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Abstract. Agents need to be able to change their beliefs; in particular, they
should be able to contract or remove a certain belief in order to restore con-
sistency to their set of beliefs, and revise their beliefs by incorporating a new
belief which may be inconsistent with their previous beliefs. An influential the-
ory of belief change proposed by Alchourron, Gärdenfors and Makinson (AGM)
[1] describes postulates which rational belief revision and contraction operations
should satisfy. The AGM postulates are usually taken as characterising idealised
rational reasoners, and the corresponding belief change operations are considered
unsuitable for implementable agents due to their high computational cost [2]. The
main result of this paper is to show that an efficient (linear time) belief contrac-
tion operation nevertheless satisfies all but one of the AGM postulates for con-
traction. This contraction operation is defined for an implementable rule-based
agent which can be seen as a reasoner in a very weak logic; although the agent’s
beliefs are deductively closed with respect to this logic, checking consistency and
tracing dependencies between beliefs is not computationally expensive. Finally,
we give a non-standard definition of belief revision in terms of contraction for
our agent.

1 Introduction

Two main approaches to belief revision have been proposed in the literature: AGM
(Alchourron, Gärdenfors and Makinson) style belief revision as characterised by the
AGM postulates [1] and reason-maintenance style belief revision [3]. AGM style belief
revision is based on the ideas of coherence and informational economy. It requires that
the changes to the agent’s belief state caused by a revision be as small as possible. In
particular, if the agent has to give up a belief in A, it does not have to give up believing
in things for which A was the sole justification, so long as they are consistent with the
remaining beliefs. Classical AGM style belief revision describes an idealised reasoner,
with a potentially infinite set of beliefs closed under logical consequence.

Reason-maintenance style belief revision, on the other hand, is concerned with track-
ing dependencies between beliefs. Each belief has a set of justifications, and the reasons
for holding a belief can be traced back through these justifications to a set of founda-
tional beliefs. When a belief must be given up, sufficient foundational beliefs have to
be withdrawn to render the belief underivable. Moreover, if all the justifications for a
belief are withdrawn, then that belief itself should no longer be held. Most implemen-
tations of reason-maintenance style belief revision are incomplete in the logical sense,
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but tractable. A more detailed comparison of the two approaches can be found in, for
example, [2].

In this paper, we present an approach to belief revision and contraction for resource-
bounded agents which is a synthesis of AGM and reason-maintenance style belief revi-
sion. We consider a simple agent consisting of a finite state and a finite agent program
which executes in at most polynomial time. The agent’s state contains literals represent-
ing the beliefs of the agent, and the agent’s program consists of rules which are used to
derive new beliefs from its existing beliefs. When the agent discovers an inconsistency
in its beliefs, it removes sufficient beliefs (literals) to restore consistency. Our algo-
rithm for belief contraction is similar to algorithms used for propagating dependencies
in reason-maintenance systems (e.g. [4]), but we show that our approach satisfies all but
one of the basic AGM postulates for contraction (the recovery postulate is not satisfied).
The belief revision and contraction operations which we define compare in space and
time complexity to the usual overhead of computing the conflict set and firing rules in
a rule-based agent. The basic contraction algorithm runs in time O(kr + n), where n
is the number of literals in the working memory, r is the number of rules and k is the
maximal number of premises in a rule. We show how our algorithm can be adapted to
remove the agent’s least entrenched beliefs when restoring consistency. Recomputing
entrenchment order of beliefs also has sub-quadratic complexity. Finally, we investi-
gate defining belief revision in terms of our contraction operator, and show that using
the Levi identity does not lead to the best result. We propose an alternative definition,
and show that the resulting operation satisfies all but one of the basic AGM postulates
for revision.

The paper is organised as follows. In Section 2, we introduce the AGM belief revi-
sion. In Section 3, we describe the rule-based resource-bounded reasoners. In Section 4,
contraction algorithm for those reasoners is defined, and shown to run in linear time.
The main result of the paper is in Section 5, where we define the logic under which the
beliefs of our reasoners are closed, and show that the basic postulates for contraction,
apart from recovery, hold for the contraction operations we defined. In Section 6, we
show how to extend the algorithm to contract by a least preferred set of beliefs, using a
preference order on the set of beliefs. In Section 7 we present a definition of revision in
terms of our contraction operation, and in Section 8 we discuss related work.

2 AGM Belief Revision

The theory of belief revision as developed by Alchourron, Gärdenfors and Makinson
in [5, 1, 6] models belief change of an idealised rational reasoner. The reasoner’s be-
liefs are represented by a potentially infinite set of formulas K closed under logical
consequence, i.e., K = Cn(K), where Cn denotes closure under logical consequence.
When new information becomes available, the reasoner must modify its belief set K
to incorporate it. The AGM theory defines three operators on belief sets: expansion,
contraction and revision. Expansion, denoted K + A, simply adds a new belief A to
K and closes the resulting set under logical consequence: K + A = Cn(K ∪ {A}).
Contraction, denoted by K

.− A, removes a belief A from the belief set and modifies
K so that it no longer entails A. Revision, denoted K

.
+ A, is the same as expansion if
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A is consistent with the current belief set, otherwise it minimally modifies K to make
it consistent with A, before adding A.

Contraction and revision cannot be defined uniquely, since in general there is no
unique maximal set K ′ ⊂ K which does not imply A. Instead, the set of ‘rational’
contraction and revision operators is characterised by the AGM postulates [1].

The basic AGM postulates for contraction are:

(K .−1) K
.− A = Cn(K .− A) (closure)

(K .−2) K
.− A ⊆ K (inclusion)

(K .−3) If A /∈ K , then K
.− A = K (vacuity)

(K .−4) If not � A, then A /∈ K
.− A (success)

(K .−5) If A ∈ K , then K ⊆ (K .− A) + A (recovery)
(K .−6) If Cn(A) = Cn(B), then K

.− A = K
.− B (equivalence)

The basic postulates for revision are:

(K
.
+1) K

.
+ A = Cn(K

.
+ A)

(K
.
+2) A ∈ K

.
+ A

(K
.
+3) K

.
+ A ⊆ K + A

(K
.
+4) If {A} ∪ K is consistent, then K + A = K

.
+ A1

(K
.
+5) K

.
+ A is inconsistent if, and only if, A is inconsistent.

(K
.
+6) If Cn(A) = Cn(B), then K

.
+ A = K

.
+ B

The AGM theory elegantly characterises rational belief revision for an ideal reasoner.
However it has been argued that the definition of the expansion, contraction and revision
operators on belief sets and the resulting assumption of logical omniscience, means
that it cannot be applied to resource-bounded reasoners. For example, Doyle [2] states:
‘. . . to obtain a practical approach to belief revision, we must give up both logical closure
and the consistency and dependency requirements of the AGM approach’ (p.42).

In the next section, we present a reasoner which has bounded memory and imple-
ments a polynomial (sub-quadratic) algorithm for belief contraction. In subsequent sec-
tions we show that it nevertheless satisfies the AGM postulates for rational belief con-
traction apart from (K .− 5). We achieve this by weakening the language and the logic of
the reasoner so that it corresponds to that of a typical rule-based agent. We assume that
the agent has only atomic and negative atomic beliefs which are subject to revision (in
agent programming languages such as AgentSpeak [7], beliefs are normally assumed to
be literals) and, in addition, a set of beliefs in the form of implications (similar to rules
of a rule-based agent or AgentSpeak plans) which constitute the agent’s program and
are not subject to revision. The only inference rule the agent can apply is modus ponens.
The set of all consequences which are derivable from the agent’s rules and literal beliefs
using modus ponens is exactly the set of new facts which a rule-based agent will assert
after firing its rules to quiescence.

1 We replaced ‘¬A �∈ K’ with ‘{A} ∪ K is consistent’ here, since the two formulations are
classically equivalent.
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3 Resource-Bounded Agents

We consider a simple resource-bounded agent consisting of a finite state and a finite
agent program. The agent’s state or working memory (WM ) contains literals (propo-
sitional variables or their negations) representing the beliefs of the agent. The agent’s
program consists of a set of propositional rules of the form:

A1, . . . , An → B

where A1, . . . , An, B are literals. The agent repeatedly executes a sense–think–act cycle.
At each cycle, the agent adds any observations (including communications from other
agents) to its existing beliefs in WM and then fires its rules on the contents of WM .

We distinguish two models of rule application by the agent. In the simplest case,
which we call the quiescent setting for belief revision, the agent fires all rules that match
until no new rule instances can be generated. In the quiescent setting, WM is closed
under the agent’s rules: all literals which can be obtained by the repeated application of
rules to literals in the WM , are in WM . Note that firing the agent’s rules to quiescence
takes at most polynomial time. An example of a rule-based system which fires rules
to quiescence is SOAR [8]. Another model of rule application, which is perhaps more
interesting, is the non-quiescent case, which we call the non-quiescent setting for belief
revision. In the non-quiescent setting, the agent fires a subset of the rules that match at
any given ‘think’ cycle, and we look at revising the agent’s beliefs after the application
of one or more rules but before all the rule instances have been fired. This setting is
natural when considering many rule-based systems, such as CLIPS [9], which fire one
rule instance at a time.

Periodically, e.g., at the end of each cycle, or after each rule firing, the agent checks
to see if its beliefs are consistent. If A is a literal, we denote by A− the literal of the
opposite sign, that is, if A is an atom p, then A− is ¬p, and if A is a negated atom ¬p,
then A− is p. We say that WM is inconsistent iff for some literal A, both A and A− are
in WM . For each pair {A, A−} ⊆ WM , the agent restores consistency by contracting
by one element of each pair. Note that we only consider contraction by literals—rules
are part of the agent’s program and are not revised.

4 Contraction

We define resource-bounded contraction by a literal A as the removal of A and sufficient
literals from WM so that A is no longer derivable using the rules which constitute the
agent’s program. In this section, we present a simple algorithm for resource-bounded
contraction and show that it runs in time linear in kr + n, where r is the number of
rules in the agent’s program, k is the maximal number of premises in a rule, and n is
the number of literals in the working memory.

We assume that WM consists of a list of cells. Each cell holds a literal and its
associated dependency information in form of two lists, a dependencies list and a jus-
tifications list.2 Both lists contain pointers to justifications, which correspond to fired

2 In the interests of brevity, we will refer to the cell containing the literal A as simply A when
there is no possibility of confusion.
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rule instances; each justification records the derived literal, the premises of the rule, and
(for efficiency’s sake) back-pointers to the dependencies and justifications lists which
reference it. We will denote a justification as (A, [B C]) or (A, s) where A is the de-
rived literal and [B C] or s is the list of premises of the rule (or support list). Each
support list s has a distinguished position w(s) which contains the ‘weakest’ member
of s. Later we will show how to give a concrete interpretation to the notion of ‘weak-
ness’ in terms of preferences; for now, we assume that w(s) is the first position in s, or
is chosen randomly.

The dependencies list of A contains the justifications for A. For example, the depen-
dencies list [(A, [B C]) (A, [D])] means that A can be derived from B and C (together)
and from D (on its own). In the quiescent setting, the dependencies list of A corre-
sponds to all rules which have A in the consequent and where premises are actually in
working memory. In the non-quiescent setting, the dependencies list corresponds only
to the rules which have been fired so far. If A is an observation, or was present in WM
when the agent started, its dependencies list contains a justification, (A, [ ]), with an
empty support. The justifications list of A contains all the justifications where A is a
member of a support. For example, if the dependencies list of C contains a justification
(C, [A B]), then A’s justifications list contains the justification (C, [A B]). We need
both lists to guarantee constant time access from a given belief both to the beliefs it
follows from, and to beliefs which it was used to derive.

The dependencies and justifications lists are updated whenever a rule is fired. For
example, when firing the rule E, F → B, we check to see if B is in working memory,
and, if not, add a new cell to WM containing the literal B. We also add the justification
(B, [E F ]) to the dependencies list for B and to the justifications lists of E and F .

Algorithm 1. Contraction by A

for all j = (C, s) in A’s justifications list do
remove j from C’s dependencies list
remove j from the justifications list of each literal in s

end for
for all j = (A, s) in A’s dependencies list do

if s == [] then
remove j

else
contract by the literal w(s)

end if
end for
Finally, delete the cell containing A

The algorithm for contraction (see Algorithm 1) is very simple, and consists of two
main loops. The first loop removes all references to the justifications in A’s justifications
list. We assume that removing a reference to a justification is a constant time operation,
due to the use of back-pointers. If a justification corresponds to a rule with k premises,
there are k +1 pointers to it: one from the dependencies list of the derived literal, and k
from the justifications lists of the premises. The second loop traverses A’s dependencies
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list, and for each justification there, either removes it (if it has an empty support), or
recurses to contract by the weakest member of the justification’s support list, w(s).
The total number of steps the algorithm performs in the two loops is proportional to the
total length of all dependencies and justifications lists involved. The maximal number of
justifications with non-empty supports is r, where r is the number of rules. The number
of references to each justification with a non-empty support is k + 1, where k is the
maximal number of premises in a rule. So the maximal number of steps is r × (k + 1)
for justifications with non-empty supports (assuming that each support can be updated
in constant time), plus at most n for the justifications with empty supports, where n is
the number of literals in WM . The last step in the contraction algorithm (removing a
cell) is executed at most n times, and we assume that access to a cell given its contents
takes constant time. The total running time is therefore O(kr + n).

4.1 Reason-Maintenance Type Contraction

The algorithm above can be modified to perform reason-maintenance type contraction.
Reason-maintenance contraction by A involves removing not just those justifications
whose supports contain A, but also all beliefs which have no justifications whose sup-
ports do not contain A. In this case, in addition to removing the justifications in A’s
justifications list from other literals’ dependencies lists, we check if this leaves the de-
pendencies list of the justified literal empty. If so, we remove the justified literal and
recurse forwards, following links in its justifications list. This adds another traversal of
the dependencies graph, but the overall complexity remains O(kr + n).

5 The Agent’s Logic and AGM Postulates

In this section, we present a weak logic, W , and show that our rule-based agent can be
seen as a fully omniscient reasoner in W : that is, its belief set is closed with respect to
derivability in W .

Consider a propositional language LW where well-formed formulas are either (1)
literals, or (2) formulas of the form A1 ∧ . . . ∧ An → B, where A1, . . . , An, B are lit-
erals. Note that there is a clear correspondence between an agent’s rules and the second
kind of formula. We will refer to the implication corresponding to a rule R as R, where
this cannot cause confusion.

A logic W in the language LW contains a single inference rule, generalised modus
ponens:

A1, . . . , An, A1 ∧ . . . ∧ An → B
B

The notion of derivability in the logic is standard, and is denoted by �W . The corre-
sponding consequence operator is denoted by CW .

W is obviously much weaker than classical logic. In particular, the principle of ex-
cluded middle does not hold, so A → B and A− → B do not imply B. For any finite
set Γ of implications and literals, CW (Γ ) is finite. It contains exactly the same impli-
cations and literals as Γ , plus possibly some additional literals derived by generalised
modus ponens. All such additional literals occur as consequents (right-hand sides) of
the implications in Γ .
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Let WM be the set of literals in working memory, and R the set of the agent’s rules.

Proposition 1. For any literal A, WM ∪ R �W A iff A ∈ WM after running R to
quiescence.

The proposition above means that the set comprising the agent’s beliefs is closed under
consequence if the agent runs all its rules to quiescence: WM ∪ R = CW (WM ∪ R)
after running R to quiescence.

Somewhat surprisingly, an agent which does not run its rules to quiescence can also
be seen as a totally rational and omniscient reasoner in W — provided we only include
the rules which actually have been fired in its beliefs.

Assume that a subset R′ of the agent’s rules R are fired.

Proposition 2. Let R′ ⊆ R; then for any literal A, WM ∪ R′ �W A iff A ∈ WM
after firing the rules R′.

In other words, in the non-quiescent setting, WM ∪ R′ = CW (WM ∪ R′) where R′

is the set of rules fired.
By the belief state K of the agent we will mean the set of literals in its working

memory and the set of rules which have been fired.

K
df
= CW (WM ∪ R′) (1)

By K
.− A we will denote the result of applying our contraction by A algorithm to K .

Now we can show that AGM belief postulates are satisfied for our agent.

Proposition 3. .− satisfies (K
.−1)–(K

.−4) and (K
.−6).

Proof. Given that K is closed under consequence, and contraction removes literals and
recursively destroys rule instances used to derive them, no new rule instances can be
generated as a consequence of contraction. So K

.− A is still closed under consequence
and K .−1 holds. K .−2 holds because .− deletes literals from the working memory without
adding any, K .−3 is satisfied for the same reason. K .−4 states that after a contraction by
A, A is no longer in the working memory. Since the contraction algorithm removes A
as its last step, A is indeed not in the working memory after the algorithm is executed.
K .−6 is trivially valid, since for any literal A, CW (A) = {A}. �
Proposition 4. .− does not satisfy K .−5.

Proof. Suppose we have a single rule R = A → B and WM = {A, B}. After contrac-
tion by B, WM is empty. When we expand by B, WM contains only B. �
The recovery postulate is the most controversial of the AGM postulates [10], and many
contraction operations defined in the literature do not satisfy it. We can satisfy K .−5
in our setting, if we are prepared to re-define the expansion operator. We simply save
the current state of working memory before a contraction, and restore the previous
state of WM if we have a contraction followed by an expansion by the same literal.
More precisely, to expand by a literal A, we first check if the previous operation was
contraction by A, and if so we restore the previous state of working memory. Otherwise
we add A to the contents of WM and run (a subset of) the agent’s rules. This requires
O(n) additional space, where n is the size of the working memory.
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6 Preferred Contractions

So far we have assumed that the choice of literals to be removed during contraction
is arbitrary. However, in general, an agent will prefer some contractions to others. For
example, an agent may prefer to remove the smallest set of beliefs necessary to restore
consistency, or to remove those beliefs which are least strongly believed. The prob-
lem of computing a minimal set of beliefs which, if deleted, would restore consistency
is exponential in the size of working memory, and approaches based on this type of
‘minimal’ contraction and revision do not sit comfortably within our resource-bounded
framework. In this section we focus instead on contractions based on preference orders
over individual beliefs, e.g., degree of belief or commitment to beliefs. We show that
computing the most preferred contraction can be performed in time linear in kr + n.

We distinguish independent beliefs, beliefs which have at least one non-inferential
justification (i.e., a justification with an empty support list), such as observations and the
literals in working memory when the agent starts. We assume that an agent associates
an a priori quality with each non-inferential justification for its independent beliefs. For
example, the quality assigned to communicated information may depend on the degree
of reliability the recipient attaches to the speaker; percepts may be assumed to have
higher quality than communicated information and so on. For simplicity, we assume that
quality of a justification is represented by non-negative integers in the range 0, . . . , m,
where m is the maximum size of working memory. A value of 0 means lowest quality
and m means highest quality. We take the preference of a literal A, p(A), to be that of
its highest quality justification:

p(A) = max{qual(j0), . . . , qual(jn)},

where j0, . . . , jn are all the justifications for A, and define the quality of an inferential
justification to be that of the least preferred belief in its support:3

qual(j) = min{p(A) : A ∈ support of j}.

This is similar to ideas in argumentation theory: an argument is only as good as its weak-
est link, yet a conclusion is at least as good as the best argument for it. This approach
is also related to Williams ‘partial entrenchment ranking’ [11] which assumes that the
entrenchment of any sentence is the maximal quality of a set of sentences implying it,
where the quality of a set is equal to the minimal entrenchment of its members.

To perform a preferred contraction, we preface the contraction algorithm given above
with a step which computes the preference of each literal in WM and for each justi-
fication, finds the position of a least preferred member of support (see Algorithm 2).
We compute the preference of each literal in WM in stages, starting with the most pre-
ferred independent beliefs. Note that unless WM is empty, it always contains at least
one literal with a justification whose support is empty (otherwise nothing could be used
to derive other literals) and at least one of those independent literals is going to have

3 For simplicity, in what follows we assume reason-maintenance style contraction. To compute
preferences for coherence-style contraction we can assume that literals with no supports (as
opposed to an empty support) are viewed as having an empty support of lowest quality.
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the maximal preference value of literals in WM even when all other preferences are
computed (since a derived literal cannot have a higher preference than all of the literals
in justifications for it). Assume we have a list ind of justifications with an empty support
list, (A,[],q), where q is the a priori quality of the justification. We associate a counter
c(j) with every justification j = (A, s). Initially c(j) is set to be the length of s. When
c(j) is 0, the preferences of all literals in s have been set.

Algorithm 2. Preference computation
order ind in descending order by q
while there exists j = (A,[],q) in ind with A unmarked do

take first unmarked j = (A,[],q) in ind
mark A
p(A) = q
propagate(A, q)

end while
procedure PROPAGATE(A,q)

for all j = (B, s) in A’s justifications list do
decrement c(j)

end for
if c(j) == 0 then

qual(j) = q
w(s) = A’s position in s
if B is unmarked then

mark B
p(B) = q
propagate(B, q)

end if
end if

end procedure

We then simply run the contraction algorithm, to recursively delete the weakest
member of each support in the dependencies graph of A.

We define the worth of a set of literals as worth(Γ ) = max{p(A) : A ∈ Γ}. We
can prove that our contraction algorithm removes the set of literals with the least worth.

Proposition 5. If WM was contracted by A and this resulted in removal of the set of
literals Γ , then for any other set of literals Γ ′ such that WM − Γ ′ does not imply A,
worth(Γ ) ≤ worth(Γ ′).

Proof. If A 	∈ WM , the statement is immediate since Γ = ∅. Assume that A ∈ WM .
In this case, A ∈ Γ and A ∈ Γ ′ (otherwise WM − Γ and WM − Γ ′ would still
derive A). It is also easy to see that A is the maximal element of Γ , because a literal
B is in Γ if either (1) B = qual(ji) for some justification ji for A, and since p(A) =
max(qual(j0), ..., qual(jn)), p(B) ≤ p(A); or (2) B is a least preferred element of a
support set for some literal A depends on, in which case its preference is less or equal to
the preference of the literal it is justification for, which in turn is less or equal to p(A).
So, since A is an element of both Γ and Γ ′, and A has the maximal preference in Γ ,
then worth(Γ ) ≤ worth(Γ ′). �
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Computing preferred contractions involves only modest computational overhead. The
ordering of ind takes O(n log n) steps; ind is traversed once, which is O(n); PROP-
AGATE traverses each justifications list once, which is O(kr) (setting the w(s) index
in each support can be done in constant time, assuming that the justifications list of
each literal A actually contains pairs, consisting of a justification and the index of A’s
position in the support list of the justification). The total cost of computing the prefer-
ence of all literals in WM is therefore O(n log n + kr). As the contraction algorithm is
unchanged, this is also the additional cost of computing a preferred contraction.

7 Revision

In the previous sections we described contraction. Now let us consider revision, which
is adding a new belief in a manner which does not result in an inconsistent set of beliefs.
Recall that a set of beliefs K is inconsistent if for some literal A, both A and A− are in
K . For simplicity, we will consider revision in a quiescent setting only.

If the agent is a reasoner in classical logic, revision is definable in terms of contrac-
tion and vice versa. Given a contraction operator .− which satisfies postulates (K .−1)–

(K .−4) and (K .−6), a revision operator
.
+ defined as K

.
+ A

df
= (K .− ¬A) + A (Levi

identity) satisfies postulates (K
.
+1)–(K

.
+6). Conversely, if a revision operator satisfies

(K
.
+1)–(K

.
+6), then contraction defined as K

.− A
df
= (K

.
+ ¬A) ∩ K (Harper identity)

satisfies postulates (K .−1)–(K .−6) (see [6]).
However, revision and contraction are not inter-definable in this way for an agent

which is not a classical reasoner, in particular, a reasoner in a logic for which it does
not hold that K + A is consistent if, and only if, K 	� A−. If we apply the Levi identity
to the contraction operation defined earlier, we will get a revision operation which does
not satisfy the revision postulates. One of the reasons for this is that contracting the
agent’s belief set by A− does not make this set consistent with A, so (K .− A−) + A
may be inconsistent.

Let us instead define revision by A as (K + A) .− ⊥ (expansion by A followed by
elimination of all contradictions).

However, even for this definition of revision, not all basic AGM postulates are
satisfied.

Algorithm 3. Revision by A

add A to WM
run rules to quiescence
while WM contains a pair (B, B−) do

contract by the least preferred member of the pair
end while

Proposition 6. The revision operation defined above satisfies (K
.
+1) and (K

.
+3) – (K

.
+6).

Proof. (K
.
+1) is satisfied because when we do +, we run the rules to quiescence. (K

.
+3)

is satisfied because the construction of K
.
+ A starts with A being added to WM which

is then closed under consequence (which is K + A), and after that literals can only be
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removed from WM . (K
.
+4) holds because, if adding A does not cause an inconsistency,

then K
.
+ A = K+A by the definition of

.
+. (K

.
+5) holds trivially because A and K

.
+ A

are never inconsistent. Finally, recall that in the agent’s logic, Cn(A) = Cn(B) only if
A = B, so (K

.
+6) holds trivially. �

The reason why (K
.
+2), or the property that A ∈ K

.
+ A, does not hold, is simple.

Suppose we add A to K and derive some literal B, but B− is already in WM and
has a higher preference value than B. Then we contract by B, which may well result
in contraction by A. Another example of a situation when (K

.
+2) is violated would be

revision by A in the presence of a rule A → A−.
One could question whether (K

.
+2) is a desirable property. For example, it has been

argued in [12] that an agent which performs autonomous belief revision would not sat-
isfy this postulate in any case. However, if we do want to define a belief revision opera-
tion which satisfies this postulate, we need to make sure that A has a higher preference
value than anything else in working memory, and that A on its own cannot be responsi-
ble for an inconsistency. One way to satisfy the first requirement is to use a preference
order based on timestamps: more recent information is more preferred. To satisfy the
second requirement, we may postulate that the agent’s rules are not perverse. We call
a set of rules R perverse if there is a literal A such that running R to quiescence on
WM = {A} results in deriving a contradiction {B, B−} (including the possibility of
deriving A−). This is equivalent to saying that no singleton set of literals is exceptional
in the sense of [13].

8 Related Work

AGM belief revision is generally considered to apply only to idealised agents, because
of the assumption that the set of beliefs is closed under logical consequence. To model
Artificial Intelligence agents, an approach called belief base revision has been proposed
(see for example [14, 15, 16, 17]). A belief base is a finite representation of a belief
set. Revision and contraction operations can be defined on belief bases instead of on
logically closed belief sets. However the complexity of these operations ranges from
NP-complete (full meet revision) to low in the polynomial hierarchy (computable using
a polynomial number of calls to an NP oracle which checks satisfiability of a set of
formulas) [18]. This complexity would not generally be considered appropriate for op-
erations implemented by a resource-bounded agent. The reason for the high complexity
is the need to check for classical consistency while performing the operations. One way
around this is to weaken the language and the logic of the agent so that the consistency
check is no longer an expensive operation (as suggested in [19]). This is the approach
taken in this paper.

Our contraction algorithm is similar to the algorithm proposed by McAllester in [4]
for boolean constraint propagation. McAllester also uses a notion of ‘certainty’ of a
node, which is similar to our definition of preference.

Our approach to defining the preference order on beliefs is similar to the approach
developed in [20, 21, 11] by Williams, Dixon and Wobcke. However, since they work
with full classical logic, and calculating entrenchment of a sentence involves consid-
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ering all possible derivations of this sentence, the complexity of their contraction and
revision operations is at least exponential.

The motivation for our work is very similar to Wasserman’s in [22], but Wasserman’s
solution to the computational cost of classical belief revision is to consider only small
(relevant) subsets of the belief base and do classical belief revision on them. Chopra et
al [23], defined a contraction operation which approximates a classical AGM contrac-
tion operation; its complexity is O(|K| · |A| · 2S), where K is the knowledge base, A
the formula to be contracted, and S is a set of ‘relevant’ atoms. As S gets larger, the
contraction operation becomes a closer approximation of the classical contraction.

Perhaps the work most similar to our is that of Bezzazi et al [13], where belief re-
vision and update operators for forward chaining reasoners were defined and analysed
from the point of view of satisfying rationality postulates. The operators are applied to
programs, which are finite sets of rules and literals, and are presented as ‘syntactic’ op-
erators, which do not satisfy the closure under consequence and equivalence postulates.
Rather, the authors were interested in preserving the ‘minimal change’ spirit of revision
operators, which resulted in algorithms with high (exponential) complexity. Only one
of the operators they propose, ranked revision, has polynomial complexity. To perform
a ranked revision of a program P by a program P ′, a base 〈P0, . . . , Pn = ∅〉 of P is
computed, where P0 = P and each Pi+1 is a subset of Pi containing the ‘exceptional’
rules of Pi. The base of a program can be computed in polynomial time in the size of
the program; this involves adding the premises of each rule to the program, running
rules to quiescence and checking for consistency. If the resulting set is inconsistent, the
rule is exceptional. Ranked revision of P by P ′ is defined as Pi ∪ P ′, where Pi is the
largest member of the base of P which is consistent with P . Consistency can also be
checked in polynomial time by running the program to quiescence. For programs with-
out exceptional rules, the result of ranked revision is either the union of P and P ′, if
they are consistent, or P ′ alone, which is essentially full meet contraction. Even for the
full classical logic, this is computable in NP time.

9 Conclusions and Further Work

In this paper, we have presented a realisable resource-bounded agent which does AGM
style belief revision. The agent is rule-based, and can be seen as a fully rational and
omniscient reasoner in a very weak logic. The rules of the agent’s program are fixed,
and only literal beliefs are revised. We define an efficient (linear time) algorithm for
contraction, similar to McAllester’s algorithm for boolean constraint propagation, and
show that the corresponding contraction operation satisfies all the basic AGM postulates
apart from the recovery postulate. We show how to use a preference order on beliefs
similar to the entrenchment ranking introduced in [11] to contract by the minimally
preferred set of beliefs. The additional cost of computing the preference order is small:
the resulting algorithm is still sub-quadratic in the size of the agent’s program. We then
define a belief revision operator in terms of contraction, and show that it also satisfies all
but one of the basic AGM postulates. The complexity of belief revision is polynomial
in the size of the agent’s program and the number of literals in the working memory. To
the best of our knowledge, no one has previously pointed out that reason-maintenance
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style belief revision satisfies the AGM rationality postulates, provided that we assume
that the logic which the agent uses is weaker than full classical logic.

In future work, we plan to look at efficient revision operations on the agent’s pro-
grams, and extend the syntax of the agent’s programs.

Acknowledgements. We thank the anonymous referees for their helpful comments and
suggestions.
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13. Bezzazi, H., Janot, S., Konieczny, S., Pérez, R.P.: Analysing rational properties of change
operators based on forward chaining. In Freitag, B., Decker, H., Kifer, M., Voronkov, A., eds.:
Transactions and Change in Logic Databases. Volume 1472 of Lecture Notes in Computer
Science., Springer (1998) 317–339

14. Makinson, D.: How to give it up: A survey of some formal aspects of the logic of theory
change. Synthese 62 (1985) 347–363

15. Nebel, B.: A knowledge level analysis of belief revision. In Brachman, R., Levesque, H.J.,
Reiter, R., eds.: Principles of Knowledge Representation and Reasoning: Proceedings of the
First International Conference, San Mateo, Morgan Kaufmann (1989) 301–311



154 N. Alechina, M. Jago, and B. Logan

16. Williams, M.A.: Two operators for theory base change. In: Proceedings of the Fifth Aus-
tralian Joint Conference on Artificial Intelligence, World Scientific (1992) 259–265

17. Rott, H.: “Just Because”: Taking belief bases seriously. In Buss, S.R., Hájaek, P., Pudlák,
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