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Abstract. The Stop-and-Wait protocol (SWP) has two (unbounded)
parameters: the maximum sequence number (MaxSeqNo) and the max-
imum number of retransmissions (MaxRetrans). This paper presents an
algebraic method for analysis of the SWP for all possible values of these
parameters. Model checking such a system requires considering an infi-
nite family of models, one for each combination of parameter values, and
thus an infinite family of state spaces (reachability graphs). These reach-
ability graphs are represented symbolically by a set of algebraic formulas
in MaxSeqNo and MaxRetrans. This result is significant as it provides a
complete characterisation of the infinite set of reachability graphs of our
SWP model in both parameters, allowing properties to be verified for
the infinite class. Verification of a number of properties is described.

Keywords: Stop and Wait Protocols, Infinite Families of Systems, Para-
metric Reachability Graphs, Coloured Petri Nets.

1 Introduction

Stop-and-Wait is an elementary and well-known form of flow control [20,22] used
by communication protocols to prevent buffer overflow in the receiver. In practice
Stop-and-Wait is often used with checksums to detect transmission errors and
a timeout/retransmission scheme using sequence numbers, such as Automatic
Repeat ReQuest [22], for error recovery.

The Stop-and-Wait mechanism forms the basis of many practical data trans-
fer protocols, such as the Internet’s Transmission Control Protocol (TCP) [19].
An understanding of how these mechanisms work and how they may fail is
thus useful for the verification of more complex protocols like TCP. These pro-
tocols have a number of parameters, such as the maximum sequence number
(MaxSeqNo) or the maximum number of retransmissions (MaxRetrans). The
value of these parameters may vary depending on the application (e.g. TCP has
a 32 bit sequence number, whereas others may use a 3 bit sequence number). It
is thus of interest to verify these protocols for all values of these parameters.
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Petri nets have proven to be a suitable formal method for protocol verifica-
tion [2,3,6,15,17]. A Coloured Petri net (CPN) [14,16] model of the SWP, para-
meterised by MaxSeqNo and MaxRetrans, was developed and analysed in [4,5,6]
following the protocol verification methodology presented in [6]. Because the
model parameters are unbounded there is an infinite set of CPN models to
verify, and state explosion [23] prevents analysis for all but small parameter val-
ues. Thus we were motivated to find a way to verify the SWP for any finite
(but unbounded) value of the parameters. In [12] we presented a novel technique
of representing the reachability graphs (RGs) of the SWP CPN symbolically in
the MaxSeqNo parameter (with MaxRetrans=0) using algebraic expressions, and
verified a number of properties directly from the expressions, including language
equivalence to the service, for all values of the unbounded MaxSeqNo parameter.

Related work on symbolic verification considers only the MaxRetrans parame-
ter. Abdulla et al [1] verify the Alternating Bit Protocol (ABP) (MaxSeqNo=1)
with unbounded retransmissions and a variant called the Bounded Retransmis-
sion Protocol in which MaxRetrans is modelled nondeterministically. In [7,8] we
used a tool called FAST (Fast Acceleration of Symbolic Transition Systems) [9]
to model the SWP and analyse it symbolically. We were successful when MaxRe-
trans was an unbounded parameter with MaxSeqNo fixed to small values (1 to 5),
and when MaxSeqNo was an unbounded parameter but with MaxRetrans fixed
to 0. FAST did not return a result when both MaxSeqNo and MaxRetrans were
unbounded parameters. In [24] a variant of the ABP with arbitrary MaxRetrans
and operating over channels with a capacity of one message only, was verified us-
ing Valmari’s Chaos-Free-Failures-Divergences (CFFD) equivalence. In contrast,
our model operates over unbounded lossy ordered channels (similar to [1]) and
explicitly considers any maximum sequence number (not just the alternating
bit) and any maximum number of retransmissions.

In this paper, the work in [12] is significantly extended by obtaining al-
gebraic expressions for the infinite set of RGs of the SWP operating over an
ordered medium over both the MaxSeqNo and MaxRetrans parameters. A sketch
of the proof of correctness is given, details of which can be found in [11]. The
contribution of this paper is threefold. Firstly, we further develop the novel alge-
braic representation method from [12]. Secondly, we provide the aforementioned
symbolic representation. Inclusion of the MaxRetrans parameter represents a
substantial increase in the complexity of the algebraic expressions. This can be
gauged by the size of the RG, which grows linearly in MaxSeqNo but quartically
in MaxRetrans [10, 12]. Previous work dealt with the linear growth in MaxSe-
qNo only, whereas this paper also deals with the quartic growth in MaxRetrans.
Thirdly, we sketch the verification of a number of properties directly from the
algebraic expressions. The authors are not aware of any previous attempts to
obtain an explicit algebraic representation for the family of RGs for arbitrary
unbounded values of the MaxSeqNo and MaxRetrans parameters for the class of
Stop-and-Wait protocols.

The rest of this paper is organised as follows. Section 2 presents our paramet-
ric SWP CPN model. The necessary notational constructs and lemmas regarding
model behaviour are presented in Section 3. The parametric algebraic expressions
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of the RG are presented in Section 4, followed by a description of the verifica-
tion of a number of properties. Conclusions and future work are presented in
Section 5. Familiarity with basic CPN concepts and terminology is assumed. For
introductions to CPNs the reader is referred to [14, 16].

2 The Stop-and-Wait Protocol CPN Model

The SWP is modelled using Coloured Petri nets [14, 16], a form of Petri net in
which tokens are arbitrarily complex data values. The CPN diagram is shown in
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val MaxRetrans = 0;
val MaxSeqNo = 1;

color Sender = with s_ready | wait_ack;
color Receiver = with r_ready | process;
color Seq = int with 0..MaxSeqNo;
color RetransCounter = int with 0..MaxRetrans;
color Message = Seq;
color MessList = list Message;

var sn,rn : Seq;
var rc : RetransCounter;
var queue : MessList;

fun NextSeq(n) = if(n = MaxSeqNo) then 0 else n+1;
fun Contains([],sn) = false
| Contains(m::queue,sn) = if(sn=m) then true else Contains(queue,sn);

fun Loss(m::queue,sn) = if(sn=m) then queue else m::Loss(queue,sn);

Fig. 1. A CPN of the Stop-and-Wait Protocol operating over an in-order medium
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Fig. 1 along with all the declarations used in the inscriptions of the CPN diagram.
The inscription language is a variant of Standard ML [21]. The two parameters
MaxRetrans and MaxSeqNo can be seen at the top of the declarations in Fig. 1.
This model is the same as the one presented in [12], with the exception of loss.
This change is motivated and described below. (The focus of this paper is not
the modelling of SWP with CPNs. A detailed description of the model is given
in [12] and hence omitted here.)

The channels are modelled as lists manipulated by the arc inscriptions as
First-In-First-Out (FIFO) queues in places mess channel and ack channel. Tran-
sitions mess loss and ack loss model loss, both in the network (buffer overflow in
a router) and by discarding messages and acknowledgements with transmission
errors (checksum failures). Unlike the model in [12], loss can occur anywhere in
the message and acknowledgement queues, not just from the head. This is done
via nondeterministic binding of variables sn and rn and the function Contains
in the guard of each loss transition, to ensure that sn and rn are only bound
to values that are present in the channels. The removal of the message is via
function Loss in the arc inscriptions.

Motivation is provided by it being a more general model, suited to the
TCP environment, where loss can occur anywhere in the network due to e.g.
router congestion, in addition to loss caused by detection of errors. It turns
out that this model of loss is easier to formalise in the algebraic expressions in
Section 4.

3 Notation and Model Properties

This section introduces notation and proves a number of properties of the SWP
CPN model required for the proof of correctness of the algebraic formula pre-
sented in Section 4.

3.1 Marking and Arc Notation

We begin by defining the RG of a CPN. In CPN terminology, a reachability
graph is often called an occurrence graph (OG).

Definition 1 (Reachability Graph). The OG of a CPN with initial marking,
M0, and a set of binding elements, BE, is a labelled directed graph OG = (V,A)
where

1. V = [M0〉 is the set of reachable markings of the CPN; and
2. A = {(M, (t, b), M ′) ∈ V ×BE×V |M [(t, b)〉M ′} is the set of labelled directed

arcs, where M [(t, b)〉M ′ denotes that the marking of the CPN changes from
M to M ′ on the occurrence of transition t with binding b, (t, b) ∈ BE.

The parameterised CPN and its RG are denoted by CPN(MS,MR) and
OG(MS,MR) given by the following definition:
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Definition 2 (Parameterised CPN and Reachability Graph). For MS ∈
N

+ and MR ∈ N, CPN(MS,MR) is defined as the Stop-and-Wait Protocol CPN
of Fig. 1 with MaxSeqNo = MS and MaxRetrans = MR. The reachability graph
of CPN(MS,MR) is denoted by OG(MS,MR) = (V(MS,MR), A(MS,MR)).

In order for the notation for markings and arcs defined below to be correct,
we must prove that each place in the SWP CPN with initial marking M0 as
illustrated in Fig. 1 always contains exactly one token.

Lemma 1. For all reachable markings of CPN(MS,MR) and all allowable values
of MS and MR, each place in the CPN diagram contains exactly one token, i.e.
∀MS ∈ N

+, ∀MR ∈ N, ∀M ∈ V(MS,MR), |M(sender state)| = |M(receiver state)|
= |M(retrans counter)|=|M(mess channel)|=|M(ack channel)|=|M(send seq no)|
= |M(recv seq no)| = 1.

Sketch of Proof. Proof is by direct inspection of Fig. 1. Consider the recv seq no
place. M0(recv seq no) = 1‘0 and so |M0(recv seq no)| = 1. The marking of this
place can only be changed by transitions receive mess and send ack. The occur-
rence of these transitions either replaces one value by another (the receive mess
transition when sn=rn) or does not change the marking (the receive mess tran-
sition when sn �=rn and the send ack transition). The value of MS may affect the
token value (via function NextSeq) but it does not affect the number of tokens
removed or added (always 1). Hence |M(recv seq no)| = 1 for all markings. Simi-
lar arguments reveal that this property also holds for the remaining 6 places. ��

The following function converts a singleton multiset into its basis element:

Definition 3 (Singleton Multiset to Colour). Let SMS1 be the set of all
singleton multisets over a basis set S : SMS1 = {{(s, 1)}|s ∈ S}. A function that
converts a singleton multiset to its basis element is given by fc : SMS1 → S,
where fc({(s, 1)}) = s.

In addition, the following notational conventions are used throughout this paper:

– M [t〉 is used as shorthand to represent that transition t is enabled by marking
M for some binding of variables b, such that M [(t, b)〉, (t, b) ∈ BE;

– |fc(M(p))| is the length of the list on places p ∈ {mess channel, ack channel};
– ij represents j repetitions of the message (or acknowledgement) with se-

quence number i in the message (or acknowledgement) channel;
– ⊕MS represents modulo MS + 1 addition; and
– 	MS represents modulo MS + 1 subtraction.

The markings of our SWP CPN can be classified into types based on the
four possible combinations of the major state of the sender and receiver, i.e.
the markings of places sender state and receiver state. The relationship between
the sender sequence number (ssn) and receiver sequence number (rsn), either
rsn = ssn or rsn = ssn ⊕MS 1, gives rise to subtypes for two of the four
combinations of major state. Thus there are six combinations in total, giving
the six types, 1, 2a, 2b, 3a, 3b and 4, shown in Table 1. An explanation of the
significance of each type is given in [11].
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Table 1. Classification of markings M ∈ V(MS,MR) into types based on the state of
the sender and receiver

M(sender state) M(receiver state) M(send seq no) M(recv seq no) TypeMS(M)
1‘s ready 1‘r ready 1‘sn 1‘sn 1
1‘wait ack 1‘r ready 1‘sn 1‘sn 2a
1‘wait ack 1‘r ready 1‘sn 1‘(sn ⊕MS 1) 2b
1‘wait ack 1‘process 1‘sn 1‘sn 3a
1‘wait ack 1‘process 1‘sn 1‘(sn ⊕MS 1) 3b
1‘s ready 1‘process 1‘sn 1‘sn 4

Definition 4 (Markings to Types). We define the family of functions that
classifies markings as TypeMS : V(MS,MR) → {1, 2a, 2b, 3a, 3b, 4} where the body
of TypeMS is given in Table 1.

In addition, the following assumptions are made about the content of the com-
munication channels, all of which are proved valid at the end of Section 4.1.

Assumption 1. The content of the message and acknowledgement channels is
a list of contiguous integers of the form i∗j∗ where i, j ∈ {0, ..., MaxSeqNo}.

Assumption 2. The message and acknowledgement channels contain at most
two distinct consecutive integers, i.e. of the form i∗j∗ where j = i ⊕MS 1.

Assumption 3. All reachable markings M ∈ V(MS,MR) of CPN(MS,MR) can
be classified into one of the 6 types in Table 1.

Using Lemma 1, Assumptions 1, 2 and 3, and Table 1, every marking can be
encoded and uniquely identified by the following marking notation:

Definition 5 (Shorthand Marking Notation). For CPN(MS,MR) all mark-
ings M ∈ V(MS,MR) can be uniquely identified and represented by the notation
M

(MS,MR)
(type,ssn),(mo,ao,mn,an,ret) where the superscript contains the parameter values

of the SWP CPN and the subscript contains the marking description, where:

– type = TypeMS(M);
– ssn ∈ {0, 1, ..., MS} is the sender sequence number;
– mo ∈ N is the number of old (duplicate) messages with sequence number

ssn 	MS 1 in the message channel;
– ao ∈ N is the number of old (duplicate) acknowledgements with sequence

number ssn in the acknowledgement channel;
– mn ∈ N is the number of new (current) messages with sequence number ssn

in the message channel;
– an ∈ N is the number of new (current) acknowledgements with sequence

number ssn ⊕MS 1 in the acknowledgement channel; and
– ret ∈ {0, 1, ..., MR} is the value of the retransmission counter for the cur-

rently outstanding (unacknowledged) message;
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so that for a given M ∈ V(MS,MR) represented by M
(MS,MR)
(type,ssn),(mo,ao,mn,an,ret)

the marking of places sender state, receiver state, send seq no and recv seq no is
encoded in the pair (type, ssn) as given by Table 1 and:

M(mess channel) = 1‘[(ssn 	MS 1)mo ssnmn]
M(ack channel) = 1‘[ssnao (ssn ⊕MS 1)an]
M(retrans counter) = 1‘ret

Analogously, a shorthand notation is defined for arcs in [11].
Sets of markings and sets of arcs are defined as follows:

Definition 6 (Sets of Markings). V
(MS,MR)
(type,ssn) ={M ∈ V(MS,MR) | TypeMS(M)

= type, M(send seq no) = 1‘ssn} represents the set of markings in which the
sender sequence number is given by ssn, and the sender and receiver states and
receiver sequence number are given by the type as specified in Table 1.

Definition 7 (Sets of Arcs). A
(MS,MR)
(type,ssn) = {(M, (t, b), M ′) ∈ A(MS,MR) |

TypeMS(M) = type, M(send seq no) = 1‘ssn} represents the set of arcs with
source nodes in V

(MS,MR)
(type,ssn) .

3.2 Important Model Properties

There are several important behavioural properties of the SWP CPN model that
are needed for the proof of correctness of the algebraic expressions:

Lemma 2. For all M ∈ V(MS,MR), the enabling and subsequent firing of each
transition is independent of the values of the sequence numbers in the binding.

Sketch of Proof. (See [11] for the full proof.) Proof is from Lemma 1 and the
standard enabling and firing rules of CPNs [14].

From Fig. 1 the enabling conditions of send mess are: fc(M(sender state)) =
s ready; |M(send seq no)| > 0; and |M(mess channel)| > 0. All three conditions
are independent of sequence numbers. send mess is enabled with binding queue =
fc(M(mess channel)) and sn = fc(M(send seq no)). When send mess occurs, it:

– Removes 1‘s ready from sender state and returns 1‘wait ack to this place;
– Leaves the marking of place send seq no unchanged; and
– Removes 1‘queue from place mess channel and returns 1‘queue^̂ [sn] to this

place (append a copy of sn to the end of the message channel queue).

None of these actions depend on or are affected by the particular values of queue
or sn in the binding, thus the behaviour of send mess is independent of the values
of the sequence numbers with which it interacts. The same reasoning is used to
prove this lemma for the other seven transitions. ��
Lemma 3. For all M ∈ V(MS,MR) in which M(receiver state) = 1‘r ready and
|fc(M(mess channel))| > 0, the message at the head of the queue in the mes-
sage channel can always be converted into an acknowledgement, i.e. ∃M ′, M ′′ ∈
V(MS,MR) such that M [receive mess〉M ′[send ack〉M ′′, |fc(M ′′(mess channel))| =
|fc(M(mess channel))|−1 and |fc(M ′′(ack channel))| = |fc(M(ack channel))|+1.
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Sketch of Proof. (See [11] for the full proof.) Only reachable markings satisfy-
ing the enabling conditions of receive mess need be considered. For each such
marking M , Lemma 2 ensures that the enabling and action taken upon firing re-
ceive mess is independent of the values of the sequence numbers involved. When
receive mess occurs from any such M we reach a marking M ′ in which the re-
ceiver state has changed to process and one message has been removed from
the message channel. From the CPN diagram in Fig. 1, each such marking M ′

enables send ack, the occurrence of which leads to a marking M ′′ such that the
receiver has returned once again to the ready state, the message channel con-
tains one less message than in M and the acknowledgement channel contains
one more acknowledgement than in M . Thus the lemma is proved. ��

Lemma 4. ∀M ∈ V(MS,MR), |fc(M(mess channel))| > 0 =⇒ ∃M1 ∈ V(MS,MR)
such that M [mess loss〉M1 and |fc(M1(mess channel))|= |fc(M(mess channel))|−
1 and |fc(M(ack channel))| > 0 =⇒ ∃M2 ∈ V(MS,MR) such that M [ack loss〉M2
and |fc(M2(ack channel))| = |fc(M(ack channel))| − 1, while the marking of all
other places remains unchanged.

Proof. The proof follows immediately from the CPN in Fig. 1. ��

4 Algebraic Expressions for the SWP CPN RGs

Empirical evidence gathered in [12] for small parameter values reveals a regular
structure in the RG that is linear in MaxSeqNo and quartic in MaxRetrans. This
also holds true for the model presented in Section 2. Based on the intuition
in [12] for the case where MaxRetrans=0, in this paper, we present an algebraic
formula representing the family of RGs of our SWP CPN and prove it correct.
We then discuss a number of properties that can be proved directly from the
algebraic formula. Because of size limitations, only proof sketches are presented
(see [11] for details).

4.1 The Algebraic Formula in Both Parameters

When defining the markings and arcs of OG(MS,MR) we specify sets of markings
and arcs using the notation from Definitions 5, 6 and 7 and by specifying allow-
able ranges of the five variables (mo, ao, mn, an, ret). All variables are assumed
to be greater than or equal to 0, unless otherwise indicated.

All of the markings of OG(MS,MR) are described in this way in Table 2, by
evaluating the expressions in this table for 0 ≤ i ≤ MS. The first column gives
the name of the set of markings for each subset of the partition according to
its type. Column 2 defines the set of markings by specifying the allowed ranges
of variable values. If a variable is restricted to a specific value, e.g. 0, we write
this directly in the label of the marking. Note that because of the expression
0 ≤ mo + ao ≤ MR − 1, the markings of type 3a and type 4 (rows 4 and 6) are
defined only when MR > 0. Hence V

(MS,0)
(3a,i) = V

(MS,0)
(4,i) = ∅, the empty set, when

MR = 0.
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Table 2. V
(MS,MR)
(type,i) , for 0 ≤ i ≤ MS and type ∈ {1, 2a, 2b, 3a, 3b, 4}

Name Set Definition

V
(MS,MR)
(1,i) {M

(MS,MR)
(1,i),(mo,ao,0,0,0) | 0 ≤ mo + ao ≤ MR}

V
(MS,MR)
(2a,i) {M

(MS,MR)
(2a,i),(mo,ao,mn,0,ret) | 0 ≤ mo + ao ≤ MR, 0 ≤ ret ≤ MR,

0 ≤ mn ≤ ret + 1}
V

(MS,MR)
(2b,i) {M

(MS,MR)
(2b,i),(0,ao,mn,an,ret) | 0 ≤ ao ≤ MR, 0 ≤ ret ≤ MR, 0 ≤ mn ≤ ret,

0 ≤ mn + an ≤ ret + 1}
V

(MS,MR)
(3a,i) {}, for MR = 0; or

{M
(MS,MR)
(3a,i),(mo,ao,mn,0,ret) | 0 ≤ mo + ao ≤ MR − 1, 0 ≤ ret ≤ MR,

0 ≤ mn ≤ ret + 1}, for MR > 0.
V

(MS,MR)
(3b,i) {M

(MS,MR)
(3b,i),(0,ao,mn,an,ret)| 0 ≤ ao ≤ MR, 0 ≤ ret ≤ MR, 0 ≤ mn + an ≤ ret}

V
(MS,MR)
(4,i) {}, for MR = 0; or

{M
(MS,MR)
(4,i),(mo,ao,0,0,0) | 0 ≤ mo + ao ≤ MR − 1}, for MR > 0.

All of the arcs of OG(MS,MR) are described in Tables 3 to 8 by evaluating
each table for 0 ≤ i ≤ MS. There is one table of arcs per set of markings (i.e.
per row) in Table 2, describing the set of outgoing arcs of that set of markings.
Correspondingly, A

(MS,0)
(3a,i) and A

(MS,0)
(4,i) = ∅ when MR = 0. The first column of

each arc table gives any additional restrictions that must be placed on the vari-
ables mo, ao, mn, an and ret. For example, loss of an old message cannot occur
when mo = 0. The second, third and fourth columns list the source marking,
binding element and destination marking respectively.

We now state the theorem for our parametric RG over both parameters and
prove its correctness.

Theorem 1. For all MS ∈ N
+, MR ∈ N and for Type = {1, 2a, 2b, 3a, 3b, 4},

OG(MS,MR)=(V(MS,MR), A(MS,MR)) where

V(MS,MR) =
⋃

0≤i≤MS

t∈Type

V
(MS,MR)
(t,i)

and
A(MS,MR) =

⋃

0≤i≤MS

t∈Type

A
(MS,MR)
(t,i)

where all nodes and arcs are defined in Tables 2 to 8.

Proof. The proof is in two parts. The first part proves that all states in V(MS,MR)
are reachable from the initial marking using a connected spanning graph. The
second part proves that every arc from every state in V(MS,MR) leads to a state
in V(MS,MR) and that this set of arcs equals A(MS,MR). The two parts of the
proof each describe a necessary condition, which together are sufficient to show
that Theorem 1 is correct.
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Lemma 5. Spanning Lemma. For MR ∈ N and MS ∈ N
+, and for 0 ≤ i ≤

MS, and for Type = {1, 2a, 2b, 3a, 3b, 4}, all markings in ∪t∈Type(V
(MS,MR)
(t,i) ) ∪

{M
(MS,MR)
(1,i⊕MS1),(MR,0,0,0,0)} are reachable from M

(MS,MR)
(1,i),(MR,0,0,0,0).

Sketch of Proof. (See [11] for the full proof.) Lemma 2 allows this lemma to be
proved directly, for any value of i ∈ {0, ..., MS}, rather than inductively over
MS. The marking M

(MS,MR)
(1,i),(MR,0,0,0,0), identical to the initial marking but for

MR old duplicate messages with sequence number MS in the message channel,
is chosen as the starting point, rather than the initial marking M

(MS,MR)
(1,i),(0,0,0,0,0).

This is because, as it turns out, it is easier to show that M
(MS,MR)
(1,i),(MR,0,0,0,0) can

reach all markings in V
(MS,MR)
(1,i) . (Had we started with the initial marking, we

would need to complete a full cycle of the sequence number space in order to get
old messages in the message channel when ssn = 0.)

Application of Lemma 3 MR number of times shows that M
(MS,MR)
(1,i),(MR,0,0,0,0)

can reach all markings in Vspan1 = {M
(MS,MR)
(1,i),(mo,MR−mo,0,0,0) | 0 ≤ mo ≤ MR}.

Then by application of Lemma 4, Vspan1 can reach the markings in

Vspan2 = {M
(MS,MR)
(1,i),(mo′,ao,0,0,0) | M

(MS,MR)
(1,i),(mo,MR−mo,0,0,0) ∈ Vspan1,

0 ≤ mo′ ≤ mo, 0 ≤ ao ≤ MR − mo}

By a process of simplification of the inequalities in the set definition, we deter-
mine that Vspan2 equals V

(MS,MR)
(1,i) (see Table 2).

From inspection of the CPN diagram in Fig. 1, M
(MS,MR)
(1,i),(MR,0,0,0,0) ∈ V

(MS,MR)
(1,i)

can reach M
(MS,MR)
(2a,i),(MR,0,1,0,0) via occurrence of send mess, regardless of the value

of i. A similar process is then followed for marking M
(MS,MR)
(2a,i),(MR,0,1,0,0) as was fol-

lowed for M
(MS,MR)
(1,i),(MR,0,0,0,0), to prove that M

(MS,MR)
(2a,i),(MR,0,1,0,0) can reach all other

markings in V
(MS,MR)
(2a,i) . This process continues for the markings in V

(MS,MR)
(2b,i) ,

V
(MS,MR)
(3a,i) , V

(MS,MR)
(3b,i) and V

(MS,MR)
(4,i) , and for reachability from one set to an-

other. The procedure for determining a spanning of markings in V
(MS,MR)
(type,i) for

type ∈ {2a, 2b, 3a, 3b} is slightly more complicated, due to the fact that retrans-
missions can occur from these markings when ret < MR.

Finally, M
(MS,MR)
(1,i⊕MS1),(MR,0,0,0,0) can be reached from M

(MS,MR)
(2b,i),(0,0,MR,1,MR) ∈

V
(MS,MR)
(2b,i) by firing the receive ack transition. (The MR new messages become

MR old messages because ssn has incremented.) Thus the lemma is proved. ��

Corollary 1. All markings in V(MS,MR) are reachable from M
(MS,MR)
(1,0),(MR,0,0,0,0).

This follows directly from the Spanning Lemma by a trivial induction over MS.

To complete the final step in the proof that all markings in V(MS,MR) are ac-
cessible from the initial marking, it is sufficient to show that the initial marking
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M
(MS,MR)
(1,0),(0,0,0,0,0) can reach one of the markings in {M

(MS,MR)
(1,i),(MR,0,0,0,0) | 0 ≤ i ≤

MS}. By repeated application of Lemma 5 this can reach M
(MS,MR)
(1,0),(MR,0,0,0,0),

which in turn, by Corollary 1, can reach all markings in V(MS,MR). The marking
M

(MS,MR)
(1,1),(MR,0,0,0,0) is chosen as it is the first suitable marking that can be reached

from the initial marking. This is proved in the following lemma.

Lemma 6. M
(MS,MR)
(1,1),(MR,0,0,0,0) is reachable from M

(MS,MR)
(1,0),(0,0,0,0,0).

Sketch of Proof. (See [11] for the full proof.) Proof is by direct inspection of the
CPN diagram in Fig. 1. The initial marking enables transition send mess with
binding <queue = [], sn = 0>. This results in the marking M

(MS,MR)
(2a,0),(0,0,1,0,0).

From this marking, transition timeout retrans can occur consecutively MR num-
ber of times. The resulting marking is M

(MS,MR)
(2a,0),(0,0,MR+1,0,MR) in which MR + 1

copies of the message with sequence number 0 are in the message channel. From
this marking, receive mess can occur, leading to marking M

(MS,MR)
(3b,0),(0,0,MR,0,MR).

From this marking, send ack can occur, leading to M
(MS,MR)
(2b,0),(0,0,MR,1,MR). The sin-

gle acknowledgement with sequence number 1 is the acknowledgement for which
the sender is waiting. The occurrence of receive ack with binding <queue =
[], sn = 0, rn = 1, rc = MR> results in marking M

(MS,MR)
(1,1),(MR,0,0,0,0). (Again,

the new messages are now old messages because ssn has incremented.) Thus
M

(MS,MR)
(1,0),(0,0,0,0,0) can reach M

(MS,MR)
(1,1),(MR,0,0,0,0) and the lemma is proved. ��

From Corollary 1 and Lemma 6, all markings in V(MS,MR) are reachable from
M

(MS,MR)
(1,0),(0,0,0,0,0) and Part A of the proof of Theorem 1 is proved.
Part B of the proof of Theorem 1 is proved by the Successor Lemma:

Lemma 7. Successor Lemma. For all MR ∈ N, MS ∈ N
+, i ∈ {0, ..., MS}

and t ∈ {1, 2a, 2b, 3a, 3b, 4}, A
(MS,MR)
(t,i) describes exactly the enabled binding ele-

ments of all markings in V
(MS,MR)
(t,i) and the destination marking of every arc in

A
(MS,MR)
(t,i) is in V(MS,MR).

Sketch of Proof. (See [11] for a full proof.) Lemma 2 allows this lemma to be
proved correct for any value of i ∈ {0, ..., MS}. Consider the markings in
V

(MS,MR)
(1,i) defined in row 1 of Table 2. From the CPN diagram in Fig. 1 and

standard enabling rules of CPNs [14], all enabled binding elements (and thus
associated arcs) can be identified. The send mess transition is enabled by all
markings in V

(MS,MR)
(1,i) . The mess loss and receive mess transitions are enabled

only by markings in the subset of V
(MS,MR)
(1,i) in which the message channel is

non-empty. The ack loss and receive dup ack transitions are enabled only by the
subset of V

(MS,MR)
(1,i) in which the acknowledgement channel is non-empty. No

other transitions are enabled by any markings in V
(MS,MR)
(1,i) .
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By systematically determining the destination marking for each pair of source
marking and binding element, all arcs with source nodes in V

(MS,MR)
(1,i) can be

determined. For example, the occurrence of transition send mess from marking
M

(MS,MR)
(1,i),(mo,ao,0,0,0) ∈ V

(MS,MR)
(1,i) with binding < queue = [(i 	MS 1)mo], sn = 1 >

leads to a marking M
(MS,MR)
(2a,i),(mo,ao,1,0,0) ∈ V

(MS,MR)
(2a,i) , for all i ∈ {0, ..., MS}. This

corresponds to row 1 of Table 3. Rows 2 to 5 can be obtained by a similar
procedure for the other enabled transitions.

This procedure can then be repeated for all markings in the other five sets
of nodes defined in Table 2. This shows that all arcs with source markings in
V(MS,MR) also have destination markings in V(MS,MR) and that these arcs cor-
respond exactly to those defined in Tables 3 to 8. Thus the lemma is proved. ��

For all MS ∈ N
+ and all MR ∈ N, Lemmas 5, 6 and 7 and Corollary 1

show that the markings in V(MS,MR) defined by Table 2 correspond exactly to
the markings reachable from the initial marking. Lemma 7 also shows that the
arcs captured by Tables 3 to 8 correspond exactly to the set of arcs with source
markings in V(MS,MR). Thus, for all MS ∈ N

+ and all MR ∈ N, OG(MS,MR) =
(V(MS,MR), A(MS,MR)) and hence Theorem 1 is proved. ��

The validity of the three assumptions made in Section 3.1 is confirmed by the
correctness of the algebraic expressions. No marking can be reached that violates
any of the three assumptions, i.e. every marking has channel content of the form
i∗j∗ where i, j ∈ {0, ..., MS} and j = i ⊕MS 1, and every reachable marking can
be classified into one of the 6 types in Table 1.

4.2 Analysis Results

Absence of Unexpected Deadlocks. Dead markings can be detected by sub-
tracting from the corresponding set of markings in Table 2 the sets of markings
defined as source markings in each table of arcs.

For all MR ∈ N and MS ∈ N
+, the dead markings are V

(MS,MR)
dead =

∪0≤i≤MS{M
(MS,MR)
(2a,i),(0,0,0,0,MR), M

(MS,MR)
(2b,i),(0,0,0,0,MR)}. All dead markings occur be-

cause of loss and a bounded retransmission scheme, and all are expected.

Channel Bounds. Channel bounds can be determined by direct examination
of the set definitions in the rows of Table 2. Maximising mo + mn gives the
message channel bound for the markings in each row. The message channel
bound of the SWP becomes the maximum of mo + mn taken over all 6 rows.
Similarly, the acknowledgement channel bound is found by maximising ao +
an. The bound for both channels is 2MR + 1, from row 2 (message channel)
and row 3 (acknowledgement channel). These bounds are imposed by the SWP
itself.

Size of the Reachability Graph. By direct inspection of Table 2 and Tables 3
to 8, Theorem 2 for the size of the RG in both parameters can be proved.
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Theorem 2. For MR ∈ N and MS ∈ N
+, the number of nodes and arcs in

OG(MS,MR) is given by

|V(MS,MR)| = ((MS + 1)/6)(5MR4 + 38MR3 + 97MR2 + 100MR + 36)

and

|A(MS,MR)| = ((MS + 1)/6)(30MR4 + 175MR3 + 306MR2 + 179MR + 36).

Sketch of Proof. The nodes in V
(MS,MR)
(1,i) and V

(MS,MR)
(4,i) actually form a trian-

gular structure, where the base contains the nodes where mo + ao = MR and
the apex is the node where mo = ao = 0. Using the formula for the nth triangu-
lar number, n(n + 1)/2, for n = MR and n = MR − 1 respectively, we obtain
|V (MS,MR)

(1,i) | = (MR2 +3MR+2)/2 and |V (MS,MR)
(4,i) | = (MR2 +MR)/2, for each

value of i ∈ {0, ..., MS}.
The nodes in the other four sets have a more complicated structure. Take

V
(MS,MR)
(2a,i) for example. The structure can be visualised as a succession of tri-

angular structures over mo and ao, one for each value of mn ∈ {0, ..., ret}. A
summation over 0 ≤ ret ≤ MR obtains |V (MS,MR)

(2a,i) | = (MR4+8MR3+21MR2+
22MR + 8)/4. Similar techniques are used to obtain the size of the other node
sets. The total number of markings is given by a summation over all values of
i ∈ {0, ..., MS} and the result V(MS,MR) = (MS+1)(5MR4+38MR3+97MR2+
100MR + 36)/6 is obtained.

Determining the number of arcs requires a more complicated approach. The
number of source markings for which each arc is defined is determined for each
row in Tables 3 to 8. To do this in a way that prevents excessively copious sum-
mations, for each row, the number of markings that do not satisfy the conditions
in column 1 of each arc table is determined. This is then subtracted from the
total number of markings defined by the corresponding set in Table 2. The to-
tal number of arcs is then the summation over all rows in all arc tables of the
number of arcs defined by each row. The result is as stated in the theorem. ��

This theorem confirms our empirical results for small parameter values and
matches RG size expressions obtained using methods to fit polynomials to data.

5 Conclusions and Future Work

We have proved a theorem which gives an algebraic expression for the infinite
family of RGs of a parameterised CPN model of the class of Stop-and-Wait pro-
tocols. The parameters, MaxSeqNo and MaxRetrans, are both unbounded and
the protocol operates over a lossy unbounded in-order medium. This is a consid-
erable advance over previous work [12], which was restricted to the case where
MaxRetrans = 0, and automatic verification attempts using the tool FAST [9]
which were only successful when MaxRetrans was an unbounded parameter with
MaxSeqNo restricted to small concrete values (1 to 5) [8], and when MaxSeqNo
was an unbounded parameter with MaxRetrans fixed to 0 [7].
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These symbolic expressions can be used for protocol verification. For example,
we have shown how deadlocked states can be identified from the arc expressions
as those markings that never appear as source nodes. Further, we have shown
that the node table (Table 2) can be used to determine upper bounds on the
channel capacity. This result (2MaxRetrans+1) confirms that previously obtained
using a hand proof on the CPN in [5,6], but is much simpler (once the algebraic
expressions are known). We have also derived formulae for the number of nodes
and arcs in the state space as a function of the two parameters, proving they
are linear in MaxSeqNo and quartic in MaxRetrans, an interesting complexity
result. Proving language equivalence to a service of alternating send and receive
events [6], as was done in [12] for the restricted case of MaxRetrans = 0, is
currently being undertaken for the general case.

In the future, we would like to automate the procedure for obtaining algebraic
expressions for the RGs of parametric systems based on finding structural reg-
ularities as a function of the parameters. Our experience with modelling other
systems, including the Capability Exchange Signalling service [18] and TCP’s
data transfer service [13], also reveals repeating patterns in their RGs from
which symbolic RGs representing the infinite family have been obtained. This
provides evidence that our new parametric approach is promising and may be
generalised to a larger class of systems.
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