
Larger Automata and Less Work
for LTL Model Checking

Jaco Geldenhuys1 and Henri Hansen2

1 Department of Computer Science, Stellenbosch University,
Private Bag X1, 7602 Matieland, South Africa

jaco@cs.sun.ac.za
2 Institute of Software Systems, Tampere University of Technology,

PO Box 553, FI-33101 Tampere, Finland
hansen@cs.tut.fi

Abstract. Many different automata and algorithms have been inves-
tigated in the context of automata-theoretic LTL model checking. This
article compares the behaviour of two variations on the widely used Büchi
automaton, namely (i) a Büchi automaton where states are labelled with
atomic propositions and transitions are unlabelled, and (ii) a form of test-
ing automaton that can only observe changes in state propositions and
makes use of special livelock acceptance states. We describe how these
variations can be generated from standard Büchi automata, and outline
an SCC-based algorithm for verification with testing automata.

The variations are compared to standard automata in experiments
with both random and human-generated Kripke structures and LTL X

formulas, using SCC-based algorithms as well as a recent, improved ver-
sion of the classic nested search algorithm. The results show that SCC-
based algorithms outperform their nested search counterpart, but that
the biggest improvements come from using the variant automata.

Much work has been done on the generation of small automata, but
small automata do not necessarily lead to small products when combined
with the system being verified. We investigate the underlying factors for
the superior performance of the new variations.

1 Introduction

The automata-theoretic approach to model checking is based on the correspon-
dence between temporal logic, automata and formal languages. Checking that a
system S complies with a temporal logic correctness formula entails the appli-
cation of two algorithms: the first to translate a formula φ to an ω-automaton
(on infinite words), and the second to determine whether the intersection of this
automaton and a similar automaton derived directly from S accepts only the
empty language. It comes as no surprise that since this approach was first pro-
posed, the use of many different kinds of automata has been investigated, and
several variations on the two algorithms have been proposed; some of this work
is mentioned in Section 2.

A. Valmari (Ed.): SPIN 2006, LNCS 3925, pp. 53–70, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

54 J. Geldenhuys and H. Hansen

It is probably accurate to say that most of the research in this field is based
on Büchi automata with propositional formulas on transitions. We shall refer to
this standard form as transition-labelled. In this work we study two variations
on this theme. First, in Section 3, we consider Büchi automata where the states
carry propositional formulas and the transitions are unlabelled — we shall refer
to these as state-labelled Büchi automata. The second form, the so-called testing
automaton described in Section 4, is a modification that accommodates stutter-
ing in a more natural way. In addition to the standard acceptance states, testing
automata also feature livelock accepting states.

The work on testing automata is based on the results of [21]. There the
authors defined another, slightly more complicated form of testing automaton
and showed that they are more often deteministic than state-labelled Büchi
automata. We extend this work in two important ways: we show how to construct
our form of testing automata and provide an SCC-based algorithm for on-the-fly
verification with them.

In Section 5, we compare the amount work required for on-the-fly verifi-
cation using two different algorithms for transition- and state-labelled Büchi
automata and our new algorithm for testing automata. It turns out that, in our
experiments, the new variations were considerably more efficient in terms of the
number of states and transitions they explore. An important part of the contri-
bution of this paper comes in Section 6, where we discuss exactly how and when
the differences in performance occur and attempt to explain why this is so. Our
conclusions are presented in Section 7.

2 Background and Related Work

The connection between temporal logic and formal languages has been a topic
of research since the 1960’s [3, 23, 26]; a short but excellent overview of the
development of this work and its relation to model checking is [25, Section 1.3].
The potential benefits of an automata-theoretic approach to model checking was
first pointed out by Wolper in [35], and Wolper, Vardi, and Sistla in [36].

Our definitions of Kripke structures and Büchi automata are standard but,
for the sake of later work, we state them explicitly. From here on we use P to
denote a finite set of atomic propositions.

A Kripke structure [24] over P is a tuple M = (S, I, L, R) where S is a finite
set of states, I ⊆ S is the set of initial states, L : S → 2P is a labelling function
that maps each state s to the set of atomic propositions that are true in s, and
R ⊆ S × S is the transition relation. We assume that R is total. An execution
path or run of M is an infinite sequence of states r = s1s2s3 . . . ∈ Sω such that
s1 ∈ I and (si, si+1) ∈ R for all i ≥ 1.

A Büchi automaton [4] over an alphabet K is a tuple A = (S, I, R, F) where
S is a finite set of states, I ⊆ S is the set of initial states, R ⊆ S × 2K × S is
the transition relation, and F ⊆ S is a set of acceptance states. Because sets of
symbols of the alphabet appear on the transitions, we shall refer to this form as
a transition-labelled Büchi automaton (TLBA).

Larger Automata and Less Work for LTL Model Checking 55

Each word accepted by A is an infinite sequence of symbols from K. A run
of the automaton over a word w = k1k2 . . . ∈ Kω is an infinite sequence of states
r = s1s2 . . . ∈ Sω such that s1 ∈ I and for all i ≥ 1 there exists a Ki ⊆ K such
that ki ∈ Ki and (si, Ki, si+1) ∈ R . The set of states that occur infinitely often
in run r is denoted by inf (r) (and clearly inf (r) ⊆ S), and the run is accepting
if and only if inf (r) ∩ F �= ∅.

When Büchi automata are used for verification we shall use K = 2P . This is
interpreted in such a way that if f is a propositional logic formula over P , and
P = {P1, . . . , Pn} ⊆ 2P is the set of all models of f (in other words, Pi ∈ P
if and only if Pi |= f), then we use (s, f, s′) and (s, P, s′) interchangeably as
members of R.

2.1 Construction of Büchi Automata

An early algorithm for converting LTL formulas to Büchi automata was de-
scribed by Vardi and Wolper in [34], but unfortunately it always produced au-
tomata with 2O(n) states, where n is the number of subformulas of the LTL
formula. A more practical algorithm is [18], on which many later improvements
are based. The basic idea is a two-step approach that first translates the input
formula to a generalized Büchi automaton, which is then turned into a (standard)
Büchi automaton using the flag construction due to Choueka [5].

A general class of improvements is based on rewriting rules to simplify the
LTL formula before any automaton is constructed, and several ad hoc heuris-
tics have been proposed to simplify the final automaton. Several groups have
proposed improvements based on different procedures for computing covering
sets [9, 28], while others have concentrated on reducing the final automaton us-
ing simulations [12, 13, 14, 20, 29].

Gastin and Oddoux have investigated the use of very weak alternating au-
tomata as an intermediate form to improve both the size of the final Büchi
automata and the speed of their generation [16]; this approach is not especially
relevant to our work, but we shall make use of their tool for our experiments.

2.2 Verification with Büchi Automata

A Kripke structure M satisfies a specification φ if all its executions are allowed
by the specification. This is equivalent to checking that none of M ’s executions
satisfy ¬φ. The automata-theoretic approach therefore consists of constructing
a Büchi automaton A¬φ, computing its product with M , and checking that it is
empty, in other words, checking that no execution of M violates φ. Although it
is possible to first express M itself as a Büchi automaton, the product of M and
A¬φ can be defined more directly as follows.

Let F = {propositional formulas over P}, and let M = (SM , IM , LM , RM)
be a Kripke structure over P , and A¬φ = (SA, IA, RA, FA) a TLBA over 2P .
Then the product of M and A¬φ, denoted M ‖ A¬φ, is a triple (S, R, I), where

56 J. Geldenhuys and H. Hansen

0 p
��

��
2 p

��

��

1 ∅
��

��
3 ∅

��

��
���
���

���

��

��

���

	

���

Kripke structure M

(a)

0
��

��
�
� true

1
��

��

��

���
� p

	

p

Büchi automaton A¬φ

0,0
��

��

1,0
��

��

2,0
��

��

3,0
��

��

���
1,1

��

��

��

��
���

2,1
��

��

��

��
�

��
3,1

��

��

��

��
	

���
���

���

��

��

���

	

���

M ‖ A¬φ

(b)

0 p
��

��
�
�

1 ∅
��

��
�
�

2 p
��

��

��

���
�

���

��

��

���

���

���

	

	

State-labelled
Büchi automaton B¬φ

0,0
��

��

1,1
��

��

2,0
��

��

3,1
��

��

���
2,2

��

��

��

��

���
���

���

��

��

���

	

���

�������

M ‖ B¬φ

(c)

0
��

��
�

�

�

�

�
�
���

�
�

�

�

�

�

�

�

�

�
�
� � �
�
�

�

�

�

1
��

��

���

��

��

���

	p

	∅

p p

Testing automaton C¬φ

0,0
��

��
�

�

�

�

�
�
���

�
�

�

�

�

�

�

�

�

�
�
� � �
�
�

�

�

�

1,1
��

��

2,0
��

��
�

�

�

�

�
�
���

�
�

�

�

�

�

�

�

�

�
�
� � �
�
�

�

�

�

3,1
��

��
���
���

���

��

��

���

	

���

M ‖ C¬φ

Fig. 1. Examples of automata and products for verifying φ = ��¬p

Larger Automata and Less Work for LTL Model Checking 57

– S = SM × SA is the set of states,
– R ⊆ S × S is the transition relation where ((s, a), (s′, a′)) ∈ R if and only if

(s, s′) ∈ RM ∧ ∃f ∈ F : (a, f, a′) ∈ RA ∧ LM (s) |= f, and
– I ⊆ IM × IA is the set of initial states.

A run of the product is an infinite sequence of states (s1, a1)(s2, a2) . . . such
that (s1, a1) ∈ I and ((si, ai), (si+1, ai+1)) ∈ R for all i ≥ 1. A counterexample
for φ in the product is a run such that a1a2 . . . is an accepting run of A¬φ.

An example of a Kripke structure, Büchi automaton, and their product is
shown in Figure 1. Each state of the Kripke structure (at the top of the figure) is
numbered and labelled with the set of atomic propositions that hold in the state.
In this example, P = {p}. The initial state is indicated by the sourceless arrow
that points to the top left state. The accepting state of the Büchi automaton,
shown in (a), is indicated by a double circle. The states of the product are
labeled with (Kripke state,Büchi state) pairs and those state where the Büchi
automaton is in an accepting state is similarly indicated by a double circle.

Arguably the most popular on-the-fly algorithm for computing the product
automaton and detecting accepting cycles is a nested depth-first search algo-
rithm first proposed by Courcoubetis, Vardi, Wolper and Yannakasis in 1990 [6].
Subsequent improvements [15, 19, 22, 27] has not only made it compatible with
partial-order methods, but has also led to a significant reduction in the number
of states and transitions it needs to explore. The core algorithm has also been
adapted for use with generalized Büchi automata [32] and heuristic search [2, 11].
Recent work has looked again at the use of strongly connected component (SCC)
algorithms for both standard and generalized Büchi automata [7, 8, 17, 27]; the
algorithm we describe in Section 4.2 is based on one such.

3 State-Labelled Büchi Automata

A state-labelled Büchi automaton (SLBA) over an alphabet K is a tuple B =
(S, I, U, R, F) where S is a finite set of states, I ⊆ S is the set of initial states,
U : S → K maps each state to a symbol of the alphabet, R ⊆ S × S is the
transition relation, and F ⊆ S is a set of acceptance states.

A run of the automaton over a word w = k1k2 . . . ∈ Kω is an infinite sequence
of states r = s1s2 . . . ∈ Sω such that s1 ∈ I and (si, si+1) ∈ R and U(si) = ki

for all i ≥ 1. As for TLBAs, a run r is accepting if and only if inf (r) ∩ F �= ∅.

3.1 Construction of State-Labelled Büchi Automata

The conversion from a TLBA to an SLBA is straightforward. Given a TLBA
A = (SA, IA, RA, FA) over K, the equivalent SLBA is B = (SB , IB, UB, RB, FB)
where

– SB = SA × K, IB = IA × K, FB = FA × K,
– UB maps each state to its second component, so that UB((s, k)) = k, and
– RB is such that ((s1, k1), (s2, k2)) ∈ RB if and only if (s1, k, s2) ∈ RA for

some k ∈ 2K , and k2 ∈ k, and k1 is any element of K.

58 J. Geldenhuys and H. Hansen

Some states of B may not be reachable from an initial state and can be
eliminated. Isomorphic copies of subautomata of B can also be removed using
an algorithm such as partition refinement. Other, more intricate optimizations
are also possible but we do not focus on them here.

3.2 Verification with State-Labelled Büchi Automata

Let M = (SM , IM , LM , RM) be a Kripke structure over P , and let B¬φ =
(SB, IB , UB, RB , FB) be an SLBA over K = 2P . Then the product of M and
B¬φ, denoted M ‖ B¬φ, is a triple (S, R, I), where

– S = SM × SB is the set of states,
– R ⊆ S × S is the transition relation where ((s, b), (s′, b′)) ∈ R if and only if

(s, s′) ∈ RM ∧ (b, b′) ∈ RB ∧ LM (s′) = UB(b′), and
– I ⊆ IM × IB are initial states where (s, b) ∈ I if and only if LM (s) = UB(b).

A run of the product is an infinite sequence of states (s1, b1)(s2, b2) . . . such
that (s1, b1) ∈ I and ((si, bi), (si+1, bi+1)) ∈ R for each i ≥ 1. A counterexample
for φ in the product is a run such that b1b2 . . . is an accepting run of B¬φ. Exactly
the same algorithms used for TLBAs can be used for SLBAs.

We refer once again to Figure 1 for examples of an SLBA and its product
with a Kripke structure. The notation should be clear; it corresponds to what
was discussed before for the TLBA. It may seem that the difference between
a TLBA and the equivalent SLBA is merely a matter of notation that carries
no benefit. However, the product shown in (b) is already an early indication
that this is not so: M ‖ B¬φ has two states and two transitions fewer than
M ‖ A¬φ.

4 Testing Automata

A testing automaton (TA) over an alphabet K is a tuple C = (S, I, U, R, F, G)
where S is a finite set of states, I ⊆ S is the set of initial states, U : I → K maps
each initial state to a symbol of the alphabet, R ⊆ S × K × S is the transition
relation, F ⊆ S is a set of Büchi acceptance states, and G ⊆ S is a set of livelock
acceptance states.

A run of the testing automaton C over a word w = k1k2 . . . ∈ Kω is only
defined when K = 2P . In such a case, it is an infinite sequence of states r =
s1s2 . . . ∈ Sω such that s1 ∈ I and U(s1) = k1, and for all i ≥ 1 either

1. ki �= ki+1 and (si, ki ⊕ ki+1, si+1) ∈ R, or
2. ki = ki+1 and si = si+1.

Here ⊕ denotes the symmetric difference operator on sets. A run r over a word
w = k1k2 . . . is accepting if and only if either

1. inf (r) ∩ F �= ∅ and |inf (w)| > 1, or
2. ∃n : (sn ∈ G) ∧ (∀i > n : si = sn ∧ ki = kn).

Larger Automata and Less Work for LTL Model Checking 59

This general formulation of testing automata allows transitions of the form
(s, ∅, s′), but since they do not add any expressive power to an automaton and are
undesirable in the context of verification, we restrict our attention to automata
without such transitions. However, we do not forbid them, as they are useful for
the conversion algorithm outlined in the next section.

Informally speaking, a TA is an SLBA that, whenever the Kripke structure
executes a stuttering transition, executes a null transition (stays in the same
state). Its transitions are not labelled with propositions or formulas, but with
“change sets”, so that it only observes changes in atomic propositions. In addition
to Büchi acceptance states, TAs also have livelock acceptance states. A run is
accepted if and only if
1. it visits at least one Büchi acceptance state infinitely often and includes an

infinite number of non-stuttering transitions (the |inf (w)| > 1 condition), or
2. it reaches a livelock acceptance state and from that point on contains only

stuttering transitions.

4.1 Construction of Testing Automata

The conversion from SLBA to TA is a two-step process. Given an SLBA B =
(SB, IB , UB, RB , FB) over alphabet K, we first construct an intermediate TA
C = (SC , IC , UC , RC , FC , GC) such that

– SC = SB, IC = IB , FC = FB, and GC = ∅,
– UC(s) = UB(s) for all s ∈ IC , and
– (s1, k, s2) ∈ RC if and only if (s1, s2) ∈ RB and k = UB(s1) ⊕ UB(s2).

In the second step, C is converted to its final form by computing the maximal
strongly stuttering-connected components, where stuttering-connected means
that every state of the component can reach every other state via a sequence of
zero or more transitions of the form (s, ∅, s′). Those components that are non-
trivial (in other words, consists of at least two states or a single state with a
self-loop) and contain at least one Büchi accepting state, are added state-by-state
to the livelock acceptance states GC . Then, every stuttering transition (s, ∅, s′)
is removed. If s′ is a member of IC or GC , we add s to the same set (and define
UC(s) = UC(s′) when s′ ∈ IC). Finally we remove all unreachable states and
transitions from the automaton.

Note that this construction can be carried out with any Büchi automaton, but
it is only meaningful if the original property is expressible without the use of the
next-state operator. It is not required, however, that the Büchi automaton itself
exhibits no stuttering [21], only that the property is insensitive to stuttering.
This ensures that the language accepted by the automaton remains the same.

As in the case of SLBAs, various further optimizations are possible, but
we do not want to discuss them here. However, it is important to note one
technical aspect that also applies to TLBAs and SLBAs, but which is especially
important for TAs. The set of atomic propositions P may contain propositions
that are never referenced by the automaton in question. For the purposes of
efficient verification, such propositions should be removed from P ; they cannot
influence the outcome of the verification and may lead to unnecessary work.

60 J. Geldenhuys and H. Hansen

4.2 Verification with Testing Automata

Let M = (SM , IM , LM , RM) be a Kripke structure over P , and let C¬φ =
(SC , IC , UC , RC , FC , GC) be a TA over 2P . Then the product of M and C¬φ,
denoted M ‖ C¬φ, is a triple (S, R, I), where

– S = SM × SC is the set of states,
– R ⊆ S × S is the transition relation where ((s, c), (s′, c′)) ∈ R if and only if

either
1. (s, s′) ∈ RM ∧ (c, LM (s) ⊕ LM (s′), c′) ∈ RA, or
2. (s, s′) ∈ RM ∧ c = c′ ∧ LM (s) = LM (s′), and

– I ⊆ IM × IC are initial states where (s, c) ∈ I if and only if LM (s) = UC(c).

A run of the product is an infinite sequence of states (s1, c1)(s2, c2) . . . such
that (s1, c1) ∈ I and ((si, ci), (si+1, ci+1)) ∈ R for each i ≥ 1. A counterexample
for φ in the product is a run such that c1c2 . . . is an accepting run of C¬φ.

As before, an example of a TA and its product with a Kripke structure can
be found in Figure 1. Those states in part (c) of the picture where the TA (or
the TA component of the product) is in a livelock accepting state have been
marked with a dotted circle; in this particular example, the TA has no Büchi
acceptance states, so that FC = ∅ and GC = {0}. The UC labels are shown on
the left of the TA at the source of the arrows to the initial states.

The same algorithms that are used for verification with TLBAs and SLBAs
can be used with a TA to detect those violations that involve Büchi acceptance
states. Also, in [21, 33] the authors propose a one-pass algorithm to detect vi-
olations involving the livelock acceptance states of the TA. Unfortunately, it is
not possible to merge these into a single one-pass algorithm: while the first usu-
ally relies on a depth-first exploration of the product automaton, the key to the
second algorithm is that transitions are explored in a specific, non-depth-first
order. One solution is of course to first run the one algorithm, and then the
other, but this is wasteful since any information that the first algorithm could
conceivably gather is lost when it terminates. Moreover, a single one-pass algo-
rithm has distinct advantages. For software model checking it is often expensive
to generate transitions (which may involve steps such as garbage collection or
heap canonization). Furthermore, if each state is visited only once, partial or-
der reduction is simplified and there is no need to “remember” reductions made
during a previous visit.

We now describe a new one-pass algorithm which is based on the LTL model
checking algorithm in [17] (which, in turn, is based on Tarjan’s algorithm for
SCC detection [30]). The new algorithm detects both Büchi and livelock viola-
tions. While the algorithm works entirely reliably for Büchi violations, it does, in
certain cases, fail to report an existent livelock violation. However, these circum-
stances are exceptional; for example, during the random experiments we present
in the next section, this happened in only 2 out of 93560 (= 0.00214%) cases.

First, we review the Tarjan-based algorithm in [17], a recursive version of
which called tarjan is shown in Figure 2. The algorithm explores the product
of a Kripke structure and a TLBA A (or SLBA B) and therefore does not take

Larger Automata and Less Work for LTL Model Checking 61

0 for each i ∈ I do if colour [i] = white then tarjan(i)

tarjan(s)
1 colour [s] ← grey

2 dfnr [s] ← low [s] ← n ; inc(n)
3 S.push(s)
4 if accept [s] then A.push(s)
5 for each successor t of s do
6 c ← colour [t]
7 if c = white then tarjan(s)
8 if c �= black then update(s, t)
9 if A.top = s then x ← A.pop

10 if low [s] = dfnr [s] then scc(s)

update(s, t)
11 low [s] ← min(low [s], low [t])
12 if low [s] ≤ dfnr [A.top] then
13 report violation

scc(s)
14 repeat
15 x ← S.pop

16 colour [x] ← black

17 until x = s

Fig. 2. The Tarjan-based algorithm presented in [17]

stuttering transitions into account. For every product state s = (k, b) the Boolean
predicate accept [s] is true if and only if the Büchi component b is accepting; if,
in other words, b ∈ FA (or b ∈ FB). The algorithm is identical to Tarjan’s classic
algorithm, except for its use of an additional stack A where the accepting product
states that appear on the depth-first search path are stored. Line 4 inserts such
a state when it is first explored, and line 9 removes it once it has been fully
explored. The test in lines 12 and 13 reports a violation as soon as a transition
“closes” an SCC containing an accepting state. tarjan uses colours to classify
states; initially all states are unexplored and coloured white. As the product
automaton is explored, fully explored states are coloured black, and states that
are still on the depth-first stack or the component stack S, grey. In the classic
presentation of Tarjan’s algorithm [1], this classification is made with Boolean
flags, but it is trivial to see that the methods are equivalent.

Our new algorithm appears in Figure 3, and is called tarjan
+. It operates

on the product of a Kripke structure and a TA C. Given two product states
s = (k, c) and s′ = (k′, c′), the predicate stutter(s, s′) is true if and only if c = c′,
in other words, s → s′ is a stuttering transition. Predicate accept [s] is true if and
only if c is a Büchi acceptance state (c ∈ FC), and predicate livelock [s] is true
if and only if c is livelock accepting (c ∈ GC). The three abbreviated conditions
that appear in lines 2b, 4a, and 13a are defined as follows:

C1(p, s) ≡ livelock [s] ∧ (p = ⊥ ∨ ¬stutter(p → s))
C2(s, t) ≡ accept [s] ∧ ¬stutter(s → t)
C3(s, t) ≡ livelock [s] ∧ stutter(s → t)

The first change from tarjan to tarjan
+ is moving lines 4 and 9 of tarjan

into the for-loop in line 5; in the new algorithm the lines are labeled 4a and 9a.
Although it is less efficient, this change clearly has no effect on the correctness
of tarjan. However, in the new algorithm the condition in line 4 has also been
strengthened so that a Büchi acceptance state is only placed on stack A for cer-
tain transitions: it is present when the next transition explored is non-stuttering,

62 J. Geldenhuys and H. Hansen

0 for each i ∈ I do if colour [i] = white then tarjan
+(⊥, i)

tarjan
+(p, s)

1 colour [s] ← grey

2 dfnr [s] ← low [s] ← n ; inc(n)
2a liveset [s] ← ∅
2b if C1(p, s) then L.push(s)
3 S.push(s)
5 for each successor t of s do
4a if C2(s, t) then A.push(s)
6 c ← colour [t]
7 if c = white then tarjan

+(s, t)
8 if c �= black then update

+(c, s, t)
9a if A.top = s then x ← A.pop

9b if L.top = s then x ← L.pop

9c colour [s] ← blue

10 if low [s] = dfnr [s] then scc(s)

update
+(c, s, t)

11 low [s] ← min(low [s], low [t])
12 if low [s] ≤ dfnr [A.top] then
13 report violation
13a if C3(s, t) then addlinks(c, s, t)

addlinks(c, s, t)
18 for each u ∈ liveset [t] ∪ {t} do
19 if colour [u] �= grey then
20 continue at line 18
21 if dfnr [u] ≥ dfnr [L.top]
22 ∧ (u �= t ∨ c �= white) then
23 report violation
24 liveset [s] ← liveset [s] ∪ {u}

Fig. 3. The new algorithm used in this paper

k1, cb

�

�

�

�

�

�

�

�

k2, cb

�

�

�

�

�

�

�

�

k3, cb

�

�

�

�

�

�

�

�

���
k4, c

�

�

�

�

�����

��

��

��

���

(a)

k1, c

�

�

�

�
	 k2, c�

�

�

�

�

											 	 	 	 	 	 	 			
				
					

	

	

	

	

	

	

	

	

	

	

	
�

k3, c

�

�

�

�
	 k4, c�

�

�

�

�

											 	 	 	 	 	 	 			
				
					

	

	

	

	

	

	

	

	

	

	

	
�

���

�
���

k5, c

�

�

�

�
	 k6, c�

�

�

�

�

											 	 	 	 	 	 	 			
				
					

	

	

	

	

	

	

	

	

	

	

	

�
��

�

���

(b)

Fig. 4. Illustrative state graphs for the new algorithm

and absent when it is stuttering. This avoids the erroneous reporting of cycles
that contain only stuttering transitions. Consider, for example, Figure 4(a): if
cb ∈ FC , then states (k1, cb), (k2, cb), and (k3, cb) are all Büchi accepting. How-
ever, none of the states are placed on A when exploring the stuttering transitions
between them, and the cycle (k1, cb) → (k2, cb) → (k3, cb) → (k1, cb) is therefore
correctly ignored. The non-stuttering (k2, cb) → (k4, c) transition satisfies C2,
and state (k2, cb) is placed on stack A before exploring it; the ensuing cycle is
subsequently correctly reported as a violation.

The second change from tarjan to tarjan
+ involves the colouring of states.

With the addition of line 9c, tarjan
+ further distinguish those states that are

currently on the depth-first stack from those that are only present in S, by
colouring the latter blue. Once again, the detection of Büchi accepting cycles
is not affected, since that part of the code (lines 7 and 8) is only concerned with
the non-white or non-black status of states.

Larger Automata and Less Work for LTL Model Checking 63

The last change is the introduction of the L stack and the liveset [] attribute
of states. Stack L is analogous to stack A in storing the livelock acceptance
states that appear on the current depth-first search path. However, an important
difference is that states reached via stuttering transitions are not stored. (Only
states that satisfy C1 are pushed onto L.) For each livelock accepting state s,
attribute liveset [s] stores the set of all other states that can be reached via
already-explored stuttering transitions. For those states s′ that are not livelock
accepting, liveset [s′] = ∅. When a stuttering transition s → t is explored and
state s is livelock accepting (condition C3 in line 13a), the contents of liveset [t] is
propagated back to s by procedure addlinks. In addition, if t or some element
of liveset [t] lies on the depth-first stack at or above the top entry of L, a livelock
violation is reported (lines 21–23). (The only exception is the case where s is the
direct depth-first tree parent of t, in line 22.) This is correct by the following
reasoning:

1. s is livelock accepting (since s → t satisfies C3),
2. s can reach some u ∈ liveset [t] via stuttering transitions,
3. u lies at or below s on the depth-first stack (s is the top-most state on the

depth-first stack and colour [u] = grey), and
4. the depth-first stack transitions from u to s are stuttering, since otherwise

stack L would contain an entry such that dfnr [u] < dfnr [L.top] ≤ dfnr [s].

As mentioned above, the algorithm may in certain cases fail to detect a
livelock violation. An example of this is shown in Figure 4(b). Suppose that GC =
{c�}, so that (k2, c�), (k4, c�), and (k6, c�) are the livelock accepting states. If the
stuttering transitions (k4, c�) → (k2, c�) and (k2, c�) → (k6, c�) are explored after
the non-stuttering transitions in their respective states, then the valid livelock
violation (k2, c�) → (k6, c�) → (k4, c�) → (k2, c�) is not reported. This happens
because transition (k6, c�) → (k4, c�) is explored before (k4, c�) → (k2, c�), and
therefore the fact that state (k6, c�) can reach (k2, c�) via stuttering transitions
is never recorded.

Consequently, when tarjan
+ fails to report a violation, it is necessary to

run the livelock detection algorithm of [21, 33] before we can claim that a Kripke
structure satisfies an LTL formula, using our approach. This may appear to nul-
lify the advantages of a single one-pass algorithm we extolled before. In practise
it means that the new algorithm may be more efficient at detecting violations,
but less efficient when it comes to checking that there are none.

5 Experimental Results

Table 1 shows the outcome of experiments performed to measure the effect
of using SLBAs and TAs instead of TLBAs. The procedure described in [31]
was used to generate 480 random 100-state Kripke structures and 360 ran-
dom LTL formulas. An additional 130 formulas were taken from the literature
(mostly from [13, 10, 29]), and all formulas were negated. After the elimination
of stuttering-sensitive formulas and duplicates, the remaining 261 formulas were

64 J. Geldenhuys and H. Hansen

Table 1. Comparison of automata on random graphs and random & real formulas

Automata TLBA SLBA TA
Ave. 5.56 17.33 30.89 584.87 16.94 310.43
Max. 53 314 389 18196 193 10944

States & TLBA SLBA TA
transitions SE tarjan SE tarjan tarjan

+

All Ave. 30.3 96.2 25.2 80.1 18.6 37.2 17.6 35.2 21.1 43.7
Max. 3342 29404 2533 18250 1154 10184 1103 10041 1294 11284

Viol. Ave. 33.3 105.9 27.3 85.2 20.4 33.8 19.2 31.4 20.0 31.0
Max. 3342 29404 1652 18250 966 5888 613 3831 442 2045

Normalized TLBA SLBA TA
SE tarjan SE tarjan tarjan

+

All Ave. 51.1 19.3 38.0 15.8 33.6 8.6 32.5 8.0 57.8 11.8
Max. 1550.0 2800.0 1250.0 2400.0 360.0 700.0 340.0 700.0 200.0 200.0

Viol. Ave. 13.7 7.6 11.3 6.6 9.8 4.9 9.3 4.7 9.5 4.5
Max. 1033.3 1305.3 537.5 700.0 220.0 255.1 200.0 250.0 131.1 107.5

Percentages TLBA SLBA TA
SE tarjan SE tarjan tarjan

+

All Best 0.0 0.0 3.1 1.5 0.0 0.0 4.5 2.9 10.3 11.4
1/Best 55.7 66.5 70.2 68.5 40.5 43.4 47.9 47.8 29.0 49.9

Viol. Best 0.0 0.0 4.1 2.0 0.0 0.0 3.7 2.5 13.7 15.1
1/Best 56.8 60.3 65.1 62.9 23.0 26.0 30.5 30.4 38.7 38.3

converted to Büchi automata using the ltl2ba program [16], and SLBAs and
TAs were constructed as described in previous sections. For TLBAs and SLBAs
we used the Schwoon and Esparza modification of the CPVW algorithm [27]
(shown in the “SE” column), and the Tarjan-based algorithm from [17] (shown
in the “tarjan” column). For TAs the modified Tarjan algorithm we mentioned
in the previous section was used (shown in the “tarjan

+” column). Even though
the Kripke structures are quite small (100 states) compared to realistic models,
they are large enough for our purposes. Experiments with larger Kripke struc-
tures (still random) yielded similar results.

Every cell of the table contains two numbers, the first refers to the number
of states and the second to the number of transitions. The first part of the ta-
ble labelled “Automata” shows the average and maximum sizes of the TLBAs,
SLBAs, and TAs. From TLBA to SLBA there is roughly a 6-fold increase in
the number of states and a 34-fold increase in the number of transitions. The
average size of a TA is about half that of an SLBA. The next part of the ta-
ble, “States & transitions” shows the average and maximum number of states
and transitions explored, first in all runs, and then in only those runs where
a violation was found. Unfortunately, these numbers are somewhat misleading,
since large and small products carry equal weight. Therefore, the next part of
the table, “Normalized”, describes the same runs, but with the numbers of each
run expressed as a percentage of the size of the product of the Kripke struc-
ture and the TA. The last part of the table labelled “Percentages” indicates in

Larger Automata and Less Work for LTL Model Checking 65

what percentage of runs each automaton/algorithm pair did better than any of
the others (the “Best” row), or no worse than any of the others (the “1/Best”
row). Note that the figures in the TA/tarjan

+ column include the number of
states and transitions explored by both the tarjan

+ algorithm and the livelock
detection algorithm [21, 33] that is run when tarjan

+ finds no violation.
We have consciously decided to report only the number of states and tran-

sitions, and not the number of bytes and milliseconds consumed by our im-
plementations. This protects the results (to some extent) against the influence
of various optimizations, implementation tricks, and the central processor and
memory architecture. We generally find that the number of states gives a reliable
indication of the memory required, and, similarly, the number of transitions a
reliable indication of the time consumption.

When we compare only the TLBA/tarjan and TA/tarjan
+ combinations,

in the case that a violation was detected, the TAs achieved a 26.7% reduction
in the average number of states, and a 63.6% reduction in the average number
of transitions. For the worst-case performance, TA/tarjan

+ reduced the states
and transitions by a factor of 3.7 and 8.9, respectively. When it comes to all runs
(now including those where no violation was detected), the reduction is 16.3%
and 45.4% for the average states and transitions, with factors of 2.0 and 1.6 for
the worst-case states and transitions.

However, the results contain some apparent contradictions: despite the fact
that the TLBA/SE combination has the highest average and worst-case numbers,
it is still one of the best algorithms in more than half the cases. Conversely, the
SLBA/tarjan combination which explores the lowest average number of states
in all runs, only explores the unique, least number of states in 3.7% of those runs.
The cause of this phenomenon is of course the different distribution of costs for
the different combinations.

It is difficult to say which of the algorithms is “best”: for a single run one
may use the TLBA/tarjan combination and know that the probability is less
than 0.35 that another combination can explore fewer states. Invariably, however,
more than one run of a system is required and, in that case, the SLBA/tarjan

combination explores the fewest number of states and transitions, on average.
On the other hand, the worst-case of the TA/tarjan

+ combination looks more
promising and it is more often the fastest (≥ 11.4% of cases) and most memory-
efficient (≥ 10.3% of cases) choice.

The amount of work needed by the TLBA in the worst case is so much
bigger that it tilts the averages heavily in favour of the SLBA and the TA.
This, we believe, justifies the conclusion that the variants are, in fact, superior
in performance to the TLBA.

Experience has shown that measurements with random Kripke structures are
often over-optimistic since the “shape” of random and real state spaces can differ
significantly. We would have liked to present experimental results for actual state
spaces, but that approach has its own pitfalls. It is easy to find examples where
one combination fares exceptionally well, while the others founder. Also, each
state space should be verified against a variety of LTL properties to yield robust
results. For now we have to leave this project as future work.

66 J. Geldenhuys and H. Hansen

6 A Closer Look: Why Less Is More?

The results show that it is not so much the size of the automaton itself that
counts, but rather the size of the product of Kripke structure and automaton. In
the negative case—when there is no violation—all states and transitions of the
product need to be explored, and, in the case of our new algorithm, it is done
twice. We therefore investigated the relationship between the formulas and the
size of the resulting products by devising classes of formulas of increasing length
and calculating the size of the product with a set of random Kripke structures.

For the set of experiments we used 100 random 1000-state Kripke structures
with a varying number of transitions. We constructed the TLBAs, SLBAs and
TAs for the formulas we describe below and calculated their products with the
Kripke structures. Table 2 shows the average number of states and transitions
obtained in each case. The first column gives the formula class and n. The “E”
formulas were of the form

E(n) =
n∧

i=1

�pi,

and the “U” and “R” were of the form

U(n) = (· · · (p1Up2)U · · ·)Upn and R(n) =
n∧

i=1

(��pi ∨ ��pi+1).

The simplest, E(n) formulas resulted in products with the same number
of states for all the automata, while the TAs produced a somewhat smaller
number of transitions. The two more complicated classes result in differences
that increase with the length of the formula.

Table 2. Growth of state spaces

TLBA SLBA TA
E(1) 1999.90 9126.84 1999.90 9126.84 1999.86 7730.18
E(2) 3999.68 23690.54 3999.68 23690.54 3999.62 19057.17
E(3) 7999.24 62119.04 7999.24 62119.04 7999.24 49853.79
E(4) 15998.36 164327.68 15998.36 164327.68 15998.36 134019.09
E(5) 31996.61 437872.53 31996.61 437872.53 31996.61 363967.54
U(1) 1188.75 5195.20 1145.54 5095.67 1151.85 4473.37
U(2) 3082.19 20936.82 2266.81 14020.64 2266.76 10772.02
U(3) 8702.22 92692.54 6185.00 66821.92 6233.29 47379.99
U(4) 22162.49 373415.82 15286.18 266001.99 15257.98 187339.66
U(5) 53471.09 1432869.88 35175.60 980114.68 34998.03 703055.77
R(1) 3619.32 17790.64 3326.13 16635.44 3647.73 15555.14
R(2) 9674.17 49992.48 8195.00 43328.05 8115.63 34584.78
R(3) 26620.67 150150.63 20492.62 117661.40 20113.34 88977.67
R(4) 72449.32 460101.94 51041.64 328031.95 50019.04 239408.10
R(5) 194741.06 1447741.57 127220.17 951739.06 124600.22 675327.73

Larger Automata and Less Work for LTL Model Checking 67

We experimented with other classes as well, but were unable to find any
where the TLBA products are smaller. There were classes where the results
were similar to the E formulas, including

U2(n) = p1U(p2U(· · · pn−1Upn) · · ·),

C1(n) =
n∨

i=1

��pi and C2(n) =
n∧

i=1

��pi.

Other classes performed much like the U and R formulas, for example

Q(n) =
n∧

i=1

(�pi ∨ �pi+1) and S(n) =
n∨

i=1

�pi.

The smaller products have very little, if anything, to do with the livelock
acceptance states of the testing automata, since the state-labelled automata
result in products that are just as small. So the question remains, why do the
SLBAs and TAs produce smaller products? We cannot give a definitive answer,
but we believe that there are two important factors:

Firstly, an SLBA makes a finer distinction between different states, in the
sense that the state of the SLBA contains more information about the state of
the product than is the case for the TLBA. Undoubtably the TLBA is a more
dense representation of the property than the equivalent SLBA. In other words,
in the product several Kripke states may be paired with the same TLBA state,
but because the automaton will later have to distinguish between the states,
extra work needs to be performed.

Secondly, and partly because of the first reason, the TLBA is, in a sense, more
nondeterministic and therefore, on average, more of its transitions are enabled
in a given state. In [28] the authors suggest that more deterministic, rather than
smaller automata result in smaller products, and to some extent, the generation
of the SLBA removes some of the nondeterminism.

The sometimes significantly smaller number of transitions in the products of
TAs can be explained, at least in part, by the fact that they have no stuttering
transitions and therefore cannot cause a multiplication of stuttering steps of
the Kripke structure. The theoretical results in [21], which state that testing
automata are more often deterministic, do not, however explain anything at all
in these findings, since the SLBA and TA products have almost exactly the same
number of states.

The size of the product is not an accurate measure of performance when
there actually is a violation. It might be the case that a counterexample is found
relatively early on in a bigger product. This may be due to two factors. Firstly,
the decision of which transitions to explore first in the on-the-fly algorithm may
play a crucial role. An endless variety of heuristics and shufflings of transitions
are possible and we currently know of no definitive way to decide which is best.
Secondly, the counterexamples themselves may have different properties. The
SLBA- or TA-induced product may be smaller but contain only relatively few,

68 J. Geldenhuys and H. Hansen

lengthy and complicated counterexamples, whereas the product arising from a
TLBA may be big but have more shallow and simple counterexamples. One
open question is exactly what the relative contribution of the two phenomena in
different circumstances is.

7 Conclusions

We have investigated two alternatives to the standard (transition-labelled) form
of Büchi automata, namely state-labelled Büchi automata and testing automata,
described the conversion from the standard form to the variant forms, and
sketched our current (SCC-based) algorithm for verification with testing au-
tomata. Even though the differences between the automata may appear to be
merely a matter of notation, our experimental results suggest that there are real
benefits to be had from using the variant forms.

To explain the improved performance of the variants, we considered simple
classes of LTL X formulas and compared the products of a set of random Kripke
structures with the transition-labelled and state-labelled Büchi automata and
testing automata. Despite the fact that the variant automata are invariably
much larger, the resulting product automata are invariably smaller. In the case
of testing automata, the number of transitions is clearly smaller and grows at a
much slower rate than is the case for the other two automata.

Two factors that play a role in this phenomenon are (1) that SLBAs and
TAs make finer distinctions among states, and (2) that they are more often
deterministic than standard Büchi automata. This concurs with the work in [28],
where the authors focused on the standard form.

Our research perhaps raises more questions than it answers. By no means
do we wish to discourage further work on the reduction of Büchi automata or
other ω-automata; rather our results point to the need to further investigate
the factors that lead to improved performance. Other lines of future research
include the characterization of LTL X properties for which the SLBAs and TAs
do better, and an extension of these results to generalized Büchi automata and
alternating automata.

Acknowledgments. The work of H. Hansen was supported by the Nokia
Foundation.

References

1. A. V. Aho, J. E. Hopcroft, & J. D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, 1974.

2. L. Brim, I. Černá, M. Nečesal. Randomization helps in LTL model checking. In
Proc. Joint Intl. Worksh. Process Alg. and Probabilistic Methods, Performance
Modeling and Verif., LNCS #2165, pp. 105–119, Sept 2001.

3. J. R. Büchi. Weak second-order arithmetic and finite automata. Zeitschrift für
mathematische Logik und Grundlagen der Math. 6, pp. 66–92, 1960.

Larger Automata and Less Work for LTL Model Checking 69

4. J. R. Büchi. On a decision method in restricted second-order arithmetic. In Proc.
1960 Intl. Congr. Logic, Method and Philosophy of Science, pp. 1–11, Stanford
Univ. Press, Jun 1962.

5. Y. Choueka. Theories of automata on ω-tapes: a simplified approach. Journal Com-
puter and System Sciences 8, pp. 117–141, 1974.

6. C. Courcoubetis, M. Y. Vardi, P. Wolper, M. Yannakakis. Memory-efficient
algorithms for the verification of temporal properties. In CAV’90, LNCS #531,
pp. 233–242, Jun 1990. Journal version: Formal Methods in System Design 1(2/3),
pp. 275–288, Oct 1992.

7. J.-M. Couvreur. On-the-fly verification of linear temporal logic. In Proc. World
Congr. Formal Methods in the Development of Computing Systems (FM’99), LNCS
#1708, pp. 253–271, Sept 1999.

8. J.-M. Couvreur. On-the-fly emptiness checks for generalized Büchi automata. In
Proc. 12th Intl. spin Worksh. on Model Checking Software, LNCS #1708, pp. 999–
999, Aug 2005.

9. M. Daniele, F. Giunchiglia, M. Y. Vardi. Improved automata generation for linear
time temporal logic. In CAV’99, LNCS #1633, pp. 249–260, Jul 1999.

10. M. B. Dwyer, G. S. Avrunin, & J. C. Corbett. Property specification patterns for
finite-state verification. In Proc. 2nd ACM Worksh. Formal Methods in Software
Practice, pp. 7–15, Mar 1998.

11. S. Edelkamp, S. Leue, A. Lluch Lafuente. Directed explicit-state model checking
in the validation of communication protocols. Technical Report 161, Institut für
Informatik, Albert-Ludwigs-Universität Freiburg, Oct 2001.

12. K. Etessami. A hierarchy of polinomial-time computable simulations for automata.
In CONCUR’02, LNCS #2421, pp. 131–144, Aug 2002.

13. K. Etessami, G. J. Holzmann. Optimizing Büchi automata. In CONCUR’00, LNCS
#1877, pp. 154–167, Aug 2000.

14. C. Fritz. Constructing Büchi automata from linear temporal logic using simulation
relations for alternating Büchi automata. In Proc. 8th Intl. Conf. Implementations
and Application of Automata, LNCS #2759, pp. 35–48, Jul 2003.

15. P. Gastin, P. Moro, M. Zeitoun. Minimization of counterexamples in spin. In Proc.
11th Intl. spin Worksh. Model Checking Software, LNCS #2989, pp. 92–108, Apr
2004.

16. P. Gastin, D. Oddoux. Fast LTL to Büchi automata translation. In CAV’01, LNCS
#2102, pp. 53–65, Jul 2001.

17. J. Geldenhuys, A. Valmari. Tarjan’s algorithm makes on-the-fly LTL verification
more efficient. In TACAS’04, LNCS #2988, pp. 205–219, Mar–Apr 2004. Journal
version: Theor. Computer Science 345(1), pages 60-82, Nov 2005.

18. R. Gerth, D. Peled, M. Y. Vardi, P. Wolper. Simple on-the-fly automatic verifi-
cation of linear temporal logic. In Proc. 15th IFIP Symp. Protocol Spec., Testing,
and Verif., pp. 3–18, Jun 1995.

19. P. Godefroid, G. J. Holzmann. On the verification of temporal properties. In Proc.
13th IFIP Symp. Protocol Spec., Testing, and Verif., pp. 109–124, May 1993.

20. S. Gurumurthy, R. Bloem, F. Somenzi. Fair simulation minimization. In CAV’02,
LNCS #2404, pp. 610–624, Jul 2004.

21. H. Hansen, W. Penczek, A. Valmari. Stuttering-insensitive automata for on-the-fly
detection of livelock properties. In Proc. 7th Intl. ERCIM Worksh. Formal Methods
for Industrial Critical Systems, pp. 185–200, Jul 2002. Also published in Elec. Notes
in Theor. Computer Science 66(2), Elsevier Science, Dec 2002.

22. G. J. Holzmann, D. Peled, M. Yannakakis. On nested depth first search. In Proc.
2nd spin Worksh., Held Aug 1996, DIMACS Series No. 32, pp. 23–32, 1997.

70 J. Geldenhuys and H. Hansen

23. J. A. W. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, Univ.
of California, 1968.

24. S. A. Kripke. Semantical analysis of modal logic I, normal propositional calculi.
Zeitschrift für mathematische Logik und Grundlagen der Math 9, pp. 67–96, 1963.

25. R. P. Kurshan. Computer-aided Verification of Coordinating Processes: The
Automata-theoretic Approach. Princeton Univ. Press, 1994.

26. M. O. Rabin. Decidability of second-order theories and automata on infinite trees.
Trans. of the American Mathemathical Society 141, pp. 1–35, 1969.

27. S. Schwoon, J. Esparza. A note on on-the-fly verification algorithms. In TACAS’05,
LNCS #3440, pp. 174–190, Mar 2005.

28. R. Sebastiani, S. Tonetta. “More Deterministic” vs “Smaller” Büchi Automata for
Efficient LTL Model Checking Correct Hardware Design and Verif. Methods, LNCS
#2860, pp. 126–140, 2003.

29. F. Somenzi, R. Bloem. Efficient Büchi automata from LTL formulae. In CAV’00,
LNCS #1855, pp. 248–267, Jun 2000.

30. R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal of
Computing 1(2), pp. 146–160, Jun 1972.

31. H. Tauriainen. A randomized testbench for algorithms translating linear temporal
logic formulae In Proc. Worksh. Concurrency, Specifications, and Programming,
pp. 251–262, Sept 1999.

32. H. Tauriainen. Nested emptiness search for generalized Büchi automata. Technical
Report HUT–TCS–A79, Laboratory for Theoretical Computer Science, Helsinki
Univ. of Technology, Jul 2003.

33. A. Valmari. On-the-fly verification with stubborn sets. In CAV’93, LNCS #697,
pp. 397–308, Jun 1993.

34. M. Y. Vardi, P. Wolper. An automata-theoretic approach to automatic program
verification. In Proc. 1st IEEE Symp. on Logic in Computer Science, pp. 332–344,
Jun 1986.

35. P. Wolper. Temporal logic can be more expressive. Information and Computation
56, pp. 72–99, 1983.

36. P. Wolper, M. Y. Vardi, A. P. Sistla. Reasoning about infinite computation paths.
In Proc. 24th IEEE Symp. on the Foundations of Computer Science, pp. 185–194,
IEEE Computer Society Press, Nov 1983.

	Introduction
	Background and Related Work
	Construction of Büchi Automata
	Verification with Büchi Automata

	State-Labelled Büchi Automata
	Construction of State-Labelled Büchi Automata
	Verification with State-Labelled Büchi Automata

	Testing Automata
	Construction of Testing Automata
	Verification with Testing Automata

	Experimental Results
	A Closer Look: Why Less Is More?
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

