for a project. As expected, the linear model provides a poor fit for the data and
the multiphase model fits the data very accurately. Both the polynomial and
proposed models provide fits between the linear and multiphase models.

The polynomial model exhibits wild “swings” near the ends. These swings
are typical of polynomial curves which tend to favor data points near the center
rather than the ends. In this case, the polynomial model suggests a “negative”
amount of accumulated work had been accomplished until about day forty of the
project. Similarly, it indicates reverse-progress begins to occur around day 220.
In almost all cases, these polynomial model swings suggest negative progress
occurs at the beginning and end of the project.

The multiphase model includes discontinuities, occurring on day 72 and 138.
These discontinuities represent an instantaneous change in speed, which is incon-
sistent with an intuitive understanding of the process. In general, small changes
in a data set may radically change the location and size of the discontinuities,
which suggests the model does not accurately represent the implementation
process.

The average squared residual error (R?) for each model is given in the legend
of Figure 3. The values agree with a visual assessment of the fit except in the
case of the polynomial model. While the lower R2? for the polynomial model
is more desirable, the polynomial fit suffers extensively from undesirable swings
near the ends. These swings violate a basic expectation of accumulated progress,
that is, it should be monotonically increasing. While the proposed model has a
larger R2, it is monotonically increasing and behaves as expected. This behavior
appears to support in-project predictions better than the polynomial model.

In this project, most of the proposed model R? can be seen to occur in the first
third of the project. Each of the other three metrics show similar results; this
may indicate early efforts are not as efficiently captured by the metrics as later
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Fig. 3. Progress measured via accumulated source lines of code change (SLOCC) for
project nine and progress model curves (with R?)

efforts. It could also indicate that during the later part of the project, the pace
was unpredictably high (in violation of the implied model). Without additional
information about the project, or its context, a determination cannot be made.

4.4 Data Analysis

The R? for each metric is given in Tables 1 and 2. Figures 4 and 5 show R2
relative to the linear model R2 for each project. To improve viewing, projects
are ordered by polynomial model relative R2.

In all cases the proposed model reduces R? compared with the linear model, as
expected, since the proposed model has an additional parameter. In many cases
the proposed model substantially reduces R? when compared with a linear model.
In a few of these cases the reduction in R? is almost to the level achieved using
the multiphase model. In these conforming cases the proposed model provides a
meaningful interpretation of the data.

Consider the proposed model R? compared with the linear model R2. In cases
where the proposed model substantially reduces R2, the model gave improved
results with the addition of a single parameter. This substantial improvement
suggests the data conforms to the model and the results may be relied upon to
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Table 1. R? measuring source lines of code changed (SLOCC)

Model R? (in millions)

samples linear polynomial proposed multiphase
129 0.0667 0.0482 0.0434 0.0094
1408 1.8269 1.6747 1.1458 0.4171
406 3.8133 0.9391 0.6371 0.0762
1394 1.0997 0.5958 0.6843 0.1176
90 0.0316 0.0108 0.0094 0.0021
1455 8.6590 2.0236 2.4551 0.2863
2204 12.3603 3.0171 4.0937 0.7440
138 0.0915 0.0245 0.0239 0.0028
1555 11.3106 1.1201 2.1672 0.2127
481 0.4575 0.0738 0.0386 0.0147
164 0.0111 0.0043 0.0037 0.0017
1274 2.4112 0.8349 0.8790 0.1589
715 0.4516 0.1139 0.1331 0.0181
723 0.1256 0.1215 0.1074 0.0210
827 2.9719 1.1158 1.2222 0.2215
967 6.3210 2.6441 1.7401 0.2475
1214 1.9231 0.3513 0.1566 0.0414

Table 2. R? measuring code churn (CHURN)

Model R? (in millions)

samples linear polynomial proposed multiphase
129 0.3485 0.2205 0.1601 0.0289
1408 22.0988 8.2642 15.6206 1.7608
406 19.6692 4.9855 3.4455 0.2821
1394 2.6183 1.7401 2.0264 0.5516
90 0.2008 0.0530 0.0590 0.0119
1455 19.7174 5.3214 5.7359 0.8605
2204 36.1142 9.8627 12.7864 1.9951
138 0.2487 0.0674 0.0549 0.0087
1555 49.1829 4.7964 9.3587 0.8686
481 8.9162 2.8376 3.0023 0.0517
164 0.0362 0.0203 0.0155 0.0077
1274 9.4001 3.9973 3.2209 0.7597
715 1.7914 0.4591 0.5131 0.0593
723 0.4844 0.4684 0.4064 0.0814
827 11.0583 3.1825 3.3451 0.7040
967 20.5449 8.5899 5.9072 0.5758
1214 7.8927 1.7450 0.8902 0.1993
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Fig. 4. Source lines of code change (SLOCC) average squared residual error (R?2) rel-
ative to linear R?

Fig. 5. Code churn (CHURN) average squared residual error (R?) relative to linear R?

correctly interpret the data. In the non-conforming cases, where the reduction
is less significant, the model may not be appropriate and the results should only
be used judiciously. Based on the available projects, we suggest the proposed
model may be relied upon when the R? is at most half that of the linear model.
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Projects may fail to conform to the model for a number of reasons. Almost
all projects exhibit “pauses” corresponding with weekends when developers do
no work. Some projects also include larger periods when no apparent progress
is made during a holiday break. Both of these phenomena can be seen clearly
in projects la and 15. Using work days instead of calendar days would elimi-
nate a major cause of time-related noise. Several projects include substantial,
sudden, and anomalous progress. In all cases where these events were examined
closely, the anomaly has proven to be the result of an unfortunate side-effect
of the specific data collection procedure used. For example, a renamed file was
detected as a combination of a substantial deletion and a subsequent addition. A
commitment to collect the needed data during the project could reduce noise by
allowing anomalies to be detected and corrected while any additional required
information is still available.

Tables 3 and 4 show the model parameters for each project and metric, ordered
by R2 relative to linear R2. With only seventeen projects and no independent
data available, few definite conclusions can be reached, however several items
are worth noting.

In about half of all cases, the model indicates ¢, and ¢, are essentially the
same. In these cases, the model ¢, —1, is close to zero, suggesting steady progress
did not occur; implementation was either accelerating or decelerating. This could
indicate development under a tight schedule or a process that could be improved.
It is also interesting to note that in these cases the model was able to substan-
tially reduce R? while effectively using only two parameters.

Table 3. Source lines of code change (SLOCC) progress model parameters and R?
relative to linear R?

Model parameters

Project relative R? s tp tq ty
20 0.081 289.8 64.2 64.3 187.1
10 0.084 156.9 30.6 30.7 132.0
3 0.167 376.0 48.9 49.0 120.3
9 0.192 480.4 109.8 109.8 246.7
8 0.262 42.5 17.2 17.5 128.9
19 0.275 501.7 108.1 108.4 164.8
6 0.284 361.9 57.5 126.1 248.0
14 0.295 91.8 21.3 97.8 238.2
5 0.297 92.0 14.9 14.9 48.8
7 0.331 183.9 93.4 288.9 555.2
11 0.336 48.9 27.5 62.4 70.9
13 0.365 250.5 93.8 213.9 220.8
17 0.411 268.4 6.3 1104 181.0
4 0.622 215.6 24.1 138.5 201.7
1b 0.627 303.1 28.9 220.2 248.3
la 0.650 183.8 14.0 14.1 44.9

15 0.855 92.3 4.5 140.9 163.9
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Table 4. Code churn (CHURN) progress model parameters and R? relative to linear
R2

Model parameters

Project relative R2 s tp tq ty
20 0.113 560.6 68.2 68.3 187.1
3 0.175 820.9 45.7 45.7 120.3
9 0.190 1028.0 110.6 110.7 246.7
8 0.221 75.9 21.5 21.8 128.9
14 0.286 170.6 23.2 92.4 238.2
19 0.288 882.7 111.8 112.0 164.8
6 0.291 631.7 43.4 136.4 248.0
5 0.294 211.3 17.5 214 48.8
17 0.302 538.3 10.7 109.3 181.0
10 0.337 412.6 16.7 16.8 132.0
13 0.343 548.8 87.9 211.6 220.8
7 0.354 325.9 85.2 298.6 555.2
11 0.427 100.9 204 59.2 70.9
la 0.459 365.8 14.5 14.5 44.9
1b 0.707 667.8 54.1 238.3 248.3
4 0.774 386.7 17.5 148.2 201.7
15 0.839 181.7 0.5 139.7 163.9

In conforming cases where t,—t, is much larger than zero, the model indicates
steady, sustained implementation occurred between ¢, and ¢,. In these cases, the
implementation velocity (s) can be stated with great confidence. Velocity is a
surrogate for productivity in the dimension measured by the specific metric.
For example, Table 3 shows project six averaged over 360 lines of new code per
calendar day between project days 58 and 126.

In the projects studied, implementation velocity (s) varies by more than an
order of magnitude. While part of this variation is due to the number of engineers
assigned to the project, likely some is due to proficiency. This is consistent with
studies showing individual programmer productivity varies by as much as an
order of magnitude [15].

5 Conclusions

Interpreting implementation progress measurements is difficult. A simple model
is needed to provide a framework to help interpret the data. We have developed
a piecewise approximation based on a three-phase model of linear implementa-
tion velocity. The model corresponds well to our intuition of how project progress
occurs. It identifies project phase boundaries as well as the velocity of implemen-
tation during each phase. Furthermore, the progress model allows comparisons
of project velocity between projects and easily supports estimating.

The progress model fits the available sample data better than a linear model.
With only one additional parameter, the model produces fits with approximately
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two-thirds less error than a linear fit. When compared with a polynomial fit, the
progress model performs at least as well as a polynomial model which has one
additional parameter.

Any model is only as good as the data on which it is based. Errors were
discovered in both dimensions of the sample data. Spurious data entries were
occasionally introduced due to the check-in process used. Similarly, using project
work days, instead of calendar days, could have improved the quality of data in
the time dimension.

5.1 Future Work

This work provides a sound basis for further study in this area. The progress
model presented here only considers non-maintenance implementation. Projects
with clear delivery dates, after which continuing development is not planned,
fall into this category. Projects in maintenance or under continuous development
may not exhibit phases similar to projects with firm end dates and deserve to
be investigated, although this would require further work.

The stability of the model suggests it could be used to make predictions.
Estimating project parameters such as final size, delivery date, development
pace, etc. during implementation should be investigated. Similarly, comparisons
of teams or projects based on model parameters could be studied.

Investigation of other metrics as a basis for measuring progress should be
undertaken. If a size metric for object-oriented software were developed, investi-
gating its use as a basis for a growth metric would be very valuable. Variations
of existing metrics better tuned to capture change should be studied. One ex-
ample of this type of metric is the sum of cyclomatic complexity of all changed
functions, rather than simply the change in cyclomatic complexity of a source
artifact.
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Abstract. Techniques for inferring a regular language, in the form of a
finite automaton, from a sufficiently large sample of accepted and nonac-
cepted input words, have been employed to construct models of software
and hardware systems, for use, e.g., in test case generation. We intend
to adapt these techniques to construct state machine models of entities
of communication protocols. The alphabet of such state machines can be
very large, since a symbol typically consists of a protocol data unit type
with a number of parameters, each of which can assume many values.
In typical algorithms for regular inference, the number of needed input
words grows with the size of the alphabet and the size of the minimal
DFA accepting the language. We therefore modify such an algorithm
(Angluin’s algorithm) so that its complexity grows not with the size of
the alphabet, but only with the size of a certain symbolic representation
of the DFA. The main new idea is to infer, for each state, a partitioning
of input symbols into equivalence classes, under the hypothesis that all
input symbols in an equivalence class have the same effect on the state
machine. Whenever such a hypothesis is disproved, equivalence classes
are refined. We show that our modification retains the good properties of
Angluin’s original algorithm, but that its complexity grows with the size
of our symbolic DFA representation rather than with the size of the al-
phabet. We have implemented the algorithm; experiments on synthesized
examples are consistent with these complexity results.

1 Introduction

Model-based techniques for verification and validation of reactive systems, such
as model checking and model-based test generation [1] have witnessed drastic ad-
vances in the last decades. They depend on the availability of a model, specifying
the intended behavior of a system or component, which typically is developed
during specification and design. However, in practice often no formal specifi-
cation is available, or becomes outdated as the system evolves over time. In,
e.g., the telecommunication area, revision cycles are extremely short, and at the
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same time the short revision cycles necessitate extensive testing and verification.
Therefore, there are many cases where the only means to attain correspondence
between model and system component is to construct a model directly from the
component. Such models can be constructed by static analysis techniques using
its source code, as in software verification (e.g., [2, 3,4, 5]). However, many sys-
tem components, including peripheral hardware components, library modules,
or third-party components do not allow static analysis of source code, implying
that models must be constructed from observations of their external behavior.

The construction of models from observations of component behavior can
be performed using techniques for regular inference. Such techniques have been
used, e.g., to create models of environment constraints with respect to which
a component should be verified, for regression testing to create a specification
and a test suite [6, 7], to perform model checking without access to code or to
formal models [8,9], for program analysis [10], and for formal specification and
verification [11]. For finite-state reactive systems, the regular inference problem
means to infer a regular language (in the form of a deterministic finite automa-
ton) from the answers to a finite set of membership queries, each of which asks
whether a certain word is accepted by the system component under test (SUT)
or not. There are several techniques (e.g., [12,13,14,15,16,17,18]) which use
essentially the same basic principles. Given “enough” membership queries, the
constructed automaton will be a correct model of the SUT. Angluin [12] and
others introduce equivalence queries which check whether the regular inference
procedure is completed; if not they are answered by a counterexample on which
the current hypothesis and the SUT disagree.

We intend to use regular inference to construct models of communication
protocol entities. Such entities typically communicate by messages that consists
of a protocol data unit (PDU) type with a number of parameters, each of which
can assume several values. The alphabet of such models is thus typically very
large. Since existing algorithms for regular inference use a number of queries,
which grows polynomially with the size of the alphabet, they are not well suited
for this situation. If some PDU parameters are irrelevant or almost never used,
the algorithm should not be disturbed by their presence.

In this paper, we modify an algorithm for inferring a regular language, so
that it is better adapted for inferring system components with large alphabets
that are built from a small set of action types, each of which has a number of
parameters. Most of these algorithms are based on similar principles: we choose
Angluin’s algorithm [12] since it is well known, and since we have an existing
implementation for this algorithm [19]. The problem of inferring state machines
where messages have arbitrary parameters appears to be very challenging. As
a first step, we will in this paper assume that all parameters are booleans, and
that a SUT can be modeled as an automaton, in which each transition is labeled
by a PDU type and a guard over its parameters. We assume that guards are
conjunctions over positive and negated parameter values. Furthermore, we will
not consider the problem of inferring parameters of possible output data, but
only how input parameters affect the state changes of a state machine. Ideas for
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how to extend these rather restrictive limitations are sketched in the last section
of the paper.

Algorithms for regular inference must represent the inferred automaton in
terms of externally observable elements. A state is represented by a set [u] of
input words u such that the automaton after reading u reaches this state. For
each input symbol a, the transition from [u] for input a is constructed by deter-
mining which state is reached after reading ua. In the parameterized case, input
symbols are of the form «(dy,...,d,), where « is an action type and dy,...,d,
is a tuple of boolean parameter values. We could naively use Angluin’s algorithm
to find the state reached after each of these 2™ different input symbols. Instead,
we will strive to save work by assuming that from each automaton state, many
of the input symbols have the same effect on the SUT, and can be regarded as
equivalent. We can then construct a symbolic automaton representation, where
the effect of each set of equivalent input symbols is represented by a transition
from this state, labeled by a guard, i.e., a boolean expression over the param-
eters, which characterizes the equivalence class. In cases where the number of
equivalence classes is small, we would like to perform the inference with less work
(as measured by the number of membership queries) than by a naive application
of Angluin’s algorithm.

Our inference algorithm maintains, for each inferred state, a partitioning of
subsequent input symbols into assumed equivalence classes. Each class is rep-
resented by a small set of representative input symbols that (as far as we have
observed) have the same effect on the SUT. If later, new information is ob-
tained which contradicts this assumption, the equivalence class is split, thus also
splitting transitions and generating more refined guards. The guard that labels
a transition is obtained by a search procedure to identify precisely the effect
of parameter values, inspired by work on learning of conjunctions, e.g., [16,
Ch. 1.3].

In order to develop a consistent algorithm to do the above, we present in this
paper two significant extensions of Angluin’s algorithm:

1. We generalize Angluin’s algorithm so that it can infer a “partially defined”
automaton, which from each state defines the effect of a set of representative
input symbols. The representative symbols are in general only a subset of
all input symbols.

2. We define a mechanism for inferring guards of a parameterized system from
the symbols in an underlying partially defined automaton, by replacing the
representative symbols by guards that characterize the transitions repre-
sented by each symbol. Extra queries may need to be performed to determine
guards more precisely.

Our resulting inference algorithm is intended to infer parameterized systems
where guards of transitions use only a small subset of all parameters of a par-
ticular action type. We establish an upper bound on the number of posed mem-
bership queries, which is exponential in the number of parameters that appear
in guards. In contrast, using Angluin’s original algorithm requires a number of
membership queries which is exponential in the total number of parameters of



110 T. Berg, B. Jonsson, and H. Raffelt

input symbols. On the other hand, the number of equivalence queries may grow
in our case, since we add possibilities to construct hypothesized automata based
on less information than in the original algorithm. We have performed a set of
experiments on synthesized examples, which confirm this picture.

Organization. The paper is organized as follows. In the next section, we re-
view Angluin’s algorithm for inferring regular sets, and present a modification
which can cope with the situation that the queries investigate different sets of
suffixes for different prefixes. In Section 3, we present parameterized systems,
and the technique to learn “partially defined” automata, from which guards of
transitions are inferred. We prove that our algorithm retains good properties
of Angluin’s original algorithm, and establish upper bounds on the number of
performed queries. Section 4 describes how we have implemented the ideas of
the preceding section, and Section 5 presents the outcome of experiments on
synthesized examples. Conclusions are presented in Section 6.

2 Inference of Finite Automata

In this section, we review the ideas underlying Angluin’s algorithm, and present
our generalization.

Let X be a finite alphabet of symbols. A deterministic finite automaton (DFA)
over X is a structure M = (Q, 9, qo, F') where @ is a non-empty finite set of states,
qo € Q is the initial state, 6 : Q x X — (@ is the transition function, and F C Q
is the set of accepting states. The transition function is extended from input
symbols to words of input symbols in the standard way, by defining

5(Qa 6) =49q
(g, ua) = 0(6(q, u),a)

An input word u is accepted iff §(qo,u) € F. The language accepted by M,
denoted by L£(M), is the set of accepted input words.

Angluin’s algorithm is designed to infer a (minimized) DFA M from a set of
queries, each of which reveals whether a certain word is accepted or not. The
algorithm is formulated in a setting, where a so called Learner, who initially
knows nothing about M, is trying to infer M by asking queries, which are of
two kinds.

— A membership query consists in asking whether a word w € X* is in £(M).
— An equivalence query consists in asking whether a hypothesized DFA H is
correct, i.e., whether £L(H) = L(M). The Oracle will answer yes if H is
correct, or else supply a countererample, which is a word w that is either in

LIM)\ L(H) or in L(H)\ L(M).

The typical behavior of a Learneris to start by asking a sequence of membership
queries, and gradually build a hypothesized DFA H using the obtained answers.
When the Learner feels that she has built a “stable” hypothesis H, she makes
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an equivalence query to find out whether H is equivalent to M. If the result is
successful, the Learner has succeeded, otherwise she uses the returned counterex-
ample to revise H and perform subsequent membership queries until converging
at a new hypothesized DFA, etc.

Let us represent the information gained by the Learner at any point during the
learning process, as a partial mapping Obs from X* to {+, —}, where + stands
for accepted and — for rejected. The domain Dom(Obs) of Obs is the set of
words for which membership queries have been performed, or which the Oracle
has given as counterexamples in equivalence queries. An inference algorithm
should prescribe how to transform Obs into a DFA H = (Q, 9, qo, F'), which is
conformant with Obs, in the sense that any word u € Dom(Obs) is accepted by
H if Obs(u) = + and rejected by H if Obs(u) = —. In general, there are many
such automata, and the problem to find a smallest (in number of states) such
automaton is NP-complete [20]. Angluin and others circumvent this problem by
prescribing conditions on Dom(Obs), under which it is “easy” to find a unique
smallest automaton. These conditions regard each word in Dom(Obs) as the
concatenation of a prefix and a suffix. The idea is that prefixes are candidates
for representing states of the hypothesized automaton, whereas suffixes are used
to distinguish the states.

Angluin [12] supports this prefix-suffix view by representing Obs in terms
of an observation table T, which is a partial function from a prefix-closed set
Dom(T) C X* of prefixes. For each w € Dom(7T), T (u) is a partial function
from a set Dom(7 (u)) C X* of suffixes to {4, —}. It is required that ¢ €
Dom(T (u)) for each u € Dom(7T). We write Entries(7T) to denote {(u,v) : u €
Dom(T) and v € Dom(7 (u))}. An observation table 7 represents the partial
mapping Obs if uv € Dom(Obs) and Obs(uv) = T (u)(v) whenever (u,v) €
Entries(T).

Define the short prefives of an observation table 7, denoted Sp(7), to be
the set of words u € Dom(7T) such that ua € Dom(T) for some a € X. An
observation table 7 is complete if ua € Dom(T) for all w € Sp(T) and a € X; it
is suffiz-closed if (u,av) € Entries(7) where v € Sp(7) and a € X implies that
(ua,v) € Entries(T). For u,u’ € Dom(T), let u ~7 u' denote that 7 (u)(v) =
T (u')(v) whenever v € (Dom(7 (u)) N Dom(7T (u'))). The table T partitioned
if =7 is an equivalence relation on Dom(7 (u)). A partitioned table is closed
if whenever (u,v) € Entries(T) there is a v’ € Sp(7) with u =7 v and v €
Dom(T (v')); it is consistent if ua ~7 w'a whenever ua,u’a € Dom(7T) and
u T .

Angluin showed how to construct a unique minimal automaton from a com-
plete, closed, and consistent observation table in the case that Dom(7 (u)) is the
same for all u € Dom(T). Our goal in this section is to generalize this construc-
tion to the case where the set Dom/(7 (u)) of suffixes may differ significantly for
different prefixes u € Dom(T).

Definition 1. Let T be a partitioned, complete, closed, and consistent observa-
tion table. Define the DFA T/ ~7 as (Q, 9, qo, F'), where
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— Q =Dom(T)/ ~r, i.e., Q is the set of equivalence classes of ~r,
— 3([u], a) = [ua] for ue Sp(T),
— 9o
- F

E])
[u] :© T(u)(e) =+} |

I
——

Note how closedness and completeness ensures that we can define a transition
for each equivalence class and symbol in X, and how consistency ensures that
such transitions have a unique target equivalence class.

We are now ready to state a general theorem that gives constraints on any
FSM that is conformant with an observation function.

Theorem 1 (Characterization Theorem). Let 7 be a partitioned, complete,
closed, and consistent observation table which represents Obs. If T is suffiz-
closed, then the DFA T/ ~r is the minimal automaton conformant with Obs.

Angluin’s algorithm uses a specialization of the conditions in Theorem 1, where
Dom(T (u)) is the same for all u € Dom/(T).

3 Inference of Parameterized Systems

In this section, we consider how to adapt the techniques of the previous section to
a setting where symbols in the alphabet are messages with parameters, e.g., as in
a typical communication protocol. Since the problem of inferring state machines
where messages have arbitrary parameters appears to be very challenging, we will
here assume that all parameters are booleans, and that a SUT can be modeled
as an automaton, in which each transition is labeled by a PDU type and a guard
over its parameters. We assume that guards are conjunctions over positive and
negated parameter values. Furthermore, we will not consider the problem of
inferring parameters of possible output data, but only how input parameters
affect the state changes of a state machine.

Let Act be a finite set of actions, each of which has a nonnegative arity. Let

X act be the set of symbols of form «(dy, ..., d,), where « is an action of arity n,
and dy,...,d, are booleans. We will use 0 and 1 to denote the boolean values
false and true, respectively.

We assume a set of formal parameters, ranged over by p, p1,po, . ... A param-
eterized action is a term of form «(p1,...,pn), where « is an action « of arity n,
and p1,...,p, are formal parameters. A guard for a(p1,...,pn) is a conjunction
whose conjuncts are of form p; or —p; with p; € {p1,...,pn}. We write p for

Piy...,pn and d for dy, ..., d,. A guarded action is a pair (a(p),g), where a(p)
is a parameterized action, and g is a guard for a(p). A guarded action (a(p), g)
denotes the set [(a(p),9)] = {a(d) : g[d/p]} of symbols, whose parameters
satisfy g.

Definition 2 (Parameterized system). Let Act be a finite set of actions. A
parameterized system over Act is a tuple P = (Q, —, qo, F'), where
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ATIR(p1,...,p12), true

SLIR(p1,..-,p7), —(PaApPs5) SLIR(p1,---,p7), P4APS

SLIR(p1,...,p7), true
SUR(p1,-...P7), true 'R(P1,-'.,P12)v trlp

SLIR(p1,..-, p7), true
ATIR(p1,...,p12), true

Fig. 1. Example of a parameterized system

— Q is a finite set of states,

— is a finite set of transitions. Fach transition is a tuple {q,a(p),q,q"),
where q,q' € Q are states, and (a(p), g) is a guarded action,

qo € Q s the initial state, and

— F C Q is a set of accepting states,

which is completely specified and deterministic, i.e., for each state q and sym-
bol a(d), there is exactly one transition (q,a(p),g,q’) from q such that a(d) €

[(a(p), 9)]- O

We write ¢ (p)g ¢’ to denote that (g, a(p),g,q’) € —. A parameterized system
(p)’g/ a%q//

is ezpanded if whenever ¢ "2 ¢ and ¢ q", and in addition p; or —p; is a
conjunct of ¢’, then either p; or —p; must be a conjunct of ¢g”. In other words, a
parameterized system is expanded if all transitions from a state for some action
test the same set of parameters. In Fig. 1 a fragment of a protocol provided by
Mobile Arts AB [21] is given as an example of a parameterized system.

A parameterized system P = (Q, —, qo, F') over Act denotes the DFA Mp =
(Q,0,q0, F) over X 4., where ¢ is defined by

S(go(d) =¢  whenever  ¢" % ¢/ and a(d) € [(a(p). g)]-

Note that § is well-defined, since P is completely specified and deterministic.
We will adapt Angluin’s algorithm to inference of parameterized systems, in
a situation where each symbol typically has many parameters, but for which the
number of outgoing transitions from each state is small compared to the number
of symbols in X' 4. Ideally, the effort needed to learn a parameterized system P
should be in proportion to the size of its description as a parameterized system,
and not to its number of states and | X4, as is the case for Angluin’s algorithm.
To accomplish this, we make two extensions to Angluin’s algorithm. First,
we must abandon the requirement that the constructed observation table 7 be
complete, since then Dom(7T) is at least | X 4| times larger than the number of
states of the constructed automaton. Instead of requiring that 7 be complete,
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Dom(T) will for each u € Sp(7) contain a set of representative continuations
ua(d), where «(d) is taken from a subset of X 4.+ which in general depends on
u. The ambition is that for each transition of the SUT, labeled a(p), g, from the
state represented by u, the table contains at least one continuation ua(d) for a
representative symbol a(d) with a(d) € [(a(p), g)]-

Second, in order to construct a parameterized system from an incomplete
observation table, we present a technique to construct guards from representative
symbols. This implies asking additional queries in order to determine guards as
precisely as possible. Of course, we do not know a priori how many transitions
leave a particular state, or how the guards partition symbols into equivalence
classes. Therefore we start with a coarse default partitioning into equivalence
classes, which is refined “by need”. Whenever two words in the same equivalence
class generate different reactions by the SUT, we split the equivalence class by
introducing more guards.

In order to maintain a current hypothesis about guards, we augment the
observation table 7 by a labeling function v, which to each prefix ua € Dom(T)
assigns a guarded action v, (a). The idea is that the constructed parameterized
system, after having processed the input word u, will process the input symbol
a using a transition labeled by 7,(a). We make the natural requirements that
a € [yu(a)], and that the labeling function should suggest guards that make
the resulting automaton completely specified and deterministic, i.e., for each
u € Sp(T), we have

- U [vu(a)] = Lact, and
ua€Dom/(T)

— wa,ua’ € Dom(T) implies either [y, (a)] = [vu(a’)] or [vu(a)]N[yu(a’)] = 0.

The addition of a labeling function makes it natural to strengthen the notion of
consistency, to allow a unique parameterized system to be constructed from an
observation table with a labeling function.

Definition 3. A labeling function ~ for an observation table T is guard-
consistent if for any ua,u’a’ € Dom(T) such that v =7 u' and [yu,(a)] N
[vw (@] # 0, we have ua ~7 u'a’.

Intuitively, whereas consistency states that extensions ua and u'a in Dom(7) of
equivalent prefixes u and v’ with the same symbol a should also be equivalent,
guard-consistency requires that two symbols a, a’, whose labeling functions over-
lap should have equivalent extensions in Dom(7). Note that guard-consistency
as a special case implies that ua ~7 wa’ whenever wa,ua’ € Dom(7) and
[vu(@)] = [yu(a’)]-

We now have defined enough concepts to be able to define how to construct
a parameterized system from an observation table with a labeling function.

Definition 4. Let Act be a finite set of actions. Let T be a partitioned, closed,
and consistent observation table, and let v be a guard-consistent labeling function
for T. Define the parameterized system (T ,~)/ ~1 as (Q,—,qo, F'), where
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- Q= Dom(T)/ ~r,

— [u] ey [ua] whenever ua € Dom(T) and v,(a) = (a(p),g), and u is the

principal prefix in [u],
— qo = [¢], and
— F={[u] : T(u)(e)=+}.

where for each equivalence class [u] we have designated a unique principal prefix
u' € [u] with v’ € Sp(T). ]
Note that guard-consistency guarantees that different choices of principal pre-
fixes result in equivalent parameterized systems.

In general, there are many different guard-consistent labeling functions for a
given observation table. We therefore define an additional criterion which con-
strains how conjuncts may occur in guards of a labeling function. In a table 7,
define a witnessing pair for a prefix u € Sp(7), action «, and index i, to be a
pair of prefixes ua(d), ua(d/) € Dom(T) such that

— ua(d) #r ua(d/), and
—d = (di,...,d;,...,dy) and d = (di,...,d,...,dy,) differ only in the ith

parameter.

Definition 5. A labeling function v for T is well-witnessed if whenever v, (a) =
(a(p), g) then

— whenever p; or —p; is a conjunct in g, then T contains a witnessing pair for

u, o, and 1.
— there is a conjunct p; or —p; of g such that T contains a witnessing pair
ua(d),ua(d') for u, a, and j, such that a(d) € [(a(p),9)]. |

Intuitively, the first requirement states that each conjunct of a guard g should
be motivated by a witnessing pair in 7, which however need not contain a prefix
that satisfies g. The second requirement states that g should be satisfied by the
last symbol of at least one prefix in a witnessing pair.

We are now ready to state a theorem which relates a parameterized system
(T,v)/ =~ constructed from an observation table 7, and the internal structure
of the SUT.

We first adapt Theorem 1 to be sure that (7,+)/ ~7 agrees with the obser-
vations.

Theorem 2. Let 7 be a partitioned, closed, and consistent observation table,
and let v be an ~g-compatible and guard-consistent labeling function for T. If
T is suffiz-closed, then the parameterized system (T ,~)/ ~1 is conformant with

7.

Proof. The theorem follows by adapting Theorem 1 to incomplete observation
tables, and the requirement that a € [y,(a)] for all ua € Dom(T). 0

A more informative theorem, which can be seen as an analogue of Theorem 1 in
[12], is as follows,
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Theorem 3. Let 7 be a partitioned, closed, consistent, and suffiz-closed obser-
vation table, and let v be a guard-consistent and well-witnessed labeling function
for T. Let (T,~)/ =1 be (Q,—, qo, F) with n states. Let P = (R,—',ro, G)
be any expanded parameterized system which is conformant with T. Then P has
at least n states and there is a surjective mapping h from R to @ such that

- h(?"o) = qo,
—reGiff h(r) € F,
— if P has exactly n states then, whenever h(r) = q and q phg q, there are

g, v’ such that r LI ith h(r") =¢q and ¢ = g.
This implies that if P has n states then (T ,~)/ ~1 has al most as many tran-

sitions as P.

Optimization. The process of obtaining a well-witnessed labeling function may
need a number of additional queries, which cause Dom(7) to be extended. The
requirement that =7 be an equivalence relation on Dom(7) may then necessitate
even more queries, which are not necessary for making v well-witnessed. To allow
to save queries, we allow prefixes in Dom(7) to be classified as either essential
or auziliary. We now say that an observation table is partitioned if

— For each ua € Dom(T), there is an essential ua’ € Dom(7T) with ~,(a’) =
Yu(a),

— € is an essential prefix, and

— &7 is an equivalence relation on essential prefixes in Dom/(7).

4 An Algorithm for Inference of Parameterized Systems

In this section, we present an algorithm for inferring parameterized systems,
based on the concepts introduced in Section 3.

The basic idea of our algorithm is to perform membership queries until we
have a suffix-closed, partitioned, closed, and consistent observation table with a
guard-consistent and well-witnessed labeling function. We can then construct a
conjecture and pose an equivalence query. As long as the table does not satisfy
some condition mentioned in Theorem 3, this is handled as follows.

— If 7 is not suffix-closed, i.e., there is a (u,av) € Entries(7) where u €
Sp(T), such that (ua,v) ¢ Entries(T ), then add (ua, v) to Entries(T) (letting
T (ua)(v) =T (u)(av)).

— If 7 is not partitioned, i.e., ~7 is not an equivalence relation, then there are
u,u',u” € Dom(T) such that u =7 v, u =7 u” but T(u')(v) # T (u")(v)
for some v. In this case, ask a membership query for uv, whose result is
entered as 7 (u)(v) to determine whether u should be equivalent to u’ or u”.

— If 7 is not closed, then for some ua € Dom(7T) we have ua %7 v’ for all
u' € Sp(7T). We then add wa to Sp(7) by adding, for each a € Act, some
word of form waa(d) to Dom(7T), and let vuq(a(d)) = (o, true). Priority
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given to parameters d for which a(d/)v € Dom(T (ua)) for some v, since
suffix-closedness then requires that uaa(d/) € Dom(T).

— If 7 is not consistent, then we have two entries (ua,v) and (v'a,v) in
Entries(T) with 7 (ua)(v) # 7T (v'a)(v) but w ~7 v'. Then add (u,av) and
(v, av) to Entries(7) and enter the results from 7 (ua)(v) and 7 (u'a)(v),
respectively.

The table must also be equipped with a labeling function -, which is main-
tained during the algorithm. Initially, for each v € Sp(7) and each action a,
we choose some values d for the parameters of «, and let ua(d) € Dom(T)
with v, (a(d)) = (a, true). Whenever we add a prefix ua(d) to Dom(T) the
labeling function is updated in one of two ways. If there is not yet a prefix
ua(d/) € Dom(T) for any d we let Yu(a(d)) = (o, true), otherwise we let
Yu(a(d)) = ’yu(a(d/)), where a(d/) is the existing symbol such that «a(d) €

[rula@))]]

)
If Dom(7T) contains only one prefix ua(d) for each u and «, then v is well-

witnessed. However, if another prefix ua(d/) is entered, for which ua(d) %1

ua(d/), this destroys the guard-consistency. We then have to refine the labeling
function -y, and possibly also the partitioning into equivalence classes.

If v is not guard-consistent, this may be because there are u, a, and a’ such
that v,(a) = yu(a’) but ua %7 wa'. Let y,(a) be (a(p),g). In this case, we
must split the guard g so that a and o’ are assigned disjoint guards. In order
to find an appropriate parameter for the splitting, and to keep v well-witnessed,
we find (e.g., by binary search) two tuples, d = (di,...,1,...,d,) and d =
(di,...,0,...,dy), of parameter values of a, with a(d), a(d/) € [yu(a)], which
differ only in some parameter (with index, say, ), such that 7 (ua(d))(v) #
T(ua(d'))(v) for some v. We then add (ua(d),v) and (ua(d'),v) to Entries(T),
and update the labeling function so that all ua” € [v,(a)] now labeled by the
guard g A p; or g A —p;.

A second source of guard-inconsistency is that we can have two equivalent
prefixes in Sp(7") which have different partitionings of the next symbols, induced
by the labeling function. It must then always be the case that there exist u, v, a,
and a’ such that ua,u’a’ € Dom(T), u =7 v/, and @’ € [y,(a)] but T (ua)(v) #
T (v'a’)(v) for some v. A membership query for ua’v should clarify the situation,
either giving rise to a guard-inconsistency, or causing u %7 v’ (and continuing
processing it as an inconsistency).

When we have a partitioned, suffix-closed, consistent, and closed table with a
well-witnessed and guard-consistent labeling function, we can construct a con-
jecture as described in Definition 4. The conjecture is provided to the oracle in
an equivalence query and the oracle in turn either gives an affirmative answer or
a counter-example. In the first case, the algorithm terminates and outputs the
correct model. In the second case, the oracle returns a counter-example, i.e., a
word u such that Obs(u) = + but the provided automaton does not accept u
(or vice versa). As in the standard algorithm of Angluin, we enter all prefixes of
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w into Dom(T ). This will subsequently cause either an inconsistency and hence
a "new” state, or a guard-inconsistency and hence a “new” transition.

Algorithm Query complexity. We estimate the complexity of our algorithm in
terms of a minimal expanded parameterized system which accepts exactly the
language as the SUT. Let n be its number of states, let m be the number of
transitions, let | Act| be the number of actions in Act, let | X 4.¢| be the number of
symbols in X 4.¢, and let ¢ be the length of the longest counter-example received
from the oracle.

The expected bottle-neck in practice for an inference algorithm is the number
of membership and equivalence queries, since queries often involve comparatively
slow communication with an external device. Let us first estimate the number
of equivalence queries. An equivalence query can either give rise to

— an inconsistency which results in a new state; this can occur at most n times,
or

— a guard-inconsistency which results in splitting a guard; this can occur at
most m — n|Act| times.

Hence the algorithm performs at most n +m — n|Act| equivalence queries.

Let us then estimate the number of membership queries. The number of mem-
bership queries required are dependent on the number of prefixes in Dom(7T)
and the maximum number of suffixes in any Dom(7 (u)). Each Dom(7 (u)) con-
tains at most n suffixes, since each time we add a new suffix to Dom(7 (u)) we
separate at least a pair of prefixes into different equivalence classes. The number
of prefixes in Dom(7T) is at most

— one for each equivalence class; totally n, plus

— one for each state and action, plus an extra essential pair of prefixes as
witness for each transition, in total n|Act| + 2m, plus

— prefixes of counterexamples, in total c(n +m — n|Act|).

Hence the number of membership queries performed by the algorithm is O(cmn)
(since n|Act] < m). We can contrast this with a naive application of Angluins
algorithm, which in the worst case requires O(cn?|X 4c¢|) membership queries.
Thus, whereas a naive use of Angluins algorithm uses a number of membership
queries which grows linearly with | X 4., i.e., exponentially in the arity of actions,
our algorithm grows exponentially only with the number of parameters of an
action that is used in guards of transitions. It should be remarked that Angluin’s
treatment of counterexamples is poorly optimized, resulting in the factor ¢ in
the worst-case bound. Rivest and Shapire [17] have presented techniques for
replacing the factor ¢ by log ¢, which should apply also to our algorithm.

5 Experimental Results

We are interested in examining how the performance of the inference algorithm
for parameterized systems depends on the number of parameters that occur
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Fig. 2. Experimental results on random generated parameterized systems with 50
states and 5 parameters

in guards in the transitions of the system and how it compares with a naive
application of Angluin’s algorithm. Let us first define a measure for this. Let the
parameter complezity for a state ¢ and action « of a parameterized system, be the
total number of different parameters used in guards on transitions from ¢ labeled
a(p). We want to investigate how the parameter complexity effects the number of
membership and equivalence queries required by the algorithm. For this purpose,
we have implemented our inference algorithm for parameterized systems. The
implementation is in C4++ as an extension of the LearnLib tool [19], developed
at Dortmund University.

We measure performance on randomly generated parameterized systems and a
small model of an instance of a protocol provided by Mobile Arts AB (see Fig. 1).
The protocol was first modeled in LOTOS and then transformed into a DFA by
the CAESAR/ALDEBARAN Development Package [22]. The protocol is a small
fragment of the Network Presence Center (NPC) product of the company. The
NPC is a middle-ware product to allow Mobile Network Operators to provide
various presence information from the GSM network. The parameterized system
model of the protocol has 4 states, one action with arity 12 and another with arity
7. The first action has on average parameter complexity 0 and the second 0.5. In
the randomly generated systems we have used actions with arity 5, and generated
automata in which each state-action pair has the same parameter complexity. We
have varied the parameter complexity between 1 and 5. The systems has then
been inferred both by our algorithm and by Angluin’s algorithm. The results
of the experiments are summarized in Figure 2, where the left diagram shows
the number of membership queries, and the right diagram shows the number of
equivalence queries.

The left diagram shows that the number of membership queries for our algo-
rithm grows exponentially with the parameter complexity of the system, whereas
it is independent of parameter complexity for Angluin’s original algorithm. For
a parameter complexity of less than 3, our algorithm performs better, but when
parameter complexity increases, the overhead of our algorithm makes it clearly
worse than Angluin’s. The right diagram shows that our algorithm always per-
forms more equivalence queries than Angluin’s.

Applying Angluin’s algorithm to Mobile Arts’ protocol fragment gives rise to
76000 membership queries and 3 equivalence queries, while our algorithm only
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requires 21 membership queries and 4 equivalence queries. The reason for this
difference is the relatively low parameter complexity in the overall system in
comparison to the high arity of its actions.

The higher number of equivalence queries for our algorithm is an expected con-
sequence of the observation that our algorithm allows to construct equivalence
queries that are based on less complete information than Angluin’s algorithm.
In particular, we allow equivalence queries even if the refinement of equivalence
classes of symbols is not completed. For higher parameter complexity (4 or 5),
the difference in number of equivalence queries is significant. We believe that this
explains the sharp growth of membership queries for parameter complexities 4
and 5, since a large number of equivalence queries gives rise to an explosion in
membership queries that are caused by prefixes of counterexamples.

6 Conclusions

In this paper, we have adapted techniques for inference of finite automata from
sets of observations, in order that they perform better for state machines whose
symbols are generated from a small set of actions, each of which has a set of
parameters. Our algorithm tries to find representative observations, from which
we infer guards of transitions by techniques for inferring boolean expressions.
Thus, our work indicates a way to combine techniques for inferring properties of
data types with regular inference techniques for inferring reactive behavior. Our
algorithm requires less observations in the case that only a subset of parameters
are used to determine the behavior of the machine at each transition. Future
work includes to improve the handling of counterexamples in our tool, and to
evaluate our techniques on a realistic communication protocol module.

Our framework limits us to handling inputs but not outputs. We therefore
suggest possible solutions to include these. One approach is to infer a Mealy
machine like Steffen et al. [23] but with our framework of handling parameterized
input actions. The other approach is to use our framework but encode the input
and output into parameterized actions of a parameterized system. This will of
course blow up the alphabet, but the dependences between input and output
will be recorded in boolean formulas which may lead to very compact models.

Acknowledgement. At last we would like to thank Bernhard Steffen for helpful
hints and discussions.
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Abstract. Programmers understand a piece of software by building simplified
mental models of it. Aspects of these models lend themselves naturally to for-
malization — e.g., structural relationships can be partly captured by module de-
pendency graphs. Automated support for generating and analyzing such structural
models has proven useful. For event-driven systems, behavioral models, which
capture temporal and causal relationships between events, are important and de-
serve similar methodological and tool support. In this paper, we describe such
a technique. Our method supports building and elaboration of behavioral mod-
els, as well as maintaining such models as systems evolve. The method is based
on model-checking and witness generation, using strategies to create goal-driven
simulation traces. We illustrate it on a two-lift/three-floor elevator system, and
describe our tool, Sawblade, which provides automated support for the method.

1 Introduction

Programs larger than a few tens of lines are generally far too complex to be understood
in full by a single person. In place of complete understanding, programmers use sim-
plified mental models [18] — a representation of some part of the program’s structure or
function at a high enough level of abstraction to be readily understood. One heuristic is
that they should be small enough to fit on a whiteboard [25]. Mental models are infor-
mal and cannot always be completely expressed by a formal structure; however, it has
often been found useful to create formal structures based upon programmers’ mental
models and to use them to aid construction and understanding of code. Some examples
of mental models used by programmers, and their corresponding formal artifacts, are
discussed below.

Modules and dependencies. Decomposition into modules that communicate via in-
terfaces is standard software engineering practice. Module A depends on module B if
any of the functions in A use a function or data defined in B. Considerable research has
gone into automatically extracting a graph recording all dependencies between modules
from the source code [8, 23, 24], helping programmers navigate this graph [13] or select
fragments that are most relevant to a particular aspect [28].

Design patterns and architectural patterns. Design patterns describe and catalogue
common relationships between groups of objects in object-oriented programs [14]. De-
sign patterns have a formal representation as fragments of object modelling graphs;
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formalizing the observations has led to faster program comprehension and better com-
munication between programmers. Work on extracting design patters from source code
has also been done [21]. Architectural patterns relate components-and-connectors type
diagrams to standard styles of decomposition, such as layers or pipes-and-filters. There
is research on automated exploration of architecture and automatic comparison with a
conceptual pattern [13, 25].

The models described above are mostly structural. However, behavior is as impor-
tant a part of understanding a program as structure, particularly for reactive concurrent
systems. In this paper, we address the problem of providing tool support for construct-
ing behavioral models of such complex systems.

Global propositions about a system’s behavior can be expressed using temporal
logic [22] and automatically verified using model-checking [9]. The strength of this
method is that it can be used both for assertions about some behavior and about all
possible behaviors. It has two weaknesses: expressing properties can become difficult,
though property patterns [12] help tame this difficulty; and, more importantly, even us-
ing property patterns, it is very hard to guess which properties might be both valid and
useful for understanding.

Query-checking [5] is a technique for searching for interesting temporal logic prop-
erties. It enables answering user questions such as “What property P is true every-
where?” or “If event X happens, what property () eventually becomes true sometime
after X?” However, query-checking requires considerable intervention and technical
knowledge. Furthermore, its output can be a large propositional formula, which is hard
to interpret intuitively.

A potential candidate for behavioural models is scenarios [20]. Scenarios have been
shown to be useful for expressing requirements and for communicating between stake-
holders [16, 19]. Scenarios can capture not only sequences of events that the system
allows, but also those that it prohibits, exact causal relationship between events, etc.
Running the program — with the aid of a simulator or test-driver to provide inputs —
generates a large number of scenarios which are certainly true, but do not yield the kind
of simple, general knowledge about the system’s behavior we would like in building
a mental model. They lack any notion of causation between events, or of necessity or
impossibility of sequences of events. These richer concepts are essential for behavioral
models that support understanding and evolution of the system.

Our goal is to bridge this gap: to provide a methodology and tool for finding and val-
idating rich scenarios that describe not just sequences of events but causal relationships
between them. We need to be able to vary the level of granularity of scenarios — what
events we distinguish — and also the scope, to ignore actions of parts of the system that
are not considered relevant.

Furthermore, we want to go beyond simply finding and validating such scenarios:
our methodology aims to help the user in elaborating scenarios by finding others which
are stronger, or more detailed. Finally, since a major use of mental models is during
software evolution, our methodology must also help change these scenarios along with
evolving systems.

Contributions. In this paper, we propose a methodology and tool based on temporal
logic, model-checking, and witness generation. Our techniques do not work directly on
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the program code; instead, we assume that a finite-state model of the program has been
constructed, e.g., using the techniques of [1, 11], and that this model is small enough to
be analyzable by existing model-checkers.

We illustrate our methodology using a two-lift/three-floor elevator system [2]. Rather
than requiring direct use of temporal logic, our method uses a simple language of events
and causal relationships between them. This language itself is not new: its features are
drawn from property patterns and use-case maps [4]. The modeling language can be
used to express scenarios, and a translation into temporal logic is used for automatic
validation by a model-checker. Once scenarios have been found and validated, they
can be elaborated. We describe a set of patterns for moving from a validated scenario
to stronger and richer scenarios. Application of these patterns relies on generating the
most useful traces of the program that help the user guess more elaborate scenarios. The
notion of a useful trace is user-specified, and this specification is used by the witness-
generation component of the model-checker to carry out a strategy-directed search for
interesting traces.

Maintaining scenarios across change is done by representing change as an annota-
tion of the new system, indicating how its state transitions have changed from the old.
Once this is done, useful traces — in this case, those that highlight most effectively and
minimally the differences in behavior, where they exist — can be searched for by the
model-checker using strategies as well.

Support for this method is provided by our tool Sawblade, built on top of a model-
checker XChek [6].

Structure. The rest of this paper is organized as follows: in Section 2, we give back-
ground material on temporal logic and model-checking. In Section 3, we present a lan-
guage for scenario-like behavioural models and its translation into temporal logic. We
also discuss the elevator system which is the running example in this paper. In Section 4,
we describe witness generation and strategies for helping produce the “most interest-
ing” witnesses. In Section 5, we describe the methodology for elaborating scenarios.
In Section 6, we give our formal definition of the annotation of a changed system, and
in Section 7, describe the methodology for transforming scenarios across change. We
describe Sawblade, a tool supporting this methodology, in Section 8 and conclude the
paper in Section 9.

2 Background

In this section, we review the basics of temporal logic model-checking, presenting the
semantics of the temporal logic CTL and the definition of witnesses for existential CTL
properties.

Analysis of data-driven, run-to-completion programs is predicative, examining the
relation between the program’s input and output. Analysis of a reactive program, how-
ever, must examine the infinite behaviours of the program, and how its behaviours are
affected by input from its environment. Temporal logic is helpful for intuitively ex-
pressing properties of infinite behaviours, and, for finite-state models, model-checking
provides a useful tool for automatically deciding satisfaction of temporal logic proper-
ties by those models.
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Fig. 1. (a) A Kripke structure; (b) A Kripke structure with diff, based on a fragment of the
model in (a)

Kripke Structures and CTL. A Kripke structure is an abstract model of a reactive
system. Formally, it is a tuple (S, so, R, I, V') where S is a (finite) set of states; s is
the initial state; R C .S x S is the transition relation; V' is a set of atomic propositions;
I:S — 2V isalabeling function that associates each state with the atomic propositions
true in that state.

An example Kripke structure is shown in Figure 1(a). In this model, S =
{s0, 81, 82, 83, S4, S5, 86,87}, V = {p,r, f}, and (so,s1) € R. Atomic propositions
not shown in a state are assumed to be false, e.g., p, r and f are false in s¢.

For each s € S, the transition relation defines a successor ser Img(s) = {t |
R(s,t)} of states reachable in one step from s; the predecessor set is Img™'(s) =
{t | R(t,s)}. A path p is an infinite sequence pop1p2 ... of states. The set of paths
P(s) of a state s in some Kripke structure M contains all the infinite sequences of
states possible in M:p € P(s) @ po=sAVi € N-p, 1 € Img(p;).

Computation Tree Logic (CTL) [10] is a temporal logic used to state properties of
the (infinite) paths of Kripke structures. The set of CTL formulas over a set of atomic
propositions (variables) V' consists of the sentences defined by the following grammar:

Cu=peV|-C|CAC|CVC|EXC|AXC|E[CUC]|A[CUC]|
EF C | AF C | EG C | AG C

The symbols AX, EG, etc., are called temporal operators. The A or E indicates
whether the following symbol is to be interpreted over all future paths, or some fu-
ture paths; X stands for “next”, F' for “future”, U for “until”, G for globally; thus
A X means “in all next states, ¢ holds”, and EF1 means “there is a future path along
which, at some point, v holds”.

The CTL satisfaction relation = is defined between states of a Kripke structure and
CTL formulas. Its definition is given in Figure 2(a). Note that only EX, EU and EG
are presented. Others can be derived from these via simple identities [9]. For instance,
EFy < E[true U ]. Also note the operator EU; informally, E[p U; 1] means that
there exists a path along which 1 becomes true no later than at step ¢, and until that
point, ¢ holds.

For instance, in the structure of Figure 1(a), we can ask whether it is possible to
reach a state where f holds: so = EF f. One such state is ss, so the property holds.

Figure 2(b) shows some useful CTL identities which will be used later on. They are
straightforward consequences of the semantics. Note that EF;p < E[true U; ).
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Fig. 2. (a) Semantics of CTL. (b) Useful CTL identities.

The set of all states in a model M which satisfy a given property ¢ is denoted by
[]™, or just [] when the model is implicit. The semantics of CTL can be expressed
entirely in terms of [[-] rather than quantification over paths. For instance, [EX¢] =
{Img~'(s) | s € [¢]}, and EF¢ is the least fixed-point of Img ™" applied to [¢].

Witnesses to CTL Properties. In first-order logic, an existential assertion 3z - Q(z)
can be proven by exhibiting a witness — an element in the domain of the predicate )
which makes @ true. Since CTL properties are expressed in a fragment of first-order
logic, this proof method can be applied to them as well. For example, a witness for the
property EF f in the model of Figure 1(a) is sq, s1, S3, S5-

Any CTL property whose semantics is entirely expressible using existential quan-
tifiers where the negation is pushed to the level of atomic propositions, can be proven
by exhibiting an instantiation for all the existential quantifiers over paths. Though CTL
semantics is expressed over infinite paths, a witness is always made up of finite paths
or finite prefixes followed by finite repeating suffixes [9]. For example, the witness
for sy = EXp for the model in Figure 1(a) is a two-step path, where the second
step is a successor ¢ such that (sg,t) € R (state sy in our example). The witness for
s1 = EGp is infinite, and, in the case of the model in Figure 1(a), consists of a loop
S1, 82, S4, S1, ... In the rest of the paper, we use “witness” to refer to either the nec-
essary finite segments or to infinite paths that begin with such segments; the correct
interpretation will be clear from the context. Also, we only consider properties linear
witnesses [3], i.e., a single path through the states of the model that suffices as a proof.
This restriction is for the sake of simplicity of presentation, and is not a constraint on
the method discussed; our results can also be extended to witnesses with branching
structure [15].

Determining whether a CTL formula has a linear witness is NP-hard [3]; a sublan-
guage of CTL which always has linear witnesses is given by the following grammar:

Au=peV|-A|ANA|AVA
T :=A|EXT |EFT |E[AUT]|TVT

For example, the witness to E[r U EXp] in state sy of the model in Figure 1(a) is
linear, whereas the witness to EXp A EX-—p in state s is not.

A counterexample is a witness to the negation of a property. Let ¢ be a formula with a
witness, and let v» = —p. If ¢ does not hold in some state s, then a counterexample to v
can be computed; further, if ¢ has a linear witness, then v has a linear counterexample.
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3 Scenario Language

In this section, we describe the syntax and semantics of a simple language of scenarios.
The language allows expression of causal relationships between events, under qualify-
ing conditions. Its semantics is a translation into CTL, so that scenarios can be auto-
matically validated.

To illustrate the concepts in this paper, we use a simple two-lift, three-floor elevator
system with a central controller. Each of the elevators, F/q and Fs, can be standing still,
or moving up or down; its door can be open or closed. It has a record of the floors it is
still obliged to visit — an elevator E; must visit a floor if either (1) its internal button for
that floor was pressed, or (2) the controller received a call from a landing-button on that
floor and assigned E; to service it. The controller assigns calls to elevators based on a
heuristic estimating which will arrive first.

3.1 Syntax

The basic entities of mental models of behaviour are conditions — the state of a program
spanning some nonzero number of steps in time — and events — changes between one
state and the next [17]. Some of the events and conditions of the elevator system are
shown in Figure 3(a). Note that events do not have to be independent of each other, e.g.,
floor=2 & (F1 . floor=2 \ FEs.floor=2).

The fundamental relationships between events are temporal and causal. We consider
the following to be the atomic relationships between events A and B:

A ~» B A and B can happen, and B can follow A.

A — B A and B can happen, and if A happens, then B must happen sometime in the future.

A ~— B A and B can happen, and if B happens, then A must have happened prior to B.

Also, A = B means that both A — B and A — B. Composition of relationships
is transitive: writing A — B — C means that A — B and B — C. For example,
the graphical expression shown in Figure 3(b) denotes (landingCall(3) ~— floor=3) A
(landingCall(3) ~ assigned(3)) N (assigned(3) — floor=3). That is, an elevator arrives
at floor 3 only because of a call to floor 3. Also, floor 3 is assigned to an elevator only
because of a call; and assignment of a floor always causes its service by an elevator.

Events
init the elevator is started up
landingCall(3) there is a call for an elevator on floor 3
liftCall(3) there is a call inside an elevator for floor 3 .
E{l. Sfloor =1 elevator 1 arrives on floor 1 landingCall(3)  <~— floor=3
floor=2 either elevator arrives on floor 2 \\ /
assigned(3) the controller assigns a call to one of assigned(3)
the elevators.

Conditions
Fr.up elevator 1 is moving up
outstandingCall(3) there is an unserviced call for floor 3

(@) (b)

Fig. 3. (a) Some elevator events and conditions; (b) An example graphical expression
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Causal relationships can be absolute or conditional: either A — B in any case,
or A — B while a condition c is satisfied, that is, if A happens while condition ¢
is true, then either B eventually happens or, before that, ¢ becomes false. We denote
this by ¢[A — BJ. This situation is called an exception. In addition, we want to allow
representation of exceptions which are due to events. If A leads to B unless event C
happens, we write (A — B) | C. We can further generalize this by defining scopes as
in the temporal logic patterns framework [12,27], e.g., A — B between (conditions or
events) P and ().

3.2 Translation

Since Kripke structures deal only with propositions, and not events, we must explicitly
encode events as changes of state. For instance, in the elevator, floor=1 is a state vari-
able: the elevator arrives at floor 1 when this variable becomes true. We assume that
the structure, where needed, is annotated with event variables, which become true for a
single time-step whenever the event occurs, and false once it ceases to occur.

Since any scenario expression can be represented by a conjunction of atomic binary
expressions, we only describe the translation of atomic expressions into CTL.

If B ~~ C, then there are three properties to be checked: (1) B can occur; (2) C can
occur; (3) C can follow B. These are subsumed by determining whether there exists
some path from the initial state along which B occurs at some point; and whether, once
B occurs, C may occur. Formally, B ~ C = EF(B A EF C). For instance, we can
check init ~ (floor=3) by asking the model-checker whether EF (init A EF floor=3)
holds. Since init is necessarily true of sg, this reduces to EF floor=3.

The translation of the remaining constructs into CTL is shown in Table 1. W/C
indicates whether the translation has a linear witness (W), a linear counterexample (C),
or neither (=). If B — (, then not only can both B and C' occur, but when B occurs,
then C' must occur at some point after it. As an example, we can ask whether call=3 —
floor=3 is a valid scenario; the model-checker determines whether for any state where
call=3 occurs, each future path eventually reaches a state where floor=3. If B «— C,
then either C' never occurs, or on any path where C' does occur, between the initial
state and the first occurrence of C, and between any two occurrences of C, there is an
occurrence of B. ¢[B — D] means that if B occurs while c is true, then along all future
paths, ¢ holds until either D occurs, or ¢ becomes false (the exception condition). For
(B — C) | E, B must either lead to an occurrence of C' or an occurrence of E; C
must be possible, but E need not be.

Table 1. CTL semantics of atomic scenarios

Scenario CTL translation w/C
B~ C EF(BAEF C) w
B—~C AG(B = AF () C
B+—C AG(init v C = -

(AG-CV A[-C U B)))
c[B — D] AG(BAc=A[cUDV () C
(B—C) | EAG(BA-E = AF(CV E)) C
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Once relationships between events are discovered, they can be immediately validated
by the model-checker. This leaves open, however, the question of how to find such
relations and how to make them more precise — elaborate them. We address this issue
in Section 5.

4 Witnesses and Strategies

In this section, we discuss how to define strategies for constructing “interesting” wit-
nesses. We also discuss optimality of a witness-generation strategy with respect to ob-
jectives which may not be expressible as part of CTL.

4.1 Witness Generation

In Section 2, we defined witnesses. We now discuss their effective computation.

We start by defining annotated witnesses. An annotated witness is a sequence 7
of pairs (7o, Do), (71, P1), ... where 7; is a state and @; a set of CTL formulas. The
formulas @; are proof-obligations — informally, properties which, at step 7, still need
to be demonstrated by the witness. For example, the annotated witness to sg = EF f
for the model in Figure 1(a) is

(s0, {EF f}) — (51, {EF3 f}) — (52, {EF1 f}) — (s5,{f})

For each state in this witness, we only show a singleton set of proof obligations, al-
though others are possible as well (e.g., {EF f,EF5 f} in state s1). An (infinite)
annotated witness to s; = EG p is

(817 {EGpap7 EX EG p}) - (527 {EGp7pa EX EG p}) — 82

which moves from s; to s and then loops infinitely on so. The labels are based on the
identity EG p < p A EX EG p; see Figure 2(b) for CTL identities.

An annotated witness w to s |= v satisfies the following conditions: (1) 7o = s, and
the conjunction of the formulas in @ implies ¥: ¢ < A piedy Pis (2) for every state
(m3,@;) inw, m; |= ; for each ; € &;; (3) for every step (m;, P;) — (miv1, Pit1)
in the witness, let @ be the subset of @; containing temporal operators. Then for every
©j € P}, there is ¢, € ;11 such that EX ¢, = ;. If the witness is finite, as in the
case of EF, the proof obligation for the last step (7, @1 ) does not include any temporal
operators.

A sequence of annotated states is a partial witness if properties (1) and (2) of wit-
nesses hold in it, and property (3) holds for every state except the last. Particularly,
(s,{p}) is always a partial witness for s |= ¢ if this property holds in the model. Thus,
using the model-checker’s results cached from the computation of [¢], we can com-
pute a complete witness starting from (s, {¢}), extending it one step at a time until
either a final state is reached or a cycle can be closed. More precisely, given a par-
tial witness with (7, @) as the last state, we compute the extension (7', @) so that (1)
Vo, € @' - 3p; € ¢ - EX ¢ = ¢;, and (2) choose 7' € Img(s) N, cq: [¥i]-
That is, 7 must witness EX ¢!, for every temporal o; € &@. The choice of a suitable 7’ is
made by a witness generation strategy [7]. This is the (tableau-based) technique used by
our model-checker XChek [6, 15], and it allows simple local specification of strategies.
Clearly, other techniques are possible as well.
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4.2 Strategies

Strategies are procedures for choosing which witness to show to the user, in case sev-
eral are possible. A simple strategy, used by most model-checkers, is to compute the
shortest possible witness (Shortest). For a finite witness property, such as s = EFp,
this strategy uses the identity EF < 3i - EF; ¢, and selects as the initial partial wit-
ness (s, {EF; ¢}) by finding the least ¢ such that s = EF; ¢. At each extension step,
it chooses a successor for (7, {EF; ¢}) by determining the smallest j < ¢ such that
some ' € Img(m) satisfies EF ¢, and choosing any such 7’. If j = 0, then EFg¢
is rewritten to the purely propositional ¢, and the strategy halts successfully. This is
how the witness to so = EF f in Section 4.1 was generated: sg = EF3 f; the least
i < 3 than can be chosen is 2, and s; is the only choice. From (s1, {EF2 ¢}), the least
possible i < 2 1is 1; s2, s3 are equally valid choices, so the strategy picks so at random;
finally the path is extended to s5, which satisfies f (EF( f), and so the strategy halts.

For EGp, the strategy builds a (shortest) path until it reaches a state ¢ which lies on
a cycle: that is, there is a path from ¢ which reaches ¢ again, and ¢ holds continuously
on this path. Since ¢ satisfies ¢ A EX E[p U {t}], there is a finite path from ¢ back to
t, and once this has been constructed, the witness, consisting of a finite prefix followed
by the cycle on ¢, is complete.

In this paper, we consider several strategies. We describe them informally here; for
a more formal treatment, please see [7]. At each step, the set of possible successors is
partitioned into preferred (P) and avoided (A); if the preferred set is nonempty, then
the next state is chosen from it nondeterministically; otherwise, the next state is chosen
from A. P and A can be the same throughout the construction of the witness, or can
be updated. Clearly, this approach is greedy: decisions are made locally, and thus we
may not generate the most interesting witness. Strategies with backtracking can also be
defined, but their application is more expensive.

Avoid-Visited. This strategy uses the avoid set A that consists of previously visited
states. The set is updated after the next state of the witness is chosen. For example, a
sequence of states forming a witness to EX EF7 in state so of the model in Figure 1(a)
i8 S92, S3, O Sg, S4 but not s, So.

Avoid-States. This strategy is similar to Avoid-Visited. However, it receives a set of
states to avoid as a parameter, and does not update this set as the witness gets con-
structed.

Avoid-Conditions. This strategy is similar to Avoid-States, but its parameter-list con-
sists of conditions on the next state to avoid.

Avoid-Events. This strategy receives a list L of events to avoid. Given the last state
s of the partial witness, it tries to pick a successor ¢ so that none of the events of L
occur between s and ¢. The avoidance set stays the same throughout the witness gener-
ation process. We can further define a strategy that picks a successor that minimizes the
number of events that fire on the transition between s and ¢.

Avoid-Vars. This is similar to Avoid-Events: given a set of variables L, the strategy
extends the current partial witness by choosing the successor that does not change vari-
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ables in L. We can further define a strategy that picks a successor that minimizes changes
to variables in L.

Clearly, we can define Prefer counterparts of the above strategies. For example,
Prefer-Visited extends the partial witness by preferring states which are already part of
this witness.

5 Elaboration of Behavioral Models

In Section 3, we discussed specifying and validating simple scenarios. Since automatic
extraction of interesting scenarios from the system is difficult (because scopes and
events of interest need to be specified and because mental models are an abstraction of
the behaviour of the system — they typically ignore exceptional cases), our methodology
works by starting from simple scenarios that are guessed by the user, and elaborating
them into more complex scenarios using elaboration patterns. Guessing simple scenar-
ios is not hard — we can start just with determining that a certain event p is possible,
without worrying about what caused it.

An elaboration pattern represents a typical way in which behavioral understanding
moves from a set of valid and invalid scenarios — the base scenarios — to stronger or
richer ones — the elaborated scenarios. This movement usually involves enriching the
current vocabulary of events of interest or strengthening the relationship between the
existing events. Elaboration patterns help narrow down the focus of investigation, and
determine which witnesses would be most useful for elaborating the current scenario;
this in turn suggests the witness-generation strategy that should be applied. Application
of an elaboration pattern does not guarantee the existence or the utility of an elaborated
scenario of the desired form.

In this section, we describe elaboration patterns which we found useful for building
behavioural models. Several of these are summarized in Table 2.

Cause Weakening. Suppose we start with a validated scenario A — B (A causes B),
whereas A ~— B (B can only happen after A) is not valid. Thus, we cannot conclude

Table 2. Elaboration patterns

Pattern Before Strategies  After
Cause A— B/ Avoid-Events AV C = B
Weakening A «— B x
Event A—=B./ Shortest, c[A — Bi],
Splitting B = B:1 V By / Avoid-States ¢'[A — Bj)]
A~ B v/ or
A — B> \/ Ay — B,
A — By x Ay — Bs,
A— BQ X A= A1 V A2
Intermediate A — B / Shortest, A—~C—B
Event Avoid-Vars
Intermediate A — B / A<— D,
Cause A B x D+ B
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A = B. Our goal is to determine an event C' such that C causes A and further C' = A,
so that the elaborated scenario is A V C' = B. To find C, we might want to examine
the causes of failure of A «— B, but the counterexample to this property is non-linear
and thus may not provide the necessary understanding. Instead, we propose to examine
which events other than A cause B; so the useful witnesses in this case are generated by
checking init ~ B using an Avoid-Events({ A}) strategy. Examining these witnesses
helps us guess which events need to be added to C; with each successful guess, C' is
increased (weakened) until we can conclude (A V C) = B.

As an example of Cause Weakening, consider the relationship between
landingCall(3) and floor=3 in the elevator system. landingCall(3) — floor=3, but it
is not true that landingCall(3) <— floor=3. Using the elaboration pattern, we compute a
witness to init ~» floor=3, avoiding landing Call(3), which results in init, F1.liftCall(3),
F.assigned(3), F1.doorClosed, E1.floor=2, E;.floor=3. Examining this trace allows
us to identify liftCall(3) as another possible cause of floor=3. We can quickly vali-
date that liftCall(3) — floor=3; and furthermore, that (liftCall(3) V landingCall(3)) ~—
floor = 3. The new event liftCall(3) V landingCall(3) is called call(3), and call(3) =
floor=3.

Event-Splitting. Suppose we start with A = B, where B is a compound event B <
BV Bsy. Thus, A = By V Bsand A «— BV Bs. We can prove A ~— By and A «— Bo,
but neither A — Bj nor A — Bsy. We are interested in causes of B; and Bs. Potential
elaborations can be some conditions under which A — B;, or perhaps splitting up A so
that A < A; V As and A; — B; and Ay «— Bo; finally, we may conclude that A leads
to a non-deterministic choice between B; and Bs. We first examine counterexamples
to A — B,;, perhaps with the Shortest strategy. If this is not helpful, we suggest the
following tactic: examining A ~» Bj, the existential counterpart of A — B;. A does
not always result in By, but checking A ~» Bj lets us examine cases where it does.
Let V7 be the set of states visited while generating a counterexample for A — Bj.
We can generate a witness to A ~» By with the strategy Avoid-States(1}); this avoids
accidental similarities between paths from A to B; and those from A to Bs, and helps
with the elaboration.

We show an application of Event-Splitting in the elevator system by studying the
relationship between a call to floor 3 and the arrival of a given elevator to that floor.
The event floor=3 is composed of the events E;.floor=3 and Es.floor=3. call(3) «—
FE1.floor=3, and call(3) ~— FE>.floor=3; however, call(3) — FE;.floor=3 is not valid. A
witness to w=call(3) ~» F;.floor=3 shows a lift-call for E5 (which is a sub-event of
call(3)), followed by FEs.floor=3. We validate E5.liftCall(3) — Fs.floor=3, and ask for
another witness to ¢, using the strategy Avoid-Event({ Es./iftCall(3)}). This yields the
following trace: init, landingCall(3), Es.assignCall(3), etc., until E5 reaches floor 3.
Thus, we observe that if both elevators are on floor 1, the assignment of calls appears
to be nondeterministic.

To find a better reason, we use the Avoid-States(V7) strategy, where V; is the set of
states in the previous witness. This results in the following sequence of events: there is
a call for floor 2; it is assigned to elevator 2, which moves to floor 2 to service it; there is
a call for floor 3, and it is assigned to elevator 2. This allows us to make another guess:
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if E5.floor=1 and F1 .floor=2, then landingCall(3) causes E1.floor=3:
(E1floor =1 A Es.floor = 2)[landingCall(3) — Fj floor=3]

Since this scenario holds, we assume that the criterion is the distance: if elevator 1 is
closer to the floor called for than elevator 2, it is assigned the call. If they are equidistant,
then preference is given to the elevator moving in the right direction; and otherwise
the assignment is made nondeterministically by the controller. Running a sequence of
witnesses using Avoid-Visited helps build this intuition.

Intermediate Events. Given that A — B, is there an intermediate event C' that links
them, so that A — C and C — B?

Intermediate Cause. This is a variant of Cause Weakening. Suppose we start with
A — B valid, but A — B not valid. If Cause Weakening does not find a weaker event
AV C with AV C — B, is there an intermediate event D such that D happens only
because of A (A — D), and B happens only because of D (D «— B). B can still follow
A without an occurrence of D.

Variable Subset Dependence. This and the following pattern are not shown in Table 2
because they are applicable for general-purpose elaboration. The goal of Variable Sub-
set Dependence is to limit the focus of the exploration. For example, we may want to
study just the behaviour of the elevator F; by disallowing changes in variables of Fs.
The pattern is to choose a subset V'’ of the state variables and use an Avoid-Events(1"")
strategy that attempts to avoid any changes of variables in V.

Avoid Exception. Exceptional or error behaviour makes many systems hard to under-
stand, but this exact understanding is usually not necessary for building mental models.
For example, suppose it is possible to put elevators on service. Then most of the scenar-
ios we attempt to validate are false: a service within the elevator would not be satisfied
if the elevator is on service, scheduling of elevators to fulfill landing requests would
be different, etc. This pattern allows us to exclude such behaviours from consideration.
Given a failed scenario ¢, we look for a condition ¢ so that c[y] holds (in the elevator
example, such a c is “elevator not on service”). If this fails, we can try to strengthen c
by computing counterexamples to ¢ using Avoid-Conditions({c}). A similar pattern
applies if the exceptional behaviour is caused by an event.

6 Evolving Models

In this section, we describe strategies for maintaining and updating mental models as
the system evolves.

6.1 Formalizing Change

We start by formalizing the notion of an evolution of a model. We define an exten-
sion of Kripke structures which captures information about the “old” and the “new”
structures; Kripke structures augmented with difference information (di f £) are called
KSDs. KSDs partition state variables into old and new and record information about
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changes in transitions by associating labels to pairs of states: if there is a transition
between them, it is either newly-imposed (labelled by “7”’) or preserved from the old
structure (“p”). If there is no transition, then either the transition never existed (“n”) or
was deleted during the evolution (“d”). KSDs also record changes of the initial state.

Formally, a Kripke structure with diff (KSD) is a tuple M = (S, so, s(, R, I,
I',V,V'), where S is a set of states; sy and s{, are the old and the new initial
states, respectively; V' and V' are sets of old and newly-added atomic propositions;
R:S xS — {p,i,d,n} is alabelled transition relation; I : $ — 2V and I’ : § — 2V’
are labelling functions associating each state with the set of old and new atomic propo-
sitions, respectively, that are true in that state. In addition, for s,z € S, if I(s) = I(z),
then s and x used to be the same state — they are identical but for the new variables; this
is an equivalence relation, and we write s = z. If s = x and ¢t = y, then in the old struc-
ture, transitions (s, t) and (z, y) were either both present or both absent, and thus in the
new one, they are either deleted or preserved: R(s,t) € {p,d} < R(x,y) € {p,d}.
The equivalence class of s under =, {t | t = s}, is written §.

For example, we augment the model in Figure 1(a) with an additional atomic propo-
sition g (V' = {q}). If q is true, then p does not cause r to become true. If ¢ becomes
true while r is true,  becomes false in the next state. A fragment of this model is shown
in Figure 1(b). In the figure, preserved transitions are regular lines, imposed ones are
extra thick, and deleted ones are dashed; those never there are not shown. The initial
state of the system is now si3, but s13 = sg. The transition (s13, s14) is considered
preserved because in Figure 1(a), the transition (sg, s1) was present, and s14 € §1,
S13 € Sp.

Our definition of KSDs enables easy extraction of the old and the new Kripke struc-
tures. Let M = (S, so, s(, R, I, I',V, V') be a KSD. Then the old Kripke structure M,
is (S/=, 50, Ro, I, V'), where S/= is the set of states obtained from .S via the equiva-
lence relation =, and R, (3,7) < Vx € 5,y € t- R(z,y) € {p,d}; that is, a transition
between s and ¢ exists iff for all x,y in M whose labels agree with s and ¢, respec-
tively, on old variables, the transition between x and y was either preserved or deleted.
The new Kripke structure M,, = (S, si, Ryn, I U I',V U V") has the transition relation
R, (s,t) < R(s,t) € {p,i} since only the preserved and the imposed transitions are
present in the new system. It is equally possible to take an old Kripke structure, and
the edits (the new variables and transition changes) and compute the KSD capturing the
change.

Our definition of KSDs describes the change syntactically. Unlike a standard simu-
lation relation, it does not allow us to conclude anything about the logical relationship
between the two systems; however, it does provide a way for strategies to mine the
changed model for witnesses that highlight the differences induced by the change.

Note that we have not considered the deletion of variables. Deletion is handled by
keeping the variable in V' but removing dependences on this variable from the transition
relation. Formally, let M = (S, s, R, I, V) be a Kripke structure, and z € V. Let
st s~ be states that agree on values of propositionsin V'\ {x}, but disagree on the value
of x:itis true in s and false in s~. R is independent of z at s if Img(st) = Img(s™).
R is independent of x if the above equality holds for all s. For example, in KSD shown
in Figure 1(b), states s14 and s1¢ are not independent of q.
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Thus, a Kripke structure can be made independent of a variable just by adding and
removing transitions; this is behaviorally equivalent to removing the variable. Further-
more, removing dependence on a variable actually removes the variable from the sym-
bolic representation of the model’s transition relation.

In this paper, we do not address the problem of specifying the di f £ between the two
models. However, our definition can encode many of the high-level notions of change
described in the literature, e.g., the SFI feature constructs of Plath and Ryan [26].

6.2 Diff-Based Strategies

We define a few strategies that use change information embedded into a KSD.

Avoid-New-Variable-Events. We say that a transition (s, t) results from a new variable
event if some proposition in V” has a different value in ¢ as it did in s. If s is the last
state of the partial witness, the preferred set consists of all successors ¢ of s such that
(s, t) does not result from new variable events. A version of this strategy that picks a
transition (s, t) with the minimum number of new variable events can also be defined.

Avoid-New-Transitions. This strategy uses transition labels. If s is the last state of the
partial witness, then ¢ is in the preferred set if R(s,t) = p, and in the avoided set if
R(s,t) =1i.

Reuse-Old-Witness. The strategy is useful if the initial states of the new and the old
system coincide (so = s{). Given a previously-generated annotated witness w for ¢,
with w; = (s;,P;), this strategy prefers, at step 7 of generating the new witness w’,

states in §;41.

7 Maintaining Models Under Evolution

Changes to a system can have two important effects on behavioral models: new events
can be introduced and causal relationships which were established in the old system
may be broken. In this section, we introduce an elaboration pattern Exception Breaks
Causation which helps understand change and which is supported by strategies that
operate on KSDs.

In the old system, A — B was valid. The existential counterpart A ~» B still holds,
but A — B no longer does. We guess that the change has introduced an exceptional
condition ¢ under which A does not lead to B, but possibly to some other event D. Our
goal is to find this c,and D if it exists, so that =¢c[A — B] holds, and perhaps ¢c[A — D]
hold. Further, we may want to check whether A is necessary for D: A — D.

Recording the difference between the two systems in a KSD allows us to use the
Avoid-New-Transitions strategy for the counterexample to A — B. It minimizes
the dependence on the new behavior and focuses on the essential difference between
the systems to help identify potential ¢ and D. Conversely, applying Prefer-New-
Transitions combined with Avoid-States allows us to compute different witnesses to
A ~ B that focus on the new behavior and yet preserve the property.

We illustrate the use of this pattern on the elevator system, which we modify by in-
troducing a service feature to each elevator: once on service, it stops servicing any of
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its currently-assigned landing calls and may not be assigned any other requests until it
goes off service. This change breaks the scenario landingCall(3) — floor=3. Search-
ing for counterexamples of this property using Avoid-New-Transitions yields the one
where from init, both E.service and Es.service become true, and in the next state,
the landing-call for floor 3 cannot be assigned to either elevator. Further, both elevators
stay on service (the last state is looping). So, we guess that the exception condition c is
FE1.service \ Esy.service.

However, c[landingCall(3) — floor=3] is not valid either, as the following coun-
terexample shows: F; goes on service, a landing-call for floor 3 comes in, it is assigned
to Eo, E5 goes to floor 2, E; goes off service, and E5 goes on service. The system
may stay in this state indefinitely, without servicing the call to floor 3. Thus, we pro-
pose a weaker ¢, /. .service V Fs.service, and this guess is correct: the system behaves
normally as long as neither elevator goes on service. There is no reasonable D, in this
instance, with c[landingCall(3) — DJ; if the elevators stay on service, then floor=3
may never happen, but no positive event which does happen instead can be identified.

To build more understanding of cases where the service feature is used but a landing-
call is still being serviced, we use the Prefer-New-Transition strategy and examine
witnesses to call(3) ~» floor=3.

8 Tool Support

Sawblade is built on top of our symbolic model-checking tool XChek [6]. Its parts are
described below.

The Vocabulary Manager keeps track of variables and events currently considered to
be of interest, and hierarchical relationships between them. Elements of the vocabulary
can be combined (for a more abstract event), or split up (for a more concrete one).

The Pattern Tool allows users to create behavioral models from scratch using the cur-
rent vocabulary. It is similar to the corresponding part of the Bandera tool [11]; the
fully-realized pattern is translated into a CTL property, which is handed to the model-
checker.

The Model Manager tracks validated behavioral models and the relationships between
them.

The Strategy Builder allows the user to select and customize standard strategies (such
as those described in this paper). Although not currently implemented, Strategy Builder
will also include a scripting language for enabling users to define their own strategies.

The Interactive Witness Generator (KEGVis) [15] uses the selected strategy to pro-
duce a witness. It can either produce it immediately, or allow manual intervention at
defined breakpoints.

Sawblade can maintain Kripke structures with diff as well as ordinary Kripke struc-
tures, and construct them from a specification and an edit. This information is used
whenever a change-aware strategy (such as Avoid-New-Transitions) is used. When a
new and an old model are being examined side-by-side, all parts of the tool are aware of
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it: the Vocabulary Manager marks old and newly-introduced elements, and the Model
Manager indicates whether a behavioral model is validated in the old, new, or both
systems. The Witness Generator distinguishes newly-introduced variables graphically
when presenting witnesses, and also color-codes the types of transition used (preserved
and imposed). When attempting to reuse an old witness, it can indicate the location
where a removed transition made the reuse impossible.

9 Conclusions and Future Work

In this paper, we described a methodology for building compact behavioural models of
existing event-driven systems. The methodology, supported by a tool Sawblade, is based
on the use of model-checking for validating scenarios, and on strategy-augmented wit-
ness generation for helping elaborate these scenarios. We also described a methodology
for storing information about the system evolution and using strategies that use the old
and the new systems to help users understand the change in behavioural models. We
illustrated our approach using an elevator controller.

In future work, we plan to augment the current capabilities of the tool by adding
a scripting language, and expand the witness generator so that it can use strategies
with backtracking. We are also interested in combining our methodology with query-
checking [5]: once events of interest have been identified, query-checking may be ef-
fective in determining the exact relationship between them. We are also planning to
provide a stronger empirical validation of our elaboration patterns.
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Abstract. Software containers present an effective mechanism for de-
coupling cross-cutting concerns in software. System-wide concerns such
as persistence, transaction management, security, fault masking, etc.,
are implemented as container services. While a lot of effort has been ex-
pended in developing effective container implementations, specifications
for software containers are largely presented in informal natural language,
which hampers predictable reasoning about the behavior of components
deployed within containers. In this paper, we present a formal model for
reasoning about the behavior of software containers. Our model allows
developers to reason precisely about how the behaviors of software com-
ponents deployed within a container are modified by the container. We
further present the specifications of a few examples of container services
that are found in different container implementations, and use our for-
mal model to prove the correctness of the behavioral transformations
that these services cause.

1 Introduction

A software container is a hosting environment for software components. It pro-
vides execution support to the components it hosts in a way that is similar to an
operating system hosting processes. It also serves as a protective barrier, moni-
toring the interactions between hosted components and their clients, restricting
the interactions to those that are deemed safe. Container-based models provide
a clear separation of concerns between application logic and enterprise services,
such as transaction management, persistence, security, etc.

Although there are several commercial container architectures, the best-
recognized is the J2EFE container provided by Sun Microsystems. The container
provides a collection of enterprise services to its hosted components, selected
from a predetermined set. This is not, however, the only service model to con-
sider. Other models allow extensible service sets; some allow the service selection
to change dynamically on a per-component basis [6]. We discuss some of these
models in Section 2.

The services provided by a container affect behavioral transformations in the
components it hosts. Metaphorically, the container is a type of lens: the clients’
view of hosted components is altered by the services the container provides. Un-
der this view, neither the client nor the component implementer needs to worry
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about implementing common enterprise services. Those services are provided by
every component by virtue of being deployed within the container.

But there is a downside. When a component is hosted within a container, its
specification no longer reflects its total behavior. Component clients must also
consider the effects of the container services in their reasoning processes. The
problem, however, is that existing container service descriptions are informal,
and do not directly support formal reasoning. This is one of the key reasoning
problems identified by the component-based software engineering community [5].
In the absence of more rigorous specification and reasoning techniques, the relia-
bility of the container model may be undermined. This is the problem we address
in this paper. Our contributions are:

1. A formal behavioral model of software containers, applicable across a range
of commercial architectures.

2. Techniques for reasoning about the behavior of software components in the
context of container-based deployment.

3. Examples of container service specifications from popular architectures, and
a discussion how to use those specifications in the reasoning process.

The rest of the paper is organized as follows. In § 2, we present an overview
of some existing container models. In § 3, we describe the different types of con-
tainer services that can be described using our model. In § 4, we define a formal
model that can be used to reason about the behavior of software containers and
the services they provide. In § 5, we present some examples of services that can
be specified using our model. After discussing related work in § 6, we conclude
with a summary of our contributions and directions for future research in § 7.

2 Container Implementations

Software containers have been embraced as a means of modularizing cross-
cutting concerns for a number of years. A container neatly encapsulates the
services that cross-cut the components it hosts. Component developers need
only worry about core functional concerns. In recent years, considerable effort
has been invested in creating effective container implementations. We briefly
examine some representative implementations.

EJB Containers. The Enterprise Java Beans (EJB) container [17] is the core of
the Java 2 Enterprise Edition (J2EE) [18]. This architecture targets enterprise
class systems. Applications are composed of EJB components that implement
the business logic. The hosting EJB container provides transaction management,
security services, etc. Although the component developer must abide by certain
design constraints, he/she is shielded from the complexity of the underlying
service implementations; the services are container-managed. Unfortunately, the
container services are specified informally, precluding formal reasoning efforts.

Spontaneous Containers. In dynamic systems, such as those running in mo-
bile networks, static service selection is insufficient. Popovici et al. [12] propose
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spontaneous containers, combining container technology and dynamic aspect-
oriented programming. In this model, the container is designed for application
environments in which mobility and dynamic adaptation are required. A com-
ponent that joins a network discovers available container services, and attaches
itself to the appropriate services. The services are modeled as aspects that are
dynamically woven into hosted components [13]. Further, the available service
set can be extended dynamically. The system supports uniform service recon-
figuration across hosted components without re-compilation or re-deployment.
Again, formal reasoning is thwarted by a lack of formal documentation.

DRSS. Hallstrom et al. [6] describe DRSS, an open container architecture that
allows for service variation across hosted components. The services supplied to
a particular component can be applied and removed dynamically, allowing for
runtime maintenance and evolution. The model is based on the notion of an in-
terceptor, which processes messages flowing between component instances. Each
invocation flows through an interceptor chain, before reaching the target com-
ponent instance. Container services are implemented in the form of interceptors,
making it possible for the container to inject services between component in-
vocations. Since interceptor chains are allocated on a per component basis, all
components need not use the same services. DRSS is also spontaneous, in the
sense that it allows for dynamic discovery and deployment of services. Again,
however, DRSS services are documented with informal descriptions alone.

As we will see, our reasoning framework applies to all these container imple-
mentations (and others), despite the variation that occurs across the models.

3 Classifying Container Services

In our formal model, we consider three classes of container services. We note that
this classification is not exhaustive. For example, our model does not consider
container services that ignore the specifications of hosted components. Our focus
is to stay within the confines of contract-based reasoning.

1. Monotonic addition of behavior. This class of services are those that
do not in any way modify the existing behavior of target components. They
simply add functionality over and above what the components provide. Ex-
amples include Message Logging and Object Visualization.

2. Redirection. A service in this class remains faithful to the original speci-
fication of each hosted component C) but may redirect method invocations
to an object different from the intended receiver. When a method call to
a receiver object O; is redirected to a different object O, the service must
meet the obligation that the new target O is of the same type (or behavioral
subtype) as that of O;. Examples include Fault Masking and Load Balancing.

3. Deferred Execution. This class of container services may delay the de-
livery of a message to an object. The client may not immediately see the
effect of a message sent to an object, but will see the effect at a later time.
Examples include Transaction Management and Batch Processing.
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4 Modeling Containers
4.1 The Need for a Formal Model

While a lot of work has gone into crafting different implementation strategies [2,
6,7,11,12,17,18,19], there has been relatively little effort focused on defining
effective methods for reasoning formally about the behavior of components and
systems that use these containers [5].

A software container acts as a mediator between a hosted component and its
clients. Each message sent by a client to a hosted component is “seen” first by
the container, which then sends the message to the component. Before the com-
ponent receives the message, therefore, the container may have performed some
actions. It may even have modified the message. Similarly, after the component
has acted upon the client’s message, its response to the client goes first to the
container before reaching the client.

It is this “power” of the container that necessitates the need for a formal spec-
ification of its behavior. A contract that describes the behavior of a component
may be useless if the component is instantiated within a container without a
specification of what exactly the container is doing to its interactions. The spec-
ification must include details of how the specifications of hosted components are
(or may be) modified by the container. Informal descriptions are not enough to
achieve predictable correctness of software in the presence of containers.

4.2 The Behavioral Model

We begin our discussion of the formal model by looking at how a client may
be affected by a container. When a client program makes a method invocation
on a particular object, the rules of design-by-contract [10] tell us that the client
must have satisfied the pre-condition of the method; and consequently, upon
return from the execution of the method, the client will be able to assume that
the post-condition is satisfied. This contract must not be compromised by the
presence of a container. Consider a component H with method fy:

Component H

operation fi 1)

pre — condition : Ppr.

post — condition : Ppost

Further, let us suppose that this component is hosted in a container C. When
a client wants to use this component, it’s view is now altered. The component
that the client is using is H[C] = C & H. We use the operator & : Container x
Component — Component to denote the composition of a component with a
software container. We use H|C] to denote that component H is deployed inside
container C, and h[C] to denote an instance of H deployed in C.

In accordance with the principles of modularity, the specification presented
above must hold regardless of the context in which f; is invoked. The client, after
the call to f; must be able to assume P,,s:. Consequently, even if the component
H is hosted in a container, this post-condition must still hold for HI[C]; the
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modified post-condition must be at least as strong as the original. Similarly, the
client will only have to worry about satisfying the original pre-condition. If the
container were to change the pre-condition, it can only be weakened.

The statement above then views a container-hosted component as a behavioral
subtype [9] of the “bare” component. The container-hosted component, therefore,
honors the original contract. However, it does more, and this additional behavior
is not captured by the contract. While we can state that the new pre-condition
(post-condition) is weaker (stronger) than the original, we do not have a notion
of exactly how much weaker (stronger). Behavioral subtyping is therefore not
enough for our purpose.

Model of a Container Service. Each container service CS contains:

— Zero or more state variables that the service may use. These variables define
what the service does, and its effect on each method invocation.

A predicate M, that specifies how the service modifies the pre-conditions
of target methods. We call this the pre-modifier.

— A predicate M5+ that specifies how the service modifies the post-conditions
of target methods. We call this the post-modifier.

The body of the service: the actions that define the functioning of the service.
— A set of additional methods that a client may invoke on a hosted component;
we can view these methods as being added to the component’s interface.

The minimal structure of the specification of a container service is as follows:

Definition 1. Container Service

Service CS
State: S
Pre modifier : M,
Post modifier : Mpost
Body : aijaz2,...,an
Methods : mi,meo,...,mg

end Service CS

The predicates M. and M, are defined in terms of the service state variables
(8) and the context of each method call that the service is applied to. The context
of a method call includes the name and signature of the method, the target
object, and the values of all parameters to the method (if any). Upon return
from a method, the context includes the current values of all the parameters,
and the method’s return value (if any). The methods my,...,my operate on
the same set of variables. Encapsulation is respected; the service cannot access
private fields or private methods of the target. In addition to its local state, each
service has access to the following keywords:

— thismethod is a handle to the method to which the service is being applied.
— thismethod.args is the ordered sequence of parameters to thismethod. The
sequence holds the input values of the parameters when referenced in
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M e, and the output values when referenced in M,,,:. Additionally, #this-
method.args holds the input values of the parameters to thismethod in M.
— thismethod.retval is the value returned by the method.
— target is the object that is intended as the receiver of the method call.

Each component service is locally certifiable. This means that we require each
component service to be defined modularly and in isolation; the specification
of the service is only dependent on its own local state, and is not modified by
changes in other services in the container.

Model of a Service Group. Container services are aggregated into service
groups, each of which is a sequence of container services. Components do not
subscribe to a service directly; they subscribe to the service group that contains
exactly the service(s) that are needed. This simplifies our reasoning model to
consider only one kind of composition, without reducing expressivity.

Each service group in a container consists of the following:

— The string of container services that the service group collects. This string
is referred to using the keyword services.

— The state of the service group, which is simply the fully qualified union of
the states of the individual services in the service group. By fully qualified we
mean that variables are of the form service-name.variable. If the same variable
name is used by two services, the two variables are treated as distinct.

— A predicate Msg pre that specifies how the pre-conditions of target methods
are modified by the service group. This predicate is the conjunction of the
pre-modifiers of all the container services in services.

— A predicate Msg post that specifies how the post-conditions of target meth-
ods are modified by the service group. This predicate is the conjunction of
the post-modifiers of all the container services in services.

Each service group is a sequence of services; the order in which the services ex-
ecute is important. How then is it sufficient that the pre-modifier (post-modifier)
of the service group is simply the conjunction of pre-modifiers (post-modifiers)
of the individual services? Why do we not use the Hoare logic rule of sequential
composition? Consider a service group SGj with three services CS1, CS2, and
CS3 with pre- and post-modifiers as follows:

CSl b <M1 pre,Ml post>
CS2 b <M2 pre,M2 post> (2)
CS?, b <M3 pre,MB post>

According to the rule of sequential composition, if we had
Ml post = M2 pre A M2 post = M3 pre (3)
then we can say that the following about the pre- and post-modifier of SGy:

Sgk; . <M1 pre,MB post> (4)
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However, since our services are all defined independently, we cannot assume
such relationships as in (3) above. If CS; does nothing to ensure Ms pq. and
M3 pre, then these two predicates must be true before CS; executes. Similarly,
if CS2 and CS3 do not do anything to disrupt My post, then this predicate still
holds at the end of CS3. Hence we cannot use the rule of sequential composition
to determine the pre- and post-modifier of a service group.

The formal definition of a service group is as follows. Note that the function
elements: String — Set returns the elements in a string as a set.

Definition 2. Service Group

Service Group S¢G
Modeled by: services: string of CS
State : Ssg = {Vcs € elements(services) : S(cs)}

|services|
pre — modifier : Msg pre = /\ M pre
i=1
|services|

post — modifier : Msg post = /\ M post
i=1
methods : methods(SG) = {V cs € elements(services) : methods(cs)}

When a component H subscribes to a service group SG, H is transformed to
include the state variables in Ssg, and all the methods in methods(SG). More-
over, the pre-condition (post-condition) of every method in H is transformed to
include the pre-modifier (post-modifier) of SG. For example, if the component
defined in (1) subscribes to the service group in Definition 2, the component will
be transformed as follows:

Component H[SJ]
Additional State : S(SG)
operation f; )
pre — condition : Ppre A Msg pre
post — condition : Ppost A Msg post

Additional methods: methods(SG)

There is one more thing that we need to ensure before we can claim that this
transformation is correct. Since the new pre-condition (post-condition) is the
conjunction of the original pre-condition (post-condition) of the method f; with
the pre-modifier (post-modifier) of SG, we require the following to protect the
conjunction, preventing the derivation of false statements:

Msg pre # false A Msg post # false (6)

We can now consider the rule required to prove that the transformation of a
component by a service group is indeed correct.
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Rule 1 (Behavioral Transformation)
H o <hf1 ijTe, hfl ~7Dpost>

{H[SG].f1.Ppre} SG.Body.pre {H.f1.Ppre}
{H.f1.Ppost} SG.Body.post {H[SG].f1.Ppost }

H[SG] :: (h[SG].f1.Ppre, h[SG]. f1.Ppost)

The first antecedent requires that the specification of the method f; be es-
tablished for the component H outside the container. The second antecedent
requires us to show that the body of the service group when applied to the
method call on its way to the target (SG.Body.pre) meets the original method
contract in terms of ensuring that the original pre-condition of the method f;
holds at the end of the service execution. The third antecedent requires us to
show that the body of the service group when applied to the method call on
its way back to the client (SG.Body.post) meets the original method contract in
terms of ensuring that the original post-condition of the method f; holds at the
end of the service execution.

Although the total number of service groups in a container is | X* | where
X’ is the alphabet consisting of all the services provided by a container, some
equivalences can be established among these groups. For any two service groups
SG; and S§Gj, if the set of services they include are the same, then the two groups
are equivalent. The following is true of service groups in a container.

elements(SG;.services) = elements(SG;.services) =
(8(8G:) = S(8G))) N (Msg, pre = Msg; pre) (7)
(Msg; post = Msg; post) A (methods(SG;) = methods(SG;))

At any point during a method invocation, the service group is able to examine
itself to determine which services have been applied so far. To do this, we use two
trace variables. 7,,. denotes the trace of service invocations applied to a method
call on its way from the caller to the callee, and 7, is the trace of service
invocations applied on its return from the method. Upon successful completion
of a method call (when all services in SG have been applied, and the method
has terminated), the following is true of the trace variables:

Tpre(SG) = SG.services

Tpost(SG) = reverse(SG.services)

(8)

Model of a Software Container. With the pieces that we have established
so far, we are now ready to describe the complete model of a software container.
A software container C contains the following elements:

— Zero or more hosted components H1, ..., H,.

— Zero or more container services CS1, ..., CS,,. These container services define
the alphabet X¢s of the container C.
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— Zero or more service groups SGy, ..., SQ|EES|. The set of service groups is
the set of all finite strings composed out of alphabet X¢s.

As such, a container is modeled as a set of pairs, each mapping a hosted
component to the service group that it subscribes to. H denotes the set of all
components hosted in the container C, and SG denotes the set of all service
groups in the container. We model a software container, C as follows:

Definition 3. Container

C :{ H: {Hla"'aH’ﬂ}a
SG: {Sgl,...,sg‘zés‘},
(H1,8Gk), (H2,8Gi), ..., (Hn, SGm) }

Note: We first referred to a component H hosted by a container C as H|C].
Now, we refer to a component H subscribed to a service group SG as H[SG].
These refer to the same component — each hosted component must subscribe
to exactly one service group in its hosting container.

5 Some Example Services

5.1 Message Logging

Logger (Fig. 1) is a container service that monotonically adds behavior to com-
ponent methods to which the service is applied. The service does not cause
any change in behavior to the original method. The service simply adds to the
behavior of target methods by writing to a log the details of all calls.

The state of Logger consists of two strings — ILog and OLog. ILog is the log of
all method invocations on their way from the caller to the target. Each element
in the string is a pair consisting of a method name, and the sequence of actual
parameter values passed to the named method. OLog is the log of all method
invocations on their way from the target object back to the caller. OLog contains
the final values of method parameters and the return value.

The pre-modifier of Logger adds to ILog a new pair with thismethod (method
name), and the actual values of each element in thismethod.args (method argu-
ments). @lLog here refers to the value of |Log in the state immediately preceding
the start of the body of Logger during the target method call ( Logger. Body.pre)!.
The post-modifier of Logger creates a new pair with the name of thismethod and
the sequence of return values (the actual values of elements in thismethod.args),
concatenated with thismethod.retval. This new pair is added to OLog. @OLog
here refers to the value of OLog in the state immediately preceding the start of
Logger during the method’s return.

Neither the pre-modifier (M%"¢ ) nor the post-modifier (M%°% ) alter the

Logger Logger
pre- and post-conditional values of the target method’s parameters. Thus, the

! We use the notation #x in the post-condition of a method to refer to the pre-
conditional value of a variable x. The ©@x notation is used here to avoid confusion.
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Service Logger
State :
ILog : String of
( methodName : String,
paramValues : Sequence of parameter values)
OlLog : String of
( methodName : String,

returnValues : Sequence of return values)

pre

pre modifier : TLogger

ILog = @lLog *
( thismethod.name,
(thismethod.args[0].value, . . .,
thismethod.args[| thismethod.args | —1].value))

. . post
post modifier : M0

OLog = @OLog *
( thismethod.name,
(thismethod.args[0].value, . . .,
thismethod.args]| thismethod.args | —1].value)
* (thismethod.retval))

end Service Logger

Fig. 1. Specification of the Message Logging container service

second and third antecedents of Rule 1 are true if the method is faithful to
its behavioral specification (the first antecedent of Rule 1). Therefore, Logger
causes a correct transformation.

5.2 Fault Masking

The next service we consider is one that causes the redirection of a method invo-
cation to an object instance other than the intended receiver. In applications that
provide fault tolerance, the fault masking service is very useful. The container
can, in a manner that is transparent to the client, prevent method invocations
from being sent to object instances that have failed. This kind of redirection
only applies to components that are stateless—the method call cannot depend
on the component’s internal state.

The fault masking service needs the set of objects that are currently failed
(R1), and for each failed object, the set of objects to which calls can be re-
directed (R2). There are different strategies for obtaining R1. In synchronous
systems, simple timeouts can be used. In asynchronous systems, however, it is
not possible to place such time bounds. We can, however, abstract away that
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Service FMask
State :
fd : Failure detector oracle
suspects :{obj : obj € H : fd.failed(obj) }
alt objs :Map(obj — Set of obyj)
pre modifier : N ask
target € suspects A alt objs(target) 20 =
target = a obj : a obj € alt objs(target) A a obj ¢ suspects
post modifier: MLy . true
methods :
void setAlternates(a objs: Set< T (target) >)
pre — condition :true
post — condition :
(target ¢ Keys(alt objs) =
alt objs = #talt objs U {(target,a objs)}) A
(target € Keys(alt objs) =
alt objs(target) = #alt objs(target) U a objs) A
(Vo € a objs : H = #HU o)
end Service FMask

Fig. 2. Specification of the Fault Masking container service

detail and leave it to some failure detector [3]. FMask (Fig. 2) maintains a set
suspects—objects that the failure detector suspects to be failed. fd.failed(obj) is
true for all suspects.

To satisfy R2, the service maintains a set of alternate objects (alt objs) for
every object obj in the container. This way, when the container does encounter a
method call whose target is failed, it can look up an alternate object and forward
the call to that object. The method setAlternates() can be invoked on a hosted
object with a set of alternate objects. The argument to setAlternates() is a Set
parameterized by the type of target. All objects in a objs are added to the set
H of container-hosted objects.

When FMask intercepts a method call to a suspected target, the call is directed
to an object from alt objs(target) that is still alive. If no such alternate object
can be found by FMask, the invocation fails. On the return direction, the service
does nothing, and therefore does not modify the post-condition.

Since neither M4y, . nor M%y  interfere with the pre- and post-condition
of the target method, the second and third antecedents of Rule 1 are true. Thus,
if the original method meets its behavioral contract, FMask causes a correct
transformation.
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5.3 Transaction Management

We now come to an example of the third class of container services — deferred
execution. The service we consider here is transaction management (Figure 3).
Some components require that certain groups of methods be called in succession;

Service TznM gmt
type Tx Req Types = enum{Required, NotRequired}
State :
tx reqts :Map(String — Tx Req Types)
curr txn : String of method
ut = String of method
pre modifier : M75 .,
(tx reqts(thismethod.name) = Required =
curr txn = @curr txn * thismethod) A (target = 1)
post modifier: M5,
(tx reqts(thismethod.name) # Required =
U = F#u1 * thismethod) A
(tx reqts(thismethod.name) = Required =
expects commitTxn() V rollbackTxn())
methods :
void setTxReqts(meth name: String, tr: Tx Req Types)
pre — condition : true
post — condition :
=
meth name, tr)})) A

(meth name ¢ Keys(#tx reqts)
(tx reqts = #tx reqts U {{(
(meth name € Keys(#tx reqts) =
(tx reqts(meth name) = tr))
void commitTxn()
pre — condition : curr txn #<>
post — condition :
curr txn =<> A (3s: String of method : uT = s * curr txn)
void rollbackTxn()
pre — condition : curr txn #<>
post — condition :
curr txn =<> A (Vs : String of method : u7 # s * curr txn)

end Service TxnM gmt

Fig. 3. Specification of the Transaction Management container service
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either all of these methods should succeed, or they should all fail. A partial
execution may result in an inconsistent state.

A client using a component subscribed to the transaction management ser-
vice must first identify the methods in the component that require transaction
support. The state of TznMgmt is defined in three parts:

tx reqts: A map with the transaction requirement for each method in the com-
ponent. Methods with no entry in tx reqts do not need transaction support.

curr txn: The string of methods that belong in the current transaction. Note
that there can only be one “live” transaction at a time according to this
specification; this is for simplicity of presentation due to lack of space. The
specification can be extended to allow for multiple live transactions.

pr: The trace of all methods that target executes. This trace collects a method
call when the method is actually executed, not when it is invoked. Therefore,
for methods that do not need transaction support, the method is added to pur
upon invocation, since they are executed immediately. Methods that require
transaction support are added to pur when the transaction is committed.

The pre-modifier of TznMgmt requires that the method being invoked be
added to curr txn if the method requires transaction support. If there is no live
transaction when the target method is invoked (curr txn = ()), a new transaction
is initiated. In addition, target is set to 1, and control returns to the client.

The post-modifier Mf}(;ffl Mgmt modifies the post-condition of the target to in-
dicate whether it has been executed or not. The call is added to u7 if the method
does not require transaction support. If the method does require transaction sup-
port, the method has not been executed yet; it has simply been entered into the
current transaction. In this case, the post-modifier adds an expects clause [§]
to the post-condition of the method; in the future, there has to be a call either
to commitTxn() or to rollbackTxn().

In addition to the setTxReqts() method, TznMgmt extends the interface of the
target component with two more methods — commitTxn() and rollbackTxn().
commitTxn() can be called when there is a live transaction, and the method
commits the transaction; all the methods in curr txn are executed. This results in
curr txn showing up as a suffix of 7. Moreover, the post-conditional expectations
of all the methods that belong in the current transaction are now met. The
transaction can be rolled back using rollbackTxn(). This method simply throws
away all the methods in curr txn.

We now see how applying TxnMgmt to a component is a correct behavioral
transformation. Assume that the correctness of the component’s methods in
isolation have been established (first antecedent in Rule 1). If a method does
not require transaction support, the pre-modifier of the service does nothing to
the method invocation. In case a method does require transaction support, it
is not executed immediately. Instead, the entire context of the method is stored
in curr txn and the actual call is made when commitTxn() is called. When the
method is eventually invoked, the state that the client called the method in
originally is retained. In the case of a rolled-back transaction, the original target
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method is never called. Thus, in all the above cases, the service does not affect
the pre-condition. This proves the second antecedent in Rule 1.

The post-modifier of the service also does nothing in the case of methods
that do not require transaction support. In the case of methods that do require
transaction support, the client is required to call either commitTxn() (which will
result in the post-conditions of all methods in the transaction being established)
or rollbackTxn() (which will result in none of the methods being actually in-
voked). In all these cases, we have established the third antecedent in Rule 1.
Thus, TxnMgmt causes a correct transformation.

6 Related Work

Our behavioral model of containers is related to the notion of behavioral sub-
typing [9]. The transformed component that the client sees as a result of the
composition of the component with the container is a behavioral subtype of the
original component. Our work goes beyond this, in that we are interested in spec-
ifying the additional behavior introduced by the container. Our work is loosely
based upon the work on reasoning about object-oriented frameworks [14]. As
in our case, Soundarajan and Fridella are interested in specifying application-
specific behavior that results from specializing a framework. They use trace-
based specifications to define how the template methods use hook methods to
define application-specific behavior.

The work on modular aspect-oriented reasoning [4] shares similarities with our
own. Clifton and Leavens show how modular reasoning techniques can be applied
to understand the behavior of aspect advice. Their modifications to AspectJ
in the form of observers and assistants provide a formal view of how exactly
the behavior of a class is modified by the application of an aspect. The current
work is derived from our previous work on modeling containers as parameterized
components [16], where the container services are modeled as parameters. Our
model of containers supports the dynamic addition and removal of parameters
to a template. Our current approach to reasoning builds on previous work on
dynamically bound parameterized components [15].

7 Conclusion

We began with the claim that the current state of container technology is an
effective solution to the problem of cross-cutting concerns. Containers are used
in a variety of scenarios to decouple system concerns from an application’s core
concerns. The software engineering community has been quick to respond to this
growing demand for new and improved implementation strategies for software
containers.

Although a good number of engineering issues with respect to container tech-
nology have been solved, the problem of predictable reasoning about software
component behavior in the presence of software containers has not been well-
studied. In this paper, we have presented a partial solution to this problem. We
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have presented a formal behavioral model for software containers, along with the
proof rule to show that an implementation of a service is, in fact, correct with
respect to behavioral transformation.

The most important contribution of our model is the ability it affords to
developers and users of software components that are deployed in a container
environment to accurately predict the behavior resulting from composing a com-
ponent with the container.

Our future plans include extending the model in ways that will allow for
automated reasoning and verification of container services. We plan to build tools
that will facilitate a combination of static verification and run-time monitoring
to automate the reasoning process, at least partially. Our work in this direction
involves extending the DRSS container architecture to include specifications.
The specifications will be written in the Spec# [1] language, and will be checked
at run-time to ensure that the services honor their contracts.

The work presented in this paper deals only with behavioral issues of container-
component composition. Another direction for future research in this area in-
volves extending our specification framework to specify non-functional properties
of container services, such as performance, availability, etc.
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Abstract. Our research explores the combination of synchronous and asyn-
chronous collaboration tools for global software development. In this paper we
assess the impact of tool-mediated inspections to improve requirements negotia-
tion meetings with stakeholders spread over different continents. We present the
design of our investigation in an educational environment, in a course where the
clients and developers in a software project were in geographically distributed
locations. In particular, we studied the usefulness of asynchronous discussions
in IBIS tool in enabling more effective requirements negotiations meetings. Our
findings indicate that the requirements negotiations were more effective when
the groups conducted asynchronous discussions prior to the synchronous nego-
tiation meetings.

1 Introduction

Technical reviews and in particular software inspections and client reviews are con-
sidered among the most important software quality assurance techniques in software
engineering. The software inspection process was first introduced by Michael Fagan
at IBM [Fag76] with the main goal to find defects before testing starts and to reduce
rework effort. Although its application was initially limited to code, as a complement
of testing techniques, software inspections have been also applied to early life-cycle
software artifacts [Lai00] because detecting defects close to their point of creation
reduces rework [Boe81]. As requirements defects are the most expensive to correct if
they are not detected soon, many researchers have subsequently conducted empirical
studies of software inspection on requirements documents [Bas96, Bas99, Bif03,
Lai02, Lan98, Por95, Sch92, The03]. Experiences from these studies indicate that
inspecting requirements documents, other than producing information for correcting
the document, leads to a better understanding of the real problems, increases confi-
dence in the acquired knowledge, and improves communication among stakeholders.
The focus of our research is in this area of collaborative software development and
in particular on processes that support stakeholders to collaboratively develop a
shared understanding of the required software functionality. We regard requirements

L. Baresi and R. Heckel (Eds.): FASE 2006, LNCS 3922, pp. 155169, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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inspections and client reviews as powerful mechanisms not only for checking the
requirements documentation for qualities such as completeness and correctness, but
also for validating that stakeholders share same understanding of the requirements.
Requirements inspections create the opportunity for identifying areas in which de-
signers and customers need to further discuss and negotiate requirements issues.

Over the last years however, the dramatic trend towards developing software in
geographically distributed settings has challenged the communication and collabora-
tion processes in software teams [Dam03, Her03], and the development of tools and
methodologies to support a combination of synchronous and asynchronous activities
in distributed teams emerges as critical. In particular, it becomes important to research
approaches that enable effective requirements inspections and negotiations in distrib-
uted software development, as they are activities that should support collaborative
software engineering in remote teams as well as they do in traditional software teams.
While research in requirements inspections and negotiations [e.g. Boe98] is being
complemented by studies of inspections for validation of requirements negotiation
models [Grii04, Hal03], there is little research into enabling effective negotiations that
follow the identification of requirements issues during the inspections. These negotia-
tions, as examples of requirements meetings that involve relevant project stake-
holders, are traditionally difficult and expensive to coordinate, especially in geo-
graphically distributed teams.

In this paper we describe our research and early results of studying the usefulness
of asynchronous discussions, as part of the requirements inspection process, to facili-
tate more effective synchronous requirements meetings in distributed teams. In par-
ticular, we studied the use of a web-based inspection tool, IBIS [Lan03], in support of
the remote communication between clients and developers collaboratively developing
a requirements specification.

IBIS supports remote teams during the inspection of requirements documents, and
in particular supports teams through stages of issue Discovery, Collection, and Dis-
crimination. During the Discovery stage, inspectors review individually the document
with the help of checklists or scenarios, and records issues. In the Collection stage the
inspection leader or the document’s author collate recorded issues and eliminate du-
plicates. In the Discrimination stage the inspection team makes decisions about col-
lated issues. The Discrimination stage is designed as a structured asynchronous dis-
cussion with two mechanisms: posting of messages for each issue under discussion
and voting as to whether an issue is a true issue or not (false positives). In [Lan04],
we investigated IBIS support to remote inspection teams and found that asynchronous
discussions in the Discrimination stage were as effective as co-located inspection
meetings at discriminating between false positives and true issues.

Our findings indicate positive impact on the effectiveness of such requirements
meetings in resolving open issues when preceded by asynchronous discussions in IBIS.

The paper is structured as follows: Section 2 describes our research design, by in-
troducing the educational environment as the context in which we conducted an em-
pirical study of asynchronous discussions in support of synchronous requirements
meetings. Section 3 then reports our early results of how IBIS was used and how we
assessed the effectiveness of requirements meetings when preceded by the asynchro-
nous meetings. We then discuss possible limitations and threats to validity and our
plans for future research.
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2 Research Design

To investigate the usefulness of asynchronous discussions to facilitate effective syn-
chronous requirements negotiation meetings, we studied tool-supported remote in-
spections in six educational global project teams in a global software development
(GSD) course. Each software project followed an iterative development process in
which designers in collaboration with clients were to develop a requirements specifi-
cation (RS): after a requirements elicitation stage, a requirements inspection of an
early draft of RS involved the discovery as well as asynchronous discussion of re-
quirements issues and was further followed by requirements negotiations and proto-
type demonstrations before the final draft of the RS was delivered. In this section we
describe the research setting: the software development course, the use of IBIS and
our research design that compared the effectiveness of the requirements negotiations
when preceded by the asynchronous discussions in IBIS to those negotiations with no
prior asynchronous discussions.

2.1 The GSD Course: Students, Groups and Remote Collaboration

The Global Software Development course was offered in a three University collabora-
tion involving University of Victoria, Canada, University of Technology, Sydney,
Australia, and University of Bari, Italy during January and May of 2005'. The course
involved a total of 32 students. 12 of them were Master’s and Doctorate students at
the University of Victoria, 2 graduate and 8 undergraduate students at the University
of Technology, Sydney, and 10 Master’s students at the University of Bari.

As shown in Table 1, the Canadian students worked on software projects with the
Australian and Italian groups as follows: the 12 Canadian students formed three
groups of 4 (Grl-3), the Australian students formed two groups of 5 (Gr4-5), and the
Italian students formed two groups, of 3 and 7 students respectively (Gr6cl and
Gro6dev). Each Canadian and Australian group was involved in two different projects,
playing the role of client (C) and developer (D) respectively. Each of the two Italian
groups was involved in only one project, either as a client (Gré6cl) or as a developer
(Groédev).

Table 1. Project teams (PT) and their allocation to course projects

. Project B Project C
P t A (Al, A2
Country Group roject A ( ) (B1,B2) (C1,C2)
PT1 PT2 PT3 PT4 PT5 PT6
Grl Client (C) D
Ca Gr2 D C
Gr3 D C
Gr4 Developer (D) C
Au
Gr5 C D
Gro6cl C
It
Grbdev D

! More information can be found on the course website: http://segal.cs.uvic.ca/csc576b
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2.2 The Software Projects

There were three distinct projects in the course (A, B and C). Two global software
project teams were allocated to each project, each with the client and developer group
in two different countries (see Table 1). The project topics are briefly described in the
following:

Project A (Al and A2 in Table 1): Global software development system. A system
to facilitate collaboration in GSD by supporting informal communication as well as
document exchange in remote teams. Tasks supported by the tool included: dis-
playing people’s availability information, viewing changes between different ver-
sions of documents and authors of those changes, visualizing the evolution history
of a particular document, and discovering who has been working on a particular
document or section of a document.

Project B (BI and B2 in Table 1): iMedia system. A “iMedia” software that will al-
low users to purchase movies online, organize their movie library, and play mov-
ies. One of the key requirements was that the interface be simple to use even for
inexperienced computer users, without sacrificing key features.

Project C (CI and C2 in Table 1): Virtual Realty system. A system that provides
accurate and easy-to-find information to real estate agents and home buyers in the
Victoria area. The system had to display an interactive map, where the end-user
can zoom in, zoom out, pan, etc., and click on it to get the information of the

property.

The projects were assigned to groups before group membership was determined.
The project assignment was done so that each group worked with a different partner
group for each of the two projects it was assigned (with the partner group always
located in a different country), and so that the two projects it worked on were on a
different topic.

2.3 An Iterative Process to Develop Requirements Specifications

Each project followed an iterative process of developing a requirements specification
(RS) through collaboration between developers and clients over a period of 7 weeks.
The RS development life-cycle (illustrated in Fig. 1) consisted of six phases of re-
quirements discovery and validation, and through which the understanding and docu-
mentation of requirements was to be improved. Each of which stages included either
client, developer or group tasks and ended with a project deliverable on which stu-
dents were graded for the class. The final deliverable was the final version of the SRS,
which reflected the shared understanding of the project that the clients and the devel-
opers built over the previous four phases. The project finished at the point where
the developer group would start writing the code for the system called for by the
project.
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Fig. 1. An iterative process to develop the requirements specification (RS)

For each project, these six project phases consisted of:

- Request for proposals. Starting with the assigned project topic, the client group
created a ‘“Request for Proposals” document (RFP) which invited developers to
propose their solutions to the clients’ needs.

- Requirements elicitation. In response to the RFP, the developer group assigned to
the project had three days to analyze it and come up with a list of clarifications that
they needed from the clients before proceeding. The developers and the clients then
held a scheduled one-hour requirements elicitation videoconference, during which
the developers clarified the clients’ needs and elicited more requirements. A week
after the requirements elicitation meeting, the developers delivered an initial “Re-
quirements Specification” document (RS 1.0). This document described in detail
the features and scope of the project and followed the IEEE standard for require-
ment specification.

- Meetingless inspection of RS 1.0 and asynchronous discussions of requirements
issues in IBIS. Upon receiving the RS 1.0 document, the clients had a week to carry
on an inspection in order to identify gaps in understanding of requirements. This
inspection was entirely performed online through the use of IBIS tool. With the de-
signer team considered the authors of RS1.0, the inspection was carried out by the
client team. Each member of the client team, individually, participated in the Dis-
covery stage and read the RS 1.0 available in the system and recorded issues. The
issue information contained a description of the issue found, as well as a number of
issue attributes such as type severity. A course assistant collected all issues and
merged duplicate issues, found by more than one client, into a unique list of col-
lated issues. This discovery of issues was followed by a four-day asynchronous
discussion. The entire project team, clients and developers, participated in this dis-
cussion using IBIS (i.e. in the Discrimination stage). The purpose of the asynchro-
nous discussion was to come to an understanding of each issue and those issues
that could be closed online (i.e. where resolution could be reached without further
negotiation) or remained open issues (anything else, and which had to be further
negotiated in real-time discussion). Discussants attempted to close issues by using
the two mechanisms in IBIS: posting messages with respect to a certain issue, and
voting as to whether it is still an open issue or is resolved and thus could be closed.
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- Requirements negotiation. Those issues that could not be resolved during the asyn-
chronous discussion in IBIS (i.e. open issues) were then discussed during a sched-
uled requirements negotiation held in a videoconference meeting between develop-
ers and clients.

- Prototype demo. After the requirements negotiation meetings, the developer group
had one week to develop a prototype of the system to reflect the results of the ne-
gotiation. This prototype did not have to contain working code, but could consist of
storyboards and paper or computer-based mockups. The purpose of the prototype
was to express the developers’ understanding of the project and their clients’
needs, which was done through a one-hour teleconference demo. The clients could
give their feedback to the developers and thus reach a consensus on the project be-
tween the two groups.

- Create final Requirements Specification (RS 2.0). Finally, three weeks after the
prototype demos, the developers submitted a final version of the Requirements
Specification (RS 2.0). This version incorporated the clients’ feedback collected
since the first RS draft was written, that is, through the requirements negotiation
and prototype demo.

2.4 Exploring the Usefulness of Asynchronous Discussions to Facilitate Effective
Synchronous Requirements Negotiations

To assess the impact of asynchronous discussions on synchronous negotiations meet-
ings, we traced the number of open issues through the stages of each of the six pro-
jects. In particular, we studied the usefulness of asynchronous discussions prior to
requirements negotiations by investigating the teams’ ability to close some of the
issues prior to the negotiation and focus the discussion on the issues that could not be
resolved during the asynchronous discussion.

To this end, we instructed half the projects to conduct the asynchronous discussion
before the negotiation, and half the projects to jump into the negotiation without
asynchronous discussion. Table 2 indicates which projects conducted the Asynchro-
nous discussion (AD) and which did not (No AD). Then, the process variant (AD or
No AD) was the main independent variable that we manipulated for experimental
purposes.

When asynchronous discussions were scheduled for a project team, both clients
and developers used the IBIS tool over a week, as a threaded discussion forum. The
aim was to come to an understanding of each issue by exchanging messages and to an
early resolution through a common agreement expressed by voting. Those open issues
that could not be closed during asynchronous discussion in IBIS were then left for the
synchronous negotiation meeting. For those project teams which skipped the asyn-
chronous discussion, all collated issues were thus considered as open issues to be
dealt at the negotiation.

To measure the usefulness of asynchronous discussions, we defined the following
dependent variables:

— Collated issues = the number of open issues at the end of the inspection carried out
by the client groups.
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— Closed issues during asynchronous discussion = the number of issues for which a
consensus was reached between developers and clients during the asynchronous
discussion. A closed issue did not require any further discussion.

— Open issues before sync negotiation = the number of open issues carried over to
the synchronous negotiation meeting. If there was no asynchronous discussion,
open issues equate to collated issues.

— Closed issues during sync negotiation = the number of issues for which an agree-
ment was reached at the videoconference requirements negotiation meeting be-
tween developers and clients.

— Open issues after sync negotiation = the number of issues for which an agreement
has not been reached at the teleconference requirements negotiation meeting.

More specifically, to understand the impact of asynchronous discussions on the
synchronous negotiations, we were interested in the variation across projects of the
number of open issues resolved during the asynchronous discussions, as well as dur-
ing the synchronous negotiation. To complement the quantitative data, we gathered
the students’ perceptions on the usefulness of the AD. In this paper we report the
students’ degree of agreement, based on a 4-point rating scale, to the following state-
ments:

“Asynchronous discrimination is useful as a preparation to the requirements nego-
tiation meeting.”

— “Reading and posting messages is effective to clear up issues.”

— “Reading and posting messages is effective to develop consensus on issues.”

— “Voting is effective to develop consensus on issues.”

Table 2. Experimental design

project team .
process variant

(client/developer)

Al (grl/grd) No AD
B1 (gr2/gr6dev) No AD
C1 (gr3/gr5) No AD
A2 (gr5/gr2) AD

B2 (grd/gr3) AD
C2 (gréel/grl) AD

3 Early Results

Here, we present the results from a preliminary analysis of the quantitative and quali-
tative data we collected from the IBIS database and questionnaires given to project
members. We present the values on the variables we collected as well as discuss the
participant’s feedback with respect the usefulness of IBIS to facilitate more effective
negotiations.
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3.1 Effectiveness of Requirements Negotiation Meetings in Resolving Open
Issues

When observed at the project level, the data sample size is too small to lend itself to
statistical analysis for measuring effectiveness. Instead, we report in Table 3 the val-
ues of the dependent variables for each of the six projects, and discuss the traces of
open issues at each stage in the collaborative process as an indication of effectiveness
of asynchronous discussions.

The three projects which did not conduct any asynchronous discussions (Al, B1
and C1) entered the synchronous negotiation with different numbers of open issues to
be resolved: 40, 61, and 100 respectively. The number of issues that were closed dur-
ing the remote meetings ranged from 26 to 47, leaving from 12 to 74 issues unre-
solved. At the same time, an important difference can be seen in the three projects
which conducted asynchronous discussions (A2, B2 and C2); these groups entered the
remote negotiation meetings with a much lower number of open issues (12, 13, 12,
respectively), leading in two cases to fully resolving open issues in the meeting
agenda (remained open issues 0,3 and O respectively). The last column in Table 3
also shows the significant difference in the percentages of open issues after the nego-
tiation in the projects which conducted asynchronous discussions as compared to
those which did not.

Table 3. Resolution of issues from inspection to negotiation meeting

Project Col- Closed Open issues Closed issues Open Percentage of
(cl/dev) lated issues before sync during sync issues open issues
issues during negotiation and negotiation after sync after negotia-
async percentage out and percentage  negotia- tion out of
discus- of collated out of collated  tion open issues
sion issues issues before nego-
tiation

Al 40 No AD 40 28 12 30.0%

(grl/gr4) (100.0%) (70.0%)

B1 61 No AD 61 47 14 23.0%

(gr2/ (100.0%) (77.0%)

grodev)

Cl 100 No AD 100 26 74 74.0%

(gr3/gr5) (100.0%) (26.0%)

A2 23 11 12 12 0 0.0%

(gr5/gr2) (52.2%) (52.2%)

B2 112 100 12 9 3 2.5%

(grd/gr3) (10.7%) (8.0%)

C2 23 10 13 13 0 0.0%

(gréel/ (56.5%) (56.5%)

grl)

Similarly, Fig. 2 graphically illustrates the trajectory of open issues throughout the
three stages in each of the six projects, as an indication of how asynchronous discus-
sions improved the effectiveness of remote requirements negotiations. It can be seen
that all three dotted lines, representing projects with AD, finished below the three
continuous lines (which correspond to projects with no AD). Particularly important is
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project B2 which started with the highest number of collated issues (112) but which
ends with a significantly lower number of open issues (i.e. 3), thanks to the asynchro-
nous discussion.

To provide more insights into what actually happened during these asynchronous
discussions we report in Table 4 the intensity of message exchanging and voting, the
two basic mechanisms which could be used to resolve issues before the negotiation
meeting. It can be seen how participants in project B2, although with the highest
number of collated issues, were nevertheless active in discussing issues (282 posted
messages) and extensively exploited the voting feature provided by the tool (910
votes). We hypothesize that the intensity of the discussion made it possible to drasti-
cally reduce the number of open issues (12 left unresolved, that is 10.7%).
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[)] 73 8
3 £5
(]
Q.
o 60 23
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5 s <
2 40 £3
© c
2%
a
20 + .
0
after after asynchronous after
discovery discussion negotiation
Fig. 2. Open issues at the end of three process stages
Table 4. Intensity of the asynchronous discussions
roject messages votes votes
E:arjn collated  partici- posted messages  per votes  per ° per
(cl/dev) 1ssues pants messages per 1ssue pal‘thl- issue pal‘thl-
pant pant
A2
(er5/212) 23 9 131 5.7 14.6 128 5.6 14.2
B2
(erd/gr3) 112 9 282 2.5 31.3 910 8.1 101.1
c2 23 11 72 3.1 6.5 236 10.3 21.4

(gréel/grl)
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3.2 Subjects’ Perception

Here we present the results of the subjective evaluation of effectiveness of the asyn-
chronous discussions. Although survey questionnaires related to the entire project
experience were proposed to all students, we only considered the answers from the
Canadian and Australian students because they were involved in both process variants
(i.e. with and without asynchronous discussion). We analyzed answers from the Aus-
tralian students (8 out of 10 responses) who experienced the asynchronous discussion
as clients/reviewers and the lack of it as developers/authors. Conversely, we analyzed
answers from the Canadian students (11 out of 12 responses) who experienced the
asynchronous discussion as developers/authors and the lack of it as clients/reviewers.

As shown in Fig. 3, the great majority of students (both as clients and as develop-
ers) considered asynchronous discussion useful as a preparation to the requirements
negotiation meeting. Developers, who were the authors of the requirements document
under inspection, seem more enthusiastic than clients, who acted as reviewers during
inspection. We believe this is due to the early feedback that developers gained as a
result of the asynchronous discussion.

This is corroborated by some answers that students specified in form of further
comment to the question:

“The asynchronous discussion provided individuals the opportunity to discuss each
other’s issues and concerns and provide their understanding/comments on the situa-
tion in attempts for greater understanding and clarity. It helped reinforce individuals
understanding of our requirements and how they work in the overall system. In this
sense it helps to filter a lot of thought-to-be issues which would set the questions and
agenda for the negotiation meeting”.

“The asynchronous discussion served as an excellent platform to not only layout
the issues, but also to narrow down the number of issues to be addressed in the nego-
tiation meetings”.

Fig. 4 and Fig. 5 show that the great majority of students appreciated to read and
post messages in order to clear up issues and develop a consensus on them. Com-
ments that provided motivation for the broad appreciation for forum-style message
exchanging include:

“Reading and posting messages during the asynchronous discussion was very ef-
fective. The question/answer style method allowed individuals to view other's inter-
pretation of the requirements and the issues they perceive. As such this clarified much
misunderstandings”.

“By creating a written source for the asynchronous discussion, we provided the
framework for the refined SRS. I appreciated the opportunity to document the issues
and how they are resolved”.

However, there were also some comments highlighting limitations of asynchronous
discussions:

“The messages were an effective vehicle to let both sides know where there were
questions and potential disagreements. For relatively “easy” issues, it was a very
effective forum. For those issue that were more involved, having many, many lengthy
messages is perhaps not the best way to resolve them”.
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“This helped to understand different points of view. However, because of the time
difference it took a long time to get feedback. In addition, because each item needed to
be checked there was a huge amount of time spent reviewing the discussion each day”.

The other mechanism of the asynchronous discussions, voting, did not gain the
same undisputed consensus as message exchanging. Fig. 6 shows that half of the
students did not acknowledge the effectiveness of voting for quickly expressing the
opinion about open issues.

In general, students pointed out that they were asked to vote about an issue before
exchanging messages. They would have preferred to vote after reading and posting
messages about an issue:

“The asynchronous discussion was useful to get everybody’s opinion on the issues
and to early filter out issues that all or none agreed upon. However [ feel that because
of time issues that we didn't get to do this stage in a properly. To have a real discus-
sion people need to enter IBIS several times during the stage and in the setting of this
project I do not know if this was done. Another problem would be that people could
vote before hearing what people had to say about the issue”.

| RRERRR|
strongly somehow somehow strongly
agree agree disagree disagree
client 3 3 1 0
B developer 8 3 0 0

Fig. 3. “Asynchronous discussion is useful as a preparation to the requirements negotiation
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[ developer 6 5 0 0

Fig. 4. “Reading and posting messages is effective to clear up issues”
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Fig. 5. “Reading and posting messages is effective to develop consensus on issues”
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Fig. 6. “Voting is effective to develop consensus on issues”

4 Conclusions

Research advances in the area of tools and processes to support geographically dis-
tributed teams is important as developing software in global teams is becoming a fact
of life nowadays. Further, empirical studies of tools and processes that support sound
and proven software engineering techniques inform global teams that want to adopt
practices that increase their ability to deliver high quality software. In this paper we
described our research in supporting collaborative practices in geographically distrib-
uted teams, and in particular computer-mediated requirements validation techniques
such as software inspections and negotiation meetings. Our strong motivation was
that synchronous requirements meetings that are usually conducted during or after
requirements inspections are difficult and expensive to carry out. Thus we are inter-
ested in ways in which to improve the effectiveness of such synchronous require-
ments meetings by allowing remote teams to discuss issues identified during the in-
spection in a forum of structured asynchronous discussions.

Our study has investigated the usefulness of computer-mediated, asynchronous
discussions that followed requirements inspections in IBIS inspection tool, in facilitat-
ing more effective requirements negotiations that are often needed to resolve issues
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from such inspections. Our findings from the observation of use of IBIS in an educa-
tional environment indicate that the teams who conducted asynchronous discussions
were able to close many more issues before entering the requirements negotiation
meetings. Further, the percentage of issues resolved during the synchronous meetings
was much higher in those projects where the members did participate in asynchronous
discussions. While these are promising research findings, we are planning a more in-
depth analysis of the data we collected in this study. Directions for future research are
described below, after we discuss the threats to validity in this research.

4.1 Threats to Validity

For this empirical study, we believe the following threats to internal validity that were
beyond the researchers’ control would make it uncertain to build cause-effect rela-
tionships between independent and dependent variables.

— Instrumentation effects. Instrumentation deals with the problem that differences in
the results may be caused by differences in experimental material. Because in this
study there were three different project topics, we cannot exclude that the topic and
project complexity could have been a confounding factor.

— Selection effects. Results can be caused by variations in human performance. Usu-
ally, assigning subjects randomly to tasks controls this threat. In our case, selection
of the participants was restricted by the practical course. For example, while Aus-
tralian and Canadian students were exposed to both levels of the main independent
variable, although with different roles (clients or developers), Italian students were
not able to work on two projects and had the chance to choose the experimental
treatment. Thus, we were not able to completely randomize the selection and par-
ticipants’ assignment to the different groups.

In the following we also list the most important threats to external validity, which
limit the generalization of these findings to the industrial practice of distributed soft-
ware development.

— Representative subjects. Since we involved students both as clients and as develop-
ers, they may not be representative of the population of professional stakeholders.
This threat is partially mitigated by the presence of Canadian students, who were
attending a specific course on global software development and then were trained
on meeting protocols and negotiation techniques for requirements engineering.
Some students had also previous working experience in the software business.

— Representative artifacts. The requirements documents inspected in this study may
not be representative of industrial requirements documents. Our documents were
requirements specifications for web applications while inspections are often con-
ducted for dependable systems where quality and rework costs are perceived as
critical.

4.2 Future Research

A number of important directions for furthering this research emerge as these early
results indicate that the asynchronous discussions were beneficial in enabling more
effective requirements negotiation meetings. To gain a more in depth understanding
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of ways in which structured asynchronous discussions can support remote teams re-
solve open issues prior to negotiations, we are analyzing the broader context in which
this causal relationship was observed. In particular, analyzing the type of issues iden-
tified during the inspections of the six teams, the complexity of those closed during
the asynchronous discussion as well as negotiation meetings behavior and process
will enable us to understand which factors in the computer-mediated collaborative
process contributed to these results. We are conducting the analysis of the data stored
in IBIS database and videotapes of the six project requirements negotiations. We hope
to draw more detailed guidelines on conducting structured asynchronous discussions
in support of expensive but important synchronous requirements negotiations.
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Abstract. The paper describes an approach, which we developed to assess the
expected quality of software for a huge governmental system. The assessment
was done on behalf of the customer, and not of the development company, and
was performed within two years along with the software development process.
Our approach was based on a modification to GQM and was focused on the
evaluation of the quality of methods and the deliverables of the project. The pa-
per describes the areas of the quality evaluation, the questions that we stated
and the metrics that we used. The statistical metrics defined in ISO 9126 ap-
peared not very helpful within the context of this project.

1 Introduction

Software engineering is founded upon a set of paradigms, technologies and processes
that enable the disciplined development and evolution of software systems. As with
any other engineering discipline, software engineering requires methods and meas-
urement mechanisms for evaluation of the quality of software products. Because the
software development process is long and expensive, those methods and mechanisms
should not only allow for the evaluation of the quality of an existing software system
but also the expected quality of product under design.

Effective software quality evaluation and assurance requires models that describe
what the software quality is and how can it be traced back to the development proc-
ess. Two different approaches to software quality have been defined recently in a set
of international ISO standards. One is focused on assuring high quality of the process
by which the product is developed, while the other is aimed at a direct definition of
the attributes and metrics that characterize the quality of the software product.

The requirements for a quality management system are defined in ISO 9001 [1].
All the requirements are intended for application within a software process in order to
enhance the customer satisfaction, which is considered the primary measure of the
software product quality. The quality management system, as defined by the standard,
can be subject to a certification.

Quality characteristics of the software product are defined in ISO 9126 [2]. The
characteristics are subdivide into attributes that can be measured by means of appro-
priate metrics. A set of metrics is defined in the accompanied technical reports [3-5].
Such definitions help in evaluating the quality of an existing software system, but
gives no guidance on how to construct a high quality software product.

L. Baresi and R. Heckel (Eds.): FASE 2006, LNCS 3922, pp. 170-183, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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Unfortunately, the two standards have not been related to each other in that the
quality characteristics of ISO 9126 are not referenced by ISO 9001.

A practical application of the recommendations of both of the two ISO standards
needs a method for selecting the metrics and collecting data that are relevant for a
particular purpose. There are a few such methods described in the literature, with the
Goal Question Method approach [6-8] and the Quality Function Deployment ap-
proach [9-11] being the best known examples. All of those methods represent the
viewpoint of the software development organization.

This paper describes a method, which we used to assess the expected quality of a
huge software system that was developed in the years of 2003-2004 to support Euro-
pean Union’s Common Agriculture Policy in Poland. IACS (Integrated Administra-
tion and Control System) was built in time and deployed in more than 300 regional
offices. Currently, the system processes data from more than 2 000 000 farms.

The assessment was performed along with the software development process and
was focused on the evaluation of the quality of methods and deliverables of the par-
ticular steps of the project. Our approach was based on a modification to Goal Ques-
tion Metric approach. The modification was needed, because our assessment was
done on behalf of the customer, and not of the development company, and it had no
other goal in mind than just to evaluate the expected quality of the developed soft-
ware. Because our customer requested full compliance with the requirements that
could not be compromised, the statistical metrics defined in ISO 9126 appeared in-
adequate within the environment of this project.

The paper is organized as follows. Section 2 provides the reader with a short over-
view of the approach represented by ISO 9001, and Section 3 summarizes the ap-
proach of ISO 9126. The method that we used to evaluate the quality of the develop-
ment of the IACS software is presented in Section 4, and the set of detailed questions
and metrics used by the method is described in Section 5. Final remarks are gathered
in Conclusions.

2 ISO 9001 Overview

ISO 9001 [1] describes the requirements for a quality management system, which is a
part of the total manufacturing process. The standard is very general and applies to all
types of organizations, regardless of their size and of what they do. The recommended
practices can help both product and service oriented organizations and, in particular,
can be used within the context of software development and manufacturing. ISO 9001
certificates are recognized and respected throughout the world.

Because of this generality it is not easy to map the recommendations of the stan-
dard into the practical activities that can be performed within a software process.
Moreover, the standard is intended to be used by the manufacturers and not by the
auditors that work on behalf of their customers. Therefore, it contains many recom-
mendations that relate to resource management process, which was completely out-
side the scope of our evaluation. What we were expected to assess was the quality of
the methods that were used by the manufacturer throughout the software development
process and the quality of products of particular steps of the development: Analytical
specifications, design documents, test plans and procedures, user manuals and the
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resulting code. The actual implementation of code and of the testing process was also
subject to our evaluation.

ISO 9001 does not define any particular model of quality. Instead, it adopts a sim-
ple approach that the quality of a product is measured by the customer satisfaction.
According to this approach, no quality characteristics are defined, and the only basis
for quality evaluation are the customer requirements. If those requirements are met,
then the product quality can be evaluated high. The lack of a quality model makes this
standard orthogonal to ISO 9126. There are no common points between the two, but
also no contradiction can be found.

The top level requirement of ISO 9001 is such that a quality management system
must be developed, implemented and maintained. All the processes and activities
performed within the scope of this system have to be documented and recorded for
the purpose of future review. A huge part of the standard relates to the processes of
quality planning and management, resource management, and continuous quality
monitoring, analysis and improvement. This part is not very helpful in evaluating the
quality of a specific software product under design.

The part, which relates directly to the body of a software project, is a section on re-
alization requirements. Basic requirements and recommendations that are stated
therein can be summarized as follows:

1. Identify customer’s product requirements, i.e. the requirements that the customer
wants to meet, that are dictated by the product’s use or by legal regulations.

2. Review the product requirements, maintain a record of the reviews, and control
changes in the product requirements.

3. Develop the software process, clarify the responsibilities and authorities, define the
inputs and outputs of particular stages.

4. Perform the necessary verification and validation activities, maintain a record of
these activities, and manage design and development changes.

All of those statements are very concrete and provide valuable guidelines for auditing
and evaluating the quality of a software process. Moreover, the stress that is placed on
the need to meet customer requirements helps in closing the gap between the quality
of the software process and the quality of software itself.

3 ISO/IEC 9126 Overview

ISO 9126 [2] is concerned primarily with the definition of a quality model, which can
be used to specify the required product quality, both for software development and
software evaluation. The model defines three different views of the software quality:

e Quality in use view captures the ability of a software product to help the user in
achieving his or her specific goals within the specified context of use.

e External quality view captures the characteristics of a software product that can be
observed when the software is executed.

e Internal quality view captures the characteristics of a software product that can be
measured based on intermediate products during the software development
process.
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The views are related to each other in such a way that quality in use characteristics
depend on the external quality characteristics, which in turn depend on the internal
quality characteristics. Only the internal quality characteristics can be observed during
the development process and used in order to predict the external quality and the
quality in use of the final software product.

The internal and external quality models share the same set of six characteristics,
which are intended to be exhaustive. All the six quality characteristics, defined in ISO
9126, are recapitulated below, along with some comments.

Functionality is defined as the ability of the software product to provide functions
which meet stated or implied needs of the user. This is a very basic characteristic,
which is semantically close to the property of correctness, as defined in other quality
models [10]. If software does not provide the required functionality, then it may be
reliable, portable etc., but no one will use it.

Efficiency is a characteristic that captures the ability of a correct software product to
provide appropriate performance in relation to the amount of resources used. Effi-
ciency can be considered an indication of how well a system works, provided that the
functionality requirements are met. The reference to the amount of resources used,
which appears in this definition is important, as the traditional measures of efficiency,
such as the response time and throughput, are in fact system-level attributes.

Usability is a measure of the effort needed to learn and use a software product for the
purpose chosen. The scope of this factor includes also the ease of assessment whether
the software is suitable for a given purpose and the range of tolerance to the user
errors. The features that are important within the context of usability are adequate
documentation and support, and the intuitive understandability of the user interface.

Reliability is defined as the ability of software to maintain a specified level of per-
formance within the specified usage conditions. Such a definition is significantly
broader than the usual requirement to retain functionality over a period of time, and
emphasizes the fact that functionality is only one of the elements of software quality
that should be preserved by a reliable software product.

Maintainability describes the ease with which the software product can be analyzed,
changed and tested. The capability to avoid unexpected effects from modifications to
the software is also within the scope of this characteristic. All types of modifications,
i.e. corrections, improvements and adaptation to changes in requirements and in envi-
ronment are covered by this characteristic.

Portability is a measure of the effort that is needed to move software to another com-
puting platform. This characteristic becomes particularly important in case of an ap-
plication that is developed to run in a distributed heterogeneous environment or on a
high performance computing platform, which lifespan is usually short. It is less im-
portant if the application runs in a stable environment that is not likely to be changed.

It can be noted from the above enumeration that the characteristics correspond to
the product only and avoid any statement related to the development process. Each
quality characteristic is very broad and therefore it is subdivided into a set of
attributes. This quality model can be applied in the industry through the use of related
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metrics. There are 79 internal metrics defined in [4]. The metrics are quantitative and
in nearly all cases take the form of a proportion: A number of functions/items/data
formats/etc. that posess certain feature, related to the the number of all functions/
items/data formats/etc. that have been defined. Despite such a mathematical
definition, the evaluation of each metric is a bit subjective, because whether or not a
particular function/item/data format/etc. posesses certain feature is judged by the
evaluator.

4 Quality Evaluation Method

Quality evaluation methods described in the literature [6-12], represent the software
development organization point of view. The values of measures collected from par-
ticular projects create a corporate memory that can help in resolving the tasks of the
project planning, implementation and evaluation. Evaluation of measures can also
help during the course of a project to asses the project progress and to improve those
quality characteristics that are particularly important in the context of this project.

One of the most pragmatic ways to develop the set of metrics appropriate to the
project is Goal Question Metric (GQM) approach described for the first time in [6]
and developed since that time by NASA. GQM provides a method for transferring
business goals of the development organization into a set of measurable characteris-
tics of a software product, process or resource. The method works in a top down man-
ner and consists of the following three steps:

1. Define business goals, typically to improve an aspect of the development.

2. For each goal define a set of questions that must be answered in order to judge
whether the goal is achieved.

3. For each question define a set of metrics that provide an appropriate information
for answering the question.

The steps of selecting the questions and metrics are focused on fulfilling the specific
goal that defines the context for all further activities.

Quality evaluation process, which is described in this paper, was done on behalf of
the customer. Planning the process we found a great difference between the quality
evaluation made for and by a software manufacturer and the evaluation that was made
for the customer. One difference was such that the customer had only limited access
to the project data, and the quality evaluation had to be based on an evaluation of the
deliverables of the software process that had been enumerated in the contract. Another
difference was such that the customer had no historical data related to a set of similar
projects and could not compare the actual data to the historical one. Therefore, the
customer had no specific business goals, such as to improve the software process, to
use less resources or to enhance the (yet unknown) software efficiency. After signing
a contract it was the manufacturer who was responsible for developing the software,
while the customer wanted only to be sure that everything was done right. The ration-
ale that stood behind such a thinking was based on a hope that if things were done
right, than the results would also be right. The customer was also not able (and not
willing) to answer the question, which features should be evaluated. The answer we
received to such a question was always the same: Check everything.
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In order to fulfill the demands of our customer we had to change the top level of
the GQM measurement model and replace the specific goals by a set of general sub-
ject areas that covered the development process and the set of deliverables from the
process, as fully as possible. This way we decomposed the problem space into six
subject areas. The first subject area referred to the development process itself, the next
four areas corresponded to particular activities within the process, and the last one
dealt with the software documentation. The following subject areas were defined:

. Software process and development methods.
. The analysis and analysis products.

. The design and design products.

. The implementation and the code.

. Testing process and test documentation.

. User manuals.

AN AW

It can be noted from the above list that the areas 2 — 5 cover all the major activities
(not necessarily phases) that have been identified in both: waterfall and incremental
models of software development. The decomposition of the software process into the
subject areas is then exhaustive with respect to the major development activities.

The evaluation of quality within a particular subject area was decomposed into an
evaluation of a set of criteria, each of which defined a specific scope of judgment.
Each criterion consisted of a set of closely related questions. These questions refer-
enced object(s) within the subject area and characterized the quality issue evaluated
under this criterion. The questions were answered by metrics, i.e. data that character-
ized the methods used to conduct the software process or the deliverables from a
particular step of the software process. To avoid problems with the interpretation of
data, the sets of questions were limited to the ones that could be meaningful to the
customer.

A hierarchical model of the quality evaluation is shown in Figure 1.

Methods coee Manuals Subject areas
Criteria defined

\I L] I\I | by questions
5oL &8 T

Fig. 1. Hierarchical structure of the quality evaluation model

Negative evaluation of a criterion was reported to the customer as a potential risk
to the project. An advice on how to eliminate the risk was also reported to the cus-
tomer as our recommendation.
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5 Criteria, Questions and Metrics

In order to structure the evaluation process, we organized the set of criteria within
each subject area along traceability paths: From requirements origins to the require-
ments specification, from the requirements specification to the design, from the de-
sign to the implementation, and from the requirements specification to the test plan.
Answers to the questions within a criterion were based on objective or subjective
metrics. Sample criteria, questions and metrics that were defined in particular subject
areas, are discussed briefly in the next three subsections. The mechanics of the quality
evaluation is described in Subsection 5.4.

5.1 Software Process and Development Methods

The main goals of work within this subject area are the identification of methods and
standards that were used throughout the development process and the evaluation of
how these methods were used with respect to completeness, readability and traceabil-
ity of the resulting products. In order to achieve these goals we defined the following
set of criteria, accompanied by the appropriate sets of questions and metrics.

Criterion M1. Methods and standards.

Questions. Which methods (standards) are used in the development process? How is
the scope of these methods? Are the methods adequate in the context of this project?
Metrics. List of methods declared for the project. A mapping from the steps of the
software process into the set of methods. Evaluation of the adequacy of methods.

Criterion M2. Completeness of results.

Questions. Which artifacts recommended by the methods were created? Is the set of
created artifacts sufficient? Are the results documented properly?

Metrics. List of artifacts. Evaluation of the set of artifacts. A mapping from the arti-
facts to the volumes of documentation.

Criterion M3. Quality of the documents.

Questions. Are the created documents readable? Are the documents consistent and
unambiguous? Are the documents modifiable?

Metrics. Evaluation of readability. Evaluation of consistency. Evaluation of modifi-
ability.

Criterion M4. Traceability of the documentation.

Questions. Is the change history of the documents maintained properly? Are the sub-
sequent documents related to the antecedent ones?

Metrics. Evaluation of the change history (versioning). Traceability graph. Evaluation
of traceability between the documents.

As can be seen from the above list of criteria, the evaluation within this subject
area was focused on rather formal aspects of the software process in that it did not
include an in depth analysis of the contents of the documents created throughout the
development process. Nearly half of the metrics were objective, which means that
they depended only on the properties of objects. Other metrics, in general those that
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began with the word “Evaluation”, were subjective, which means that they depended
not only on the properties of objects, but also on the viewpoint from which the
evaluation was done.

The criteria correspond to the recommendations of ISO 9001, which state that a
software process shall be developed, the outputs of particular activities shall be de-
fined, and the results shall be recorded. The criteria have also a clear relation to the
quality characteristics defined in ISO 9126, because the completeness of results to-
gether with readability, consistency, modifiability and traceability of the documenta-
tion promotes the maintainability and portability of the software product.

5.2 Analysis and Analysis Products

The main goal of work within this subject area is the evaluation of how the analysis
methods were used in the project with respect to completeness, correctness and verifi-
ability of the resulting products. There are two bunches of methods that are com-
monly used to perform analytical activities within the development process: Object-
oriented and structured methods. Because the deliverables of both types of methods
are significantly different, the quality evaluation method must be tailored to the actual
analysis methodology that is used in a particular project.

The analysis performed within the IACS project was object-oriented, and relied on
the use case method applied within a two-step process. In the first step, business ac-
tors and procedures were identified, and the scenarios, together with the pre- and post-
conditions of these procedures were defined and documented. In the second step busi-
ness procedures were refined and decomposed into sets of user functions that were to
be implemented by the system. A specification of a user function included a set of
alternative scenarios, a definition of exceptions and exceptional actions, and the con-
ditions to start this particular function. The structure of data that was identified within
the application domain was modeled by means of a class diagram notation.

In order to evaluate the quality of analysis and analysis products we defined the
following set of criteria, accompanied by the appropriate questions and metrics.

Criterion Al. Completeness of data sources.

Questions. Which sources of information were used throughout the analysis? Was the
selection of law regulations complete?

Metrics. List of sources, particularly EU and national acts, cited in the analysis docu-
ments. Evaluation of completeness.

Criterion A2. Consistency between the business model and the data sources.
Questions. Is the business model consistent with law regulations that have been iden-
tified in criterion A1?

Metrics. A mapping from the set of business procedures to the set of EU and national
acts. Evaluation of consistency.

Criterion A3. Completeness of the context definition.

Questions. Is the set of input data sufficient to achieve the business goals? Is the set
of output data complete with respect to business and law requirements?

Metrics. A mapping from the set of goals identified in EU and national acts to the set
of data (documents) input to the business procedures. Evaluation of sufficiency. A
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mapping from the set of reports defined in EU and national acts to the set of docu-
ments yielded by the business procedures.

Criterion A4. Completeness of the analysis model.

Questions. Are all of the business goals covered by the business procedures? Does the
set of scenarios of each business procedure cover all types of input data?

Metrics. A mapping from the set of goals identified in EU and national acts to the set
of business procedures. Evaluation of the sets of scenarios.

Criterion AS. Completeness of the functional requirements.

Questions. Are all the business procedures supported by sets of the user functions?
Are all the scenarios of each business procedure covered by a set of user functions?
Metrics. A mapping from the set of business procedures to the sets of user functions.
Evaluation of completeness of the coverage.

Criterion A6. Correctness of the data model.

Questions. Is the data model consistent and complete with respect to the law regula-
tions? Does the data model comply with the best engineering practices?

Metrics. A mapping from the set of data records identified in EU and national acts to
the set of classes. Evaluation of the correctness and quality of class diagrams.

Criterion A7. Usability of the user interface prototype.

Questions. Is the prototype complete? Is the prototype ergonomic?

Metrics. A mapping from the set of user functions to the sets of prototype functions.
Evaluation of the ergonomics.

Criterion A8. Completeness of the non-functional requirements.

Questions. Are the non-functional requirements complete in that they define the ex-
pectations related to the security of data, performance and reliability?

Metrics. Evaluation of the non-functional requirements.

Criterion A9. Verifiability of the non-functional requirements.

Questions. Are the non-functional requirements defined in a verifiable (testable) way?
Metrics. Enumeration of these requirements that are defined in a quantitative way and
those that are defined qualitatively. Evaluation of the above lists.

Criterion A10. Credibility of the verification.

Questions. Which methods of verification are used? How credible is the functional
part of the test plan? How credible is the non-functional part of the test plan?

Metrics. List of verification methods. Coverage of the set of all scenarios defined
within the business procedures by the test scenarios. A mapping from the set of non-
functional requirements identified in criterion A7 to the set of test scenarios. Evalua-
tion of the non-functional tests.

As can be seen from the above list of criteria, questions and metrics, the evaluation
within this subject area is focused on the contents of the analytical products. The
sequence of criteria moves along a path: From sources of information to business
model, from business model to functions and efficiency, from functions and effi-
ciency to verification and validation. The set of criteria is in good relation to the set of
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quality characteristics defined in ISO 9126. The correspondence between the two is
shown in Table 1. Portability is not included in the table, because this feature was not
considered a significant premise in the environment of IACS project.

Table 1. A relation between the criteria and the quality characteristics of ISO 9126

Quality characteristic Criteria

Functionality Al ... A7

Efficiency A8, A9

Usability A7

Reliability A8 ... A10 (also M1)
Maintainability A4 ... A6 (also M2 ... M4)

5.3 Testing Process and Test Documentation

The main goal of work within this subject area is to assess the credibility of the accep-
tance testing of the software product. Such an evaluation must cover two different
aspects of the testing process:

e The quality of the test documents, i.e. test plans, test scenarios, test cases, test data
and test procedures.

e The quality of the actual execution of testing with respect to the test documents and
testing standards.

Acceptance testing is the process which relates the actual characteristics of the final
software product to the requirements that have been stated during the requirements
analysis. Therefore, the detailed structure of the test documents depends on the way in
which the requirements were defined and formulated. This makes the questions and
metrics that can be used for evaluation purposes also dependent on the type of the
analysis methods that were used in a particular project.

The analysis of the IACS system relied on the use case method, which was applied
within a two-step process of business procedures definition and user functions defini-
tion (Section 5.2). The results of the analysis were presented in the form of quite a big
set of business procedures, each of which was supported by a set of user functions. The
structure of the test documents reflected this structure of the analysis products.

A basic unit of testing was an application, defined as a functional module, which
provided the functionality that supported a small set of closely related business proce-
dures. The method of testing an application was defined by a test plan, which con-
sisted of a set of test scenarios and a test procedure. A test scenario covered a single
scenario of a business procedure, and consisted of a set of steps, each of which was
defined by a single test case. A test case covered a scenario or a set of scenarios of a
single user function, and consisted of a set of steps that corresponded to the steps of a
function scenario. There was a collection of test data and a list of acceptance criteria
defined for each test case.

The questions and metrics that we defined, related test scenarios and test cases to
business procedures and user functions implemented by the software.
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Criterion T1. Consistency of the test documents.

Questions. Is the structure of the test documentation consistent with the structure of
analysis products and with the guidelines defined in the analysis documents?

Metrics. List of test documents. Evaluation of completeness of the test documents and
the consistency between the test documents and the analysis products.

Criterion T2. Completeness of the functional testing.

Questions. Are all the functional requirements covered by the tests? Are all the user
errors tested?

Metrics. A mapping from the set of business procedures to the set of test scenarios. A
mapping from the set of user functions to the set of test cases. A mapping from the set
of function scenarios to the set of test data. Coverage of business procedures by test
scenarios. Coverage of user functions by test cases. Coverage of function scenarios by
test data.

Criterion T3. Completeness of the non-functional testing.

Questions. Are all the non-functional requirements covered by the tests? Are the
performance and stress tests included into the test plan?

Metrics. A mapping from the set of non-functional requirements (such as response
times, throughput, re-start and data recovery times etc.) to the set of test scenarios.
Evaluation of the test scenarios. Coverage of non-functional requirements by test data.

Criterion T4. Credibility of the acceptance criteria.

Questions. Are the acceptance criteria defined for each test data? Are the sets of ac-
ceptance criteria properly defined for each test case?

Metrics. A mapping from the set of test data to the set of acceptance criteria. A map-
ping from the set of test cases to the set of acceptance criteria. Evaluation of the ac-
ceptance criteria for each test case.

Criterion TS. Credibility of the testing process.

Questions. Is the test environment defined and documented properly? Is the test envi-
ronment consistent and compatible with the production environment? Are the test
results recorded properly? Are all the test scenarios defined in the test plan executed
during the testing process?

Metrics. Evaluation of the test environment documentation. A mapping from the
production environment definition (list of elements) to the test environment defini-
tion. Observation of the testing process and comparison with the test reports. A map-
ping from the set of test scenarios to the set of test reports. Evaluation of the test re-
ports.

The set of evaluation criteria defined above relates to a subset of quality character-
istics defined in ISO 9126. The correspondence between the two is shown in Table 2.
The other three characteristics of ISO 9126 are not included in the table, because they
were not verified by our team. Usability of the software was verified during the test-
ing process directly by the testers that represented our customer. Maintainability
could not be verified by means of testing. Portability was not considered a significant
premise in the environment of IACS project.
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Table 2. A relation between the criteria and the quality characteristics of ISO 9126

Quality characteristic Criteria
Functionality T1, T2, T4, T5
Efficiency T3, T4, TS5
Reliability T3, T4, TS

The answers given by metrics to the questions stated above created the basis for a
final recommendation on whether or not to accept the software product.

5.4 Evaluation Process

The software for IACS system was developed iteratively according to the guidelines
of RUP — Rational Unified Process [13]. Input data to the process of quality evalua-
tion consisted of all the documents that were created in the entire software develop-
ment cycle. These included:

Business model developed in the inception phase.

Early analysis model of the elaboration phase.

The set of analysis and design models created in the construction phase.
The code and the complete set of manuals.

Test plans and test reports (plus the observation of the testing process).

Because of the incremental nature of the development, part of the documents circu-
lated in several versions, issued in a sequence of subsequent increments. The evalua-
tion of the deliverables form particular increments of the process dealt mainly with
new documents and other products, however, the scope of changes to the products
delivered in the previous increments was also subject to investigation.

The evaluation process was decomposed into the set of subject areas listed in sec-
tion 4 and was structured according to the set of criteria exemplified in sections 5.1
through 5.3. The evaluation that was done within the context of a particular criterion
was guided by the set of questions and metrics.

The scope of criteria related to development methods, described in Section 5.1,
was very broad, because it related to all the phases and activities of the entire devel-
opment process. Therefore the evaluation of these criteria was decomposed in such a
way that the questions were stated and answered separately for particular groups of
artifacts. For example, the evaluation of criterion M1 (Methods and standards) was
decomposed into an investigation of the software process, the analysis methods, the
design methods, the implementation methods and tools, the testing methods and the
documentation standards.

The answers were given to questions by metrics, only few of which were quantita-
tive, i.e. evaluated to a numerical value. However, many metrics were formal, i.e.
took the form of a mapping between the sets of artifacts or documents. Internal met-
rics of ISO 9126, defined as proportions, appeared useless within the environment of
this project, particularly within the area of analysis. The customer required full cover-
age and correctness in that all the identified requirements had to be reflected in the
analysis model, all the business procedures had to be specified and supported by user
functions, all the data types had to be serviced, etc. 90% was not very different from
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zero. An exception was the area related to testing and documentation, in which the
metrics of coverage were used.

Answers to questions within a particular criterion were aggregated into a general
mark within the scale of: good, satisfactory, bad, dangerous. The two lowest marks
were reported to the customer as risks. The evaluation report was structured in accor-
dance with subject areas and criteria. The results of the evaluation within a particular
subject area were concluded in the form of two sections: Risks for the project and
recommendations to the project. The risk section reported the bad and dangerous
marks given to particular criteria within this subject area, related to the quality charac-
teristics of ISO 9126. For example:

e The lack of functions that support certain business procedures creates the risk that
the required functionality of software will not be met.

e The lack of readable design models creates the risk that the maintainability of
software will be unacceptable low.

The recommendation section advised on what to do in order to avoid the risks identi-
fied in the evaluation process and described in the previous section. Recommenda-
tions related to the risks listed above could read, e.g.:

e Define the functionality that is missing.
e Create the models that are missing and improve readability of those that exist.

6 Conclusions

This paper describes a practical method that can be used to evaluate the expected
quality of software under design. The evaluation process does not refer directly to the
existing standards, however, it is consistent with the definitions of the quality models
of both ISO 9001 and ISO 9126. The mechanics of the evaluation is based on a set of
criteria that are decided by stating questions and finding answers to those questions.
The collection of criteria is structured into a set of subject areas that cover the set of
activities or phases that exist in the most popular software processes.

The method was used successfully in evaluating the expected quality of software
developed for a huge governmental system. The evaluation was performed on behalf
of the customer and not the manufacturer of the system. The criteria, questions and
metrics that helped in answering the questions allowed for a systematic, in depth
analysis of the deliverables of the particular development activities. As result, several
risks that could have a negative impact on the quality of the resulting software were
revealed and identified. The recommendations helped the customer in avoiding these
risks. IACS system was build and certified for use within the deadline.

The advantages of the method can be summarized as follows:

e The method can be tailored to any particular software process or method that can
be used in the development of software.

e The application of the method leads to such results, i.e. to the evaluation of criteria,
that are readable and meaningful to the customer.
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e Negative evaluation of particular criteria can easily be translated into risk warnings
and recommendations on what to improve in order to enhance the expected quality
of the final product.

The method is simple in use, does not relay on any historical data, and need not be
supported by a computerized tool.
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Abstract. While multiagent systems have been extolled as dynamically config-
urable and capable of emergent behavior, these qualities can be a drawback.
When the system changes so that it no longer achieves its goals, emergent be-
havior is undesirable. Giving agents the autonomy to adapt and then expecting
them to adapt only in acceptable ways requires rigorous design analyses. In this
paper, we propose metrics for determining system flexibility at design time. Our
approach is based on organization-based multiagent systems, which allows mul-
tiagent systems to adapt within a preset structure. We tailored the Bogor model
checker to efficiently analyze the adaptive behaviors of these systems and to de-
termine their properties such as fault-tolerance and cost-efficiency. We develop
state-space coverage metrics to allow designers to make informed trade-offs at
design-time between computational cost and system flexibility.

1 Introduction

Distributed systems that can adapt to dynamically changing environments are becom-
ing prevalent. The advent of the Internet and wireless communications has allowed
users to expect the ability to integrate their local applications with data and computa-
tional capabilities from any location, at any time. Applications for distributed, adap-
tive systems include information systems, communication systems, sensor networks,
and cooperative robotic teams. The prevailing approach to building these distributed,
adaptive systems is that of multiagent systems in which locally autonomous agents
coordinate with each other to provide access to distributed information and services.
The power in the multiagent approach is that, because of autonomy, the agents can
adapt to their environment and thus satisfy their assigned goals.

While multiagent systems have been widely touted as dynamically configurable
and capable of emergent behavior, this has also been noted as a significant drawback.
Most designers/users are not comfortable with the idea of pure emergent behavior
where agents learn or discover and continually modify their behavior. As long as the
behavior being learned or discovered is consistent with system goals, emergent be-
havior is not a problem. However, when the system functionality changes to where it
no longer accomplishes its stated goals, emergent behavior becomes undesirable.

* This material is based upon work supported by the National Science Foundation under Grant
No. 0347545 and by the Air Force Office of Scientific Research.
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A key problem faced by the Agent-Oriented Software Engineering (AOSE) com-
munity is ensuring that multiagent systems will actually perform as desired without
undesirable emergent behavior, which results from individual agent autonomy. Giving
agents the autonomy to adapt and then expecting them to adapt only in acceptable
ways requires rigorous analyses when designing and building these systems. In this
paper, we propose some new design metrics and investigate one in depth for deter-
mining multiagent system flexibility at the design level. Our approach is based on
previous work on organization-based multiagent systems [7] and model checking [6].
We describe how a software model checking framework such as Bogor [15] can be
customized to efficiently analyze emergent behaviors of multiagent systems.

The novelties and the main contributions of our work are: (1) efficient state-space
exploration of multiagent system behaviors at the design level, (2) mining the con-
structed state-spaces to determine their desirable/undesirable properties such as fault-
tolerance and cost-efficiency, (3) proposing several useful design metrics based on
state-space coverage measures to capture these properties, and (4) validating the pre-
dictions from the proposed metrics by using simulation methods. By using the pro-
posed metrics, we believe system designers are better equipped to make informed
trade-off between cost and effectiveness of multiagent systems, as well as preventing
ineffective system designs.

The paper is organized as follows. Section 2 presents a motivating example used to
illustrate our approach. Section 3 presents the multiagent organization design meta-
model that we consider. Section 4 presents an efficient state-space exploration tech-
nique implemented using the Bogor framework. Section 5 presents some of our pro-
posed metrics that we validate in Section 6 using simulation methods. Section 7 pre-
sents some related work. Finally, Section 8 concludes and presents some future work.

2 Motivating Example

Throughout this paper we use an example from cooperative robotics to demonstrate
our model of organization-based multiagent systems and the application of our design
metrics. A simplified cooperative robotics example is used (due to space constraint),
however it is still interesting enough to illustrate the application of the organization
metamodel and the effect of the loss of hardware capabilities to the system.

The example we use is the Cooperative Robotic Floor Cleaning Company
(CRFCC). Essentially, we are designing a team of robots whose goal is to clean the
floors of a building. At initialization, the team is given a map of the building includ-
ing the type of flooring of each area. The floors may be tiled or carpeted and may be
littered with large debris as well as small dirt particles that must be cleaned. There-
fore, the CRFCC must be able to pick up any large objects and then vacuum or mop
the floors, based on their type. The team should be able to clean the floors of the
building even when faced with failures of individual robots or specific capabilities on
those robots. This implies that the team must be able to (1) assign floor areas based on
individual team member’s capabilities (i.e. to mop, vacuum, sweep, etc.), (2) recog-
nize when a robot is incapable of carrying out its responsibilities, and (3) reorganize
the team to allow the team to achieve its goal in spite of individual failures.
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3 Organizational Metamodel

To allow teams of agents (or robots) to adapt to their environment by determining
their own organization at runtime, we developed a metamodel that describes the
knowledge required to define and reason about an organization [7, 14]. Given this
knowledge, we have shown that multiagent teams are able to organize (and reorgan-
ize) themselves in an attempt to adapt to dynamic environments.

Organizations are typically defined as a set of agents who play roles within a struc-
ture that defines the relationships between those roles [3]. In our organization meta-
model shown in Fig. 1 (simplified due to space constraint; we refer the readers to
[7, 14] for a more complete description), we include these basic concepts of goals (G),
roles (R), and agents (A), plus agent capabilities (C) and a set of assignments (D).

Q

requires possesses

Capability

Fig. 1. Organization Metamodel (simplified)

achieves

3.1 Goals

Every organization is designed with a specific purpose or goal. In our metamodel,
each organization has a set of goals, G, that it seeks to achieve in support of a top-
level goal g, which we define as a desired end state. G is derived by decomposing g,
into a tree of sub-goals that describe how g, can be achieved. Following the KAOS
goal based requirements modeling approach [18], we allow goals to be decomposed
into a set of non-cyclic sub-goals using either AND-refinement or OR-refinement.
Eventually, g is refined into a set of leaf nodes, denoted by G,, that are actually
achieved by agents in order to achieve g . The active goal set, G, (where G, C G)), is
the set of goals that an organization is trying to achieve at the current time.

In order to provide an ordering for goal achievement, we define a precedence rela-
tion between goals. We say that goal g, precedes goal g, if g, must be achieved before
g, can be achieved, which allows the team to work on a subset of the leaf goals, thus
reducing the size of G4. The initial active goal set, G4y, consists of all leaf goals with-
out predecessor goals. However, G, changes as goals are achieved; achieved goals are
removed from the active goal set and new goals are inserted. We denote a sequence of
active goal sets G,* as G,* = [Gay, Gag, ---, Ganl.

The goal model for the CRFCC is shown in Fig. 2. Goals are denoted as special-
ized class components using the <<Goal>> notation. Conjunctive sub-goals are con-
nected to their parents by a diamond shaped connector (0) while disjunctive sub-goals
are connected to their parent by a triangle shaped connector (A). Goals can have
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Fig. 2. Goal Model (simplified)

parameters. The totalArea parameter refers to the entire area to be cleaned. Since total
area may include tile and carpeted areas, the team divides it into sub-areas (denoted
by the area parameters) to be tackled independently. However, to ensure the entire
task is completed as efficiently as possible, the team must consider the capabilities of
its team members when partitioning the areas and assigning areas to robots. The mul-
tiplicity n represents the total number of sub-areas while i refers to the number of tiled
areas. The <<precedes>> notation indicates precedence relation between goals.

The goal model consists of five leaf goals: Divide Area, Pickup, Sweep, Mop, and
Vacuum. The precedence relations provide the natural ordering that is required to
clean the floors. The n sub-areas must be created before work may begin; this results
in n Pickup goal instances being created as well as i Sweep and Mop goals and n-i
Vacuum goals. Due to the precedence relation, the individual areas must be picked up
and any large debris removed before the areas can be swept, mopped, or vacuumed.
Finally, depending on what type of flooring is present, the areas are either (1) swept
and then mopped, or (2) vacuumed.

3.2 Capabilities

Capabilities are the key to determining exactly which agents can be assigned to what
roles in the organization. Currently, we view a capability as an atomic entity used to
define the abilities of agents. Capabilities can capture soft abilities such as the ability
to access resources, communicate, migrate, or computational algorithms. They also
capture hard capabilities such as those of hardware agents such as robots, which in-
clude sensors and effectors. In the CRFCC example, the robots must have specific
capabilities to carry out the cleaning operation. Thus, we assume the capabilities
shown in Table 1 are available for designing CRFCC robots.

The org capability is a reasoning ability that allows a robot to divide the current
search area up into n areas based on the type of flooring (as well as other possible
factors such as size, wall placement, etc.). The search capability allows robots to
move about an area and identify items that need to be picked up before cleaning can
begin. This capability is actually a combination of low-level capabilities such as
movement and sensing as well as reasoning abilities to identify target items based on
shape, size, color, etc. The move capability refers to the ability of a robot to pickup an
item and to move it out of the way for cleaning. This capability could be representa-
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Table 1. CRFCC Capabilities

Name Description
org Ability to logically divide the area between team members
search Ability to search an area for large debris
move Ability to move large debris
sweep Ability to sweep a tiled area
mop Ability to mop a tiled area
Vacuum Ability to vacuum a carpeted area

Table 2. RMO Roles
Name Required Capabilities Leaf Goals Achieved
Organizer org 1. Divide Area
Pickuper search, move 2. Pickup
TileCleaner sweep, mop 3.1.1. Sweep & 3.1.2. Mop
Vacuummer vacuum 3.2. Vacuum

tive of robotic arms or gripper devices. The last three capabilities, sweep, mop and
vacuum are straightforward capabilities that also require integration of low-level ca-
pabilities. These capabilities provide the ability to clean tile and carpeted floors.

3.3 Roles

Each organization has a set of roles R that it can use to achieve its goals. A role de-
fines the capabilities required for an entity to achieve a goal (or set of goals) in the
organization. The achieves function (R x G, — [0,1]) tells how good a role is for
realizing a specific goal (0 = no ability to achieve the goal, 1 = excellent ability to
achieve the goal); if agent A is better at attaining goal G than agent B, we would
expect that achieves(A,G) > achieves (B,G). However, to be assigned to play a role,
agents must have a sufficient set of capabilities to play that role. Thus, agents possess
capabilities while roles require a certain set of capabilities. The set of capabilities
required by a role is captured using the requires relation (R x C).

For the CRFCC example, we developed two sets of roles, or role models, that the
individual robots can play in order to accomplish the overall CRFCC goal. In the first
role model (RMO), we attempted to combine basic capabilities to carry out specific
goals. For RMO we came up with four roles as shown in Table 2. In this case, we
would need a robot with the org capability to be assigned to the Organizer role in
order to achieve the initial goal, Divide Area. Once the area was divided into sub-
areas, the robots with the search and move capabilities would be assigned to play the
Pickuper role to achieve all the Pickup goals generated for each sub-area. Once this
goal was achieved, robots with sweep and mop capabilities would be assigned to the
TileCleaner role to achieve goals Sweep and Mop for each tiled sub-area while robots
with the vacuum capability would be assigned to play the Vacuummer role to achieve
the Vacuum goal for each carpeted area.

In a second version of the role model, Role Model 1 (RM1) as shown in Table 3,
we took a slightly different approach to defining the roles for the CRFCC. Instead of
defining roles to carry out basic functions in the application, we defined a role for
each leaf goal. Essentially, we divided the TileCleaner role into Sweeper and Mopper.
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Table 3. RM1 Roles

Name Required Capabilities Leaf Goals Achieved
Organizer org 1. Divide Area
Pickuper search, move 2. Pickup
Sweeper sweep 3.1.1. Sweep
Mopper mop 3.1.2. Mop
Vacuummer vacuum 3.2. Vacuum

3.4 Agents

The organization metamodel also includes a set of heterogeneous agents, A. For our
purposes, agents are computational system instances that inhabit a complex dynamic
environment, sense, and act autonomously in this environment, and by doing so real-
ize a set of goals. Agents are assigned specific roles in order to achieve organizational
goals. The current set of possible assignments of agents to a role is captured by the
potential function (G; X R x A — [0,1]). The range of the potential function indicates
how well an agent can play a role and how well that role can achieve the goal, based
on the achieves and the capable scores.

However, the potential function does not indicate the actual assignment of agent a
to role r to achieve goal g, it simply defines possible assignments. To capture the
actual assignments, we define an assignment set @, which consists of goal-role-agent
tuples, <g,r,a>. If <g,r,a> € @, then agent a has been assigned by the organization to
play role r in order to achieve goal g. As discussed above, however, only agents with
the right set of capabilities may be assigned to a role. To capture a given agent’s ca-
pabilities, we define a possesses function (A x C — [0,1]), whose dynamic value
ranges from no (0) capability to an excellent (1) capability. Using a role’s required
capabilities and the capabilities possessed by an agent, we compute the ability of an
agent to play a given role, which we capture in the capable function (A x R — [0,1]).

4 Using Bogor to Explore Behaviors of Multiagent Organization

Bogor [4, 15] is a model checking framework designed for extensibility to enable
more effective incorporation of domain knowledge into verification models and
model checking algorithms. In contrast to most existing model checkers, Bogor's
modeling language (BIR) provides constructs commonly found in modern program-
ming languages including dynamic object and thread creation, garbage collection,
virtual method calls and exception handling. This rich modeling language has enabled
us to model check relatively large concurrent Java programs. In addition, BIR can be
extended with new primitive types, expressions, and commands associated with a
particular domain (e.g., multi-agent systems, avionics, security protocols, etc.) and a
particular level of abstraction (e.g., design metamodels, design models, source code,
byte code, etc.) to enable efficient modeling and state-space representation. Further-
more, Bogor's well-organized module facility allows new algorithms (e.g., for state-
space exploration, state storage, etc) and new optimizations (e.g., heuristic search
strategies, domain-specific scheduling, etc.) to be easily swapped in to replace Bo-
gor's default model checking algorithms. To support effective BIR software model
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system OrganizationMetamodel {
extension Set for SetModule {
typedef type<'a>;
expdef Set.type<'a> create<'a>('a ...);
actiondef add<'a>(Set.type<'a>, 'a);
} o
extension AOM for AOMModule ({
typedef Agent; typedef Goal; typedef Role;
expdef boolean isTopGoalAchieved(Set.type<Goal> goals);
expdef Goal chooseGoal (Set.type<Goal>) ;
expdef Role chooseRole(Goal goal) ;
expdef Agent chooseAgent (Role role);
}
active thread Search() {
Goal g; Role r; Agent a;
Set.type<Goal> achievedGoals;
Set.type<Triple.type<Goal, Role, Agent>> assignments;

achievedGoals := Set.create<Goal>();
assignments := Set.create< Triple.type<Goal, Role, Agent>>();
while (!AOM.isTopGoalAchieved (achievedGoals)) do

g := AOM.chooseGoal (achievedGoals) ;

r := AOM.chooseRole(q) ;

a := AOM.chooseAgent (r) ;

Set.add (achievedGoals, g);
Set.add (assignments, Triple.create(g, r, a));
end

Fig. 3. Organization Metamodel and Search Algorithm in BIR (excerpts)

checking, we have extended well-known optimization/reduction strategies [8, 16]
such as collapse compression [11], data [12] and thread [5] symmetry, partial-order
reduction [6] strategies that leverage static/dynamic escape and locking analyses.

We leverage BIR’s extensibility to represent the organization metamodel presented
in the previous section, as shown in Fig. 3. Each entity in the metamodel (e.g., agents)
is modeled as a (native) first-class type in BIR (e.g., Agent). Similarly, we define
auxiliary structures such as tuple and set and their corresponding abstract operations
to enable more concise model. Moreover, by modeling organization entities and data
structures as first-class type in BIR, we can instruct Bogor to use customized state
representations better suited to the analysis' level of abstraction. For example, we
leverage symmetric property of set to efficiently store set instances in the state-space
representation (e.g., { Agentl, Agent2} = {Agent2, Agentl}). Accordingly, first-class
abstract operations are implemented as an extension of the model checker instead of
being a part of the model itself, thus, they are interpreted in the model checker's space
instead of the model's space. This is analogous to adding new native types and in-
structions in a processor. That is, we can use the new types and instructions to better
represent and more efficiently execute programs instead of representing them using a
limited set of types and instructions. ([15] describes how to implement Bogor exten-
sions.) The extension module AOM requires an organization instance as a Bogor
configuration that contains information such as the goal structure, functions, and rela-
tions described in the previous section for that particular instance. Given the configu-
ration, Bogor exhaustively explores the state-space of the BIR model in Fig. 3 for the
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specified organization instance. That is, the BIR model is reusable for any model
instance of the organization metamodel specified in Fig. 1.

We now describe the extensions used in Fig. 3: (1) isTopGoalAchieved: given a
set of achieved goals, the extension determines whether the goal set can satisfy the
requirement of achieving the top goal of an organization by looking at its goal struc-
ture, (2) chooseGoal: given a set of achieved goals, the extension non-
deterministically chooses the next goal to be achieved. The extension leverages the
precedes relation such that it does not choose goals whose preceding goals are not in
the achieved goal set, which reduces the number of paths during the state-space ex-
plorations. In other words, chooseGoal non-deterministically chooses a goal from
the active goal set G4. The user can also specify to optimize paths on disjunctive goals
as an option, i.e., by preventing to choose a goal whose disjunctive sibling goals are
already achieved, (3) chooseRole: given a goal, the extension non-deterministically
chooses the role that can achieve the goal based on the organization achieves function
(i.e., when achieves gives a non-zero value), and (4) chooseAgent: given a role, the
extension non-deterministically chooses the agent that can assume that role based on
the organization capable function.

{1.2(M}

{1.2(M.3 1 1(M} {1.2(M.2(C)}

{1.2(C)}
{1.2(C).3 2(C)}

{12(M,311(M,31 2(M} {1,2(M,2(¢),3 1 1(M} {1,2(T),2(C),3 2(C)}
| {1.2(7),2(C),3 1 1(T),3 1 2(T)} | | {1.2(7),2(C),3 1 1(T),3 2(C)} |
— —

| {1,2(T),2(C),3 1 1(T),3 1 2(T),3 2(C)} |

Fig. 4. Goal Achievement State-space (G) for CRFCC Example in Fig. 2

The search thread explores all possible assignment sets that satisfy an organiza-
tion’s top goal. For optimization, we only store states in the beginning of each itera-
tion of the Search‘s loop. Fig. 4 presents the model’s goal achievement state-space
of the organization in Fig. 2 (without disjunctive goal optimization). The graph is
generated based only on the goal structure (without considering roles and agents);
Bogor can generate several state-spaces, for example, on goal (§), goal-role (GR), and
goal-role-agent (GRA). Each node in the figure represents a set of goals that has been
achieved, and each edge represents an achievement of a goal. Note that each node in
G implicitly represents the active goal set Gy, i.e., the set of goal achievements repre-
sented by the outgoing edges; thus, each path captures the sequence of active goal set
G,’. For goals that may be achieved at the same time, we follow the usual concur-
rency interleaving model that represents two transitions #; and #, that are executed at
the same time as two paths #; — t, and 7, — f;. In the case where an organization
cannot achieve the top goal, Bogor can give an empty (or a partial) state-space.

The CRFCC organization’s goal diagram in Fig. 2 has a parameter n, which is the
number of area that the agents have to clean up. Based on several experiments that we
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have on varying n, we concluded that for the kinds of analyses that we perform, we do
not actually need to have the actual concrete numbers of area; it is enough to focus on
the characteristic of each area, i.e., whether it is tiled or carpeted. The reason is that
we cannot actually distinguish between the areas at the design level; thus, for exam-
ple, one carpeted area is the same as another carpeted area, i.e., one goal achievement
sequence of one carpeted area would be similar to the other carpeted area’s. There-
fore, we only divide the area into two logical categories: carpeted (C) or tiled (T).
This approach is akin to symmetry reduction [12] techniques usually used in model
checking (e.g., the symmetric set mentioned previously), i.e., using one representative
to reason about a set of entities that share the same properties. Section 8 describes
extrapolation methods to recover the actual achievement sequences.

The key property of our analysis is that the state-space represents all possible ways
to achieve the top goal even in the presence of agent failures/retries and malfunc-
tions/recoveries. That is, an agent may retry several times before actually achieving a
goal, or an agent malfunctions completely at some point in time, hence, the rest of the
goals must be achieved by some other agents. In the end, if we take an actual system
trace that achieves the organization top goal (with failures/retries and malfunctions),
and if we project a sequence of the actual goal achievements for that trace, that se-
quence is in the state-space constructed by our analysis. For instance, let us consider
the edge {}—{1}. This edge actually represents any system trace prefix that eventu-
ally achieves 1. For example, an agent A can be assigned to achieve 1 and then it
somehow malfunctions without completing it, the system then reorganizes and assigns
a different agent B to the goal. After several attempts, that B finally achieves 1. In a
goal-agent state-space, this trace is represented by a path with prefix {}—{<1, B>}
(and without A contributing to goal achievements in the path’s suffix).

5 Design Metrics

Based on the analysis results presented in the previous sections, we have developed a
set of metrics that can be used at design time to measure system performance. Spe-
cifically, in this paper we focus on a set of metrics based on path coverage in an at-
tempt to measure the flexibility of the system. We define system flexibility as the
ability of the system to reorganize to overcome individual agent failures. Ideally, such
a metric would be unambiguous, simple to compute, and produce a small set of values
that allows the designer to directly compare a set of possible system designs.

There are several pieces of coverage information that can be mined from the differ-
ent state-spaces generated by Bogor. To measure system flexibility, we compare the
state spaces of G and GRA for particular organization designs. Based on this approach,
we have proposed the following metrics:

e Covering Percentage: For each path in G, we determine whether there exists a
path in the GRA. For covering, we compute the percentage of paths in G that are
covered in GRA (higher is better).

e Coarse Redundancy: For each path in G, we determine the number of paths in
GRA (or GR) that cover it and give a coarse redundancy rate (paths in GRA di-
vided by paths in G; higher is better).
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There are other statistics that can be mined from the state-spaces (Section 7 describes
more metrics). For example, given two GRAs (or GRs) of two different organization
instances with the same goal diagram (hence, the same §), we are able to compare
coverage differences of the two with respect to G. These coverage metrics allow de-
signers to explore different role models and agent models for a given goal structure.

6 Metric Validation

We created four predefined robot teams to validate the metric set proposed in the
previous section; we designed four different robot teams implementing RMO and
RMI1 as defined in Section 3 for the goal model of Fig. 2. The robot teams were de-
signed to provide a wide range of capabilities while keeping the same number of
robots on each team at five. Each agent was given the capabilities to carry out exactly
one of the application’s leaf goals. The specific capabilities given to each robot are
shown in Table 4. We want to predict and to compare the flexibility of each system.

Table 4. Agent System Designs

Name ASO AS1 AS2 AS3

Al org, search, move, org, search, move, org, search, move org
vacuum, sweep, mop | vacuum

A2 org, search, move, search, move, search, move, search, move
vacuum, sweep, mop | vacuum, sweep vacuum

A3 org, search, move, vacuum, sweep, vacuum, sweep vacuum
vacuum, sweep, mop | mop

A4 org, search, move, org, sweep, mop sweep, mop sweep
vacuum, sweep, mop

AS org, search, move, org, search, move, org, mop mop
vacuum, sweep, mop | mop

Table 5. Bogor Coverage Results

Organization Coarse Redundancy (G-GRA) Rate
(# paths in G = 10) RMO RM1
ASO 15625 15625
AS1 324 729
AS2 16 64
AS3 .3 1

We applied our analysis to the agent system designs; Table 5 presents Bogor analy-
sis results for ASO-3 with RMO-1. For the experiments, we used an Opteron 248
workstation, Linux OS, and Java 5.0 (64-bit) with maximum heap of 256 MB; all the
state-space analyses for G and GRA finished under 15 seconds (combined). All sys-
tems achieve 100% covering of G as there are agents that can achieve each goals (if a
goal model has disjunctive sub-goals, it is possible to create organizations that can
achieve the overall goal without agents that can achieve all disjunctive sub-goals).
Based on the numbers, Bogor predicts that RM1 is more flexible than RMO0, ASO is
the most flexible system, AS3 is the least flexible, and AS1 is more flexible than AS2.

To empirically evaluate the flexibility of designs ASO — AS3 on the role models
RMO and RM1, we developed a simulation that stepped through the CRFCC applica-
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tion. To measure the flexibility, we simulated capability failure. At each step in the
simulation, a randomly selected assigned goal was achieved. Then, one robots capa-
bility was randomly selected and then tested to see whether or not it had failed. Based
on a predefined capability failure rate (0 — 100%), we determined whether or not the
selected capability had failed. For simplicity of presentation we used a single failure
rate; however, the model could easily be extended to handle different failure rates. In
addition, in contrast to the coarse redundancy metric that takes into account the possi-
bility of agents to recover from a failure, we assumed once failed, a capability re-
mained failed for the life of the system. Then, reorganization was performed to assign
available robots to available goals and to de-assign robots if their capability had
failed, and they were no longer able to play their assigned role.
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Fig. 5. Comparison of Role Model O vs. Role Model 1 for Agent Sets ASO - AS3

Using a floor with 10 separate areas, we simulated each system (ASO — AS3) on
each role model (RMO and RM1). For each role model, system combination was
simulated for failure rates ranging from 0 to 100% for 1000 system executions. To
compare the effectiveness of the role models using the four agent system designs, we
looked at the results using each of the agent systems above. The results in Fig. 5 show
that Role Model 1 provides more flexibility than Role Model 0. Furthermore, the
simulation results confirm that ASO is the most flexible while AS3 is the least one,
and AS1 is more flexible than AS2. Note that the curve for (RMO, AS3) does not start
at 100% since AS3 does not have an agent capable of playing the TileCleaner role.

The Bogor predictions and the simulation results make sense because: (1) in con-
trast to RM1, not all agents can assume the TileCleaner role in RMO, (e.g., A4 and A5
in AS3), (2) ASO is the most flexible because each agent in ASO can achieve any goal,
(3) AS3 is the least flexible because each of its agents can assume at most one role,
and (4) AS1 is more flexible than AS2 because AS1 agents have more capabilities.

6.1 Tradeoff Analysis

To demonstrate the usefulness of our metric in making design decisions, consider the
following situation. Assume we have already developed a system based on RM1 and
AS2, but now want to upgrade our system with a fixed budget. Our engineers deter-
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mined that we could either (1) buy a single additional robot with three capabilities, or
(2) buy five additional capabilities and integrate them onto our current robots. Essen-
tially, option 2 equates to upgrading from AS2 to AS1 while option 1 would produce,
for example, AS5 (option 1a) or AS6 (option 1b) as shown in Table 6.

Bogor’s analysis results indicate that option 2 is better with a coarse redundancy
rate of 729. The coarse redundancy rates for both option la and 1b are 216 while the
original system (AS2) had a coarse redundancy rate of 64. Thus, using the coarse
redundancy metric, we would choose option 2.
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Fig. 6. Comparison of Possible System Updates

Table 6. Additional Agent System Designs Based on Agent Capabilities

Name AS5 AS6

Al org, search, move org, search, move

A2 search, move, vacuum |search, move, vacuum
A3 vacuum, sweep vacuum, sweep

A4 sweep, mop sweep, mop

A5 org, mop org, mop

A6 search, move, sweep [search, move, vacuum

To validate the metric results, we extended our simulation to include the definition
of AS5 and ASG6. The results of the four different options are shown in Fig. 6 where it
is obvious that option 2 provides the best results followed by option la and 1b, which
are very close. However, all three options are significantly better than the original
system, which are consistent with the metric results that we obtained from Bogor.

7 Related Work

Software metrics as a subject area has been around for over 30 years. A number of
metrics have been developed to predict or measure various parameters of software
systems for different stages of software development lifecycle. For example, metrics
to predict software performance were studied in [19, 20], software scalability in [20,
21], software adaptability in [17]. However, metrics and measures for intelligent
software systems are as yet vaguely defined and sometimes controversial [2] and are
not used extensively in software engineering [10]. There is also little work done in
designing and applying metrics at the design level to predict adaptive systems per-
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formance. We are proposing new design metrics and examine in details one such
metric for distributed, adaptive systems in this paper.

Fault Tree Analysis (FTA) has been studied and used extensively [198]; it provides
a top-down approach to systematically describe the combinations of possible occur-
rences in a system that results in undesirable outcomes such as failures or a malfunc-
tions. Our approach complements FTA, since our technique automatically predicts the
system flexibility for a given system configuration i.e., it generates traces of system
behaviors. If failure patterns are exposed in the traces (e.g., an agent is not used after
a certain time), then FTA can analyze the possible set of failure points.

8 Conclusions and Future Work

While the work presented in this paper is a starting point (i.e., there are many addi-
tional metrics that must be considered for providing a thorough design evaluation),
there are several conclusions that can be made. Likewise, there are several assertions
we can make about future work in the areas of performance prediction, additional
metrics, scalability, and the integration of metric computations into a model design
tool.

Performance Prediction: From the results presented in the previous section, it seems
clear that the coarse redundancy rate does predict the flexibility of the robot systems.
Unfortunately, system design is seldom as simple as maximizing one metric or pa-
rameter. Increased flexibility increases the number of possible assignments that can
be made and thus increases the computation burden of generating near optimal as-
signments at run time. Obviously, a tradeoff exists. In future work, we hope to define
additional predictive metrics that a designer can use to help tune the system at design
time by performing tradeoff analysis. Our research will not eliminate this predica-
ment, but give the designer predictive numbers to use in making those tradeoffs with-
out developing expensive prototypes/simulations.

Additional Metrics and Query Environment: Based on the state-space analysis in
Section 4, we believe the following metrics are helpful; however, we are still working
on simulation methods to validate them:

e Relative Cost Efficiency (RCE): Using the potential function described in Section 3,
we can determine path potentials in a goal-role-agent achievement state-space
(GRA). This would be useful in defining a relative measure of the most/least effi-
cient assignments and giving designers a feel for the organization’s best/worst per-
formance. (The actual best/worst performance of the system is not necessarily in-
teresting as either all the agents may fail or the organization’s goal may be achieved
by changes in the environment.) Thus, the RCE metric would give reasonable feed-
back about organization instances. If the potential function always returns a con-
stant value, thus, it reduces the metric to the shortest/longest achievement paths.

e Relatively Optimistic Time Efficiency (ROTE): This metric gives us the most opti-
mistic best/worst time (logical ticks) to achieve the top goal. Consider the path
A:{}— B:{1}— C:{1, 2(C)}— D:{1, 2(T), 2(C)}— E:{1, 2(T), 2(C), 3.1.1(T) }—
F:{1, 2(T), 2(C), 3.1.1(T), 3.2(C)}— G:{1, 2(T), 2(C), 3.1.1(T), 3.1.2(T), 3.2(C)}.
Note that optimistically, 2(C) and 2(T) can be achieved at the same time because
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there are no precedence relation among them; similarly with 3.1.1(T) and 3.2 (C).
Thus, if we group goal achievements that can happen at the same time, we have the
sequence: {A}—{B}—{C, D}—{E, F}—{G}, i.e., 5 logical time ticks. This sub-
path grouping approach is akin to partial order reduction techniques in model
checking [6] where independent transitions can occur at the same time, thus, one
ordering representative of the sub-path is enough. In our case, goal dependences are
determined based on the precedence relation. Note that this grouping can also be
done in the goal-role-agent achievement paths. If an agent cannot achieve goals si-
multaneously, the algorithm does not group goal achievements by the same agent in
one group. Thus, system designers can evaluate different goal structures, role mod-
els, and agent systems for time efficiency. We plan to investigate using these de-
pendence relations for partial order reduction in the near future.

We believe that there are more metrics that can be mined from the state-spaces of
system designs. In addition, we also believe that work on query languages (e.g., [13])
can be used to ease system designers when evaluating multiagent system designs.

Extrapolation Methods for Scalability: Note that we do not actually need to use all
five agents of the same type (i.e., agents with like capabilities) when exploring the
state-space, for example, for ASO; it is sufficient to use one agent for each type (i.e.,
symmetry reduction [12]), and then extrapolate the actual number of paths based on
the paths using representative agents. For example, if we use only one agent for ASQ,
the number of paths in GRA is 10. For each path, there are six goals achievements,
thus, if we extrapolate each path when using five actual agents, we will have
10x5°=156250 actual paths (which is the one we have from Bogor when directly us-
ing 5 agents). Thus, we believe that we can apply symmetry reduction on agent in-
stances based on their type (i.e., they are indistinguishable at the design level) along
with the partial order reduction technique hinted above, and use extrapolation meth-
ods to recover the actual paths for further analysis.

Integration of Metric Computations in a Model Design Environment: While we
manually generated the Bogor configurations for this paper, it would be straightfor-
ward to automate such analysis by integrating Bogor into a multiagent design tool.
We are currently developing agentTool IIT (aT’), an advanced version of the agent-
Tool system for developing organization-based multiagent systems [1]. aT" is being
developed as an Eclipse plug-in and Bogor already works within the Eclipse plug-in
environment. In the integrated system, designers will graphically create system goal,
role, and agent models in aT® and will simply “click” on a button to popup an inter-
face to select various analysis options; aT® will then automatically generate the appro-
priate configuration and invoke Bogor to explore its state-space and to predict its
flexibility.
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Abstract. Problem frames are a sound and convenient approach to requirements
modeling. Nevertheless, they are far less popular than other less rigorous ap-
proaches. One reason is that they employ a notation that is neither very appeal-
ing nor easy to use. The problem frames notation is sufficiently different from
other development languages —especially UML~ to create an “impedance mis-
match”: using problem frames to describe requirements does not help the transi-
tion to the design phase, makes it difficult for programmers to fully comprehend
requirements, and does not favor traceability. As a consequence, problem
frames are rarely adopted in software development processes employing UML
as a design language. UML itself provides a linguistic support for requirements
modeling, which however suffers from several limitations, especially as far as
precision and formality are concerned.

The goal of this paper is to combine problem frames and UML in order to
both improving the linguistic support for problem frames —while preserving the
underlying concepts— and to improve the UML development practice by intro-
ducing the problem frames approach, making it seamlessly applicable in the
context of the familiar UML language.

1 Introduction

The Problem Frames approach [1] has the potential to dramatically improve the early
lifecycle phases of software projects. Problem frames (PFs) drive developers to un-
derstand and describe the problem to be solved, which is crucial for a successful de-
velopment process.

Nevertheless, PF have some limitations that hinder their application in industrial
software development processes. In particular, they are not provided with an adequate
linguistic support. For instance, by looking at the PF represented in Fig. 1 it is not
immediate to see the association of phenomena with domains, or to see which domain
controls which phenomena. Moreover, sometimes it is difficult to represent the nature
of shared phenomena; e.g., when they involve complex data structures that are much
better modeled via classes.

PFs are not equipped with a unique and clear way for expressing requirements: the
modeler has to choose a suitable logic language to predicate about phenomena.

L. Baresi and R. Heckel (Eds.): FASE 2006, LNCS 3922, pp. 199213, 2006.
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Fig. 1. A commanded behavior frame: the sluice gate control

Moreover, the PF model causes a sort of “impedance mismatch” with respect to the
languages employed in the subsequent development phases. In particular, considering
object-oriented developments using UML [4] as a modeling language, it is not imme-
diate to transform PF diagrams and predicates into UML models. Even worse, people
involved in a UML-based development that are not used to the PF notation can find it
difficult to understand requirements. It is well known that design and implementation
are more often successful if developers fully understand the requirements; but a Java
programmer that works on the basis of a UML design built according to PFs can find
it difficult to read the requirements.

Problem frames require a linguistic support that is easy to use, that allows the rele-
vant information to be represented in a natural and readable way, and that allows a
smooth transition to the subsequent development phases. In particular, here we con-
sider development activities based on the usage of UML.

For requirements modeling, UML provides the “use case” diagrams [16]. Unfortu-
nately, use cases suffer from several limitations, amply described in the literature
[17], [18]. The main limitations with use case diagrams are that they are neither for-
mal nor rigorous—requirements being described mainly by the text that illustrates the
“courses of action” and they are not intrinsically object-oriented, thus it is not easy
to move from use cases to the object-oriented models required by the following
phases of development. UML-based development needs to be supported by a tech-
nique for requirements modeling that overcomes the limitations of use cases.

We propose to integrate PF and UML: PFs are represented by means of UML, so
that they can be used (also) in UML-based development. This integration provides
several benefits: on one hand it equips PFs with a popular and easy to use notation.
Under this respect our contribution is quite similar to other initiatives aiming at pro-
viding UML-based access to requirements modeling methods (e.g., KAOS [6]). In
fact, a method can be truly successful only if a large number of professionals are
sufficiently convinced of its potential to use it in industrial settings. Using UML to
support requirements engineering with PF may help achieve this end.

On the other hand, the usage of UML both as the notation underlying PFs and as a
design language smoothes the transition from the requirement elicitation and model-
ing phase to the design phase —thus facilitating the comprehension of requirements by
the developers— and it eases the iteration between problem and solution domains.
Moreover, it makes easier to represent traceability relations, since requirements and
elements of the solution are represented in a homogeneous way.
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The paper is organized as follows: Section 2 illustrates how problem frames can be
defined using UML-based notations. Section 3 tests the ability of the proposed ap-
proach to deal with the representation of a couple of concerns that often occur in re-
quirements. Section 4 briefly accounts for related work, while Section 5 draws some
conclusions.

2 Problem Frames with UML

The most obvious choice for representing requirements in a way that eases UML-
based development is to employ class diagrams (and possibly object diagrams) to
represent the structure of the system, and statecharts and OCL statements to specify
the behavior of the system [5]. The recently released UML 2.0 [4] features an im-
proved ability to model the structure of systems. In fact, it introduces “composite
structures”, that allow the modeler to hierarchically decompose a class into an internal
structure. The relations among the parts can be specified by means of associations and
interfaces.

Unfortunately, OCL [19] is limited with respect to the possibility of specifying
temporal aspects: only invariant properties can be formalized, which at most include
references to attribute values before or after method execution. It is not possible to
reference different time instants in a single OCL formula; namely it is not possible to
reference the time distance between events. Therefore, several kinds of important
temporal properties of systems cannot be adequately specified.

In order to overcome the aforementioned limitations, Object Temporal Logic
(OTL) was defined as a temporal logic extension to OCL [3]. However, OTL exten-
sions do not require to change the OCL metamodel: they can be considered the mini-
mum enhancements of OCL required to deal with time.

OTL formulas are evaluated with respect to an implicit current time instant. In fact,
OTL introduces a new primitive as a method of class Time: method eval receives an
OclExpression as the parameter (p) and returns the (boolean) value of p at time t.
This is denoted as t.eval (p) or, more concisely, as p@t. All other typical temporal
operators —like Always, Sometimes, Until, etc.— are defined based on method
eval. In addition, OTL allows the modeler to reason about time in a quantitative
fashion. Properties can be expressed on (possibly infinite) collections of objects of
class Time, i.e., on time intervals.

In the rest of the paper OTL is used to express time-dependent properties. Of
course, a modeler could express properties and requirements informally, by means of
comments associated with model elements. This practice —which is in line with the
way UML is generally used in industry— is often acceptable. Nevertheless, here we
employ OTL extensively, in order to show that the proposed approach can lead to
very precise and rigorous specifications.

2.1 Problem Frames with UML and OTL

Problem frames are represented by means of UML diagrams and OTL statements
according to the following rules.
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Domains (including the machine) are represented by means of components. This
seems a reasonable choice, since components can include any of the properties that
characterize domains. In particular it is possible to structure domains into subdo-
mains, while the machine is treated as a sort of “black box component”, whose inter-
nal details are not given. Different kinds of domains can be represented by means of
different kinds of components: we use UML stereotypes to specialize components
into causal domains, biddable domains, machines, etc.

Components hide their internal details from the outer world by means of ports.
Shared phenomena are represented by means of interfaces, the construct provided by
UML to explicitly exchange information among components. In particular, phenom-
ena that are shared between domains D1 and D2 require that components representing
D1 and D2 are suitably connected, i.e., they must be equipped with ports and com-
patible interfaces. Shared phenomena define the interfaces, i.e., they define the opera-
tions belonging to the interfaces. Parameters of phenomena become parameters of the
operations associated with the interfaces. The details of the domains can be defined in
terms of classes or sub-components.

For instance, the required behavior frame (Fig. 2) can be represented by the UML
model illustrated by Fig. 3.

Control ab Controlled ‘____g__j/ Required ™
machine domain \\behaviour/'
a: CMY{C1} b: CD!{C2} c: CDYC3}

Fig. 2. The required behavior frame

g1 c2 g1
) <<component>>

<<component::machine>> ControlledDomain

ControlMachine C1
B

Fig. 3. UML representation of the required behavior frame

Properties are simply expressed as OTL statements involving the proper interface
operations and component properties (attributes, states, etc.). Properties of the con-
trolled domain represented in Fig. 3 would be described by OTL statements concern-
ing the context of the ControlledDomain. Alternatively, the behavior of the con-
trolled domain can be expressed by means of statecharts. The requirements for the
system are expressed similarly by OTL statements concerning the context of Con-
trolledDomain: OTL can be used to describe the required behavior of C3.

2.2 A Commanded Behavior Frame: The Sluice Gate Control

In order to test the applicability of the proposed approach, in this section we represent
the sluice gate control problem by means of UML and OTL.

The problem is defined as follows [1]. A small sluice, with a rising and a falling
gate, is used in a simple irrigation system. A computer system is needed to raise and
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lower the sluice gate in response to the commands of an operator. The gate is opened
and closed by rotating vertical screws. The screws are driven by a small motor, which
can be controlled by clockwise, anticlockwise, on and off pulses. There are sensors at
the top and bottom of the gate travel; at the top it is fully open, at the bottom it is fully
shut. The connection to the computer consists of four pulse lines for motor control,
two status lines for gate sensors, and a status line for each class of operator command.
The PF diagram for the sluice gate problem is reported in Fig. 1.

<<interface>>

SluiceOperations .
<<component::CausalDomain>>

Clock() Gate&Motor

Anti() =S

On() N -7 <<use>>

<<use>>.,” Off() <<interface>>
L7 StateNotification
a1 =V Top)
<<component::machine>> -7 Bottom()
SluiceController
BN - <<interface>>
Tl Command
A

Raise() K- - scuse>> E
Lower() ~* =9 <<component::Biddable Domain>>
Stop() Operator

Fig. 4. Sluice gate control: component diagram

The sluice control problem is represented according to our proposal by the class dia-
gram reported in Fig. 4 and by the component diagram reported in Fig. 5. Note that
for the sake of clarity, instead o