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Abstract. Multi-agent systems (MAS) can take many forms depending on the
characteristics of the agents populating them. Amongst the more demanding
properties with respect to the design and implementation of multi-agent system
is how these agents may individually reason and communicate about their knowl-
edge and beliefs, with a view to cooperation and collaboration. In this paper, we
present a deductive reasoning multi-agent platform using an extension of answer
set programming (ASP). We show that it is capable of dealing with the specifica-
tion and implementation of the system’s architecture, communication and the in-
dividual agent’s reasoning capacities. Agents are represented as Ordered Choice
Logic Programs (OCLP) as a way of modelling their knowledge and reasoning
capacities, with communication between the agents regulated by uni-directional
channels transporting information based on their answer sets. In the implementa-
tion of our system we combine the extensibility of the JADE framework with the
flexibility of the OCT front-end to the Smodels answer set solver. The power of
this approach is demonstrated by a multi-agent system reasoning about equilibria
of extensive games with perfect information.

1 Introduction

The emergence of deductive reasoning agents over traditional symbolic AI has led to
the development of logical theories within an agent framework. The principal idea is
to use logic formalisms to encode a theory stating the best action to perform in any
given situation. The action performed by the agent will be derived from this theory.
Unfortunately, the problems of translating and representing the real world in an accurate
and adequate symbolic description are still largely unsolved (although there has been
some encouraging work in the area, for example, the OpenCyc project [1]).

Answer set programming (hereafter referred to as ASP) [2] is a formal, logical lan-
guage designed for declarative problem solving, knowledge representation and real
world reasoning. It represents a modern approach to logic programming, based on anal-
ysis of which theoretical constructs are needed in reasoning applications rather than
implementing subsets of classical logic or other abstract logical systems.

� This work was partially supported by the European Fifth Framework Programme under the
grant IST-2001-37004 (WASP) and the Nuffield Foundation under the grant NAL/00689/A.

M. Baldoni et al. (Eds.): DALT 2005, LNAI 3904, pp. 72–88, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



LAIMA: A Multi-agent Platform Using OCLP 73

In this paper, we present a formalism for multi-agent systems in which the agent
use answer set programming to represent their reasoning capabilities. Such systems
are useful for modelling decision-problems; not just the solutions of the problem at
hand but also the evolution of beliefs and the interactions between the agents can be
characterised.

In this system as a set of agents are connected by uni-directional communication
channels. To model a single agent’s reasoning, we use Ordered Choice Logic Programs
[3], an extension of the answer set semantics that provides for explicit representation of
preferences between rules and dynamic, circumstance-dependent choice between alter-
natives in a decision. Agents use information received from other agents as a guidance
for their reasoning. As long as the information received does not conflict with the deci-
sion(s) the agent has to make towards its goal(s), this new knowledge will be accepted.
If conflict arises, the agent will always prefer its own alternatives over the ones pre-
sented by other agents. In this sense, one could say that our agents act strategically and
rational in the game theoretic sense ([4]). The knowledge an agent possesses is cap-
tured by its answer set semantics, with part of this knowledge being shared with agents
listening on the outgoing channels. This is regulated by filters that for each connecting
agent decide what sort of information this agent is allowed to receive. The semantics of
the whole system corresponds to a stable situation where no agent, with stable input,
needs to change its output.

Our implementation uses the JADE platform[5] to provide basic communications
and agent services, an ontology developed in Protégé[6] and OCT [3, 7] to model, main-
tain and reason about the agent’s beliefs and knowledge.

The rest of the paper is organised as follows: Section 2 explains the advantages
of using logic programming for modelling agent behaviour and details why we believe
ASP is better suited for this than Prolog, the traditional choice for logic programming. A
brief overview of OCLP is provided in Section 3. Sections 4 and 5 present the theoretical
multi-agent framework, LAIMA, and its implementation, JOF. Game theory, one of the
possible application areas of LAIMA/JOF is detailed in Section 6. This paper ends with
a discussion of future developments in ASP that are beneficial to the agent community
and the future work on the presented system.

2 Why Answer Set Programming?

One of the key components in making agents behave intelligent is the ability to rea-
son: perform logical inference, works with combinatorial constraints and being able to
handle complex, logical queries over a large search domain. These actions are simple
to express and implement in declarative logic programming formalisms. By using these
tools, the developer of an agent system can focus on the reasoning and ‘thought’ pro-
cesses of the agent rather than being bogged down in the detail of how to implement
them. Using existing logical formalisms rather than an ad-hoc systems also brings a
greater degree of robustness and certainty to the agent’s reasoning, i.e. because it is
possible or easier to prove and verify the behaviour of participating agents. Finally, the
availability of a number of powerful and mature implementations contributes to reduced
development time.
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The question then becomes one of “Which logical formalism?”. Due to its power,
expressiveness, and the availability of fast inference mechanisms, we use ASP. A
detailed discussion of the benefits of ASP over other formalisms can be found in
section 1.1 of [2].

An important aspect of ASP is its treatment of negation. The semantics of ASP
naturally gives rise to two different methods of calculating negation, negation as failure
and constraint based negation. Negation as failure, (i.e. we cannot prove p to be true) is
characterised as epistemic negation1 (i.e. we do not know p to be true). Constraint-based
negation introduces constraints that prevent certain combinations of atoms from being
simultaneously true in any answer set. This is characterised as classical negation as it is
possible to prevent a and ¬a both being simultaneously true, a requisite condition for
capturing classical negation. This is a significant advantage in some reasoning tasks as
it allows reasoning about incomplete information. More importantly, the “closed world
assumption” (inherent in much work modelled in Prolog) is not present in ASP.

In the extension of ASP that we propose to use for modelling agents, we only allow
implicit negation coming from the modelling decisions (you have decide upon exactly
one alternative when forced to make a choice). However, as described in [8], it is per-
fectly possible to embed any form of negation (constraint negation or negation as fail-
ure) using the order mechanism. In other words, the ordering of rules replaces use of
negation, making OCLP a suitable tool to model the exact type of negation one wishes
to use. In terms of complexity, having both concepts (negation and order) is no different
to having just one, as one can be represented using the other.

One key difference between Prolog and ASP is that the semantics of ASP clearly give
rise to multiple possible world views2 in which the program is consistent. The number
and composition of these varies with the program. Attempting to model the same ideas
in Prolog can lead to confusion, as the multiple possible views may manifest themselves
differently, depending on the query asked. In ASP terms, Prolog would answer a query
on a as true if there is at least one answer set in which a is true. However, there is no
notion of ‘in which answer set is this true’. Thus, a subsequent query on b might also
return true, but without another query it would not be possible to infer if a and b could
be simultaneously true. Although this seems overly rigid when requiring pure reactive
agents, one can encode reactive behaviour very easily in ASP, enforcing a single answer
set.

3 Ordered Choice Logic Programming

OCLP ([3]) was developed as an extension of ASP to reason about decisions and prefer-
ences. This formalism allows programmers to explicitly express decisions (in the form
of exclusive choices between multiple alternatives) and situation dependent preferences.
We explain the basics3 of OCLP by means of a simplified grid-computing situation:

1 For a full discussion of such issues, see [2].
2 The exact, formal, declarative meaning of answer sets is still under debate [9].
3 Full details can be found in [3].
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Example 1. Suppose a grid-computing agent capable of performing two tasks which
are mutually exclusive because of available resources. Your agent has permission to
use three clusters (cluster1,cluster2, cluster3). Because of prices, computing power,
reachability and reliability, the agent prefers cluster3 over cluster2, cluster2 over
cluster1 and cluster3 over cluster1. However, in order to perform task two, she needs
access to both a database and a mainframe. The former can only be provided by
cluster1, while the latter is only available from cluster2. The above information leads
to two correct behaviours of our agent:

– performing task one, the agent uses cluster3; and
– executing task two, the agent requires access to clusters 1 and 2 in order to use the

required database and mainframe.

To model such behaviour, we represent the agent as an answer set program capable
of representing preference-based choices between various alternatives. The preference
is established between components, or groups of rules. Components are linked to each
other by a strict order denoting the preference relation between them. Information flows
from less specific components to the more preferred ones until a conflict among alter-
natives arises, in which case the most specific one will be favoured. Alternatives are
modelled by choice rules (rules that imply exclusive disjunction). In other words, an
OCLP P is a pair 〈C,≺〉 where C is a collection components, containing a finite num-
ber of (choice) rules, and a strict order relation ≺ on C. We will use � to denote the
reflexive closure of ≺. For the examples, we represent an OCLP as a directed acyclic
graph (DAG), in which the nodes are the components and the arcs represent the relation
“≺”. For two components C1 and C2, C1≺C2 is represented by an arrow from going
from C1 to C2, indicating that information from C1 takes precedence over C2.

Example 2. The agent mentioned in Example 1 can be easily modelled using an OCLP,
as shown in Figure 1. The rules in components P1, P2 and P3 express the preferences
between the clusters when only computing power is required. The rules in P4 indicate
the grid computing problem and the required choice between the possible alternatives.
In component P5, the first rule states the goals of the agent in terms of the tasks. The
third and the fourth rules specify the resources, apart from computing power, needed
for a certain tasks. The last two rules express the availability of the extra resources in a
cluster.

The semantics of an OCLP is determined using interpretations, (sets of atoms that are
assumed to be true and atoms not in the interpretation being unknown).

Given an interpretation, we call a rule A← B applicable when the precondition B,
the body, is true (all the elements in the body are part of the interpretation). A rule is
applied when it is applicable and when the consequence A, called the head, contains
exactly one true atom. The latter condition is reasonable as rules with more than one
element in their head represent decisions where only one alternative may be chosen.

Using interpretations we can reason about the different alternatives. Two atoms are
considered to be alternatives with respect to an interpretation if and only if a choice
between them is forced by the existence of a more specific and applicable choice rule
with a head containing (at least) the two atoms. So given an atom a in a component C,
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P5

P2

P3

P4

P1 cluster 1 ←

cluster 2 ←

cluster 3 ←

cluster 1 ← database

database ← task 2

task 1 ⊕ task 2 ←

mainframe ← task2

cluster 2 ← mainframe

grid ←
cluster 1 ⊕ cluster 2 ⊕ cluster 3 ← grid

Fig. 1. The Grid Computing Agent from Example 2

we can define the alternatives of a in that component C with respect to an interpretation
I , written as ΩI

C(a), as those atoms that appear together with a in the head of a more
specific applicable choice rule.

Example 3. Reconsider Example 2. Let I and J be the following interpretations:

– I = {cluster2,task1} and J = {grid ,cluster1,task1}.
The alternatives for cluster2 in P2 w.r.t. J are ΩJ

P2
(cluster2) = {cluster1, cluster2}.

W.r.t. I , we obtain ΩI
P2

(cluster2) = ∅, since the choice rule in P4 is not applicable.
When we take P5 instead of P2, we obtain: ΩJ

P5
(cluster2) = ∅ w.r.t. J , since the

applicable choice rule is in a less preferred component which makes it irrelevant to the
decision process in the current component.

Unfortunately, interpretations are too general to convey the intended meaning of a pro-
gram, as they do not take the information in the rules into account. Therefore, models
are introduced. The model semantics for choice logic programs, the language used in the
components [10], and for ASP is fairly simple: an interpretation is a model if and only
if every rule is either not applicable (the body is false) or applied (i.e. the body is true
and the head contains exactly one head atom). For OCLP, taking individual rules into
account is not sufficient: the semantics must also consider the preference relation. In
cases where two or more alternatives of a decision are triggered, the semantics requires
a mechanism to deal with it. When the considered alternatives are all more specific
than the decision itself, the decision should be ignored. When this is not the case, the
most specific one should be chosen. If this is impossible, because they are unrelated or
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equally specific, an arbitrary choice is justified. This selection mechanism is referred to
as defeating.

Example 4. Reconsider Example 2. The rule cluster1 ← is defeated w.r.t. interpreta-
tion I = {cluster2,grid} because of the applicable rule cluster2 ← .
W.r.t. interpretation J = {cluster1,cluster2, grid ,database ,mainframe} we have that
the rule cluster1 ⊕ cluster2 ⊕ cluster3 ← grid is defeated by the combination of the
rules cluster1 ← database and cluster2 ← mainframe .

So we can define a model for an OCLP as an interpretation that leaves every rule either
not applicable, applied or defeated. Unfortunately, in order to obtain the true meaning
of a program, the model semantics tends to be too coarse.

For traditional ASP, the Gelfond-Lifschitz transformation or reduct [11] was intro-
duced to remove models containing unsupported assumptions. Interpretations that are
the minimal model of their Gelfond-Lifschitz transformation are called answer sets,
as they represent the true meaning of the program or alternatively the answer to the
problem encoded by the program. Therefore, algorithms and their implementations for
obtaining the answer sets of a program are often referred to as answer set solvers.

For OCLP, a reduct transformation to obtain the answer sets of our programs is
also required. The transformed logic program can be obtained by adding together all
components of the OCLP. Then, all defeated rules are taken away, together with all
false head atoms of choice rules. The remaining rules with multiple head atoms are
transformed into constraints, assuring that only one of them can become true whenever
the body is satisfied4.

Example 5. Reconsider the OCLP from Example 2. This program has two answer sets:

– M1 = {grid , cluster1, task2 database ,mainframe, cluster2} and
– M2 = {cluster3, grid ,task1},

which matches our agent’s intended behaviour.

In [3] it was shown that a bi-directional polynomial mapping exists between ordered
choice logic programs and extended logic programs with respect to their answer set se-
mantics. The mapping from OCLPs to normal logic programs is possible by introducing
two new atoms for each rule in order to indicate that a rule is applied and defeated. For
each rule in the OCLP, we generate a set of rules (the number of rules is equal to the
number of head atoms) in the logic program that become applicable when the original
rule is made applied. A rule is also created for each possible situation in which the orig-
inal rule could become defeated. Finally add one rule that should be made applicable
when the original rule is applied and not defeated. Constraints to make sure that the
head elements cannot be true at the same time is are not necessary.

The reverse mapping is established by creating an OCLP with three components
placed in a linear formation. The least preferred one establishes negation as failure. The
middle component contains all the rules from the original program. The most preferred

4 The relationship between those two definitions of reduct clearly convey that order and negation
are interchangeable and explains why negation can be easily embedded in OCLP [8].
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makes sure that for each pair a, not a only one can be true at any time, without given a
a chance to be true without reason in the middle component

These polynomial mappings demonstrate that the complexity of both systems is
identical (more information on the complexity aspects can be found in [2]). Having
a polynomial mapping to a traditional logic program makes it possible implement a
front end to one of the existing answer set solvers like Smodels ( [12]) or DLV ( [13]).
OCT [3] is such a front-end.

4 The LAIMA Framework

In this section we consider systems of communicating agents, where each agent is rep-
resented by an OCLP that contains knowledge and beliefs about itself, its goals, the
environment and other agents and the mechanism to reason about them.

We assume that agents are fully aware of the agents that they can communicate with,
as the communication structure is fixed, and that they can communicate by passing sets
of atoms over uni-directional channels.

A LAIMA system is a triple 〈A, C,L〉 containing a set of A of agents, a set L of
atoms representing the communication language of the system and a relation C as a
subset ofA×A×L representing the communication channels between the agents and
the filter they use when passing information. The filter tells the listening agent which
sort of information they can expect, if any. Furthermore, with each agent a ∈ A we
associate an OCLP Pa.

In examples we use the more intuitive representation of a graph. The set L is formed
by all the atoms appearing in the OCLP associated with the agents. The filter is shown
next to the arrow when leaving the transmitting agent. In order not to clutter the image,
we assume that if no filter is present the agent could potentially transmit every atom
of S.

Example 6. The system in Figure 2 displays a multi-agent system where seven agents
“cooperate” to solve a murder case. Two witnesses, agents Witness1 and Witness2

provide information to the Inspector agent is called to a scene to establish a murder
took place. Both witnesses will only pass on information relevant to the crime scene.
Information from the witnesses is passed to the Officer agent for further processing.
Depending on information provided she can decide to question the three suspect agents.
If questioned and when no alibi can be provided, the Officer can accuse the suspect. Of
course, the Officer will only pass on selective information about the case to the Suspects.
The suspects from the side have no intention to tell more than if they have an alibi
or not.

For OCLP, we defined the notion of interpretation to give a meaning to all the atoms
in our program. For our LAIMA systems we have a number of agents that can hold
sets of beliefs which do not necessarily have to be the same. It is perfectly acceptable
for two agents (e.g. humans) to agree to disagree. To allow this in our system we need
interpretations to be functions taking an agent as input and an interpretation of the
agent’s updated version as output.
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Officer

{quest(c),{quest(b),

noalibi(b)}{alibi(b),

{quest(a),

noalibi(a)}{alibi(a),

accuse(a)} accuse(b)}

noalibi(c)}{alibi(a),

accuse(c)}

Witness2

male ←
tall ←

SuspectB

noalibi(b)← quest(b)

alibi(a)← quest(a)

SuspectA

accuse(X ) ← noalibi(X )

quest(a) ← tall ,male
quest(b) ← tall ,male, blond
quest(c) ← tall , female, blond

murder ←Inspector

blond ←
Witness1

tall ←
hate police ←

{tall , blond} {tall ,male}

noalibi(c)← quest(c)

SuspectC

Fig. 2. The Murder LAIMA of Example 6

Example 7. Consider the Murder LAIMA of Example 6. Then, the function I with:

– I(Witness1) = {hate police , blond , tall},
– I(Witness2) = {male, tall},
– I(Inspector) = {murder ,male, blond , tall},
– I(Officer) = {murder ,blond ,tall , male,quest(a),quest(b),accuse(b),

alibi (a),noalibi(b)}
– I(SuspectA) = {quest(a), alibi (a)}
– I(SuspectB) = {quest(b),noalibi(b)}
– I(SuspectC ) = {}

is an interpretation for this system.

In the current setting, an agent’s output is not only dependant on the agent’s current
beliefs defined by an interpretation, but also on the recipient of this information. The
information sent is determined by the intersection of the agent’s belief and the filter
used for communication to the agent he is sending information to (Outb

I(a) = I(a)∩F
with (a, b, F ) ∈ C). On the other hand, an agent receives as input the output of all agents
connected to its incoming channels (InI(b) = ∪(a,b)∈COutb

I(a)).
An agent reasons on the basis of positive information received from other agents

(its input) and its own program that may be used to draw further conclusions, possibly
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workHard ← pass

workHard ← badLuck

pass ⊕ badLuck ← attend, workHard

attend ← badLuck

teacher

student

attend ← pass

Fig. 3. The Exam LAIMA of Example 9

contradicting incoming information. In this framework, we made the decision that an
agent will attach a higher preference to their own rules rather than to suggestions com-
ing from outside. This can be conveniently modelled by extending an agent’s ordered
program with an extra “top” component containing the information gathered from its
colleagues. This new OCLP is referred to as the updated version of the agent. This way,
the OCLP semantics will automatically allow for defeat of incoming information that
does not fit an agent’s own program.

When modelling rational agents, we assume that agents would only forward infor-
mation of which they can be absolutely sure. Therefore, it is only sensible to request
from agents being modelled as OCLP, to communicate in terms of answer sets.

When an interpretation produces an answer set for each agent’s updated version, we
call it a model for the LAIMA system. Given that one agent can create multiple an-
swer sets of its updated version, LAIMA generates an extra source of non-determinism,
providing connecting agents the different possible views it holds.

Example 8. Consider the Murder LAIMA of Example 6 and the interpretation I from
Example 7. Then I is a model for this LAIMA and corresponds with the intuition of the
problem.

The model semantics provides an intuitive semantics for systems without cycles. Hav-
ing cycles allow assumptions made by one agent to be enforced by another agent.

Example 9. Consider the LAIMA in Figure 3 where a student and a teacher discuss
issues about the relationship between attending the lecture, working hard, passing the
unit or having bad luck. This systems has three models:

– M(teacher ) = M(student) = ∅
– N(teacher ) = N(student) = {attend ,workHard , pass}
– S(teacher ) = S(student) = {attend ,workHard , badLuck}
Nothing in the OCLP program suggest that an exam has taken place or that the

agents are not just hypothesising. Therefore, the only sensible situation is represented
by interpretation M .

To avoid such self-sustaining propagation of assumptions, we require that the se-
mantics is the result of a fixpoint procedure which mimics the evolution of the belief
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set of the agents over time. Initially, all agents start off with empty input from the other
agents, stating they do not currently beliefs about the other agents. At every stage agents
receive the input generated by the previous cycle to update their current belief set. This
evolution stops when a fixpoint (no agent changes the beliefs they had from the previous
cycle) is reached. This final interpretation is then called an evolutionary answer set.

More formally, a sequence I0, . . . , In of interpretations is an evolution of a LAIMA
F if for all agents a and i > 0 we have that Ii+1(a) is an answer set of the updated
program of a with the input of the current interpretation, InIi(a).

An interpretation I is an evolutionary fixpoint of F w.r.t. an interpretation I0 iff
there exists an evolution I0, . . . and an integer i ∈ N such that Ij = Ii = I for all
j > i. An evolutionary answer set of F is an evolutionary fixpoint of F w.r.t. the empty
interpretation I∅ (which associates the empty set with each agent).

Thus, in an evolution, the agents update their believes and intentions as more infor-
mation becomes available: at each phase of the evolution, an agent updates its program
to reflect input from the last phase and computes a new set of beliefs. An evolution thus
corresponds to the way decision-makers try to get a feeling about the other participants.
The process of reaching a fixpoint boils down to trying to get an answer to the question
“if I do this, how would the other agents react?”, while trying to establish a stable com-
promise. Note that the notion of evolution is non-deterministic since an agent may have
several local models. For a fixpoint, it suffices that all agents can maintain the same set
of beliefs as in the previous stage.

Example 10. The LAIMA of Example 9 has exactly one evolutionary answer set,
namely M , just as we hoped. At iteration 1, both agents will receive no input resulting
in producing both empty answer sets as output. This makes that the input in iteration
2 is also empty for both, obviously resulting the same output. Since both iterations are
exactly the same, we have reached a fixpoint.

The LAIMA of Example 6 has also one evolutionary answer set: the model men-
tioned in Example 7. The evolution producing this answer set is slightly more interest-
ing. We leave it to reader to construct the evolution in detail. In the first iteration, the
witnesses produce their facts which are received by the inspector in the second itera-
tion. In second iteration both witnesses and inspector complete their belief set which
is reported to the Officer for use in the third iteration. In this iteration, the Officer will
decide which suspects to question. This is done in the fourth iteration. In the fifth itera-
tion, the Officer will solve the crime. SuspectB will be notified of being accused during
the sixth iteration.

5 JOF: The LAIMA Implementation

The theoretical multi-agent architecture LAIMA described in the previous section has
been implemented as the JADE OCLP Framework (JOF). We have opted for JADE as
the MAS architecture, Protégé [6] for the ontology and OCT [3] as the answer set solver.

The choice of working within the JADE framework[5] and the use of the relevant
FIPA[14] specifications allows for an architecture based on behaviours. The agents can
be implemented at a high-level by defining their behaviours and reactions to events.
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An ontology is required for the grounding of the concepts and relationships within
JOF and to smooth out the communication between the various agents in the system
and to allow easy expansion to different types agents.

JOF is based on a simple client-server model, using fat clients , where the clients are
responsible for most of the computation. The implementation has two main agents or
roles: the Coordinator and JOF agents. Using the GAIA methodology[15] of defining
roles by four attributes (responsibilities, permissions, activities and protocols), we have
defined the collection of behaviours for our two main agents. The Coordinator contains
the graphical user interface for the application and is designed to be the interface be-
tween the human user and the MAS. When initialised, the Coordinator agent will simply
start up the user interface, awaiting user input. The Coordinator is capable of ordering
agents to perform a cycle, update and retrieve their information. It also a maintains list
of agents that can be edited by the user, along with other administrative actions. The
JOF agents are designed to also run autonomously. This distinction is important, as it
allows the option of running JOF without the need for a human supervisor. Agents are
then able to subscribe to the Coordinator or to each other, and receive periodic informa-
tion in the form of answer sets.

It is possible to run JOF in two different modes: retained and runtime. Retained mode
allows the user to add, remove or modify any of the agents in the JOF environment.
All agents running in retained mode are controlled by the Coordinator agent. Runtime
mode provides the autonomous functionality and events to fire upon relevant stages in
the OCLP agent life-cycle but also gives means for a developer to alter all of the relevant
information of the local agents.

The JOF ontology gives a basis for the representation of different objects and func-
tionality in the JOF environment. For example, the ontology provides for the fundamen-
tal of notions like ‘rule’ or ‘OCLP program’. There are three main sections that we can
identify in the ontology: OCLP programs, message passing and the knowledge base.
The ontology itself is declared hierarchically using the BeanGenerator within Protégé
and also encapsulates a number of message classes, such as the answer set broadcast
and the Coordinator’s information request and retrieval messages.

In order to interact correctly with OCT to provide the answer sets, JOF is required
to produce valid OCT input, parse OCT result output and deal with the OCT error
messages when they occur. Therefore, valid input would be an OCLP program as a
string, satisfying OCT syntax. Output would be an answer set broadcast. It is possible
to either synchronously run OCT and wait for its output, or as a thread which fires an
event when finished.

JOF agents need a way of knowing when it is time to process their inputs, which
is the motivation for the Call For Answer Sets (CFAS) protocol. This controls the life-
cycle of the JOF agents and is sent with a given deadline, after which the agents that
not receive input will carry on using the empty set as input. This deadline is required
in the event that the communication between agents fails due to technical problems or
if agents become inactive. Once all responses have been received, the solution to the
updated OCLP is computed immediately.

JOF is implemented with LAIMA systems in mind, however it is not limited to it.
JOF can be seen as an open society where agents come and go and communication is
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established as necessary. The architecture also allows for different types of agents to
join provided they communicate using the ontology developed.

6 Playing Games

In this section, we demonstrate that LAIMA and its implementation JOF are an elegant
and intuitive mechanism for reasoning about games and their equilibria. Due to page
limitations, we limit the scope to extensive games with perfect information [4] and their
Nash equilibria.

An extensive game is a detailed description of a sequential structure representing
the decision problems encountered by agents (players) in strategic decision making
(agents are capable of reasoning about their actions in a rational manner). The agents
in the game are perfectly informed of all events that have previously occurred. Thus,
they can decide upon their action(s) using information about the actions which have
already taken place. This is done by passing histories of previous actions to the decid-
ing agents. Terminal histories are obtained when all the agents/players have made their
decision(s). Players have a preference for certain outcomes over others. Often, prefer-
ences are indirectly modelled using the concept of payoff where players are assumed to
prefer outcomes where they receive a higher payoff. Therefore, an extensive game with
perfect information is 4-tuple, denoted 〈N, H, P, (�i)i∈N 〉, containing the players N
of the game, the histories H , a player function P telling whose turn it is after a certain
history and a preference relation≤i for each player i over the set of terminal histories.

For convenience, in the following example we use a tree representation where the
small circle at the top represents the initial history. Each path starting at the top repre-
sents a history. Terminal histories are the paths ending in leaf node. The numbers next
to nodes represent the players while the labels of the arcs represent actions. The number
below the terminal histories are payoffs representing the players’ preferences (The first
number is the payoff of the first player, the second number is the payoff of the second
player, etc).

Example 11. An agent responsible for the large chunks of data processing contemplates
using an existing cluster (and paying rent for it) or buying a new cluster. The cluster
supplier has the option to offer his client the full power of the cluster or not. Given
full power, the agent can decide to use this service just once or many times. The game
depicted in Figure 4 models an individual’s predicament.

Fig. 4. The Cluster use Game of Example 11
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A strategy of a player in an extensive game is a plan that specifies the actions chosen by
the player for every history after which it is her turn to move. A strategy profile contains
a strategy for each player.

The first solution concept for an extensive game with perfect information ignores the
sequential structure of the game; it treats the strategies as choices that are made once
and for all before the actual game starts. A strategy profile is a Nash equilibrium if no
player can unilaterally improve upon his choice. Put in another way, given the other
players’ strategies, the strategy stated for the player is the best this player can do.

Example 12. The game of Example 11 has two equilibria:

– {{rent,many}, {full}}, and
– {{rent, once}, {reduced}}

Given an extensive game with perfect information, a polynomial mapping to a LAIMA
exists such that the Nash equilibria of the former can be retrieved as the answer sets
of this system. The evolution leading to those evolutionary answer sets models exactly
how players in a game reason to find the answer sets. So LAIMA are not only useful
for calculation the equilibria but they also provide a mechanism to monitor the change
of the players’ beliefs.

An agent is created for each player in the game. The OCLP of such an agents contains
as many components as the represented player has payoffs (step 1). The order among
the components follows the expected payoff, higher payoffs correspond to more specific
components (step 2). The various actions a player can choose from a certain stage of

Sn

C1
3

buy ←

once ← full
rent ← full

C1
0

C1
1

C1
2 rent ← reduced

rent ← full
multiple ← full
rent ⊕ buy ←
multiple ⊕ once ←

full ← rent , once

C2
3 full ⊕ reduced ←

reduced ← rent

full ← rent ,multiple

C2
1

agent

cluster
Fig. 5. The LAIMA corresponding to the Cluster Game (Example 13)
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the game are turned into a choice rule which is placed in the most specific component
of the agent modelling the player making the decision (step 3). Since Nash equilibria do
not take into account the sequential structure of the game, players have to decide upon
their strategy before starting the game, leaving them to reason about past and future at
each decision point. This is reflected in the rules (step 4): each non-choice rule is made
out of a terminal history (path from top to bottom in the tree) where the head represents
the action taken by the player/agent, when considering the past and future created by
the other players according to this history. The component of the rule corresponds to the
payoff the deciding player would receive in case that the history was actually followed.

Example 13. If we apply this technique to the game in Example 11 we obtain the multi-
agent system depicted in Figure 5. The two evolutionary answer sets of the system
match the two Nash equilibria (Example 12) perfectly.

7 Conclusions and Directions for Future Research

The deductive multi-agent architecture described in this paper uses OCLP to represent
the knowledge and reasoning capacities of the agents involved. However, the architec-
ture and its behaviour are designed to be able to deal with any extension of traditional
answer set programs. [2] gives an overview of some the language extensions currently
available.

There is an emerging view [8, 16, 17, 18, 19] that ASP, with or without preferences
or other language constructs, is a very promising technology for building MAS. It satis-
fies the perspective that agent programming should be about describing what the goals
are, not how they should be achieved— i.e. “post-declarative” programming [20]. Fur-
thermore, having the same language for specification and implementation, makes veri-
fication trivial. Thanks to its formal grounding of all its language constructs, it becomes
easy to verify the soundness and completeness of your language and implementation.

A number of multi-agent platforms currently exists that use logic programming lan-
guages as their basic constructs. The Dali project [21] is a complete multi-agent plat-
form entirely written in Prolog. The EU-funded research project SOCS ([22, 23]) has
constructed a multi-agent architecture based solely on logic programming components,
each responsible for a part of the reasoning of the agent. Using ASP, it would be pos-
sible to use the same language for all components, avoiding duplication of domain
description and knowledge. In the Minerva architecture [19], the authors build their
agents out of subagents that work on a common knowledge base written as a MDLP
(Multi-Dimentional Logic Program) which is an extension of Dynamic Logic Program-
ming. It can be shown that MDLP can easily be translated into OCLP such that their
stable models match our answer sets. The advantage of using OCLP is that you have
a more flexible defeating structure. One is not restricted to decision comprising only
two alternatives. Furthermore, decision are dynamic in our system. On the other hand,
the Minerva system does not restrict itself to modelling the beliefs of agents, but allows
for full BDI-agents that can plan towards a certain goal. It would be interesting to see
what results we obtain when OCLP approach was incorporated into Minerva and what
results we would obtain by incorporating Minerva into LAIMA.
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The flexibility on the specification side of ASP is counter-balanced by the technology
of current (grounding) answer set solvers, which mean that a major part of the solution
space is instantiated and analysed before the any computation of a solution begins.
The advantage of this is that the computation is staged [24] into a relatively expensive
part that can be done off-line and a relatively cheap part that is executed on-line in
response to queries. For example, [17] reports that the Space Shuttle engine control
program is 21 pages, of which 18 are declarations and 3 are rules describing the actual
reasoning. Grounding takes about 80% of the time, while the 20% is used for the actual
computation of the answer set and answering queries. There is a parallel between the
way answer set solvers compute the whole solution space and model-checking.

In our framework, an agent is given an initial set of beliefs and a set of reasoning ca-
pacities. Each time the agent receives information from the outside world, it will update
its knowledge/beliefs base and computes the answer sets that go with it. This means
that for even the smallest change the whole program has to be recomputed (including
the expensive grounding process). To provide some additional flexibility, a recent de-
velopment [25] describes a technique for incremental answer set solving. With an incre-
mental solver that permits the assertion of new rules at run-time we are in a position to
move from purely reactive agents to deliberative agents that can support belief-desire-
intention style models of mentality. We aim to replace the fixed solver (OCT) we have
built into JADE and described here with the incremental one (IDEAS) shortly.

The current implementation of grounding in ASP limits its use to finite domains.
Clearly, a fixed solution space is quite limiting in some domains, but reassuring in oth-
ers. OCLP significantly simplifies the development of such systems by constructing a
finite domain. To go beyond the grounding solver is currently one of the key challenges,
together with the more practical aspects of ASP like updates, methodology, and debug-
ging.

The advantage of an unground solver is that the initialisation overheads are signif-
icantly reduced, compared to a grounding solver, since the only task is the grounding
and removal of redundant rules. However, the disadvantage is that the finite space for
checking (discussed above) is lost: the price of flexibility is a loss in verifiability. We are
currently working on a lazy grounding solver, as a result of which we believe we will
be in a position to offer a very high-level programming language for the construction
of practical reasoning agents. Thus, not only will it be possible to extend the knowl-
edge base of the agent dynamically, but it will also enable the solution of problems over
infinite domains, like time (discreet or continuous), numbers.

It seems likely that the next few years will see significant developments in answer set
solver technology, deploying both incremental and unground solvers. We also foresee
future improvements on the framework itself. Currently, all our agents take input only
from other agents and they communicate positive information, but it would very bene-
ficial if they could communicate negative information too. Unfortunately, this may lead
to contradictions, but various strategies to deal with it come to mind, such as removing
conflicting information, introducing trust between agents or allowing another sort of
non-determinism by attempting to initiate a cycle for both possibilities.

The LAIMA system and its answer set semantics was developed using OCLP as a
way to model the agents. However, the system could also be used for other agent char-
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acterisations. In the paper, we assumed that agents will always prefer their own beliefs
over the information passed on by other. We are currently working on an extension in
which trust levels are used we currently to allow agents to distinguish between various
sources and deal with it appropriately. In this system we assumed that the environment
would be represented as an agent. Normally, information passed from the environment
should be considered more accurate than an agent’s current beliefs. Using these trust
levels and OCLP, it would be easy to model this behaviour: each input is assigned its
own component with an ordering depending on the trust level of the supplier.

Another problem for the moment is feeding back failure into the system. When an
agent fails to produce an answer set for its updated version, communication will stop
at this agent, without warning the others. From both a theoretical and implementation
point of view this raises interesting possibilities.

In the near future, we aim to use LAIMA and its extensions for the development
of larger systems. One of our goals, is to try to incorporate the ALIAS[26] system, an
agent architecture for legal reason based on abductive logic, into ours.
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