


Lecture Notes in Computer Science 3922
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Luciano Baresi Reiko Heckel (Eds.)

Fundamental Approaches
to Software Engineering

9th International Conference, FASE 2006
Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2006
Vienna, Austria, March 27-28, 2006
Proceedings

13



Volume Editors

Luciano Baresi
Politecnico di Milano, Dipartimento di Elettronica e Informazione
piazza Leonardo da Vinci, 32 - 20133 Milano, Italy
E-mail: baresi@elet.polimi.it

Reiko Heckel
University of Leicester, Department of Computer Science
University Road, LE1 7RH Leicester, UK
E-mail: reiko@mcs.le.ac.uk

Library of Congress Control Number: 2006922237

CR Subject Classification (1998): D.2, F.3, D.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-33093-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-33093-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11693017 06/3142 5 4 3 2 1 0



Foreword

ETAPS 2006 was the ninth instance of the European Joint Conferences on Theory and
Practice of Software. ETAPS is an annual federated conference that was established in
1998 by combining a number of existing and new conferences. This year it comprised
five conferences (CC, ESOP, FASE, FOSSACS, TACAS), 18 satellite workshops (AC-
CAT, AVIS, CMCS, COCV, DCC, EAAI, FESCA, FRCSS, GT-VMT, LDTA, MBT,
QAPL, SC, SLAP, SPIN, TERMGRAPH, WITS and WRLA), two tutorials, and seven
invited lectures (not including those that were specific to the satellite events). We re-
ceived over 550 submissions to the five conferences this year, giving an overall accep-
tance rate of 23%, with acceptance rates below 30% for each conference. Congratula-
tions to all the authors who made it to the final programme! I hope that most of the
other authors still found a way of participating in this exciting event and I hope you will
continue submitting.

The events that comprise ETAPS address various aspects of the system develop-
ment process, including specification, design, implementation, analysis and improve-
ment. The languages, methodologies and tools which support these activities are all
well within its scope. Different blends of theory and practice are represented, with an
inclination towards theory with a practical motivation on the one hand and soundly
based practice on the other. Many of the issues involved in software design apply to
systems in general, including hardware systems, and the emphasis on software is not
intended to be exclusive.

ETAPS is a loose confederation in which each event retains its own identity, with
a separate Program Committee and proceedings. Its format is open-ended, allowing
it to grow and evolve as time goes by. Contributed talks and system demonstrations
are in synchronized parallel sessions, with invited lectures in plenary sessions. Two of
the invited lectures are reserved for “unifying” talks on topics of interest to the whole
range of ETAPS attendees. The aim of cramming all this activity into a single one-week
meeting is to create a strong magnet for academic and industrial researchers working on
topics within its scope, giving them the opportunity to learn about research in related
areas, and thereby to foster new and existing links between work in areas that were
formerly addressed in separate meetings.

ETAPS 2006 was organized by the Vienna University of Technology, in cooperation
with:

- European Association for Theoretical Computer Science (EATCS);
- European Association for Programming Languages and Systems (EAPLS);
- European Association of Software Science and Technology (EASST);
- Institute for Computer Languages, Vienna;
- Austrian Computing Society;
- The Bürgermeister der Bundeshauptstadt Wien;
- Vienna Convention Bureau;
- Intel.



VI Foreword

The organizing team comprised:

Chair: Jens Knoop
Local Arrangements: Anton Ertl
Publicity: Joost-Pieter Katoen
Satellite Events: Andreas Krall
Industrial Liaison: Eva Kühn
Liaison with City of Vienna: Ulrich Neumerkel
Tutorials Chair, Website: Franz Puntigam
Website: Fabian Schmied
Local Organization, Workshops Proceedings: Markus Schordan

Overall planning for ETAPS conferences is the responsibility of its Steering Com-
mittee, whose current membership is:

Perdita Stevens (Edinburgh, Chair), Luca Aceto (Aalborg and Reykjavı́k), Rastislav
Bodı́k (Berkeley), Maura Cerioli (Genova), Matt Dwyer (Nebraska), Hartmut Ehrig
(Berlin), José Fiadeiro (Leicester), Marie-Claude Gaudel (Paris), Roberto Gorrieri
(Bologna), Reiko Heckel (Leicester), Michael Huth (London), Joost-Pieter Katoen
(Aachen), Paul Klint (Amsterdam), Jens Knoop (Vienna), Shriram Krishnamurthi
(Brown), Kim Larsen (Aalborg), Tiziana Margaria (Göttingen), Ugo Montanari (Pisa),
Rocco de Nicola (Florence), Hanne Riis Nielson (Copenhagen), Jens Palsberg (UCLA),
Mooly Sagiv (Tel-Aviv), João Saraiva (Minho), Don Sannella (Edinburgh), Vladimiro
Sassone (Southampton), Helmut Seidl (Munich), Peter Sestoft (Copenhagen), Andreas
Zeller (Saarbrücken).

I would like to express my sincere gratitude to all of these people and organizations,
the Program Committee chairs and PC members of the ETAPS conferences, the orga-
nizers of the satellite events, the speakers themselves, the many reviewers, and Springer
for agreeing to publish the ETAPS proceedings. Finally, I would like to thank the Or-
ganizing Chair of ETAPS 2006, Jens Knoop, for arranging for us to have ETAPS in the
beautiful city of Vienna.

Edinburgh, January 2006 Perdita Stevens
ETAPS Steering Committee Chair



Preface

Software engineering aims to create a feedback cycle between academia and industry,
proposing new solutions and identifying those that “work” in practical contexts. The
conference on Fundamental Approaches to Software Engineering (FASE) —as one of
the European Joint Conferences on Theory and Practice of Software (ETAPS)— is com-
mitted to this aim.

With the society increasingly relying on software, the ability to produce low-cost
and high-quality software systems is crucial to technological and social progress. FASE
provides software engineers with a forum for discussing theories, languages, methods,
and tools derived from the interaction of academic research and real-world experience.

Contributions were sought targeting problems of practical relevance through fun-
damental contributions, based on solid mathematical or conceptual foundations, which
could lead to improved engineering practices.

The response of the scientific community was overwhelming, with record submis-
sion numbers of 166 research papers and 7 tool papers. From these, 27 research papers
and 2 tool papers were selected for publication, with an overall acceptance rate of 17%.
The international character of the conference is underlined by the fact that just about
one third of the authors are from European countries, while the others come from North
America, Asia and Australia.

Accepted papers address topics like distributed and service-oriented computing,
measurement and empirical software engineering, methods and tools for software devel-
opment, validation and verification, model-based development, and software evolution.
The scientific programme is complemented by the invited lecture of Francisco Curbera
on “A Programming Model for Service Oriented Applications” and of Carlo Ghezzi on
“Software Engineering: Emerging Goals and Lasting Problems”.

We are deeply indebted to the 24 members of the Program Committee and the 123
additional reviewers for their invaluable time, spent reading and discussing a large num-
ber of papers and producing more then 500 reviews.

FASE 2006 was held in Vienna (Austria), hosted and organized by the Institute for
Computer Languages at the Vienna University of Technology. Next year FASE will
take place in Braga (Portugal). Being part of ETAPS, FASE shares the sponsoring and
support acknowledged in the foreword. Heartfelt thanks are also due to Perdita Stevens
for excellent and efficient global coordination and to Jens Knoop and his staff for their
wonderful job as local organizers.

Finally, special thanks to all contributors and participants who, at the end of the day,
are what this is all about.

Milano and Leicester, January 2006 Luciano Baresi
Reiko Heckel
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A Programming Model for

Service Oriented Applications

Francisco Curbera

IBM Research, USA
curbera@us.ibm.com

Service oriented computing (SOC) and service oriented architectures introduce a
model for distributed software components. Full inter-component interoperabil-
ity, based on Web services standards, is a core assumption of the SOC model.
SOC, as a platform independent approach to software development and manage-
ment, is not limited to a particular distributed computing stack (Web services),
since the benefits of a distributed component model extend to legacy protocols
and platforms as well. Web services has successfully stressed the notion that
implementation characteristics should be decoupled from interoperability con-
cerns, and has focused on defining an XML based interoperability stack. SOC
is directly concerned with the implementation and management of service ori-
ented applications and stresses the ability to incorporate multiple runtimes and
programming models into an architecture of distributed software components.

The Service Component Architecture (SCA) is the first realization of SOC
as an explicit component model. Just as and Web Services provide the common
abstraction of interoperability concerns, SCA provides a common abstraction of
implementation concerns. SCA introduces a common notion of service compo-
nents, service types and service implementations as well as an assembly model
for service oriented applications. SCA’s goal is to be able to accommodate mul-
tiple implementation platforms into a single set of component oriented abstrac-
tions. J2EE, BPEL4WS, COBOL, SQL or XML components are only part of
the possible implementation artifacts that SCA intends to support. Portability
of component assemblies and implementations is an important concern of SCA.
SCA is already backed by a Java open source initiative in Apache.

An initiative so ambitious necessarily raises many open issues. Foremost
among them is the formalization of an SCA runtime model sufficiently com-
plete to ensure portability of implementations, but at the same time generic
enough that it can be supported by multiple platforms and programming mod-
els. Once an SCA runtime model is defined, the question arises of whether a
”native SCA” platform would be able to provide better support for the execu-
tion and deployment of SOC applications. Other significant issues include the
possibility of formalizing the component and assembly models beyond their cur-
rent state, and the support for non-functional requirements and capabilities in
the definition and assembly of components.

This talk will review the motivation and major elements of the SCA model,
and will discuss the main open issues surrounding the SCA effort.

L. Baresi and R. Heckel (Eds.): FASE 2006, LNCS 3922, p. 1, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Software Engineering:

Emerging Goals and Lasting Problems

Carlo Ghezzi

Dipartimento di Elettronica e Informazione - Politecnico di Milano,
Piazza L. da Vinci 32, I-20133 Milano, Italy

carlo.ghezzi@polimi.it

Software has been evolving from pre-defined, monolithic, centralized architec-
tures to increasingly decentralized, distributed, dynamically composed federa-
tions of components. Software processes have been evolving along similar lines,
from pre-specified sequential work- flows to decentralized and multi-organization
endeavors. The organizations to which software solutions are targeted have also
been evolving from highly structured corporates to agile and networked enter-
prises. All this is affecting the way software is engineered (i.e., conceived, ar-
chitected, and produced). New difficult challenges arise, while old fundamental
problems are still with us. The talk surveys this evolution and tries to identify
achievements, challenges, and research directions.

L. Baresi and R. Heckel (Eds.): FASE 2006, LNCS 3922, p. 2, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



GPSL: A Programming Language for Service

Implementation

Dominic Cooney, Marlon Dumas, and Paul Roe

Queensland University of Technology, Australia
{d.cooney, m.dumas, p.roe}@qut.edu.au

Abstract. At present, there is a dichotomy of approaches to support-
ing web service implementation: extending mainstream programming
languages with libraries and metadata notations vs. designing new lan-
guages. While the former approach has proven suitable for interconnect-
ing services on a simple point-to-point fashion, it turns to be unsuitable
for coding concurrent, multi-party, and interrelated interactions requiring
extensive XML manipulation. As a result, various web service program-
ming languages have been proposed, most notably (WS-)BPEL. How-
ever, these languages still do not meet the needs of highly concurrent
and dynamic interactions due to their bias towards statically-bounded
concurrency. In this paper we introduce a new web service programming
language with a set of features designed to address this gap. We describe
the implementations in this language of non-trivial scenarios of service
interaction and contrast them to the corresponding BPEL implementa-
tions. We also define a formal semantics for the language by translation
to the join calculus. A compiler for the language has been implemented
based on this semantics.

1 Introduction

There is an increasing acceptance of Service-Oriented Architectures as a
paradigm for software application integration. In this paradigm, independently
developed and operated applications are exposed as (web) services that are then
interconnected using standard protocols and languages [1]. While the technology
for developing basic services and interconnecting them on a point-to-point basis
has attained some maturity, there remain open challenges when it comes to im-
plementing service interactions that go beyond simple sequences of requests and
responses or that involve many participants.

A number of recent and ongoing initiatives aim at tackling these challenges.
These initiatives can be classified into conservative extensions to mainstream
programming languages and novel service-oriented programming languages. The
former provide metadata-based extensions for web service development on top
of object-oriented programming languages. For example Microsoft Web Services
Extensions, Windows Communication Foundation, Apache Axis and JSR-181,
can be placed in this category. While these extensions are suitable for deal-
ing with bilateral interactions and simple forms of concurrency and correlation,

L. Baresi and R. Heckel (Eds.): FASE 2006, LNCS 3922, pp. 3–17, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



4 D. Cooney, M. Dumas, and P. Roe

capturing complex interactions with these libraries remains daunting. On the
other hand, a number of service-oriented languages have been proposed, ranging
from research proposals (e.g. XL [2, 3]) down to standardisation initiatives, most
notably the Business Process Execution Language for Web Services (BPEL) [4].

BPEL facilitates the development of services that engage in concurrent inter-
actions and incorporates a declarative correlation mechanism, thus addressing
some limitations of bespoke conservative language extensions. Nonetheless, it
fails to provide direct support for typical service interaction scenarios. In [5], a
number of patterns of service interaction are proposed. It is shown that while
BPEL directly supports the most basic of these patterns, it fails to address the
needs of more complex scenarios. In particular, BPEL has problems dealing with
one-to-many interaction scenarios with partial synchronisation especially when
the set of partner services is not known in advance.

The analysis of BPEL in [5] suggests that web service implementation requires
novel programming abstractions for dealing with advanced forms of concurrency,
synchronisation, and message correlation. Accordingly, this paper presents a pro-
gramming language, Gardens Point Service Language (GPSL), that integrates
concepts and constructs from join calculus [6], a declarative correlation mecha-
nism with greater flexibility than BPEL’s one, and direct support for complex
XML data manipulation. Specifically, GPSL incorporates:

– Dedicated messaging constructs, both for interacting with the other services
via SOAP, and for structuring the internal implementation of services

– A stratified integration of XQuery [7] expressions with imperative constructs.
– A join calculus-style approach to concurrent web service messaging, and an

embodiment of this concurrency style as a programming language construct.
– An approach to message correlation that provides direct support for both

point-to-point and one-to-many web service conversations [8].

A compiler implementation of GPSL can be found in [9]. The suitability of
GPSL has been tested by implementing a number of scenarios, ranging from
simple scenarios (e.g. an Amazon.com Queue Service client [10]) to scenarios
corresponding to the more complicated service interaction patterns of [5]. In
this paper, we sketch the implementations of three of these patterns.

The paper is structured as follows: Section 2 provides an overview of GPSL.
Next, Section 3 describes the abstract syntax and formal semantics of GPSL.
Section 4 illustrates how the language supports advanced service interaction
patterns. Section 5 then briefly describes the compiler implementation of GPSL
focusing on the code generation. Finally, Section 6 reviews related work while
Section 7 concludes.

2 Overview of GPSL

To illustrate the basic features of GPSL, we consider the implementation of a
simple ‘echo’ service and its client:
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declare interface Echo {
declare operation Shout in action = ’urn:echo:shout’ out

}
declare service EchoService implements Echo {
Shout($doc, Reply) { Reply($doc) }

}
declare service EchoClient {
do {

let $x := ’soap.tcp://localhost:4000/echo’ in
$x: Shout(element Say { ’Hello’ }, Done)

}
Done($doc) { (: comment -- do nothing :) }

}

GPSL has explicit contract and service declaration elements. Metadata from
contracts are used by the compiler to provide types to operations. For exam-
ple, the Echo contract has one operation, Shout. Shout is declared as an in-out
operation and by convention in GPSL has two parameters: one for data, and
the other for a channel to send the reply on. When a Shout operation message
is received, in the case of EchoService, or sent, in the case of the EchoClient,
the first parameter is bound to the body of the SOAP envelope and the second
parameter is bound to the WS-Addressing (WS-A) reply-to SOAP header.

EchoService declares implements Echo and includes a block guarded by a
label Shout that takes two parameters. The Shout label refers to an operation
in the Echo contract, so whenever the service receives a message with SOAP
action urn:echo:shout the service executes the corresponding block of code. The
language enforces a convention where variables bound to XML data are prefixed
with a $. The $doc parameter is bound to the body of the SOAP message and
the Reply parameter is bound to the WS-A reply-to header. Reply, although
derived from XML in the SOAP envelope, describes the capability for sending a
message and we do not prefix it with $. Reply is opaque and the capability can
only be passed to another service or exercised to send a message. The syntax
for sending a message is to write the channel variable and a parameter list in
parentheses. In this example, EchoService sends in the reply the data it received
in the request.

The data model of GPSL has two kinds of values: XML data, such as the
element Say, and channels, such as Reply. All XML expressions in GPSL are
XQuery expressions. For example, element Say is an example of the XQuery
computed element constructor. This ability to construct new XML data distin-
guishes XQuery from the less powerful XPath. However XQuery alone is not
sufficient for implementing services because it is a pure functional language with
no messaging constructs. Moreover, there are some semantic tensions between
XQuery’s flexible evaluation semantics and messaging, because it is difficult to
determine when a message will be sent or received. To avoid these tensions,
GPSL is based on a stratified approach in which imperative constructs are used
for messaging whereas XQuery is used for expressions.
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Now let us consider the implementation of EchoClient. It contains a do block;
do blocks are executed when a service starts up and can initialise state like
a constructor in an object-oriented language. Here EchoClient sends a Shout
message. For the first parameter it constructs an element Say that contains
the text Hello. By convention, the second parameter becomes the WS-A reply-
to header. Here EchoClient provides the label of a block, Done, as the second
parameter. Done is a “private” label of EchoClient, and does not refer to any
operation in a contract.

Messaging in GPSL is asynchronous; this encourages programmers to
write services that make concurrent requests rather than sequences of re-
quest/responses, although this RPC programming style is also possible in GPSL.
GPSL’s means of spawning concurrent threads derives from asynchronous mes-
saging. Using a private label to send an internal message starts the corresponding
block of code which is executed concurrently with subsequent instructions.

...
M(); (: sends local message, asynchronously :)
... (: subsequent instructions go here :)

}

M() {
(: this code executes concurrently when a message is sent on M :)

}

Synchronisation is achieved through blocks of code guarded by multiple labels.
Such multi-label guards are called concurrency patterns and are inspired by the
join calculus. A block of code guarded by a concurrency pattern is executed when
messages are available on all labels. For example, in the following code snippet,
local messages ResultA and ResultB are sent in two different blocks of code A()
and B() which we assume are executed concurrently (although their spawning
is not shown). When both messages are available, then the rule at the bottom
is reduced and the corresponding block of code is executed.

A() {
...
ResultA(...) (: produce message ResultA :)

}
B() {

...
ResultB(...) (: produce message ResultB :)

}
ResultA($a) & ResultB($b) (* this is a join pattern *) {

(: executed when ResultA and ResultB are available :)
}

3 Syntax and Semantics

The syntax of GPSL statements and expressions is shown in Figure 1. For space
reasons we focus on statements and expressions omitting the service and contract
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S, T ::= statement
ε empty
S ; T sequence
if E then S else T end conditional
let v := E in S let-binding
for v in E do S end iteration
E(G, [rc]) send (2nd argument may be used for reply channel)
E : m(G, · · ·) endpoint send
def D in S receive rules

D, F ::= definitions
J { S } receive rule
D F composition

J, K ::= pattern
x(y, · · ·) internal message receive
receive y where E external message receive
x(y)[where E] contract receive: x is an “in” operation def-

ined in a contract
x(y, rc)[where E] contract receive: x is an “in-out” operation def-

ined in a contract (rc stands for “reply channel”)
J & K synchronisation

E, G ::= expression
m label
· · · XQuery expression

Where m, v, x, y and rc are identifiers.

Fig. 1. Abstract syntax of the imperative GPSL statements

elements; these elements provide metadata about the SOAP action and message
exchange patterns of operations and do not have a direct operational semantics.

We sketch the semantics of GPSL in Figure 2 via an operational encoding in
the join calculus [6]. Since GPSL’s concurrency feature is based directly on the
join calculus this encoding is often straightforward syntax translation.

For our encoding we assume a join calculus with XQuery expressions
and values. Where XQuery has flexible evaluation semantics related to lazi-
ness/strictness and raising errors, GPSL needs predictable behaviour for mes-
sage sending. We introduce an explicit channel, eval, to specify precisely when
XQuery evaluation occurs. eval forces XQuery evaulation in its first argument
and passes the result on its second argument. cond, for implementing condition-
als, is like eval except it chooses a continuation based on the result.

For sending messages on internal channels (rule “Int. Snd” in Figure 2) we
only give the encoding of the single-argument case. Other arities follow the same
pattern, where the message receiver and arguments are evaluated left-to-right.
Likewise, for sending messages to other services (Ext. Snd,) we only give the
case when the operation is expected to reply, where by convention in GPSL the
first argument becomes the body of the message, and the second argument is
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Empty: [[ ε]] → 0
Seq: [[ S;T ]] → [[S]].[[T ]]
If: [[ if E then S else T end]]→ def t〈〉 � [[S]] | f〈〉 � [[T ]] in cond〈E, t, f〉
Let: [[ let v := E in S]] → def s〈v〉 � [[S]] in eval〈E, s〉
For: [[ for v in E do S end]] → def test〈es, s〉�

def t〈〉�
def hd〈e〉�

def tl〈es〉 � s〈e, es〉 in
eval〈es[position() > 1], tl〉 in

eval〈es[position() = 1], hd〉 in
def f〈〉 � 0 in
cond〈es = nil(), t, f〉 in

def s〈v, es〉 � [[S]].test〈es, s〉 in
def init〈es〉 � test〈es, s〉 in
eval〈E, init〉

Int. Snd: [[ E(G)]] → def receiver〈e〉�
def actual1〈f〉 � e〈f〉 in
eval〈G, actual1〉 in

eval〈E, receiver〉

Ext. Snd: [[ E:m(G, H)]] → [[let receiver := E in
let actual := G in
let reply := H in
let id := gensym in
def receive env

where Header/RelatesTo = id {
reply(env)

} in
send(receiver, maction, id, actual)]]

Recv: [[def D in S]] → def [[D]] in [[D]]Init.[[S]]
Reaction: [[ J{S}]] → [[J ]] � [[S]]
Composition: [[ D F ]] → D ∧ F
Synch: [[ D & F ]] → D|F
Int. Recv: [[ x(y)]] → x〈y〉
Ext. Recv: [[ receive y where E]] → x〈y〉, x is fresh
Contract
Recv:

[[ x(y) where E]] → x〈y〉

Init Reaction: [[J{S}]]Init → [[J ]]Init

Init Comp.: [[D F ]]Init → [[D]]Init.[[F ]]Init

Init Synch: [[D & F ]]Init → [[D]]Init.[[F ]]Init

Init Int. Recv: [[x(y)]]Init → 0
Init Ext Recv: [[receive y where E]]Init → def xtest〈y, t, f〉 � cond〈E, t, f〉 in

subscribe〈x, xtest〉

Init Contract
Recv:

[[x(y) where E]]Init → [[def receive env
where Header/Action = xaction and

E { x(env) } in
· · ·]], for the first occurence of x(y) where E

Fig. 2. Partial semantics by translation into join calculus
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a channel to use for replies. It is the metadata from a contract element that
dictates whether a reply is expected and the SOAP action maction. Correlating
replies involves generating a new message ID, establishing a closure to listen for
incoming messages with a matching message ID, and then sending the message.
We write send for this latter step; send formats a SOAP envelope and sends it
over the network.

Definitions and patterns follow predictable syntactic translation, except for
external message receive which has no parallel in the join calculus. External
message receive is responsible for marshalling SOAP messages received from the
outside world into a GPSL program. This raises the important semantical issue
of precisely what point in a program messages are delivered to. GPSL is more
flexible and powerful than most contemporary programming languages in that
it supports a where clause for filtering incoming messages. This feature is akin to
filtering capabilities in message-oriented middleware and enables, among other
things, to correlate any sent or received message with follow-up messages.

To encode external message receives, we create fresh internal channels and
bind them to the SOAP messaging machinery via a message to subscribe when
the closure is created. subscribe is a global internal channel with a complete
join-calculus definition in Figure 3. This gives a precise semantics to receiving
messages in GPSL: there is no race condition between receiving and sending mes-
sages in a closure as a closure is created, because of the continuation k threaded
through subscribe, which is important for the correctness of closures initiating
conversations; messages are routed into matching closures; concurrently active
receive statements cause a runtime error if they compete for a particular message;
and messages that have no active receive to process them are silently dropped.

There is syntactic sugar for receiving messages from an operation of an im-
plemented contract (Init Ctrct Recv) which includes a test against the SOAP
action specified in the contract. Our translation omits one detail in that the
receive clause constructed for an in-out operation also creates a channel carrying
the reply. The translation in Figure 2 is for an in operation.

def subscribe〈msg,predicate,k〉|subscribers〈f〉�
def g〈x, found, done〉�

def true〈〉 � found〈msg, f〉 in
def false〈〉 � f〈x, found, done〉 in
predicate〈x, true, false〉 in

subscribers〈g〉.k〈〉
∧ external〈env〉|subscribers〈f〉�

subscribers〈f〉|
def done〈〉|single〈msg〉 � msg〈env〉 in
def fail〈msg,k〉 � error in
def found〈msg, k〉 � single〈msg〉.k〈env, fail, done〉 in
f〈env, found, done〉 in

def nil〈x, found, done〉 � done〈〉 in
subscribers〈nil〉

Fig. 3. Join-calculus definition of subscribe
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4 Service Interaction Patterns in GPSL

In this section, we compare GPSL with BPEL by implementing scenarios corre-
sponding to two of the service interaction patterns of [5]. Using the nomenclature
and numbering of [5] we have chosen: one-to-many send/receive (pattern 7), and
contingent requests (pattern 8). We choose not to illustrate patterns 1 to 4 since
they correspond to simple point-to-point interactions and do not put forward
significant differences between GPSL and other service-oriented programming
languages such as BPEL; patterns 5 and 6 are partly subsumed by pattern 7;
pattern 9 makes appeal to similar features as patterns 4 and 7; pattern 10 deals
with transactional issues beyond the scope of GPSL and BPEL; and patterns 11
through 13 deal with interconnecting groups of services rather than implement-
ing individual ones.

4.1 One-to-Many Send-Receive

We consider an interaction pattern where a service sends messages and collects
responses before continuing. In this example we implement a broker service that
solicits bids from a set of bidders, and collects responses, keeping track of the
best (in this example, lowest) bid received. Bids are collected until a time-out
occurs.

declare interface BrokerContract {
declare operation InitiateAuction in action = ’urn:broker:init’;
...

}

declare service Broker implements BrokerContract {
InitiateAuction($env) {

(: solicit bids :)
for $bidder in $env/Bidders do

$bidder: SolicitBid($env/Item, Reply)
done;
OutstandingBids(util:length($env/Bidders));

(: start timer :)
let $timeout := ’soap.inproc://timer’ in
$timeout: Time(10000, TimedOut);

NoBids()
}
OutstandingBids($n) & Reply($bid) & NoBids() {

Winning($bid);
Decrement($n)

}
OutstandingBids($n) & Reply($bid) & Winning($best) {

if xs:decimal($bid/Amount) < xs:decimal($best/Amount) then
Winning($bid)

else
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Winning($best)
end;
Decrement($n)

}
Decrement($n) {

let $n := xs:int($n) - 1 in
if xs:int($n) = 0 then
BiddingFinished()

else
OutstandingBids($n)

end
}
BiddingFinished() & Winning($bid) { (: process winning bid :) }
TimedOut() & Winning($bid) { (: fault or process winning bid :) }
TimedOut() & NoBids() { (: fault :) }
...

}

This program sends n SolicitBid messages. Although the for loop is sequential,
the SolicitBid messages are sent in a non-blocking manner. The first bid received
consumes the NoBids message and becomes the winning bid. Subsequent bids
are compared to the winning bid. Messages OutstandingBids and WinningBid
are used to capture state. They carry data for the number of outstanding bids
and the best bid received. It is possible to check that this service correctly treats
concurrent bids because contention for the WinningBid message acts as a mutual
exclusion.

In previous work [8], we have sketched a more complicated variant of this sce-
nario where the service stops after either receiving the first n-out-of-m responses
or after the time-out, whichever occurs first.

Coding the above scenario in BPEL is complicated by several factors. First,
given that the set of partners to which bid requests are sent is not known in
advance, dynamic addressing is required. In GPSL, this is achieved by treating
channels as first-class citizens. In BPEL, dynamic addressing is possible but re-
quires manual assignment of endpoint references to partner links. Second, BPEL
lacks high-level constructs for manipulating collections. Thus, capturing this sce-
nario requires the use of while loops and additional book-keeping. Third, there
is no direct support in BPEL for interrupting the execution of a block when a
given event (e.g. a timeout) occurs. To achieve this, it is necessary to combine
an event handler with a fault handler, such that the event handler raises a fault
when the nominated event occurs and the fault handler catches this artificially
created fault. This causes the immediately enclosing scope to be stopped. In
GPSL, such interruption can be achieved simply by adding a join pattern that
matches the event in question (in this case, the timeout). Finally, a further com-
plication arises if explicit correlation using correlation sets is necessary. In this
case, the first message needs to be treated differently from the following mes-
sages (at least in BPEL 1.1) since the first message initialises the correlation
set. BPEL pseudo-code for this scenario is given below. The full version of this
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pseudo-code is considerably longer than the corresponding GPSL solution. The
interested reader will find the full BPEL implementation of a similar scenario in
the code repository of the service interaction patterns site.1 This implementa-
tion comprises around 150 lines of BPEL code excluding comments, partly due
to the verbosity of the XML syntax, but also because of the more fundamental
drawbacks of BPEL mentioned above.

set partner link to the address of the first bidder;
send first bid request and initialise correlation set;
while (more partners)

set partner link to the address of next bidder;
send next bid request;

begin scope
onAlarm timeLimit : throw timeoutFault
catch timeoutFault : set flag to indicate time-out
while (not stopCondition)

receive a bid;
update winning bid

end scope
(* process time-out or winning bid *)

4.2 Contingent Requests

In this pattern, a service sends a message and if a response is not received
within a given timeframe, a message is sent to a second service, and so on. If
while waiting for a response from the second service, the first service happens to
respond, this response is accepted and the response from the second service is no
longer needed. This implements a fail-over process. An example of this pattern is
a conference that provides redundant services to accept a paper submission. The
client submits the paper via the first service, and if a response is not received
within ten seconds, it submits the paper via the second service, and so on. Here
is the implementation of the “client” in GPSL.

declare variable $timeout := ’soap.inproc://timer’;
declare interface PaperSubmission {
declare operation Submit in action = ’urn:paper:submit’ out

}
declare service PaperSubmitter {
do {

let $submission-points := element Point { ... }, ... in
let $paper := ... in
Submit($paper, $submission-points)

}
Submit($paper, $submission-points) {

let $uri := $submission-points[1] in
let $submission-points := $submission-points[position()>1] in

1 See code sample “One-to-many send/receive with dynamically determined partners”
at http://www.serviceinteraction.com
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$uri: Submit($paper, Response);
$timeout: Time(10000, TimedOut);
Waiting($paper, $submission-points)

}
Waiting($paper, $submission-points) & Response($doc) { (: success! :) }
Waiting($paper, $submission-points) & TimedOut($doc) {

(: submit to the next server :)
Submit($paper, $submission-points)

}
}

The PaperSubmitter service has knowledge of a list of services that accept
submissions. Submit strips a URI from the head of the list and sets up a race
between Response and TimedOut messages. If a TimedOut message is available
first, PaperSubmitter submits to the next service. After a response is received
from any of the contacted services, PaperSubmitter does not wait for other re-
sponses, unless the code in the “success” block issues a new Waiting message.

This example shows the PaperSubmitter service interacting with a timer ser-
vice at a known URI through Time (an operation to arm the timer) and Timed-
Out (an internal channel that receives time-out messages from the timer). This
timer service does not need to be located outside PaperSubmitter’s memory
space. Our implementation supports an efficient in-process transport for SOAP
messaging, namely soap.inproc. This way, we can extend the language by adding
services implemented in (e.g.) C#, rather than adding new constructs for every
required feature. This is similar to a library, except that GSPL’s library calling
convention is based on messaging rather than function or method calls.

Capturing this example in BPEL in all its details is complicated by two fac-
tors: (i) the lack of direct support for interruptions due to an event as discussed
previously; and (ii) the lack of support for maintaining an a priori unknown
number of conversations in parallel. Indeed, this pattern puts forward a case
where a requester may start a new conversation with a partner, but keep an-
other ongoing conversation alive. There is only one construct in BPEL that
supports an unbounded number of threads to be entertained concurrently: event
handlers. However, using event handlers to capture the scenario at hand leads
to an unintuitive solution. In this solution, the code for submitting a paper to
a given server is embedded in an event handler. To start this event handler for
the first server, the process sends a message to itself. This starts a first instance
of the event handler. This event handler is terminated if a response is received
(to do so, a fault indicating this is thrown). If a time-out occurs within this first
instance of the event handler, the process sends a second message to itself to
activate a second instance of the event handler (without stopping the previous
instance since a late response from the first server may still arrive). This pro-
cess of starting new instances of the event handler continues until a response is
received or all servers have been tried.

The BPEL pseudo-code for this scenario is given below. Again, the full BPEL
code is considerably more verbose, partly due to the need to define and configure
the partner link through which the process sends messages to itself. The full



14 D. Cooney, M. Dumas, and P. Roe

BPEL code for a similar scenario available at the serviceinteraction.com site
comprises around 120 lines of code.

responseReceived := false
begin scope
onMessage X :

begin scope
onAlarm timeLimit :

if (more servers) send a message of type X to myself
else throw allServersTimedOut

catch allServersTimedOut: do nothing (* terminates scope *)
catch responseReceived: do nothing (* terminates scope *)
send request to next server and wait for response;
responseReceived := true;
throw responseReceived

end scope
send a message of type X to myself

end scope
if (not responseReceived) (* deal with case where no response received *)

5 Code Generation

We have prototyped a compiler that produces Microsoft Intermediate Language
(MSIL), from GPSL programs. MSIL is similar to Java byte code although dif-
fering from it in various respects. Despite these differences though, our prototype
proves that the feasibility of compiling GPSL for modern virtual machines.

Despite the novelty in the programming language, the compiler operates in
traditional parsing, analysis, and code generation phases. The parser must han-
dle XQuery for expressions. For our prototype we found ignoring XQuery direct
constructors—the angle-brackets syntax for synthesizing XML which require spe-
cial handling of whitespace—greatly simplifies parser development. Because syn-
tactically simpler computed constructors can do the job of direct constructors,
the expressive power of XQuery is unimpeded.

Most of the complexity in the compiler is in the code generator, and specifi-
cally in the creation of closures and in the delivery of messages sent on internal
labels (i.e. messages from a service to itself). For each def we create a class with
a method for each concurrency rule, a field for each captured variable, and a
method and field for each label. This field holds a queue of pending messages;
the method takes a message to that label, tests whether any rules are satisfied,
and if so, calls the method for the rule. We perform the rule testing on the caller
thread and only spawn a thread when a rule is satisfied, which avoids spawning
many threads. The rule testing follows the join calculus semantics and the def-
inition for the subscribe reaction rule given in Figures 2 and 3 for internal and
external messages respectively.

We do not compile XQuery expressions because implementing an XQuery
compiler is a daunting task. Instead we generate code to call an external XQuery
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library at runtime. One critical criterion for the programming language imple-
menter integrating an XQuery implementation is how that XQuery implemen-
tation accepts external variables and provides results. GPSL requires access to
expression results as a sequence of XQuery data model values—which is dis-
tinctly different from an XML document—to behave consistently with XQuery
when those values that are used later in subsequent expressions. We use an in-
teroperability layer over the C API of Galax2, which has exactly the kind of
interface for providing external values and examining results that we want. Our
biggest complaint about Galax is that evaluating expressions must be serialized
because Galax is non-reentrant.

GPSL programs also rely on the Microsoft Web Services Extensions3 (WSE)
for SOAP messaging. WSE has a low-level messaging interface which is suffi-
cient for GPSL’s needs except for the fact that WSE does not support SOAP
RPC/encoded. In the case of synchronous operations, the GPSL compiler gener-
ates some bookkeeping code to make SOAP over synchronous-HTTP work using
the WSE messaging interface.

6 Related Work

Mainstream approaches to web service implementation are based on the use of
Java, C#, and C++ in conjunction with libraries, such as Axis, and metadata
annotations as in JSR181 and Windows Communication Foundation. Putting
aside the mismatch between object-oriented and XML-based data manipula-
tion, this approach has proven fairly suitable for programming point-to-point
service interactions. However, it does not properly serve the requirements of
multilateral interactions, especially those requiring partial synchronisation and
message correlation beyond simple “request-response” scenarios. Message pass-
ing interfaces, like MPI [11], alleviate some of these issues, but even MPI’s scatter
and gather primitives assume barrier synchronisation and message correlation
requires careful programming.

BPEL departs from mainstream web service implementation approaches by
providing an XML data model, a set of message exchange primitives, concur-
rency constructs inspired from workflow languages, and a message correlation
mechanism based on lexically scoped “static” variables. However, while BPEL
supports high-level concurrency and barrier synchronisation constructs for fixed
numbers of threads (for example through the “flow” construct), it does not sup-
port partial synchronisation nor unbounded numbers of threads, and thus, the
expression of patterns such as one-to-many send-receive, multi-responses and
contingent requests is cumbersome. Also, support for message correlation in
BPEL is limited: BPEL’s correlation sets can not be used to capture the type
of correlation required by the one-to-many send-receive pattern.

Similar comments apply to XL, which provides a correlation mechanism suit-
able for 1:1 conversations, but not for 1 : n scenarios. Similarly, XL is suitable for
2 http://www.galaxquery.org
3 http://msdn.microsoft.com/webservices/building/wse



16 D. Cooney, M. Dumas, and P. Roe

barrier synchronisation of conversations but not for partial synchronisation. Fi-
nally, XL relies on in-place updates of XML nodes through extensions to XQuery,
while GPSL adopts a stratified approach where XQuery is only used as an ex-
pression language, orthogonal to the imperative part of the language. A more
detailed comparison of XL and an earlier version of GPSL can be found in [8].

GPSL draws one of its main constructs, concurrency patterns, from the join
calculus. The join calculus has inspired several extensions of object-oriented
programming languages with concurrency features, namely Join Java [12] and
Polyphonic C# [13]. Compared to these languages, GPSL adds XML data ma-
nipulation, messaging and message correlation. An extension to Polyphonic C#,
Cω4, adds XML data manipulation, but retains the legacy object data model
and does not have explicit support for messaging or message correlation.

7 Conclusion

We have presented the syntax and semantics of the GPSL language and illus-
trated its suitability for service implementation using scenarios corresponding to
patterns identified elsewhere. This exercise showed how simple features based on
SOAP messaging, join-calculus style declarative concurrency, and XQuery can
be combined to implement non-trivial patterns of service interaction in a way
that arguably leads to simpler solutions than in BPEL. Also, GPSL’s formal
semantics is much simpler than corresponding semantics of BPEL5 thus provid-
ing a solid basis for program analysis. The compiler implementation of GPSL,
especially with respect to compiling rules with where statements, mirrors the
formal semantics.

GPSL integrates messaging, concurrency, and XML data manipulation cohe-
sively. Examples of the cohesive fit are the interplay between sending messages
and spawning concurrent threads on the one hand, and receiving messages and
synchronising threads on the other; dynamic XML data describing message re-
cipients; concurrency patterns describing thread-safe access to XML data; and
the consistent treatment of inter- and intra-service messages. Sometimes the co-
hesion is imperfect. For example, channels and channel variables can not appear
in arbitrary XQuery expressions. This is a deliberate restriction which provides
a simple way to preserve strong typing for internal message sending, and to con-
trol when an internal channel has to be connected to the machinery for receiving
SOAP messages from the outside world. However channels are reified to XML
when they appear in a WS-A “reply-to” header.

GPSL could be extended to address other difficult aspects of service imple-
mentation such as transactions and faults. We expect to address these areas by
leveraging the messaging and concurrency features, for example, by surfacing
faults as messages. We also plan to introduce a garbage collection technique to
reclaim resources when it is detected that a given message will not be consumed.

4 http://research.microsoft.com/Comega
5 For a semantics of BPEL see e.g. [14].
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Abstract. We develop a formal approach to event-based architectures that 
serves two main purposes: to characterise the modularisation properties that re-
sult from the algebraic structures induced on systems by this discipline of coor-
dination; and to further validate and extend the CommUnity approach to archi-
tectural modelling with “implicit invocation”, or “publish/subscribe” interac-
tions.  This is a first step towards a formal integration of architectural styles.  

1   Introduction 

Event-based interactions are now established as a major paradigm for large-scale dis-
tributed applications (e.g. [1,3,5,10,12]). In this paradigm, components may declare 
their interest in being notified when certain events are published by other components 
of the system. Typically, components publish events in order to inform their environ-
ment that something has occurred that is relevant for the behaviour of the entire sys-
tem. Events can be generated either in the internal state of the components or in the 
state of other components with which they interact.  

Although Sullivan and Notkin’s seminal paper [14] focuses on tool integration and 
software evolution, the paradigm is much more general: components can be all sorts 
of runtime entities. What is important is that components do not know the identity, or 
even the existence, of the publishers of the events they subscribe, or the subscribers of 
the events that they publish. In particular, event notification and propagation are per-
formed asynchronously, i.e. the publisher cannot be prevented from generating an 
event by the fact that given subscribers are not ready to react to the notification.  

Event-based interaction has also been recognised as an “abstract” architectural 
style, i.e. as a means of coordinating the behaviour of components during high-level 
design. The advantages of adopting such a style so early in the development process 
stem from exactly the same properties recognised for middleware: loose coupling 
allows better control on the structural and behavioural complexity of the application 
domain; domain components can be modelled independently and easily integrated or 
removed without disturbing the whole system. 

However, in spite of these advantages and its wide acceptance, implicit invocation 
remains relatively poorly understood. In particular, its structural properties as an  
architectural style remain to be clearly stated and formally verified. One has to  
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acknowledge the merit of several efforts towards providing methodological principles 
and formal semantics (e.g. [14]), including recent incursions on using model-checking 
techniques for reasoning about such systems [2,9].  However, we are still far from an 
accepted “canonical” semantic model over which all these efforts can be brought 
together to provide effective support and formulate methodological principles that can 
steer development independently of specific choices of middleware.  

This paper makes another contribution in this direction by investigating how event-
based interactions can be formalised in a categorical setting similar to the one that we 
developed in [7] for i/o-communication and action synchronisation (rendez-vous) 
around the language CommUnity.  Our formalisation addresses the architectural prop-
erties, i.e. the discipline of decomposition and interconnection, not the notification 
and subscription mechanisms that support them.  More precisely, it serves two main 
purposes.  On the one hand, to characterise the modularisation properties that result 
from the algebraic structures induced on systems by this discipline of coordination.   
In particular, we justify a claim made in [14] about the externalisation of mediators: 
“Applying this approach yields a system composed of a set of independent and visible 
[tool] components plus a set of separate, or externalised, integration components, 
which we call mediators”. Our interest is in investigating and assigning a formal 
meaning to notions such as “independent”, “separate” and “externalised”, and in char-
acterising the way they can be derived from implicit invocation.  On the other hand, 
we wish to further validate and refine the categorical approach that we have been 
developing to support architectural modelling by investigating how the “implicit in-
vocation” architectural style can be captured as a coordinated category [6]. This is a 
first step towards a formal approach to the integration of architectural styles.  

In section 2, we introduce our primitives for modelling publish/subscribe interac-
tions using a minimal language in the style of CommUnity [7].  In section 3, we de-
fine the category over which we formalise our approach.  We show how the notion of 
morphism can be used to identify components within systems and the way they can 
subscribe events published by other components.  In section 4, we show how event 
bindings can be externalised and made explicit in configuration diagrams. In section 
5, we give a necessarily brief account of how we can use the categorical formalisation 
to bring several architectural styles together.  

2   Event-Based Designs 

We model components that keep a local state and subscribe to a number of events.  
Upon notification that one such event has taken place, a component invokes one or 
more services. If, when invoked, a service is enabled, it is executed, which may 
change the local state of the component and publish new events.  

We start discussing our approach by showing how we can model what is consid-
ered to be the “canonical” example of event-based interactions: the set-counter.  We 
start with the design of a component Set that keeps a set elems of natural numbers as 
part of its local state.  This component subscribes two kinds of events – doInsert and 
doDelete – each of which carries a natural number as a parameter.  Two other kinds of 
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events – inserted and deleted – are published by Set.  Each of these events also carries 
a natural number as a parameter.  

As a component, Set can perform two kinds of services – insert and delete.  These 
services are invoked upon notification of events doInsert and doDelete, respectively. 
When invoked, insert checks if the parameter of doInsert is already in elems; if not, it 
adds it to elems and publishes an inserted event with the same parameter.  The in-
vocation of delete has a similar behaviour.  

design Set is  

 publish inserted  
  par which:nat 

 publish deleted  
  par which:nat 

 subscribe doInsert  
  par which:nat 
  invokes insert 

  handledBy insert? ∧ 
         which=insert.lm 

 subscribe doDelete  
  par which:nat 
  invokes delete 

  handledBy delete? ∧ 
         which=delete.lm 

store elems: set(nat) 

provide insert  
 par lm:nat 

 assignsTo elems 
 guardedBy lm∉elms 
 publishes inserted 
 effects elems’={lm}∪elems ∧ 

     inserted! ∧ inserted.which=lm 
provide delete  

par lm:nat 
 assignsTo elems  
 guardedBy lm∈elms 
 publishes deleted 
 effects elems’=elems\{lm} ∧   

      deleted! ∧ deleted.which=lm 

Even if the notation is self-explanatory, we need to discuss some of its features:  

• When declaring the events that a component subscribes, we identify under 
invokes the services that may be invoked when a notification is received.  
Under handledBy, we specify the different ways in which a notification is 
handled, using s? to denote the invocation of service s. 

• Parameter passing is made explicit through expressions within specifications.  
For instance, the clause inserted.which=lm in the definition of the effects of 
insert means that the event inserted is published with its parameter which 
equal to the value of the parameter lm of insert.  

• Under store we identify the state variables of the component; state is local in 
the sense that the services of a component cannot change the state variables 
of other components.  

• Through assignsTo we identify the state variables that a service may change 
and, through publishes, we identify the events that a service may publish. 

• When specifying the effects of a service, v’ denotes the value that state vari-
able v takes after it is executed, and e! denotes the publication of event e. 

• Through guardedBy we identify the enabling condition of a service, i.e. the 
set of states in which its invocation is accepted and the service is executed.  

• Designs can be underspecifed, leaving room for further design decisions to 
be made during development.  Therefore, we allow for arbitrary expressions 
to be used when specifying how parameters are passed, events are handled 
and services change the state. 

Consider now the design of a system in which a counter subscribes inserted and 
deleted to count the number of elements in the set:  
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design Set&Counter is  

 store elems: set(nat), 
     value:nat  

 publish&subscribe inserted  
  par which:nat 

  invokes inc 
  handledBy inc? 

 publish&subscribe deleted  
  par which:nat 

  invokes dec 
  handledBy dec? 

subscribe doInsert  
  par which:nat 
  invokes insert 

  handledBy insert? ∧ 
        which=insert.lm 
 subscribe doDelete  
  par which:nat 
  invokes delete 

  handledBy delete? ∧ 
        which=delete.lm 

provide insert  
 par lm:nat 

 assignsTo elems 
 guardedBy lm∉elms 
 publishes inserted 
 effects elems’={lm}∪elems ∧ 

     inserted! ∧ inserted.which=lm 
provide delete  

par lm:nat 
 assignsTo elems  
 guardedBy lm∈elms 
 publishes deleted 
 effects elems’=elems\{lm} ∧  

     deleted! ∧ deleted.which=lm 
provide inc  

 assignsTo value 
 effects value’=value+1 

provide dec  
 assignsTo value  
 effects value’=value-1  

We can keep extending the design by bringing in new components that subscribe 
given events. For instance, we may wish to keep a record of the sum of all elements of 
the set by adding an adder that also subscribes inserted and deleted. 

design Set&Counter&Adder is  

 store elems: set(nat), 
        value:nat, sum:nat  

 publish&subscribe inserted  
  par which:nat 

  invokes inc, add 
  handledBy inc? 
  handledBy add? ∧ 
     which=add.lm 

 publish&subscribe deleted  
  par which:nat 

  invokes dec,sub 
  handledBy dec? 
  handledBy sub? ∧ 

        which=sub.lm 

 subscribe doInsert  
  par which:nat 
  invokes insert 

  handledBy insert? ∧ 
      which=insert.lm 

 subscribe doDelete  
  par which:nat 
  invokes delete 

  handledBy delete? ∧ 
        which=delete.lm 

 

provide insert  
 par lm:nat 

 assignsTo elems 
 guardedBy lm∉elms 
 publishes inserted 
 effects elems’={lm}∪elems ∧ 

     inserted! ∧ inserted.which=lm 
provide delete  
 par lm:nat 

 assignsTo elems  
 guardedBy lm∈elms 
 publishes deleted 
 effects elems’=elems\{lm} ∧  
    deleted! ∧ deleted.which=lm 

provide inc  
 assignsTo value 
 effects value’=value+1 

provide add  
 par lm:nat 
 assignsTo sum  
 effects sum’=sum+lm 

provide sub 
 par lm:nat  
 assignsTo sum  
 effects sum’=sum-lm 

provide dec  
 assignsTo value  
 effects value’=value-1   

This example illustrates how we can declare more than one handler for a given 
event subscription. For instance, the event inserted has two handlers: one invokes add 
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and the other invokes inc. Both invocations are independent in the sense that they can 
take place at different times. This is different from declaring just one handler of the 
form inc? ∧ add? ∧ which=add.lm; such a handler would require synchronous invo-
cation of both services.  The latter is useful when one wants to make sure that separate 
state components are updated simultaneously, say to ensure that the values of sum and 
count apply to the same set of elements. 

As a design of a system, Set&Counter&Add seems to be highly unstructured: we 
seem to have lost the original Set; and where is the Counter? and the Adder?  In the 
next section, we show how Set&Counter&Add can be designed by interconnecting 
separate and independent components, including mediators in the sense of [14]. 

3   Structuring Event-Based Designs 

In order to discuss the structuring of event-based designs, we adopt the categorical 
approach that we have been developing for architectural modelling [6,7].  In Category 
Theory, the structure of objects such as the designs introduced in the previous section 
is formalised in terms of morphisms.  A morphism is simply a mechanism for recog-
nising a component within a larger system.  

In the examples discussed in the previous section, we used a number of data types 
and data type constructors.  In order to remain independent of any specific language 
for the definition of the data component of designs, we assume a data signature 
Σ=<D,Ω>, where D is a set (of sorts) and Ω is a D*×D-indexed family of sets (of 
operations), to be given together with a collection Φ of first-order sentences specify-
ing the functionality of the operations.  We refer to this data type specification by Θ. 

From a mathematical point of view, designs are structures defined over signatures. 

Definition: A signature is a tuple Q=<V,E,S,P,T,A,B,G,H> where 

• V is a D-indexed family of finite sets (of state variables). 
• E is a finite set (of events). 
• S is a finite set (of services). 
• P assigns to every service s∈S and event e∈E, a D-indexed family of mutu-

ally disjoint finite sets (of parameters). 
• T: E→{pub,sub,pubsub} is a function classifying events as published, sub-

scribed, or both published and subscribed.  We denote by Pub(E) the set of 
events {e∈E: T(e) sub} and by Sub(E) the set of events {e∈E: T(e) pub}. 

• A: S→2V is a function returning the write-frame (or domain) of each service. 
• B: S→2Pub(E) is a function returning the events published by each service. 
• G: Sub(E)→2S is a function returning the services invoked by each event. 
• H assigns to every subscribed event e∈Sub(E), a set (of handlers). 

The mapping P defines, for every event and service, the name and the type of its pa-
rameters. Every variable and parameter v is typed with a sort sort(v)∈D.  The sets 
Vd∈D, E, S, Ps∈S  and Pe∈E are assumed to be mutually disjoint. This is why the “offi-
cial” name of, for instance, parameter which of event inserted is inserted.which. 



 A Formal Approach to Event-Based Architectures 23 

 

We use T to classify events as pub (published only), sub (subscribed only) or pub-
sub (both published and subscribed).  For instance, in Set&Counter&Adder (SCA): 

• ESCA={inserted, deleted, doInsert, doDelete}  
• TSCA(inserted)=TSCA(deleted)=pubsub; TSCA(doInsert)=TSCA(doDeleted)=sub 
• SubSCA(E)={inserted, deleted, doInsert, doDelete} 
• PubSCA(E)= {inserted, deleted}  

And in Set (S) we have 

• ES={inserted, deleted, doInsert, doDelete}  
• TS(inserted)=TS(deleted)=pub; TS(doInsert)=TS(doDeleted)=sub 
• SubS(E)={doInsert, doDelete} 
• PubS(E)= {inserted, deleted}  

Events are published by services.  We declare the events that each service may 
publish through the mapping B.  For instance,  

• BS(insert)=BSC(insert)=BSCA(insert)={inserted} 
• BS(delete)=BSC(delete)=BSCA(delete)={deleted}  

For every service s, another set A(s) is defined that consists of the state variables 
that can be affected by instances of s. These are the variables indicated under assign-
sTo.  For instance, AS(insert)={elems}. We extend the notation to state variables so 
that A(v) is taken to denote the set of services that have v in their write-frame.  Hence, 
AS(elems)={insert,delete}. 

When a notification that a subscribed event has been published is received, a com-
ponent reacts by invoking services.  For every subscribed event e, we denote by G(e) 
the set of services that may be invoked.  For instance,  

• GS(doInsert)=GSC(insert)=GSCA(insert)={insert} 
• GSC(inserted)={inc}  
• GSCA(inserted)={inc,add} 

Notice that the functions A, B, and G just declare the state variables, events and 
services that can be changed, published, and invoked, respectively.  Nothing in a 
signature states how state variables are changed, or how and in which circumstances 
events are published or services invoked.  In brief, signatures need to include all and 
only the typing information required for establishing interconnections.  Hence, for 
instance, it is important to include in the signature information about which state 
variables are in the domain of which services but not the way services affect the state 
variables; it is equally important to know the structure of handlers for each subscribed 
event but not the way each subscription is handled.  This additional information that 
pertains to the individual behaviour of components is defined in the bodies of designs: 

Definition: A design is a pair <Q,Δ> where Q is a signature and Δ, the body of the 
design, is a tuple <η,ρ,γ,> where: 

• η assigns to every handler h∈H(e) of a subscribed event e∈Sub(E), a propo-
sition in the language of V (state variables), the parameters of e, the services 
declared in G(e) and their parameters.   
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• ρ assigns to every service s∈S, a proposition in the language of V, the pa-
rameters of s, the primed variables in the domain of s, as well as the events – 
B(e) – that may be published by the service and their parameters.  

• γ assigns to every service s∈S, a proposition in the language of V (state vari-
ables) and the parameters of s. 

By “the language of X” we mean the first-order language generated by using X as 
atomic terms.  Given this, the body of a design is defined in terms of: 

• for every subscribed event e, a set – H(e) – of handling requirements ex-
pressed through propositions η(h) for every handler h∈H(e).  For instance, in 
Set&Counter&Adder, we have HSCA(inserted) given by two handlers whose 
requirements are inc? and (add? ∧ inserted.which=add.lm).  Every handling 
requirement (handling for short) is enforced when the event is published.  
Each handling consists of service invocations and other properties that need 
to be observed on invocation (e.g. for parameter passing) or as a pre-
condition for invocation (e.g. in the case of filters for discarding notifica-
tions).  A typical handling is of the form ψ ⊃ (s?∧ φ) establishing that s is 
invoked with property φ if condition ψ holds on notification. 

• for every service s, an enabling condition – γ(s) – defining the states in 
which the invocation of s can be accepted.  This is the condition that we 
specify under guardedBy. 

• for every service s,  a proposition – ρ(s) – defining the state changes that can 
be observed due to the execution of s.  As shown in the examples, this 
proposition may include the publication of events and parameter passing. 
This is the condition that we specify under effects. 

The language over which propositions used in η, γ and ρ are written extends that 
used for the data type specification with state variables (and their primed versions in 
the case of ρ) as nullary operators.  Qualified parameters of events and services are 
also taken as nullary operators.  In the case of ρ(s) this extension also comprises the 
events of B(s) as nullary operators that represent the publication of the corresponding 
event.  This is why ρSCA(insert) includes the expression inserted! indicating the publi-
cation of the event inserted. In the case of η(e) the extension includes services 
a∈G(e) as nullary operators that represent their invocation, what we denote with a?. 

As already mentioned, the structure of designs is captured through morphisms.  
These are maps between designs that identify ways in which the source is a compo-
nent of the target.  We define first how morphisms act on signatures: 

Definition/Proposition: A morphism σ:Q1→Q2 for Q1=<V1,E1,S1,P1,T1,A1,B1,G1,H1> 
and Q2=<V2,E2,S2,P2,T2,A2,B2,G2,H2> is a tuple <σst,σev,σsv,σpar-ev,σpar-sv,σhr-ev> 
where 

• σst: V1→V2 is a function on state variables that preserves their sorts, i.e. 
sort2(σst(v))=sort1(v)  for every v∈V1 

• σev: E1→E2 is a function on events that preserves kinds, i.e. σev(e)∈Pub(E2)  
for every e∈Pub(E1) and σev(e)∈Sub(E2)  for every e∈Sub(E1), as well as in-
voked services, i.e. σsv(G1(e))⊆G2(σev(e))  for every e∈Sub(E1). 
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• σsv: S1→S2 is a function that preserves domains, i.e A2(σst(v))=σsv(A1(v)) for 
every v∈V1, as well as published events, i.e. σev(B1(s))⊆B2(σsv(s)) 

• σpar-ev maps every event e to a function σpar-ev,e: P1(e)→P2(σev(e)) that pre-
serves the sorts of parameters, i.e. sort2(σpar-ev,e(p))=sort1(p)  for p∈P1(e) 

• σpar-sv operates like σpar-ev but on service parameters 
• σhr-ev maps every subscribed event e to a function σhr-ev,e: H1(e)→ Η2(σev(e)). 

Signatures and their morphisms constitute a category SIGN. 

A morphism σ from Q1 to Q2 is intended to support the identification of a way in 
which a component with signature Q1 is embedded in a larger system with signature 
Q2. Morphisms map state variables, services and events of the component to corre-
sponding state variables, services and events of the system, preserving data sorts and 
kinds.  An example is the inclusion of Set in Set&Counter&Adder. 

Notice that is possible that an event that the component subscribes is bound to an 
event published by some other component in the system, thus becoming pubsub in the 
system.  This is why we have TS(inserted)=sub but TSCA(inserted)=pubsub. 

The constraints on domains imply that new services of the system cannot assign to 
variables of the component.  This is what makes state variables “private” to compo-
nents.  As a result, we cannot identify components of a system by grouping state vari-
ables, services and events in an arbitrary way.  For instance, we can identify a counter 
as a component of Set&Counter&Adder as follows.  Consider the following design:  

design Counter is 

 subscribe doInc  
  invokes inc 
  handledBy inc?  

 subscribe doDec  
  invokes dec 
  handledBy dec?  

 store value: nat 

 provide inc  
  assignsTo value 
  effects value’=value+1 

 provide dec  
  assignsTo value  
  effects value’=value-1 

It we map doInc to inserted and doDec to deleted, we do define a morphism be-
tween the signatures of Counter and Set&Counter&Adder.  Indeed, sorts of state 
variables are preserved, and so are the kinds of the events.  The domain of the state 
variable value is also preserved because the other services available in 
Set&Counter&Adder do not assign to it. 

Components are meant to be “reusable” in the sense that they are designed without 
a specific system or class of systems in mind. In particular, the components that are 
responsible for publishing events, as well as those that will subscribe published 
events, are not fixed at design time. This is why, in our language, all names are local 
and morphisms have to account for any renamings that are necessary to establish the 
bindings that may be required. For instance, the morphism that identifies Counter as a 
component of Set&Counter&Adder is not just an injection. Do notice that the binding 
also implies that inserted and deleted are subscribed within Set&Counter&Adder.  As 
a result, our components are independent in the sense of [14]: they do not explicitly 
invoke any component other than themselves. 

In order to identify components in systems, the bodies of their designs also have to 
be taken into account, i.e. the “semantics” of the components have to be preserved.  
We recall that we denote by Φ the specification of the data sorts and operations. 
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Definition/Proposition: A superposition morphism σ:<Q1,Δ1>→<Q2,Δ2> consists of 
a signature morphism σ:Q1→Q2 such that: 

1. Handling requirements are preserved: for every event e∈Ε1 and handling 
h∈H1(e), Φ |–η2(σhr-ev,e(h))⊃ σ(η1(h)) 

2. Effects are preserved: Φ |– (ρ2(σsv(s))⊃ σ(ρ1(s)) for every s∈S1 

3. Guards are preserved: Φ |– (γ2(σsv(s))⊃ σ(γ1(s)) for every s∈S1 

Designs constitute a category DSGN.  We denote by sign the forgetful functor from 
DSGN to SIGN that forgets everything from designs except their signatures. 

Notice that the first condition allows for more handling requirements to be added and, 
for each handling, subscription conditions to be strengthened. In other words, as a 
result of being embedded in a bigger system, a component that publishes a given 
event may acquire more handling requirements but also more constraints on how to 
handle previous requirements, for instance on how to pass new parameters.   

It is easy to see that these conditions are satisfied by the signature morphisms that 
identify Set and Counter as components of Set&Counter&Adder. However, in gen-
eral, it may not be trivial to prove that a signature morphism extends to a morphism 
between designs. After all, such a proof corresponds to recognising a component 
within a system, which is likely to be a highly complex task unless we have further 
information on how the system was put together. This is why it is important to sup-
port an architectural approach to design through which systems are put together by 
interconnecting independent components. This is the topic of the next section. 

4   Externalising the Bindings 

As explained in [7], one of the advantages of the categorical formalisation is that it 
supports a design approach based on superposing separate components (connectors) 
over independent units. These separate components are called mediators in [14]: for 
instance, Set as used for connecting a Counter and independent components that pub-
lish insertions and deletions.  Morphisms, as defined in the previous section, enable 
the definition of such a design approach by supporting the externalisation of bindings.   

For instance, using a graphical notation for the interfaces of components – the 
events they publish and subscribe, and the services that they can perform – we are 
able to start from separate Set and Counter components and superpose, externally, the 
bindings through which Counter subscribes the events published by Set: 

 
Set 

 !deleted 

 !inserted 

Counter 

?doDec

?doInc

 

Like in [6], we explore the “graphical” nature of Category Theory to model inter-
connections as “boxes and lines”. In our case, the lines need to be accounted for by 
special components that perform the bindings between the event published by one 
component and subscribed by the other:  
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design Binding_0 is   

 publish&subscribe event   

The binding has a single event that is both published and subscribed. The intercon-
nection between Set, Binding_0 and Counter is performed by an even simpler kind of 
component: cables that attach the bindings to the events of the components.  

design CableP is   
 publish · 

design CableS is   
 subscribe ·  

Because names are local, the identities of events in cables are not relevant: they are 
just placeholders for the projections to define the relevant bindings. Hence, we repre-
sented them through the symbol •. The configuration given above corresponds to the 
following diagram (labelled graph) in the category DSGN of designs:  

  

 

 

 
 

In Category Theory, diagrams are mathematical objects and, as such, can be ma-
nipulated in a formal way.  One of the constructs that are available on certain dia-
grams internalises the connections in a single (composite) component.  In the case 
above, this consists in computing the colimit of the diagram [6], which returns the 
design Set&Counter discussed in section 2.  In fact, the colimit returns the morphisms 
that identify both Set and Counter as components of Set&Counter.  

Bindings can be more complex.  Just for illustration, consider the case in which we 
want to count only the even elements that are inserted.  Instead of using Binding_0 we 
would use a more elaborate connector Filter defined as follows: 

design Filter is   

 publish&subscribe target  

 provide service 
  publishes target 
  effects target! 

 

 publish&subscribe source 
  par n:nat 
  invokes service  
  handledBy iseven(n) ⊃ service?  

This connector is made explicit in the configuration as a mediator:  

Set 
 ! deleted 

 ! inserted 

Counter 

?doDec

?doInc

Filter 

!target
 ? source 

Filter 
!target

 ? source 

 

CableP CableS 
 

Binding_0  

Set  Counter 

Binding_0 

CableP CableS 

inserted • event event • doInc 

deleted • event event • doDec 
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The same design approach can be applied to the addition of an Adder:  

design Adder is  

provide add  
  par lm:nat 
  assignsTo sum  
  effects sum’=sum+lm 

provide sub 
  par lm:nat  
  assignsTo sum  
  effects sum’=sum-lm 

 store sum:nat 

 subscribe doAdd  
  par which:nat 

  invokes add 
  handledBy add? ∧ which=add.lm  
 subscribe doSub  

  par which:nat 
  invokes sub 
  handledBy sub? ∧ which=sub.lm 

The required configuration is: 

 

Set 
!deleted 

!inserted 

Counter 
?doDec

?doInc

Adder 
?doSub

?doAdd

 

We abstain from translating the configuration to a categorical diagram.  The colimit 
of that diagram returns the design Set&Counter&Adder discussed in section 2 and the 
morphisms that identify Set, Adder and Counter as components. 

5   Combining Architectural Styles 

Another advantage of the categorical formalisation of publish/subscribe is that it al-
lows us to use this style in conjunction with other architectural modelling techniques, 
namely synchronous interactions as in CommUnity [6]. For instance, consider that we 
are now interested in restricting the insertion of elements in a set to keep the sum 
below a certain limit LIM.  Changing the service add of Adder to  

provide add  
  par lm:nat 
  assignsTo sum 

  guardedBy sum+lm<LIM 
  effects sum’=sum+lm 

does not solve the problem because Adder subscribes to inserted which is published 
after the element has been inserted in the set. What we need is to strengthen the ena-
bling condition of insert in Set with sum+lm<LIM and ensure that sum is updated by 
insert and delete. However, to do so within DSGN we would have to redesign the 
whole system. Ideally, we would like to remain within the incremental approach 
through which we superpose separate components to induce required behaviour.  

One possibility is to use action synchronisation and i/o communication as in Com-
mUnity [6]. More precisely, the idea is to synchronise Set and Adder to ensure that 
sum is updated when insertions and deletions are made, and superpose a regulator to 
check the sum before allowing the insertion invocation to proceed.  
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Consider the synchronisation of Set and Adder first. In CommUnity, actions cap-
ture synchronisation sets of service invocations, something that is not intrinsic to 
implicit invocation as an architectural style and, therefore, cannot be expressed in the 
formalism presented in the previous sections.  Our first step is to extend the notion of 
design with synchronisation constraints and communication channels. 

Definition: We call an extended signature Q I,O a signature Q together with two 
D-indexed families I and O of mutually disjoint  finite sets (of input and output chan-
nels, respectively).  An extended design over Q I,O is a tuple <η,ρ,γ,β,χ> where 
<η,ρ,γ> is a design for Q in which I can be used in the languages of ρ and γ, and: 

• β is a proposition establishing what observations of the local state (variables) 
are made available through the output channels. 

• χ is a proposition in the language of services and their parameters establish-
ing dependencies that need to be observed on execution.   

As an example, consider the following revision of Set&Counter&Adder:  

design syncSet&Counter&Adder is  

 store elems: set(nat), 
        value:nat, sum:nat 

 output mysum:nat  

 publish&subscribe inserted  
  par which:nat 

  invokes inc 
  handledBy inc? 

 publish&subscribe deleted  
  par which:nat 

  invokes dec 
  handledBy dec? 

 subscribe doInsert  
  par which:nat 
  invokes insert 

  handledBy insert? ∧ 
      which=insert.lm 

 subscribe doDelete  
  par which:nat 
  invokes delete 

  handledBy delete? ∧ 
        which=delete.lm 

 synchronise insert≡add ∧ 
        insert.lm=add.lm ∧ 
        sub≡delete ∧ 
        sub.lm=delete.lm 

 convey mysum=sum 

provide insert  
 par lm:nat 
 assignsTo elems 

 publishes inserted 
 guardedBy lm∉elms ∧ lm+sum<LIM 
 effects elems’={lm}∪elems ∧ 

     inserted! ∧ inserted.which=lm 
provide delete  
 par lm:nat 
 assignsTo elems  

 publishes deleted 
 guardedBy lm∈elms 
 effects elems’=elems\{lm} ∧  
    deleted! ∧ deleted.which=lm 

provide inc  
 assignsTo value 
 effects value’=value+1 

provide add  
 par lm:nat 
 assignsTo sum  
 effects sum’=sum+lm 

provide sub 
 par lm:nat  
 assignsTo sum  
 effects sum’=sum-lm 

provide dec  
 assignsTo value  
 effects value’=value-1   

Through synchronise we provide a proposition that defines the synchronisation sets 
of service activation that can be observed during execution.  For instance, through 
a≡b, we can specify that two given services a and b are always activated simultane-
ously.  Hence, in the example, insert and add are always performed synchronously.   

Through convey we establish how the output channels relate to the state variables.  
In the example, we are just making the sum directly available to be read by the envi-
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ronment through mysum.  Notice that we have also strengthened the guard of insert 
with the condition lm+sum<LIM.   

It remains to show how we can externalise the extension.  The following design 
captures the synchronisation:  

design sync is  

 synchronise a≡b 
     ∧ a.p=b.p 

 provide a 
  par p:nat 

   provide b 
  par p:nat 

For strengthening the guard of insert we need a component that reads the state of 
Adder to determine if insert can proceed:  

design control is  
 input i:nat 

 provide s 
  par n:nat 

  guardedBy n+i<LIM 

This leads us to the following configuration:  

 

Notice that syncAdder is given by the following design:  

design syncAdder is  

provide add  
  par lm:nat 
  assignsTo sum  
  effects sum’=sum+lm 

provide sub 
  par lm:nat  
  assignsTo sum  
  effects sum’=sum-lm 

 

 store sum:nat 

 output mysum:nat  

 convey mysum=sum  
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The proposed extension is supported by the following notion of morphism:  

Definition: A morphism σ between extended signatures <V1,E1,S1,P1,T1,H1,I1,O1> 
and <V2,E2,S2,P2,T2,H2,I2,O2> is a morphism between signatures <V1,E1,S1,P1,T1,H1> 
and <V2,E2,S2,P2,T2,H2> together with σin:I1→I2∪O2 and σout:O1→O2.  

That is, as in CommUnity [6], input channels may become output channels of the 
system but not the other way around. 

Definition: A morphism between <η1,ρ1,γ1,β1,χ1> and  <η2,ρ2,γ2,β2,χ2> is a mor-
phism between <η1,ρ1,γ1> and  <η2,ρ2,γ2>  such that the observation and synchroni-
sation dependencies are preserved: Φ |–β2⊃σ(β1) and  Φ |–χ2⊃σ(χ1). 

Notice that this is an extension of the previous notion, i.e. morphisms between de-
signs that do not involve communication channels and synchronisations are as before.   
Further details on this extension, including the way it relates to CommUnity, can be 
found in a companion paper. 

6   Conclusions and Further Work 

In this paper, we presented a formalisation of the architectural style known as “pub-
lish/subscribe” or “implicit invocation”.  Full details on the mathematics involved as 
well as the semantics of publication and notification can be found in a companion 
paper. This formalisation allowed us to further validate the approach to software ar-
chitecture introduced in [7].  

Other formal models [e.g., 4,9] exist that abstract away from concrete notions of 
event and related notification mechanisms.  However, they address the computational 
aspects of the paradigm, which is necessary for supporting, for instance, several forms 
of analysis. Our work addresses primarily the architectural properties of the paradigm, 
i.e. what concerns the way connectors can be defined and superposed over compo-
nents to coordinate their interactions. 

In particular, our formalisation allowed us to characterise key structural properties 
of the architectural style in what concerns the externalisation of bindings and media-
tors previously claimed in papers like [14].  These properties derive from the fact that 
the (forgetful) functor that maps the category of designs to that of signatures has the 
strong structural property of being coordinated, as explained in [6]. We should stress 
that these structural properties result from the nature of the morphisms that we de-
fined in section 3, which may leave some readers who are not aware of the complex-
ity of the mathematics involved somewhat disappointed and wishing to have seen 
more results… It is true that, in this paper, we have “only” defined a category and a 
(forgetful) functor, but both satisfy very strong properties that can be used for further 
exploring implicit invocation as an architectural style.  

Furthermore, the proposed categorical semantics allows us to investigate how this 
style can be used in conjunction with other architectural techniques.  In section 5, we 
addressed the way implicit invocation can be used together with synchronous forms 
of interconnection as previously formalised through the language CommUnity [6].  
CommUnity itself has been extended in other ways, for instance with primitives that 
capture distribution and mobility [8] as well as context awareness [11]. Further work 
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is going on towards exploiting this categorical framework to support the integration of 
several architectural styles. 
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Abstract. Security violations occur in systems even if security design
is carried out or security tools are deployed. Social engineering attacks,
vulnerabilities that can not be captured in the relatively abstract de-
sign model (as buffer-overflows), or unclear security requirements are
only some examples of such unpredictable or unexpected vulnerabilities.
One of the aims of autonomous systems is to react to these unexpected
events through the system itself. Subsequently, this goal demands fur-
ther research about how such behavior can be designed and sufficiently
supported throughout the software development process. We present an
approach to engineer self-protection rules for autonomous systems that
is integrated into a model-driven software engineering process and pro-
vides concepts to formally verify that a given intrusion response model
satisfies certain security requirements.

1 Introduction

Model building as a means of producing appropriated documentation, provid-
ing specifications, and code generation is a standard practice in software en-
gineering. Security, as an integral part of any modern software system that is
not used in completely trusted environments, demands systematic support for
software engineers who need to produce secure software. Considering security
aspects throughout the entire software development process (and not during the
requirements analysis and system integration phases only) by explicitly integrat-
ing security into the design models can aid in detecting and removing potential
security breaches. Furthermore, model-centric and generative approaches, as the
concept of Model Driven Architecture (MDA) [5], have led to advancing support
for software engineers. Most noticeably, the Model Driven Security approach (see
[3]) proves to not only define access-control languages (in this case SecureUML)
but to provide a basis for refinement down to code as well. Access control is
concerned with preventing unauthorized accesses to shared resources. Which ac-
cesses are authorized depends on specific security requirements and has to be
specified in access control policies.

A model is an abstract part of the real world which contains the aspects rel-
evant to the developer. It does not deal with any environment interaction. In
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particular from the viewpoint of security, not all possible attacks can be con-
sidered in a model. This may be because of the abstraction level of the model
(e.g. buffer overflows cannot be seen in class diagrams) or because of environ-
ment parts that are not considered in a model (e.g. social engineering) or other
reasons. Therefore, crucial functions must be monitored. Concerning security,
accesses to crucial data must be logged to see if unauthorized access occur de-
spite a given access control policy (e.g. by buffer overflows). In very sensitive
environments, intrusion detection systems (IDS) [19] and security engineering
[1], in practice, often need to be combined so that the occurrence of interactions
and system states not covered by the normal use cases raises an alarm in an
IDS. Consequently, the question of how to identify nonconforming or malicious
behavior and how to react to discovered security breaches arises.

Ever since IBM’s “call to arms” [6], called autonomous computing, research
increasingly focuses more effort on self-adapting, self-protecting, and self-healing
systems (i.e., autonoums systems) [18]. Monitoring the system is a necessary as-
pect in autonomous systems to detect system or environment changes and possi-
bly to react on these changes if necessary. Self-repairing/Self-protecting systems
are an ambitious goal whose realization concerns many aspects of software en-
gineering (for example Baresi et. al considered self-healing in service-oriented
systems in regard to dynamic binding of services in [2]). We consider in this
paper the self-protection of the system in the case of successful security attacks.

We take up the challenge of providing sufficient support to design and realize
self-protecting system. We present an approach to engineer self-protection rules
for autonomous systems, integrated into a model-driven development approach,
and capable to generate self-protecting access control aspects for XACML based
infrastructures. Furthermore, we provide concepts based on graph transforma-
tions [17] to formally verify that a given intrusion response model satisfies certain
security requirements.

The remainder of this article is organized as follows. We give next a description
of the model-driven development approach and the underlying concepts of our
access control model together with an operational semantic. Section 3 concerns
the specification of protection rules. Section 4 presents the concepts to verify
the satisfaction of security requirements. Finally, we present related work and
conclusion.

2 Model-Driven Development

We first present the integration of our approach into a model-driven development
approach namely, Model Driven Security and its underlying access control model
SecureUML. It concerns the development of XACML [11] based access control
policies and access control properties following an attribute based access control
approach which can be described by a mapping of the modeling elements of
SecureUML to XACML policies. Afterwards, an additional operational semantic
of the entity operations is given that serves as a starting point for our self-
protecting rules requirement analysis.
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Fig. 1. RBAC metamodel

As already stated above, we build up on the SecureUML metamodel presented
in [3]. Figure 1 presents the role based access control (RBAC) based metamodel
that defines the abstract syntax for SecureUML. Due to space constraints we
can not go in too much detail about the concrete syntax and semantics but
refer the interested reader to [3]. On the left-hand side of the diagram RBAC
is formalized. Users can be assigned to Groups. On the other side of the model,
permissions, which can be assigned to roles, are used to model the ability to
carry out actions on resources on behalf of a calling subject that is in a certain
role. Authorization constrains can be used to constrain that certain permissions
only hold in certain system states.

To this end, we require that subjects have or provide certain properties (cre-
dentials) to be assigned to roles. For example, a user name, a counter for logins, a
printer quota, location in mobile scenarios etc. This approach is called attribute-
based access control (ABAC) [16]. The main idea of ABAC is to dynamically de-
fine the authorization of subjects based on current property values of the calling
subjects and their targeted resources, respectively. In addition to the relatively
static defined roles, this attributes can be highly dynamic therefore, provide a
way to capture the needs of e-commerce as well as enterprise and e-government
applications in the internet ranging all the way to ubiquitous computing.

Fig. 2. ABAC model
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Figure 2 shows our base model of the applied ABAC approach. In general, we
enhance the aforementioned metamodel in Fig. 1 by this explicit specification of
subject and object attributes.

2.1 Generation of XACML Based Access Control Policies

Model Driven Security gives a means to integrate access control concerns into a
model and subsequently generate code out of this model elements. In [3] concrete
mappings for EJB and .Net are given. In addition, we focus on the generation
of XACML based access control policies since, policy based infrastructures are
more flexible and, more specific, are able to provide better support for policy
changes and management then the standard security architectures of todays
enterprise systems. To this end, we define and implemented a UML profile that
enables to generate XACML policies from security models (i.e., models that are
build using our ABAC enhanced SecureUML modeling elements).

2.2 Example and Operational Semantics of the Protection Model

In addition to the SecureUML concrete semantic, our protection model contains
an operation semantic of the entity operations. As a running example, we will
consider developing a simplified version of a system for administrating calendars.
Figure 3 shows the simple interface of the calendar application that basically,
allows to create a calendar and subsequently, create, update, delete, and read
entries (i.e., appointments).

showEntry(CID:String, EID:String):String

createCalendar(owner:String):String

newEntry(CID:String,time:String,day:String,room:String):String

updateEntry(CID:String, EID:String, time:String, day:String, room:String)

deleteEntry(CID:String, EID: String)

CalendarInterface

showEntries(CID:String): String[]

Fig. 3. Interface of the Calendar Application

Considering this simple interface, one may want to enforce some basic integrity
properties like, for example that the creator of a calendar becomes its owner
hence, is the only one that is allowed to delete entries. Arbitrary users are allowed
to read the entries of any calendar but modification is up to the owner of the
calendar or a substitute like a secretary. At the very least a secretary should be
able to make and manage appointments (i.e., create and update entries in the
calendar). Lets assume that the deletion of an entry is restricted to the owner of
the calendar only. These security requirements are implemented in the model in
Fig. 4 which is an instance of the SecureUML metamodel. We have three roles
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Fig. 4. security model

and three permissions. The permission Basic allows a subject in role User to
read calendar entries and to create calendars. The permission Manage allows
subjects in role Secretary to modify a calendar and permission Destroy allows
subjects in role CalendarOwner to delete calendar entries.

Once the security model is accomplished, the operational semantics of the
entity operations have to be specified. We define the notion of a protection model
as follows. A protection model is a pair of a security model (as described above)
and a set of transformation rules [17]. Considering our example we write, the
security model of figure 4 as M and the protection model as a pair (M, ORules).
Figure 5 gives the transformation rules for the creation of a calendar and the
deletion of entries in the calendar via the create() and deleteEntry() methods
of the Calendar entity. A transformation rule consists of two object diagrams.
The diagram on the left-hand side of a rule models the precondition to apply
the rule. The object diagram on the right-hand side models the transformed
object state. The left-hand side of rule create(x) requires a subject with name x
in a role and this role must have a permission with entity action create on the
calendar entity. If this object structure can be found in a system state, a new
calendar object for the subject with name x is created. The left-hand side of
rule deleteEntry requires a subject and a connected calendar object. The subject
must be in a role which has a permission for entity action deleteEntry. The
condition calendar.owner == x enforces that the rule can be only applied if the
subject is the owner of the calendar. The effect of the rule is the deletion of an
entry of the calendar object. Transformation rules can be mapped to graph rules
to give them a formal semantics [8, 17].

Ultimately, the transformation rules capture the aforementioned attributes of
our subject and object descriptors and more importantly, their changes during
the state changes of the system. Since we assume that state changes are triggered

if
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Fig. 5. Operational semantics for calendar operations create() and deleteEntry()

by method calls our notion is sufficient to model their impact on the protection
model. In figure 5 for example, the create(x) call to the calendar interface sets
the owner attribute of the calendar to the name of the caller. In consequence, we
can build up on this attribute to restrict the deletion of an entry to the actual
creator of the calendar (i.e., its owner) by comparing the name attribute of the
caller with the owner attribute of a targeted calendar.

3 Specification of Self-protection Rules

The analysis of security requirements for a software system is a difficult design
task and recent research focuses on developing models and concepts to elicit,
analyze and document security requirements [9, 10]. We assume in this article,
that security requirements are documented and a risk assessment has given them
a priority. The following list shows the examples used in the remainder of this
article.

Security Requirement C1: Prevent that a calendar has more than one owner.
Security Requirement C2: Prevent that a user is logged into the system more

than once.
Security Requirement C3: Prevent denial of service attacks by creating more

than n calendars.

These in natural language formulated requirements can be specified in semi-
formal or formal constraint languages (e.g., OCL[13]) and models can be checked
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if they satisfy these requirements. The focus of this article, however, is not this
static check of design models, but we are interested in the security vulnerabilities
that are detected during run-time even if the model is previously checked to be
secure.

Therefore, a crucial component of autonomous systems is a monitor which
observes the system states during run-time in order to detect constraint vio-
lations. When the monitor detects an insecure system state the system should
react by protection means (in the case of an autonomous system the system
reacts autonomously). One possible solution to protect the system would be a
system shutdown or to disconnect the whole system. This solution, however, is
quite rigid and restricts the availability of the system often more as necessary.
If the originator of a security violation can be determined it would possibly be
enough to eliminate this user from the system. If the originator is unknown, it
is sufficient to disconnect the attacked subsystem or restrict its functionality, so
that the remaining system can continue working in a restricted mode.

Before we present an approach to specify a more fine-grained protection,
we differentiate between self-protection and self-repairing of the system. Self-
protection changes the security model by revoking permissions as far as nec-
essary so that an intruder cannot do any harm with the acquired authoriza-
tion, but the system state remains unchanged. Self-repairing, on the other hand,
transforms the insecure system state into a secure state and lets the security
model unchanged. Self-repairing, i.e. an automatic modification of the system
state without any interaction with an administrator, is often difficult to imple-
ment. Consider as an example a violation of the requirement C1 from above,
i.e., the monitor detects two calendar owners for a calendar. Should we revoke
both owners from the calendar (but then we have calendars without owners)
or should we only revoke one calendar owner (but which one, which owner is
the ”real” owner)? In the case of a violation of requirement C3, calendars must
be removed to reach the maximum boundary of allowed calendars. But, which
calendar should be removed?

We focus next on the specification of self-protection. For each security
requirement, a set of protection rules models the reaction of the system to the
violation of the security requirement and transforms the protection model. The
transformation should restrict the model as far as necessary and should allow
system availability as far as possible. The protection rules are developed in two
steps:

1. Specify the response requirement. A response requirement for a security re-
quirement specifies the system functionality which must be restricted in the
case of a security requirement violation.

2. Specify the protection sets for the response requirement. A protection set
contains a set of transformation rules to restrict the security model. The
rules of a protection set for a response requirement shall satisfy the response
requirement.
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3.1 Development of the Intrusion Response

To support the system designer in finding the appropriate response requirements,
we suggest an approach which is driven by the UML models, since static dia-
grams (as class diagrams) contain the elements that should be protected (in our
example the calendars and their entries), the behavior diagrams (as sequence di-
agrams) show how the protected elements are accessed. Therefore, the designer
decides on the basis of these UML models the measures to do in the violation
response. Consider the security requirement C1 for at most one calendar owner
as an example. The designer has the class diagram in Fig. 4 and the sequence
diagrams in Fig. 6 as documentation and assumes now that requirement C1 can
be violated by a security vulnerability so that an attacker can become owner of
calendars of other persons. When the designer considers the sequence diagrams

deleteEntry(..,e)

caller

e in res

res=showEntries()

showEntry(e)

cal: Calendar

updateEntry(..,e,...)

caller

e in res

res=showEntries()

cal: Calendar

Fig. 6. Sequence diagrams for updating a calendar entry and for deleting an entry

in Fig. 6, (s)he realizes that the attacker can call the operations showEntries(),
showEntry(), updateEntry() and deleteEntry(). While an unauthorized call of the
operations showEntries() and showEntry() appears to be an acceptable (i.e., it
does not concern integrity) risk, compared to disabling read access for all (includ-
ing the trustworthy) users, an unauthorized call of the operations updateEntry()
and deleteEntry() cannot be tolerated. Therefore, the designer adds updateEn-
try() and deleteEntry() for calendar owner to the response requirement, i.e.,
both operations must not be called by calendar owners when requirement C1 is
violated. Analog, the response requirements for the other security requirements
are specified driven by the UML diagrams.

The list below shows the response requirements of our calendar example. A
response requirement is a set of pairs (Caller, Operations) consisting of a list of
callers Caller who are not allowed to call the operations in the set Operations
in the case of the corresponding security violation.

Response(C1)={(CalendarOwner,{deleteEntry(), newEntry(),
updateEnty()})}

Response(C2)={(User,{deleteEntry(), newEntry(),
updateEnty(), createCalendar()})}

Response(C3)={(User,{createCalendar()})}
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3.2 Specification of Self-protection

A first idea to satisfy the response requirement would be to generally disallow
callers to call the operations in the response requirement. Since the response
requirements are connected to certain callers, however, this general prohibition
is too strong. To restrict the operations to certain callers requires additional
operation conditions. Since operations are implemented and a code change dur-
ing run-time is not desirable, operations cannot be modified with respect to the
response requirement. Therefore, the security model must be modified so that
only the specific callers are affected. A change of the security model can be done
during run-time and is immediately enforced by the XACML infrastructure [11].

The security model transformation is specified by a set of graph rules (Fig. 7
shows a part of the graph rules for the calendar example). The protection sets for
a response requirement contain a subset of the protection rules. The protection
set Protect(C1) to satisfy the response requirement Response(C1) removes all
permissions from role calendar owner and adds a permission to calendar owner
to read calendars. The protection set Protect(C2) removes all permissions to
modify a calendar and introduces a restricted basic permission which allows the
user to read the calendars only. The protection set Protect(C3) removes the
permission to create calendars by adding a restricted basic view.

Protect(C1)={remove destroy(CalendarOwner), remove inheritance, add
basic(CalendarOwner)}.

Protect(C2)={remove destroy(CalendarOwner), remove manage(Sectretary),
replace basic, add basicrestricted(User)}.

Protect(C3)={replace basic, add basicrestricted(User)}.

Fig. 7. The protection rules



42 M. Koch and K. Pauls

When the system monitor detects a violation of a security requirement (e.g.,
C1) the rules in the protection sets are executed (e.g., Protect(C1)) to ensure
the response requirement (e.g., Response(C1)). Figure 8 shows the results of
applying the protection sets Protect(C1), Protect(C2) and Protect(C3), re-
spectively, to the security model in Fig. 4. When several security requirements
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Fig. 8. The security models after execution of Protect(C1), Protect(C2) and
Protect(C3)

are violated at the same time, several protection sets are applied. The response
requirement for two security requirements C1 and C2 is Response(C1 + C2) =
Response(C1) ∪ Response(C2). We define the protection set as Protect(C1 +
C2) = Protect(C1) ∪ Protect(C2).

One could argue that, instead of specifying the protection rules, it would be
easier to specify immediately the restricted security models. Since there must
be a security model for each combination of violated security requirements, one
has to specify 2n − 1 security models in the case of n requirements. Therefore,
for a bigger n it is certainly more convenient to specify n rule sets which ensure
that each constructed security model is consistent. The next section concerns
this consistence statement.

4 Protection Satisfaction

A protection set contains rules which modify the security model in the case of
unexpected security requirement violations. By now, there is no restriction on
the ordering in which the rules of a protection set must be applied and one
can wonder if any order results in the same security model or if the ordering is
relevant. A second question is whether the security model constructed by the
rules of a protection set satisfy the response requirement. Therefore, this section
concerns the following questions.

1. Does the rule application ordering influence the final security model?
2. Does a protection set satisfies a response requirement?
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4.1 Dependencies Between Protection Rules

If a protection set becomes necessary to protect the system against a security
violation, each rule in the protection set is applied once. Since the ordering is by
default unrestricted, the following problems may occur (see also independence
of graph transformations in [17]).

Problem 1: Assume rules p1 and p2 which are both applicable to the security
model M , but rule p1 deletes elements required by p2, so that an application of
p1 prevents the applicability of p2. Dependent on the rule ordering, two different
security models M ′ are generated and, therefore, the two rules are in conflict.
To detect these conflicts, critical pair analysis of graph rules [15, 4] can be used.
The critical pairs for two rules are constructed by overlapping the rule left-hand
sides in all possible ways, such that the intersection contains at least one deleted
element. In this way, critical pairs show all the potential conflicts between the
rules in a minimal context. Each actual conflict in a bigger context will be
represented by one of the critical pairs.

There is tool support for generating the critical pairs for rules implemented
in the AGG tool [20]. Figure 9 shows the result of the critical pair analysis for
our example rules. The tool detects a critical pair for rules replaceBasic and
addBasic(CO). This bases on the fact, that rule replaceBasic deletes the permis-
sion Basic which in turn is required in the left-hand side of rule addBasic(CO).
Therefore, applying first rule replaceBasic prevents the application of rule ad-
dBasic(CO).

Fig. 9. Computation of critical pairs by AGG

After the computation of critical pairs for a protection set, the rule set
can be divided into conflict free rules (rules which do not have critical pairs)
and conflicting rules. Conflict free rules can be applied in any order (from the
viewpoint of problem 1, we will see next another problem which additionally
influences the rule application order) and the security engineer can use them
in any combination in the protection sets to get a single final security model.



44 M. Koch and K. Pauls

Conflicting rules should not be used together in a protection set or the security
engineer must specify the desired application order. In our example, (s)he could
specify that addBasic(CO) must always be applied before replaceBasic.

Problem 2: Assume now rules p1 and p2, so that p1 creates elements required by
p2. Then, rule p2 can be applied only after p1, but not before (see also sequential
dependence in [17]). These conflicts are called sequential dependence conflicts and
can be detected by considering the overlaps of the right-hand side of rule p1 and
the left-hand side of rule p2. There is no conflict if the left-hand side of p2 does not
require elements which are generated by p1. Otherwise, there is a conflict. If we
investigate the rules of our example, we see that the rule addBasicRestricted(U) is
sequential dependent of replaceBasic since replaceBasic generates the permission
BasicRestricted required by rule addBasicRestricted(U). All other rules are not
sequential dependent.

Analog to critical pair analysis, sequential dependencies between protection
rules can be automatically detected and presented to the security engineer who
uses this information in the specification of the protection sets.

4.2 Satisfaction of the Response Requirement

Applying a protection set to a protection model (M, ORules) results in a new
protection model (M ′, ORules) in which the security model is changed (from M
to M ′). The operation rules ORules remain unchanged under this transforma-
tion. The permission or denial of operation accesses must now be checked with
respect to the new security model M ′.

A protection set satisfies a response requirement Res, if for any pair
(Caller, Operations) in Res, none of the transformation rules for an operation
in Operations can be applied to Caller in the changed security model M ′. This
satisfaction can be checked by considering the left-hand sides of the transforma-
tion rules in the response requirement Res and the new model M ′. If the security
relevant part of the left-hand side (which consists of all elements with stereo-
type <<Role>>, <<EntityAction>>, <<Permission>> and <<Entity>>) of
a rule p in Res can be embedded into the security model M ′ then one can con-
struct a state for M ′ to which p can be applied (mainly the left-hand side itself).
Therefore, the response requirement is not satisfied. On the other hand, if the
security relevant part of the rule cannot be embedded into the security model,
this part can neither be embedded into a state for M ′. This means that the rule
is never applicable and the response requirement is satisfied.

Consider as an example the protection set Protect(C1) for the security re-
quirement C1. The modified security model M ′ is shown in Fig. 8 on the left-
hand side. The response requirement Response(C1) forbids a calendar owner
for example to call the operation deleteEntry(). The security relevant part of
the left-hand side of the transformation rule for deleteEntry() (bottom of Fig. 5)
cannot be embedded into the security model M ′, since the rule requires a role
which has a permission on the calendar entity, and the permission contains an
entity action deleteEntry. In the security model in Fig. 8, however, no role is
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connected to the permission Destroy (the only permission with entity action
deleteEntry). Therefore, the rule for deleteEntry() cannot be applied to any sys-
tem state corresponding to the security model M ′.

4.3 Benefits for the Security Engineer

At the end of this section, we summarize how the answers of the two questions
in the beginning of this section can support the security engineer in designing a
self-protection system.

1. Does the rule application ordering influence the final security model?
Paragraph 4.1 has shown that different rule application orderings may lead
to different security models. The security engineer, however, can use criti-
cal pair analysis (supported by the AGG tool) and sequential dependence
analysis to compute the conflicting rules. Considering these results in the
engineering process of the protection sets allows the security engineer to get
a deterministic behavior of the protection set response.

2. Does a protection set satisfies a response requirement?
Paragraph 4.2 has presented a way to check whether the rules in a protection
set satisfy a response requirement by considering the left-hand side of the
transformation rules which specify the operations in the response require-
ment. If the designer detects rules in a protection set which does not satisfy a
response requirement, (s)he must change the protection set or the protection
rules until all response requirements are satisfied.

5 Related Work

Our approach uses the security engineering model presented in [3] for which
tool support is given by an integration of the SecureUML metamodel into the
ArcStyler tool [12]. The analysis stage of the software process, however, is not
considered but the process starts with the design models. Jürjens presents in [7]
the integration of security into the UML. He shows how to model several security
aspects by UML model elements as, for example, stereotypes or tagged values.
His approach is more general than ours since it is not restricted to access control
but considers, for example, also security protocols. In [14, 21] approaches to de-
sign intrusion detection systems are presented. The design, however, focusses on
the detection of attackers, less on the design of the response of an attack. Baresi
et. al considered self-healing in service-oriented systems in regard to dynamic
binding of services in [2].

6 Conclusion and Future Work

We presented a model-driven approach to engineer self-protection for au-
tonomous systems. The approach is integrated into model driven security Se-
cureUML for modeling access control and supports the system designer in en-
gineering self-protection rules to react to unexpected security vulnerabilities.
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Self-protection is specified by a set of transformation rules which restrict the
security model. A graph-based semantics for the transformation rules allows us
to verify that security requirements are satisfied by the specified self-protection
rules.

We target an XACML based infrastructure which enforces the security model
transformation that result by the self-protection sets. Furthermore, the XACML
policies shall be generated from the models and protection rules. Another point of
future work is the specification of the cancelation of self-protection restrictions.
In other words, if the reason that causes the insecure state is eliminated, we
have rules which transform the restricted model back into an unrestricted safe
system.
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Abstract. As XML diffusion keeps increasing, it is today common prac-
tice for most developers to deal with XML parsing and transformation.
XML is used as format to e.g. render data, query documents, deal with
Web services, generate code from a model or perform model transforma-
tion. Nowadays XSLT is the most common language for XML transfor-
mation. But, although meant to be simple, coding in XSLT can become
quite a challenge, if the coding approach does not only depend on the
structure of the source document, but the order of template application
is also dictated by target document structure. This is the case especially
when dealing with transformations between visual models. We propose
to use a graph-based approach to simplify the transformation definition
process where graphs representing documents are transformed in a rule-
based manner, as in XSLT. The differences to XSLT are mainly that
rules can be developed visually, are more abstract (since the order of
execution does not depend on the target document), IDREFs are dealt
with much more naturally, and due to typed transformations, the output
document is guaranteed to be valid with respect to the target schema.
Moreover, graph-based transformation definitions can be automatically
reversed in most cases. This is especially useful in model transformation
(e.g. in OMG’s MDA approach).

1 Introduction

When XML (Extensible Markup Language) [14] was being developed, the propos-
ing working group at W3C had clear design goals in mind: they wanted to come
up with a language which was at the same time formal, concise, easy to process
for applications and to read and write for human beings. Today XML is used in
virtually any IT domain as the most natural form to represent structured or (es-
pecially) semi-structured data. This includes usage of XML to store information,
serialize models, communicate over the Internet, etc. As a consequence of this dif-
fusion, it is common practice for most of today’s programmers to deal with XML
parsing and transformation, be it to render data, query documents, deal with web
services, generate code from a model or perform model transformation.
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XSLT (the Extensible Stylesheet Language Transformations [16]) is the lan-
guage proposed by the W3C to deal with XML document transformation. Al-
though developed to enable most IT developers to easily specify transformations,
there are cases in which writing XSLT can be quite hard. The reasons are that,
especially when dealing with model to model transformation, the coding ap-
proach does not only depend on the structure of the source document, but the
order of template application is also dictated by target document structure. In
addition to this, extensive use of IDREFs (i.e. references to other elements) can
force developers to complicated composition of recursion, variables or keys to
hop around the XML tree representation looking for some element.

We propose to use a graph-based approach to simplify the transformation
definition process. Whether or not XML documents conform to a given docu-
ment type definition (DTD) or XML Schema, typing information can be inferred
and represented by so-called type graphs. Any XML document can therefore be
represented as a typed graph and transformed in a rule-based manner, as in
XSLT. The differences toward XSLT are mainly that rules can be depicted vi-
sually, are more abstract (so the order of execution does not depend on target
document), IDREFs are dealt with much more naturally, and because of typing,
the transformation output is guaranteed valid with respect to the target schema.

Often transformations between XML formats are needed back and forth, e.g.
a UML model is translated to some semantic domain (for example Petri nets)
to do some validation and the result which might be a change proposal, has to
be translated back. We show that graph rules can be automatically reversed in
certain cases, to formulate a reverse XML transformation.

The new approach for XML transformations has been tested at a variety of
different transformations. Throughout this paper we discuss the transformation
of class diagrams in XMI [18] format to entity-relationship diagrams in WebML
[13] format, and back.

The paper is organized as follows: Section 2 introduces to the main con-
cepts of XML and XSLT and illustrates them at the running example, an XML
transformation from XMI to WebML. Section 3 gives an introduction into the
basic graph transformation concepts which is used in section 4 to define our
graph-based approach to XML transformation. This approach is applied to the
running example in section 5. Thereafter, we discuss the possibilities to reverse
XML transformations automatically in section 6. Related approaches and a short
conclusion can be found in section 7.

2 XML and XSLT

XML Documents. The Extensible Markup Language (XML) [14] is a simple, very
flexible text format derived from SGML (ISO 8879 [11]). Originally designed to
meet the challenges of large-scale electronic publishing, XML is playing an in-
creasingly important role in the exchange of a wide variety of data on the Web
and elsewhere. XML documents are composed of markup and content, a snippet
of an XML document is shown below. This example is an extract of a WebML



50 G. Taentzer and G. Toffetti Carughi

(Web Modeling Language [13]) document representing an Entity-Relationship
diagram.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE WebML SYSTEM "WebML.dtd">
<WebML xmlns:auxiliary="http://www.webml.org/auxiliary"

xmlns:graphmetadata="http://www.webml.org/graphmetadata"
xmlns:presentation="http://www.webml.org/presentation"
siteName="Acme" version="3.0.18">

<Structure graphmetadata:go="Structure_go" id="Structure">
<ENTITY auxiliary:testCaseCount="20"

graphmetadata:go="User_go" id="User" name="User">
<ATTRIBUTE id="userName" name="UserName" type="String"/>
<ATTRIBUTE id="password" name="Password" type="Password"/>
<ATTRIBUTE id="email" name="EMail" type="String"/>
<RELATIONSHIP id="User2Group" inverse="Group2User" maxCard="N"
minCard="1" name="User_Group" roleName="User2Group" to="Group"/>
<RELATIONSHIP id="User2DefaultGroup" inverse="DefaultGroup2User"
maxCard="1" minCard="1" name="User_DefaultGroup"
roleName="User2DefaultGroup" to="Group"/>

</ENTITY>
...

</Structure>
</WebML>

The basic kinds of markup which can occur in the XML document content
are the following:

– Elements are indicated by opening and closing tags (with angle brackets) and
may contain other nested elements. If they don’t they may also be written
as a single in-line tag (e.g. <elem/>).

– Attributes are pairs composed of a name and a quoted-value inside start-tags
after the element name.

Additionally, entities, comments, and CDATA sections are allowed as building
blocks of XML (besides processing instructions).

XSL Transformations. Two W3C Recommendations, XSLT and XPath (the
XML Path Language [15]), are provided to allow for transformation of a source
XML document into another document written in any language. We use XSLT,
which itself uses XPath, to specify how an implementation of an XSLT processor
is to create our desired output from our given marked-up input. XML documents
are represented as trees: XSLT provides constructs to navigate through nodes,
iterate, and eventually produce new nodes in the output document, XPATH pro-
vides a way to select or express conditions regarding a node given a starting con-
text of application. XSLT is a declarative language, the XSLT processor is not
told how to perform the transformation, rather XSLT describes the expected re-
sult with respect to the source document structure. This allows a stylesheet to be
applicable to a wide class of documents that have similar source tree structures.
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There are two approaches to stylesheet design: ’push’ and ’pull’. In the first
one, the XSLT processor is instructed with templates (rules) to be performed
when, during parser navigation, a certain element is encountered. It is called
push because each node visited by the parser is ”pushed” through the stylesheet
to be caught by template rules. The output will be dictated by the source docu-
ment. The push style is considered by many experts the most scalable approach,
although some critics claim that code maintenance is hard. Push is the only way
to go when the order in which XML elements will be encountered by the parser
is not known a priori, like in text-oriented XML documents.

In the pull approach instead, source document nodes are selected (”pulled”)
from the source document by means of XPATH expressions as they are needed.
The pull approach is usually composed by a single template containing a list of
steps to perform, this more declarative approach is preferred by developers that
never really got too much acquainted with functional programming style at the
bottom of XSLT [9]. Pull is better suited for data-oriented documents as the
developer can somehow anticipate the order of the information.

Most XSLT stylesheets use a combination of both approaches, the most com-
mon practice has push templates containing some pull instructions. In the code
snippet below we use a template to transform a UML Association from XMI into
a WebML Relationship. It uses a template to match a UML:Class (push) and
produce an ENTITY element with the appropriate attributes. As in WebML a
RELATIONSHIP element has to be nested inside an ENTITY, in this trans-
formation we’re forced to use the pull approach in order to retrieve the related
association information before the production of the closing ENTITY tag. Thus,
the structure of the target document limits our choice of coding approach.

Associations in XMI are represented by a quite verbose tree, two nodes called
AssociationEnd identify the end points of the association by means of the at-
tribute ”participant”. The attribute contains a reference to the identifier of an-
other XML element. References to IDs are very common in XML: they are called
IDREFs, and provide a way to express relations between elements that differs
from nesting as it supports multiple cardinalities. The retrieval of all the as-
sociation instances that end up in the UML:Class we are currently matching
has to leverage the IDREF in attribute ”participant” of element AssociationEnd.
Therefore the apply-templates statement of line 4 uses an XPATH expression to
select all association ends having an attribute called ”participant” whose value is
equal to the attribute ”xmi.id” of the XML element we are currently matching.
Note how the XPATH expression also considers the navigation path from the
current element to the element we want to match. We could also have used a
more general navigation path (worsening parser performance) or a ”key” con-
struct if we wanted to match all UML:AssociationEnd elements no matter their
position in the source document. The example we provided is fairly simple, but
gives a basic idea of the way IDREFs are handled in XSLT. Transformations
that require navigating chains of IDREFs are much more complex and require
either declaration of multiple keys, usage of variables, or invocation of multiple
templates. Consider for instance the existence of the attribute ”package” on the
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UML:Class element being an IDREF to a UML:Package ID. If for any reason we
wanted to translate into relationships only associations between classes in the
same package we would necessarily have to use a key, a variable or a paramet-
ric template. In the following sections we will show the benefits of using graph
transformation to handle IDREFs.

<xsl:template match="UML:Class">
<ENTITY name="{@name}"id="{@xmi.id}">
<xsl:apply-templates/>
<xsl:apply-templates
select="../*/*/UML:AssociationEnd

[@participant = current()/@xmi.id]"/>
</ENTITY>

</xsl:template>

<xsl:template match="UML:AssociationEnd">
<RELATIONSHIP id="{@xmi.id}" name="{@name}" roleName="{@name}">

<xsl:attribute name="inverse">
<xsl:value-of select="../UML:AssociationEnd

[@xmi.id != current()/@xmi.id]/@xmi.id"/>
</xsl:attribute>
<xsl:attribute name="maxCard">

<xsl:value-of select="UML:AssociationEnd.multiplicity/
UML:Multiplicity/UML:Multiplicity.range/
UML:MultiplicityRange/@upper"/>

</xsl:attribute>
<xsl:attribute name="minCard">

...
</xsl:attribute>
<xsl:attribute name="to">

<xsl:value-of select="../UML:AssociationEnd
[@xmi.id != current()/@xmi.id]/@participant"/>

</xsl:attribute>
</RELATIONSHIP>

</xsl:template>

3 Graph Transformation

Graphs are a general means to represent any kind of data structures. Especially,
they are well-suited to show the structure of XML documents. Visualizing an
XML document by a graph, it usually resembles a DOM tree and can be en-
hanced by edges which represent references to other identities, in addition. For
an example, see Fig. 1 where part of a WebML document is visualized.

If XML documents conform to a given DTD or XML Schema, this typing
information can be represented by typed graphs. The DTD or XML Schema
is translated to a type graph which looks similar to class diagrams (without
additional constraints). As in object-oriented modelling, types can be structured
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Fig. 1. Graph which represents the example WebML document in Section 2

by an inheritance relation [6]. Instances of a type graph are structure graphs
equipped with a structure-compatible mapping to the type graph.

Formally, structure graphs are described by typed attributed graphs [7]. An
attribute is declared just like a variable in a conventional programming language:
we specify a name and a certain type for the attribute, and then we may assign
any value of the specified type to it. All graph objects of the same type also
share their attribute declarations, i.e. the list of attribute types and names;
only the values of the attributes may be chosen individually. From a conceptual
point of view, attribute declarations have to be considered as an integral part
of the definition of a type. In theory [7], the attribute values are defined by
separate data nodes which are elements of some algebra. In the AGG [1] tool,
the attribution is based on Java (see below).

A graph transformation rule r : L → R consists of a pair of T -typed graphs
L, R such that the union L∪R is defined. In this case, L∪R forms a graph again,
i.e. the union is compatible with source, target and type settings. The left-hand
side L represents the pre-conditions of the rule, while the right-hand side R de-
scribes the post-conditions. L∩R defines a graph part which has to exist to apply
the rule, but which is not changed. L \ (L ∩ R) defines the part which shall be
deleted, and R \ (L∩R) defines the part to be created. To make sure that newly
created items are not already in the graph, we have to generate new vertex and
edge identifiers whenever a rule is applied. Formally, for each application a new
rule instance is created. Furthermore, a rule may specify attribute computations.
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For this purpose, the rule graphs can be attributed by elements of term algebras
which are instantiated by concrete values in the graphs when the rule is applied.

Two sample rules are given in Figures 3 and 5, created with AGG. Both figures
show the LHS (left-hand side) L and RHS (right-hand side) R separately. All
elements of (L∩R) are numbered correspondingly in L and R. Both rules do not
delete anything, thus all elements in the LHS are numbered. The non-numbered
elements in the RHS are the elements to be created. Both rules use a lot of
variables as attribute values which indicates that arbitrary values are allowed.
If several attributes have the same variable as value, the corresponding matched
values in the host graph have to be equal. This is the case, e.g. in the rule in
Figure 5 where attribute xmi.id of node 14:UML:Class has the same variable as
value as node attribute participant in node 4:UML:AssociationEnd.

A graph transformation step is defined by first finding a match m of the left-
hand side L in the current host graph G such that m is structure-preserving
and type compatible. If a vertex embedded into the context, shall be deleted,
dangling edges can occur. These are edges which would not have a source or
target vertex after rule application. There are mainly two ways to handle this
problem: either the rule is not applied at match m, or it is applied and all
dangling edges are also deleted.

The applicability of a rule can be further restricted, if additional application
conditions have to be satisfied. A special kind of application conditions are neg-
ative application conditions which are pre-conditions prohibiting certain graph
parts.

Performing a graph transformation step with rule r at match m, all the ver-
tices and edges which are matched by L \ (L ∩ R) are removed from G. The
removed part is not a graph in general, but the remaining structure D :=
G \ m(L \ (L ∩ R)) still has to be a legal graph, i.e., no edges should be left
dangling. This means if dangling edges occur during a rule application, they
have to be deleted in addition. In the second step of a graph transformation,
graph D is glued with R \ (L ∩ R) to obtain the derived graph H . Since L and
R can overlap in a common graph, its match occurs in the original graph G
and is not deleted in the first step, i.e. it also occurs in the intermediate graph
D. For gluing newly created vertices and edges into D, graph L ∩ R is used. It
defines the gluing items at which R is inserted into D. A graph transformation,
more precisely a graph transformation sequence, consists of zero or more graph
transformation steps.

Given a host graph and a set of graph rules, two kinds of non-determinism
can occur: first several rules might be applicable and one of them is chosen
arbitrarily. Second, given a certain rule several matches might be possible and
one of them has to be chosen. There are techniques to restrict both kinds of
choices. Some kind of control flow on rules can be defined by applying them in
a certain order or using explicit control constructs, priorities, etc. Moreover, the
choice of matches can be restricted by specifying partial matches using input
parameters. A common form of controlled rule application is the following one:
One rule is selected from outside (e.g. the user) and triggers the application of
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a number of other rules which become applicable after the first rule has been
applied.

The graph transformation approach presented is supported by AGG [1] which
is an integrated development tool for typed attributed graph transformation,
implemented in Java. It offers the visual development of graph transformation
systems including visual editing and simulation as well as a number of validation
tools. The internal graph transformation engine can also be used by a Java API
and thus, can be integrated into other tool environments. Several XML based
input and output formats are available to the integration of AGG with other
tools.

4 The Graph-Based Approach

The approach we propose aims at simplifying the process by letting the developer
design the transformation visually and abstracting from document structure and
element production order.

Relation between XML Documents and AGG Graphs. To be able to use graph
transformation for the transformation of XML documents, there must be transla-
tions between XML documents and graphs. A simple solution is to provide univer-
sal XSL transformations from XML documents (without DTD or XMLSchema) to
AGG graphs in the proprietary XML format for AGG, GGX, and back from GGX
to XML. Once provided the user can completely concentrate on graph transfor-
mation and does not have to deal with XSL transformations at all. This idea can
be extended to XML documents which conform to a DTD or XML Schema. In this
case, the universal XSL transformation also transforms the DTD or XML Schema
into a corresponding type graph. In this case the type graph may be enhanced by
stronger constraints such as multiplicities.

These XSL transformations are applicable to any XML documents. A result-
ing AGG graph shows the structure of the corresponding XML document and
resembles a DOM tree enhanced by additional edges which represent references
to other identities.

The translation between XML documents and AGG graphs can also be ob-
tained on the basis of a Java API for AGG which can be used to construct and
read graphs.

XML Transformation by Graph Transformation. Describing an XML transfor-
mation by graph transformation, the source and target documents are visualized
by graphs as discussed above. Performing XML transformation by graph trans-
formation means to take the structure graph of an XML source document, and to
transform it according to certain transformation rules. The result is the structure
graph of the XML target document.

An XML transformation can be precisely defined by a graph transformation
system GTS = (T, R) consisting of a type graph T and a set of transformation
rules R. The structure graphs of the source documents can be specified by a
subset of instance graphs over a type graph TS. Correspondingly, the structure
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Fig. 2. Typing in the transformation process

graphs of the target documents are specified by a subset of instance graphs over a
type graph TT . Both type graphs TS and TT have to be subgraphs of the common
type graph T . See Figure 2. Starting the XML transformation with instance
graph GS typed over TS , it is also typed over T . During the transformation
process, the intermediate graphs are typed over T . Please note that this type
graph may contain not only TS and TT , but also additional types and relations
which are needed for the transformation process only. The result graph GT is
automatically typed over T . If it is also typed over TT , it fulfills the requirement
to be valid.

5 Example: From XMI to WebML

In this section, we take up the running example again and show how graph
transformation can be used to transform UML class diagrams in XMI format
into entity-relationship diagrams in WebML.

The type graph for the transformation consists of three parts. Figure 4 shows
the main section of type graph. The left part represents the type graph for
WebML structures. The right part shows the type graph for XMI structures. In
the middle, is one node type transf for relating XML nodes in both structures.

The transformation system contains five rules connecting nodes of the XMI
document to newly created nodes in the WebML document (one rule for each
element in the target document). Rules are quite simple and generally map a
set of nodes (XMI is particularly verbose) into a target document node. Figure

Fig. 3. Graph rule which translates classes to entities
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Fig. 4. Type graph of XMI to WebML transformation

3 shows the rule converting a class node into an entity node. The left hand side
matches a UML:Class node child of a UML:Namespace.ownedElement, the latter
has already been translated into a Structure element to which it is connected by
a transf node and two edges. The RHS of the rule adds a new entity, connects
it to the parent node with a child edge, and to the originating UML:Class node
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Fig. 5. Graph rule which translates associations to relations

via a transf node and edges. Since this transformation should be performed only
once for each class, the rule is equipped with a negative application condition
which is structurally equal to the RHS. That means before inserting a new entity
for some class, we check that this class is not already related to some entity. This
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visual approach simplifies the design of the transformation giving the user a clear
representation of what each rule will produce.

The rule in Figure 5 is used to create two relationship nodes starting from
a UML:Association subtree. In LHS, we search for a pattern consisting of an
association with association ends which refer to the participating classes by
attribute participant in UML:AssociationEnd nodes. The references are enforced
by variables part1 and part2, to be matched with class IDs. Please note that
this rule inserts two relationships, i.e. translates the association completely in
one step, something not achievable in XSLT. Moreover, the use of variables to
resolve IDREFs makes the rule clear at first sight. Again, this rule has a negative
application condition structurally equal to the RHS, which prevents the rule from
being applied twice to the same association.

In addition to the example presented here, we successfully experimented our
approach also in transforming XML graph representation into Scalable Vector
Graphics (SVG), rendering XML documents in HTML and reverse, performing
WebML model to Struts configuration files transformation. We report on these
experiments as examples for graph transformation applications on the AGG
home page [1].

Discussion. The advantages of using graph rules instead of an XSLT transfor-
mation are multiple: first of all the result graph is typed, therefore enforcing
the validity of the output with respect to the target document schema. This
can be obtained in XSLT only by using schema-aware processors. Second, the
representation of the type graph allows for an easier visual definition of the rules
by matching subtrees, rule application conditions and behaviour are evident at
first sight. Third, the use of variables (or edges) to deal with IDREFs is much
more straightforward than any other construct in XSLT as we don’t have to look
for elements considering current context but we can naturally compose chains of
IDREFs without having to declare multiple keys or complex (context-dependent)
navigation XPATHs. The disadvantages of using graph transformations reside in
the fact that in general the matching of the LHS of a rule in an instance graph
is NP-complete, and basic graph transformation systems don’t have a ”natural”
way of expressing a sequence of execution. But more elaborated forms of graph
transformation systems provide different kinds of control on rule applications,
as e.g. execution layers, priorities, control flows, etc. Some powerful constructs
could also be inspired by XSLT (e.g. implicit and explicit rule priorities) or the
new XSLT2 proposal [17], such as the ”xsl:next-match” instruction.

6 Reversal of XML Transformations

Automatic Reversal of Graph-Based XML Transformations. Due to the fact that
they are at a higher level of abstraction, graph-based XML transformations are
composed of rules that do not depend on the parsing order of the source docu-
ment or order of nesting of the output. For this reason, under certain conditions,
they can be automatically reversed to produce the inverse transformation, that
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Fig. 6. Graph rule which translates entities to classes

is from the target document structure to the source one: this is not achievable
with XSLT where each transformation is inherently uni-directional.

Obviously, to be fully reversible, a transformation would need to be infor-
mation lossless: alas, this is not the case in most real applications where target
documents simply do not require some data. Anyhow, the proposed approach is
able to provide a reverse transformation as close as possible. Moreover, once a
transformation is performed, the result graph preserves information about ele-
ments related by the transformation.

The graph rules performing the reverse transformation are based on the same
type graph as the original rules, no changes are needed. The first observation
when reversing rules is that all XML transformation rules we used are non-
deleting: they only add elements. All transformation rules have a context which
contains a relation between source and target elements already established. This
context is preserved in forward and backward transformation rules. In addition,
the LHS of the forward rule contains some source part, while the backward rule
contains some target part. As RHS of the backward rule we take the RHS of the
forward rule. It remains almost unaltered as it represents the completed relation
between the source document and the target one.

The computation of attribute values is inverted accordingly, with slight dif-
ferences: Each attribute of a new element in a RHS must be provided with an
initial value. If an attribute values cannot be restored, a default value has to
be used. If target attributes are computed by functions on source attributes, in
the reverse RHS, source attributes are calculated by inverse functions on target
attributes.

Example: From WebML to XMI. This example shows one of the rules automati-
cally obtained by inverting our example rules given in Section 5. Figure 6 shows
the rule transforming an entity into a class, being the inverse rule of the one in
Figure 3. The RHS of the rule is obtained from the original RHS by defining at-
tributes of source document elements in terms (or functions) of target document
attributes. As not all Class attributes are preserved in the WebML representa-
tion, just those attribute values that can be retrieved are used, therefore some
Class attributes are left empty. Attribute values which were left empty in the En-
tity element of the original rule are discarded. The LHS is derived from the new
RHS by deleting the new ”transf” node and all the source document elements
that were connected to it (and to no other ”transf” node).
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7 Related Work and Conclusion

Even though XSLT is a popular and well supported XML transformation lan-
guage, other approaches might be better suited to perform some kind of trans-
formations (or might better suit personal tastes). In the current paper we pro-
posed a graph based approach that simplifies the specification of XML document
transformations with respect to XSLT by being visual and independent of node
writing order, by providing a ”natural” way to deal with IDREFs and by al-
lowing for a unique specification for bi-directional transformation. This makes
the proposed solution especially suitable for the OMG’s MDA methodology. We
developed a prototype implementation of the approach based on AGG.

Different proposals exist for using visual approaches to query, perform syntax-
checking, infer DTDs and schemas, and transform XML documents. XML-GL
[5] uses graphs both for representing XML documents and queries on them, but
it does not perform document transformation between different vocabularies.
XQBE (XQuery by example [4]) provides a visual language to specify queries
on XML documents and translates it into XQuery or XSLT. VXT [10] is a
visual methodology to specify uni-directional XML document transformation,
while XMLTrans [19] is a Java based transformation language. Xing [8] is a
visual language to query XML documents. In [2] a graph grammar for inferring
the DTD of an XML document is proposed. In [20] and [21] the authors use
a context-sensitive graph grammar for both defining the schema of an XML
document and the rules to translate it into another vocabulary. Bezivin et.al.
[3] propose a model transformation approach to obtain tool interoperability in
the context of certain applications. This approach shows some similarities to
ours in the sense that it is based on EMF models and uses a more abstract
transformation approach which is QVT-like [12].

Apart from using a different formalismw.r.t. other approaches our proposal per-
formsDTD inferencewhenneeded,XMLdocument transformationbetweendiffer-
ent vocabularies with advantages w.r.t. XSLT regarding typing, visual matching
and IDREFs, plus it allows reverse transformations. Future work will deal with
performance issues and focus specifically on formalizing the requirements for a
transformation to be fully reversible.
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Abstract. Modern software codebases are frequently large, heteroge-
neous, and constantly evolving. The languages and tools for software
construction, including code builds and configuration management, have
not been well-studied. Developers are often faced with using 1) older
tools (like make) that do not scale well, 2) custom build scripts that
tend to be fragile, or 3) proprietary tools that are not portable.

In this paper, we study the build issue as a domain-specific program-
ming problem. There are a number of challenges that are unique to the do-
main of build systems. We argue that a central goal is compositionality—
that is, it should be possible to specify a software component in isolation
and add it to a project with an assurance that the global specification will
not be compromised. The next important goal is to cover the full range of
complexity—from allowing very concise specifications for the most com-
mon cases to providing the flexibility to encompass projects with unusual
needs. Dependency analysis, which is a prerequisite for incremental builds,
must be automated in order to achieve compositionality an reliability; it
also spans the full range of complexity.

We develop a language for describing software builds and configura-
tion. We also develop an implementation (called OMake), that addresses
all the above challenges efficiently and portably. It also provides a num-
ber of features that help streamline the edit/compile development cycle.

OMake is freely available under the GNU General Public License, and
is actively being used in several large projects.

1 Introduction and Problem Definition

The general objective of a build system is to automate the construction of a
software product from a set of inputs. For example, the product might be an
application executable, where the inputs are the source files; in this case, the
executable is usually constructed by compiling and linking the source files. The
software product might also have several parts, for example it might be a web
site that is to be constructed from a set of source scripts and document files. The
process of generating the product from the inputs is called building the product;
each run is called a build ; and the tool used to manage the build is called a build
system.
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1.1 Specification of the Build Process

In general, we will assume that both the inputs and the results of a build are rep-
resented as files. A complete build is usually composed of several steps, including
actions like 1) compiling source files, 2) linking object files to construct libraries
or executables, 3) generating documentation, 4) and packaging the results. In
the interest of modularity, and also to allow incremental builds, we would like to
specify a build in terms of steps, where each individual step involves executing
a script or application, such as a compiler, to generate a set of output files from
a set of input files. We call the output files targets ; the input files are called
dependencies. In some cases we also refer to named tasks as targets.

We assume that each step can be specified as a build rule with the following
parts.

– a set of targets to be built,
– a set of dependencies,
– a set of files, called side-effects, that may be modified during execution of

the rule; the targets are always side-effects of the rule,
– a function or script, called the build commands, that may be called to con-

struct the targets from the dependencies. We say that a rule is executed when
its build commands are executed.

For the purpose of incremental builds, smaller steps are often preferable.
We further classify the dependencies: explicit dependencies are part of the

rule specification, and implicit dependencies are all other factors that may affect
the outcome of a rule execution. For example, if a dependency file.c contains a
line #include ”file.h”, then file.h is an implicit dependency of the rule if it is not
already explicit. Strictly speaking, the compiler binary is also a dependency.

A build specification for a project defines a set of build rules that form a
dependency graph. The leaves of the graph are the files that do not appear as
targets; they correspond to source files. A target is considered up-to-date if all
of the following hold:

1. it has been built at least once, and the most recent rule execution was suc-
cessful,

2. all of its dependencies are up-to-date,
3. the dependencies and commands have not changed since the previous time

it was built,
4. none of the effects (the side-effects and the target itself) have changed since

the previous time the rule was executed.

Leaf files are always up-to-date, if they exist. The task of a build system is to
bring the desired targets up-to-date by executing a (preferably minimal) set of
rules.

This definition of “up-of-date” has several noteworthy properties. First, it
does not refer to such unreliable properties as file timestamps; even a file with
a very recent timestamp may be considered out-of-date if it was produced by
something external to the build system and the build system has no way of
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knowing for sure whether it was produced correctly. Second, the definition ex-
plicitly states that the target has to be rebuilt when the corresponding command
changes. This means that when a user updates the build configuration (for ex-
ample, the compiler flags), the build system will be required to rebuild all the
targets that have to be built differently under the new configuration (again, re-
gardless of how fresh the timestamps are). Finally, it allows for not propagating
the changes that do not affect the outcome. For example, if a program myprog de-
pends on file.o, which in turn depends on file.c, then insignificant changes to file.c
(such as a white space or comment change) will cause only file.o to be rebuilt,
but myprog does not have to be rebuilt unless file.o changes too.

1.2 Constraints and Requirements

Not every build graph defines a well-formed project. We impose the following
constraints.

1. The dependency graph must be acyclic.
2. Each target is the target of exactly one rule.
3. If the transitive dependencies of a rule are up-to-date, then executing a rule

successfully brings the targets of the rule up-to-date.
4. Rules may be executed in parallel if their side-effects do not intersect.

The acyclic requirement is used to help ensure termination of the build. If ter-
mination is not a concern, the acyclic requirement can be relaxed, and the build
process becomes a fixpoint calculation. The second and third requirements are
constraints on the programmer of the build. In order for the build specification
to be robust and maintainable, there must be exactly one way to build each
target, and the command to build it must be correct. The final requirement is
for performance and is not strict. If interferences between rules are not specified
accurately, the build user is limited to serial rule execution.

2 Design Requirements

As specified, the build system implementation might appear to be a straight-
forward task of providing a solver that takes a dependency graph and executes
rules in some order to bring all targets up-to-date. Indeed, the solver is reason-
ably straightforward and algorithmically unsurprising. The interesting issues are
on either side of it. First, how should the dependency graph be specified; and
second, how may build commands be specified and executed portably? Before
answering these questions, we introduce the design requirements.

– There should be a single build specification (perhaps in multiple files) for an
entire project.

– Build specifications must be configurable. In other words, it should be pos-
sible to parameterize them by properties like project requirements and ver-
sions, by the availability of tools, by the target platform, and other properties
of the build environment.
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– The build specification should be stable relative to project evolution. That
is, maintenance of the build specification should be insignificant relative to
the project development and maintenance effort.

– Specifications must be compositional. That is, the sub-specifications for the
components of a project may be expressed independently, and combined
without interference.

– The build system should be general, not specific to a particular application
domain.

– The system should not require that all dependencies be stated explicitly;
instead it should provide an automated mechanism for discovery of implicit
dependencies.

These requirements rule out some naive solutions. For example, requiring that
the programmer provide the full, literal, dependency graph is not possible be-
cause for large projects the specification would be large, repetitive, and difficult
to maintain; in addition the specification would not be parameterizable or con-
figurable.

What is clear is that the language of the build should be general enough
to support specification definitions that are both concise and configurable. One
approach is to use a general-purpose scripting language to construct the depen-
dency graph. This is the approach taken, for example, in both Cons [10] (which
uses Perl) and SCons [8] (which uses Python). However, the expressive power of
these languages often acts to tempt programmers away from simple declarative
specifications. In particular, there is no guarantee of compositionality in these
languages; the build specifications in different parts of a project may exhibit
unforeseen interference unless programmers are strictly disciplined.

We take the opposite approach, working from the bottom up, including fea-
tures in the language only when they satisfy the design requirements. In the
next section, we begin the task with rule specifications, and work towards each
of the design goals.

3 Language

3.1 Rule Specifications

The primary goal of a build specification is to define a dependency graph, which
is a set of build rules. A build rule has a set of targets, dependencies, side-
effects, and some build commands. For this purpose, the rule syntax used in the
ubiquitous Unix make program1 is ideal. A rule has the following form, where
the targets, dependencies, and side-effects are lists of filenames, and the commands
define a script to build the targets from the dependencies (we will use standard
“command-line” syntax for the commands). The notation [· · ·] indicates that the
syntactic form is optional—the brackets are not part of the concrete syntax.

targets: dependencies [ :effects: side-effects ]
commands

1 Although indentation is not restricted to tabs.
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For example, using a standard shell syntax for the commands, the following
rule specifies how to construct a grammar implementation from its specification
using the yacc application.

grammar.h grammar.c: grammar.y :effects: y.tab.c y.tab.h
yacc grammar.y
mv y.tab.c grammar.c
mv y.tab.h grammar.h

We call these explicit rules because the targets, dependencies, and side-effects
are all specified with explicit filenames.

Implicit rules. One of the main issues with explicit rules is that they are overly
verbose and repetitive. For example, a project might have many C source files
that are all the be compiled with the cc compiler, and it is inefficient to define
a separate rule for each file. Implicit rules address the issue by defining rule
patterns. In an implicit rule, the % character represents a “wildcard” pattern that
stands for an arbitrary string of text. All occurrences of the wildcard represent
the same string throughout a rule (in other words, the wildcard is universally
quantified).

With implicit rules, generic rules can be specified by pattern matching. For
the example in the previous paragraph, the following implicit rule specifies that
the cc compiler may be executed to compile any file with suffix .c, producing a
file with a .o suffix.

# Use cc to compile a .c file, producing a .o file
%.o: %.c

cc -c -o %.o %.c

Rule selection. One of the requirements of the dependency graph is that there
be exactly one rule for each target. For explicit rules, it is an error for a file to
occur as the target of more than one explicit rule. However, with implicit rules,
it is desirable to allow multiple potential matches (although at most one rule
may be selected for use in the dependency graph). For example, one might define
an implicit rule that specifies a “default” build action, and then define explicit
rules for any special cases where the default is inadequate.

We define rule selection by policy. Given a specific target with name T ,
– if T is the target of an explicit rule, that rule is used,
– otherwise, if T matches an implicit rule in scope (we define the concept of

scope in the next section), then the most recently defined implicit rule that
matches T is chosen,

– otherwise, the source file T must exist, and it is a leaf in the dependency
graph.

3.2 Variables, Scoping, Compositionality, and Parameterization

Even with implicit rules, there is a great deal of duplication. Many related rules
(such as compiling and linking rules) will want to ensure that they are con-
structed by the same application or compiler, with the same options. In addition,
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it is usually desirable to allow the specification to be easily reconfigured. The
obvious solution here is to introduce variables that represent values that may
be used in multiple rules. Once again, we adopt the standard syntax, using the
notation $(· · ·) for variable references, and single-line definitions using =. For ex-
ample, the following two rules specify that program p is generated by compiling
and linking two files x.c and y.c. The compiler is defined with the variable CC,
and the options are defined with the CFLAGS variable.

CC = gcc
CFLAGS = -g
%.o: %.c

$(CC) $(CFLAGS) -c -o %.o %.c
p: x.o y.o

$(CC) $(CFLAGS) -o $@ $+

For convenience, within the rule commands, the variable $@ is defined as the
target of the rule, and $+ are its explicit dependencies.

Scoping and compositionality. Before the introduction of variables, build
specifications were purely declarative and compositional. That is, suppose two
developers had defined build specifications for two sub-projects. We could com-
bine their build specifications simply by concatenating them. As long as the
two did not share targets (which might violate target uniqueness), the combined
specification would be valid and correct relative to the sub-project specifications.

With variables, the situation changes. Suppose the concatenated specification
happens to share variables, as follows.

# Developer 1
CC = cc
CFLAGS = -g
file1.o: file1.c

$(CC) $(CFLAGS) -c file1.c

# Developer 2
CC = gcc
CFLAGS = -O6 # (unsafe in general)
file2.o: file2.c

$(CC) $(CFLAGS) -c file2.c

In the concatenated specification, the CC and CFLAGS variables are defined
twice—which value is the right one? Furthermore, it is known that the -O6 option
is a bit dangerous with gcc. If the values defined by developer 2 “win,” then the
code for developer 1 might be compromised.

So far, we have more-or-less adhered to tradition. The GNU version of make [9]
includes explicit rules, implicit rules, and variables in the form we have described.
However, at this point we take a radical departure. In make/GNUmake, one of
the values would “win,” and for example, CFLAGS would be either -g (debug
mode) or -O6 (unsafe-optimizing mode) for the entire project, with unintended
consequences for the other developer.

Our approach is radical to some and natural to others. As we see it, both
developers are right, and the correct interpretation is the pure one (“purity” in
the sense of functional programming). That is, the definition of a variable, like
CFLAGS = -O6, is a definition, not an assignment. Each rule is a closure (another
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concept from functional programming) that pairs the rule with its environment.
The file file1.c is compiled with cc -g, and the file file2.c is compiled with gcc -O6.

The choice of pure specifications has two major consequences. As a benefit,
specifications are always compositional, because there is no way for one part of a
project to interfere with another by side-effect. In consequence, there is no easy
way in general for a programmer to collect global information through side-effects
on a global variable. As an aside, the pure vs. impure debate has been present for
many decades, but we argue that for build specifications in particular, impure
programming is more often by accident than by intention, and the benefits of
compositionality far outweigh the benefits of shared, mutable state.

3.3 Programming and Configurability

At this point, we have explicit rules, implicit rules, and variables. While this
might encompass many applications, it is still insufficient. For example, while
implicit rules can be used to describe a great deal of build procedures, they
cannot describe rules in which the dependency names are not literally textually
related to the targets. In addition, build specifications are not easily configurable,
because there is no way to state that the set of build rules depends on compile-
time configuration parameters.

To address these issues, we introduce a simple core programming language
with functions, function application, and conditionals.2 The syntax of our lan-
guage is shown in Figure 1. It is still modeled on the language for GNU make,
with user-defined functions. Here, we use braces {p} to represent block structure
as defined by indentation—that is, the program p must be indented from the
enclosing context; the braces do not appear in the concrete syntax.

The structure of the language is quite simple. A program is a sequence of
statements, and each statement is either a command line to be executed by the
shell, or a language directive such as a variable/function definition, function ap-
plication, conditional expression, or rule definition. A rule definition may include
options, like the :effects: we have seen earlier. There are other options as well,
including :value: for dependencies on computed values, rather than files.

Functions, simplification, and configuration. The use of functions can
often significantly simplify build specifications. As an example, let’s consider
the problem of building a static library from a set of object files. The rules to
do this differ slightly between Win32 and Unix platforms, so we would like to
define a function that computes the appropriate build rule based on the platform.
Consider the following program.

2 Expressivity is a double-edged sword. The traditional make/GNUmake programs do
not include user-defined functions, most likely because such languages are Turing
complete—even termination is not decidable. However, the loss of completeness in
these languages has a heavy cost, leading many programmers to resort to meta-
programming, such as imake [2], autoconf/automake [6, 7], or other build specification
generators.
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e ::= expressions
| text text
| $(v) variables
| $(v e1, . . . , en) function application
| e1e2 concatenation

s ::= statements
| e shell commands
| v = e variable definitions
| v(v1, . . . , vn) = {p} function definitions
| v(e1, . . . , en) function applications
| if e{p1} else{p2} conditionals
| section{p} | export scoping directives
| etargs : edeps (:option: eopt)

∗ {p} rule definitions

p ::= programs
| ε empty program

| p
s sequencing (line endings act as sequence separators)

Fig. 1. The build programming language

# Platform-independent library construction
StaticLibrary(target, deps) =

if $(equal $(OSTYPE), Win32)
ofiles = $(addsuffix .obj, $(deps))
$(target).lib: $(ofiles)

lib /Fo$(target).lib $(ofiles)
else

ofiles = $(addsuffix .o, $(deps))
$(target).a: $(ofiles)

rm -f $(target).a
ar cq $(target).a $(ofiles)

# An example library with 3 object files
StaticLibrary(mylib, file1 file2 file3)

The StaticLibrary function takes two arguments. The target is the name of the static
library, and the deps are the object files to be included. Both arguments are
provided without suffixes, since the actual file suffixes depend on the platform.
The first step in the function is to determine the platform using a conditional.
The OSTYPE variable defines the name of the platform, and the builtin equal
function is used to determine if the platform is Win32. If so, the library has the
.lib suffix, the object files have the .obj suffix, and the application for constructing
the library is called lib. The addsuffix function is used to append the suffix to each
of the names in the deps argument. The other case is similar.

The construction of a static library is now reduced to a single function call
that specifies only the name of the library and its dependencies, with the usual
benefits. The platform-dependent configuration is now located within a single
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function, and the remainder of the build specification can be significantly simpli-
fied and need not be cluttered with platform tests. By defining a general set of
such functions in a shared standard library, we obtain very concise specifications
for simple projects.

Scoping and block structure. The introduction of block structure imposes a
new twist on scoping. For example, in the previous section the StaticLibrary func-
tion defined the ofiles variable (twice). According to our scoping policy, these two
definitions do not conflict since rules always use the most recent variable defini-
tions in scope. The next question is whether the ofiles variable remains defined
after the StaticLibrary function is called. Clearly, doing so would be undesirable
because it would violate the abstraction provided by the function.

We adopt the usual scoping policy where each block in the program defines
a scope, scopes are nested, and variables defined in inner scopes are not visible
to outer scopes. Syntactically, blocks are determined by indentation, so for our
example, the ofiles variable is not defined after the StaticLibrary function is called,
because it is defined within an inner scope.

The section allows the introduction of a new nested block (with its corre-
sponding scope), and it is frequently used to isolate variable definitions that
are valid in only part of a project. For example, the following code fragment
illustrates the common usage. The syntax CFLAGS += -g is equivalent to the
expression CFLAGS = $(CFLAGS) -g, so the inner value of CFLAGS is “-O -g”.3

CFLAGS = -O # Pass the “optimizing” flag to the C compiler
· · ·
section

CFLAGS += -g # Also add the “debugging” flag for the following targets
· · ·rules· · ·

# CFLAGS has the original value “-O”
· · ·rules· · ·

When combined, purity and strict scoping can be awkward. For example,
consider the following program fragment, where the intent is to define the name
of the C compiler and its default options on a platform-dependent basis.

# The compiler and flags are platform-dependent
if $(equal $(OSTYPE), Win32)

CC = cl
CFLAGS = /DWIN32
OSUFFIX = .obj

else
CC = gcc
· · ·

3 In our implementation, the system state including environment variables and the
current directory are handled similarly—the extent of modifications is limited to the
current scope.
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Unfortunately, this program does not work as expected because the variable
definitions are not visible outside the conditional. The export directive is de-
signed to export variable definitions from an inner scope to its enclosing scope,
canceling the nested scoping status of the block. In the example, the problem
is solved by placing an export as the final statement in the branches of the
conditional.

if $(equal $(OSTYPE), Win32)
CC = cl
CFLAGS = /DWIN32
OSUFFIX = .obj
export

else
· · ·

3.4 Functions and Dynamic Scoping

One configuration pattern that arises often is to define the parameters of a
project as variables, using the variables to define the rules that describe how to
build the project. For an example, let’s consider the rules for building applica-
tions in Objective Caml [5], which have the following general form.

OCAMLC = ocamlc # Byte-code compiler
OCAMLCFLAGS = # Compiler options (initially empty)
# Compile an OCaml file
%.cmo: %.ml

$(OCAMLC) $(OCAMLCFLAGS) -c %.ml
# Link a program
OCamlProgram(target, deps) =

cmofiles = $(addsuffix .cmo, $(deps))
$(target): $(cmofiles)

$(OCAMLC) $(OCAMLCFLAGS) -o $(target) $(cmofiles)

In this definition, we intend these rules to be the default rules. For example,
even though the default compiler options OCAMLCFLAGS are empty, sub-projects
should be able to redefine the variable if they require particular options. This
presents a problem because, as we have stated, rules use the “most recent” defi-
nitions for variables, and these definitions are apparently fixed. Furthermore, the
number of parameter variables can be quite large, and it would be unreasonable
to require programmers to memorize them all.

The solution here is to use a definition of “most recent” as the most recent
dynamic definition, not the most recent static one. That is, we adopt the use of
dynamic scoping, rather than static scoping. With dynamic scoping, users of a
build library need only be aware of the variables that need to be specialized. For
example, the following code-fragment illustrates the temporary redefinition of
the OCAMLFLAGS variable. In this case, the OCamlProgram is called in a context
where the “-g” options has been added to OCAMLCFLAGS.
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· · ·
section

# Compile the program with “-g” flag
OCAMLCFLAGS += -g
OCamlProgram(myprog, file1 file2 file3)

3.5 Automated Dependency Analysis

One of our design objectives is that it should be possible to automate the infer-
ence of implicit dependencies. There are several reasons, but the most important
is that rule re-use becomes much more difficult when every rule is required to
state all of its dependencies explicitly.

Implicit dependencies arise through many factors, including references to files
in source code or applications, and they may change frequently as a project
is developed. Traditionally, programmers have used ad-hoc meta-programming
techniques, using a tool/compiler to generate the set of implicit dependencies,
and then grafting them into the build specification textually.

In fact, the tools for dependency analysis already exist in many cases, and it
takes very little for the build system to support them. To illustrate, the following
program fragment specifies a rule for dependency analysis of C program files.
The .SCANNER target is a directive, in this case indicating that the implicit
dependencies of an object file can be extracted by compiling the C source file
with the -MM option.

.SCANNER: scan-%.c: %.c
$(CC) $(CFLAGS) -MM %.c

%.o: %.c :scanner: scan-%.c
$(CC) $(CFLAGS) -c -o %.o %.c

The target of a scanner rule, in this case scan-%.c, is called a scanner-target,
and represents the dependencies generated by the build commands. The com-
mand itself prints the dependencies (for one or more targets) to its standard
output in make format.

Given a normal rule with targets targets and scanner dependencies deps, the
complete set of dependencies is the union of the explicit dependencies, the de-
pendencies generated by the scanner rules for each individual dependency, as
well as the scanner targets themselves, or

explicit-dependencies ∪ deps ∪
⋃

d∈deps

scanned-dependencies(targets, d).

3.6 Managing Subprojects

Our final design goal is that there must be a single build specification for an
entire project. In most software projects, the software codebase is divided among
several subdirectories, often, but not necessarily, along the lines of the software
components. Similarly, it is impractical for the build specification to be placed
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in a single file—instead it is more desirable to partition the specification along
directory lines.

We adopt guidelines as follows. Each project must have a single directory,
called the “root directory” (this is usually the root directory of the project). The
root directory contains a file named OMakeroot that defines the build specification.
Each build file may contain references to other directories of the project using a
rule of the form .SUBDIRS: dir1, . . . , dirn, where each subdirectory dir 1, . . . , dirn

defines its own build specification in a file named OMakefile.
Semantically, a .SUBDIRS directive acts as program inclusion in a nested scope.

That is, variables and rule definitions are passed down to subdirectories, but
definitions within a subdirectory are not propagated back to the parent. This
prevents interference between the build specifications in separate subdirectories,
and preserves compositionality. In addition, the ability to inherit values means
that parent directories can define default behavior that can be specialized within
the subdirectories.

3.7 Language Summary

At this point, it is worthwhile to revisit the design goals to see whether we have
achieved our objectives. One of our primary objectives is compositionality, which
we help ensure through the use of a pure language with well-defined scoping
rules (even parts of the system state are treated purely). While it is possible
for a programmer to achieve interference externally, for example through the
filesystem, the risk of inadvertent interference is greatly reduced.

Another of our goals is configurability and generality. In this case, although
the language is designed specifically for builds, it is general enough to cover a
wide range of tasks. The expressivity and simplicity of the language also help in
maintaining the build system. We have developed several large projects using a
variety of build systems including GNU make, Cons, and SCons. In our expe-
rience, specifications based on the designs presented here are significantly more
concise and easier to maintain. In addition, the .SUBDIRS approach to linking
subprojects (also a feature of the Cons and SCons systems), has been enormously
helpful for constructing simple, maintainable build specifications.

Finally, automated inference of implicit dependencies is important for ensur-
ing consistency and accuracy of builds. Our approach allows the leveraging of
existing dependency analyzers. In addition, the fact that the .SCANNER rules
have the same properties as the normal build rules allows the use of the full
build specification machinery, leading to concise, simple, yet flexible, and pow-
erful dependency analysis.

4 Implementation: The OMake Build System

We have implemented a build tool, called OMake, that follows the design require-
ments stated in the previous section. OMake is freely available at the OMake home
page http://omake.metaprl.org/ under the GNU General Public License, and
is actively being used in several large projects.
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The OMake system has four major components. The first of them is a compiler
that translates OMake specifications from the source language to an intermedi-
ate representation (IR). The second part is the interpreter capable of evaluating
OMake programs in their intermediate representation form. The third part of the
system is the build manager that keeps track of targets, dependencies and build
rules (in their explicit and implicit forms). The build manager is also responsible
for instantiating the implicit rules when needed and scheduling the build com-
mands for execution. Finally, the fourth component of the build system is the
shell interpreter that is responsible for executing individual build commands,
spawning external processes as necessary, and passing the control back to the
IR interpreter for commands that are to be executed internally.

Compiler. When performing a build, the OMake systems begins by reading the
specification files, starting with the OMakeroot file. Each file that is part of the
project specification is parsed and the code is transformed into an intermedi-
ate representation (IR). The translation process is straightforward; the IR is a
slightly simplified, slightly more explicit version of the source language; there
is little difference between the two. For every specification file, the resulting IR
is cached on disk; this allows skipping the parsing and compilation of that file
on subsequent executions of OMake (provided the given file does not change, of
course).

Interpreter. Once a specification file is read and its IR is generated (or loaded
from the cache), the OMake interpreter evaluates the IR. For the most part,
the interpreter implementation is fairly straightforward. One of the least trivial
parts of the interpreter is its handling of the variable environments. The variable
environment data structure is implemented as a functional immutable lookup
table where updates operate by partially copying the table. Each time a rule
(whether implicit or explicit) is encountered during evaluation, the interpreter
passes the rule and the current variable environment to the build manager as a
closure. The rule itself is not evaluated immediately. Thus, many versions of the
environment will be saved by the build manager. This approach is made cost-
effective through the use of functional data structures and extensive sharing.

Build manager. Once the build specification has been evaluated, control is
passed to the build manager, which now has a complete collection of build rules.
This is not yet a dependency graph because some of the rules are implicit, and
automated dependency analysis has not yet been performed. The build manager
is responsible for building the dependency tree and making sure that the goal
targets4 are brought up-to-date. Note that it is not always possible to fully
discover the dependency tree before the build process starts—it may be the case
that in order to discover the full set of implicit dependencies the build manager
will need to execute a number of .SCANNER rules and those rules may in turn
depend on targets that need to be built first. Because of this, the build manager
constructs the dependency tree in parallel with the main build process.
4 If the goal targets are not specified on the command line, the .DEFAULT target is the

goal.
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The build manager works by keeping a worklist of targets that need to be
brought up-to-date, each marked with a state specifying how far along the build
process for the particular target has progressed.

For each project, the build manager maintains a database where it stores
information about each rule that was successfully executed, including the full
set of dependencies, the commands text, side-effects, and targets. On successive
runs, the database is used to determine which targets are already up-to-date.

The shell interpreter. For portability, and a degree of efficiency, OMake in-
cludes a built-in command interpreter (this shell can be used both as part of the
build system and also as a standalone command interpreter). For the most part,
this is a straightforward task, involving standard methods for process creation
and management. However, one of our primary goals is to provide transparent
portability—OMake should behave similarly on all platforms, and Win32 in par-
ticular is problematic. Among the difficulties are the lack of a fork system call,
signals, process control, and terminal management. As a result, we developed a
compatibility library that emulates most of these features. The use of functional,
immutable data structures allows us to emulate the fork system call using threads
without the need for address space duplication.

Built-in functions and standard library. OMake provides a broad set of
functions for string and string arrays manipulation, input/output, including
functions that mirror the Unix standard IO library.

In addition, OMake provides a set of higher-level functions that can be used
in order to make a project work correctly on platforms like Win32 that do
not provide Unix-style file processing tools. The toolset includes functions that
mirror the core functionality of the Unix programs grep, sed, awk, and test.

As mentioned in Section 3.3, OMake includes a shared standard library of
variables, functions and implicit rules that can be used to significantly simplify
the build specifications for commonly used languages. Using the standard library,
simple projects in languages like C, OCaml, and LATEX can often be specified
with just a few lines of code, sometimes as little as one line.

5 Related Work

On Unix systems, the make program [3], originally designed by Feldman in 1979,
is the ubiquitous build system, especially for open source projects. There are at
least two reasons why make retains its popularity. First, the model is extremely
simple. Second, make does not require any particular project style, nor is it tied
to any particular programming language.

Since 1979, software projects have grown tremendously in size, and new ver-
sions of make have been developed, notably GNU make [9]. The usual model
with large projects is to split a project into multiple subdirectories, each with its
own Makefile describing how to build files in that subdirectory. Although this is
adequate in many cases, there are several issues with regard to scalability. First,
dependency analysis is based on timestamps. When a file is modified in any way,
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it may cause large portions of the project to be rebuilt even if the modification
was innocuous (for example, a change to a comment). Second, dependency infor-
mation is local to each Makefile in each subdirectory. One result of this is that the
subdirectories must be built in a specific order, and the graph of dependencies
between subdirectories must be acyclic. A third problem is that each Makefile
may have to duplicate a substantial portion of code also used in other Makefiles
(for example, one of the main features of the imake utility [2] is automated code
duplication).

A number of tools address some of these limitations. The Jam build system [11]
addresses the problem of cross-directory dependencies, by performing a global
dependency analysis and automating it so that dependency information is always
up-to-date. The Odin system [1] provides a truly global environment by using a
single cache for each user. In addition, Odin provides extensive support for build
variants based on the concept of a derived object that couples properties with a
file name.

The Cons tool [10], written in Perl, the SCons tool [8], written in Python,
go further by adding configurable dependency scanners and adopting the use
of MD5 digests instead of file timestamps. In both Cons and SCons, the build
system is closely integrated with the implementation language. That is, in order
to use these tools effectively, one must write build specifications in Perl (for
Cons), or Python (for SCons). One advantage is that the use of a general-purpose
programming language can reduce the amount of code duplication. However,
there are also disadvantages of these tools when compared with the make model.
In make, there is a clear separation between the language of Makefiles and the
implementation language (C). The make language was designed specifically for
specifying builds—it is clear and concise, it is widely used, and it is easy to
understand. The make language is better suited for build specifications than the
Perl or Python languages.

The Ant build system [4] takes another approach, where the build specifica-
tion is written declaratively as an XML specification. The Ant system allows
extensions written in Java.

We believe that one of the principal features that distinguishes OMake from
all of the above systems is the use of a language that is Turing complete, yet
preserves compositionality of build specifications. In addition, the language pre-
serves the basic spirit, model, and syntax of make, preserving its strengths while
addressing limitations of scalability and reliability.

6 Future Directions

While we are very satisfied with the convenience provided by the OMake tool,
there are a number of further enhancements that we are hoping to explore in
the future.

One of them is support for fixpoint builds (where certain dependency cycles
are allowed). Examples of projects that could benefit from this feature include
building self-hosting compilers (when a new version of a compiler is built using
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an older binary, one often wants to arrive at a fixpoint) and LATEX compilation
(one may need to re-run latex several times if the .aux file is changing).

In addition, we are investigating the use of modular namespaces as a means
of further improving scalability.

While OMake has some initial support for distributing builds over several dif-
ferent computers, it will probably require additional work before it is fully usable.
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Abstract. Recent complicated software functions have made it difficult
for end users to operate them. Thus, it becomes important to learn how
to operate them easily and effectively. Employing a tutorial system is the
most suitable approach for learning how to operate software functions.
A tutorial system demonstrates the how to operate using the actual soft-
ware. As a result, end users can learn the usage as if they were actually
using the software. However, development of tutorial systems requires
much time and costs. Therefore, we propose a method of generating tu-
torial systems based on use case diagrams, sequence diagrams and test
cases. In our method, a generated tutorial system shows function names
extracted from use case diagrams, the how to operate along with sequence
diagrams, and text string input and item selection using data from test
cases. The generated tutorial system is then added to the source code
for use in AOP (aspect-oriented programming).

1 Introduction

Recently, computer usage has become widespread, and various tasks have been
computerized. Many kinds of software have been developed with many functions.
Therefore, software usage tends to be complicated due to these many functions.
It becomes more difficult for end users to learn how to operate software. It is im-
portant to provide support methods by which end users can learn the operation
of the software. Now, there are some support methods for end user learning, such
as online manuals, help systems, animated demonstrations and tutorial systems.
In this paper, among the many end user learning methods, we particularly focus
on tutorial systems.

A tutorial system has been used by end users for learning how to operate
software. A tutorial system demonstrates the usage on the running software.
When end users learn the usage of the software using a tutorial system, they
can learn the sequences of operations as if they were actually using the software
without interruption.

There are some advantages of a tutorial system over other many support
methods:
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– End users can easily understand the purpose of each operation and the re-
lationships among the operations.

– End users can interactively learn the software operation with the tutorial
system. Thus, they can understand software operation using the tutorial
system better than using an animated demonstration system.

However, currently, there are few built-in tutorial systems for software. Be-
cause the structures of software have now become highly complicated and have
many functions, the development of tutorial systems places a heavy burden on
software developers, and the cost is high.

In this paper, we propose a method for automatically generating a tuto-
rial system based on use case diagrams, sequence diagrams [1] and test data
provided by developers. These diagrams and data are made in the software
development process. A generated tutorial system is woven into the software
using AspectJ [2]. Using our method, it becomes easier to develop a tutorial
system.

2 Tutorial System in Our Method

As an example, a tutorial system of address book software is shown in Figure
1. The right-hand window is a window of the tutorial system generated by our
method. The left-hand window is a window of the address book software.

The software into which a generated tutorial system is woven is called target
software in this paper.

Fig. 1. Tutorial for address book software
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In our method, the generated tutorial system, has the following features:

Showing Software Functions and Operations

In our method, the use case names are extracted from the use case diagrams for
use as software function names in the tutorial system. The names of functions
available in the software are shown in the tutorial system, and end users select
the function they wish to learn. Then, the sequences of required operation steps
extracted from sequence diagrams are shown step by step. The sequence of op-
eration steps is described using itemized sentences in the tutorial system. End
users can watch how the software function is operated, as well as the reaction of
the software, continuously without any interruption. The sentence that explains
the current operation is changed to have a vivid color and a large character size
in the tutorial system window. Thus, it is easy to understand how to operate
the software.

Showing Examples of Software Usage

The tutorial system shows a mouse pointer on a widget (Each part of a GUI,
such as buttons, is called a widget.) in the target software at the same time
highlighting the sentence explaining the current operation. At the same time,
the required mouse operations are shown, such as clicking a button and choosing
the radio button. End users can easily understand the sequences of operation
steps required for the function by watching the software demonstration without
interruption.

Demonstrating Input Texts

When it is necessary to input text for text fields, the tutorial system demon-
strates an actual text input. The input text is not meaningless text but suitable

Fig. 2. Tutorial ”Add Address”
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Fig. 3. Tutorial for sample input name

text extracted from the test data. We assume that the input text is the typical
data in using the function. Therefore, end users can understand examples of
actual data and how to input text for pertinent text fields.

In Figure 2, a user selects the tutorial “Add Address” is shown and how to
operate for adding a new address.

The sequence of operations is displayed in the tutorial window as itemized
sentences describing the steps in sequential order, and each step is numbered.
When the end user selects the tutorial “Add Address”, the explaining text which
is “Please select Add button to add address.” in Figure 2 is changed to have a
vivid color and a large character size in the tutorial system window. Similarly,
“Taro Waseda”, the sample input name extracted from the test data, is entered
automatically by the tutorial system. Also, the mouse pointer is moved to this
text field. This example is shown in Figure 3.

3 Features of Our Work

3.1 Development Specification for Generated Tutorial System

In this paper, we propose a method for automatically generating a tutorial sys-
tem for target software. Generating a tutorial system allows end users to effi-
ciently learn how to operate the target software. The tutorial system is generated
automatically on the basis of these specifications, which are use case diagrams,
sequence diagrams and test data. Use case diagrams are used in the analysis
phase of object-oriented software development, to describe software functions.
Sequence diagrams are used for describing interaction between objects in order.
An example of a use case diagram for the address book software in section 2
is shown in Figure 4, and an example of a sequence diagram in the case of the
”Add Address” function is shown in Figure 5.



Automatic Generation of Tutorial Systems from Development Specification 83

Fig. 4. Example of use case diagram

Fig. 5. Example of sequence diagram

In our system, diagrams described by the XMI (XML Metadata Interchange)
[3] format are used. The XMI format is the standard file format for describing
UML diagrams. Using the XMI format, use case diagrams and sequence diagrams
provided by the existing UML modeling software can be generated for a tutorial
system. Examples of UML modeling software supporting the XMI format are
Rational Rose [4] and IIOSS [5].

In our research, the flows of procedures within use cases are described using
sequence diagrams, and extra descriptions are added in the sequence diagrams.
Target software developers combine the widget name, presentation sentence, and
test data for input text, with the messages of sequence diagrams, and specify
the window objects of sequence diagrams.
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Window Objects

Target software developers are required to specify objects, which have widgets
on GUI windows in the sequence diagrams. Thus, our system can specify the
widgets that correspond to the objects, and our method can operate the tutorial
system for the software. These objects are called window objects in our method.
For example, ”:AddressbookManager” and ”:AddressInputForm” are the window
objects seen in Figure 5.

Presentation Sentences

Target software developers are required to add extra descriptions to the messages
of sequence diagrams. The extra descriptions are texts, which explain to users
how to operate software functions. These extra descriptions are displayed to
end users as explanations of the usage when the tutorial system is generated.
For example, ‘Click the ”add” button to add the address’ and ”Please input
the name” are the extra descriptions seen in Figure 5. These texts are called
presentation sentences in our method.

Widget Variables

The names of the widget variables in a source code must be added to the messages
of a sequence diagram. These widgets are operated by the end user, such as input
text and select an item.

In our method, we assume the Java Swing set to be widgets. Typical wid-
get variables that must be added are buttons (JButton), menus (JMenuItem),
and check boxes (JCheckBox). For example, “addBtn”, “nameTxt” and “ad-
dressTxt” are shown in Figure 5. However, widgets that are not operated by the
end user, such as labels (JLabel) and panels (JPanel), do not need to be added
to messages. Using a widget name, the coordinates of each widget in a window
can be calculated. A demonstration of mouse pointer movement based on the
coordinates of each widget is performed.

Also, each widget has a method that substitutes for the end user operation.
For example, “JButton” has a method called “doClick()” which substitutes for a
mouse click of the end user, and “JTextFields” has a method called “setText()”
which substitutes for a data input of the end user. The tutorial system calls
these widget methods for widget operation.

Test Data for Input Text

When widgets require text data, the tutorial system should show an example of
the input. For this purpose, existing test data is used. In our method, we assume
that the required test data is typical data for using the function. In this paper,
we use the test data of JFCUnit [6]. JFCUnit is a software testing tool for Java
Swing. The test data of JFCUnit is described as the correspondence a widget
variable and a text datum. Therefore, the tutorial system can use the input text
data by checking widget variables in sequence diagrams and in test data.
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3.2 Added Tutorial System

The generated tutorial system is described using the AspectJ code. AspectJ is
the one of the software tools that use aspect-oriented programming (AOP) [7].
To implement the tutorial system, the following two processes need to be added
to the target software:

– Get the coordinates of widgets on the screen for showing the mouse pointer.
– Operate each widget, such as a mouse click and a text input

These two processes have to be added to each widget in the software. That is,
they cannot be created as one class. They have to be added to many classes which
process widget generation. Therefore, these two processes can be considered as
crosscut concerns of AspectJ. Thus, these two processes are generated as AspectJ
code in our method. It is possible to weave a tutorial system into target software
without modifying the source code. Therefore, developers can easily maintain
software.

4 System Architecture of ACTS

The system architecture of our system, called ACTS (Automatic Creation of Tu-
torial System), is shown in Figure 6. ACTS consists of the following five steps.

1. Adding extra description to sequence diagrams
2. Extracting function name from use case diagrams
3. Extracting operation information from sequence diagrams
4. Generating tutorial system automatically
5. Weaving tutorial system into target software automatically

4.1 Adding Extra Description to Sequence Diagrams

Target software developers output the use case diagrams and sequence diagrams
described using various UML tools. Outputted data is written in the XMI for-
mat. ACTS creates a file in which required descriptions for generating a tutorial
system are added to XMI-formatted sequence diagrams. The required descrip-
tions are the widget variables, presentation sentences and test data for input
text, and combined with the messages of sequence diagrams. Also, the window
objects are specified in sequence diagrams. These extra descriptions are added
by the target software developers. And ACTS adds test data of JFCUnit as input
text to sequence diagrams.

4.2 Extracting Function Name from Use Case Diagrams

From the described use case diagrams, ACTS extracts the use case names of soft-
ware functions used by the tutorial system. End users can watch an explanation
of usage for a function by selecting the function name.
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Fig. 6. System architecture of ACTS

4.3 Extracting Operation Information from Sequence Diagrams

ACTS extracts window object names and widget names from the described se-
quence diagrams. By using a widget name, the coordinates of each widget in a
window can be calculated. A demonstration of mouse pointer movement based
on the coordinates of each widget is performed. In our method, a mouse pointer
is created as a visual image, and it is moved to each widget. Thus, our system
can implement a demonstration of mouse pointer movement virtually.

The order in which the operations of the function are carried out is extracted
from the flow of messages described in the sequence diagrams. By adding the
explanation sentences of operations to the sequence diagrams, a suitable timing
for displaying the explanation of an operation can be extracted.

4.4 Generating Tutorial System Automatically

A tutorial system is automatically generated by extracting function names from
use case diagrams and information on how to operate the functions from sequence
diagrams.

The procedure is shown as follows:

1. A process for displaying the function based on the extracted function name
is generated for a tutorial.
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2. An operation procedure based on the flow of the operation information in
the messages of the sequence diagrams is constructed.

3. According to the constructed operation procedure, a process for the demon-
stration of mouse pointer movement from the location of the GUI widgets
and end user operation is generated.

4. A process for displaying the explanation of the operation following the
demonstration of mouse pointer movement is generated.

Generated source codes based on above the procedure include following
contents.

– ACTS generates Java source codes creating a window. This window consists
of buttons for representing function names of the target software and a text
area for displaying the presentation sentences for the tutorial system.

– ACTS generates AspectJ source codes which demonstrate mouse pointer
movement virtually based on the coordinates of widgets in the target soft-
ware.

– ACTS generates Java source codes which display presentation sentences
based on the operation procedure extracted from sequence diagrams.

4.5 Weaving Tutorial System into Target Software Automatically

Target software developers can add tutorial system to the target software by
compiling generated Java source codes and weaving generated AspectJ source
codes into the target software.

Widget names described in sequence diagrams are written in these AspectJ
source codes. AspectJ software searches the target software for the same widget

Fig. 7. A summary of clicking the button of ”Add Address”



88 H. Iwata, J. Shirogane, and Y. Fukazawa

names as the widget names written in generated AspectJ source code, and weaves
necessary codes into the target software, such as the procedure of getting the
coordinates of widgets and displays the presentation sentences.

The summary of weaving generated AspectJ source code into target software
is shown in Figure7. This is an example of clicking the button of ”Add Address”
in address book software.

In the example of address book software, AspectJ searches the widget name
”addBtn” from the target software, because ”addBtn” is written in the Point-
cut of generated AspectJ source code(Figure7). AspectJ software adds following
procedures to the found widget ”addBtn” button.

– Get the coordinates of this button on the screen
– Show a mouse pointer on this button
– Highlight the presentation sentences when the current operation step of

demonstration is about this button.

5 Evaluation

5.1 Add Some Extra Descriptions

Using the sequence diagrams of the following three types of software, we evalu-
ate the burden placed on developers by the requirement of generating tutorial
systems.

– Address book system software
– Mail-order system [8]
– Video rental system [9]

We counted the number of use cases, sequence diagrams, objects in each
sequence diagram, and messages in each sequence diagram. The results are shown
in Table 1. In this table, ”Address” represents address book software, ”Mail”
represents mail-order system, and ”Video” represents video rental system.

In our method, developers are required to add some extra descriptions to
sequence diagrams. The required descriptions of sequence diagrams are the fol-
lowing three

– Specifying window objects
– Adding widget variables and explanation sentences of operations
– Adding text input examples for widgets

As shown in Table 1, “Window objects” indicates the number of specified
window objects. “Extra descriptions” indicates the number of messages added as
explanation sentences of operations and widget variables. “Extra text” indicates
the number of messages added as examples of input text.

We verified that the rate of specified window objects per total number of
objects is about 50% - 60%. The number of messages with extra descriptions
added per total number of messages is about 50% - 60%. In these evaluations,
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Table 1. Number of descriptions

Address Mail Video

Use cases 4 15 7

Sequence diagrams 6 19 31

Objects 19 50 165

Window objects 13 28 95

Messages 53 102 379

Extra descriptions 32 51 138

Extra text 12 14 39

required extra descriptions for generating a tutorial system are of the same rate
for other software tutorial systems.

Moreover, the number of messages with text input per total number of mes-
sages is about 10% - 20%. Input text is extracted from test data. Developers
only select suitable test data. Therefore, developers are not required to create
new input data for our method. The target software developers’ burden does not
become so big.

5.2 Correctness of Software Operation

Using the address book system software and video rental system, we evaluated
whether the tutorial system generated by our method performs software opera-
tion correctly.

While executing the tutorial system, the following use cases were always per-
forming correctly.

– “Add address data” in address book system software
– “Record new video” in video rental system
– “Record new cast” in video rental system

However, when the software did not have saved data, some use cases were not
performed. For example, the following use cases were not performed.

– “Edit address data” in address book system software
– “Search video” in video rental system
– “Search cast” in video rental system

Therefore, when a use case needs some saved data, it is necessary to prepare
the saved data for tutorial execution, or to specify the order in which tutorial
execution is performed.

Next, we evaluate the correctness of performing the operations. The result is
shown in Table 2. “Widgets” indicates the number of widgets, “Operating wid-
gets” indicates the number of widgets operated by end users, “Performed operat-
ing widgets” indicates the number of widgets performing the operations correctly.

While executing the tutorial system, typical operations, such as clicking but-
tons (JButton), checking check boxes (JCheckBox) and selecting radio buttons
(JRadioButton), were always performed correctly.
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Table 2. Number of widgets and performed widgets

Address Video

Widgets 26 234

Operating widgets 14 77

Performed operating widgets 14 74

For the widgets that require input text data from end users, for example, text
fields (JTextField) and text areas (JTextArea), the text data was automatically
entered into the widget.

However, for the dialog boxes using JOptionPane, the tutorial system could
not operate the widgets in the dialog boxes. The reason for this is as follows:
Software with a GUI extended objects such as JFrame and JDialog often cre-
ates widgets in the constructor. That is, an instance of the extended object for
displaying a GUI window on the screen is created.

At the same time, to display a dialog box on the screen an instance of JOp-
tionPane is created. On JOptionPane, at least, some buttons are prepared as part
of JOptionPane. The tutorial system cannot operate these prepared buttons on
JOptionPane.Therefore, we should consider methods for operating JOptionPane.

6 Related Works

There are some existing methods for supporting the process of learning how to
operate software. These include the user navigation system, the support system
for learning how to operate software on the basis of operation logs, the GUI
cover system, and other tutorial generation systems.

User Navigation System

The support system for learning how to operate software on the basis of operation
logs takes the logs of user operations and uses them to understand the target
function. This system analyzes the users’ operations according to the goal. The
next time the user uses the software, this system can show operations for that
goal.

The following study is proposed for this method: development of a system
which stores a log of a user’s operations on a HCI (Human Computer Interaction)
server, creates a model of the operations from this log, and then shows the
operation [10].

The support system for learning how to operate software on the basis of
recorded operation logs has the advantage of being able to allow user operation
habits to be reflected in the next learning support session.

However, since it cannot determine which operation should be performed for
the entire set of end users, this support system cannot perform an analysis using
the end users operation log. Moreover, it is not necessarily that other users’
operation logs are suitable for end user learning.
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That is, this method is for users using the software many times; it is unsuitable
as a learning aid for end users who use the software for the first time.

GUI Cover System

The GUI cover system [12] is a system that creates a new GUI screen which is
different from the software’s original GUI, and which makes operation possible on
the new GUI. The new GUI screen is presented by hiding the software’s original
GUI; the new GUI screen, which functions as a substitute for the software’s
original GUI, link end user operations to software functions.

The GUI cover system involves preparing a GUI that can only be used for
basic functions, even if it is for on advanced piece of software. The end users can
change the GUI according to their preferences.

However, when a GUI cover is removed, it is noted as a disability that end
users cannot operate the equivalent software function. That is, for end users
who do not know how to use a new piece of software, a GUI cover system can
reduce the burden on end users for learning the operations. However, when end
users must use the software’s original GUI, the learning effect is found to be
inadequate.

Jedemo

Jedemo is a demonstration-authoring tool for Java applets [11].
In this method, developers add event-driven functions to a Java applet. The

recorded event-driven functions operate the software automatically. Moreover,
the event for automation is recordable from an operation. This method creates
the help functions for Java applet software.

These are the advantages Jedemo:

– Since animated help functions can be created, new examination texts that
software developers have to write are reduced.

– End users only need to push one button to see a demonstration of a concrete
operation method.

Although these advantages do fulfill the aims of this method, the following
points are noted as disadvantages. In order to generate a tutorial system, it
is necessary to describe a new rule for introducing the concept of event-driven
functions. In our method, a tutorial system is generated on the basis of use
case diagrams and sequence diagrams, and these diagrams have already been
described in the development stage. Therefore, our method imposes a smaller
burden than this method.

7 Conclusions

In this paper, we propose a method for enabling developers to automatically
weave a tutorial system into existing software, on the basis of use case diagrams,
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sequence diagrams and test data. Using the tutorial system, end users can easily
learn the operation of the software.

The following subjects remain for future work:

– Improvement of operation replication. A generated tutorial system in our
method will support more GUI widgets.

– Supporting more test data formats. In this paper, at this moment, we use
the test data for JFCUnit. We will support more GUI test tools.
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Abstract. Software project managers use a variety of informal methods
to track the progress of development and refine project schedules. Previ-
ous formal techniques have generally assumed a constant implementation
pace. This is at odds with the experience and intuition of many project
managers. We present a simple model for charting the pace of software
development and helping managers understand the changing implemen-
tation pace of a project. The model was validated against data collected
from the implementation of several large projects.

1 Introduction

Modern software development practices rely on periodically collected software
metrics derived from a code base to provide management with feedback about
the project and the process used to develop it [1, 2]. Well-defined and proven
code metrics exist for some areas of software development [3, 4, 5], however the
pace of implementation has no such established metrics based on code attributes.
Several alternative, non-code-based progress metrics, such as function points [6]
and earned value [1, 7], have been proposed and widely used. We believe it is
possible to leverage existing size metrics to directly monitor progress in a code
base, but to date such an approach has not been widely employed.

Here we propose implementation progress model based on development arti-
facts to interpret metrics and bridge the gap between concrete sampled data and
expectations or beliefs about the underlaying process. On a small scale, this type
of model may act as a predictor to set expectations over the next few data sam-
ples. This small-scale prediction helps provide timely feedback to management
on the state of a project. Viewing a whole project, a model provides a portrait
of the entire implementation process.

Without a formal, code-based implementation model management must rely
on evidence other than implementation artifacts when making decisions about a
project. In contrast, a formal implementation progress model based on implemen-
tation artifacts does not rely on external evidence yet establishes critical parame-
ters and allows objectively evaluation based on inherent artifact attributes. Here
we propose an implementation progress model based on implementation artifact
metrics that matches our intuitive understanding of implementation progress.
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The next section discusses supporting work. Section 3 describes the hypothe-
sis, proposed implementation progress model, and research process. Results from
actual projects are presented in Section 4. Finally, conclusions and directions for
future study are in Section 5.

2 Related Work

Schneidewind uses time-series metrics to create a method for evaluating process
stability [8]. Schneidewind asserts that metric trends are an indicator of the
underlying process and that monitoring the trends can support managing the
process. He suggests the shape of time-series data can be used to identify critical
moments within a project. To further quantify project trends, an indirect metric
based on time-series data is used. He defines a change metric as the difference
between consecutive measurements of a primary metric. The model proposed
here introduces a growth metric appropriate in the context of measuring project
progress.

While discussing project progress, McConnell defines code growth for a project
as the total size of project (source code) as a function of project time [2]. Code
growth of traditional iterative development contains three distinct phases. In the
first phase, architectural development and detailed design generate little code.
The second phase provides staged deliveries and includes detailed design, coding,
and unit testing. During this phase code growth is very high. Approaching initial
delivery, the third phase, code growth slows to a crawl. Typical phase transitions
occur at approximately 25% and 85% of the total implementation time for well-
managed projects [2]. Specific details are not provided about metrics, but source
lines of code, or a similar size metric, is assumed.

McConnell encourages the collection of time-series data to provide feedback
supporting project management. Specifically, he recommends that collected data
be viewed graphically since the shape can be used to diagnose project health. He
graphically depicts the typical code growth pattern for a well-managed project,
but acknowledges that its details varies to some degree. Our proposed progress
model provides an empirical representation of the overall project shape and
provides a specific interpretation of the three phases documented by McConnell.

3 Defining a Formal Progress Model

3.1 Informal Progress Models

Informal (non-mathematical) progress models already exist; as seen in project
vocabulary and assumptions. Informal models are commonly used to answer
project status queries, such as:

When will it be done, based on the current pace?
What was the size of the total effort for that project?
What fraction of the total effort has been spent?
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Such informal progress models capture another key attribute of implemen-
tation progress. The informal model acknowledges that project speed is not
constant throughout a project; projects “ramp up” and “slow down”. These
phrases refer to project speed and suggest the ability or desire to determine
implementation velocity. As envisioned by experienced project managers, this
velocity increases at the beginning and decreases near the end [2]. This is pos-
sibly an instance of the ”S” shape progress or growth curse which is observed
not only in projects but also in many other domains. A formal implementation
progress model should be informed by this experience and capture the variations
in velocity during implementation.

A formal implementation model should serve the same purpose as the informal
model. The model must help answers questions about implementation speed and
progress of current projects and provide a framework for making predictions
about the future of the project. For example, changes in the rate of progress in
an otherwise stable environment may indicate the project has transitioned to a
new phase. This assumes the rate of progress is dependent on the project state.

3.2 Requirements for a Formal Progress Model

The interpretive power of an implementation progress model is important to
consider. Interpretation of metric data relies on some understanding of our belief
about the underlying process. In general, model parameters should be few in
number, directly interpretable, and measured in existing units. These properties
give the model parameters the most meaning and thus give the model the most
explanatory power.

An implementation progress model should approximate actual project data
collected. Figure 1 shows accumulated source lines of code sampled from the
implementation phase of one project studied. The data in Figure 1 is very similar
to the S-like curve described by McConnell [2].

This graph demonstrates the important characteristics of typical progress
data. Overall progress is not linear with time; the fastest pace occurs during the
middle of the project, while the ends are slower paced. The slope of the progress
curve indicates the speed of progress.

3.3 Formal Implementation Progress Model

The primary goal of software implementation is creation of artifacts which con-
tribute to delivering a working system. Implementation progress can be measured
as change in an artifact. Progress over time can be measured as the sum of in-
dividual changes. We define implementation progress as the accumulated effort
captured in code, which will eventually be delivered to the customer. For environ-
ments and development phases that emphasize code as the primary engineering
delivery, we feel this is an appropriate definition.

Implementation metrics, traditionally used to measure size, can be employed
to measure progress. Here we define a growth metric as the absolute difference
between consecutive samples of a size metric, as shown in (1).
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Fig. 1. Accumulated source lines of code changed for a sample project by day

Δmt = |mt −mt−1| (1)

Where Δmt is the growth in a metric m at time t.
Also useful is the idea of implementation velocity [9]; the rate at which

progress is being made on a project. Evidence suggests implementation velocity
begins and ends at zero while being at its highest in the middle. The simplest im-
plementation velocity graph, consistent with experience, consists of three linear
segments. Implementation velocity begins at zero. It increases linearly until the
maximum sustainable velocity for implementation has been reached. The veloc-
ity remains constant until near the end of implementation when it begins to de-
crease. Then, implementation velocity constantly decreases until it reaches zero.

Figure 2 shows the idealized implementation velocity for a project as a func-
tion of time. The horizontal, center phase represents the steady, efficient devel-
opment observed in the middle of the implementation phase. The positive slope
at the left represents increasing velocity as implementation “gathers speed”. The
negative slope at the end of the graph shows the implementation phase decreas-
ing speed as the end approaches.

The idealized graph shown here is symmetric; however, symmetry is not com-
mon in practice and is not required by the model presented. The idealized ve-
locity as a function of time (vt) can be described using three parameters.

vt =

⎧⎪⎨
⎪⎩

s t
tp

, 0 ≤ t < tp
s, tp ≤ t < tq

s
(t−tf )
tq−tf

, tq ≤ t ≤ tf

(2)

In (2) the velocity is given as a function of time, where s is the maximum
sustained velocity, tp and tq are the times of the phase transitions, and tf is
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Fig. 2. Idealized implementation velocity as a function of time

the time at the end of implementation. Time may be measured in any real unit,
such as days. Velocity is measured in size of metric change per time unit, such
as lines of code per day.

Integration of the idealized velocity for a project produces idealized progress
as a function of time (pt).

pt =

⎧⎪⎪⎨
⎪⎪⎩

s t2

2tp
, 0 ≤ t < tp

st− 1
2stp, tp ≤ t < tq

s
(t2−2tf t+t2q+tptf−tptq)

2(tq−tf ) , tq ≤ t ≤ tf

(3)

The idealized implementation progress curve as a function of time is shown in
(3). Progress is measured in accumulated metric growth to date, such as total
lines of code changed.

4 Model Validation

We examined several size metrics as the basis for the growth metric used in
our model [10]. Source lines of code (SLOC) is frequently used for estimating
resources needed and should be readily available in most development environ-
ments [6, 11, 12, 13]. In this study, lines containing only white space and lines
consisting of comment characters without any alphabetic characters were not
counted. In addition, physical lines containing both code and comments were
counted as two lines.

Two variations on the SLOC metric were considered. The simplest form counts
the SLOC change (SLOCC) for each file. SLOCC is the absolute difference in
SLOC between source files consecutively committed to the project repository;
it counts SLOC added or deleted from the previous version. This assumes the
correct removal of code artifacts is equivalent in terms of effort as correctly
adding to the code base. We realize this may not strictly be the case, but it is
difficult to determine what an appropriate weighting factor should be. To avoid
introducing a weighting factor for this study, we assume all changes represent
equal effort.
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The second form measures the number of lines actually changed between
submissions by comparing the files. This second measure is sometimes referred
to as code churn (CHURN) [14]. CHURN is the count of source lines inserted,
deleted, or changed between consecutively committed source files. It is probably
a better change metric than SLOCC since CHURN captures more effort.

4.1 Alternative Models

Parameterized models provide an approximation of the sampled data for a par-
ticular data set. The model curve which most closely fits the data is considered
the best; it introduces the least error. Model fit can be measured using the
squared residual after subtracting the model curve from the sample data. To
allow comparisons between models the average squared residual error (R2) is
used. The model with the lowest R2 for a particular data set provides the closest
approximation.

In addition to the proposed implementation progress model, three alternative
models were chosen to provide a context for evaluating the fit of the proposed
model.

The first model was a linear approximation. The linear model curve is given
by (4). Linear approximation, with only two parameters, represents a practical
lower-bound on the number of model parameters and the model with the highest
expected R2.

lineart = at + b (4)

The second alternative model chosen was a multiphase, piecewise parabolic
approximation. It contains eleven parameters; its model curve is shown in (5).
This model was chosen to represent a practical lower-bound on R2.

multiphaset =

⎧⎨
⎩

at2 + bt + c, 0 ≤ t < tp
dt2 + et + f, tp ≤ t < tq
gt2 + ht + i, tq ≤ t < tf

(5)

The multiphase model was chosen to provide an highly data-conforming
model. The proposed model is a special case of (5).

The third model was a third-degree polynomial approximation, with four
parameters as shown in (6). A third-degree polynomial approximation provides
just enough flexibility to model the S-curve observed. It also provides a model
of approximately the same number of parameters as the proposed model.

polynomialt = at3 + bt2 + ct + d (6)

4.2 Experimental Data

Seventeen projects from a single company were studied. All projects were devel-
oped using the same iterative process. They were six weeks to eighteen months in
length and involved one to eight engineers. All projects produced entertainment
and education oriented software designed to be marketed to consumers for use
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with Microsoft R© Windows R© and on Macintosh R© personal computers between
1995 and 2002. In this environment, before the prevalence of the Internet, once
this type of consumer product was released to manufacturing, no maintenance
changes were possible due to economic considerations. Manufacturing and dis-
tribution costs meant the projects had clear delivery dates after which no work
was to be done. This is unlike other environments, where software is delivered
in near real-time or deployed, and implementation evolves into a continuous
cycle of maintenance. The progress model studied is expected to be meaningful
when applied to each release of on-going projects, however additional studies will
be needed to establish this. We expect results from this homogeneous group of
projects will apply to initial development efforts of iteratively developed projects
and to projects without maintenance phases.

4.3 Model Fitting Results

Evaluations of both metrics for each project were performed. The three alter-
native models described above and the proposed model were used. A numerical
fitting routine was used to find parameter values that minimized R2.

Figure 3 shows progress measured via accumulated SLOCC and model curves
for a project. As expected, the linear model provides a poor fit for the data and
the multiphase model fits the data very accurately. Both the polynomial and
proposed models provide fits between the linear and multiphase models.

The polynomial model exhibits wild “swings” near the ends. These swings
are typical of polynomial curves which tend to favor data points near the center
rather than the ends. In this case, the polynomial model suggests a “negative”
amount of accumulated work had been accomplished until about day forty of the
project. Similarly, it indicates reverse-progress begins to occur around day 220.
In almost all cases, these polynomial model swings suggest negative progress
occurs at the beginning and end of the project.

The multiphase model includes discontinuities, occurring on day 72 and 138.
These discontinuities represent an instantaneous change in speed, which is incon-
sistent with an intuitive understanding of the process. In general, small changes
in a data set may radically change the location and size of the discontinuities,
which suggests the model does not accurately represent the implementation
process.

The average squared residual error (R2) for each model is given in the legend
of Figure 3. The values agree with a visual assessment of the fit except in the
case of the polynomial model. While the lower R2 for the polynomial model
is more desirable, the polynomial fit suffers extensively from undesirable swings
near the ends. These swings violate a basic expectation of accumulated progress,
that is, it should be monotonically increasing. While the proposed model has a
larger R2, it is monotonically increasing and behaves as expected. This behavior
appears to support in-project predictions better than the polynomial model.

In this project, most of the proposed model R2 can be seen to occur in the first
third of the project. Each of the other three metrics show similar results; this
may indicate early efforts are not as efficiently captured by the metrics as later
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Fig. 3. Progress measured via accumulated source lines of code change (SLOCC) for
project nine and progress model curves (with R2)

efforts. It could also indicate that during the later part of the project, the pace
was unpredictably high (in violation of the implied model). Without additional
information about the project, or its context, a determination cannot be made.

4.4 Data Analysis

The R2 for each metric is given in Tables 1 and 2. Figures 4 and 5 show R2

relative to the linear model R2 for each project. To improve viewing, projects
are ordered by polynomial model relative R2.

In all cases the proposed model reduces R2 compared with the linear model, as
expected, since the proposed model has an additional parameter. In many cases
the proposed model substantially reduces R2 when compared with a linear model.
In a few of these cases the reduction in R2 is almost to the level achieved using
the multiphase model. In these conforming cases the proposed model provides a
meaningful interpretation of the data.

Consider the proposed model R2 compared with the linear model R2. In cases
where the proposed model substantially reduces R2, the model gave improved
results with the addition of a single parameter. This substantial improvement
suggests the data conforms to the model and the results may be relied upon to
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Table 1. R2 measuring source lines of code changed (SLOCC)

Model R2 (in millions)

Project samples linear polynomial proposed multiphase

1a 129 0.0667 0.0482 0.0434 0.0094
1b 1408 1.8269 1.6747 1.1458 0.4171
3 406 3.8133 0.9391 0.6371 0.0762
4 1394 1.0997 0.5958 0.6843 0.1176
5 90 0.0316 0.0108 0.0094 0.0021
6 1455 8.6590 2.0236 2.4551 0.2863
7 2204 12.3603 3.0171 4.0937 0.7440
8 138 0.0915 0.0245 0.0239 0.0028
9 1555 11.3106 1.1201 2.1672 0.2127
10 481 0.4575 0.0738 0.0386 0.0147
11 164 0.0111 0.0043 0.0037 0.0017
13 1274 2.4112 0.8349 0.8790 0.1589
14 715 0.4516 0.1139 0.1331 0.0181
15 723 0.1256 0.1215 0.1074 0.0210
17 827 2.9719 1.1158 1.2222 0.2215
19 967 6.3210 2.6441 1.7401 0.2475
20 1214 1.9231 0.3513 0.1566 0.0414

Table 2. R2 measuring code churn (CHURN)

Model R2 (in millions)

Project samples linear polynomial proposed multiphase

1a 129 0.3485 0.2205 0.1601 0.0289
1b 1408 22.0988 8.2642 15.6206 1.7608
3 406 19.6692 4.9855 3.4455 0.2821
4 1394 2.6183 1.7401 2.0264 0.5516
5 90 0.2008 0.0530 0.0590 0.0119
6 1455 19.7174 5.3214 5.7359 0.8605
7 2204 36.1142 9.8627 12.7864 1.9951
8 138 0.2487 0.0674 0.0549 0.0087
9 1555 49.1829 4.7964 9.3587 0.8686
10 481 8.9162 2.8376 3.0023 0.0517
11 164 0.0362 0.0203 0.0155 0.0077
13 1274 9.4001 3.9973 3.2209 0.7597
14 715 1.7914 0.4591 0.5131 0.0593
15 723 0.4844 0.4684 0.4064 0.0814
17 827 11.0583 3.1825 3.3451 0.7040
19 967 20.5449 8.5899 5.9072 0.5758
20 1214 7.8927 1.7450 0.8902 0.1993



102 D. Towell and J. Denton

9 10 20 6 7 3 14 8 5 13 17 11 19 4 1a 1b 15

multiphase 
proposed 

polynomial 
linear 

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 4. Source lines of code change (SLOCC) average squared residual error (R2) rel-
ative to linear R2
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Fig. 5. Code churn (CHURN) average squared residual error (R2) relative to linear R2

correctly interpret the data. In the non-conforming cases, where the reduction
is less significant, the model may not be appropriate and the results should only
be used judiciously. Based on the available projects, we suggest the proposed
model may be relied upon when the R2 is at most half that of the linear model.
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Projects may fail to conform to the model for a number of reasons. Almost
all projects exhibit “pauses” corresponding with weekends when developers do
no work. Some projects also include larger periods when no apparent progress
is made during a holiday break. Both of these phenomena can be seen clearly
in projects 1a and 15. Using work days instead of calendar days would elimi-
nate a major cause of time-related noise. Several projects include substantial,
sudden, and anomalous progress. In all cases where these events were examined
closely, the anomaly has proven to be the result of an unfortunate side-effect
of the specific data collection procedure used. For example, a renamed file was
detected as a combination of a substantial deletion and a subsequent addition. A
commitment to collect the needed data during the project could reduce noise by
allowing anomalies to be detected and corrected while any additional required
information is still available.

Tables 3 and 4 show the model parameters for each project and metric, ordered
by R2 relative to linear R2. With only seventeen projects and no independent
data available, few definite conclusions can be reached, however several items
are worth noting.

In about half of all cases, the model indicates tp and tq are essentially the
same. In these cases, the model tq−tp is close to zero, suggesting steady progress
did not occur; implementation was either accelerating or decelerating. This could
indicate development under a tight schedule or a process that could be improved.
It is also interesting to note that in these cases the model was able to substan-
tially reduce R2 while effectively using only two parameters.

Table 3. Source lines of code change (SLOCC) progress model parameters and R2

relative to linear R2

Model parameters

Project relative R2 s tp tq tf

20 0.081 289.8 64.2 64.3 187.1
10 0.084 156.9 30.6 30.7 132.0
3 0.167 376.0 48.9 49.0 120.3
9 0.192 480.4 109.8 109.8 246.7
8 0.262 42.5 17.2 17.5 128.9
19 0.275 501.7 108.1 108.4 164.8
6 0.284 361.9 57.5 126.1 248.0
14 0.295 91.8 21.3 97.8 238.2
5 0.297 92.0 14.9 14.9 48.8
7 0.331 183.9 93.4 288.9 555.2
11 0.336 48.9 27.5 62.4 70.9
13 0.365 250.5 93.8 213.9 220.8
17 0.411 268.4 6.3 110.4 181.0
4 0.622 215.6 24.1 138.5 201.7
1b 0.627 303.1 28.9 220.2 248.3
1a 0.650 183.8 14.0 14.1 44.9
15 0.855 92.3 4.5 140.9 163.9
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Table 4. Code churn (CHURN) progress model parameters and R2 relative to linear
R2

Model parameters

Project relative R2 s tp tq tf

20 0.113 560.6 68.2 68.3 187.1
3 0.175 820.9 45.7 45.7 120.3
9 0.190 1028.0 110.6 110.7 246.7
8 0.221 75.9 21.5 21.8 128.9
14 0.286 170.6 23.2 92.4 238.2
19 0.288 882.7 111.8 112.0 164.8
6 0.291 631.7 43.4 136.4 248.0
5 0.294 211.3 17.5 21.4 48.8
17 0.302 538.3 10.7 109.3 181.0
10 0.337 412.6 16.7 16.8 132.0
13 0.343 548.8 87.9 211.6 220.8
7 0.354 325.9 85.2 298.6 555.2
11 0.427 100.9 20.4 59.2 70.9
1a 0.459 365.8 14.5 14.5 44.9
1b 0.707 667.8 54.1 238.3 248.3
4 0.774 386.7 17.5 148.2 201.7
15 0.839 181.7 0.5 139.7 163.9

In conforming cases where tq−tp is much larger than zero, the model indicates
steady, sustained implementation occurred between tp and tq. In these cases, the
implementation velocity (s) can be stated with great confidence. Velocity is a
surrogate for productivity in the dimension measured by the specific metric.
For example, Table 3 shows project six averaged over 360 lines of new code per
calendar day between project days 58 and 126.

In the projects studied, implementation velocity (s) varies by more than an
order of magnitude. While part of this variation is due to the number of engineers
assigned to the project, likely some is due to proficiency. This is consistent with
studies showing individual programmer productivity varies by as much as an
order of magnitude [15].

5 Conclusions

Interpreting implementation progress measurements is difficult. A simple model
is needed to provide a framework to help interpret the data. We have developed
a piecewise approximation based on a three-phase model of linear implementa-
tion velocity. The model corresponds well to our intuition of how project progress
occurs. It identifies project phase boundaries as well as the velocity of implemen-
tation during each phase. Furthermore, the progress model allows comparisons
of project velocity between projects and easily supports estimating.

The progress model fits the available sample data better than a linear model.
With only one additional parameter, the model produces fits with approximately
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two-thirds less error than a linear fit. When compared with a polynomial fit, the
progress model performs at least as well as a polynomial model which has one
additional parameter.

Any model is only as good as the data on which it is based. Errors were
discovered in both dimensions of the sample data. Spurious data entries were
occasionally introduced due to the check-in process used. Similarly, using project
work days, instead of calendar days, could have improved the quality of data in
the time dimension.

5.1 Future Work

This work provides a sound basis for further study in this area. The progress
model presented here only considers non-maintenance implementation. Projects
with clear delivery dates, after which continuing development is not planned,
fall into this category. Projects in maintenance or under continuous development
may not exhibit phases similar to projects with firm end dates and deserve to
be investigated, although this would require further work.

The stability of the model suggests it could be used to make predictions.
Estimating project parameters such as final size, delivery date, development
pace, etc. during implementation should be investigated. Similarly, comparisons
of teams or projects based on model parameters could be studied.

Investigation of other metrics as a basis for measuring progress should be
undertaken. If a size metric for object-oriented software were developed, investi-
gating its use as a basis for a growth metric would be very valuable. Variations
of existing metrics better tuned to capture change should be studied. One ex-
ample of this type of metric is the sum of cyclomatic complexity of all changed
functions, rather than simply the change in cyclomatic complexity of a source
artifact.
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Abstract. Techniques for inferring a regular language, in the form of a
finite automaton, from a sufficiently large sample of accepted and nonac-
cepted input words, have been employed to construct models of software
and hardware systems, for use, e.g., in test case generation. We intend
to adapt these techniques to construct state machine models of entities
of communication protocols. The alphabet of such state machines can be
very large, since a symbol typically consists of a protocol data unit type
with a number of parameters, each of which can assume many values.
In typical algorithms for regular inference, the number of needed input
words grows with the size of the alphabet and the size of the minimal
DFA accepting the language. We therefore modify such an algorithm
(Angluin’s algorithm) so that its complexity grows not with the size of
the alphabet, but only with the size of a certain symbolic representation
of the DFA. The main new idea is to infer, for each state, a partitioning
of input symbols into equivalence classes, under the hypothesis that all
input symbols in an equivalence class have the same effect on the state
machine. Whenever such a hypothesis is disproved, equivalence classes
are refined. We show that our modification retains the good properties of
Angluin’s original algorithm, but that its complexity grows with the size
of our symbolic DFA representation rather than with the size of the al-
phabet. We have implemented the algorithm; experiments on synthesized
examples are consistent with these complexity results.

1 Introduction

Model-based techniques for verification and validation of reactive systems, such
as model checking and model-based test generation [1] have witnessed drastic ad-
vances in the last decades. They depend on the availability of a model, specifying
the intended behavior of a system or component, which typically is developed
during specification and design. However, in practice often no formal specifi-
cation is available, or becomes outdated as the system evolves over time. In,
e.g., the telecommunication area, revision cycles are extremely short, and at the
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same time the short revision cycles necessitate extensive testing and verification.
Therefore, there are many cases where the only means to attain correspondence
between model and system component is to construct a model directly from the
component. Such models can be constructed by static analysis techniques using
its source code, as in software verification (e.g., [2, 3, 4, 5]). However, many sys-
tem components, including peripheral hardware components, library modules,
or third-party components do not allow static analysis of source code, implying
that models must be constructed from observations of their external behavior.

The construction of models from observations of component behavior can
be performed using techniques for regular inference. Such techniques have been
used, e.g., to create models of environment constraints with respect to which
a component should be verified, for regression testing to create a specification
and a test suite [6, 7], to perform model checking without access to code or to
formal models [8, 9], for program analysis [10], and for formal specification and
verification [11]. For finite-state reactive systems, the regular inference problem
means to infer a regular language (in the form of a deterministic finite automa-
ton) from the answers to a finite set of membership queries, each of which asks
whether a certain word is accepted by the system component under test (SUT)
or not. There are several techniques (e.g., [12, 13, 14, 15, 16, 17, 18]) which use
essentially the same basic principles. Given “enough” membership queries, the
constructed automaton will be a correct model of the SUT. Angluin [12] and
others introduce equivalence queries which check whether the regular inference
procedure is completed; if not they are answered by a counterexample on which
the current hypothesis and the SUT disagree.

We intend to use regular inference to construct models of communication
protocol entities. Such entities typically communicate by messages that consists
of a protocol data unit (PDU) type with a number of parameters, each of which
can assume several values. The alphabet of such models is thus typically very
large. Since existing algorithms for regular inference use a number of queries,
which grows polynomially with the size of the alphabet, they are not well suited
for this situation. If some PDU parameters are irrelevant or almost never used,
the algorithm should not be disturbed by their presence.

In this paper, we modify an algorithm for inferring a regular language, so
that it is better adapted for inferring system components with large alphabets
that are built from a small set of action types, each of which has a number of
parameters. Most of these algorithms are based on similar principles: we choose
Angluin’s algorithm [12] since it is well known, and since we have an existing
implementation for this algorithm [19]. The problem of inferring state machines
where messages have arbitrary parameters appears to be very challenging. As
a first step, we will in this paper assume that all parameters are booleans, and
that a SUT can be modeled as an automaton, in which each transition is labeled
by a PDU type and a guard over its parameters. We assume that guards are
conjunctions over positive and negated parameter values. Furthermore, we will
not consider the problem of inferring parameters of possible output data, but
only how input parameters affect the state changes of a state machine. Ideas for
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how to extend these rather restrictive limitations are sketched in the last section
of the paper.

Algorithms for regular inference must represent the inferred automaton in
terms of externally observable elements. A state is represented by a set [u] of
input words u such that the automaton after reading u reaches this state. For
each input symbol a, the transition from [u] for input a is constructed by deter-
mining which state is reached after reading ua. In the parameterized case, input
symbols are of the form α(d1, . . . , dn), where α is an action type and d1, . . . , dn

is a tuple of boolean parameter values. We could naively use Angluin’s algorithm
to find the state reached after each of these 2n different input symbols. Instead,
we will strive to save work by assuming that from each automaton state, many
of the input symbols have the same effect on the SUT, and can be regarded as
equivalent. We can then construct a symbolic automaton representation, where
the effect of each set of equivalent input symbols is represented by a transition
from this state, labeled by a guard, i.e., a boolean expression over the param-
eters, which characterizes the equivalence class. In cases where the number of
equivalence classes is small, we would like to perform the inference with less work
(as measured by the number of membership queries) than by a naive application
of Angluin’s algorithm.

Our inference algorithm maintains, for each inferred state, a partitioning of
subsequent input symbols into assumed equivalence classes. Each class is rep-
resented by a small set of representative input symbols that (as far as we have
observed) have the same effect on the SUT. If later, new information is ob-
tained which contradicts this assumption, the equivalence class is split, thus also
splitting transitions and generating more refined guards. The guard that labels
a transition is obtained by a search procedure to identify precisely the effect
of parameter values, inspired by work on learning of conjunctions, e.g., [16,
Ch. 1.3].

In order to develop a consistent algorithm to do the above, we present in this
paper two significant extensions of Angluin’s algorithm:

1. We generalize Angluin’s algorithm so that it can infer a “partially defined”
automaton, which from each state defines the effect of a set of representative
input symbols. The representative symbols are in general only a subset of
all input symbols.

2. We define a mechanism for inferring guards of a parameterized system from
the symbols in an underlying partially defined automaton, by replacing the
representative symbols by guards that characterize the transitions repre-
sented by each symbol. Extra queries may need to be performed to determine
guards more precisely.

Our resulting inference algorithm is intended to infer parameterized systems
where guards of transitions use only a small subset of all parameters of a par-
ticular action type. We establish an upper bound on the number of posed mem-
bership queries, which is exponential in the number of parameters that appear
in guards. In contrast, using Angluin’s original algorithm requires a number of
membership queries which is exponential in the total number of parameters of
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input symbols. On the other hand, the number of equivalence queries may grow
in our case, since we add possibilities to construct hypothesized automata based
on less information than in the original algorithm. We have performed a set of
experiments on synthesized examples, which confirm this picture.

Organization. The paper is organized as follows. In the next section, we re-
view Angluin’s algorithm for inferring regular sets, and present a modification
which can cope with the situation that the queries investigate different sets of
suffixes for different prefixes. In Section 3, we present parameterized systems,
and the technique to learn “partially defined” automata, from which guards of
transitions are inferred. We prove that our algorithm retains good properties
of Angluin’s original algorithm, and establish upper bounds on the number of
performed queries. Section 4 describes how we have implemented the ideas of
the preceding section, and Section 5 presents the outcome of experiments on
synthesized examples. Conclusions are presented in Section 6.

2 Inference of Finite Automata

In this section, we review the ideas underlying Angluin’s algorithm, and present
our generalization.

Let Σ be a finite alphabet of symbols. A deterministic finite automaton (DFA)
over Σ is a structureM = (Q, δ, q0, F ) where Q is a non-empty finite set of states,
q0 ∈ Q is the initial state, δ : Q×Σ → Q is the transition function, and F ⊆ Q
is the set of accepting states. The transition function is extended from input
symbols to words of input symbols in the standard way, by defining

δ(q, ε) = q
δ(q, ua) = δ(δ(q, u), a)

An input word u is accepted iff δ(q0, u) ∈ F . The language accepted by M,
denoted by L(M), is the set of accepted input words.

Angluin’s algorithm is designed to infer a (minimized) DFA M from a set of
queries, each of which reveals whether a certain word is accepted or not. The
algorithm is formulated in a setting, where a so called Learner, who initially
knows nothing about M, is trying to infer M by asking queries, which are of
two kinds.

– A membership query consists in asking whether a word w ∈ Σ∗ is in L(M).
– An equivalence query consists in asking whether a hypothesized DFA H is

correct, i.e., whether L(H) = L(M). The Oracle will answer yes if H is
correct, or else supply a counterexample, which is a word u that is either in
L(M) \ L(H) or in L(H) \ L(M).

The typical behavior of a Learner is to start by asking a sequence of membership
queries, and gradually build a hypothesized DFA H using the obtained answers.
When the Learner feels that she has built a “stable” hypothesis H, she makes
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an equivalence query to find out whether H is equivalent to M. If the result is
successful, the Learner has succeeded, otherwise she uses the returned counterex-
ample to revise H and perform subsequent membership queries until converging
at a new hypothesized DFA, etc.

Let us represent the information gained by the Learner at any point during the
learning process, as a partial mapping Obs from Σ∗ to {+,−}, where + stands
for accepted and − for rejected. The domain Dom(Obs) of Obs is the set of
words for which membership queries have been performed, or which the Oracle
has given as counterexamples in equivalence queries. An inference algorithm
should prescribe how to transform Obs into a DFA H = (Q, δ, q0, F ), which is
conformant with Obs, in the sense that any word u ∈ Dom(Obs) is accepted by
H if Obs(u) = + and rejected by H if Obs(u) = −. In general, there are many
such automata, and the problem to find a smallest (in number of states) such
automaton is NP-complete [20]. Angluin and others circumvent this problem by
prescribing conditions on Dom(Obs), under which it is “easy” to find a unique
smallest automaton. These conditions regard each word in Dom(Obs) as the
concatenation of a prefix and a suffix. The idea is that prefixes are candidates
for representing states of the hypothesized automaton, whereas suffixes are used
to distinguish the states.

Angluin [12] supports this prefix-suffix view by representing Obs in terms
of an observation table T , which is a partial function from a prefix-closed set
Dom(T ) ⊆ Σ∗ of prefixes. For each u ∈ Dom(T ), T (u) is a partial function
from a set Dom(T (u)) ⊆ Σ∗ of suffixes to {+,−}. It is required that ε ∈
Dom(T (u)) for each u ∈ Dom(T ). We write Entries(T ) to denote {(u, v) : u ∈
Dom(T ) and v ∈ Dom(T (u))}. An observation table T represents the partial
mapping Obs if uv ∈ Dom(Obs) and Obs(uv) = T (u)(v) whenever (u, v) ∈
Entries(T ).

Define the short prefixes of an observation table T , denoted Sp(T ), to be
the set of words u ∈ Dom(T ) such that ua ∈ Dom(T ) for some a ∈ Σ. An
observation table T is complete if ua ∈ Dom(T ) for all u ∈ Sp(T ) and a ∈ Σ; it
is suffix-closed if (u, av) ∈ Entries(T ) where u ∈ Sp(T ) and a ∈ Σ implies that
(ua, v) ∈ Entries(T ). For u, u′ ∈ Dom(T ), let u ≈T u′ denote that T (u)(v) =
T (u′)(v) whenever v ∈ (Dom(T (u)) ∩ Dom(T (u′))). The table T partitioned
if ≈T is an equivalence relation on Dom(T (u)). A partitioned table is closed
if whenever (u, v) ∈ Entries(T ) there is a u′ ∈ Sp(T ) with u ≈T u′ and v ∈
Dom(T (u′)); it is consistent if ua ≈T u′a whenever ua, u′a ∈ Dom(T ) and
u ≈T u′.

Angluin showed how to construct a unique minimal automaton from a com-
plete, closed, and consistent observation table in the case that Dom(T (u)) is the
same for all u ∈ Dom(T ). Our goal in this section is to generalize this construc-
tion to the case where the set Dom(T (u)) of suffixes may differ significantly for
different prefixes u ∈ Dom(T ).

Definition 1. Let T be a partitioned, complete, closed, and consistent observa-
tion table. Define the DFA T / ≈T as (Q, δ, q0, F ), where
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– Q = Dom(T )/ ≈T , i.e., Q is the set of equivalence classes of ≈T ,
– δ([u], a) = [ua] for u ∈ Sp(T ),
– q0 = [ε],
– F = {[u] : T (u)(ε) = +} 	


Note how closedness and completeness ensures that we can define a transition
for each equivalence class and symbol in Σ, and how consistency ensures that
such transitions have a unique target equivalence class.

We are now ready to state a general theorem that gives constraints on any
FSM that is conformant with an observation function.

Theorem 1 (Characterization Theorem). Let T be a partitioned, complete,
closed, and consistent observation table which represents Obs. If T is suffix-
closed, then the DFA T / ≈T is the minimal automaton conformant with Obs.

Angluin’s algorithm uses a specialization of the conditions in Theorem 1, where
Dom(T (u)) is the same for all u ∈ Dom(T ).

3 Inference of Parameterized Systems

In this section, we consider how to adapt the techniques of the previous section to
a setting where symbols in the alphabet are messages with parameters, e.g., as in
a typical communication protocol. Since the problem of inferring state machines
where messages have arbitrary parameters appears to be very challenging, we will
here assume that all parameters are booleans, and that a SUT can be modeled
as an automaton, in which each transition is labeled by a PDU type and a guard
over its parameters. We assume that guards are conjunctions over positive and
negated parameter values. Furthermore, we will not consider the problem of
inferring parameters of possible output data, but only how input parameters
affect the state changes of a state machine.

Let Act be a finite set of actions, each of which has a nonnegative arity. Let
ΣAct be the set of symbols of form α(d1, . . . , dn), where α is an action of arity n,
and d1, . . . , dn are booleans. We will use 0 and 1 to denote the boolean values
false and true, respectively.

We assume a set of formal parameters, ranged over by p, p1, p2, . . .. A param-
eterized action is a term of form α(p1, . . . , pn), where α is an action α of arity n,
and p1, . . . , pn are formal parameters. A guard for α(p1, . . . , pn) is a conjunction
whose conjuncts are of form pi or ¬pi with pi ∈ {p1, . . . , pn}. We write p for
p1, . . . , pn and d for d1, . . . , dn. A guarded action is a pair (α(p), g), where α(p)
is a parameterized action, and g is a guard for α(p). A guarded action (α(p), g)
denotes the set [[(α(p), g)]] = {α(d) : g[d/p]} of symbols, whose parameters
satisfy g.

Definition 2 (Parameterized system). Let Act be a finite set of actions. A
parameterized system over Act is a tuple P = (Q,−→, q0, F ), where
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Fig. 1. Example of a parameterized system

– Q is a finite set of states,
– −→ is a finite set of transitions. Each transition is a tuple 〈q, α(p), g, q′〉,

where q, q′ ∈ Q are states, and (α(p), g) is a guarded action,
– q0 ∈ Q is the initial state, and
– F ⊆ Q is a set of accepting states,

which is completely specified and deterministic, i.e., for each state q and sym-
bol α(d), there is exactly one transition 〈q, α(p), g, q′〉 from q such that α(d) ∈
[[(α(p), g)]]. 	


We write q
α(p),g−→ q′ to denote that 〈q, α(p), g, q′〉 ∈ −→. A parameterized system

is expanded if whenever q
α(p),g′
−→ q′ and q

α(p),g′′
−→ q′′, and in addition pi or ¬pi is a

conjunct of g′, then either pi or ¬pi must be a conjunct of g′′. In other words, a
parameterized system is expanded if all transitions from a state for some action
test the same set of parameters. In Fig. 1 a fragment of a protocol provided by
Mobile Arts AB [21] is given as an example of a parameterized system.

A parameterized system P = (Q,−→, q0, F ) over Act denotes the DFAMP =
(Q, δ, q0, F ) over ΣAct, where δ is defined by

δ(q, α(d)) = q′ whenever q
α(p),g−→ q′ and α(d) ∈ [[(α(p), g)]].

Note that δ is well-defined, since P is completely specified and deterministic.
We will adapt Angluin’s algorithm to inference of parameterized systems, in

a situation where each symbol typically has many parameters, but for which the
number of outgoing transitions from each state is small compared to the number
of symbols in ΣAct. Ideally, the effort needed to learn a parameterized system P
should be in proportion to the size of its description as a parameterized system,
and not to its number of states and |ΣAct|, as is the case for Angluin’s algorithm.

To accomplish this, we make two extensions to Angluin’s algorithm. First,
we must abandon the requirement that the constructed observation table T be
complete, since then Dom(T ) is at least |ΣAct| times larger than the number of
states of the constructed automaton. Instead of requiring that T be complete,
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Dom(T ) will for each u ∈ Sp(T ) contain a set of representative continuations
uα(d), where α(d) is taken from a subset of ΣAct which in general depends on
u. The ambition is that for each transition of the SUT, labeled α(p), g, from the
state represented by u, the table contains at least one continuation uα(d) for a
representative symbol α(d) with α(d) ∈ [[(α(p), g)]].

Second, in order to construct a parameterized system from an incomplete
observation table, we present a technique to construct guards from representative
symbols. This implies asking additional queries in order to determine guards as
precisely as possible. Of course, we do not know a priori how many transitions
leave a particular state, or how the guards partition symbols into equivalence
classes. Therefore we start with a coarse default partitioning into equivalence
classes, which is refined “by need”. Whenever two words in the same equivalence
class generate different reactions by the SUT, we split the equivalence class by
introducing more guards.

In order to maintain a current hypothesis about guards, we augment the
observation table T by a labeling function γ, which to each prefix ua ∈ Dom(T )
assigns a guarded action γu(a). The idea is that the constructed parameterized
system, after having processed the input word u, will process the input symbol
a using a transition labeled by γu(a). We make the natural requirements that
a ∈ [[γu(a)]], and that the labeling function should suggest guards that make
the resulting automaton completely specified and deterministic, i.e., for each
u ∈ Sp(T ), we have

–
⋃

ua∈Dom(T )

[[γu(a)]] = ΣAct, and

– ua, ua′ ∈ Dom(T ) implies either [[γu(a)]] = [[γu(a′)]] or [[γu(a)]]∩[[γu(a′)]] = ∅.

The addition of a labeling function makes it natural to strengthen the notion of
consistency, to allow a unique parameterized system to be constructed from an
observation table with a labeling function.

Definition 3. A labeling function γ for an observation table T is guard-
consistent if for any ua, u′a′ ∈ Dom(T ) such that u ≈T u′ and [[γu(a)]] ∩
[[γu′(a′)]] �= ∅, we have ua ≈T u′a′.

Intuitively, whereas consistency states that extensions ua and u′a in Dom(T ) of
equivalent prefixes u and u′ with the same symbol a should also be equivalent,
guard-consistency requires that two symbols a, a′, whose labeling functions over-
lap should have equivalent extensions in Dom(T ). Note that guard-consistency
as a special case implies that ua ≈T ua′ whenever ua, ua′ ∈ Dom(T ) and
[[γu(a)]] = [[γu(a′)]].

We now have defined enough concepts to be able to define how to construct
a parameterized system from an observation table with a labeling function.

Definition 4. Let Act be a finite set of actions. Let T be a partitioned, closed,
and consistent observation table, and let γ be a guard-consistent labeling function
for T . Define the parameterized system 〈T , γ〉/ ≈T as (Q,−→, q0, F ), where
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– Q = Dom(T )/ ≈T ,

– [u]
α(p),g−→ [ua] whenever ua ∈ Dom(T ) and γu(a) = (α(p), g), and u is the

principal prefix in [u],
– q0 = [ε], and
– F = {[u] : T (u)(ε) = +}.

where for each equivalence class [u] we have designated a unique principal prefix
u′ ∈ [u] with u′ ∈ Sp(T ). 	

Note that guard-consistency guarantees that different choices of principal pre-
fixes result in equivalent parameterized systems.

In general, there are many different guard-consistent labeling functions for a
given observation table. We therefore define an additional criterion which con-
strains how conjuncts may occur in guards of a labeling function. In a table T ,
define a witnessing pair for a prefix u ∈ Sp(T ), action α, and index i, to be a
pair of prefixes uα(d), uα(d

′
) ∈ Dom(T ) such that

– uα(d) �≈T uα(d
′
), and

– d = (d1, . . . , di, . . . , dn) and d
′

= (d1, . . . , d
′
i, . . . , dn) differ only in the ith

parameter.

Definition 5. A labeling function γ for T is well-witnessed if whenever γu(a) =
(α(p), g) then

– whenever pi or ¬pi is a conjunct in g, then T contains a witnessing pair for
u, α, and i.

– there is a conjunct pj or ¬pj of g such that T contains a witnessing pair
uα(d), uα(d

′
) for u, α, and j, such that α(d) ∈ [[(α(p), g)]]. 	


Intuitively, the first requirement states that each conjunct of a guard g should
be motivated by a witnessing pair in T , which however need not contain a prefix
that satisfies g. The second requirement states that g should be satisfied by the
last symbol of at least one prefix in a witnessing pair.

We are now ready to state a theorem which relates a parameterized system
〈T , γ〉/ ≈T constructed from an observation table T , and the internal structure
of the SUT.

We first adapt Theorem 1 to be sure that 〈T , γ〉/ ≈T agrees with the obser-
vations.

Theorem 2. Let T be a partitioned, closed, and consistent observation table,
and let γ be an ≈T -compatible and guard-consistent labeling function for T . If
T is suffix-closed, then the parameterized system 〈T , γ〉/ ≈T is conformant with
T .

Proof. The theorem follows by adapting Theorem 1 to incomplete observation
tables, and the requirement that a ∈ [[γu(a)]] for all ua ∈ Dom(T ). 	


A more informative theorem, which can be seen as an analogue of Theorem 1 in
[12], is as follows,
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Theorem 3. Let T be a partitioned, closed, consistent, and suffix-closed obser-
vation table, and let γ be a guard-consistent and well-witnessed labeling function
for T . Let 〈T , γ〉/ ≈T be (Q,−→, q0, F ) with n states. Let P = (R,−→′, r0, G)
be any expanded parameterized system which is conformant with T . Then P has
at least n states and there is a surjective mapping h from R to Q such that

– h(r0) = q0,
– r ∈ G iff h(r) ∈ F ,

– if P has exactly n states then, whenever h(r) = q and q
α(p),g−→ q′, there are

g′, r′ such that r
α(p),g′
−→ r′ with h(r′) = q′ and g′ =⇒ g.

This implies that if P has n states then 〈T , γ〉/ ≈T has at most as many tran-
sitions as P.

Optimization. The process of obtaining a well-witnessed labeling function may
need a number of additional queries, which cause Dom(T ) to be extended. The
requirement that≈T be an equivalence relation on Dom(T ) may then necessitate
even more queries, which are not necessary for making γ well-witnessed. To allow
to save queries, we allow prefixes in Dom(T ) to be classified as either essential
or auxiliary. We now say that an observation table is partitioned if

– For each ua ∈ Dom(T ), there is an essential ua′ ∈ Dom(T ) with γu(a′) =
γu(a),

– ε is an essential prefix, and
– ≈T is an equivalence relation on essential prefixes in Dom(T ).

4 An Algorithm for Inference of Parameterized Systems

In this section, we present an algorithm for inferring parameterized systems,
based on the concepts introduced in Section 3.

The basic idea of our algorithm is to perform membership queries until we
have a suffix-closed, partitioned, closed, and consistent observation table with a
guard-consistent and well-witnessed labeling function. We can then construct a
conjecture and pose an equivalence query. As long as the table does not satisfy
some condition mentioned in Theorem 3, this is handled as follows.

– If T is not suffix-closed, i.e., there is a (u, av) ∈ Entries(T ) where u ∈
Sp(T ), such that (ua, v) �∈ Entries(T ), then add (ua, v) to Entries(T ) (letting
T (ua)(v) = T (u)(av)).

– If T is not partitioned, i.e., ≈T is not an equivalence relation, then there are
u, u′, u′′ ∈ Dom(T ) such that u ≈T u′, u ≈T u′′ but T (u′)(v) �= T (u′′)(v)
for some v. In this case, ask a membership query for uv, whose result is
entered as T (u)(v) to determine whether u should be equivalent to u′ or u′′.

– If T is not closed, then for some ua ∈ Dom(T ) we have ua �≈T u′ for all
u′ ∈ Sp(T ). We then add ua to Sp(T ) by adding, for each α ∈ Act, some
word of form uaα(d) to Dom(T ), and let γua(α(d)) = (α, true). Priority
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given to parameters d
′

for which α(d
′
)v ∈ Dom(T (ua)) for some v, since

suffix-closedness then requires that uaα(d
′
) ∈ Dom(T ).

– If T is not consistent, then we have two entries (ua, v) and (u′a, v) in
Entries(T ) with T (ua)(v) �= T (u′a)(v) but u ≈T u′. Then add (u, av) and
(u′, av) to Entries(T ) and enter the results from T (ua)(v) and T (u′a)(v),
respectively.

The table must also be equipped with a labeling function γ, which is main-
tained during the algorithm. Initially, for each u ∈ Sp(T ) and each action α,
we choose some values d for the parameters of α, and let uα(d) ∈ Dom(T )
with γu(α(d)) = (α, true). Whenever we add a prefix uα(d) to Dom(T ) the
labeling function is updated in one of two ways. If there is not yet a prefix
uα(d

′
) ∈ Dom(T ) for any d

′
we let γu(α(d)) = (α, true), otherwise we let

γu(α(d)) = γu(α(d
′
)), where α(d

′
) is the existing symbol such that α(d) ∈[[

γu(α(d
′
))

]]
.

If Dom(T ) contains only one prefix uα(d) for each u and α, then γ is well-
witnessed. However, if another prefix uα(d

′
) is entered, for which uα(d) �≈T

uα(d
′
), this destroys the guard-consistency. We then have to refine the labeling

function γ, and possibly also the partitioning into equivalence classes.
If γ is not guard-consistent, this may be because there are u, a, and a′ such

that γu(a) = γu(a′) but ua �≈T ua′. Let γu(a) be (α(p), g). In this case, we
must split the guard g so that a and a′ are assigned disjoint guards. In order
to find an appropriate parameter for the splitting, and to keep γ well-witnessed,
we find (e.g., by binary search) two tuples, d = (d1, . . . , 1, . . . , dn) and d

′
=

(d1, . . . , 0, . . . , dn), of parameter values of α, with α(d), α(d
′
) ∈ [[γu(a)]], which

differ only in some parameter (with index, say, i), such that T (uα(d))(v) �=
T (uα(d

′
))(v) for some v. We then add (uα(d), v) and (uα(d

′
), v) to Entries(T ),

and update the labeling function so that all ua′′ ∈ [[γu(a)]] now labeled by the
guard g ∧ pi or g ∧ ¬pi.

A second source of guard-inconsistency is that we can have two equivalent
prefixes in Sp(T ) which have different partitionings of the next symbols, induced
by the labeling function. It must then always be the case that there exist u, u′, a,
and a′ such that ua, u′a′ ∈ Dom(T ), u ≈T u′, and a′ ∈ [[γu(a)]] but T (ua)(v) �=
T (u′a′)(v) for some v. A membership query for ua′v should clarify the situation,
either giving rise to a guard-inconsistency, or causing u �≈T u′ (and continuing
processing it as an inconsistency).

When we have a partitioned, suffix-closed, consistent, and closed table with a
well-witnessed and guard-consistent labeling function, we can construct a con-
jecture as described in Definition 4. The conjecture is provided to the oracle in
an equivalence query and the oracle in turn either gives an affirmative answer or
a counter-example. In the first case, the algorithm terminates and outputs the
correct model. In the second case, the oracle returns a counter-example, i.e., a
word u such that Obs(u) = + but the provided automaton does not accept u
(or vice versa). As in the standard algorithm of Angluin, we enter all prefixes of
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u into Dom(T ). This will subsequently cause either an inconsistency and hence
a ”new” state, or a guard-inconsistency and hence a “new” transition.

Algorithm Query complexity. We estimate the complexity of our algorithm in
terms of a minimal expanded parameterized system which accepts exactly the
language as the SUT. Let n be its number of states, let m be the number of
transitions, let |Act| be the number of actions in Act, let |ΣAct| be the number of
symbols in ΣAct, and let c be the length of the longest counter-example received
from the oracle.

The expected bottle-neck in practice for an inference algorithm is the number
of membership and equivalence queries, since queries often involve comparatively
slow communication with an external device. Let us first estimate the number
of equivalence queries. An equivalence query can either give rise to

– an inconsistency which results in a new state; this can occur at most n times,
or

– a guard-inconsistency which results in splitting a guard; this can occur at
most m− n|Act| times.

Hence the algorithm performs at most n + m− n|Act| equivalence queries.
Let us then estimate the number of membership queries. The number of mem-

bership queries required are dependent on the number of prefixes in Dom(T )
and the maximum number of suffixes in any Dom(T (u)). Each Dom(T (u)) con-
tains at most n suffixes, since each time we add a new suffix to Dom(T (u)) we
separate at least a pair of prefixes into different equivalence classes. The number
of prefixes in Dom(T ) is at most

– one for each equivalence class; totally n, plus
– one for each state and action, plus an extra essential pair of prefixes as

witness for each transition, in total n|Act|+ 2m, plus
– prefixes of counterexamples, in total c(n + m− n|Act|).

Hence the number of membership queries performed by the algorithm is O(cmn)
(since n|Act| ≤ m). We can contrast this with a naive application of Angluins
algorithm, which in the worst case requires O(cn2|ΣAct|) membership queries.
Thus, whereas a naive use of Angluins algorithm uses a number of membership
queries which grows linearly with |ΣAct|, i.e., exponentially in the arity of actions,
our algorithm grows exponentially only with the number of parameters of an
action that is used in guards of transitions. It should be remarked that Angluin’s
treatment of counterexamples is poorly optimized, resulting in the factor c in
the worst-case bound. Rivest and Shapire [17] have presented techniques for
replacing the factor c by log c, which should apply also to our algorithm.

5 Experimental Results

We are interested in examining how the performance of the inference algorithm
for parameterized systems depends on the number of parameters that occur
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Fig. 2. Experimental results on random generated parameterized systems with 50
states and 5 parameters

in guards in the transitions of the system and how it compares with a naive
application of Angluin’s algorithm. Let us first define a measure for this. Let the
parameter complexity for a state q and action α of a parameterized system, be the
total number of different parameters used in guards on transitions from q labeled
α(p). We want to investigate how the parameter complexity effects the number of
membership and equivalence queries required by the algorithm. For this purpose,
we have implemented our inference algorithm for parameterized systems. The
implementation is in C++ as an extension of the LearnLib tool [19], developed
at Dortmund University.

We measure performance on randomly generated parameterized systems and a
small model of an instance of a protocol provided by Mobile Arts AB (see Fig. 1).
The protocol was first modeled in LOTOS and then transformed into a DFA by
the CAESAR/ALDEBARAN Development Package [22]. The protocol is a small
fragment of the Network Presence Center (NPC) product of the company. The
NPC is a middle-ware product to allow Mobile Network Operators to provide
various presence information from the GSM network. The parameterized system
model of the protocol has 4 states, one action with arity 12 and another with arity
7. The first action has on average parameter complexity 0 and the second 0.5. In
the randomly generated systems we have used actions with arity 5, and generated
automata in which each state-action pair has the same parameter complexity. We
have varied the parameter complexity between 1 and 5. The systems has then
been inferred both by our algorithm and by Angluin’s algorithm. The results
of the experiments are summarized in Figure 2, where the left diagram shows
the number of membership queries, and the right diagram shows the number of
equivalence queries.

The left diagram shows that the number of membership queries for our algo-
rithm grows exponentially with the parameter complexity of the system, whereas
it is independent of parameter complexity for Angluin’s original algorithm. For
a parameter complexity of less than 3, our algorithm performs better, but when
parameter complexity increases, the overhead of our algorithm makes it clearly
worse than Angluin’s. The right diagram shows that our algorithm always per-
forms more equivalence queries than Angluin’s.

Applying Angluin’s algorithm to Mobile Arts’ protocol fragment gives rise to
76000 membership queries and 3 equivalence queries, while our algorithm only
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requires 21 membership queries and 4 equivalence queries. The reason for this
difference is the relatively low parameter complexity in the overall system in
comparison to the high arity of its actions.

The higher number of equivalence queries for our algorithm is an expected con-
sequence of the observation that our algorithm allows to construct equivalence
queries that are based on less complete information than Angluin’s algorithm.
In particular, we allow equivalence queries even if the refinement of equivalence
classes of symbols is not completed. For higher parameter complexity (4 or 5),
the difference in number of equivalence queries is significant. We believe that this
explains the sharp growth of membership queries for parameter complexities 4
and 5, since a large number of equivalence queries gives rise to an explosion in
membership queries that are caused by prefixes of counterexamples.

6 Conclusions

In this paper, we have adapted techniques for inference of finite automata from
sets of observations, in order that they perform better for state machines whose
symbols are generated from a small set of actions, each of which has a set of
parameters. Our algorithm tries to find representative observations, from which
we infer guards of transitions by techniques for inferring boolean expressions.
Thus, our work indicates a way to combine techniques for inferring properties of
data types with regular inference techniques for inferring reactive behavior. Our
algorithm requires less observations in the case that only a subset of parameters
are used to determine the behavior of the machine at each transition. Future
work includes to improve the handling of counterexamples in our tool, and to
evaluate our techniques on a realistic communication protocol module.

Our framework limits us to handling inputs but not outputs. We therefore
suggest possible solutions to include these. One approach is to infer a Mealy
machine like Steffen et al. [23] but with our framework of handling parameterized
input actions. The other approach is to use our framework but encode the input
and output into parameterized actions of a parameterized system. This will of
course blow up the alphabet, but the dependences between input and output
will be recorded in boolean formulas which may lead to very compact models.

Acknowledgement. At last we would like to thank Bernhard Steffen for helpful
hints and discussions.
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Abstract. Programmers understand a piece of software by building simplified
mental models of it. Aspects of these models lend themselves naturally to for-
malization – e.g., structural relationships can be partly captured by module de-
pendency graphs. Automated support for generating and analyzing such structural
models has proven useful. For event-driven systems, behavioral models, which
capture temporal and causal relationships between events, are important and de-
serve similar methodological and tool support. In this paper, we describe such
a technique. Our method supports building and elaboration of behavioral mod-
els, as well as maintaining such models as systems evolve. The method is based
on model-checking and witness generation, using strategies to create goal-driven
simulation traces. We illustrate it on a two-lift/three-floor elevator system, and
describe our tool, Sawblade, which provides automated support for the method.

1 Introduction

Programs larger than a few tens of lines are generally far too complex to be understood
in full by a single person. In place of complete understanding, programmers use sim-
plified mental models [18] – a representation of some part of the program’s structure or
function at a high enough level of abstraction to be readily understood. One heuristic is
that they should be small enough to fit on a whiteboard [25]. Mental models are infor-
mal and cannot always be completely expressed by a formal structure; however, it has
often been found useful to create formal structures based upon programmers’ mental
models and to use them to aid construction and understanding of code. Some examples
of mental models used by programmers, and their corresponding formal artifacts, are
discussed below.

Modules and dependencies. Decomposition into modules that communicate via in-
terfaces is standard software engineering practice. Module A depends on module B if
any of the functions in A use a function or data defined in B. Considerable research has
gone into automatically extracting a graph recording all dependencies between modules
from the source code [8, 23, 24], helping programmers navigate this graph [13] or select
fragments that are most relevant to a particular aspect [28].

Design patterns and architectural patterns. Design patterns describe and catalogue
common relationships between groups of objects in object-oriented programs [14]. De-
sign patterns have a formal representation as fragments of object modelling graphs;
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formalizing the observations has led to faster program comprehension and better com-
munication between programmers. Work on extracting design patters from source code
has also been done [21]. Architectural patterns relate components-and-connectors type
diagrams to standard styles of decomposition, such as layers or pipes-and-filters. There
is research on automated exploration of architecture and automatic comparison with a
conceptual pattern [13, 25].

The models described above are mostly structural. However, behavior is as impor-
tant a part of understanding a program as structure, particularly for reactive concurrent
systems. In this paper, we address the problem of providing tool support for construct-
ing behavioral models of such complex systems.

Global propositions about a system’s behavior can be expressed using temporal
logic [22] and automatically verified using model-checking [9]. The strength of this
method is that it can be used both for assertions about some behavior and about all
possible behaviors. It has two weaknesses: expressing properties can become difficult,
though property patterns [12] help tame this difficulty; and, more importantly, even us-
ing property patterns, it is very hard to guess which properties might be both valid and
useful for understanding.

Query-checking [5] is a technique for searching for interesting temporal logic prop-
erties. It enables answering user questions such as “What property P is true every-
where?” or “If event X happens, what property Q eventually becomes true sometime
after X?” However, query-checking requires considerable intervention and technical
knowledge. Furthermore, its output can be a large propositional formula, which is hard
to interpret intuitively.

A potential candidate for behavioural models is scenarios [20]. Scenarios have been
shown to be useful for expressing requirements and for communicating between stake-
holders [16, 19]. Scenarios can capture not only sequences of events that the system
allows, but also those that it prohibits, exact causal relationship between events, etc.
Running the program – with the aid of a simulator or test-driver to provide inputs –
generates a large number of scenarios which are certainly true, but do not yield the kind
of simple, general knowledge about the system’s behavior we would like in building
a mental model. They lack any notion of causation between events, or of necessity or
impossibility of sequences of events. These richer concepts are essential for behavioral
models that support understanding and evolution of the system.

Our goal is to bridge this gap: to provide a methodology and tool for finding and val-
idating rich scenarios that describe not just sequences of events but causal relationships
between them. We need to be able to vary the level of granularity of scenarios – what
events we distinguish – and also the scope, to ignore actions of parts of the system that
are not considered relevant.

Furthermore, we want to go beyond simply finding and validating such scenarios:
our methodology aims to help the user in elaborating scenarios by finding others which
are stronger, or more detailed. Finally, since a major use of mental models is during
software evolution, our methodology must also help change these scenarios along with
evolving systems.

Contributions. In this paper, we propose a methodology and tool based on temporal
logic, model-checking, and witness generation. Our techniques do not work directly on
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the program code; instead, we assume that a finite-state model of the program has been
constructed, e.g., using the techniques of [1, 11], and that this model is small enough to
be analyzable by existing model-checkers.

We illustrate our methodology using a two-lift/three-floor elevator system [2]. Rather
than requiring direct use of temporal logic, our method uses a simple language of events
and causal relationships between them. This language itself is not new: its features are
drawn from property patterns and use-case maps [4]. The modeling language can be
used to express scenarios, and a translation into temporal logic is used for automatic
validation by a model-checker. Once scenarios have been found and validated, they
can be elaborated. We describe a set of patterns for moving from a validated scenario
to stronger and richer scenarios. Application of these patterns relies on generating the
most useful traces of the program that help the user guess more elaborate scenarios. The
notion of a useful trace is user-specified, and this specification is used by the witness-
generation component of the model-checker to carry out a strategy-directed search for
interesting traces.

Maintaining scenarios across change is done by representing change as an annota-
tion of the new system, indicating how its state transitions have changed from the old.
Once this is done, useful traces – in this case, those that highlight most effectively and
minimally the differences in behavior, where they exist – can be searched for by the
model-checker using strategies as well.

Support for this method is provided by our tool Sawblade, built on top of a model-
checker XChek [6].

Structure. The rest of this paper is organized as follows: in Section 2, we give back-
ground material on temporal logic and model-checking. In Section 3, we present a lan-
guage for scenario-like behavioural models and its translation into temporal logic. We
also discuss the elevator system which is the running example in this paper. In Section 4,
we describe witness generation and strategies for helping produce the “most interest-
ing” witnesses. In Section 5, we describe the methodology for elaborating scenarios.
In Section 6, we give our formal definition of the annotation of a changed system, and
in Section 7, describe the methodology for transforming scenarios across change. We
describe Sawblade, a tool supporting this methodology, in Section 8 and conclude the
paper in Section 9.

2 Background

In this section, we review the basics of temporal logic model-checking, presenting the
semantics of the temporal logic CTL and the definition of witnesses for existential CTL
properties.

Analysis of data-driven, run-to-completion programs is predicative, examining the
relation between the program’s input and output. Analysis of a reactive program, how-
ever, must examine the infinite behaviours of the program, and how its behaviours are
affected by input from its environment. Temporal logic is helpful for intuitively ex-
pressing properties of infinite behaviours, and, for finite-state models, model-checking
provides a useful tool for automatically deciding satisfaction of temporal logic proper-
ties by those models.
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Fig. 1. (a) A Kripke structure; (b) A Kripke structure with diff, based on a fragment of the
model in (a)

Kripke Structures and CTL. A Kripke structure is an abstract model of a reactive
system. Formally, it is a tuple (S, s0, R, I, V ) where S is a (finite) set of states; s0 is
the initial state; R ⊆ S × S is the transition relation; V is a set of atomic propositions;
I : S → 2V is a labeling function that associates each state with the atomic propositions
true in that state.

An example Kripke structure is shown in Figure 1(a). In this model, S =
{s0, s1, s2, s3, s4, s5, s6, s7}, V = {p, r, f}, and (s0, s1) ∈ R. Atomic propositions
not shown in a state are assumed to be false, e.g., p, r and f are false in s0.

For each s ∈ S, the transition relation defines a successor set Img(s) = {t |
R(s, t)} of states reachable in one step from s; the predecessor set is Img−1(s) =
{t | R(t, s)}. A path p is an infinite sequence p0p1p2 . . . of states. The set of paths
P(s) of a state s in some Kripke structure M contains all the infinite sequences of
states possible in M : p ∈ P(s)⇔ p0 = s ∧ ∀i ∈ N · pi+1 ∈ Img(pi).

Computation Tree Logic (CTL) [10] is a temporal logic used to state properties of
the (infinite) paths of Kripke structures. The set of CTL formulas over a set of atomic
propositions (variables) V consists of the sentences defined by the following grammar:

C ::= p ∈ V | ¬C | C ∧ C | C ∨ C | EX C | AX C | E[C U C] | A[C U C] |
EF C | AF C | EG C | AG C

The symbols AX,EG, etc., are called temporal operators. The A or E indicates
whether the following symbol is to be interpreted over all future paths, or some fu-
ture paths; X stands for “next”, F for “future”, U for “until”, G for globally; thus
AXϕ means “in all next states, ϕ holds”, and EFψ means “there is a future path along
which, at some point, ψ holds”.

The CTL satisfaction relation |= is defined between states of a Kripke structure and
CTL formulas. Its definition is given in Figure 2(a). Note that only EX, EU and EG
are presented. Others can be derived from these via simple identities [9]. For instance,
EFϕ⇔ E[true U ϕ]. Also note the operator EUi; informally, E[ϕ Ui ψ] means that
there exists a path along which ψ becomes true no later than at step i, and until that
point, ϕ holds.

For instance, in the structure of Figure 1(a), we can ask whether it is possible to
reach a state where f holds: s0 |= EF f . One such state is s5, so the property holds.

Figure 2(b) shows some useful CTL identities which will be used later on. They are
straightforward consequences of the semantics. Note that EFiϕ⇔ E[true Ui ϕ].
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(a)

s |= p ⇔ p ∈ I(s)
s |= ¬ϕ ⇔ s 	|= ϕ

s |= ϕ ∧ ψ ⇔ s |= ϕ ∧ s |= ψ
s |= EXϕ ⇔ ∃p ∈ P(s) · p1 |= ϕ
s |= EGϕ ⇔ ∃p ∈ P(s) · ∀i · pi |= ϕ

s |= E[ϕUψ] ⇔ ∃p ∈ P(s) · ∃i · (pi |= ψ)∧
∀j < i · pj |= ϕ

s |= E[ϕUiψ] ⇔ ∃p ∈ P(s) · ∃j ≤ i · (pj |= ψ)∧
∀k < j · pk |= ϕ

(b)

EFϕ ⇔ ϕ ∨ EX EFϕ
EF0ϕ ⇔ ϕ
EFiϕ ⇔ EX EFi−1ϕ if i > 0
EFiϕ ⇒ EFϕ for all i
EG ϕ ⇔ ϕ ∧ EX EG ϕ

Fig. 2. (a) Semantics of CTL. (b) Useful CTL identities.

The set of all states in a model M which satisfy a given property ϕ is denoted by
[[ϕ]]M , or just [[ϕ]] when the model is implicit. The semantics of CTL can be expressed
entirely in terms of [[·]] rather than quantification over paths. For instance, [[EXϕ]] =
{Img−1(s) | s ∈ [[ϕ]]}, and EFϕ is the least fixed-point of Img−1 applied to [[ϕ]].

Witnesses to CTL Properties. In first-order logic, an existential assertion ∃x · Q(x)
can be proven by exhibiting a witness – an element in the domain of the predicate Q
which makes Q true. Since CTL properties are expressed in a fragment of first-order
logic, this proof method can be applied to them as well. For example, a witness for the
property EFf in the model of Figure 1(a) is s0, s1, s3, s5.

Any CTL property whose semantics is entirely expressible using existential quan-
tifiers where the negation is pushed to the level of atomic propositions, can be proven
by exhibiting an instantiation for all the existential quantifiers over paths. Though CTL
semantics is expressed over infinite paths, a witness is always made up of finite paths
or finite prefixes followed by finite repeating suffixes [9]. For example, the witness
for s0 |= EXp for the model in Figure 1(a) is a two-step path, where the second
step is a successor t such that (s0, t) ∈ R (state s1 in our example). The witness for
s1 |= EGp is infinite, and, in the case of the model in Figure 1(a), consists of a loop
s1, s2, s4, s1, .... In the rest of the paper, we use “witness” to refer to either the nec-
essary finite segments or to infinite paths that begin with such segments; the correct
interpretation will be clear from the context. Also, we only consider properties linear
witnesses [3], i.e., a single path through the states of the model that suffices as a proof.
This restriction is for the sake of simplicity of presentation, and is not a constraint on
the method discussed; our results can also be extended to witnesses with branching
structure [15].

Determining whether a CTL formula has a linear witness is NP-hard [3]; a sublan-
guage of CTL which always has linear witnesses is given by the following grammar:

A ::= p ∈ V | ¬A | A ∧ A | A ∨ A
T ::= A | EXT | EFT | E[A U T ] | T ∨ T

For example, the witness to E[r U EXp] in state s0 of the model in Figure 1(a) is
linear, whereas the witness to EXp ∧ EX¬p in state s1 is not.

A counterexample is a witness to the negation of a property. Let ϕ be a formula with a
witness, and let ψ = ¬ϕ. If ψ does not hold in some state s, then a counterexample to ψ
can be computed; further, if ϕ has a linear witness, then ψ has a linear counterexample.
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3 Scenario Language

In this section, we describe the syntax and semantics of a simple language of scenarios.
The language allows expression of causal relationships between events, under qualify-
ing conditions. Its semantics is a translation into CTL, so that scenarios can be auto-
matically validated.

To illustrate the concepts in this paper, we use a simple two-lift, three-floor elevator
system with a central controller. Each of the elevators, E1 and E2, can be standing still,
or moving up or down; its door can be open or closed. It has a record of the floors it is
still obliged to visit – an elevator Ei must visit a floor if either (1) its internal button for
that floor was pressed, or (2) the controller received a call from a landing-button on that
floor and assigned Ei to service it. The controller assigns calls to elevators based on a
heuristic estimating which will arrive first.

3.1 Syntax

The basic entities of mental models of behaviour are conditions – the state of a program
spanning some nonzero number of steps in time – and events – changes between one
state and the next [17]. Some of the events and conditions of the elevator system are
shown in Figure 3(a). Note that events do not have to be independent of each other, e.g.,
floor=2⇔ (E1.floor=2 ∨ E2.floor=2).

The fundamental relationships between events are temporal and causal. We consider
the following to be the atomic relationships between events A and B:

A � B A and B can happen, and B can follow A.
A ⇀ B A and B can happen, and if A happens, then B must happen sometime in the future.
A ↽ B A and B can happen, and if B happens, then A must have happened prior to B.

Also, A � B means that both A ⇀ B and A ↽ B. Composition of relationships
is transitive: writing A ⇀ B ⇀ C means that A ⇀ B and B ⇀ C. For example,
the graphical expression shown in Figure 3(b) denotes (landingCall(3) ↽ floor=3) ∧
(landingCall(3) ↽ assigned(3)) ∧ (assigned(3) ⇀ floor=3). That is, an elevator arrives
at floor 3 only because of a call to floor 3. Also, floor 3 is assigned to an elevator only
because of a call; and assignment of a floor always causes its service by an elevator.

Events
init the elevator is started up
landingCall(3) there is a call for an elevator on floor 3
liftCall(3) there is a call inside an elevator for floor 3
E1.floor = 1 elevator 1 arrives on floor 1
floor= 2 either elevator arrives on floor 2
assigned(3) the controller assigns a call to one of

the elevators.
Conditions

E1.up elevator 1 is moving up
outstandingCall(3) there is an unserviced call for floor 3

landingCall(3) floor=3

assigned(3)

↽
↽

⇀

(a) (b)

Fig. 3. (a) Some elevator events and conditions; (b) An example graphical expression
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Causal relationships can be absolute or conditional: either A ⇀ B in any case,
or A ⇀ B while a condition c is satisfied, that is, if A happens while condition c
is true, then either B eventually happens or, before that, c becomes false. We denote
this by c[A ⇀ B]. This situation is called an exception. In addition, we want to allow
representation of exceptions which are due to events. If A leads to B unless event C
happens, we write (A ⇀ B) ↓ C. We can further generalize this by defining scopes as
in the temporal logic patterns framework [12, 27], e.g., A ⇀ B between (conditions or
events) P and Q.

3.2 Translation

Since Kripke structures deal only with propositions, and not events, we must explicitly
encode events as changes of state. For instance, in the elevator, floor=1 is a state vari-
able: the elevator arrives at floor 1 when this variable becomes true. We assume that
the structure, where needed, is annotated with event variables, which become true for a
single time-step whenever the event occurs, and false once it ceases to occur.

Since any scenario expression can be represented by a conjunction of atomic binary
expressions, we only describe the translation of atomic expressions into CTL.

If B � C, then there are three properties to be checked: (1) B can occur; (2) C can
occur; (3) C can follow B. These are subsumed by determining whether there exists
some path from the initial state along which B occurs at some point; and whether, once
B occurs, C may occur. Formally, B � C = EF(B ∧ EF C). For instance, we can
check init � (floor=3) by asking the model-checker whether EF(init ∧ EF floor=3)
holds. Since init is necessarily true of s0, this reduces to EF floor=3.

The translation of the remaining constructs into CTL is shown in Table 1. W/C
indicates whether the translation has a linear witness (W), a linear counterexample (C),
or neither (–). If B ⇀ C, then not only can both B and C occur, but when B occurs,
then C must occur at some point after it. As an example, we can ask whether call=3 ⇀
floor=3 is a valid scenario; the model-checker determines whether for any state where
call=3 occurs, each future path eventually reaches a state where floor=3. If B ↽ C,
then either C never occurs, or on any path where C does occur, between the initial
state and the first occurrence of C, and between any two occurrences of C, there is an
occurrence of B. c[B ⇀ D] means that if B occurs while c is true, then along all future
paths, c holds until either D occurs, or c becomes false (the exception condition). For
(B ⇀ C) ↓ E, B must either lead to an occurrence of C or an occurrence of E; C
must be possible, but E need not be.

Table 1. CTL semantics of atomic scenarios

Scenario CTL translation W/C
B � C EF(B ∧ EF C) W
B ⇀ C AG(B ⇒ AF C) C
B ↽ C AG(init ∨ C ⇒ –

(AG¬C ∨ A[¬C U B]))
c[B ⇀ D] AG(B ∧ c ⇒ A[c U D ∨ ¬c]) C
(B ⇀ C) ↓ E AG(B ∧ ¬E ⇒ AF(C ∨ E)) C
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Once relationships between events are discovered, they can be immediately validated
by the model-checker. This leaves open, however, the question of how to find such
relations and how to make them more precise – elaborate them. We address this issue
in Section 5.

4 Witnesses and Strategies

In this section, we discuss how to define strategies for constructing “interesting” wit-
nesses. We also discuss optimality of a witness-generation strategy with respect to ob-
jectives which may not be expressible as part of CTL.

4.1 Witness Generation

In Section 2, we defined witnesses. We now discuss their effective computation.
We start by defining annotated witnesses. An annotated witness is a sequence π

of pairs (π0, Φ0), (π1, Φ1), ... where πi is a state and Φi a set of CTL formulas. The
formulas Φi are proof-obligations – informally, properties which, at step πi, still need
to be demonstrated by the witness. For example, the annotated witness to s0 |= EF f
for the model in Figure 1(a) is

(s0, {EF f})→ (s1, {EF2 f})→ (s2, {EF1 f})→ (s5, {f})
For each state in this witness, we only show a singleton set of proof obligations, al-
though others are possible as well (e.g., {EF f,EF2 f} in state s1). An (infinite)
annotated witness to s1 |= EG p is

(s1, {EGp, p,EX EG p})→ (s2, {EGp, p,EX EG p})→ s2 · · ·
which moves from s1 to s2 and then loops infinitely on s2. The labels are based on the
identity EG p ⇔ p ∧EX EG p; see Figure 2(b) for CTL identities.

An annotated witness w to s |= ψ satisfies the following conditions: (1) π0 = s, and
the conjunction of the formulas in Φ0 implies ψ: ψ ⇐

∧
ϕi∈Φ0

ϕi; (2) for every state
(πi, Φi) in w, πi |= ϕi for each ϕi ∈ Φi; (3) for every step (πi, Φi) → (πi+1, Φi+1)
in the witness, let Φt

i be the subset of Φi containing temporal operators. Then for every
ϕj ∈ Φt

i, there is ϕ′
j ∈ Φi+1 such that EX ϕ′

j ⇒ ϕj . If the witness is finite, as in the
case of EF, the proof obligation for the last step (πk, Φk) does not include any temporal
operators.

A sequence of annotated states is a partial witness if properties (1) and (2) of wit-
nesses hold in it, and property (3) holds for every state except the last. Particularly,
(s, {ϕ}) is always a partial witness for s |= ϕ if this property holds in the model. Thus,
using the model-checker’s results cached from the computation of [[ϕ]], we can com-
pute a complete witness starting from (s, {ϕ}), extending it one step at a time until
either a final state is reached or a cycle can be closed. More precisely, given a par-
tial witness with (π, Φ) as the last state, we compute the extension (π′, Φ′) so that (1)
∀ϕi ∈ Φt · ∃ϕ′

i ∈ Φ′ · EX ϕ′
i ⇒ ϕi, and (2) choose π′ ∈ Img(s) ∩

⋂
ϕi∈Φt [[ϕ′

i]].
That is, π must witness EXϕ′

i for every temporal ϕi ∈ Φ. The choice of a suitable π′ is
made by a witness generation strategy [7]. This is the (tableau-based) technique used by
our model-checker XChek [6, 15], and it allows simple local specification of strategies.
Clearly, other techniques are possible as well.
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4.2 Strategies

Strategies are procedures for choosing which witness to show to the user, in case sev-
eral are possible. A simple strategy, used by most model-checkers, is to compute the
shortest possible witness (Shortest). For a finite witness property, such as s |= EFϕ,
this strategy uses the identity EFϕ ⇔ ∃i · EFiϕ, and selects as the initial partial wit-
ness (s, {EFi ϕ}) by finding the least i such that s |= EFi ϕ. At each extension step,
it chooses a successor for (π, {EFi ϕ}) by determining the smallest j < i such that
some π′ ∈ Img(π) satisfies EFjϕ, and choosing any such π′. If j = 0, then EF0ϕ
is rewritten to the purely propositional ϕ, and the strategy halts successfully. This is
how the witness to s0 |= EF f in Section 4.1 was generated: s0 |= EF3 f ; the least
i < 3 than can be chosen is 2, and s1 is the only choice. From (s1, {EF2 ϕ}), the least
possible i < 2 is 1; s2, s3 are equally valid choices, so the strategy picks s2 at random;
finally the path is extended to s5, which satisfies f (EF0 f ), and so the strategy halts.

For EGϕ, the strategy builds a (shortest) path until it reaches a state t which lies on
a cycle: that is, there is a path from t which reaches t again, and ϕ holds continuously
on this path. Since t satisfies ϕ ∧EX E[ϕ U {t}], there is a finite path from t back to
t, and once this has been constructed, the witness, consisting of a finite prefix followed
by the cycle on t, is complete.

In this paper, we consider several strategies. We describe them informally here; for
a more formal treatment, please see [7]. At each step, the set of possible successors is
partitioned into preferred (P ) and avoided (A); if the preferred set is nonempty, then
the next state is chosen from it nondeterministically; otherwise, the next state is chosen
from A. P and A can be the same throughout the construction of the witness, or can
be updated. Clearly, this approach is greedy: decisions are made locally, and thus we
may not generate the most interesting witness. Strategies with backtracking can also be
defined, but their application is more expensive.

Avoid-Visited. This strategy uses the avoid set A that consists of previously visited
states. The set is updated after the next state of the witness is chosen. For example, a
sequence of states forming a witness to EX EFr in state s2 of the model in Figure 1(a)
is s2, s3, or s2, s4 but not s2, s2.

Avoid-States. This strategy is similar to Avoid-Visited. However, it receives a set of
states to avoid as a parameter, and does not update this set as the witness gets con-
structed.

Avoid-Conditions. This strategy is similar to Avoid-States, but its parameter-list con-
sists of conditions on the next state to avoid.

Avoid-Events. This strategy receives a list L of events to avoid. Given the last state
s of the partial witness, it tries to pick a successor t so that none of the events of L
occur between s and t. The avoidance set stays the same throughout the witness gener-
ation process. We can further define a strategy that picks a successor that minimizes the
number of events that fire on the transition between s and t.

Avoid-Vars. This is similar to Avoid-Events: given a set of variables L, the strategy
extends the current partial witness by choosing the successor that does not change vari-
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ables in L. We can further define a strategy that picks a successor that minimizes changes
to variables in L.

Clearly, we can define Prefer counterparts of the above strategies. For example,
Prefer-Visited extends the partial witness by preferring states which are already part of
this witness.

5 Elaboration of Behavioral Models

In Section 3, we discussed specifying and validating simple scenarios. Since automatic
extraction of interesting scenarios from the system is difficult (because scopes and
events of interest need to be specified and because mental models are an abstraction of
the behaviour of the system – they typically ignore exceptional cases), our methodology
works by starting from simple scenarios that are guessed by the user, and elaborating
them into more complex scenarios using elaboration patterns. Guessing simple scenar-
ios is not hard – we can start just with determining that a certain event p is possible,
without worrying about what caused it.

An elaboration pattern represents a typical way in which behavioral understanding
moves from a set of valid and invalid scenarios – the base scenarios – to stronger or
richer ones – the elaborated scenarios. This movement usually involves enriching the
current vocabulary of events of interest or strengthening the relationship between the
existing events. Elaboration patterns help narrow down the focus of investigation, and
determine which witnesses would be most useful for elaborating the current scenario;
this in turn suggests the witness-generation strategy that should be applied. Application
of an elaboration pattern does not guarantee the existence or the utility of an elaborated
scenario of the desired form.

In this section, we describe elaboration patterns which we found useful for building
behavioural models. Several of these are summarized in Table 2.

Cause Weakening. Suppose we start with a validated scenario A ⇀ B (A causes B),
whereas A ↽ B (B can only happen after A) is not valid. Thus, we cannot conclude

Table 2. Elaboration patterns

Pattern Before Strategies After
Cause A ⇀ B

√
Avoid-Events A ∨ C � B

Weakening A ↽ B ×
Event A ⇀ B

√
Shortest, c[A ⇀ B1],

Splitting B = B1 ∨ B2
√

Avoid-States c′[A ⇀ B2]
A ↽ B1

√
or

A ↽ B2
√

A1 ⇀ B1,
A ⇀ B1 × A2 ⇀ B2,
A ⇀ B2 × A = A1 ∨ A2

Intermediate A ⇀ B
√

Shortest, A ⇀ C ⇀ B
Event Avoid-Vars
Intermediate A ⇀ B

√
A ↽ D,

Cause A ↽ B × D ↽ B
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A � B. Our goal is to determine an event C such that C causes A and further C ⇒ A,
so that the elaborated scenario is A ∨ C � B. To find C, we might want to examine
the causes of failure of A ↽ B, but the counterexample to this property is non-linear
and thus may not provide the necessary understanding. Instead, we propose to examine
which events other than A cause B; so the useful witnesses in this case are generated by
checking init � B using an Avoid-Events({A}) strategy. Examining these witnesses
helps us guess which events need to be added to C; with each successful guess, C is
increased (weakened) until we can conclude (A ∨ C) � B.

As an example of Cause Weakening, consider the relationship between
landingCall(3) and floor=3 in the elevator system. landingCall(3) ⇀ floor=3, but it
is not true that landingCall(3) ↽ floor=3. Using the elaboration pattern, we compute a
witness to init � floor=3, avoiding landingCall(3), which results in init, E1.liftCall(3),
E1.assigned(3), E1.doorClosed, E1.floor=2, E1.floor=3. Examining this trace allows
us to identify liftCall(3) as another possible cause of floor=3. We can quickly vali-
date that liftCall(3) ⇀ floor=3; and furthermore, that (liftCall(3) ∨ landingCall(3)) ↽
floor = 3. The new event liftCall(3) ∨ landingCall(3) is called call(3), and call(3) �
floor=3.

Event-Splitting. Suppose we start with A � B, where B is a compound event B ⇔
B1∨B2. Thus, A ⇀ B1∨B2 and A ↽ B1∨B2. We can prove A ↽ B1 and A ↽ B2,
but neither A ⇀ B1 nor A ⇀ B2. We are interested in causes of B1 and B2. Potential
elaborations can be some conditions under which A ⇀ Bi, or perhaps splitting up A so
that A⇔ A1 ∨A2 and A1 ↽ B1 and A2 ↽ B2; finally, we may conclude that A leads
to a non-deterministic choice between B1 and B2. We first examine counterexamples
to A ⇀ Bi, perhaps with the Shortest strategy. If this is not helpful, we suggest the
following tactic: examining A � B1, the existential counterpart of A ⇀ B1. A does
not always result in B1, but checking A � B1 lets us examine cases where it does.
Let V1 be the set of states visited while generating a counterexample for A ⇀ B1.
We can generate a witness to A � B1 with the strategy Avoid-States(V1); this avoids
accidental similarities between paths from A to B1 and those from A to B2, and helps
with the elaboration.

We show an application of Event-Splitting in the elevator system by studying the
relationship between a call to floor 3 and the arrival of a given elevator to that floor.
The event floor=3 is composed of the events E1.floor=3 and E2.floor=3. call(3) ↽
E1.floor=3, and call(3) ↽ E2.floor=3; however, call(3) ⇀ E1.floor=3 is not valid. A
witness to ϕ=call(3) � E1.floor=3 shows a lift-call for E2 (which is a sub-event of
call(3)), followed by E2.floor=3. We validate E2.liftCall(3) ⇀ E2.floor=3, and ask for
another witness to ϕ, using the strategy Avoid-Event({E2.liftCall(3)}). This yields the
following trace: init, landingCall(3), E2.assignCall(3), etc., until E2 reaches floor 3.
Thus, we observe that if both elevators are on floor 1, the assignment of calls appears
to be nondeterministic.

To find a better reason, we use the Avoid-States(V1) strategy, where V1 is the set of
states in the previous witness. This results in the following sequence of events: there is
a call for floor 2; it is assigned to elevator 2, which moves to floor 2 to service it; there is
a call for floor 3, and it is assigned to elevator 2. This allows us to make another guess:
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if E2.floor=1 and E1.floor=2, then landingCall(3) causes E1.floor=3:

(E1.floor = 1 ∧ E2.floor = 2)[landingCall(3) ⇀ E1.floor=3]

Since this scenario holds, we assume that the criterion is the distance: if elevator 1 is
closer to the floor called for than elevator 2, it is assigned the call. If they are equidistant,
then preference is given to the elevator moving in the right direction; and otherwise
the assignment is made nondeterministically by the controller. Running a sequence of
witnesses using Avoid-Visited helps build this intuition.

Intermediate Events. Given that A ⇀ B, is there an intermediate event C that links
them, so that A ⇀ C and C ⇀ B?

Intermediate Cause. This is a variant of Cause Weakening. Suppose we start with
A ⇀ B valid, but A ↽ B not valid. If Cause Weakening does not find a weaker event
A ∨ C with A ∨ C ↽ B, is there an intermediate event D such that D happens only
because of A (A ↽ D), and B happens only because of D (D ↽ B). B can still follow
A without an occurrence of D.

Variable Subset Dependence. This and the following pattern are not shown in Table 2
because they are applicable for general-purpose elaboration. The goal of Variable Sub-
set Dependence is to limit the focus of the exploration. For example, we may want to
study just the behaviour of the elevator E1 by disallowing changes in variables of E2.
The pattern is to choose a subset V ′ of the state variables and use an Avoid-Events(V ′)
strategy that attempts to avoid any changes of variables in V ′.

Avoid Exception. Exceptional or error behaviour makes many systems hard to under-
stand, but this exact understanding is usually not necessary for building mental models.
For example, suppose it is possible to put elevators on service. Then most of the scenar-
ios we attempt to validate are false: a service within the elevator would not be satisfied
if the elevator is on service, scheduling of elevators to fulfill landing requests would
be different, etc. This pattern allows us to exclude such behaviours from consideration.
Given a failed scenario ϕ, we look for a condition c so that c[ϕ] holds (in the elevator
example, such a c is “elevator not on service”). If this fails, we can try to strengthen c
by computing counterexamples to ϕ using Avoid-Conditions({c}). A similar pattern
applies if the exceptional behaviour is caused by an event.

6 Evolving Models

In this section, we describe strategies for maintaining and updating mental models as
the system evolves.

6.1 Formalizing Change

We start by formalizing the notion of an evolution of a model. We define an exten-
sion of Kripke structures which captures information about the “old” and the “new”
structures; Kripke structures augmented with difference information (diff) are called
KSDs. KSDs partition state variables into old and new and record information about
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changes in transitions by associating labels to pairs of states: if there is a transition
between them, it is either newly-imposed (labelled by “i”) or preserved from the old
structure (“p”). If there is no transition, then either the transition never existed (“n”) or
was deleted during the evolution (“d”). KSDs also record changes of the initial state.

Formally, a Kripke structure with diff (KSD) is a tuple M = (S, s0, s
′
0, R, I,

I ′, V, V ′), where S is a set of states; s0 and s′0 are the old and the new initial
states, respectively; V and V ′ are sets of old and newly-added atomic propositions;
R : S×S → {p, i, d, n} is a labelled transition relation; I : S → 2V and I ′ : S → 2V ′

are labelling functions associating each state with the set of old and new atomic propo-
sitions, respectively, that are true in that state. In addition, for s, x ∈ S, if I(s) = I(x),
then s and x used to be the same state – they are identical but for the new variables; this
is an equivalence relation, and we write s ≡ x. If s ≡ x and t ≡ y, then in the old struc-
ture, transitions (s, t) and (x, y) were either both present or both absent, and thus in the
new one, they are either deleted or preserved: R(s, t) ∈ {p, d} ⇔ R(x, y) ∈ {p, d}.
The equivalence class of s under≡, {t | t ≡ s}, is written ŝ.

For example, we augment the model in Figure 1(a) with an additional atomic propo-
sition q (V ′ = {q}). If q is true, then p does not cause r to become true. If q becomes
true while r is true, r becomes false in the next state. A fragment of this model is shown
in Figure 1(b). In the figure, preserved transitions are regular lines, imposed ones are
extra thick, and deleted ones are dashed; those never there are not shown. The initial
state of the system is now s13, but s13 ≡ s0. The transition (s13, s14) is considered
preserved because in Figure 1(a), the transition (s0, s1) was present, and s14 ∈ ŝ1,
s13 ∈ ŝ0.

Our definition of KSDs enables easy extraction of the old and the new Kripke struc-
tures. Let M = (S, s0, s

′
0, R, I, I ′, V, V ′) be a KSD. Then the old Kripke structure Mo

is (S/≡, s0, Ro, I, V ), where S/≡ is the set of states obtained from S via the equiva-
lence relation ≡, and Ro(ŝ, t̂) ⇔ ∀x ∈ ŝ, y ∈ t̂ · R(x, y) ∈ {p, d}; that is, a transition
between s and t exists iff for all x, y in M whose labels agree with s and t, respec-
tively, on old variables, the transition between x and y was either preserved or deleted.
The new Kripke structure Mn = (S, s′0, Rn, I ∪ I ′, V ∪ V ′) has the transition relation
Rn(s, t) ⇔ R(s, t) ∈ {p, i} since only the preserved and the imposed transitions are
present in the new system. It is equally possible to take an old Kripke structure, and
the edits (the new variables and transition changes) and compute the KSD capturing the
change.

Our definition of KSDs describes the change syntactically. Unlike a standard simu-
lation relation, it does not allow us to conclude anything about the logical relationship
between the two systems; however, it does provide a way for strategies to mine the
changed model for witnesses that highlight the differences induced by the change.

Note that we have not considered the deletion of variables. Deletion is handled by
keeping the variable in V but removing dependences on this variable from the transition
relation. Formally, let M = (S, s0, R, I, V ) be a Kripke structure, and x ∈ V . Let
s+, s− be states that agree on values of propositions in V \{x}, but disagree on the value
of x: it is true in s+ and false in s−. R is independent of x at s if Img(s+) = Img(s−).
R is independent of x if the above equality holds for all s. For example, in KSD shown
in Figure 1(b), states s14 and s10 are not independent of q.
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Thus, a Kripke structure can be made independent of a variable just by adding and
removing transitions; this is behaviorally equivalent to removing the variable. Further-
more, removing dependence on a variable actually removes the variable from the sym-
bolic representation of the model’s transition relation.

In this paper, we do not address the problem of specifying the diff between the two
models. However, our definition can encode many of the high-level notions of change
described in the literature, e.g., the SFI feature constructs of Plath and Ryan [26].

6.2 Diff-Based Strategies

We define a few strategies that use change information embedded into a KSD.

Avoid-New-Variable-Events. We say that a transition (s, t) results from a new variable
event if some proposition in V ′ has a different value in t as it did in s. If s is the last
state of the partial witness, the preferred set consists of all successors t of s such that
(s, t) does not result from new variable events. A version of this strategy that picks a
transition (s, t) with the minimum number of new variable events can also be defined.

Avoid-New-Transitions. This strategy uses transition labels. If s is the last state of the
partial witness, then t is in the preferred set if R(s, t) = p, and in the avoided set if
R(s, t) = i.

Reuse-Old-Witness. The strategy is useful if the initial states of the new and the old
system coincide (s0 ≡ s′0). Given a previously-generated annotated witness w for ϕ,
with wi = (si, Φi), this strategy prefers, at step i of generating the new witness w′,
states in ŝi+1.

7 Maintaining Models Under Evolution

Changes to a system can have two important effects on behavioral models: new events
can be introduced and causal relationships which were established in the old system
may be broken. In this section, we introduce an elaboration pattern Exception Breaks
Causation which helps understand change and which is supported by strategies that
operate on KSDs.

In the old system, A ⇀ B was valid. The existential counterpart A � B still holds,
but A ⇀ B no longer does. We guess that the change has introduced an exceptional
condition c under which A does not lead to B, but possibly to some other event D. Our
goal is to find this c,and D if it exists, so that ¬c[A ⇀ B] holds, and perhaps c[A ⇀ D]
hold. Further, we may want to check whether A is necessary for D: A ↽ D.

Recording the difference between the two systems in a KSD allows us to use the
Avoid-New-Transitions strategy for the counterexample to A ⇀ B. It minimizes
the dependence on the new behavior and focuses on the essential difference between
the systems to help identify potential c and D. Conversely, applying Prefer-New-
Transitions combined with Avoid-States allows us to compute different witnesses to
A � B that focus on the new behavior and yet preserve the property.

We illustrate the use of this pattern on the elevator system, which we modify by in-
troducing a service feature to each elevator: once on service, it stops servicing any of
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its currently-assigned landing calls and may not be assigned any other requests until it
goes off service. This change breaks the scenario landingCall(3) ⇀ floor=3. Search-
ing for counterexamples of this property using Avoid-New-Transitions yields the one
where from init, both E1.service and E2.service become true, and in the next state,
the landing-call for floor 3 cannot be assigned to either elevator. Further, both elevators
stay on service (the last state is looping). So, we guess that the exception condition c is
E1.service ∧ E2.service.

However, c[landingCall(3) ⇀ floor=3] is not valid either, as the following coun-
terexample shows: E1 goes on service, a landing-call for floor 3 comes in, it is assigned
to E2, E2 goes to floor 2, E1 goes off service, and E2 goes on service. The system
may stay in this state indefinitely, without servicing the call to floor 3. Thus, we pro-
pose a weaker c, E1.service ∨E2.service, and this guess is correct: the system behaves
normally as long as neither elevator goes on service. There is no reasonable D, in this
instance, with c[landingCall(3) ⇀ D]; if the elevators stay on service, then floor=3
may never happen, but no positive event which does happen instead can be identified.

To build more understanding of cases where the service feature is used but a landing-
call is still being serviced, we use the Prefer-New-Transition strategy and examine
witnesses to call(3) � floor=3.

8 Tool Support

Sawblade is built on top of our symbolic model-checking tool XChek [6]. Its parts are
described below.

The Vocabulary Manager keeps track of variables and events currently considered to
be of interest, and hierarchical relationships between them. Elements of the vocabulary
can be combined (for a more abstract event), or split up (for a more concrete one).

The Pattern Tool allows users to create behavioral models from scratch using the cur-
rent vocabulary. It is similar to the corresponding part of the Bandera tool [11]; the
fully-realized pattern is translated into a CTL property, which is handed to the model-
checker.

The Model Manager tracks validated behavioral models and the relationships between
them.

The Strategy Builder allows the user to select and customize standard strategies (such
as those described in this paper). Although not currently implemented, Strategy Builder
will also include a scripting language for enabling users to define their own strategies.

The Interactive Witness Generator (KEGVis) [15] uses the selected strategy to pro-
duce a witness. It can either produce it immediately, or allow manual intervention at
defined breakpoints.

Sawblade can maintain Kripke structures with diff as well as ordinary Kripke struc-
tures, and construct them from a specification and an edit. This information is used
whenever a change-aware strategy (such as Avoid-New-Transitions) is used. When a
new and an old model are being examined side-by-side, all parts of the tool are aware of
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it: the Vocabulary Manager marks old and newly-introduced elements, and the Model
Manager indicates whether a behavioral model is validated in the old, new, or both
systems. The Witness Generator distinguishes newly-introduced variables graphically
when presenting witnesses, and also color-codes the types of transition used (preserved
and imposed). When attempting to reuse an old witness, it can indicate the location
where a removed transition made the reuse impossible.

9 Conclusions and Future Work

In this paper, we described a methodology for building compact behavioural models of
existing event-driven systems. The methodology, supported by a tool Sawblade, is based
on the use of model-checking for validating scenarios, and on strategy-augmented wit-
ness generation for helping elaborate these scenarios. We also described a methodology
for storing information about the system evolution and using strategies that use the old
and the new systems to help users understand the change in behavioural models. We
illustrated our approach using an elevator controller.

In future work, we plan to augment the current capabilities of the tool by adding
a scripting language, and expand the witness generator so that it can use strategies
with backtracking. We are also interested in combining our methodology with query-
checking [5]: once events of interest have been identified, query-checking may be ef-
fective in determining the exact relationship between them. We are also planning to
provide a stronger empirical validation of our elaboration patterns.
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Abstract. Software containers present an effective mechanism for de-
coupling cross-cutting concerns in software. System-wide concerns such
as persistence, transaction management, security, fault masking, etc.,
are implemented as container services. While a lot of effort has been ex-
pended in developing effective container implementations, specifications
for software containers are largely presented in informal natural language,
which hampers predictable reasoning about the behavior of components
deployed within containers. In this paper, we present a formal model for
reasoning about the behavior of software containers. Our model allows
developers to reason precisely about how the behaviors of software com-
ponents deployed within a container are modified by the container. We
further present the specifications of a few examples of container services
that are found in different container implementations, and use our for-
mal model to prove the correctness of the behavioral transformations
that these services cause.

1 Introduction

A software container is a hosting environment for software components. It pro-
vides execution support to the components it hosts in a way that is similar to an
operating system hosting processes. It also serves as a protective barrier, moni-
toring the interactions between hosted components and their clients, restricting
the interactions to those that are deemed safe. Container-based models provide
a clear separation of concerns between application logic and enterprise services,
such as transaction management, persistence, security, etc.

Although there are several commercial container architectures, the best-
recognized is the J2EE container provided by Sun Microsystems. The container
provides a collection of enterprise services to its hosted components, selected
from a predetermined set. This is not, however, the only service model to con-
sider. Other models allow extensible service sets; some allow the service selection
to change dynamically on a per-component basis [6]. We discuss some of these
models in Section 2.

The services provided by a container affect behavioral transformations in the
components it hosts. Metaphorically, the container is a type of lens: the clients’
view of hosted components is altered by the services the container provides. Un-
der this view, neither the client nor the component implementer needs to worry
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about implementing common enterprise services. Those services are provided by
every component by virtue of being deployed within the container.

But there is a downside. When a component is hosted within a container, its
specification no longer reflects its total behavior. Component clients must also
consider the effects of the container services in their reasoning processes. The
problem, however, is that existing container service descriptions are informal,
and do not directly support formal reasoning. This is one of the key reasoning
problems identified by the component-based software engineering community [5].
In the absence of more rigorous specification and reasoning techniques, the relia-
bility of the container model may be undermined. This is the problem we address
in this paper. Our contributions are:

1. A formal behavioral model of software containers, applicable across a range
of commercial architectures.

2. Techniques for reasoning about the behavior of software components in the
context of container-based deployment.

3. Examples of container service specifications from popular architectures, and
a discussion how to use those specifications in the reasoning process.

The rest of the paper is organized as follows. In § 2, we present an overview
of some existing container models. In § 3, we describe the different types of con-
tainer services that can be described using our model. In § 4, we define a formal
model that can be used to reason about the behavior of software containers and
the services they provide. In § 5, we present some examples of services that can
be specified using our model. After discussing related work in § 6, we conclude
with a summary of our contributions and directions for future research in § 7.

2 Container Implementations

Software containers have been embraced as a means of modularizing cross-
cutting concerns for a number of years. A container neatly encapsulates the
services that cross-cut the components it hosts. Component developers need
only worry about core functional concerns. In recent years, considerable effort
has been invested in creating effective container implementations. We briefly
examine some representative implementations.

EJB Containers. The Enterprise Java Beans (EJB) container [17] is the core of
the Java 2 Enterprise Edition (J2EE) [18]. This architecture targets enterprise
class systems. Applications are composed of EJB components that implement
the business logic. The hosting EJB container provides transaction management,
security services, etc. Although the component developer must abide by certain
design constraints, he/she is shielded from the complexity of the underlying
service implementations; the services are container-managed. Unfortunately, the
container services are specified informally, precluding formal reasoning efforts.

Spontaneous Containers. In dynamic systems, such as those running in mo-
bile networks, static service selection is insufficient. Popovici et al. [12] propose
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spontaneous containers, combining container technology and dynamic aspect-
oriented programming. In this model, the container is designed for application
environments in which mobility and dynamic adaptation are required. A com-
ponent that joins a network discovers available container services, and attaches
itself to the appropriate services. The services are modeled as aspects that are
dynamically woven into hosted components [13]. Further, the available service
set can be extended dynamically. The system supports uniform service recon-
figuration across hosted components without re-compilation or re-deployment.
Again, formal reasoning is thwarted by a lack of formal documentation.

DRSS. Hallstrom et al. [6] describe DRSS, an open container architecture that
allows for service variation across hosted components. The services supplied to
a particular component can be applied and removed dynamically, allowing for
runtime maintenance and evolution. The model is based on the notion of an in-
terceptor, which processes messages flowing between component instances. Each
invocation flows through an interceptor chain, before reaching the target com-
ponent instance. Container services are implemented in the form of interceptors,
making it possible for the container to inject services between component in-
vocations. Since interceptor chains are allocated on a per component basis, all
components need not use the same services. DRSS is also spontaneous, in the
sense that it allows for dynamic discovery and deployment of services. Again,
however, DRSS services are documented with informal descriptions alone.

As we will see, our reasoning framework applies to all these container imple-
mentations (and others), despite the variation that occurs across the models.

3 Classifying Container Services

In our formal model, we consider three classes of container services. We note that
this classification is not exhaustive. For example, our model does not consider
container services that ignore the specifications of hosted components. Our focus
is to stay within the confines of contract-based reasoning.

1. Monotonic addition of behavior. This class of services are those that
do not in any way modify the existing behavior of target components. They
simply add functionality over and above what the components provide. Ex-
amples include Message Logging and Object Visualization.

2. Redirection. A service in this class remains faithful to the original speci-
fication of each hosted component C, but may redirect method invocations
to an object different from the intended receiver. When a method call to
a receiver object O1 is redirected to a different object O2, the service must
meet the obligation that the new target O2 is of the same type (or behavioral
subtype) as that of O1. Examples include Fault Masking and Load Balancing.

3. Deferred Execution. This class of container services may delay the de-
livery of a message to an object. The client may not immediately see the
effect of a message sent to an object, but will see the effect at a later time.
Examples include Transaction Management and Batch Processing.



142 N. Sridhar and J.O. Hallstrom

4 Modeling Containers

4.1 The Need for a Formal Model

While a lot of work has gone into crafting different implementation strategies [2,
6, 7, 11, 12, 17, 18, 19], there has been relatively little effort focused on defining
effective methods for reasoning formally about the behavior of components and
systems that use these containers [5].

A software container acts as a mediator between a hosted component and its
clients. Each message sent by a client to a hosted component is “seen” first by
the container, which then sends the message to the component. Before the com-
ponent receives the message, therefore, the container may have performed some
actions. It may even have modified the message. Similarly, after the component
has acted upon the client’s message, its response to the client goes first to the
container before reaching the client.

It is this “power” of the container that necessitates the need for a formal spec-
ification of its behavior. A contract that describes the behavior of a component
may be useless if the component is instantiated within a container without a
specification of what exactly the container is doing to its interactions. The spec-
ification must include details of how the specifications of hosted components are
(or may be) modified by the container. Informal descriptions are not enough to
achieve predictable correctness of software in the presence of containers.

4.2 The Behavioral Model

We begin our discussion of the formal model by looking at how a client may
be affected by a container. When a client program makes a method invocation
on a particular object, the rules of design-by-contract [10] tell us that the client
must have satisfied the pre-condition of the method; and consequently, upon
return from the execution of the method, the client will be able to assume that
the post-condition is satisfied. This contract must not be compromised by the
presence of a container. Consider a component H with method f1:

Component H
operation f1

pre − condition : Ppre

post − condition : Ppost

(1)

Further, let us suppose that this component is hosted in a container C. When
a client wants to use this component, it’s view is now altered. The component
that the client is using is H[C] = C ⊕ H. We use the operator ⊕ : Container ×
Component → Component to denote the composition of a component with a
software container. We use H[C] to denote that component H is deployed inside
container C, and h[C] to denote an instance of H deployed in C.

In accordance with the principles of modularity, the specification presented
above must hold regardless of the context in which f1 is invoked. The client, after
the call to f1 must be able to assume Ppost. Consequently, even if the component
H is hosted in a container, this post-condition must still hold for H[C]; the
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modified post-condition must be at least as strong as the original. Similarly, the
client will only have to worry about satisfying the original pre-condition. If the
container were to change the pre-condition, it can only be weakened.

The statement above then views a container-hosted component as a behavioral
subtype [9] of the “bare” component. The container-hosted component, therefore,
honors the original contract. However, it does more, and this additional behavior
is not captured by the contract. While we can state that the new pre-condition
(post-condition) is weaker (stronger) than the original, we do not have a notion
of exactly how much weaker (stronger). Behavioral subtyping is therefore not
enough for our purpose.

Model of a Container Service. Each container service CS contains:

– Zero or more state variables that the service may use. These variables define
what the service does, and its effect on each method invocation.

– A predicate Mpre that specifies how the service modifies the pre-conditions
of target methods. We call this the pre-modifier.

– A predicateMpost that specifies how the service modifies the post-conditions
of target methods. We call this the post-modifier.

– The body of the service: the actions that define the functioning of the service.
– A set of additional methods that a client may invoke on a hosted component;

we can view these methods as being added to the component’s interface.

The minimal structure of the specification of a container service is as follows:

Definition 1. Container Service

Service CS
State : S
Pre modifier : Mpre

Post modifier : Mpost

Body : a1; a2, . . . , an

Methods : m1, m2, . . . , mk

end Service CS
The predicatesMpre andMpost are defined in terms of the service state variables
(S) and the context of each method call that the service is applied to. The context
of a method call includes the name and signature of the method, the target
object, and the values of all parameters to the method (if any). Upon return
from a method, the context includes the current values of all the parameters,
and the method’s return value (if any). The methods m1, . . . , mk operate on
the same set of variables. Encapsulation is respected; the service cannot access
private fields or private methods of the target. In addition to its local state, each
service has access to the following keywords:

– thismethod is a handle to the method to which the service is being applied.
– thismethod.args is the ordered sequence of parameters to thismethod. The

sequence holds the input values of the parameters when referenced in
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Mpre, and the output values when referenced inMpost. Additionally, #this-
method.args holds the input values of the parameters to thismethod inMpost.

– thismethod.retval is the value returned by the method.
– target is the object that is intended as the receiver of the method call.

Each component service is locally certifiable. This means that we require each
component service to be defined modularly and in isolation; the specification
of the service is only dependent on its own local state, and is not modified by
changes in other services in the container.

Model of a Service Group. Container services are aggregated into service
groups, each of which is a sequence of container services. Components do not
subscribe to a service directly; they subscribe to the service group that contains
exactly the service(s) that are needed. This simplifies our reasoning model to
consider only one kind of composition, without reducing expressivity.

Each service group in a container consists of the following:

– The string of container services that the service group collects. This string
is referred to using the keyword services.

– The state of the service group, which is simply the fully qualified union of
the states of the individual services in the service group. By fully qualified we
mean that variables are of the form service-name.variable. If the same variable
name is used by two services, the two variables are treated as distinct.

– A predicateMSG pre that specifies how the pre-conditions of target methods
are modified by the service group. This predicate is the conjunction of the
pre-modifiers of all the container services in services.

– A predicate MSG post that specifies how the post-conditions of target meth-
ods are modified by the service group. This predicate is the conjunction of
the post-modifiers of all the container services in services.

Each service group is a sequence of services; the order in which the services ex-
ecute is important. How then is it sufficient that the pre-modifier (post-modifier)
of the service group is simply the conjunction of pre-modifiers (post-modifiers)
of the individual services? Why do we not use the Hoare logic rule of sequential
composition? Consider a service group SGk with three services CS1, CS2, and
CS3 with pre- and post-modifiers as follows:

CS1 :: 〈M1 pre, M1 post〉
CS2 :: 〈M2 pre, M2 post〉
CS3 :: 〈M3 pre, M3 post〉

(2)

According to the rule of sequential composition, if we had

M1 post ⇒ M2 pre ∧ M2 post ⇒ M3 pre (3)

then we can say that the following about the pre- and post-modifier of SGk:

SGk :: 〈M1 pre, M3 post〉 (4)
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However, since our services are all defined independently, we cannot assume
such relationships as in (3) above. If CS1 does nothing to ensure M2 pre and
M3 pre, then these two predicates must be true before CS1 executes. Similarly,
if CS2 and CS3 do not do anything to disrupt M1 post, then this predicate still
holds at the end of CS3. Hence we cannot use the rule of sequential composition
to determine the pre- and post-modifier of a service group.

The formal definition of a service group is as follows. Note that the function
elements: String → Set returns the elements in a string as a set.

Definition 2. Service Group

Service Group SG
Modeled by: services : string of CS
State : SSG = {∀ cs ∈ elements(services) : S(cs)}

pre − modifier : MSG pre =

|services|

i=1

Mi pre

post − modifier : MSG post =

|services|

i=1

Mi post

methods : methods(SG) = {∀ cs ∈ elements(services) : methods(cs)}

When a component H subscribes to a service group SG, H is transformed to
include the state variables in SSG , and all the methods in methods(SG). More-
over, the pre-condition (post-condition) of every method in H is transformed to
include the pre-modifier (post-modifier) of SG. For example, if the component
defined in (1) subscribes to the service group in Definition 2, the component will
be transformed as follows:

Component H[SG]

Additional State : S(SG)

operation f1

pre − condition : Ppre ∧ MSG pre

post − condition : Ppost ∧ MSG post

Additional methods: methods(SG)

(5)

There is one more thing that we need to ensure before we can claim that this
transformation is correct. Since the new pre-condition (post-condition) is the
conjunction of the original pre-condition (post-condition) of the method f1 with
the pre-modifier (post-modifier) of SG, we require the following to protect the
conjunction, preventing the derivation of false statements:

MSG pre � false ∧ MSG post � false (6)

We can now consider the rule required to prove that the transformation of a
component by a service group is indeed correct.
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Rule 1 (Behavioral Transformation)
H :: 〈h.f1.Ppre, h.f1.Ppost〉
{H[SG].f1.Ppre} SG.Body.pre {H.f1.Ppre}
{H.f1.Ppost} SG.Body.post {H[SG].f1.Ppost}

H[SG] :: 〈h[SG].f1.Ppre, h[SG].f1.Ppost〉

The first antecedent requires that the specification of the method f1 be es-
tablished for the component H outside the container. The second antecedent
requires us to show that the body of the service group when applied to the
method call on its way to the target (SG.Body.pre) meets the original method
contract in terms of ensuring that the original pre-condition of the method f1
holds at the end of the service execution. The third antecedent requires us to
show that the body of the service group when applied to the method call on
its way back to the client (SG.Body.post) meets the original method contract in
terms of ensuring that the original post-condition of the method f1 holds at the
end of the service execution.

Although the total number of service groups in a container is | Σ∗ | where
Σ is the alphabet consisting of all the services provided by a container, some
equivalences can be established among these groups. For any two service groups
SGi and SGj , if the set of services they include are the same, then the two groups
are equivalent. The following is true of service groups in a container.

elements(SGi.services) = elements(SGj .services) ⇒
(S(SGi) ≡ S(SGj)) ∧ (MSGi pre ≡ MSGj pre)∧
(MSGi post ≡ MSGj post) ∧ (methods(SGi) ≡ methods(SGj))

(7)

At any point during a method invocation, the service group is able to examine
itself to determine which services have been applied so far. To do this, we use two
trace variables. τpre denotes the trace of service invocations applied to a method
call on its way from the caller to the callee, and τpost is the trace of service
invocations applied on its return from the method. Upon successful completion
of a method call (when all services in SG have been applied, and the method
has terminated), the following is true of the trace variables:

τpre(SG) = SG.services

τpost(SG) = reverse(SG.services)
(8)

Model of a Software Container. With the pieces that we have established
so far, we are now ready to describe the complete model of a software container.
A software container C contains the following elements:

– Zero or more hosted components H1, ..., Hn.
– Zero or more container services CS1, ..., CSm. These container services define

the alphabet ΣCS of the container C.
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– Zero or more service groups SG1, . . . , SG|Σ∗
CS |. The set of service groups is

the set of all finite strings composed out of alphabet ΣCS .

As such, a container is modeled as a set of pairs, each mapping a hosted
component to the service group that it subscribes to. H denotes the set of all
components hosted in the container C, and SG denotes the set of all service
groups in the container. We model a software container, C as follows:

Definition 3. Container

C ={ H = {H1, ..., Hn},

SG = {SG1, . . . , SG|Σ∗
CS |},

〈H1, SGk〉, 〈H2, SGl〉, . . . , 〈Hn, SGm〉 }

Note: We first referred to a component H hosted by a container C as H[C].
Now, we refer to a component H subscribed to a service group SG as H[SG].
These refer to the same component — each hosted component must subscribe
to exactly one service group in its hosting container.

5 Some Example Services

5.1 Message Logging

Logger (Fig. 1) is a container service that monotonically adds behavior to com-
ponent methods to which the service is applied. The service does not cause
any change in behavior to the original method. The service simply adds to the
behavior of target methods by writing to a log the details of all calls.

The state of Logger consists of two strings — ILog and OLog. ILog is the log of
all method invocations on their way from the caller to the target. Each element
in the string is a pair consisting of a method name, and the sequence of actual
parameter values passed to the named method. OLog is the log of all method
invocations on their way from the target object back to the caller. OLog contains
the final values of method parameters and the return value.

The pre-modifier of Logger adds to ILog a new pair with thismethod (method
name), and the actual values of each element in thismethod.args (method argu-
ments). @ILog here refers to the value of ILog in the state immediately preceding
the start of the body of Logger during the target method call (Logger.Body.pre)1 .
The post-modifier of Logger creates a new pair with the name of thismethod and
the sequence of return values (the actual values of elements in thismethod.args),
concatenated with thismethod.retval. This new pair is added to OLog. @OLog
here refers to the value of OLog in the state immediately preceding the start of
Logger during the method’s return.

Neither the pre-modifier (Mpre
Logger) nor the post-modifier (Mpost

Logger) alter the
pre- and post-conditional values of the target method’s parameters. Thus, the
1 We use the notation #x in the post-condition of a method to refer to the pre-

conditional value of a variable x. The @x notation is used here to avoid confusion.
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Service Logger

State :

ILog : String of

〈 methodName : String,

paramValues : Sequence of parameter values〉
OLog : String of

〈 methodName : String,

returnValues : Sequence of return values〉
pre modifier : Mpre

Logger

ILog = @ILog ∗
〈 thismethod.name,

〈thismethod.args[0].value, . . . ,

thismethod.args[| thismethod.args | −1].value〉〉
post modifier : Mpost

Logger

OLog = @OLog ∗
〈 thismethod.name,

〈thismethod.args[0].value, . . . ,

thismethod.args[| thismethod.args | −1].value〉
∗ 〈thismethod.retval〉〉

end Service Logger

Fig. 1. Specification of the Message Logging container service

second and third antecedents of Rule 1 are true if the method is faithful to
its behavioral specification (the first antecedent of Rule 1). Therefore, Logger
causes a correct transformation.

5.2 Fault Masking

The next service we consider is one that causes the redirection of a method invo-
cation to an object instance other than the intended receiver. In applications that
provide fault tolerance, the fault masking service is very useful. The container
can, in a manner that is transparent to the client, prevent method invocations
from being sent to object instances that have failed. This kind of redirection
only applies to components that are stateless—the method call cannot depend
on the component’s internal state.

The fault masking service needs the set of objects that are currently failed
(R1), and for each failed object, the set of objects to which calls can be re-
directed (R2). There are different strategies for obtaining R1. In synchronous
systems, simple timeouts can be used. In asynchronous systems, however, it is
not possible to place such time bounds. We can, however, abstract away that
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Service FMask

State :

fd : Failure detector oracle

suspects :{obj : obj ∈ H : fd.failed(obj)}
alt objs :Map(obj → Set of obj)

pre modifier : Mpre
F Mask

target ∈ suspects ∧ alt objs(target) 	= ∅ ⇒
target = a obj : a obj ∈ alt objs(target) ∧ a obj /∈ suspects

post modifier : Mpost
F Mask true

methods :

void setAlternates(a objs: Set< T(target) >)

pre − condition :true

post − condition :

(target /∈ Keys(alt objs) ⇒
alt objs = #alt objs ∪ {〈target, a objs〉}) ∧

(target ∈ Keys(alt objs) ⇒
alt objs(target) = #alt objs(target) ∪ a objs) ∧

(∀o ∈ a objs : H = #H ∪ o)

end Service FMask

Fig. 2. Specification of the Fault Masking container service

detail and leave it to some failure detector [3]. FMask (Fig. 2) maintains a set
suspects—objects that the failure detector suspects to be failed. fd.failed(obj) is
true for all suspects.

To satisfy R2, the service maintains a set of alternate objects (alt objs) for
every object obj in the container. This way, when the container does encounter a
method call whose target is failed, it can look up an alternate object and forward
the call to that object. The method setAlternates() can be invoked on a hosted
object with a set of alternate objects. The argument to setAlternates() is a Set
parameterized by the type of target. All objects in a objs are added to the set
H of container-hosted objects.

When FMask intercepts a method call to a suspected target, the call is directed
to an object from alt objs(target) that is still alive. If no such alternate object
can be found by FMask, the invocation fails. On the return direction, the service
does nothing, and therefore does not modify the post-condition.

Since neitherMpre
FMask norMpost

FMask interfere with the pre- and post-condition
of the target method, the second and third antecedents of Rule 1 are true. Thus,
if the original method meets its behavioral contract, FMask causes a correct
transformation.
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5.3 Transaction Management

We now come to an example of the third class of container services — deferred
execution. The service we consider here is transaction management (Figure 3).
Some components require that certain groups of methods be called in succession;

Service TxnMgmt

type Tx Req Types = enum{Required, NotRequired}
State :

tx reqts :Map(String → Tx Req Types)

curr txn : String of method

μτ : String of method

pre modifier : Mpre
TxnMgmt

(tx reqts(thismethod.name) = Required ⇒
curr txn = @curr txn ∗ thismethod) ∧ (target = ⊥)

post modifier : Mpost
TxnMgmt

(tx reqts(thismethod.name) 	= Required ⇒
μτ = #μτ ∗ thismethod) ∧

(tx reqts(thismethod.name) = Required ⇒
expects commitTxn() ∨ rollbackTxn())

methods :

void setTxReqts(meth name: String, tr: Tx Req Types)

pre − condition : true

post − condition :

(meth name /∈ Keys(#tx reqts) ⇒
(tx reqts = #tx reqts ∪ {〈meth name, tr〉})) ∧

(meth name ∈ Keys(#tx reqts) ⇒
(tx reqts(meth name) = tr))

void commitTxn()

pre − condition : curr txn 	=<>

post − condition :

curr txn =<> ∧ (∃s : String of method : μτ = s ∗ curr txn)

void rollbackTxn()

pre − condition : curr txn 	=<>

post − condition :

curr txn =<> ∧ (∀s : String of method : μτ 	= s ∗ curr txn)

end Service TxnMgmt

Fig. 3. Specification of the Transaction Management container service
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either all of these methods should succeed, or they should all fail. A partial
execution may result in an inconsistent state.

A client using a component subscribed to the transaction management ser-
vice must first identify the methods in the component that require transaction
support. The state of TxnMgmt is defined in three parts:

tx reqts: A map with the transaction requirement for each method in the com-
ponent. Methods with no entry in tx reqts do not need transaction support.

curr txn: The string of methods that belong in the current transaction. Note
that there can only be one “live” transaction at a time according to this
specification; this is for simplicity of presentation due to lack of space. The
specification can be extended to allow for multiple live transactions.

μτ : The trace of all methods that target executes. This trace collects a method
call when the method is actually executed, not when it is invoked. Therefore,
for methods that do not need transaction support, the method is added to μτ
upon invocation, since they are executed immediately. Methods that require
transaction support are added to μτ when the transaction is committed.

The pre-modifier of TxnMgmt requires that the method being invoked be
added to curr txn if the method requires transaction support. If there is no live
transaction when the target method is invoked (curr txn = 〈〉), a new transaction
is initiated. In addition, target is set to ⊥, and control returns to the client.

The post-modifier Mpost
TxnMgmt modifies the post-condition of the target to in-

dicate whether it has been executed or not. The call is added to μτ if the method
does not require transaction support. If the method does require transaction sup-
port, the method has not been executed yet; it has simply been entered into the
current transaction. In this case, the post-modifier adds an expects clause [8]
to the post-condition of the method; in the future, there has to be a call either
to commitTxn() or to rollbackTxn().

In addition to the setTxReqts() method, TxnMgmt extends the interface of the
target component with two more methods — commitTxn() and rollbackTxn().
commitTxn() can be called when there is a live transaction, and the method
commits the transaction; all the methods in curr txn are executed. This results in
curr txn showing up as a suffix of μτ . Moreover, the post-conditional expectations
of all the methods that belong in the current transaction are now met. The
transaction can be rolled back using rollbackTxn(). This method simply throws
away all the methods in curr txn.

We now see how applying TxnMgmt to a component is a correct behavioral
transformation. Assume that the correctness of the component’s methods in
isolation have been established (first antecedent in Rule 1). If a method does
not require transaction support, the pre-modifier of the service does nothing to
the method invocation. In case a method does require transaction support, it
is not executed immediately. Instead, the entire context of the method is stored
in curr txn and the actual call is made when commitTxn() is called. When the
method is eventually invoked, the state that the client called the method in
originally is retained. In the case of a rolled-back transaction, the original target
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method is never called. Thus, in all the above cases, the service does not affect
the pre-condition. This proves the second antecedent in Rule 1.

The post-modifier of the service also does nothing in the case of methods
that do not require transaction support. In the case of methods that do require
transaction support, the client is required to call either commitTxn() (which will
result in the post-conditions of all methods in the transaction being established)
or rollbackTxn() (which will result in none of the methods being actually in-
voked). In all these cases, we have established the third antecedent in Rule 1.
Thus, TxnMgmt causes a correct transformation.

6 Related Work

Our behavioral model of containers is related to the notion of behavioral sub-
typing [9]. The transformed component that the client sees as a result of the
composition of the component with the container is a behavioral subtype of the
original component. Our work goes beyond this, in that we are interested in spec-
ifying the additional behavior introduced by the container. Our work is loosely
based upon the work on reasoning about object-oriented frameworks [14]. As
in our case, Soundarajan and Fridella are interested in specifying application-
specific behavior that results from specializing a framework. They use trace-
based specifications to define how the template methods use hook methods to
define application-specific behavior.

The work on modular aspect-oriented reasoning [4] shares similarities with our
own. Clifton and Leavens show how modular reasoning techniques can be applied
to understand the behavior of aspect advice. Their modifications to AspectJ
in the form of observers and assistants provide a formal view of how exactly
the behavior of a class is modified by the application of an aspect. The current
work is derived from our previous work on modeling containers as parameterized
components [16], where the container services are modeled as parameters. Our
model of containers supports the dynamic addition and removal of parameters
to a template. Our current approach to reasoning builds on previous work on
dynamically bound parameterized components [15].

7 Conclusion

We began with the claim that the current state of container technology is an
effective solution to the problem of cross-cutting concerns. Containers are used
in a variety of scenarios to decouple system concerns from an application’s core
concerns. The software engineering community has been quick to respond to this
growing demand for new and improved implementation strategies for software
containers.

Although a good number of engineering issues with respect to container tech-
nology have been solved, the problem of predictable reasoning about software
component behavior in the presence of software containers has not been well-
studied. In this paper, we have presented a partial solution to this problem. We
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have presented a formal behavioral model for software containers, along with the
proof rule to show that an implementation of a service is, in fact, correct with
respect to behavioral transformation.

The most important contribution of our model is the ability it affords to
developers and users of software components that are deployed in a container
environment to accurately predict the behavior resulting from composing a com-
ponent with the container.

Our future plans include extending the model in ways that will allow for
automated reasoning and verification of container services. We plan to build tools
that will facilitate a combination of static verification and run-time monitoring
to automate the reasoning process, at least partially. Our work in this direction
involves extending the DRSS container architecture to include specifications.
The specifications will be written in the Spec# [1] language, and will be checked
at run-time to ensure that the services honor their contracts.

The work presented in this paper deals only with behavioral issues of container-
component composition. Another direction for future research in this area in-
volves extending our specification framework to specify non-functional properties
of container services, such as performance, availability, etc.
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Abstract. Our research explores the combination of synchronous and asyn-
chronous collaboration tools for global software development. In this paper we 
assess the impact of tool-mediated inspections to improve requirements negotia-
tion meetings with stakeholders spread over different continents. We present the 
design of our investigation in an educational environment, in a course where the 
clients and developers in a software project were in geographically distributed 
locations. In particular, we studied the usefulness of asynchronous discussions 
in IBIS tool in enabling more effective requirements negotiations meetings. Our 
findings indicate that the requirements negotiations were more effective when 
the groups conducted asynchronous discussions prior to the synchronous nego-
tiation meetings. 

1   Introduction 

Technical reviews and in particular software inspections and client reviews are con-
sidered among the most important software quality assurance techniques in software 
engineering. The software inspection process was first introduced by Michael Fagan 
at IBM [Fag76] with the main goal to find defects before testing starts and to reduce 
rework effort. Although its application was initially limited to code, as a complement 
of testing techniques, software inspections have been also applied to early life-cycle 
software artifacts [Lai00] because detecting defects close to their point of creation 
reduces rework [Boe81]. As requirements defects are the most expensive to correct if 
they are not detected soon, many researchers have subsequently conducted empirical 
studies of software inspection on requirements documents [Bas96, Bas99, Bif03, 
Lai02, Lan98, Por95, Sch92, The03]. Experiences from these studies indicate that 
inspecting requirements documents, other than producing information for correcting 
the document, leads to a better understanding of the real problems, increases confi-
dence in the acquired knowledge, and improves communication among stakeholders. 

The focus of our research is in this area of collaborative software development and 
in particular on processes that support stakeholders to collaboratively develop a 
shared understanding of the required software functionality. We regard requirements 
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inspections and client reviews as powerful mechanisms not only for checking the 
requirements documentation for qualities such as completeness and correctness, but 
also for validating that stakeholders share same understanding of the requirements. 
Requirements inspections create the opportunity for identifying areas in which de-
signers and customers need to further discuss and negotiate requirements issues. 

Over the last years however, the dramatic trend towards developing software in 
geographically distributed settings has challenged the communication and collabora-
tion processes in software teams [Dam03, Her03], and the development of tools and 
methodologies to support a combination of synchronous and asynchronous activities 
in distributed teams emerges as critical. In particular, it becomes important to research 
approaches that enable effective requirements inspections and negotiations in distrib-
uted software development, as they are activities that should support collaborative 
software engineering in remote teams as well as they do in traditional software teams. 
While research in requirements inspections and negotiations [e.g. Boe98] is being 
complemented by studies of inspections for validation of requirements negotiation 
models [Grü04, Hal03], there is little research into enabling effective negotiations that 
follow the identification of requirements issues during the inspections. These negotia-
tions, as examples of requirements meetings that involve relevant project stake-
holders, are traditionally difficult and expensive to coordinate, especially in geo-
graphically distributed teams. 

In this paper we describe our research and early results of studying the usefulness 
of asynchronous discussions, as part of the requirements inspection process, to facili-
tate more effective synchronous requirements meetings in distributed teams. In par-
ticular, we studied the use of a web-based inspection tool, IBIS [Lan03], in support of 
the remote communication between clients and developers collaboratively developing 
a requirements specification. 

IBIS supports remote teams during the inspection of requirements documents, and 
in particular supports teams through stages of issue Discovery, Collection, and Dis-
crimination. During the Discovery stage, inspectors review individually the document 
with the help of checklists or scenarios, and records issues. In the Collection stage the 
inspection leader or the document’s author collate recorded issues and eliminate du-
plicates. In the Discrimination stage the inspection team makes decisions about col-
lated issues. The Discrimination stage is designed as a structured asynchronous dis-
cussion with two mechanisms: posting of messages for each issue under discussion 
and voting as to whether an issue is a true issue or not (false positives). In [Lan04], 
we investigated IBIS support to remote inspection teams and found that asynchronous 
discussions in the Discrimination stage were as effective as co-located inspection 
meetings at discriminating between false positives and true issues. 

Our findings indicate positive impact on the effectiveness of such requirements 
meetings in resolving open issues when preceded by asynchronous discussions in IBIS. 

The paper is structured as follows: Section 2 describes our research design, by in-
troducing the educational environment as the context in which we conducted an em-
pirical study of asynchronous discussions in support of synchronous requirements 
meetings. Section 3 then reports our early results of how IBIS was used and how we 
assessed the effectiveness of requirements meetings when preceded by the asynchro-
nous meetings. We then discuss possible limitations and threats to validity and our 
plans for future research. 
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2   Research Design 

To investigate the usefulness of asynchronous discussions to facilitate effective syn-
chronous requirements negotiation meetings, we studied tool-supported remote in-
spections in six educational global project teams in a global software development 
(GSD) course. Each software project followed an iterative development process in 
which designers in collaboration with clients were to develop a requirements specifi-
cation (RS): after a requirements elicitation stage, a requirements inspection of an 
early draft of RS involved the discovery as well as asynchronous discussion of re-
quirements issues and was further followed by requirements negotiations and proto-
type demonstrations before the final draft of the RS was delivered. In this section we 
describe the research setting: the software development course, the use of IBIS and 
our research design that compared the effectiveness of the requirements negotiations 
when preceded by the asynchronous discussions in IBIS to those negotiations with no 
prior asynchronous discussions. 

2.1   The GSD Course: Students, Groups and Remote Collaboration 

The Global Software Development course was offered in a three University collabora-
tion involving University of Victoria, Canada, University of Technology, Sydney, 
Australia, and University of Bari, Italy during January and May of 20051. The course 
involved a total of 32 students. 12 of them were Master’s and Doctorate students at 
the University of Victoria, 2 graduate and 8 undergraduate students at the University 
of Technology, Sydney, and 10 Master’s students at the University of Bari. 

As shown in Table 1, the Canadian students worked on software projects with the 
Australian and Italian groups as follows: the 12 Canadian students formed three 
groups of 4 (Gr1-3), the Australian students formed two groups of 5 (Gr4-5), and the 
Italian students formed two groups, of 3 and 7 students respectively (Gr6cl and 
Gr6dev). Each Canadian and Australian group was involved in two different projects, 
playing the role of client (C) and developer (D) respectively. Each of the two Italian 
groups was involved in only one project, either as a client (Gr6cl) or as a developer 
(Gr6dev). 

Table 1. Project teams (PT) and their allocation to course projects 

Project A (A1, A2) Project B 
(B1, B2) 

Project C 
(C1, C2) Country Group 

PT1 PT2 PT3 PT4 PT5 PT6 

Gr1 Client (C)     D 

Gr2  D C    Ca 

Gr3    D C  

Gr4 Developer (D)   C   
Au 

Gr5  C   D  

Gr6cl      C 
It 

Gr6dev   D    

                                                           
1 More information can be found on the course website: http://segal.cs.uvic.ca/csc576b 
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2.2   The Software Projects 

There were three distinct projects in the course (A, B and C). Two global software 
project teams were allocated to each project, each with the client and developer group 
in two different countries (see Table 1). The project topics are briefly described in the 
following: 

Project A (A1 and A2 in Table 1): Global software development system. A system 
to facilitate collaboration in GSD by supporting informal communication as well as 
document exchange in remote teams. Tasks supported by the tool included: dis-
playing people’s availability information, viewing changes between different ver-
sions of documents and authors of those changes, visualizing the evolution history 
of a particular document, and discovering who has been working on a particular 
document or section of a document. 
 
Project B (B1 and B2 in Table 1): iMedia system. A “iMedia” software that will al-
low users to purchase movies online, organize their movie library, and play mov-
ies. One of the key requirements was that the interface be simple to use even for 
inexperienced computer users, without sacrificing key features. 
 
Project C (C1 and C2 in Table 1): Virtual Realty system. A system that provides 
accurate and easy-to-find information to real estate agents and home buyers in the 
Victoria area. The system had to display an interactive map, where the end-user 
can zoom in, zoom out, pan, etc., and click on it to get the information of the  
property. 
 
The projects were assigned to groups before group membership was determined. 

The project assignment was done so that each group worked with a different partner 
group for each of the two projects it was assigned (with the partner group always 
located in a different country), and so that the two projects it worked on were on a 
different topic. 

2.3   An Iterative Process to Develop Requirements Specifications 

Each project followed an iterative process of developing a requirements specification 
(RS) through collaboration between developers and clients over a period of 7 weeks. 
The RS development life-cycle (illustrated in Fig. 1) consisted of six phases of re-
quirements discovery and validation, and through which the understanding and docu-
mentation of requirements was to be improved. Each of which stages included either 
client, developer or group tasks and ended with a project deliverable on which stu-
dents were graded for the class. The final deliverable was the final version of the SRS, 
which reflected the shared understanding of the project that the clients and the devel-
opers built over the previous four phases. The project finished at the point where  
the developer group would start writing the code for the system called for by the  
project. 
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Fig. 1. An iterative process to develop the requirements specification (RS) 

For each project, these six project phases consisted of: 

- Request for proposals. Starting with the assigned project topic, the client group 
created a “Request for Proposals” document (RFP) which invited developers to 
propose their solutions to the clients’ needs. 

- Requirements elicitation. In response to the RFP, the developer group assigned to 
the project had three days to analyze it and come up with a list of clarifications that 
they needed from the clients before proceeding. The developers and the clients then 
held a scheduled one-hour requirements elicitation videoconference, during which 
the developers clarified the clients’ needs and elicited more requirements.  A week 
after the requirements elicitation meeting, the developers delivered an initial “Re-
quirements Specification” document (RS 1.0). This document described in detail 
the features and scope of the project and followed the IEEE standard for require-
ment specification. 

- Meetingless inspection of RS 1.0 and asynchronous discussions of requirements 
issues in IBIS. Upon receiving the RS 1.0 document, the clients had a week to carry 
on an inspection in order to identify gaps in understanding of requirements. This 
inspection was entirely performed online through the use of IBIS tool. With the de-
signer team considered the authors of RS1.0, the inspection was carried out by the 
client team. Each member of the client team, individually, participated in the Dis-
covery stage and read the RS 1.0 available in the system and recorded issues. The 
issue information contained a description of the issue found, as well as a number of 
issue attributes such as type severity. A course assistant collected all issues and 
merged duplicate issues, found by more than one client, into a unique list of col-
lated issues. This discovery of issues was followed by a four-day asynchronous 
discussion. The entire project team, clients and developers, participated in this dis-
cussion using IBIS (i.e. in the Discrimination stage). The purpose of the asynchro-
nous discussion was to come to an understanding of each issue and those issues 
that could be closed online (i.e. where resolution could be reached without further 
negotiation) or remained open issues (anything else, and which had to be further 
negotiated in real-time discussion). Discussants attempted to close issues by using 
the two mechanisms in IBIS: posting messages with respect to a certain issue, and 
voting as to whether it is still an open issue or is resolved and thus could be closed. 
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- Requirements negotiation. Those issues that could not be resolved during the asyn-
chronous discussion in IBIS (i.e. open issues) were then discussed during a sched-
uled requirements negotiation held in a videoconference meeting between develop-
ers and clients. 

- Prototype demo. After the requirements negotiation meetings, the developer group 
had one week to develop a prototype of the system to reflect the results of the ne-
gotiation. This prototype did not have to contain working code, but could consist of 
storyboards and paper or computer-based mockups. The purpose of the prototype 
was to express the developers’ understanding of the project and their clients’ 
needs, which was done through a one-hour teleconference demo. The clients could 
give their feedback to the developers and thus reach a consensus on the project be-
tween the two groups. 

- Create final Requirements Specification (RS 2.0). Finally, three weeks after the 
prototype demos, the developers submitted a final version of the Requirements 
Specification (RS 2.0). This version incorporated the clients’ feedback collected 
since the first RS draft was written, that is, through the requirements negotiation 
and prototype demo. 

2.4   Exploring the Usefulness of Asynchronous Discussions to Facilitate Effective 
Synchronous Requirements Negotiations 

To assess the impact of asynchronous discussions on synchronous negotiations meet-
ings, we traced the number of open issues through the stages of each of the six pro-
jects. In particular, we studied the usefulness of asynchronous discussions prior to 
requirements negotiations by investigating the teams’ ability to close some of the 
issues prior to the negotiation and focus the discussion on the issues that could not be 
resolved during the asynchronous discussion. 

To this end, we instructed half the projects to conduct the asynchronous discussion 
before the negotiation, and half the projects to jump into the negotiation without 
asynchronous discussion. Table 2 indicates which projects conducted the Asynchro-
nous discussion (AD) and which did not (No AD). Then, the process variant (AD or 
No AD) was the main independent variable that we manipulated for experimental 
purposes. 

When asynchronous discussions were scheduled for a project team, both clients 
and developers used the IBIS tool over a week, as a threaded discussion forum. The 
aim was to come to an understanding of each issue by exchanging messages and to an 
early resolution through a common agreement expressed by voting. Those open issues 
that could not be closed during asynchronous discussion in IBIS were then left for the 
synchronous negotiation meeting. For those project teams which skipped the asyn-
chronous discussion, all collated issues were thus considered as open issues to be 
dealt at the negotiation. 

To measure the usefulness of asynchronous discussions, we defined the following 
dependent variables: 

− Collated issues = the number of open issues at the end of the inspection carried out 
by the client groups. 
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− Closed issues during asynchronous discussion = the number of issues for which a 
consensus was reached between developers and clients during the asynchronous 
discussion. A closed issue did not require any further discussion. 

− Open issues before sync negotiation = the number of open issues carried over to 
the synchronous negotiation meeting. If there was no asynchronous discussion, 
open issues equate to collated issues.  

− Closed issues during sync negotiation = the number of issues for which an agree-
ment was reached at the videoconference requirements negotiation meeting be-
tween developers and clients.  

− Open issues after sync negotiation = the number of issues for which an agreement 
has not been reached at the teleconference requirements negotiation meeting. 

More specifically, to understand the impact of asynchronous discussions on the 
synchronous negotiations, we were interested in the variation across projects of the 
number of open issues resolved during the asynchronous discussions, as well as dur-
ing the synchronous negotiation. To complement the quantitative data, we gathered 
the students’ perceptions on the usefulness of the AD. In this paper we report the 
students’ degree of agreement, based on a 4-point rating scale, to the following state-
ments: 

− “Asynchronous discrimination is useful as a preparation to the requirements nego-
tiation meeting.” 

− “Reading and posting messages is effective to clear up issues.” 
− “Reading and posting messages is effective to develop consensus on issues.” 
− “Voting is effective to develop consensus on issues.” 

Table 2. Experimental design 

project team 
(client/developer) 

process variant 

A1 (gr1/gr4) No AD 

B1 (gr2/gr6dev) No AD 

C1 (gr3/gr5) No AD 

A2 (gr5/gr2) AD 

B2 (gr4/gr3) AD 

C2 (gr6cl/gr1) AD 

3   Early Results 

Here, we present the results from a preliminary analysis of the quantitative and quali-
tative data we collected from the IBIS database and questionnaires given to project 
members. We present the values on the variables we collected as well as discuss the 
participant’s feedback with respect the usefulness of IBIS to facilitate more effective 
negotiations. 
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3.1   Effectiveness of Requirements Negotiation Meetings in Resolving Open 
Issues 

When observed at the project level, the data sample size is too small to lend itself to 
statistical analysis for measuring effectiveness. Instead, we report in Table 3 the val-
ues of the dependent variables for each of the six projects, and discuss the traces of 
open issues at each stage in the collaborative process as an indication of effectiveness 
of asynchronous discussions. 

The three projects which did not conduct any asynchronous discussions (A1, B1 
and C1) entered the synchronous negotiation with different numbers of open issues to 
be resolved: 40, 61, and 100 respectively. The number of issues that were closed dur-
ing the remote meetings ranged from 26 to 47, leaving from 12 to 74 issues unre-
solved. At the same time, an important difference can be seen in the three projects 
which conducted asynchronous discussions (A2, B2 and C2); these groups entered the 
remote negotiation meetings with a much lower number of open issues (12, 13, 12, 
respectively), leading in two cases to fully resolving open issues in the meeting 
agenda (remained open issues 0,3 and 0 respectively). The last column in Table 3 
also shows the significant difference in the percentages of open issues after the nego-
tiation in the projects which conducted asynchronous discussions as compared to 
those which did not. 

Table 3. Resolution of issues from inspection to negotiation meeting 

 

Similarly, Fig. 2 graphically illustrates the trajectory of open issues throughout the 
three stages in each of the six projects, as an indication of how asynchronous discus-
sions improved the effectiveness of remote requirements negotiations. It can be seen 
that all three dotted lines, representing projects with AD, finished below the three 
continuous lines (which correspond to projects with no AD). Particularly important is 

Project 
(cl/dev) 

Col-
lated 
issues 

Closed 
issues 
during 
async 
discus-
sion 

Open issues 
before sync 
negotiation and 
percentage out 
of collated 
issues 

Closed issues 
during sync 
negotiation 
and percentage 
out of collated 
issues 

Open 
issues 
after sync 
negotia-
tion 

Percentage of 
open issues 
after negotia-
tion out of 
open issues 
before nego-
tiation 

A1 
(gr1/gr4) 

40 No AD 40 
(100.0%) 

28 
(70.0%) 

12 30.0% 

B1 
(gr2/ 
gr6dev) 

61 No AD 61 
(100.0%) 

47 
(77.0%) 

14 23.0% 

C1 
(gr3/gr5) 

100 No AD 100 
(100.0%) 

26 
(26.0%) 

74 74.0% 

A2 
(gr5/gr2) 

23 11 12 
(52.2%) 

12 
(52.2%) 

0 0.0% 

B2 
(gr4/gr3) 

112 100 12 
(10.7%) 

9 
(8.0%) 

3 2.5% 

C2 
(gr6cl/ 
gr1) 

23 10 13 
(56.5%) 

13 
(56.5%) 

0 0.0% 
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project B2 which started with the highest number of collated issues (112) but which 
ends with a significantly lower number of open issues (i.e. 3), thanks to the asynchro-
nous discussion. 

To provide more insights into what actually happened during these asynchronous 
discussions we report in Table 4 the intensity of message exchanging and voting, the 
two basic mechanisms which could be used to resolve issues before the negotiation 
meeting. It can be seen how participants in project B2, although with the highest 
number of collated issues, were nevertheless active in discussing issues (282 posted 
messages) and extensively exploited the voting feature provided by the tool (910 
votes). We hypothesize that the intensity of the discussion made it possible to drasti-
cally reduce the number of open issues (12 left unresolved, that is 10.7%). 
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Fig. 2. Open issues at the end of three process stages 

Table 4. Intensity of the asynchronous discussions 

project 
team 
(cl/dev) 

collated 
issues 

partici-
pants 

posted 
messages 

messages 
per issue 

messages 
per 
partici-
pant 

votes 
votes 
per 
issue 

votes 
per 
partici-
pant 

A2 
(gr5/gr2) 

23 9 131 5.7 14.6 128 5.6 14.2 

B2 
(gr4/gr3) 

112 9 282 2.5 31.3 910 8.1 101.1 

C2 
(gr6cl/gr1) 

23 11 72 3.1 6.5 236 10.3 21.4 
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3.2   Subjects’ Perception 

Here we present the results of the subjective evaluation of effectiveness of the asyn-
chronous discussions. Although survey questionnaires related to the entire project 
experience were proposed to all students, we only considered the answers from the 
Canadian and Australian students because they were involved in both process variants 
(i.e. with and without asynchronous discussion). We analyzed answers from the Aus-
tralian students (8 out of 10 responses) who experienced the asynchronous discussion 
as clients/reviewers and the lack of it as developers/authors. Conversely, we analyzed 
answers from the Canadian students (11 out of 12 responses) who experienced the 
asynchronous discussion as developers/authors and the lack of it as clients/reviewers. 

As shown in Fig. 3, the great majority of students (both as clients and as develop-
ers) considered asynchronous discussion useful as a preparation to the requirements 
negotiation meeting. Developers, who were the authors of the requirements document 
under inspection, seem more enthusiastic than clients, who acted as reviewers during 
inspection. We believe this is due to the early feedback that developers gained as a 
result of the asynchronous discussion.  

This is corroborated by some answers that students specified in form of further 
comment to the question: 

“The asynchronous discussion provided individuals the opportunity to discuss each 
other’s issues and concerns and provide their understanding/comments on the situa-
tion in attempts for greater understanding and clarity. It helped reinforce individuals 
understanding of our requirements and how they work in the overall system. In this 
sense it helps to filter a lot of thought-to-be issues which would set the questions and 
agenda for the negotiation meeting”. 

“The asynchronous discussion served as an excellent platform to not only layout 
the issues, but also to narrow down the number of issues to be addressed in the nego-
tiation meetings”. 

Fig. 4 and Fig. 5 show that the great majority of students appreciated to read and 
post messages in order to clear up issues and develop a consensus on them. Com-
ments that provided motivation for the broad appreciation for forum-style message 
exchanging include: 

“Reading and posting messages during the asynchronous discussion was very ef-
fective. The question/answer style method allowed individuals to view other's inter-
pretation of the requirements and the issues they perceive. As such this clarified much 
misunderstandings”. 

“By creating a written source for the asynchronous discussion, we provided the 
framework for the refined SRS. I appreciated the opportunity to document the issues 
and how they are resolved”. 

However, there were also some comments highlighting limitations of asynchronous 
discussions: 

“The messages were an effective vehicle to let both sides know where there were 
questions and potential disagreements. For relatively “easy” issues, it was a very 
effective forum. For those issue that were more involved, having many, many lengthy 
messages is perhaps not the best way to resolve them”. 
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“This helped to understand different points of view. However, because of the time 
difference it took a long time to get feedback. In addition, because each item needed to 
be checked there was a huge amount of time spent reviewing the discussion each day”. 

The other mechanism of the asynchronous discussions, voting, did not gain the 
same undisputed consensus as message exchanging. Fig. 6 shows that half of the 
students did not acknowledge the effectiveness of voting for quickly expressing the 
opinion about open issues.  

In general, students pointed out that they were asked to vote about an issue before 
exchanging messages. They would have preferred to vote after reading and posting 
messages about an issue: 

“The asynchronous discussion was useful to get everybody’s opinion on the issues 
and to early filter out issues that all or none agreed upon. However I feel that because 
of time issues that we didn't get to do this stage in a properly. To have a real discus-
sion people need to enter IBIS several times during the stage and in the setting of this 
project I do not know if this was done. Another problem would be that people could 
vote before hearing what people had to say about the issue”. 
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Fig. 3. “Asynchronous discussion is useful as a preparation to the requirements negotiation 
meeting” 
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Fig. 4. “Reading and posting messages is effective to clear up issues” 
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Fig. 5. “Reading and posting messages is effective to develop consensus on issues” 
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Fig. 6. “Voting is effective to develop consensus on issues” 

4   Conclusions 

Research advances in the area of tools and processes to support geographically dis-
tributed teams is important as developing software in global teams is becoming a fact 
of life nowadays. Further, empirical studies of tools and processes that support sound 
and proven software engineering techniques inform global teams that want to adopt 
practices that increase their ability to deliver high quality software. In this paper we 
described our research in supporting collaborative practices in geographically distrib-
uted teams, and in particular computer-mediated requirements validation techniques 
such as software inspections and negotiation meetings. Our strong motivation was 
that synchronous requirements meetings that are usually conducted during or after 
requirements inspections are difficult and expensive to carry out. Thus we are inter-
ested in ways in which to improve the effectiveness of such synchronous require-
ments meetings by allowing remote teams to discuss issues identified during the in-
spection in a forum of structured asynchronous discussions. 

Our study has investigated the usefulness of computer-mediated, asynchronous 
discussions that followed requirements inspections in IBIS inspection tool, in facilitat-
ing more effective requirements negotiations that are often needed to resolve issues 
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from such inspections. Our findings from the observation of use of IBIS in an educa-
tional environment indicate that the teams who conducted asynchronous discussions 
were able to close many more issues before entering the requirements negotiation 
meetings. Further, the percentage of issues resolved during the synchronous meetings 
was much higher in those projects where the members did participate in asynchronous 
discussions. While these are promising research findings, we are planning a more in-
depth analysis of the data we collected in this study. Directions for future research are 
described below, after we discuss the threats to validity in this research. 

4.1   Threats to Validity 

For this empirical study, we believe the following threats to internal validity that were 
beyond the researchers’ control would make it uncertain to build cause-effect rela-
tionships between independent and dependent variables.  

− Instrumentation effects. Instrumentation deals with the problem that differences in 
the results may be caused by differences in experimental material. Because in this 
study there were three different project topics, we cannot exclude that the topic and 
project complexity could have been a confounding factor. 

− Selection effects. Results can be caused by variations in human performance. Usu-
ally, assigning subjects randomly to tasks controls this threat. In our case, selection 
of the participants was restricted by the practical course. For example, while Aus-
tralian and Canadian students were exposed to both levels of the main independent 
variable, although with different roles (clients or developers), Italian students were 
not able to work on two projects and had the chance to choose the experimental 
treatment. Thus, we were not able to completely randomize the selection and par-
ticipants’ assignment to the different groups. 

In the following we also list the most important threats to external validity, which 
limit the generalization of these findings to the industrial practice of distributed soft-
ware development. 

− Representative subjects. Since we involved students both as clients and as develop-
ers, they may not be representative of the population of professional stakeholders. 
This threat is partially mitigated by the presence of Canadian students, who were 
attending a specific course on global software development and then were trained 
on meeting protocols and negotiation techniques for requirements engineering. 
Some students had also previous working experience in the software business. 

− Representative artifacts. The requirements documents inspected in this study may 
not be representative of industrial requirements documents. Our documents were 
requirements specifications for web applications while inspections are often con-
ducted for dependable systems where quality and rework costs are perceived as 
critical. 

4.2   Future Research 

A number of important directions for furthering this research emerge as these early 
results indicate that the asynchronous discussions were beneficial in enabling more 
effective requirements negotiation meetings. To gain a more in depth understanding 
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of ways in which structured asynchronous discussions can support remote teams re-
solve open issues prior to negotiations, we are analyzing the broader context in which 
this causal relationship was observed. In particular, analyzing the type of issues iden-
tified during the inspections of the six teams, the complexity of those closed during 
the asynchronous discussion as well as negotiation meetings behavior and process 
will enable us to understand which factors in the computer-mediated collaborative 
process contributed to these results. We are conducting the analysis of the data stored 
in IBIS database and videotapes of the six project requirements negotiations. We hope 
to draw more detailed guidelines on conducting structured asynchronous discussions 
in support of expensive but important synchronous requirements negotiations. 
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Abstract. The paper describes an approach, which we developed to assess the 
expected quality of software for a huge governmental system. The assessment 
was done on behalf of the customer, and not of the development company, and 
was performed within two years along with the software development process. 
Our approach was based on a modification to GQM and was focused on the 
evaluation of the quality of methods and the deliverables of the project. The pa-
per describes the areas of the quality evaluation, the questions that we stated 
and the metrics that we used. The statistical metrics defined in ISO 9126 ap-
peared not very helpful within the context of this project. 

1   Introduction 

Software engineering is founded upon a set of paradigms, technologies and processes 
that enable the disciplined development and evolution of software systems. As with 
any other engineering discipline, software engineering requires methods and meas-
urement mechanisms for evaluation of the quality of software products. Because the 
software development process is long and expensive, those methods and mechanisms 
should not only allow for the evaluation of the quality of an existing software system 
but also the expected quality of product under design. 

Effective software quality evaluation and assurance requires models that describe 
what the software quality is and how can it be traced back to the development proc-
ess. Two different approaches to software quality have been defined recently in a set 
of international ISO standards. One is focused on assuring high quality of the process 
by which the product is developed, while the other is aimed at a direct definition of 
the attributes and metrics that characterize the quality of the software product.  

The requirements for a quality management system are defined in ISO 9001 [1]. 
All the requirements are intended for application within a software process in order to 
enhance the customer satisfaction, which is considered the primary measure of the 
software product quality. The quality management system, as defined by the standard, 
can be subject to a certification. 

Quality characteristics of the software product are defined in ISO 9126 [2]. The 
characteristics are subdivide into attributes that can be measured by means of appro-
priate metrics. A set of metrics is defined in the accompanied technical reports [3-5]. 
Such definitions help in evaluating the quality of an existing software system, but 
gives no guidance on how to construct a high quality software product.  
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Unfortunately, the two standards have not been related to each other in that the 
quality characteristics of ISO 9126 are not referenced by ISO 9001. 

A practical application of the recommendations of both of the two ISO standards 
needs a method for selecting the metrics and collecting data that are relevant for a 
particular purpose. There are a few such methods described in the literature, with the 
Goal Question Method approach [6-8] and the Quality Function Deployment ap-
proach [9-11] being the best known examples. All of those methods represent the 
viewpoint of the software development organization.  

This paper describes a method, which we used to assess the expected quality of a 
huge software system that was developed in the years of 2003-2004 to support Euro-
pean Union’s Common Agriculture Policy in Poland. IACS (Integrated Administra-
tion and Control System) was built in time and deployed in more than 300 regional 
offices. Currently, the system processes data from more than 2 000 000 farms.  

The assessment was performed along with the software development process and 
was focused on the evaluation of the quality of methods and deliverables of the par-
ticular steps of the project. Our approach was based on a modification to Goal Ques-
tion Metric approach. The modification was needed, because our assessment was 
done on behalf of the customer, and not of the development company, and it had no 
other goal in mind than just to evaluate the expected quality of the developed soft-
ware. Because our customer requested full compliance with the requirements that 
could not be compromised, the statistical metrics defined in ISO 9126 appeared in-
adequate within the environment of this project. 

The paper is organized as follows. Section 2 provides the reader with a short over-
view of the approach represented by ISO 9001, and Section 3 summarizes the ap-
proach of ISO 9126. The method that we used to evaluate the quality of the develop-
ment of the IACS software is presented in Section 4, and the set of detailed questions 
and metrics used by the method is described in Section 5. Final remarks are gathered 
in Conclusions. 

2   ISO 9001 Overview 

ISO 9001 [1] describes the requirements for a quality management system, which is a 
part of the total manufacturing process. The standard is very general and applies to all 
types of organizations, regardless of their size and of what they do. The recommended 
practices can help both product and service oriented organizations and, in particular, 
can be used within the context of software development and manufacturing. ISO 9001 
certificates are recognized and respected throughout the world. 

Because of this generality it is not easy to map the recommendations of the stan-
dard into the practical activities that can be performed within a software process. 
Moreover, the standard is intended to be used by the manufacturers and not by the 
auditors that work on behalf of their customers. Therefore, it contains many recom-
mendations that relate to resource management process, which was completely out-
side the scope of our evaluation. What we were expected to assess was the quality of 
the methods that were used by the manufacturer throughout the software development 
process and the quality of products of particular steps of the development: Analytical 
specifications, design documents, test plans and procedures, user manuals and the 
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resulting code. The actual implementation of code and of the testing process was also 
subject to our evaluation.  

ISO 9001 does not define any particular model of quality. Instead, it adopts a sim-
ple approach that the quality of a product is measured by the customer satisfaction. 
According to this approach, no quality characteristics are defined, and the only basis 
for quality evaluation are the customer requirements. If those requirements are met, 
then the product quality can be evaluated high. The lack of a quality model makes this 
standard orthogonal to ISO 9126. There are no common points between the two, but 
also no contradiction can be found. 

The top level requirement of ISO 9001 is such that a quality management system 
must be developed, implemented and maintained. All the processes and activities 
performed within the scope of this system have to be documented and recorded for 
the purpose of future review. A huge part of the standard relates to the processes of 
quality planning and management, resource management, and continuous quality 
monitoring, analysis and improvement. This part is not very helpful in evaluating the 
quality of a specific software product under design. 

The part, which relates directly to the body of a software project, is a section on re-
alization requirements. Basic requirements and recommendations that are stated 
therein can be summarized as follows: 

1. Identify customer’s product requirements, i.e. the requirements that the customer 
wants to meet, that are dictated by the product’s use or by legal regulations. 

2. Review the product requirements, maintain a record of the reviews, and control 
changes in the product requirements. 

3. Develop the software process, clarify the responsibilities and authorities, define the 
inputs and outputs of particular stages. 

4. Perform the necessary verification and validation activities, maintain a record of 
these activities, and manage design and development changes. 

All of those statements are very concrete and provide valuable guidelines for auditing 
and evaluating the quality of a software process. Moreover, the stress that is placed on 
the need to meet customer requirements helps in closing the gap between the quality 
of the software process and the quality of software itself. 

3   ISO/IEC 9126 Overview 

ISO 9126 [2] is concerned primarily with the definition of a quality model, which can 
be used to specify the required product quality, both for software development and 
software evaluation. The model defines three different views of the software quality: 

• Quality in use view captures the ability of a software product to help the user in 
achieving his or her specific goals within the specified context of use. 

• External quality view captures the characteristics of a software product that can be 
observed when the software is executed. 

• Internal quality view captures the characteristics of a software product that can be 
measured based on intermediate products during the software development  
process. 
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The views are related to each other in such a way that quality in use characteristics 
depend on the external quality characteristics, which in turn depend on the internal 
quality characteristics. Only the internal quality characteristics can be observed during 
the development process and used in order to predict the external quality and the 
quality in use of the final software product. 

The internal and external quality models share the same set of six characteristics, 
which are intended to be exhaustive. All the six quality characteristics, defined in ISO 
9126, are recapitulated below, along with some comments.  

Functionality is defined as the ability of the software product to provide functions 
which meet stated or implied needs of the user. This is a very basic characteristic, 
which is semantically close to the property of correctness, as defined in other quality 
models [10]. If software does not provide the required functionality, then it may be 
reliable, portable etc., but no one will use it. 

Efficiency is a characteristic that captures the ability of a correct software product to 
provide appropriate performance in relation to the amount of resources used. Effi-
ciency can be considered an indication of how well a system works, provided that the 
functionality requirements are met. The reference to the amount of resources used, 
which appears in this definition is important, as the traditional measures of efficiency, 
such as the response time and throughput, are in fact system-level attributes. 

Usability is a measure of the effort needed to learn and use a software product for the 
purpose chosen. The scope of this factor includes also the ease of assessment whether 
the software is suitable for a given purpose and the range of tolerance to the user 
errors. The features that are important within the context of usability are adequate 
documentation and support, and the intuitive understandability of the user interface. 

Reliability is defined as the ability of software to maintain a specified level of per-
formance within the specified usage conditions. Such a definition is significantly 
broader than the usual requirement to retain functionality over a period of time, and 
emphasizes the fact that functionality is only one of the elements of software quality 
that should be preserved by a reliable software product. 

Maintainability describes the ease with which the software product can be analyzed, 
changed and tested. The capability to avoid unexpected effects from modifications to 
the software is also within the scope of this characteristic. All types of modifications, 
i.e. corrections, improvements and adaptation to changes in requirements and in envi-
ronment are covered by this characteristic. 

Portability is a measure of the effort that is needed to move software to another com-
puting platform. This characteristic becomes particularly important in case of an ap-
plication that is developed to run in a distributed heterogeneous environment or on a 
high performance computing platform, which lifespan is usually short. It is less im-
portant if the application runs in a stable environment that is not likely to be changed. 

It can be noted from the above enumeration that the characteristics correspond to 
the product only and avoid any statement related to the development process. Each 
quality characteristic is very broad and therefore it is subdivided into a set of 
attributes. This quality model can be applied in the industry through the use of related 
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metrics. There are 79 internal metrics defined in [4]. The metrics are quantitative and 
in nearly all cases take the form of a proportion: A number of functions/items/data 
formats/etc. that posess certain feature, related to the the number of all functions/ 
items/data formats/etc. that have been defined. Despite such a mathematical 
definition, the evaluation of each metric is a bit subjective, because whether or not a 
particular function/item/data format/etc. posesses certain feature is judged by the 
evaluator. 

4   Quality Evaluation Method 

Quality evaluation methods described in the literature [6-12], represent the software 
development organization point of view. The values of measures collected from par-
ticular projects create a corporate memory that can help in resolving the tasks of the 
project planning, implementation and evaluation. Evaluation of measures can also 
help during the course of a project to asses the project progress and to improve those 
quality characteristics that are particularly important in the context of this project. 

One of the most pragmatic ways to develop the set of metrics appropriate to the 
project is Goal Question Metric (GQM) approach described for the first time in [6] 
and developed since that time by NASA. GQM provides a method for transferring 
business goals of the development organization into a set of measurable characteris-
tics of a software product, process or resource. The method works in a top down man-
ner and consists of the following three steps: 

1. Define business goals, typically to improve an aspect of the development. 
2. For each goal define a set of questions that must be answered in order to judge 

whether the goal is achieved. 
3. For each question define a set of metrics that provide an appropriate information 

for answering the question. 

The steps of selecting the questions and metrics are focused on fulfilling the specific 
goal that defines the context for all further activities. 

Quality evaluation process, which is described in this paper, was done on behalf of 
the customer. Planning the process we found a great difference between the quality 
evaluation made for and by a software manufacturer and the evaluation that was made 
for the customer. One difference was such that the customer had only limited access 
to the project data, and the quality evaluation had to be based on an evaluation of the 
deliverables of the software process that had been enumerated in the contract. Another 
difference was such that the customer had no historical data related to a set of similar 
projects and could not compare the actual data to the historical one. Therefore, the 
customer had no specific business goals, such as to improve the software process, to 
use less resources or to enhance the (yet unknown) software efficiency. After signing 
a contract it was the manufacturer who was responsible for developing the software, 
while the customer wanted only to be sure that everything was done right. The ration-
ale that stood behind such a thinking was based on a hope that if things were done 
right, than the results would also be right. The customer was also not able (and not 
willing) to answer the question, which features should be evaluated. The answer we 
received to such a question was always the same: Check everything. 
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In order to fulfill the demands of our customer we had to change the top level of 
the GQM measurement model and replace the specific goals by a set of general sub-
ject areas that covered the development process and the set of deliverables from the 
process, as fully as possible. This way we decomposed the problem space into six 
subject areas. The first subject area referred to the development process itself, the next 
four areas corresponded to particular activities within the process, and the last one 
dealt with the software documentation. The following subject areas were defined: 

1. Software process and development methods. 
2. The analysis and analysis products. 
3. The design and design products. 
4. The implementation and the code. 
5. Testing process and test documentation. 
6. User manuals. 

It can be noted from the above list that the areas 2 – 5 cover all the major activities 
(not necessarily phases) that have been identified in both: waterfall and incremental 
models of software development. The decomposition of the software process into the 
subject areas is then exhaustive with respect to the major development activities. 

The evaluation of quality within a particular subject area was decomposed into an 
evaluation of a set of criteria, each of which defined a specific scope of judgment. 
Each criterion consisted of a set of closely related questions. These questions refer-
enced object(s) within the subject area and characterized the quality issue evaluated 
under this criterion. The questions were answered by metrics, i.e. data that character-
ized the methods used to conduct the software process or the deliverables from a 
particular step of the software process. To avoid problems with the interpretation of 
data, the sets of questions were limited to the ones that could be meaningful to the 
customer.  

A hierarchical model of the quality evaluation is shown in Figure 1. 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Hierarchical structure of the quality evaluation model 

Negative evaluation of a criterion was reported to the customer as a potential risk 
to the project. An advice on how to eliminate the risk was also reported to the cus-
tomer as our recommendation. 

Methods Manuals Subject areas ....

Criteria defined 
by questions   

Metrics 
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5   Criteria, Questions and Metrics 

In order to structure the evaluation process, we organized the set of criteria within 
each subject area along traceability paths: From requirements origins to the require-
ments specification, from the requirements specification to the design, from the de-
sign to the implementation, and from the requirements specification to the test plan. 
Answers to the questions within a criterion were based on objective or subjective 
metrics. Sample criteria, questions and metrics that were defined in particular subject 
areas, are discussed briefly in the next three subsections. The mechanics of the quality 
evaluation is described in Subsection 5.4.  

5.1   Software Process and Development Methods 

The main goals of work within this subject area are the identification of methods and 
standards that were used throughout the development process and the evaluation of 
how these methods were used with respect to completeness, readability and traceabil-
ity of the resulting products. In order to achieve these goals we defined the following 
set of criteria, accompanied by the appropriate sets of questions and metrics. 

Criterion M1. Methods and standards. 
Questions. Which methods (standards) are used in the development process? How is 
the scope of these methods? Are the methods adequate in the context of this project? 
Metrics. List of methods declared for the project. A mapping from the steps of the 
software process into the set of methods. Evaluation of the adequacy of methods. 

Criterion M2. Completeness of results. 
Questions. Which artifacts recommended by the methods were created? Is the set of 
created artifacts sufficient? Are the results documented properly? 
Metrics. List of artifacts. Evaluation of the set of artifacts. A mapping from the arti-
facts to the volumes of documentation. 

Criterion M3. Quality of the documents. 
Questions. Are the created documents readable? Are the documents consistent and 
unambiguous? Are the documents modifiable? 
Metrics. Evaluation of readability. Evaluation of consistency. Evaluation of modifi-
ability. 

Criterion M4. Traceability of the documentation. 
Questions. Is the change history of the documents maintained properly? Are the sub-
sequent documents related to the antecedent ones? 
Metrics. Evaluation of the change history (versioning). Traceability graph. Evaluation 
of traceability between the documents. 

As can be seen from the above list of criteria, the evaluation within this subject 
area was focused on rather formal aspects of the software process in that it did not 
include an in depth analysis of the contents of the documents created throughout the 
development process. Nearly half of the metrics were objective, which means that 
they depended only on the properties of objects. Other metrics, in general those that 
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began with the word “Evaluation”, were subjective, which means that they depended 
not only on the properties of objects, but also on the viewpoint from which the 
evaluation was done. 

The criteria correspond to the recommendations of ISO 9001, which state that a 
software process shall be developed, the outputs of particular activities shall be de-
fined, and the results shall be recorded. The criteria have also a clear relation to the 
quality characteristics defined in ISO 9126, because the completeness of results to-
gether with readability, consistency, modifiability and traceability of the documenta-
tion promotes the maintainability and portability of the software product. 

5.2   Analysis and Analysis Products 

The main goal of work within this subject area is the evaluation of how the analysis 
methods were used in the project with respect to completeness, correctness and verifi-
ability of the resulting products. There are two bunches of methods that are com-
monly used to perform analytical activities within the development process: Object-
oriented and structured methods. Because the deliverables of both types of methods 
are significantly different, the quality evaluation method must be tailored to the actual 
analysis methodology that is used in a particular project. 

The analysis performed within the IACS project was object-oriented, and relied on 
the use case method applied within a two-step process. In the first step, business ac-
tors and procedures were identified, and the scenarios, together with the pre- and post-
conditions of these procedures were defined and documented. In the second step busi-
ness procedures were refined and decomposed into sets of user functions that were to 
be implemented by the system. A specification of a user function included a set of 
alternative scenarios, a definition of exceptions and exceptional actions, and the con-
ditions to start this particular function. The structure of data that was identified within 
the application domain was modeled by means of a class diagram notation. 

In order to evaluate the quality of analysis and analysis products we defined the 
following set of criteria, accompanied by the appropriate questions and metrics. 

Criterion A1. Completeness of data sources. 
Questions. Which sources of information were used throughout the analysis? Was the 
selection of law regulations complete? 
Metrics. List of sources, particularly EU and national acts, cited in the analysis docu-
ments. Evaluation of completeness. 

Criterion A2. Consistency between the business model and the data sources. 
Questions. Is the business model consistent with law regulations that have been iden-
tified in criterion A1? 
Metrics. A mapping from the set of business procedures to the set of EU and national 
acts. Evaluation of consistency. 

Criterion A3. Completeness of the context definition. 
Questions. Is the set of input data sufficient to achieve the business goals? Is the set 
of output data complete with respect to business and law requirements? 
Metrics. A mapping from the set of goals identified in EU and national acts to the set 
of data (documents) input to the business procedures. Evaluation of sufficiency. A 
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mapping from the set of reports defined in EU and national acts to the set of docu-
ments yielded by the business procedures. 

Criterion A4. Completeness of the analysis model. 
Questions. Are all of the business goals covered by the business procedures? Does the 
set of scenarios of each business procedure cover all types of input data? 
Metrics. A mapping from the set of goals identified in EU and national acts to the set 
of business procedures. Evaluation of the sets of scenarios. 

Criterion A5. Completeness of the functional requirements. 
Questions. Are all the business procedures supported by sets of the user functions? 
Are all the scenarios of each business procedure covered by a set of user functions? 
Metrics. A mapping from the set of business procedures to the sets of user functions. 
Evaluation of completeness of the coverage. 

Criterion A6. Correctness of the data model. 
Questions. Is the data model consistent and complete with respect to the law regula-
tions? Does the data model comply with the best engineering practices? 
Metrics. A mapping from the set of data records identified in EU and national acts to 
the set of classes. Evaluation of the correctness and quality of class diagrams. 

Criterion A7. Usability of the user interface prototype. 
Questions. Is the prototype complete? Is the prototype ergonomic? 
Metrics. A mapping from the set of user functions to the sets of prototype functions. 
Evaluation of the ergonomics. 

Criterion A8. Completeness of the non-functional requirements. 
Questions. Are the non-functional requirements complete in that they define the ex-
pectations related to the security of data, performance and reliability? 
Metrics. Evaluation of the non-functional requirements. 

Criterion A9. Verifiability of the non-functional requirements. 
Questions. Are the non-functional requirements defined in a verifiable (testable) way? 
Metrics. Enumeration of these requirements that are defined in a quantitative way and 
those that are defined qualitatively. Evaluation of the above lists. 

Criterion A10. Credibility of the verification. 
Questions. Which methods of verification are used? How credible is the functional 
part of the test plan? How credible is the non-functional part of the test plan? 
Metrics. List of verification methods. Coverage of the set of all scenarios defined 
within the business procedures by the test scenarios. A mapping from the set of non-
functional requirements identified in criterion A7 to the set of test scenarios. Evalua-
tion of the non-functional tests. 

As can be seen from the above list of criteria, questions and metrics, the evaluation 
within this subject area is focused on the contents of the analytical products. The 
sequence of criteria moves along a path: From sources of information to business 
model, from business model to functions and efficiency, from functions and effi-
ciency to verification and validation. The set of criteria is in good relation to the set of 
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quality characteristics defined in ISO 9126. The correspondence between the two is 
shown in Table 1. Portability is not included in the table, because this feature was not 
considered a significant premise in the environment of IACS project. 

Table 1. A relation between the criteria and the quality characteristics of ISO 9126  

Quality characteristic Criteria 
Functionality A1 ... A7 
Efficiency A8, A9 
Usability A7 
Reliability A8 ... A10 (also M1) 
Maintainability A4 ... A6 (also M2 ... M4) 

5.3   Testing Process and Test Documentation 

The main goal of work within this subject area is to assess the credibility of the accep-
tance testing of the software product. Such an evaluation must cover two different 
aspects of the testing process: 

• The quality of the test documents, i.e. test plans, test scenarios, test cases, test data 
and test procedures. 

• The quality of the actual execution of testing with respect to the test documents and 
testing standards. 

Acceptance testing is the process which relates the actual characteristics of the final 
software product to the requirements that have been stated during the requirements 
analysis. Therefore, the detailed structure of the test documents depends on the way in 
which the requirements were defined and formulated. This makes the questions and 
metrics that can be used for evaluation purposes also dependent on the type of the 
analysis methods that were used in a particular project. 

The analysis of the IACS system relied on the use case method, which was applied 
within a two-step process of business procedures definition and user functions defini-
tion (Section 5.2). The results of the analysis were presented in the form of quite  a big 
set of business procedures, each of which was supported by a set of user functions. The 
structure of the test documents reflected this structure of the analysis products. 

A basic unit of testing was an application, defined as a functional module, which 
provided the functionality that supported a small set of closely related business proce-
dures. The method of testing an application was defined by a test plan, which con-
sisted of a set of test scenarios and a test procedure. A test scenario covered a single 
scenario of a business procedure, and consisted of a set of steps, each of which was 
defined by a single test case. A test case covered a scenario or a set of scenarios of a 
single user function, and consisted of a set of steps that corresponded to the steps of a 
function scenario. There was a collection of test data and a list of acceptance criteria 
defined for each test case. 

The questions and metrics that we defined, related test scenarios and test cases to 
business procedures and user functions implemented by the software. 
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Criterion T1. Consistency of the test documents. 
Questions. Is the structure of the test documentation consistent with the structure of 
analysis products and with the guidelines defined in the analysis documents? 
Metrics. List of test documents. Evaluation of completeness of the test documents and 
the consistency between the test documents and the analysis products. 

Criterion T2. Completeness of the functional testing. 
Questions. Are all the functional requirements covered by the tests? Are all the user 
errors tested? 
Metrics. A mapping from the set of business procedures to the set of test scenarios. A 
mapping from the set of user functions to the set of test cases. A mapping from the set 
of function scenarios to the set of test data. Coverage of business procedures by test 
scenarios. Coverage of user functions by test cases. Coverage of function scenarios by 
test data. 

Criterion T3. Completeness of the non-functional testing. 
Questions. Are all the non-functional requirements covered by the tests? Are the 
performance and stress tests included into the test plan? 
Metrics. A mapping from the set of non-functional requirements (such as response 
times, throughput, re-start and data recovery times etc.) to the set of test scenarios. 
Evaluation of the test scenarios. Coverage of non-functional requirements by test data. 

Criterion T4. Credibility of the acceptance criteria. 
Questions. Are the acceptance criteria defined for each test data? Are the sets of ac-
ceptance criteria properly defined for each test case? 
Metrics. A mapping from the set of test data to the set of acceptance criteria. A map-
ping from the set of test cases to the set of acceptance criteria. Evaluation of the ac-
ceptance criteria for each test case. 

Criterion T5. Credibility of the testing process. 
Questions. Is the test environment defined and documented properly? Is the test envi-
ronment consistent and compatible with the production environment? Are the test 
results recorded properly? Are all the test scenarios defined in the test plan executed 
during the testing process? 
Metrics. Evaluation of the test environment documentation. A mapping from the 
production environment definition (list of elements) to the test environment defini-
tion. Observation of the testing process and comparison with the test reports. A map-
ping from the set of test scenarios to the set of test reports. Evaluation of the test re-
ports. 

The set of evaluation criteria defined above relates to a subset of quality character-
istics defined in ISO 9126. The correspondence between the two is shown in Table 2. 
The other three characteristics of ISO 9126 are not included in the table, because they 
were not verified by our team. Usability of the software was verified during the test-
ing process directly by the testers that represented our customer. Maintainability 
could not be verified by means of testing. Portability was not considered a significant 
premise in the environment of IACS project. 
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Table 2. A relation between the criteria and the quality characteristics of ISO 9126  

Quality characteristic Criteria 
Functionality T1, T2, T4, T5 
Efficiency T3, T4, T5 
Reliability T3, T4, T5 

The answers given by metrics to the questions stated above created the basis for a 
final recommendation on whether or not to accept the software product. 

5.4   Evaluation Process 

The software for IACS system was developed iteratively according to the guidelines 
of RUP – Rational Unified Process [13]. Input data to the process of quality evalua-
tion consisted of all the documents that were created in the entire software develop-
ment cycle. These included: 

• Business model developed in the inception phase. 
• Early analysis model of the elaboration phase. 
• The set of analysis and design models created in the construction phase. 
• The code and the complete set of manuals. 
• Test plans and test reports (plus the observation of the testing process). 

Because of the incremental nature of the development, part of the documents circu-
lated in several versions, issued in a sequence of subsequent increments. The evalua-
tion of the deliverables form particular increments of the process dealt mainly with 
new documents and other products, however, the scope of changes to the products 
delivered in the previous increments was also subject to investigation. 

The evaluation process was decomposed into the set of subject areas listed in sec-
tion 4 and was structured according to the set of criteria exemplified in sections 5.1 
through 5.3. The evaluation that was done within the context of a particular criterion 
was guided by the set of questions and metrics.  

The scope of criteria related to development methods, described in Section 5.1, 
was very broad, because it related to all the phases and activities of the entire devel-
opment process. Therefore the evaluation of these criteria was decomposed in such a 
way that the questions were stated and answered separately for particular groups of 
artifacts. For example, the evaluation of criterion M1 (Methods and standards) was 
decomposed into an investigation of the software process, the analysis methods, the 
design methods, the implementation methods and tools, the testing methods and the 
documentation standards. 

The answers were given to questions by metrics, only few of which were quantita-
tive, i.e. evaluated to a numerical value. However, many metrics were formal, i.e. 
took the form of a mapping between the sets of artifacts or documents. Internal met-
rics of ISO 9126, defined as proportions, appeared useless within the environment of 
this project, particularly within the area of analysis. The customer required full cover-
age and correctness in that all the identified requirements had to be reflected in the 
analysis model, all the business procedures had to be specified and supported by user 
functions, all the data types had to be serviced, etc. 90% was not very different from 
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zero. An exception was the area related to testing and documentation, in which the 
metrics of coverage were used. 

Answers to questions within a particular criterion were aggregated into a general 
mark within the scale of: good, satisfactory, bad, dangerous. The two lowest marks 
were reported to the customer as risks. The evaluation report was structured in accor-
dance with subject areas and criteria. The results of the evaluation within a particular 
subject area were concluded in the form of two sections: Risks for the project and 
recommendations to the project. The risk section reported the bad and dangerous 
marks given to particular criteria within this subject area, related to the quality charac-
teristics of ISO 9126. For example: 

• The lack of functions that support certain business procedures creates the risk that 
the required functionality of software will not be met. 

• The lack of readable design models creates the risk that the maintainability of 
software will be unacceptable low. 

The recommendation section advised on what to do in order to avoid the risks identi-
fied in the evaluation process and described in the previous section. Recommenda-
tions related to the risks listed above could read, e.g.:  

• Define the functionality that is missing. 
• Create the models that are missing and improve readability of those that exist. 

6   Conclusions 

This paper describes a practical method that can be used to evaluate the expected 
quality of software under design. The evaluation process does not refer directly to the 
existing standards, however, it is consistent with the definitions of the quality models 
of both ISO 9001 and ISO 9126. The mechanics of the evaluation is based on  a set of 
criteria that are decided by stating questions and finding answers to those questions. 
The collection of criteria is structured into a set of subject areas that cover the set of 
activities or phases that exist in the most popular software processes. 

The method was used successfully in evaluating the expected quality of software 
developed for a huge governmental system. The evaluation was performed on behalf 
of the customer and not the manufacturer of the system. The criteria, questions and 
metrics that helped in answering the questions allowed for a systematic, in depth 
analysis of the deliverables of the particular development activities. As result, several 
risks that could have a negative impact on the quality of the resulting software were 
revealed and identified. The recommendations helped the customer in avoiding these 
risks. IACS system was build and certified for use within the deadline. 

The advantages of the method can be summarized as follows: 

• The method can be tailored to any particular software process or method that can 
be used in the development of software. 

• The application of the method leads to such results, i.e. to the evaluation of criteria, 
that are readable and meaningful to the customer. 
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• Negative evaluation of particular criteria can easily be translated into risk warnings 
and recommendations on what to improve in order to enhance the expected quality 
of the final product. 

The method is simple in use, does not relay on any historical data, and need not be 
supported by a computerized tool. 
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Abstract. While multiagent systems have been extolled as dynamically config-
urable and capable of emergent behavior, these qualities can be a drawback. 
When the system changes so that it no longer achieves its goals, emergent be-
havior is undesirable. Giving agents the autonomy to adapt and then expecting 
them to adapt only in acceptable ways requires rigorous design analyses. In this 
paper, we propose metrics for determining system flexibility at design time. Our 
approach is based on organization-based multiagent systems, which allows mul-
tiagent systems to adapt within a preset structure. We tailored the Bogor model 
checker to efficiently analyze the adaptive behaviors of these systems and to de-
termine their properties such as fault-tolerance and cost-efficiency. We develop 
state-space coverage metrics to allow designers to make informed trade-offs at 
design-time between computational cost and system flexibility. 

1   Introduction 

Distributed systems that can adapt to dynamically changing environments are becom-
ing prevalent. The advent of the Internet and wireless communications has allowed 
users to expect the ability to integrate their local applications with data and computa-
tional capabilities from any location, at any time. Applications for distributed, adap-
tive systems include information systems, communication systems, sensor networks, 
and cooperative robotic teams. The prevailing approach to building these distributed, 
adaptive systems is that of multiagent systems in which locally autonomous agents 
coordinate with each other to provide access to distributed information and services. 
The power in the multiagent approach is that, because of autonomy, the agents can 
adapt to their environment and thus satisfy their assigned goals.  

While multiagent systems have been widely touted as dynamically configurable 
and capable of emergent behavior, this has also been noted as a significant drawback. 
Most designers/users are not comfortable with the idea of pure emergent behavior 
where agents learn or discover and continually modify their behavior. As long as the 
behavior being learned or discovered is consistent with system goals, emergent be-
havior is not a problem. However, when the system functionality changes to where it 
no longer accomplishes its stated goals, emergent behavior becomes undesirable.  
                                                           
*  This material is based upon work supported by the National Science Foundation under Grant 

No. 0347545 and by the Air Force Office of Scientific Research. 
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A key problem faced by the Agent-Oriented Software Engineering (AOSE) com-
munity is ensuring that multiagent systems will actually perform as desired without 
undesirable emergent behavior, which results from individual agent autonomy. Giving 
agents the autonomy to adapt and then expecting them to adapt only in acceptable 
ways requires rigorous analyses when designing and building these systems. In this 
paper, we propose some new design metrics and investigate one in depth for deter-
mining multiagent system flexibility at the design level. Our approach is based on 
previous work on organization-based multiagent systems [7] and model checking [6]. 
We describe how a software model checking framework such as Bogor [15] can be 
customized to efficiently analyze emergent behaviors of multiagent systems.  

The novelties and the main contributions of our work are: (1) efficient state-space 
exploration of multiagent system behaviors at the design level, (2) mining the con-
structed state-spaces to determine their desirable/undesirable properties such as fault-
tolerance and cost-efficiency, (3) proposing several useful design metrics based on 
state-space coverage measures to capture these properties, and (4) validating the pre-
dictions from the proposed metrics by using simulation methods. By using the pro-
posed metrics, we believe system designers are better equipped to make informed 
trade-off between cost and effectiveness of multiagent systems, as well as preventing 
ineffective system designs.  

The paper is organized as follows. Section 2 presents a motivating example used to 
illustrate our approach. Section 3 presents the multiagent organization design meta-
model that we consider. Section 4 presents an efficient state-space exploration tech-
nique implemented using the Bogor framework. Section 5 presents some of our pro-
posed metrics that we validate in Section 6 using simulation methods. Section 7 pre-
sents some related work. Finally, Section 8 concludes and presents some future work. 

2   Motivating Example 

Throughout this paper we use an example from cooperative robotics to demonstrate 
our model of organization-based multiagent systems and the application of our design 
metrics. A simplified cooperative robotics example is used (due to space constraint), 
however it is still interesting enough to illustrate the application of the organization 
metamodel and the effect of the loss of hardware capabilities to the system. 

The example we use is the Cooperative Robotic Floor Cleaning Company 
(CRFCC). Essentially, we are designing a team of robots whose goal is to clean the 
floors of a building. At initialization, the team is given a map of the building includ-
ing the type of flooring of each area. The floors may be tiled or carpeted and may be 
littered with large debris as well as small dirt particles that must be cleaned. There-
fore, the CRFCC must be able to pick up any large objects and then vacuum or mop 
the floors, based on their type. The team should be able to clean the floors of the 
building even when faced with failures of individual robots or specific capabilities on 
those robots. This implies that the team must be able to (1) assign floor areas based on 
individual team member’s capabilities (i.e. to mop, vacuum, sweep, etc.), (2) recog-
nize when a robot is incapable of carrying out its responsibilities, and (3) reorganize 
the team to allow the team to achieve its goal in spite of individual failures. 
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3   Organizational Metamodel 

To allow teams of agents (or robots) to adapt to their environment by determining 
their own organization at runtime, we developed a metamodel that describes the 
knowledge required to define and reason about an organization [7, 14]. Given this 
knowledge, we have shown that multiagent teams are able to organize (and reorgan-
ize) themselves in an attempt to adapt to dynamic environments.  

Organizations are typically defined as a set of agents who play roles within a struc-
ture that defines the relationships between those roles [3]. In our organization meta-
model shown in Fig. 1 (simplified due to space constraint; we refer the readers to  
[7, 14] for a more complete description), we include these basic concepts of goals (G), 
roles (R), and agents (A), plus agent capabilities (C) and a set of assignments ( ).  

 

Fig. 1. Organization Metamodel (simplified) 

3.1   Goals 

Every organization is designed with a specific purpose or goal. In our metamodel, 
each organization has a set of goals, G, that it seeks to achieve in support of a top-
level goal go, which we define as a desired end state. G is derived by decomposing go 
into a tree of sub-goals that describe how go can be achieved. Following the KAOS 
goal based requirements modeling approach [18], we allow goals to be decomposed 
into a set of non-cyclic sub-goals using either AND-refinement or OR-refinement. 
Eventually, go is refined into a set of leaf nodes, denoted by GL, that are actually 
achieved by agents in order to achieve go. The active goal set, GA (where GA ⊆ GL), is 
the set of goals that an organization is trying to achieve at the current time. 

In order to provide an ordering for goal achievement, we define a precedence rela-
tion between goals. We say that goal g1 precedes goal g2 if g1 must be achieved before 
g2 can be achieved, which allows the team to work on a subset of the leaf goals, thus 
reducing the size of GA. The initial active goal set, GA0, consists of all leaf goals with-
out predecessor goals. However, GA changes as goals are achieved; achieved goals are 
removed from the active goal set and new goals are inserted. We denote a sequence of 
active goal sets GA’ as GA’ = [GA1, GA2, …, GAn]. 

The goal model for the CRFCC is shown in Fig. 2. Goals are denoted as special-
ized class components using the <<Goal>> notation. Conjunctive sub-goals are con-
nected to their parents by a diamond shaped connector ( ) while disjunctive sub-goals 
are connected to their parent by a triangle shaped connector (Δ). Goals can have  
 

◊



 Using Design Metrics for Predicting System Flexibility 187 

 

Fig. 2. Goal Model (simplified) 

parameters. The totalArea parameter refers to the entire area to be cleaned. Since total 
area may include tile and carpeted areas, the team divides it into sub-areas (denoted 
by the area parameters) to be tackled independently. However, to ensure the entire 
task is completed as efficiently as possible, the team must consider the capabilities of 
its team members when partitioning the areas and assigning areas to robots. The mul-
tiplicity n represents the total number of sub-areas while i refers to the number of tiled 
areas. The <<precedes>> notation indicates precedence relation between goals. 

The goal model consists of five leaf goals: Divide Area, Pickup, Sweep, Mop, and 
Vacuum. The precedence relations provide the natural ordering that is required to 
clean the floors. The n sub-areas must be created before work may begin; this results 
in n Pickup goal instances being created as well as i Sweep and Mop goals and n-i 
Vacuum goals. Due to the precedence relation, the individual areas must be picked up 
and any large debris removed before the areas can be swept, mopped, or vacuumed. 
Finally, depending on what type of flooring is present, the areas are either (1) swept 
and then mopped, or (2) vacuumed. 

3.2   Capabilities 

Capabilities are the key to determining exactly which agents can be assigned to what 
roles in the organization. Currently, we view a capability as an atomic entity used to 
define the abilities of agents. Capabilities can capture soft abilities such as the ability 
to access resources, communicate, migrate, or computational algorithms. They also 
capture hard capabilities such as those of hardware agents such as robots, which in-
clude sensors and effectors. In the CRFCC example, the robots must have specific 
capabilities to carry out the cleaning operation. Thus, we assume the capabilities 
shown in Table 1 are available for designing CRFCC robots. 

The org capability is a reasoning ability that allows a robot to divide the current 
search area up into n areas based on the type of flooring (as well as other possible 
factors such as size, wall placement, etc.). The search capability allows robots to 
move about an area and identify items that need to be picked up before cleaning can 
begin. This capability is actually a combination of low-level capabilities such as 
movement and sensing as well as reasoning abilities to identify target items based on 
shape, size, color, etc. The move capability refers to the ability of a robot to pickup an 
item and to move it out of the way for cleaning. This capability could be representa- 
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Table 1. CRFCC Capabilities 

Name Description 
org Ability to logically divide the area between team members 
search Ability to search an area for large debris 
move Ability to move large debris 
sweep Ability to sweep a tiled area 
mop Ability to mop a tiled area 
Vacuum Ability to vacuum a carpeted area 

 

Table 2. RM0 Roles 

Name Required Capabilities  Leaf Goals Achieved 
Organizer org 1. Divide Area 
Pickuper search, move 2. Pickup 
TileCleaner sweep, mop 3.1.1. Sweep & 3.1.2. Mop 
Vacuummer vacuum 3.2. Vacuum 

 
tive of robotic arms or gripper devices. The last three capabilities, sweep, mop and 
vacuum are straightforward capabilities that also require integration of low-level ca-
pabilities. These capabilities provide the ability to clean tile and carpeted floors. 

3.3   Roles 

Each organization has a set of roles R that it can use to achieve its goals. A role de-
fines the capabilities required for an entity to achieve a goal (or set of goals) in the 
organization. The achieves function (R × GL →  [0,1]) tells how good a role is for 
realizing a specific goal (0 = no ability to achieve the goal, 1 = excellent ability to 
achieve the goal); if agent A is better at attaining goal G than agent B, we would 
expect that achieves(A,G) > achieves (B,G). However, to be assigned to play a role, 
agents must have a sufficient set of capabilities to play that role. Thus, agents possess 
capabilities while roles require a certain set of capabilities. The set of capabilities 
required by a role is captured using the requires relation (R × C). 

For the CRFCC example, we developed two sets of roles, or role models, that the 
individual robots can play in order to accomplish the overall CRFCC goal. In the first 
role model (RM0), we attempted to combine basic capabilities to carry out specific 
goals. For RM0 we came up with four roles as shown in Table 2. In this case, we 
would need a robot with the org capability to be assigned to the Organizer role in 
order to achieve the initial goal, Divide Area. Once the area was divided into sub-
areas, the robots with the search and move capabilities would be assigned to play the 
Pickuper role to achieve all the Pickup goals generated for each sub-area. Once this 
goal was achieved, robots with sweep and mop capabilities would be assigned to the 
TileCleaner role to achieve goals Sweep and Mop for each tiled sub-area while robots 
with the vacuum capability would be assigned to play the Vacuummer role to achieve 
the Vacuum goal for each carpeted area. 

In a second version of the role model, Role Model 1 (RM1) as shown in Table 3, 
we took a slightly different approach to defining the roles for the CRFCC. Instead of 
defining roles to carry out basic functions in the application, we defined a role for 
each leaf goal. Essentially, we divided the TileCleaner role into Sweeper and Mopper. 
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Table 3. RM1 Roles 

Name Required Capabilities  Leaf Goals Achieved 
Organizer org 1. Divide Area 
Pickuper search, move 2. Pickup 
Sweeper sweep 3.1.1. Sweep 
Mopper mop 3.1.2. Mop 
Vacuummer vacuum 3.2. Vacuum 

3.4   Agents 

The organization metamodel also includes a set of heterogeneous agents, A. For our 
purposes, agents are computational system instances that inhabit a complex dynamic 
environment, sense, and act autonomously in this environment, and by doing so real-
ize a set of goals. Agents are assigned specific roles in order to achieve organizational 
goals. The current set of possible assignments of agents to a role is captured by the 
potential function (GL × R × A →  [0,1]). The range of the potential function indicates 
how well an agent can play a role and how well that role can achieve the goal, based 
on the achieves and the capable scores. 

However, the potential function does not indicate the actual assignment of agent a 
to role r to achieve goal g, it simply defines possible assignments. To capture the 
actual assignments, we define an assignment set , which consists of goal-role-agent 
tuples, <g,r,a>. If <g,r,a> ∈ , then agent a has been assigned by the organization to 
play role r in order to achieve goal g. As discussed above, however, only agents with 
the right set of capabilities may be assigned to a role. To capture a given agent’s ca-
pabilities, we define a possesses function (A × C →  [0,1]), whose dynamic value 
ranges from no (0) capability to an excellent (1) capability. Using a role’s required 
capabilities and the capabilities possessed by an agent, we compute the ability of an 
agent to play a given role, which we capture in the capable function (A x R → [0,1]). 

4   Using Bogor to Explore Behaviors of Multiagent Organization 

Bogor [4, 15] is a model checking framework designed for extensibility to enable 
more effective incorporation of domain knowledge into verification models and 
model checking algorithms. In contrast to most existing model checkers, Bogor's 
modeling language (BIR) provides constructs commonly found in modern program-
ming languages including dynamic object and thread creation, garbage collection, 
virtual method calls and exception handling. This rich modeling language has enabled 
us to model check relatively large concurrent Java programs. In addition, BIR can be 
extended with new primitive types, expressions, and commands associated with a 
particular domain (e.g., multi-agent systems, avionics, security protocols, etc.) and a 
particular level of abstraction (e.g., design metamodels, design models, source code, 
byte code, etc.) to enable efficient modeling and state-space representation. Further-
more, Bogor's well-organized module facility allows new algorithms (e.g., for state-
space exploration, state storage, etc) and new optimizations (e.g., heuristic search 
strategies, domain-specific scheduling, etc.) to be easily swapped in to replace Bo-
gor's default model checking algorithms. To support effective BIR software model 
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system OrganizationMetamodel { 
  extension Set for SetModule { 
    typedef type<'a>; 
    expdef Set.type<'a> create<'a>('a ...); 
    actiondef add<'a>(Set.type<'a>, 'a); 
  } … 
extension AOM for AOMModule { 
    typedef Agent; typedef Goal; typedef Role; 
    expdef boolean isTopGoalAchieved(Set.type<Goal> goals); 
    expdef Goal chooseGoal(Set.type<Goal>); 
    expdef Role chooseRole(Goal goal); 
    expdef Agent chooseAgent(Role role); 
  } 
  active thread Search() { 
    Goal g; Role r; Agent a; 
    Set.type<Goal> achievedGoals; 
    Set.type<Triple.type<Goal, Role, Agent>> assignments;      
    achievedGoals := Set.create<Goal>(); 
    assignments := Set.create< Triple.type<Goal, Role, Agent>>(); 
    while (!AOM.isTopGoalAchieved(achievedGoals)) do 
      g := AOM.chooseGoal(achievedGoals); 
      r := AOM.chooseRole(g); 
      a := AOM.chooseAgent(r); 
      Set.add(achievedGoals, g); 
      Set.add(assignments, Triple.create(g, r, a)); 
    end 
  } 
} 

Fig. 3. Organization Metamodel and Search Algorithm in BIR (excerpts) 

checking, we have extended well-known optimization/reduction strategies [8, 16] 
such as collapse compression [11], data [12] and thread [5] symmetry, partial-order 
reduction [6] strategies that leverage static/dynamic escape and locking analyses. 

We leverage BIR’s extensibility to represent the organization metamodel presented 
in the previous section, as shown in Fig. 3. Each entity in the metamodel (e.g., agents) 
is modeled as a (native) first-class type in BIR (e.g., Agent). Similarly, we define 
auxiliary structures such as tuple and set and their corresponding abstract operations 
to enable more concise model. Moreover, by modeling organization entities and data 
structures as first-class type in BIR, we can instruct Bogor to use customized state 
representations better suited to the analysis' level of abstraction. For example, we 
leverage symmetric property of set to efficiently store set instances in the state-space 
representation (e.g., {Agent1, Agent2} = {Agent2, Agent1}). Accordingly, first-class 
abstract operations are implemented as an extension of the model checker instead of 
being a part of the model itself, thus, they are interpreted in the model checker's space 
instead of the model's space. This is analogous to adding new native types and in-
structions in a processor. That is, we can use the new types and instructions to better 
represent and more efficiently execute programs instead of representing them using a 
limited set of types and instructions. ([15] describes how to implement Bogor exten-
sions.) The extension module AOM requires an organization instance as a Bogor 
configuration that contains information such as the goal structure, functions, and rela-
tions described in the previous section for that particular instance. Given the configu-
ration, Bogor exhaustively explores the state-space of the BIR model in Fig. 3 for the 
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specified organization instance. That is, the BIR model is reusable for any model 
instance of the organization metamodel specified in Fig. 1.   
     We now describe the extensions used in Fig. 3: (1) isTopGoalAchieved: given a 
set of achieved goals, the extension determines whether the goal set can satisfy the 
requirement of achieving the top goal of an organization by looking at its goal struc-
ture, (2) chooseGoal: given a set of achieved goals, the extension non-
deterministically chooses the next goal to be achieved. The extension leverages the 
precedes relation such that it does not choose goals whose preceding goals are not in 
the achieved goal set, which reduces the number of paths during the state-space ex-
plorations. In other words, chooseGoal non-deterministically chooses a goal from 
the active goal set GA. The user can also specify to optimize paths on disjunctive goals 
as an option, i.e., by preventing to choose a goal whose disjunctive sibling goals are 
already achieved, (3) chooseRole: given a goal, the extension non-deterministically 
chooses the role that can achieve the goal based on the organization achieves function 
(i.e., when achieves gives a non-zero value), and (4) chooseAgent: given a role, the 
extension non-deterministically chooses the agent that can assume that role based on 
the organization capable function. 

 

 

Fig. 4. Goal Achievement State-space (G) for CRFCC Example in Fig. 2 

 
The Search thread explores all possible assignment sets that satisfy an organiza-

tion’s top goal. For optimization, we only store states in the beginning of each itera-
tion of the Search‘s loop. Fig. 4 presents the model’s goal achievement state-space 
of the organization in Fig. 2 (without disjunctive goal optimization). The graph is 
generated based only on the goal structure (without considering roles and agents); 
Bogor can generate several state-spaces, for example, on goal (G), goal-role (GR), and 
goal-role-agent (GRA). Each node in the figure represents a set of goals that has been 
achieved, and each edge represents an achievement of a goal. Note that each node in 
G implicitly represents the active goal set GA, i.e., the set of goal achievements repre-
sented by the outgoing edges; thus, each path captures the sequence of active goal set 
GA’. For goals that may be achieved at the same time, we follow the usual concur-
rency interleaving model that represents two transitions t1 and t2 that are executed at 
the same time as two paths t1  t2 and t2  t1. In the case where an organization 
cannot achieve the top goal, Bogor can give an empty (or a partial) state-space.  

The CRFCC organization’s goal diagram in Fig. 2 has a parameter n, which is the 
number of area that the agents have to clean up. Based on several experiments that we 
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have on varying n, we concluded that for the kinds of analyses that we perform, we do 
not actually need to have the actual concrete numbers of area; it is enough to focus on 
the characteristic of each area, i.e., whether it is tiled or carpeted. The reason is that 
we cannot actually distinguish between the areas at the design level; thus, for exam-
ple, one carpeted area is the same as another carpeted area, i.e., one goal achievement 
sequence of one carpeted area would be similar to the other carpeted area’s. There-
fore, we only divide the area into two logical categories: carpeted (C) or tiled (T). 
This approach is akin to symmetry reduction [12] techniques usually used in model 
checking (e.g., the symmetric set mentioned previously), i.e., using one representative 
to reason about a set of entities that share the same properties. Section 8 describes 
extrapolation methods to recover the actual achievement sequences. 

The key property of our analysis is that the state-space represents all possible ways 
to achieve the top goal even in the presence of agent failures/retries and malfunc-
tions/recoveries. That is, an agent may retry several times before actually achieving a 
goal, or an agent malfunctions completely at some point in time, hence, the rest of the 
goals must be achieved by some other agents. In the end, if we take an actual system 
trace that achieves the organization top goal (with failures/retries and malfunctions), 
and if we project a sequence of the actual goal achievements for that trace, that se-
quence is in the state-space constructed by our analysis. For instance, let us consider 
the edge {} {1}. This edge actually represents any system trace prefix that eventu-
ally achieves 1. For example, an agent A can be assigned to achieve 1 and then it 
somehow malfunctions without completing it, the system then reorganizes and assigns 
a different agent B to the goal. After several attempts, that B finally achieves 1. In a 
goal-agent state-space, this trace is represented by a path with prefix {} {<1, B>} 
(and without A contributing to goal achievements in the path’s suffix). 

5   Design Metrics 

Based on the analysis results presented in the previous sections, we have developed a 
set of metrics that can be used at design time to measure system performance. Spe-
cifically, in this paper we focus on a set of metrics based on path coverage in an at-
tempt to measure the flexibility of the system. We define system flexibility as the 
ability of the system to reorganize to overcome individual agent failures. Ideally, such 
a metric would be unambiguous, simple to compute, and produce a small set of values 
that allows the designer to directly compare a set of possible system designs. 

There are several pieces of coverage information that can be mined from the differ-
ent state-spaces generated by Bogor. To measure system flexibility, we compare the 
state spaces of G and GRA for particular organization designs. Based on this approach, 
we have proposed the following metrics:  

• Covering Percentage: For each path in G, we determine whether there exists a 
path in the GRA. For covering, we compute the percentage of paths in G that are 
covered in GRA (higher is better).  

• Coarse Redundancy: For each path in G, we determine the number of paths in 
GRA (or GR) that cover it and give a coarse redundancy rate (paths in GRA di-
vided by paths in G; higher is better).  
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There are other statistics that can be mined from the state-spaces (Section 7 describes 
more metrics). For example, given two GRAs (or GRs) of two different organization 
instances with the same goal diagram (hence, the same G), we are able to compare 
coverage differences of the two with respect to G. These coverage metrics allow de-
signers to explore different role models and agent models for a given goal structure. 

6   Metric Validation 

We created four predefined robot teams to validate the metric set proposed in the 
previous section; we designed four different robot teams implementing RM0 and 
RM1 as defined in Section 3 for the goal model of Fig. 2. The robot teams were de-
signed to provide a wide range of capabilities while keeping the same number of 
robots on each team at five. Each agent was given the capabilities to carry out exactly 
one of the application’s leaf goals. The specific capabilities given to each robot are 
shown in Table 4. We want to predict and to compare the flexibility of each system. 

Table 4. Agent System Designs 

Name AS0 AS1 AS2 AS3 
A1 org, search, move, 

vacuum, sweep, mop 
org, search, move, 
vacuum 

org, search, move org 

A2 org, search, move, 
vacuum, sweep, mop 

search, move, 
vacuum, sweep 

search, move, 
vacuum 

search, move 

A3 org, search, move, 
vacuum, sweep, mop 

vacuum, sweep, 
mop 

vacuum, sweep vacuum 

A4 org, search, move, 
vacuum, sweep, mop 

org, sweep, mop sweep, mop sweep 

A5 org, search, move, 
vacuum, sweep, mop 

org, search, move, 
mop 

org, mop mop 

Table 5. Bogor Coverage Results 

Organization Coarse Redundancy (G-GRA) Rate 
(# paths in G = 10) RM0 RM1 

AS0 15625 15625 
AS1 324 729 
AS2 16 64 
AS3 .3 1 

 
We applied our analysis to the agent system designs; Table 5 presents Bogor analy-

sis results for AS0-3 with RM0-1. For the experiments, we used an Opteron 248 
workstation, Linux OS, and Java 5.0 (64-bit) with maximum heap of 256 MB; all the 
state-space analyses for G and GRA finished under 15 seconds (combined). All sys-
tems achieve 100% covering of G as there are agents that can achieve each goals (if a 
goal model has disjunctive sub-goals, it is possible to create organizations that can 
achieve the overall goal without agents that can achieve all disjunctive sub-goals). 
Based on the numbers, Bogor predicts that RM1 is more flexible than RM0, AS0 is 
the most flexible system, AS3 is the least flexible, and AS1 is more flexible than AS2. 

To empirically evaluate the flexibility of designs AS0 – AS3 on the role models 
RM0 and RM1, we developed a simulation that stepped through the CRFCC applica-
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tion. To measure the flexibility, we simulated capability failure. At each step in the 
simulation, a randomly selected assigned goal was achieved. Then, one robots capa-
bility was randomly selected and then tested to see whether or not it had failed. Based 
on a predefined capability failure rate (0 – 100%), we determined whether or not the 
selected capability had failed. For simplicity of presentation we used a single failure 
rate; however, the model could easily be extended to handle different failure rates. In 
addition, in contrast to the coarse redundancy metric that takes into account the possi-
bility of agents to recover from a failure, we assumed once failed, a capability re-
mained failed for the life of the system. Then, reorganization was performed to assign 
available robots to available goals and to de-assign robots if their capability had 
failed, and they were no longer able to play their assigned role. 
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Fig. 5. Comparison of Role Model 0 vs. Role Model 1 for Agent Sets AS0 - AS3 

Using a floor with 10 separate areas, we simulated each system (AS0 – AS3) on 
each role model (RM0 and RM1). For each role model, system combination was 
simulated for failure rates ranging from 0 to 100% for 1000 system executions. To 
compare the effectiveness of the role models using the four agent system designs, we 
looked at the results using each of the agent systems above. The results in Fig. 5 show 
that Role Model 1 provides more flexibility than Role Model 0. Furthermore, the 
simulation results confirm that AS0 is the most flexible while AS3 is the least one, 
and AS1 is more flexible than AS2. Note that the curve for (RM0, AS3) does not start 
at 100% since AS3 does not have an agent capable of playing the TileCleaner role. 

The Bogor predictions and the simulation results make sense because: (1) in con-
trast to RM1, not all agents can assume the TileCleaner role in RM0, (e.g., A4 and A5 
in AS3), (2) AS0 is the most flexible because each agent in AS0 can achieve any goal, 
(3) AS3 is the least flexible because each of its agents can assume at most one role, 
and (4) AS1 is more flexible than AS2 because AS1 agents have more capabilities. 

6.1   Tradeoff Analysis 

To demonstrate the usefulness of our metric in making design decisions, consider the 
following situation. Assume we have already developed a system based on RM1 and 
AS2, but now want to upgrade our system with a fixed budget. Our engineers deter-
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mined that we could either (1) buy a single additional robot with three capabilities, or 
(2) buy five additional capabilities and integrate them onto our current robots. Essen-
tially, option 2 equates to upgrading from AS2 to AS1 while option 1 would produce, 
for example, AS5 (option 1a) or AS6 (option 1b) as shown in Table 6.  

Bogor’s analysis results indicate that option 2 is better with a coarse redundancy 
rate of 729. The coarse redundancy rates for both option 1a and 1b are 216 while the 
original system (AS2) had a coarse redundancy rate of 64. Thus, using the coarse 
redundancy metric, we would choose option 2. 
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Fig. 6. Comparison of Possible System Updates 

Table 6. Additional Agent System Designs Based on Agent Capabilities 

Name AS5  AS6  
A1 org, search, move org, search, move 
A2 search, move, vacuum search, move, vacuum 
A3 vacuum, sweep vacuum, sweep 
A4 sweep, mop sweep, mop 
A5 org, mop org, mop 
A6 search, move, sweep search, move, vacuum 

 
To validate the metric results, we extended our simulation to include the definition 

of AS5 and AS6. The results of the four different options are shown in Fig. 6 where it 
is obvious that option 2 provides the best results followed by option 1a and 1b, which 
are very close. However, all three options are significantly better than the original 
system, which are consistent with the metric results that we obtained from Bogor. 

7   Related Work 

Software metrics as a subject area has been around for over 30 years. A number of 
metrics have been developed to predict or measure various parameters of software 
systems for different stages of software development lifecycle. For example, metrics 
to predict software performance were studied in [19, 20], software scalability in [20, 
21], software adaptability in [17]. However, metrics and measures for intelligent 
software systems are as yet vaguely defined and sometimes controversial [2] and are 
not used extensively in software engineering [10]. There is also little work done in 
designing and applying metrics at the design level to predict adaptive systems per-
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formance. We are proposing new design metrics and examine in details one such 
metric for distributed, adaptive systems in this paper. 

Fault Tree Analysis (FTA) has been studied and used extensively [198]; it provides 
a top-down approach to systematically describe the combinations of possible occur-
rences in a system that results in undesirable outcomes such as failures or a malfunc-
tions. Our approach complements FTA, since our technique automatically predicts the 
system flexibility for a given system configuration i.e., it generates traces of system 
behaviors. If failure patterns are exposed in the traces (e.g., an agent is not used after 
a certain time), then FTA can analyze the possible set of failure points.  

8   Conclusions and Future Work 

While the work presented in this paper is a starting point (i.e., there are many addi-
tional metrics that must be considered for providing a thorough design evaluation), 
there are several conclusions that can be made. Likewise, there are several assertions 
we can make about future work in the areas of performance prediction, additional 
metrics, scalability, and the integration of metric computations into a model design 
tool. 

Performance Prediction: From the results presented in the previous section, it seems 
clear that the coarse redundancy rate does predict the flexibility of the robot systems. 
Unfortunately, system design is seldom as simple as maximizing one metric or pa-
rameter. Increased flexibility increases the number of possible assignments that can 
be made and thus increases the computation burden of generating near optimal as-
signments at run time. Obviously, a tradeoff exists. In future work, we hope to define 
additional predictive metrics that a designer can use to help tune the system at design 
time by performing tradeoff analysis. Our research will not eliminate this predica-
ment, but give the designer predictive numbers to use in making those tradeoffs with-
out developing expensive prototypes/simulations. 

Additional Metrics and Query Environment: Based on the state-space analysis in 
Section 4, we believe the following metrics are helpful; however, we are still working 
on simulation methods to validate them: 

• Relative Cost Efficiency (RCE): Using the potential function described in Section 3, 
we can determine path potentials in a goal-role-agent achievement state-space 
(GRA). This would be useful in defining a relative measure of the most/least effi-
cient assignments and giving designers a feel for the organization’s best/worst per-
formance. (The actual best/worst performance of the system is not necessarily in-
teresting as either all the agents may fail or the organization’s goal may be achieved 
by changes in the environment.) Thus, the RCE metric would give reasonable feed-
back about organization instances. If the potential function always returns a con-
stant value, thus, it reduces the metric to the shortest/longest achievement paths. 

• Relatively Optimistic Time Efficiency (ROTE): This metric gives us the most opti-
mistic best/worst time (logical ticks) to achieve the top goal. Consider the path 
A:{}  B:{1}  C:{1, 2(C)}  D:{1, 2(T), 2(C)}  E:{1, 2(T), 2(C), 3.1.1(T)}  
F:{1, 2(T), 2(C), 3.1.1(T), 3.2(C)}  G:{1, 2(T), 2(C), 3.1.1(T), 3.1.2(T), 3.2(C)}. 
Note that optimistically, 2(C) and 2(T) can be achieved at the same time because 
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there are no precedence relation among them; similarly with 3.1.1(T) and 3.2 (C). 
Thus, if we group goal achievements that can happen at the same time, we have the 
sequence: {A} {B} {C, D} {E, F} {G}, i.e., 5 logical time ticks. This sub-
path grouping approach is akin to partial order reduction techniques in model 
checking [6] where independent transitions can occur at the same time, thus, one 
ordering representative of the sub-path is enough. In our case, goal dependences are 
determined based on the precedence relation. Note that this grouping can also be 
done in the goal-role-agent achievement paths. If an agent cannot achieve goals si-
multaneously, the algorithm does not group goal achievements by the same agent in 
one group. Thus, system designers can evaluate different goal structures, role mod-
els, and agent systems for time efficiency. We plan to investigate using these de-
pendence relations for partial order reduction in the near future. 

We believe that there are more metrics that can be mined from the state-spaces of 
system designs. In addition, we also believe that work on query languages (e.g., [13]) 
can be used to ease system designers when evaluating multiagent system designs. 

Extrapolation Methods for Scalability: Note that we do not actually need to use all 
five agents of the same type (i.e., agents with like capabilities) when exploring the 
state-space, for example, for AS0; it is sufficient to use one agent for each type (i.e., 
symmetry reduction [12]), and then extrapolate the actual number of paths based on 
the paths using representative agents. For example, if we use only one agent for AS0, 
the number of paths in GRA is 10. For each path, there are six goals achievements, 
thus, if we extrapolate each path when using five actual agents, we will have 
10×56=156250 actual paths (which is the one we have from Bogor when directly us-
ing 5 agents). Thus, we believe that we can apply symmetry reduction on agent in-
stances based on their type (i.e., they are indistinguishable at the design level) along 
with the partial order reduction technique hinted above, and use extrapolation meth-
ods to recover the actual paths for further analysis. 

Integration of Metric Computations in a Model Design Environment: While we 
manually generated the Bogor configurations for this paper, it would be straightfor-
ward to automate such analysis by integrating Bogor into a multiagent design tool. 
We are currently developing agentTool III (aT3), an advanced version of the agent-
Tool system for developing organization-based multiagent systems [1]. aT3 is being 
developed as an Eclipse plug-in and Bogor already works within the Eclipse plug-in 
environment. In the integrated system, designers will graphically create system goal, 
role, and agent models in aT3 and will simply “click” on a button to popup an inter-
face to select various analysis options; aT3 will then automatically generate the appro-
priate configuration and invoke Bogor to explore its state-space and to predict its 
flexibility. 
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Abstract. Problem frames are a sound and convenient approach to requirements 
modeling. Nevertheless, they are far less popular than other less rigorous ap-
proaches. One reason is that they employ a notation that is neither very appeal-
ing nor easy to use. The problem frames notation is sufficiently different from 
other development languages –especially UML– to create an “impedance mis-
match”: using problem frames to describe requirements does not help the transi-
tion to the design phase, makes it difficult for programmers to fully comprehend 
requirements, and does not favor traceability. As a consequence, problem 
frames are rarely adopted in software development processes employing UML 
as a design language. UML itself provides a linguistic support for requirements 
modeling, which however suffers from several limitations, especially as far as 
precision and formality are concerned. 

The goal of this paper is to combine problem frames and UML in order to 
both improving the linguistic support for problem frames –while preserving the 
underlying concepts– and to improve the UML development practice by intro-
ducing the problem frames approach, making it seamlessly applicable in the 
context of the familiar UML language. 

1   Introduction 

The Problem Frames approach [1] has the potential to dramatically improve the early 
lifecycle phases of software projects. Problem frames (PFs) drive developers to un-
derstand and describe the problem to be solved, which is crucial for a successful de-
velopment process. 

Nevertheless, PF have some limitations that hinder their application in industrial 
software development processes. In particular, they are not provided with an adequate 
linguistic support. For instance, by looking at the PF represented in Fig. 1 it is not 
immediate to see the association of phenomena with domains, or to see which domain 
controls which phenomena. Moreover, sometimes it is difficult to represent the nature 
of shared phenomena; e.g., when they involve complex data structures that are much 
better modeled via classes. 

PFs are not equipped with a unique and clear way for expressing requirements: the 
modeler has to choose a suitable logic language to predicate about phenomena. 
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Fig. 1. A commanded behavior frame: the sluice gate control 

Moreover, the PF model causes a sort of “impedance mismatch” with respect to the 
languages employed in the subsequent development phases. In particular, considering 
object-oriented developments using UML [4] as a modeling language, it is not imme-
diate to transform PF diagrams and predicates into UML models. Even worse, people 
involved in a UML-based development that are not used to the PF notation can find it 
difficult to understand requirements. It is well known that design and implementation 
are more often successful if developers fully understand the requirements; but a Java 
programmer that works on the basis of a UML design built according to PFs can find 
it difficult to read the requirements.  

Problem frames require a linguistic support that is easy to use, that allows the rele-
vant information to be represented in a natural and readable way, and that allows a 
smooth transition to the subsequent development phases. In particular, here we con-
sider development activities based on the usage of UML. 

For requirements modeling, UML provides the “use case” diagrams [16]. Unfortu-
nately, use cases suffer from several limitations, amply described in the literature 
[17], [18]. The main limitations with use case diagrams are that they are neither for-
mal nor rigorous–requirements being described mainly by the text that illustrates the 
“courses of action”– and they are not intrinsically object-oriented, thus it is not easy 
to move from use cases to the object-oriented models required by the following 
phases of development. UML-based development needs to be supported by a tech-
nique for requirements modeling that overcomes the limitations of use cases.  

We propose to integrate PF and UML: PFs are represented by means of UML, so 
that they can be used (also) in UML-based development. This integration provides 
several benefits: on one hand it equips PFs with a popular and easy to use notation. 
Under this respect our contribution is quite similar to other initiatives aiming at pro-
viding UML-based access to requirements modeling methods (e.g., KAOS [6]). In 
fact, a method can be truly successful only if a large number of professionals are 
sufficiently convinced of its potential to use it in industrial settings. Using UML to 
support requirements engineering with PF may help achieve this end. 

On the other hand, the usage of UML both as the notation underlying PFs and as a 
design language smoothes the transition from the requirement elicitation and model-
ing phase to the design phase –thus facilitating the comprehension of requirements by 
the developers– and it eases the iteration between problem and solution domains. 
Moreover, it makes easier to represent traceability relations, since requirements and 
elements of the solution are represented in a homogeneous way. 
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The paper is organized as follows: Section 2 illustrates how problem frames can be 
defined using UML-based notations. Section 3 tests the ability of the proposed ap-
proach to deal with the representation of a couple of concerns that often occur in re-
quirements. Section 4 briefly accounts for related work, while Section 5 draws some 
conclusions. 

2   Problem Frames with UML 

The most obvious choice for representing requirements in a way that eases UML-
based development is to employ class diagrams (and possibly object diagrams) to 
represent the structure of the system, and statecharts and OCL statements to specify 
the behavior of the system [5]. The recently released UML 2.0 [4] features an im-
proved ability to model the structure of systems. In fact, it introduces “composite 
structures”, that allow the modeler to hierarchically decompose a class into an internal 
structure. The relations among the parts can be specified by means of associations and 
interfaces.  

Unfortunately, OCL [19] is limited with respect to the possibility of specifying 
temporal aspects: only invariant properties can be formalized, which at most include 
references to attribute values before or after method execution. It is not possible to 
reference different time instants in a single OCL formula; namely it is not possible to 
reference the time distance between events. Therefore, several kinds of important 
temporal properties of systems cannot be adequately specified. 

In order to overcome the aforementioned limitations, Object Temporal Logic 
(OTL) was defined as a temporal logic extension to OCL [3]. However, OTL exten-
sions do not require to change the OCL metamodel: they can be considered the mini-
mum enhancements of OCL required to deal with time. 

OTL formulas are evaluated with respect to an implicit current time instant. In fact, 
OTL introduces a new primitive as a method of class Time: method eval receives an  
OclExpression as the parameter (p) and returns the (boolean) value of  p at time t. 
This is denoted as t.eval(p) or, more concisely, as p@t. All other typical temporal 
operators –like Always, Sometimes, Until, etc.– are defined based on method 
eval. In addition, OTL allows the modeler to reason about time in a quantitative 
fashion. Properties can be expressed on (possibly infinite) collections of objects of 
class Time, i.e., on time intervals. 

In the rest of the paper OTL is used to express time-dependent properties. Of 
course, a modeler could express properties and requirements informally, by means of 
comments associated with model elements. This practice –which is in line with the 
way UML is generally used in industry– is often acceptable. Nevertheless, here we 
employ OTL extensively, in order to show that the proposed approach can lead to 
very precise and rigorous specifications.  

2.1   Problem Frames with UML and OTL 

Problem frames are represented by means of UML diagrams and OTL statements 
according to the following rules. 
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Domains (including the machine) are represented by means of components. This 
seems a reasonable choice, since components can include any of the properties that 
characterize domains. In particular it is possible to structure domains into subdo-
mains, while the machine is treated as a sort of “black box component”, whose inter-
nal details are not given. Different kinds of domains can be represented by means of 
different kinds of components: we use UML stereotypes to specialize components 
into causal domains, biddable domains, machines, etc. 

Components hide their internal details from the outer world by means of ports. 
Shared phenomena are represented by means of interfaces, the construct provided by 
UML to explicitly exchange information among components. In particular, phenom-
ena that are shared between domains D1 and D2 require that components representing 
D1 and D2 are suitably connected, i.e., they must be equipped with ports and com-
patible interfaces. Shared phenomena define the interfaces, i.e., they define the opera-
tions belonging to the interfaces. Parameters of phenomena become parameters of the 
operations associated with the interfaces. The details of the domains can be defined in 
terms of classes or sub-components. 

For instance, the required behavior frame (Fig. 2) can be represented by the UML 
model illustrated by Fig. 3. 

Required
behaviour

Control
machine

Controlled
domain

a, b c

a: CM!{C1} b: CD!{C2} c: CD!{C3}  

Fig. 2. The required behavior frame 

 

<<component>>
ControlledDomain<<component::machine>>

ControlMachine

C2

C1
C3

 

Fig. 3. UML representation of the required behavior frame 

Properties are simply expressed as OTL statements involving the proper interface 
operations and component properties (attributes, states, etc.). Properties of the con-
trolled domain represented in Fig. 3 would be described by OTL statements concern-
ing the context of the ControlledDomain. Alternatively, the behavior of the con-
trolled domain can be expressed by means of statecharts. The requirements for the 
system are expressed similarly by OTL statements concerning the context of Con-
trolledDomain: OTL can be used to describe the required behavior of C3. 

2.2   A Commanded Behavior Frame: The Sluice Gate Control 

In order to test the applicability of the proposed approach, in this section we represent 
the sluice gate control problem by means of UML and OTL. 

The problem is defined as follows [1]. A small sluice, with a rising and a falling 
gate, is used in a simple irrigation system. A computer system is needed to raise and 
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lower the sluice gate in response to the commands of an operator. The gate is opened 
and closed by rotating vertical screws. The screws are driven by a small motor, which 
can be controlled by clockwise, anticlockwise, on and off pulses. There are sensors at 
the top and bottom of the gate travel; at the top it is fully open, at the bottom it is fully 
shut. The connection to the computer consists of four pulse lines for motor control, 
two status lines for gate sensors, and a status line for each class of operator command. 
The PF diagram for the sluice gate problem is reported in Fig. 1. 

 

<<component::CausalDomain>>
Gate&Motor

<<component::machine>>
SluiceController

<<component::BiddableDomain>>
Operator

<<interface>>
Command

Raise()
Lower()
Stop()

<<interface>>
Command

Raise()
Lower()
Stop()

<<use>>

<<interface>>
StateNotification

Top()
Bottom()

<<interface>>
StateNotification

Top()
Bottom()

<<interface>>
SluiceOperations

Clock()
Anti()
On()
Off()

<<interface>>
SluiceOperations

Clock()
Anti()
On()
Off()

<<use>>

<<use>>

 

Fig. 4. Sluice gate control: component diagram 

The sluice control problem is represented according to our proposal by the class dia-
gram reported in Fig. 4 and by the component diagram reported in Fig. 5. Note that 
for the sake of clarity, instead of using the “lollypop” notation, in Fig. 4 and Fig. 5 we 
described the interfaces explicitly, reporting the operations that can be invoked 
through every interface. It can be noticed that the diagrams incorporate a few choices 
that improve the clarity of the representation: 

− The Gate&Motor domain is decomposed into the Gate and Motor subdomains. 
− The events from the Gate&Motor are divided into two sets. The messages con-

cerning the state of the gate are emitted by the Gate subdomain, while those con-
cerning the control of the motor are delivered to the Motor subdomain. 

− The Gate and Motor subdomains are connected via the GateMotor interface, in 
order to represent the effect of the motor on the gate. 

The behavior of the controlled domain can be described by the OTL statements re-
ported below. Note that for space reasons we do not give the complete specification, 
but only a subset that is representative of the capabilities of the proposed approach.  

The specifications reported below apply only when the gate and motor are working 
correctly. If it were required to handle failures, then the combined behavior of the two 
subdomains would be modeled differently. 

− The motor is on, if and only iff an On command arrived, and since then no Off 
command arrived: 
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Fig. 5. Sluice gate control: white-box view of the Gate&Motor component 

context Gate&Motor inv: 
SluiceMotor.IsOn = Since(not SluiceOperations^Off, 
SluiceOperations^On) 

Since(p,q) states that q occurred in the past, and since then p is true. 
− The gate is still whenever it is neither opening nor closing: 

context SluiceGate inv: 
  self.IsStill= not(self.IsOpeneing or self.IsClosing) 

− When the motor is on and moving clockwise the gate is opening: 
context Gate&Motor inv: 
  (SluiceMotor.IsOn and SluiceMotor.ClockW) = 
   SluiceGate.IsOpening 

− When the motor is off the gate is still: 
context Gate&Motor inv: 
  SluiceMotor.IsOff = SluiceGate.IsStill 

− When the gate is opening and the position of the gate reaches the top, the Open 
notification is sent via StateNotification interface port within RT time units, 
RT being the allowed reaction time. 
 context Gate&Motor inv: 
 (SluiceGate.IsOpening and becomes(SluiceGate.position=top)) 
  = WithinF(StateNotification^Open, RT) 

The meaning of WithinF(p,d) is that p will hold within d time units after the 
evaluation time. 

− When the gate is opening the position increases at a constant speed (and similarly 
the position decreases when the gate is closing): 
context SluiceGate inv: 
 Lasted(self.IsOpening, D) = 
 self.position = self.position@(now-D) + D*speed  

The meaning of Lasted(p,d) is that p held for d time units in the past. 
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− When the gate is still the position is constant: 
context SluiceGate inv: 
 Lasted(self.IsStill,D)=(self.position=self.position@(now-D)) 

− The correspondence between operations of the interfaces and methods provided by 
classes or subcomponents can also be specified by means of OTL. For instance, the 
following statements specify that the Clock and On commands that reach the 
Gate&Motor domain are delegated to the SetClkWise and SwitchOn methods of 
SluiceMotor respectively.  
context Gate&Motor inv: 
  SluiceOperations^Clock = SluiceMotor^SetClkWise 
context Gate&Motor inv: 
  SluiceOperations^On = SluiceMotor^SwitchOn 

Note that by the Element^Message notation we denote both the events of sending 
and receiving a message. 

− Additional trivial statements –not reported here– are needed to enumerate the pos-
sible states for the gate and motor, to enforce mutual exclusion of states, to specify  
the initial states of the gate and motor, etc. 

It is interesting to note that the behavior of the combination of the given subdomains 
was modeled quite naturally by establishing correspondences between the states of the 
gate and the motor, since the gate is affected by the state of the motor (e.g., when the 
motor is on clockwise the gate is opening). Otherwise, modeling the behavior of the 
gate in terms of the events that are directed to the motor would not have been as easy, 
since the gate is not directly affected by the signals that are sent to the motor. In these 
situations, the availability of OTL eases the description of the continuous behavior of 
a domain. Specifying that a domain continuously affects another domain would be 
very hard using only statecharts. 

The behavior of the Operator is not specified, i.e., he/she could generate any se-
quence of commands. It is the job of the sluice controller to guarantee a reasonable 
behavior for any possible sequence of commands. Here we assume that the require-
ments for the sluice gate controller are quite simple: 

− The Raise and Lower commands from the operator are simply transformed by the 
machine in pairs of commands (<ClockWise, On> and <AnticlockWise, On> 
respectively), which are sent to the Motor, unless the Gate is not already Open or 
Shut, respectively. This behavior is modeled (for the Raise command) by the fol-
lowing OTL code, where MD is the time taken by the motor to react to commands, 
and ST is a very short time. 
context Operator inv: 
 (Command^Raise and not SluiceGate.position=Top) = 
 (SluiceOperations^Clock and SluiceOperations^On) 
context Gate&Motor inv: 
 (SluiceMotor^SwitchOn and 
  WithinP(SluiceMotor^SetClkWise, ST) or 
  SluiceMotor^SetClkWise and 
  WithinP(SluiceMotor^SwitchOn, ST)) 
 and not WithinP(SluiceMotor^SetAntiClkWise, ST) 
 and not WithinP(SluiceMotor^SwitchOff, ST))  
 implies WithinF(SluiceMotor.IsOn and SluiceMotor.ClockW,MD) 



206 L. Lavazza and V. Del Bianco 

Note that last statement takes into consideration the possibility that SwitchOn  and   
SetClkWise do not arrive at the same time, but (quite realistically) separated by a 
small interval (≤ ST). The statement specifies that if the On and SetClkWise com-
mands arrive (in any order) in a time interval ST and no counter order arrives in the 
same interval, then the motor will be on in clockwise direction within MD time 
units. 

− The Top and Bottom notifications from the gate, as well as the Stop command 
from the operator are transformed by the machine into the command Off, in order 
to stop the Motor. 
context SluiceController inv: 
 (Command^Stop or StateNotification^Bottom or  
  StateNotification^Top) = SluiceOperations^Off 
context Gate&Motor inv: 
  SluiceOperations^Off = SluiceMotor^SwitchOff 

As already mentioned, we could express more complex requirements. For instance, 
the controller, instead of just “translating” the commands from the operator, as speci-
fied above, could ignore any command that is not separated from the previous one by 
a minimum interval D. This requirement for command Raise can be expressed as 
follows: 

context Operator inv: 
 let AnyOpCommand: OclMessage = 
    (Command^Raise or Command^Lower or Command^Stop) in 
 (Command^Raise and not SluiceGate.position>=Top and 
  not WithinP(D, AnyOpCommand) = 
 (SluiceOperations^Clock and SluiceOperations^On) 

3   Other Issues 

In order to further test the applicability of the approach, in this section we consider 
two of the concerns described in [1]. The concerns are illustrated by means of the 
same examples reported in [1]. 

3.1   The Reliability Concern 

Several real-life problems can be more easily understood and described if they are 
decomposed into subproblems. For example, it is often advisable to deal with the 
reliability concern in a separate subproblem. Subproblems are best identified as pro-
jections of the original problems, i.e., they are obtained by considering the subsets of 
elements and phenomena that are relevant to the subproblem [1]. 

Reliability is one of the most common subproblems, since often it is necessary to 
describe the main problem, and then to take into account reliability issues. In the case 
of the sluice gate controller, it is quite clear that the specifications given in Section 2.2 
apply only when the gate and motor work correctly. However, in general it would be 
desirable that the sluice gate controller guarantees a reasonable behavior of the motor 
and gate system even in presence of failures. For instance, if debris are jammed in the 
gate, preventing it from closing, or if a sensor sticks on or off, the controller should 
not insist in trying to close the gate.  
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A way to tackle the problem –proposed in [1]– consists in observing the system, in 
order to provide the operator with a stop warning whenever there is the perception 
that something is going wrong. This “auditing” subproblem is described in Fig. 6, 
where the auditing machine is in charge of monitoring the system, represented by the 
Gate&motor+Controller domain, which includes both the controlling machine 
(the Sluice controller of Fig. 1) and the controlled domain (the Gate&motor of 
Fig. 1). The Audit machine receives all the relevant events generated by the union 
of the Gate&motor and the Sluice controller and reacts sending a Stop warn-
ing to the safety operator when appropriate. The Safety operator (who may be the 
same person as the Sluice operator) is a biddable domain: he/she should be in-
structed to issue a Stop command whenever a Stop warning is received. 

 

Gate&Contr
auditing

Audit
machine

Safety
operator

Gate&motor
+ Controller

d: AM!{Stop}               e: GC!{ClockW, Anti, On, Off, Top, Bottom}  

Fig. 6. Sluice gate controller: auditing reliability 

Fig. 6 is a projection of the whole sluice gate control problem, and it is an informa-
tion display frame. It is therefore interesting to analyse if the UML-based representa-
tion of PFs can manage the representation of a projection of the problem, in the form 
of an information display frame. It is also interesting to consider how the two result-
ing sets of UML diagrams can be composed. 

The required projection of the system is represented in Fig. 7. The collaboration 
diagram of Fig. 7 is a rather straightforward representation of Fig. 6. The Alarm inter-
face between the AuditMachine and the SafetyOperator consists just of the 
warning issued by the machine, to which the operator should react by means of a 
Stop command. Between the AuditMachine and the Gate&Motor&Controller 
the Command&State interface notifies the AuditMachine of the ClockW, Anti, On, 
Off commands and Top and Bottom states, so that the machine can detect abnormal 
behaviors of the gate and motor in reaction to commands. The refinement of the dia-
gram reported in Fig. 7 is omitted for simplicity. 

 

<<component::CausalDomain>>
Gate&Motor&Controller

<<component::machine>>
AuditMachine

<<component::BiddableDomain>>
SafetyOperator

Alarm

Operation&State

 

Fig. 7. Sluice gate auditing: component diagram 
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The requirements for the auditing system can vary widely, depending on the fail-
ures considered. Here we consider a failure detection technique based on the assump-
tion that a failure occurs when the gate fails to react to a command in a given interval. 

For instance, the following OTL statement specifies the detection of a failure con-
cerning the lowering of the gate. If the condition for starting lowering the gate (i.e., 
the motor received the <AnticlockWise,On> commands) was verified D time units 
ago, and D is big enough to allow the completion of the operation (CT being the ex-
pected completion time and MD the motor reaction time), and no counter-order was 
received, and the gate sensor did not notify the completion of the operation (Bottom 
signal) then a StopWarning will be issued within one time unit. In the following 
OTL statement the interface names reported in Fig. 8 are used. 
context AuditMachine inv: 
  (Operation^On and Operation^Anticlockwise)@now-D 
  and not WithinP((Operation^Clockwise or Operation^Off),D) 
  and D >= CT+MD and not WithinP(State^Bottom, D) 
 implies WithinF(Alarm^StopWarning, 1) 

The OTL specifications should be carefully studied in order to compose correctly. For 
instance, the statement above says that under some conditions the stop warning is 
issued, but it does not exclude that the stop warning is issued under other circum-
stances too, or even for no reason at all. The latter case should of course be excluded. 

 

<<component::CausalDomain>>
Gate&Motor

<<component::machine>>
AuditMachine

<<component::BiddableDomain>>
Sluice&SafetyOperator

Alarm

Operation

Command

State

<<component::machine>>
SluiceController

 

Fig. 8. Sluice gate auditing: component diagram with the Gate&Motor&Controller domain 
decomposed into its subdomains 
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Fig. 9. Sluice gate control and auditing: the composite component diagram 
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Fig. 8 represents the same diagram as Fig. 7, but with the Gate&Motor&Con-
troller domain explicitly decomposed into its sub-components, which belong to the 
“main” PF reported in Fig. 4 and Fig. 5. It is now possible to note that the diagram in 
Fig. 8 includes two machines that share the same input and output signals: this sug-
gests that the two machines can actually be merged into a single one, as is normal 
(and actually required in PF diagrams). The composition of the two subproblems 
concerning the sluice gate is reported in Fig. 9: this is the complete system that takes 
into account both functional and reliability requirements. 

3.2   The Identity Concern 

An identity concern arises when the machine has an interface of shared phenomena 
with individuals in a multiplex domain. A multiplex domain consists of multiple in-
stances of a class that are not connected into any structure that identifies them, and 
that do not identify themselves [1]. 

This concern exists in the following problem. A patient monitoring program is re-
quired in a hospital. Each patient is monitored by an analog device which measures 
factors such as pulse, temperature, blood pressure, and skin resistance. The program 
reads these factors on a periodic basis (specified for each patient) and stores the fac-
tors in a database. For each patient, safe ranges for each factor are also specified by 
medical staff. If a factor falls outside a patient’s safe range, or if an analog device 
fails, the nurses’ station is notified. A simplified version of the problem diagram for 
the system is reported in Fig. 10. 

 Monitor
patients
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c: Notify
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a: Period, Range, PatientName
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Monitor
machine
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Fig. 10. Patient monitoring: partial problem diagram 

Here the identity concern stems from the fact that periods and ranges are associated 
with patients’ names, while the machine gets values that are referred to the devices 
(more precisely, the device and the machine share the value of a register, accessed at a 
machine port or storage address). It is therefore necessary to associate each patient 
name with the correct set of devices. This is done via an identities model domain. 

The creation and maintenance of the identities model is a separate subproblem 
from its use. Such subproblem can be modeled as the workpieces PF reported in Fig. 
11, where the modeled reality is explicitly represented. 
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Fig. 11. Identities model creation: problem diagram 

For space reasons we do not report here the whole UML model of the patient 
monitoring system. Instead, we illustrate the parts that are more relevant with respect 
to the identities concern. Fig. 12 reports the collaboration diagram of the identity 
modeling subproblem. Fig. 13 reports a simplified version of the class diagram of the 
patient monitoring system: it is possible to see that the IDmodel component includes 
a set of Mapping instances, each one representing a triple <Patient, Device, 
Register>. 
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Fig. 12. Identities model collaboration diagram 
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Fig. 13. Identities model: partial class diagram 

Because of the simplification of the diagrams above we cannot write syntactically 
accurate OTL statements. Nevertheless it is easy to see that with OTL we could spec-
ify rules like the following: “whenever a patient P is attached to a device D which is 
connected to the machine M via register R, the IDmodel must contain a mapping in-
stance associated with P, D and R, and Rates&Values for P must be available”. 

Once again, the approach based on the usage of UML and OTL proves adequate to 
model the considered concern in a quite straightforward way. 
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4   Related Work 

Problem frames have attracted a lot of attention from the researchers. As a result, a 
relevant amount of work has been done, addressing several aspects of problem 
frames. A first class of contributions concerns the formalization of problem frames. 
An early attempt to formally characterize the concepts of problem frames can be 
found in [12]. In [13] some problem frames are formally specified in the CASL and 
CASL-LTL specification languages. 

A more recent work [14] provides a framework for understanding Problem Frames 
by locating them within the reference model for requirements engineering [15]. The 
semantics of problem diagrams is given in terms of “challenges”. The semantics sup-
ports the textual representation of the diagrams in which Problem Frames capture 
problems and their relationship to solutions. This work could provide the basis for 
building graphical tools supporting requirement modeling through Problem Frames. 

Since the development process often involves iterative, incremental definition of 
the problem and solution structures, the need arises to consider architectural struc-
tures, services and artifacts as part of the problem domain. Problem frames were ex-
tended in this direction, thus permitting an architecture-based approach to software 
development [2]. 

A second class of research work considers the usage of PF concepts in conjunction 
with UML. Konrad and Cheng [11] present a template to describe requirements pat-
terns for embedded systems. Their approach puts together UML and problem frames, 
without actually merging them properly: they use the PFs to explain the patterns, 
while UML (class, use case and sequence diagrams) is exploited to illustrate the pat-
tern definition. 

Choppy and Reggio proposed UML-based modeling of problem frames [8]. They 
use plain UML to model the problem domain and the requirements: classes represent 
domains, while shared phenomena are modeled by means of interfaces. The behavior 
of the controlled domain is modeled by means of state diagrams and OCL. Require-
ments are expressed by means of use case diagrams, which are detailed by means of 
use case descriptions, including statecharts. The modeling approach proposed in [8] is 
adherent to the UML standard, but is less flexible then ours: because of the limitations 
of OCL –namely, there is no explicit notion of time– statecharts have to be employed 
quite extensively. This means that an operational style is enforced, and cases can arise 
that are difficult to model. The proposal by Choppy and Reggio is actually oriented to 
the definition of a method for guiding the design phase on the basis of the UML 
model of the problem frame. For this purpose they provide a family of patterns for the 
machine design, each presented by a schematic UML model. 

5   Conclusions 

The goal of the work described in this paper was to experiment with UML-oriented 
ways of representing problems frames, so that PF-based requirements engineering 
practices can be effectively integrated into the UML development process.  

We showed that problem frames can be actually described by means of UML dia-
grams complemented with declarative specifications exploiting the OTL language. 
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A first evaluation of the proposed notation performed on the basis of the examples 
described in Sections 2 and 3, as well as on additional examples not reported here for 
space reasons, lets us report the following observations: 

− We found no feature of a problem domain, shared phenomenon, behavior specifi-
cation, etc. that could not be expressed in the proposed UML-based notation. The 
UML-based notation can be used to document the requirements and specification 
for an information problem as done with Kovitz’s checklists [7]. However, the 
UML-based notation seems to be more expressive, and to enable a more natural 
and readable style. For instance, in the sluice control system it is quite natural to 
represent separately the motor and the gate, to describe the motor in terms of a 
class with its own properties (attributes and methods), and to map methods onto in-
terface operations, thus contributing to explain the structure and behavior of the 
controlled domain. 

− The UML-based notation can be supported by tools. UML 2.0 compliant tools are 
currently being released, which support the features of UML that are relevant for 
our approach. Unfortunately there is no tool support for OTL, however, consider-
ing that OTL requires only a small enhancement of the OCL metamodel, it is pos-
sible that in the future some OCL tool will be extended to support OTL. 

− The UML-based notation favors traceability. With our approach the notation used 
to describe the problem domain and the requirements is the same used to describe 
the design. This homogeneity makes it easier to establish/recognize dependency re-
lations, since most relations link elements of the same nature (components, classes, 
attributes, states, etc.) in requirements and in design. Moreover, several tools for 
requirements management can import UML models, thus permitting to establish 
and maintain traceability relationships. 

− Describing the requirements with UML makes it possible to define UML-based 
techniques that guide the transition from the requirements modeling phase to the 
design phase. An initial experimentation with such technique is reported in [8].   

We consider the benefits listed above sufficiently relevant to make the proposed ap-
proach appealing in several circumstances. The work presented here can be regarded 
as a first step towards the definition of a methodology to employ problem frames in a 
UML-based development process. 
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Abstract. The benefits of design patterns are well-established. We ar-
gue that these benefits can be further amplified across the system life-
cycle. We present two contributions. First, we describe an approach
to complementing existing informal pattern descriptions with precise
pattern specifications. Our specification language captures the proper-
ties common across all applications of a pattern, while accommodating
the variation that occurs across those applications. Second, we describe
an approach to monitoring a system’s runtime behavior to determine
whether the appropriate pattern specifications are respected. The mon-
itoring code is generated automatically from the pattern specifications
underlying the system’s design. We conclude with a discussion of how
our contributions are beneficial across the software lifecycle.

1 Introduction

Design patterns [1–3] have become an important part of software practice, fun-
damentally impacting the design of commercial systems, class libraries, etc. Pat-
terns capture the distilled wisdom of design communities by describing a set of
recurring problems, proven solutions to those problems, and the conditions un-
der which the solutions can be applied. They are usually presented as part of a
catalog that includes a set of patterns relevant to a particular problem domain or
application area. When a designer is faced with a design difficulty, the relevant
catalogs provide guidance on how to address the difficulty. This idea continues
to gain influence; patterns are being discovered and applied in emerging areas
as diverse as wireless sensor network design and bioinformatics.

But the benefits of patterns are undercut by three important factors. First,
although the informal style used in current pattern catalogs has proven useful,
it creates a potential for ambiguity and misunderstanding that jeopardizes the
correct use of patterns. This is likely to be a serious problem for team-based
projects since different interpretations of a pattern are likely to manifest them-
selves as incompatibilities among different parts of a system. Second, there is
insufficient tool support to assist in discovering pattern implementation errors.
Again, these types of tools are especially relevant to team-based projects, where
they could be used to detect inconsistent pattern applications. Third, changes
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introduced during system evolution and maintenance may erode the pattern ap-
plications underlying the original design, compromising the design integrity of
the modified system. The goal of our work is to address these issues, amplifying
the benefits of design patterns across the software lifecycle.

We present two contributions. First, we present a pattern contract language
that captures the structural and behavioral requirements associated with a range
of patterns, as well as the system properties that are guaranteed as a result. In
addition, the contract language supports subcontracts, a form of contract refine-
ment that allows system designers to capture, in a precise way, the customiza-
tions made to particular patterns when they are applied. This language will be
used to develop contract catalogs that complement existing informal pattern cat-
alogs. Second, we present an approach to monitoring a system’s runtime behavior
to determine whether the system abides by the relevant pattern requirements.
The monitoring code for a given system is generated automatically based on the
pattern contracts and subcontracts underlying its design.

Before we proceed, it is important to consider a potential problem intro-
duced by developing pattern descriptions that are precise. One might argue that
existing descriptions are intentionally ambiguous to support flexibility in how
patterns may be applied. Precision and flexibility might be at odds here. As we
will see, this is not the case. Our approach makes it possible to achieve preci-
sion without compromising flexibility. Indeed, in our experience, the process of
developing precise descriptions often leads to the discovery of new dimensions of
flexibility that are not evident in the informal descriptions.

The rest of the paper is organized as follows. In Section 2, we present a simple
pattern-based system, and discuss the difficulties that might be encountered by a
software team developing this system. It serves as a running example throughout
the paper. In Sections 3 and 4, we present our contract language and contract
monitoring approach, respectively. In Section 5, we discuss elements of related
work. Finally, in Section 6, we conclude with a summary of our contributions,
their benefits to the system lifecycle, and provide pointers to future work.

2 A Pattern-Based Design

To motivate the problems that our work addresses, consider developing a basic
simulation of a hospital consisting of doctor, nurse, and patient objects. Each
patient is modelled as a quadruple consisting of the patient’s name, temperature,
heart rate, and a value indicating his/her level of pain medication. Each patient

is monitored by a single doctor and multiple nurses that must stay informed of
the patient’s vital signs. Based on the current readings, doctors and nurses can
respond to queries regarding the health of patients under their care. Doctors can
also adjust the level of pain medication prescribed to each patient.

The requirement that doctors and nurses stay informed of the current state
of their patients calls for the use of the Observer pattern. The intent of the pat-
tern is to keep a group of observer objects consistent with the state of a subject

object. In this case, the observer role is played by doctor and nurse objects, and
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1 public class Patient {
2 private String name; private int temp, hrtRt, medLvl;
3 private Set<Nurse> nurses; private Doctor doctor;
4 ...constructors, field accessor methods...
5 ...addNurse(n), removeNurse(n), setDoctor(d), unsetDoctor()...
6 public void checkVitals() { temp=...; hrtRt=...; notify(); }
7 public void adjustMeds(int newLvl) { medLvl = newLvl; }
8 private void notify() {...call update() on nurses and doctor...} ...
9 public class Nurse {

10 private HashMap<Patient,Integer> vitals; ...constructors...
11 public void update(Patient p) { vitals.put(p, p.getTemp()); }
12 public String getStatus(Patient p) {
13 int t = vitals.get(p);
14 if((t>90)&&(t<105)) return("good"); else return("bad"); } }

Fig. 1. Hospital Simulation Code (partial)

the subject role is played by patient objects. Key portions of the Java code for
this system are shown in Figure 1. When applying the Observer pattern, system
designers are guided by the pattern description presented in [1]. The style of
presentation used in this catalog is common, and consists of an informal descrip-
tion of the problem, a discussion of the properties of the prescribed solution,
and UML-like diagrams and code fragments that illustrate canonical applica-
tions. This type of description is useful in a number of ways. It is clear from
the discussion in [1], for example, that a subject object should provide attach(o)

and detach(o) methods for adding and removing an observer (o) from the set
of objects observing its state. It is also clear that the subject should provide a
notify() method that is invoked “whenever a change occurs that could make its
observer’s state inconsistent with its own.” notify() should in turn invoke update()

on each attached observer; update() will “reconcile its [the observer’s] state with
that of the subject.” But how will a subject determine whether a change is sig-
nificant enough to cause it to become inconsistent with its observers? Indeed,
what does it mean to say that a subject’s state is inconsistent with an observer?
Similar questions arise when applying other patterns, and are not addressed by
the informal descriptions. These are the types of ambiguities that can lead to
software defects.

As an example, consider Patient.addNurse(). When this method is invoked,
should notify() be called? After all, the execution of addNurse() modifies the state
of the patient by adding a new nurse to the patient’s set of attached observers.
But this modification involves portions of the patient’s state that are irrelevant
from the point of view of the doctors and nurses already attached to the patient.
Stated another way, the change is insignificant, and a call to notify() is unnec-
essary. Consider, however, the attaching nurse. Unless some action is taken, the
nurse will not have information about the state of the patient when addNurse() fin-
ishes. Hence, if a patient query were issued to this nurse immediately following the
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completion of addNurse(), the nurse might return random information about the
patient! To prevent this, the addNurse() method must include a call to the update()

method of the attaching nurse. This is a subtle issue that is not addressed in the
informal description.

Consider a modification to the system. In the new system, nurses are respon-
sible for monitoring vital signs and medication levels. The notion of consistency
will naturally be revised to require that each nurse be aware of the current value
of the patient’s medLvl field. Designers will presumably revise Nurse.update() to
save this information, and also revise Nurse.getStatus() to include the patient’s
medication level. But this is not sufficient! Changes made to a patient through
adjustMeds() will not trigger calls to notify(). As a result, calls to adjustMeds()

may leave nurses with inconsistent views of their patients. This is a surprisingly
subtle bug given the simplicity of the system. With respect to the pattern, the
only change dictated by the new requirements seems to be a redefinition of what
it means for the state of a nurse to be consistent with the state of a patient

— and the corresponding changes in Nurse.update() and Nurse.getStatus(). But
as we have seen, this is inaccurate. The change in the notion of consistency
demands a corresponding change in the notion of significant change. More pre-
cisely, a change in medLvl is now significant, and should therefore trigger a call to
notify(). In general, the concepts used in describing a pattern must often satisfy
relationships that are not clear from the informal descriptions. Our contracts are
designed to make these conditions clear to designers and implementers.

The types of ambiguities that lead to system defects in our hospital simulation
are the same types of defects that lead to failures in actual systems. Our pattern
specifications are designed to eliminate these ambiguities, while retaining the
flexibility present in the informal descriptions. In the event that an implemen-
tation error is introduced, our monitoring tools are designed to detect the error
before the system is deployed.

3 Design Pattern Contracts

The partial grammar of our contract language is shown in Figure 2. A contract
begins with a declaration of the auxiliary concepts used throughout its body
(〈concepts〉). Each specifies a relation involving one or more states of the ob-
jects that play roles in the pattern being specified. Their purpose is to capture
points of variation that occur across different applications of the pattern. Each
includes a concept identifier (〈coId〉) and the list of roles over which the con-
cept is defined (〈rIds〉). The Observer contract, for example, declares the concept
Consistent(Subject, Observer) to capture the notion of consistency between a sub-

ject and an observer. Since the meaning of consistency varies from one system
built using the Observer pattern to another, the contract defers the definition
of Consistent() to the subcontract corresponding to a particular application. By
expressing our contracts in terms of auxiliary concepts, but deferring their defi-
nitions to subcontracts, we achieve descriptive precision without compromising
pattern flexibility. As we saw, however, arbitrary flexibility should not be allowed;
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1 〈contract〉 → pattern contract 〈pId〉 {
2 〈conceptBlock〉 〈instantiation〉 〈invariant〉 〈roleContracts〉 }
3 〈conceptBlock〉 → concepts: 〈concepts〉 〈constraints〉
4 〈concept〉 → 〈coId〉(〈rIds〉);
5 〈constraints〉 → constraints: ...predicate on auxiliary concepts...
6 〈instantiation〉 → instantiation: 〈rId〉.〈mId〉(〈args〉) { 〈cond〉 };
7 lead: (target|source|〈arg〉|...code...);
8 〈invariant〉 → invariant: ...assertion on roles and concepts...
9 〈roleContract〉 → [lead] role contract 〈rId〉 {

10 〈fields〉 〈methods〉 〈others〉 〈enrollment〉 〈disenrollment〉 }
11 〈field〉 → ...role field declaration...
12 〈method〉 → ...standard method specification...
13 〈others〉 → others: ...standard method specification...
14 〈enrollment〉 → ...analogous to instantiation...
15 enrollee: (target|source|〈arg〉|...code...);
16 〈disenrollment〉 → ...analogous to instantiation...

Fig. 2. Grammar of Pattern Contracts (partial)

the concept definitions corresponding to a particular system must often satisfy
conditions to ensure that the intent of the pattern is not violated. Hence, the
pattern contract also specifies constraints that must be satisfied by the concept
definitions supplied in any subcontract (〈constraints〉).

The next element specifies the conditions that must be satisfied to instantiate
a new instance of the pattern (〈instantiation〉). Pattern instantiation is associated
with the invocation of a particular role method or constructor specified in the
pattern contract (〈rId〉.〈mId〉(〈args〉)). The contract specifies any state conditions
that must be satisfied upon termination of the method, as well as the object
that will serve as the lead object of the newly created pattern instance. The lead
object serves as a handle to refer to its corresponding pattern instance in other
portions of the contract. The lead object may be specified as the target of the
invocation (target), the source of the invocation (source), one of the arguments
to the invocation (〈arg〉), or some other object specified using a code fragment.

The next element specifies a pattern invariant that captures the behavioral
guarantees that should be expected if the contract requirements are satisfied
(〈invariant〉). These properties are expressed using an assertion involving the
objects enrolled in the pattern instance, and the auxiliary concepts defined by
the contract. This assertion will be satisfied whenever control is outside of the
participating objects. In effect, this portion of the contract captures the “defined
properties” discussed in [2]: the system behaviors that result when the pattern
is used correctly.

The final portion consists of role contracts that specify the requirements asso-
ciated with objects enrolled to participate in the pattern (〈roleContracts〉). One of
these roles will be flagged as the lead role, indicating that its instances may serve
as lead objects. The Observer contract, for example, specifies Subject and Ob-

server role contracts, corresponding to the two types of objects that participate
in the pattern. The Subject role is flagged as the lead role. Each role contract
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begins by specifying the role fields to which an object’s state must be mapped
when it plays the corresponding role (〈fields〉). Similarly, it specifies the role
methods that an enrolled object must provide, given the appropriate interface
mappings in a subcontract, including pre- and post-condition specifications of
the method behaviors (〈methods〉). These specifications are expressed in terms of
role fields and auxiliary concepts. In addition, since an enrolled object may pro-
vide methods that do not correspond to any of the role methods, the role contract
specifies conditions that prevent these other methods from violating the intent
of the pattern (〈others〉). Finally, the role contract specifies the conditions that
must be satisfied for an object to enroll or disenroll (〈enrollment〉,〈disenrollment〉).
These clauses are defined analogously to the pattern instantiation clause. The
only difference in the enrollment clause is that in addition to specifying the lead
object (to identify the pattern instance into which the object will enroll), it
specifies the enrolling object. The disenrollment clause is analogous.

3.1 Special Notations

Before turning to an example, there are two special notations used in our pat-
tern contracts and subcontracts that are important to consider. The first is the
keyword players, used to denote the sequence of player objects enrolled in a pat-
tern instance. The order of the objects within the sequence corresponds to the
order in which the objects enrolled. We use indexing notation to refer to a par-
ticular object or subsequence of objects. players[0], for example, refers to the
first enrolled object, and players[1:] refers to the subsequence of enrolled objects
beginning at the second object.

The second notation allows us to impose conditions on the method calls made
by a method during its execution. Addressing such requirements is important
since many patterns call for particular methods to be invoked under various con-
ditions. To achieve this, we use the notion of a call sequence (or “trace”), and use
the symbol τ to denote the call sequence associated with a method invocation.
Each element within τ represents a method call, and records (i) the name of
the method invoked, (ii) the target of the invocation, and (iii) any arguments
to the call. We use dot notation to denote the projection associated with calls
to particular methods of particular objects. τ .o.m, for example, represents the
subsequence of calls to method m() on object o. |τ | denotes the number of calls
recorded in the call sequence τ .

3.2 The Observer Contract

Consider the partial contract for the Observer pattern shown in Figure 3. The
contract declares the auxiliary concepts Consistent() and Modified(). As explained
earlier, Consistent() captures the notion of consistency between a subject and an
observer. Modified() captures the notion of significant change within a subject.
The latter concept is later used to express the requirement that every significant
change within a subject result in a call to notify(). The former concept is used
to require that Observer.update() appropriately update the observer’s state. The
constraint imposed on these concepts requires that if a subject’s state changes
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1 pattern contract Observer {
2 concepts:
3 Consistent(Subject,Observer); Modified(Subject,Subject);
4 constraints: ∀s1,s2,o1:::(¬Modified(s1,s2) ∧ Consistent(s1,o1))
5 ⇒ Consistent(s2,o1)
6 instantiation: Subject.Subject() { obs=∅ }; lead: target;
7 invariant: Subject(players[0]) ∧ Observer(players[1:]) ∧ ... ∧
8 ∀ob:ob ∈ players[1:]::Consistent(players[0],ob)

Fig. 3. Observer Pattern Contract (partial)

from s1 to s2, and the change is deemed insignificant, then any observer state
consistent with s1 must also be consistent with s2. This constraint prevents
the types of incompatible concept definitions that lead to software defects in
our hospital system. More precisely, it prevents definitions of Modified() and
Consistent() that would allow a subject to omit a call to notify() after a change
that could lead to inconsistency with one or more of its observers.

The instantiation clause specifies that a new instance of the pattern is created
each time a new subject object is created. Further, it requires that at the point of
instantiation, the subject’s obs set be empty (since no observers have yet enrolled).
Finally, it states that the newly created subject will serve as the lead object of
the pattern instance.

The invariant clause captures the intent of the pattern, the “defined properties”
that may be expected if the contract requirements are met. It states that the
first object to enroll in a pattern instance will play the role of Subject and all
other enrolled objects will play the role of Observer. Most important, it states
that whenever control is outside of the participating objects, all of the enrolled
observers will be in states that are consistent with the current state of the subject.

The partial Subject role contract is shown in Figure 4, and specifies the state
components and method behaviors that must be provided by objects playing
the Subject role. To benefit from the pattern invariant, these requirements must

1 lead role contract Subject {
2 Set<Observer> obs;
3 void attach(Observer ob):
4 pre: ob /∈ obs
5 post: (ob=#ob) ∧ ¬Modified(#this,this) ∧(obs=(#obs∪{ob}))
6 ∧ (|τ|=1) ∧ (|τ.ob.update|=1) ...detach(ob)...
7 void notify():
8 post: (obs=#obs) ∧ ¬Modified(#this,this) ∧ (|τ|=|obs|) ∧
9 ∀ob:ob ∈ obs::(|τ.ob.update|=1)

10 others:
11 post: (obs=#obs) ∧ ((¬Modified(#this,this) ∧ (|τ|=0)) ∨
12 (|τ.this.notify|=1))

Fig. 4. Subject Role Contract (partial)
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be satisfied under the field and interface mappings specified in the relevant sub-
contract. (We will discuss these mappings shortly.) The role contract states that
each subject must provide a Set component, which will be used to store the set
of attached observers. It also includes specifications for the attach(), detach(),
and notify() methods. In the post-conditions of these methods, we use the #
notation to denote the pre-conditional value of an object. Hence, the attach()

method is required to preserve the reference to the attaching observer (ob), to
leave the subject unmodified, and to add the attaching object to the set of at-
tached observers (obs). Further, the call sequence conditions require that update()

be invoked on the attaching object. This requirement guarantees — given the
specification of Observer.update() (omitted) — that the observer will be in a state
that is consistent with the current state of the subject when attach() terminates.
Again, this condition is important to prevent the types of inconsistency defects
encountered in our hospital system. detach() is defined analogously, but omits the
call sequence conditions. The final method, notify(), is required to preserve the
set of attached observers, and to leave the subject unmodified. The call sequence
conditions require that the method invoke update() on each attached observer.

The others clause imposes requirements on the methods provided by a player
beyond those that map to attach(), detach(), and notify(). All of these other
methods are required to preserve the set of attached observers. Further, if one
of these methods makes a significant change in the subject (i.e., Modified(#this,

this) is true), it must include a call to notify(). As we have seen, this method
will in turn invoke update() on each attached observer, ensuring their consistency
with the new state of the subject.

The Observer role contract is defined in the same manner as the Subject role
contract. observer objects are required to maintain a reference to their subject,
and to provide an update() method. The post-condition of update() requires that
it leave the observer in a state that is consistent with the current state of the
observer’s subject. The others clause imposes similar requirements to ensure that
the pattern invariant is respected.

3.3 Pattern Subcontracts

A subcontract specializes a pattern contract for use, customizing its requirements
and behavioral guarantees to the needs of a particular system. This specialization
mechanism is essential for preserving the flexibility of our pattern contracts.
The partial grammar of our subcontract language is shown in Figure 5. Each
subcontract begins by specifying a set of role maps that characterize the manner
in which particular system classes can be viewed as their corresponding role
types (〈roleMaps〉). The Hospital subcontract, for example, defines role maps that
allow us to view a patient as a subject, a nurse as an observer, and a doctor

as an observer. Each role map consists of a state map and an interface map
(〈stateMap〉,〈interfaceMap〉). A state map defines functions that map an object’s
fields to the fields defined by its role (〈rfId〉). These functions are written in
the form of code fragments to simplify the expression of the mappings, and to
simplify the task of generating the appropriate monitoring code. Similarly, an
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Fig. 5. Grammar of Pattern Subcontracts (partial)

interface map specifies mappings from the class methods and arguments to their
corresponding role methods and arguments (〈methodMaps〉,〈argMaps〉). As we will
see, multiple class methods may be mapped to a single role method.

The final element of a subcontract provides auxiliary concept definitions ap-
propriate to the given system (〈concDefs〉). Each auxiliary concept is written as
a code fragment expressed over the classes mapped to the concept arguments.
Each concept returns a boolean value indicating whether the relation is sat-
isfied given the states of the objects passed as argument. When the auxiliary
concept definitions and role maps are substituted into the contract being spe-
cialized, the resulting specification characterizes the pattern requirements and
behavioral guarantees specific to the system in question.

3.4 The Hospital Subcontract

As an example, consider the partial subcontract for our hospital system shown
in Figure 6. The subcontract begins by defining the role map that allows us
to view a patient as a subject. Under this view, the state map specifies that
the subject’s obs field is realized as the set containing all of the elements in
nurses, plus the object referenced by doc, if any. The interface map specifies
that both addNurse(n) and setDoctor(d) play the part of attach(o). In both cases,
the argument to the class method corresponds directly to the argument to the
role method. removeNurse(n) and unsetDoctor() are defined analogously, except
that in the case of unsetDoctor(), which takes no arguments, the argument to
detach(ob) is played by the patient’s doc field. Patient.notify() corresponds directly
to Subject.notify(). The Nurse as Observer, and Doctor as Observer role maps are
defined in a similar manner.

The definition of Modified() specifies that any change in patient.temp or pa-

tient.hrtRt is considered a significant change. The two definitions of Consistent()

are more interesting. Since each nurse and each doctor may be involved in mul-
tiple pattern instances, each may store information about multiple patients. Or
more generally, each observer may store information about multiple subjects. In

1 〈subcontract〉 → subcontract 〈sId〉 specializes 〈pId〉 {
2 〈roleMaps〉 〈concDefBlock〉 }
3 〈roleMap〉 → rolemap 〈cId〉 as 〈rId〉 {
4 〈stateMap〉 〈interfaceMap〉 }
5 〈stateMap〉 → state: 〈fieldMaps〉
6 〈fieldMap〉 → 〈rfId〉 = {...code...}
7 〈interfaceMap〉 → methods: 〈methodMaps〉
8 〈methodMap〉 → 〈rmId〉(〈rmArgs〉):〈classMethods〉
9 〈classMethod〉 → 〈cmId〉(〈cmArgs〉)[{〈argMaps〉}]

10 〈concDefBlock〉 → auxiliary concepts: 〈concDefs〉
11 〈concDef〉 → 〈coId〉(〈coArgs〉) {...code...}
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1 subcontract Hospital specializes Observer {
2 rolemap Patient as Subject {
3 state: obs = { Set<Observer> obs =
4 new HashSet<Observer>(nurses);
5 if(doc!=null) obs.add(doc); return(obs); }
6 methods:
7 attach(Observer ob):addNurse(ob),setDoctor(ob)
8 detach(Observer ob):removeNurse(ob),
9 unsetDoctor(){ob=doc} ...notify()...

10 ...Nurse/Doctor as Observer rolemaps...
11 auxiliary concepts:
12 Modified(Patient p1, Patient p2) {
13 return((p1.temp!=p2.temp) || (p1.hrtRt!=p2.hrtRt)); }
14 Consistent(Patient p, Nurse n) {
15 return(p.hrtRt == n.vitals.get(lead)); }
16 ...Consistent(Patient, Doctor) concept definition...

Fig. 6. Hospital Subcontract (partial)

reasoning about a particular pattern instance, it must be possible to project
out those portions of an observer’s state relevant to the pattern instance (and
therefore the subject) in question. This is achieved using the lead object (a sur-
rogate pattern instance identifier) as an index into the observer’s state. The lead

keyword refers to the lead object in a way that is analogous to the use of the
this keyword in object-oriented languages. Hence, in the definition of Consistent()

corresponding to nurse objects, the lead object is used to retrieve the patient in-
formation corresponding to the pattern instance in question. The case involving
doctor objects is analogous.

4 Pattern Contract Monitors

In addition to having pattern contracts that are both precise and flexible, it
is important to have supporting software tools that can assist in determining
whether the requirements specified by a contract are satisfied. To achieve this,
we have developed a monitor generation tool based on our pattern contract lan-
guage. Given the pattern contracts and subcontracts underlying a particular
system design, our tool generates runtime monitoring code that signals any vi-
olations of the contract requirements. Given that the assertions to be checked
are crosscutting, we chose to use an aspect-oriented approach. Our current im-
plementation targets Java-based systems, and generates aspects in AspectJ [4]1.
The monitor generation process is illustrated in Figure 7.

The monitoring code produced for a given contract/subcontract pair consists
of one abstract aspect and one concrete subaspect. The abstract aspect contains

1 The tool, including source code, documentation, and system examples, is available
for download at: http://www.cse.ohio-state.edu/∼tyler/MonGen/
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Fig. 7. Monitor Generation Process

checking logic common across all specializations of the contract, and the sub-
aspect tailors this logic to the particular specialization specified by the subcon-
tract. Consider, for example, the abstract aspect generated from the Observer

contract (Figures 3 and 4) shown in Figure 8. The aspect begins by declaring
interfaces for each of the roles defined in the pattern contract (Line 2). These
interfaces are mapped to the appropriate system classes in the subaspect based
on the role maps included in the subcontract. The subaspect generated from
the Hospital subcontract (omitted), for example, maps the Subject interface to
the Patient class using AspectJ’s declare parents construct. This effectively forces
the Patient class to implement the (empty) Subject interface. Similar mappings
are defined for Nurse and Doctor. This allows methods defined in the abstract
aspect, which are defined in terms of Subject and Observer objects, to work with
Patient, Nurse, and Doctor objects.

The aspect next defines state components required to monitor multiple pat-
tern instances (Lines 3–4). The first of these components is a pattern instance
map (instanceMap) that maintains a mapping from each lead object to its corre-
sponding PatternInstance object. Each PatternInstance stores information about a
single pattern instance, including references to the enrolled objects and the roles
that these objects play. This information is required to check certain instantia-
tion, enrollment, and disenrollment conditions — such as those that make use
of the players keyword. The instance map is updated when a pattern instance is
created or destroyed, and when an object enrolls or disenrolls.

The second state component is the trace stack (traces), which stores call se-
quence (τ) information about each of the active role methods. This information
is required to check the call sequence conditions specified in the pattern contract.
The trace stack is updated before and after every role method invocation.

The aspect next declares pointcuts corresponding to each of the role methods
specified in the pattern contract (Lines 5–6). The advice bound to these point-
cuts is responsible for checking the appropriate role method requirements, as
well as for updating the pattern instance map and trace stack. Since, however,
the mapping between class methods and role methods varies from application to
application, the pointcuts are declared abstract. Pointcut definitions are supplied
in the subaspect based on the interface maps specified in the relevant subcon-
tract. The subaspect generated from the Hospital subcontract, for example, maps
the sub attach() pointcut (corresponding to Subject.attach()) to the execution of
either Patient.addNurse() or Patient.setDoctor(). Similar pointcuts are used to
capture pattern instantiation, object enrollment, and disenrollment. Pointcuts
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1 public abstract privileged aspect ObserverM {
2 interface Subject{} interface Observer{}
3 private HashMap<Subject,PatternInstance> instanceMap;
4 private TraceStack traces;
5 ...pointcuts for role constructors, role methods, and other methods:
6 abstract pointcut sub_attach(Subject _this, Observer ob); ...
7 ...auxiliary concept methods:
8 public abstract boolean Modified(Subject a1, Subject a2);
9 public abstract boolean Consistent(Subject a1, Observer a2);

10 ...role state accessor methods:
11 public abstract Set<Observer> sub_obs(Subject _this);
12 public abstract Subject obs_sub(Observer _this,Subject lead);
13 ...assertion checking / bookkeeping advices:
14 after(Subject _this, Observer ob): sub_attach(_this, ob){
15 ...get #ob, #this from caller trace record...
16 assert((ob==pre_ob) && !Modified(pre_this, _this) &&
17 sub_obs(_this).containsAll(sub_obs(pre_this)) && ... &&
18 (traces.current().length() == 1) &&
19 (traces.current().limit(ob,"update").length() == 1));
20 ...update caller trace record... } ... }

Fig. 8. The ObserverM Contract Monitor (partial)

are also declared to capture the other methods of the class(es) mapped to each
role. These pointcuts are defined to include all of the class methods except those
bound to role methods.

Recall that the requirements specified in the pattern contract are expressed
in terms of auxiliary concepts and role fields. Since the realizations of these
elements vary, they are captured using abstract methods, deferring their defini-
tions to a subaspect. ObserverM, for example, declares Modified() and Consistent()

methods corresponding to the auxiliary concepts of the same name (Lines 7–9).
It also declares abstract methods corresponding to Subject.obs and Observer.sub

(Lines 10–12). Each of the latter methods returns the appropriate role field value
when the argument passed as input is viewed as an instance of its role. The im-
plementations of the auxiliary concept and role field methods are supplied in
the subaspect based on the concept definitions and state maps provided in the
relevant subcontract. Since these elements are defined (in the subcontract) in
terms of code fragments, the code generation task is straightforward.

Note that for Observer.sub, the corresponding method takes an additional
argument. Since the Observer role is not flagged as lead in the pattern contract,
each observer may participate in multiple pattern instances. This means that
each observer (conceptually) stores multiple copies of the sub field — one copy
corresponding to each pattern instance. The lead argument is used to identify
the pattern instance under which the state mapping should be performed.

The final portion of the aspect defines the advice bound to each pointcut. The
checking code within the advice is generated based on the assertions specified
in the pattern contract. The before and after advice bound to each pointcut
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Size of Contract Size of Subcontract Execution Time (in ms)

Specific. Abs. Aspect Specific. Subaspect w/ Montr. w/o Montr.

Observer 1723 14,701 866 3967 2657 172

Memento 907 11,116 771 3730 3610 391

Chain of Resp. 592 5658 377 1845 2453 297

Fig. 9. Code Size and Runtime Overhead. [Pentium-IV @ 2.53GHz, 512MB RAM,
Windows XP Pro SP 2, Sun JVM 1.5.0 04].

is responsible for checking the relevant pre- and post-conditions, respectively.
The advice is also responsible for updating the pattern instance map and the
trace stack. A portion of the after advice generated from the specification of
Subject.Attach() is shown in the figure (Lines 14–20). The advice bound to the
remaining pointcuts is defined in a similar manner.

One difference between the advice bound to Subject methods and the advice
bound to Observer methods is that the latter begins by identifying every pat-
tern instance in which an observer participates. The relevant assertions are then
checked in the context of each pattern instance. The corresponding lead object
is retrieved from the pattern instance map, and serves as the second argument
when invoking the role field method corresponding to Observer.sub.

4.1 Code Size and Runtime Overhead

We have applied our approach to several different patterns and systems. Space
restrictions preclude a detailed discussion of the results, but it is interesting
to consider the gross relationship between contract/subcontract size and the
size of the corresponding monitoring code. It is also interesting to consider the
runtime overhead introduced when this code is woven into an actual system.
Figure 9 presents the data corresponding to the use of our contracts for Observer,
Memento, and Chain of Responsibility when used in monitoring the canonical
system examples presented in [1]. As a gross estimate, we measure size in terms
of non-whitespace characters. We emphasize that this is a preliminary analysis.

5 Related Work

We are not the first to consider pattern formalization. Eden et al. [5], for example,
propose a higher-order logic formalism that captures patterns as formulae. Each
formula consists of a declaration of the participating classes, methods, and in-
heritance hierarchies, and a conjunctive statement of the relations among them.
While rich structural properties can be expressed, there is limited support for
capturing behavioral properties. The formalism does not, for example, provide
constructs for referring to pre- and post-conditional values, nor does it pro-
vide a concept analogous to our method call sequences. By contrast, Mikkonen’s
work [6] focuses almost exclusively on behavioral properties. In his approach,
patterns are specified using an action system notation. Data classes model pat-
tern participants, and guarded actions model their interactions. The approach
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is well-suited to reasoning about temporal properties. One limitation, however,
is that the separation of actions and data is structurally inconsistent with the
OO paradigm, making it difficult to express most structural properties. Fur-
ther, Mikkonen’s specifications cannot be specialized to the needs of particular
systems; thus pattern flexibility may be seriously compromised.

Helm et al. [7] describe a contract formalism that shares similarities with
ours. For example, their formalism includes a construct similar to our auxil-
iary concepts. It does not, however, provide a way to impose constraints that
would prevent definitions of these concepts from violating a pattern’s intent. The
formalism also includes support for specifying the relative order of method invo-
cations, but the support is limited. It is impossible, for example, to quantify over
a method call sequence to require that a particular method be invoked exactly
once, or alternatively, that a particular method not be invoked at all. Finally,
there is nothing analogous to our use of the others clause to prevent non-role
methods from violating a pattern’s intent.

In [8] and [9], we describe principles of pattern formalization and runtime
monitoring, but do not consider a general pattern specification language, pat-
tern specializations, or automated monitor generation. We provide an overview
of the specification and monitoring approach in [10], but do not go into the
technical detail presented here. For example, [10] presents only a subset of the
specification language; the subset cannot, for example, accommodate multiple
pattern instances. Other important contributions presented here that are absent
from [10] include a detailed system and subcontract example, a presentation of
the generated monitoring code, an analysis of the code size and runtime over-
head associated with monitoring, and a discussion of how the approach supports
a pattern-centric software lifecycle (Section 6).

Runtime assertion monitoring of OO systems has a long history [11–13], and
some authors have considered aspect-based approaches. Lippert and Lopes [14]
use AspectJ to refactor pre- and post-conditional assertion checking code. Gibbs
and Malloy [15] propose using aspects to monitor class invariants involving tem-
poral properties. To our knowledge, however, we are the first to investigate con-
tract monitors for design patterns.

6 Discussion

Our work was motivated by three observations. First, informal pattern descrip-
tions leave a potential for ambiguity and misunderstanding that jeopardizes the
correct use of patterns. Second, there is limited tool support to assist in iden-
tifying pattern implementation errors. Third, as a system evolves, its design
integrity may erode under maintenance; it may no longer remain faithful to the
patterns underlying its design. We presented two contributions to address these
problems. The first was a formalism for expressing pattern contracts that cap-
ture the implementation requirements and behavioral guarantees associated with
a range of patterns. The formalism includes support for subcontracts that capture
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the ways in which patterns are specialized for use in particular systems. Thus, we
are able to specify properties common across all applications of a pattern, while
accommodating the inherent variation that occurs across those applications. We
illustrated the approach by developing the contract for the Observer pattern,
and a corresponding subcontract for a simple system built using this pattern.

Our second contribution was a monitor generation tool. Given the pattern
contracts and subcontracts underlying a system design, our tool produces a set of
aspects in AspectJ that monitor the system’s runtime behavior to check whether
the contract requirements are violated. We presented some of the key details
concerning the aspects generated by the tool, as well as the structure of the tool
itself. Finally, we presented preliminary figures to show the code and runtime
overhead involved in using the tool to monitor a system during its execution.

These contributions, along with our planned extensions, provide the basis
for a pattern-centric software lifecycle. At the foundation of the lifecycle is a
contract catalog that complements existing pattern catalogs. The catalog is an
evolving document that we plan to make accessible through the web. We hope
that researchers interested in lightweight formal methods will contribute to its
development. Community involvement is essential in ensuring that the contracts
faithfully capture the intent of the patterns specified. Members of a design team
will be able to consult the catalog to ensure a common understanding of the
requirements associated with the patterns underlying a particular design.

As the design and implementation details of the system are fleshed out, part of
the design team will be charged with creating the corresponding subcontracts. In
addition to guiding the implementation, the subcontracts will allow implementa-
tion and maintenance teams to generate appropriate runtime monitoring code.
Executing this code will enable the team to identify pattern implementation
errors more easily — from early implementation through evolution.

Note that while developing a pattern contract requires reasonable facility with
formal notations, developing a subcontract is a task that will likely appeal to
system developers. Indeed, this is one reason why this portion of the formalism
resembles a programming notation more than it resembles formal mathematics.
As part of our future work, we plan to assess the degree of effort involved in
developing and maintaining these subcontracts. This will allow us to perform a
cost-benefit analysis by comparing this effort to the benefit received when using
the approach. We also plan to investigate techniques for generating test suites
that ensure suitable coverage of the patterns’ used in a system.

Another exciting possibility is a pattern-centric visualization tool. During a
system’s execution, the monitoring code will save appropriate information rele-
vant to the patterns used in the system. The visualization tool will then take this
information and play it back in the form of a “slow-motion-video”, allowing the
user to go back and forth in the system’s execution, focusing on the interactions
among groups of objects interacting according to the patterns of interest. This
will be of particular value to new members of a design team since it will enable
them to quickly develop a pattern-centric understanding of relevant systems.
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Abstract. The Life Sequence Chart (LSC) language is a conservative ex-
tension of the well-known visual formalism of Message Sequence Charts.
An LSC specification formally captures requirements on the inter-object
behaviour in a system as a set of scenarios. As with many languages, there
are LSCs which are syntactically correct but insatisfiable due to internal
contradictions. The authors of the original publication on LSCs avoid this
problem by restricting their discussion to well-formed LSCs, i.e. LSCs that
induce a partial order on their elements.

This abstract definition is of limited help to authors of LSCs as they
need guidelines how to write well-formed LSCs and fast procedures that
check for the absence of internal contradictions. To this end we provide an
exact characterisation of well-formedness of LSCs in terms of concrete
syntax as well as in terms of the semantics-giving automata. We give
a fast graph-based algorithm to decide well-formedness. Consequently
we can confirm that the results on the complexity of a number of LSC
problems recently obtained for the subclass of well-formed LSCs actually
hold for the set of all LSCs.

1 Introduction

The Live Sequence Chart (LSC) language is a scenario based specification lan-
guage that is used to formalise requirements on the inter-object behaviour of
distributed systems under design. It conservatively extends the well-known Mes-
sage Sequence Charts [10] basically by introducing modalities. The mode of the
whole chart distinguishes example scenarios from scenarios the system must al-
ways adhere to, the mode of locations allows to require progress along an instance
line, and the mode of conditions, which are semantically meaningful in LSCs, al-
lows to add so called legal exits to a scenario. The modalities make LSCs strictly
more powerful than MSCs whereas the graphical appeal and intuitivity of MSCs
is preserved by indicating the modalities graphically. Scenario-based approaches
in general [16, 1] and LSCs in particular [2, 4, 6, 7, 12] have shown adequate for
the specification of requirements on distributed systems.

After a period of experimentation and evaluation, the language has stabilised
into the two dialects of [11] and [9] and is subject of active research concerning
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fundamental properties of the language, e.g. decidability and complexity of prob-
lems like realisability [5], and expressive power in terms of temporal logic [13, 15].
The two dialects emerged from two objectives of LSC specification usage. The
LSCs of [9] are tailored for the so called play-out approach. They employ a tool
called play-engine to execute an LSC specification. Thereby there needn’t be an
implementation of the intra-object behaviour of the system under design; the set
of LSCs is the implementation. To this end, they added, e.g., actions to modify
the state of the system, loops, and sub-charts to the original proposal. The LSCs
of [11] are tailored for a more classical approach, where an LSC specification
complements the model-based development of the intra-object behaviour of a
system using, e.g., Statemate state-charts or UML state-machines. Whether the
intra-object behaviour adheres to the LSC specification can then automatically
be established by model-checking as has been demonstrated in [2, 14]. To this
end the LSCs of [11] have, e.g., local invariants to state requirements or assump-
tions on periods of time and activation modes (cf. Sect. 2). We introduce the
LSCs of [11] in more detail in Sect. 2 and in the following we mean these LSCs if
not otherwise specified. Note that although these two usages of LSCs have been
investigated independently, they don’t exclude each other at all. Restraining to
the common sublanguage of both dialects, one may write (or play-in [9]) an LSC
specification, gain confidence into the specification by playing it out, and only
then start a model-based implementation of intra-object behaviour that is then
formally verified against the LSC specification.

The subject of this paper is an issue that turned up in the many experiments
with formal verification for LSCs. There are LSCs that are syntactically correct
but that are insatisfiable due to internal contradictions. The most obvious ex-
ample are instantaneous messages that cross each other like m2 and m3 in the
LSC body in Fig. 3(a) on page 239. For instantaneous messages, the sending
and reception has to be observed simultaneously thus by the order on ‘inst1’ the
sending and reception of m2 has to be observed strictly before m3. The order
on ‘inst2’ requires it the other way round. Thus the LSC shown in Fig. 3(a) is
not satisfied by any model. And if it were a pre-chart (cf. Sect. 2), then any
model would (trivially) satisfy the whole LSC as the premise of the main chart
is equivalent to ‘false’.

These errors in LSCs are not always as obvious as the one in Fig. 3(a) because
such a cyclic dependency can involve many instance lines and large numbers of
all kinds of LSC elements instead of just two instance lines like in Fig. 3(a). To
support the actual authoring of quality LSC specifications, we relate the notion
of well-formedness for LSCs from [8] to the concrete syntax and provide a fast
algorithm that decides well-formedness on the syntactical representation of an
LSC. Practically, LSCs should always be checked to be well-formed, in particular
before expensive [5] checks like consistency of a whole LSC specification or LSC
model-checking [11] are applied. This will significantly improve the usability of
LSCs for formal verification because if the outcome of a model-checking run is
not as expected, either because the LSC is insatisfiable or in the case of trivial
satisfaction as outlined above, it is very helpful to know that the mismatch
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between expectation and reality does not stem from the LSC not being well-
formed so one can focus on the real reason for the mismatch.

The remainder of this article is structured as follows. Section 2 uses a small
example to briefly recall the intuition of the LSC language of [11] and intro-
duces abstract syntax and semantics using the new formalisation from [15]. Sec-
tion 3 discusses the issue of non-well-formedness in more detail, formally defines
well-formedness of LSCs, and exactly characterises the possible reasons for non
well-formedness. Thereby we can justify that it is reasonable to consider only
well-formed LSCs in this sense. In Sect. 4 we provide a fast algorithm that de-
cides well-formedness on the abstract syntax, basically an acyclicity check on a
particular structure, and discuss its complexity in terms of LSC size. Section 5
discusses the impact of well-formedness on related work, namely the complexity
results of [5] that happen to be established just on the set of well-formed LSCs
and it identifies LSCs played-in with the play-engine [9] to be well-formed by
construction. Section 6 concludes and discusses further work.

2 Live Sequence Charts

To recall the syntax and intuition of LSCs, consider the LSC ‘secure crossing’
given in Fig. 1(a). It states a high-level requirement on a distributed controller
for a level crossing comprising a central controller ‘CrossingCtrl’ and separate
controllers ‘LightsCtrl’ and ‘BarrierCtrl’ for traffic lights and barriers.

As mentioned in Sect. 1, the main difference between the LSC and the MSC
language is that LSCs introduce modalities for whole charts, locations on in-
stance lines, and LSC elements. The mode of the whole chart is indicated by the
frame around the LSC body. The solid frame around the LSC body in Fig. 1(a)
indicates that its mode is universal. A system satisfies a universal LSC if it ad-
heres to the scenario whenever it is activated. The LSC in Fig. 1(a) is activated
if the activation condition ‘securing request ’ holds. In general, activation is char-
acterised by a pre-chart, i.e. a prefix of the LSC body. The suffix of the LSC
(the main-chart) is activated once the pre-chart has been completely observed.
An activation condition is a shortcut for a pre-chart comprising only a single
condition. A dashed frame around the LSC body indicates the other chart mode
existential. A system satisfies an existential LSC if it has at least one run where
the whole scenario (including the pre-chart) is observed at least once. This is the
typical interpretation of MSCs.

The mode of a location in an LSC can be hot or cold and is indicated by the
style of the instance line segment below the location. In Fig. 1(a) the topmost
locations are cold on all instance lines but the one of the central controller
‘CrossingCtrl’, which is hot. The latter requires progress, that is, whenever the
LSC is activated, a system only satisfies the LSC if the location is finally left by
observing the element(s) at the following location. In the original proposal [8],
the authors give the figurative intuition that one can’t stand at a hot location
forever without burning one’s feet, thus one wants to leave it eventually. On the
second location of instance line ‘CrossingCtrl’, the sendings of the instantaneous
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messages ‘lights on’ and ‘barrier down’ are drawn at exactly the same location.
They are thereby put in a simultaneous region (simregion for short) that requires
them to both occur at the same point in time in a system that satisfies the LSC.

On the instance line of ‘LightsCtrl’, the reception of ‘lights on’ is co-located
with a condition that has the mode possible, then also called cold condition.
Thereby we express that if the lights are not operational, i.e. the cold condition
doesn’t hold at the point in time where ‘lights on’ is received, then the system
needn’t adhere to the rest of the chart. The chart is legally exited and imme-
diately considered satisfied. Put the other way round, we do require that an
implementation of the level crossing adheres to the remainder of the scenario
whenever the lights controller is operational, i.e. if the cold condition holds. To
specify requirements on the reaction of a non-operational lights controller we
would provide another LSC that is activated in the situation where the lights
controller is non-operational when receiving ‘lights on’.

On the instance line ‘BarrierCtrl’, the reception of ‘barrier down’ is co-located
with an exclusive beginning of a mandatory (or hot) local invariant that ends
inclusively at the sending of message ‘barrier ok ’. By local invariants, require-
ments can be stated for spans of time in contrast to ordinary conditions which
apply only to a single point in time. In the example we require that the barrier
is not moving upwards immediately after ‘barrier down’ has been received up
to and including the point in time where ‘barrier ok ’ is sent. Should the bar-
rier move upwards in this period of time, then the LSC is violated. Possible (or
cold) local invariants are typically used to state assumptions. For example, if
we change the lights controller’s condition to a cold local invariant on the time
between ‘lights on’ and ‘lights ok ’ then we effectively say that a system has to
adhere to the scenario unless the lights controller is not operational somewhere
in between ‘lights on’ and ‘lights ok ’.

After receiving ‘lights on’, the lights controller is required to finally send a
‘red on’ message to the environment, that is, we decided that the traffic lights
are not part of the model. If the lights are switched to red and the barriers are
lowered, both distributed controllers should report success to the central con-
troller by the messages ‘lights ok ’ and ‘barrier ok ’. We indicate by the dotted line
in parallel to the ‘CrossingCtrl’ instance line that we don’t restrict the order of
these two messages. They may occur in any order and even simultaneously. Such
parts of instance lines where the order is explicitly relaxed are called coregions.

Note that the location before the sending of the asynchronous message ‘done’,
by which the central controller reports back that the crossing is secured, is cold
and that we have then also reached cold locations on each other instance line.
In this case, no progress is enforced. That is, a system that adheres to the LSC
up to these locations but doesn’t send ‘done’ at all although satisfies the LSC.

In addition to giving the name and the activation condition, the header of
the LSC in Fig. 1(a) comprises the activation mode that further restricts the
activation. In order for a system to satisfy LSC ‘secure crossing’ with activation
mode invariant, each system run suffix that activates the LSC has to adhere to
it. With activation mode initial, the LSC can be activated at most once per run,
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LSC: secure crossing
AC: securing request
AM: invariant

Environment LightsCtrl

Operational

CrossingCtrl BarrierCtrl

lights on barrier down

red on

lights ok

barrier ok

¬MvUp

done

(a) LSC for securing a level crossing.

q0l on, b dn

q1 b ok, red, ¬Up

q2 red q3 b ok, l ok, ¬Up

q4l ok q5
b ok, ¬Up

q6donesnd

q7donercv

q8true qsnktrue

l on, b dn,Op

l on, b dn, ¬Op

red, b ok, ¬Up

b ok, red, ¬Up

red,
b ok, ¬Up

b ok, l ok,
¬Up l ok, b ok, ¬Upl ok,

b ok, ¬Up
red

l ok b ok, ¬Up

donesnd

donercv

(b) Symbolic Automaton AL of
secure crossing’s body (cf. Sect. 2.1).

	I |=LSC L ⇔ ∀	ι ∈ 	I ∀ k ∈ N0 : 	ιk |= ac ⇒ 	ι/k ∈ L(AL)

(c) Full Semantics of L = ‘secure crossing’ in terms of AL (cf. Sect. 2.1).

Fig. 1. The securing protocol for a level crossing comprises switching on the red lights
and lowering the barriers, each acknowledged by the responsible controller. For lack of
space, message and condition names are abbreviated in Fig. 1(b), negation of message-
observation predicates is expressed by overlining, and a comma is used for conjunction.
E.g. q0’s loop fires if neither ‘lights on’ nor ‘barrier down’ are observed.

namely in the initial step. The third activation mode iterative, which excludes
re-activation, lies outside the scope of this paper.

2.1 Syntax and Semantics

In the following, we introduce the syntax and semantics of LSCs following [11]
in the formalisation of [15]. Note that we actually introduce a subset of LSCs
that we call core LSCs. Core LSCs are missing three features that are out of the
scope of this paper, namely we discuss activation only in form of activation condi-
tions and not the general case of pre-charts, we exclude timer-set and -reset and
timeout elements that LSCs inherit from MSCs, and for brevity don’t consider
possible messages, i.e. sending has to but reception needn’t be observed. The
first omission is not a restriction since the semantics of pre-charts is explained in
terms of the same Symbolic Automaton construction used for main-charts thus
our approach applies directly. The topic of timer consistency is orthogonal to
the structural issues we discuss here.

One of the central informations of the concrete syntax of an LSC is the order
of elements along a single instance line. As coregions may not be nested, the
order of elements is actually a scenario order as defined in the following.
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Definition 1 (LSC Instance Line). Let P be a finite, non-empty set. The
tuple (P,≺), ≺ ⊆ P × P , is called instance line iff ≺ is a scenario order (or
direct predecessor relation) on P , that is, iff

1. ∃! a⊥ ∈ P ∀ a ∈ P : a⊥ ≺∗ a (Unique Minimum)
where ≺∗ denotes the reflexive transitive closure of ≺.

2. ∀ a, a1, a2 ∈ P : a ≺ a1 ∧ a ≺ a2 =⇒ a1��≺∗a2 (Unordered Successors)
where a1��≺∗a2 denotes that a1, a2 are unordered, i.e. a1 �≺∗ a2 and a2 �≺∗ a1.

3. ∀ a1, a2 ∈ P : (∃ a0 ∈ P : a0 ≺ a1 ∧ a0 ≺ a2)
=⇒ (∀ a3 ∈ P : a1 ≺ a3 =⇒ a2 ≺ a3). (Diamond Property)

A triple (A,≺, ϑ) with ϑ : A → {hot, cold} is called LSC instance line iff
(A,≺) is an instance line. The elements a ∈ A are called (tempered) atoms.
Two atoms a1, a2 ∈ A are called instance co-located, denoted by a1 ��a2. ♦

A core LSC is structured into the body and the information found in the head,
namely the activation condition, the activation mode, and the quantification.
The body is further structured into a set of LSC instance lines and three sets of
the elements: messages, conditions, and local invariants. Each of these elements
is equipped with an obligation mode from {mand, poss} =: Obl. Messages have
a synchronity from {inst, asyn} =: Sync, and to each local invariant start- and
end-atom a containedness from {incl, excl} =: Cont is attached.

As the annotation of messages, conditions, and local invariants itself is not
relevant in the course of this paper, we assume them to be from Expr, the set of
boolean propositional expressions.

Definition 2 (Core LSC). A core LSC is a tuple L = (�, ac, am, quant) with
activation condition ac ∈ Expr, activation mode am ∈ {initial, invariant}, quan-
tification quant ∈ {existential, universal}, and � = (Inst,Msg,Cond,LocInv) the
body of the LSC where

– Inst = {(A1,≺1, ϑ1), . . . , (An,≺n, ϑn)} is a set of disjoint LSC instance
lines. We set Inst(L) := {1, . . . , n}, AL :=

⋃
i∈Inst Ai, ≺L:=

⋃
i∈Inst ≺i, and

ϑL :=
⋃

i∈Inst ϑi. We denote by a⊥
i the minimum of ≺i, i ∈ Inst(L), also

called instance head, and set A⊥
L := {a⊥

i | i ∈ Inst(L)}. By A|i := A ∩Ai

we denote the projection of a set A ⊆ AL onto instance i ∈ Inst(L).

If the LSC L is clear by context we shall simply write, e.g., ≺ instead of ≺L.

– (m ∈) Msg =: Msg(L) is a set of messages

m = (as, ar, ς, κ, ψs, ψr) ∈ A ×A × Sync×Obl× Expr× Expr

For each message m ∈ Msg we set atoms(m) := {as(m), ar(m)}.
By Msginst(L) := {m ∈ Msg(L) | ς(m) = inst} we denote the set of in-
stantaneous and by Msgasyn(L) := {m ∈ Msg(L) | ς(m) = asyn} the set of
asynchronous messages of L.
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– (c ∈) Cond =: Cond(L) is a set of conditions

c = (Ac, κ, ψc) ∈ 2A \ {∅} ×Obl× Expr

where there is at most one atom per instance line, i.e. |(Ac|i)| ≤ 1 for i ∈
Inst. For each condition c ∈ Cond we set atoms(c) := Ac(c);

– (l ∈) LocInv =: LocInv(L) is a set of local invariants

l = ((as, γs), (ae, γe), κ, ψ) ∈ (A × Cont)× (A × Cont)×Obl× Expr.

For each local invariant l ∈ LocInv we set atoms(l) := {as(l), ae(l)}.

The set elems(L) := Msg(L)∪Cond(L)∪LocInv(L) is called the set of elements
of L. The function ‘atoms’ is canonically extended to subsets of elems(L) yielding
sets of atoms. We set atoms(L) := atoms(elems(L)). ♦

In order to formally capture well-formedness of LSCs in Sect. 3, we need to in-
troduce a number of concepts belonging to the LSC semantics definition [11]. We
stop with a brief introduction of the Symbolic Automaton that is the basis of the
LSC semantics definition following [11] in order to be able to study the relation
between the original definition of well-formedness and a semantical definition in
terms of Symbolic Automata.

The central concept in the construction of the automaton is the cut, i.e. a
set of atoms per instance line, indicating how far the LSC has been observed. A
cut is empty or comprises at least one atom for each instance line. All instance
co-located atoms in a cut are pairwise unordered.

Definition 3 (Cut). Let L be a core LSC. A set of atoms α ⊆ atoms(L) is
called cut iff

1. α �= ∅ =⇒ ∀ i ∈ Inst(L) : α|i �= ∅, and
2. ∀ i ∈ Inst(L) ∀ a1, a2 ∈ α|i : a1 ��a2 =⇒ a1��≺∗a2.

The empty cut is called initial cut of L and denoted by α0, the cut comprising
all instance heads is called instance heads cut of L and denoted by α⊥(L), and
the maximal cut α with ∀ a ∈ α ∀ a′ ∈ atoms(L) : a ≺∗ a′ =⇒ a′ = a is called
final cut of L and denoted by αfin(L).

The temperature of α is ‘cold’ if α = αfin(L) or ϑ(a) = cold for all a ∈ α,
and ‘hot’ otherwise. The set of all cuts of L is denoted by Cuts(L). ♦

The unit by which a cut can be advanced is the simultaneous class (simclass for
short). A simclass is defined by the fact that the two atoms of a synchronous
message and all atoms of a condition are supposed to be observed simultaneously,
and by transitivity, e.g. if two synchronous messages m1, m2 each use an atom
which is also used by a condition c, then all atoms of these three elements m1,
m2, and c belong to the same simclass.

Definition 4 (Simclass). Let L be a core LSC. Two atoms a1, a2 ∈ atoms(L)
are called simultaneous, denoted by a1 ∼ a2, iff
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1. a1 = a2, or
2. {a1, a2} ⊆ A⊥

L , or
3. ∃ e ∈ Cond(L)∪Msginst(L) : {a1, a2} ⊆ atoms(e), or
4. ∃ a3 ∈ atoms(L) : a1 ∼ a3 ∧ a3 ∼ a2.

For each a ∈ atoms(L) we use [a] to denote the equivalence class of ‘a’ wrt.
∼, i.e. the set {a′ ∈ atoms(L) | a′ ∼ a}. The set atoms(L)/ ∼ of all equivalence
classes of atoms from atoms(L) is also denoted by Simclass(L), its elements are
called simclasses. We use elems(scl) to denote all LSC elements that share an
atom with scl ∈ Simclass(L), i.e. the set {e ∈ elems(L) | atoms(e) ∩ scl �= ∅}. ♦

A simclass is intuitively enabled by a cut if each of its atoms either has its
prerequisite in the cut or it belongs to a coregion and there is an atom in the cut
from the same coregion. Furthermore the intuition of asynchronous messages is
explicitly added in form of an additional restriction: reception of an asynchronous
message shall be observed strictly after its sending.

Definition 5 (Enabled simclass). Let L be a core LSC. Let α ∈ Cuts(L) be
a cut of L and scl ∈ Simclass(L) a simclass of L. A cut is said to enable ‘scl ’,
denoted by α � scl , iff

(∀ a′ ∈ scl : prereq(a′) ⊆ α ∨ ∃ a ∈ α : a��a′ ∧ a��≺∗a′)
∧ (∀m ∈ Msgasyn(L) ∩ elems(scl) : ar(m) ∈ scl =⇒ ∃ a ∈ α : as(m) ≺∗ a)

where prereq(a) := {a′ ∈ atoms(L) | a′ ≺ a} is the prerequisite of a. The set of
sets of simclasses ReadyL(α) := {∅ �= Scl ⊆ Simclass(L) | ∀ scl ∈ Scl : α � scl}
is called the readyset of α. ♦

Note that enabledness is a structural concept. It does not consider, e.g., the
boolean expressions of conditions. In other words, the concept of enabledness
can be seen as denoting potential progress. As there is no total order on the
LSC elements, a single cut may enable multiple simclasses. Given a cut α and
a non-empty set Scl ∈ ReadyL(α) of enabled simclasses from the readyset of α,
the advancement function StepL(α,Scl) denotes the (unique) follow-up cut.

We can now sketch the construction of an LSC’s Symbolic Automaton which
is basically a Büchi automaton where the transitions are labelled by boolean
expressions. Formally, a Symbolic Automaton (SA) is a tuple A = (Q, qs, �, F )
comprising a finite set of states Q, the initial state qs ∈ Q, the transition relation
�⊆ Q× Expr×Q, and the set of accepting states F ⊆ Q. We write qi → qj iff
(qi, ψ, qj) ∈� for some ψ. An SA is called Partially Ordered Symbolic Automaton
(POSA) if the reflexive transitive closure of → is a partial order.

The definition of an LSC’s SA uses three kinds of predicates. The predicate
HoldL on the self-loop characterises the condition under which a cut α is not
advanced, ExitL on transitions to the legal exit characterises the conditions for
legal exit from cut α, and TransL corresponds to the observation of a given set
of simclasses Scl in a particular cut α.

Definition 6 (Symbolic Automaton of an LSC). The Symbolic Automa-
ton of a core LSC L, denoted by AL, is the tuple (Q, qs, �, F ) with Q =
Cuts(L) ∪̇ {qsnk}, qs = α0, F = {α ∈ Cuts(L) | ϑ(α) = cold} ∪ {qsnk}, and
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α0

α⊥

αfinqsnk

. . .
...

. . .

TransL(α0, {A⊥
L })

ExitL(α0)

HoldL(α)ExitL(α⊥)

truetrue

(a) Overall structure of AL.

α

StepL

(α, Scl1)
StepL

(α, Scln)

qsnk

. . .

. . .

HoldL(α)

TransL(α, Scl1) TransL(α,Scln)

ExitL(α)

true

(b) Outgoing transitions from state α.

Fig. 2. Structure of the LSC body automaton. Double lined states are in F .

� = {(α0, false, α0)} ∪ {(qsnk, true, qsnk)}
∪ {(α,HoldL(α), α) | α ∈ Cuts(L) \ {α0}}
∪ {(α,ExitL(α), qsnk) | α ∈ Cuts(L) \ {αfin(L)}}
∪ {(α,TransL(α,Scl), α′) | α ∈ Cuts(L),Scl ∈ ReadyL(α), α′ = StepL(α,Scl)}

Figure 2(a) shows the overall structure of the automaton, and Fig. 2(b) depicts
the outgoing transitions of a single state resp. cut. Figure 1(b) gives the complete
Symbolic Automaton of the LSC from Fig. 1(a). The Symbolic Automaton of
an LSC is a POSA [15].

The notions introduced up to now are sufficient for the following sections
that don’t consider, e.g., information from the LSC header. For completeness,
Fig. 1(c) exemplarily shows how the semantics of a complete LSC is expressed in
terms of L(AL) the language accepted by the Symbolic Automaton of the body
in [11]. The system model �I is a set of interpretation sequences, that is, infinite
sequences of interpretations of the predicates referred to by the LSC elements. It
satisfies a universal invariant LSC L, denoted by �I |=LSC L, iff each suffix �ιk of a
run �ι whose first snapshot �ιk satisfies the activation condition is in the language
of AL. In the initial activation mode, we would only consider k = 0.

3 Well-Formedness of Live Sequence Charts

Right from the original introduction of LSCs in [8] it has been clear that there
are syntactically correct LSCs that shouldn’t be considered legal. For this reason,
[8] introduced a dependency relation on the LSC elements and restricted their
definition of the semantics of LSCs to those with acyclic dependency relation. For
the same reason, [5] restrict their investigation of the decidability and complexity
of common problems, like consistency or realisability for a set of LSCs, to labelled
partial orders thus they completely cover the well-formed LSCs of [8]. Up to now
open is the question which syntactically correct graphical charts are actually
ruled out by this restriction and how an author of LSCs best decides whether
his LSCs are well-formed or not.

A first attempt to characterise well-formedness graphically to support authors
of LSCs is given by [11]. They informally state, among others, the rule that
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Fig. 3. Conflicting LSCs and their automata. For lack of space, we use ax1,...,xn;y1,...,ym

to denote the cut {ax1
1 , . . . , axn

1 , ay1
2 , . . . , aym

2 }.

instantaneous messages shall not cross each other. This rule is intuitively safe.
For example, the LSC shown in Fig. 3(a) is obviously not well-formed since
messages m2 and m3 cyclically depend on each other. The rule correctly identifies
it as such. But it incorrectly identifies the LSC shown in Fig. 3(b) as not well-
formed although the cyclic dependency is broken using a coregion, i.e. this LSC
actually is well-formed.

An example that is not covered by any rule of [11] is the LSC shown in Fig. 3(c).
There the initial cut doesn’t enable any subsequent simclass because the condition
synchronises atoms a1

1 and a1
2 and message m1 being asynchronous requires a1

1, the
sending, to be observed strictly before a1

2, the reception.
In the following Lemma 1, we establish that there are exactly two possible

reasons for an LSC not to be well-formed. Firstly, that the precedence imposed
by the atom order contradicts the synchronisation imposed by instantaneous
messages and conditions on their atoms. Secondly, that the precedence imposed
by the atom order contradicts the order between the sending and reception atom
of an asynchronous message. So by Lemma 1, the two cases shown in Fig. 3(a)
and 3(c) are actually all. Another conclusion we can draw is that the language
extensions of [11] don’t introduce new means to produce non well-formed LSCs.

As these two cases are contradictions between fundamental principles of LSCs,
they can’t be resolved and thereby we can see that the restriction to well-formed
LSCs is just right. We don’t miss any interesting graphical representations of
LSCs.

The following definition introduces the precedence relation <L that captures
the interdependency between atoms on different instance lines based on the
scenario order ≺, the asynchronous messages, and the synchronising elements
like conditions and instantaneous messages.
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Definition 7 (Precedence Relation). Let L be a core LSC. For two atoms
a1, a2 ∈ atoms(L) we say that a1 precedes a2, denoted by a1 <L a2, iff

1. a1 ≺+ a2, or
2. ∃m ∈ Msgasyn(L) : a1 = as(m) ∧ a2 = ar(m), or
3. ∃ a′

1, a
′
2 ∈ atoms(L) : a1 ∈ [a′

1] ∧ a′
1 <L a′

2 ∧ a2 ∈ [a′
2]. ♦

If the precedence relation is acyclic, then it is a strict partial order and its
reflexive closure is the partial order ≤m that the discussion in [8] is restricted
to. In terms of our precedence relation, well-formedness is defined as follows.
Lemma 1 then introduces the two possible reasons for non well-formedness.

Definition 8 (Well-formed LSCs). A core LSC is called well-formed iff its
precedence relation <L is acyclic. ♦

Lemma 1 (Contradiction). A core LSC L is not well-formed iff

1. ∃ scl ∈ Simclass(L) ∃ a, a′ ∈ scl : a �= a′ ∧ a <L a′ (synchrony contradiction)
2. or ∃m ∈ Msgasyn(L) : ar(m) <L as(m) (asynchrony contradiction) ♦

Proof. “=⇒”: Let L be a non well-formed LSC. Then by Def. 8 the precedence
relation has a cycle, i.e. ∃ a ∈ atoms(L) : a <L a (∗).
As ‘≺+’ is irreflexive, we are left with two reasons for (∗):

– There are atoms a1, a
′
1, a

′
2, a2 ∈ atoms(L) s.t.

a <L a1 ∧ a1 ∈ [a′
1] ∧ a′

1 <L a′
2 ∧ a′

2 ∈ [a2] ∧ a2 <L a

and aj �= a′
j , j ∈ {1, 2}. Then we have asynchrony contradiction for [aj ].

– There are messages m1, . . . , mn ∈ Msgasyn(L), n > 0, s.t.

a ≺∗ as(m1)∧ ar(m1) ≺∗ as(m2)∧ · · · ∧ ar(mn−1) ≺∗ as(mn)∧ ar(mn) ≺∗ a

For m1 we have asynchrony contradiction.

Note that the cases are exhaustive but not exclusive. There are cycles of the
precedence relation that show both contradictions.
“⇐=”: For the other direction first consider case (2.). Then there is a message
m ∈ Msgasyn(L) s.t. ar(m) <L as(m). By Def. 7.2 we have as(m) <L ar(m) thus
a cycle. In case (1.) there is a simclass scl ∈ Simclass(L) and atoms a, a′ ∈ scl
with a �= a′ and a <L a′. Then there are atoms a1, . . . , an ∈ atoms(L) s.t.

a ∈ [a1] ∧ a1 <L a2 ∧ a2 ∈ [a3] · · · ∧ an−2 ∈ [an−1] ∧ an−1 <L an ∧ a ∈ [an]

where ai <L ai+1 by Def. 7.1 or 7.2 thus a <L a by Def. 7.3. 	


Considering the Symbolic Automata of the LSCs in Fig. 3 shown next to the
LSCs, we observe that the two non well-formed examples have in common that
there are unconnected states in the automaton. Thus the particular Symbolic
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Automata in Fig. 3(a) and 3(c) don’t accept any run, they necessarily get
stuck.

In the following, we establish that we could’ve equally well started to define
well-formedness semantically by calling those LSCs well-formed whose Symbolic
Automaton has a traversable structure. This is practically relevant for the tools
which compile an LSC to its Symbolic Automaton that is then used for formal
verification. Alternatively to applying the stand-alone well-formedness check in-
troduced in Sect. 4 beforehand, these tools can speculatively start to construct
the Symbolic Automaton and as soon as they hit a state with empty readyset
testify that they are facing a non well-formed input. In addition, the construc-
tion of a cycle in the proof of Lemma 2 can then be used to determine an actual
cycle and show it to the user.

Definition 9 (Traversable Structure). Let A = (Q, qs, �, F ) be a Symbolic
Automaton and q ∈ Q state. The Symbolic Automaton A is said to have a
traversable structure wrt. q iff q is reachable from any state that is reachable
from the initial state, i.e. ∀ q′ ∈ Q : (qs →∗ q′) =⇒ (q′ →∗ q). ♦

Lemma 2 (Well-formedness and Traversable Structure). Let L be a core
LSC and AL = (Q, qs, �, F ) its Symbolic Automaton with Q = Cuts(L) ∪̇ {qsnk}.
The LSC L is well-formed iff AL has a completely traversable structure wrt.
αfin(L) ∈ Cuts(L). ♦

For the proof of Lemma 2, we observe the following relation between synchrony
and asynchrony contradiction and the enabling behaviour of legal cuts, i.e. cuts
which are the result of successive application of the step function StepL.

Lemma 3. Let L be a core LSC.

1. Let m ∈ Msgasyn(L) be an asynchronous message with ar(m) <L as(m).
Then there is no legal cut α ∈ Cuts(L) with α � [ar(m)].

2. Let scl ∈ Simclass(L) be a simclass s.t. there are a, a′ ∈ scl with a �= a′ and
a <L a′. Then there is no legal cut α ∈ Cuts(L) with α � scl . ♦

Proof. – Let m ∈ Msgasyn(L) with ar(m) <L as(m). Assume there is a legal
cut α ∈ Cuts(L) with α � [ar(m)]. A reception is only enabled if the sending
has been observed, i.e. there is a ∈ α with as(m) ≺∗ a. Following backwards
the precedence order chain ar(m) <L a1 <L . . . <L an <L as(m) there is an
a′ ∈ α with a′ ≺∗ ar(m), in contradiction to a′′��≺∗ar(m) or a′′ ≺ ar(m) for
all a′′ ∈ α as required by α � [ar(m)].

– Let scl ∈ Simclass(L) s.t. there are a, a′ ∈ scl with a �= a′ and a <L a′.
Assume there is a legal cut α ∈ Cuts(L) with α � scl . Following backwards
the precedence order chain a <L a1 <L . . . <L an <L a′ yields a ≺∗ a0 for
an atom a0 ∈ α in contradiction to α � scl . 	


Proof. (of Lemma 2)
”⇐=”: (contraposition) Let L be a non well-formed core LSC and AL its Sym-
bolic Automaton. By Lemma 1, L has at least one contradiction:
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Fig. 4. Two reasons for α 
� [a1]. The gray line shows the location of the cut α.

– synchrony contradiction, i.e. there is a a simclass scl ∈ Simclass(L) and
atoms a, a′ ∈ scl with a �= a′ and a <L a′. Then there is no cut which
enables scl by Lemma 3.2.

– asynchrony contradiction, that is, there is an asynchronous message m ∈
Msgasyn(L) s.t. as(m) <L ar(m). Then there is no cut which enables scl :=
[ar(m)] by Lemma 3.1.

If AL had a completely traversable structure wrt. αfin(L) then in particular
α0 →∗ αfin(L). Omitting the proof we use that in this sequence of cuts from α0
to αfin(L), for each atom a ∈ atoms(L) there is a cut α ∈ Cuts(L) with α � [a]
in contradiction to the observation that scl is not enabled by any cut.

”=⇒”: (contraposition) Let L be a core LSC whose Symbolic Automaton AL

is not completely traversable wrt. αfin(L). As AL is a POSA, there is a state
αfin(L) �= α ∈ Q = Cuts(L) that is reachable from the initial state qs = α0
and doesn’t enable any simclass, i.e. ReadyL(α) = ∅. The cut α is not the initial
cut α0 because α0 � α⊥(L) by definition. By construction of AL the cut α is
reachable if it is the result of successive applications of the step function StepL,
hence α is legal. Let A := {a ∈ atoms(L) | ∃ a0 ∈ α : a0 ≺ a ∨ a0��≺∗a} be the
set of atoms that are direct predecessors of an atom in α or belong to the same
coregion as an atom in α. The set A comprises those atoms that can possibly be
enabled by α. It is not empty because α �= αfin(L)

From A we can iteratively construct a cycle in the precedence relation as
follows. Choose a1 ∈ A. Its simclass [a1] is not enabled because α doesn’t enable
any simclass. There are two possible reasons for α �� [a1] by the definition of
‘�’. Firstly (cf. Fig. 4(b)) that there is an atom a′

1 ∈ [a1] that is a message
reception and the sending ã1 has not yet been observed (∗) and secondly (cf.
Fig. 4(a)) that there is an atom a′

1 ∈ [a1] whose prerequisite is not in α (∗∗),
that is, ∃ ã1 ∈ atoms(L), a0 ∈ A : a0 ≺+ ã1 ≺+ a′

1. As α �= α0, we can choose
an atom a2 ∈ A with ã1 �� a2, i.e. instance co-located with ã1. If ã1 ∈ A, then
the choice is a2 = ã1. By (∗) or (∗∗) we have a1 <L a2. For a2 there is a similar
choice of a′

2, ã2, and a3 with a2 <L a3. Etc.
Iterate this procedure until an = a1, n > 1. The procedure terminates since

A is finite and we directly have a1 <L . . . <L an = a1. 	


Note that well-formedness is not exactly equivalent to being insatisfiable by
structure. In the case that the cyclic dependency occurs somewhere below a cold
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Fig. 5. Precedence Graphs of the three LSC from Fig. 3

cut of the main-chart, that is, not in the pre-chart, then a system that doesn’t
progress further than this cold cut properly satisfies the LSCs. Instead of refining
Def. 9 to separate three cases, the well-formed and thus structurally satisfiable
LSCs (“good”), the non well-formed and structurally insatisfiable LSCs (“bad”),
and the non well-formed but satisfiable LSCs (“ugly”) we note that for each
“ugly” LSC there is a transformation to an equivalent “good” one.

4 Deciding Well-Formedness of LSCs

One result of the previous section was that well-formedness of LSCs can be
checked on-the-fly when constructing its Symbolic Automaton. But all authors of
LSCs need to know whether their specification is well-formed, not only the ones
heading for formal verification where the Symbolic Automaton is constructed
anyway. An independent mechanical check is evident from Definition 8: build up
the precedence relation and check it for acyclicity. But the precedence relation is
not the minimal data-structure for this purpose. Thus in the following we provide
a faster well-formedness check based on the precedence graph of the LSC.

Definition 10 (Precedence Graph). The precedence graph of a core LSC L
is the directed graph (Simclass(L), ↪→) with

↪→:= {(scl1, scl2) ∈ Simclass(L)2 | ∃ a1 ∈ scl1, a2 ∈ scl2 :
a1 ≺ a2 ∨ ∃m ∈ Msgasyn(L) : as(m) ∈ scl1 ∧ ar(m) ∈ scl2}. ♦

The precedence graph structure reflects the order of simclasses along the instance
lines and additionally tracks the dependency between the sending and reception
of an asynchronous message. Fig. 5 shows the precedence graphs of the three
LSCs from Fig. 3. Note that the two non well-formed LSCs exhibit cycles in
Fig. 5(a) and 5(b), indicated by bold arrows.

Lemma 4. A core LSC L is well-formed if its precedence graph is acyclic. ♦

Proof. We show the equivalent claim that a cycle in the precedence relation of
L implies a cycle in the precedence graph. Let a ∈ atoms(L) with a <L a, i.e.
there are atoms a1, . . . , an ∈ atoms(L) s.t.
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a ∈ [a1] ∧ a1 <L a2 ∧ a2 ∈ [a3] ∧ . . . ∧ an−1 <L an ∧ a ∈ [an]

where ai <L ai+1 by Def. 7.1 or 7.2. Both cases entail [ai] ↪→+ [ai+1] by con-
struction of the precedence graph. As ai ∈ [ai+1] implies [ai] = [ai+1] we can
trace the complete precedence relation chain by the precedence graph relation
and thus obtain [a] ↪→+ [a]. 	


Acyclicality of the graph of an LSC L is checked in O(|Simclass(L)| + |↪→|).
The size of the graph relation |↪→| is bounded from above by |≺|+ |Msgasyn(L)|.
The number of edges induced by the scenario order is

∑
a∈AL

|prereq(a)|. In the
special case that L has no coregions, prereq(a) is at most 1 thus |≺| ≤ |AL|.
In the special case of only non-consecutive coregions we have |≺| ≤ |AL| +
|CL|, where CL ⊆ AL denotes the atoms of L that lie in a coregion. Only
consecutive coregions produce a disproportional grow of |↪→| as then all possible
combinations between the two coregions are reflected by ≺.

5 (Impact on) Related Work

Research into the LSC language is often restricted to the subset of well-formed
LSCs, e.g. by abstractly representing an LSC in terms of a labelled partial or-
der. The following subsection 5.1 discusses the impact of this restriction and
extends existing results of well-formed LSCs to the set of all LSCs. Subsec-
tion 5.2 identifies all LSCs produced by the PlayEngine as being well-formed by
construction.

5.1 LSCs as LPOs

As already mentioned in the previous sections, recent analysis of the complexity
of Life Sequence Charts [3] uses as abstract syntax a labelled partial order, i.e.
a tuple (L,≤, λ, A) where L is a finite set of events, ≤ ⊆ L×L is a partial order
on L, and λ : L → A is a labelling function, that is built as follows1:

Definition 11 (Order Relation of an LSC [3]). Let L be a core LSC. Two
simclasses scl1, scl2 ∈ Simclass(L) are directly ordered, denoted scl1 <d scl2, if

1. ∃ a1 ∈ scl1, a2 ∈ scl2 : a1 ≺ a2, or
2. ∃m ∈ Msgasyn(L) : as(m) ∈ scl1 ∧ ar(m) ∈ scl2

The relation ≤ is the reflexive, transitive closure of <d. ♦

The direct order between simclasses of Def. 11 corresponds to our precedence
graph relation from Def. 10. Thus strictly speaking, the results of [3] only apply
to the set of well-formed LSCs, not to the set of all LSCs since for non well-
formed ones ‘≤’ is not a partial order by Sect. 3.
1 Note that [3] consider neither simultaneous classes nor asynchronous messages. We

extend their construction in the canonical way.
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In the other direction we can conclude from Sect. 3 that for each well-formed
LSC ‘≤’ is a partial order and thus [3] indeed applies to all practically rele-
vant LSCs. To extend the complexity results to the set of all LSCs, includ-
ing the non well-formed, we have to take the complexity of checking for well-
formedness into account. Section 4 entails that the (in the best case polynomial)
complexity classes identified by [3] are not left by checking for well-formedness
beforehand.

5.2 Play-Engine LSCs

The PlayIn/PlayOut [9] approach employs Life Sequence Charts for specifying
and executing behavioural requirements of reactive systems. LSCs are specified
by “playing them in” on a prototypical GUI of the system, i.e. all interactions
between the user and the GUI are recorded as LSCs. After a set of scenarios
have been played in, the engine is also able to “play them out”, i.e. when the
GUI is operated the play-engine reacts according to the recorded specification.

Obviously, the user is not able to play in any contradictory LSC by using the
GUI interface. Consequently, the results of Sect. 3 entail that every played-in
LSC is well-formed by construction.

But in general it is not an option to exclusively use “played-in LSCs” in all
application domains. For LSCs that are meant as requirement specification for
an existing implementation, it is usually not appropriate to record every desired
system run, but one rather wants to specify whole classes of scenarios at once.
This is already supported by the play-engine in form of (very limited) editing
capabilities. Also, the requirement that certain events happen simultaneously
cannot be played in in a convenient manner.

6 Conclusion

The need to turn the abstract definition of well-formedness into something more
imaginable to authors of LSC specification has already been identified by [11]
and approached by an informal and incomplete list of guidelines. Our two al-
ternative characterisations of well-formedness, in terms of concrete syntax and
semantical in terms of the underlying Symbolic Automaton, provide for a bet-
ter understanding of the relation between the set of syntactically correct LSC
diagrams and the practically useful ones. Judging from the characterisations we
can conclude that it is reasonable to restrict the discussion of LSCs to the ones
that are well-formed in the sense of [8].

Further work comprises the sketched extension of the well-formedness notions
and analyses to the whole LSC language of [11], in particular possible messages
and timer-set/-reset and timeout elements. For LSCs with timing requirements
it is also desirable to have fast syntactical sanity checks because the general case
lies in the class of the timer-consistency problem of timed automata.
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Abstract. The separation of concerns, as a conceptual tool, enables us to man-
age the complexity of the software systems that we develop. There have been a 
number of approaches aimed at modularizing software around the natural 
boundaries of the various concerns, including subject-oriented programming, 
composition filters, aspect-oriented programming, and our own view-oriented 
programming. The growing body of experiences in using these approaches has 
identified a number of fundamental issues such as what is a concern, what is an 
aspect, which concerns are inherently separable, and which aspects are compos-
able. To address these issues, we need to focus on the semantics of separation 
of concerns, as opposed to the mechanics (and semantics) of aspect-oriented 
software development methods. We propose a conceptual framework based on 
a transformational view of software development. Our framework affords us a 
unified view of the different aspect-oriented development techniques which en-
ables us a simple expression for the separability issue.  

1   Introduction 

“Separation of concerns” is a general problem-solving idiom that enables us to break 
the complexity of a problem into loosely-coupled, easier to solve, subproblems. Un-
derlying this idiom is the hope that, 1) the subproblems are easier to solve, and 2) the 
solutions to these subproblems can be composed relatively easily to yield a solution to 
the original problem. The history of programming languages may be seen as a peren-
nial quest for modularisation boundaries that best map (back) to “natural modularisa-
tion boundaries” of requirements. Aspect-oriented software development methods are 
no different. However, most of the research on AOSD has focused on the semantics 
of aspects and aspect composition, i.e. the solution domain, as opposed to the seman-
tics of concerns and concern separation and composition, i.e. the problem domain. 
Yet, the early case studies have shown that these conceptually elegant techniques 
weren’t intuitive to use (see [9], [8], [7]). Further, a great number of users of these 
techniques were caught up in the “how-to” of language constructs, with no regard for 
the conceptual appropriateness of the AOSD technique for the problem at hand. Fur-
ther, the various techniques seem to offer orthogonal, but nonetheless useful con-
structs, with no clear guidelines (which method is appropriate for which problem).  

We believe that better understanding of the AOSD techniques will result from  
a characterization of, 1) the input of software development, and 2) the process of 
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software development, to help characterize, if not identify, which concerns are sepa-
rable, and which development steps are most likely to affect the separation (or sepa-
rability) of the resulting artifacts. We propose a conceptual framework based on a 
transformational view of software development. In this context, all the requirements 
on a software product, be they functional (related to input/output relations) or other-
wise (related to how the output is produced), are inputs in these transformations. 
These requirements fit into general areas, or concerns, which may end up embodied in 
separate or same artifacts. We distinguish essential separability and inseparability, 
which characterize requirements, from accidental separability and inseparability, 
which characterize the realizations of those requirements in development artifacts. 
Accidental inseparability can be remedied by better language design and user educa-
tion. Accidental separability should even be discouraged as the conceptual complexity 
is often increased, and maintenance of the resulting program is often made harder. 

2   Understanding the Separation of Concerns Problem 

Design is a very complicated cognitive task bringing to bear a host of knowledge 
types and sources and a myriad of problem solving skills [4]. When the artifacts, 
themselves, are complex, a number of the conceptual and methodological tools fall 
apart because of scalability problems. Many researchers have shown that complexity 
is an essential property of design activities in general, due in part to the inevitably 
incomplete formulation of the problem, and in part to our inability to cope simultane-
ously with all of the constraints of a given problem (our bounded rationality [16]). 

The separation of concerns technique is a general problem solving heuristic that 
consists of solving a problem by addressing its constraints, first separately, and then 
combining the partial solutions with the expectation that, 1) they be composable, and 
2) the resulting solution is nearly optimal. For this heuristic to yield satisfactory re-
sults, the concerns that we are trying to treat separately must be fairly independent, to 
start with, so that they don’t interfere with each other. Further, the problem solving 
activity itself needs to yield solutions that are composable. In this section, we try to 
define the separation of concerns problem for the case of software. In this case, the 
“problem” is a set of requirements, and the “problem solving” process is the software 
development process. We first start by characterizing the software development proc-
ess. In section 2.2, we try frame the separation of concerns problem. 

2.1   A Transformational View of Software Development  

Software development is a complex activity involving a variety of skills and a variety 
of conceptual and formal tools. For the purposes of reasoning about software devel-
opment—and perhaps automating some of its steps— researchers and practitioners 
alike have found it useful to view software development as the process of going from 
specifications of what is to be done (requirements), to precise specifications of how it 
is to be done. Dasgupta identified two kinds of requirements in any design problem, 
empirical requirements, which specify externally observable or empirically determin-
able qualities that are desired of the artifacts, and conceptual requirements, which 
specify adherence to a particular style [4]. For the case of software, there are two 
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kinds of externally observable qualities, functionality—the what—on one hand, and 
run-time behavior—the how, including performance, and the like. Accordingly, we 
see three major categories of requirements for software development: 

1. Requirements of functionality. These requirements specify an input/output relation-
ship. To satisfy these requirements, we need a function that takes an input/output 
relationship and returns a function that returns the output for a given input  

2. Run-time requirements. These are requirements on run-time behavior such as per-
formance, distribution, the underlying machine (virtual or otherwise), etc. 

3. Requirements on the software artifacts. These requirements deal with things such 
as modularity, reusability, choice of language, etc.  

These correspond closely to the categories of architectural qualities identified by 
[2]. Describing a program using an executable specification language may be seen as 
performing a first step of the design process, i.e. ensuring functionality. Later steps 
can worry about run-time behavior and artifact quality. In practice, these three sets of 
requirements are addressed simultaneously. Further, except in new projects where a 
complete system is built from the ground up, new functionality often has to integrate 
into an existing architecture, which embodies a specific point in the design space that 
addresses a set of run-time and artifact requirements. However, for the purposes of 
our presentation, we will assume that the three major design dimensions are commu-
tative; two design transformations T1 and T2 are said to be commutative if given Di, 
the description of the software at step i, we have T2 οT1 (Di) = T1 οT2 (Di) (see e.g. 
[3]). With this mind, let us propose a first-cut description of software development.  

Handling functional requirements. Given a relation R: A×B, we need to obtain a 
function f: A → B, such that for all a ∈ A,  f(a) ∈ ImageR(a). We say that f(.) is an 
implementation of R. R describes the relationship that must exist between the input 
and the output; f(.) provides an effective procedure for computing the output, given 
the input. If R(.,.) is not a function (i.e. some elements of A have more than one im-
age), then f(.) picks one element. Automatic programming consists, to a great extent, 
of automating the “operationalization of requirements”. This transformation may be 
described by a relation OR: {R}×{f(.)} from the set of relations to the set of func-
tions. Let R be the set of relations and F the set of functions. OR is thus a subset of 
R×F. This relation may be known intensionally, or extensionally (through exemplar 
pairs). Automating this step consists of finding a function g: R → F such that given a 
relation R∈R, g(R(.,.)) = f(.) where (R , f(.)) ∈ OR. We say that g is an implementa-
tion of OR. 

Handling run-time requirements. These include performance requirements and 
execution model. These requirements are handled differently from functional ones. 
Whereas the operationalization of requirements associates a requirement with any 
function that implements the requirement, here we are picky about the properties of 
such functions. For example, such functions have to be efficiently computed. Instead 
of the relation OR shown below, we now have a subrelation EOR (Efficient Opera-
tionalization of Requirements) such that EOR ⊆OR, where Domain (EOR) = Domain 
(OR), but ImageEOR(R) ⊆ ImageOR(R). In other words, out of all the functions that 
implement R, we pick the ones that are efficient. 
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Issues related to the execution model include things such as distribution, synchro-
nization, and security. This does not change the function that is computed but changes 
things about where the different pieces are executed and how. We can represent the 
execution of function f() as follows: EX: F × I × M  → O × M. EX takes three argu-
ments: a) the function to be computed, b) its input(s), and c) the initial state of the 
machine. EX produces a pair of outputs: the result of applying the function to its in-
put, and new state of the machine. In other words, EX (f(.), i, s) = <f(i), s’> where s’ 
is the state of the machine after it has finished execution of function f(.) on input i. 
The state changes consist of the side effects of the execution and may involve things 
such as establishing or terminating connections, modifying the state of data on per-
manent storage, logging, collecting statistics, etc..  

Generally speaking, EX is a composition of several functions. For example, with a 
virtual machine architecture, we have the hardware machine executing the virtual 
machine, and the virtual machine executing the actual program. The execution of the 
virtual machine itself could be written as VM (f(.), i, s) = <f(i),s’>. The hardware 
machine, in turn, is executing the function VM on its inputs, and changes state. The 
input of the VM consists of the triple <f(.), i, s>, where f(.) is the function to be exe-
cuted—written in “virtual machine language”—i is the input of f(.), and s the state of 
VM. Let the hardware machine be represented by the function HM, we have HM 
(VM(.,.,.), (f(.), i, s), hs) = <<f(i), s’>, hs’>. And so forth. The virtual machine itself 
consists of a set of layered (composed) services or parallel services. An example of 
layered services is VM(f(.), i) = VM1ο VM2(f(.),i,s). An example of parallel services 
is represented as < VM1;VM2>(f(.),i,s) where VM1 and VM2 are two services that are 
performed in parallel but such that the end result is the pair <f(i),s’>. It may be that 
one service computes the result (VM1(f(.),i,s) = f(i)) while the other changes the state 
of the machine (VM2(f(.),i,s) = s’). We could also have situations where VM1 and 
VM2 modify different parts of the state of the executing machine. The output itself 
may be computed by one or two of the virtual machines.  

Handling requirements on the artifacts. This involves taking into account the 
packaging of the function f(.) based on a number of criteria, including a reasonable 
division of labor, reusability, cohesion and coupling of the resulting modules, etc. It 
also includes things such as the choice of a programming language, programming 
style, etc. Note that requirements on artifacts may lead us to implement more than the 
initial requirements. For example, reusability considerations may compel us to 
implement more generic classes to accommodate the needs of other applications 
within the same domain. It may also compel us to break down functions differently to 
identify common parts, without necessarily implementing more functionality than 
required. Let us take a problem R(.), and its realization, some function f(.). Idem for a 
problem R’() with realization f’(). If we can write f = fpost  ο g ο fpre and f’ = f’post  ο g ο 
f’pre, then we reduce the amount of new code to be developed. 

2.2   Framing the Separation of Concerns Problem 

For the purposes of our discussion, we define a concern as a set of related require-
ments. Elements of the set may be defined extensively (enumerated) or intensively, by 
referring to a domain (e.g. security). Simply put, requirements are sets of properties 
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that must be satisfied by the solution. If we use predicate logic to express require-
ments, a number of intuitions that we have about requirements have a simple expres-
sion in logic [21]. The basic premise of separation of concerns approaches to software 
development is that requirements have nice properties, and to the extent that we can 
associate artifacts with concerns, we would like the artifacts to have similar proper-
ties! Precisely, the “separation of concerns” methods rely on the existence of a devel-
opment homomorphism such as the one illustrated in Figure 1. Assume that require-
ments are represented by predicates, and let AP = OR(P(.)) be the artifact that corre-
sponds to predicate P(.). Development (represented by the thick arrow) is a homo-
morphism if there exists an operator ⊕ defined on artifacts such that OR(P(.) Λ Q(.)) 
≡OR(P(.)) ⊕ OR(Q(.)). 

 

R1(.,.) 

R2(.,.) 

∪ 

R(.,.) 

AR1 

AR2 

⊕

AR 

?

 

Fig. 1. Development is a homomorphism from requirements to artifacts 

We have some intuitions about cases where this homomorphism between require-
ments and artifacts holds. For example, given two requirements defined by relations 
R1: A → B, and R2: B → C, we know of several operators ⊕ such that OR(R2ο R1) 
≡OR(R1) ⊕ OR(R2). For example, if the implementation adopts the call-and-return 
style, the operator ⊕ consists of the call relationship between procedures. If the pub-
lish-and-subscribe style is used, the operator ⊕ consists of registering OR(R1) as a 
publisher of some message, and OR(R2) as a subscriber to that message. Etc. 

The advantages of this homomorphism include reusability, configurability, and 
separate maintenance. A number of object-oriented programming constructs and de-
sign idioms may be seen in this light. The new generation of separation of concerns 
techniques may be seen as defining new modularization boundaries for requirements, 
that are different from the ones afforded by regular object-oriented programming, and 
that are realizable in artifacts that are composable according to some composition 
operator. For example, OORAM uses role models [18] as new behavioral modules, 
and role synthesis to compose role models. Subject-oriented programming defined 
subjects [6] as new modular structures, and subject composition, as a composition 
mechanism [14]. Aspect oriented programming defines aspects as new module 
boundaries, and aspect-weaving as a way of composing aspects with regular classes 
[10]. Our own view-oriented programming uses viewpoints as a way of representing 
domain-independent business processes, and view instantiation and attachment as a 
way of adding that behavior to objects [12],[13]. All of these techniques may be col-
lectively referred to as aspect oriented development techniques, where composition 
filters, subjects, aspects à la Kiczales et al., and our views may all be referred to as 
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aspects. Thus, we can talk about functional aspects which are associated with func-
tional concerns or architectural aspects which are associated with architectural 
 concerns. 

Notwithstanding the case of OORAM, where the emphasis is on requirements level 
separation (role models) and composition, much of the so-called aspect-oriented de-
velopment techniques have focused on the mechanics of artifact composition, some-
times losing sight of, 1) the requirements that these artifacts are supposed to embody, 
and 2) whether that composition (or separation) makes sense, from a requirements 
point of view. Further, even in those cases where AO techniques seemed appropriate, 
there were sometimes better non-aspect oriented solutions (see e.g. [15]). 

If we view requirements as predicates on the solution, then requirements are clearly 
composable using logical composition (∧)—whether the resulting conjunction has 
solutions or not [21]. However, for the homomorphism of Figure 1 to hold, (1) the 
requirements that we need to compose have to be independent, and (2) the develop-
ment transformations have to preserve such independence so that the resulting arti-
facts (aspects) may be combined. 

3   All Concerns/Aspects Are Functional 

We identified in section 2.1 three distinct kinds of requirements, requirements of 
functionality, run-time requirements, and requirements on the software artifacts them-
selves. Before we talk about the conditions under which different requirements (or 
concerns) may be separable, and whether we should try to untangle or compose their 
associated artifacts, we look for a common framework that would enable us to look at 
all three kinds of requirements, and that would enable us to take a simpler view of the 
separability and composability issue. We start our discussion by first characterizing 
the ways in which requirements in each category are handled (individually). We will 
argue that run-time requirements can be represented as functional requirements on the 
virtual machine; requirements on artifacts are more difficult to formalize.  

3.1   Handling Run-Time Requirements 

We consider  run-time requirements to be functional requirements on an imaginary 
virtual machine that will execute the program in the context of the real machine. The 
virtual machine will add a number of services including distribution, persistence, 
security, and others. Persistence services may be seen as providing the program with 
an execution environment (a virtual machine) that persists automatically the objects 
that the program manipulates. Most object-oriented databases operate this way (Ver-
sant, ObjectStore): developers write programs that manipulate persistent objects in a 
seamless fashion. It is as if databases come with their own run-time object model, 
built on top of the host language object model. We later see how this is actually im-
plemented—interestingly, a limited form of aspect-oriented programming. 

Distribution is similar to persistence in principle. Lest we oversimplify, distribution 
may be seen as providing a virtual machine whose run-time representation of objects 
accommodates remote objects, with what that implies in terms of referencing and in 
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terms of method invocation. Consider the following CORBA or RMI-like code  
sequence: 

Bank bank = 
naming.bind(“//www.mycompagny.com/mybusinessdomain/bank
23”);  
Client cl = bank.getCustomer(“JohnDoe234”);  
String address = cl.getAddress(); 

Notwithstanding the first line, which suggests the use of a naming service, the sub-
sequent lines are indifferent from the location of the objects. We could imagine the 
same program being run in local mode, where the default Java virtual machine run-
time representation of objects is used, and “a distributed Java virtual machine” that 
uses a level of indirection for run-time object representation to access remote objects, 
and that invokes an ORB to execute methods. Existing implementations of distribu-
tion use a slightly different implementation but the idea is the same. In fact, some 
researchers have even attempted to distribute regular OO applications using As-
pectJ™ [17]. 

The way distribution and persistence have been commonly implemented present 
some commonality. Transparency to the developer dictates a virtual machine meta-
phor. However, both techniques instrument user code with service-specific code that 
invokes those services (persistence or remote access). With Java-style persistence 
(e.g. ObjectStore), the code that is injected is added directly to the compiled Java 
bytecodes. With distribution, the IDL compiler injects, along with user code, code 
that is meant to be executed by the distribution virtual machine. 

The same can be said about some aspects of security. Both authentication and en-
cryption can be easily (and naturally) implemented at the virtual machine level: one 
involves encrypting exchanged data (through method calls), and the other authenti-
cates the caller. In fact, Java’s own security model is supported and enforced by the 
virtual machine, which can be thought of as submitting method execution requests to 
a security manager. J2EE’s security model is enforced by the containers—a higher 
level yet virtual machine. 

One reason why virtual machine-like implementations of these services are not 
common—with the exception of security, for which we want no loopholes—is per-
formance. The other is selectivity: because these services involve an overhead, if we 
embed it in the virtual machine, then all objects will use it, whether they need it or 
not. With this code injection mechanism, the code will only be injected in those ob-
jects/classes that need it. 

As mentioned above, common implementations of persistence use a variant of as-
pect oriented programming: persistence code is added into designated class files (typi-
cally specified in configuration files) so that object creation, accessing, and modifica-
tion access the database client. The same is true for distribution, where client-side 
stubs (proxies) go through the ORB to get the data they need. Viewing run-time re-
quirements as functional requirements on the virtual machine helps us understand 
which services are separable and/or composable, and also helps us understand which 
solutions are feasible under which situations, and understand some of the anomalies 
that arise from composing virtual machine-level services. 
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3.2   Handling Requirements on the Artifacts 

Requirements on the artifacts deal with development-time “abilities”, with no regard 
for functionality or performance. Such requirements include understandability, reus-
ability, maintainability, etc. Let R(.) be a functional requirement, and f(.) be an opera-
tionalization of R(.), i.e. f(.) ∈ OR(R(.)). The various “abilities” on the artifacts can 
typically be written as constraints on various metrics on the artifacts, such as: 

• Mi(f(.)) = MINg ∈ OR(R(.)) (Mi(g(.)) (relative constraint) or 
• Mi(f(.))  ≤ α, for some constant α (absolute constraint) 

These meta-level constraints determine the packaging of the functionality.  
Separation of concerns is a requirement on software artifacts that is being addressed 

with AOSD techniques. Thus, our discussion of how development affects separation of 
concerns will be limited to the development activities related to accommodating  
functional requirements and those related to handling run-time requirements. 

3.3   Concerns Are Functional While Aspects May Not Be 

Notwithstanding requirements on the artifacts themselves, we have functional re-
quirements and run-time requirements. Run-time requirements are either measurable 
quality constraints (e.g. performance, space usage), or architectural services. We have 
shown in section 3.1 that the latter may be thought of as  functional requirements on 
the virtual machine that executes the program. If we take this view, we could view 
both SOP and AOP, say, as being both concerned with the composition of functional 
concerns (or the corresponding aspects), with the difference that: 

1. SOP (and our own method, VOP) manipulates functional concerns and aspects of 
the user program directly 

2. AOP translates functional concerns on the virtual machine that executes a program 
P, into non-functional aspects to be woven into program P. 

In fact, a number of researchers have recognized that the kind of concerns that 
AOP handles well are best (most simply) expressed at the meta-level, and a number of 
successors to Kiczlaes’s AOP use a meta-level architecture to add functionality to the 
way these machines execute programs—mostly for intercepting message  sends to 
perform processing before or after. In fact, Kiczales himself has said on many occa-
sions that he developed AspectJ™ as a more constrained/safer version of the MOP to 
enable “average developers” to add pervasive behavior without compromising the 
integrity of the VM. Filman & Friedman consider quantification and obliviousness as 
essential features of AOP [5]. Both properties can be naturally expressed at the virtual 
machine level. Steimann that there are no aspects à la AspectJ™ for domain models 
[19]: aspects are solution  (read: software) artifacts, and should have no place in do-
main models or in object-oriented analysis. 

If we accept that aspects à la AspectJ™ are functional aspects on the virtual ma-
chine, we can immediately see that functional concerns and run-time concerns are 
orthogonal, and we can address them separately, at least up to the analysis step. We 
can also see that we shouldn’t even try to combine functional aspects of the pro-
gram(s) that we are developing with functional aspects of the machines that execute 
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them! At least not conceptually. And yet, that is what AspectJ™’s weavers were ex-
plicitly created for! 

Composition filters are based on the message passing (and interception) metaphor, 
but the filters can be either functional, in which case we deal with the normal func-
tional composition, or architectural, in which case, they too, could be handled at the 
virtual machine level. Thus, for the purposes of understanding the separabil-
ity/composability of requirements, and the corresponding composability of the associ-
ated software artifacts, we need only to focus on the functional separately or compos-
ability of (functional) requirements. 

4   Characterizing the Separability of Requirements 

In this section, we attempt the overly ambitious goal of answering two dual questions: 

1. Given two requirements, under what conditions can they be “developed” sepa-
rately, and can their realizations (aspects) be composed at will. The answer to this 
question will help determine the domain or operating range of the development 
homomorphism we illustrated in Figure 1. We refer to this problem as the compos-
ability of requirement realizations. 

2. Given a realization that addresses several concerns, under what conditions can that 
realization be untangled into separable aspects, each of which addressing a subset 
of concerns. The answer to this question may help us assess which systems may be 
re-engineered in such a way that different concerns are addressed in separate—and 
readily reusable—aspects. We refer to this problem as the separability of require-
ment realizations. 

In addition to its practical importance, an answer to the second question will also 
help us understand why case studies have not been as convincing as the textbook 
cases that the original method authors have presented in support of their techniques. 

Section 4.1 looks at the composability of requirement realizations problem for the 
case of functional requirements. We examine the problem from a purely mathematical 
point of view, reducing the separability of two requirements, seen as (input,output) 
relations, to conditions on their domains and ranges. This will enable us to address 
composability issues between runtime requirements or between functional require-
ments, but not between a functional requirement and a run-time requirement. Section 
4.2 tries to answer the separability of requirement realizations for functional require-
ments by looking at the problem of decomposing a function into separate sub-
functions. We look at a range of decomposition/recomposition operators with differ-
ent semantics preserving properties. 

4.1   Composable Requirements 

Given a development transformation T, we consider two requirements R1 and R2 to be 
T-composable if: 

1. we can associate separate realizations to them (T(R1) and T(R2)), and 
2. there exists a composition operator ⊗ on their realizations that satisfies them both, 

i.e. T(R1 Λ R2) = T(R1) ⊗ T(R2) 
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We showed in section 2.1 that functional requirements are transformed using an 
operationalization operator—OR, turning an input-output relation into a function that 
produces the output given the input. Having argued in section 3.1.1 that run-time 
requirements are nothing but functional requirements on the virtual machine, we look 
at the problem of composing two functional requirements through the operationaliza-
tion operator. 

We would like the operationalization of functional requirements to be additive at 
least in those cases where the two requirements have disjoint domains. Consider two 
relations R and R’ such that Domain(R) ∩ Domain(R’)  = Φ.The simplest way of 
implementing R∪ R’ is by taking f(.)⊕f’(.), where f(.)⊕f’(.) = g(x) such that: 

g(x)  = f(x), if  x ∈Domain( R) 
        = f’(x), if  x ∈Domain( R’) 

In other words, the simplest OR(.) would behave as OR(R∪ R’) = f(.)⊕f’(.) 
Note that if we take into account reuse, then we may be able to write f = fpost  ο g ο 

fpre and f’ = f’post  ο g ο f’pre. We do have Domain(f’pre) = Domain (f’) and Domain(fpre) 
= Domain (f), and thus Domain(fpre) ∩ Domain(f’pre) = Φ, but we don’t know whether 
Domain(fpost) and Domain(f’post) are disjoint, and we can’t write OR(R∪ R’) (or 
f(.)⊕f’(.)) as [fpost(.)⊕f’post(.)]ο g ο [fpre(.)⊕f’pre(.)]. 

If the relations have intersecting domains, we can define them as follows: R = R1∪ 
R2 and R’ = R’1∪ R’2 such that: Domain(R1) = Domain(R) - Domain(R’), Do-
main(R’1) = Domain(R’) - Domain(R), and Domain(R2) = Domain(R’2) = Domain(R) 
∩ Domain(R’). In this case, the relation to implement is R1 ∪ R’1∪ (R2∪ R’2), where 
R1, R’1, and R2 ∪ R’2 have mutually disjoint domains. Thus, we have OR(R1 ∪ R’1∪ 
(R2∪ R’2)) = OR(R1) ⊕ OR(R2) ⊕ OR(R2∪ R’2). 

 Object slicing 
and 

aspect/subject 
composition 

Domain splitting 
and program 
dispatching 

Functional decomposition and 
program “piping” 

Input Output 
 

Fig. 2. Comparing three decomposition paradigms 

This relationship is trivially satisfied in case R2 = R’2. This is the ideal case in the 
sense that both requirements agree on what the output should be for the same inputs. 
In that case, the two requirements (R1 and R2) may be seen as two restrictions of the 
same relationship defined on the domain Domain(R1) ∪ Domain(R’1). If the two 
relationships disagree on the output, then we have a problem. We see two levels of 
disagreement. The first level of disagreement is illustrated in the following example. 
Consider the two relations R1 = { (x,y) | 0 < x < 100, and x2 = y} and R2 = { (x,y) | 50 < 
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x < 150, and x2 = y}. The intersection of the two domains consists of the interval 
[50..100]. If both the realizations of R1 and R2 use the positive square root of x—or 
both use the negative square root—then we are fine. If they use different square roots, 
then we have a problem.  This incompatibility is due to an inconsistent choice of 
realizations, and is a common and acceptable course of action. Intuitively, what we 
need in this case to make sure that we use consistent realizations. This is not unlike 
the problem of choosing consistent specializations when we instantiate a framework, 
i.e. the kind of situations for which things such as the factory pattern is applicable.  

The second level of disagreement is the case where the requirements themselves 
disagree, i.e. ∃ x ∈ Domain(R1) ∩ Domain(R2) s.t. R1(x) ≠ R2(x) 

In our view, this is not a case for separation of concerns methods to handle: the re-
quirements disagree, so there is no point in trying to compose the artifacts.  

4.2   Separable Requirements 

Given a development transformation T, we consider a requirement R (an element of 
the domain of T) to be T-separable if there exist, 1) two requirements R1 and R2, 2) a 
composition operator • defined on the domain of T—the requirements—and, 3) a 
composition operator ⊗ on the image of T—the artifacts—such that: 

1. R = R1 • R2  
2. T(R) = T(R1) ⊗ T(R2) 

This is the good old divide-and-conquer analytical development paradigm. With 
structured analysis and design (and programming), the operator is functional composi-
tion, in the mathematical sense, and ⊗ is “piping”, in the programming sense (the 
output of a program or procedure is used as an input to the other). Functional decom-
position is not only useful for reducing complexity, it is also useful for reuse. 

Another valuable pair of operators corresponds to the combination of domain split-
ting and dispatching. Consider the requirement R where domain(R) = D = D1 ⊕ D2.—
the symbol ⊕ referring to disjoint union (partition). Let T be the operationalization of 
requirements (OR(.)), and R1 = R|D1, and R2 = R|D2. Then: 

  if x ∈ D1 call OR(R1) 
OR(R(.)) = 
   if x ∈ D2 call OR(R2) 

We are all familiar with these two techniques, and have used them—and should 
continue to do so—to good measure. Aspect-oriented development techniques advo-
cate other pairs of decompose/recompose or split/join operators which are specific to 
the object-oriented context. These new pairs of operators operate simultaneously on 
functions and data, along the lines of object or class hierarchy slicing (see e.g. [20]). 
In this case, instead of considering the input domain (D) as consisting of simple value, 
we consider it as a tuple (of state variables), and functions (object methods) may op-
erate on various “sub-tuples”. 

Figure 2 illustrates the three decomposition paradigms. For each paradigm, we 
mention the decomposition technique used on requirements, and the corresponding 
composition technique used on the corresponding artifacts. Now, we look more 
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closely at the problem of sliceability of requirements. We start with a strict definition 
of sliceability which supports unrestricted (commutative) recomposition of the arti-
facts. We then propose a weaker form of sliceability which requires an ordered (non-
commutative) recomposition. 

Sliceability. Let R ⊆ A×B, let f(.) = OR(R), and assume that A = S1 ×S2 ×… ×Si 
×Si+1 ×… ×Sn×I and B = S1 ×S2 ×… ×Si ×Si+1 ×… ×Sn×O. We say that R (or f()) 
is sliceable if there exist two functions f1(x1,…,xi,i) et f2(xi+1,…,xn,i) such that 
f(x1,…,xi,xi+1,…,xn,i) =  f1(x1,…,xi,i) •f2(xi+1,…,xn,i). In other words, the 
function f() can be computed as the concatenation of two functions. 

The idea of sliceability is related to the idea that a relation may be written as a sub-
set of the product of two relations. For example, let R1 and R2 be two binary relations. 
We can define the relation R1× R2 as follows: <x1,x2,y1,y2> ∈ R1× R2 if and only if 
<x1,y1> ∈ R1 and <,x2,y2> ∈ R2.  

Intuitively, the sliceability corresponds to the case where we have two functions 
that take the same input and that use and modify different parts of an object, i.e. they 
correspond to two disjoint slices of the same data (or object). Sliceable functions can 
be put together, with no problem. Notice that we require that both functions take the 
input (which may be either a real input or a method selector), and that the output is 
produced between them. In the context of an object-oriented program, if we have a 
method that returns void but modifies the state of the object, then each subfunction 
will have modified its slice. If the function returns a value, then we might be able to 
find a subset of state variables based on which the output is computed, and the slice 
may be made along that. Note, however, that not all relations/functions are sliceable. 
A function that averages the state variables will not be sliceable. 

Subject-oriented programming (and hyperspaces) works best with this ideal case in 
mind. Problematic cases occur when the sliceability hypothesis fails. Interestingly, the 
broken delegation problem can be understood in terms of sliceability of functions. 
Broken delegation happens when a function that occurs on one side (i.e. in a single 
object fragment) calls a separable function that occurs on several object fragments 
(see e.g. [1]): the result is no longer separable. 

Effective sliceability. Let R ⊆ A×B, let f(.) = OR(R), and assume that A = S1× … × Si 
×… × Sj ×… ×Sn×I and B = S1× … × Si ×… × Sj ×… ×Sn×O. Let f(…) be a function 
that implements R. Let f1(…) and f2(…) be two functions with domains S1× … × Si 
×… × Sj ×… ×Sn×I. If f (x1,…,xi,xi+1,…,xn,i ) = < x’1,…,x’i,x’i+1,…,x’n,o>, we use the 
notation f|i to refer to the projection of f over the set Si , i.e., f|i(x1,…,xi,xi+1,…,xn,i ) = 
x’i. Similarly, we define f|S as the projection of f over the set S = Si ×… × Sj for some i 
and j. Let Ref(f) be the set of variables used in the computation of f(…) and Mod(f) be 
the set of variables modified by f(…) be the set of state variables that are modified by 
f, i.e. the set of variables { xi}i such that f|i(x1,…,xi,xi+1,…,xn,i ) = x’i ≠ xi. A function 
f(…) is said to be effectively sliceable if and only if there exist two functions f1(x1,… 
xn,i) and f2(x1,… xn,i) such that: 

Mod(f1) ∩ Ref(f2) =  Φ, Mod(f2) ∩ Ref(f1) =  Φ, Mod(f1) ∩ Mod(f2) =  Φ 
Mod(f1) ∪ Mod(f2) = Mod(f), 
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f|Mod(f) (x1,…,xn,i) = f1|Mod(f1) (x1,…,xn,i) • f2|Mod(f2) (x1,…,xn,i), and 
f|o (x1,…,xn,i) = f1|o (x1,…,xn,i) • f2|o (x1,…,xn,i) 

 
for some ordering of the state variables x1,…,xn. Figure 3 illustrates the first three 
equalities in a Venn Diagram. Note that a sliceable function is also effectively slice-
able. An interesting property of effectively sliceable functions is that the component 
functions may be executed in any sequence. There are other cases of sliceability, but 
in this case, the subfunctions have to be executed in a particular order. We call this 
temporal sliceability. Temporal sliceability is a weaker condition than effective slice-
ability, and is described as follows. Let R ⊆ A×B, let f(.) = OR(R), and assume that A 
= S1×…×Si×…×Sj×…×Sn×I and B = S1×…×Si×…×Sj×…×Sn×O. Let f(…) be a func-
tion that implements R. Let f1(…) and f2(…) be two functions with domains 
S1×…×Si×…×Sj×…×Sn×I. Using the same notation as above, we say that function 
f(…) is said to be temporally sliceable if and only if there exist two functions f1(x1,… 
xn,i) and f2(x1,… xn,i) such that: 
f|Mod(f) (x1,…,xn,i) = f1|Mod(f1)–Mod(f2) (x1,…,xn,i) • f2| A-(Mod(f1)–Mod(f2)) (f1(x1,…,xn,i)). 

Mod(f1) - Mod(f2) represents the set of variables that are modified by f1 but not by 
f2. Some of these variables may, however, be referenced by f2 and we don’t care 
about that. Obviously, the relationship between f1 and f2 is not a symmetrical one, and 
the functions have to be executed in a particular order. 

 

Mod(f1) 

Ref(f1) 
Ref(f2) 

Mod(f2) 

S={S1,…,Sn}  

Fig. 3. A function is effectively sliceable if it can be written as the concatenation of two func-
tions that modify disjoint parts of an object, and don’t refer to the parts that the others modify 

In [11], we showed that provided that methods of objects do not modify objects 
other than the executing ones, any method that computes a function and modifies the 
receiver object can be decomposed into a sequence of pure functional and purely side-
effectal functions. To compose two hybrid functions, we decompose them along the 
purely functional versus purely side-effectal dimensions, find the smallest granularity 
decomposition between the two, and then compose them slice-by-slice. 

The major problem, of course, is our tendency to code “service-oriented func-
tions”, i.e. functions that are application level but that are coded at the domain class 
level. These functions are not composable because they address an application spe-
cific need, each. You would want to compose them because they embody a general 
behavior that is not encapsulated elsewhere. Obviously, not choosing the right granu-
larity is a problem, and leads to methods that are not composable. 
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5   Discussion 

This is a very preliminary investigation into the principles of separation of concerns 
and the foundations of the techniques that promote separation of concerns. The yard-
stick by which innovations in software engineering are to be assessed has always 
been—and rightly so—to determine the problem that a given method, technique, or 
tool, solves. Separation of concerns is only useful to the extent that once the concerns 
have been addressed separately, we are able to re-combine the individual and partial 
solutions into one that addresses all of them.  

Some of the case studies that are available in the literature show cases where con-
cern separation is difficult in practice [7], [8], [9]. Others showed that aspect/subject 
composition is difficult, even in cases where the aspects or subjects embody distinctly 
different concerns [9], [11], [15]. We attempted to frame the separation of concerns in 
software development in terms of homomorphisms of development transformations, 
and then we tried to determine the “operating range” of these homomorphisms. This 
preliminary work raised more questions than it answered, and some of the answers are 
reassuringly common-sensical, but are worth stating: 

• Not all requirements (concerns) are composable in the sense that they lead to com-
posable artifacts. Viewing requirements as input-output relations, we identified 
simple conditions on the domains and images of these requirements, which essen-
tially say that the requirements should not be conflicting. In particular, method can-
cellation through subject composition or aspect weaving is no less dangerous than 
cancellation with inheritance: they are both a sign of either a violation of intent, or 
of sloppy realization (implementation). 

• We should treat aspects that embody run-time requirements differently—and sepa-
rately—from aspects that embody functional (domain) requirements. We framed 
run-time requirements (persistence, fault-tolerance, etc.) in terms of functional re-
quirements of the virtual machine. In an ideal world, such concerns should also be 
handled by virtual machine—or more generally, meta-level—aspects, and a num-
ber of recent approaches have gone that route. However, other considerations, such 
as performance, security, integrity, or portability, may suggest otherwise at the risk 
of inducing composability problems. 

• Not all programs that implement several concerns can be reengineered into sepa-
rate aspects. The underlying concerns/requirements may not be separable (essential 
inseparability), or the current implementation may not lend itself to such a separa-
tion (accidental inseparability). Object slicing helps with accidental inseparability. 

We have started to take a closer look at the existing AOSD methods and the case 
studies to judge the usefulness of the above framework. We were able to explain 
known difficulties with subject-oriented composition (see e.g. [14]) and view attach-
ment [13] in terms of violations of some of the principles outlined above. We have 
also started looking at the broken delegation problem from the perspective of func-
tional composability and separability. The broken delegation problem manifests itself 
when we use aggregation (and message forwarding) as a way of compose behaviors. 
The problem is often referred to as an all-or-nothing problem. The “self” in an object 
component is either used to refer to the component—in which case we have broken 
delegation—or to the entire object, in which case, we do not have a problem. We have 
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shown elsewhere that attempts to fix the broken delegation problem can seriously 
compromise application security, and what we need is a more analytical approach to 
the problem. Our approach enables us to frame the problem. 
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Abstract. In Model-Driven Engineering, a software development process is a 
sequence of manipulation tasks that are applied to models, where model 
transformations play a relevant role. MOMENT (MOdel manageMENT) is a 
framework that is integrated in the Eclipse platform. MOMENT provides a 
collection of generic set-oriented operators to manipulate EMF models. In this 
paper, we present the model transformation mechanism that is embodied by the 
ModelGen operator. This operator uses the term rewriting system Maude as 
transformation engine and provides support for traceability. ModelGen has been 
defined in an algebraic specification so that we can use formal tools to reason 
about transformation features, such as termination and confluence. Furthermore, 
its application to EMF models shows that formal methods can be applied to 
industrial modeling tools in an efficient way. Finally, we indicate how the 
ModelGen operator provides support for the QVT Relations language in the 
MOMENT Framework. 

Keywords: Model-Driven Engineering, Model Transformation, QVT, Algebraic 
Specifications, Traceability. 

1   Introduction 

Nowadays, the Model-Driven Architecture (MDA) [1] and the Software Factories [2] 
initiatives are leading the Model-Driven Engineering field. Both agree that any 
software artifact in a software development process can be dealt with as a model. 
Models provide a more abstract description of a software artifact than the final code 
of the application. Therefore, working on models increases the productivity in a 
software development process. It also increases the portability and the quality of the 
final code by applying generative techniques. In MDA, model transformations have 
become a relevant issue by means of the forthcoming standard Query/Views/ 
Transformations (QVT) [3]. Since any software artifact can be viewed as a model, 
model transformation is the basic mechanism that permits the manipulation of 
software artifacts [4]. 

                                                           
*  This work was supported by the Spanish Government under the National Program for 

Research, Development and Innovation, DYNAMICA Project TIC 2003-07804-C05-01. 
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Within this arena, the Model Management discipline [5] considers models as first-
class citizens and provides a set of generic operators to manipulate them: Merge, Diff, 
ModelGen, etc. We have developed a framework, called MOMENT (MOdel 
manageMENT) [6], that is embedded in the Eclipse platform and that provides a set 
of generic operators to deal with models through the Eclipse Modeling Framework 
(EMF). An algebra of model management operators has been specified generically by 
using the Maude algebraic specification formalism [7] in the MOMENT framework. 

In this paper, we focus on the ModelGen operator, the model transformation 
mechanism of MOMENT, which was presented as a proposal in [8]. This operator 
provides support for the QVT Relations language [3] and also provides support for 
traceability. ModelGen is used by the other model management operators of the 
Framework when a model manipulation has to be performed. Since the ModelGen 
operator is algebraically specified in Maude, this term rewriting system is used as the 
underlying runtime environment for model transformations in MOMENT. This fact 
provides an efficient environment to execute the ModelGen operator and a formal 
environment where algebraic features can be proved, such as the confluence and the 
termination of a model transformation. 

The structure of the paper is as follows: Section 2 presents an overview of the QVT 
support in the MOMENT Framework and an example; Section 3 presents the 
algebraic specification of the ModelGen operator, how it is related to a QVT 
transformation, and the execution of a model transformation in the Framework; 
Section 4 compares our approach with other model transformation tools. Finally, 
Section 5 summarizes the main contributions of this paper. 

2   Model Transformations in the MOMENT Framework 

The ModelGen operator embodies the model transformation mechanism in the 
MOMENT Framework. This operator has been algebraically specified, although we 
use it to manipulate graphical models. To deal with models from an industrial 
standpoint and to manipulate them from a mathematical standpoint, we use two 
complementary Technical Spaces. A Technical Space (TS) is a working context with 
a set of concepts, a body of knowledge, tools, required skills, and possibilities [9]. We 
use the EMF and Maude technical spaces in our Framework. The former is 
characterized by its interoperability with industrial tools for solving actual Software 
Engineering problems. The latter constitutes the formal backbone of our model 
management approach.  

Maude is a declarative language in the strict sense of the word. That is, a Maude 
program is a logical theory, and a Maude computation is logical deduction using the 
axioms specified in the theory/program. Maude is based on rewriting logic, which 
includes membership equational logic [19]. In Maude, membership equational 
theories are defined in functional modules. Computation is the form of equational 
deduction in which equations are used from left to right as simplification rules, with 
the rules being Church-Rosser and terminating.  

Each Maude module specifies not just a theory, but also an intended mathematical 
model. For functional modules such models consist of certain sets of data and certain 
functions defined on such data, and are called algebras. Under Church-Rosser and 



264 A. Boronat, J.Á. Carsí, and I. Ramos 

termination assumptions, the equations of a functional module evaluate algebraic 
expressions to a single final result. By definition, the results of operations in this 
algebra are exactly those given by the Maude interpreter. Thus, a Maude module can 
simultaneously be viewed as an executable formal specification and as a program. 

To achieve the interoperability between the EMF and the Maude technical spaces, 
two kinds of bridges are used in our Framework: two for regular metamodels and one 
for the QVT Relations metamodel.  

For regular metamodels, two bridges are defined between the two technical spaces, 
at the M2-layer and at the M1-layer (using the Meta-Object Facility [10] 
terminology). Both of these permit the integration of MOMENT with EMF. The 
projection mechanism at the M2-layer automatically obtains the algebraic 
specification1 that corresponds to a regular metamodel, by applying generative 
programming techniques2. An algebraic specification that is generated in this way 
provides the constructors that are needed to define models of the corresponding 
metamodel as sets. The inverse projection mechanism that obtains an EMF 
metamodel from an algebraic specification is not relevant in our tool because the 
algebraic specification must conform to several features in order to be used by our 
operators and they should be automatically achieved. We also think that visual 
modeling environments are more suitable for defining these metamodels. At the M1-
layer, we have developed a bidirectional projection mechanism that permits us to 
project an EMF model as a term of an algebra and to project a term of a metamodel 
algebra as an EMF model. In this case, bidirectionality is needed to apply an operator 
to an input model since the input model must be serialized as a term and the output 
term must be deserialized into an EMF model in order to be persisted. 

Another bridge is defined for the QVT Relations metamodel. This permits the 
projection of a QVT transformation as an algebraic specification. This specification 
constitutes the axiomatic presentation of the ModelGen operator, when a 
transformation is defined among several metamodels. 

In Fig. 1, the projection bridges between the two Technical Spaces (EMF and 
Maude) that are used in this work are shown. On the one hand, the dashed arrows 
represent the projection mechanism that obtains an algebraic specification for a 
regular EMF metamodel. On the other hand, the dotted arrow represents the 
projection mechanism that obtains the algebraic specification of a model 
transformation between several metamodels, when it is invoked in one direction. The 
importation of metamodels in an EMF QVT transformation model is also projected 
into the Maude TS by using the Maude module importation mechanism (shown as 
continuous arrows in the figure). Taking into account both kinds of projectors, we can 
deal with a QVT Relations model as the description of a model transformation or as a 
 
                                                           
1  The algebraic specification that is generated for a given metamodel (defined in EMF as an 

Ecore model) permits the representation of models as algebraic terms. Thus, models can be 
manipulated by our model management operators. Algebraic specifications of this kind do not 
specify operational semantics for the concepts of the metamodel; they only permit the 
representation of information for model management issues. 

2  These bridges can also be formalized in MOMENT by considering the Maude metamodel. 
Then, the bridges can be defined as model transformations. 
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Fig. 1. Overview of the QVT support in the MOMENT Framework 

regular model. Therefore, it can be transformed by using another QVT Relations 
model. This fact permits us to define the ModelGen operator as a mechanism to obtain 
higher order transformations through the QVT Relations language. 

We have chosen the UmlToRdbms transformation that is presented in the QVT 
final adopted specification [3] as an example to illustrate the use of the ModelGen 
operator in the MOMENT Framework3. The Ecore metamodel [11] has been used as 
implementation of the UML metamodel. The RelationalDMBS metamodel of the 
QVT proposal has been specified as an EMF metamodel. Using both metamodels, the 
UmlToRdbms transformation is applied to the source UML model in Fig. 2 to obtain 
the target relational schema, which is shown in the figure by using the default EMF 
graphical modeller. 

 

Fig. 2. Example of transformation of a UML model into a relational schema 

3   The Model Transformation Mechanism in MOMENT: The 
ModelGen Operator  

In this section, an overview of the QVT Relations language support in MOMENT that 
is based on the ModelGen operator is provided. We indicate how the model 
transformation in Section 2 is specified with the ModelGen operator, taking the 
Relations language as reference point.  

                                                           
3 The complete algebraic specification of the example can be found at [25]. 
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3.1   Overview of the Model Transformation Mechanism 

In the QVT Relations language, a model transformation is defined among several 
metamodels, which are called the domains of the transformation. A QVT 
transformation is constituted by QVT relations, which become declarative 
transformation rules. A QVT relation specifies a relationship that must hold between 
the model elements of different candidate models. The direction of the transformation 
is defined when it is invoked by choosing a specific domain as target. If the target 
domain is defined in the QVT transformation as enforceable, a transformation is 
performed. If the target domain is defined as checkonly, just a checking is performed. 

In MOMENT, a QVT transformation is defined by means of the ModelGen 
operator. QVT relations are defined by means of the ModelGenRule operator4, which 
is used by the former operator. A model transformation can be applied to several 
source models, which may or may not conform to the same metamodel. It generates 
one target model and a set of traceability models. A traceability model contains a set 
of traces that relate the elements of the source model to the elements of the target 
model, indicating which transformation rule has been applied to each source element.  

In this section, we present how MOMENT executes the ModelGen operator, 
transforming the UML model of the example in Section 2 into a relational schema. 
Fig. 3 shows the two MOF layers involved in a model transformation: the M2-layer, 
where the metamodels are defined; and the M1-layer, where the model transformation 
and the models are defined and manipulated. The front part of the figure represents 
the front-end of the MOMENT framework, i.e. EMF and all the plug-ins that are built 
on it. The back part of the figure represents the formal back-end of the MOMENT 
Framework, where Maude remains. The traceability support has not been taken into 
account in the figure. 

Fig. 3 represents the transformation of the UML model by using the ModelGen 
operator. The steps that are automatically performed by the MOMENT Framework 
when the ModelGen operator is applied to the source UML model are the following:  

−  (1) and (2): We specify both UML and RelationalDMBS metamodels at the M2-
layer by means of the EMF or graphical editors based on this modelling 
framework. For instance, we can also consider XML schemas and Rational Rose 
models as metamodels.  

− (3): The QVT transformation is defined as a model at the M1-layer, but it relates 
the constructs of the source to the constructs of the target metamodels. The 
transformation has to be defined as a model that conforms the QVT Relations 
metamodel by means of a graphical interface or as a program using the Relations 
language. The transformation model can either be defined by the user or 
automatically produced by another transformation. 

− (4): We define a UML model using a UML graphical editor based on EMF. 
− (5) and (6): Both UML and RelationalDBMS metamodels, respectively, are 

projected as algebraic specifications by means of the interoperability bridges that 
                                                           
4  In the MOMENT framework, ModelGen and ModelGenRule axioms are just generated when 

the target domain of the invoked transformation is defined as enforceable. The algebraic 
support for checkings is provided by means of boolean operators and it is out of the scope of 
the paper. 
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have been implemented in the MOMENT Framework. These algebraic 
specifications permit each metamodel to be considered as an algebra that provides 
the constructors to build models as algebraic sets. 

−  (7): The model that defines the QVT transformation is projected into the Maude 
TS as the UmlToRdbms algebraic specification, which contains the specification of 
the ModelGen and ModelGenRule operators. 

− (8): The source UML model, which is defined in step (4) at the M1-layer, is 
projected into the Maude TS as a term of the UML algebra (9). 

− (10): Maude applies the ModelGen operator through its equational deduction 
mechanism, obtaining a term of the RelationalDBMS algebra (11). Thus, Maude 
constitutes the runtime engine for the MOMENT transformation mechanism. 

− (12): This is the last step of the model transformation process. It parses the term 
(11), defining an EMF model (13) in the M1-layer, which conforms to the target 
metamodel defined at the M2-layer. 

 

Fig. 3. Steps performed by the MOMENT model transformation mechanism 

In the model transformation process, the user only interacts with the MOMENT 
framework when defining the source and target metamodels (step (1) and (2)), the 
QVT transformation between both metamodels (step (3)) and the source model (step 
(4)). The other steps are automatically carried out by the framework. The output 
model can also be manually manipulated from a graphical editor. In this paper, we 
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focus on the steps (7) and (10), indicating the structure of the ModelGen operator and 
how it is related to the QVT Relations metamodel. 

3.2   Relations: The ModelGenRule Operator 

In MOMENT, a QVT transformation is projected into several directed 
transformations, by means of ModelGen operator specifications. There is exactly one 
transformation for each direction in which the QVT transformation can be invoked. 
QVT relations of a QVT transformation are projected as ModelGenRule axioms, once 
the transformation direction is determined. The operation ModelGenRule that permits 
the definition of directed transformation rules is declared as follows: 

The ModelGenRule operator has two parameters: the name of the relation (a term 
of the sort RelationSymbol) and a polymorphic list of parameters. The membership 
equational logic [7] is used to define the operational semantics of this operator by 
means of equations. To use the Maude equational deduction as the runtime engine for 
our transformation rules, we need them to be confluent and terminating. The first 
parameter makes the confluence satisfaction easier to achieve. It permits to 
differentiate two transformation rules, even though they have the same list of 
parameters. Therefore, we avoid the situation where several equations can be applied 
to reduce the same term. We discuss the termination issue in more depth in Section 
3.2.2. The second parameter permits the definition of a polymorphic list of parameters 
for the transformation rule. This means that we can define a parameter of any type 
(either a model or a basic type) as input for the transformation rule. 

The result of a transformation rule is a tuple of several elements, where an element 
can be a model conforming any of the metamodels involved in the transformation. 
Among the models that are produced by a transformation rule, we distinguish the 
target model and several traceability models. There is one traceability model for each 
pair (source model, target model). 

3.2.1   Structure of a Transformation Rule in MOMENT 
We can only know the direction of a transformation by means of the enforceable 
property during the invocation process. During this process, the ModelGenRule 
axioms that specify the operational semantics of the relation are generated to be 
invoked later. Fig. 4 shows the two parts that constitute a ModelGenRule axiom: the 
specification of the model transformation and the specification of the traceability 
model definition. The Maude code that is generated for each part of a QVT relation is 
structured as shown in Fig. 4. 

− The Relation Symbol. This is the name of the transformation rule. It is used to 
define a constructor for the sort RelationSymbol, which is used in the 
ModelGenRule axioms for the sake of confluence. 

− The Domains. They constitute the patterns of the transformation rules and the 
body, using constructs of the involved metamodels. Two kinds of domains can be 
distinguished in the transformation invocation: 

op ModelGenRule`(_;_`) : RelationSymbol ParameterList ->  
Tuple{ TTargetMM, TTraceabilityMetamodel,…} . 
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• The domain that is selected as target, when the transformation is invoked, is 
used to generate the body of the transformation rules. In the body of a 
transformation rule, new instances can be created in the target model and 
expressions to obtain the information from the source models can be used. 
Expressions of this kind are called object template expressions. In them, OCL is 
used as the query language and new functions can be declared in a 
transformation to manipulate data. On the one hand, a parametric algebraic 
specification has been defined to provide the operational semantics for OCL 2.0 
expressions5 in MOMENT. On the other hand, Maude itself is suitable to define 
the operational semantics of QVT functions. 

• The source domains of the QVT relation are used to define the pattern of the 
transformation rule. In the pattern, each input model appears twice. This is 
needed to achieve two goals at the same time: to use the pattern matching 
mechanism that Maude provides by means of recursion and to provide support 
for OCL expressions. The first model is used to search the corresponding 
element of the pattern that is needed in the transformation rule. The second 
model is needed because Maude does not provide support for side effects, as in 
pure functional programming languages. This forces us to keep the whole model 
throughout the term reduction process in order to navigate it by means of OCL 
expressions, which can be used in the guard of the pattern. In the following 
section, we study the pattern matching mechanism in further detail. 

Body

Relation Symbol

Source
Domains

Target Domain

When Clause

Where Clause

Target
Model

Definition

Traceability
Model

Definition

op RelationName : -> RelationSymbol [ctor] .

[c]eq ModelGenRule (   RelationName ; 

? Set{ self1, M1 } ? Model1 … ? Set{ selfn, Mn } ? Modeln ... ? TargetMM )  = 

(

Set { ObjectTemplateExpression corresponding to the domain element }

-> including ( p1(where clause) )

-> including (

p1(ModelGenRule (RelationName; ? Set{M1} ? Model1 … ? Set{Mn} ? Modeln ? TargetMM)) 

) -> flatten

, 

Set{ (New("TraceabilityLink", TracMM))

:: OID <-- GenerateOID

:: domain <-- Set{(self1 :: OID), … , (selfn :: OID)}

:: range <-- ((ObjectTemplateExpression) :: OID)

:: manipulationRule <-- “RelationName”

} -> including ( p2( where clause ) ) 

-> including (

p2(ModelGenRule ( RelationName ; ? Set{M1} ? Model1 … ? Set{Mn} ? Modeln ? TargetMM))

) -> flatten

, ... ) 

if ( when clause )   .  

Fig. 4. Axiom for the ModelGenRule operator 

− The When clause. This clause is used as a precondition for the transformation rule. 
Therefore, this guard participates in the pattern matching mechanism. It is used to 
obtain the condition of the equations that constitute the transformation rule. The 

                                                           
5 The OCL 2.0 algebraic support is out of the scope of this paper. 
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resulting equations are applied by the conditional pattern matching mechanism of 
Maude. 

− The Where clause: this clause is used as postcondition for a transformation rule. In 
MOMENT, it is used to generate the code that invokes other QVT relations. In this 
clause, variables can also be initialized with new values to be used in the 
transformation. 

In the QVT proposal, the traceability support is implicit in the QVT Relations 
language and is explicit in the QVT Core language. The ModelGen operator also 
generates traceability models automatically, but its definition has to be explicitly 
specified in the ModelGenRule axioms. The traceability model produced by the 
ModelGen operator conforms to the traceability metamodel that is presented in [12]. 
Thus, it can also be manipulated as just another model by the operator ModelGen. 

In the second part of the axiom shown in Fig. 4, a new trace (instance of the 
TraceabilityLink class) is added to the traceability metamodel. Its domain field is 
filled with the identifiers (or references) of the source elements that have been 
matched with the pattern. Its range field is filled with the identifiers of all the 
instances that are created in the body of the transformation rule. Finally, the 
manipulationRule field indicates which transformation rule has been applied. Since 
the axioms for the ModelGenRule transformation rules are automatically generated 
from a QVT relations model, the traceability support in MOMENT is automatically 
generated and is kept hidden from the final user. 

As an example of a ModelGenRule axiom, we show the axiom that represents the 
regular case pattern for the following relation PackageToSchema of the UmlToRdbms 
transformation (when the transformation is applied to a UML model): 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.2.2   Pattern Matching 
The pattern matching mechanism that is used to apply the transformation rules to 
source models is provided by Maude. To understand how the ModelGenRule uses it, 
we study the parts of a transformation rule that are involved in the pattern matching: 
the source domains and the when clause. 

QVT Relation: 
top relation PackageToSchema // map each package to a schema 
{ pn: String; 

checkonly domain uml p:Package {name=pn}; 
enforce domain rdbms s:Schema {name=pn}; 

} 
Maude Axiom: 
ceq ModelGenRule (PackageToSchema ; ? Set{ self, M } ? Model ? TargetMM) =  
( Set{ (New("Schema", TargetMM)) 
  :: OID <-- (self :: OID) 
  :: name <-- (self :: name) 
 } -> including ( p1(ModelGenRule (PackageToSchema ; ? Set{ M } ? Model ? TargetMM))) -> flatten 
, Set{ (New("TraceabilityLink", TracMM)) 
  :: OID <-- generateOID 
  :: domain <-- Set{ (self :: OID) } 
  :: range <-- Set{ (self :: OID) } 
  :: manipulationRule <-- "EPackage-to-Schema" 
 } -> including( p2(ModelGenRule (PackageToSchema ; ? Set{ M } ? Model ? TargetMM)) ) -> flatten 
) if (self :: ecore-EPackage) . 
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A source domain is a model used as input in a transformation. It is a set that is 
constituted by an associative commutative magma6 of elements. The generic 
constructors for a Set are the following: 

 
Taking into account that the sort that represents model elements is a subsort of 

Magma{X}, a UML model that is constituted by a package and a class can be defined 
as a set with the following term: Set{(UML-Package …) , (UML-Class …) }; where 
UML-Package and UML-Class are the constructors that correspond to these concepts 
in the Maude projection of the UML metamodel. By using a recursion mechanism we 
can use the Maude pattern matching mechanism. We define the following variables: 
the variable selfi can be bound to a term that represents any element of a Modeli 
model. The variable Mi can be bound to any magma of elements of a Modeli model. 
For each QVT relation, we obtain two axioms for the ModelGenRule operator by 
using the following patterns: 

− The base case Set{ selfi }: the right-hand side of this equation is constituted by the 
tuple of the target model and the traceability models. 

 
− The regular case Set{ selfi , Mi }: the right-hand side of this equation is constituted 

by the tuple of the target model and the traceability models, but also contains the 
application of the recursive transformation rule RelationName to the models that 
are constituted by the residuary magmas of elements. In the first element of the 
tuple, we apply the recursive operation and we add the first argument of the 
returning tuple by means of p1. In the second element, we use p2 to get the second 
element of the returning tuple. 

 
The when clause also provides relevant information to determine whether or not an 

axiom can be matched to perform a transformation. When the guard described in the 
when clause does not contain an OCL query that searches elements through a model, 
it can be added to the axiom as a condition, turning the axiom into a conditional 
equation. When the guard contains an OCL query, the guard is added as an 
if…then…else…fi clause in the body of the equation. Both considerations are needed 
for the sake of the efficiency of the Maude AC matching algorithm. 

When no axiom of the ModelGenRule operator can be applied, there is a general 
axiom for all the transformation rules that is applied by default. This axiom 
guarantees the termination of a transformation and is specified as follows: 

                                                           
6 A magma of elements represents a group of elements that may be encapsulated in a set. 

eq ModelGenRule (RelationName ; ? Set{ selfi, Mi } ? Model … ? TargetMM) =  
(Set{…}->including(p1(ModelGenRule (PackageToSchema ; ? Set{ Mi } ? Modeli ? TargetMM)))->flatten  
, 
Set{…}->including(p2(ModelGenRule(PackageToSchema ; ? Set{ Mi } ? Modeli ? TargetMM)) )->flatten)  .  

eq ModelGenRule (RelationName ; ? Set{ selfi } ? Modeli … ? TargetMM) = (Set{…}, Set{…},…) . 

op _,_ : Magma{X} Magma{X} -> Magma{X} [assoc comm ctor] . 
op Set{_} : Magma{X} -> Set{X} [ctor] . 

var TR : RelationSymbol .  var PL : ParameterList . 
eq ModelGenRule (TR ; PL) = (empty-set, empty-set ) [owise] .
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3.3   Transformations: The ModelGen Operator  

The ModelGen operator provides the model transformation mechanism in the 
MOMENT Framework. This operator corresponds to a QVT transformation when it is 
invoked in a specific direction. The ModelGen operator is declared as follows: 

Similarly to the ModelGenRule operator, it has two formal parameters: the symbol 
that represents the name of the transformation and a polymorphic list of parameters 
for the transformation. The result of the operator is a tuple that is constituted by the 
resulting target model and by traceability models. There is one traceability model for 
each pair (source model, target model). 

The code that is generated for a transformation includes the definition of the 
symbol of the transformation and an axiom that specifies the semantics of the 
transformation. Fig. 5 shows the structure of an axiom for the ModelGen operator. 
With regard to the definition of a QVT transformation, we identify the following 
parts: 

− The transformation symbol: represents the name of the transformation. 
− The parameters of the transformation: 

• Source Domains. ? SourceModel1 … ? SourceModeln constitute a list of terms 
that represent the source models of the transformation. 

• Target Domain. TargetMM is a term that represents the target metamodel. It is 
used to create new instances of the classes that appear in the metamodel by 
means of the Maude reflection mechanism. 

• List of names of the input and target models. This list is used to define 
traceability models. This information is needed to indicate the models that are 
related by means of a traceability model. 

− Target model definition. This is the first argument of the resulting tuple, where the 
target model is generated by applying the ModelGenRule axioms to the elements of 
the source models. 

− Traceability model definition. The other arguments of the resulting tuple are the 
traceability models that relate the elements of the target model to those of each 
source model. Furthermore, a new instance of the TraceabilityModel class is 
created to relate a source model to the target one. 

The operator CompleteReferences is needed to simplify the definition of 
transformation rules when the metamodel has opposite references. In EMF, UML 
associations that may appear in a MOF metamodel are defined by means of opposite 
references (two instances of the EReference class) [11]. If the metamodel has opposite 
references, both references must be initialized when a model is defined. This fact can 
make the definition of transformations more complex. Although the EMF editor 
solves this problem automatically, an independent solution is needed. The 
CompleteReferences operator fulfils this goal. Thus, it permits MOMENT to remain 
independent of any other technological space that is different from the Maude TS and 
to compose several transformations without loss of information. This operator has two 
 

op ModelGen`(_;_`) : TransformationSymbol ParameterList  
-> Tuple{ TTargetMM, TTraceabilityMetamodel,… } . 
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Target
Model

Definition

Transformation Symbol

Source Domains

Target Domain

Body

op TransformationName : -> Transformation [ctor] .

eq ModelGen (  TransformationName ; 

? SourceModel1 ... ? SourceModeln ? TargetMM ? sourceFile1 ... ? sourceFilen ? targetFile ) =

(

CompleteReferences(

p1(  topRelationsInvocation ), TargetMM

)

,

CompleteReferences(

p2(topRelationsInvocation) -> including (

(New("TraceabilityModel", TracMM))

:: OID <-- GenerateOID

:: operator <-- "ModelGen(Ecore-to-RDBMSQVT)"

:: domainModel <-- sourceFile

:: rangeModel <-- targetFile

:: links <-- p2(  topRelationsInvocation )

), TracMM

)

, ....  ) .

Traceability
Model

Definition

 

Fig. 5. Axiom for the ModelGen operator 

input parameters: the model to be completed with references and the corresponding 
metamodel, which is expressed as a model conforming the Ecore metamodel. The 
CompleteReferences operator uses the Maude reflection mechanism to traverse the 
whole input model in order to complete the forgotten references. The output of the 
operator is the completed model. 

Taking into account the example of the UmlToRdbms transformation that is 
presented in the MOF QVT final specification, we indicate the Maude code that 
provides the semantics of the transformation when it is invoked to transform a UML 
model into a relational schema. In the ModelGen axiom, we have only added the code 
to obtain the first element of the returning tuple, i.e. the target model. 

4   Related Work 

We provide a brief comparison of the ModelGen operator to other model transformation 
mechanisms that are the most current in the Model-Driven Engineering field [20].  

QVT Transformation: 
transformation umlToRdbms(uml:SimpleUML, rdbms:SimpleRDBMS) {  

top relation ClassToTable {…} 
 top relation PackageToSchema {…} 
 top relation AssocToFKey {…}  
… } 
Maude code: 
op umlToRdbms : -> Transformation [ctor] . 
eq ModelGen (umlToRdbms; ? Model ? TargetMM ? sourceFile ? targetFile ) = 
( CompleteReferences( 
  p1(ModelGenRule (PackageToSchema ; ? Model ? Model ? TargetMM)) 
  -> including(p1(ModelGenRule (ClassToTable ; ? Model ? Model ? TargetMM))) 
  -> including(p1(ModelGenRule (AssocToFKey ; ? Model ? Model ? TargetMM))) -> flatten 
 , TargetMM), … ) . 
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The goal of the study is to compare their support for traceability and transformation 
organization.  

MTF [13] is the IBM Model Transformation Framework, which implements some of 
the QVT concepts and is based on the EMF. It provides a simple declarative language for 
defining mappings between models. An MTF transformation results in a set of mappings 
that relate objects among different models. The direction of the transformation is defined 
when the transformation is invoked. Bidirectional transformations imply constraining the 
kind of model transformations that can be solved. For instance, transformations that 
produce loss of information cannot be taken into account.  

ATL [14] is a model transformation language that provides declarative and 
imperative constructs. A transformation is constituted by several transformation rules 
but there is no mechanism to organize them by means of modules. Traceability 
support is not provided implicitly in a transformation; traceability models can be 
generated by a transformation as in the ModelGen operator. The expressions in a 
transformation rule are defined in OCL expressions, making the ATL language easy 
to learn and to use. Tefkat [15] is a model transformation tool that is quite similar to 
ATL, which is also built on EMF. It incorporates the concept of tracking classes to 
define traces between the source model and the target model that is generated by the 
transformation. However, traces must be defined explicitly. 

XSLT has become a popular alternative for describing model transformations. 
Tools, such as MTRANS [16] or UMT [17], follow this approach by serializing 
metamodels and models into XMI documents and then performing the 
transformations by means of XSLT specifications. Nevertheless, the verbosity of the 
XML syntax sometimes leads to specifications that are difficult to read and to 
maintain [18]. XSLT 2 permits the definition of transformations that generate more 
than one XML document. Therefore, traceability support can be added explicitly to a 
XSLT transformation. This approach can also be applied to EMF models, which are 
persisted in XMI. EMF avoids the serialization of certain data, such as derived 
attributes or default values. Thus, this functionality must be embedded in the XSLT 
specification. This task can easily become cumbersome. 

In [21], graph transformation technology is studied by applying a taxonomy. 
Graph-based model transformations usually take advantage of the visual nature of the 
graphs to specify transformation rules. Composition of graph transformations can be 
achieved by using controlled or programmed graph transformation, such as 
sequencing, branching or looping. For instance, Fujaba [22] uses story diagrams for 
this purpose, while VIATRA [23] uses abstract state machines. In Fujaba, 
transformations are implemented as method bodies, so composition of 
transformations can be achieved by performing method calls. In MOMENT, 
transformations are defined in algebraic modules that can be imported into others. 
Furthermore, the ModelGen operator can be easily composed with other operators by 
using functional composition since we are working in an algebraic context. This 
feature avoids the development of complex frameworks to deal with transformation 
composition. Since the algebraic definition of the ModelGen operator is automatically 
generated from a QVT model, MOMENT can use standard-based notation, graphical 
or textual, to specify transformations. 

Graph-based model transformation technology has a formal background where 
mathematical features such as confluence and termination can be proved. For 



 Algebraic Specification of a Model Transformation Engine 275 

instance, AGG provides the mechanism of critical pair analysis to check termination 
and confluence of graph grammars [24]. As a Maude module is by construction a 
mathematical object, we can directly use all the tools of mathematics and logic, 
including automatic or semiautomatic tools, to reason about the correctness of Maude 
modules. The Maude interpreter itself is the first and most obvious such tool. In fact it 
is a high-performance logical engine to prove logical facts about our theories. 
Furthermore, Maude has a collection of formal tools supporting different forms of 
logical reasoning to verify program properties that can be directly applied to the 
algebraic specifications obtained in MOMENT, including: an inductive theorem 
prover (ITP) to verify properties of functional modules; a Church-Rosser checker, to 
check such a property; a Knuth-Bendix completion tool and termination checker. 

Among the studied tools, MTF is the only one that provides implicit traceability 
support. In the other approaches, the traceability support must be explicitly codified in 
the transformation function to generate a traceability model. In MOMENT, the set of 
axioms that describe the ModelGen operator is automatically generated from a QVT 
Relations model. Thus, the traceability support is also implicit.  

5   Conclusions 

In this paper, we have presented the ModelGen operator, which permits the definition 
of directed declarative transformations that can be applied to several source models, 
which may or may not conform to the same metamodel. Furthermore, a 
transformation can be parameterized with additional data that can act as control 
parameters allowing configuration and tuning. The return value of a transformation is 
a tuple that is constituted by a model and several traceability models. There is one 
traceability model for each pair (source model, target model). The traceability support 
that is provided in MOMENT [12] permits the definition of an incremental 
transformation operator in an easy way, similar to the PropagateChanges operator, 
which is also presented in [12].  

Our formal approach for model transformation permits the application of 
advantageous features to this field, such as transformation composition or modularity. 
Furthermore, formal features (like confluence and termination) can also be studied. 
The MOMENT Framework shows that formal methods can be applied to industrial 
tools not only for proving theoretical aspects, but also for solving actual problems in 
an efficient manner. Nevertheless, an algebraic setting might not be the most user-
friendly environment to work on models. This reason led us to provide support for 
QVT by using generative programming techniques. In this way, Maude remains 
hidden from the final user although its formal features are used in our framework. 
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Abstract. Detecting and localizing a fault within a program is a non-
trivial and time consuming task. Most of the efforts spent for automating
the task have focused on fault detection. In this paper we shift the focus
on fault localization. We introduce a resolution calculus that allows for
representing the program’s behavior based on correctness assumptions.
The fault localization task is reduced to finding consistent assumptions
which are represented as a non-monotonic reasoning process where effi-
cient algorithms exist. Finally, we compare our approach with a previous
approach to fault localization that is based on trace analysis. As a result
we can show that our approach is less sensitive to search assumptions.

1 Introduction

Detecting, locating, and correcting bugs in programs are time consuming and
expensive tasks and are summarized under the term debugging. Currently, de-
bugging is hardly automated with some rare exceptions. For example in fault
detection, tools for automated verification and test case generation have been
available. However, there have been almost no tools and techniques for auto-
mated fault localization presented so far. In this paper we introduce foundations
for automated debugging which are based on the program’s semantics. The un-
derlying idea is to directly use the program’s behavior for a given test case to
derive the location of a bug. For this purpose we represent the behavior of a pro-
gram in terms of a calculus and the test cases as predicates at certain lines in the
code. Moreover, we make underlying assumptions about the state of statements
explicit. This state can be either bug-free (not abnormal) or faulty (abnormal).
These explicit assumptions are used to modify the program’s behavior and to
check the behavior against the given test case. For example, if we assume a
statement to be faulty and all others to be correct, then we might not be able
anymore to derive a value for a variable at a certain position in the code which
contradicts a given test case. Hence, we know that the assumption is consistent
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with the given test case and as a consequence that assuming the statement to be
faulty explains differences between the intended behavior given by the test case
and the detected behavior given by the program run. Because the semantics of
a program, i.e., a model of the program’s behavior, is directly used to identify
the fault location, our approach is called model-based debugging. We illustrate
the basic idea behind model-based debugging using the following tiny program,
which implements the computation of the circumference c and the area a of a
circle from a given radius r.

1. d = 2 * r;
2. c = d * 3.14;
3. a = d * d * 3.14;

Obviously, the program contains a bug in line 3. We further assume r to be 1
before line 1, and c to be 6.28 and a to be 3.14 after line 3. This test case can
be represented in terms of predicates for certain positions in the code. For our
example, we have the following situation:

{r = 1}
1. d = 2 * r;
2. c = d * 3.14;
3. a = d * d * 3.14;

{c = 6.28 ∧ a = 3.14}
We apply Hoare’s calculus [8] to propagate predicates through the program.

Propagating predicates forwards is always possible by applying a statement’s
semantics, whereas backwards propagation of predicates is not possible for all
statements. Especially heap manipulating statements that produce garbage pre-
vent backwards propagation. In particular we use only the rules for program
statements and assignments:

{P (e/x)} x = e {P} {P} s1 {Q}; {Q} s2 {R}
{P} s1 ; s2 {R}

It is worth noting that these rules can only be used when assuming state-
ments to be bug-free. Because if a statement is assumed to be faulty, we do
not know anything about its correct behavior. But even with limited backwards
propagation of predicates we are able to derive worthwhile information for de-
bugging. Using these rules and assuming all statements to be correct we obtain
the following logical sentences:

{r = 1 ∧ 6.28 = 2 · r · 3.14 ∧ 3.14 = 2 · r · 2 · r · 3.14}
1. d = 2 * r;

{6.28 = d · 3.14 ∧ 3.14 = d · d · 3.14}
2. c = d * 3.14;

{c = 6.28 ∧ 3.14 = d · d · 3.14}
3. a = d * d * 3.14;

{c = 6.28 ∧ a = 3.14}
Obviously the sentences before line 1 and between lines 1 and 2 are unsatis-

fiable because it is not possible to derive different values for the same variables
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at a specific position in the code. Because of the detected inconsistency the un-
derlying assumption of all statements being bug-free cannot be correct. Hence,
we have to change the assumptions. If we assume statement 1 to be faulty, we
still derive an inconsistency. Moreover, when assuming a fault in statement 2, we
again come to an unsatisfiable logical sentence. The argumentation is as follows:

From r = 1 and statement 1 we derive d = 2. From the given predicates at
the end of the program we derive predicates before line 3.

{r = 1 ∧ 6.28 = 2 · r · 3.14 ∧ 3.14 = 2 · r · 2 · r · 3.14}
1. d = 2 * r;

{r = 1 ∧ d = 2}
2. [ c = d * 3.14; ] // ASSUMPTION: STATEMENT IS FAULTY

{c = 6.28 ∧ 3.14 = d · d · 3.14}
3. a = d * d * 3.14;

{c = 6.28 ∧ a = 3.14}
However, we do not know anything about the behavior of the statement in

line 2. To allow for deriving new predicates before and after the statement,
we introduce a new assumption saying that Hoare’s rules can be applied to
predicates that do not contain the target variable of a statement that is assumed
to be faulty. If using this assumptions, we finally again obtain an inconsistency
and we know that statement 2 is no explanation for the misbehavior.

In summary we conclude that the correctness assumptions for statements 1,3
and 2,3 both lead to an inconsistency. Such assumptions that lead to inconsis-
tencies are called conflicts. In order to remove both conflicts, we have either
to assume statements 1,2 or statement 3 to be incorrect and the rest of the
statements to be correct. Both of the statement sets are explanations to the
misbehavior but the assumption that statement 3 contains a bug is the smallest
explanation. Hence, using the semantics of the statements and a test case allows
to compute a diagnosis, i.e., statements that when assumed to contain a bug
explain differences between the program’s behavior and the given test case.

The objectives of the paper are: (1) to introduce a formal model for program
debugging that is based on well known paradigms, (2) to present the formal
properties that follow from the given definitions, (3) to compare the outcome of
the proposed methodology with other debugging techniques, and (4) to discuss
limitations and related research.

The paper is organized as follows. We first introduce the basic definitions of
model-based debugging. In the following section we briefly introduce the basic
definitions of another approach to fault localization which is based on program
traces. Afterwards we present a case study which compares the outcome of both
approaches. Finally, we discuss related research and conclude the paper.

2 Model-Based Debugging

In the introduction we used an example to illustrate the basic idea behind model-
based debugging (MBD). It is important for MBD to have a logical program
model and a test case. The model in our case is a calculus that is based on
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Hoare’s calculus with some slight modifications. The modifications are due to
the assumptions about the state of a statement to be either faulty or bug-free.
These explicit assumptions are used to compute diagnoses. In the first part of this
section we discuss the logical model for debugging. The second part is devoted
to the definition of debugging and some of its consequences. The underlying
definitions except the modeling of the program’s behavior originate from model-
based diagnosis [9] but are adapted to closely represent the fault localization
within programs instead of physical systems.

The first step in providing the formal foundations of debugging is to state the
debugging problem which has to be solved. As explained within the elaboration
of our introductory example, we have to know about the program’s behavior and
about a test case containing the expected variable values at certain positions in
the code.

Definition 1 (Debugging problem). Given a program Π. A debugging prob-
lem is a tuple (D, T ) where D is a set of logical rules, i.e., a calculus, that
represents the behavior of the individual statements of Π, and T is a set of
predicates which state the values of variables at certain positions in program Π.

The model D of a given program Π in the definition of a debugging problem has
to fulfill some requirements. First, the model has to provide means for reasoning
about predicates which state the values of variables. Second, it is crucial that
the model makes assumptions about the assumed state of a statement explicit.
Whenever a statement is assumed to behave correct or incorrect the respective
behavior has to be available within the model. Finally, reasoning should not only
be from the beginning of a program to its end but also in the opposite direction.

Figure 1 shows a model for a simple imperative language. The Ab\1 predicate
is used to represent the explicit assumption about the state of a statement, i.e.,
to be either faulty or bug-free. The latter is represented by the negation of the
Ab predicate. For simplicity, the model further assumes that every statement of
program Π has a unique corresponding index and that reasoning can be done
in both directions if not otherwise stated.

¬Ab(i) ⇒ {P (e/x)} x = e {P} (1)

{P} s1 {Q}; {Q} s2 {R}
{P} s1 ; s2 {R} (2)

¬Ab(i) ⇒ {P ∧ p} s1 {Q}; {P ∧ ¬p} s2 {Q}
{P} if p then s1 else s2 end if {Q} (3)

Ab(i) ⇒ {P} s {P} if P does not contain any defined variable of statement s (4)

Fig. 1. Meta-model of debugging calculus D. i denotes the line number of the consid-
ered statement.
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Rules (1), (2), and (3) of model D from Figure 1 originate from Hoare’s
calculus. Rule (4) is introduced because all information about variable values
that are not changed by a certain statement should be propagated to the other
statements. Of course there is the underlying assumption behind that the fault
does not correspond to any defined variable. For example, if we assume the
assignment statement x = not(y); to be faulty, then all information about the
value of a variable z is passed by. Only information about the value of variable
x is blocked. Note that Rule (4) also captures the case where s is a conditional
statement. In this case all variables that are defined in any sub-block are not
allowed to occur in predicate P .

In order to complete the modeling part, we have to provide a rule for loop
statements. The Hoare calculus requires a loop invariant. Computing such an
invariant is not always possible and for our purpose not necessary. Since we
only consider one specific test case we know how often a loop statement has
been executed simply by executing the program. Hence, we replace a loop state-
ment by nested conditional statements and use the model for conditional state-
ments instead. The statement while p do s1 end while is represented
by if p then s1 if p then . . . else ε end if else ε end if where ε
denotes the empty statement block. A necessary condition for this transforma-
tion is that the program halts on the given input. Hence, faults related to infinite
loops cannot be handled within our framework.

The second part of the framework comprises the formal definition of debug-
ging and some consequences. Debugging herein is restricted to fault localiza-
tion. As mentioned in the introductory example we define the result of debug-
ging, i.e., the diagnoses, by checking consistency of derived or given predicates
over a background theory. The background theory captures all knowledge about
the domain of the variables, e.g., boolean algebra or arithmetic. In the follow-
ing we assume that the required background theory is part of the program’s
model D.

Definition 2 (Diagnosis). Given a program Π, the corresponding diagnosis
problem (D, T ), and a set of indices I where each x ∈ I corresponds to a certain
statement of Π. A set Δ ⊂ I is a diagnosis iff

D ∪ T ∪ {Ab(x) | x ∈ Δ} ∪ {¬Ab(x) | x ∈ I\Δ}

is consistent.

Since in most cases we are interested in diagnoses that are as small as necessary
we introduce the concept of minimal diagnoses, i.e., diagnosis Δ is a minimal
diagnosis if no proper subset Δ′ ⊂ Δ is a diagnosis. As already mentioned by
Reiter [9] there only exists a diagnosis if D ∪ T itself is consistent. Considering
our model D from Figure 1 some other properties stated in [9] unfortunately
do not hold. For example, it is not possible to remove {Ab(x) | x ∈ Δ} and
check consistency because D specifies the statement’s behavior when assuming
the statement to be faulty. Fortunately the following property still holds.
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Property 1. Every superset of a diagnosis is itself a diagnosis.

Assume a diagnosis Δ and a set Δ′ ⊃ Δ. For all elements in Δ′ \Δ suppose the
assumption about their state changes from ¬Ab to Ab. Because of the defini-
tion of rule (4) (Fig. 1) this change has an influence on the derived predicates.
However, only less predicates may be derived. Therefore, it is still not possible
to cause an inconsistency.

Because of Property 1 it is enough to compute all minimal diagnoses. However,
computing all minimal diagnoses is still NP-complete because we have to check
all subsets of I. A better way of computing all minimal diagnosis up to a given
size which works in practice is the following. Instead of computing diagnoses
directly, we compute conflicts. These conflicts can be used directly to compute
all diagnosis up to a given size.

Definition 3 (Conflict). Given a program Π, a corresponding diagnosis prob-
lem (D, T ), and a set of indices I where each x ∈ I corresponds to a certain
statement of Π. A set Ξ ⊂ I is a conflict iff

D ∪ T ∪ {¬Ab(x) | x ∈ Ξ} ∪ {Ab(x) | x ∈ I\Ξ}
is inconsistent.

The relationship between conflicts and diagnoses can be explained as follows.
Assume we have two conflicts Ξ1 = {1, 3} and Ξ2 = {2, 3}. This means that
assuming statements 1,3 respectively 2,3 to be correct (and the others to be
faulty) leads to an inconsistency. Formally, we can write . . .∪{¬Ab(1),¬Ab(3)}∪
. . . ! ⊥ respectively . . . ∪ {¬Ab(2),¬Ab(3)} ∪ . . . ! ⊥. In order to remove both
conflicts we have to set the truth value of some Ab predicates to true which
makes the literals ¬Ab to become false and the contradiction ⊥ can no longer be
derived. The algorithm for computing diagnosis from conflicts which is basically
a hitting-set computation is described in [9, 4]. This algorithm is also applicable
in case of programs with multiple faults. Note that the computation of small
conflicts can be improved by keeping track of the derivations. In most cases not
all assumptions are involved in deriving an inconsistency.

3 Model Checking and Counterexamples

In order to compare our formal debugging model with an heuristic approach we
briefly introduce the basic concepts of model checking and counterexamples [2].
The heuristic approach used for comparison stems from Groce and Visser [5].

Model checking of programs is based on a labeled transition system (LTS).
An LTS is a 4-tuple 〈S, S0,Act , T 〉, where S is a finite non-empty set of states,
S0 ⊂ S is the set of initial states, Act is the set of actions, and T ⊂ S×Act ×S
is the transition relation. The program states in S are composed of a control
location C and a data valuation D, and the partial functions c : S → C and
d : S → D are defined. Furthermore the set of states S contains a distinguished
set of error states Π = {π1, . . . , πn} representing assertion violations, uncaught
exceptions, etc. Hence, the set of states is written as S = (C × D) ∪ Π . The
transition relations (s, α, s′) ∈ T are written as s

α−→ s′.
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A finite transition sequence of length k starting in state s0 ∈ S0 is de-
noted as t = s0

α1−→ s1
α2−→ · · · αk−→ sk, where 0 < k < ∞. A finite transition

sequence t = s0
α1−→ s1

α2−→ · · · αk−→ sk is a prefix of the finite transition sequence

t′ = s′0
α′

1−→ s′1
α′

2−→ · · ·
α′

k′−→ s′k′ if 0 < k < k′ and ∀i ≤ k.(i ≥ 0 ⇒ si = s′i) ∧ (i >
0 ⇒ αi = α′

i). Similarly a control suffix of transition sequence t′ is a finite
transition sequence t = s0

α1−→ s1
α2−→ · · · αk−→ sk if 0 < k < k′ and ∀i ≤ k.(i ≥

0 ⇒ c(sk−i) = c(s′k′−i)) ∧ (i > 0 ⇒ αk−i = α′
k−i). Based on an LTS and finite

transition sequences the term counterexample is defined formally:

Definition 4. A counterexample is a finite transition sequence t in the LTS
〈S, S0,Act , T 〉, where s0 ∈ S0, sk ∈ Π, and t = s0

α1−→ s1
α2−→ · · · αk−→ sk.

With respect to an initial counterexample t a so-called set of negatives is defined.
It contains all counterexamples for the given LTS that result in the same error
state from the same control location and is denoted by neg(t) (or neg for short).
The set is formally described by:

Definition 5. A negative (w.r.t. a particular counterexample t) is a finite tran-

sition sequence from s′0 ∈ S0, t′ = s′0
α′

1−→ s′1
α′

2−→ · · ·
α′

k′−→ s′k′ , where 0 < k′ < ∞,
such that (1) c(sk−1) = c(s′k′−1) ∧ αk = α′

k′ , and (2) sk = s′k′ .

Similarly the set of positives is defined. It consists of executions that contain the
statement immediately before the error but do not reach the error state and is
denoted by pos(t) (or pos for short).

Definition 6. A positive (w.r.t. a particular counterexample t) is a finite tran-

sition sequence from s′0 ∈ S0, t′ = s′0
α′

1−→ s′1
α′

2−→ · · ·
α′

k′−→ s′k′ , where 0 < k < ∞,
such that (1) c(sk−1) = c(s′k′−1)∧αk = α′

k′ , (2) s′k′ �∈ Π, and (3) ∀t′′ ∈ neg(t) ·t′
is not a prefix of t′′.

In general the sets neg(t) and pos(t) are potentially infinite. In order to keep the
analysis tractable only subsets are generated. This requires that requirement 3
has to be relaxed: A positive must not be a prefix of any found negative. The
algorithm for generating negatives and positives uses a model checker to explore
backwards from a given counterexample. The search may be limited in case the
state space is quite large or infinite. For a detailed definition and description of
this algorithm refer to [5].

4 Case Study

The case study for the comparison of our formal approach and the heuristic
approach is based on a small example program.

4.1 Example Program

The example program (Figure 2) used for a detailed explanation of the two
approaches is an adaptation from Henzinger et al. [6]. A similar version of the
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1 public static int LOCK = 0;

2 int got lock = 0;
3 int count = 0;
4 do {
5 if (∗) {
6 lock ();
7 got lock++;
8 }
9 if (got lock != 0) {

10 unlock ();
11 }
12 got lock−−; // faulty statement

13 count ++;
14 } while (∗);
15 public static void lock () {
16 assert (LOCK == 0);
17 LOCK = 1;
18 }
19

20 public static void unlock () {
21 assert (LOCK == 1);
22 LOCK = 0;
23 }

Fig. 2. Example program

program is also used by Groce and Visser [5]. The program uses methods lock()
and unlock() in order to acquire and release a lock. The lock is represented by
variable LOCK which is set to 0 or 1 according to the state of the lock. The
two locking methods assert that the lock is not held already if it is going to be
acquired and that it is held if it is going to be released. The program keeps track
of the state of the lock with the additional variable got_lock. A * in a condition
of an if-statement or while-loop denotes a non-deterministic choice. A model
checker that searches for violated assertions has to consider both possibilities.

The program in Figure 2 contains a fault with respect to its specification (i.e.,
the assertions). The decrement of variable got_lock in line 12 should be within
the scope of the if-statement in line 9. This fault allows to acquire the lock twice
and it is possible to release the lock although it is not held.

Compared to the version of the program used in [5] a third variable named
count is added. It was introduced to force a larger state space that has to be
explored by the model checker. The reason for this is that we want to evaluate the
explaining counterexamples approach depending on the search depth. If variable
count would be removed entirely from the program the state space explored by
the model checker would be limited. Thus the number of positives and negatives
would be limited as well.

4.2 Explaining Counterexamples

The work of Groce and Visser [5] is based on comparing negative and positive
program traces. The analyses are intended to give an explanation on “what went
wrong” in a given negative trace, i.e., a counterexample. Obviously this approach
requires the existence of positive traces according to Definition 6. If no positives
are found, the approach will not yield useful results.

The first analysis deals with sets of statements that occur in the negative
and positive traces. Table 1 provides a definition of the sets that are used for
the analysis. The interesting sets that are also given to the user are the only



286 D. Köb and F. Wotawa

Table 1. Transition analysis set definitions

Transition analysis set Definitions

trans(neg) 〈c, α〉|∃t ∈ neg · t contains 〈c, α〉
trans(pos) 〈c, α〉|∃t ∈ pos · t contains 〈c, α〉
all(neg) 〈c, α〉|∀t ∈ neg · t contains 〈c, α〉
all(pos) 〈c, α〉|∀t ∈ pos · t contains 〈c, α〉
only(neg) trans(neg) \ trans(pos)
only(pos) trans(pos) \ trans(neg)

cause(neg) all(neg) ∩ only(neg)
cause(pos) all(pos) ∩ only(pos)

and cause sets. For instance the set only(neg) denotes those statements that
are unique to the negative traces, whereas the set cause(neg) contains those
statements that are necessary for a trace to be negative. Note that the statements
contained in any of the sets strongly depend on the negatives and positives found
by the explanation algorithm. The size of the sets varies between almost all
statements of the entire program and the empty set.

The second analysis deals with the transformation of a positive trace into
a negative trace. Therefore this analysis focuses on the sequence of statements
instead of sets of statements. A transformation from a positive trace t into a
negative trace t′ is performed by replacing a block of statements occurring in t
with a block of statements occurring in t′. Therefore it is necessary that traces t
and t′ consist of the same prefix and the same control suffix. A transformation

from t = s0
α1−→ s1

α2−→ · · · αk−→ sk into t′ = s′0
α′

1−→ s′1
α′

2−→ · · ·
α′

k′−→ s′k′ exists if

1. ∃p · p is a finite transition sequence which is a prefix of both t and t′, and
2. ∃u · u is a finite transition sequence which is a control suffix of both the

largest prefix of t and the largest prefix of t′.

Note that in requirement 2 the largest prefix of transition sequences t and t′ are
taken, since the two traces do not share the same final control location, that is
the negative trace t′ ends in an error state whereas the positive trace t does not.
The minimal transformation from t to t′ is defined as a 3-tuple 〈kt, tp, tn〉, where
kt is the length of the prefix in t (t′), and tp (tn) is the block of statements in t
(t′) that has to be replaced with tn (tp) in order to get a negative (positive) trace.
The statement blocks tn and tp are again evaluated with the transition analysis
defined in Table 1 in order to extract causal information for the fault. Note
that for the second analysis neg and pos in Table 1 are replaced with tn and tp,
respectively. Program traces are written as a sequence of statements, represented
by their line number. Conditional statements containing a non-deterministic
choice also contain the value that was chosen for the particular trace.

Our analysis is based on the counterexample with index 1 shown in Table 2.
The traces found by the model checker with a limited search depth of 17 tran-
sitions include a negative trace (1) which is the initial counterexample itself, a
positive trace (2), a second negative (3), a trace that ends in an assertion but is
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Table 2. Traces found by model checker (search depth 17)

Index Trace

1 [1, 2, 3, 5F, 9, 12, 13, 14T, 5F, 9, 10, A]
2 [1, 2, 3, 5F, 9, 12, 13, 14T, 5T, 6, 7, 9, 12, 13, 14T, 5F, 9, 10, 12]
3 [1, 2, 3, 5F, 9, 12, 13, 14T, 5T, 6, 7, 9, 12, 13, 14T, 5F, 9, 10, 12, 13, 14T, 5F, 9, 10, A]
4 [1, 2, 3, 5F, 9, 12, 13, 14T, 5T, 6, 7, 9, 12, 13, 14T, 5T, 6, A]
5 [1, 2, 3, 5T, 6, 7, 9, 10, 12]

not a valid negative (4), and a second positive trace (5). The first positive trace
(2) has to be removed because it is a prefix of the second negative (3). Hence,
the sets of negative and positive traces are neg = {1, 3} and pos = {5}.

Based on this information the transition analysis sets are computed. Table 3
depicts the resulting sets. These are the same results as described in [5] except
that the increment of variable count occurs in some sets. This is not a problem
since it is easily removed form the explanation by performing some dependency
analysis such as slicing [10]. Groce and Visser now conclude that the set cause =
{5F, 12, 13, 14T } notes the key points of the observed misbehavior: if the system
chooses not to lock (5F ), the decrement of got_lock (12) together with the loop
being reiterated (14T ) leads to an erroneous state. Thus it is possible to try to
unlock even though the lock has not been acquired.

This indeed is an interesting result as it clearly describes the cause of the
observed misbehavior. Unfortunately this information depends on the positive
and negative traces found by the model checker. If the search depth is increased
or decreased, the results look quite different. For example a search depth of 18
causes the model checker to find an additional positive trace and the analysis
sets change as can be seen in Table 4. The analysis now has identified the if-
statement in line 5 as the cause for the negatives. Unfortunately the real fault
in the program is not present any more. The explanation that choosing false
for the condition (i.e., not acquiring the lock) causes the error provides useful
information to the user, but he still has to look at all statements that influence
the locking/unlocking mechanism in order to locate the fault.

Even worse is the result of the analysis if the search depth is increased to
23. In this case the model checker identifies three negatives and four positives

Table 3. Transition analysis for search depth 17

Analysis set Elements

trans(neg) {1, 2, 3, 4, 5F, 5T, 6, 7, 9, 10, 12, 13, 14T}
trans(pos) {1, 2, 3, 4, 5T, 6, 7, 9, 10}
all(neg) {1, 2, 3, 4, 5F, 9, 10, 12, 13, 14T}
all(pos) {1, 2, 3, 4, 5T, 6, 7, 9, 10}
only(neg) {5F, 12, 13, 14T}
only(pos) {}
cause(neg) {5F, 12, 13, 14T}
cause(pos) {}
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Table 4. Transition analysis for search
depth 18

Transition analysis set Elements

only(neg) {5F}
only(pos) {}
cause(neg) {5F}
cause(pos) {}

Table 5. Transition analysis for search
depth 6

Transition analysis set Elements

only(neg) {5F, 12, 13, 14T}
only(pos) {5T, 6, 7}
cause(neg) {5F, 12, 13, 14T}
cause(pos) {5T, 6, 7}

Table 6. Transformation analysis results

S. depth Analysis set Elements

6 only(tn) {5F, 9, 12, 13, 14T}
only(tp) {5T, 6, 7}
cause(tn) {5F, 9, 12, 13, 14T}
cause(tp) {5T, 6, 7}

17 only(tn) {5F, 9, 12, 13, 14T}
only(tp) {5T, 6, 7}
cause(tn) {5F, 9, 12, 13, 14T}
cause(tp) {5T, 6, 7}

S. depth Analysis set Elements

18 only(tn) {5F}
only(tp) {5T, 6, 710}
cause(tn) {5F}
cause(tp) {5T, 6, 7}

23 only(tn) {5F, 9, 12, 13, 14T}
only(tp) {5T, 6, 7}
cause(tn) {5F}
cause(tp) {5T, 6, 7}

whereof two are prefixes of some negative. The analysis reveals that it is not pos-
sible to identify any statement as a cause for the negatives or positives. Further
increasing the search depth leads back to one of the above mentioned cases, that
is no positives are found, the cause of negatives contains some statements, and
the cause of negatives is empty. Furthermore if the search depth is less then 17
it is possible to identify a cause for positives that is given in Table 5. In this case
the cause for positives is identified as taking the lock and incrementing variable
got_lock. This set adds almost no new information since it only confirms that
not taking the lock causes an error.

In addition to the transition analysis sets we also performed the transfor-
mation analysis. Table 6 collects the results of the analysis. The results are
comparable to those of transition analysis. Table 6 also shows that even if tran-
sition analysis reports no causal sets it is still possible to get this information
from transformation analysis (e.g., search depth 23). Although, the results are
not improved by transformation analysis. The main proposition gathered from
transition and transformation analysis is the fact that not taking the lock in line
5 causes an error.

4.3 Applying Model-Based Debugging

Computing possible fault locations for the given example program with MBD
requires test cases. Contrary to model checking it is not possible to specify
values non-deterministically, instead values have to be specified according to
a specific program execution. For the given example program this means that
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Table 7. Diagnoses using different counterexamples

(a) Counterexample 1 (b) Counterexamples 1
and 4

(c) Counterexamples 1, 3,
and 4

Diagnoses

[LOCK = 0]1
[got lock = 0]2
[if (∗)]5
[if (got lock != 0)]9
[unlock ()]10
[got lock−−]12
[while (∗)]14

Diagnoses

[if (∗)]5
[if (got lock != 0)]9
[got lock−−]12
[while (∗)]14

Diagnoses

[if (∗)]5
[got lock−−]12
[while (∗)]14

the non-deterministic choices (*) in lines 5 and 14 must be replaced with some
expressions that enforce a predefined execution trace.

In order to compare the results of explaining counterexamples with the results
of MBD the counterexamples found in Section 4.2 are translated into test cases.
Since the example program uses neither input nor output variables, the test
cases only include values for the conditions of the if-statement in line 5 and the
while-statement in line 14. The assertion statements in lines 16 and 21 are also
part of the model. Obviously, the resulting value of an assertion’s expression is
expected to be true. Therefore every test case will include an observation for
assertions.

Table 7(a) depicts the set of diagnoses that is retrieved by applying MBD to
the example program with the test case derived from counterexample 1. Note
that all diagnoses are single fault diagnoses. This means that every statement
represented by a diagnosis has a direct influence on the observed misbehavior
(i.e., the violated assertion in line 21). The set of diagnoses is rather big compared
to the overall size of the example program. This particular result could also be
reproduced using a dynamic slicing algorithm [10]. But we show that this result
can be improved using multiple test cases.

The results of MBD can be improved by providing additional test cases be-
cause of their potential to introduce new conflicts which make diagnoses more
concise. The model checker found two additional counterexamples, as is shown in
Table 2. Trace 4 is most promising to improve the results since it is very different
from the first one. Contrary to trace 1 it violates the assertion in method lock.
Thus traces 1 and 4 are selected for MBD. Performing diagnosis with these two
traces yields a smaller set of diagnoses (Table 7(b)). The resulting diagnoses now
must be able to explain the fault in both traces. Thus, diagnoses that may only
explain the fault in one of the two traces are removed. Note that Table 7(b) only
lists the single fault diagnoses, although there exist multiple fault diagnoses as
well. But since multiple fault diagnoses are less likely to describe the real error
they are omitted.

The set of diagnoses can be reduced slightly if the third counterexample, trace
3, is also used for MBD. In this case the diagnosis containing the if-statement
in line 9 is removed. Adding further counterexamples to the diagnostic process
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does not improve the results. The final set of diagnoses is shown in Table 7(c).
This is the optimal result that we expect from MBD, since all three diagnoses
that are left have a plausible explanation. It is possible to give a simple repair for
each diagnosis that removes the fault with respect to the given specification. For
example replacing the condition of the if-statement in line 5 with the constant
true or the condition of the while-statement in line 14 with the constant false
will prevent the violation of the assertions. Hence, it is not possible to get rid of
these two diagnoses without any further specification. But most important the
real fault (i.e., line 12) is among the diagnoses as well.

Considering the formal debugging framework based on resolution calculus the
optimal result in terms of a minimal set of program statements has been found. It
is not possible to improve the above result in terms of improving the diagnostic
process or the used model. But still the result can be enhanced before it is
presented to the user. For example it is very likely that conditional statements
are part of the set of diagnoses. This stems from the way they are modeled for
diagnosis. A conditional statement is responsible for selecting one of the possible
branch values for each variable that is part of the conditional statement block.
Therefore a conditional statement can rarely be removed from the diagnoses.
Hence, a way to further improve MBD results is the application of some rating
mechanism. Every type of diagnosis is assigned some probability value. The user
would then be able to check the most likely diagnoses first. Obviously this is
a heuristic approach that requires a well-founded analysis on the likelihood of
faults in software systems.

The time consumed by the two approaches is quite similar, if we account
searching for the positive and negative traces to the fault explanation approach
as well. We conducted our evaluation on a Pentium 4 with 2.66 GHz using
Java PathFinder (JPF) and a prototypical implementation of the value-based
diagnosis model. Computing diagnoses for the example program in Figure 2 takes
about 0.24 seconds on average and 2.4 seconds with overhead for parsing and
model generation. The time for computing the initial counterexample with JPF
takes 1.6 seconds on average. The time to search for additional negative and
positive traces and computing the analysis sets is about 3.0 seconds. For larger
programs, for instance a search tree program with approx. 150 lines of code using
several insertion, deletion and search operations, diagnosis time ranges from 1 up
to 10 seconds. The running time depends on the type and the location of a fault.
With JPF the first counterexample was detected after 2.5 seconds on average.
The analysis then lasted 3.5 seconds on average. Note that for the search tree
example we provided a set of test cases for the model checker. Thus it was not
necessary to search in a large state space to locate a counterexample.

5 Related Research and Conclusion

Software debugging and the application of automated tools to this task is an
active research area. Detecting bugs using model checking [2] is becoming an
accepted technique, providing witnesses of bugs called counterexamples and cor-
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responding test cases. Several solutions to the challenge of localizing bugs based
on these witnesses were proposed. Especially the model checking community ap-
plies heuristic approaches for localization. Common to all these approaches is
their lack of a clear semantics for the reported fault locations.

In addition to the explanation approach discussed in this paper, Ball et al. [1]
for instance use a model checker to identify the cause of an error. Their approach
searches for counterexamples and compares them to a correct trace of the pro-
gram. The main idea is that the differences between correct traces and erroneous
traces identify the root cause of a fault. Those parts of the counterexample that
are not part of the correct trace are replaced with halt-instructions. This pre-
vents the model checker in subsequent runs to find the same counterexamples
again. The additional counterexamples are used to refine the fault locations.

A similar work to fault explanation is the work of Zeller et al. [7, 12], Delta
debugging. The motivation of their work is to answer the question why a program
does not work anymore after changing it. The aim of delta debugging is to isolate
a cause-effect chain that represents the variables and their values that caused
the failure. Based on a failing and a correct program execution, delta debugging
minimizes the difference between the two runs in terms of isolating the relevant
input and states. Analogous to explaining counterexamples this approach relies
on the existence of successful program runs that are similar to the failing ones.

Model-based diagnosis is related to program-slicing [10] as is stated by Wo-
tawa [11]. In case of a dependency model for diagnosis it is shown that slices
are equivalent to conflict sets. In our debugging calculus the relation to slic-
ing appears in terms of Hoare’s rules, since a predicate is only transformed by
a statement if it has an effect on the predicate. This is similar to the slicing
approach using weakest preconditions proposed by Comuzzi and Hart [3].

We presented a formalization of model-based debugging based on a resolution
calculus. Contrary to other debugging approaches we provide a formal model for
describing program behavior and do not rely on any heuristics. The formality
of the model and the underlying diagnosis theory allows to assign a precise se-
mantics to the diagnoses (i.e., fault locations) reported by the approach. This
is an essential difference to heuristic approaches where no clear semantics for a
reported cause is given. The quality of heuristic approaches diverges depending
on many parameters. The same fault produces different causes depending on
the position of the fault within the program, the program traces used for ex-
planation and the time spent for explanation (i.e., the search depth). Contrary,
our approach does not make any structural assumptions except the implicit fault
model. Adding more information (e.g., more counterexamples) leads to more pre-
cise diagnoses, whereas the results of heuristic approaches may become worse.

The presented approach contains some limitations. The debugging calculus
used to model program behavior induces a specific fault model. That is, state-
ments that are assumed to be faulty do not affect predicates that do not contain
any target variable of that statement. This fault model restricts the set of faults
that are precisely localizable with our approach. In case of a faulty assignment
statement with the wrong target variable our approach derives wrong predi-
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cates. Nevertheless, debugging experiments based on this calculus have shown
that such structural faults are localized by our approach, but only in diagnoses
with higher cardinality. This stems from the fact that a wrong target variable in
general provokes a wrong value in two variables, the actual target variable and
the intended target variable.

Faults that result in non-terminating programs can not be handled at all.
This mainly stems from modeling of loop statements by unrolling them into
nested conditionals. The number of loop iterations must be known to generate
the behavioral model of a program.
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Abstract. Component-Based Development (CBD) is an effective approach to 
develop software effectively and economically through reuse of software 
components. Model Driven Architecture (MDA) is a new software development 
paradigm where software is generated by a series of model transformations. By 
combing essential features of CBD and MDA, both benefits of software 
reusability and development automation can be achieved in a single framework. 
In this paper, we propose a UML profile for specifying component-based 
design in MDA framework. The profile consists of UML extensions, notations, 
and related instructions to specify elements of CBD in MDA constructs.  
Once components are specified with our profile at the level of PIM, they  
can be automatically transformed into PSM and eventually source code 
implementation. 

1    Motivation 

MDA is a new software development paradigm where a model plays a key role in 
automatic software development [1]. It provides a systematic framework to understand, 
design, operate, and evolve all aspects of enterprise system, using engineering methods 
and tools. The framework is based on modeling different aspects and levels of 
abstraction of such systems, exploiting interrelationships between these models.  

A very common technique for achieving platform independence is to target a 
system model for a technology-neutral virtual machine. A model in PIM is reusable 
over different platforms. Hence, we regard PIM as neither executable unit nor 
implemented unit. PIM enables models to be traced and improves maintainability 
through modifying model and regeneration into PSM. 

CBD is another promising approach to develop software system effectively and 
economically through reuse of software components. Especially, domain-common 
components provide a common set of features and functions in a domain, so that 
application members can utilize the components by customizing the behavior with 
minimum effect.  
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Therefore, if MDA is combined with CBD approach, we can acquire a highly 
effective development environment where the commonality and variability(C&V) in a 
domain are modeled and developed as MDA compatible components, and software 
development can be greatly automated. Moreover, since C&V is reflected in 
designing PIM and code-level components are not limited to only one platform, the 
reusability of components is greatly increased. 

In this paper, we suggest techniques to combine the advantage of CBD and MDA. 
We first define a component-based PIM (CB-PIM) and proposed a UML profile for 
specifying component design in MDA/PIM. The profile consists of UML extensions, 
notations, and related instructions to specify elements of CBD in MDA constructs. If 
components are designed by using the proposed method, the design can be 
automatically transformed into source code implementation, yielding benefits of 
reusability and automation. 

2   Foundation 

2.1   Model Driven Architecture (MDA) 

MDA is an approach to using models in software development. The essence of 
MDA is making a distinction between Platform Independent Models (PIMs) and 
Platform Specific Models (PSMs). To develop an application using MDA, it is 
necessary to first build a PIM of the application, then transform this using a 
standardized mapping into a PSM, and finally map the latter into the application 
code by automation.  

The three primary goals of MDA are portability, interoperability and reusability 
through architectural separation of concerns [1]. Some of the motivations of the MDA 
approach are to reduce the time of adoption of new platforms and middleware, 
primacy of conceptual design, and interoperability. The MDA approach makes it 
possible to save the conceptual design and the MDA helps to avoid duplication of 
effort and other needless waste [2][3]. 

2.2   UML Profile 

A UML profile defines standard UML extensions that combine and/or refine existing 
UML constructs to create a dialect that can be used to describe artifacts in a design or 
implementation model. The UML profile defines a set of UML extensions that 
capture the structure and semantics. It defines several standard extension mechanisms, 
including stereotypes, constraints, tagged values and icons [4]. When one defines a 
profile, it is common MDA practice to also define mappings that specify how to 
transform models conforming to the profile into artifacts appropriate to the kinds of 
systems. If a model is not specified by a particular UML profile, the model can not be 
transformed automatically by MDA mechanism. 

The OMG has adopted a MOF metamodel of Java and EJB to complement the 
UML profile for EJB [5], a UML profile for modeling enterprise application 
integration [6] and a UML profile for CORBA [7] as well. However, these profiles 
only support implementation levels and do not present component of a PIM level.  
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2.3   Fontoura’s UML-F  

UML-F is an UML extension that supports working with object-oriented frameworks 
and allows the explicit representation of framework variation points [8]. A 
framework, UML-F assumes, is a collection of several fully or partially implemented 
components with largely predefined cooperation patterns between them.  

This framework implements the software architecture for a family of applications 
with similar characteristics, which are derived by specialization through application-
specific code. UML-F suggests constraint {appl-class}, {variable}, {extensible}, 
{static}, {dynamic}, {incomplete}, {for all new methods} and {optional}.  

However, elements are not explicitly identified in this model and no precise 
definition for the elements is suggested. Only the overall meaning of a framework that 
UML-F reference is explained. 

2.4   Exertier’s Component Design PIM  

Exertier suggests a ‘Component Design PIM’ that represents a platform-independent 
solution expressed in terms of software components [9]. The modeling of the 
distributed components PIM includes four major activities. Partition the system: The 
architecture of a software subsystem identifies a set of architectural elements, here 
components, which collaborate to achieve the system’s functional and non-functional 
requirements. The objective of this activity is to specify this decomposition. Perform 
the component boundary design: As defined by UML2.0, a component is a modular, 
deployable and replaceable (pluggable) part of a system. It encapsulates its internal 
part and exposes a set of interfaces. Perform the component internal design: When the 
boundary of a component has been defined, its internal design can be performed. 
Perform the components logical deployment: Components collaborate to reach 
functional and non-functional requirements of the subsystem.  

This research only suggests four activities for designing component as a PIM. 
However, it does not deal with how to specify each activity and variability of 
component for PIM. 

2.5   Kim’s Variation Types 

Kim’s work establishes a theoretical foundation on variability in component based 
development by defining five types of variability and three kinds of variability scope 
[10]. In this, various variability-related terms are defined such as Variation Point 
(VP), Variant, and Variability. Also, five types of variability in CBD are identified; 
variability on Attribute, Logic, Workflow, Interface and Persistence. Attribute is 
defined as an abstract storage to store values, and it is realized as constants, variables, 
or data structures.  

Attribute variability denotes occurrences of variation points on attributes. Logic 
describes an algorithm or a procedural flow of a relatively fine-grained function. Logic 
variability denotes occurrences of variation points on the algorithm or logical 
procedure. Workflow variability denotes occurrences of variation points on the 
sequence of method invocations. Persistency is maintained by storing attribute values of 
a component in a permanent storage so that the state of the component can alive over 
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system sessions. Persistency variability denotes occurrences of variation points on the 
physical schema or representation of the persistent attributes on a secondary storage. 

3   Elements of Component Design 

In this section, we define elements of a component design and each element is 
elaborated in details. 

A component is defined as a set of related classes, and it provides a relatively 
coarse-grained functionality as Fig. 1. All the classes in a component are related in 
some way; association, inheritance, aggregation, composition, and dependency. 
Operations available through the interface of components are generally larger-grained 
than methods in a class. The behavior of these operations is modeled as a workflow, 
which is a sequence of method invocations among the objects/classes in a component. 

Provided

Customize

Required Workflow

Class Dependency

Variability

VariantVariation Point
2..*

1..*

2..*

1..*

OperationParameter

Interface

Constraint

Component

1..*

1

1..*

1

1..*
1

1..*
1 2..*

1..*
2..*

1..*

Invariant Precondition Postcondition

 

Fig. 1. The metamodel of component 

An interface has one or more operations, and each operation is given a signature 
that consists of the operation name, input parameters and a return type. Semantics of 
each operation should be described to define the behavior and constraints of the 
operation. It is described by a pre-condition, a post-condition, an invariant, side 
effects, and constraints. A post-condition describes the state of an object that should 
be met after an operation finishes execution. A side effect of an operation is any 
additional changes in the state of related objects besides the main object. 

Variabilities are characteristics that may vary from application to application. In 
general, all variabilities can be described in terms of alternatives. Variability is 
defined as variation points and variants. Modeling and realizing variability is one of 
the unique features of CBD. Variability is characterized by a number of variations 
within the common requirement. It consists of variation points and all their valid 
variants for variable requirement that is determined to have a minor and detailed 
difference among some family members by relevant stakeholders.  

A variation point identifies one or more locations in a software asset at which the 
variation will occur [11]. Griss defines variation point as an explicitly designated 
location within a component at which a variability mechanism may be used to create a 
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customized component [12]. A Variation Point is a place in software where the minor 
difference occurs for variable requirement. A Variant is a value or instance that can 
validly fill in a variation point, i.e. a variant resolves a variation point. 

A software quality model is a specification of software quality attributes and their 
relationship. ISO 9126 is a representative quality model for generic software [13]. A 
quality attribute is a non-functional characteristic of a component or a system, such as 
integrability, usability, efficiency, modifiability, reliability, security, transaction, 
flexibility or availability. Also, deployment of component affects performance, 
reliability, security, availability, capacity and bandwidth. The component is an 
executable unit. Therefore, we need not only functionality of component but also 
extra functional information that supports components deploying and operating. 

4   Component Development Process Using UML Profiles 

In this section, we propose a component development process using UML profile for 
specifying components to improve the applicability of PIM of component level as  
Fig. 2. Analysis process extracts functional and non-functional requirements. The 
analyzed requirements are represented using UML 2.0 by object oriented design 
process. This process yields PIMs based on objects.  
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Fig. 2. Component Development Process using UML Profile for Components 

In the conceptual component design, the PIMs of object level transform into 
component-based PIM (CB-PIM) that presents general component information. The 
general component information that is units, interfaces, variability, and environments 
of components does not depend on component platforms such as EJB, CORBA, etc. 
This process identifies the general component information. None of these can be 
represented by UML 2.0 [19]. Therefore, we need to UML profile for specifying 
components to present these. The UML profile will be introduced later. Object PIM 
transforms into CB-PIM that is not dependent on component platform such as EJB 
and CORBA.  

In the detailed component design, the CB-PIM can be automatically transformed 
into each PSM using the UML profile for component platforms such as UML profile 
for EJB. Finally, the generated PSMs are transformed into each component source. 
Therefore, traditional MDA process reuses the object level of PIM. Our MDA process 
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reuses the component level of CB-PIM. Once components are specified with our 
profile at the level of PIM, they can be automatically transformed into PSM and 
eventually source code implementation. 

5   UML Profile for Specifying Components 

In this section, we suggest a UML profile for specifying components. Our UML 
profile to represent CB-PIM is based on the UML 2.0. Elements from UML 2.0 and 
EDOC are used in our profile; the elements for CB-PIM that are not supported by 
UML 2.0 [14] are extended from MOF. Our UML profile is MOF. Therefore, the CB-
PIM that is specified by our profile can be presented by common MDA tools.  

5.1   UML Profile for Specifying Component Units 

In CBD, a component is the fundamental unit of packaging related objects [12], hence 
we need to specify the related objects in a component in PIM. A port is a connection 
point between a classifier and its environment. Connections from the outside world 
are made to ports according to provided and required [15]. Workflow in a component 
can be designed by sequence and communication diagrams according to UML 2.0. 
The UML profile for specifying component units is presented as Table 1. 

Table 1. The Elements of UML Profile for Component Units Design 

Components are in general classified into system components and business 
components [16]. A system component interacts with client programs and manages 
client transactions by coordinating message flows among participating components 
and/or objects which mostly manipulate data. System components provide a system 
service that is the external representation of the system, providing access to the 

Element Presentation Applies to Remarks 

Component «component» component Use UML 2.0

System Component «SysComponent» component

Business Component «BizComponent» component

Transient Class «Transient» class

Persistence Class «Persistence» class Default

Primary Key «UniqueId» attribute

Synchronous Message «Sync» method Default

Asynchronous Message «Async» method

Message Call «use», «call», etc. dependency Use UML 2.0

Relationships
association, inheritance,
composition, aggregation,
dependency

relationship Use UML 2.0

Constraints { }, pre:, post:, inv: class, method,
relationship, etc. Use OCL

Algorithm Use Text method UseOCL, ASL
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services of the system. This service acts as a façade and a mediator for the business 
service [17]. A business component consists of persistent objects which handle 
persistent business data. Hence, business components execute upon the requests from 
system components. To denote two types of components in PIM, we use stereotypes; 
«SysComponent» and «BizComponent».  

Persistency objects that should be stored in database or file systems are represented 
by a stereotype «Persistence». If some objects such as value objects [17] for 
transforming data are not persistency, a stereotype «Transient» is used. Asynchronous 
messages use a stereotype «Async» that are described at methods in class, sequence, 
and communication diagrams. Constraints and algorithms can be expressed by Object 
Constraints Language (OCL), and Action Semantic Language (ASL). 

As Fig. 3 shows, the LoanMgr component is denoted as a system component with 
«SysComponent» stereotype, and composed of one class. The LoanAccount 
component is denoted as a business component with «BizComponent» stereotype, and 
its two member classes are shown. 

«SysComponent»
LoanMgr

«BizComponent»
LoanApplication

«use»

«BizComponent»
LoanAccount

«use»

Loa nMgr

Account LoanAccount

LoanApplication Mortgage

 

Fig. 3. Example of Expressing Component Units 

5.2   UML Profile for Specifying Interfaces 

A component provides its component-level interface, i.e. the protocol for accessing 
the service of the component. In CBD, an interface is clearly separated from 
component implementation to increase the maintainability and replaceability [12]. 
Hence, we need to specify some interfaces as well as component units in CB-PIM as 
Table 2.  

Table 2. The Elements of UML Profile for Interface Design 

Element Presentation Applies to Remarks 

Interface «Interface» Interface Use UML 2.0 

Provided Interface «ProvidedInterface» Interface Use UML 2.0 

Customize Interface «CustomizeInterface» Interface  

Required Interface «RequiredInterface»,  Interface Use UML 2.0 

Signature operationName(param:Type): 
ReturnType Operation Use UML 2.0 

Constraints { }, pre:, post:, inv: Class, Method, 
Relationship OCL 

Algorithm Use Text Method OCL, ASL 
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In CBD, three types of interface can be modeled; provided, customize and required 
interfaces. The provided interface specifies the services provided by a component and 
it is invoked by other components or client programs at runtime. The stereotype 
«ProvidedInterface» is used to denote this interface, and the name of the provided 
interface is defined by using ‘Ip’ prefix name. 

Components often provide mechanisms to tailor the behavior of the components 
through an interface designed especially for this purpose. A customize interface 
consists of methods that are used to assign a variant to a variation point [18]. To 
specify customize interface, we use a stereotype «CustomizeInterface» and ‘Ic’ prefix 
on the name of the customize interface. 

The required interface specifies external services invoked by the current 
component, i.e. a specification of external services required by the current component 
[18]. By specifying the required interface for a component, we can precisely define 
the services invoked by the current component. This information can be later used in 
integrating related components into an application or a component framework. The 
required interface can be specified with a stereotype «RequiredInterface». An 
interface consists of operation signatures and their semantics. The semantics can be 
expressed in terms of pre- and post-conditions and invariants using OCL. 

«SysComponent»
LoanMgr

«BizComponent»
LoanApplication

«use» IpLoanApplication

makeLoanApp()
examinationLoanApp()

<<ProvidedInterface>>

IcLoanApplication
<<CustomizeInterface>>

 

Fig. 4. Example of Expressing Interfaces 

Fig. 4 shows an example of expressing interfaces and their realized components in 
CB-PIM, where a LoanApplication component is realized by IpLoanAppication 
interface and IcLoanApplication interface. The IpLoanApplication interface is a 
required interface of LoanMgr component. The LoanMgr component requests 
services of the LoanApplication component. The required interface of the LoanMgr is 
the IpLoanApplication. 

5.3   UML Profile for Specifying Variation 

The commonality and variability is made explicit through variation points and 
variants in the components and other reusable component elements [12]. The goal is 
to create a set of reusable components that expresses commonality and variability 
appropriate to the family of applications. 

The variability can increase the reusability of component. However, the UML 
does not support notations of variability. Therefore, variability is designed by non-
standard stereotypes, tagged values, or note elements [20]. If the variability is 
presented by standard notation, MDA tools identify variation points by the 
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variability. The variation points of PIM or PSM can be filled by other design 
artifacts and automation tools.  

We define types of variation that are attribute variability, logic, workflow, 
persistency and interface variability as in [10]. To express variation points of a 
component in CB-PIM, we propose «VP-Attr», «VP-Logic», «VP-WF», «VP-
Persistency» and «VP-Interface» stereotypes as in Table 3. 

Table 3. UML Profile for Variation Design 

Element Presentation Applies to Remarks 
Variation Point (VP) «VP» Attribute, Method  

Attribute VP «VP-Attr» Attribute, Use case  

Logic VP «VP-Logic» Method  

Workflow VP «VP-WF»  Method  

Interface VP «VP-Interface» Operation  

Persistency VP «VP-Persistency» Operation, Method  

Variant «Variant» Class, Operation, Method  

Variation Scope {vScope = value} Variation Point Close, Open 

VP ID {vpID = value} Variation Point, Variant  

Variant ID {varID = value} Variant  

Constraints { }, pre:, post:, inv: Class, Method, Relationship OCL 

Algorithm Use Text Class, Method OCL, ASL 

ID of Variation Point

ID of Variant

ID of Variation PointVariation Point

Variant

Variation Scope

 

Fig. 5. Example of Expressing Variation 

We present two kinds of scope of variation points. Open scope of variation point 
has any number of variants which are already known and additional variants which 
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are currently unknown but can possibly be found later at customization or deployment 
time. In constraint, close scope of variation point has two or more variants which are 
already known [10]. 

Fig. 5. shows an example of expressing variability in CB-PIM. The logic of 
calculateIntereste()can be changed by each family member. The class 
‘LoanApplication’ has two variation points which are guarantor and replyCount. Two 
variants of the attribute guarantor are a type String and a class Guarantor. The 
attribute guarantor has variation that has two variants; String and object Guarantor. If 
the variant string is set as {varID=”1”}, the attribute has string data type to store 
guarantor’s ID. If the object Guarantor is set, the data type of the attribute becomes 
Guarantor. In the implement process, the variation will be implemented by the value 
of varID later. 

5.4   UML Profile for Specifying Extra-Function 

A component is an executable unit. We need not only functionality of components but 
also extra functionality of components that supports components deploying and 
operating. The extra functional properties extensions are motivated more by the desire 
to ensure that interface specifications are sufficiently complete to ensure correct 
integration than by the desire to extend the scope of information hiding to additional 
properties. Both ends are served by these extensions [21].  

To specify extra functional information in CB-PIM more practically, we classify 
properties into four types; deploy property, runtime property, transaction property and 
security property as Table 4 . A deploy property captures information for deploy on 
server. A runtime property specifies runtime environment for component instances. A 
transaction property defines method of transaction. A security property manipulates 
strategy about usage of component. 

For example, the stereotype «DeployProperty » specifies information for deploy 
environment. An attribute deployedName as align is called and managed by 
component middleware server. When the component is running in a server, the 
mechanism of the component server may use the align name. The components are 
packaged automatically by the artifactName attribute.  

Table 4. UML Profile for Extra Functional Design 

Element Presentation Applies to Remarks 

«DeploymentProperty» Stereo type Deployment 
Property deployedName, artifactName 

Component 
Tagged Value 

«RuntimeProperty» Stereo type 

Runtime 
Property 

virtualClientsPerInstance, 
instancePerComponent, 
instanceTimeToLive 
componentTimeToLive, 
instanceInactivityTimeout 

Component 
Tagged Value 

«TXProperty» Stereo type Transaction 
Property useTX, TXAttrType,

TXIsolation, TXTimeOut 

Component,  
Interface,  
Class, 
Method Tagged Value 

«SecurityProperty»  Stereo type Security 
Property userRoleName 

Component, Interface, 
Class, Method Tagged Value 
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Our UML profile represents an activation policy that describes how a client gains 
access to the component, whether it has exclusive access to the component, and 
certain lifetime restrictions on the component. The stereotype «RuntimeProperty» 
specifies information for runtime environment and lifetime restrictions. The activation 
constraints that can currently be specified in a runtime property are: limits on the 
number of clients per-instance and per-component, restrictions on the number of 
instances per-component, limits on the time an instance or a component may exist, 
including an inactivity timeout, the name by which clients may activate the 
component and activation operations which allow parameterized activation of the 
component.  

 

Fig. 6. PIM showing Deploy Property of LoanMgr Component 

The stereotype «TxProperty» specifies strategy about transaction of component. If 
useTX attribute is false, other transaction attributes are ignored by PSM or Code 
level. The attribute TxAttrType has a TxAttrTypeKind enumeration type. The 
TxAttrTypeKind enumeration type consists of required, requiredsNew, supports, 
mandatory, notSupported and never value. The attribute of TxIsolationType has a 
TxIsolationTypeKind enumeration type. The TxIsolationTypeKind enumeration type 
consists of readUncommitted, readCommitted, repeatableRead and serializable. The 
TxTimeOut is a timeout period for transaction operation. If the transaction access 
time is over TxTimeOut, the transaction should be rolled back.  

The stereotype «SecurityProperty» contains strategy about security of component. 
The attribute of userRoleName is the permitted role name of a component’s caller. 
The role of the component is assigned by this userRoleName attribute. The customize 
interface may used by an administrator. In this case the userRoleName attribute of the 
«SecurityProperty» is an ‘administrator’. The provided interface may used by all 
customers. This userRoleName is an ‘all’. This attribute may apply to <security-role-
ref>, <security-role> and <method-permission> in the deployment descriptor at PSM 
level for EJB. Fig. 6 shows an example of expressing extra functional property of a 
LoanMgr system component in CB-PIM. 
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6   Assessment 

The Fountoura’s UML-F [8] is based on object framework. Elements are not 
explicitly identified in this model and no precise definition for the elements is 
suggested.  UML-F reference only explained the overall meaning of a framework. 
Exertier’s research [9] only suggests four activities for designing components with a 
PIM. This research does not deal with how to specify each activity and the variability 
of components with a PIM. The UML 2.0 and UML profile for EDOC [22] does not 
fully present the profiles for specifying general component.  

Table 5. Comparing the suggested UML Profile with others (✔: Supported) 

                 Technique 
Factor 

Comp. 
Spec. 

UML
2.0 

EDOC
Profile

Our 
Profile 

Remarks 

Component Units ✔  ✔  ✔  ✔  «SysComponent», etc. 
Provided Interface ✔  ✔  ✔  ✔  «ProvidedInterface» 
Required Interface ✔  ✔   ✔  «RequiredInterface» 
Customize Interface ✔    ✔  «CustomizeInterface» 
Variation Point ✔    ✔  «VP-Attr», etc. 
Variant ✔    ✔  «Variant», etc. 
Non Functional Design ✔    ✔  «TXProperty», etc. 
Workflows ✔  ✔  ✔  ✔  Sequence Diagram, etc. 
Reusing Model Level  ✔  ✔  ✔  PIM Level 

Our profile covers variability and extra functional designs as well as the four 
designs of Exeriter’s component design PIM such as partition of the system, 
component boundary design, component internal design, and components logical 
deployment as in Table 5. Therefore, once components are specified with the 
suggested UML profile for specifying components at the level of CB-PIM, they can 
be automatically generated each source code implementation as shown in Fig.7. A 
CB-PIM can be reused into diverse platforms.  

CB-PIM

EJB PSM CORBA PSM

EJB Comp. CORBA Comp.

EJB PSM CORBA PSM

EJB Comp. CORBA Comp.

Approach without CB-PIM Approach with CB-PIM and Our Profile

[*]Rewriting for each platform

Automatically operation
Operation in manual

An artifact made by automation

An artifact made by manual work

Once Rewriting

Changed Component Spec.

Legend

Changed Component Spec.

 

Fig. 7. An advantage of CB-PIM and UML Profile for Specifying Components 
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If the mechanism for implementing components which is shown in Fig.7 is 
supported with a tool, various components such as EJB and CORBA can be 
effectively implemented by using the seamless method and tools. To make our 
approach more practical and useful, we are developing a prototype development tool 
based on Eclipse as Fig. 8. The prototype will support all our UML profile and the 
mechanism.  

Eclipse can plug modules such as our component designer and code generator 
prototypes as in Fig. 8. The component designer based on Graphical Editor 
Framework (GEF) [23] stores the PIM models to extended UML2 file for our profile. 
UML2 [24] is an EMF-based implementation of the UML™ 2.0 metamodel for the 
Eclipse platform. The code generator transfers the UML2 file to codes by using XMI 
schema. Eclipse basically includes a code editor. Therefore, components can be 
specified with our UML profile for specifying components at the level of CB-PIM. 
CB-PIM can be automatically transformed into each PSM and eventually each source 
code implementation by use the tool.  

Code Generator
(CB-PIM→PSM →Code)

 

Fig. 8. Component Designer based on Eclipse 

7   Conclusion Remarks 

CBD is to develop software system effectively and economically through reuse of 
software components. Effective components should be designed using interfaces, 
component units, variability, and non-functional factors for components. As a basic 
reuse unit, components often come in black-box form, only exposing well-defined 
interface while hiding internal details.  

MDA is a n approach to using models in software development. The essence of 
MDA is making a distinction between PIM and PSM. To develop an application using 
MDA, it is necessary to first build a PIM of the application, then transform this using 
a standardized mapping into a PSM, and finally map the latter into the application 
code by automation.  

If a component’s middleware is changed but requirement is not modified, the 
related components should be redesigned and re-implemented because components 
platforms are diverse. If component specifications are designed at MDA/PIM, we can 
automatically create the components that are satisfied by the component platform of 
an application. Therefore, we need the UML profile for specifying components to 
make machine-understandable design for MDA tools. 
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In this paper, we proposed a UML profile for specifying component-based design 
and component development process in MDA framework. Our UML profile consists 
of UML extensions, notations, and related instructions to specify elements of CBD in 
MDA constructs. It can be presented by general UML and MDA design tools. Once 
components are specified in the proposed profile at the level of PIM, they can be 
automatically transformed into PSM and eventually source code implementation by 
MDA tools. By using the UML profile for specifying components, we believe that the 
productivity, reusability, applicability, and maintainability of components can be 
greatly increased by automation. 
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Abstract. Statistical debugging is a powerful technique for identifying
bugs that do not violate programming rules or program invariants. Previ-
ously known statistical debugging techniques are offline bug isolation (or
localization) techniques. In these techniques, the program dumps data
during its execution, which is used by offline statistical analysis to dis-
cover differences in passing and failing executions. The differences iden-
tify potential bug sites. Offline techniques suffer from three limitations:
(i) a large number of executions are needed to provide data, (ii) each
execution must be labelled as passing or failing, and (iii) they are post-
mortem techniques and therefore cannot raise an alert at runtime when
a bug symptom occurs. In this paper, we present an online statistical bug
detection tool called Argus. Argus constructs statistics at runtime using
a sliding window over the program execution, is capable of detecting
bugs in a single execution and can raise an alert at runtime when bug
symptoms occur. Moreover, it eliminates the requirement for labelling all
executions as passing or failing. We present experimental results using
the Siemens bug benchmark showing that Argus is effective in detecting
102 out of 130 bugs. We introduce optimization techniques that greatly
improve Argus’ detection power and control the false alarm rate when a
small number of executions are available. Argus generates more precise
bug reports than the best known bug localization techniques.

1 Introduction

Program correctness and reliability are two of the greatest problems facing
the developers, deployers and users of software. The financial implications are
tremendous – a recent NIST report estimates that $59.6 billion dollars a year, or
0.6% of the GDP, are lost every year because of software errors [17]. Single fail-
ures of software can disable businesses like Charles Schwab and eBay for hours
or days, costing millions of dollars in revenues. Moreover, purely malicious and
politically motivated sociopaths exploit software errors to disrupt civil society.
Simultaneous with the increasing risks of bug-ridden code has been the rise in
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size and complexity of software, which makes software debugging an increasingly
challenging task. In order to relieve the programmers from laborious debugging,
automated debugging techniques have been extensively studied. Among these,
bug detection techniques focus on determining the existence/nonexistence of a
bug; bug isolation/localization techniques focus on determining the cause of ob-
served bug symptoms. In both cases, an effective bug report that distinguishes
the potential bug site(s) (or their vicinities) will greatly expedite the debugging
process. While the effectiveness of a bug isolation tool is typically measured by
its precision in locating bug sites, the effectiveness of a bug detection tool is mea-
sured by three factors: the detection rate, the false alarm rate, and the precision
with which it locates bug sites. The detection rate reveals the power of the tool
in determining a bug has occurred; the false alarm rate measures the likelihood
of raising an alarm when there is no bug; and the precision in locating bug sites
measures the quality of a bug report generated by the tool.

Statistical debugging techniques have recently caught the attention of the de-
bugging research community. These techniques isolate software bugs by compar-
ing the data collected from a large number of passing and failing executions using
statistical methods (e.g. logistic regression [13], conditional probability [14], and
hypothesis testing [15]). Because these techniques identify differences in runtime
information that is correlated with program behaviors, they have the potential
to isolate software bugs that do not violate programming rules or program in-
variants – the bugs that are most difficult to isolate using traditional debugging
techniques.

However, existing statistical debugging techniques share some drawbacks.
First, they require a large number of passing and failing executions to facili-
tate offline statistical analysis. While the passing executions may be obtained
from in-house regression testing before software release, a large number of failing
executions are usually unavailable. This requirement has three consequences in
reality. First, the debugging process relies on the Internet to collect data from a
large number of executions, which restricts the applicability of these techniques
in devices with limited connectivity and increases the complexity of the software.
Second, collecting execution data from customers raises the question of sensi-
tive information leaking, which restricts the applicability of these techniques in
sensitive environments. Third, the software vendor cannot respond timely to a
product failure until it accumulates enough failures. This contradicts the ethics
of debugging in that the customers have to suffer many more failures (and the
resulting damage) even though the software vendor is well aware of the existence
of a bug after the first observed failure!

Second, existing statistical debugging techniques require labelling passing and
failing executions. This requirement has two consequences. First, it is expensive
to construct test cases and their corresponding expected results, and requires
extensive domain knowledge. Second, it is infeasible to apply these techniques
to applications where the correctness of an outcome can not be easily verified
or the expected outcome is unknown a priori. Although a program crash is a
typical symptom of failure, many failures are non-crashing.



310 L. Fei et al.

Third, existing statistical debugging techniques are postmortem techniques,
i.e. they are bug isolation/localization techniques, not bug detection techniques.
They cannot raise an alert when bug symptoms occur. An alarm at the time
of failure can give the user more time to respond to the failure and to reduce
the damage caused by the failure. This is particularly important in mission-
critical programs where an incorrect operation can initiate a chain of catastrophic
consequences.

In this paper, we present an online statistical bug detection technique, called
Argus. Argus detects software bugs at runtime using an anomaly detection ap-
proach. Argus overcomes the three drawbacks mentioned above by constructing
runtime statistics on a sliding window over an execution rather than the whole
execution, which makes it possible to accumulate multiple observations in a sin-
gle execution. Argus runs in two modes: training and detection. In the training
mode, Argus builds statistical models from one or multiple passing executions.
In the detection mode, Argus can detect bugs in a single execution. Argus does
not require labelling of passing and failing executions. Argus can sound an alarm
at runtime when bug symptoms occur. Our experiments show that Argus is ef-
fective in detecting 102 out of 130 bugs in the Siemens bug benchmark. We also
introduce optimization techniques to greatly improve Argus’ bug detection power
and achieve a low false alarm rate when a small number of detection executions
are available. Argus generates a precise bug report that outperforms the best
known bug localization techniques on the Siemens benchmark. Our experiments
on the SPEC2000 benchmark show that Argus runtime overhead is comparable
to that of many existing successful tools.

We make the following contributions:

– We propose the first online statistical bug detection technique that can detect
bugs with a single execution. We present its design and implementation.

– We propose mathematically-rigorous formulas and their implementations to
maximize the detection rate, to minimize the false alarm rate, and to mini-
mize the number of executions required to meet a given detection rate and
a given false alarm rate when multiple executions are available.

– We present the experimental results using the Siemens bug benchmark and
SPEC2000 showing the effectiveness of our technique.

Supplemental discussions and code used in this paper can be found on the Ar-
gus web site (https://engineering.purdue.edu/Apollo/research/argus).

2 Related Work

Existing runtime bug detection techniques can be placed into two categories [25]:
programming-rule based and statistical-rule based. Tools in the former category
(e.g. Purify [10], SafeC [1], and runtime assertion) check runtime violations
against programming language specifications, programming paradigms, or user-
specified program-specific rules (e.g. dereferencing a NULL pointer or memory
leak); tools in the latter category check runtime violations against program in-
variants (e.g. value invariants [7, 8], PC invariants [25]). Runtime statistical-rule
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based checking differs from Argus in that the judgement in runtime statistical-
rule based checking is based on whether a single sample violates an existing
invariant, while the judgement of Argus is based on whether a runtime statistic
computed from an aggregation of samples fits an existing statistical model.

Recently several statistical bug isolation/localization tools have been devel-
oped. Earlier work by Burnell et al. use a Bayesian belief network as a supplement
to program slicing to find the root of a bug by analyzing a program dumpfile [2].
State of the art techniques collect runtime information from a large number of
executions, and apply statistical techniques in offline data mining to discover
the differences between passing and failing executions. Liblit et al. use logistic
regression to select suspicious value predicates associated with a bug [13], and
later use a technique based on probabilistic correlations of value predicates and
program crash [14]. Liu et al. propose a technique based on hypothesis testing
in [15].

Statistical methods have been used for other debugging problems. Dickinson
et al. find program failures through clustering program execution profiles [6].
Podgurski et al. use logistic regression to select features and cluster failure re-
ports on selected features [18]. Cluster results are shown to be useful in priori-
tizing software bugs.

Sekar et al. detect anomalous program behavior by tracing system calls using
an FSA-based approach [22]. Dallmeier et al. propose a postmortem defect local-
ization technique for Java based on the differences in frequencies of certain class
method calling sequences showing up in passing and failing runs [5]. A sliding
window is used to divide the calling sequences into subsequences for efficiency
in comparison.

3 Argus Statistical Model

Argus detects bugs at runtime using an anomaly detection approach. Argus
collects samples of runtime statistics characterizing program’s runtime behavior.
In the training run(s), samples of these runtime statistics are used to build
statistical models. In the detection run, samples of these runtime statistics are
tested against the learned statistical models. If the samples significantly deviate
from the learned statistical models, an alarm is raised.

3.1 Extended Finite State Automaton

We use an extended finite-state-automaton (ext-FSA) to characterize the pro-
gram’s runtime control-flow behavior. In our ext-FSA, each state is a runtime
event, and each transition is a transition from one runtime event to the next
runtime event. Runtime events are defined to be the set of {program start,
program exit, procedure entrance, procedure return, loop start, loop
exit, compound statement entrance, compound statement exit}. Each tran-
sition is augmented with the distribution of transition frequency (Figure 1(a)).
We assume that anomalous transition patterns are indicators of buggy behaviors.
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3.2 Modelling State Transition Statistics

Using the states in Figure 1(a) for example, we define random variable XA→B

to be: XA→B = 1 if transition A → B takes place; and XA→B = 0 if transition
A → C takes place, where C is a state other than B. The random variable
XA→B has an unknown distribution ΘX,A→B . Let {XA→B,i} be an independent
and identically distributed (i.i.d) sample from the distribution. According to
Central Limit Theorem [3], the following statistic

YA→B = (Σn
i=1XA→B,i)/n (1)

conforms to a normal distribution N(μYA→B , σ2
YA→B

) as n → ∞, with mean
μYA→B and variance σ2

YA→B
. Intuitively, XA→B’s distribution is dictated by the

conditional probability: Pr{transitionA → B|stateA}; and YA→B is the fre-
quency of transition A → B being taken in the past n accesses to A, which is an
estimator of the conditional probability: Pr{transitionA → B|stateA} based
on past n accesses to A.

To determine if an observation yA→B comes from an existing model ΘY,A→B

(in our case N(μYA→B , σ2
YA→B

)), we adopt a hypothesis testing [3] approach. Our
null hypothesis H0 is: yA→B belongs to N(μYA→B , σ2

YA→B
). Let the probability

density function (pdf) of YA→B be fYA→B(y|θYA→B ), where θYA→B denotes the
parameters of the normal distribution. The likelihood function of observation
yA→B coming from N(μYA→B , σ2

YA→B
) is

L(θA→B|yA→B) = fYA→B(yA→B |θYA→B) (2)

We reject the null hypothesis if the likelihood is smaller than a threshold, which
indicates that yA→B is significantly different from the existing model.

We make several assumptions to make this method practical for bug detec-
tion. First, we assume that YA→B computed from a window containing K con-
secutive XA→B’s (when n = K in Equation 1) approximately conforms to a
normal distribution, where K is a system parameter (window size). Second,
we assume YA→B ’s we compute from different windows are i.i.d. samples from
YA→B’s underlying distribution. Our experiments show that these assumptions
are reasonable approximations of the theoretical properties.

In order to perform runtime bug detection, Argus computes runtime statistics
using Equation 1 on a sliding window of size K rather than the full execution

A

B C

(a) Extended Finite-

State-Automaton

A�B

A�B

A�C

A�B

A�C

A�B

…

Runtime

Transitions

B, B, C

B, C, B

C, B, C

B, C, B

…

B, B

B

Window

Content

yA�C: 1/3

y
A�B

: 2/3

y
A�C

: 2/3

y
A�B

: 2/3

…

Y

N/A

N/A

(b) Argus Runtime Statistics

Collection (window size = 3)

Fig. 1. Argus Statistical Model



Argus: Online Statistical Bug Detection 313

trace. For each state A, let SA be the set of states that are possible targets of
transitions from A. At runtime, if we observe transition A → B, where B ∈ SA,
we compute yA→B by applying Equation 1 on the last K transitions from A.
Figure 1(b) shows how Argus computes y’s at runtime. In this example, K is set
to 3. A window size of 10 works well in our experiments.

We augment each transition A → B in our ext-FSA with a distribution of
the corresponding statistic YA→B. Mean and variance of the distribution are
estimated from samples of the statistic {yA→B,i} collected in training executions:

μYA→B = (ΣN
i=1yA→B,i)/N (3)

and

σ2
YA→B

=
1

N − 1
ΣN

i=1(yA→B,i − μYA→B )2 (4)

where N is the number of samples. During a detection run, each yA→B is tested
against the null hypothesis. For simplicity, we test the normalized statistic:

ZA→B = (YA→B − μYA→B )/σYA→B (5)

against the null hypothesis “H
′
0: zA→B belongs to N(0, 1)1”. The correspond-

ing pdf of this normalized statistic is f(z) = 1√
2π

e−z2/2. For computational
efficiency, we measure the log likelihood and ignore the constant coefficient 1√

2π
:

logL(θ|z) = −z2/2 (6)

If the log likelihood falls below a threshold t, an alarm is sounded to indicate
the possible existence of a bug.

For each state A, frequencies of transitions to different states in SA are usually
inversely correlated. For example, in Figure 1(a), large YA→B leads to small
YA→C , and vice versa. Therefore, Argus tests the log likelihood of yA→B only
when yA→B >= μYA→B , where μYA→B is the mean of the learned distribution.
The underlying strategy is that anomalously small yA→B values will be reflected
by an anomalously large yA→C and thus Argus only needs to sound one alarm.

3.3 Alarm Threshold

Given a program P , Argus can be considered as a binary function of an execution
e and the log likelihood threshold t. ArgusP (e, t) yields 1 if Argus raises alarm
on e, and 0 otherwise.

Given a set of failing executions {ei}i=1...m, and a log likelihood threshold t,
we define the detection rate of Argus to be:

D(t) = (Σm
i=1ArgusP (ei, t))/m (7)

1 For simplicity and computational efficiency, here we use a normal distribution to
approximate Z’s distribution(t-distribution).
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Intuitively, D(t) is the fraction of buggy executions that Argus raises an alarm.
Accordingly the false alarm rate given a set of passing executions {e′i}i=1...n and
t is defined to be the fraction of normal executions that Argus raises alarms:

F (t) = (Σn
i=1ArgusP (e′i, t))/n (8)

Intuitively, the larger the threshold t is, the larger D(t) and F (t) are. Therefore,
the detection power of Argus is largely constrained by the number of false alarms
the user is willing to tolerate. Let f be the false alarm limit, we have t = F−1(f),
and the corresponding detection rate is a function of f :

D
′
(f) = D(F−1(f)) (9)

In Argus, t is a tunable system parameter. F can be found by measuring the
false alarm rates with different t’s using the passing executions from the test
cases before software release. This allows the user to tune Argus based on the
false alarm rate he/she is willing to tolerate.

3.4 Optimizing the Effectiveness over Multiple Executions

Although Argus is capable of detecting bugs using a single detection execution,
Argus’ power is not confined to a single execution. Argus can benefit from mul-
tiple detection executions to improve the overall detection rate and to reduce
the overall false alarm rate. Now the question is: if multiple detection executions
are available, how can a user maximize the overall detection rate, minimize the
overall false alarm rate, and minimize the number of detection runs needed?

Let {fi}i=1...m be the set of different false alarm rates (sorted in ascending
order), with fm being the upper bound on the false alarm rate the user is willing
to tolerate. The corresponding detection rates are {di}i=1...m. Let R denote the
total number of detection executions, and ri denote the number of detection
executions under false alarm rate fi, Σm

i=1ri = R. We have the overall miss rate:

M({di}, {ri}) = Πm
i=1(1− di)ri (10)

which is the joint probability of the bug going undetected in all the detection
executions. Correspondingly, the overall detection rate is:

D({di}, {ri}) = 1−M({di}, {ri}) = 1−Πm
i=1(1− di)ri (11)

Although actual {di} are not known a priori, they can be estimated by run-
ning Argus against bugs found and fixed in the testing phase.

Problem 1: Given {fi}, {di}, R, and overall false alarm rate limit f , how are
values for {ri} chosen to maximize the overall detection rate?

Rather than solving this problem, we attack the dual problem instead: how
do we minimize the overall miss rate. This problem can be described as the
following linear programming problem:

minimize: Σm
i=1rilog(1− di)

subject to: Σm
i=1ri = R, 0 ≤ ri ≤ R

Σm
i=1fi × ri ≤ f ×R (12)
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Here we take the log of M({di}, {ri}) to make it linear. The constraints are:
the total number of executions under different false alarm limits is R, and the
total number of false alarms under different false alarm limits must be smaller
than the total number of false alarms allowed. The optimal detection rate is a
function of {fi}, {di}, f , and R under the constraints:

Dopt({fi}, {di}, f, R) = argmax
{ri}

(1− exp(Σm
i=1rilog(1− di))) (13)

which uses the result from Equation 12.

Problem 2: Given {fi}, {di}, R, and overall detection rate requirement d, how
do we choose values for {ri} to minimize the overall false alarm rate?

The corresponding linear programming problem is:

minimize: Σm
i=1fi × ri

subject to: Σm
i=1ri = R, 0 ≤ ri ≤ R

Σm
i=1rilog(1− di) ≤ log(1− d) (14)

Here we minimize the total number of false alarms under the constraints the
total number of executions is R, and the overall miss rate must be smaller than
(1− d). The optimal false alarm rate is a function of {fi}, {di}, R, and d under
the constraints:

Fopt({fi}, {di}, R, d) = argmin
{ri}

(
1
R

Σm
i=1fi × ri) (15)

which uses the result from Equation 14.

Problem 3: Given {fi}, {di}, the overall false alarm rate limit f and the overall
detection rate requirement d, how many detection runs are sufficient?

The corresponding linear programming problem is:

minimize: Σm
i=1ri

subject to: 0 ≤ ri, i = 1 . . .m

Σm
i=1fi × ri ≤ f ×Σm

i=1ri

Σm
i=1rilog(1− di) ≤ log(1− d) (16)

where the constraints are: total number of false alarms must be smaller than the
number of false alarms allowed, and the overall miss rate must be smaller than
(1− d). The optimal number of executions needed is a function of {fi}, {di}, f ,
and d under the constraints:

Ropt({fi}, {di}, f, d) = argmin
{ri}

(Σm
i=1ri) (17)

which uses the result from Equation 16.
Equations 12, 14, and 16 are easily solvable using linear programming tools.

Sample code written in GAMS (http://www.gams.com) can be found on the Argus
web site.
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4 Argus Design and Implementation

Argus is implemented as a runtime library for C. We use the Cetus C com-
piler [12] to instrument the program source with calls to the Argus runtime li-
brary. Cetus instruments the following program points: program start, program
exit, procedure entrance, procedure return, loop entrance, loop exit, compound
statement entrance, and compound statement exit. Argus monitors the transi-
tions of these events, and computes the runtime statistic y for each transition
using Equation 1. Argus intercepts crashing signals (SIGSEGV, SIGABRT, and
SIGTERM), and monitors event transitions even at a program crash.

If Argus is running in training mode, it also estimates the distribution pa-
rameters for each transition. Because Equations 3 and 4 require storing every y
(sample of the runtime statistic Y ) computed using Equation 1 at runtime, they
are not scalable. Instead, we estimate the distribution parameters recursively
using the following equations [24]:

μt =
t− 1

t
μt−1 +

1
t
yt (18)

σ2
t =

t− 1
t

σ2
t−1 +

1
t− 1

(yt − μt)2 (19)

The estimated distribution parameters are dumped into a transition distribution
profile at the end of each training execution. The profile is then loaded at the
initialization phase of a detection execution.

If Argus is running in detection mode, it performs likelihood test for each
y computed at runtime using Equations 5 and 6. A bug report is generated at
the end of each detection run. The bug report contains the top k most sus-
picious transitions (transitions with lowest log likelihood values), where k is a
configurable parameter.

5 Experiments

In this section, we evaluate the effectiveness of Argus at detecting bugs, its
runtime overhead, and the profile size. To test Argus’ bug detection power, we
apply Argus to the Siemens bug benchmark [11]. To measure the cost of applying
Argus to real world applications, we use the SPEC2000 benchmark to measure
Argus’ runtime overhead and profile size.

The Siemens benchmark was originally used by Siemens Corporation Re-
search to study test adequacy criteria [11]. The siemens benchmark contains
seven small programs: print tokens, print tokens2, replace, schedule,
schedule2, tcas, and tot info. Each program has multiple versions. Each
version is injected with one bug. Altogether there are 130 faulty versions, sim-
ulating a wide variety of realistic bugs. A number of previous works in the
field of bug isolation have reported their results using this benchmark, includ-
ing [4, 9, 15, 19, 20, 21].
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5.1 Bug Detection Power

We measure the bug detection power of Argus on the Siemens benchmark. Our
goal is to reveal the average detection rate and the effectiveness of Argus with
regard to given false alarm limits. We consider Argus effective in detecting bugs
in a faulty program if the alarm raised by Argus is more likely to be a true
alarm rather than a false alarm. We define the effective function on a given
faulty program P as (using ternary expression semantics):

EP (f) = (D′(f) > f ? 1 : 0) (20)

where D′() is defined in Equation 9. That is, given a false alarm rate f , if the
corresponding detection rate is larger than f , we consider Argus effective. Given
a set of faulty programs {Pi}i=1...m, and a false alarm rate f , the effective rate
is defined as:

ER{Pi}(f) =
1
m

Σm
i=1EPi(f) (21)

Intuitively, the effective rate measures the overall effectiveness of Argus on a set
of faulty programs. Specifically, our goal is to establish Equation 9 and Equa-
tion 21. We use 10 as our sliding window size.

Each program in the Siemens benchmark has a bug-free version. We partition
the test cases randomly with a 9 : 1 ratio as follows. We apply Argus in training
mode on the bug-free version with 90% of the test cases to learn a statistical
model for each transition. We then apply Argus in detection mode on the bug-free
version with the remaining 10% of the test cases. The smallest log likelihood value
observed in each execution is recorded and sorted in ascending order. Among
the sorted log likelihood values, the one with x% of the values smaller than it is
recorded as the log likelihood threshold corresponding to false alarm limit of x%.
Intuitively, if we use this as the threshold, Argus will sound an alarm on x% of
the normal executions. We discover the log likelihood thresholds corresponding
to false alarm rates {5%, 10%, 15%, 20%, 25%, 30%} (assuming 30% is the upper
limit of user tolerance) in this way. Each application has its own set of thresholds.
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Fig. 3. Argus Overall False Alarm Rate, Overall Detection Rate, and Total Number
of Execution

We note that Argus does not rely on bug-free version to discover thresholds.
Thresholds discovered in this way are equivalent to thresholds discovered on test
cases where no bug sites are covered, which corresponds to the whole passing
test suite before software release in real world. In our experiment, an alternative
is discovering the thresholds for each faulty version using passing cases on that
particular version. We consider it less proper because the passing cases in each
faulty version may not be a general representative of normal cases (while the
whole test suite is assumed to be general).

We then measure the detection rates under these thresholds by running each
of the faulty versions of each application through all the test cases. For each
faulty version, Argus (in training mode) learns a transition distribution profile
from the passing executions. We then use the set of thresholds corresponding
to that application discovered above, and measure on how many of the failing
executions Argus (in detection mode) raises alarms under the false alarm limits
{5%, 10%, 15%, 20%, 25%, 30%}. The detection rate under a false alarm limit is
then computed using Equation 7. The average detection rate over the 130 faulty
versions with regard to different false alarm levels are shown in Figure 2(a).

Effectiveness (Equation 20) is measured by comparing the detection rate on
each faulty version with the corresponding false alarm limit. The effective rate
(Equation 21) is then measured by averaging the results of Equation 20 on all
the 130 faulty versions. The average effective rate is shown in Figure 2(b).

Argus sounds an alarm on 118 out of 130 faulty versions. On average, Argus
has 32.89% chance to detect the bug in each faulty version using a single de-
tection run when the false alarm tolerance is 5%. This average detection rate
increases almost linearly to 52.27% when the false alarm tolerance is 25%. It is
further increased to 53.54% when the false alarm tolerance is 30%. When the
false alarm tolerance is {5%, 10%, 15%, 20%, 25%, 30%}, Argus is effective (as
defined in Equation 20) in detecting bugs in {74, 73, 77, 81, 83, 84} of the faulty
versions. Altogether, 102 out of 130 bugs can be effectively detected by Argus
under at least one of the false alarm rate configurations.
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Using the {fi} and average {di} values discovered above, we can maximize
the detection rate, minimize the false alarm rate, and assess how many exe-
cutions are sufficient when multiple executions are available. Equations 13,15
and 17 can be written in short forms as Dopt(f, R), Fopt(R, d), and Ropt(f, d),
respectively. These three functions can be plotted with 3D charts. For simplicity
and readability reasons, we project them onto 2D charts by fixing one variable
at a reasonable value and then plot the relationship between the remaining two
(Figure 3). Interested readers can find other values of interest using the code
provided on Argus web site. Due to space constraints, we present only two of
the projections. The remaining projections can be found on Argus web site. From
Figure 3, we can see that when the false alarm tolerance is 10%, 8 executions are
sufficient to guarantee a 98% detection rate; if we have only 4 runs, we can let
the overall detection rate slip to 80% to bring the overall false alarm rate down
to 6%. These results show that the detection power of Argus increases rapidly
with a small number of executions, and the false alarm rate can be kept to a low
level. This in turn implies that, in general, using Argus can greatly reduce the
number of test cases needed, leading to a shorter debugging cycle.

5.2 Bug Report Quality

To measure the quality of the bug report generated by Argus, we adopt a
paradigm which was proposed by Renieris et al. [20] and was later adopted
by Cleve et al. in CT [4] and Liu et al. in SOBER [15]. This paradigm estimates
the human effort to locate the bug based on the bug report. The measure was
based on the size of the subgraph of the program dependence graph (PDG) the
human must explore (starting from the statements pointed out by the bug re-
port) vs. the size of the full PDG. Because Argus detects anomalous transitions
rather than statements, we use a variant of the paradigm:

1. The FSA is a connected graph G, where each state is a vertex and each
transition is an edge.

2. If A → B is a transition, and if the buggy statement is executed after event A
(with no other events in between) yet before event B (with no other events in
between), we consider A → B a defect edge. Note that one buggy statement
may cover multiple defect edges depending on runtime control flow. We use
Vdefect to denote the set of vertices covered by defect edge(s).

3. Given a bug report, the set of vertices covered by the top k suspicious tran-
sitions reported by Argus is denoted Vblamed.

4. A programmer performs a breadth-first search from Vblamed until a vertex
in Vdefect is reached. The set of vertices covered by the breadth-first search
is denoted Vexamined.

5. The T-score is defined as:

T = |Vexamined|/|V | × 100% (22)

where |V | is the size of graph G.
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The T-score estimates the human effort to reach the buggy transition from
the top k suspicious transitions reported by Argus. A high T-score corresponds
to more human effort, and in the worst case a score of 100% indicates the whole
program must be examined. We measure the T-score of Argus bug report for
each buggy execution in each faulty version.

Although Argus’ major design goal is runtime bug detection, the bug report
it generates is precise enough that it can be used for efficient bug localization as
well. Figure 4 shows the number of bugs that can be localized vs. the average
T-score (percentage of states examined in ext-FSA, as defined in Equation 22).
Since SOBER yields best performance when k = 5 (where k is the number of
the most suspicious statements to start the breadth-first search from), we use
k = 5 to make the results more comparable, where k is the number of the most
suspicious transitions to start bread-first search from. On average, when 10% of
the states are examined, Argus can help the user localize 56.82% of the bugs.
As presented in our previous work [15], SOBER is able to localize 52.31% of the
bugs in Siemens benchmark when 10% of the statements are examined; while
other known techniques like Scalable Statistical Bug Isolation (Liblit et al. [14])
and CT (Cleve et al. [4]) are able to localize 40.00% and 26.36% of the bugs
respectively in the same benchmark. If we assume that the effort in examining
x% of the total states is comparable to x% of the total statements, then Argus
outperforms the best known bug localization techniques. On the Argus web site,
we present discussion showing that if Argus and a statement-based scheme (e.g.
SOBER) have the same T-score value, the user needs to examine fewer statements
using Argus. The high precision of the Argus bug report and Argus’ capability
in generating the bug report using a single execution make it a powerful bug
localization tool even if we do not need its runtime bug detection capability.

5.3 Runtime Overhead and Profile Size

Because Siemens benchmark programs are small (138 – 516 LOC), they are not
suitable testbeds to measure Argus’ runtime overhead in large, more realistic ap-



Argus: Online Statistical Bug Detection 321

0

10

20

30

40

50

60

70

1
6

4
.
g

z
i
p

1
7

5
.
v

p
r

1
7

7
.
m

e
s

a

1
7

9
.
a

r
t

1
8

1
.
m

c
f

1
8

3
.
e

q
u

a
k

e

1
8

6
.
c

r
a

f
t
y

1
8

8
.
a

m
m

p

1
9

7
.
p

a
r
s

e
r

2
5

4
.
g

a
p

2
5

5
.
v

o
r
t
e

x

2
5

6
.
b

z
i
p

2

3
0

0
.
t
w

o
l
f

A
v

e
r
a

g
e

t
i
m

e
s

 
s

l
o

w
d

o
w

n

Training Detection

(a) Training and Detection Overhead

0%

20%

40%

60%

80%

100%

120%

140%

1
6

4
.
g

z
i
p

1
7

5
.
v

p
r

1
7

7
.
m

e
s

a

1
7

9
.
a

r
t

1
8

1
.
m

c
f

1
8

3
.
e

q
u

a
k

e

1
8

6
.
c

r
a

f
t
y

1
8

8
.
a

m
m

p

1
9

7
.
p

a
r
s

e
r

2
5

4
.
g

a
p

2
5

5
.
v

o
r
t
e

x

2
5

6
.
b

z
i
p

2

3
0

0
.
t
w

o
l
f

A
v

e
r
a

g
e

p
r
o

f
i
l
e

 
s

i
z
e

 
/
 
e

x
e

c
u

t
a

b
l
e

 
s

i
z
e

(b) Argus Transition Distribution Profile
Size

Fig. 5. Argus runtime overhead and transition distribution profile size on SPEC2000

plications. We use the standard SPEC2000 benchmarks to study Argus runtime
overhead and the transition distribution profile size. We use all SPEC C pro-
grams2 except 176.gcc, which the Cetus compiler cannot properly compile. All
the experiments are run on a DELL Precision 350 workstation (3.06GHz Pen-
tium IV, 1.5G memory) running RedHat Linux 9.0 with the Intel C/C++ compiler
icc 8.1. All of the programs are compiled with the recommended optimization
flag icc -O2

Figure 5 shows Argus runtime overhead in training and detection modes and
the ratio of the transition distribution profile size to the original executable
size. On average, Argus suffers 24.6X overhead in training mode and 13.8X
overhead in detection mode. The corresponding standard deviations are 16.9
and 8.7. The detection overhead of Argus is comparable with runtime detection
tools like DIDUCE [8], rtcc [23] and SafeC [1], and is considerably lower than
tools like Purify [10] and runtime type checking [16]. Argus’ detection scheme
is compatible with random sampling [13]. It can use random sampling to achieve
low runtime overhead at the cost of more detection executions. Therefore, Argus
is also a good technique to be used in production runs. The transition distribution
profile size is 38.6% of the original executable size on average, with a standard
deviation of 28.3%.

6 Conclusions and Future Work

Statistical debugging is a powerful technique for identifying bugs that do not
violate programming rules or program invariants. In this paper, we present an
online statistical bug detection technique called Argus. Argus is capable of de-
tecting bugs in a single execution and can raise an alert at runtime when bug
symptoms occur. Argus eliminates the requirement for labeling passing and fail-
ing executions. Argus generates more precise bug reports than the best known
bug localization techniques.

2 164.gzip, 175.vpr, 177.mesa, 179.art, 181.mcf, 183.equake, 186.crafty,
188.ammp, 197.parser, 254.gap, 255.vortex, 256.bzip2, and 300.twolf
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The authors are investigating making Argus capable of detecting bugs re-
flected in program behaviors other than runtime control flow. Second, we want
to develop implementations for other languages (like Java), and to reduce the
runtime overhead.

References

[1] T. M. Austin, S. E. Breach, and G. S. Sohi. Efficient detection of all pointer and
array access errors. In Proceedings of the ACM SIGPLAN 1994 conference on
Programming Language Design and Implementation, pages 290–301, 1994.

[2] L. Burnell and E. Horvitz. Structure and chance: melding logic and probability
for software debugging. Communications of the ACM, 38(3):31–ff., 1995.

[3] G. Casella and R. L. Berger. Statistical Inference. Duxbury Press, second edition,
2001.

[4] H. Cleve and A. Zeller. Locating causes of program failures. In Proceedings of the
27th International Conference on Software Engineering, pages 342–351, 2005.

[5] V. Dallmeier, C. Lindig, and A. Zeller. Lightweight defect localization for java. In
Proceedings of the 19th European Conference on Object-Oriented Programming,
2005.

[6] W. Dickinson, D. Leon, and A. Podgurski. Finding failures by cluster analysis of
execution profiles. In ICSE ’01: Proceedings of the 23rd International Conference
on Software Engineering, pages 339–348, 2001.

[7] M. D. Ernst, A. Czeisler, W. G. Griswold, and D. Notkin. Quickly detecting
relevant program invariants. In Proceedings of the 22nd International Conference
on Software Engineering, pages 449–458, 2000.

[8] S. Hangal and M. S. Lam. Tracking down software bugs using automatic anomaly
detection. In Proceedings of the 24th International Conference on Software Engi-
neering, pages 291–301, 2002.

[9] M. J. Harrold, G. Rothermel, K. Sayre, R. Wu, and L. Yi. An empirical inves-
tigation of the relationship between fault-revealing test behavior and differences
in program spectra. Journal of Software Testing, Verifications, and Reliability,
10(3):171–194, 2000.

[10] R. Hastings and B. Joyce. Purify: Fast detection of memory leaks and access
errors. In Proceedings of the USENIX Winter Technical Conference, 1992.

[11] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments of the effective-
ness of dataflow- and controlflow-based test adequacy criteria. In Proceedings of
the 16th International Conference on Software Engineering, pages 191–200, 1994.

[12] T. A. Johnson, S.-I. Lee, L. Fei, A. Basumallik, G. Upadhyaya, R. Eigenmann,
and S. P. Midkiff. Experiences in using cetus for source-to-source transformations.
In Proceedings of the 17th International Workshop on Languages and Compilers
for Parallel Computing (LCPC), 2004.

[13] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug isolation via remote
program sampling. In Proceedings of the ACM SIGPLAN 2003 conference on
Programming Language Design and Implementation, pages 141–154, 2003.

[14] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan. Scalable statis-
tical bug isolation. In Proceedings of the ACM SIGPLAN 2005 conference on
Programming Language Design and Implementation, 2005.



Argus: Online Statistical Bug Detection 323

[15] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff. Sober: Statistical model-based
bug localization. In Proceedings of The fifth joint meeting of the European Software
Engineering Conference and ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE 05), 2005.

[16] A. Loginov, S. H. Yong, S. Horwitz, and T. W. Reps. Debugging via run-time
type checking. In Proceedings of the 4th International Conference on Fundamental
Approaches to Software Engineering, pages 217–232, 2001.

[17] Software errors cost U.S. economy $59.5 billion annually, 2002. NIST News Re-
lease 2002-10.

[18] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch, J. Sun, and B. Wang.
Automated support for classifying software failure reports. In Proceedings of the
25th International Conference on Software Engineering, pages 465–475, 2003.

[19] B. Pytlik, M. Renieris, S. Krishnamurthi, and S. P. Reiss. Automated fault local-
ization using potential invariants. In Proceedings of the 5th International Work-
shop on Automated and Algorithmic Debugging, pages 287–296, 2003.

[20] M. Renieris and S. P. Reiss. Fault localizationwith nearest neighbor queries. In
Proceedings of the 18th IEEE International Conference on Automated Software
Engineering, pages 30–39, 2003.

[21] G. Rothermel and M. J. Harrold. Empirical studies of a safe regression test
selection technique. IEEE Transactions on Software Engineering, 24(6):401–419,
1998.

[22] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. A fast automaton-based
method for detecting anomalous program behaviors. In Proceedings of the 2001
IEEE Symposium on Security and Privacy, page 144, 2001.

[23] J. L. Steffen. Adding run-time checking to the portable C compiler. Software
Practice and Experience, 22(4):305–316, 1992.

[24] K. Teknomo. Recursive simple statistics tutorial. online document.
http://people.revoledu.com/kardi/tutorial/RecursiveStatistic/.

[25] P. Zhou, W. Liu, L. Fei, S. Lu, F. Qin, Y. Zhou, S. Midkiff, and J. Torrellas. Ac-
cMon: Automatically detecting memory-related bugs via program counter-based
invariants. In Proceedings of the 37th Annual IEEE/ACM International Sympo-
sium on Micro-architecture (MICRO’04), 2004.



From Faults Via Test Purposes to Test Cases: On

the Fault-Based Testing of Concurrent Systems

Bernhard K. Aichernig and Carlo Corrales Delgado

International Institute for Software Technology,
United Nations University, Macau SAR China,

P.O. Box 3058, Macau
{bka, carlo}@iist.unu.edu

Abstract. Fault-based testing is a technique where testers anticipate
errors in a system under test in order to assess or generate test cases. The
idea is to have enough test cases capable of detecting these anticipated
errors. This paper presents a theory and technique for generating fault-
based test cases for concurrent systems. The novel idea is to generate
test purposes from faults that have been injected into a model of the
system under test. Such test purposes form a specification of a more
detailed test case that can detect the injected fault. The theory is based
on the notion of refinement. The technique is automated using the TGV
test case generator and an equivalence checker of the CADP tools. A
case study of testing web servers demonstrates the practicability of the
approach.

1 Introduction

The area of specification-based testing has advanced over the last couple of years
and the results contributed to a reconciliation between the testing and the formal
verification communities. Testing is now commonly acknowledged as a comple-
mentary V&V technique, if carried out systematically and well-founded. Gaudel
was the most prominent who started this process [1]. Since then, many techniques
and tools have emerged that generate test cases from formal specifications and
are based on complete and sound testing theories.

However, the field is far from being complete, as the growing number of publi-
cations in this area indicates. Non-classical testing paradigms have to be studied
and incorporated into theories. The formal underpinnings allow a deeper under-
standing of the relationships between testing and other verification theories, like
simulation and refinement. This will lead to further applications of tools, like
model checkers and constraint solvers, to generate test cases.

In this paper, we present a method that aims to advance the field in the
following directions. (1) Mutation testing, traditionally applied to program text
is applied on the specification level. (2) A model checker is not used to generate
the test cases directly, but to generate test purposes, a high-level description
of the testing goal. The method is founded on the testing theories on labeled
transition systems. Tool support comes from the TGV test case generator [2] as
well as from the CADP tools [3]. In particular, we address the following problems.
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Problem 1 Lack of test selection strategy.
The early work on conformance testing in the area of distributed systems was

mainly concerned with the soundness and completeness of the testing theory.
Emphasis was given to develop a realistic conformance relation and a test case
generation algorithm that was sound (no false negatives) and complete (no false
positives). Since the models were finite labeled transition systems (LTSs), the
problem of how to select a manageable subset out of the exhaustive test set was
not a major concern. Abstraction was used to cope with the complexity. This
lack of a test selection strategy limited the application domain to highly abstract
protocol specifications.

Problem 2 Identifying test purposes.
To overcome this shortcoming, test purposes have been introduced. Here, a

test purpose is a special LTS that specifies the subset of test cases to be gener-
ated. With test purposes, a tester can steer a test case generator according to
his strategy. However, the problem remains, how many and which test purposes
to select. Thus, the problem has been lifted, but not entirely solved.

In our approach, we want to support the tester in formalising test purposes,
by turning his focus on possible faults. Possible faults can be anticipated by
inspecting a specification, by using domain knowledge, or by heuristic mutation
operators. In all cases, the fault is modeled at the specification level by altering
the specification. We call this altered version a mutant. The idea, is to generate
test cases that would find such faults in the implementation.

Problem 3 Equivalent mutants.
A common problem in this approach is known as the Equivalent Mutant

Problem. Not all mutations represent actual faults that can be observed at the
interface level. Thus, no test case exists that can distinguish the original from
such an equivalent mutant.

On the specification level, equivalence checkers can be used to eliminate such
equivalent mutants. The problem is which equivalence relation, based on simu-
lations, is appropriate for our purposes. Once, the equivalence relation is fixed,
the problem is solved.

Problem 4 Test generation automation.
The technique should automatically generate test cases. Many use the counter

examples (or witnesses) produced by a model checker as test cases. However, a
counter example is not a test case in the traditional sense. A test case should
provide the stimuli and the responses for a system. However, a counterexample
exemplifies only one possible choice of computation (a path). In case of non-
determinism involved this is not sufficient for a test case, since a test case should
predict and take care of all possible responses, as well as reject wrong responses.

Therefore, we propose to use the counterexample as a test purpose. A test case
generator, then, will generate a proper test case to cover the counterexample.
Hence, our idea is to generate test purposes from injected faults, such that the
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generated test cases will discover this anticipated faults. Fault-prevention, not
structural coverage is our testing strategy.

The paper is organized as follows. After this introduction, Section 2 introduces
the models, the testing theory as well as the concept of test purpose. Then,
Section 3 develops the general properties of fault-based test purposes. Next,
Section 4 presents the technique to generate test purposes using the CADP tools.
A case study, briefly summarized in Section 5 completes the picture. Finally, we
draw the conclusions and discuss related work in Section 6.

2 Conformance Testing

In this section we introduce the models for test case generation and explain how
they are used to describe specifications, implementations, test cases and test
purposes. These models are based on the classical formalism of labelled transition
systems (LTSs) with distinguished inputs and outputs. For a full definition of
the testing theory we refer to [4].

2.1 Input-Output Conformance

Definition 1 (Input-Output LTS). An IOLTS is an LTS M=(QM , AM , →M

, qM
0 ) with QM a finite set of states, AM a finite alphabet (the labels) partitioned

into three disjoint sets AM = AM
I ∪ AM

O ∪ IM where AM
I and AM

O are respec-
tively input and output alphabets and IM is an alphabet of unobservable, internal
actions, →M⊂ QM × AM ×QM is the transition relation and qM

0 is the initial
state.

We will use the following classical notations of LTSs for IOLTSs. Let q, q′, q(i) ∈
QM , Q ⊆ QM , a(i) ∈ AM

I ∪ AM
O , τ(i) ∈ IM , and σ ∈ (AM

I ∪ AM
O )∗. q

ε⇒ q′ =df

(q = q′ ∨ q
τ1...τn→ M q′) and q

a⇒ q′ =df ∃q1, q2 : q
ε⇒M q1

a→M q2
ε⇒M q′ which

generalizes to q
a1...an⇒ q′ =df ∃q0, . . . , qn : q = q0

a1⇒M q1 . . . qn−1
a→M qn = q′. We

denote q afterM σ =df {q′| q
σ⇒M q′} and Q afterM σ =df

⋃
q∈Q(q afterM σ).

We define OutM (q) =df {a ∈ AM
O | q

a→M} and OutM (Q) =df {OutM (q)|q ∈ Q}.
We will not always distinguish between an IOLTS and its initial state and write
M ⇒M instead of qM

0 ⇒M . We will omit the subscript M (and superscript M )
when it is clear from the context.

A specification is given in a formal description language which semantics
allows to describe the behavior of the specification by an IOLTS (e.g. CSP,
Estelle, SDL or LOTOS). The testing assumption is that the behavior of the
implementation under test (IUT) can also be described by an IOLTS which can
never refuse an input.

Definition 2 (Conformance). The conformance relation says that an IUT
conforms to S iff after a trace of S, outputs of the IUT are outputs of S:

IUT ioconf S =df ∀σ ∈ Trace(S) : Out(IUT afterIUT σ) ⊆ Out(S afterS σ)
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Note that this is a simplified version of ioco [4] excluding quiescence for the sake
of clarity. All results apply to ioco as well.

2.2 Test Purposes

Test cases for complex concurrent systems correspond to elaborate executable
programs: testing a certain procedure may require (1) to initialize a set of test
processes that collaborate, (2) to execute a given preamble before being able
to call the procedure, (3) to run an oracle process giving a verdict if the test
has passed, and (4) to execute a postamble to get the system under test into
a safe state after the test has been performed. In the telecom industry, TTCN
[5] a special language for expressing test cases is used. It includes classical ele-
ments of programming languages: data types, variables, control structures and
procedures.

In order to cope with the complexity of real test cases, test purposes serve to
specify the goals of a test. Hence, a test purpose is a specification of a test case
capturing the essence of a test in a short and abstract description. In conformance
testing the notion of test purpose has been standardized [6]:

Definition 3 (Test purpose, informal). A description of a precise goal of
the test case, in terms of exercising a particular execution path or verifying the
compliance with a specific requirement.

For generating test cases from test purposes, the notion of test purpose has
been formalized, and implemented in tools like SAMSTAG [7], TGV [2], TorX
[8], and most recently in Microsoft’s XRT [9]. Here, we use the formalization of
TGV.

Definition 4 (Test purpose, formal). Given a specification S in form of an
IOLTS, a test purpose is a deterministic IOLTS TP = (QTP , ATP , →TP , qTP

0 )
equipped with two sets of sink states, AcceptTP which defines Pass verdicts and
RefuseTP which allows to limit the exploration of the graph S. Furthermore,
ATP = AS and TP is complete (∀q ∈ QTP , a ∈ ATP : q

a→TP ).

The specification to be covered by the test cases is formed by the synchronous
product of the specification S and the test purpose TP . Furthermore, as test
generation only considers the observable behavior of S it can be simplified by
replacing all internal actions by τ , reducing the τ actions, and determinizing
the result. This reduced specification SPV IS is equipped with AcceptV IS and
RefuseV IS sink states derived from the test purpose.

2.3 Test Cases

In this testing framework for concurrent systems, a test case is a process running
in parallel to the IUT. Hence, test cases can be modeled as an IOLTS that
synchronize with the model of the IUT. TGV generates such test cases from
the specification and a test purpose according to the algorithm described in [2].
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Here, we only give the properties of a test case TC = (QTC , ATC , →TC , qTC
0 )

that has been generated from the restricted and simplified specification SPV IS =
(QV IS , AV IS , →V IS , qV IS

0 ) containing only visible actions. A test case TC has
the following properties:

1. QTC ⊂ QV IS ∪ {fail}, and qTC
0 = qV IS

0 ,
2. ATC = ATC

I ∪ ATC
O with ATC

I ⊆ AIUT
O and ATC

O ⊆ AV IS
I (mirror image of

actions and all possible outputs of IUT considered),
3. Pass = AcceptV IS ∩ QTC , Inconc ⊆ QV IS and fail are sink states and

every state of TC except fail can reach either a Pass or an Inconc state,
fail and Inconc states can be reached directly only by inputs,

4. ∀q ∈ QTC , ∀a ∈ ATC
I : (∃q′ ∈ Inconc ∪ {fail} : q

a→TC q′ ⇒ q
∗→ Pass) and

(q a→TC fail ⇒ q � a→V IS),
5. ∀q ∈ Inconc : q � ∗→V IS Accept (Accept states cannot be reached from incon-

clusive states),
6. ∀q ∈ QTC , ∀a ∈ ATC

O : q
a→TC ⇒ ∀b �= a : q � b→TC (only one output action

per state).

For illustration purposes, Figure 1 shows the model of a coffee machine, with
a test purpose and a resulting test case. Note that other test cases would be
possible for this test purpose.

?coin(1)

?coin(1)

?coin(2)

?coffee

!coffee

?sugar

?tea

!tea

!sugar

?coffee

!coffee

!sugar

?tea

!tea

Accept

!coffee

∗

pass

!coin(2)

!coffee

?coffee

fail

?tee
?sugar

Fig. 1. IOLTS of a coffee machine, a test purpose, and a test case

3 A Theory of Fault-Based Testing

In this section, we develop a general fault-based testing theory that incorporates
test purposes. As in our previous work, we use the concept of refinement as the
basis to define what kind of test cases we are interested in. The difference here
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is that we use the notion of refinement from [10] which relates test cases, test
purposes and specifications.

3.1 Fault-Based Testing

Fault-based testing was born in practice when testers started to assess the ade-
quacy of their test cases by first injecting faults into their programs, and then by
observing if the test cases could detect these faults. This technique of mutating
the source code became well-known as mutation testing and goes back to the
late 70-ies [11, 12]; since then it has found many applications and has become the
major assessment technique in empirical studies on new test case selection tech-
niques [13]. In the early 90-ies formal methods entered the testing stage [14, 15]
and it took not long until mutation testing was applied to formal specification
languages [16]. Here, the idea is to model design errors or misinterpretations of
requirements in a very early stage, and then design test cases to prevent such
errors. The goal is not to test the specifications, but to derive test cases that
would detect implementations of the mutated specifications. Hence, our strategy
is to prevent the IUT to conform to erroneous specifications.

In our previous work, we have shown that the notion of refinement may be
used to define the properties of such fault-based test cases. In [17] we discussed
mutation testing in Back’s refinement calculus. More recently, we developed a
tool for generating test cases from mutated OCL specifications based on these
ideas [18]. In the following, we will reformulate these ideas for IOLTSs and test
purposes.

3.2 Relating Test Purposes, Test Cases and Specifications

In the context of software specification, programs are linked to their specification
by a refinement relation. The conformance relation in Definition 2 is an example
of such a refinement relation between IOLTS models. In the context of black-box
testing, we can imagine a similar relation between test cases and test purposes,
since test purposes are specifications of test cases [10]: The relation

refines(TC, TP, S),

where TC is a test case, TP a test purpose and S a specification, captures
the property when a test case is a refinement of a test purpose in the context
of a specification. Note that it is necessary to include the specification, since a
test purpose is only meaningful together with a specification. In TGV the refines
relation is defined by the properties of test cases presented in Section 2.3. Hence,
given the test case generation algorithm of TGV generateTGV (TP, S) we have

refines(generateTGV (TP, S), TP, S)

This relation expresses the fact that the test purpose TP and the specification
S are consistent such that TGV is able to generate a proper test case. Hence,
we abbreviate it as
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consistentTGV (TP, S) =df refines(generateTGV (TP, S), TP, S)

3.3 Fault-Based Test Purposes

We will now use this consistency (refinement) relation to express the property of
the test purposes (test cases) we are interested in. Imagine a specification S and a
mutated version Sm which has been modified by inserting a fault into S. Our goal
is to generate a test case that is able to distinguish an implementation of S and
Sm. For generating such a test case TC we need to formulate an appropriate test
purpose TP that would guarantee that only such discriminating test cases are
generated. Hence, the test purpose must not abstract away from the erroneous
part in Sm, but must detect the differences between S and Sm. This can be
formally expressed via the consistency relation:

consistentTGV (TP, S) and ¬consistentTGV (TP, Sm)

This conjunction expresses the fact that the test purpose is able to distinguish
between S and Sm, since it is inconsistent with the later. This means that the
test goal can be achieved with respect to one specification, but not with the
other. Consequently, a test case generated from such a test purpose TP will be
able to distinguish between implementations of S and Sm. These are the test
purposes we are going to generate.

One well-known challenge of mutation testing are equivalent mutants. An
equivalent mutant occurs when an introduced syntactical change in the model
does not represent an observable fault, hence the original S and a mutant Sm

are observably equivalent (S ≈ Sm). Without yet defining the kind of observable
equivalence relation, we may formalize that if a discriminating test purpose does
not exists, we have observable equivalence:

� ∃ TP : (consistentTGV (TP, S) ∧ ¬consistentTGV (TP, Sm)) ⇒ (S ≈ Sm)

This leads us immediately to the property that will be the basis for our test
purpose generation:

(S �≈ Sm) ⇒ ∃ TP : (consistentTGV (TP, S) ∧ ¬consistentTGV (TP, Sm))

In the next section we will see that an equivalence checker for finite LTSs can
be used to generate test purposes from equivalence counter examples.

4 A Technique for Fault-Based Testing

In this section, we present the technique for generating test purposes from in-
jected faults. As indicated in the previous section, an equivalence checker for
labelled transition systems forms the key technology of the generation process.
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4.1 The Process

We use an equivalence checker of the CADP tools which also contain TGV. We
use LOTOS as a specification language, but other input formats that can be
converted to the internal CADP format for a LTS are possible.

We first present an overview of the essential steps in the process and then
discuss the details.

1. Model a system to be tested in LOTOS with explicit input and output
actions. Select a mutation operator for LOTOS and create a mutant Lm

from the original model L.
2. Generate an IOLTS Sτ and Sm

τ from the specifications L and Lm respectively
(using CADP-Caesar).

3. Simplify the rather large IOLTS Sτ and Sm
τ to obtain S and SM using the

Safety Equivalence relation (using CADP-Aldebaran).
4. Check the reduced IOLTS S and Sm for Strong Bisimulation (using CADP-

Aldebaran).
5. The equivalence check gives

(a) True: Sm is an equivalent mutant (no fault), no test purpose can be
generated. Study the cause of equivalency. There might be a redundancy
in the model!

(b) False: CADP-Aldebaran issues a diagnosis (counterexample): a discrim-
inating sequence c.

6. Add one more valid transition from S to the counterexample c (if any) in
order to create a valid path which can discover the injected error. This
sequence forms the wanted test purpose.

7. Generate a test case from the discriminating test purpose (using CADP-
TGV).

8. Test the IUT with this test case to prevent that the IUT conforms to the
faulty specification Lm.

9. Repeat this for every interesting mutation possible.

The IOLTS generated from LOTOS needs to be simplified, since it contains
many redundant internal τ actions. As mentioned in Section 2.2 the test case
generation process does involve visible actions only. CADP provides a simplifi-
cation tool that removes all τ actions and generates an LTS that is equivalent
with respect to safety properties. This Safety Equivalence relation is defined as
follows [19]:

Definition 5 (Safety Equivalence). Let S = (Q, Aτ , T, q0) be a Labelled
Transition System and let p, r ∈ Q. Safety equivalence is defined as

p ≈saf r =df p $saf r ∧ r $saf p

The relation $saf may be characterized as weak simulation:

p $saf r iff ∀a ∈ Aτ , ∀p′ : (p
τ∗a−→ p′ ⇒ ∃r′ • (r

τ∗a−→ r′ ∧ p′ $saf r′))
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Then, since all τ actions are removed, a strong bisimulation check can be applied
to determine the observational (non-)equivalence of both models. In the more
likely case of non-equivalence, CADP generates a sequence of actions leading to
a state where both behaviors deviate. Then, a test purpose IOLTS is produced
which has as its only trace this sequence plus the next discriminating action of
the original. This test purpose serves to generate a test case that will distinguish
an implementation of the original from an implementation of the faulty mutant.
This process has to be repeated for all faults one wishes to test for. Only one
fault per mutant is injected (coupling effect assumption).

4.2 Mutation Operators

At the heart of this fault-based testing technique is the set of faults that are
injected into a given model. These faults represent the errors one is able to an-
ticipate and that are to be prevented by the generated test cases. They also form
the basis for the coverage criterion: For each injected fault (that can be observed)
there must exist a test case in the test suite able to detect it. Consequently, the
set of injected faults is critical.

A common strategy in mutation testing is to define a set of mutation op-
erators for the language in use. A mutation operator syntactically transforms
a language construct, by exchanging, deleting or adding parts of it. Once the
mutation operators are defined the mutants can be generated systematically or
even automatically. We have defined such a set of mutation operators for Full
LOTOS (see Table 1). Most of these operators are not special to LOTOS and
have been considered before. ORO, SNO, ENO, LRO, RRO, MCO, ACO, STO
and ASO are taken from [20]. EDO, ESO, ERO, EIO, SOR, POR, MRO, CRO,
USO, HDO and PRO are taken from [21] (mutation operators for CSP). Others,
like in [22], used subsets of these. We have newly added the PSP, PRP, ESP,
ERP, SSP and SRP operators which are special to LOTOS.

Mutation operators are not the only source for injected faults. This is espe-
cially true on the modeling level. In security testing known vulnerabilities might
be modeled as mutations. Another source for faults are common semantic mis-
interpretations of requirements or of a modeling language. One might imagine
a set of mutation operators for UML constructs that are ambigous. Test cases
could be designed such that a common interpretation of these models is enforced.

5 Web Server Case Study

In this section we report an a case study on testing web servers that serves to
demonstrate that our technique is applicable. The aim was to test the correct
implementation of parts of the HTTP protocol in the Apache web server. We fo-
cused on the GET-Method responsible for retrieving pages and limited ourselves
to single client-server connections.

The source for the LOTOS model was the Internet standard RFC 2616 (Re-
quest for Comments). RFC 2616 specifies the syntax of the HTTP protocol in
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Table 1. Mutation Operators for Extended LOTOS

Symbol Mutation Operators Description

EDO Event Drop Operator Eliminate one of the events from the process definition
ESO Event Swap Operator Change order of the 2 neighbouring events
ERO Event Replacement Operator Replace event by other events
EIO Event Insertion Operator Inserts one event after each event in the process definition
SOR Sequential Operator Replacement Replace the sequential composition operator (enabling

and disabling) >> and [>
POR Process Operator Replacement Replace the operator on processes (Parallel composition

general case, pure interleaving and full synchronization)
||, |[]| and |||

MRO Message Replacement Operator Replace the message of each communication channel with
other message

CRO Channel Replacement Operator Replace the channel with other channels within the pro-
cess definition

USO Unobservable Sequence Operator Change the action prefix from unobservable to observable
HDO Hiding Delete Operator Delete an event from hide definition
PRO Process Replacement Operator Replace the process name with stop or exit events
SEO Stop and Exit interchange Operator Interchange the Stop and Exit events
PSP Process Swap Parameter Change order of the two neighbouring parameters in pro-

cess calls
PRP Process Replace Parameter Replace one parameter with other in process calls
ESP Exit Swap Parameter Change order of the two neighbouring parameters in Exit

operator calls
ERP Exit Replace Parameter Replace one parameter with other in Exit operator calls
SSP Sequential composition Swap Parameter Change order of the two neighbouring parameters in Pa-

rameterized Sequential Composition operator calls
SRP Sequential composition Replace Parameter Replace one parameter with other in Parameterized Se-

quential Composition operator calls
ORO Operand Replacement Operators Replace an operand (variable or constant) by another syn-

tactically legal operand in data type declarations
SNO Simple Expression Negation Operators Replace a simple expression by its negation
ENO Expression Negation Operators Replace an expression by its negation
LRO Logical Operators Replacement Replace a logical operator (and, or, not) by another
RRO Relational Operators Replacement Replace a relational operator (<, ≤, >, ≥, =, �= on basic

types or whatever is declared in data type declarations)
by any other except its opposite

MCO Missing Condition Operators Delete conditions from conjunctions, disjunctions and im-
plications

ACO Adding Condition Operators Add conditions from conjunctions, disjunctions and im-
plications

STO Stuck At Operators Replace a simple expression with 0 or 1
ASO Associative Shift Operators Change the association between variables

BNF and describes the semantics in natural language (English). Our model con-
sists of two LOTOS processes, the client and the server, running in parallel. The
client is issuing a request message and then waits for a response message from
the server process. The request message contains three parts, each one modeled
as an action: (1) a Request Line (with a Method (here GET), a URI and the
HTTP-version), (2) a Request Header and (3) an optional Request Body. The
Request Header facilitates conditional requests, like e.g. header If Modified Since
supports a restricted download of pages that have been recently updated. The
Response message of the server contains three parts, too: (1) a Status Line (with
the HTTP-version, a Status Code and a Reason), a Response Header (with in-
formation about the web page) and a Response Body (which contains the web
page in most cases).

The choice of the level of granularity of the actions is a pragmatic one. Which
part of the protocol is modeled as an action depends on the actual testing strat-
egy and how the actions are easily mapped to real interactions with the web
server. For example, the three parts of the Request Line have been merged into
a single action, since we were not interested in testing variations of URI’s and
HTTP-versions.

Given the mutation operators in Table 1, almost 1500 mutants were derived
from the HTTP model. Table 2 shows that a relative high number of equivalent
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Table 2. Number of generated mutants

Symbol Mutation Operator No.Mutants No.Equiv Mutants

EDO Event Drop Operator 57 0
ESO Event Swap Operator 15 0
ERO Event Replacement Operator 65 5
EIO Event Insertion Operator 63 7
SOR Sequential Operator Replacement 17 7
POR Process Operator Replacement 5 1
MRO Message Replacement Operator 97 0
CRO Channel Replacement Operator 46 0
USO Unobservable Sequence Operator 2 0
HDO Hiding Delete Operator 0 0
PRO Process Replacement Operator 6 0
SEO Stop and Exit interchange Operator 45 0
PSP Process Swap Parameter 41 10
PRP Process Replace Parameter 59 0
ESP Exit Swap Parameter 44 15
ERP Exit Replace Parameter 48 0
SSP Sequential composition Swap Parameter 10 0
SRP Sequential composition Replace Parameter 12 0
ORO Operand Replacement Operators 154 77
SNO Simple Expression Negation Operators 154 77
ENO Expression Negation Operators 78 38
LRO Logical Operators Replacement 80 8
RRO Relational Operators Replacement 15 0
MCO Missing Condition Operators 41 18
ACO Adding Condition Operators 69 27
STO Stuck At Operators 220 30
ASO Associative Shift Operators 48 22

Total 1491 342

mutants was obtained, especially by the ORO and SNO operators. The reason
is that the synchronized product of the GET request of the client and the more
complete specification of the server makes large parts of the HTTP model re-
dundant. For example, the server is ready to listen to all kinds of Methods, but
only one (GET) is actually requested by the client.

The large number of appr. 1150 non-equivalent mutants shows that a testing
with mutation operators can only be done if the testing process is completely
automated. However, complete automation was not the goal of this case study.
Hence, we selected about 100 interesting mutations that were partly reflecting
ambiguities in the HTTP standard. From these we generated the test purposes
according to the process described in the previous section and used TGV to
generate the test cases.

The implementation under test was our institute’s Apache Web Server 2.0.40
for Red Hat Linux with HTTP/1.1 protocol. The tests have been carried out
manually via a telnet session to Port 80 of the web server’s URL. This is possible
since the HTTP protocol is ASCII based.

We did not expect to find major flaws in the Apache Web Server, since it
has been widely used since years. However, we found a case where Apache be-
haves unexpectedly. As mentioned above, conditional requests can be formed by
adding header fields. They serve to control the caching done by a proxy server.
The combination of several such header fields is underspecified in the standard.
However, on page 56 of RFC 2616 the standard says:

“An HTTP/1.1 origin server, upon receiving a conditional request that
includes both a Last-Modified date (e.g., in an If-Modified-Since or If-
Unmodified-Since header field) and one or more entity tags (e.g., in an



From Faults Via Test Purposes to Test Cases 335

If- Match, If-None-Match, or If-Range header field) as cache validators,
must not return a response status of 304 (Not Modified) unless doing so
is consistent with all of the conditional header fields in the request.”

Entity Tags and Last-Modifed Times are metainformations used to find out
whether a cache entry is an equivalent copy of an entity. The description in
the RFC is ambiguous, but it indicates that priority should be given to the If-
Match, If-None-Match, and If-Range header fields. The first tests showed that
the Apache developers shared our interpretation:

IDHeader 1 satisfied? Header 2 satisfied? Response Status
1 If-Match = true If-Modified-Since = true OK (200)
2 If-Match = true If-Modified-Since = false Not Modified (304)
3 If-Match = false If-Modified-Since = true Precondition Fail (412)
4 If-Match = false If-Modified-Since = false Precondition Fail (412)
5 If-Match = false If-Unmodified-Since = true Precondition Fail (412)
6 If-Match = false If-Unmodified-Since = false Precondition Fail (412)
7 If-None-Match = false If-Unmodified-Since = false Precondition Fail (412)

Note that test cases 3–7 respond with code 412 following the interpretation
that the response of the Match header has higher priority. However, the follow-
ing test cases suddenly deviate from this pattern:

IDHeader 1 satisfied? Header 2 satisfied? Response Status
8 If-None-Match = false If-Modified-Since = false Not Modified (304)
9 If-None-Match = false If-Unmodified-Since = true Not Modified (304)

This is a rather unexpected response of Apache which does not seem to be
consistent with the If-Match cases.

6 Conclusions

We have presented a mutation testing technique for generating test purposes.
The theory relating fault-based test purposes to mutated specifications is very
similar to our previous testing theory for the refinement calculus and OCL.
There, a test case t for distinguishing implementations of S and Sm had to
satisfy refines(S, t) and ¬refines(Sm, t), with refines being defined via weakest
preconditions (refinement calculus [17]) and implication (OCL [18]). Hence, our
fault-based IOLTS theory is a further instantiation of this refinement property
and demonstrates its generality.

To our present knowledge this is the first work on generating test purposes via
specification mutation. However, others have worked on mutation testing on the
specification level before. Most of them either focus on testing the specification or
on generating test cases directly. To our present knowledge Budd and Gopal were
the first [23]. They applied a set of mutation operators to specifications given in
predicate calculus form. The method relies on having a working implementation
generating output.
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Tai and Su [24] propose algorithms for generating test cases that guarantee
the detection of operator errors, but they restrict themselves to the testing of
singular Boolean expressions, in which each operand is a simple Boolean variable
that cannot occur more than once. Tai [25] extends this work to include the
detection of Boolean operator faults, relational operator faults and a type of
fault involving arithmetic expressions. However, the functions represented in the
form of singular Boolean expressions constitute only a small proportion of all
Boolean functions.

Stocks applied mutation testing to Z specifications [16]. He presented the
criteria to generate test cases to discriminate mutants, but did not automate his
approach. Woodward investigated mutation operators for algebraic specifications
[26].

More recently, Simon Burton presented a fault-based test case generator for
Z specifications [27]. He uses a combination of a theorem prover and a collection
of constraint solvers. The theorem prover generates a disjunctive normal form,
simplifies the formulas and helps in formulating different testing strategies.

Black et al. studied mutation operators using the SMV model checker [28].
However, they do not consider test purposes. A group in York has recently started
to use fault-based techniques for validating their CSP models [21]. Their aim is
not to generate test cases, but to study the equivalent mutants. Similar research
is going on in Brazil with an emphasis on protocol specifications written in the
Estelle language [29].

Wimmel and Jürjens [30] use mutation testing on specifications to extract
those interaction sequences that are most likely to find security issues. This work
is closest to ours, since they generate test cases for finding faults in concurrent
systems.

Our approach needs further evaluation. Its efficiency compared to structural
model-based testing techniques needs to be analysed. Especially, the optimal
choice of mutation operators deserves our attention. The case study indicates,
for example, that some mutation operators are more likely to generate equivalent
mutants than others.

The presented technique is specific to the TGV test case generator and sim-
ilar tools. However, the theoretical discussion of the properties of fault-based
test purposes has been included to make the result more widely applicable. For
example, [10] discusses test purposes for the B specification language. Conse-
quently, a similar technique could be developed for B and other model-oriented
specification languages.
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Abstract. We present an algorithm for automatic testing of distributed
programs, such as Unix processes with inter-process communication, Web
services, etc. Specifically, we assume that a program consists of a num-
ber of asynchronously executing concurrent processes or actors which
may take data inputs and communicate using asynchronous messages.
Because of the large numbers of possible data inputs as well as the asyn-
chrony in the execution and communication, distributed programs ex-
hibit very large numbers of potential behaviors. Our goal is two fold: to
execute all reachable statements of a program, and to detect deadlock
states. Specifically, our algorithm uses simultaneous concrete and sym-
bolic execution, or concolic execution, to explore all distinct behaviors
that may result from a program’s execution given different data inputs
and schedules. The key idea is as follows. We use the symbolic execu-
tion to generate data inputs that may lead to alternate behaviors. At
the same time, we use the concrete execution to determine, at runtime,
the partial order of events in the program’s execution. This enables us
to improve the efficiency of our algorithm by avoiding many tests which
would result in equivalent behaviors. We describe our experience with
a prototype tool that we have developed as a part of our Java program
testing tool jCUTE.

1 Introduction

Open distributed programs consist of asynchronous processes which communi-
cate with each other using asynchronous messages and which may also receive
data inputs from the environment. Unix process and web services are two ex-
amples of open distributed programs. The problem of testing such programs is
a difficult one because of the large number of potential behaviors that they may
exhibit, both because the number of possible inputs is unbounded and because
there are many possible orders of execution of distributed events.

In this paper, we focus on the problem of testing for reachability of state-
ments in distributed programs. Determining whether a statement is reachable
is, in some cases, undecidable. Our goal is to automatically and efficiently find
inputs and orderings which cover a large subset of the reachable statements in
a program. Note that our algorithm may also detect some deadlock states dur-
ing testing. Our testing algorithm builds on two ideas: concolic execution and
runtime partial order reduction.
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Concolic testing extends symbolic execution based testing [14, 16, 17, 24, 25] as
follows. In symbolic execution, a program is executed using symbolic variables in
place of concrete values for inputs. Each conditional expression in the program
represents a constraint that determines an execution path. Observe that the
feasible executions of a program can be represented as a tree, where the branch
points in a program are internal nodes of the tree. The goal is to explore all
feasible execution paths of a program [16]. The classic approach is to use depth-
first exploration of the paths by backtracking [24]. Unfortunately, for large or
complex program, it is computationally intractable to precisely maintain and
solve the constraints required for test generation.

Concolic testing removes the limitations of symbolic execution based test-
ing [12, 21]. Specifically, the algorithm uses simultaneous concrete and symbolic
execution, or concolic execution, to explore distinct behaviors that may result from
a program’s execution given different data inputs. The key idea is as follows. We
use the symbolic execution to generate data inputs that may lead to alternate be-
haviors. At the same time, we use the concrete execution to guide the symbolic
execution along a distinct execution path. The concrete execution is also used to
simplify symbolic expression that cannot be handled by our constraint solver.

For the purpose of testing for reachability and deadlocks, the behavior of a
distributed program may be defined by the partial order of events at the pro-
cesses, where an event is defined as the execution of a statement by a process.
Testing must account for nondeterminism in the order of events, not just inde-
terminacy of data inputs. Moreover, the nondeterminism in the order of events
arises both from the asynchrony in scheduling of processes and the delay in mes-
sage delivery. Our testing algorithm forces the computation along an execution
schedule which represents a particular choice for both kinds of nondeterminism.

Two difficult problems have to be addressed by our algorithm. First, concolic
testing has to incorporate efficient control of the execution schedules. We use
concrete executions to not only guide the symbolic execution, but also to com-
pute the happens before partial order relation [7] on the events. This relation is
used to determine a distinct schedule which, in general, corresponds to a differ-
ent partial order. Second, we have to track symbolic expressions and constraints
across process boundaries in a distributed setting.

Note that the runtime partial reduction technique we use is more involved
than the standard partial order reduction [8, 10, 18, 23]: we track both symbolic
constraints and the “happens-before” relation at runtime. Moreover, our partial
order reduction is dynamic as the partial order is computed at runtime. This
helps us to track the partial order accurately by eliminating some of the ap-
proximations required in a static analysis technique for standard partial order
reduction [11].

Because our algorithm is designed to explore execution paths of a distributed
program, we term our approach Explicit Path Model Checking. To the best of
our knowledge, our algorithm is the first to consider both inputs and schedules
for message-passing distributed programs. While other approaches [8, 11, 13, 15]
have considered testing for different schedules, they use either finite domains
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or random values for the inputs. Moreover, our algorithm is always sound –
any bugs that it reports are real. Our algorithm is complete only under certain
assumptions – namely, when our constraint solver can handle all constraints that
are generated and every execution is finite. More importantly, it can significantly
increase coverage as compared to testing using random inputs.

In Section 3, we describe a simple model of distributed programs which we use
in Section 5 and 6 to describe our algorithm. Essentially, the model corresponds
to actors [1, 2]. This allows us to describe the algorithm independent of any
particular programming language. We have implemented our algorithm as a part
of the tool jCUTE [20], which we have developed to test general multithreaded
programs written in Java. Section 7 describes some preliminary experiments
using this tool. Note that the algorithm can also be used for C programs by
extending CUTE [21] with Unix processes and IPC libraries.

2 Other Related Work

A number of approaches [8, 11, 13, 15] for testing distributed programs explore
all possible distinct partial orders for fixed inputs. Specifically, the approaches
in [11, 13] use static partial order reduction to avoid exploring some of the differ-
ent executions that have the same partial order. A reason for redundant explo-
rations is that there are approximations associated with static analysis. One way
to address this problem is to use dynamic analysis to guarantee that exactly one
interleaving from each partial order is explored [15]. The approach involves stor-
ing partial orders that have already been explored; this can become a memory
bottleneck. Dynamic partial order reduction [8] removes the memory bottleneck
in [15] at the cost of possibly exploring more than one interleaving for each partial
order. The approach in [8] works for programs which have no data input and use
persistent sets. On the other hand, our dynamic partial order reduction approach
is based on the macro-step Actor semantics [2]. A clear distinction between the
two approaches would require a study of the adaptation of the approach in [8] to
asynchronous message-passing distributed systems. The adaptation of dynamic
partial order reduction to multithreaded programs is shown in [8]. In our recent
work [20] extending concolic testing to multithreaded programs, we develop a
new technique for dynamic partial order reduction. We believe the technique,
called race-flipping, can be more efficient than that in [8].

Model checking tools [6, 22] based on static analysis have been developed to
detect bugs in shared memory concurrent programs. These tools employ par-
tial order reduction techniques to reduce search space. Testing shared memory
multi-threaded programs using symbolic execution [24] has been developed by
extending Java Pathfinder.

A number of approaches [5, 4, 9] have been developed to explore all possible
global states of program that can be inferred by observing a single execution of
a distributed program. These techniques are orthogonal to our algorithm and
may be combined with our testing tool to enable it to also explore all reachable
global states.
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3 Programming Model

In order to simplify the description of our testing approach, we define a simple
asynchronous message-passing imperative concurrent language MPIL (Figure 1).
MPIL extends the simple language presented in [21] with message-passing prim-
itives. An MPIL program is a set of processes that are executed concurrently,
where each process executes a sequence of statements. Processes in a program
communicate by passing messages asynchronously. The semantics of the lan-
guage is closely related to the actor semantics–each process implements an ac-
tor [2]. However, we assume that all executions terminate or the program has
deadlocked.

P ::= p1 : I∗ : Stmt∗ ‖ . . . ‖ pn : I∗ : Stmt∗

I ::= v ← input()
Stmt ::= l : S

S ::= v ← e | if (v 
� v′) goto l′ | HALT | ERROR | send(p, v) | receive(v)
where p is a process, v, v′ is a variable, 
�∈ {=, �=, <, >,≤,≥}

e ::= c | v op v′ where op ∈ {+,−, /, ∗, %, . . .}, c is a constant

Fig. 1. Syntax of MPIL

For brevity and simplicity, we assume that new processes are not created dur-
ing an execution of a program. The extension to handle these is fairly straight-
forward and, in fact, our implementation handles it. Moreover, an MPIL program
may receive data inputs from its environment. We assume that all such inputs
are available as needed; again this assumptions simplifies the description of our
algorithm: our Java programs can get data inputs at any time during an execu-
tion.1 To further simplify our exposition we assume that an MPIL program has
no pointers – in fact, we assume that all variables are of type integers. However,
as in [21], our algorithm can be extended to programs with pointers and complex
data structures, and this is done in the implementation.

3.1 Interleaving Semantics

We now informally describe the semantics of MPIL. Consider an MPIL program
P consisting of a set of processes P = {p1, . . . , pn}, where pi first gets a sequence
of inputs and then executes a sequence of statements, each of which is labeled.
If l is the label of a statement in some process, then l + 1 is the label of the
next statement in that process, unless the statement labeled by l is a HALT or an
ERROR. The label of the initial statement of a process p is given by lp0 . To simplify
1 The reason this assumption does not reduce the generality of our algorithm is easy

to see. Inputs are essentially unconstrained messages. Since we test for all potential
external behaviors, any values of the data inputs are possible in response to any
output of the program. Thus considering values as available from the beginning of
the execution does not constrain the contexts in which the program is tested.
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the description of the macro-step semantics (see Section 3.2), we assume that
the initial statement of each process is always of the form receive(v).

A program may only have variables of type integer. Variables are always local
to a process; they cannot be shared among processes. A process in a program can
communicate with another process by sending messages using the primitive send.
send(p, v) sends the content of the variable v to the process p. In the semantics of
MPIL, an execution of the statement send(p, v) by a process p′ adds the content
of v to the message queue of process p. The message queue of a process is a list of
values. We will use Qp to denote the message queue of process p, |Qp| to denote
the number of elements in the queue, and Qp[i] to denote the ith element in the
message queue. We assume that at the beginning of execution the message queue
of process p1 contains a message with content 0. A process can receive a message
by calling the primitive receive(v). On executing receive(v), a process waits if
its message queue is empty. Otherwise, the process non-deterministically picks
a message from its message queue, removes the message from the queue, assigns
the content of the message to v, and continues executing the next statement.
The non-determinism in picking the message models the asynchrony associated
with message passing.

Before executing any statement, an MPIL program gets input using the com-
mand v ←input(). This command assigns the input data to the variable v.
Observe that input() captures the various functions through which a program
may receive data from its external environment. We assume that the execution
of a command of the form v ←input() is always non-blocking.

A process is said to be active if it has not already executed a HALT or an
ERROR statement. A process is said to be enabled if the process is active, and the
processes’ message queue is non-empty if the next statement to be executed by
the process is receive.

The operational semantics of a program in MPIL is given using a (default)
scheduler which represents the choices made in a distributed execution of a
program. The pseudo-code for the default scheduler can be found in [19]. We use
the term schedule to refer to the sequence of choices.

In the scheduler, a variable pcp represents the program counter of the process
p. For each process p, pcp is initialized to the label of the first statement of the
process p (i.e. lp0) and Qp is initialized to the empty list (except for Q1). The
scheduler then starts a loop. Inside the loop, the scheduler non-deterministically
chooses an enabled process p from the set P . It executes the next statement of
the process p, where the next statement is obtained by calling statement at(pcp).
During the execution of the statement the program counter pcp of the process
p is incremented by one, unless the statement is of the form if p goto l′ and
the predicate p in the statement evaluates to true, in which case pcp is set to
l′. The loop of the scheduler terminates when there is no enabled process in
P . The termination of the scheduler indicates either the normal termination of
a program execution, or a deadlock state (when at least one process in P is
active).
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3.2 Macro-step Semantics

As shown in [2], the interleaving semantics of MPIL presented in Section 3.1
is equivalent to the macro-step semantics given in the form of a macro-step
scheduler in Figure 2. In the macro-step scheduler, the execution of a process
from a receive statement up to the next receive statement takes place consec-
utively without interleaving with any other process. The consecutive execution
of all statements of a process from a receive statement up to the next receive
statement is called a macro-step and an execution following the macro-step se-
mantics is called a macro-step execution. An execution of MPIL program can be
seen as a sequence of macro-steps, where at the beginning of each macro-step,
using the function choice, the scheduler non-deterministically picks an enabled
process p to be executed next and an index msg id indicating that the message
Qp[msg id ] must be consumed by the next receive statement. The sequence of
pairs of processes and message indices chosen during a macro-step execution is
called a macro-step schedule.

scheduler macro step(P )
pcp1 = l

p1
0 ; . . . ; pcpn = lpn

0 ;
Qp1 = [0 ]; Qp2 = [ ]; . . . ; Qpn = [ ];
for each p ∈ P initialize input variables
while (∃p ∈ P such that p is enabled)

(p,msg id)=choose(P);
s =statement at(pcp);
execute concrete(p, s,msg id);
s =statement at(pcp);
while (p is active and s �= receive(v))

execute concrete(p, s,msg id);
s =statement at(pcp);

if (∃p ∈ P such that p is active)
warning “Deadlock detected”;

choose(P)
pick non-deterministically a p from P

such that p is enabled
pick a j non-deterministically from [1..|Qp|]
return (p, j);

Fig. 2. Macro-step Scheduler for MPIL

Observe that during a macro-step execution, whenever the macro-step sched-
uler invokes the function choice, a pair of process and message index is non-
deterministically picked from a set of possible choices. The set of possible choices
can be formally defined as follows:

Choices = {(p, j) | p is an enabled process in P and 1 ≤ j ≤ |Qp|}
The elements of this set can be lexicographically ordered as follows. We say

(p, j) < (p′, j′) iff one of the following holds:

– The index of p is less than that of p′, i.e., if i and i′ are such that p = pi and
p′ = pi′ , then i < i′.

– p = p′ and j < j′.

Definition 1 (next). Given the above ordering relation < over the elements of
the set Choices, we can define a function next : Choices ∪ {(⊥,⊥)}→ Choices ∪
{(⊥,⊥)} as follows. The elements of the set Choices can be ordered using the
relation < to get a linear sequence. If (p, j) is an element of the sequence except
the last element, next(p, j) is defined as the element next to (p, j) in the sequence.
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Otherwise, if (p, j) is the last element in the sequence, then next(p, j) is defined
as (⊥,⊥). next(⊥,⊥) is defined as the first element of the sequence.

3.3 Execution Model

We represent the execution of a statement labeled l in a process p as the event
(p, l), and use e, e′, e1, . . . to denote events. A macro-step execution of a dis-
tributed program can be seen as a sequence of events τ = e1e2 . . . em, such that
τ is the concatenation of a sequence of sub-sequences. Each such sub-sequence
has the following property. Only the first event in the sub-sequence is a receive
event and each event in the sub-sequence happens at the same process. Thus each
sub-sequence represents a macro-step in the execution. Note that this definition
requires that the first statement of each process is a receive. Let E be the set
of all macro-step executions that can be exhibited by a program on all possible
inputs and schedules. In the simple testing algorithm (Section 5), our goal will
be to systematically and automatically explore all executions in E exactly once.
Later, we will refine the algorithm to avoid exploring ‘equivalent’ executions as
much as possible (see Section 6).

We now formally define this equivalence, based on a “happens-before” rela-
tion [7]. Given an execution of a distributed program, let E be the set of events
that happened during the execution. We can define a relation � ⊆ E×E, called
“happens-before” relation, among the events of the execution as follows:

1. e � e,
2. e � e′ if e and e′ are events of the same process and e happens before e′ in

the execution,
3. e � e′ if e is the send event of a message and e′ is the receive event that

consumes the message sent during the event e, and
4. e � e′ if there is a e′′ such that e � e′′ and e′′ � e′.

Thus the “happens-before” relation is a partial order relation.
Given two executions τ and τ ′ in E , we say that τ and τ ′ are causally equiv-

alent, denoted by τ ≡� τ ′, iff τ and τ ′ have the same set of events and they are
linearizations of the same “happens-before” relation. We use [τ ]≡� to denote the
set of all executions in E that are causally equivalent to τ .

We define the representative set of executions E≡ ⊆ E as the set that contains
exactly one candidate from each equivalence class [τ ]≡� for all τ ∈ E . Formally,
E≡ is the set such that following properties hold: E≡ ⊆ E , E =

⋃
τ∈E≡ [τ ]≡� , and

for all τ, τ ′ ∈ E≡, it is the case that τ � ≡�τ ′.
The following result shows that a systematic and automatic exploration of

each element in E≡ is sufficient for testing.

Proposition 1. If a statement is reachable in a program P for some input and
schedule, then there exists a τ ∈ E≡ such that the statement is executed in τ .

The proof of this proposition is straight-forward. If a statement is reachable then
there exists an execution τ in E such that the execution τ executes the statement.
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By the definition of ≡�, any execution in [τ ]≡� executes the statement. Hence,
the execution in E≡ that is equivalent to τ executes the statement.

The “happens-before” relation among the events can be tracked efficiently
at runtime using vector clocks [7]. A vector clock V : P → N is a map from
processes to natural numbers (also known as logical time). For each process p,
let us associate a vector clock denoted by V Cp with p. Let V = max (V1, V2) iff for
all p ∈ P , V (p) =max (V1(p), V2(p)). Let V ≤ V ′ iff for all p ∈ P , V (p) ≤ V (p′).

At the beginning of an execution, for all p and p′ in P , let V Cp(p′) = 0.
During the execution, at every event, the vector clock of a process is updated as
follows.

1. If e is a send event executed by process p, then V Cp(p) ← V Cp(p) + 1 and
attach V Cp with the message.

2. If e is a receive event executed by process p and if V is the vector clock at-
tached with the message received, then V Cp ←max (V, V Cp). This is followed
by V Cp(p)← V Cp(p) + 1.

We can associate a vector clock with every event e, denoted by V Ce as follows.
If e is executed by p and if V Cp is the vector clock of p just before the event e,
then V Ce = V Cp.

Given the above update rules for vector clocks during an execution, the fol-
lowing theorem [4] holds:

Theorem 1. For any two events e and e′, e � e′ iff V Ce ≤ V Ce′ .

We say that two events e and e′ are independent iff e �� e′ and e′ �� e. Therefore,
by Theorem 1, e and e′ independent iff V Ce �≤ V Ce′ and V Ce′ �≤ V Ce.

Since we are interested only in exploring macro-step executions, henceforth,
we will use the terms execution and schedule to refer to macro-step execution
and macro-step schedule, respectively.

4 An Illustrative Example

We now illustrate our testing methodology by means of the simple program in
Figure 3. For brevity, we omit the first receive statement of process p1 in the
program. We perform testing on the program by generating inputs and sched-
ules one by one and executing the program both concretely and symbolically on
these inputs and schedules. We assume that a program executes according to
the macro-step semantics described above. We represent an execution diagram-
matically using a lifeline where each circle on the lifeline represents a program
state and each line segment between two circles represents the execution of a
statement by a process. We always label such a line segment by a pair of the
form (p, l) denoting the execution of the statement labeled l by the process p.
We assume that time increases from top to bottom in the diagram.

Figure 4.a shows the execution of the program on a random input and a random
schedule. In the execution there are three states s1, s2, s3 where the program can
possibly backtrack (or continue with a different path) if we can generate a different
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schedule or different input. For example, at the s1, there are two other possible
choices that the scheduler may make – it may execute p3 by receiving the value
sent by the second send statement of p1 or by receiving the value sent by the third
send statement of p1. Similarly, at s2, the scheduler may make another choice – it
may execute p3 by receiving the message sent by the third send statement of p1.
At s3, the program may take the then branch of the program if the input is chosen
such that it satisfies the constraint 2 ∗ y + 1 == 4, which is generated using the
simultaneous symbolic execution and constraint solving.

p1 : p2 : p3 :
x ← input() y ← input()
1: send(p2, 1) 1: receive(z) 1: receive(u)
2: send(p3, 4) 2: if (u! = 2 ∗ y + 1) goto 4
3: send(p3, x) 3: ERROR

4: receive(u)

Fig. 3. Simple Distributed Program Example

In our simple testing algorithm (described in Section 5), we generate the next
input or schedule by exploring other alternatives at these backtracking points
in a depth-first manner. We cannot generate an input such that, in the next
execution, the program takes the then branch at s3. This is because the equation
2∗y+1 == 4 is unsatisfiable assuming that y is an integer. Therefore, in the next
execution we execute the program by taking the alternative scheduler choice at
the s2. The execution is shown in Figure 4.b. After this execution we try to
backtrack at s3 and generate the input {x = 1, y = 0} by solving the constraint
x == 2 ∗ y + 1, which is generated during the simultaneous symbolic execution.
Figure 4.c gives the third execution.

Fig. 4. Executions Generated during Testing

In this way, our simple testing algorithm proceeds in a depth-first manner
either by generating an input by solving a constraint at a backtracking point
or by generating different schedule by making an alternative scheduler choice
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at a backtracking point. The remaining executions of the program are shown
in Figure 4. Note that our simple algorithm, which considers all possible sched-
uler choices at a backtracking point, results in many redundant executions. We
can get rid of most of the redundant executions using our efficient testing algo-
rithm (described in Section 6) which performs runtime partial order reduction by
computing a “happens-before” relation (described in Section 3.3) among various
events in an execution.

Our efficient testing algorithm only generates the first three executions in
Figure 4. This is far less than the number of executions generated by our simple
testing algorithm. Our efficient testing algorithm avoided the redundant execu-
tions and yet was able to hit the error statement. In particular, at the backtrack-
ing point denoted by s1 in Figure 4.c, our efficient algorithm does not consider
the other two possible alternative choices of executing the p3. This is because
the execution of the first receive statement by p2 after s1 does not effect the
execution of any future statement. Therefore, delaying the execution of the p2
after s1 will result in an execution that will have the same “happens-before”
relation as the current execution. Considering two executions having the same
“happens-before” relation is redundant since we are concerned with statement
reachability (see Theorem 1).

5 Simple Algorithm

We present a simple systematic search algorithm in which our goal is to ex-
plore all macro-step execution paths of a program P by generating inputs and
macro-step schedules. As in earlier work [12, 21], our algorithm uses concrete
values as well as symbolic values for the inputs, and executes the program both
concretely and symbolically. During the course of the execution, it collects the
constraints over the symbolic values over each branching point (i.e., the symbolic
constraints). At the end of the execution of a path, the algorithm has computed
a sequence of symbolic constraints corresponding to each branching point. We
call the conjunction of these constraints path constraint. Observe that all input
values that satisfy a given path constraint will explore the same execution path
given that we follow the same schedule.

The algorithm first generates a random input and a macro-step schedule which
specifies the order of execution of processes. Then the algorithm does the follow-
ing in a loop: it executes the code with the generated input and the schedule,
and the same time records the process and message index pairs chosen by the
scheduler as well as the symbolic constraints. The algorithm backtracks and
alters these choices to systematically explore all possible macro-step execution
paths using a depth-first search strategy. Specifically, the algorithm does one of
the following to find the new data values or schedule for the next execution:

1. It picks a constraint from the symbolic constraints that were collected along
the execution path and negates the constraint to define a new path con-
straint. The algorithm then finds some concrete values, if such values exist,
that satisfy the new path constraint.
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// input: P is the program to test
run CUTE(P )

completed=false; I = path c = branch hist=[ ];
while not completed

scheduler(P );

Fig. 5. Testing Algorithm Calls Scheduler in a Loop

2. It generates a new schedule such that at some state where the scheduler
makes a choice, the next possible choice is picked instead of the current
choice.

The algorithm continues the loop until it sweeps all feasible execution paths.
There is one complication arising from the fact that for some symbolic con-

straints, our constraint solver may not be powerful enough to compute concrete
values that satisfy the constraints. To address this difficulty, such symbolic con-
straints are simplified by replacing some of the symbolic values with concrete
values. Because of this, our algorithm is sound but not complete.

We now provide the details of the algorithm. The algorithm is described using
a centralized interpreter for programs in MPIL. This is to simplify the descrip-
tion. In fact, jCUTE instruments distributed programs and uses a centralized
scheduler to control the distributed processes.

The pseudo-code for our algorithm is in Figure 5. Before starting the execution
loop, the algorithm initializes the logical input map I (which maps each input
variable to a value) to an empty map [21], the sequences path c (which maintains
scheduler choices and symbolic constraints for a given execution), and branch hist
(which maintains the history of branches taken) to the empty sequences. Each
element of the list path c has the following fields:

1. constraint : stores the constraint generated on the execution of a conditional
statement. At the end of an execution, the conjunction of all the constraints
stored in the elements of path c, for which the field hasConstraint is true,
gives the path constraint for the given execution path. (Since in [21] we were
not concerned about distributed events, each element of path c was used to
store only a constraint).

2. hasConstraint : set to true if the field constraint stores a constraint. It is set
to false if the field constraint contains a scheduler choice.

3. schedule: stores a pair of process and message index, which is the choice
made by the scheduler before executing a receive(v) statement.

4. next schedule: stores the scheduler choice next(schedule).

The non-deterministic function choice given in Figure 2 is replaced by the
function choice simple systematic (see Figure 6). The simple scheduler first ini-
tializes the program counters pcp and Qp for each process p ∈ P . In addition,
the simple scheduler also initializes the global counter variable i to 0. At any
point of execution, i contains the sum of the number of choices made by the
scheduler thus far, as well as the number of conditional statements executed.
The input variables of each process are also initialized using the logical input
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map I (cf. [21]). If I(v) is undefined for an input variable v, then v is initial-
ized randomly. In the function choose simple systematic, the scheduler picks the
same schedule as the previous execution as long as i is less than the number
of elements of path c. The list path c is truncated appropriately at the end of
the previous execution to perform a depth-first search of the execution paths.
Otherwise, the scheduler picks a pair of process and message index such that the
pair is the smallest pair in the set of possible choices.

scheduler(P )
pcp1 = l

p1
0 ; . . . ; pcpn = lpn

0 ;
Qp1 = [0 ]; Qp2 = [ ]; . . . ; Qpn = [ ];
i = 0;
for each p ∈ P initialize

input variables using I
while (∃p ∈ P such that p is enabled)

(p,msg id)=choose simple systematic(P);
path c[i].hasConstraint = false;
i = i + 1;
s =statement at(pcp);
execute concolic(p, s,msg id);
s =statement at(pcp);
while (p is active and s �= receive(v))

execute concolic(p, s,msg id);
s =statement at(pcp);

if (∃p ∈ P such that p is active)
warning “Deadlock detected”;

compute next input and schedule();

choose simple systematic(P)
if (i ≤ |path c|)

(p,msg id) =path c[i].schedule;
else

path c[i].schedule = (p,msg id) = next(⊥,⊥);
path c[i].next schedule = next(p,msg id);
return (p,msg id);

Fig. 6. Simple Scheduler for Testing MPIL

execute concolic(p, s, j)
pcp = pcp + 1;
match(s)

case send(p′, v):
Qp′ = (Sp(v),Ap(v)) :: Qp′ ;

case receive(v):
(val, sval) = Qp[j];
Sp = Sp[v �→ val]; Ap = Ap[v �→ sval];
Qp = remove element(Qp, j);

...
compute next input and schedule()

j = i − 1;
while j ≥ 0

if path c[j].hasConstraint
if (branch hist[j].done == false)

branch hist[j].branch=¬branch hist[j].branch;
if (∃I′ that satisfies neg last(path c[0 . . . j]))

path c = path c[0 . . . j];
branch hist=branch hist[0 . . . j];
I = I′;
return;

else if path c.next schedule �= (⊥,⊥)
path c.schedule=path c.next schedule;
path c = path c[0 . . . j];
branch hist=branch hist[0 . . . j];
return;

j = j − 1;
if (j < 0) completed=true;

Fig. 7. Concolic Execution and Compute
Next Schedule and Input

5.1 Computing Next Schedule and Input

The function compute next input and schedule, described in Figure 7, computes
the schedule and the input that will direct the next program execution along
an alternative execution path. It first picks an element of path c from the end.
If the element contains a constraint and if it is not negated before, then con-
straint solving is invoked to generate a new input (see [21]). Otherwise, if the
element contains a scheduler choice and if not all scheduler choices at the execu-
tion point denoted by the element have been exercised, then a new schedule is
generated. Specifically, if the pair (p, m) is chosen at the execution point denoted
by path c[j].schedule, then next(p, m), which is stored in path c[j].next schedule,
is assigned to path c[j].schedule. In the next execution, at that particular execu-
tion point, the scheduler will pick next(p, m), a choice which was not exercised
before at that execution point. This ensures that in subsequent executions all
the choices are selected one by one.
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5.2 Concolic Execution

Concolic execution [12, 21] performs both symbolic and concrete execution of
a program side by side in a cooperative way. The concolic execution technique
will be important for efficiently testing distributed programs: the availability
of concrete values for all memory locations in addition to the symbolic values
helps us to accurately determine the partial order of a distributed execution
(as described later in Section 6). Determining the partial order is important to
avoid exploring redundant executions. On the other hand, the symbolic execution
part of the concolic execution helps us perform symbolic execution as much as
possible. This symbolic execution combined with constraint solving is essential
to generate data inputs for the next execution.

The details of the procedure execute concolic can be found in [21]. A brief
pseudo-code of the procedure is given in Figure 7. At runtime, for each process
p concolic execution maintains a symbolic state Ap mapping memory locations
to symbolic expressions over symbolic input values in addition to the concrete
state Sp mapping memory locations to concrete values. During concolic execu-
tion, every statement is executed concretely using the function evaluate concrete
and symbolically using the function evaluate symbolic. In addition to perform-
ing symbolic execution, the function evaluate symbolic simplifies any complex
(e.g. non-linear) symbolic expressions in the symbolic state by replacing some
symbolic values in the expression by their corresponding concrete values.

Note that in concolic execution, to carry out the symbolic execution, we need
to track symbolic states and symbolic constraints across the process boundaries.
To achieve this, both the concrete value and the symbolic value of the variable v
are sent, when a process executes a statement of the form send(p, v). Moreover,
for each process p the message queue Qp is modified to a list of pairs of concrete
and symbolic values. An execution of the statement send(p, v) by a process p′

prepends a pair of the concrete and the symbolic value of the variable v to the
message queue of process p.

6 Efficient Algorithm

We now provide an efficient algorithm which explores a much smaller superset
of the execution paths in E≡. The efficient algorithm is based on the following
observation. At a point where the scheduler makes a choice, often it is sufficient
to consider all messages for a particular process only as possible choices by
the scheduler, instead of considering all messages for all processes as possible
scheduler choices. This is because, considering all messages for all processes
would result in many equivalent executions.

We now characterize the case where the scheduler has to choose between
messages for different processes. Consider a prefix τ = e1e2 . . . ek of the sequence
of events in an execution, such that the scheduler makes a choice after τ . Let e be
the event from process p, which happens immediately after τ when the scheduler
only chooses all messages for the particular process p after τ . Now if there exists
an execution τ ′ with prefix τe such that there is a send event e′ to process p,
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e′ appears after τe in τ ′, and e is independent of e′, then we need to delay the
execution of process p after τ such that the receive event e of process p after
τ consumes the message sent by the event e′. This would give a different non-
equivalent execution. Thus in such situations, it is not sufficient if the scheduler
only chooses all messages of process p after τ . Rather, immediately after τ , we
need to consider all messages of at least one more process other than p.

scheduler(P )
pcp1 = l

p1
0 ; . . . ; pcpn = lpn

0 ;
Qp1 = [0 ]; Qp2 = [ ]; . . . ; Qpn = [ ];
i = 0;
for each p ∈ P initialize

input variables using I
while (∃p ∈ P such that p is enabled)

(p,msg id)=choose simple systematic(P);
path c[i].hasConstraint = false;
path c[i].vclock = (p, V Cp);
i = i + 1;
s =statement at(pcp);
execute concolic(p, s,msg id);
s =statement at(pcp);
while (p is active and s �= receive(v))

if s is send(p′, v)
for all k ≤ i

such that (p′′, V ) = path c[k].vclock
and p′′ = p′ and V �≤ V Cp and V Cp �≤ V

path c[k].needs delay=true;
execute concolic(p, s,msg id);
s =statement at(pcp);

if (∃p ∈ P such that p is active)
warning “Deadlock detected”;

compute next input and schedule();

compute next input and schedule()
j = i − 1;
while j ≥ 0

if path c[j].hasConstraint
if (branch hist[j].done == false)

branch hist[j].branch=¬branch hist[j].branch;
if (∃I′ that satisfies neg last(path c[0 . . . j]))

path c = path c[0 . . . j];
branch hist=branch hist[0 . . . j];
I = I′;
return;

else if path c[j].next schedule �= (⊥,⊥)
(p, m) =path c[j].schedule;
(p′, m′) =path c[j].next schedule;
if p = p′ or path c[j].needs delay

path c[j].schedule=path c[j].next schedule;
if p �= p′

path c[j].needs delay = false;
path c = path c[0 . . . j];
branch hist=branch hist[0 . . . j];
return;

j = j − 1;
if (j < 0) completed=true;

Fig. 8. Efficient Scheduler for Testing MPIL

Based on the above observation, we refine the simple scheduler described
in Figure 6 by one (see Figure 8) that uses the “happens-before” relation to
avoid exploring equivalent executions as much as possible. We assume that the
scheduler maintains vector clocks with each process and that the vector clocks
are updated using the procedure described in Section 3.3. We omit the vector
clock update procedure from Figure 8 to keep the description simple.

In the efficient scheduler, we keep track of the vector clocks of each receive
event. For every send event we check if the send event can synchronize with
an already executed receive event in some alternative execution. This is done
by checking the independence of the send event with any previously executed
receive event. If such a check passes, then we flag the scheduler choice at the
execution point just before the independent receive event. The flag indicates that
in some future execution, just before the receive event, the scheduler needs to
consider all messages of at least one more process.

To keep track of vector clocks and the flag, we introduce two more fields to
each element of path c as follows.

1. vclock : stores a pair (p, V ), where p is the process executing the receive event
and V is the vector clock of the event.
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2. needs delay: stores the flag whose truth indicates that at the current exe-
cution point, the scheduler needs to consider all messages of more than one
process. If the flag is false, then the scheduler only considers all messages of
a single process.

Soundness of our algorithm is trivial. A bug reported by our algorithm is
an actual bug because our algorithm provides a concrete input and schedule on
which the program exhibits the bug. Moreover, our algorithm can be complete
in some cases.

Proposition 2. (Completeness) During testing a program with our efficient
algorithm, if the following conditions hold:
– The algorithm terminates.
– The algorithm makes no approximation during concolic execution and it is

able to solve any constraint which is satisfiable.

then our algorithm has executed all executions in E≡ and we have hit all reachable
statements of the program.

The proof of this proposition, while fairly intuitive, is beyond the scope of this
paper. Next, we show that the efficient algorithm explores significantly fewer
execution paths than the simple algorithm while achieving the same branch
coverage.

7 Implementation and Experiments

We have implemented both the simple and the efficient testing algorithm as a
part of the Java testing tool jCUTE. The tool can be applied to test distributed
Java programs written in the Actor language [2]. The Actor language extends
Java by supporting actors or processes. The language is supported as a library
in Java. In the language we assume that Java threads are not explicitly used by
the programmer.

We report our experience of using jCUTE on a few examples, which in-
clude implementations of a leader election algorithm, a distributed sorting al-
gorithm, and Chandy-Misra’s shortest path algorithm. We performed all exper-
iments on a Windows XP laptop with a 2.0 GHz Pentium M processor and
1GB RAM. The tool and the code for the case studies can be downloaded from
http://osl.cs.uiuc.edu/∼ksen/cute/.

The leader election algorithm that we considered works on a system with N
processes connected using a unidirectional ring. Each process is assumed to have
an unique id. We considered a general implementation where we assumed that
the unique ids can be any value – in fact, they are assumed to be inputs. Such
a general implementation cannot be handled by the model-checker in [3].

In the implementation, when we did not assume that the communication
channels are FIFO, then our testing algorithms discovered an assertion violation
that shows that there can be inputs and schedules where the algorithm fails to
elect a leader.
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Table 1. Results of Testing Distributed Programs

Simple Testing Algorithm Efficient Testing Algorithm
Name # of Run time # of % Branch Run time # of % Branch Bug(s)

Processes in seconds Executions Coverage in seconds Iterations Coverage Found
Leader 3 25.1 387 66.7 0.53 9 66.7 0
Election (FIFO) 4 > 33000 > 30000 66.7 15.92 22 66.7 0
Leader (non-FIFO) 3 0.16 5 70.0 0.24 5 70.0 1
Distributed 4 0.39 14 71.43 0.21 7 71.43 0
Sorting 5 13.3 420 71.43 1.13 35 71.43 0

6 2152.42 64636 71.43 7.63 226 71.43 0
Chandy- 4 > 2600 > 100000 62.5 8.92 338 62.5 0
Misra 5 > 2690 > 100000 62.5 15.01 562 62.5 0

When we assumed that the communication channels are FIFO, both of our
testing algorithms terminated without reporting any error. Table 1 gives the
various statistics about this testing experiment.

Similarly, we tested implementations of a distributed sorting algorithm and
Chandy Misra’s shortest path computation algorithm. A model of the sorting
algorithm was used for model-checking using the SPIN model-checker. However,
in that experiment, they assumed a fixed sequence of numbers for sorting. In-
stead, we made the numbers to be sorted as inputs. This enabled us to test the
algorithm not only for all schedules but also for all inputs.

The experimental results show that for the implementations that we consid-
ered, the efficient algorithm explores significantly fewer execution paths than
the simple testing algorithm. On the other hand, both the algorithms attain
the same branch coverage. The branch coverage in most cases is less than 100%
because the implementations contain a number of assert statements that were
never violated and some dead branches which cannot be taken.

8 Conclusion

We presented a new algorithm and an implementation to systematically and ef-
ficiently test distributed programs with inputs. To our best knowledge, jCUTE
is the first testing tool that can automatically and exhaustively explore all non-
equivalent execution paths of a distributed program with data inputs. In con-
trast, all previous tools [8, 11, 15] were able to test distributed programs only
with a small finite domain input or with random inputs.
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Abstract. This paper describes the application of the Real-Time Maude
tool to the formal specification and analysis of the CASH scheduling al-
gorithm and its suggested modifications. The CASH algorithm is a so-
phisticated state-of-the-art scheduling algorithm with advanced capacity
sharing features for reusing unused execution budgets. Because the num-
ber of elements in the queue of unused resources can grow beyond any
bound, the CASH algorithm poses challenges to its formal specification
and analysis. Real-Time Maude extends the rewriting logic tool Maude
to support formal specification and analysis of object-based real-time sys-
tems. It emphasizes generality of specification and supports a spectrum
of analysis methods, including symbolic simulation and (unbounded and
time-bounded) reachability analysis and LTL model checking. We show
how we have used Real-Time Maude to experiment with different design
modifications of the CASH algorithm using both Monte Carlo simulation
and reachability analysis. We could quickly and easily specify and ana-
lyze these modifications using Real-Time Maude, and discovered subtle
behaviors in the modifications that lead to missed deadlines.

1 Introduction

Real-Time Maude [14, 15, 16] is a high-performance tool that extends the rewrit-
ing logic-based Maude system [4, 5] to support the formal specification and anal-
ysis of object-based real-time systems. Real-Time Maude emphasizes ease and
expressiveness of specification, and provides a spectrum of analysis methods,
including symbolic simulation through timed rewriting, time-bounded temporal
logic model checking, and time-bounded and unbounded search for reachabil-
ity analysis. Real-Time Maude differs from formal real-time tools such as the
timed/hybrid automaton-based tools Uppaal [1], Kronos [19], and Hytech [7] by
having a more expressive specification formalism which supports well the specifi-
cation of “infinite-control” systems which cannot be specified by such automata.
Real-Time Maude has proved useful for analyzing advanced communication pro-
tocols [9, 12, 17] and wireless sensor network algorithms [18].

This paper describes the application of Real-Time Maude to the formal speci-
fication and analysis of the sophisticated state-of-the-art CASH scheduling algo-
rithm [3] developed by the second author in joint work with Buttazzo and Sha.

L. Baresi and R. Heckel (Eds.): FASE 2006, LNCS 3922, pp. 357–372, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



358 P.C. Ölveczky and M. Caccamo

The CASH algorithm attempts to maximize system performance while guaran-
teeing that critical tasks are executed in a timely manner. This is achieved by
maintaining a queue of unused execution budgets that can be reused by other
jobs to maximize processor utilization. The second author has suggested a mod-
ification of the algorithm which may further improve its performance.

The CASH algorithm poses challenges to its formal modeling and analysis,
since we discovered during Real-Time Maude execution that there is no upper
bound on the number of spare budgets in the queue. This implies that finite-
control formalisms, such as the above mentioned Uppaal, Kronos, and HyTech,
which do not support unbounded data types (except for real numbers), cannot
model this protocol, and that standard decision procedures cannot be applied
to analyze the reachable state space.

We have used Real-Time Maude to analyze the modified algorithm and some
additional design alternatives before the costly effort of implementing and testing
it on a real-time kernel is undertaken. Our analysis focused on the critical prop-
erty that tasks do not miss their deadlines. Time-bounded reachability analysis
found a subtle scenario leading to a missed deadline in the modified algorithm.
We also describe how we subjected the scheduling algorithm to Monte Carlo sim-
ulation by generating jobs pseudo-randomly. Such simulation provides not only
more “realistic” simulation of the protocol, but also another light-weight analy-
sis method which covers many—but not all—possible behaviors of the system.
Moreover, extensive Monte Carlo simulation indicates that the critical missed
deadline would be difficult to find during traditional testing.

2 Real-Time Maude

A Real-Time Maude timed module specifies a real-time rewrite theory [13] of the
form (Σ, E, IR,TR), where:

– (Σ, E) is a membership equational logic [10] theory with Σ a signature1 and
E a set of conditional equations. The theory (Σ, E) specifies the system’s
state space as an algebraic data type. (Σ, E) must contain a specification of
a sort Time modeling the time domain (which may be dense or discrete).

– IR is a collection of labeled conditional instantaneous rewrite rules specifying
the system’s instantaneous (i.e., zero-time) local transitions, each of which is
written crl [l] : t => t′ if cond, where l is a label. Such a rule specifies
a one-step transition from an instance of t to the corresponding instance of
t′, provided the condition holds. The rewrite rules are applied modulo the
equations E.2

– TR is a set of tick (rewrite) rules, written with syntax

1 i.e., Σ is a set of declarations of sorts, subsorts, and function symbols (or operators)
2 The set E of equations is a union E′ ∪ A, where A is a set of equational axioms

such as associativity, commutativity, and identity, so that deduction is performed
modulo A. Operationally, a term is reduced to its E′-normal form modulo A before
any rewrite rule is applied.
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crl [l] : {t} => {t′} in time τ if cond .

that model the elapse of time in a system. {_} is a built-in constructor of
sort GlobalSystem, and τ is a term of sort Time that denotes the duration
of the rewrite.

The initial states must be ground terms of sort GlobalSystem and must be
reducible to terms of the form {t} using the equations in the specifications. The
form of the tick rules then ensures uniform time elapse in all parts of the system.

In object-oriented Real-Time Maude modules, a class declaration

class C | att1 : s1, ... , attn : sn .

declares a class C with attributes att1 to attn of sorts s1 to sn. An object of class
C in a given state is represented as a term < O : C | att1 : val1, ..., attn : valn >
where O is the object’s identifier, and where val1 to valn are the current val-
ues of the attributes att1 to attn. In a concurrent object-oriented system, the
state, which is usually called a configuration, is a term of the built-in sort
Configuration. It has typically the structure of a multiset made up of objects
and messages. Multiset union for configurations is denoted by a juxtaposition
operator (empty syntax) that is declared associative and commutative, so that
rewriting is multiset rewriting supported directly in Real-Time Maude. The dy-
namic behavior of concurrent object systems is axiomatized by specifying each
of its concurrent transition patterns by a rewrite rule. For example, the rule

rl [l] : < O : C | a1 : x, a2 : y, a3 : z >
< O’ : C | a1 : w, a2 : 0, a3 : v >

=>
< O : C | a1 : x + w, a2 : y, a3 : z >
< O’ : C | a1 : w, a2 : x, a3 : v > .

defines a family of transitions where two objects of class C synchronize to update
their attributes when the a2 attribute of one of the objects has value 0. The
transitions have the effect of altering the attribute a1 of the object O and the
attribute a2 of the object O’. “Irrelevant” attributes (such as a3, a2 of O, and
the right-hand side occurrence of a1 of O’) need not be mentioned in a rule.

Timed modules are executable under reasonable assumptions, and Real-Time
Maude provides a spectrum of analysis capabilities. We summarize below the
Real-Time Maude analysis commands used in our case study.

Real-Time Maude’s timed “fair” rewrite command simulates one behavior of
the system up to a certain duration. It is written with syntax

(tfrew t in time <= τ .)

where t is the term to be rewritten and τ is a ground term of sort Time.
Real-Time Maude’s timed search command uses a breadth-first strategy to

search for states that are reachable from a given initial state t within time τ
and match a search pattern and satisfy a search condition. The command which
searches for one state satisfying the search criteria has syntax
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(tsearch [1] t =>* pattern such that cond in time <= τ .)

The such that-condition may be omitted. Real-Time Maude also provides an
untimed command to search for a state reachable in any amount of time. Such
search, while not guaranteed to terminate, is sometimes more efficient than timed
search since it does not have to keep track of durations.

Real-Time Maude also extends Maude’s linear temporal logic model checker [5]
to check whether each behavior “up to a certain time,” as explained in [15],
satisfies a temporal logic formula. Restricting the computations to their time-
bounded prefixes means that properties can be model checked in specifications
that do not allow Zeno behavior, since (assuming, e.g., discrete time) only a
finite set of states can then be reached from an initial state. State propositions,
possibly parameterized, should be declared as operators of sort Prop, and their
semantics should be given by (possibly conditional) equations of the form

{statePattern} |= prop = b

for b a term of sort Bool, which defines the state proposition prop to hold in
all states {t} where {t} |= prop evaluates to true. A temporal logic formula
is constructed by state propositions and temporal logic operators such as True,
False, ~ (negation), /\, \/, -> (implication), [] (“always”), <> (“eventually”),
and U (“until”). The time-bounded model checking command has syntax

(mc t |=t formula in time <= τ .)

for t the initial state and formula the temporal logic formula.

3 Overview of the CASH Scheduling Algorithm

In most real-time systems, schedulability of critical application tasks is guar-
anteed off-line by considering the tasks’ worst-case execution times (WCETs).
If the average-case execution times (ACETs) are significantly shorter than the
WCETs, then a scheduling based on WCETs will negatively affect system per-
formance as large amounts of processor time may remain unused. Such a waste
of resources is not a good solution for those applications (the majority) in which
some deadline misses can be tolerated by the system, as long as hard tasks are
guaranteed off-line. A general technique for guaranteeing deadlines of hard ac-
tivities in the presence of soft tasks with unpredictable execution times is based
on the resource reservation approach [2]. Each task τi is served by a constant
bandwidth server Si that is characterized by its maximum budget Qi (i.e., its
allocated execution time) and its period Ti; hence, τi has a CPU reservation
Qi/Ti. Each server is scheduled according to the preemptive earliest deadline
first (EDF) policy: at any instant of time, the CPU scheduler always chooses
for execution the ready task with the earliest deadline. Using this methodology,
the overall system performance becomes quite dependent on a correct resource
allocation. Wrong resource assignments will result in either wasting the avail-
able resources or in lowering the tasks’ responsiveness. Such a problem can be
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overcome by introducing a suitable resource reclaiming technique like CASH [3],
which is able to exploit early completions of some task instances to satisfy the
extra execution requirements (overruns) of other tasks.

We give a brief overview of the CASH algorithm, which is described in detail
in [3]. Tasks may be periodic or aperiodic (instances of aperiodic tasks arrive
at “arbitrary” times). The idea behind the CASH algorithm is to handle over-
runs efficiently and increase processor utilization by reclaiming unused allocated
execution times. To achieve this kind of capacity sharing (CASH), the system
maintains a queue of unused budgets. When a task instance τi,j finishes before
exhausting its capacity generated by the scheduling (i.e., its “borrowed” spare
capacity plus its own maximum budget Qi), its unused capacity, together with
the deadline of τi,j , is added to the CASH queue. When a server executes, it uses
execution time from the spare capacities having deadlines no later the server’s
deadline. Only when such unused execution time is not available does it use its
own allocated budget Qi. When the system is idle, the spare capacity with the
earliest deadline must be discharged according to the idling time. The following
crucial result concerning off-line guarantees of schedulability is proved in [3]:
Each capacity generated during the scheduling is exhausted before its deadline
if and only if

∑n
i=1

Qi

Ti
≤ 1.

The CASH algorithm has been implemented in the SHARK kernel [6] to
measure the performance gain and to validate the results predicted by the theory.

3.1 A Proposed Modification of the CASH Algorithm

The second author wanted to investigate if it is possible to let the system con-
sume the budget of the spare capacity with latest deadline when the CPU is
idling, so as not to exhaust spare capacities with earlier deadlines. Such a modi-
fication was motivated by the fact that capacities with earlier deadlines are more
valuable than those with later ones; in fact, the shorter the deadline of a capacity
is, the more likely it is that a task with overrun will be able to use such a ca-
pacity. This question was the starting point for our Real-Time Maude analysis:
Could we experiment with the modified version of the CASH algorithm to decide
whether the crucial schedulability result also holds for this modified algorithm,
before embarking on the laborious tasks of proving the algorithm correct and
implementing it on a real-time kernel?

4 Real-Time Maude Specification of the CASH
Algorithms

We present in this section a sample (4 out of 10 rewrite rules) of the Real-Time
Maude specification of the CASH algorithm and its proposed optimization for all
possible task sets. The entire executable specification is given in [11]. We cover
all possible task sets by allowing a job to arrive at any time and to execute for
any non-zero amount of time. The tasks are not modeled explicitly; the arrival
of a new task instance is modeled by a server becoming active, and the end of
its execution time is modeled by the server becoming idle.
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Since a system may have any number of task servers, we specify the CASH
protocols in an object-oriented style, following the specification techniques given
in [16]. A state of our system is a multiset, i.e., a term of sort Configuration,
consisting of: a number of task server objects; the CASH queue of available spare
capacities; and a constant AVAILABLE-PROCESSOR of sort Configuration, which
is present in the state when no server is executing.

4.1 Modeling the Queue of Spare Capacities

We represent a spare capacity as a term deadline: d budget: b, where d is
its relative deadline3 and b is its remaining budget. The cash queue of spare
capacities is represented by a term [CASH: c1 . . . cn ], where c1 . . . cn is a list of
spare capacities. The Real-Time Maude sorts and operators for this data type
are given as follows:

sorts Capacity CapacityQueue . subsort Capacity < CapacityQueue .
op deadline:_budget:_ : Time Time -> Capacity [ctor] .
op emptyQueue : -> CapacityQueue [ctor] .
op __ : CapacityQueue CapacityQueue -> CapacityQueue

[ctor assoc id: emptyQueue] .
sort Cash . subsort Cash < Configuration .
op ‘[CASH:_‘] : CapacityQueue -> Cash [ctor] .

A spare capacity whose relative deadline or remaining budget is 0 is removed
from a queue by the following equations:

var T : Time .
eq deadline: T budget: 0 = emptyQueue .
eq deadline: 0 budget: T = emptyQueue .

We use a function addCapacity to add a spare capacity to a CASH queue. It is
defined so that the cash queue is ordered according to increasing deadlines.

4.2 The Server Class

Each server Si is characterized by its maximum budget Qi (i.e., its allocated
execution time in a period) and by its period Ti. In addition, the state of a server
is given by: whether the server is idle, executing a task instance, or waiting to
execute; its current deadline di,k; and its remaining budget ci in the current
period. We model each server as an object of the following class Server:

class Server |
maxBudget : NzTime, --- maximum budget (Qi)
period : NzTime, --- period (Ti)
state : ServerState, --- state of the server
usedOfBudget : Time, --- time executed of OWN budget

3 The relative deadline is the time remaining until the deadline.
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timeToDeadline : Time, --- time until "current" deadline
timeExecuted : Time . --- current job executed till now

sort ServerState .
ops idle waiting executing : -> ServerState [ctor] .

The class attributes maxBudget and period denote, respectively, the server’s
maximum budget and its period. The attribute usedOfBudget gives the current
value of Qi − ci, and the attribute timeToDeadline gives the current relative
deadline, i.e., the time remaining until time di,k. It is implicit in the informal
specification that each task instance must be executed for a non-zero amount of
time. Therefore, we need the attribute timeExecuted to be able to ensure that
each job executes for a non-zero amount of time.

4.3 The Instantaneous Transitions of the System

The instantaneous state changes in the CASH algorithm are:

1. An idle server Si becomes active when a new job arrives. Si goes into state
waiting if another server with an earlier deadline is executing, and goes
into state executing if the processor is available or if Si can preempt the
executing server.

2. An executing server can finish executing a job at any time after it has
executed for a non-zero amount of time. It must also deposit any unused
execution budget into the CASH queue. The waiting server, if any, with the
earliest deadline should start/resume its execution.

A task instance that arrives before the server is idle can be regarded as either
a continuation of the previous job, or as a new job that arrives when the server
has been idle for zero time.

The following variables are used in the rules and equations below:

vars Si Sj : Oid . vars C C’ REST-OF-SYSTEM : Configuration .
var STATE : ServerState . var CASH : Cash .
var BUDGET-LEFT : Bool . var CQ : CapacityQueue .
vars T T’ T’’ T’’’ REMAINING-BUDGET : Time .
vars NZT NZT’ Ti Qi : NzTime .

In [3], the case when a server becomes active is described as follows: When a task
instance τi,j arrives and the server is idle, the server generates a new deadline
di,k = max(ri,j , di,k−1) + Ti and ci is recharged at the maximum value Qi.

The following rewrite rule models the case where the server Si becomes active
while another server Sj is executing. In this case, Si must update its deadline4

and either preempt Sj and start executing, or go into state waiting, depending
on whether Si’s new deadline (T + Ti) is earlier than Sj ’s current deadline (T’):

4 The “current” time is the release time ri,j , so this part will not contribute to the
updated relative deadline.
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rl [idleToActive] :
< Si : Server | period : Ti, state : idle, timeToDeadline : T >
< Sj : Server | state : executing, timeToDeadline : T’ >
=>
if (T + Ti) < T’ then --- start to execute and preempt Sj

(< Si : Server | state : executing, timeToDeadline : T + Ti,
timeExecuted : 0, usedOfBudget : 0 >

< Sj : Server | state : waiting >)
else

(< Si : Server | state : waiting, timeToDeadline : T + Ti,
timeExecuted : 0, usedOfBudget : 0 >

< Sj : Server | >)
fi .

The following defines how to finish the execution of a job [3]: When a task
instance finishes, the next pending instance, if any, is served using the current
budget and deadline. If there are no pending jobs, the server becomes idle, the
residual capacity ci > 0 (if any) is inserted in the CASH queue with deadline
equal to the server deadline, and ci is set equal to zero.

The following rule models the case where at least one server is in state
waiting. When the server Si finishes executing it must allow the waiting server
with the earliest deadline (T’’) to resume/start its execution. To find the wait-
ing server with the earliest deadline, the rule must grab the entire state of the
system, which is achieved by the use of the operator {_}. The rule adds the
residual budget (if any) to the CASH queue. We make sure that the application
of this rule does not lead us to miss a potential missed deadline, by adding a
condition that the server is not in a state where the remaining allocated budget
is greater than the deadline:

crl [stopExecuting1] :
{< Si : Server | state : executing, usedOfBudget : T, maxBudget : Qi,

timeToDeadline : T’, timeExecuted : NZT >
< Sj : Server | state : waiting, timeToDeadline : T’’ >
REST-OF-SYSTEM CASH}

=>
{< Si : Server | state : idle, usedOfBudget : Qi >
< Sj : Server | state : executing >
REST-OF-SYSTEM
(if BUDGET-LEFT
then addCapacity((deadline: T’ budget: REMAINING-BUDGET), CASH)
else CASH fi)}

if REMAINING-BUDGET := Qi monus T /\
BUDGET-LEFT := REMAINING-BUDGET > 0 /\
REMAINING-BUDGET <= T’ /\ --- deadline check
T’’ == nextDeadlineWaiting(< Sj : Server | > REST-OF-SYSTEM) .

The function nextDeadlineWaiting finds the earliest relative deadline of the
servers in state waiting (see [11] for its formal definition).
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To make our analysis more convenient, we add a constant DEADLINE-MISS
and a rule which rewrites an object whose remaining budget is larger than its
relative deadline to DEADLINE-MISS:

op DEADLINE-MISS : -> Configuration [ctor] .
crl [deadlineMiss] :

< Si : Server | state : STATE, usedOfBudget : T,
timeToDeadline : T’, maxBudget : Qi >

=>
DEADLINE-MISS
if (Qi monus T) > T’ /\ STATE == waiting or STATE == executing .

4.4 Modeling Time and Time Elapse

For scheduling algorithms we usually assume discrete time. Our specification
therefore imports the built-in module NAT-TIME-DOMAIN-WITH-INFwhich defines
the time domain to be the natural numbers and adds a constant INF (denoting
∞) of a supersort TimeInf. We differentiate between three cases of time elapse:

1. Time is advancing while some server is executing its own budget.
2. Time is advancing while some server is executing a spare capacity from the

CASH queue.
3. Time is advancing while the system is idle, i.e., when no server is executing.

The tick rewrite rules modeling the first two cases are shown in [11]. The third
case must be treated in two different ways, depending on whether we model the
original specification or its proposed modification.

The CASH algorithm and its suggested modification can be defined by dif-
ferent modules that import the module CASH-COMMON which defines the common
behavior of the two versions, and specify the tick rewrite rule for time elapse when
the system is idling (i.e., when the constant AVAILABLE-PROCESSOR is present
in the state). For the original CASH algorithm such time elapse is described as
follows in [3]: Whenever the processor becomes idle for an interval of time Δ, the
capacity cq (if exists) with the earliest deadline in the CASH queue is decreased
by the same amount of time until the CASH queue becomes empty. The following
timed module defines time advance in idle systems and completes the Real-Time
Maude specification of the original version of the CASH algorithm:

(tomod CASH-USE-EARLIEST-BUDGET-WHEN-IDLING is including CASH-COMMON .
var SERVERS : Configuration . var CASH : Cash . var T : Time .
crl [tickIdle] :

{SERVERS AVAILABLE-PROCESSOR CASH}
=>
{delta(SERVERS, T) AVAILABLE-PROCESSOR
delta(useSpareCapacity(CASH, T), T)} in time T

if T <= mte(SERVERS) [nonexec] .
endtom)
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The tick rule is time-nondeterministic, as time may advance by any amount T
less than or equal to mte(SERVERS). In Section 5, we analyze the system using
a time sampling strategy that advances time by one time unit in each tick rule
application. The function delta defines the effect of time elapse on server objects
and on the CASH queue, and the function mte defines the maximum amount by
which time can elapse. For example, time acts on the CASH queue by decreasing
the relative deadlines of the capacities according to the elapsed time:

eq delta([CASH: CQ], T) = [CASH: delta(CQ, T)] .
op delta : CapacityQueue Time -> CapacityQueue .
eq delta(emptyQueue, T) = emptyQueue .
eq delta((deadline: NZT budget: NZT’) CQ, T) =

((deadline: (NZT monus T) budget: NZT’) delta(CQ, T)) .

The crucial function useSpareCapacity decreases the budget of the spare ca-
pacities, in order of their increasing deadlines, according to the elapsed time:

op useSpareCapacity : Cash Time -> Cash .
op useSpareCapacity : Cash Time Time -> Cash .
eq useSpareCapacity(CASH, T) = useSpareCapacity(CASH, T, 0) .
eq useSpareCapacity([CASH: emptyQueue], T, T’) = [CASH: emptyQueue] .
eq useSpareCapacity([CASH: (deadline: NZT budget: NZT’) CQ], T, T’) =

if T <= min(NZT monus T’, NZT’) then --- enough time in budget
[CASH: (deadline: NZT budget: NZT’ monus T) CQ]

else useSpareCapacity([CASH: CQ], T monus min(NZT monus T’, NZT’),
T’ + min(NZT monus T’, NZT’)) fi .

The module which defines the modified CASH algorithm is entirely similar to
the above module. The only difference is that the occurrence of the operator
useSpareCapacity, which discharges budgets from the capacities with the ear-
liest deadlines, in the above tick rule is replaced by an occurrence of the following
operator useLatestSpareCapacity, which discharges capacities from the CASH
queue (if any) with the latest deadlines when the system is idling:

op useLatestSpareCapacity : Cash Time -> Cash .
eq useLatestSpareCapacity([CASH: emptyQueue], T) = [CASH: emptyQueue] .
eq useLatestSpareCapacity([CASH: CQ (deadline: NZT budget: NZT’) ], T) =

if T <= NZT’ then [CASH: CQ (deadline: NZT budget: NZT’ monus T) ]
else useLatestSpareCapacity([CASH: CQ], T monus NZT’) fi .

5 Formal Analysis of the CASH Algorithms

The main purpose of our analysis is to investigate whether the schedulability re-
sult that each capacity generated during the scheduling can be exhausted before
its deadline also holds for the modified version of the algorithm. That is, is it
possible to reach a state where the execution of the remaining budget cannot be
done within the current deadline?



Formal Simulation and Analysis of the CASH Scheduling Algorithm 367

We first used timed fair rewriting to quickly prototype the specification. This
prototyping indicated that states with arbitrarily large number of spare capac-
ities in the CASH queue, and with arbitrarily large relative deadlines, can be
reached from initial states with just two or three servers. Since the reachable
state space is infinite, we can use Real-Time Maude’s untimed search command
as a semi-decision procedure for the reachability problem since the desired state
will eventually be found if it is reachable, and can use Real-Time Maude’s time-
bounded search (and LTL model checking) to explore all states that can be
reached within a given time from the initial state. Such time-bounded analyses
are decision procedures when the specification is non-Zeno, which is the case for
the CASH algorithm when the length of each job is greater than zero.5

Before presenting our analysis, we summarize its main results. We defined
some initial states, and selected the time sampling strategy ‘def 1’ which incre-
ments time by one time unit in each application of a tick rewrite rule, so that all
possible task sets can explored. Both time-bounded and, hence, untimed search
were able to find states which could lead to missed deadlines in the modified
CASH algorithm. In addition, we could exhibit the sequence of rewrite steps
leading to such states, to ensure that they represent valid behaviors in the modi-
fied CASH algorithm. It is worth remarking that no special ingenuity was needed
to define the initial states from which missed deadlines could be reached.

The specification has a high degree of nondeterminism, and, consequently, a
large number of states can be reached in a short time. For example, more than
151,000 distinct states were encountered by the untimed search before it reached
the missed deadline. It took Real-Time Maude 50 seconds (untimed search) and
140 seconds (time-bounded search) on a 3 GHz Pentium Xeon processor to find
the missed deadlines in the two-server system, and 160 seconds and 360 seconds,
respectively, for the three-server system.

We have also subjected the original CASH algorithm to a similar analysis.
We used timed search to show that no missed deadline can be reached within
time 14 in the two-server system.6 Finally, we let the untimed search command
execute for several hours from our initial states without finding a missed deadline
in the original algorithm.

5.1 Defining Initial States

We can easily experiment with different system configurations in Real-Time
Maude by defining appropriate initial states. We define below a state init2
with two servers and a state init5 with three servers. Since the the sum of the
bandwidths of the servers in each state is less than or equal to 1, it should not be
possible to reach a missed deadline from either state if the algorithm is correct:

ops init2 init5 : -> GlobalSystem .

5 The advantage of untimed search over time-bounded search is that the former is in
some cases more efficient, since it ignores the “time stamps” of the states [16].

6 For the same initial state, a missed deadline is reachable in time 12 in the modified
algorithm.
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eq init2 =
{< s1 : Server | maxBudget : 2, period : 5, timeExecuted : 0,

state : idle, usedOfBudget : 0, timeToDeadline : 0 >
< s2 : Server | maxBudget : 4, period : 7, timeExecuted : 0,

state : idle, usedOfBudget : 0, timeToDeadline : 0 >
[CASH: emptyQueue] AVAILABLE-PROCESSOR} .

eq init5 =
{< s1 : Server | maxBudget : 1, period : 3, state : idle, ... >
< s2 : Server | maxBudget : 4, period : 8, state : idle, ... >
< s3 : Server | maxBudget : 4, period : 24, state : idle, ... >
[CASH: emptyQueue] AVAILABLE-PROCESSOR} .

5.2 Prototyping the CASH Algorithms

Real-Time Maude’s timed fair rewrite command can be used to simulate one
behavior of the modified CASH algorithm up to, for example, time 100:7

Maude> (tfrew init2 in time <= 100 .)

Result ClockedSystem :
{[CASH: (deadline: 6 budget: 2) (deadline: 10 budget: 2)

(deadline: 13 budget: 4) (deadline: 15 budget: 2)
...

(deadline: 150 budget: 2) deadline: 153 budget: 4]
< s1 : Server | timeToDeadline : 155, ... >
< s2 : Server | timeToDeadline : 160, ... >} in time 100

The large number of capacities in the CASH queue is worth noticing, as well as
the fact that the system did not miss a deadline. We got similar results from
other simulations of both versions of the protocol, where the number of spare
capacities in the CASH queue grew with the amount of time elapsed.

5.3 Reachability Analysis of the Modified CASH Algorithm

We turn to our main task, and use time-bounded search to check whether a
missed deadline can be reached from state init2 in the modified algorithm.
The pattern {DEADLINE-MISS C:Configuration} is matched by any state which
contains the constant DEADLINE-MISS, since the variable C:Configuration will
be matched by the rest of the configuration. The time-bounded search among
states reachable within time 12 found a missed deadline (in 140 seconds):

Maude> (tsearch [1] init2 =>* {DEADLINE-MISS C:Configuration} in time <= 12.)

Solution 1
C:Configuration <- ... ; TIME_ELAPSED:Time <- 12

7 The output of Real-Time Maude executions will be manually tabulated, and parts
of the output omitted in the exposition will be replaced by ’...’.
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The underlying trace facilities for search commands in Maude can be used to
exhibit the sequence of rewrite steps leading from state init2 to the missed
deadline. The sequence, given in [11], consists of 23 rewrite steps and is a “valid”
behavior in the modified algorithm. Another way of obtaining a path to the
missed deadline from Real-Time Maude is to use its time-bounded LTL model
checker to check whether the property

“starting from init2, it is invariant that no missed deadline is detected”

holds for all behaviors up to time 12. The model checker will return a counter-
example since we know that the property does not hold. The following module de-
fines an atomic proposition deadlineMissed to hold for exactly those states that
are matched by the pattern{DEADLINE-MISS REST-OF-SYSTEM:Configuration}:

(tomod MODEL-CHECK-LATEST is including TIMED-MODEL-CHECKER .
protecting TEST-CASH-USE-LATEST-BUDGET-WHEN-IDLING .
op deadlineMissed : -> Prop [ctor] .
eq {DEADLINE-MISS REST-OF-SYSTEM:Configuration} |= deadlineMissed = true .

endtom)

The following command checks whether it is invariant that the negation of
deadlineMissed holds for each state reachable within time 12 from state init2:

Maude> (mc init2 |=t [] ~ deadlineMissed in time <= 12 .)

This command returns a counter-example (different from the one found by
search), that is a path to a missed deadline, in 384 seconds.

Were we just “lucky” with our choice of initial state to find a missed deadline?
We performed the same analysis on the three-server system init5, and used
time-bounded search to find that a missed deadline could occur within time 9
(the search took almost 360 seconds; the untimed search took 160 seconds), and
no earlier than that. On the other hand, even after hours of time-bounded and
untimed search, we have not found a missed deadline from a state with two
servers with bandwidths 2

5 and 3
5 .

5.4 Experimenting with Other Versions of CASH

We have performed similar analyses on the original CASH algorithm. The un-
timed search command ran for several hours on the initial states init1, init2,
and init5 without reaching a missed deadline. In addition, we have shown that
such a state cannot be reached from init2 within time 14.

We have also experimented with a restriction the modified CASH algorithm
that requires a server to stay idle until the end of its period after it has finished
executing in its current period. We were able to modify our high-level Real-Time
Maude specification with very little effort to experiment with this restriction of
the CASH algorithms. Our reachability analysis revealed that a missed deadline
could still be reached from state init5 (but not from state init2) even in this
restricted setting.

of
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6 Monte Carlo Simulations of the CASH Algorithms

We show in this section how we can modify our specification to generate new
jobs pseudo-randomly for the purpose of more “realistic” randomized simulation
through timed rewriting.

We generate pseudo-random jobs by having two additional attributes in the
class Server: an attribute timeToJob gives the time until the next instance of a
task is released; and an attribute leftOfJob denotes the length of the next job
if it has not started, and denotes its remaining execution time otherwise. The
instantaneous rewrite rules are modified in the following way:

– A server becoming active can only take place when timeToJob is 0.
– The rules modeling the end of an execution can only take place when the

value of the leftOfJob attribute is 0. In addition, at this time, we generate
a new job with pseudo-random timeToJob and leftOfJob values.

To generate pseudo-random arrival and execution times, we use a function
random which satisfies Knuth’s criteria for “good” pseudo-random functions [8].
The state must also contain the ever-changing “seed,” modeled as a term
[Seed: n], to this function.

Our specification of the CASH algorithms for Monte Carlo simulation is given
in [11]. We present the modified version of the rule stopExecuting1, where the
time until the next job is released is pseudo-randomly chosen to a value between
0 and twice the period Ti of the server, and the execution time of the next job
is a value between 1 and twice the length of the server’s maximum budget Qi:8

crl [stopExecuting1] :
{< Si : Server | state : executing, usedOfBudget : T,

maxBudget : Qi, timeToDeadline : T’,
period : Ti, leftOfJob : 0 >

< Sj : Server | state : waiting, timeToDeadline : T’’ >
[Seed: N] REST-OF-SYSTEM CASH}

=>
{< Si : Server | state : idle, usedOfBudget : Qi,

timeToJob : random(N) rem (2 * Ti + 1) ,
leftOfJob : 1 + random(random(N)) rem (2 * Qi) >

< Sj : Server | state : executing > [Seed: random(random(N))]
... --- the rest remains unchanged

The following command performs Monte Carlo simulation of the system init2
(with initial seed 1) up to time 25000:

Maude> (tfrew init2(1) in time <= 25000 .)

Result ClockedSystem :
{AVAILABLE-PROCESSOR [CASH: deadline: 7 budget: 3 ] [Seed: 5931]
< s1 : Server | leftOfJob : 3, timeToDeadline : 1, timeToJob : 8, ... >
< s2 : Server | leftOfJob : 4, timeToDeadline : 7, timeToJob : 14, ... >}
in time 24998
8 The new parts of the rules are given in italicized fonts.
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The result looks more “normal” than the rewrite simulations in the previous
specification. We have simulated different states, with different initial seeds, up
to time 1000000. We thought that sufficiently many combinations of jobs would
have been created during this time to contain a scenario leading to a missed
deadline. However, none of our Monte Carlo simulations reached a missed dead-
line. This fact indicates that the missed deadline would be hard to detect during
traditional testing and simulation of the CASH algorithm, and underscores the
usefulness of reachability analysis to discover subtle but critical errors.

7 Concluding Remarks

Real-Time Maude has proved effective in analyzing different design alternatives
of the sophisticated state-of-the-art CASH scheduling algorithm. Due to the un-
bounded queues of spare capacities, the CASH algorithm cannot be modeled
by the finite-control formalisms provided by the most popular formal real-time
tools like Uppaal and, hence, cannot be analyzed by well known decision pro-
cedures for the reachability problem. Using Real-Time Maude, we have instead
subjected the specifications to the following spectrum of analysis methods:

1. Fair timed rewriting executions.
2. Monte Carlo simulation.
3. Untimed and time-bounded search reachability analysis.
4. Time-bounded LTL model checking.

Time-bounded search and model checking are decision procedures for the cor-
responding time-bounded properties, while unbounded search is a semi-decision
procedure for the (unbounded) reachability problem.

Using methods (3) and (4) we easily discovered that the modified algorithm
could not guarantee that deadlines were not missed. However, the scenarios
leading to the missed deadlines were subtle and were not discovered during use
of methods (1) and (2). We could experiment with different designs with much
less effort than required by implementing them on real-time kernels or performing
traditional testing. Moreover, extensive Monte Carlo simulations suggested that
it is highly unlikely that traditional testing would have found the critical error.

The analysis methods presented analyze the system from single initial states
and, furthermore, cannot be used to show that an undesired state can not be
reached from the initial state. Our analysis methods can therefore only be used
to search for errors or to increase our confidence in the correctness of the specifi-
cation. To prove correctness for all possible inputs, theorem provers are needed.

The analysis reported in this paper has focused on evaluating the correctness
of the designs. We should in the future also develop techniques to evaluate the
performance of scheduling algorithms.
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Abstract. We present a tool for verifying temporal properties on Java/
JML classes by generating automatically JML annotations that ensure
the verification of the temporal properties.

1 Introduction

We present JAG, a JML (Java Modeling Language) annotation generator for ver-
ifying temporal properties. JAG consists of a translator that transforms formulae
expressed in a temporal language dedicated to Java - first introduced in [7] - into
JML annotations that ensure the satisfaction of the temporal formulae.

JML (Java Modeling Language) [5] is a specification language for Java devel-
opped (by G.T. Leavens) at IOWA State University. JML annotations are intro-
duced as Java comments using the key character ’@’. The main annotations are
invariant, constraint, requires and ensures. An invariant clause defines
a property that must be satisfied in all visible states of the class, i.e., states be-
fore the invocation or after the termination of a method. An history constraint
relates the value of the current state and the one of the pre-state denoted with
the key word \old. Methods are described with preconditions (requires) and-
postconditions (ensures). JML allows to declare specification variables (ghost)
which can be assigned using a set clause.

The JML temporal logic extension [7] is inspired by Dwyers Specification
Pattern [4]. It can deal with exceptional termination of methods and can express
both safety and liveness properties. The semantics of the temporal formulae and
the translation rules are given in details in [7] for safety properties and in [1] for
liveness properties.

Take the example of a buffered transaction system (Fig. 1) encoded in Java,
with a method beginTransaction(), which starts a new transaction, two meth-
ods commitTransaction() and abortTransaction() to respectively validate
and abort (rollback) the current transaction and a modify() method which
writes the modification in a buffer. We would like to verify on this Java class
the following security properties describing the behavior of the class: (i) the
buffer must be empty before beginning a new transaction and (ii) each started
transaction must terminate.
� Research partially funded by the french ACI GECCOO.
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package example.transacSystem;
public class TransactionSystem {

//@ ghost boolean trDepth = false;
//@ ghost int bufferFree;
//@ ghost int max = 100;
//@ invariant bufferFree <= max;
//@ constraint max == \old(max);
...

/*@ private normal_behavior
@ requires trDepth == false;
@ ensures trDepth == true;
@*/

public void beginTransaction() {
//@ set trDepth = true;
...

};
}

Fig. 1. A part of a JML specification: a Buffered Transaction System

The first property is a safety property (“something wrong must not happen”).
The second one is a liveness property (“under certain conditions, something good
must inevitably happen”).

These properties can be encoded as restrictions on infinite Java execution
sequences. However, it is not easy to translate them directly to JML annotations.
Therefore, we propose to designers a compact temporal logic language to express
such properties, and an automatic translation into standard JML annotations
that are directly inserted into the Java code under verification.

The properties (i) and (ii) can be easily expressed in the temporal logic lan-
guage of [7] by the following (bufferFree is the variable counting the free space
of the buffer):

(i) after commitTransaction() normal, abortTransaction() normal
\always {bufferFree == max}
\unless beginTransaction() called;

(ii) after beginTransaction() called \always true \until
abortTransaction() called, commitTransaction() called
under invariant {true} variant {bufferFree};

The first formula means that after a transaction is finished - when commit-
Transaction() or abortTransaction() terminates normally – and unless (\un-
less) a new transaction starts (beginTransaction() called), the buffer must
always (\always) be empty. The second formula means that after the start of
a transaction, the transaction must inevitably be (until) finished by a com-
mit or a rollback. The second formula is completed with a variant clause
which is a Java expression returning a natural number. This variant must de-
crease each time a method is called until the method commitTransaction() or
abortTransaction() is invoked. Notice also that there is a under invariant
keyword, here set to true, that allows to define a local invariant, that permits
to express an extra hypothesis for the liveness proof.

2 Description of the Tool

The JAG tool parses a Java file - possibly already JML annotated - with the
Iowa State University JML tools parser and takes as other input a file containing
temporal formulae (Fig. 2).
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Fig. 2. Internal Structure of the Tool

Translating Temporal Formulae into Intermediate Primitives. The tool
reduces each temporal property into one or more intermediate primitives that
are semantically equivalent [7, 1]. The Inv primitive represents the safety part of
a property. The Loop primitive represents the liveness part of a property. The
Witness primitive represents special past marker on the class (for example to
know if a method has already been called during the execution).

Translating Intermediate Primitives into Standard JML Annotations.
Each Inv primitive is translated into a JML invariant. Each Loop is translated
into a set of invariants and history constraints that imply the decrease of
the variant and the deadlockfreeness of the system. Each Witness is translated
as a JML ghost variable.

The tool generates an output file including the original file enriched with the
generated JML annotations. This file can be used with other JML tools [2] to
validate or prove the temporal formulae.

Trace Preservation. The tool is able to keep the trace of the generated an-
notations, i.e. it is possible, given a generated annotation, to find the original
intermediate primitive and the original temporal property.

3 Experimental Results

The tool has been used on several examples. Table 1 summarizes the results
obtained with the JACK [3] tool as back-end theorem prover.

Table 1. Results

Example Name Number of temporal
properties to verify

Number of line annota-
tion generated

Number of PO (auto-
matically proved)

TransactionSystem 2 18 92 (91)
AtmTransaction 2 21 171 (171)
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4 Conclusion

The JAG tool generates JML annotations that imply the satisfaction of temporal
properties (both liveness and safety) of the language defined in [7]. The partic-
ularity of this work is that the annotations are standard and can be used with
all the tools taking JML files as an input. We first plan a better integration of
our tool into some back-end tools and second to extend our work to other spec-
ification input, like PLTL formulae. JAG can be downloaded from the following
page: http://lifc.univ-fcomte.fr/∼groslambert/JAG.

References

1. F. Bellegarde, J. Groslambert, M. Huisman, J. Julliand, and O. Kouchnarenko.
Verification of liveness properties with JML. Technical Report RR-5331, INRIA,
2004.

2. L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G.T. Leavens, K.R.M. Leino, and
E. Poll. An overview of JML tools and applications. In Th. Arts and W. Fokkink,
editors, Eighth International Workshop on Formal Methods for Industrial Critical
Systems (FMICS 03), volume 80 of ENTCS, pages 73–89. Elsevier, 2003.

3. L. Burdy, A. Requet, and J.-L. Lanet. Java Applet Correctness: a Developer-
Oriented Approach. In Formal Methods (FME’03), number 2805 in LNCS, pages
422–439. Springer, 2003.

4. M.B. Dwyer, G.S. Avrunin, and J.C. Corbett. Patterns in property specifications
for finite-state verification. In International Conf. on Software Engineering, pages
411–420. IEEE Computer Society Press/ACM Press, 1999.

5. G.T. Leavens, A.L. Baker, and C. Ruby. Preliminary design of JML: a behavioral
interface specification language for Java. Technical report, Iowa State University,
Dept. of Computer Science, 1998.

6. G. Nelson. Techniques for Program Verification. PhD thesis, Stanford University,
1980.

7. K. Trentelman and M. Huisman. Extending JML Specifications with Temporal
Logic. In H. Kirchner and C. Ringeissen, editors, Algebraic Methodology And Soft-
ware Technology (AMAST’02), number 2422 in LNCS, pages 334–348. Springer,
2002.



LearnLib: A Library for

Automata Learning and Experimentation

Harald Raffelt and Bernhard Steffen

University of Dortmund,
Chair of Programming Systems,

Baroper Str. 301,
Dortmund 44227, Germany

Abstract. In this tool demonstration we present the LearnLib, a library
for automata learning and experimentation. Its modular structure allows
users to configure their tailored learning scenarios, which exploit specific
properties of the envisioned applications. As has been shown earlier,
exploiting application-specific structural features enables optimizations
that may lead to performance gains of several orders of magnitude, a
necessary precondition to make automata learning applicable to realistic
scenarios.

The demonstration of the LearnLib will include the extrapolation of
a behavioral model for a realistic (legacy) system, and the statistical
analysis of different variants of automata learning algorithms on the basis
of random generated models.

1 Motivation

Most systems in use today lack adequate specifications or make use of un(der)
specified components. In fact, the much propagated component-based hard- and
software design style naturally leads to under specified systems, as most libraries
and third party components only provide very partial specifications. To improve
this situation automata learning techniques [1] have been proposed. They enable
the automatic construction and subsequent update of behavioral models.

2 Automata Learning

Automata learning tries to automatically construct a finite automaton that
matches the behavior of a given target automaton on the basis of (systematic)
observation [2, 3]. This complements other automatic learning techniques which
aim at the construction of invariants [4, 5]. The interested reader may refer to
[1, 6, 7] for our (practice-oriented) view of the use of (active) learning.

Active learning assumes an omniscient teacher which is able to answer mem-
bership and equivalence queries. A membership query tests whether a string (a
potential run) is contained in the target automatons language (its set of runs),
and an equivalence query compares the hypothesis automaton with the target

L. Baresi and R. Heckel (Eds.): FASE 2006, LNCS 3922, pp. 377–380, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



378 H. Raffelt and B. Steffen

automaton for language equivalence, in order to determine whether the learning
procedure was successfully completed.

In any practical attempt of learning legacy systems, equivalence queries can
only be treated approximately, but membership queries can be answered by
testing the target systems [1, 6]. The LearnLib therefore provides a number of
heuristics and techniques for this approximation.

3 The LearnLib

The LearnLib [8] provides a platform for experimenting with different learn-
ing algorithms and for statistically analyzing their characteristics in terms of
required number and size of e.g., membership queries, run time, and memory
consumption. This concerns in particular the analysis of the impact of the vari-
ous techniques for optimizations.

Besides the fine granular analysis for understanding the individual compo-
nents of typical learning algorithms, the LearnLib can also be used as a fully
automatic tool to systematically build finite state machine models of (specific
aspects of) real world systems.

As depicted in Fig. 1 LearnLib consists of three modules:

– the automata learning module containing the basic learning algorithms,
– the filters module providing a number of strategies to reduce the number of

queries, and
– the module for approximative equivalence queries, which is based on tech-

niques adopted from the area of conformance testing. suites for the conjec-
tures of the learning algorithms.

Fig. 1. LearnLib Components
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3.1 Automata Learning with the LearnLib

The main module of the LearnLib contains learning algorithms of different flavor.
Currently, the LearnLib only supports some variants and extensions of Angluin’s
algorithm L∗.

Angluin’s algorithm [9] works on deterministic finite state machines, which, as
usual, consist of a finite set of states Q, a finite (input) alphabet Σ, a transition
function δ : (Q×Σ) → Q, and a finite set of accepting states F ⊆ Q.

Typical reactive systems do not terminate and are thereforer not modelled
appropriately with accepting states. It turned out that Mealy machines, which
adequately model input/output behavior provide a much better modelling, which
is not only more concise, but can also be learned much faster [7]. The LearnLib
therefore provides learning algorithms for both, finite state machines and an
adaptation to Mealy machines. These versions can be used in two modes: an
automatic mode, which automatically proceeds in a predefined fashion, and an
interactive mode, which gives the user a handle to steer the learning process in
more detail.

The learning algorithms can be freely combined with a number of filters,
optimizing the number of required membership queries (see [10]), and with an
adequate approximate solver for equivalence queries. Whereas these approximate
solvers are necessary, whenever one attempts to learn a legacy system, they
can can be replaced by a perfect equivalence checker for the statistical analysis
of learning scenarios using randomly generated target models. The LearnLib
provides a bisimulation checker for this purpose.

3.2 Simulation and Analysis of Learning Algorithms

Different learning algorithms have very different characteristics. Perhaps most
importantly, they may drastically differ in the number of membership- and equiv-
alence queries, but they also differ in the size of their queries. Our simulator
analyzed these differences, and helps to gain knowledge about how learning al-
gorithms essentially work, and where their bottlenecks lie. The interested reader
may refer to [11], where the interdependency between our optimizing filters is
experimentally evaluated.

Such studies are specifically supported be the LearnLib, which, besides the
configuration of individual learning scenarios, also allows the configuration of
whole scenarios for the statistical analysis of learning scenarios. In fact, as will
be illustrated during the demonstration, it is possible to configure a set of com-
parative learning scenarios and to automatically generate the corresponding com-
parative statistical charts.

4 Conclusion

In this paper we have presented the LearnLib, a modular library for automata
learning, which is explicitly designed for experimentation. As will be illustrated
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during the tool demo, its modular structure allows users to systematically ana-
lyze and then construct learning algorithms tailored for their specific application
scenario.
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Abstract. One of the major costs of software development is associated
with testing and validation of successive versions of software systems.
An important problem encountered in testing and validation is memory
aliasing, which involves correlation of variables across program versions.
This is useful to ensure that existing invariants are preserved in newer
versions and to match program execution histories. Recent work in this
area has focused on trace-based techniques to better isolate affected re-
gions. A variation of this general approach considers memory operations
to generate more refined impact sets. The utility of such an approach
eventually relies on the ability to effectively recognize aliases.

In this paper, we address the general memory aliasing problem and
present a probabilistic trace-based technique for correlating memory lo-
cations across execution traces, and associated variables in program ver-
sions. Our approach is based on computing the log-odds ratio, which
defines the affinity of locations based on observed patterns. As part of
the aliasing process, the traces for initial test inputs are aligned without
considering aliasing. From the aligned traces, the log-odds ratio of the
memory locations is computed. Subsequently, aliasing is used for align-
ment of successive traces. Our technique can easily be extended to other
applications where detecting aliasing is necessary. As a case study, we
implement and use our approach in dynamic impact analysis for detect-
ing variations across program versions. Using detailed experiments on
real versions of software systems, we observe significant improvements in
detection of affected regions when aliasing occurs.

1 Introduction

Identifying memory aliasing involves correlating memory locations that exhibit
similar behavior across two versions of a program. Memory aliasing occurs in
many software engineering applications, including impact analysis [1, 15, 17],
detecting invariants [7] and correlating program properties to ensure that prop-
erties are preserved in the newer version or matching program execution histo-
ries [19]. Devising a scalable robust solution to this problem has proven to be
challenging. Zhang and Gupta [19] present a relative offset based matching ap-
proach to solving the problem of matching program execution histories. While
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their approach performs well in the presence of simple variable renaming, it is
not clear how their technique could be generalized to deal with more complex
program behavior. In this paper, we present a scalable and general solution to
the memory aliasing problem based on available execution traces.

Memory aliasing is the problem of identifying whether two pointers refer to
the same memory location. In this paper, we address the problem of memory
aliasing across program versions, i.e., given two sets X and Y of memory locations
corresponding to two different versions, identify whether x and y are aliases (re-
fer to the same memory location relatively), where x ∈ X and y ∈ Y. We present a
solution for the memory aliasing problem in the context of identifying variations
across program versions. We use test results on older versions to automatically
identify regions in newer versions that are affected by the changes that charac-
terize their differences. As a first step towards detecting and isolating variations
in program versions, we abstract a program as a sequence of memory reads and
writes. Test inputs are fed into two versions and traces of memory operations
are collected by instrumenting the binary executables. A trace is a sequence of
<Operation, Value> tuples, where Operation is either a read or write to memory
and Value is the value read from, or written into memory. The trace is analogous
to a string and the tuple analogous to an alphabet. Comparing two functions
that exist in two program versions is equivalent to comparing the subsequence
of the trace corresponding to the two functions under comparison.

Based on a user-defined cost function, the Levenstein [12] distance is calcu-
lated using dynamic programming and the gaps [2] in the comparison recorded.
(The Levenstein distance between two strings is defined as the shortest sequence
of edit operations that lead from one string to the other.) By repeating the pro-
cess for multiple test inputs, cumulative information on the gaps present in the
older version relative to the newer version is obtained. By projecting the tuples
back to the corresponding regions in the source, information on the affected
locations within an impacted function is obtained. If the Levenstein distance be-
tween the two functions is zero, then we regard the function in the newer version
as unaffected by changes in the older version.

Ignoring memory locations associated with each operation in the trace and
using only the operation type and associated value in calculating the Levenstein
distance presents a potential problem as shown in the following example:

void old() { void new() {
for(i = 0; i < 100; i++) { for(i = 0; i < 100;i++) {

a = i; b[i] = i;
} }

} }

Using just operation types and associated values in traces, it is easy to con-
clude that the functions old and new are identical, since the Levenstein distance
associated with strings generated by traces on any test input is zero. However,
it is obvious by examination that the functions have clearly distinct behavior.
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In function old, values from 1...100 are written into a single memory location
whereas in function new, the same values are written into consecutive memory
locations.

To alias memory locations across versions, we rely on a model [6] used to solve
a similar problem in computational biology while matching amino-acid (protein)
sequences. Here, one amino acid needs to be aliased with another amino acid
from which it potentially has mutated. The solution is based on computing the
probability of one amino acid aligning with another amino acid in valid (known)
alignments. In our approach, we execute the two versions on a test input and
align the traces with respect to the operation types and the associated values
(ignoring memory locations). The alignment of the memory locations for the
alignments of the strings obtained using the previous step is used in computing
the probability that a memory location can be aliased with any other location.
This process is performed for a few test inputs and a comprehensive map of the
probability that a memory location in the older version is aligned with any other
location in the newer version is obtained. From this map, the memory location
that has the highest probability is used as an alias. In subsequent alignment of
the traces, apart from computing the equality of the operation type and values
associated across versions, memory alias information computed earlier is used.

We implement our approach and evaluate its performance across a range
of open-source benchmarks. In these benchmarks, the majority (approximately
90%) of the memory locations in the older version are uniquely associated with
locations in the newer version. The remaining few memory locations correspond
to multiple locations and these are the locations for which our approach has
been found useful. When our technique is used in detecting variations between
program versions, we find a significant change in the size of the impacted regions
within an affected function. Furthermore, in some cases, we also find improved
precision in the impact sets computed.

2 Aliasing Technique: Log-Odds Ratio

We present our aliasing technique by initially discussing a related problem in
biology. Amino acid sequences of an organism’s protein mutate gradually from
one generation to another in the process of evolution. An important application
is to determine whether two sequences are homologous or have the same ancestor.
The general technique is to construct a substitution matrix where entry (i,j)
is equal to the probability of the amino acid i being altered into amino acid j
within a bounded time. There are two popular techniques to construct such a
matrix in the literature: PAM [6] and BLOSSOM [9]. In this paper, we build a
substitution matrix based on the technique used for PAM [6]. For our problem,
we need to determine the probability that the memory location i in one version
being the memory location j in another version.

We start with a discussion of the probabilistic technique used to correlate
memory locations. We initially present an abstract problem in strings and then
relate it to the problem of correlating memory locations that arise in software
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engineering and testing environments. We are given two sets of alphabets A and
B, where A

⋂
B = {}. Consider the following problem: “find a mapping from

alphabets in A to alphabets in B, for all alphabets in A, such that an alphabet
in A or B can have no more than a single mapping and for two strings x and
y composed of alphabets in A and B respectively, the Levenstein distance of the
strings x and sub(y,x) is minimum. Here, x is a string composed of alphabets from
A, y is a string composed of alphabets from B, sub(y,x) is the string obtained
by converting the string y by substituting each character in y by the alphabet
mapped into A.” For example, if we have A = {a, b, c}, B = {d, e, f}, x = abcb
and y = eddd, we find that a mapping from b to d, a to e and c to f results in
the smallest Levenstein distance of the strings x and sub(y,x). We are unaware
of a polynomial-time optimal solution to the above problem.

A relaxation of the above problem incorporates the presence of a history, i.e.,
there is a set of pairs of strings x and y, and alignment R(x, y) associated with
each pair. Any new pair of strings that form an input to the problem follows
the historical pattern. Given this scenario, a probabilistic approach to mapping
alphabets from A and B is given below. This technique has been applied in
generating PAM matrices for amino acid substitutions in computational biology.
For each pair of strings x and y in the history:

1. Calculate p(ai, bj) by dividing the number of times ai aligns opposite bj in
R(x,y) by the total number of aligned pairs.

2. Calculate p(ai) by dividing the the number of times ai appears in x by the
length of x. Similarly calculate p(bj).

3. The log-odds ratio LR(ai, bj) is defined as log( p(ai,bj)
p(ai)p(bj))

0

0 1.32 0

0

p(a1) = 0.5

p(a2) = 0.3

p(a3) = 0.2

p(b1) = 0.1

p(b2) = 0.3

p(b3) = 0.2

p(a1, b4) = 0.4

p(a1, b3) = 0.1

p(a2, b2) = 0.3

p(b4) = 0.4

p(a3, b1) = 0.1

p(a3, b3) = 0.1

x:   a1 a2 a3 a1 a1 a2 a3 a1 a1 a2 y:   b4 b2 b1 b4 b3 b2 b3 b4 b4 b2

0

a1

0 1.74

2.32a3

a2

b1 b2 b3 b4

100

Fig. 1. An example illustrating the computation of log-odds ratio

We present an illustrative example in Figure 1. A contains alphabets {a1, a2,
a3} and B contains alphabets {b1, b2, b3, b4}. Strings x and y are given and
are shown in the figure. The probability of occurrence of each alphabet and the
joint probability of two alphabets aligning is also shown. The log-odds ratio is



Trace-Based Memory Aliasing Across Program Versions 385

calculated as specified by the formula p(ai,bj)
p(ai)p(bj)

and is specified in the table. We
observe that there is perfect aliasing (when p(ai, aj) = p(ai) = p(aj)) between a2
and b2. In contrast, there is no such aliasing between a1 and b4. However, since a1
aligns more frequently with b4, these two alphabets are aliased. Even though a3
aligns with two different alphabets once, we alias it with b1, since it occurs only
once in the string y. However, the history of pairs of alignments need to be taken
into consideration to specify the alias with high confidence. We give the details
below.

Compute the log-odds ratio for all possible pairs of alphabets in A and B. Iter-
ate the process for each pair of strings in the history and obtain the cumulative
log-odds ratio. On completion, for every alphabet ai, find the alphabet bj in B
for which the log-odds ratio is the highest. Map the alphabet ai to bj , if bj is
not already mapped. Notice that LR(ai, bj) can become zero, in the absence of
even a single alignment between the alphabets. In practice, we observe many
such pairs and these pairs can be removed immediately from consideration.

In the context of memory aliasing, the problem can be now described as
follows: A and B correspond to the set of memory locations in the older version
and newer version, respectively. In other words, a memory location is simply
an alphabet in the appropriate set. Sequences x and y represent sequences of
memory locations operated in each of the versions. To obtain the history as
mentioned in the relaxed version of this problem, a learning process is executed.
In this process, the memory locations are totally ignored and the traces, obtained
by executing the versions on the same test input, are aligned using the tuple
<Operation, Value>. This alignment is performed using dynamic programming.
After obtaining the alignment of the trace, an alignment of the memory locations
(corresponding to the tuple) across the two versions is obtained. The log-odds
ratio for the locations is subsequently determined. On completion, we obtain
a probabilistic aliasing of the memory locations. We elaborate on this process
using the following example.

2.1 Example

We show two program fragments in Figure 2, one labeled old, and the other new.
There is one memory location (a) associated with function old (local variable
i is not considered). There are two memory locations (b[0],b[1]) associated
with function new. We denote the address of any variable v as mem(v).

Using the algorithm presented above, memory traces associated with the in-
vocation of these functions on the same test input (j = 5) are first obtained.
The memory trace thus generated is:

old: <mem(a),W,0>, <mem(a),W,1>, <mem(a),W,5>

new: <mem(b[0]),W,0>, <mem(b[1]),W,1>, <mem(b[0]),W,5>, <mem(b[1]),W,6>

Trace Element: <Location, Operation, Value>

Location: Memory location associated with the operation
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void old(int j){ void new(int j){
for(i = 0; i < 2; i++) { for(i = 0; i < 2; i++) {

a = i; b[i] = i;
} }
a = j; b[0] = j;

b[1] = j + 1;
} }

Fig. 2. Example of functions from two program versions

Op: Read(R),Write(W)
Value : 32 bit value

Initially, we ignore all memory locations and align the above strings. The gaps
are represented by a hyphen(-). We obtain the following alignment:

old: <W, 0>, <W, 1>, <W, 5>, -
new: <W, 0>, <W, 1>, <W, 5>, <W, 6>

We retrieve the corresponding memory locations and get the following align-
ment:

old: mem(a), mem(a), mem(a), -
new: mem(b[0]), mem(b[1]), mem(b[0]), mem(b[1])

The logs-odd ratio for the memory locations are obtained using the above
alignment. We get LR(a, b[0]) equals log(4/3) and LR(a, b[1]) equals log(2/3).
By performing the above operations on other test inputs, we can correlate the
memory locations of a and b[0] with high confidence. In subsequent trace align-
ments, we use the alias in the dynamic programming to ensure that the alphabets
under comparison are identical.

3 Case Study

We discuss an implementation for discovering variations across program versions.
Our analysis tool consists of two components – an instrumentation module and
a comparison module. Both components operate over program binaries. The
binaries, representing a program and its revision, are instrumented to record
read and write operations, and execute on the same test input. The effect of
the instrumentation yields memory traces on selective operations. These traces
are then compared using dynamic programming, and optimally aligned (with or
without memory aliasing) based on a user defined cost function. A block diagram
of this process is shown in Figure 3.

Gaps in the alignment help detect operations performed by the newer version
that are absent in the older version, and vice versa. Accumulating this informa-
tion over all test inputs provides the set of affected regions in the newer version.
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Regions in Affected functionsAffected functions

Dynamic Programming

Test Input 

Cost function

Old Binary

Instrumentation Instrumentation 

New Binary

Fig. 3. Block Diagram for detecting variations across two program versions

If there are no gaps present in such a comparison over all test inputs, the func-
tions are declared to be unaffected. Otherwise, the affected regions (in the form
of line numbers) in the newer version are identified.

3.1 Instrumentation Tool Using PIN

We use PIN [16], a dynamic binary instrumentation tool, for instrumentation
purposes. PIN supports a rich set of abstract operations that can be used to
analyze applications at the instruction level without detailed knowledge of the
underlying instruction set. Instrumentation code can be inserted at desired lo-
cations in the binary. For our current implementation, we track all heap related
operations ignoring other instructions, including reads or writes to the stack.

The instrumentation module takes as input the binary and the list of functions
in the binary that need to be instrumented. When the binary is executed on a
given test input with dynamic instrumentation, a list of tuples is generated. The
elements in the tuple include the type of operation (read or write), its 32 bit
value (read or written), the corresponding memory location, the line number
and the function in which the instruction was generated.

3.2 Comparison Tool Using Dynamic Programming

We provide a simple example for aligning two strings optimally. Given two strings
abacbd and aabcabcd, one of the longest common subsequences is abacd. Table 1
presents the dynamic programming table d that gives the edit distance between
the two strings. The cost at any box of the dynamic programming table d, di,j

is calculated as follows. If alphabets i and j are equal, then the cost di,j is the
minimum of di−1,j−1, di−1,j + 1 and di,j−1 + 1. Otherwise, the cost di,j is the
minimum of di−1,j + 1 and di,j−1 + 1. The alignment table is correspondingly
update to reflect whether the diagonal, left or top element is chosen in d. The edit
distance in this case is four assuming unit cost for insertions and deletions. After
filling up all the values in table d, a traversal from the end of the alignment table
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Table 1. Dynamic programming table d
representing the gap costs

a a b c a b c d

0 1 2 3 4 5 6 7 8

a 1 0 1 2 3 4 5 6 7

b 2 1 2 1 2 3 4 5 6

a 3 2 1 2 3 2 3 4 5

c 4 3 2 3 2 3 4 3 4

b 5 4 3 2 3 4 3 4 5

d 6 5 4 3 4 5 4 5 4

Table 2. Alignment table. 
: left, t: top,
c: diagonal.

a a b c a b c d
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(the last row and last column) gives the alignment of the two strings. Table 2
presents the table that is used to calculate the optimal alignment for the pair
of strings. One possible alignment for the strings is as follows: a-b-a-cbd and
aabcabc-d. We refer the reader to [5] for a more elaborate discussion.

Our comparison module operates over a pair of traces generated by instru-
menting the binaries to be compared as they execute on the same input. To
provide an analogy, if the trace is viewed as a string, the equivalence of an al-
phabet in the string here is a tuple <Memory Location, Operation, Value>. We
use the dynamic programming technique to compute an alignment between the
pair of traces. The optimality of an alignment is dependent on the cost function
used which can be defined in many ways. In this paper, we consider a simple
notion of optimality. Gaps in an alignment have unit cost, while all other al-
phabets have zero cost. Thus an optimal alignment is one that has the smallest
number of gaps; observe that for any pair of strings, there maybe many such
optimal alignments.

Given memory traces of length m and n for two versions, the time complexity
of dynamic programming is O(mn). Thus, even traces of modest length (ap-
proximately 15K) can considerably slow down the comparison process. Indeed,
for some applications, there are a several million reads or write operations to
memory. To make our approach scalable, we employ a heuristic that performs
dynamic programming piece-wise on smaller substrings. The heuristic is based
on the observation that there is likely to be sufficient locality to apply dynamic
programming on the strings yielded by subtraces to yield a good, if not neces-
sarily optimal, alignment. Our heuristic works as follows:

1. Obtain a prefix of fixed length r from both traces.
2. Apply dynamic programming on the prefixes obtained.
3. Find the farthest location in each prefix respectively after which there is no

alignment between the prefixes.
4. Obtain a prefix of r starting from these locations respectively from each

trace and repeat the process from Step 2.

We use the example discussed above to explain the heuristic. Fix r to be three.
In the first step, prefixes aba and aab are extracted. Aligning these prefixes,



Trace-Based Memory Aliasing Across Program Versions 389

we get -aba and aab-. In the next step, we extract acb from the first string
and cab from the second string. Aligning the prefixes, we get ac-b and -cab.
Subsequently, we extract d and cd and align them as -d and cd respectively.
The final alignment is -abac-b-d and aab-cabcd.

3.3 Extract from Bzip2

We present an extract from bzip2 to show that ignoring memory locations can
indeed lead to reduced precision in detecting variations across program versions.
The following piece of code is extracted from the function generateMTFValues
in bzip2, version 0.9.5d.

163 void generateMTFValues ( EState* s )
213 ll i = s->unseqToSeq[block[j] >> 8];
225 j++;
233 zPend--;
240 s->mtfFreq[BZ RUNA]++;
247 mtfv[wr] = j+1; wr++; s->mtfFreq[j+1]++;

The following piece of code is extracted from the same function in bzip2,
version 1.0.2

164 void generateMTFValues ( EState* s )
211 ll i = s->unseqToSeq[block[j]];
219 zPend--;
226 s->mtfFreq[BZ RUNA]++;
250 mtfv[wr] = j+1; wr++; s->mtfFreq[j+1]++;

In the learning process for aliasing, it was observed that memory location of
variable in line 225 in the older version is associated with lines 211,219,
226, 250. However none of the lines have a high log-odds ratio with line 225.
All of them have higher log-odds ratio with some other line in the older version
(lines 213, 233, 240, 247, respectively). By examining the source code of
both the versions, it is obvious that the loop associated with variable j has
been rewritten and a similar construct is not available in the newer version. By
ignoring memory locations, line 225 was aligning with other unrelated lines,
leading to imprecise alignments and therefore reduced precision in the impact
analysis. As our experimental results show, memory aliasing can reduce the
number of realignments that are observed in affected functions.

4 Evaluation

4.1 Experimental Setup

We provide a comparison of detecting variations across program versions with
and without memory aliasing using two versions of the following software pack-
ages: bzip2 [4], bunzip2 [4], gawk [8], htmldoc [13] and wget [18]. All of these
programs are written in C. The details on the versions used for the benchmarks,
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the lines of code, the number of functions and other parameters are given in
Table 3. We explain the significance of the other columns below. The test cases
used for the benchmarks are either randomly generated or are from standard
test suites available for them.

Table 3. Benchmark Information and Results (Time in seconds)

Old New LoC Total Longest Total Instr. Analysis Time Memory affected
Version Version (in K) Fns. Trace (103) Tests Time No Alias Alias (in MB) %

bzip2 0.9.5d 1.0.2 9 107 6099 107 2631 991 3121 351 25.4
bunzip2 0.9.5d 1.0.2 9 107 1839 101 1297 351 2637 89 26.6
gawk 3.1.3 3.1.4 41 522 3598 133 1390 450 368 670 41.7
htmldoc 1.8.23 1.8.24 65 246 1399 101 3451 970 996 84 48.4
wget 1.6 1.7 28 313 158 105 1025 263 232 16 44.4

We perform our tests on Linux 2.6.11.10 (Gentoo release 3.3.4-r1) system
running on a Intel(R) Pentium(R) 4 CPU 3.00GHz with 1GB memory. The
version of the PIN [16] tool used was a special release 1819 (2005-04-15) for
Gentoo Linux. The sources were compiled using GCC version 3.3.4.

4.2 Results

In our current implementation, a list of functions that need to be instrumented
and the pair of functions to be considered for comparison are also provided. The
number of memory reads and writes, the associated values yielded, the mem-
ory locations used, and the line in the source responsible for such an action is
presented as output of the instrumented program executed under PIN. By per-
forming this process for both versions, we have two traces of heap reads and
writes, and corresponding information that is provided as input to the com-
parison module. The instrumentation time given in Table 3 includes the time
taken to insert instrumentation code and time taken to execute the instrumented
version of the binary for all the test cases.

When no aliasing is employed, the operation values and types are compared
and aligned. We use a block size of 50 based on the heuristic given in the previous
section for a piece-wise alignment of the traces. Furthermore, related memory
locations are aligned and the log-odds ratio computed as mentioned earlier in the
paper. The comprehensive log-odds ratio is computed by totalling the individual
ratios. It is appropriate to note here that memory locations in any two different
runs of the same program may be different. Therefore, to ensure consistency,
we associate the memory location with the line number in the source. Notice
that this approximation may lead to a loss of precision in the presence of two
or more memory locations in the same line. Determining a better technique to
ensure consistency across test runs is part of our ongoing research. The idea
behind the current approximation of memory locations to line numbers is that
even though the locations may be different across two runs of the same program,
the line numbers are still consistent. More importantly, such an approach can
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Fig. 4. The percentage of memory locations and the mappings associated

be deployed across program versions as the line numbers need not correlate. On
performing the entire process as mentioned above for each test case, we obtain
the regions (in the form of line numbers) in the newer version that differ from
the older version.

In Figure 4, we present a histogram, which shows the distribution of the mem-
ory locations with respect to the number of mappings for each of the benchmarks.
We expect that the majority of the locations have unique correspondence, since
generally newer versions do not deviate widely from the existing version. Our
intuitions are confirmed by the results shown in the figure. Most memory lo-
cations (approximately 90%) in the older version have unique correspondence
(perfect mapping) with memory locations in the newer version. The remaining
locations have multiple mappings and these are the locations that can reduce the
effectiveness of impact analysis. We observe that among these memory locations,
most of them correspond to two or three other memory locations in the newer
version. In the case of gawk [8], we observe as many as 20 different locations in
the newer version that can be mapped to one memory location. However such
occurrences are rare. Such increased correspondence signifies that the memory
location cannot be aliased with any other memory location and the observed
alignments are accidental. Our extract from bzip2 [4] in the previous section
corroborates this observation.

When aliasing is used in our comparison tool, we ensure that the memory lo-
cations associated with each memory operation are compared and two tuples are
aligned if and only if the operation value and type are equal and the associated
memory locations are aliases. In Figure 5, we present the results of the improve-
ment using this approach. The figure shows the distribution of functions with
respect to the change (in percentage) of the number of lines within an impacted
function when aliasing is used, as opposed to no aliasing. We observe that there
is a significant change in the number of lines affected, even though only a few
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Fig. 5. Change in size of impacted regions when aliasing detection is used

memory locations had multiple mappings (from Figure 4). Approximately 50-
60% of the functions do not change as a result of using aliasing. In some cases,
for example in htmldoc [13], we observe that even though the uniquely mapped
memory locations is the least over all the benchmarks, there is, nonetheless, no
change in the affected regions.

In Table 3, we provide the specifics of our benchmarks and the results ob-
tained using our technique. The number of lines of code varies from 9K to 65K
with the number of functions varying from 100 to 500, approximately. The length
of the trace represents the number of reads and writes to the heap in thousands
of instructions. The longest trace observed is approximately 6 million for bzip2.
The average memory used, while significant, is not problematic. This is expected
for many dynamic analysis scenarios because precise information on heap oper-
ations is being gathered. No significant difference in memory utilization was
observed when aliasing was used and is therefore not shown as a separate col-
umn in the table. The percentage of affected regions is also provided in the table.
The affected percentage reveals that a sizeable fraction of the newer version of
a benchmark program is impacted by changes to the older.

The time taken for our technique is composed of the instrumentation time of
the binary and execution time of comparison module. There are two reasons for
the inefficiency of the instrumentation process. The first is the use of a dynamic
binary instrumentation tool as opposed to static instrumentation. Therefore for
each test case, we insert appropriate instrumentation code. We believe the time
taken for this can be significantly reduced using alternative instrumentation
strategies. The current impact analysis tool currently tracks all heap related op-
erations. This can also play an important role in increasing the instrumentation
time. The length of the trace and instrumentation time are directly correlated.
For example, wget has a shorter trace and thus significantly smaller instrumenta-
tion time compared to bzip2. One way to reduce the number of heap operations
tracked is to discard operations found in regions already known to have been
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affected from previous test runs. The difference in the analysis time of the two
approaches is not significant except for bzip2 and bunzip2, where we observe
that the approach using aliasing requires more time. Note that in the aliasing
approach, since memory locations are compared for every alphabet mapping, the
increased time can be attributed to the number of memory locations occurring
in the benchmark. Since we expect that our approach will be generally used off-
line, we believe the improved precision resulting from taking aliasing information
into account outweighs the added costs for performing location comparisons.

5 Related Work

Our approach is motivated by similar techniques employed for problems in bioin-
formatics. PAM [6] and BLOSSOM [9] are two commonly used substitution ma-
trices for detecting amino acid substitution. Amino acids can mutate with time
and it is necessary that two different amino acids be aliased to give a better
sequence alignment. Analogously, we have multiple versions (the newer version
can be considered as the mutation of the older version) and to align these newer
versions, it is necessary that the memory locations in the two versions be aliased.
We address this problem in the paper and use the log-odds ratio to alias memory
locations. We also show by way of experiments on many open source systems
that the memory aliasing approach employed here enhances the precision of the
impact analysis.

Zhang and Gupta [19] present a novel method for matching dynamic execution
histories across program versions for detecting bugs and pirated software. They
use an offset-based aliasing technique to correlate stack locations across the two
programs. While this is applicable in many cases, it is not clear whether this
approach is generalizable. In this paper, we abstract the problem of memory
aliasing into one of finding longest common subsequence of two strings composed
of different alphabets. We also present a probabilistic solution to this problem.

There has been much prior work in impact analysis for improving testing
efficiency in the presence of program changes [1, 15, 17]. In these approaches,
functions that follow a modified function in some execution path are added
to the impact set. We share obvious similarities with these efforts, but differ
both in the mechanisms used to identify impacted functions, and the ability to
identify localized regions of change within these functions. Furthermore, since
our technique operates over binary executables, we are not reliant on program
analysis of input sources or programmer annotations.

Our approach can also be extended to correlate variables across program ver-
sions to check whether the invariants are preserved across these versions. Ernst
et. al. provide a technique for automatically detecting invariants within a single
program version [7]. However, it is not clear how invariants across program ver-
sions can be correlated, in the presence of variable renaming, deletions, additions,
and general changes in the program’s data- and control-flow . By proposing a
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new formulation for generating the initial history of alignments and applying the
log-odds ratio, we believe variables can be correlated even under these circum-
stances.

Pointer analysis is a well studied problem and a number of techniques in
the literature is discussed by Hind and Pioli [11]. “A pointer alias analysis at-
tempts to determine when two pointer expressions refer to the same storage
location” [10]. However, many of the techniques discussed in the literature is
for alias analysis within a single program. In this paper, we address an entirely
different problem of ‘must’ aliasing [14] of pointers across two program versions.
The technique presented in the paper provides a solution based on statistical
correlation.

Dynamic programming, more specifically longest common subsequence (LCS),
is used in many applications. One such application in software engineering is de-
scribed in [3]. The foundation of their approach that for similar bugs, the call
stack also shares similarities. Therefore, by pruning unnecessary information
from the call stack, and comparing the resulting string representation with an
existing signature, a score can be computed to the match using a longest com-
mon subsequence algorithm. The similarity between their approach and ours is
restricted to the underlying technique and its applicability in a software engi-
neering context, but does not extend to impact analysis or variation detection
across program revisions.

6 Conclusions

This paper describes a technique for identifying memory aliases across program
versions. Our approach works by collecting traces of program executions, in
which each element of the trace contains an operation, value, and a memory
location; trace results applied to the same test input on the versions being com-
pared are aligned without considering the memory locations used by the pro-
gram. By computing the log-odds ratio between memory locations based on the
above alignments on a few test inputs, we obtain an aliasing of the locations
across versions. To validate our approach, we compare program versions based
on traces with and without aliasing detection on a number of open-source pro-
grams. Experimental results show that our technique improves the precision of
identifying impacted regions significantly. Our approach can be easily extended
to other applications where memory aliasing is required. For example, as part
of ongoing work, we are investigating the use of this approach for correlating
variables across program versions to test preservation of invariants and program
matching. Another avenue for future work is to evaluate the applicability of our
approach to more heap-centric languages such as Java.
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Abstract. In this research, we investigate the role of common coupling
in evolving software systems. It can be argued that most software de-
velopers understand that the use of global data has many harmful side-
effects, and thus should be avoided. We are therefore interested in the
answer to the following question: if global data does exist within a soft-
ware project, how does global data usage evolve over a software project’s
lifetime? Perhaps the constant refactoring and perfective maintenance
eliminates global data usage, or conversely, perhaps the constant addi-
tion of features and rapid development introduce an increasing reliance
on global data? We are also interested in identifying if global data usage
patterns are useful as a software metric that is indicative of an interesting
or significant event in the software’s lifetime.

The focus of this research is twofold: first to develop an effective and
automatic technique for studying global data usage over the lifetime of
large software systems and secondly, to leverage this technique in a case-
study of global data usage for several large and evolving software systems
in an effort to reach answers to these questions.

1 Introduction

A focus of the software engineering discipline has been, and continues to be,
the development and deployment of techniques for yielding reusable, extensible,
and reliable software [3]. One proven approach toward obtaining these goals
and others, is to develop software as a collection of independent modules [9, 6].
This technique is especially effective when the individual modules experience
a low-degree of inter-dependence or coupling [18, 11]. Modules which are self-
contained and communicate with others strictly through well-defined interfaces
are not likely to be affected by changes made to the internals of other unrelated
components.

Although designing software which exhibits a low degree of coupling is highly
desirable, if the modules of a software system are to communicate at all, some
form of coupling must exist. In [11] the following seven types of coupling are
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defined in increasing severeness: no coupling, data coupling, stamp coupling,
control coupling, external coupling, common coupling, and content coupling.

The focus of this paper is on the second most undesirable form: common
coupling. This manifestation of coupling implicitly occurs between all modules
accessing the same global data. In [20], this form of coupling is referred to as
clandestine coupling. Many different programming languages, old and new alike,
provide support for global data, and as illustrated later in this paper, common
coupling is rampant in many large software systems.

In this research, we investigate the role of global data in evolving software
systems. It can be argued that most software developers understand that the
use of global data has many harmful side-effects and thus should be avoided.
We are therefore interested in the answer to the following question: if global
data does exist within a software project, how does global data usage evolve over
a software project’s lifetime? Perhaps the constant refactoring and perfective
maintenance eliminates global data usage or, conversely, perhaps the constant
addition of features and rapid development introduce an increasing reliance on
global data? We are also interested if global data usage patterns are useful as
a software metric. For example, if a large number of global variables are added
across two successive versions, is this indicative of an interesting or significant
event in the software’s lifetime? The focus of this research is twofold: first to
develop an effective and automatic technique for studying global data usage over
the lifetime of large software systems and secondly, to leverage this technique in
a case-study of global data usage for several large and evolving software systems
in an effort to attain answers to these questions.

This paper is organized as follows. Section 2 discusses the many pitfalls and
possible reasons for using global data. Section 3 then presents our thoughts and
expectations on global data usage in the three software systems examined. In
Section 4, an in-depth discussion on our tool gv-finder is presented. Section
5 provides an overview of the systems examined in this study, followed by the
results and analysis of applying gv-finder to these systems in Section 5. Finally,
Section 7 concludes.

2 Global Data

The notion of scope is intrinsic to the declaration of source code entities (e.g.
class, function, datum) in all programming languages. Scope is simply a maximal
region of code for which the declared source code item is bound to [6]. Depending
on language semantics, the scope may vary from a single compound statement
(local scope), to any and every source file in a software project (global scope).
The focus of this paper is on the set of variables within an application’s source
code that are declared with a global scope. As discussed later in Section 4 we
further build upon this definition to include other variables of interest.

Global variables can be used indiscriminately in any module within a software
project, and thereby all modules referencing the same global data are implicitly
coupled. For this reason, it is well known that the use of global variables poses
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a real and serious threat to software maintainability. The resulting rampant
coupling can greatly impair program comprehension through a wide range of
unanticipated side-effects; from hidden aliasing problems, namespace pollution,
to even hampering code reuse across projects. Without a full understanding all
of these and other less obvious implications of using global data, misconceptions
about the safety of read-only access to globals, or the judicious use of file scope
globals (e.g. statics in C) will continue to exist. For an in-depth discussion as to
why global variables are harmful, the reader is referred to [6, 9, 17, 20].

Despite the well known drawbacks of using global data, there are a small
number of valid reasons justifying their use. For example, global data can be
used to emulate named constants and enumerations in those languages which
do not support them directly [9]. However, situations which require the use of
global data are rare and can almost always be avoided.

Previous work by Briand et al. [2] found that the degree of common coupling
inside of a system is related to fault-proneness. Yu et al. [20] and Schach et al.
[16] also examined common coupling in terms of the effects on maintainability
and quality, respectively.

The application of data mining to various entities of the software development
process to discover and direct evolution patterns has recently received extensive
treatment, most notably in [4, 13, 21].

3 Exploration of Global Variables in Software Evolution

Two opposing views of software evolution exist. In the first view, early releases
of a software project are seen as pristine, and that as the software ages, entropy
takes hold and it enters into a constant state of decay and degradation [12].
Accordingly, one may hypothesize about the pervasiveness of global data with
this view in mind:

Since evolving software is in a perpetual state of entropy, the degree of
maintainability will decrease partially due to an increase in both the num-
ber and usage of global variables within an aging software project.

Conversely, another view is that software is in a constant state of refactoring
and redesign and, along with perfective maintenance, one can conclude that
the early releases of a software project are somewhat unstructured, and as the
project ages the design and implementation become more stable and mature.
With this view in mind, one can suggest the following about the pervasiveness
of global data in evolving software:

As software evolves in an iterative development cycle of constant refac-
toring and redesign, the degree of maintainability will increase partially
due to an increase in both the number and usage of global variables within
a growing software project.

Although both hypotheses are convincing when viewed in isolation, it appears
to us that it is more likely that neither will apply uniformly to all evolving soft-
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ware systems. Instead, we propose that the defining characteristics of each soft-
ware system (such as the development model, development community, relative
age, project goals, etc.) are the factors determining which viewpoint is more in-
fluential. In particular, we adopt the three-pronged classification of Open Source
Software (OSS) as defined in [10]. The three types of OSS, and predictions on
the global data usage for each, are:

1. Exploration-Oriented. Research software which has the goal of sharing
knowledge with the masses. Such software usually consists of a single main
branch of development, which is tightly controlled by a single leader. In such
a project we predict to see very few global variables and, as the software
evolves, a decrease if any change in global variable usage.

2. Utility-Oriented. This type of software is feature-rich, and often experi-
ences rapid development, possibly with forks. In this category of software, we
expect to see a relatively high reliance on global data, which will gradually
increase over the software’s lifetime, possibly with periods of refactoring.

3. Service-Oriented. Software in this category tends to be very stable and
development is relatively inactive due to its large user-base and small devel-
oper group. Unlike exploration-oriented software, where a single person has
complete authority, a small number of “council” members fulfill the decision-
making role. For software of this classification, we predict global data usage
to be higher than exploration-oriented software but less than utility-oriented
software. As the software evolves, we also expect to observe a decrease in
reliance upon global data.

4 Methodology

Our objective was to study both the presence and role of global data in several
large-scale software systems, and therefore, it was important to devise an ap-
proach for automatically collecting such data. Whereas in [20], global data usage
was collected for a single version of the Linux kernel, our focus was more exten-
sive, as we were interested in examining numerous versions of multiple software
projects. Consider one of the three case studies presented later in Section 5:
GNU Emacs. In total, 15 versions of Emacs were examined (across a 14 year
time period), the accumulative source code base consists of roughly 4 million
lines of code. Clearly, examining the pervasiveness of global data over the evo-
lution of such a large-scale software system requires an automated process. This
section provides an overview and discussion of the design and implementation
of our global data collection tool called gv-finder.

Initial approaches to developing the global data collection tool included hand
coding a parser, and the modification of gcc. However, the approach decided
upon was to write a stand-alone tool similar to a linker, which takes as input a
collection of relocatable object files. Relocatable object files are usually produced
as the output from either a compiler or assembler, and contain the machine code
representation for some source code entity (e.g., a file or a concatenation of files)
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along with information needed by both the linker and loader [15]. The following
two observations lead us to adopt this approach:

– If a source file uses global data which happens to be instantiated within a
different source file, the corresponding relocatable object file will contain a
symbol table entry indicating that the global data is undefined. When the
linker is invoked with the complete set of object files used for constructing
the target application, it will replace any reference to the undefined global
data with the address of the global data instantiated in one of the other
object files.

– If a source file instantiates and exports global data, the corresponding relo-
catable object for that file will contain a symbol table entry declaring the
data as global. The linker uses the address of a global symbol (also found in
the symbol table) to resolve references to the same global data occurring in
other external source files, as well as for any internal references.

Therefore, by inspection of the set of object files which constitute the final
executable application, one can determine (a) the names of all global data and
the corresponding module in which they are defined and (b) for each global
data, the name of the modules which refer to it. In addition to satisfying all of
our design criteria, this method offers the advantage of being portable across
different compiler suites. This may be useful if an application only compiles
with a certain version of a compiler, or a specific company’s compiler — native
compilers for a given platform target a common standard object file format.

Our analysis of relocatable ELF object files makes the following distinction
between different types of global data:

– External Global Data. If one or more object files contain an undefined
reference to global data, but no object file is found to provide a matching
definition, we consider the global data to be external to the application. This
occurs when the application makes use of a library which exports global
state. A common example is the use of stdout from the C standard library.
This is the least severe type of global data since the application itself is not
responsible for the design of the libraries it depends upon.

– Static Global Data. If an object file contains a definition of global data
which is marked as “local” then the global data is classified as static. This
occurs in languages such as C and C++ where global data is declared with the
static keyword[7, 19]. Static global data can only be used in the file which
declares the variable, and therefore can not introduce “clandestine” coupling
[20] with other external modules. However, all the other disadvantages asso-
ciated with using global data are applicable to static data, and therefore we
feel it is important to make the distinction as static data is still potentially
dangerous and undesirable.

– True Global Data. If an object file contains a definition of data marked
as “global”, the data is then classified as true global data. This data can be
referenced in any other module without restriction, simply by referring to
the data’s name. This is the most dangerous type of global data since every
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module which references the exported global variable becomes implicitly
coupled [20].

It should be noted that this approach to global data analysis requires the
target application to be compiled. This turned out to be a challenge for the
very early versions of the software studied in Section 6, as language standards,
system header files, and the required build tools have also evolved independently,
and tend not to be backward compatible. However, for global variable analysis,
it is only required that the source files compile, even if the resulting executable
does not run correctly (or at all). Therefore, with a relatively small investment in
time, we found that many of the older versions could be compiled by strategically
adding fix-up macros, re-using configuration files across different versions and,
in the worst-case scenario, simply removing offending lines of code (less than 100
lines of code were commented out in any given release).

5 Case Study

Over the course of this study we examined one example of each of the three
classifications of OSS projects defined in [10]. Specifically, the Vim, Emacs and
PostgreSQL projects were examined.

5.1 Vi IMproved (Vim)

The Vi IMproved (Vim) editor began as an open-source version of the popular VI
editor, and has now eclipsed the popularity of the original Vi. Vim was created
by Bram Moolenar, who based upon it another editor, Stevie[1]. Development of
Vim centres around Moolenar, with other developers contributing mostly small
features, however, the process relies upon the user community for bug reports.
In terms of the classification of open-source software defined in [10], Vim is
considered an example of a utility-oriented project.

Sixteen releases of Vim dating back to 1996 were studied (four earlier versions
which target the Amiga were unanalyzable). Table 1 displays the Vim chronology
of the examined releases. Most of the releases are considered minor, however,
releases 5.3 and 6.0 are major, contributing at least 50KLOC each to the system.

Table 1. Chronological data for the releases of Vim examined in this study [5, 8]

Release Date SLOC Total LOC Release Date SLOC Total LOC
4.0 05/1996 43594 59966 5.5 09/1999 94247 127055

4.1 06/1996 43891 60396 5.6 01/2000 94964 128102

4.2 07/1996 44017 60600 5.7 06/2000 96225 129681

4.3 08/1996 44621 61606 5.8 05/2001 95548 128864

4.4 09/1996 44693 61751 6.0 09/2001 140182 187196

4.5 10/1996 44742 61875 6.1 03/2002 142091 189632

5.3 08/1998 79260 107876 6.2 06/2003 156700 209680

5.4 07/1999 93771 126383 6.3 06/2004 162441 217501
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5.2 GNU Emacs

The Emacs editor is one of the most widely used projects developed by GNU.
It was originally developed by Richard Stallman, who still remains the project
maintainer. Given the development process and community that supports
Emacs, we consider it to be an exploration-oriented project.

Our examination of Emacs consisted of fifteen releases stretching as far back as
1992. Details pertaining to the releases that we studied can be found in Table 2.

Table 2. Chronological data for the releases of Emacs examined in this study

Release Date SLOC Total LOC Release Date SLOC Total LOC
18.59 10/1992 56216 74752 20.5 12/1999 105324 146655

19.25 05/1994 75412 104608 20.6 02/2000 105336 146693

19.30 11/1995 80824 112780 20.7 06/2000 105437 146849

19.34 08/1996 100514 140000 21.1 10/2001 137615 197481

20.1 09/1997 100406 140357 21.2 03/2002 137835 197814

20.2 09/1997 100408 140357 21.3 03/2003 138035 198130

20.3 08/1998 104193 145258 21.4 02/2005 138035 198130

20.4 07/1999 105170 146422

5.3 PostgreSQL

As an example of service-oriented OSS, the PostgreSQL relational database
system was examined. PostgreSQL is an example of a exploration-oriented (re-
search) project that has morphed into a service-oriented project. The system was
initially developed under the name POSTGRES at the University of California
at Berkeley[14]. It was soon released to the public and is now under the control
of the PostgreSQL Global Development Group.

Table 3. Chronological data for the releases of PostgreSQL examined in this study

Release Date SLOC Total LOC Release Date SLOC Total LOC
1.02 08/1996 102965 175538 7.4 11/2003 222694 349461

6 07/1997 98062 162253 8.0.0 19/01/2005 242887 382686

7.2 02/2202 252155 276496 8.0.1 31/01/2005 242991 382865

7.3 11/2002 194822 308305

We studied seven releases, of which three are considered major releases (1.02,
6.0 and 8.0.0). Version 1.02 (aka Postgres95) was the first version released outside
of Berkeley, and incorporated a SQL frontend into the system. Although, the
PostgreSQL project is composed of many programs, we limited our study to the
PostgreSQL backend server. Table 3 outlines the date and size changes of the
PostgreSQL server for the releases examined.



The Pervasiveness of Global Data in Evolving Software Systems 403

6 Experimental Results and Discussion

In this section we report and discuss the results gathered through the use of
gv-finder on the selected open-source projects. Specifically, we examine the
evolution of the projects in terms of their size (lines of code), the number of
global variables referenced, their reliance upon global variables, and finally, the
extent to which global data is used throughout the system.

6.1 Changes in Number of Lines of Code

Over the lifetimes of the projects that we studied, each has at least doubled in
terms of their code size. Size data collected includes uncommented, non-white
space source lines of code (SLOC), and total lines of code (LOC). Referring back
to Tables 1, 2, and 3 we see the changes in source lines of code as well as total
lines of code for Vim, Emacs and PostgreSQL, respectively.

As expected, each project shows a small increase in size over the minor releases
as a result of perfective maintenance which can be attributed primarily to bug
fixes. However, the large increases stems from the the major releases when new
features were added to the systems.

Interestingly, the LOC decreases substantially from version 7.2 to 7.3 of Post-
greSQL. Examination of the documented changes revealed that support for a
specific protocol was removed. However, it is unclear if this change alone ac-
counts for the 70KLOC that was removed from the system.

6.2 Evolution of the Number of Global Variables

Initially it was hypothesized that the number of global variables would decrease
over the lifetime of a project as the developers had more time to perform cor-
rective maintenance and replace them with safer alternatives. However, this was
not what was discovered. In fact, we found that the number of global variables
present in all of the systems examined grew alongside the code size as demon-
strated in Figs. 1, 2, and 3. In the figures, the number of distinct global variables
is classified as being either true, static or external. To further clarify the figures,
consider Fig. 1. Examination of Vim release 5.3 shows that the total number of
global variables identified is 684. These 684 references are composed of 426 true,
238 static, and 20 external global variables.

The finding that the number of global variables increases alongside the lines of
code might suggest that the use of global variables is inherent in programming
large software systems (at least those programmed in C). This is even more
interesting given that according to the classifications in [10], PostgreSQL and
Emacs are developed under a stringent process that ideally would attempt to
limit the introduction and use of global variables.

6.3 Evolution of the Reliance Upon Global Variables

In an attempt to evaluate how reliant the systems are upon global data, we
recorded the number of lines of code that reference global data. Using this, we
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Fig. 1. The number of true, static and external globals identified by gv-finder in Vim

Fig. 2. The number of true, static and external globals identified by gv-finder in
Emacs

Fig. 3. The number of true, static and external globals identified by gv-finder in
PostgreSQL
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Fig. 4. The percentage of references to global data per line of source code. The percent-
ages are classified as either true, static and external globals as identified by gv-finder
in Vim.

Fig. 5. The percentage of references to global data per line of source code identified
by gv-finder in Emacs

are able to report the percentage of lines of source code (SLOC) that reference
global data as displayed in Figs. 4, 5, and 6.

In this form the figures diminish the actual reliance of the projects upon global
data. This can be attributed to two factors. First, each line that references a
global variable is only counted once, even if it might reference multiple global
variables. However, the most important factor is simply that the number of
lines of code is growing much faster than the number of globals. Therefore, even
though the number of global variables present in each system is growing, the use
of SLOC as the divisor negates this fact.

To gain a better perspective on the reliance of global data, we plotted the
number of references to global data divided by the total number of globals.
Examining Figs. 7, 8, and 9, a wave pattern is observed for all projects. This
might indicate that the original intuition that global variables were added to
code as a quick fix in order to ship the initial release, after which their number
would decrease, was simply too limited. The wave pattern that is evident in the
figures could be interpreted as the iterative process of adding new features, and
hence new globals, to the system and the later factoring out of them over time.
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Fig. 6. The percentage of references to global data per line of source code identified
by gv-finder in PostgreSQL

Fig. 7. The number of references per global variable discovered by gv-finder in Vim

Fig. 8. The number of references per global variable discovered in Emacs
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Fig. 9. The number of references per global variable discovered in PostgreSQL.

However, contrary to our intuition the reliance upon global data appears to
peak at mid-releases. This may indicate that the addition of new features in
major-releases are the result of clean, well-planned designs. It appears that the
process of identifying bugs and patching them as quickly as possible results in
the introduction of the majority of references to global data. As the frequency
of bug reports curtail the developers are able to focus on refactoring the hastily
coded bug fixes, thereby reducing the reliance upon globals.

6.4 Evolution of the Extent of Use of Global Variables

Finally, in order to examine how widespread the use of global variables is through-
out the systems, we collected data pertaining to the number of functions which
make use of global data as displayed in Figs. 10, 11, and 12. The extent of usage
of global data in Vim and Emacs is considerably higher than in PostgreSQL. The
percentage of functions which reference global data is greater than 80% for both
of the editors, while the percentage in PostgreSQL is approximately 45%.

Fig. 10. The percentage of functions which reference global data. The percentages are
classified as either true, static and external globals as identified by gv-finder in Vim.
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Fig. 11. The percentage of functions which reference global data as identified by
gv-finder in Emacs

Fig. 12. The percentage of functions which reference global data as identified by
gv-finder in PostgreSQL

We should note that there are some threats to the validity of our work. As
noted earlier, we were unable to examine every single release of all three projects.
The application of gv-finder to all releases would result in a more precise view
of the evolution of global data usage across the entire lifetime of the projects.
However, we believe that the examined releases provide sufficient insight into
the projects in order to base our findings.

Additionally, the usage pattern of global data discovered by our work may
not be visible in other types of software. Specifically, our findings are the result
of the examination of open-source projects, two of which are text editors. There-
fore, it is not clear if our results would hold for a wider spectrum of software
(for example, closed-source projects). In order to draw any further conclusions
we plan on examining a larger number of projects, ranging from compilers to
multimedia players.
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7 Conclusion

In this study we performed a detailed analysis of the pervasiveness of global data
in three open-source projects. Our contributions are twofold. First, the catego-
rization of a project as either service-, utility- or exploration-oriented does not
appear to be indicative of the usage of global data over its lifetime. In conjunc-
tion with the fact that the number of global variables increase alongside the lines
of code could indicate that the use of global data is inherent in programming
large software systems and can not be entirely avoided. Second, and most inter-
esting is the finding that the usage of global data followed a wave pattern which
peaked at mid-releases for all of the systems examined. This might suggest that
the addition of new features in major-releases are the result of proper software
design principles while the corrective maintenance performed immediately after
a major-release may result in increasing the reliance upon global data. Later
phases of refactoring (preventative maintenance) appear to be able to slightly
reduce this reliance.
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Abstract. Code clones have long been recognized as bad smells in soft-
ware systems and are considered to cause maintenance problems during
evolution. It is broadly assumed that the more clones two files share,
the more often they have to be changed together. This relation between
clones and change couplings has been postulated but neither demon-
strated nor quantified yet. However, given such a relation it would sim-
plify the identification of restructuring candidates and reduce change
couplings. In this paper, we examine this relation and discuss if a cor-
relation between code clones and change couplings can be verified. For
that, we propose a framework to examine code clones and relate them
to change couplings taken from release history analysis. We validated
our framework with the open source project Mozilla and the results of
the validation show that although the relation is statistically unverifi-
able it derives a reasonable amount of cases where the relation exists.
Therefore, to discover clone candidates for restructuring we additionally
propose a set of metrics and a visualization technique. This allows one to
spot where a correlation between cloning and change coupling exists and,
as a result, which files should be restructured to ease further evolution.

1 Introduction

Code duplication is often cited as one of the major bad smells in software sys-
tems [1]. Systems containing a large proportion of duplicated code are considered
to be difficult to maintain. It is estimated that normal industrial source code con-
tains 5 – 20 % of duplicated fragments [2]. The financial impact of maintenance
is grave – the costs of changes carried out after delivery are estimated at 40 –
70 % of the total costs during a system’s lifetime [3].

As bad smells are indicators for maintainability problems, they lose their
significance if the system remains stable and is never changed after its initial
release. According to Lehman’s Laws of Software Evolution [4], software systems
which are actively used to solve problems in the real world are never completely
stable during their lifetime. Basically, a system has to evolve so that its users
remain satisfied. In this case the possible negative influence of code clones on
the maintainability comes into play. Code duplication increases the change effort
and reduces the understandability of the code drastically. Thus, code clones are
a major factor that have to be considered during the evolution of a system.

L. Baresi and R. Heckel (Eds.): FASE 2006, LNCS 3922, pp. 411–425, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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A sign of maintainability problems during the evolution of a system are change
couplings. Gall et al. defined change couplings as files which are committed at
the same time, by the same author, and with the same modification descrip-
tion [5]. If such couplings occur only sporadically, they do not present a major
problem. If, on the other hand, files are frequently changed together during the
evolution of the software system, a refactoring or even reengineering should be
considered.

Based on the assumption that whenever a duplicated code fragment is changed
its variants also have to change [6], there seems to be a strong relation between
code clones and change couplings. In this paper, we investigate whether this
relation holds. We present a framework to determine the relation of code clones
and change couplings and introduce a visualization technique aiding developers
to choose which code clones to refactor. We further present a validation of our
framework with the large open source project Mozilla. The results of the vali-
dation show that although the relation is statistically unverifiable it derives a
reasonable amount of results where the relation exists. Furthermore, it shows
that based on the relation data our visualization technique can be used to iden-
tify the candidates for a refactoring.

The remainder of the paper is organized as follows: Section 2 presents related
work that has been done in the area of code clone detection and the impact of
these duplications to the evolution of software systems. In Section 3 we describe
our framework that has been applied to the case study. Section 4 presents a
validation of our framework and discusses its results. We conclude the paper in
Section 5 and indicate areas for future research.

2 Related Work

A large number of code clone detection techniques have been developed. Four
different general approaches can be discerned: detection based on lexical analysis
[7, 8, 9], on source code metrics [2], on an abstract syntax tree representations
of the system [10], or on isomorphic program dependence graphs [11]. Burd and
Bailey give a comparison between the different approaches in [12]. Most of these
approaches offer graphical user interfaces using dot plots to visualize the code
clones. We worked with the Gemini environment for CCFinder [13] and with
Duploc [14]. We found that the dot plot visualization technique was most useful
for smaller fragments of source code but did not scale well for large systems such
as Mozilla.

Casazza et al. describe the application of code clone detection tools on a
large scale multi-platform software system in [15]. They explore the cloning
percentages across different platform–dependent modules of the Linux kernel.
The percentage of cloning that has been detected can be considered low. Com-
pared to their approach we focus on the effect of code clones on change cou-
plings.

Recent studies have shown why and how programmers introduce code clones
into software systems [16] and how software development could benefit from the
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inclusion of code clone detection tools into the development process [17]. The
evolution of code clones has been investigated by Kim et al. in [18]. They provide
a classification for evolving code clones but not for their impact on the change
coupling behavior of the whole system. The main result of their paper is that
code duplications cannot be considered inherently bad and do not need to be
refactored in every case.

Work on the classification of code clones has recently been done by Kapser and
Godfrey [19]. They propose a tool to interpret and classify the results gathered
by code clone detection tools. Their case study also shows improvements in the
elimination of false positive candidates returned by most clone detection tools.

The concept of the release history database (RHDB) was first described in
[20] and [21]. The database uses version and bug tracking data and contains
data obtained from the Mozilla open source project which uses CVS as version
control system and Bugzilla for the organization of bug reports. Further work
on logical and change couplings during the evolution of a software system was
presented in [5, 22].

We adopted the visualization technique using polymetric views developed by
Lanza and Ducasse [23] for the use with code clones and change couplings.

3 Framework

In this section we present our framework for analyzing the relation between code
clones and change couplings. The framework consists of six steps as shown in
Figure 1. The following subsections describe each step in detail.

Fig. 1. Overview of the framework

3.1 Clone Detection

A pre-selection of three code clone detection tools has been made yielding the
candidate tools Duploc [8], CloneDR [10], and CCFinder [9]. We selected the
clone detection tool according to several criteria which we considered impor-
tant for their applicability to the case study: language support for C and C++,
maximal input size in lines of code, user interface, output format, recall, and
precision. Most of these criteria are not directly measurable or even depend on
the subjective perception of the user.
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By means of these criteria we have chosen CCFinder as the clone detector
most appropriate for our needs. Its recall, user interface, and output format fit
best our needs to address our research goal. For an in-depth evaluation of the
three clone detection tools we refer to [24].

3.2 Identification of Suitable Clone Candidates

As the goal of this framework is to define the relation between duplicated code
and change couplings between files, the interesting clone pairs are those in which
the cloned code fragments appear in two or more files. Furthermore, clones whose
length varies or that appear or disappear during the examined period are con-
sidered more interesting than duplications that remain stable. This selection
criterion is based on the assumption that there is a significant relation between
code clones and change couplings.

Absolute numbers are inadequate when comparing different files because their
lengths vary. The same applies to the length of cloned code fragments. Therefore
our model of code clone classification relies on the clone coverage in every single
file. This ratio is for file A compared to B defined as

CloneCoverage(A, B) =
ClonedLines(A, B)

NCLOC(A)

where ClonedLines(A, B) is the number of lines in file A that are clones of lines
in file B. NCLOC(A) is the number of lines of source code in file A not counting
comments and blank lines. A cloned line is only counted once even if it is part
of more than one clone pair or is covered multiple times by overlapping clones.
When more than two files are compared, every pair of files out of this set has to
be compared separately.

Two files A and B can share more than one semantically distinct clone pair.
The types can be used to classify every instance of a clone pair. And in this
paper, CloneCoverage(X, Y ) is always calculated for all code clones shared by
X and Y .

To apply clone coverage to a set of evolving files, it is necessary to observe the
clone coverage values over several versions of the files. These comparisons allow
us the classification of each file pair sharing code clones into one of the following
five types depending on the development of its clone coverage.

– Type 0 (stable): The relative length of cloned fragments in question re-
mains the same between versions i and i + 1:

CloneCoverage(A, B)i = CloneCoverage(A, B)i+1 �= 0

– Type 1 (new): A clone is newly introduced in version i + 1:

CloneCoverage(A, B)i = 0 ∧ CloneCoverage(A, B)i+1 > 0

– Type 2 (removed): A clone is removed between the versions i and i + 1:

CloneCoverage(A, B)i > 0 ∧ CloneCoverage(A, B)i+1 = 0
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– Type 3 (increased): Clone with increasing significance, i.e., the clone cov-
erage in version i + 1 is larger than in version i:

CloneCoverage(A, B)i < CloneCoverage(A, B)i+1

and CloneCoverage(A, B)i > 0 ∧ CloneCoverage(A, B)i+1 > 0

– Type 4 (decreased): Clone with decreasing significance, i.e., the clone
coverage in version i + 1 is smaller than in version i:

CloneCoverage(A, B)i > CloneCoverage(A, B)i+1

and CloneCoverage(A, B)i > 0 ∧ CloneCoverage(A, B)i+1 > 0

Types 1 to 4 indicate changes in code clones during evolution. Among them,
those best suited for further investigation are clones of Type 1 and 2. We ex-
pect that the change couplings between files containing cloned fragments of
each other show a relation between the changing code clones and their later
couplings. If this assumption holds, for example two files into which a Type 1
clone is introduced after version i are expected to exhibit more change couplings
in subsequent versions. Type 0 clones are also of interest because according
to the hypothesis, change couplings caused by code clones are expected to be
stable.

3.3 Extraction of Change Coupling Information

For this step of the framework we relied on our previous work on the release
history database (RHDB) described in [20]. The RHDB contains data obtained,
for example, from the Mozilla open source project. In particular, it stores data
about the modification reports obtained from versioning control systems (CVS)
repository of Mozilla and problem report data obtained from Mozilla’s Bugzilla
database.1 In our framework we can exploit the RHDB to retrieve the change
coupling data for the files that share code clones.

The number of change couplings between a pair of files (or similar entities of
source code) during a given interval is the same for each file of a change cou-
pled pair. The number of check–ins during the same time interval can, however,
vary giving us a distinct ratio for each file. The coupling coverage metric we
subsequently use is defined as

CouplingCoverage(A, B, I) =
ChangeCouplings(A, B, I)

Checkins(A, I)

where ChangeCouplings(A, B, I) is the number of times files A and file B are
checked in together during time interval I and Checkins(A, I) is the total num-
ber of times file A is checked in during I.

1 http://bugzilla.mozilla.org
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3.4 Relation of Code Clones with Change Couplings

A potential relation between code clones and change couplings is based on the
assumption that pairs of source files sharing code clones are changed together [6].
This assumption has been taken for granted but not yet been proven.

For the investigation of this assumption we use the code clone and change
coupling coverage values of each file pair and relate them. Results are represented
in a dot plot where each dot refers to a file pair sharing code clones. The position
of a dot is computed by drawing the code clone coverage value on the X-axis
and the change coupling coverage value on the Y-axis.

Based on the assumption stated before we expect a concentration of dots along
the diagonal meaning that low clone coverage leads to few change couplings and
high clone coverage leads to frequent change couplings. An example of such a
dot plot is depicted by Figure 3 in Section 4. And, as will be shown in the case
study, the expectation is not always fulfilled.

To enable an interpretation of resulting dot plots we use regression analysis
to quantify the relation between code clones and change couplings. In this paper
we consider linear and logarithmic regression analysis. Two premises must be
fulfilled for the regression to be significant. One is that a representative sample
of files containing code clones is available for the calculation. The second is that
this sample can be described with sufficient precision by a regression function,
meaning that the correlation coefficient is close to 1.

3.5 Definition of a Metric to Describe the Impact of Code Clones

The relation presented before is based on the relative values of code clone and
change coupling coverage. In addition the absolute length of a clone as well as
the total number of change couplings influence our impact metric. That means,
a longer fragment of duplicated code tends to have a larger influence than a
shorter sequence. Furthermore, a file that is changed more often has a bigger
potential of presenting a problem than a file that is never touched during the
evolution of a system.

Based on these assumptions we select the following input parameters for the
calculation of our impact metric:

– Clone coverage,
– Coupling coverage,
– Length of cloned fragments, and
– Absolute number of coupled check–ins.

Because of the difficulty to express the four parameters in one view a light–
weight approach is used applying Lanza’s polymetric views [23]. The key idea of
polymetric views is to map metric values to graphical attributes, such as shape,
size, and color of glyphs to activate the visual recognition capabilities of humans.

In our visualization, the four metrics listed above can be displayed in a Carte-
sian coordinate system enriched with additional use of color and the diameter
of circles in the chart. The mapping of metric values to graphical attributes is
depicted Figure 2.
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Fig. 2. Description of the metrics used in the visualization

The size of a circle is defined in proportion to the length of the clones. The
maximum diameter is fixed and corresponds to the length of the longest clone.
All other diameters are calculated proportionally to the length of the rest of the
clones:

Diameter(A) = MaxDiameter · ClonedLines(A, B)
max(ClonedLines(X, Y ))

where MaxDiameter is a constant describing the maximal diameter of a circle
and max(ClonedLines(X, Y )) is the maximum length of cloned fragments to be
visualized.

The fill color of a circle is defined in a way that the highest number of couplings
is displayed as red. The intermediate colors are determined by variations of the
RGB value proportional to the relative number of couplings so that a gradual
transition to blue is achieved, which corresponds to zero couplings. The R and
B–values are calculated by

R =
ChangeCouplings(C, D, I)

max(ChangeCouplings(X, Y, I))
· 255, and B = 255−R

where R is the RGB–value for red and B the RGB–value for blue of the color
of the circle in the chart. C and D are the specific files under consideration.
max(ChangeCouplings(X, Y, I)) represents the maximal number of change cou-
plings between any two files X and Y during interval I.

Unlike a numerical approach, this visualization is not dependent on a signifi-
cant regression. The user is able to see possible problems and to react by closer
inspection of the affected files.

4 Framework Validation

For the validation of our framework we applied the tools and methods to the
open source project Mozilla2. The following sections report on our experiences
and present the results of the experiments and the insights gained.
2 http://www.mozilla.org/
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4.1 Clone Detection

For the detection of code clones we selected the CCFinder tool. In our framework
these output files form the basic input to calculate the correlations between code
clones and change couplings.

The input data for our clone detection comprised the seven source code re-
leases of Mozilla: 0.92, 0.97, 1.0, 1.3a, 1.4, 1.6, and 1.7. The release period be-
tween these releases is about 6 months. For each release we selected the “.c”
and “.cpp” files that contain most parts of the implementation. We also skipped
the header (“.h”) files because these files mostly contain only declarations and
no implementation of functionality. The following description of the case study
is based on the input data of Release 1.7 comprising 5,882 files with 2,980,000
lines of code (LOC).

For the configuration of the CCFinder tool we performed a number of test
runs and came up with two possible configurations for the minimal length of
code clones which are 30 and 70 tokens. 70 tokens were used when processing
large amounts of data, such as all files of one release, to allow us to visualize the
code clones. Otherwise, for our analysis of the relation between code clones and
change coupling we used 30 tokens. Using 30 tokens results in code clones with
a minimal length of 2.9–3.9 lines of C or C++ source code. Figure 3 shows the
dot plot of detected code clones in source files of Mozilla Release 1.7 generated
with the Gemini tool [13].

Fig. 3. Dot plot of code clones in Mozilla Release 1.7 (70 tokens)



Relation of Code Clones and Change Couplings 419

In total the CCFinder tool detected 661,861 code clones in the source files
of Release 1.7. In the dot plot files are arranged on a directory-basis allowing
us to identify inter- and intra-module clones. Code clones within modules are
indicated by the clusters positioned around the diagonal line. For instance, the
cluster in the lower right corner shows the code clones within the “GFX and
Widget–Mac” module. The other clusters in the dot plot indicate inter-module
code clones.

4.2 Identification of Suitable Clone Candidates

Not all code clone candidates that are detected by CCFinder can be used for
the purpose of this case study. One problem are false positives or clones only
consisting of sequences of #include–statements, declarations of variables, or
switch–statements. For the relation between code clones and change couplings
Types 1 to 4 are of interest because they changed during the evolution.

We selected a representative sample of 31 files to examine the types of clone
containing file pairs occurring in the case study. These files form 21 file pairs
of which almost none are of a single type of file pair within the examined in-
terval. Type 0 file pairs occur in 13, Type 1 and 2 in 2, Type 3 in 11, and
Type 4 in 12 pairs. Noteworthy, example pairs for Type 0 and 4 file pairs are
{nsMathMLmoverFrame.cpp, nsMathMLmunderoverFrame.cpp}, and {os2/ns-
FilePicker.cpp, windows/nsFilePicker.cpp} respectively.

Since in this case study most of the clone pairs occur in various types of file
pairs, we did not consider the selection of special clone candidates. Therefore,
we input all detected clones to the relation analysis.

4.3 Extraction of Change Coupling Information

For the extraction of the change coupling information we considered all files of
Mozilla Release 1.7 that share at least one code clone. With this set of files we
accessed our release history database (RHDB) and retrieved the change coupling
information.

There is one major difference between the examination of code clones and that
of change couplings that we have to consider: code clones involve the exploration
of files at a given point in time – the date of each release of Mozilla – while the
latter must be investigated over a certain time interval (i.e., between two or
more Mozilla releases).

Summarized we retrieved 139,523 change coupling records from the RHDB
for all seven Mozilla releases (up to Mozilla 1.7).

4.4 Relation of Clone Data and Change Couplings

For relating the detected code clones with extracted change couplings we com-
puted per file pair the code clone coverage and the change coupling coverage
(see Section 3). The two coverage values then were plotted against each other
yielding to the dot plot shown in Figure 4.
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Fig. 4. Relation between code clones and change couplings in Mozilla 1.7

The concentration of values where the clone coverage ratio is below 0.2 in-
dicates that the relation between clone and coupling coverage is pretty much
random and difficult to interpret.

To prove the relation between code clones and change couplings we applied
two types of (straightforward) regression analysis: linear and logarithmic re-
gression analysis; using other functions are subject of future work. Because of
the huge amount of data we started the regression analysis with three random
samples of 65,536 file pairs sharing code clones. In each case, the R2 value was
better for linear than for logarithmic regression over the same sample. A linear
regression resulted in the best fitting function with the highest coefficient of
determination of 0.702:

CouplingCoverage(A, B, I) = 1.038 · CloneCoverage(A, B) + 0.097

The resulting equation explains 70.2 % of the scattering visible in the chart. The
other attempts at regression analysis yielded lower R2 values.

Similar regression analyses were computed for the 30,433 instances of data
where the clone coverage exceeded the threshold of 0.2. A linear regression with
a low R2 value of 0.2088 resulted in the equation

CouplingCoverage(A, B, I) = 0.512 · CloneCoverage(A, B) + 0.4781

which is not a close fit compared to the results obtained by a sample of all input
values.

The findings of our analysis indicate a certain relation between cloned frag-
ments of source code and change couplings during evolution of the software. This
connection was expected from previous work starting with [1]. Usually the larger
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the clone coverage between two files is, the more often these files are coupled.
However, based on our regression analyses it is neither possible to conclude that
code duplications are reflected in high change coupling coverage values nor is the
opposite true. From the results of this case study it is impossible to definitely
exclude the possibility that there is in fact no statistically relevant correlation
between code duplications and change couplings.

Change couplings can have causes other than code clones. Files fulfilling sim-
ilar roles in the system often are changed together even though they might not
contain many duplicated code fragments. Despite these exceptions, the general
tendency for files with a high clone coverage value is to be coupled more often
than files with a lower percentage of duplications.

An examination of clone and coupling coverage can be used to identify groups of
files that would benefit from a determined refactoring effort. In Mozilla, we iden-
tified several such candidates. An example is the file nsMathMLmsubFrame.cpp of
the MathML module which is coupled with files nsMathMLmsubsupFrame.cppand
nsMathMLmsupFrame.cpp in the same folder every single time it is changed be-
tween Releases 0.92 and 1.7.

Using our relation analysis it is not possible to distinguish harmless from
dangerous code duplications simply by looking at the results of a code clone
detection run on only one release of a software system. It is, however, safe to say
that the larger the clone coverage is, the higher is the probability of it becoming
“dangerous” during evolution. To express this degree of “danger” we applied our
visualization technique presented in Section 3.

4.5 Visualizing the Impact of Code Clones

Because of the difficulties of establishing a sound mathematical correlation be-
tween code duplications and change couplings we applied the polymetric views
visualization technique described in Section 3. This provided us with more in-
sights into the relation and in particular pointed out file pairs with a strong
relation being the candidates for a refactoring.

Figure 5 and Figure 6 depict the polymetric views created for the two modules
MathML and JPEG of Mozilla Releases 0.9.2 and 1.7.

The MathML module consists of 26 C++ files between which 470 distinct
pairs of files share duplicated code. Figure 5 depicts the situation for MathML.
Both, the left and the right chart point out the 5 files E, F , G, H , and I in
the upper right corner. They are frequently coupled with other files and share
large fragments of duplicated code as indicated by the size of the circles. Files
containing relatively few clones and with low code clone and change coupling
coverage are drawn on the left side of the chart. By comparing the charts of
both releases we distinguish the different types of (clone containing) file pairs
(see Section 3.2).

For instance, the total length of clones as well as the clone coverage in L
significantly decreased from Release 0.9.2 to 1.7 indicating a reengineering effort.
According to our classification this is a good example for a Type 4 file pair.
Further Type 4 file pairs are B, E, J , and K. In contrast, F represents a good



422 R. Geiger et al.

Fig. 5. Visualization of Mozilla module MathML of Releases 0.9.2 (a) and 1.7 (b)

Fig. 6. Visualization of Mozilla module JPEG of Releases 0.9.2 (a) and 1.7 (b)

example of a Type 3 file pair as indicated by an increasing clone coverage value.
A similar trend can be seen for the file pairs represented by A, C, D, G, H ,
and I.

The situation for Mozilla’s JPEG module is different as depicted by Figure 6.
The 52 C files of this module form 230 distinct file pairs sharing code clones. In
both charts most of the circles are equally red (dark) because every file of the
module was coupled exactly once during the observed time periods. In this case,
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the selection of candidates for a refactoring relies on the length of code clones
and the clone coverage alone. The glyphs in both graphs show a large number of
Type 0 file pairs, for example B and C. Furthermore, there are few other types
of file pairs, such as A, showing a relatively stable module JPEG.

Summarized, based on the metric values of file pairs sharing clones our poly-
metric views allowed us to spot the degree of “danger” of code clones. The most
“dangerous” code clones were highlighted pointing us to the candidates in which
code clones resulted in high change couplings, e.g., H and G in Figure 5. They
are first-class candidates to refactor.

5 Conclusions and Future Work

It is broadly assumed that the more clones two files share, the more often they
have to be changed together. We address this problem of qualifying change cou-
plings via code clone analysis.

In this paper, we discussed the relation of code clones and change couplings
taken from release history data to examine whether a correlation exists between
the two. For that, we proposed a framework to examine code clones and relate
them to change couplings. The individual steps include clone detection and clas-
sification of clones into clone types, extraction of change couplings for the files in
which the clones exist, calculating the relation between clones and change cou-
plings, and computing and visualizing a relation metric to identify restructuring
candidates.

We validated our framework with the open source project Mozilla and the
results of the validation show that although the relation is statistically indeter-
minable it derives a reasonable number of cases where such a relation exists.

Our framework is not limited to the Mozilla case study; it is essentially in-
dependent of the type of system or of the programming language in which the
system is written. The metrics defined are relatively simple yet effective to com-
pute and require access to the system’s source code and to a release history
database containing release, modification, and bug report data.

We use polymetric views as a visualization technique to detect problematic
code clones. This allows one to spot where a correlation between cloning and
change coupling exists and, as a result, which files should be restructured to ease
further evolution. If such a framework is integrated into a software engineering
environment, it could potentially offer a useful guidance in the decision which
clones are to be refactored. This is subject of our current work.

A result of this paper is that at least in the Mozilla case study, the correlation
between code clones and change couplings is too complex to be expressed easily.
For a significant distinction between clones that are irrelevant to the evolution
of a system and clones that are harmful, more information is needed than what
can be obtained automatically. Despite sophisticated tools that are available,
the judgement of the software engineer is still needed.

As future work we plan to further improve the examination and visualization
of the relation between code duplications and change couplings to distill all those
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parts of a system in which clones are the cause for change couplings. We will
further integrate this kind of analysis with our other evolution analysis tools to
enable a more comprehensive picture by combining change dependencies, bugs,
and code clones.
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Ölveczky, Peter Csaba 357

Pauls, Karl 33
Pinzger, Martin 411

Raffelt, Harald 107, 377
Ramanathan, Murali Krishna 381
Ramos, Isidro 262
Robby 184
Roe, Paul 3
Ruffell, Fraser P. 396

Sacha, Krzysztof 170
Sahraoui, Houari 247
Selby, Jason W.A. 396
Sen, Koushik 339
Shirogane, Junko 79
Soundarajan, Neelam 214
Sridhar, Nigamanth 139
Steffen, Bernhard 377

Taentzer, Gabriele 48
Toben, Tobe 230
Toffetti Carughi, Giovanni 48
Towell, Dwayne 93
Tyler, Benjamin 214

Westphal, Bernd 230
Wotawa, Franz 278


	Frontmatter
	Invited Contributions
	A Programming Model for Service Oriented Applications
	Software Engineering: Emerging Goals and Lasting Problems

	Distributed Systems
	GPSL: A Programming Language for Service Implementation
	A Formal Approach to Event-Based Architectures
	Engineering Self-protection for Autonomous Systems

	Orthogonal Process Activities
	A Graph-Based Approach to Transform XML Documents
	{\sf OMake}: Designing a Scalable Build Process
	Automatic Generation of Tutorial Systems from Development Specification
	A Software Implementation Progress Model

	Behavioral Models and State Machines
	Regular Inference for State Machines with Parameters
	Automated Support for Building Behavioral Models of Event-Driven Systems
	A Behavioral Model for Software Containers

	Empirical Studies
	An Empirical Study of the Impact of Asynchronous Discussions on Remote Synchronous Requirements Meetings
	Evaluation of Expected Software Quality: A~Customer's Viewpoint
	Using Design Metrics for Predicting System Flexibility

	Requirements and Design
	Combining Problem Frames and UML in the Description of Software Requirements
	Amplifying the Benefits of Design Patterns: From Specification Through Implementation
	The Good, the Bad and the Ugly: Well-Formedness of Live Sequence Charts
	Concerned About Separation

	Model-Based Development
	Algebraic Specification of a Model Transformation Engine
	Fundamentals of Debugging Using a Resolution Calculus
	A Technique to Represent and Generate Components in MDA/PIM for Automation

	Validation and Verification
	Argus: Online Statistical Bug Detection
	From Faults Via Test Purposes to Test Cases: On the Fault-Based Testing of Concurrent Systems
	Automated Systematic Testing of Open Distributed Programs
	Formal Simulation and Analysis of the CASH Scheduling Algorithm in Real-Time Maude

	Tool Demonstrations
	{\sf JAG}: {\sf J}ML {\sf A}nnotation {\sf G}eneration for Verifying Temporal Properties
	LearnLib: A Library for Automata Learning and Experimentation

	Software Evolution
	Trace-Based Memory Aliasing Across Program Versions
	The Pervasiveness of Global Data in Evolving Software Systems
	Relation of Code Clones and Change Couplings

	Backmatter


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




