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Abstract. Developing applications that make effective use of machine-readable
knowledge sources as promised by the Semantic Web vision is attracting much of
current research interest; this vision is also affecting important trends in computer
science such as grid-based and ubiquitous computing. In this paper, we formally
define a version of the BDI agent-oriented programming language AgentSpeak
based on description logic rather than predicate logic. In this approach, the be-
lief base of an agent contains the definition of complex concepts, besides specific
factual knowledge. We illustrate the approach using examples based on the well-
known smart meeting-room scenario. The advantages of combining AgentSpeak
with description logics are: (i) queries to the belief base are more expressive as
their results do not rely only on explicit knowledge but can be inferred from the
ontology; (ii) the notion of belief update is refined given that (ontological) con-
sistency of a belief addition can be checked; (iii) retrieving a plan for handling an
event is more flexible as it is not based solely on unification but on the subsump-
tion relation between concepts; and (iv) agents may share knowledge by using
ontology languages such as OWL. Extending agent programming languages with
description logics can have a significant impact on the development of multi-
agent systems for the semantic web.

1 Introduction

Developing applications that make effective use of machine-readable knowledge
sources as promised by the Semantic Web vision is attracting much of current research
interest. More than that, semantic web technologies are also being used as the basis for
other important trends in computer science such as grid computing [13] and ubiquitous
computing [9].

Among the key components of semantic web technologies are domain ontolo-
gies [24], responsible for the specification of application-specific knowledge. As they
can be expressed logically, they can be the basis for sound reasoning in a specific do-
main. Several ontologies are being developed for specific applications [10, 12, 18, 25].
Another key component of semantic web technologies are intelligent agents, which
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should make use of the available knowledge, and interact with other agents au-
tonomously, so as to act on the user’s best interests.

In this work, we bring together these two key semantic web components by propos-
ing an extension to the BDI agent programming language AgentSpeak [22]; there has
been much work on extending this language so that it becomes a fully-fledged program-
ming language for multi-agent systems [19, 2, 6]. The AgentSpeak variant proposed
here is based on Description Logic (DL) [3] rather than classical (predicate) logic; we
shall call them AgentSpeak-DL and predicate-logic AgentSpeak (for emphasis), re-
spectively. With DL, the belief base of an AgentSpeak agent consists of the definition
of complex concepts and relationships among them, as well as specific factual informa-
tion — in DL terminology, these are called TBox and ABox respectively. To the best of
our knowledge, this is the first work to address ontological reasoning as an underlying
mechanism within an agent-oriented programming language.

Description logics are at the core of widely known ontology languages, such as the
Ontology Web Language (OWL) [17]. An extension of AgentSpeak and its interpreter
with underlying automated reasoning over ontologies expressed in such languages can
have a major impact on the development of agents and multi-agent systems that can op-
erate in the context of the semantic web. Although applications for the semantic web are
already being developed, often based on the agents paradigm, most such development
is being done on a completely ad hoc fashion as far as agent-oriented programming is
concerned. This work contributes to the development of multi-agent systems for seman-
tic web applications in a principled way. Further, ontological reasoning combined with
an agent programming language itself facilitates certain tasks involved in programming
in such languages.

The remainder of this paper is organised as follows. In Section 2, we describe the
syntax of the AgentSpeak language based on DL and we also explain briefly the main
characteristics of the particular DL used for defining ontologies in the context of this
paper. Section 3 presents the modifications that are necessary in the formal semantics
of predicate-logic AgentSpeak as a consequence of introducing ontological descrip-
tion and reasoning. Each modification in the semantics is followed by a small example
giving its intuition and illustrating the practical benefits of the proposed modification.
The examples used here are related to the well-known scenario of smart meeting-room
applications. In the final section we draw some conclusions and discuss future work.

2 The AgentSpeak-DL Language

The syntax of AgentSpeak-DL is essentially the same as the syntax of predicate-logic
AgentSpeak [8], the only difference being that in predicate-logic AgentSpeak the belief
base of an agent consists solely of ground atoms, whereas in AgentSpeak-DL the belief
base contains the definition of complex concepts, besides factual knowledge.

In order to keep the formal treatment and examples simple, in this paper we assume
ALC as the underlying description logic [4] for AgentSpeak-DL. An agent program ag
is thus given by an ontology Ont and a set ps of plans, as defined by the grammar in
Figure 1.
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ag ::= Ont ps

Ont ::= TBox ABox
TBox ::= TBoxAx1 . . . TBoxAcn (n ≥ 0)
ABox ::= at1 . . . atn (n ≥ 0)
TBoxAx ::= D1 ≡ D2 | D1 � D1

D ::= ⊥ | A | ¬D | D1 � D2 | D1 � D2 | ∀R.D | ∃R.D
at ::= A(t) | R(t1, t2)

ps ::= p1 . . . pn (n ≥ 1)
p ::= te : ct ← h
te ::= +at | −at | +g | −g
ct ::= at | ¬at | ct ∧ ct | T
h ::= a | g | u | h; h | T
g ::= !at |?at
u ::= +at | −at

Fig. 1. AgentSpeak-DL Syntax

As seen in the grammar above, an ontology consists of a TBox and an ABox. A
TBox is a set of class and property descriptions, and axioms establishing equivalence
and subsumption relationships between classes. An ABox describes the state of an ap-
plication domain by asserting that certain individuals are instances of certain classes or
that certain individuals are related by a property.

In the grammar, metavariable D represent classes; D1 ≡ D2 asserts that both classes
are equivalent, and D1 � D2 asserts that class D1 is subsumed by class D2. The definition
of classes assumes the existence of identifiers for primitive classes and properties. The
metavariable A stands for names of primitive classes (i.e., predefined classes) as well
as atomic class names chosen to identify constructed classes defined in the TBox; the
metavariable R stands for primitive properties. New classes can be defined by using cer-
tain constructors, such as � and �, for instance (� and � represent the intersection and
the union of two concepts, respectively). Metavariable t is used for (first-order) terms.

An AgentSpeak plan is formed by a triggering event — denoting the events for
which that plan should be considered relevant — followed by a conjunction of belief
literals representing a context. The context must be a logical consequence of that agent’s
current beliefs for the plan to be applicable for handling an event. The remainder of the
plan, the plan body, is a sequence of basic actions to be executed, (sub)goals that the
agent has to achieve (or test), or (internal) belief updates. The basic actions (represented
by the metavariable a in the grammar above) that can appear in a plan body denote the
pre-defined ways in which an agent is able to change its environment.

AgentSpeak distinguishes two types of goals: achievement goals and test goals.
Achievement and test goals are predicates (as for beliefs) prefixed with operators ‘!’
and ‘?’ respectively. Achievement goals state that the agent wants to achieve a state of
the world where the associated predicate is true. (In practice, these initiate the execution
of subplans.) A test goal corresponds to a query to the agent’s belief base.

Events, which initiate the execution of plans, can be internal, when a subgoal needs
to be achieved, or external, when generated from belief updates as a result of perceiving
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the environment. There are two types of triggering events that can be used in plans:
those related to the addition (‘+’) and deletion (‘-’) of mental attitudes (i.e., beliefs or
goals).

In every reasoning cycle, one of the existing events that have not been dealt with yet
is selected for being handled next. If there is an applicable plan for it (i.e., a relevant
plan whose context is satisfied), an instance of that plan becomes an “intended means”.
The agent is then committed to execute that plan, as part of one of its intentions. Also
within a reasoning cycle, one of the (possibly various) intentions of the agent is selected
for being further executed.

Throughout the paper, we illustrate the practical impact of ontological reasoning
with simple examples related to the well-known scenario of smart meeting-room appli-
cations [9]. An example of TBox components for such scenario is as follows:

presenter ≡ invitedSpeaker � paperPresenter
attendee ≡ person � registered � ¬presenter . . .

This TBox asserts that the concept presenter is equivalent to invited speaker or paper
presenter, and the concept attendee is equivalent to the concept of a registered person
who is not a presenter. Examples of elements of an ABox defined with respect to the
TBox above are:

invitedSpeaker(john)
paperPresenter(mary)

We assume that, as usual, the schedule of an academic event has slots for pa-
per presenters and for invited speakers. At the end of a presentation slot, an event
is generated indicating the next presenter, according to the schedule, is now required
for the continuation of the session. For example, at the time Mary is required to
start her presentation, a meeting-room agent would acquire (say, by communication
with the schedule agent which has sensors for detecting when a speaker leaves the

+paperPresenter(P)
: late(P)

← !reschedule(P).

+invitedSpeaker(P)
: late(P)

← !apologise;
!announce(P).

+presenter(P)
: ¬late(P)

← !announce(P).

Fig. 2. Examples of AgentSpeak plans
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stage) the belief paperPresenter(mary), which generates an event for handling
+paperPresenter(mary), a belief addition event. In Figure 2, we give examples
of AgentSpeak-DL plans to handle such “next presenter” events.

The first plan in Figure 2 says that if a presenter of a paper is late s/he is rescheduled
to the end of the session (and the session continues with the next scheduled speaker).
If an invited speaker is late, apologies are given to the audience and the speaker is
announced (this event only happens when the invited speaker actually arrives, assuming
the paper sessions must not begin before the invited talk). The third is a general plan
that announces any presenter (paperPresenter or invitedSpeaker) if s/he is
not late.

We now proceed to discuss the implications, to the formal semantics, of incorporat-
ing ontologies in AgentSpeak.

3 Semantics of AgentSpeak-DL

The reasoning cycle of an AgentSpeak agent follows a sequence of steps. The graph
in Figure 3 shows all possible transitions between the various steps in an agent’s rea-
soning cycle (the labels in the nodes name each step in the cycle). The set of labels
used is {ProcMsg, SelEv, RelPl, ApplPl, SelAppl, AddIM, SelInt, ExecInt, ClrInt}; they
stand for, respectively: processing communication messages, selecting an event from
the set of events, retrieving all relevant plans, checking which of those are applicable,
selecting one particular applicable plan (the intended means), adding the new intended
means to the set of intentions, selecting an intention, executing the selected intention,
and clearing an intention or intended means that may have finished in the previous step.

In this section we present an operational semantics for AgentSpeak-DL that for-
malises some of the possible transitions depicted in the reasoning cycle of Figure 3.
However, we concentrate here on the formalisation of the steps that required changes to
accommodate the DL extensions. Operational semantics [21] is a widely used method
for giving semantics to programming languages and studying their properties.

The semantic rules for the steps in the reasoning cycle are essentially the same in
AgentSpeak-DL as for predicate-logic AgentSpeak, with the exception of the following
aspects that are affected by the introduction of ontological reasoning:

– plan retrieval and selection: performed in the steps responsible for collecting rele-
vant and applicable plans, and selecting one plan among the set of applicable plans
(steps RelPl, ApplPl, and SelAppl of Figure 3, respectively);

RelPl SelAppl

AddIMSelIntClrInt ExecInt

SelEv ApplPlProcMsg

Fig. 3. Transitions between Reasoning Cycle Steps
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– querying the belief base: performed in step ExecInt of Figure 3); and
– belief updating: also performed in step ExecInt of Figure 3).

A complete version of an operational semantics for AgentSpeak is given in [8]. For
this reason, in this work we give only the semantic rules of AgentSpeak-DL that are
different from their counterparts in the operational semantics of AgentSpeak.

3.1 Configuration of the Transition System

The operational semantics is given by a set of rules that define a transition relation
between configurations 〈ag, C, T, s〉 where:

– An agent program ag is, as defined above, a set of beliefs and a set of plans.
Note that in predicate-logic AgentSpeak, the set of beliefs is simply a collection
of ground atoms. In AgentSpeak-DL the belief base is an ontology.

– An agent’s circumstance C is a tuple 〈I, E, A〉 where:
• I is a set of intentions {i, i′, . . .}. Each intention i is a stack of partially instan-

tiated plans.
• E is a set of events {(te, i), (te′, i′), . . .}. Each event is a pair (te, i), where te is

a triggering event and i is an intention (the particular intention that generated
an internal event, or the empty intention � in case of an external event).

• A is a set of actions that the agent has chosen for execution; the agent’s effector
will change the environment accordingly.

– It helps in giving the semantics to use a structure T which keeps track of temporary
information that is required in subsequent steps of the reasoning cycle; however,
such information is only used within a single reasoning cycle. T is used to denote a
tuple 〈R, Ap, ι, ε, ρ〉 with the required temporary information; it has as components:
(i) R for the set of relevant plans (for the event being handled); (ii) Ap for the set of
applicable plans (the subset of relevant plans whose context are true), and (iii) ι, ε,
and ρ keep record of a particular intention, event and applicable plan (respectively)
being considered along the execution of a reasoning cycle.

– The current step s within an agent’s reasoning cycle is annotated by labels s ∈
{SelEv, RelPl, ApplPl, SelAppl, AddIM, SelInt, ExecInt,
ClrInt} (as seen in Figure 3).

In the general case, an agent’s initial configuration is 〈ag, C, T, SelEv〉, where ag is
as given by the agent program, and all components of C and T are empty. In order to
keep the semantic rules elegant, we adopt the following notation:

– If C is an AgentSpeak agent circumstance, we write CE to make reference to com-
ponent E of C. Similarly for all the other components of a configuration of the
transition system.

– We write i[p] to denote the intention formed by pushing plan p on top of intention i.

3.2 Retrieving and Selecting Plans in AgentSpeak-DL

The reasoning cycle of an agent can be better understood by assuming that it starts with
the selection of an event from the set of events (this step assumes the existence of a se-
lection function SE). The next step in the reasoning cycle is the search for relevant plans
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for dealing with the selected event. In the semantics of predicate-logic AgentSpeak, this
is formalised by the following rules.

Rule Rel1 below initialises the R component of T with the set of relevant plans
determined by the auxiliary function RelPlans (which is formally defined below), and
sets the reasoning cycle to the step (ApplPl) that determines the applicable plans among
those in the R component.

Tε = 〈te, i〉 RelPlans(agps, te) 	= {}
〈ag, C, T, RelPl〉 −→ 〈ag, C, T ′, ApplPl〉

where: T ′
R = RelPlans(agps, te)

(Rel1)

Tε = 〈te, i〉 RelPlans(agps, te) = {}
〈ag, C, T, RelPl〉 −→ 〈ag, C, T, SelEv〉

(Rel2)

If there are no relevant plans for an event, it is simply discarded and, with it, the
associated intention. In this case the cycle starts again with the selection of another
event from the set of events (rule Rel2). If there are no pending events to handle, the
cycle skips to the intention execution step.

In predicate-logic AgentSpeak, a plan is considered relevant in relation to an event if
it has been written to deal specifically with that event (as stated by the plan’s triggering
event). In practice, this is checked in predicate-logic AgentSpeak by trying to unify the
triggering event part of the plan with the event that has been selected, from the set of
events E, for begin handled during this reasoning cycle.

The auxiliary function RelPlans for predicate-logic AgentSpeak is then defined as
follows (below, if p is a plan of the form te : ct ← h, we define TrEv(p) = te).

Definition 1. Given the plans ps of an agent and a selected event 〈te, i〉, the set
RelPlans(ps, te) of relevant plans for that event is defined as follows:

RelPlans(ps, te) = {(p, θ) | p ∈ ps and

θ is a mgu s.t. teθ = TrEv(p)θ}.

It is important to remark that, in predicate-logic AgentSpeak, the key mechanism used
for searching relevant plans in the agent’s plan library is unification. This means that
the programmer has to write specific plans for each possible type of event. The only
degree of generality is obtained by the use of variables in the triggering event of plans.

When ontological reasoning is added (instead of using unification only), a plan is
considered relevant in relation to an event not only if it has been written specifically to
deal with that event, but also if the plan’s triggering event has a more general relevance,
in the sense that it subsumes the actual event. In practice, this is checked by: (i) finding
a plan whose triggering event predicate is related (in the ontology) by subsumption or
equivalence relations to the predicate in the event that has been selected for handling;
and (ii) unifying the terms that are arguments for the event and the plan’s triggering
event.
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In the formal semantics of AgentSpeak-DL, rules Rel1 and Rel2 still apply, but the
auxiliary function RelPlans for AgentSpeak-DL has to be redefined as follows (recall
that D is a metavariable for classes of an ontology):

Definition 2. Given plans ps and ontology Ont of an agent, and an event 〈∗A1(t), i〉
where ∗ ∈ {+, −, +!, +?, −!, −?}, the set RelPlans(Ont, ps, ∗A1(t)) is a set of pairs
(p, θ) such that p ∈ ps, with TrEv(p) = ∗′ A2(t′), such that

– ∗ = ∗′
– θ = mgu(t, t′)
– Ont |= A1 � A2 or Ont |= A1 ≡ A2

As an example, let us consider the case of checking for plans that are relevant for a
particular event in the smart meeting-room scenario. Suppose that the application de-
tects that the next slot is allocated to the invited speaker john. This causes the addition
of the external event 〈+invitedSpeaker(john), �〉 to the set of events. Recall that
invitedSpeaker � presenter can be inferred from the ontology. With this, and given
Definition 2, the plan with triggering event +presenter(X) is also considered relevant
for dealing with that event (see Figure 2). Observe that using subsumption instead of
unification alone as the mechanism for selecting relevant plans results in a potentially
larger set of plans than in predicate-logic AgentSpeak.

A plan is applicable if it is relevant and its context is a logical consequence of the
agent’s beliefs. Rules Appl1 and Appl2 formalise the step of the reasoning cycle that
determines the applicable plans from the set of relevant plans.

AppPlans(agbs, TR) 	= {}
〈ag, C, T, ApplPl〉 −→ 〈ag, C, T ′, SelAppl〉

where: T ′
Ap = AppPlans(agbs, TR)

(Appl1)

AppPlans(agbs, TR) = {}
〈ag, C, T, ApplPl〉 −→ 〈ag, C, T, SelInt〉

(Appl2)

Rule Appl1 initialises the TAp component with the set of applicable plans; Appl2 is
the rule for the case where there are no applicable plans (to avoid discussing details
of a possible plan failure handling mechanism, we assume the event is simply dis-
carded). Both rules depend on the auxiliary function ApplPlans, which for predicate-
logic AgentSpeak has been defined as follows (note that bs was originally the agent’s
set of beliefs, which now has been replaced by an ontology).

Definition 3. Given a set of relevant plans R and the beliefs bs of an agent, the set of
applicable plans AppPlans(bs, R) is defined as follows:

AppPlans(bs, R) = {(p, θ′ ◦ θ) | (p, θ) ∈ R and

θ′ is s.t. bs |= Ctxt(p)θθ′}.
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Observe that the context of a plan is a conjunction of literals and, as the belief base is
formed by a set of ground atomic formulæ only, the problem of checking if the plan’s
context is a logical consequence of the belief base reduces to the problem of checking
membership (or otherwise, for default negation) of context literals to the set of beliefs
while finding an appropriate unifier.

In AgentSpeak-DL, a plan is applicable if it is relevant and its context can be inferred
from the whole ontology forming the belief base. A plan’s context is a conjunction of
literals; a literal l is either A(t) or ¬A(t). We can say that Ont |= l1 ∧ . . .∧ ln if, and only
if, Ont |= li for i = 1 . . . n. The auxiliary function for checking, from a set of relevant
plans, which ones are applicable is then formalised below. Again, because the belief
base is structured and that reasoning is based on ontological knowledge rather than
just straightforward variable instantiation, the resulting set of applicable plans might be
larger than in predicate-logic AgentSpeak.

Definition 4. Given a set of relevant plans R and ontology Ont of an agent, the set of
applicable plans AppPlans(Ont, R) is defined as follows:

AppPlans(Ont, R) = {(p, θ′ ◦ θ) | (p, θ) ∈ R and

θ′ is s.t. Ont |= Ctxt(p)θθ′}.

More than one plan can be considered applicable for handling an event at a given mo-
ment in time. Rule SelAppl in the formal semantics of predicate-logic AgentSpeak
assumes the existence of a (given, application-specific) selection function SAp that se-
lects a plan from a set of applicable plans TAp. The selected plan is then assigned to the
Tρ component of the configuration indicating, for the next steps in the reasoning cycle,
that an instance of this plan has to be added to the agent’s intentions.

SAp(TAp) = (p, θ)
〈ag, C, T, SelAppl〉 −→ 〈ag, C, T ′, AddIM〉

where: T ′
ρ = (p, θ)

(SelAppl)

In predicate-logic AgentSpeak, users define the applicable plan selection function
(SAp) in a way that suits that particular application. For example, if in a certain domain
there are known probabilities of the chance of success, or resulting quality of achieved
tasks, associated with various plans, this can be easily used to specify such function.
However, note that, in predicate-logic AgentSpeak, the predicate in the triggering event
of all the plans in the set of applicable plans are exactly the same.

On the contrary, in AgentSpeak-DL, because of the way the relevant and applicable
plans are determined, it is possible that plans with triggering events +presenter(P)
and +invitedSpeaker(P) are both considered relevant and applicable for handling an
event 〈+invitedSpeaker(john), �〉. The function SAp in rule SelAppl, could be used
to select, for example, the the least general plan among those in the set of applicable
plans. To allow this to happen, the semantic rule has to be slightly modified so as to
include, as argument to SAp, the event that has triggered the search for a plan (see rule
SelApplOnt below). In the example we are using, the selected plan should be the one
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with triggering event +invitedSpeaker as probably this plan has been written to
deal more specifically with the case of invited speakers, rather than the more general
plan which can be used for other types of presenters as well. On the other hand, if
the particular plan for invited speakers that we have in the example is not applicable
(because s/he is not late), instead of the agent not acting at all for lack of applicable
plans, the more general plan for presenters can then be used.

Tε = 〈te, i〉 SAp(TAp, te) = (p, θ)
〈ag, C, T, SelAppl〉 −→ 〈ag, C, T ′, AddIM〉

where: T ′
ρ = (p, θ)

(SelApplOnt)

Events can be classified as external or internal (depending on whether they were
generated from the agent’s perception of the environment, or whether they were gen-
erated by goal additions during the execution of other plans, respectively). If the event
being handled in a particular reasoning cycle is external, a new intention is created and
its single plan is the plan p assigned to the ρ component in the previous steps of the
reasoning cycle. If the event is internal, rule IntEv (omitted here) states that the plan in
ρ should be pushed on top of the intention associated with the given event. Rule ExtEv
creates a new intention (i.e., a new focus of attention) for an external event.

3.3 Intention Execution: Querying the Belief Base

The next step, after updating the set of intentions as explained above, uses an agent-
specific function (SI) that selects the intention to be executed next (recall that an in-
tention is a stack of plans). When the set of intentions is empty, the reasoning cycle
is simply restarted. The plan to be executed is always the one at the top of the inten-
tion that has been selected. Agents can execute actions, achievement goals, test goals,
or belief base updates (by adding or removing “internal beliefs”, as opposed to those
resulting from perception of the environment).

Both the execution of actions and the execution of achievement goals are not affected
by the introduction of ontological reasoning, so their semantics are exactly the same as
their counterparts in predicate-logic AgentSpeak. The execution of actions, from the
point of view of the AgentSpeak interpreter, reduces to instructing other architectural
components to perform the respective action so as to change the environment. The ex-
ecution of achievement goals adds a new internal event to the set of events. That event
will be selected at a later reasoning cycle, and handled as explained above.

The evaluation of a test goal ?at, however, is more expressive in AgentSpeak-DL
than in predicate-logic AgentSpeak. In predicate-logic AgentSpeak, the execution of
a test goal consists in testing if at is a logical consequence of the agent’s beliefs. The
Test auxiliary function defined below returns a set of most general unifiers, all of which
make the formula at a logical consequence of a set of formulæ bs.

Definition 5. Given a set of formulæ bs and a formula at, the set of substitutions
Test(bs, at) produced by testing at against bs is defined as follows:

Test(bs, at) = {θ | bs |= atθ}.
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This auxiliary function is then used in the formal semantics by rules Test1 and Test2
below. If the test goal succeeds (rule Test1), the substitution is applied to the whole
intended means, and the reasoning cycle can carry on. If that is not the case, in recent
extensions of AgentSpeak it may be the case that the test goal is used as a triggering
event of a plan, which is used by programmers to formulate more sophisticated queries1.
Rule Test2 is used in such case: it generates an internal event, which may eventually
trigger the execution of a plan (explicitly created to carry out a complex query).

Tι = i[head ←?at;h] Test(agbs, at) 	= {}
〈ag, C, T, ExecInt〉 −→ 〈ag, C, T, ClrInt〉

where: C′
I = (CI \ {Tι}) ∪ {(i[head ← h])θ}

θ ∈ Test(agbs, at)

(Test1)

Tι = i[head ←?at;h] Test(agbs, at) = {}
〈ag, C, T, ExecInt〉 −→ 〈ag, C, T, ClrInt〉

where: C′
E = CE ∪ {〈+?at, i[head ← h]〉}

C′
I = CI \ {Tι}

(Test2)

In AgentSpeak-DL, the semantic rules for the evaluation of a test goal ?A(t) are
exactly as the rules Test1 and Test2 above. However, the function Test used to check
whether the formula A(t) is a logical consequence of the agent’s belief base, which is
now based on an ontology, needs to be changed. The auxiliary function Test is redefined
as follows:

Definition 6. Given a set of formulæ Ont and a formula ?at, the set of substitutions
Test(Ont, at) is given by

Test(Ont, at) = {θ | Ont |= atθ}.

Observe that this definition is similar to the definition of the auxiliary function Test
given for predicate-logic AgentSpeak. The crucial difference is that now the reasoning
capabilities of description logic allows agents to infer knowledge that is implicit in the
ontology. As an example, suppose that the agent’s belief base does not refer to instances
of attendee, but has instead the facts invitedSpeaker(john) and paperPresenter(mary).
A test goal such as ?attendee(A) succeeds in this case producing substitutions that map
A to john and to mary.

3.4 Belief Updating

In predicate-logic AgentSpeak, the addition or deletion of internal beliefs has no further
implications apart from a possible new event to be included in the set of events E (as for

1 Note that this was not clear in the original definition of AgentSpeak(L). In our work on exten-
sions of AgentSpeak we have given its semantics in this way as it allows a complex plan to be
used for determining the values to be part of the substitution resulting from a test goal (rather
than just retrieving specific values previously stored in the belief base).
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belief update from perception of the environment, events are generated whenever be-
liefs are added or removed from the belief base). Rule AddBel below formalises belief
addition in predicate-logic AgentSpeak: the formula +b is removed from the body of
the plan and the set of intentions is updated accordingly. In practice, this mechanism for
adding and removing internal beliefs allow agents to have “mental notes”, which can
be useful at times (for practical programming tasks). These beliefs should not normally
be confused with beliefs acquired from perception of the environment.

In the rules below, notation bs′ = bs + b means that bs′ is as bs except that bs′ |= b.

Tι = i[head ← +b;h]
〈ag, C, T, ExecInt〉 −→ 〈ag′, C′, T, ClrInt〉

where: ag′bs = agbs + b
C′

E = CE ∪ {〈+b, T〉}
C′

I = (CI \ {Tι}) ∪ {i[head ← h]}

(AddBel)

In predicate-logic AgentSpeak, the belief base consists solely of ground atomic for-
mulæ so ensuring consistency is not a major task. In AgentSpeak-DL, however, belief
update is more complicated than in predicate-logic AgentSpeak. The agent’s ABox con-
tains class assertions A(t) and property assertions R(t1, t2). The representation of such
information should, of course, be consistent with its TBox.

In AgentSpeak-DL, the addition of assertions to the agent’s ABox is only allowed
if the ABox resulting of such addition is consistent with the TBox (i.e., if adding the
given belief to the ontology’s ABox2 maitains consistency). Approaches for checking
consistency of an ABox with respect to a TBox are discussed in detail in [4]. The
semantic rule AddBel has to be modified accordingly:

Tι = i[head ← +b;h] agOnt ∪ {b} is consistent

〈ag, C, T, ExecInt〉 −→ 〈ag′, C′, T, ClrInt〉

where: ag′
Ont = agOnt ∪ {b}

C′
E = CE ∪ {〈+b, T〉}

C′
I = (CI \ {Tι}) ∪ {i[head ← h]}

(AddBelOnt1)

There is a similar rule for belief deletions (i.e., a formula such as −at in a plan body),
but it is trivially defined based on the one above, so we do not include it explicitly here.

Expanding on the smart meeting-room example, assume that the TBox is such that
the concepts chair and bestPaperWinner are disjoint. Clearly, if the ABox asserts that
chair(mary), the assertion bestPaperWinner(mary) cannot simply be added to it, as
the resulting belief base would become inconsistent. The rule bellow formalises the
semantics of AgentSpeak-DL for such cases.

2 In the AddBelOnt rules below, we assume that the union operation applied to an ontology
〈TBox1, ABox1〉 and an ABox ABox2 would result in an ontology 〈TBox1, ABox1 ∪ ABox2〉,
as expected.
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Tι = i[head ← +b;h]
agOnt ∪ {b} is not consistent
(adds, dels) = BRF(agOnt, b)

〈ag, C, T, ExecInt〉 −→ 〈ag′, C′, T, ClrInt〉

where: ag′Ont = (agOnt ∪ adds) \ dels
C′

E = CE ∪ {〈+b′, T〉 | b′ ∈ adds}
∪ {〈−b′′, T〉 | b′′ ∈ dels}

C′
I = (CI \ {Tι}) ∪ {i[head ← h]}

(AddBelOnt2)

According to this rule, a belief revision function (BRF) is responsible for determin-
ing the necessary modifications in the belief base as a consequence of attempting to
add a belief that would cause ontological inconsistency. Given an ontology and a be-
lief atom, this function returns a pair of sets of atomic formulæ that were, respectively,
added (adds) and deleted (dels) to/from the belief base. Belief revision is a complex
subject and clearly outside the scope of this paper; see [1] for an interesting (tractable)
approach to belief revision.

The rules above are specific to the addition of beliefs that arise from the execution
of plans. Recall that these are used as mental notes that the agent uses for its own pro-
cessing. However, the same BRF function is used when beliefs need to be added as a
consequence of perception of the environment. In the general case, whenever a belief
needs to be added to the belief base, a belief revision function should be able to de-
termine whether the requested belief addition will take place and whether any belief
deletions are necessary so that the addition can be carried out and consistency main-
tained. Note that the precise information on resulting additions and deletions of beliefs
are needed by the AgentSpeak interpreter so that the necessary (external) events are
generated, hence the signature of the BRF function as defined above, and the relevant
events added to CE in rule AddBelOnt2.

The reasoning cycle finishes by removing from the set of intentions an intended
means or a whole intention that has been executed to completion. There are no changes
in those rules of the original semantics as a consequence of the extensions presented in
this paper.

4 Conclusions and Future Work

This paper has formalised the changes in the semantics of AgentSpeak that were re-
quired for combining agent-oriented programming with ontological reasoning. The
main improvements to AgentSpeak resulting from the variant based on a description
logic are: (i) queries to the belief base are more expressive as their results do not de-
pend only on explicit knowledge but can be inferred from the ontology; (ii) the notion
of belief update is refined so that a property about an individual can only be added if
the resulting ontology-based belief base would preserve consistency (i.e., if the ABox
assertion is consistent with the concept descriptions in the TBox); (iii) retrieving a plan
(from the agent’s plan library) that is relevant for dealing with a particular event is more
flexible as this is not based solely on unification, but also on the subsumption rela-
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tion between concepts; and (iv) agents may share knowledge by using web ontology
languages such as OWL.

With this paper, we hope to have contributed towards showing that extending an
agent programming language with the descriptive and reasoning power of description
logics can have a significant impact in the way agent-oriented programming works
in general, and in particular for the development of semantic web applications using
the agent-oriented paradigm. In fact, this extension makes agent-oriented programming
more directly suitable for other application areas that are currently of major interest
such as grid and ubiquitous computing. It also creates perspectives for elaborate forms
of agent migration, where plans carefully written to use (local) ontological descriptions
can ease the process of agent adaptation to different societies [11].

Clearly, the advantages of the more sophisticated reasoning that is possible using on-
tologies also represent an increase in the computational cost of running agent programs.
The trade-off between increased expressive power and possible decrease in computa-
tional efficiency in the context of this work has not been considered as yet, and remains
future work.

Also as future work, we aim at incorporating other ongoing activities related to
agent-oriented programming and semantic web technologies into AgentSpeak-DL. To
start with, we plan to improve the semantics of AgentSpeak-DL, to move from the sim-
ple ALC used here to more expressive DLs such as those underlying OWL Lite and
OWL DL [16]. The idea is to allow AgentSpeak-DL agents to use ontologies written in
OWL, so that applications written in AgentSpeak-DL can be deployed on the Web and
interoperate with other semantic web applications based on the OWL W3C standard
(http://www.w3.org/2004/OWL/).

An interpreter for predicate-logic AgentSpeak called Jason [7] is available open
source (http://jason.sourceforge.net). An AgentSpeak-DL interpreter is
currently being implemented on top of Jason, based on the formalisation presented
here. Jason is in fact an implementation of a much extended version of AgentSpeak. It
has various available features which are relevant for developing an AgentSpeak-DL in-
terpreter. Particularly, it implements the operational semantics of AgentSpeak as defined
in [8], thus the semantic changes formalised in Section 3 can be directly transferred to
the Jason code. However, Jason’s inference engine needs to be extended to incorporate
ontological reasoning, which can be done by existing software such as those described
in [14, 20, 15]. We are currently considering the use of RACER [14] in particular for
extending Jason so that belief bases can refer to OWL ontologies.

Another of our planned future work is the integration of AgentSpeak-DL with
the AgentSpeak extension presented in [19], which gives semantics to speech-act-
based communication between AgentSpeak agents. In such integrated approach,
agents in a society can refer to specific TBox components when exchanging mes-
sages. Another relevant feature provided by Jason is that predicates have a (generic)
list of “annotations”; in the context of this work, we can use that mechanism
to specify the particular ontology to which each belief refers. For example, the
fact that an agent ag1 has informed another agent ag2 about a belief p(t)
as defined in a given ontology ont can be expressed in ag2’s belief base as
p(t)[source(ag1),ontology("http://.../ont")].

http://www.w3.org/2004/OWL/
http://jason.sourceforge.net
p(t)[source(ag1),ontology("http://.../ont")]
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An interesting issue associated with ontologies is that of how different ontologies
for the same domain can be integrated. Recent work reported in [5] has proposed the
use of type theory in order to both detect discrepancies among ontologies as well as
align them. We plan to investigate the use of type-theoretic approaches to provide
our ontology-based agent-oriented programming framework with techniques for cop-
ing with ontological mismatch.

Although the usefulness of combining ontological reasoning within an agent-
oriented programming language seems clear (e.g., from the examples and discussions
in this paper), the implementation of practical applications are essential to fully support
such claims. This is also planned as part of our future work.
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