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Abstract. We explore the suitability of Intensional Programming Paradigm for
providing a programming model for coordinated problem solving in a multi-agent
system. We extend our previous work on Lucx, an Intensional Programming Lan-
guage extended with context as first class object, to support coordination activities
in a distributed network of agents. We study coordination constructs which can
be applied to sequential programs and distributed transactions. We give formal
syntax and semantics for coordination constructs. The semantics for transaction
expressions is given on top of the existing operational semantics in Lucx. The
extended Lucx can be used for Internet-based agent applications.
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1 Introduction

Our goal is to provide a programming model for a network of distributed agents solving
problems in a coordinated fashion. We suggest an Intensional Programming Language,
with context as first class objects and a minimal set of coordination constructs, to ex-
press the coordinated communication and computing patterns in agent-based systems.
We give a formal syntax and semantics for the language and illustrate the power of the
language with a realistic example.

Intensional Programming Paradigm. Intensional logic is a branch of mathematical
logic used to precisely describe context-dependent entities. According to Carnap, the
real meaning of a natural language expression whose truth-value depends on the con-
text in which it is uttered is its intension. The extension of that expression is its actual
truth-value in the different possible contexts of utterance. For an instance, the state-
ment “The capital of China is Beijing” is intensional because its valuation depends on
the context (here is the time) in which it is uttered. If this statement is uttered before
1949, the extensions of this statement are False (at that time, the capital was Nanjing).
However, if it is uttered after 1949, the extensions of this statement are True. In the In-
tensional Programming (IP) paradigm, which has its foundations in Intensional Logic,
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the real meaning of an expression is a function from contexts to values, and the value of
the intension at any particular context is obtained by applying context operators to the
intension. Basically, intensional programming provides intension on the representation
level, and extensions on the evaluation level. Hence, intensional programming allows
for a more declarative way of programming without loss of accuracy.

Lucid was a data-flow language which evolved into a Multidimensional Intensional
Programming Language [1]. Lucid is a stream (i.e. infinite entity) manipulation lan-
guage. The only data type in Lucid is a stream. The basic intensional operators are first,
next, and fby. The four operators derived from the basic ones are wvr, asa, upon,
and prev, where wvr stands for whenever, asa stands for as soon as, upon stands
for advances upon, and prev stands for previous. All these operators are applied to
streams to produce new streams. Example 1 illustrates the definitions of these operators
(nil indicates an undefined value).

Example 1.

A = 1 2 3 4 5 . . .
B = 0 0 1 0 1 . . .
first A = 1 1 1 1 1 . . .
next A = 2 3 4 5 . . .
prev A = nil 1 2 3 4 5 . . .
A fby B = 1 0 0 1 0 1 . . .
A wvr B = 3 5 . . .
A asa B = 3 3 3 . . .
A upon B = 1 1 1 3 3 5 . . .

The following program computes the stream 〈1, 1, 2, 3, 5, . . .〉 of all Fibonacci
numbers:

result = fib
fib = 1 fby (fib + g)
g = 0 fby fib

Lucid allows the notion of context only implicitly. This restricts the ability of Lu-
cid to express many requirements and constraints that arise in programming a complex
software system. So we have extended Lucid by adding the capability to explicitly ma-
nipulate contexts. This is achieved by extending Lucid conservatively with context as a
first class object. We call the resulting language Lucx (Lucid extended with contexts).
Lucx has provided more power for representing problems in different application do-
mains and given more flexibility of programming. We discuss Lucx, context calculus
which is its semantic foundation, and multi-agent coordination constructs introduced in
Lucx in Section 3.

Multiple-Agent Paradigm. By agent we mean software agents which can be person-
alized, continuously running and semi-autonomous, driven by a set of beliefs, desires,
and intentions (BDI). Instead of describing each agent in isolation, we consider agent
types. An agent type is characterized by a set of services. A generic classification of
agent types, is interface agent (IA), middle agent (MA), task agent (TA), and security
agent (SA). The MA type can be specialized into arbitrator agent, match-maker agent,
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and broker agent. They play different roles, yet share the basic role of MA. All agents
of an agent type have the same set of services. Agents are instances of agent types. An
agent with this characterization is a black-box with interfaces to service its clients. It
behaves according to the context and feedback from its environment. Two agents in-
teract either directly or through intermediaries, who are themselves agents. An atomic
interaction between two agents is a query initiated by an agent and received by the other
agent at the interface which can service the query. An interaction among several agents
is a collection of sequences of atomic interactions. Several methods are known in the
field of distributed systems to characterize such behavior. Our goal is to explore inten-
sional programming for expressing different interaction types, not in characterizing the
whole collection of interactions.

In order to understand interaction patterns let us consider a typical business transac-
tions launched by an agent. The agent acquires data from one or more remote agents,
analyzes the data and computes some result, and based on the computed result invokes
services from other agents. The agents may be invoked either concurrently or in se-
quence. In the latter case, the result of an agent’s computation may be given as input to
the next agent in the sequence. In the former case, it is possible that an agent splits a
problem into subproblems and assigns each subproblem to an agent which has the ex-
pertise to solve it. We discuss the syntax and semantics for such coordination constructs
in Lucx, under the assumption that an infrastructure exists to carry out the basic tasks
expressed in the language.

A configuration is a collection of interacting agents, where each agent is an instance
of an agent type. A configuration is simple if it has only one agent. An agent interacts
with itself when it is engaged in some internal activity. More generally, the agents in
a configuration communicate by exchanging messages through bidirectional communi-
cation channels. A channel is an abstract binding which when implemented will satisfy
the specifications of the interfaces, the two ends of the channel. Thus, a configuration is
a finite collection of agents and channels. The interfaces of a configuration are exactly
those interfaces of the agents that are not bound by channels included in the config-
uration. In a distributed network of agents, each network node is either an agent or a
configuration. Within a configuration, the pattern of computation is deterministic but
need not be sequential.

There are three major language components in the design of distributed multi-agent
systems:

– (ACL) agent communication language
– (CCL) constraint choice language
– (COL) coordination language.

These three languages have different design criteria. An ACL must support inter-
operability in agent community while providing the freedom for the agent to hide or
reveal its internal details to other agents. A CCL must be designed to support agent
problem solving by providing explicit representation of choices and choice problems.
A COL must support transaction specification and task coordination among the agents.
The two existing ACLs are Knowledge Query and Manipulation Language (KQML)
and the FIPA agent communication language [5]. The FIPA language includes the ba-
sic concepts of KQML, yet they have slightly different semantics. Agents require a
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content language to express information on constraints, which is encapsulated as a field
within performatives of ACL. FIPA Constraint Choice Language (CCL) is one such
content languages [6], designed to support agent problem solving by providing explicit
representations of choices and choice problems.

In our works [2] [15], we have shown the suitability of Lucx, an Intensional Pro-
gramming Language (IPL), for agent communication as well for choice representation.
In this paper we extend Lucx with a small number of constructs to express task coordi-
nation. We are motivated by the following merits of Lucx.

1. Lucx allows the evaluation of expression at contexts which are definable as first
class objects in the language. Context calculus in Lucx provides the basis for ex-
pressing dynamically changing situations.

2. Performatives, expressible as context expressions, can be dynamically introduced,
computed, and modified. A dialog between agents is expressible as a stream of
performatives, and consequently using stream functions such as first, next, and fby,
a new dialog can be composed, decomposed, and analyzed based on the existing
dialogs.

3. Lucx allows a cleaner and more declarative way of expressing the computational
logic and task propagation of a program without loss of accuracy of interpreting the
meaning of the program;

4. Lucx deals with infinite entities which can be any simple or composite data values.

2 Basics of Agent Coordination

A coordination expression, Corde, in its simplest form is a message/function call from
one agent to another agent. A general Corde is a message/function from one configu-
ration to another configuration. We introduce an abstract agent coordination expression
S.a(C) where S is a configuration expression, a is the message (function call) at S, and
C is a context expression (discussed in Section 3). The context C is combined with the
local context. If the context parameter is omitted it is interpreted as the current context.
If the message is omitted, it is interpreted as a call to default method invocation at S.
The evaluation of a Corde returns a result (x, C′), where x is the result and C′ is the
context in which x is valid. In principle, x may be a single item or a stream.

As an example, let B be a broker agent. The expression B.sell(dd) is a call to the
broker to sell stocks as specified in the context expression dd, which may include the
stock symbol, the number of shares to be sold, and the constraints on the transaction
such as date and time or minimum share price. The evaluation of the expression in-
volves contacting agent B with sell and dd as parameters. The agent B computes a result
(x, dd′), and returns to the agent A who invoked its services, for which the expression
is A.receive(C′), where context C′ includes x and dd′. In this example, dd′ may include
constraints on when the amount x can be deposited in A’s bank account.

Composition Constructs. We introduce composition constructs for abstract coordi-
nation expressions and illustrate with examples. A coordination in a multi-agent sys-
tem requires the composition of configuration expressions. As an example, consider an
agent-based system for flight ticket booking. Such a system should function with min-
imal human intervention. An interface agent, representing a client, asks a broker agent
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to book a flight ticket whose quoted price is no more than $300. The broker agent may
simultaneously contact two task agents, each representing an airline company, for price
quotes. The broker agent will choose the cheaper ticket if both of the quoted price are
less than $300 and make a commitment to the corresponding task agent, then informs
the interface agent about the flight information. If both prices are above $300, the bro-
ker agent will convey the information to the interface agent. The integrated activities of
those agents to obtain the solution for the user is regarded as a transaction. Typically, the
result from the interaction between two agents is used in some subsequent interaction,
and results from simultaneously initiated interactions are compared to decide the next
action. To meet these requirements, we provide many composition constructs,including
sequential composition, parallel composition, and aggregation constructs. We infor-
mally explain the sequential and parallel composition constructs below.

The expression E = S1.a1(C1) > (x, C′) > S2.a2(C2) is a sequential composi-
tion of the two configuration expressions S1.a1(C1), and S2.a2(C2). The expression E
is evaluated by first evaluating S1.a1(C1), and then calling S2 with each value (x, C′) re-
turned by S1.a1(C1). The contexts C′ is substituted for C2 in the evaluation of S2.a2(C2).

The expression S1.a1(C1) ‖ S2.a2(C2) is a parallel composition of the two configu-
ration expressions S1.a1(C1), and S2.a2(C2). The evaluation of the two expressions are
invoked simultaneously, and the result is the stream of values (x, C′) returned by the
configurations ordered by their time of delivery (available in C′).

Example 2. Let A (Alice) and B (Bob) be two interface agents, and M be a mediator
agent. The mediator’s service is to mediate a dispute between agents in the system. It
receives the information from users and delivers a solution to them. In the expression

((B.notifies > m1) ‖ (A.notifies > m2)) > M.receives(C′)
> (m3, C′′) > (B.receives ‖ A.receives)

the mediator computes a compromise (default function) m3 for each pair of values
(m1, m2) and delivers to Bob and Alice. Context C′ includes (m1, m2 and the local
context in M. Context C′′ is a constraint on the validity of the mediated solution m3.

The other constructs that we introduce are And, Or, and Xor constructs to enforce
certain order on expression evaluations. The And (◦) construct is to enforce evaluation
of more than one expressions although the order is not important. The Or (�) construct
is to choose one of the evaluations nondeterministically. The Xor (�) construct defines
one of the expressions to be evaluated with priority. In addition, we introduce Commit
construct (com) to enable permanent state changes in the system after viewing the effect
of a transaction. The syntax and semantics of these constructs in Lucx are given in
Section 4. We can combine the where construct in Lucx with the above constructs to
define parameterized expressions. Once defined, such expressions may be called from
another expression.

3 An Intensional Programming Model for Distributed Networks
of Agents

Lucx [2, 15] is a conservative extension of Lucid [1], an Intensional Programming Lan-
guage. We have been exploring Lucx for a wide variety of programming applications.
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In [14], we have studied real-time reactive programming models in Lucx. Recently we
have given constraint program models in Lucx [15]. In this section we review these
works for agent communication and content description.

3.1 An Overview of Intensional Programming Language: Lucx

Syntax and Semantic Rules of Lucx. The syntax of Lucx [2, 15], shown in Figure 1,
is sufficient for programming agent communication and content representation. The
symbols @ and # are context navigation and query operators. The non-terminals E and
Q respectively refer to expressions and definitions. The abstract semantics of evaluation
in Lucx is D,P ′ � E : v, which means that in the definition environment D, and in
the evaluation context P ′ , expression E evaluates to v. The definition environment D
retains the definitions of all of the identifiers that appear in a Lucid program. Formally,
D is a partial function D : Id → IdEntry, where Id is the set of all possible identifiers
and IdEntry has five possible kinds of value such as: Dimensions, Constants, Data
Operators, Variables, and Functions. The evaluation context P ′, is the result of P † c,
where P is the initial evaluating context, c is the defined context expression, and the
symbol†denotes the overriding function. A complete operational semantics for Lucx is
defined in [2, 15].

The implementation technique of evaluation for Lucx programs is an interpreted
mode called eduction [1]. Eduction can be described as tagged-token demand-driven
dataflow, in which data elements (tokens) are computed on demand following a data-
flow network defined in Lucid. Data elements flow in the normal flow direction (from
producer to consumer) and demands flow in the reverse order, both being tagged with
their current context of evaluation.

Context Calculus. Informally, a context is a reference to a multidimensional stream,
making an explicit reference to the dimensions and the tags (indexes) along each dimen-
sion. The formal definition is given in [15]. The syntax for context is [d1 : x1, . . . , dn :
xn], where d1, . . . , dn are dimension names, and xi is the tag for dimension di. An atomic
context with only one dimension and a tag is called micro context. A context with dif-
ferent dimensions is called simple context. Given an expression E and a context c, the
Lucid expression E @ c directs the eduction engine to evaluate E in the context c. Ac-
cording to the semantics, E @ c gives the stream value at the coordinates referenced by c.

In our previous papers [2, 14], we have introduced the following context operators:
the override ⊕ is similar to function override; difference 
, comparison =, conjunction

E ::= id
| E(E1, . . . , En)
| if E then E′ else E′′

| #
| E @ C
| 〈E1, . . . , En〉E
| select(E, E′)
| E where Q

C ::= {E1, . . . , En}
| Box[E1, . . . , En | E′]
| [E1 : E′

1, . . . , En : E′
n]

Q ::= dimension id
| id = E
| id(id1, . . . , idn) = E
| Q Q

Fig. 1. Abstract syntax for Lucx



An Intensional Programming Approach to Multi-agent Coordination 211

Table 1. Precedence Rules for Context Operators

syntax precedence

C ::= c | C = C
| C ⊇ C | C ⊆ C
| C | C | C/C
| C ⊕ C | C � C
| C � C | C � C
| C � C | C ⇀ C
| C ↓ D | C ↑ D

1. ↓, ↑, /
2. |
3. �, �
4. ⊕, �
5. �, ⇀
6. =, ⊆, ⊇

� , and disjunction � are similar to set operators; projection ↓ and hiding ↑ are selec-
tion operators; constructor [ : ] is used to construct an atomic context; substitution /
is used to substitute values for selected tags in a context; choice | accepts a finite num-
ber of contexts and nondeterministically returns one of them. undirected range � and
directed range ⇀ produce a set of contexts. The formal definitions of these operators
can be found in [15]. The right column of Table 1 shows the precedence rules for the
context operators, listed from the highest to the lowest precedence. The formal syntax
of context expressions is shown in the left column of Table 1. Parentheses will be used
to override this precedence when needed. Operators having equal precedence will be
applied from left to right. Rules for evaluating context expressions are given in [15].

Example 3. The precedence rules shown in Table 1 are applied in the evaluation of
the well-formed context expression c3 ↑ D ⊕ c1 | c2, where c1 = [x : 3, y : 4, z : 5],
c2 = [y : 5], and c3 = [x : 5, y : 6, w : 5], D = {w}. The evaluation steps are as
follows:

[Step1]. c3 ↑ D = [x : 5, y : 6] [↑ Definition]
[Step2]. c1 | c2 = c1 or c2 [| Definition]
[Step3]. Suppose in Step2, c1 is chosen,
c3 ↑ D ⊕ c1 = [x : 3, y : 4, z : 5] [⊕ Definition ]

else if c2 is chosen,
c3 ↑ D ⊕ c2 = [x : 5, y : 5] [⊕ Definition]

A context which is not a micro context or a simple context is called a non-simple
context. In general, a non-simple context is equivalent to a set of simple contexts [2]. In
several applications we deal with contexts that have the same dimension set ∆ ⊆ DIM
and the tags satisfy a constraint p. The short hand notation for such a set is the syntax
Box[∆ | p].

Definition 1. Let ∆ = {d1, . . . , dk}, where di ∈ DIM i = 1, . . . , k, and p is a k-ary
predicate defined on the tuples of the relation Πd ∈∆ fdimtotag(d). The syntax

Box[∆ | p] = {s | s = [di1 : xi1 , . . . , dik : xik ]},

where the tuple (x1, . . . , xk), xi ∈ fdimtotag(di), i = 1, . . . k satisfy the predicate p,
introduces a set S of contexts of degree k. For each context s ∈ S the values in tag(s)
satisfy the predicate p.
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Table 2. Precedence Rules for Box Operators

syntax precedence

B ::= b | B | B
| B � B | B � B
| B � B | B ↓ D
| B ↑ D

1. ↓, ↑
2. |
3. �, �, �

Many of the context operators introduced above can be naturally lifted to sets of con-
texts, in particular for Boxes. We have defined three operators exclusively for Boxes.
These are (�, �, and �). They have equal precedence and have semantics analogous to
relational algebra operators. Table 2 shows a formal definition of Box expression B, and
precedence rules for Box expressions. We use the symbol D to denote a dimension set.

An Example of a Lucx Program. Consider the problem of finding the solution in
positive integers that satisfy the following constraints:

x3 + y3 + z3 + u3 = 100
x < u
x + y = z

The Lucx program is given below:
Eval.B1, B2, B3 (x′, y′, z′, u′) = N
where
N = merge ( merge( merge(x, y), z), u) @ B1 � B2 � B3;
where
merge(x, y) = if (x <= y) then x else y;
B1 = Box[X, Y, Z, U | x3 + y3 + z3 + u3 = 100, x ∈ X, y ∈ Y, z ∈ Z, u∈ U];
B2 = Box [ X, U | x < u, x ∈ X , u ∈ U ];
B3 = Box [ X, Y, Z | x + y = z, x ∈ X , y ∈ Y , z ∈ Z];

end
end

3.2 Agent Communication

Lucx can be used as an Agent Communication Language (ACL) [2]. Due to the static na-
ture of the predefined communicative acts (CAs) in FIPA and performatives in KQML,
it is not possible to express the dynamic aspects in agent’s states and requirements.
Thus, inter-interoperability is not fully achieved. In using Lucx as ACL this problem
is remedied. The performatives are expressed as context expressions, and a context is a
first class object in Lucx, hence we are able to dynamically manipulate performatives.
The name of a performative is considered as an expression, and the rest of the perfor-
mative constitute a context which can be understood as a communication context, with
each field except the name in the message being a micro context. The communication
context will be evaluated by the receiver, by evaluating the expression at the context
obtained by combining the micro contexts. In some cases, the receiver may combine
the communication context with its local context to generate a new context.

The syntax of a message in Lucx from agent A is of the form 〈EA, E′
A〉, where EA is

the message name and E′
A is a context expression. In an implementation EA corresponds
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to a function. The context E′
A includes all the information that agent A wants to convey

in an interaction to another agent. A response from agent B to agent A will be of the
form 〈EB, E′′

B〉, where E′′
B will include the reference to the query for which this is a

response in addition to the contexts in which the response should be understood. A
conversation between two agents A and B is of the form 〈αA; βB〉, where αA = 〈EA, E′

A〉,
and βB = 〈EB, E′′

B〉. The semantics of a conversation is given in [2]. A dialog between
two agents A, and B is a stream of conversations.

The operational semantics of Lucx is the basis for query evaluation. Consider queries
that demand some form of response. The query from agent A 〈EA, E′

A〉 to agent B is eval-
uated as follows:

1. agent B obtains the context FB = E′
A ⊕ LB, where LB is the local context for B.

2. agent B evaluates EA@FB.
3. agent B constructs the new context E′′

B that includes the evaluated result and infor-
mation suggesting the context in which it should be interpreted by agent A, and

4. sends the response 〈EB, E′′
B〉 to agent A.

The above semantics should be changed for evaluating queries that do not necessarily
demand some form of response. The query from agent A may be evaluated at any local
context of B, and the result of evaluation may trigger an appropriate action in B. For
instance, let B is a publisher agent which receives a material for publication in the form
of a query of this type from a mobile agent A. A mobile agent roams around the web,
collects information and delivers to his clients. Agent B may decide to process and pub-
lish the information delivered by A periodically or at a time that it “knows” to be most
appropriate. Thus, steps 3 and 4 in the above semantics should be modified as follows:
3’. agent B “determines” the context E′′

B for processing the information (evaluated in
step 2), and 4’. processes the information at the context E′′

B .

Example 4. A query from agent PTAc about the Hotel information which was en-
coded as “ask-one” performative represented in Lucx as the expression E @ E′, E′ =
E1 ⊕ E2 ⊕ E3 ⊕ E4 ⊕ E5.

E@[E1⊕ E2⊕ E3⊕ E4⊕ E5]
where

E = ”ask− one”; E1 = [sender : PTAc]; E2 = [content : (InforHotel)];
E3 = [receiver : HBA]; E4 = [reply − with : Infor − Hotel];
E5 = [language : LPROLOG];

end

3.3 Lucx as a Content Choice Language

CCL is designed to support agent problem solving by providing explicit representations
of choices and choice problems. According to the requirements stated in [6], it should
be possible in CCL to represent the sets of choices to be made, define operations that can
be performed on the choices, declaratively state the relationships among choices, and
introduce simple propositional statements. Lucx can be used for agent-based problem
solving in the following four aspects that are normally attributed to a CCL [15].

1. Modeling: Choice Problem is modeled as CSP (Constraint Solving Problem) in
Lucx, say by an agent A;
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2. Information Gathering: Agent A either sends the whole CSP to several other agents
or has the knowledge to decompose the CSP into several sub-CSPs, where each
sub-CSP is solvable by an agent; after decomposition it sends to those agents and
gets their feedback; Lucx, as ACL, can be used here;

3. Information Fusion: Agent A incorporates the feedbacks from other agents using
context calculus and Box operations.

4. Problem Solving: Agent A may run simple problem solving algorithm such as the
General CSP solver, or send the CSP components to problem solving agents, get
their solutions, and unify it.

Example 5 illustrates the first step Modeling using Lucx as a CCL. That is, agent
PTAc asks agent HBA whether those hotels (Marriott, Hilton, Sheraton) are available:

Example 5. E@[E1⊕ E2⊕ E3⊕ E4⊕ E5]
where

E = ”ask− one”; E1 = [sender : PTAc]; E2 = [content : B′
1];

where B′1 = [Hc | h ∈ {Marriott, Hilton, Sheraton}]; end

E3 = [receiver : HBA]; E4 = [reply − with : Hotel − Infor];
E5 = [language : Lucx];

end

Example 6 illustrates the second step Information Gathering using Lucx as a CCL. That
is, as a reply, agent HBA tells agent PTAc that Marriott and Hilton are available:

Example 6. E′@[E′1 ⊕ E′2 ⊕ E′3 ⊕ E′4 ⊕ E′5]
where

E′ = ”tell”; E′1 = [sender : HBA]; E′
2 = [content : B′′

1 ];
where B′′1 = [Hc | h ∈ {Marriott, Hilton}]; end

E′3 = [receiver : PTAc]; E′
4 = [in − reply − to : Hotel − Infor];

E′5 = [language : Lucx];

end

An example of Information Fusion is the expression E7 that appears in Example 8,
Section 5. The expression E8 in the same example illustrates Problem Solving.

4 Introducing Coordination Constructs in Lucx

In this section we conservatively extend Lucx with coordination constructs and give
their formal syntax and semantics.

A Corde expression S.m(C) arises when an agent A invokes S through method m
in a context C. Using the Lucx notation introduced in Section 3.2 and the query in
Example 5 it is easy to map this expression to a query 〈EA, E′

A〉, where EA represents
m as the (ACL) performative name, and S, and C are respectively encapsulated as a
context expression E′

A. That is, the representation of S.m(C) is a Lucx performative.
The result of evaluation of a Corde expression is also represented as a performative. We
take a performative as a primitive service for a distributed agent system.

A transaction is a dialog between several agents. It is a distributed computation in a
distributed agent systems, consisting of many steps of primitive services. Yet a transac-
tion need not to be successful. We smoothly integrate primitive services to represent a
transaction. Agent coordination is the set of transactions in the system.
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4.1 Coordination Constructs in Lucx

The coordination constructs are n-ary constructs whose operands are performatives. We
introduce a unary construct for “committing” the state changes in the evaluation of an
expression.

Sequential Composition Construct �. The expression a � b defines the sequential
composition of performatives a and b. The content field of each performative is actually
used to pass value/results between two agents, so the passed result is not shown in the
syntax, however the value passing is implicitly supported in the semantics. Given two
performatives a, b, the sequential composition a � b is evaluated by first evaluating
the performative a and using the result of its evaluation, which is encapsulated in the
content field of the response performative of a, in evaluating the performative b. In
general, the expression a1 � a2 . . . � ak denotes the execution of performative ai+1

with the result of execution of ai as an input, for i = 1, . . . , k − 1.

Parallel Composition Construct ‖. The expression a ‖ b defines a parallel composi-
tion of performatives a and b. Given two performatives a, b, the parallel composition
a ‖ b is evaluated by simultaneous execution of performatives a and b. In general, the
evaluation of the expression a1 ‖ a2 ‖ . . . ‖ ak will create k threads of computation,
one for each performative. The result of evaluation is the merging of the results in time
order.

Composition with no order ◦. The and (◦) operator is used to force the conjoined
evaluation of several expressions, without imposing any order on the evaluation. Given
two performatives a, b, the expression a◦b defines that performatives a and b should be
evaluated by the receiver agent, however the order of evaluation is not important. The
result of evaluation is the set of results produced by the evaluation of performatives a
and b. In general, the expression a1 ◦ a2 ◦ . . . ◦ ak defines that all the performatives ai,
i = 1, k should be evaluated by the receiver agent.

Nondeterministic Choice Construct �. Given two performatives a, b, the expression
a � b defines that one of the performatives be evaluated nondeterministically. In general,
a1 � . . . � ak denotes the evaluation of a nondeterministically chosen performative from
the k operands. If the performative ai is the nondeterministic choice, the result from the
evaluation of the performative ai is the result of evaluating the expression a1 � . . . � ak.

Priority Construct �. Given two performatives a and b, the expression a � b defines
that performative a should be evaluated first, and if it succeeds, the performative b is
to be discarded; otherwise, performative b should be evaluated by the receiver agent. In
general, the expression requires that the performatives be evaluated deterministically in
the order specified until the first successful evaluation of a performative. The result of
evaluating the expression a1 � . . . � ak is that of the first successful evaluation.

Commit Construct com. This is a unary construct whose operand is a coordination ex-
pression. The result of evaluating com(e) is that the state changes that happened during
the evaluation of the coordination expression e are made permanent. The expression
a � (b ‖ c) will produce a result, however the state changes that happened due to
the modifications of contexts will be ignored. The expression com(a � (b ‖ c)) will
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produce the result of evaluating the expression a � (b ‖ c), as well as make the state
changes permanent.

Construct Binding. All the constructs have the same precedence, and hence the ex-
pression is evaluated from left to right. To enforce a particular order of evaluations,
parenthesis may be used.

Properties and Examples. From the operational definitions for composition constructs
we can derive the following properties:

1. The expression e � e refers to two invocations of the performative e. The context
may change after the first evaluation of e. The result of evaluating the expression is
the result produced by the second invocation of e.

2. The construct � is not commutative, but left associative.
3. The construct ‖ is both commutative and associative.
4. The evaluation of the expression e ‖ e makes two copies of e and simultaneously

evaluates them. Hence, the invocation of expressions e, e � e, and e ‖ have differ-
ent effects.

5. With our semantics the evaluated result of the expression e ‖ f consists of all
possible outputs from invocations to e and f . If it is necessary to have them ordered
according to their times of arrival at the host agent, the Lucx functions such as
before can be used. Other Lucx functions can be used to gather (1) only the first
value, (2) a tuple combining the first one from each, (3) the first value that satisfies
a predicate, and (4) a tuple (x, y), where x is a result from an invocation to e, y is a
result from an invocation to f such that the pair x, y satisfies a constraint.

6. The sequential construct does not distribute over the parallel construct. That is,
e � (f ‖ g) �= e � f ‖ e � g. In the evaluation of e � (f ‖ g), the performative
e is evaluated once, and the evaluation of expression f ‖ g starts after that. In
evaluating the expression e � f ‖ e � g, there are two parallel invocations to
e, and the performatives f , g are invoked only after the corresponding results are
received.

7. The parallel construct does not distribute over the sequential construct. That is,
(e ‖ f ) � g �= e � g ‖ f � g

8. The commit construct distributes over other constructs. For an instance, com(a �
(b ‖ c)) = com(a) � (com(b) ‖ com(c))

Example 7. Let us consider a small example: a mediator agent M receives the diaries
of a number of agents A1, . . . , An and fixes a conflict-free meeting time for them. Let ei

denote the performative from Ai to M, and e′i be the response performative from M to
Ai. We give three different solutions:

1. The expression, (e1 ‖ . . . ‖ en) � (e′1 ‖ . . . ‖ e′n), when evaluated will give all
possible conflict-free meeting times, assuming that agent M has the skill to compute
it.

2. The expression, (e1 ◦ . . . ◦ en) � (e′1 ‖ . . . ‖ e′n), when evaluated may give an
optimal conflict-free meeting time, assuming that agent M has the resources to save
the constraints in the performative, formulates it to a CSP, and solves it. That is,
the mediator must be a CSP solver.



An Intensional Programming Approach to Multi-agent Coordination 217

3. The expression (e1 � . . . � en) � (e′1 ‖ . . . ‖ e′n), when evaluated will give the
earliest conflict-free meeting time.

4.2 Formal Syntax and Semantics of the Extended Lucx

The new syntactic rules are M rules shown in Figure 2. The new semantic rules are
shown in Figure 3. The semantic rule Msequential is valid whether or not the result of
executing M is required for executing M′. Moreover, the semantic rule suggests that the
performative M′ must be evaluated only after the evaluation of M even when M and M′

do not share data. The semantic rules Mparallel and Mchoice are easy to understand. The
semantic rule Mcomposition suggests that M and M′ can be evaluated in any order with-
out affecting the outcome. In the semantic rule Mpriority, we use false to suggest that
the evaluation fails. Notice that partial evaluation in eduction procedure is not failure.
Because of the distributive property, we can write the commit expression com M, where
M is a coordination expression, as an expression in which each atomic component is
com E, where E is a performative. Since we have already given the semantics for eval-
uating performatives, we contend that no separate semantics for com M is necessary.

M ::= M � M′

| M ‖ M′

| M ◦ M′

| M � M′

| M � M′

| com M
| E

E ::= id
| E(E1, . . . , En)
| if E then E′ else E′′

| #
| E @ C
| 〈E1, . . . , En〉E
| select(E, E′)
| E where Q

C ::= {E1, . . . , En}
| Box[E1, . . . , En | E′]
| [E1 : E′

1, . . . , En : E′
n]

Q ::= dimension id
| id = E
| id(id1, . . . , idn) = E
| Q Q

Fig. 2. Abstract syntax for the extended Lucx

5 Example

A general, but incomplete, description of the travel planning problem [15] is as follows:
Caroline would like to meet Liz in London for one of exhibition preview receptions at
the Tate Gallery. These will be held at the beginning of October. Both Liz and Caroline
have other appointments around that time, and will need to travel to London from their
homes in Paris and New York.

We suppose that there is an agent-based system making choices on when Liz and
Caroline meet. Several agents assist each participant: a Personal Travel Assistant Agent
(PTA) will communicate with Hotel Broker Agent (HBA), Air Travel Agent (ATA), and
Diary Agent (DA). That is, the PTA for Caroline (PTAc) will get the hotel information
from HBA, flight information from ATA, and meeting time from DA. After collect-
ing and combining the information, it sends the information to Problem Solving Agent
(PSA). The PSA will also receive the collected information from PTA for Liz (PTAl).
The PSA computes the final solution and sends the solution to PTAs. PTAc communi-
cates with HBA, ATA, and DA to make commitments. Once all these commitments are
acknowledged, PTAc informs Caroline of the exact meeting time. As we remarked, the
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Msequential :
D,P � M : v D,P†[M �→ v] � M′ : v′

D,P � M � M′ : v′

Mparallel :
D,P � M : v D,P � M′ : v′

D,P � M ‖ M′ : v † v′

Mchoice :
D,P � M : v or D,P � M′ : v

D,P � M � M′ : v

Mpriority :
D,P � M : v or D,P � M : false D,P†[M �→ false] � M′ : v

D,P � M � M′ : v

Mcomposition :
D,P � M : v D,P†[M �→ v] � M′ : v′

or D,P � M′ : v D,P†[M′ �→ v] � M : v′

D,P � M ◦ M′ : v′

Fig. 3. New Semantic rules for the Extended Lucx

PTAc ATA DA PSAHBA

UserAsk(MeetingTime)

m1 : Ask(HotelInfor)

m2 : Tell(HotelInfor)

m3 : Ask(FlightInfor)

m4 : Tell(FlightInfor)

m5 : Ask(AvaiTime)

m6 : Tell(AvaiTime)

m7 : Ask(MeetingTime)

m8 : Tell(MeetingTime)

InformUser(MeetingTime)

m1, m3,
m5 are 
sent in 
parallel

m9 : Commit(HotelReserve)

m10 : Commit(FlightReserve)

m11 : Commit(AvailTime)

m9, m10,
m11 are 
sent in 
parallel

Fig. 4. Message Passing Sequence Diagram for TPE

agents themselves are not important, only their usage of Lucx is important. According
to the above description, the message passing between agents is shown in Figure 4, and
the Lucx program for the transaction is shown in Example 8:

Example 8. (m1 � m2) ‖ (m3 � m4) ‖ (m5 � m6) � m7 � m8 � m9 ‖ m10 ‖ m11
where

m1 = E1@[E11 ⊕ E12 ⊕ E13 ⊕ E14 ⊕ E15];
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where E1 = ”ask− one”; E11 = [sender : PTAc]; E12 = [content : B1];
where B1 = [Hc | h ∈ {Marriott, Hilton, Sheraton}]; end

E13 = [receiver : HBA]; E14 = [reply− with : Hotel− Infor];
E15 = [language : Lucx]; end

m2 = E2@[E′11 ⊕ E′12 ⊕ E′13 ⊕ E′14 ⊕ E′15];
where E2 = ”tell”; E21 = [sender : HBA]; E22 = [content : B′′1 ];
where B′1 = [Hc | h ∈ {Marriott, Hilton}]; end

E23 = [receiver : PTAc]; E24 = [in− reply − to : Hotel− Infor];
E25 = [language : Lucx]; end

. . .
m7 = E7@[E′71 ⊕ E′72 ⊕ E′73 ⊕ E′74 ⊕ E′75];
where E7 = ”ask− one”; E71 = [sender : PTAc]; E72 = [content : B′1 � B′2 � B′3];
where B′1 = [Hc | h ∈ {Marriott, Hilton}];

B′2 = [Ffromc | ffromc∈{[Tfl : 10am,Tfa : 13pm, Fn :AC32],[Tfl : 16pm,Tfa : 19pm, Fn :AC38]};
B′3 = [T3c | t3c ∈ {Oct.3 − 10am, Oct.6− 14pm}]; end

E73 = [receiver : PSA]; E74 = [reply− with : Meeting− Time];
E75 = [language : Lucx]; end

m8 = E8@[E81 ⊕ E82 ⊕ E83 ⊕ E84 ⊕ E85];
where E8 = ”tell”; E81 = [sender : PSA]; E82 = [content : B′′1 � B′′2 � B′′3 ];
where B′′1 = [Hc | h ∈ {Marriott}];
B′′2 = [Ffromc | ffromc ∈ {[Tfl : 10am, Tfa : 13pm, Fn : AC32]};
B′′3 = [T3c | t3c ∈ {Oct.3− 10am}]; end

E83 = [receiver : PTAc]; E84 = [in− reply − to : Meeting− Time];
E85 = [language : Lucx]; end

m9 = E9@[E91 ⊕ E92 ⊕ E93 ⊕ E94 ⊕ E95];
where E9 = ”commit”; E91 = [sender : PTAc]; E92 = [content : B′′1 ];
where B′′1 = [Hc | h ∈ {Marriott}]; end

E93 = [receiver : HBA]; E94 = [in− reply− to : Hotel− Reserve];
E95 = [language : Lucx]; end

. . .

end

6 Conclusion

We have been exploring Intensional Programming Paradigm as a viable programming
medium for different application domains. In this paper we have discussed our recent
research results in enriching Lucx [2, 15], an Intensional Programming Language, with
coordination constructs for programming multi-agent coordination in a distributed net-
work of agents. We have given the formal syntax and operational semantics for the
coordination constructs in Lucx. The language, thus extended, preserves the original
syntax and semantics of Lucx which itself is a conservative extension of Lucid.

The two major aspects governing a practical realization of a MAS are

– the design and implementation of agents in a MAS, in particular their reasoning
ability based on their belief and knowledge against those of the agents with whom
they interact, and

– communication and protocols in a distributed architecture of MAS;
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Ours is a contribution to the second aspect: we have focused on the language constructs
for representing the control and coordination aspects in MAS. Hence, our work should
be viewed as complementing the first aspect, which are discussed in [4, 8].

In [4] agents are represented as Ordered Choice Logic Programs (OCLP) for mod-
eling their knowledge and reasoning abilities. The agents use answer set programming
for representing their reasoning capabilities. In interactions, an agent sets higher prefer-
ence to its own beliefs and rules than to suggestions and responses received from other
agents. In this formalism decisions and situation dependent preferences can be explic-
itly stated. In our work situations are represented as contexts and situation dependent
preferences are obtained by evaluating expressions at contexts. Moreover the seman-
tics of conversation, as given in Section 3.2, uses the overwrite operator ⊕ to enforce
preference to the belief and knowledge of an agent than to the responses of other agents.

A distributed architecture for MAS endowed with a social layer is discussed in [8].
The agents in the MAS are guided by a set of administrative agents which collectively
employ a blackboard system for managing the norms. The global states of the MAS
are stored in a tuple space, allowing the administrative agents to manage them in a
distributed manner. This approach gives rise to a rule- based programming language
to manage the global states. The paper does not discuss the features of such a pro-
gramming language. In [14], while discussing the merits of Lucx for real-time reactive
programming, we have shown that transition systems can be formally represented in
Lucx. We believe that the global states of the MAS can be represented and manipulated
in Lucx as transition systems. A more thorough investigation is necessary to explore
and validate our claim in this regard.

Our language describes the coordination aspects at a higher level of abstraction than
the scripting languages discussed in [11]. According to a definition given in [11] a
scripting language introduces and binds a set of software components that collaborate
to solve a particular problem. For the sake of comparison with our work, we may re-
place the phrase “component” with “agent” in this definition. Examples of scripting
languages include Bourne Shell [3], Tcl [10], Perl [13], Python [12], and Javascript [7].
Higher-level abstractions are quite cumbersome to implement in these scripting lan-
guages. Except Bourne Shell no other scripting language supports concurrency. Most
importantly, scripting languages have no formal semantics. As a consequence it is not
possible to reason about the overall coordination behavior of the MAS if any one of
the above scripting language were to be used to describe the MAS collaboration. The
coordination constructs in Lucx have formal semantics. Lucx also serves both as ACL
and CCL [2]. In addition we claim that agent computations and internal decision mak-
ing can also be programmed in Lucx, provided we develop within Lucx a reasoning
system.

Agent programming languages that are in practice today require a detailed program
to express the control flow in the transactions. In many programming languages, it may
be possible to express sequential as well as concurrent transactions, but it is not pos-
sible to express who the participants are in the transaction. In our language, a Corde
expression expresses the different agents that are active in a collaborative transaction.
Moreover our language is expressive in the sense that very complex pattern of trans-
actions can be expressed in one Corde expression. One of our future work is on the
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implementation environment and tool support for agent collaboration. It is too early to
speculate now on the performance and cost-effectiveness of Lucx programs for agent
collaboration.

There is a huge amount of literature on network models for distributed computing
and most of them can be applied to multi-agent coordination. We are motivated by the
need to simplify the semantics of agent coordination. So we have designed a small
number of coordination constructs, for which formal operational semantics could be
given. We permit arbitrary sequential and parallel compositions of Corde expressions.
This enables us to express complex transaction activities among agents as well-formed
Lucx expressions. Using the semantics it seems possible to determine the equivalence
of arbitrary coordination expressions. We can use priority and sequential constructs to
describe temporal aspects of coordination. We do not model resource sharing explicitly
in the language. The rationale for this decision is that in the implementation of the
parallel construct, we can use the solutions that have been proposed by the distributed
computing research community.

In introducing the coordination constructs in Lucx, we are motivated by the recent
work of Misra [9]. Yet, there are deep semantic differences in the two approaches. In
our work an atomic Corde is a performative which is a context expression in Lucx. It in-
cludes the service requirements, in addition to a request for service. This contrasts with
the term site [9], which is a general term for a service, including function names. There
is a need to investigate the full set of semantic differences between Lucx constructs and
the Orc expressions of Misra, and the suitability of Lucx for wide area computing.
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