


Lecture Notes in Computer Science 3920
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Holger Hermanns Jens Palsberg (Eds.)

Tools and Algorithms
for the Construction
andAnalysis of Systems

12th International Conference, TACAS 2006
Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2006
Vienna, Austria, March 25 – April 2, 2006
Proceedings

13



Volume Editors

Holger Hermanns
Saarland University
Department of Computer Science, Dependable Systems and Software
Stuhlsatzenhausweg 45, 66123 Saarbrücken, Germany
E-mail: hermanns@cs.uni-sb.de

Jens Palsberg
University of California at Los Angeles, Computer Science Department
4531K Boelter Hall, Los Angeles, CA 90095-1596, USA
E-mail: palsberg@ucla.edu

Library of Congress Control Number: 2006922189

CR Subject Classification (1998): F.3, D.2.4, D.2.2, C.2.4, F.2.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-33056-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-33056-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11691372 06/3142 5 4 3 2 1 0



Foreword

ETAPS 2006 was the ninth instance of the European Joint Conferences on Theory and
Practice of Software. ETAPS is an annual federated conference that was established in
1998 by combining a number of existing and new conferences. This year it comprised
five conferences (CC, ESOP, FASE, FOSSACS, TACAS), 18 satellite workshops (AC-
CAT, AVIS, CMCS, COCV, DCC, EAAI, FESCA, FRCSS, GT-VMT, LDTA, MBT,
QAPL, SC, SLAP, SPIN, TERMGRAPH, WITS and WRLA), two tutorials, and seven
invited lectures (not including those that were specific to the satellite events). We re-
ceived over 550 submissions to the five conferences this year, giving an overall accep-
tance rate of 23%, with acceptance rates below 30% for each conference. Congratula-
tions to all the authors who made it to the final programme! I hope that most of the
other authors still found a way of participating in this exciting event and I hope you will
continue submitting.

The events that comprise ETAPS address various aspects of the system develop-
ment process, including specification, design, implementation, analysis and improve-
ment. The languages, methodologies and tools which support these activities are all
well within its scope. Different blends of theory and practice are represented, with an
inclination towards theory with a practical motivation on the one hand and soundly
based practice on the other. Many of the issues involved in software design apply to
systems in general, including hardware systems, and the emphasis on software is not
intended to be exclusive.

ETAPS is a loose confederation in which each event retains its own identity, with
a separate Program Committee and proceedings. Its format is open-ended, allowing
it to grow and evolve as time goes by. Contributed talks and system demonstrations
are in synchronized parallel sessions, with invited lectures in plenary sessions. Two of
the invited lectures are reserved for “unifying” talks on topics of interest to the whole
range of ETAPS attendees. The aim of cramming all this activity into a single one-week
meeting is to create a strong magnet for academic and industrial researchers working on
topics within its scope, giving them the opportunity to learn about research in related
areas, and thereby to foster new and existing links between work in areas that were
formerly addressed in separate meetings.

ETAPS 2006 was organized by the Vienna University of Technology, in cooperation
with:

- European Association for Theoretical Computer Science (EATCS);
- European Association for Programming Languages and Systems (EAPLS);
- European Association of Software Science and Technology (EASST);
- Institute for Computer Languages, Vienna;
- Austrian Computing Society;
- The Bürgermeister der Bundeshauptstadt Wien;
- Vienna Convention Bureau;
- Intel.



VI Foreword

The organizing team comprised:

Chair: Jens Knoop
Local Arrangements: Anton Ertl
Publicity: Joost-Pieter Katoen
Satellite Events: Andreas Krall
Industrial Liaison: Eva Kühn
Liaison with City of Vienna: Ulrich Neumerkel
Tutorials Chair, Website: Franz Puntigam
Website: Fabian Schmied
Local Organization, Workshops Proceedings: Markus Schordan

Overall planning for ETAPS conferences is the responsibility of its Steering Com-
mittee, whose current membership is:

Perdita Stevens (Edinburgh, Chair), Luca Aceto (Aalborg and Reykjavı́k), Rastislav
Bodı́k (Berkeley), Maura Cerioli (Genova), Matt Dwyer (Nebraska), Hartmut Ehrig
(Berlin), José Fiadeiro (Leicester), Marie-Claude Gaudel (Paris), Roberto Gorrieri
(Bologna), Reiko Heckel (Leicester), Michael Huth (London), Joost-Pieter Katoen
(Aachen), Paul Klint (Amsterdam), Jens Knoop (Vienna), Shriram Krishnamurthi
(Brown), Kim Larsen (Aalborg), Tiziana Margaria (Göttingen), Ugo Montanari (Pisa),
Rocco de Nicola (Florence), Hanne Riis Nielson (Copenhagen), Jens Palsberg (UCLA),
Mooly Sagiv (Tel-Aviv), João Saraiva (Minho), Don Sannella (Edinburgh), Vladimiro
Sassone (Southampton), Helmut Seidl (Munich), Peter Sestoft (Copenhagen), Andreas
Zeller (Saarbrücken).

I would like to express my sincere gratitude to all of these people and organizations,
the Program Committee chairs and PC members of the ETAPS conferences, the orga-
nizers of the satellite events, the speakers themselves, the many reviewers, and Springer
for agreeing to publish the ETAPS proceedings. Finally, I would like to thank the Or-
ganizing Chair of ETAPS 2006, Jens Knoop, for arranging for us to have ETAPS in the
beautiful city of Vienna.

Edinburgh Perdita Stevens
January 2006 ETAPS Steering Committee Chair



Preface

This volume contains the proceedings of the 12th TACAS, International Conference on
Tools and Algorithms for the Construction and Analysis of Systems. TACAS 2006 took
place in Vienna, Austria, March 27–31, 2006. TACAS is a forum for researchers, devel-
opers, and users interested in rigorously based tools for the construction and analysis of
systems. The conference serves to bridge the gaps among communities that are devoted
to formal methods, software and hardware verification, static analysis, programming
languages, software engineering, real-time systems, and communication protocols. By
providing a venue for the discussion of common problems, heuristics, algorithms, data
structures, and methodologies, TACAS aims to support researchers in their quest to
improve the utility, reliability, flexibility, and e ciency of tools for building systems.

Topics covered by TACAS include specification and verification techniques for fi-
nite and infinite state systems, software and hardware verification, theorem-proving
and model-checking, system construction and transformation techniques, static and
run-time analysis, abstract interpretation, refinement-based and compositional method-
ologies, testing and test-case generation, analytical techniques for security protocols,
real-time, hybrid, and safety-critical systems, integration of formal methods and static
analysis in high-level hardware design, tool environments and tool architectures, and
applications and case studies.

TACAS traditionally considers two types of papers: full-length research papers, in-
cluding those describing tools, and short tool-demonstration papers that give an
overview of a particular tool and its applications. TACAS 2006 received 118 research
and 9 tool-demonstration submissions, and accepted 30 research papers and 4 tool-
demonstration papers. Each submission was evaluated by at least three reviewers and
each submission co-authored by a PC member was evaluated by at least four reviewers.
After a five-week reviewing process, the program selection was carried out in a two-
week electronic Program Committee meeting. We believe that the result of the com-
mittee deliberations is a strong technical program. As this year’s invited speaker, the
Program Committee selected Somesh Jha, who presented work on weighted pushdown
systems and trust-management systems. We thank the authors of the submitted papers,
the Program Committee members, the referees, and especially the Tool Chair Thierry
Jeron and the TACAS Steering Committee. Martin Karusseit gave us prompt support in
dealing with the online conference management service. The help of Reza Pulungan in
the general organization and the production of the proceedings is much appreciated.

TACAS 2006 was part of the 9th European Joint Conference on Theory and Practice
of Software (ETAPS), whose aims, organization, and history are detailed in the sep-
arate foreword by the ETAPS Steering Committee Chair, Perdita Stevens. We would
like to express our appreciation to the ETAPS Steering Committee, particularly Perdita
Stevens, and the Organizing Committee for their e orts in making ETAPS 2006 a suc-
cessful event.

January 2006 Holger Hermanns and Jens Palsberg
Program Committee Co-chairs



Organization

Steering Committee

Ed Brinksma ESI and University of Twente, The Netherlands
Rance Cleaveland SUNY, Stony Brook, USA
Kim Larsen Aalborg University, Aalborg, Denmark
Bernhard Ste en University of Dortmund, Dortmund, Germany
Lenore Zuck University of Illinois, Chicago, USA

Programme Committee

Armin Biere Johannes Kepler University, Linz, Austria
Ed Brinksma ESI and University of Twente, The Netherlands
Gianfranco Ciardo University of California, Riverside, USA
Alessandro Cimatti ITC-IRST, Trento, Italy
Rance Cleaveland SUNY, Stony Brook, USA
Hubert Garavel INRIA Rhones-Alpes, Grenoble, France
Andy Gordon Microsoft Research, Cambridge, UK
Orna Grumberg Technion, Haifa, Israel
Klaus Havelund Kestrel Technology, Palo Alto, California, USA
Holger Hermanns Saarland University, Saarbrücken, Germany
Michael Huth Imperial College, London, UK
Thierry Jeron IRISA, Rennes, France
Kim Larsen Aalborg University, Aalborg, Denmark
Ken McMillan Cadence, Berkely, USA
Peter Niebert University of Provence, Marseille, France
Jens Palsberg, UCLA, Los Angeles, USA
Anna Phillipou University of Cyprus, Nicosia, Cyprus
Jaco van de Pol CWI, Amsterdam, The Netherlands
John Rushby SRI, Menlo Park, USA
David Sands Chalmers University of Technology, Goeteborg, Sweden
Helmut Seidl Technical University of Munich, Munich, Germany
Bernhard Ste en University of Dortmund, Dortmund, Germany
Martin Ste en University of Kiel, Kiel, Germany
Zhendong Su University of California, Davis, USA
Wang Yi Uppsala University, Uppsala, Sweden
Lenore Zuck University of Illinois, Chicago, USA



X Organization

Referees

Parosh Abdulla
Erika Ábrahám
Wolfgang Ahrendt
Rajeev Alur
Cyrille Artho
Howard Barringer
Nicolas Baudru
Gerd Behrmann
Saddek Bensalem
Josh Berdine
Alexandru Berlea
Piergiorgio Bertoli
Ritwik Bhattacharya
Roderick Bloem
Stefan Blom
Patricia Bouyer
Marco Bozzano
Laura Brandán Briones
Sebastien Briais
Roberto Bruttomesso
Jens Calamé
Jan Cederquist
Swarat Chaudhuri
Taolue Chen
Hana Chockler
Ming Chung
Koen Claessen
Ricardo Corin
Mohammad Dashti
Alexandre David
Lugiez Denis
Aleksandar Dimovski
Martı́
n Domı́
nguez
Bruno Dutertre
Cindy Eisner
Harald Fecher
Jose Fiadeiro
Bernd Finkbeiner
Emmanuel Fleury
Anders Franzen
Olga Grinchtein

Andreas Grüner
Dilian Gurov
Jörgen Gustavsson
John Håkansson
Klaus Havelund
Natalia Ioustinova
Radha Jagadeesan
David Jansen
Bertrand Jeannet
Ole Jensen
Lingxiao Jiang
Sara Kalvala
Raimund Kirner
Felix Klaedtke
Peter Koppensteiner
Pavel Krcal
Daniel Kröning
Ruurd Kuiper
Orna Kupferman
Marcos Kurban
Marcel Kyas
Rom Langerak
Frédéric Lang
Ranko Lazic
Rustan Leino
Flavio Lerda
Stephen Magil
Roman Manevich
Radu Mateescu
Teddy Matinde
Marius Mikucionis
Ghassan Misherghi
Leonid Mokrushin
Remi Morin
Wojciech Mostowski
Markus Müller-Olm
Brian Nielsen
Ulrik Nyman
Peter Csaba Ölveczky
Julien d’Orso
Simona Orzan
Karol Ostrovsky
Corina Pasareanu

Doron Peled
Michael Petter
Paul Pettersson
Alessandra di Pierro
Henrik Pilegaard
HongYang Qu
Harald Ra elt
A. Ramanujam
Jakob Rehof
Arend Rensink
Jan-Willem Roorda
Marco Roveri
Oliver Rüthing
Theo Ruys
Hassen Saidi
Gwen Salaün
Luigi Santocanale
Roberto Sebastiani
Roberto Segala
Simone Semprini
Wendelin Serwe
Sanjit Seshia
Natarajan Shankar
Sharon Shoham
João Marques Silva
Radu Siminiceanu
Carsten Sinz
Doug Smith
Oleg Sokolsky
Rafal Somla
Jeremy Sproston
Martin Ste en
Mariëlle Stoelinga
Ofer Strichman
Stephan Thesing
Tayssir Touili
Stavros Tripakis
Rachel Tzoref
Frits Vaandrager
Helmut Veith
Arnaud Venet
Björn Victor
Tomas Vojnar



Organization XI

Uwe Waldmann
David Walker
Min Wan
Gary Wassermann

Rafael Wisniewski
Songtao Xia
Avi Yadgar
Karen Yorav

Jinqing Yu (Andy)
Hans Zantema



Table of Contents

Invited Contributions

Weighted Pushdown Systems and Trust-Management Systems
Somesh Jha, Stefan Schwoon, Hao Wang, Thomas Reps . . . . . . . . . . . 1

Parametrization and Slicing

Automatic Verification of Parameterized Data Structures
Jyotirmoy V. Deshmukh, E. Allen Emerson, Prateek Gupta . . . . . . . . 27

Parameterized Verification of π-Calculus Systems
Ping Yang, Samik Basu, C.R. Ramakrishnan . . . . . . . . . . . . . . . . . . . . . 42

Easy Parameterized Verification of Biphase Mark and 8N1 Protocols
Geoffrey M. Brown, Lee Pike . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Evaluating the Effectiveness of Slicing for Model Reduction of
Concurrent Object-Oriented Programs

Matthew B. Dwyer, John Hatcliff, Matthew Hoosier,
Venkatesh Ranganath, Robby, Todd Wallentine . . . . . . . . . . . . . . . . . . . 73

Symbolic Techniques

New Metrics for Static Variable Ordering in Decision Diagrams
Radu I. Siminiceanu, Gianfranco Ciardo . . . . . . . . . . . . . . . . . . . . . . . . . 90

Widening ROBDDs with Prime Implicants
Neil Kettle, Andy King, Tadeusz Strzemecki . . . . . . . . . . . . . . . . . . . . . . 105

Efficient Guided Symbolic Reachability Using Reachability
Expressions

Dina Thomas, Supratik Chakraborty, Paritosh Pandya . . . . . . . . . . . . . 120

Satisfiability

SDSAT: Tight Integration of Small Domain Encoding and Lazy
Approaches in a Separation Logic Solver

Malay K Ganai, Muralidhar Talupur, Aarti Gupta . . . . . . . . . . . . . . . . 135



XIV Table of Contents

SAT-Based Software Certification
Sagar Chaki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Expressiveness + Automation + Soundness: Towards Combining SMT
Solvers and Interactive Proof Assistants

Pascal Fontaine, Jean-Yves Marion, Stephan Merz,
Leonor Prensa Nieto, Alwen Tiu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Exploration of the Capabilities of Constraint Programming for Software
Verification

Hélène Collavizza, Michel Rueher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Abstraction

Counterexample-Guided Abstraction Refinement for the Analysis of
Graph Transformation Systems

Barbara König, Vitali Kozioura . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Why Waste a Perfectly Good Abstraction?
Arie Gurfinkel, Marsha Chechik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

Efficient Abstraction Refinement in Interpolation-Based Unbounded
Model Checking

Bing Li, Fabio Somenzi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

Approximating Predicate Images for Bit-Vector Logic
Daniel Kroening, Natasha Sharygina . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

Model Checking Algorithms

Finitary Winning in ω-Regular Games
Krishnendu Chatterjee, Thomas A. Henzinger . . . . . . . . . . . . . . . . . . . . 257

Efficient Model Checking for LTL with Partial Order Snapshots
Peter Niebert, Doron Peled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

A Local Shape Analysis Based on Separation Logic
Dino Distefano, Peter W. O’Hearn, Hongseok Yang . . . . . . . . . . . . . . . 287

Program Verification

Compositional Model Extraction for Higher-Order Concurrent Programs
D.R. Ghica, A.S. Murawski . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303



Table of Contents XV

A Region Graph Based Approach to Termination Proofs
Stefan Leue, Wei Wei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

Verifying Concurrent Message-Passing C Programs with Recursive Calls
S. Chaki, E. Clarke, N. Kidd, T. Reps, T. Touili . . . . . . . . . . . . . . . . . 334

Automata-Based Verification of Programs with Tree Updates
Peter Habermehl, Radu Iosif, Tomas Vojnar . . . . . . . . . . . . . . . . . . . . . . 350

Runtime Diagnostics

An Experimental Comparison of the Effectiveness of Control Flow
Based Testing Approaches on Seeded Faults

Atul Gupta, Pankaj Jalote . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

Exploiting Traces in Program Analysis
Alex Groce, Rajeev Joshi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

Quantitative Techniques

Model-Checking Markov Chains in the Presence of Uncertainties
Koushik Sen, Mahesh Viswanathan, Gul Agha . . . . . . . . . . . . . . . . . . . . 394

Safety Metric Temporal Logic Is Fully Decidable
Joël Ouaknine, James Worrell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

Simulation-Based Graph Similarity
Oleg Sokolsky, Sampath Kannan, Insup Lee . . . . . . . . . . . . . . . . . . . . . . 426

Tool Demonstrations

PRISM: A Tool for Automatic Verification of Probabilistic Systems
Andrew Hinton, Marta Kwiatkowska, Gethin Norman,
David Parker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441

DISTRIBUTOR and BCG MERGE: Tools for Distributed Explicit
State Space Generation

Hubert Garavel, Radu Mateescu, Damien Bergamini, Adrian Curic,
Nicolas Descoubes, Christophe Joubert, Irina Smarandache-Sturm,
Gilles Stragier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445

mcmas: A Model Checker for Multi-agent Systems
Alessio Lomuscio, Franco Raimondi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450



XVI Table of Contents

MSCan – A Tool for Analyzing MSC Specifications
Benedikt Bollig, Carsten Kern, Markus Schlütter, Volker Stolz . . . . . . 455

Refinement

A Practical and Complete Approach to Predicate Refinement
Ranjit Jhala, K.L. McMillan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459

Counterexample Driven Refinement for Abstract Interpretation
Bhargav S. Gulavani, Sriram K. Rajamani . . . . . . . . . . . . . . . . . . . . . . . 474

Abstraction Refinement with Craig Interpolation and Symbolic
Pushdown Systems

Javier Esparza, Stefan Kiefer, Stefan Schwoon . . . . . . . . . . . . . . . . . . . . 489

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505



Weighted Pushdown Systems and
Trust-Management Systems

Somesh Jha1, Stefan Schwoon2, Hao Wang1, and Thomas Reps1

1 Computer Science Department, University of Wisconsin, Madison, WI 53706
{hbwang, jha, reps}@cs.wisc.edu

2 Institut für Formale Methoden der Informatik, Universität Stuttgart,
Universitätsstr. 38, 70569 Stuttgart, Germany

schwoosn@fmi.uni-stuttgart.de

Abstract. The authorization problem is to decide whether, according
to a security policy, some principal should be allowed access to a resource.
In the trust-management system SPKI/SDSI, the security policy is given
by a set of certificates, and proofs of authorization take the form of cer-
tificate chains. The certificate-chain-discovery problem is to discover a
proof of authorization for a given request. Certificate-chain-discovery al-
gorithms for SPKI/SDSI have been investigated by several researchers.
We consider a variant of the certificate-chain discovery problem where
the certificates are distributed over a number of servers, which then have
to cooperate to identify the proof of authorization for a given request.
We propose two protocols for this purpose. These protocols are based
on distributed model-checking algorithms for weighted pushdown sys-
tems (WPDSs). These protocols can also handle cases where certificates
are labeled with weights and where multiple certificate chains must be
combined to form a proof of authorization. We have implemented these
protocols in a prototype and report preliminary results of our evaluation.

1 Introduction

In access control of shared computing resources, the authorization problem ad-
dresses the following question: “Given a security policy, should a principal be
allowed access to a specific resource?” In trust-management systems [4, 5, 25],
such as SPKI/SDSI [9], the security policy is given by a set of signed certificates,
and a proof of authorization consists of a set of certificate chains. In SPKI/SDSI,
the principals are the public keys, i.e., the identity of a principal is established by
checking the validity of the corresponding public key. In SPKI/SDSI, name cer-
tificates define the names available in an issuer’s local name space; authorization
certificates grant authorizations, or delegate the ability to grant authorizations.
The certificate-chain-discovery problem is to discover a set of certificate chains
that provides a proof of authorization for a request by a principal to access a
resource.

An efficient certificate-chain-discovery algorithm for SPKI/SDSI was pre-
sented by Clarke et al. [8]. An improved algorithm was presented by Jha and
Reps [14]. The latter algorithm is based on translating SPKI/SDSI certificates

H. Hermanns and J. Palsberg (Eds.): TACAS 2006, LNCS 3920, pp. 1–26, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 S. Jha et al.

to rules in a pushdown system [10, 11]. In [14] it was also demonstrated how this
translation enables many other questions to be answered about a security policy
expressed as a set of certificates. Algorithms presented in [8] and [14] assume
that the proof of authorization consists of a single certificate chain. In general,
however, a proof of authorization in SPKI/SDSI requires a set of certificate
chains, each of which proves some part of the required authorization. Hence, the
certificate-chain-discovery algorithms presented in [8, 14] are incomplete. This
observation is also the basis for the observation by Li and Mitchell [19] that the
“5-tuple reduction rule” of [9] is incomplete.

Schwoon et al. [24] introduced a new algorithm for certificate-chain discovery
that translates SPKI/SDSI certificates to rules in a weighted pushdown system
(WPDS) [22]. The algorithm presented by Schwoon et al. [24] can discover proofs
of authorization that consist of multiple certificate chains. Moreover, the algo-
rithm presented in [24] addresses such issues as trust, privacy, and recency in the
context of authorization in SPKI/SDSI. As in [24], in this paper we translate
SPKI/SDSI certificates into rules in a WPDS, where the authorization specifica-
tions of the certificates are translated to weights on rules. This translation to a
WPDS yields a complete certificate-chain-discovery algorithm and is described
in Section 5.

The algorithms of [8, 14, 24] assume that the set of all certificates relevant to
a given request are known to a single site, which can then compute the answer to
the authorization problem for a given principal and a given resource. In practice,
however, there may be no such central authority. Certificates may be held by a
number of different sites, each of which knows only a subset of the certificates. If a
principalK from site S1 wants to access a resource at site S2, the certificate chain
authorizingK to do so may involve certificates from both S1 and S2 (and possibly
a number of other sites in between). For instance, consider the following example:
The Computer Sciences department (CS) at the University of Wisconsin (UW)
is part of the College of Letters and Sciences (LS). The department, the college,
and the university could be different sites in the sense above. UW might grant
access to some resource R to all of its faculty members by issuing a corresponding
authorization certificate. The actual principals authorized to access R would be
specified by name certificates, e.g., UW would declare that its faculty members
are (among others) those of LS, LS would declare that its faculty members are
(among others) those of CS, and CS would have a list of its faculty members.
If members of CS want to access R, they need a chain of certificates from UW,
LS, and CS, and none of these sites may know all of the certificates involved.

This paper makes two major contributions. First, we present a distributed
model-checking algorithm for WPDSs. Second, using this algorithm we develop
a distributed certificate-chain-discovery algorithm for SPKI/SDSI where the cer-
tificates are distributed across various sites. Backgroundon the trust-management
system SPKI/SDSI is given in Section 4. A distributed certificate-chain-discovery
algorithm for SPKI/SDSI is described in Section 6. We have implemented a pro-
totype of our algorithm. Our experimental results, presented in Section 7, demon-
strate that the algorithm incurs a moderate overhead.



Weighted Pushdown Systems and Trust-Management Systems 3

2 Related Work

A certificate-chain-discovery algorithm for SPKI/SDSI was first proposed by
Clarke et al. [8]. An improved certificate-chain-discovery based on the theory of
pushdown systems was presented by Jha and Reps [14]. As indicated earlier, both
of these algorithms are centralized and assume that the proof of authorization
consists of a single certificate chain. In the proof-carrying-authorization (PCA)
framework of Appel and Felten [2], a client uses the theorem prover Twelf [21] to
construct a proof of authorization, which the client presents to the server. How-
ever, they too assume that all logical facts used by the theorem prover reside at
a single server. Li et al. [20] presented a distributed certificate-chain-discovery
algorithm for the trust-management system RT0. Their algorithm allows cer-
tificates to be distributed, but the proof of authorization is maintained at one
site. SPKI/SDSI is a subset of RT0 (SPKI/SDSI is equivalent to RT0 without
role intersection). In our distributed certificate-chain-discovery algorithm, var-
ious sites summarize their part of the proof of authorization before sending it
to other sites; thus, the proof of authorization is distributed. Moreover, sum-
marizing intermediate results also provides some privacy. We also implemented
our algorithm in a trust-management server. To the best of our knowledge, Li et
al. did not implement their algorithm. Bauer et al. [3] present an algorithm for
assembling a proof that a request satisfies an access-control policy expressed in
formal logic [18]. Bauer et al. advocate a lazy strategy, in which a party enlists
help of others to prove particular subgoals. The precise relationship between the
distributed algorithm of Bauer et al. and the algorithm presented in this paper
will be explored in the future. The semantics of SPKI/SDSI has been widely
studied [13, 1, 12]. In this context, the work that is most relevant is by Li and
Mitchell [19], who pointed out that the “5-tuple reduction rule” of [9] is incom-
plete because, in general, a proof of authorization can require multiple certificate
chains. Our algorithm does not suffer from this problem, due to the translation
into a WPDS.

The work by Jim and Suciu on SD3 [16, 17], the successor of QCM, is also
related to ours. SD3 is a trust-management system based on Datalog that,
like our algorithms, allows for distributed evaluation of authorization queries.
In [16], the author claims that SD3 can express “roughly the same policies as
SDSI 2”. While this claim is not further substantiated in [16], we believe it to
be true. However, there are several differences that set our work apart from
SD3:

– SD3 describes a generic evaluation algorithm where each instantiation corre-
sponds to a particular strategy for distributing the computation. We propose
several concrete evaluation strategies and argue that these strategies have
certain advantages with respect to efficiency and privacy.

– Since [16] does not provide a concrete encoding of SPKI/SDSI in SD3, any
comparison of the relative merits of our encoding vs SD3’s is bound to be
speculative. However, we believe that SD3’s site-safety requirement would
limit their evaluation to “forward” mode, whereas our algorithms can search
both forward and backward (the latter is explained in Section 6).



4 S. Jha et al.

– Unlike SD3, our framework allows certificates to have weights. As pointed
out in [15], this provides a solution for situations in which proofs of autho-
rization require multiple certificate chains, each of which prove part of the
authorization. This solves the problem of semantic incompleteness pointed
out by Li and Mitchell [19]. Moreover, in [24], we pointed out that weights
allow to address such issues as privacy, recency, validity, and trust.

3 Weighted Pushdown Systems

Weighted pushdown systems were introduced in [7, 22, 23, 24]. In short, a push-
down system defines an infinite-state transition system whose states involve a
stack of unbounded length. In a weighted pushdown system, the rules are given
values from some domain of weights. Our weight domains of interest are the
bounded idempotent semirings defined in Defn. 1.

Definition 1. A bounded idempotent semiring is a quintuple (D,⊕,⊗, 0, 1),
where D is a set, 0 and 1 are elements of D, and ⊕ (the combine operation) and
⊗ (the extend operation) are binary operators on D such that

1. (D,⊕) is a commutative monoid whose neutral element is 0, and where ⊕ is
idempotent.

2. (D,⊗) is a monoid with the neutral element 1.
3. ⊗ distributes over ⊕, i.e., for all a, b, c ∈ D we have a⊗ (b⊕ c) = (a⊗ b) ⊕

(a⊗ c) and (a⊕ b) ⊗ c = (a⊗ c) ⊕ (b⊗ c).
4. 0 is an annihilator with respect to ⊗, i.e., for all a ∈ D, a⊗ 0 = 0 = 0 ⊗ a.
5. In the partial order � defined by: ∀a, b ∈ D, a � b iff a ⊕ b = a, there are

no infinite descending chains.

Definition 2. A pushdown system is a triple P = (P, Γ,Δ), where P and Γ
are finite sets called the control locations and the stack alphabet, respec-
tively. The elements of Conf (P) := P × Γ ∗ are called the configurations
of P. Δ contains a finite number of rules of the form 〈p, γ〉 ↪→P 〈p′, w〉, where
p, p′ ∈ P , γ ∈ Γ , and w ∈ Γ ∗, which define a transition relation ⇒P between
configurations of P as follows:

If r = 〈p, γ〉 ↪→P 〈p′, w〉, then 〈p, γw′〉 〈r〉==⇒P 〈p′, ww′〉 for all w′ ∈ Γ ∗.

We write c⇒P c
′ to express that there exists some rule r such that c 〈r〉==⇒P c

′;
we omit the subscript P if P is understood. The reflexive transitive closure of ⇒
is denoted by ⇒∗.

Given a set of configurations C, we define pre(C) def= { c′ | ∃c ∈ C : c′ ⇒ c }
and post(C) def= { c′ | ∃c ∈ C : c ⇒ c′ } as the sets of configurations that
are reachable—backwards and forwards, respectively—from elements of C in a
single step. Moreover, pre∗(C) def= { c′ | ∃c ∈ C : c′ ⇒∗ c } and post∗(C) def=
{ c′ | ∃c ∈ C : c⇒∗ c′ } are the configuration reachable–backwards and forwards–
in arbitrarily many steps. C is called regular if for all p ∈ P the language
{w | 〈p, w〉 ∈ C } is regular.



Weighted Pushdown Systems and Trust-Management Systems 5

Definition 3. A weighted pushdown system is a triple W = (P ,S, f) such
that P = (P, Γ,Δ) is a pushdown system, S = (D,⊕,⊗, 0, 1) is a bounded idem-
potent semiring, and f : Δ → D is a function that assigns a value from D to
each rule of P.

Let σ ∈ Δ∗ be a sequence of rules. Using f , we can associate a value to σ,
i.e., if σ = [r1, . . . , rk], then we define v(σ) def= f(r1)⊗ . . .⊗ f(rk). Moreover, for
any two configurations c and c′ of P, we let path(c, c′) denote the set of all rule
sequences [r1, . . . , rk] that transform c into c′, i.e., c 〈r1〉===⇒ · · · 〈rk〉===⇒ c′.

Definition 4. Let W = (P ,S, f), where P = (P , Γ,Δ) and S = (D,⊕,⊗, 0, 1),
and let C be a set of configurations. A forwards (resp. backwards) (W , C)-
dag is an edge-labeled directed acyclic graph (V,E) where V ⊆ Conf (P) × D
and E ⊆ V ×Δ× V such that

– if a vertex (c, d) has no incoming edges, then c ∈ C and d = 1;
– if ((c1, d1), r1, (c, d)), . . . , ((ck, dk), rk, (c, d)), k ≥ 1 are the incoming edges

of (c, d), then
• d =

⊕k
i=1(di ⊗ f(ri)) and ci

〈ri〉===⇒P c for all 1 ≤ i ≤ k (in a forwards
(W , C)-dag);

• d =
⊕k

i=1(f(ri) ⊗ di) and c 〈ri〉===⇒P ci for all 1 ≤ i ≤ k (in a backwards
(W , C)-dag).

We call a (forwards/backwards) (W , C)-dag D a witness dag for (c, d) if D is
finite and (c, d) is the only vertex with no outgoing edges in D.

Notice that the extender operation ⊗ is used to calculate the value of a path.
The value of a set of paths is computed using the combiner operation ⊕. The
existence of a witness dag for (c, d) can be considered a proof that there exists
a set of paths from C to c (or vice versa) whose combined value is d. Because of
Defn. 1(5), it is always possible to identify a finite witness dag if such a set of
paths exists.

3.1 Known Results

We briefly review some known results about (weighted) pushdown systems.
Let P = (P, Γ,Δ) be a pushdown system, and let C be a regular subset of

Conf (P). Then, according to [10], the sets pre∗(C) and post∗(C) are also regular
and effectively computable (in the form of a finite automaton).

The results from [23, 24] show that the result can be extended to generalized
pushdown reachability (GPR) problems on weighted pushdown systems:

Definition 5. Let W = (P ,S, f) be a weighted pushdown system, where P =
(P, Γ,Δ), and let C ⊆ P×Γ ∗ be a regular set of configurations. The generalized
pushdown predecessor (GPP) problem is to find for each c ∈ pre∗(C):

– δ(c) def=
⊕

{ v(σ) | σ ∈ path(c, c′), c′ ∈ C };
– a backwards witness dag for (c, δ(c)).



6 S. Jha et al.

The generalized pushdown successor (GPS) problem is to find for each
c ∈ post∗(C):

– δ(c) def=
⊕

{ v(σ) | σ ∈ path(c′, c), c′ ∈ C };
– a forwards witness dag for (c, δ(c)).

In [23, 24], the solutions for GPS and GPP are computed in the form of annotated
finite automata. We describe the GPP case here; the GPS case is analogous,
modulo certain details. Moreover, for the sake of keeping the presentation simple,
we concentrate on the computation of the δ(c) values. A method for computing
the witness dags is given in [23], and it is straightforward to transfer it to the
distributed case.

Our input is a weighted pushdown system W = (P ,S, f), where P = (P, Γ,Δ)
and S = (D,⊕,⊗, 0, 1), together with a regular set of configurations C. The
output is δ(c) for each c ∈ pre∗(C). In general, there are infinitely many config-
urations in pre∗(C) even if C itself is finite, so we can only hope to compute the
solution symbolically. We use (annotated) finite automata for this purpose:

Definition 6. A P-automaton is a quintuple A = (Q,Γ, η, P, F ) where Q ⊇ P
is a finite set of states, η ⊆ Q×Γ ×Q is the set of transitions, and F ⊆ Q are
the final states. The initial states of A are the control locations P . We say that
a sequence of transitions (p, γ1, p1), . . . , (pn−1, γn, q) ∈ η reads configuration
〈p, γ1 . . . γn〉 if p1, . . . , pn1 , q are arbitrary states. The sequence is accepting iff
q is a final state. If c is a configuration of A, we denote by accA(c) the set of
all accepting transition sequences in A for c; we say that c is accepted by A if
accA(c) is non-empty.

Note that a set of configurations of P is regular if and only if it is accepted
by some P-automaton. In what follows, P is fixed; hence, we usually omit the
prefix P and speak simply of “automata”.

A convenient property of regular sets of configurations is that they are closed
under forwards and backwards reachability [6]. In other words, given an automa-
ton A that accepts the set C, one can construct automata that accept the sets
of all configurations that are forward or backwards reachable from C. Following
[23, 24], two additional labelings for the transitions of A are computed to solve
the GPP and GPS problems. The first, l : η → D assigns a weight from D to each
automaton transition and allows to compute δ (see below). The second allows
to compute the ω function. As mentioned earlier, we omit the second labeling
for the sake of simplicity.

Without loss of generality, we assume henceforth that for every rule 〈p, γ〉 ↪→
〈p′, w〉 we have |w| ≤ 2; this is not restrictive because every pushdown system
can be simulated by another one that obeys this restriction and is larger by only
a constant factor (e.g., [14]).

In the following, we first present an abstract version of the procedure given
in [23, 24], which is designed for centralized computation. We then proceed to
give an implementation for the distributed case.



Weighted Pushdown Systems and Trust-Management Systems 7

Abstract Algorithm. Let A = (Q,Γ, η, P, F ) be a P-automaton that accepts
a set of configurations C. Without loss of generality, we assume that A has no
transition leading to an initial state.

Initially, we set l(t) := 1 for all t ∈ η. When we say that transition t should
be updated with value d, we mean the following action: if t is not yet in η, add
t to η and set l(t) := d; otherwise, update l(t) to l(t) ⊕ d.

For GPP, we add new transitions to A according to the following saturation
rule:

If r := 〈p, γ〉 ↪→ 〈p′, w〉 is a rule, t1 . . . t|w| a sequence that reads 〈p, w〉
and ends in state q, then let d be l(t1)⊗ . . .⊗ l(t|w|) and update (p, γ, q)
with the value f(r) ⊗ d.

The procedure terminates when the saturation rule can no longer be applied
(i.e., a fixed point has been reached).

Concrete Algorithm. A concrete implementation is given in [23] and repro-
duced in Figure 1. Each iteration of the loop starting at line 14 executes one
or more applications of the saturation rule. After the computation has finished,
the resulting automaton accepts all configurations c ∈ pre∗(C). Then, we have
δ(c) =

⊕
t1···tn∈accA′ (c) l(t1) ⊗ · · · ⊗ l(tn).

In [23] the time complexity of the GPP algorithm from Figure 1 was stated
as O(|Q|2 · |Δ| · �), where � is the length of the longest descending chain in S,
and the space complexity (determined by the number of transitions in the final
automaton) as O(|Q| · |Δ| + |η|).

3.2 A Distributed Algorithm

We now discuss how the computation can be distributed when the rules in Δ
are distributed over a set Sites of servers. As in Section 3.1, we discuss both the
GPP and the GPS case, and give a concrete implementation for GPP, as the one
for GPS is very similar.

We fix a weighted pushdown system W = (P ,S, f), where P = (P, Γ,Δ) and
S = (D,⊕,⊗, 0, 1), and a regular set C of configurations. The solution we discuss
here distributes the workload among the servers according to control locations,
i.e., for every control location there is a server that is ‘responsible’ for it. More
precisely, we make the following assumptions:

1. There exists a mapping fS : P → Sites that assigns control locations to sites.
2. Every rule 〈p, γ〉 ↪→ 〈p′, w〉 is stored at the site fS(p) (for the GPS problem),

or at fS(p′) (for the GPP problem).

Stating assumption 2 differently, we areworkingwith a collection (Ws)s∈Sites of
weighted pushdown systems that differ only in their rules, i.e., Ws =(Ps,S, f|Δs

)
and Ps = (P, Γ,Δs), where the set Δs satisfies assumption 2.

We say that a rule 〈p, γ〉 ↪→ 〈p′, w〉 is a boundary rule if p and p′ are assigned
to different sites. If such a boundary rule exists, we call the sites responsible for
p and p′ neighboring sites.



8 S. Jha et al.

Algorithm 1
Input: a weighted pushdown system W = (P ,S , f), where P = (P, Γ, Δ) and

S = (D,⊕,⊗, 0, 1), and an automaton A = (Q, Γ, η0, P, F ) that accepts C,
such that A has no transitions into states from P .

Output: an automaton A′ = (Q,Γ, η, P, F ) that accepts pre∗(C),
with annotation function l : η → D

1 procedure update(t, v)
2 begin
3 η := η ∪ {t}
4 newValue := l(t)⊕ v
5 if newValue �= l(t) then
6 workset := workset ∪ {t}
7 l(t) := newValue
8 end
9

10 η := η0; workset := η0; l := λt.0
11 for all t ∈ η0 do l(t) := 1
12 for all r = 〈p, γ〉 ↪→ 〈p′, ε〉 ∈ Δ do
13 update((p, γ, p′), f(r))
14 while workset �= ∅ do
15 remove some transition t = (q, γ, q′) from workset ;
16 for all r = 〈p1, γ1〉 ↪→ 〈q, γ〉 ∈ Δ do
17 update((p1, γ1, q

′), f(r)⊗ l(t))
18 for all r = 〈p1, γ1〉 ↪→ 〈q, γγ2〉 ∈ Δ do
19 for all t′ = (q′, γ2, q

′′) ∈ η do
20 update((p1, γ1, q

′′), f(r)⊗ l(t)⊗ l(t′))
21 for all r = 〈p1, γ1〉 ↪→ 〈p′, γ2γ〉 ∈ Δ do
22 if t′ = (p′, γ2, q) ∈ η then
23 update((p1, γ1, q

′), f(r)⊗ l(t′)⊗ l(t))
24 return ((Q, Γ, η, P, F ), l)

Fig. 1. An algorithm for creating a weighted automaton for the GPP problem

Definition 7. Let D = (V,E) be a (W , C)-dag and s ∈ Sites. An edge (v, r, v′)
of D, where v = (〈p, w〉, d), is called a boundary edge if r is a boundary
rule. Moreover, v′ is called a boundary node of the site fS(p). We denote by
T (s) = { 〈p, w〉 | fS(p) = s, w ∈ Γ ∗ } the configurations that begin with the
control locations for which site s is responsible. Moreover, the s-region of D
is the subgraph (Vs, Es) of D, where Vs = { (c, d) ∈ V | c ∈ T (s) } and Es =
{ (v, r, v′) ∈ E | v ∈ Vs }.
Informally, the s-region contains the subgraph of D induced by Vs, i.e., the nodes
for whose configurations s is responsible, plus the “fringe” of this subgraph, i.e.,
the boundary edges originating in Vs and their target nodes.

Abstract Algorithm. We can now give an abstract description of the GPP and
GPS algorithms. Given W and C, every site s computes the set T C

pre(s)
def= (pre ∪

id)(pre∗(C)∩T (s)) (in the GPP case) or T C
post (s)

def= (post ∪ id)(post∗(C)∩T (s))



Weighted Pushdown Systems and Trust-Management Systems 9

(in the GPS case). In the following, we write T̄ (s) to mean T C
pre(s) or T C

post (s),
depending on the context.

Intuitively speaking, every site s computes a partition of pre∗(C) or post∗(C),
namely, the set of configurations that have control locations for which s is re-
sponsible, extended with the configurations reached by boundary rules. Note
that the set T̄ (s) contains all the configurations that can be generated using
rules stored at s.

The idea is that site s becomes involved in a GPP/GPS computation if it is
discovered that T̄ (s) �= ∅. Initially, each site s starts with the set C ∩ T (s). If
a boundary rule causes a site s to discover configurations that belongs to T (s′)
(for some site s′ �= s), then s will send those configurations to s′, and s′ continues
its GPP/GPS computation using those configuration.

Concrete Algorithm. At a more concrete level of description, every site s com-
putes an automaton As that accepts T̄ (s), and appropriate labeling functions
for δ and for the witness dags. Basically, the distributed algorithm is a straight-
forward extension of the non-distributed case: every site s runs a GPP/GPS
algorithm similar to the one in Figure 1 with Ws. The main complication is that
some parts of the automata need to be shared between sites.

To be more precise, let A be an automaton that accepts C. Initially, As is an
automaton that accepts C ∩ T (s), which can be constructed by merely taking
the states and transitions of A that are reachable from initial states p such that
fS(p) = s.

Each site s then carries out the algorithm from Figure 1 using Ws. If s and s′

are neighboring sites, then, at some stage of the computation at s, the automaton
As may accept configurations from T (s′)∩T̄ (s), i.e., configurations that ought to
be maintained by s′. Let Ts,s′ be the set of transitions in

⋃
c∈T (s′) accAs(c), i.e.,

the transitions in As that form part of an accepting path for such configurations.
Whenever s detects a transition t that belongs to Ts,s′ (or an update in such a
transition), then s keeps t in its automaton, but also sends it to s′. Thus, every
site s ends up with an automaton that accepts T̄ (s).

Along with the configurations, every site also computes information to con-
struct the δ function and witness dags. Notice that the vertices in an s-region of
a (W , C)-dag D are labeled with configurations from T̄ (s), and that the edges of
the region are labeled with the rules stored at s. Thus, s has all the information
needed to construct the s-region of D. More precisely, the information needed
to construct an s-region can be generated by an annotation of the automaton
maintained by s, in the same way as in [23].

The δ function is computed in the form of another annotation that labels
automaton transitions with semiring values. When sending a transition from one
site to another, the semiring values are also sent. For a configuration c = 〈p, w〉,
the value of δ(c) can be obtained by evaluating the automaton AfS(p), as shown
in Section 3.1.

Figure 2 shows the changes that must be made to Algorithm 1 to implement
this approach. The figure shows the algorithm from the point of view of site s.
The algorithm maintains a mapping sites : Q → 2Sites. If s′ ∈ sites(q), then



10 S. Jha et al.

Algorithm 2 (running on site s)
Input: a weighted pushdown system Ws = (Ps,S , f|Δs|), where Ps = (P, Γ, Δs), and

S = (D,⊕,⊗, 0, 1), and an automaton As = (Q, Γ, η0, P, F ) that accepts
C ∩ T (s), such that A has no transitions into states from P .

Output: an automaton A′
s = (Q, Γ, η, P, F ) that accepts T C

pre(s))’ with annotation
function l : η → D

Replacement for update procedure:

1 procedure update(t, v)
2 begin
3 η := η ∪ {t}
4 newValue := l(t)⊕ v
5 if newValue �= l(t) then
6 workset := workset ∪ {t}
7 l(t) := newValue
8 // assume t = (p, γ, q)
9 for all s′ ∈ sites(p) do

10 updates′(t, l(t));
11 add recursive(q, s′);
12 end

New procedure add recursive :
1 procedure add recursive(q, s′)
2 begin
3 if s′ ∈ sites(q) then return;
4 sites(q) := sites(q) ∪ {s′};
5 for all t′ = (q, γ′, q′) ∈ η do
6 updates′(t′, l(t′));
7 add recursive(q′, s′);
8 end

Additions to main procedure:

1 sites := λp.∅;
2 for all r = 〈p, γ〉 ↪→ 〈p′, w〉 ∈ Δ do
3 if fS(p) �= s then
4 sites(p) := sites(p) ∪ {fS(p)}

Fig. 2. Modification of Algorithm 1 for distributed GPP

the current automaton contains a path that leads from an initial state p, where
fS(p) = s′, to the state q. This means that all transitions of the form (q, y, q′)
are part of accepting paths for configurations from T (s′). As a consequence,
whenever such a transition is first generated or updated, it needs to be sent
to s′, and q′ must be added to sites(s′).

The changes to Algorithm 1 consist of three parts:

– The procedure update is replaced by a new version;
– there is an additional procedure add recursive;
– a couple of lines are added to the beginning of the main procedure.

The new lines in the main procedure initialize the sites function. The update
function is extended by lines 8–11. These lines send the updated transition to
other sites as required. Sending a transition t with value v to site s′ is represented
by updates′(t, v), which can be thought of as a remote procedure call (of the
function update) on site s′ that adds t to the worklist of s′. Finally, the target
state of t must be added to sites(s′). This is done by procedure add recursive,
which also takes care of sending additional transitions to s′, if required.

Complexity. Let us state the complexity of Algorithm 1 when run on site s.
The main procedure is unchanged and runs in O(|Q|2 · |Δs| · �) time, where � is
the longest descending chain in S. Additional work is required for sending and
receiving transitions to/from neighboring sites. Suppose that s has n neighboring



Weighted Pushdown Systems and Trust-Management Systems 11

sites, and that these sites send t transitions to s. For every send or receive action,
s needs to perform some constant amount of work.

Note that t is bounded by O(|Q| · |Δ|), and that every transition can be
received at most � times, so the effort for received transitions is at most O(|Q| ·
|Δ| · �), although in practice we expect it to be much lower.

In the worst case, s must send all of its transitions to all n neighbors at most
� times, i.e., O(|Q| · |Δ| · n · �). Again, we expect his number to be much lower
in practice.

4 Background on SPKI/SDSI

In SPKI/SDSI, all principals are represented by their public keys, i.e., the prin-
cipal is its public key. A principal can be an individual, process, host, or any
other entity. K denotes the set of public keys. Specific keys are denoted by
K,KA,KB,K

′, etc. An identifier is a word over some alphabet Σ. The set of
identifiers is denoted by A. Identifiers will be written in typewriter font, e.g.,
A and Bob. A term is a key followed by zero or more identifiers. Terms are ei-
ther keys, local names, or extended names. A local name is of the form K A,
where K ∈ K and A ∈ A. For example, K Bob is a local name. Local names
are important in SPKI/SDSI because they create a decentralized name space.
The local name space of K is the set of local names of the form K A. An
extended name is of the form K σ, where K ∈ K and σ is a sequence of identi-
fiers of length greater than one. For example, K UW CS faculty is an extended
name.

4.1 Certificates

SPKI/SDSI has two types of certificates, or “certs”:

Name Certificates (or name certs): A name cert provides a definition of a
local name in the issuer’s local name space. Only key K may issue or sign a cert
that defines a name in its local name space. A name cert C is a signed four-tuple
(K, A, S, V ). The issuer K is a public key and the certificate is signed by K. A
is an identifier. The subject S is a term. Intuitively, S gives additional meaning
for the local name K A. V is the validity specification of the certificate. Usually,
V takes the form of an interval [t1, t2], i.e., the cert is valid from time t1 to t2
inclusive.

Authorization Certificates (or auth certs): An auth cert grants or delegates
a specific authorization from an issuer to a subject. Specifically, an auth cert c
is a five-tuple (K,S,D, T, V ). The issuer K is a public key, which is also used to
sign the cert. The subject S is a term. If the delegation bit D is turned on, then
a subject receiving this authorization can delegate this authorization to other
keys. The authorization specification T specifies the permission being granted;
for example, it may specify a permission to read a specific file, or a permission
to login to a particular host. The validity specification V for an auth cert is the
same as in the case of a name cert.



12 S. Jha et al.

A labeled rewrite rule is a pair (L −→ R, T ), where the first component is a
rewrite rule and the second component T is an authorization specification. For
notational convenience, we will write the labeled rewrite rule (L −→ R, T ) as
L

T−→ R. We will treat certs as labeled rewrite rules:1z

– A name cert (K, A, S, V ) will be written as a labeled rewrite rule K A
�−→ S,

where � is the authorization specification such that for all other authoriza-
tion specifications t, � ∩ t = t, and � ∪ t = �. 2 Sometimes we will write
�−→ as simply −→, i.e., a rewrite rule of the form L −→ R has an implicit

label of �.
– An auth cert (K,S,D, T, V ) will be written asK � T−→ S � if the delegation

bit D is turned on; otherwise, it will be written as K � T−→ S �.

4.2 Authorization

Because we only use labeled rewrite rules in this paper, we refer to them as
rewrite rules or simply rules. A term S appearing in a rule can be viewed as
a string over the alphabet K ∪ A, in which elements of K appear only in the
beginning. For uniformity, we also refer to strings of the form S � and S � as
terms. Assume that we are given a labeled rewrite rule L T−→ R that corresponds
to a cert. Consider a term S = LX . In this case, the labeled rewrite rule L T−→ R

applied to the term S (denoted by (L T−→ R)(S)) yields the term RX . Therefore,
a rule can be viewed as a function from terms to terms that rewrites the left
prefix of its argument, for example,

(KA Bob −→ KB)(KA Bob myFriends) = KB myFriends

Consider two rules c1 = (L1
T−→ R1) and c2 = (L2

T ′
−→ R2), and, in addition,

assume that L2 is a prefix of R1, i.e., there exists an X such that R1 = L2X .

Then the composition c2 ◦ c1 is the rule L1
T∩T ′
−→ R2X . For example, consider the

two rules:

c1 : KA friends
T−→ KA Bob myFriends

c2 : KA Bob
T ′
−→ KB

The composition c2 ◦ c1 is KA friends
T∩T ′
−→ KB myFriends. Two rules c1 and

c2 are called compatible if their composition c2 ◦ c1 is well defined.3

1 In authorization problems, we only consider valid certificates, so the validity speci-
fication V for a certificate is not included in its rule.

2 The issue of intersection and union of authorization specifications is discussed in
detail in [9, 13].

3 In general, the composition operator ◦ is not associative. For example, c3 can be
compatible with c2◦c1, but c3 might not be compatible with c2. Therefore, c3◦(c2◦c1)
can exist when (c3 ◦ c2) ◦ c1 does not exist. However, when (c3 ◦ c2) ◦ c1 exists, so
does c3 ◦ (c2 ◦ c1); moreover, the expressions are equal when both are defined. Thus,
we allow ourselves to omit parentheses and assume that ◦ is right associative.



Weighted Pushdown Systems and Trust-Management Systems 13

4.3 The Authorization Problem in SPKI/SDSI

Assume that we are given a set of certs C and that principal K wants access
specified by authorization specification T . The authorization question is: “Can
K be granted access to the resource specified by T ?”

A certificate chain ch = (ck◦ck−1◦· · ·◦c1) is a sequence such that for C, where
c1, c2, · · · , ck are certificates in C, certificate chain ch defines the transformation
ck◦ck−1◦· · ·◦c1. The label of ch, denoted by L(ch), is the label of ck◦ck−1◦· · ·◦c1.
We assume that the authorization specification T is associated with a unique
principal Kr (which could be viewed as the owner of the resource r to which
T refers). Given a set of certificates C, an authorization specification T , and
a principal K, a certificate-chain-discovery algorithm looks for a finite set of
certificate chains that “prove” that principal K is allowed to make the access
specified by T .

Formally, certificate-chain discovery attempts to find a finite set {ch1, · · · , chm}
of certificate chains such that for all 1 ≤ i ≤ m

chi(Kr �) ∈ {K �,K �} .
and T ⊆

⋃m
i=1 L(chi).

Clarke et al. [8] presented an algorithm for certificate-chain discovery in
SPKI/SDSI with time complexity O(n2

K |C|), where nK is the number of keys
and |C| is the sum of the lengths of the right-hand sides of all rules in C. How-
ever, this algorithm only solved a restricted version of certificate-chain discovery:
a solution could only consist of a single certificate chain. For instance, consider
the following certificate set:

c1 : (K, KA, 0, ((dir /etc) read), [t1, t2])
c2 : (K, KA, 0, ((dir /etc) write), [t1, t2])

Suppose that Alice makes the request

(KA, ((dir /etc) (* set read write))).

In this case, the chain “(c1)” authorizes Alice to read from directory /etc,
and a separate chain “(c2)” authorizes her to write to /etc. Together, (c1)
and (c2) prove that she has both read and write privileges for /etc. However,
both of the certificates c1 and c2 would be removed from the certificate set
prior to running the certificate-chain discovery algorithm of Clarke et al.,
because read �⊇ (* set read write) and write �⊇ (* set read write). Conse-
quently, no proof of authorization for Alice’s request would be found. Schwoon et
al. [24] presented algorithms for the full certificate-chain-discoveryproblem, based
on solving reachability problems in weighted pushdown systems. Their
formalization allows a proof of authorization to consist of a set of certificate
chains. This paper uses the WPDS-based algorithm for certificate-chain-discovery
introduced in [24].



14 S. Jha et al.

5 Weighted Pushdown Systems and SPKI/SDSI

In the section, we show that WPDSs are a useful tool for solving problems related
to certificate-chain discovery in SPKI/SDSI. The following definitions are largely
taken from [23].

The following correspondence between SPKI/SDSI and pushdown systems
was presented in [24]: let C be a (finite) set of certificates such that KC and
IC are the keys and identifiers, respectively, that appear in C. Moreover, let T
be the set from which the authorization specifications in C are drawn. Then
SC = (T ,∪,∩,⊥,�), where ∩,∪ are the intersection and union of auth specs as
discussed in [9, 13], forms a semiring with domain T . We now associate with C the
weighted pushdown system WC = (PC ,SC , f), where PC = (KC , IC∪{�,�}, ΔC),
i.e., the keys of C are the control locations; the identifiers form the stack alphabet;
the rule set ΔC is defined as the set of labeled rewrite rules derived from the
name and auth certs as shown in Section 4.1; and f maps every rule to its
corresponding authorization specification.

The usefulness of this correspondence stems from the following simple observa-
tion: A configuration 〈K,σ〉 of PC can reach another configuration 〈K ′, σ′〉 if and
only if C contains a chain of certificates (c1, . . . , ck) such that (ck◦· · ·◦c1)(K σ) =
K ′ σ′. Moreover, the label of the certificate chain is precisely v(c1 · · · ck). Thus,
solving the GPP/GPS problem provides a way to find a set of certificate chains
to prove that a certain principal K ′ is allowed to access a resource of princi-
pal K. Moreover, the solution of the problem identifies a set of certificate chains
such that the union of their labels is maximal (with respect to the semiring
ordering �).

In the authorization problem, we are given a set of certs C, a principal K, and
resource Kr. In the PDS context, K can access the resource with authorization
specification T iff the following statement is true: In the GPP problem for WC
and C = {〈K,�〉, 〈K,�〉}, it holds that δ(〈Kr,�〉) � T ; equivalently, in the
GPS problem for WC and C = {〈Kr,�〉} we have δ(〈K,�〉) ⊕ δ(〈K,�〉) � T .

6 Distributed Certificate-Chain Discovery

The algorithms for GPR problems proposed in [23, 24] work under the assump-
tion that all pushdown rules (or certificates, resp.) are stored centrally at the
site that carries out the computation. In a real-world setting, certificates may
be issued by many principals, and centralized storage at one site may not be de-
sirable or possible. We therefore propose versions of these algorithms that solve
the problems in a distributed environment.

Let C be a (finite) set of certificates and WC = (PC ,SC , f) be the WPDS
associated with C (see Section 5 for details). As in Section 3.2, we assume that
the rules/certificates in Δ are distributed over a set of servers, where the fS
function describes the distribution of principals over the sites, and also assume
that every certificate/rule is stored at the site responsible for its issuer or sub-
ject. In the remainder of this section, we consider distributed solutions for the



Weighted Pushdown Systems and Trust-Management Systems 15

following distributed certificate-chain-discovery problem, under the aforemen-
tioned assumptions:

Given a principal r (the resource) and a principal c (the client) with
public keys Kr and Kc, is there a set of certificate chains in W that
allows c to access r and, if there is, what is their combined value?

The problem is equivalent to either of the following problems in the WPDS
setting:

– As a GPP problem: For C = {〈Kc,�〉, 〈Kc,�〉} and c = 〈Kr,�〉, compute
δ(c) and a backwards witness dag for (c, δ(c)).

– As a GPS problem: For C = {〈Kr,�〉}, c1 = 〈Kc,�〉, and c2 = 〈Kc,�〉,
compute δ(c1)⊕δ(c2) and forwards witness dags for (c1, δ(c1)) and (c2, δ(c2)).

Sections 6.1 and 6.2 propose protocols for the communication between the
client, the resource, and the servers that co-operate to solve the distributed
access problem. We propose two protocols, one based on the GPP formulation
of the above problem, the other on the GPS formulation. The protocols assume
algorithms for solving GPP and GPS in the distributed setting, and which are
provided in Section 3. The relative merits of the protocols, as well as security
and privacy-related issues, are discussed in Section 6.3.

6.1 The GPS Protocol for Distributed Certificate-Chain Discovery

In a distributed setting, multiple access requests may happen at the same time.
We shall use unique request ids to distinguish them. In the GPS variant, the
protocol consists of three phases.

Initialization. The initialization consists of the following steps:

1. The client c sends a message to the resource r requesting access. The message
contains the public key of the client, Kc.

2. The resource r responds by sending a unique request identifier reqid, which
will distinguish this request from other requests that may currently be in
progress.

3. The client sends a message to the site fS(Kc) (called the client site and
denoted sc from here on). The message contains (i) its key Kc, (ii) the
request id reqid, (iii) the so-called client certificate: the request id signed by
the client.

4. The client site checks whether the contents and signature of the client cer-
tificate match expectations. If the check is successful, the client site tells the
client that certificate discovery may begin.

5. The client asks the resource to initiate the search.
6. The resource sends a message to the site fS(Kr) (called the resource site and

written sr) containing its public key Kr, the request id reqid, and a request
to initiate certificate discovery.



16 S. Jha et al.

Search. The resource site initiates a GPS query for the singleton set C =
{〈Kr,�〉}, where reqid is used to distinguish this query from others (so that
servers may work on multiple requests at the same time). The query is resolved
by all the servers together, and the details of the search algorithm are given in
Section 3. Here, the crucial points are that sr starts a local GPS computation,
and if it notices that post∗(C) intersects T (s) for some other site s (because of
some boundary certificate), then s is asked to participate in the search. Site s
may, in the course of its computation, contact other sites. Each site s constructs
the set T C

post (s) and maintains information that allows to construct the s-region
of the required witness dags.

Verification. Because of its earlier communication with the client, the client site
sc knows that c1 := 〈Kc,�〉 and c2 := 〈Kc,�〉 are the targets of the search.
Moreover, because c1, c2 ∈ T (sc), the client site knows whether the finished
search has reached c1, c2. To complete the algorithm, the result must be reported
to the resource. Thus, in the verification phase, the direction of the flow of
information is contrary to the search phase.

The client site starts by constructing the sc-region of the witness dags. It then
sends this sub-dag starting at its boundary nodes ‘upstream’ to the correspond-
ing neighboring sites. The neighboring sites use this information to complete
their own sub-dags and send them further upstream until sr has the full witness
dags for c1 and c2. The result is then reported by sr to the resource. More-
over, all communications in this phase are accompanied by the client certificate
mentioned earlier.

The resource verifies the result, i.e., checks the integrity of the dag, the signa-
tures on all certificates used in the dags, whether the client certificate matches
reqid, and whether its signature matches the client. Depending on the outcome,
access is allowed or denied to the client.

The verification of the complete dag may place a great workload on the re-
source. An alternative is as follows: Instead of sending complete sub-dags, the
sites only report the sum (w.r.t. ⊕) of the paths inside the dags. Then, the re-
sult given by sr to the resource consists of certificates issued by the resource and
the combined values of the paths below them. This also reduces the amount of
network traffic.

6.2 The GPP Protocol for Distributed Certificate-Chain Discovery

In this setting, the search is started at the client site, and, in comparison with
Section 6.1, the flow of information between the sites is reversed.

Initialization

1. The client c sends a message to the resource r requesting access.
2. The resource generates reqid and sends the pair (R, reqid) to the resource

site sr (to notify it of an ‘incoming’ search). After sr has acknowledged
receipt of the message, the resource sends reqid to the client.



Weighted Pushdown Systems and Trust-Management Systems 17

3. The client contacts the client site sc and asks it to initiate a GPP compu-
tation. Along with the request, it sends reqid and the client certificate as in
Section 6.1.

4. The client site again checks correctness of the client certificate. If correct, sc

begins the search.

Search. The search stage is analogous to the GPS protocol, except that it is
started at the client site and from the set C = {〈Kc,�〉, 〈Kc,�〉}. In brief, a site
s becomes involved in the search if pre∗(C) intersects T (s). Communications
between sites are tagged with both reqid and the client certificate.

Verification. At the end of the search, the resource site (which knows that the
search with id reqid has the target c = 〈Kr,�〉) can determine whether c was
reachable from C and what the value of δ(c) is.

To generate a complete witness dag, sr can request from the sites further
‘downstream’ their regions of the witness dag, and then pass the complete dag
along with the client certificate to the resource, which will verify it and (if
successful) grant access to the client.

As an alternative solution, sr may report to the resource just the certificates
issued by the resource and the combined values of the paths above them. In that
case, no further communication between the sites is necessary.

Example 1. Consider the rules shown below:

r1 := 〈Kr,�〉 ↪→ 〈Kuw, faculty�〉
r2 := 〈Kuw, faculty〉 ↪→ 〈Kls, faculty〉
r3 := 〈Kls, faculty〉 ↪→ 〈Kcs, faculty〉
r4 := 〈Kls, faculty〉 ↪→ 〈Kbio, faculty〉
r5 := 〈Kcs, faculty〉 ↪→ 〈KBob, ε〉

with f(r1) := t and f(ri) := � for 2 ≤ i ≤ 5. We assume that there are four
sites, UW, LS, CS, and BIO. The sitemap fS is as follows: fS(Kr) and fS(Kuw)
are equal to UW, fS(Kls) is equal to LS, fS(Kbio) is equal to BIO, and fS(Kcs)
and fS(KBob) are equal to CS. This example is used as Case 1 in Section 7.1.
Suppose that Bob (at site CS) wants to access resource R (at site UW ). Then,
the site CS starts the search with C = {〈KBob,�〉, 〈KBob,�〉} and discovers,
through r5 and r3, that pre∗(C) intersects T (LS), so site LS gets involved and
notices that (because of r2), site UW must also take part in the search. The
automata computed by CS, LS, and UW are shown in Figure 3; notice that
site Bio does not become involved. At the end of the computation, site UW sees
that 〈Kr,�〉 is accepted by its automaton AUW with weight t, and that is the
result reported to resource R.

6.3 Discussion

Here, we discuss privacy and security-related topics, compare the two protocols,
and discuss possible improvements.



18 S. Jha et al.

)( )(

)(

)(

)()(

UW:

(t)

CS:

LS:

Kuw

KBob

faculty

Kr

Kcs

faculty

Kls
faculty

Fig. 3. pre∗ automata for 〈R, �〉 computed at sites CS, LS, and UW ; weights on
transitions shown in parentheses

Privacy. During the search, the parties involved learn the following:

– Only the resource and the client know that the client has asked to access the
resource.

– The resource site knows that a request has been made to the resource, but
not by whom.

– The client site knows only that the client has made a request, but not to
whom.

– All other sites know only that a request has been made, but not by whom
or to whom. They may surmise something about the nature of the request
judging from the identifiers on the transitions, the direction from which the
query comes, and the direction from where a confirmation comes, but they
can only observe the communication with their neighbor sites.

Thus, the privacy of the access request is ensured during the search. However,
when the witness dag is constructed during the construction phase, all sites learn
the identity of the client. This can be avoided if the alternative method is used,
in which only the values of certain paths in the dag are transmitted among sites.
This alternative solution also prevents the unnecessary spread of certificates
among sites (which might contain sensitive information).

Security Against Attacks

Spoofing and Eavesdropping. We assume that all parties involved in the search
can communicate securely and that no identification spoofing can take place.

Trusting the Sites. Because the main part of the computation is carried out
by the sites, the protocols are potentially susceptible to malicious behavior of
the sites. A malicious site could either invent or ignore certificates. Ignoring



Weighted Pushdown Systems and Trust-Management Systems 19

certificates would only be to the detriment of the users for which the site is
responsible, and seems unlikely to be a cause for concern.

Inventing certificates is also not a problem if the verification stage constructs
the full witness dag because in this case all certificates (which are signed by
their issuers) have to be supplied. The alternative solution, in which only values
are reported, is more problematic: in essence, reporting the value of the paths
in a sub-dag rooted at a node (〈K,w〉, d) amounts to issuing a confirmation (in
the name of principal K) that there is a certificate chain from 〈K,w〉 to the
client. Therefore, the alternative solution requires K to trust the site to use K’s
certificates truthfully. Note that if all boundary certificates have subjects that
are under direct control of the respective site operator, this is not a problem.

The Client Certificate. The resource must verify that the reported result is
indeed valid for the client who has initiated the request. If the verification stage
constructs full witness dags, this becomes straightforward: the maximal nodes
of the dags must refer to the client.

If the alternative solution is used in the verification, the client certificate serves
this purpose, provided that both resource and client site verify its correctness.

A Comparison of the Two Protocols. In the GPP-based protocol, the search
starts at the client site; in the GPS-based protocol it starts at the resource site.
If a site is responsible for a ‘popular’ resource, the GPS-based protocol may put
too much workload on it. Moreover, denial-of-service attacks are conceivable in
which a malicious client causes a large number of GPS computations (under
different identities) that are doomed to fail. In the GPP-based protocol, this is
less likely to happen: the workload would fall mostly on the client site, which
can be assumed to have a relationship to the client (e.g., the site is the client’s
company, ISP, etc.), and thus there is some ‘social safeguard’ against denial-of-
service attacks.

Moreover, when the construction of complete witness dags is omitted, the
GPP-based solution does not require a separate verification stage. For these
reasons, it seems that the GPP-based solution has some advantages over the
GPS-based solution. However, we have yet to carry out a more precise investi-
gation of this issue.

Possible Improvements

Caching Results. Notice that the methods we describe do not have to be carried
out every time that a client tries to access a resource. This would only have to
be done for the first contact between a given client and a given resource. If the
outcome is successful, the resource may remember this and grant access without
a full search the next time.

Caching can also be used by the sites: unless a site is the client site or the
resource site for some request, the result of its local search is independent of the
request identifier. Therefore, sites may cache recent results and reuse them when
an identical request (modulo reqid) comes along.



20 S. Jha et al.

Guided Search. In both protocols, the sets pre∗(C)/post∗(C) may intersect the
domains of many sites; therefore, any request could involve many different sites
even if only a few of them are ‘relevant’ for the search. This increases the length
of the computation as well as the amount of network traffic. Thus, the protocol
could be improved by limiting the scope of the search. It is likely that the client
has an idea of why he/she should be allowed to access the resource; therefore,
one possibility would be to let the client and/or the client site suggest a set of
sites that are likely to contain suitable certificates.

Termination. In the distributed GPP/GPScomputation, a standard termination-
detection algorithm can be applied to determine that the search has terminated,
which entails additional time and communication overhead. However, even before
the search has terminated, or before all relevant certificate chains have been found,
the client site (in the GPS case) or the resource site (in the GPP case) may have
discovered some paths with a tentative value (which may be ‘larger’ – with respect
to the ordering – than the δ value). If the goal of the search is just to establish that
the δ value is no larger than a certain threshold, then this information could be
used to terminate the search early. Moreover, the computation could be limited
by a timeout.

7 Implementation

We have implemented a prototype of our distributed certificate-chain-discovery
algorithm. Figure 4 shows how a site is organized. Each SPKI/SDSI site consists
of a SPKI/SDSI server and a WPDS server. The SPKI/SDSI server deals with
SPKI/SDSI certificates and provides the interface for clients to perform requests
for authorization. The WPDS server implements distributed certificate-chain dis-
covery using an algorithm for solving reachability problems in Weighted Push-
down Systems (WPDS). The clients do not interact directly with the WPDS
servers. In a typical authorization-request scenario, a client first initiates the
request by contacting the SPKI/SDSI server (1). The SPKI/SDSI server then
parses the request and sends it to the WPDS server at the same site (2). At this
point, the WPDS server starts the distributed certificate-chain-discovery process
and contacts other WPDS servers (3, 4) as necessary. If a proof of authorization
is found and verified, the client is granted access to the resource; otherwise the
request is denied (5, 6).

Fig. 4. Architecture Diagram Inside a Site



Weighted Pushdown Systems and Trust-Management Systems 21

7.1 Examples

We illustrate how the system works using three examples. A graph is used to
illustrate the configuration of sites for each example. In each graph, shaded
nodes represents distinct sites of a distributed SPKI/SDSI system, while labels
represent the cross-boundary SPKI/SDSI certificates. Nodes with a symbol (R)
denote the resource from where SPKI/SDSI auth certs are issued. The dashed
lines denote the certificate chain discovered by our algorithms when Bob requests
access to resource R.

– (Case 1): This case demonstrates the basic idea of distributed certificate-
chain discovery. Let us assume that a university has the hierarchical struc-
ture shown in Figure 5, where each site represents one level of the university.
Site UW denotes the top level of the University of Wisconsin; LS denotes
one of the colleges of UW, i.e., the college of Letters and Sciences; while
CS and BIO represent two departments under LS. Two sites are linked
together if a SPKI/SDSI certificate refers to both sites. For instance, the
site UW has issued two certificates with respect to site LS: the auth cert
Kr � t−→ Kuw faculty � grants access right t to all Kuw’s faculty; the name
cert Kuw faculty → Kls faculty states that all Kls’s faculty are Kuw’s fac-
ulty. Let us assume that Bob, from CS, requests access to a service R located
at UW. The certificate-chain-discovery process starts from UW and continues
down the hierarchy (LS, then CS) until it reaches CS, where Bob is granted
access rights. Note that each individual site does not have sufficient knowl-
edge to decide the authorization request. Instead, the certificates along the
path must be used together to show that Bob has the required permissions.

– (Case 2): While Case 1 demonstrates the basic idea behind distributed
certificate-chain discovery, Case 2 illustrates the situation where certificates
from multiple paths must be combined to obtain the required authorization
specifications (i.e., access permission). For instance, continuing with the ex-
ample from Case 1, we now add a new joint department BCS, which is
formed from both CS and BIO departments. The new structure is shown in
Figure 6. Furthermore, LS issues two authorization certificates with distinct
authorization specifications t1 and t2, to CS and BIO, respectively. Suppose

UW (R)

��

��
�

Kr � t−→ Kuw faculty �
Kuw faculty → Kls faculty��

LS

��

�
�

�

Kls faculty → Kcs faculty

�����������
Kls faculty → Kbio faculty

�����������

CS
Kcs faculty → KBob

BIO

Fig. 5. (Case 1.): R grants read permission to directory /etc to UW’s faculty: t =
(tag (dir /etc (read))); Bob requests read access for directory /etc



22 S. Jha et al.

UW

Kuw faculty → Kls faculty

��
LS (R)

��

	

 ��

�
�

Kr � t1−−→ Kcs faculty �

										
Kr � t2−−→ Kbio faculty �



��
��

��
��

�

CS

��


�

�Kcs faculty → Kbcs faculty 

��
��

��
��

� BIO

��

�
�

� Kbio faculty → Kbcs faculty�����������
Kbio faculty → KAlice

BCS
Kbcs faculty → KBob

Fig. 6. (Case 2.): Authorization Over Multiple Paths. R grants read privilege to di-
rectory /etc to CS’s faculty: t1 = (tag (dir /etc (read))), and write privilege to
BIO’s faculty: t2 = (tag (dir /etc (write))); Bob requests (read write) for the
directory /etc.

NSF (R)

��

�



Kr � t1−−→ Knsf edu programs �
Knsf edu → Kedu

		��������
Kr � t2−−→ Knsf gov programs �

Knsf gov → Kgov



��������

��
Kedu programs → KmanagerA EDU



�
�

�Kedu programs → Kedu schools faculty

Kedu schools → Kwisc schools


��

��
��

��
� COM GOV

Kgov programs → Kgov schools faculty

Kgov Schools → Kwisc schools
					

		
		

		
Kgov programs → KmanagerB

WISC

��

��
� Kwisc schools → Kuw

��
UW

Kuw faculty → Kchancellor

��

��
�Kuw faculty → Kls faculty

��
LS

��

�
	




Kls faculty → Kcs faculty

					
		

		
		 Kls faculty → Kbio faculty



��
��

��
��

�

CS
Kcs faculty → KBob

BIO

Fig. 7. (Case 3.): R authorizes all NSF’s EDU programs to apply for fundA: t1 = (tag
(fundA apply)), and all NSF’s GOV programs can apply for fundB: t2 = (tag (fundB
apply)); Bob attempts to apply for fundA

that Bob, from BCS, wants to access R with both t1 and t2. This request
cannot be granted if we followed either one of the two possible paths sep-
arately. The WPDS approach solves this issue by combining authorizations
from both paths at BCS, and therefore will grant authorization to Bob.

– (Case 3): The third case, shown in Figure 7, builds on top of the first
two and demonstrates an even more complex environment. This case is con-
structed for two purposes. One, we want to demonstrate the scalability of



Weighted Pushdown Systems and Trust-Management Systems 23

the WPDS algorithm. Two, we want to study the performance with respect
to certificate-chain length. We will measure computation time against the
length of chains in Section 7.2.

7.2 Performance Analysis

In this section, we report on the performance of our implementation, using the
examples discussed before. We use response time from the perspective of clients
as the performance metrics. Because we currently do not have the resources to
perform a real-world test, all tests are conducted under a simulated environment:
each site runs on a separate machine on a local area network. Therefore, the tim-
ing results do not reflect network latency in a real distributed environment. All
test machines have 800 MHz Pentium III processors, 256 MB of RAM, running
TAO Linux version 1.0.

For each experiment, we used three different configurations: base, simple, and
complex. For comparison purposes, we also collected performance data for run-
ning certificate-chain discovery in centralized mode (i.e., all the certificates are
stored at a single site), using the complex configuration.

– Base configuration: The base uses only the bare minimum number of
certificates required for the tests (exactly as shown in Figures 5 - 7); the
number of certificates ranges from 6 to 16 certs in these tests. We use the
results from this configuration as the baseline for the other two test cases.

– Simple configuration: In a real-world scenario, each site would have more
certificates. Each simple configuration adds between 60 and 160 certificates

Table 1. Performance Results

Time (ms)
Distributed Centralized

Client (Request) Base Simple Complex Complex

Case 1. See Figure 5
Bob ((dir /etc (read))) 661 685 713 54

Case 2. See Figure 6
Bob ((dir /etc (read))) 663 685 716 55
Bob ((dir /etc (write))) 717 730 741 55
Bob ((dir /etc (read write))) 723 736 741 55
Alice ((dir /etc (write))) 668 679 693 53

Case 3. See Figure 7
ManagerA ((fundA apply)) 654 683 664 118
ManagerB ((fundB apply)) 793 769 796 116
Chancellor ((fundA apply)) 979 960 996 107
Bob ((fundA apply)) 1146 1133 1218 110
Bob ((fundB apply)) 1132 1150 1232 115



24 S. Jha et al.

to the base configuration. For each site, we added a number of additional
certificates (for students, staff, etc.), such as Kuw student → Kls student,
and Kcs faculty → KprofA.

– Complex configuration: To measure how the system scales, we also tested
each case using between 760 and 1600 certificates.

Table 1 shows the performance results for the three configurations. As one
might expect, the more certificates there are in the system, the longer it takes
to perform certificate-chain discovery. However, the time it takes to perform
certificate-chain discovery increases at a lower rate compared to the increase in
the number of certificates. The data shows insignificant changes from the base
configuration to the simple configuration; and it shows a very small increase

 0

 200

 400

 600

 800

 1000

 1200

 10  100  1000

R
es

p
o

n
se

 T
im

e 
(m

s)

# of Certificates

Manager A (fundA apply)
Manager B (fundB apply)
Changellor (fundA apply)

Alice (fundA apply)
Alice (fundB apply)

Fig. 8. Response Time vs. # of Certificates (Case 3.)

 0

 200

 400

 600

 800

 1000

 1200

 0  1  2  3  4  5

R
es

p
o

n
se

 T
im

e 
(m

s)

Chain Length

Manager A (fundA apply)
Manager B (fundB apply)
Changellor (fundA apply)

Alice (fundA apply)
Alice (fundB apply)

distributed
centralized

Fig. 9. Response Time vs. Chain Length (Case 3. complex configuration)



Weighted Pushdown Systems and Trust-Management Systems 25

(about 4% on average) from simple to complex. Figure 8 illustrates this using
data from case 3.4 In addition, Table 1 shows that the performance difference be-
tween running certificate-chain discovery in distributed and in centralized mode
is quite significant. For instance, in Case 3, distributed certificate-chain discov-
ery took more than ten times as long as the centralized version. This is because
in distributed certificate-chain discovery a significant percentage of time (about
80% to 93%) is spent on network-related operations, such as sending and re-
ceiving messages. We expect to be able to reduce some of the network overhead
through optimizations. For example, we can reduce the number of messages
exchanged during certificate-chain discovery by bundling several messages to-
gether and sending the bundle using one packet whenever possible. This is part
of planned future work.

Performance data from Case 3 also illustrates an area for future work: reducing
response time for long certificate chains. Here we define the length of a certificate
chain as the number of distinct sites between the request site and the resource
site. For example, Manager A is of chain length 1 since her site EDU is only
one hop away from the resource site NSF. As illustrated by the ascending line
at the top of Figure 9, the length of the certificate chain has a great impact on
performance: the longer the chain, the longer it takes to service the request. For
comparison purposes, the flat line shows the response time had we centralized all
the certificates at one location. This time reflects the cost of running the GPS
algorithm at one site, and therefore does not contain any network overhead.
We are currently investigating techniques to improve the average performance
for long certificate chains. For instance, in Section 6.3 we have discussed the
possibility of using caching to reduce the discovery time.

References

1. M. Abadi. On SDSI’s linked local name spaces. Journal of Computer Security,
6(1-2):3–21, 1998.

2. A. W. Appel and E. W. Felten. Proof-carrying authentication. In Conf. on Comp.
and Commun. Sec., Nov. 1999.

3. L. Bauer, S. Garriss, and M. K. Reiter. Distributed proving in access-control
systems. In In Proceedings of the 2005 IEEE Symposium on Security and Privacy,
pages 81–95, May 2005.

4. M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis. The role of trust
management in distributed systems security. In Vitek and Jensen, editors, Secure
Internet Programming: Security Issues for Mobile and Distributed Objects, pages
185–210, 1999. LNCS 1603.

5. M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis. The KeyNote Trust-
Management System Version 2. RFC 2704, Sept. 1999.

6. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown au-
tomata: Application to model-checking. In Proceedings of CONCUR’97, volume
1243 of Lecture Notes in Computer Science, pages 135–150. Springer, 1997.

7. A. Bouajjani, J. Esparza, and T. Touili. A generic approach to the static analysis
of concurrent programs with procedures. In Proceedings of POPL’03, 2003.

4 Two other cases tested showed similar results and therefore are omitted here.



26 S. Jha et al.

8. D. Clarke, J.-E. Elien, C. M. Ellison, M. Fredette, A. Morcos, and R. L.
Rivest. Certficate chain discovery in SPKI/SDSI. Journal of Computer Security,
9(1/2):285–322, 2001.

9. C. M. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylönen. RFC
2693: SPKI Certificate Theory. The Internet Society, September 1999.

10. J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms for
model checking pushdown systems. In E. A. Emerson and A. P. Sistla, editors,
Proceedings of CAV’2000, volume 1855 of Lecture Notes in Computer Science, pages
232–247. Springer, July 2000.

11. A. Finkel, B.Willems, and P. Wolper. A direct symbolic approach to model checking
pushdown systems. Elec. Notes in Theor. Comp. Sci., 9, 1997.

12. J. Y. Halpern and R. van der Meyden. A logical reconstruction of SPKI. In
Proceedings of the 14th IEEE Computer Security Foundations Workshop, pages
59–70. IEEE Computer Society Press, 2001.

13. J. Howell and D. Kotz. A formal semantics for SPKI. Technical Report 2000-363,
Department of Computer Science, Dartmouth College, Hanover, NH, Mar. 2000.

14. S. Jha and T. Reps. Analysis of SPKI/SDSI certificates using model checking. In
Proceedings of the 15th IEEE Computer Security Foundations Workshop (CSFW),
pages 129–146. IEEE Computer Society, June 2002.

15. S. Jha and T. Reps. Model checking SPKI/SDSI. Journal of Computer Security,
12(3–4):317–353, 2004.

16. T. Jim. SD3: A trust management system with certified evaluation. In SP ’01:
Proceedings of the IEEE Symposium on Security and Privacy, page 106. IEEE
Computer Society, 2001.

17. T. Jim and D. Suciu. Dynamically distributed query evaluation. In PODS ’01: Pro-
ceedings of the twentieth ACM SIGMOD-SIGACT-SIGART symposium on Prin-
ciples of database systems, pages 28–39. ACM Press, 2001.

18. B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Authentication in dis-
tributed systems: Theory and practice. ACM Transactions on Computer Systems,
10(4):265–310, November 1992.

19. N. Li and J. C. Mitchell. Understanding SPKI/SDSI using first-order logic. In
Proceedings of the 16th IEEE Computer Security Foundations Workshop (CSFW).
IEEE Computer Society, 2003.

20. N. Li, W. H. Winsborough, and J. C. Mitchell. Distributed credential chain discovery
in trust management. Journal of Computer Security, 11(1):35–86, February 2003.

21. F. Pfenning and C. Schürmann. System description: Twelf — a meta-logical frame-
work for deductive systems. In H. Ganzinger, editor, Int. Conf. on Auto. Deduc.,
pages 202–206. Springer-Verlag, LNAI 1632, July 1999.

22. T. Reps, S. Schwoon, and S. Jha. Weighted pushdown systems and their application
to interprocedural dataflow analysis. In Proceedings of the 10th Internation Static
Analysis Symposium (SAS), San Diego, CA, June 11-13 2003.

23. T. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted pushdown systems and
their application to interprocedural dataflow analysis. Science of Computer Pro-
gramming, 58(1-2):206–263, October 2005.

24. S. Schwoon, S. Jha, T. Reps, and S. Stubblebine. On generalized authorization
problems. In Proceedings of the 16th IEEE Computer Security Foundations Work-
shop (CSFW), pages 202–218. IEEE Computer Society, June 2003.

25. S. Weeks. Understanding trust management systems. In Proceedings of the IEEE
Symposium on Research in Security and Privacy, Research in Security and Privacy,
Oakland, CA, May 2001. IEEE Computer Society,Technical Committee on Security
and Privacy, IEEE Computer Society Press.



Automatic Verification of Parameterized
Data Structures�

Jyotirmoy V. Deshmukh, E. Allen Emerson, and Prateek Gupta

Department of Computer Sciences and Computer Engineering Research Center,
The University of Texas at Austin, Austin TX 78712, USA

{deshmukh, emerson, prateek}@cs.utexas.edu

Abstract. Verifying correctness of programs operating on data struc-
tures has become an integral part of software verification. A method is a
program that acts on an input data structure (modeled as a graph) and
produces an output data structure. The parameterized correctness prob-
lem for such methods can be defined as follows: Given a method and a
property of the input graphs, we wish to verify that for all input graphs,
parameterized by their size, the output graphs also satisfy the property.
We present an automated approach to verify that a given method pre-
serves a given property for a large class of methods. Examples include
reversals of linked lists, insertion, deletion and iterative modification of
nodes in directed graphs. Our approach draws on machinery from au-
tomata theory and temporal logic. For a useful class of data structures
and properties, our solution is polynomial in the size of the method and
size of the property specification.

Keywords: Parameterized correctness, Data structures.

1 Introduction

Data structures are the basic building blocks for all large software systems. Such
systems typically manipulate arbitrarily large data structures using specialized
programs known as methods. An incorrect implementation of a method can lead
to failure of the entire software system. Consequently, reasoning about methods
operating on data structures is a significant part of the software verification
effort.

We investigate the problem of automatic verification of methods operating on
data structures, parameterized by their size. Given a method M, operating on
an input data structure modeled as a graph Gi, and a property ϕ of the graph,
we wish to verify that: if ϕ holds for the input graphGi, then ϕ also holds for the
graph Go obtained by the action of M on Gi, i.e., M preserves ϕ. For instance,
given a method that adds a node to an acyclic singly linked list, we would like to
verify that the output data structure is also a well formed acyclic singly linked
list. In contrast to the standard testing approach for validation of such methods,

� This research is supported in part by NSF grants CCR-009-8141 & ITR-CCR-020-
5483, and SRC Contract No. 2002-TJ-1026.

H. Hermanns and J. Palsberg (Eds.): TACAS 2006, LNCS 3920, pp. 27–41, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



28 J.V. Deshmukh, E.A. Emerson, and P. Gupta

which ensures correctness for a few candidate data structures up to a bounded
size, we would like to verify that methods exhibit correct behavior for arbitrarily
large input data structures.

We provide an automatic procedure based on machinery from automata the-
ory and temporal logic to establish parameterized correctness. Our approach is
applicable to a broad spectrum of methods that perform updates on dynamically
created data structures. For example, our technique can establish correctness for
methods such as: reversal of singly linked lists; insertion or deletion of nodes in
general graphs (such as linked lists, k-ary trees, directed acyclic graphs, etc.);
swapping of nodes within a bounded distance in any general graph; and iterative
modification of data values at nodes in any general graph.

In our technique the property to be verified is generally specified using a
(tree) automaton running on graphs. Alternatively, we can use temporal logic
as the specification language for properties. Thus, we can specify a rich class of
properties, including, but not limited to:

1. Connectivity properties such as: reachability of a target node from a source
node (where the nodes are specified by pointers); reachability of a given data
value from a given node; existence of cycles; existence of sharing (two nodes
point to a common node); treeness (each non-root node has a unique parent);
list-ness; and checking whether two nodes are fully connected (either node
is reachable from the other using the next pointer fields).

2. Data-dependent properties such as sortedness (i.e., all nodes in a given graph
obey a certain sorting discipline on data values).

3. Properties of dynamically allocated storage such as checking null pointer
dereferences and absence of dangling pointers.

We refer to the automaton specifying the property as the property automaton,
denoted by Aϕ. Similarly, the automaton specifying the negation of the property
is specified as A¬ϕ.

The method (M) to be verified is algorithmically translated into an automa-
ton. We refer to this automaton as the method automaton, denoted by AM. AM
operates on a pair of input-output graphs; it simulates the action of M on the
input graph checking whether the output matches the output graph. It accepts
only those pairs of graphs which represent a valid operation of the method. The
pair of input-output graphs is represented using a single composite graph.

The central step is to use the method automaton and the property automata
to obtain a composite automaton (denoted by Ac) that accepts counterexamples
to the correct operation of the method. On a given composite graph, Ac accepts
iff: the property holds for the input, the output conforms to a valid action of the
method on the input, and the property fails for the output. Thus if a graph is
accepted by Ac, it represents a witness to the failure of the method. Checking
if such a graph exists is equivalent to checking the language accepted by Ac for
nonemptiness.

Formally, we obtain the composite product automaton Ac, by the product
of Aϕ, AM and A¬ϕ. Ac accepts a graph Gc representing an input-output pair
(Gi, Go), iff Go = M(Gi) and ϕ(Gi) and ¬ϕ(Go) are true.



Automatic Verification of Parameterized Data Structures 29

In the above approach, correctness properties are specified by the user, us-
ing automata as the specification language. In a variant, but closely related
approach, we use a suitable temporal logic in lieu of automata to specify the
properties of interest. Temporal logics such as CTL often allow an easier spec-
ification of properties. The property to be verified is specified as a formula fϕ

in the given logic. The method automaton is translated to a formula fM. The
parameterized correctness problem reduces to checking the satisfiability of the
conjunction: fc = fϕ(Gi) ∧ fM ∧ f¬ϕ(Go).

In practice, we provide a simple programming language for describing meth-
ods. Our programming language is a useful subset of most modern day high level
languages. We can efficiently compile any program written in our language into
a method automaton. The time complexity of our technique is polynomial in the
size of the method and property automata.

The outline of the paper is as follows: In Section 2, we provide the preliminary
background, the problem definition and the scope of our technique. Section 3
discusses the syntax and semantics of our programming language. The algorithm
for translation of a method into a method automaton is given in Section 4. We
briefly examine the specification of properties as automata in Section 5. We
present an application in Section 6 and discuss a variant approach using temporal
logic in Section 7. The complexity analysis is discussed in Section 8 and finally,
a summary of our paper with related work is given in Section 9.

2 Preliminaries

A data structure can be readily modeled as a directed graph G(V,E) by estab-
lishing a one to one correspondence between the nodes of the data structure and
the vertices (V ) of G, and similarly between links of the data structure and the
edges (E) of G. Each node of the data structure is a vertex v ∈ V in G and a
pointer from a source node (≡ vertex vi) to a destination node (≡ vertex vj)
represents a directed edge (vi, vj) ∈ E. The data content at each node of the
data structure is modeled as a labelling function L : V → D, where D is the
domain of data values. For simplicity, we consider graphs with only a bounded
out-degree, where the out-degree of a graph is defined as the maximum number
of outgoing edges from a vertex in the graph.

A method M is a program that has one or more data structures as input and
produces an output data structure which is a mutation of the input. A property
ϕ of a graph G(V,E) is a predicate on the labeled set of vertices and edges of
the graph. The property ϕ is often referred to as the shape of a graph. Con-
versely, a shape ϕ is identified with a family of graphs for which the property
ϕ is true. For instance, graphs satisfying the property that every non-root ver-
tex has a unique incident edge and the root vertex has no incident edges, are
said to constitute the family of trees. Properties of graphs can be conveniently
specified as tree automata (See Section 5). We now revisit some important def-
initions for tree automata operating on trees with out-degree k (i.e., a k-ary
tree).



30 J.V. Deshmukh, E.A. Emerson, and P. Gupta

2.1 Tree Automata

A finite tree automaton over an infinite k-ary tree is a tuple A = (Σ,Q, δ, q0, Φ)
where:

Σ is the finite, nonempty input alphabet labeling the nodes of the tree,
Q is the finite, nonempty set of states of the automaton,
δ : Q×Σ → 2Q×...×Q(k times) is the nondeterministic transition function,
q0 ∈ Q is the start state of the automaton, and
Φ is the acceptance condition.

In our technique, it is convenient to use the parity acceptance condition.
The parity acceptance condition Φ = (Φ0, Φ1, . . . Φm) is expressed in terms of
sequence of mutually disjoint subsets of Q. If π = q0, . . . , qi, . . . is a finite or infi-
nite sequence of automaton states qi, then we say that π satisfies the acceptance
condition if the following condition is satisfied: there exists an even number r,
0 < r < m, such that some state in Φr appears infinitely often in π and each of
the states in the set

⋃
r<j≤m Φj appears only finitely often in π. The parity con-

dition is often alternately expressed as follows: A sequence of states π satisfies
the parity acceptance condition, when the states of the automaton are colored
with a set of colors {c0, . . . , cm}, and the maximal index of the color appearing
infinitely often in π is even. For the rest of this paper, we implicitly assume the
parity acceptance condition for all tree automata used.

A tree automaton can be meaningfully defined to run on graphs. Essentially
a run ρ of a tree automaton on a Σ-labeled input graph is an annotation of the
graph with the automaton states compatible with the transition relation of the
automaton. Not every automaton has a run on every graph, but if an automaton
accepts some tree, it accepts some “small”, finite graph, [EJ ’88, Em ’85]. Note
that when k = 1, the tree automaton can be specialized to a string automaton.

2.2 Problem Definition

We define a parameterized family of graphs as the set G = {G|ϕ(G) is true},
where the graphs are parameterized by their size. For all input graphsG ∈ G and
a method M operating on G, we wish to verify if the resultant graphs M(G)
satisfy the property ϕ. Formally, we wish to verify the correctness assertion:
〈ϕ(Gi)〉M〈ϕ(Go)〉.

2.3 Scope

Most methods that operate on data structures use a cursor or an iterator to
traverse the data structure. Methods which have multiple cursors are analogous
to multi-head automata. Unfortunately, the parameterized correctness problem
for such methods is undecidable, since the nonemptiness problem of a k-head
automaton with k ≥ 2 is undecidable [Rose ’65, NSV ’04]. Thus, we focus on
methods which can be simulated by a single head automaton. Such methods can
have multiple cursors, which are constrained to remain within some bounded
distance at all times.



Automatic Verification of Parameterized Data Structures 31

Methods can also be characterized by the way they access and mutate the
data structure. Some methods perform only a bounded number of destructive
passes over the data structure. We define a destructive pass as a single traversal
of the data structure involving at least one update to some node of the data
structure. It is difficult to reason about the parameterized correctness of meth-
ods which perform an unbounded number of destructive passes over the data
structure, since their operation simulates a linear bounded automaton (LBA).
The nonemptiness problem of an LBA is undecidable [HU ’79]. Thus, our work
focusses on methods which can only perform a bounded number of destructive
passes over the data structure.

It is stipulated that the method terminates1 and performs only a bounded
number of destructive passes over the data structure. We also assume that the
domain D of data values is finite.

2.4 Solution Framework

In our approach, we use automata to check if a given method M preserves a
property ϕ. Our technique involves determining the existence of a pair of input-
output graphs (Gi, Go) such that:

1. the input graphGi satisfies ϕ or ϕ(Gi) is true (i.e., the input is well formed),
2. the output graph Go does not satisfy ϕ or ¬ϕ(Go) is true and
3. Go represents a valid action of M on Gi or Go = M(Gi) is true.

Formally, a propertyϕ to be verified is specified as a tree automatonAϕ, which ac-
cepts the set of all graphs which satisfy ϕ. We are given a similar automaton A¬ϕ,
to accept all graphs that satisfy ¬ϕ. The method M is algorithmically translated
into a method automaton AM, which checks whether Go = M(Gi). The input-
output graph pair is represented using a composite graph, denoted by Gc.

The composite graph Gc(V,E) has each vertex v ∈ V and each edge e ∈ E
annotated with one of three colors black, green or red. The color black represents
part of the input graph that remains the same, color red represents deleted nodes
or edges, and the color green represents new nodes or edges. Each vertex of the
composite graph is labeled with an ordered pair of labels (di, do) (di, do ∈ D) to
model the old and the new data values at the corresponding node in the data
structure. The input graph Gi, can be extracted from Gc by considering the
subgraph composed of vertices and edges colored red or black and the labels di.
Similarly, the output graph Go can be extracted by considering the set of nodes
and edges labeled black or green and the labels do. We define projection operators
Γi and Γo to obtain the graphs Gi and Go respectively, from the composite graph
Gc. The method automaton AM runs on such composite graphs and accepts a
composite graph Gc iff Gi = Γi(Gc) Go = Γo(Gc) and Go = M(Gi). Similarly,
the property automata Aϕ and A¬ϕ run on composite graphs, and look at the
input or output parts of the composite graph.
1 A similar assumption on program termination can be found in techniques such as

shape analysis [Lev-Ami et al.], PALE [MS ’01], and separation logic [ORY ’01],
which implicitly assume the termination of the program being analyzed.



32 J.V. Deshmukh, E.A. Emerson, and P. Gupta

Remark: Such an annotated graph can be obtained only if the method performs
a bounded number of destructive passes over the data structure. For our current
discussion, we assume that the method performs a single destructive pass of
the data structure, i.e., the method automaton traverses each node of the data
structure exactly once. We generalize the assumption to handle multiple, but a
bounded number of passes over the data structure, later in Section 4.

Finally, we construct a composite automaton Ac, which is the synchronous
product of A¬ϕ, AM and Aϕ. The product construction for the composite au-
tomaton is defined in standard fashion, [Car ’94]. The number of states of the
composite automaton is proportional to the product of the number of states of
the constituent automata. The composite automaton is empty iff the method
preserves the property. If the automaton is non-empty, then there exists a graph
G which satisfies the property ϕ, but M(G) does not satisfy ϕ. Thus we also
obtain a counterexample which illustrates erroneous behavior of the method.

3 Programming Language Description

In this section, we define the syntax and semantics of our programming language.
An atomic unit of a data structure is termed as a node. Each node has a data field
and a set of k pointer fields next1, . . ., nextk. We define cursor as a reserved
word for an iterator through a given data structure. Since we focus on methods
which can be mimicked using a single headed automaton, our programming lan-
guage supports a single cursor2. If the node being pointed to by the cursor is n,
a bounded window w is defined as a set of all nodes within a fixed distance from
n. The size of the window w, denoted by |w|, is the cardinality of w. We define
head or root as reserved words to indicate start nodes of the data structure.

We use a C-like syntax for describing methods, and accordingly use the ab-
breviation cursor->field to indicate the corresponding field of a node pointed
to by the cursor. A statement in our programming language can have one of
the forms as show in Table 1.

The sequential composition of two more statements with ; as the composition
operator is called a block statement. For memory related operations, our language
allows deletion of nodes being pointed to by any pointer ptr(�= cursor), using
the delete statement.

Every update to a cursor is preceded by storing the current value of the
cursor in a special variable called prev, which cannot be used on the left hand
side of an assignment statement. The addition of prev enhances the expressive
power of our language by allowing methods to perform operations based on past
value of the cursor. Destructive updates are allowed only within the bounded
window defined by the cursor. When a new node is created, the pointer fields
of the new node are initialized to any value within the current window. The
initialization of the fields of a new node is made before cursor or cursor->nexti

is updated.
2 We can easily extend our approach to handle a fixed number of virtual cursors within

a bounded window.



Automatic Verification of Parameterized Data Structures 33

Table 1. Programming language syntax

Assignment statement
cursor->data := data-constant;
cursor->nexti := ptra

cursor := ptr;
cursor := new node { data := data-constant;

next1 := ptr;. . .; nextk := ptr;};
cursor->nexti := new node {...};

Conditional statement
if (test-expr) {

block statement;
} else { block statement; }

Loop statement
while (loop-cond) {

loop-body;
update statement; }

Here, the update statement is of the form:
cursor:= ncursor1 when cond1

ncursor2 when cond2
...
ncursork when condk;

Break statement
break;

Null statement
null;

a
ptr represents an allowable pointer expression, which can take one of the following forms:
cursor->nexti1->nexti2->. . . nextim or prev or cursor, where m is bounded by the size of
the window.

In a conditional statement, a test-expr is a boolean expression which either
involves a comparison of the data value of the current node with another data
value or a comparison of two ptr expressions.

A loop statement consists of three parts, a loop condition, the loop body and
an update statement. A loop condition loop-cond, is a boolean expression in-
volving the comparison of a ptr expression with null3. A method continues
executing the loop as long as the loop condition is true. The loop body is a
sequence of two or more non-loop statements. We do not allow nesting of loop
statements, since this can in general mimic a k-head automaton. At the begin-
ning of each iteration of the loop the values cursor->nexti are cached in special
variables ncursori which cannot be used on the left hand side of an assignment
statement.

3 Note that any special termination condition required can always be modeled with
the help of a break statement coupled with a conditional statement inside the loop
body.



34 J.V. Deshmukh, E.A. Emerson, and P. Gupta

The cursor can be updated inside a loop statement only using an update
statement. The value of cursor is assigned to ncursori if condi evaluates to
true and condj ∀j < i evaluates to false, where cond1 . . . condk are any boolean
valued expressions. A break statement breaks out from the while loop enclosing
the break statement. If the break statement is not inside a loop body, no action
is taken.

4 Translation into Automata

We can mechanically compile any given method in our language into correspond-
ing parts of the method automaton, AM. AM is a k-ary tree automaton running
on graphs. For ease of exposition, we presently assume that each node has a
single successor. We assume that all the statements in the method are labeled
with a unique line number {1, . . . , |M|}, where |M| is the length of M.

AM is of the form (Σ,QM, δM, q0M , ΦM), where the notation used is similar
to the one described in Section 2.1. The parity acceptance condition ΦM is
specified using two colors {(red = c1), (green = c2)}. States colored green are
accepting states and those colored red are rejecting.

The action of a statement of M is mimicked by a transition of AM. On a given
input graph Gi, the moves of the automaton are completely deterministic and
a run of AM on Gi is unique and well defined. For two different input graphs,
the state of AM after executing the same statement of M may be different. We
use Qj to denote the set of all possible states of AM (for all input graphs) after
executing the statement sj .

A state qj of AM is modeled as a tuple (j, curd, curp, newd, newp), where j
corresponds to the line number of the statement sj , curd is the current data value
of the node being pointed to by the cursor, curp is the value of cursor->next,
newp is 0 if no new node is added at the current cursor position, else it is a
non-zero value indicating the location of new node->next, and newd contains
the data value of the new node that is added. The initial state of the automaton
is denoted by q0M = (0, 0, 0, 0, 0).

Let θ be a boolean valued expression over the set of program variables. We say
that a state q satisfies θ, denoted by q � θ, if the valuation of θ over the components
of q is true. (Note that a state q completely encodes the values of all program
variables.). We denote by Qθ the set {q|q � θ} and Q¬θ, the set {q|q � θ}.

4.1 Algorithm for Translation

We now give the algorithm used to populate the transition relation of AM:

1. Let Q be the set of possible states prior to an assignment statement sj .
For every state q ∈ Q, sj is modeled by adding a transition of the form
(q, ε, q′), where q′ encodes the new data value, the pointer field value or a
new node inserted at the cursor position by sj . For instance given a state
q = (k, curd, curp, newd, newp), the assignment statement cursor->data:=
val is modeled by adding the transition (q, ε, q′), where q′ = (j, val, curp,
newd, newp).



Automatic Verification of Parameterized Data Structures 35

2. Let Q be the set of possible states prior to a conditional statement sj . Let φ
be the test expression of sj . Let sk (sm, resp.) be the first statement within
the if (else, resp.) block of the conditional statement. For a conditional
statement, we add transitions of the form: ∀q ∈ Qφ, ∀t ∈ Qk : {(q, ε, t)}, and
∀q′ ∈ Q¬φ, ∀t′ ∈ Qm : {(q′, ε, t′)}.

3. (a) Let Q denote the set of possible states prior to a loop statement sj . For
the loop statement shown in the left hand column of the table below, we
add transitions shown in the right hand column.
j: while (ψ) { ∀q ∈ Qψ, ∀q′ ∈ Qk : {(q, ε, q′)}
k: sk; ∀q ∈ Q¬ψ, ∀q′ ∈ Qm : {(q, ε, q′)}

... ∀q ∈ Qψ
l , ∀q′ ∈ Qk : {(q, ε, q′)}

l: update statement; } ∀q ∈ Q¬ψ
l , ∀q′ ∈ Qm : {(q, ε, q′)}

m: sm;

(b) Suppose a loop body contains the break statement sb. Let the set of
possible states before the break statement be Q. We add transitions of
the form: ∀q ∈ Q,∀q′ ∈ Qb : {(q, ε, q′)}.

4. A statement sj that alters the current cursor position initializes the window
w to a new cursor position. The state q of AM before the execution of sj

encodes the action of M on the current input node ni. Let τ be a boolean
valued expression, which is true iff the output node in the composite graph
no, conforms to M(ni) and false otherwise. (For details on how the check
is performed please refer to the Appendix.). Let the next node that the
automaton reads be n′, with n′i = Γi(n′). Let n′i->data = d′ and n′i->next
= p′. The next state q′ after execution of sj is q′ = (k, d′, p′, 0, 0), where k
is the line number of the statement following sj in the control flow graph.
The state qrej represents a reject state. Let the set of possible states prior
to sj be Q. We add a set of transitions of the form: ∀q ∈ Qτ : {(q, n′, q′)},
∀q ∈ Q¬τ : {(q, ε, qrej)}, and ∀σ ∈ Σ ∪ {ε} : {(qrej , σ, qrej)}. Intuitively, if a
node is found in a composite graph such that the input and output parts of
the node do not conform to the action of the method, the automaton rejects
that composite graph.

5. LetQlast be the set of possible states after executing the last statement of M.
We add transitions of the form: ∀q ∈ Qlast : {(q, ε, qacc)}, and ∀σ ∈ Σ ∪ {ε} :
{(qacc, σ, qacc)}.

The transition relation computed by the above algorithm is partial and in order
to make it complete, we add transitions (q, ε, qrej) for all states q which do not
have a successor. The number of states of the method automaton is bounded
above by O(|M|), since curp, newp range over |w| values; curd, newd range over
D; and |w| and |D| are fixed constants. In practice, the size of the data domain
|D| can be significantly reduced by techniques such as data abstraction. For in-
stance, for a method that searches for a node with a particular data value d, we
can easily abstract the data domain to have just two values, D′ = {0, 1}, where
∀x ∈ D : x �→ 0 (if x �= d) and x �→ 1 (if x = d). Similarly, we can apply tech-
niques such as reachable state space analysis to further reduce the size of the



36 J.V. Deshmukh, E.A. Emerson, and P. Gupta

automaton. Note that, for a method operating on a tree, the automaton de-
terministically chooses a path in the tree, and trivially accepts along all other
branches.

Remark: Our approach can be extended to handle methods that perform a
bounded number of passes over the input graph. The basic idea is to encode
the changes for each pass in the composite graph. Assuming that we make at
most k destructive passes, the composite graph is represented as a k-tuple,
Gc = (G0, G1, . . . , Gk) with G0 = Gi and Gk = Go. Intuitively, the result
of the jth traversal is encoded as Gj and the automaton can verify that the
graph Gj = M(Gj−1). We use colors {red1, . . . , redk}, {green1, . . . , greenk}
and {black} to define the annotation encoding the kth traversal in the composite
graph. The color redi, (greeni, resp.) represents nodes or edges deleted (added,
resp.) in the ith traversal of the method. Note that these colors are annotations
in the composite graph and not related to the coloring of the automaton states.

5 Property Specification

We use automata as the specification language for properties. A property automa-
ton Aϕ is a finite tree automaton specified as a tuple (Σ,Q, δ, q0, Φ), where all
symbols have the usual meanings as described in Section 2.1. We assume that the
states of the automaton are colored using a coloring function c : Q→ {c0, . . . , ck}.

Existence of a cycle: A rooted directed graph is said to have a cycle if there
exists some path in the graph which visits a node infinitely often. The property
automaton for checking existence of a cycle in a binary graph (maximum out-
degree 2) has the form: Aϕ = (Σ, {q, qf}, δ, q, {c(qf) = c1, c(q) = c2}), where the
transition relation is given as: δ(q, n) = (qf , qf ) when n = null, δ(q, n) = (q, q)
when n �= null and δ(qf , n) = (qf , qf ) for all n including null. Intuitively, the
automaton labels every node of the input graph with the state q. The automaton
transitions to a final state iff the path is terminating. Thus the automaton accepts
a graph iff there exists a non-terminating path along which q is visited infinitely
often. Note that the automaton for the complement property, i.e. acyclicity is
obtained by simply reversing the coloring of the states.

Reachability of a given data value: Suppose, given a binary tree we wish to de-
termine if there exists a node with a given data value (key) reachable from the
unique root node of the graph. Intuitively, the automaton non-deterministically
guesses a node with the desired value and then checks it. If the desired node is
found, then the automaton transits to a final state for each child node. Formally
the automaton is given as: (Σ, {q, qf}, δ, q, {c(q) = c1, c(qf ) = c2}). The transi-
tion relation is defined as: δ(q, n) = {(q, qf ), (qf , q)} when n->data �= key and
n �=null; δ(q, n) = (qf , qf ) when n->data = key and ∀n : δ(qf , n) = (qf , qf ).

Sortedness: A linked structure satisfies the sortedness property if within each
bounded window of size two, the value of the current node is smaller (or greater)
than the successor node. An automaton that checks if a list is sorted in ascending



Automatic Verification of Parameterized Data Structures 37

order rejects the list iff there exists a window such that the data value of the
current node is greater than the data value of the successor node.

6 Application: Insertion in a Singly Linked List

We wish to make sure that the method InsertNode that inserts a node in an
acyclic singly linked list, preserves acyclicity. Since the underlying data structure
is a linear list, the method automaton and the property automata are string
automata. A representation of the method automaton obtained by the algorithm
in Section 4.1 is shown in Figure 1. In the figure, ψ is the loop condition, φ is
the test expression of the if statement φ=cursor->data == value, and τ is
the boolean expression which is true iff no = M(ni). Qis represent sets of states
of the automaton. A dotted arrow represents an ε-transition and a solid line
indicates a normal transition. The states qrej and qacc represent the reject and
accept states respectively.

method InsertNode (value, newValue){
1: cursor := head;
2: while (cursor != null) {

[ncursor := cursor->next]
3: if (cursor->data == value) {
4: cursor->next := new node {

data := newValue;
next := ncursor;};

5: break; }
6: cursor := ncursor when true; } }

Fig. 1. Insertion of a node in a linked list



38 J.V. Deshmukh, E.A. Emerson, and P. Gupta

The property automaton for checking acyclicity is given as: Aϕ = (Σ, {q, qf},
δ, q, {c(q) = c1, c(qf ) = c2}). The complement automaton A¬ϕ is given by re-
versing the coloring of q and qf . The transition relation for the automaton is
given as: δ(q, n) = q for n �= null, δ(q, n) = qf for n = null and δ(qf , n) = qf
for all n, including null. The composite automaton can be constructed in the
standard fashion, and calculations show that the resultant automaton is empty,
i.e., the method InsertNode preserves acyclicity.

7 Extensions

In a variant approach, we use a suitable temporal logic in lieu of automata to
specify the properties of interest. In this approach, method automaton AM is
translated to formula fM in the given logic. The property ϕ is specified as a
formula fϕ(Gi). The parameterized correctness problem reduces to checking the
satisfiability of the conjunction: fc = fϕ(Gi) ∧ fM ∧ f¬ϕ(Go). The method M
does not preserve property ϕ, iff fc is satisfiable. Most temporal logics also have
the nice property that the logic is closed under complementation. Thus given a
property ϕ specified as a formula fϕ, the negation of the property is simply the
formula ¬fϕ. We take a look at two example properties that can be specified
using temporal logic.

Reachability: A node ny is said to be reachable from a node nx if ny can be
reached from nx by using only the next pointer links. Since particular nodes in
the data structure are usually specified as pointers, we are interested in checking
reachability of pointer expressions, where x and y are pointers to nodes nx and
ny respectively. We introduce virtual nodes labeled with vx and vy , such that
their next pointers point to nx and ny respectively and then check whether
AG(EXvx ⇒ EFEYvy). Intuitively, this formula checks that for all nodes being
pointed to by vx->next (alias for x), there exists some node ny being pointed
to by vy->next (alias for y) which is reachable from x. (EY (there exists some
past) is a temporal operator in CTL with branching past).

Sharing: A node n in a data structure is called shared if there exist two distinct
nodes, x and y in the graph such that they have n as the common immediate
successor. We say that sharing exists in a graph if there exists a node in the
graph which is shared. The above property (sharing exists) can be specified in
CTL with branching past, as follows:

∃(x, y, n) : (x ≡ EY(n)) ∧ (y ≡ EY(n)) ∧ ¬(x ≡ y).

8 Complexity Analysis

The complexity of testing nonemptiness of the composite automaton Ac, depends
on the sizes of the property automata Aϕ and A¬ϕ, and the method automaton
AM. A method M having |M| lines of code gives rise to an automaton of size
O(|M|) states. The number of states of the composite automaton is proportional



Automatic Verification of Parameterized Data Structures 39

to the product of the number of states of its constituent automata. Hence the
number of states of Ac is linear in the number of states of the property automata
and the size of the method. Since the number of colors used for the parity
condition by the property and method automata is fixed (and typically small),
the number of colors used by the composite automaton is also fixed.

The complexity of checking nonemptiness of a parity tree automaton is poly-
nomial in the number of states [EJ ’91] (for a fixed number of colors in the parity
acceptance condition). Thus, our solution is polynomial in the size of the method
as well as the sizes of the property automata. Note that for linear graphs the
method automaton and property automata can be specialized to string automata
and thus the complexity of our technique is linear.

If we use temporal logic to specify properties, satisfiability of a formula in
the CTL with branching past can be done in time exponential in the size of
the formula [Sch ’02]. We argue that the exponential cost is incurred in the
construction of the tableaux from the formula. If the size of the formula is small,
we can easily bear this penalty. The cost of checking emptiness of the tableau is
still polynomial in the size of the tableau.

9 Conclusions and Related Work

We present an efficient solution to the parameterized correctness problem for
methods operating on linked data structures. In our technique, a method is al-
gorithmically compiled into a method automaton and properties are specified as
tree automata. We construct a composite automaton, from the method automa-
ton and the property automata, for checking if the given method preserves the
given property. The property is not preserved iff the language accepted by the
composite automaton is nonempty. Our technique is polynomial in the size of
the method and the sizes of the property automata. In a variant approach an
appropriate temporal logic can be used for specifying properties.

A key advantage of our approach is that for a broad, useful class of programs
and data structures we provide an efficient algorithmic solution for verifying
safety properties. Since reasoning about parameterized data structures is unde-
cidable in general, we present a solution for methods which are known to ter-
minate for all well-formed inputs. Techniques such as shape analysis [SRW ’99],
pointer assertion logic engine [MS ’01] and separation logic [ORY ’01] make in-
teresting comparison with our approach, since they address a similar genre of
problems.

Shape analysis is a technique for computing shape invariants for programs by
providing over-approximations of structure descriptors at each program point
using 3-valued logic. In contrast to our technique which provides exact solu-
tions, shape analysis provides imprecise (albeit conservative) results in double
exponential time. In [BRS ’99] the authors discuss a decidable logic Lr for de-
scribing linked data structures. However, their work does not provide a practical
algorithm for checking the validity of formulas in this logic and the complexity
of the given decision procedure is high.



40 J.V. Deshmukh, E.A. Emerson, and P. Gupta

Pointer Assertion Logic Engine tool [MS ’01] encodes programs and partial
specifications as formulas of monadic second order logic. Though their approach
can handle a large number of data structures and methods, the complexity of
the decision procedure is non-elementary. Moreover, the technique works only for
loop-free code and loops need to be broken using user specified loop invariants.

Separation logic [ORY ’01], which is an extension of Hoare Logic for giving
proofs of partial correctness of methods, does not easily lend itself to automa-
tion. Furthermore, classical separation logic without arithmetic is not recursively
enumerable [Rey ’02].

In [Bou et al.] the authors describe a technique to verify safety properties of
programs that modify data structures. Initial configurations of a program are
encoded as automata and the program is translated into a transducer. The main
idea is to check whether action of the transducer on the initial configurations
leads to a bad configuration of the program. This problem is undecidable since a
transducer could, in general, encode a Turing machine computation. The authors
use abstraction-refinement to verify properties. Their technique is restricted to
data structures with a single successor, and also limited by the efficiency of
abstractions and the refinement process.

References

[BRS ’99] Michael Benedikt, Thomas W. Reps, Shmuel Sagiv, A Decidable
Logic for Describing Linked Data Structures, In Proceedings of 8th
European Symposium on Programming, 1999, (ESOP ’99), pp. 2-19

[Bou et al.] A. Bouajjani, P. Habermehl, P. Moro, T. Vojnar, Verifying Pro-
grams with Dynamic 1-Selector-Linked Structures in Regular Model
Checking, In Proceedings of 12th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, 2005,
(TACAS’05), LNCS 3440, April 2005.

[Car ’94] Olivier Carton, Chain Automata, In IFIP World Computer Congress
1994, Hamburg, pp. 451-458, Elsevier (North-Holland).

[EJ ’88] E. Allen Emerson, Charanjit S. Jutla, The Complexity of Tree Au-
tomata and Logics of Programs, In Proceedings of 29th IEEE Foun-
dations of Computer Science, 1988, (FOCS ’88), pp. 328-337.

[EK ’02] E. Allen Emerson, Vineet Kahlon, Model Checking Large-Scale and
Parameterized Resource Allocation Systems, In Proceedings of Tools
and Algorithms for the Construction and Analysis of Systems, 8th
International Conference, 2002, (TACAS ’02), pp. 251-265

[EJ ’91] E. A. Emerson and C. S. Jutla, Tree Automata, Mu-Calculus and
Determinacy, (Extended Abstract), In Proceedings of Foundations
of Computer Science 1991, (FOCS ’91), pp. 368-377.

[Em ’85] E. Allen Emerson. Automata, Tableaux, and Temporal Logics, Con-
ference on Logics of Programs, New York, NY. LNCS 193, pp. 79-88

[HU ’79] John E. Hopcroft and Jeffrey D. Ullman, Introduction to Automata
Theory, Languages and Computation, Addison Wesley, (1979).

[Lev-Ami et al.] Tal Lev-Ami, Thomas W. Reps, Shmuel Sagiv, Reinhard Wilhelm,
Putting static analysis to work for verification: A case study In In-
ternational Symposium on Software Testing and Analysis, 2000, (IS-
STA’00), pp. 26-38



Automatic Verification of Parameterized Data Structures 41

[MS ’01] Andres Møller, Michael I. Schwartzbach, The Pointer Assertion
Logic Engine, In Proceedings of SIGPLAN Conference on Program-
ming Languages Design and Implementation, 2001, (PLDI ’01), pp.
221-231.

[NSV ’04] Frank Neven, Thomas Schwentick, Victor Vianu, Finite state ma-
chines for strings over infinite alphabets, In ACM Transactions on
Computational Logic, (TOCL), Volume 15 Number 3, pp. 403-435,
July 2004.

[ORY ’01] Peter O’Hearn, John Reynolds, Hongseok Yang, Local Reasoning
about Programs that Alter Data Structures, Invited Paper, In Pro-
ceedings of 15th Annual Conference of the European Association for
Computer Science Logic, 2001, (CSL ’01), pp. 1-19.

[Rey ’02] John C. Reynolds, Separation Logic: A Logic for Shared Mutable
Data Structures, In Proceedings of the 17th IEEE Symposium on
Logic in Computer Science, 2002, (LICS 2002), pp. 55-74.

[Rose ’65] Arnold L. Rosenberg, On multi-head finite automata, FOCS 1965,
pp.221-228

[Sch ’02] Ph. Schnoebelen, The complexity of temporal logic model checking,
In Advances in Modal Logic, papers from 4th International Work-
shop on Advances in Modal Logic 2002, (AiML’02), Sep.-Oct. 2002,
Toulouse, France.

[SRW ’99] M. Sagiv, T. Reps, and R. Wilhelm, Parametric shape analysis via
3-valued logic, In Symposium on Principles of Programming Lan-
guages, 1999, (POPL ’99).

Appendix: Checking Whether no = M(ni)

For simplicity, we discuss only methods operating on linear graphs. Let the state
of the automaton before checking the condition no = M(ni) be q = (j, curd,
curp, newd, newp). For a given node, the method can modify either the outgoing
edge from the current node, add a new node m at the current position, or delete
the current node. Let the old and new successor nodes be n1 and n′1 respectively.
Let l be the coloring function for the nodes and edges. Let the (data, next) fields
for the nodes ni, no and m be (d, n1), (d′, n′1) and (dm,m

′) respectively. We need
to check for the following conditions:

1. d′ = curd
2. If n1 �= n′1, i.e. the next pointer of the cursor has changed, (l(ni, n1) =
red) ∧ (l(no, n

′
1) = green),

3. If m exists, (l(m) = green)∧(dm = newd)∧(l(m,m′) = green)∧(l(no,m) =
green) ∧ (l(ni, n1) = red).

Additionally, the action of a delete statement is checked by checking whether
the color of a node is red.



Parameterized Verification of π-Calculus Systems�

Ping Yang1, Samik Basu2, and C.R. Ramakrishnan1

1 Dept. of Computer Science, Stony Brook Univ., Stony Brook, NY, 11794, USA
2 Dept. of Computer Science, Iowa State Univ., Ames, IA, 50014, USA
{pyang, cram}@cs.sunysb.edu, sbasu@cs.iastate.edu

Abstract. In this paper we present an automatic verification technique for pa-
rameterized systems where the subsystem behavior is modeled using the π-
calculus. At its core, our technique treats each process instance in a system as a
property transformer. Given a property ϕ that we want to verify of an N -process
system, we use a partial model checker to infer the property ϕ′ (stated as a for-
mula in a sufficiently rich logic) that must hold of an (N − 1)-process system.
If the sequence of formulas ϕ, ϕ′, . . . thus constructed converges, and the limit is
satisfied by the deadlocked process, we can conclude that the N -process system
satisfies ϕ. To this end, we develop a partial model checker for the π-calculus that
uses an expressive value-passing logic as the property language. We also develop
a number of optimizations to make the model checker efficient enough for routine
use, and a light-weight widening operator to accelerate convergence. We demon-
strate the effectiveness of our technique by using it to verify properties of a wide
variety of parameterized systems that are beyond the reach of existing techniques.

1 Introduction
A parameterized system consists of a number of instances of a component, the number
of such occurrences being the parameter to the system. Many safety-critical systems
are naturally parameterized: e.g. resource arbitration protocols, communication proto-
cols, etc. Traditional model checking techniques are limited to verifying properties of
a given instance of a parameterized system (i.e. for a specific value of the parameter).
Many novel techniques have been developed to verify such systems for all instances of
their parameters [12, 15, 16, 10]. These techniques vary in the classes of systems they
can handle and the degree of automation they provide. Automatic techniques typically
restrict the communication topology (e.g. rings or trees) or, at least, demand that the
communication patterns be fixed.

The Driving Problem. In many systems, e.g. mobile systems, the process interconnec-
tions can change dynamically. Existing techniques for verifying parameterized systems
do not readily extend to such systems. In this paper, we present an automatic technique
to address this problem.

The π-calculus [28] is a well-known process calculus where communication chan-
nels as well as values transmitted over them belong to the same domain of names;
names can be dynamically created, communicated to other processes, and can be used
as channels. Due to these features, it is widely used as the basis for modeling mobile

� This research was supported in part by NSF grants CCR-0205376, CCR-0311512, and CCR
0509340.

H. Hermanns and J. Palsberg (Eds.): TACAS 2006, LNCS 3920, pp. 42–57, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Parameterized Verification of π-Calculus Systems 43

p(x) def= (νy)xy.p(x)

q(x) def= x(y).q(x)

sys(n) def= (νx)(p(x) | qn(x))

ϕ0 ≡ X =ν 〈τ〉tt ∧ [τ ]X

ϕ1 ≡ X1(x) =ν νy′((〈xy′〉tt ∨ 〈τ〉tt) ∧ [xy′]X1(x) ∧ [τ ]X1(x))

ϕ2 ≡ X2(x) =ν νy′([xy′]X2(x) ∧ [x{y}]X2(x) ∧ [τ ]X2(x))

ϕ3 ≡ X3(x) =ν νy′([xy′]X3(x) ∧ [x{y}]X3(x) ∧ [τ ]X3(x))

(a) (b)

Fig. 1. A simple example of a parameterized system

systems. In a parameterized mobile system, we assume that each component is spec-
ified as a finite-control π-calculus process: i.e. specified without using the replication
operator of the calculus, and not containing a parallel composition within the scope of
a recursive definition. A simple example of a parameterized system based on the π-
calculus is shown in Fig. 1(a). In the figure, the parameterized system is represented by
process sys(n), which consists of one instance of process p(x) and n instances q(x).
The process p(x) creates a new name y and outputs it via channel x, while the process
q(x) receives a name via x. The property to be verified, ϕ0, is specified in the modal
μ-calculus [24, 8] and written in equational form (Fig. 1(b)). The property is a greatest
fixed point formula (specified by a =ν equation) and states that a τ action is possible
after every τ action. An example of parameterized verification problem is to determine
whether ∀n. sys(n) |= ϕ0.

Background. In [6], we developed a compositional model checker for the process
algebra CCS [27] and for properties specified in the model μ-calculus [8]. We used the
compositional checker for the verification of parameterized CCS processes. The central
idea of our approach is to view processes as property transformers: given a μ-calculus
formula ϕ and a system containing a CCS process P , we compute the property ϕ′ that
should hold in P ’s environment (say, Q) if ϕ holds in P |Q. The property transformer
of a process P , denoted by Π(P ), is such that: ∀Q. (P |Q |= ϕ) ⇔ (Q |= Π(P )(ϕ)).

Consider a parameterized system Pn consisting of n instances of a process P .
To verify whether ϕ holds in Pn for all n, we construct the sequence of properties
ϕ0, ϕ1, . . . such that ϕ0 = ϕ and ϕi+1 = Π(P )(ϕi) for all i ≥ 0. Let the sequence
converge after k steps: i.e. ϕk+1 = ϕk. By definition of Π , note that for n ≥ k,
Pn |= ϕ if Pn−k |= ϕk. Let 0 denote the deadlocked process, the unit of the paral-
lel composition operator. Specifically, Pn is equivalent to Pn|0. It then follows that
∀n ≥ k, Pn |= ϕ if 0 |= ϕk, i.e. the zero process has the property specified by limit of
the sequence of formulas.

Our Solution. Following the approach of [6], we develop a compositional model
checker for the π-calculus and use that as the basis for verifying parameterized mo-
bile systems. Consider the example in Figure 1. In order to show that sys(n) |= ϕ0 for
arbitrary n, we begin by determining a property ϕ1 = Π(p(x))(ϕ0). By the definition
of Π , we know qn(x) |= ϕ1 whenever sys(n) |= ϕ0.

In order to specify ϕ1 correctly, the property language needs to be expressive enough
to specify names and their scopes. We extend the modal μ-calculus to a logic called the
Cμ-calculus. In this logic, formula variables may be parameterized by names. Moreover,
formulas may specify local names (denoted by νx) and may contain modalities with
new actions such as the free input action xy (see Section 2).



44 P. Yang, S. Basu, and C.R. Ramakrishnan

In the above example, observe that p(x)|Q (for any process Q) can do a τ -action if (a)
Q can do an input action on x to synchronize with p(x)’s bound output action xνy, or
(b)Q itself can do a τ -action. Thus the term 〈τ〉ϕ′ holds in p(x)|Q if (〈xy〉ϕ′′∨〈τ〉ϕ′′)
holds in Q. The other modalities and operations in the formula are derived along the
same lines using the property transformer for p(x). The resulting property ϕ1, defined
in Cμ-calculus using the formula variableX1, is shown in Figure 1(b). It states that it is
always possible to input from x or perform a τ action after any such action. Observe that
free name x is the parameter to the formula variable X1. We now check if ϕ1 holds in
qn(x), by checking if ϕ2 = Π(q(x))(ϕ1) holds in qn−1(x). Observe that ϕ2 does not
have the conjunct 〈xy′〉tt ∨〈τ〉tt since a single instance of q(x) can satisfy it. Using the
terminology of assume-guarantee proof techniques [19], we can say that the obligation
of 〈xy′〉tt ∨ 〈τ〉tt on qn(x) is satisfied by one instance of q(x) and hence is not passed
on to qn−1(x). Continuing further, we can check if ϕ2 holds in qn−1(x) by checking if
ϕ3 = Π(q(x))(ϕ2) holds in qn−2(x).

Observe from the figure that ϕ3 and ϕ2 differ only in the names of formula variables
and hence represent the same property. We thus conclude that the sequence ϕi con-
verges to ϕ2. Moreover, since 0 satisfies ϕ2 we can conclude that the original formula
ϕ0 is satisfied by sys(n) for sufficiently large n. It should also be noted that since ϕ2
is a greatest fixed point formula and involves a conjunction of universal modalities, it
is equivalent to tt ; hence the last iteration (to compute ϕ3) is redundant. Techniques
to simplify formulas and to find equivalences will in general enable us to detect con-
vergence earlier. A more careful analysis of the sequence of formulas reveals that it
converges after one instance of q(x) is considered, and hence we can conclude that
∀n ≥ 1 sys(n) |= ϕ0.

Contributions. The main contributions of this paper are as follows.

– A compositional model checker for the π-calculus. The model checker works for
finite-control π-calculus processes, as well as value-passing calculus with equality
(=) and dis-equality ( �=) constraints between names (see Section 3).

– Operations to efficiently check for convergence of formula sequences, and to accel-
erate convergence. The verification technique for parameterized systems is based
on computing the limit of a sequence of Cμ-calculus formulas. We describe effec-
tive techniques to check if two Cμ-calculus formulas are equivalent. We also de-
scribe a widening operator to extrapolate the sequence to estimate (approximately)
its limit (Section 4).

– Optimizations to compositional model checking. We develop a number of light-
weight optimization techniques to reduce the size of formulas generated in the in-
termediate steps of compositional model checking. We find that such optimizations
are necessary and effective. Without these, parameterized system verification based
on compositional model checking appears infeasible (see Section 5).

We also demonstrate the utility of our technique by applying it on a variety of param-
eterized π-calculus systems: ranging from simple ones that can also be expressed as
parameterized CCS systems, to those that exhibit π-calculus-specific features of name
creation, link passing and scope extrusion (Section 6).



Parameterized Verification of π-Calculus Systems 45

Related work. A number of model checking techniques for the π-calculus have been
developed. Examples include the model checking technique for polyadic π-calculus
[11]; the Mobility Workbench (MWB) [33], a model checker and bisimulation checker
for the π-calculus; a system [32] to translate a subset of π-calculus specifications into
Promela for verification using Spin [20]; and MMC [35, 36] model checker for the π-
calculus based on logic programming. All these techniques, however, apply only to
finite-control π-calculus, and cannot be used for verifying parameterized systems.

Type systems for the verification of π-calculus processes [9, 21] handle the replica-
tion operator and appear to be a promising alternative to the verification of parameter-
ized mobile systems. The PIPER system [9] generates CCS processes as “types” for
π-calculus processes (based on user-supplied type signatures), and formulates the veri-
fication problem in terms of these process types. In [21], a generic type system for the
π-calculus is proposed as a framework for analyzing properties such as deadlock- and
race-freedom. The replication operator alone is insufficient to model many parameter-
ized systems where the repeated instances may have different free variables.

The area of compositional verification has received considerable attention. Most
techniques for compositional verification are based on assume-guarantee reasoning
[18, 1, 26, 7, 19], and need user guidance. An approach to learn assumptions using au-
tomata learning techniques is proposed in [2]; but the technique is limited to the verifica-
tion of systems with a fixed number of finite-state components. The technique presented
in this paper is broadly based on our earlier technique [6] which is restricted to parame-
terized CCS systems and does not support dynamic change of communication topology.
Other closely-related works include the compositional model checker for synchronous
CCS [4] and the partial model checker of [3]. The latter defines property transformers
for parallel composition of sequential automata, while we generalize the transformers
for arbitrary π-calculus processes. These papers also proposed techniques to reduce the
size of formulas, but the optimizations are done after the formulas are generated in the
first place; in contrast, we apply our optimizations during the model checking process,
thereby reducing the size of formulas generated.

Verification of parameterized systems has been recognized as an important problem
and significant progress has been made in the recent years [37, e.g.]. One popular ap-
proach to the verification of a parameterized system of the form Pn is to identify a
finite cut off k for a property ϕ such that ∀n.Pn |= ϕ ⇔ P k |= ϕ, thereby reduc-
ing it to a finite-state verification problem. Techniques following this approach range
from those that provide cutoffs for particular communication topologies [13, 14, e.g.],
to those based on symmetries and annotations in the system specification [22]. Later
works, such as [30, 5] have proposed automatic techniques, based on identification of
appropriate cut-off of the parameters, for verification of wide range of parameterized
systems using rich class of data objects and operations (inequalities, incrementations).
Another approach is to identify an appropriate representation technique for a given
parameterized system; e.g. counting abstraction with arithmetic constraints [12], cov-
ering graphs [15, 16], and context-free grammars [10], and regular languages [31]. The
use of abstractions to generate invariants of parameterized systems is explored in [23].
None of these techniques, however, consider dynamically changing communication
topologies.



46 P. Yang, S. Basu, and C.R. Ramakrishnan

2 A Logic for Compositional Analysis of π-Calculus Processes

In this section, we present the fundamentals of π-calculus (Section 2.1) and property
specification logic, which we will refer to as Cμ-calculus (Section 2.2), followed by our
technique of compositional analysis (Section 3).

2.1 Syntax and Semantics of the π-Calculus

Process algebra π-calculus [28] is used to represent behavior of systems whose in-
terconnection pattern changes dynamically. Let x, y, z, . . . range over names, p, q, r, . . .
range over process identifiers, and

→
x represent comma-separated list of names

x1, . . . , xn. In the following, we recall the syntax of the calculus.

α ::= x(y) | xy | τ

P ::= 0 | α.P | (νx)P | P | P | P + P | [x = y]P | p(
→
y )

Dp ::= p(
→
x) def= P (where i �= j ⇒ xi �= xj and fn(P) ⊆ {→x})

In the above, α denotes the set of actions where x(y), xy and τ represent input, (free)
output and internal actions. Input action x(y) has binding occurrence of variable y. All
other variables in every action are free. The set of process expressions is represented
by P . Process 0 represents a deadlocked process. Process α.P can perform an α action
and subsequently behave as P . Process (νx)P behaves as P with the scope of x ini-
tially restricted to P ; x is called a local name. Process [x = y]P behaves as P if the
names x and y are the same name, and as 0 otherwise. The operators + and | represent
non-deterministic choice and parallel composition, respectively. The expression p(

→
y )

denotes a process invocation where p is a process name (having a corresponding defini-
tion) and

→
y is the actual parameters of the invocation. Finally, Dp is the set of process

definitions where each definition is of the form p(
→
x) def= P . A definition associates a

process name p and a list of formal parameters
→
x with process expression P .

The operational semantics of the π-calculus is given in terms of symbolic transi-
tion systems where each state denotes a process expression and each transition is la-
beled by a boolean guard and action [25]. The operational semantics is standard and is
omitted.

2.2 Syntax and Semantics of the Cμ-Calculus

For the purpose of compositional analysis, we extend value-passing μ-calculus in two
ways: (i) with explicit syntactic structures to specify and manipulate local names, and
(ii) with actions that are closed under complementation. We will refer to this logic
as Cμ-calculus. The set of formula expressions F in the Cμ-calculus is defined as
follows:

F ::= tt | ff | x = y | x �= y | loc(x) | nloc(x) | (νx)F | F ∨ F | F ∧ F
| 〈A〉F | [A]F | 〈x(y)〉∃y.F | 〈x(y)〉∀y.F | [x(y)]∀y.F | [x(y)]∃y.F
| X(

→
e ) | (μX(

→
z ).F)(

→
e ) | (νX(

→
z ).F)(

→
e )

A ::= xy | xy | x{y} | xνy | τ



Parameterized Verification of π-Calculus Systems 47

1a: [[x = y]]ξδl =

{
{sδ | s ∈ S} if δ |= x = y
∅ otherwise. 1b: [[x �= y]]ξδl =

{
{sδ | s ∈ S} if δ |= x �= y
∅ otherwise.

2a: [[loc(x))]]ξδl =

{
{sδ | s ∈ S} if x ∈ l
∅ otherwise. 2b: [[nloc(x))]]ξδl =

{
{sδ | s ∈ S} if x �∈ l
∅ otherwise.

3: [[ϕ1 ∨ ϕ2]]ξδl = [[ϕ1]]ξδl ∪ [[ϕ2]]ξδl 4: [[ϕ1 ∧ ϕ2]]ξδl = [[ϕ1]]ξδl ∩ [[ϕ2]]ξδl

5: [[(νx)ϕ]]ξδl = {s | s ∈ [[ϕ{x′/x}]]ξδ(l ∪ {x′}) where x′ �∈ fn(s)}

6: [[〈τ〉ϕ]]ξδl = {s | ∃s′.s
b,τ−→ s′ ∧ (δ, l |= b) ∧ s′ ∈ [[ϕ]]ξδl}

7: [[〈x1v〉ϕ]]ξδl = {s | ∃s′.s
b,x2v−→ s′ ∧ (δ, l |= b ∧ (x1 = x2)) ∧ s′ ∈ [[ϕ]]ξδl}

8: [[〈x1{y}〉ϕ]]ξδl = {s | ∃s′.s
b,x2v−→ s′ ∧ (δ, l |= b ∧ (x1 = x2)) ∧ s′ ∈ [[ϕ{v/y}]]ξδl}

9: [[〈x1νy〉ϕ]]ξδl = {s | ∃s′.s
b,x2νv−→ s′ ∧ v �∈ fn(ϕ)− {y} ∧ (δ, l |= b ∧ (x1 = x2))

∧ s′ ∈ [[ϕ{v/y}]]ξδ(l ∪ {v})}

10: [[〈x1y〉ϕ]]ξδl = {s | ∃s′.s
b,x2(w)−→ s′ ∧ (δ, l |= b ∧ (x1 = x2)) ∧ s′{y/w} ∈ [[ϕ]]ξδl}

11: [[〈x1(y)〉∃y.ϕ]]ξδl = {s | ∃s′.s
b,x2(w)
−→ s′ ∧ (δ, l |= b ∧ (x1 = x2)) ∧ ∃v.s′{v/w} ∈ [[ϕ{v/y}]]ξδl}

12: [[〈x1(y)〉∀y.ϕ]]ξδl = {s | ∃s′.s
b,x2(w)−→ s′ ∧ (δ, l |= b ∧ (x1 = x2)) ∧ ∀v.s′{v/w} ∈ [[ϕ{v/y}]]ξδl}

13: [[X(
→
e )]]ξδl = ξ(X)(

→
e δ)

14: [[(μX(
→
z ).ϕ)(

→
e )]]ξδl = ( ∩{f | [[ϕ]](ξ ◦ {X �→ f}) ⊆ f} )δ[

→
e /

→
z ]l

15: [[(νX(
→
z ).ϕ)(

→
e )]]ξδl = ( ∪{f | f ⊆ [[ϕ]](ξ ◦ {X �→ f})} )δ[

→
e /

→
z ]l

Fig. 2. Semantics of the Cμ-calculus

In the above, tt and ff stand for propositional constants true and false, respectively.
loc(x) is true iff x is a local name, and nloc(x) is true iff x is not a local name. The
scope of names can be specified by formulas of the form (νx)F which means that x is a
local name in the formula. Formulas can be constructed using conjunction, disjunction,
diamond (existential) and box (universal) modalities and quantifiers. The modal actions
x(y), xy, and τ represent input, free input and internal actions, respectively. xy is a
free output action where y is a free name and x{y} is an output action that has binding
occurrence of variable y. In input and output actions x(y) and x{y}, x is free and
y is bound; in free input and free output actions, all names are free. xνy is a bound
output action; in such an action x is free and y is bound. Bound names of a formula are
either bound names in the modalities or names bound by the ν operator. 〈x(y)〉∃y.F
and 〈x(y)〉∀y.F represent basic and late diamond modalities for input action x(y),
respectively. [x(y)]∀y.F and [x(y)]∃y.F represent the basic and late box modalities
for input action x(y), respectively.

The least and greatest fixed point formulas are specified as (μX(
→
z ).F)(

→
e ) and

(νX(
→
z ).F)(

→
e ), respectively, where

→
z represents formal parameters and

→
e represents

actual parameters. For convenience, we often represent a formula as a sequence of fixed
point equations [17]. We assume that all formulas are closed, i.e., all free names in a
formula appear in the parameters of the definition.

Semantics of the Cμ-calculus. The semantics of formulas in the Cμ-calculus is given
using four structures: (i) a symbolic transition system S = 〈S,→〉 where S represents
the set of symbolic states and ‘→’ is the symbolic transition relation; (ii) a substitu-
tion δ over which the equality (=) and disequality ( �=) constraints between names are



48 P. Yang, S. Basu, and C.R. Ramakrishnan

interpreted; (iii) a function ξ that maps formula variables to sets of symbolic states of
S; and a set of local names l used to assign meaning to loc and nloc predicates. The
semantic function is written as [[ϕ]]ξδl and maps each formula to a set of states in S. The
symbolic transition system is used as an implicit parameter in the definition: all rules
are evaluated w.r.t. the same transition system. The treatment of boolean connectives is
straightforward. The set of local names, l, is updated in Rules 5 and 9 to include names
bound by ν operator. Similarly, the substitution δ is updated to capture the mapping of
formal parameters (free names) to actual arguments in Rules 14 and 15. Constraints of
the form x = y and x �= y are evaluated under this substitution. Rules 6–12 give the
semantics for the diamond modality. The semantics of the box modality can be easily
obtained by considering it as the dual of the diamond modality. For instance, the se-

mantics for [τ ]ϕ is: [[[τ ]ϕ]]ξδl = {s | ∀s′. if s b,τ−→ s′ ∧ δ, l |= b then s′ ∈ [[ϕ]]ξδl}. For
brevity, we will henceforth discuss only about the diamond modality. The details related
to the box modality are given in [34]. We will use s |=δ,l ϕ to denote s ∈ [[ϕ]]ξδl.

3 Compositional Model Checker for the π-Calculus

In this section, we define the transformation function Π : P → F → F which is the
core of our technique. Given a process P ∈ P , a formula ϕ ∈ F , a set of substitutions
δ and a set of local names l, we define Π such that

P | Q | 0 |=δ,l ϕ⇔ Q | 0 |=δ,l Π(P )(ϕ) ⇔ 0 |=δ,l Π(Q)(Π(P )(ϕ))

In words, the main objective ofΠ is to generate a Cμ-calculus formula which represents
the temporal obligation of the environment of the process used for transformation. This
process of transforming formula iteratively by each process in the parallel composition
is similar to the one proposed in [3, 6], where the transformation operation is defined for
labeled transitions system or process algebra CCS and the technique of model checking
is referred to as partial model checking.

The functionΠ for each formula expression is presented in Fig. 3. Here, we illustrate
only those rules that are not obvious. Rules 3(a) and 3(b) leave the formula expressions
loc(x) and nloc(x) unchanged; evaluation of these formulas is performed when all but
the 0 processes are used to transform the formula iteratively. Rule 6 transforms a pa-
rameterized formula variable X(

→
e ) into new formula variable Xp(

→
e1) (the definition

is in Rule A) where
→
e1 is formed by concatenation of

→
e and free names of P . Trans-

formation using a process identifier is equivalent to transformation using its definition
(Rule 9).

Rule 10 captures the compositionality of property transformers; the order of trans-
formation using P1 or P2 does not matter. Rule 11 presents the property transformer for
process (νx)P where (νx) is moved from the process side to the transformed formula.
In order to avoid name clash, x is renamed to x′ ({x′/x})that is different from any free
names in ϕ. Note that, x′ is a local name in the context of the transformed formula.

Rule 12 deals with the formulas with local name restrictions (possibly generated
via Rule 11). Transformation using P results in the extension of the scope of x to the
transformed formula. Similar to Rule 11, name x in ϕ is renamed to a new name x′

(not present as a free name in P ). Observe that, Rules 11 and 12 have a similar effect



Parameterized Verification of π-Calculus Systems 49

1(a) Π(P )(tt) = tt 1(b) Π(P )(ff ) = ff

2(a) Π(P )(x = y) =
{

tt if x = y
x = y otherwise

2(b) Π(P )(x �= y) =
{

ff if x = y
x �= y otherwise

3(a) Π(P )(loc(x)) = loc(x) 3(b) Π(P )(nloc(x)) = nloc(x)

4 Π(P )(ϕ1 ∨ ϕ2) = Π(P )(ϕ1) ∨Π(P )(ϕ2)

5 Π(P )(ϕ1 ∧ ϕ2) = Π(P )(ϕ1) ∧Π(P )(ϕ2)

6 Π(P )(X(
→
e )) = XP (

→
e1) where

→
e1 =

→
e + fn(P )

7 Π(P )(∃x.ϕ) = ∃x.Π(P )(ϕ) Π(P )(∀x.ϕ) = ∀x.Π(P )(ϕ)

8 Π(0)(ϕ) = ϕ

9 Π(p(
→
x ))(ϕ) = Π(P )(ϕ) where p(

→
x ) def= P

10 Π(P1 | P2)(ϕ) = Π(P2)(Π(P1)(ϕ))

11 Π((νx)P )(ϕ) = (νx′)Π(P{x′/x})(ϕ) where x′ ∩ n(ϕ) = ∅
12 Π(P )((νx)ϕ) = (νx′)(Π(P )(ϕ{x′/x})) where x′ �∈ fn(P )

13 Π(a.P )(〈α〉ϕ) = 〈α〉Π(a.P )(ϕ) where bn(α) ∩ fn(a.P ) = ∅

∨

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Π(P )(ϕ) if a = τ ∧ α = τ
x1 = x2 ∧ nloc(y1) ∧Π(P )(ϕ) if a = x1y1 ∧ α = x2y1
x1 = x2 ∧ nloc(y1) ∧Π(P )(ϕ{y1/y2}) if a = x1y1 ∧ α = x2{y2}
x1 = x2 ∧ loc(y1) ∧Π(P )(ϕ{y1/y2}) if a = x1y1 ∧ α = x2νy2
x1 = x2 ∧Π(P )(ϕ{y1/y2}) if a = x1(y1) ∧ α = x2(y2)
x1 = x2 ∧Π(P{y2/y1})(ϕ) if a = x1(y1) ∧ α = x2y2
ff otherwise

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
∨
{
〈a〉Π(P )(ϕ), where bn(a) ∩ n(ϕ) = ∅ if α = τ
ff otherwise

}
14 Π(P1 + P2)(〈α〉ϕ) = 〈α〉Π(P1 + P2)(ϕ) ∨Π(P1)(〈α〉ϕ) ∨Π(P2)(〈α〉ϕ)

15 Π([x = y]P )(ϕ) = C ∧ Π(P )(ϕ) where C =
{

tt if x = y
x = y otherwise

A. Π(P )(X(
→
z ) =σ ϕ ∪ E) = {XP (

→
z1) =σ Π(P )(ϕ) where (n(ϕ)−→

z ) ∩ fn(P ) = ∅) and →
z1 =

→
z + fn(P )}

∪Π(P )(E) ∪
⋃
{Π(P ′)(X′(→

z2) =σ′ ϕ′) s.t X′
P ′(

→
z3)is a subformula of

Π(P )(ϕ),
→
z3 =

→
z2 + fn(P ′) and (n(ϕ′)− →

z2) ∩ fn(P ′) = ∅)}
B. Π(P )({}) = ({})

Fig. 3. Partial Model Checker for π-Calculus

as pulling the ν out using the structural congruence rule: (νx)P | Q ≡ (νx)(P | Q)
where x does not appear in Q. Renamings in these two rules correspond to the side
condition of the congruence rule.

Rule 13 presents the transformation 〈α〉ϕ using prefix process expression a.P . The
rule relies on three different possibilities following which a.P , when composed with an
environment, can satisfy 〈α〉ϕ.

1. The environment makes a move on α satisfying the modal obligation (1st disjunct).
2. a.P satisfies the modal obligation α (2nd disjunct).
3. α = τ and the environment synchronizes with a.P (the 3rd disjunct), i.e., performs

an a action.

In Case 1, the side condition demands that the bindings in modal action α does not
bind any free names of prefixed process expression. As such we apply alpha-conversion
to satisfy the side condition: alpha-conversion renames all the binding occurrences in
formula with new names that are disjoint from the free names of the process. In Case 2
there are multiple possibilities depending on the nature of modal action α. Note that if



50 P. Yang, S. Basu, and C.R. Ramakrishnan

α is an output or a free output, then formula expression nloc(y1) is generated meaning
that y1 must not be a local name to satisfy the modal obligation. This is because at the
time of transformation, it is not known whether y1 is a local name or not. Similarly,
when α is a bound output modal action, the formula expression loc(y1) is generated.

In Rule 14, a diamond modal formula is transformed using choice process expres-
sion. The result is a disjunction where (a) the first disjunct corresponds to the case where
the environment is left with the obligation to satisfy the modal action and (b) the second
and the third disjunct, respectively, corresponds to the case where the first or the second
process is selected for subsequent transformation.

Finally, Rules A and B correspond to transformation of formula equations. Observe
that, we are using equational syntax of the Cμ-calculus. Any property with formula ex-
pressions of the form σX(

→
z ).ϕ can be converted in linear time to set of equations of the

form X(
→
z ) =σ ϕ. Specifically, given a Cμ-calculus formula ϕ where each fixed point

variable has distinct names, the number of equations in the corresponding equational set
is equal to the number of fixed point sub-formulas of ϕ. Each such sub-formula of the
form σxX.ϕx is translated to a equationX =σx ψx where ψx is obtained by replacing
every occurrences of its sub-formula σyY.ϕy with Y . For example the formula expres-
sion: νX.(μY.([a1]X∧[a2]Y )) is translated toX =ν Y and Y =μ [a1]X∧[a2]Y where
X is the outer-fixed point variable and Y is the inner one. The use of equational form
is driven by the fact that transformation can be done in a per-equation basis, instead of
keeping track of all the sub-formula expressions of a formula if the transformation was
done for non-equational form.

Let E represent the sets of formula equations. Rules A and B define a function Π :
P → E → E that represents the transformer over a set of Cμ-calculus equations. Rule A
states that given a formula equation of the form X(

→
z ) =σ ϕ, transformation leads to

the generation of a new equation of the formXP (
→
z1) =σ Π(P )(ϕ) where

→
z1 is formed

by concatenation of
→
z and free names of P . Moreover, if there is a formula expression

X ′P ′(
→
z3) present in Π(P )(ϕ), then the corresponding formula equation for X ′(

→
z2) is

transformed using P ′, where
→
z2 is formed by removing free names of P ′ from

→
z3. Rule

A also requires that names in the right-hand side of the equation that do not appear in
the parameters should be different from any free names of P .

Theorem 1. Let P and Q be two process expressions, δ a set of substitutions, and l a
set of local names. Then for all formulas ϕ, the following holds:

Q | P |=δ,l ϕ⇔ Q |=δ,l Π(P )(ϕ)

The proof is by induction on the size of the process expression and the formula. �

Computing Constraints. Given a process P |0 and a formula ϕ, let ψ = Π(P )(ϕ).
According to Theorem 1, given a set of constraints δ and a set of local names l, P |=δ,l

ϕ⇔ 0 |=δ,l ψ. In Figure 4, we present a function f l(ψ) that, given a set of local names
l, computes a set of constraints δ under which 0 |=δ,l ψ.

Rules 1 and 2 in Figure 4 are straightforward. In Rules 3 and 4, if one of x and y is
a local name, then since local names are different from any other names in the system,
x = y is false. In Rule 7, if x occurs in l, then loc(x) is true, otherwise false. Rule 11
evaluates 〈α〉ϕ to ff because 0 cannot perform any action. In Rule 12, the local name



Parameterized Verification of π-Calculus Systems 51

1. f l(tt) = tt 2. f l(ff ) = ff

3. f l(x = y) =

⎧⎨⎩ tt if x = y
ff if {x, y} ∩ l �= ∅
x = y otherwise

⎫⎬⎭ 4. f l(x �= y) =

⎧⎨⎩ ff if x = y
tt if {x, y} ∩ l �= ∅
x �= y otherwise

⎫⎬⎭
5. f l(∃x.ϕ) = ∃x.f l(ϕ) 6. f l(∀x.ϕ) = ∀x.f l(ϕ)

7. f l(loc(x)) =
{

ff if x �∈ l
tt if x ∈ l

}
8. f l(nloc(x)) =

{
tt if x �∈ l
ff if x ∈ l

}
9. f l(ϕ1 ∧ ϕ2) = f l(ϕ1) ∧ f l(ϕ2) 10. f l(ϕ1 ∨ ϕ2) = f l(ϕ1) ∨ f l(ϕ2)

11. f l(〈α〉ϕ) = ff 12. f l((νx)ϕ) = f l∪{x}(ϕ)

13. f l(X(
→
e )) = f l(ϕ{→

e /
→
z }) where X(

→
z ) =σ ϕ

Fig. 4. Computing f l(ϕ)

x is added to l in order to evaluate the loc(x) and nloc(x) predicates. Note that f l(ψ)
generates a formula over equality and disequality expressions and standard constraint
solving algorithms are applied to solve the constraints of the form ∃x.ϕ and ∀x.ϕ.

Following example illustrates the use of loc and nloc formula expressions.

Example 1. Given a process p(x) def= (νy)xy.p(x) and a formula ϕ ≡ X(x) =ν

〈xνz〉tt:

Π(p(x))(ϕ) ≡ X1(x) =ν Π((νy)xy.p(x))(〈xνz〉tt)
=ν (νy)Π(xy.p(x))(〈xνz〉tt) =ν (νy)loc(y)

As f∅((νy)loc(y)) = f{y}(loc(y)) = tt , therefore, 0 |=tt,∅ Π(p(x))(ϕ) �

In Example 1, when computing Π(xy.p(x))(〈xνz〉tt), since (νy) is not in the scope
of transformation, the model checker cannot determine if y is a local name. Thus, we
generate the constraint loc(y). After the transformation is done, we verify if 0 satisfies
the resulting formula (νy)loc(y). Since y is a local name, (νy)loc(y) is evaluated to tt .

4 Verification of Parameterized π-Calculus Systems

We outline here the compositional analysis based technique for verification of pa-
rameterized systems where instances of subsystems are represented by finite control
π-calculus processes. Let Pn be a system with n instances of π-calculus process P .
Consider verifying that the ith instance of above system satisfies a property ϕ. The
result of transformingϕ using the ith instance is ϕi = Π(P i)(ϕ). Therefore, from The-
orem 1, given a set of substitutions δ and a set of local names l, 0 |=δ,l ϕi ⇔ P i |=δ,l ϕ.

Now consider verifying whether ∀i. P i |= ϕ. Let ϕ′i be defined as:

ϕ′
i =
{

ϕ1 if i = 1
ϕ′

i−1 ∧ ϕi if i > 1

By definition of ϕ′i, (∀1 ≤ j ≤ i.0 |=δ,l ϕj) ⇔ 0 |=δ,l ϕ
′
i. Thus, 0 |=δ,l ϕ

′
i means that

∀1 ≤ j ≤ i.P j |=δ,l ϕ. If ϕ′ω is the limit of sequence ϕ′1, ϕ
′
2 . . ., then, 0 |=δ,l ϕ

′
ω ⇔

∀i ≥ 1.P i |=δ,l ϕ.



52 P. Yang, S. Basu, and C.R. Ramakrishnan

A dual technique is applied for the verification problem ∃i.P i |= ϕ. Let ϕ′′i be
defined as:

ϕ′′
i =

{
ϕ1 if i = 1
ϕ′′

i−1 ∨ ϕi if i > 1

In this case, if ϕ′′ω , the limit of the sequence ϕ′′1 , ϕ
′′
2 , . . ., is satisfied by 0 under

the substitution δ, then ∃n.Pn |= ϕ. We say that the series of ϕ′i is contracting since
ϕ′i ⇒ ϕ′i−1 and the series of ϕ′′i is relaxing as ϕ′′i−1 ⇒ ϕ′′i .

Before deploying the above technique for solving verification of parameterized sys-
tems, we need to solve the following problems:

1. Entailment: To detect whether a limit is reached requires developing the equiva-
lence relation between Cμ-calculus formulas.

2. Convergence acceleration: The limit in the chain of Cμ-calculus formulas may not
be realized in general. As such, we need to identify a suitable abstraction to the
generated formulas to ensure termination of the iterative process.

Entailment. Equivalence checking of formula expressions in logic with explicit fixed
points is an EXPTIME-hard problem. Hence we use an approximate, conservative tech-
nique for equivalence detection which is safe and can be efficiently applied. First, we
check if two formulas are equivalent based on the algorithm in [3]. The algorithm
states that syntactically identical formula expressions are semantically equivalent. If the
equivalence between formula expressions is not readily understood from their structure,
we apply the technique developed in [6]. This technique relies on converting the formula
into a labeled transition system, called formula graphs, where each state is annotated
by a formula expressions and transitions are labeled by various syntactic constructs of
Cμ-calculus, e.g., diamond modal action. The equivalence between two formula ex-
pressions are determined by checking whether the corresponding formula graphs refine
each other. Such graph-based equivalence detection algorithm is more powerful than
that relying on textual representation of syntax [3] as the former can effectively extract
dependencies between formula variables (see [6]).

Convergence acceleration. To ensure convergence and termination, we develop a
widening algorithm that over-approximates a relaxing sequence of ϕ′′i and under-
approximates the contracting sequence of ϕ′i. The core of the technique is to examine
two consecutive formula expressionsϕi and ϕj in a sequence and determine their differ-
ences. For example, if the formulas are members of a relaxing sequence (ϕi ⇒ ϕj ), the
difference is identified as a disjunct in ϕj . Widening amounts to removing this disjunct
and generate a new formula ϕa such that ϕj ⇒ ϕa. Similarly, for contracting sequence,
we remove the divergence-causing conjuncts. Note that, this type of widening is only
applicable to safety and reachability properties where all the boolean connectives in the
formula are either ∧ or ∨, respectively.

Note that widening leads to an approximation of the limit of the sequence. As such,
given a parameterized system Pn and formula ϕ, if limit ϕω of a relaxing sequence
is realized via widening and 0 |= ϕω , we cannot infer that ∃n.Pn |= ϕ. However,
0 �|= ϕω ⇒ ∀n.Pn �|= ϕ. Similarly, for contracting sequence, if ϕω is the limit reached
after widening, then 0 |= ϕω ⇒ ∀n.Pn |= ϕ, while 0 �|= ϕω �⇒ ∃n.Pn �|= ϕ.



Parameterized Verification of π-Calculus Systems 53

5 Optimizations

In general, the transformation rules may generate a number of redundant formulas, e.g.,
two sub-formulas that are equivalent. Redundancies result in formulas that are large and
virtually un-manageable. In order to apply the partial model checker to any practical
application, we need to develop techniques to remove such redundancies.

In this section, we propose several optimization techniques to reduce the number of
formulas generated by transformation. In [6], the redundancy removal technique was
solely focused on removing equivalent sub-formulas and used heavy-weight bisimu-
lation checking algorithm on graphical representation of formulas. Such a technique
was used off-line, after the formulas have been generated in the first place. In contrast,
here we present a number of light-weight techniques that are tightly-coupled with the
transformation rules and help to significantly reduce the size of the resulting formulas.

Symmetry Reduction. When the partial model checker generates new formula variables,
it names them based on the corresponding process expressions (see Rule 6 in Figure 3).
The number of formulas generated can be reduced considerably by exploiting a form
of symmetry reduction. For instance, let X be a formula variable, and P and Q be ar-
bitrary process expressions. Note that Π(P |Q)(X) = Π(P )(Π(Q)(X)) is a new for-
mula variable of the formXQ,P . On the other hand,Π(Q|P )(X) = Π(Q)(Π(P )(X))
is XP,Q. Hence XP,Q and XQ,P are semantically identical. We avoid creating the two
formula variables in the first place, by reducing the suffix process expression to a sym-
metrically equivalent canonical form. This is done by first reducing the expression to
a sequence of parallel-free process expressions (exploiting the associativity of paral-
lel composition), and sorting the sequence by imposing a global total order on the
elements (exploiting the commutativity of parallel composition). This optimization is
light-weight and may dramatically reduce the number of formulas generated even for
applications where symmetry is not obvious (see Section 6).

Optimizing the Choice Rule. The choice rule in Figure 3 may generate redundant for-

mulas. Consider the process definition p(x, y) def= x(v).p(x, y)+ y(w).p(x, y) and the
formula ϕ =ν 〈τ〉tt. Π(p(x, y))(ϕ) generates the following formulas.

X1(x, y) =ν 〈τ 〉tt ∨X2(x, y) ∨X3(x, y)
X2(x, y) =ν 〈τ 〉tt ∨ 〈x{v}〉X1(x, y) X3(x, y) =ν 〈τ 〉tt ∨ 〈y{w}〉X1(x, y)

From the above, we can infer thatX1(x, y) = 〈τ〉tt∨〈τ〉tt∨〈x{v}〉X1(x, y)∨〈τ〉tt∨
〈y{w}〉X1(x, y). We can, however, avoid generating the two redundant sub-formulas
〈τ〉tt using the following revised “+” rule.

Π(P1 + P2)(〈α〉ϕ) = 〈α〉Π(P1 + P2)(ϕ) ∨ Π ′(P1)(〈α〉ϕ) ∨ Π ′(P2)(〈α〉ϕ)

Π ′ differs from Π in Rule 13 where modal obligation 〈α〉 is not imposed on the envi-
ronment.

Simplification Techniques. Apart from symmetry-based simplification, we also remove
redundant sub-formulas and use the simplifying equations originally proposed in [3].
The most frequently used simplification techniques are constant propagation (e.g.X =
〈α〉X1, X1 = tt ⇒ X = 〈α〉tt), and unguardedness removal(e.g. X = 〈α〉X1, X1 =



54 P. Yang, S. Basu, and C.R. Ramakrishnan

X2 ⇒ X = 〈α〉X2). These simplification techniques help to quickly detect if two
formulas are equivalent.

Environment-Based Reduction. Consider Rule 13 in Figure 3. Process a.P either leaves
the environment to perform an α action (1st disjunct) or an a action if α = τ (3rd dis-
junct), or a.P itself performs an α action (2nd disjunct). However, if the environment
cannot perform an α or an a action, then the 1st and the 3rd disjuncts need not be gener-
ated. For instance, consider the example given in Figure 1. Given a formula ϕ, we first
use p(x) to transform ϕ under the environment q(x) | . . . | q(x). From the specifica-
tion, process q(x) cannot synchronize with itself, thus the model checker does not need
to leave the environment to perform a τ action. However, this optimization requires
the knowledge of the environment, thereby rendering the model checker of Figure 3 no
longer compositional. Moreover, the assertion (P |Q) |= ϕ ⇔ Q |= Π(P )(ϕ) now
holds only for those Q that are consistent with the knowledge of the environment used
to perform this optimization.

When using P to transform a formula under the environmentQ, we check: 1) What
are the actions ofP with whichQ cannot synchronize? 2) CanQ perform a τ transition?
These can be easily determined for value-passing calculus by parsing the specification,
but are more difficult for the π-calculus due to link passing. Thus we compute the set
of actions conservatively: if we do not know whether one process can synchronize with
another, then we conservatively assume that such synchronization exists between the
two processes. The environment information is propagated in the model checker. The
details are given in [34]. This optimization may reduce the size of each formula and
sometimes reduces the number of formulas generated (see Section 6).

Eliminating Constraints Based on the Types of Channels. This optimization is applied
to whenever the formulas generated are guarded by equality and disequality constraints.
Under certain conditions, we can determine whether a constraint generated is unsatis-
fiable. For instance, assume that we keep track of the set of all names that have been
extruded from their initial scope. Then if x has never been extruded and y is a bound
name of an input action, then x = y is never true. We use a simple type system to
determine whether a channel could have been extruded.

6 Preliminary Experimental Results

In this section, we show the effectiveness of our technique to verify parameterized ver-
sions of several small but non-trivial examples. The examples include those with a fixed
process interconnection, namely, Token ring, a ring of n token-passing processes, and
Spin lock, a simple locking protocol where n processes compete to acquire a single
common resource. We also include examples with dynamically changing interconnec-
tion between processes, namely Printer, where n clients use a single print server to
mediate access to a printer, and Server [9], where n file readers serve web page read
requests. We also evaluate the performance of our model checker on the Handover pro-
cedure [29] (which maintains the connectedness of a mobile station in a cellular network
when the station crosses cell boundaries) to verify a single instance of the system.

The experimental results are shown in Fig. 5. All reported performance data were
obtained on a 1.4GHz Pentium M machine with 512MB of memory running Red Hat



Parameterized Verification of π-Calculus Systems 55

Benchmark Property Summary # Formulas Time (sec.)
# Iter Widen (Y/N) Orig Sym Env All Conv Orig Sym Env All Conv

Token ring deadlock freedom 3 Y 86 45 – 45 40 1.93 0.56 – 0.56 0.37
Spin lock mutual exclusion 3 N 398 192 364 181 181 34.96 7.8 23.37 5.11 5.29

deadlock freedom 3 Y 160 80 160 80 64 6.89 1.49 4.62 0.99 1.35
Printer deadlock freedom 3 Y 55 29 – 29 22 1.03 0.29 – 0.29 0.20
Server order preservation 4 Y 1440 1270 241 239 172 361.58 280 10.17 10.07 5.24

Fig. 5. Experimental Results

Linux 9.0. The figure is divided broadly into three parts. The verification results for the
different systems and properties are summarized in the first part (columns under “Sum-
mary”). In that part, the number of iterations for the sequence to converge, and whether
widening was needed appear in columns “# Iter”, and “Widen” respectively. For all the
cases listed in the figure, we can conclude that the property holds for all instances of
the parameterized system, even when widening was used to enforce convergence.

The second and third parts of the table, namely, columns under “# Formulas” and
“Time”, present the performance results (number of formulas processed and the CPU
time taken, resp.) for the examples. The columns “Conv” list the total number of for-
mulas and time to compute the formula sequence, including the time taken to perform
convergence check and widening (when needed). The other columns list the same statis-
tics to compute the formula sequence (length of the sequence is same as the number of
iterations) but without checking for convergence or applying widening. The columns
“Orig”, “Sym”, “Env” and “All” list the statistics when no optimizations, symmetry
reduction, environment-based reduction and all optimizations described in Section 5
(resp.) are applied. In the table “–” indicates that the optimization is inapplicable. The
performance results show the effectiveness of the optimizations: the overheads of per-
forming the optimizations are easily offset by the reductions enabled by the optimiza-
tions. Widening sometimes reduces formula sizes sufficiently (see Token Ring, Printer,
Server), consequently saving enough time to offset that needed to perform the opera-
tion. In all benchmarks, the memory requirement of the model checker without opti-
mizations is always higher than that with optimizations (all < 12MB), and hence the
corresponding results are not shown.

Finally, we applied the compositional model checker to verify a single instance of the
Handover protocol (1 mobile and 2 base stations). Even with all optimizations enabled,
it takes 12s to verify the deadlock freedom property for this instance. In contrast, the
non-compositional model checker MMC can verify this instance in less than a second.
This indicates that the compositional checker is unsuitable for use, as it stands, for
routine verification of non-parameterized systems. When we attempted to verify another
instance of the protocol (with 2 mobile stations), the compositional checker generated
more formulas than can be handled by our prototype implementation.

7 Conclusion

In this paper, we presented an automatic technique for verifying parameterized systems
that consist of a number of instances of finite-control π-calculus processes. This tech-
nique uses a sufficiently expressive logic, Cμ-calculus, to represent properties, and is
based on a compositional model checker for the π-calculus.



56 P. Yang, S. Basu, and C.R. Ramakrishnan

Since the technique is based on a compositional model checker, each process in-
stance is verified in an “open” (unknown) environment. Hence in this approach, we
consider a lot more potential system behaviors than any instance of the parameterized
system can exhibit. This leads to generation of large number of formulas at each step.
Optimization aim at reducing this potential blow-up. Among these, the environment-
based reduction attempts to construct an environment for each process that is signifi-
cantly more restricted than the open environment. This is based on the capabilities of
the other processes in the parameterized system (e.g. channels they can communicate
on). Even a relatively simple version of this optimization presented in this paper, which
is based on a very coarse notion of capabilities of processes, results in significant reduc-
tion in verification time (e.g. Server example in Fig. 5). We are currently investigating
heavier-weight but more effective optimizations that would make it possible to use our
technique on realistic parameterized systems such as the Handover protocol.

References

1. R. Alur and T. Henzinger. Reactive modules. In LICS, 1996.
2. R. Alur, P. Madhusudan, and W. Nam. Symbolic compositional verification by learning

assumptions. In CAV, pages 548–562, 2005.
3. H.R. Andersen. Partial model checking (extended abstract). In LICS, 1995.
4. H.R. Andersen, C. Stirling, and G. Winskel. A compositional proof system for the modal

mu-calculus. In LICS, 1994.
5. T. Arons, A. Pnueli, S. Ruah, J. Xu, and L. Zuck. Parameterized verification with automati-

cally computed inductive assertions. In Computer Aided Verification, 2001.
6. S. Basu and C. R. Ramakrishnan. Compositional analysis for verification of parameterized

systems. In Proceedings of TACAS, pages 315–330, 2003.
7. S. Berezin and D. Gurov. A compositional proof system for the modal mu-calculus and CCS.

Technical Report CMU-CS-97-105, CMU, 1997.
8. J. Bradfield and C. Stirling. Modal logics and mu-calculi: an introduction (In the Handbook

of Process Algebra), pages 293–330. Elsevier, 2001.
9. S. Chaki, S.K.Rajamani, and J. Rehof. Types as models: model checking message-passing

programs. In Proceedings of POPL, pages 45 – 57, 2002.
10. E. M. Clarke, O. Grumberg, and S. Jha. Verifying parameterized networks. ACM Transac-

tions on Programming Languages and Systems, 1997.
11. M. Dam. Proof systems for pi-calculus logics. Logic for Concurrency and Synchronisation,

2001.
12. G. Delzanno. Automatic verification of parameterized cache coherence protocols. In Com-

puter Aided Verification, 2000.
13. E.A. Emerson and K.S. Namjoshi. Reasoning about rings. In POPL, 1995.
14. E.A. Emerson and K.S. Namjoshi. Automated verification of parameterized synchronous

systems. In Computer Aided Verification. Lecture Notes in Computer Science, 1996.
15. E.A. Emerson and K.S. Namjoshi. On model checking for non-deterministic infinite state

systems. In LICS, 1998.
16. J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast protocols. In LICS,

1999.
17. R. Cleaveland G. Bhat. Efficient model checking via the equational μ-calculus. In LICS,

pages 304–312, 1996.
18. O. Grumberg and D.E. Long. Model checking and modular verification. ACM Transactions

on Programming Languages and Systems, 1994.



Parameterized Verification of π-Calculus Systems 57

19. T. Henzinger, S. Qadeer, and S.K. Rajamani. You assume, we guarantee. In CAV, 1998.
20. G. J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineering,

23(5):279–295, May 1997.
21. A. Igarashi and N. Kobayashi. A generic type system for the pi-calculus. Theoretical Com-

puter Science, 311(1–3):121–163, 2004.
22. C.N. Ip and D.L. Dill. Verifying systems with replicated components in murphi. Formal

Methods in System Design, 1999.
23. Y. Kesten and A. Pnueli. Control and data abstraction:the cornerstones of pratical formal

verification. International Journal on Software tools for Technology, 2000.
24. D. Kozen. Results on the propositional μ-calculus. Theoretical Computer Science, 1983.
25. H. Lin. Symbolic bisimulation and proof systems for the π-calculus. Technical report, School

of Cognitive and Computer Science, U. of Sussex, UK, 1994.
26. K.L. McMillan. Compositional rule for hardware design refinement. In CAV, 1997.
27. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
28. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Parts I and II. Informa-

tion and Computation, 100(1):1–77, 1992.
29. F. Orava and J. Parrow. An algebraic verification of a mobile network. Journal of Formal

Aspects of Computing, 4:497–543, 1992.
30. A. Pnueli, S. Ruah, and L. Zuck. Automatic deductive verification with invisible invariants.

In Tools and Algorithms for the Construction and Analysis of Systems, 2001.
31. A. Pnueli and E. Shahar. Liveness and acceleration in parameterized verification. In Com-

puter Aided Verification, 2000.
32. H. Song and K. J. Compton. Verifying pi-calculus processes by Promela translation. Tech-

nical Report CSE-TR-472-03, Univ. of Michigan, 2003.
33. B. Victor. The Mobility Workbench user’s guide. Technical report, Department of Computer

Systems, Uppsala University, Sweden, 1995.
34. P. Yang, S. Basu, and C. R. Ramakrishnan. Parameterized verification of π-calculus systems,

2006. Available at http://www.lmc.cs.sunysb.edu/∼pyang/ptech.pdf.
35. P. Yang, C. R. Ramakrishnan, and S. A. Smolka. A logical encoding of the π-calculus:

Model checking mobile processes using tabled resolution. In Proceedings of VMCAI, 2003.
Extended version in Software Tools for Technology Transfer, 6(1):38-66,2004.

36. P. Yang, C. R. Ramakrishnan, and S. A. Smolka. A provably correct compiler for efficient
model checking of mobile processes. In Proceedings of PADL, 2005.

37. L. Zuck and A. Pnueli. Model checking and abstraction to the aid of parameterized systems
(a survey). Computer Languages, Systems & Structures, 30(3–4):139–169, 2004.



Easy Parameterized Verification of Biphase
Mark and 8N1 Protocols

Geoffrey M. Brown1 and Lee Pike2,�

1 Indiana University, Bloomington
geobrown@cs.indiana.edu

2 Galois Connections
leepike@galois.com

Abstract. The Biphase Mark Protocol (BMP) and 8N1 Protocol are
physical layer protocols for data transmission. We present a generic
model in which timing and error values are parameterized by linear
constraints, and then we use this model to verify these protocols. The
verifications are carried out using SRI’s SAL model checker that com-
bines a satisfiability modulo theories decision procedure with a bounded
model checker for highly-automated induction proofs of safety properties
over infinite-state systems. Previously, parameterized formal verification
of real-time systems required mechanical theorem-proving or specialized
real-time model checkers; we describe a compelling case-study demon-
strating a simpler and more general approach. The verification reveals
a significant error in the parameter ranges for 8N1 given in a published
application note [1].

1 Introduction

The Biphase Mark Protocol (BMP) and 8N1 Protocol are common physical layer
protocols used in data transmission – BMP in CDs, Ethernet, and Tokenring and
8N1 in UARTs. Decoders for protocols such as these present challenging formal
verification problems because their correctness depends upon reasoning about
interacting real-time events. BMP was first verified using the Boyer-Moore Theo-
rem Prover (Nqthm) [2]. Subsequently, it was verified using a Duration Calculus
model in the PVS theorem prover [3], with the HyTech model checker [4, 5] and
also using a combination of the Uppaal model checker and PVS [6]. In this paper,
we show how a parameterized specification of BMP can be verified easily with
the SAL tool set using its built-in bounded model checker in conjunction with
a satisfiability modulo theories (SMT) decision procedure to complete induction
proofs over infinite-state systems [7].1

Compared to interactive mechanical theorem proving – the usual method for
parameterized verification – this approach is substantially simpler. For example,

� The majority of this work was completed while this author was a member of the
Formal Methods Group at the NASA Langley Research Center in Hampton, Virginia.

1 The SAL specifications and a proof script are available at http://www.
cs.indiana.edu/∼lepike/pub pages/bmp.html.

H. Hermanns and J. Palsberg (Eds.): TACAS 2006, LNCS 3920, pp. 58–72, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Easy Parameterized Verification of Biphase Mark and 8N1 Protocols 59

the proof of Vaandrager and de Groot using PVS requires 37 invariants whereas
ours requires only five. Because invariants can be combined, a more meaningful
(and striking) metric may be the number of user-directed proof steps required:
their initial verification effort required more than 4000 steps whereas each of our
five invariants is proved automatically by SAL. As another comparison, the veri-
fication reported by Hung has such complexity that PVS requires approximately
five hours just to check the validity of the manually-created proof script. In our
approach, the proofs are generated by the bounded model checker and decision
procedure in just a few seconds. We emphasize the simplicity of the invariants
necessary in our verification, the “push-button” technique used to prove them,
and the robustness of the proofs under modifications to the underlying model.
In fact, we demonstrate that with a few trivial changes to the model, the proof
for BMP naturally leads to a similar proof for 8N1. Finally, in verifying the
8N1 decoder, we found a significant error in a published application note that
incorrectly defines the relationship between various real-time parameters which,
if followed, would lead to unreliable operation [1].

While the verification approach described in this paper can be orders-of-
magnitude easier than mechanical theorem-proving, it is less general. In the
models presented, we fix two small integer constants, and the constraints on the
model are parameterized with respect to these. The fixed constants are suffi-
ciently small, and the verification is sufficiently fast, so that these values can be
enumerated, and the constraints can be checked for each value. Alternatively,
an anonymous referee pointed out an alternative formulation of the constraints
that allows for a fully parameterized verification of BMP (the limitation of the
SAL’s ICS decision procedure described in Section 5 prevents a fully parame-
terized verification of 8N1). We present a fully parameterized model similar to
the one suggested by the referee in the SAL specifications provided on-line, and
we briefly describe the approach in Section 7. We also make a more detailed
comparison to other verifications, including those carried out using specialized
real-time model checkers, in Section 7.

To motivate the design of this sort of protocol, consider Figure 1 where the top
stream is the signal to be transmitted, while the middle stream is a digital clock
that defines the boundaries between the individual bits. In a digital circuit, the
clock signal is transmitted separately from the data; however, this is not feasible

1 1 0 1 0 0 1 1 1 0 1 1

Data

BMP

Clock

Fig. 1. Data and Synchronization Clock



60 G.M. Brown and L. Pike

in most communication systems (e.g., serial lines, Ethernet, SONET, Infrared)
in which a single signal is transmitted. A general solution to this problem is
to merge the clock and data information using a coding scheme such as BMP,
illustrated as the lower stream. In BMP, every bit is guaranteed to begin with
a transition marking a clock event. The value of the bit is determined by the
presence (to encode a 1) or absence (to encode a 0) of a transition in the middle
of the bit period. Thus, 0’s are encoded as the two symbols 00 or 11, while 1’s
are encoded as 01 or 10. 8N1 is a simpler encoding scheme in which a transition
is guaranteed to occur only at the beginning of each frame, a sequence of bits
that includes a start bit, stop bit, and eight data bits. Data bits are encoded by
the identity function – a 1 is a 1 and a 0 is a 0. Consequently, the clock can only
be recovered once in each frame in which the eight data bits are transmitted.

Thus, the central design issue for a data decoder is reliably extracting a clock
signal from the combined signal. Once the locations of the clock events are
known, extracting the data is relatively simple. Although the clock events have
a known relationship to signal transitions, detecting these transitions precisely
is usually impossible because of distortion in the signal around the transitions,
clock jitter, and other effects. The transmitter and receiver of the data do not
share a common time base, and hence the estimation of clock events is affected
by differences in the reference clocks used. Constant delay is largely irrelevant;
however, transition time and variable delay (e.g., jitter) are not. Furthermore,
differences in receiver and transmitter clock phase and frequency are significant.
Any correctness proof of a BMP (or 8N1) decoder must be valid over a range
of parameters defining limits on jitter, transition time, frequency, and clock
phase.

The remainder of this paper is organized as follows. In Section 2, the SAL tool
set and the k-induction proof technique are described. In Section 3, we present
the general SAL models of the transmitter, receiver, and data transmission used
in the verifications. The specifics of the BMP model are provided in Section 4,
and the small changes necessary for the 8N1 model are in Section 5. The veri-
fication of the two protocols is described in Section 6, and concluding remarks
follow in Section 7.

2 Introduction to SAL

The protocols are specified and verified in the Symbolic Analysis Laboratory
(SAL), developed by SRI, International [7]. SAL is a verification environment
that includes symbolic and bounded model checkers, an interactive simulator,
integrated decision procedures, and other tools.

SAL has a high-level modeling language for specifying transition systems. A
transition system is specified by a module. A module consists of a set of state
variables and guarded transitions. Of the enabled transitions, one is nondeter-
ministically executed at a time. Modules can be composed both synchronously
(||) and asynchronously ([]), and composed modules communicate via shared
variables. In a synchronous composition, a transition from each module is simul-
taneously applied; a synchronous composition is deadlocked if either module has



Easy Parameterized Verification of Biphase Mark and 8N1 Protocols 61

no enabled transition. In an asynchronous composition, an enabled transition
from one of the modules is nondeterministically chosen to be applied.

The language is typed, and predicate sub-typing is possible. Types can be
both interpreted and uninterpreted, and base types include the reals, naturals,
and booleans; array types, inductive data-types, and tuple types can be defined.
Both interpreted and uninterpreted constants and functions can be specified.
This is significant to the power of these models: the parameterized values are
uninterpreted constants from some parameterized type.

Bounded model checkers are usually used to find counterexamples, but they
can also be used to prove invariants by induction over the state space [8]. SAL
supports k-induction, a generalization of the induction principle, that can prove
some invariants that may not be strictly inductive. By incorporating a satisfi-
ability modulo theories decision procedure, SAL can do k-induction proofs over
infinite-state transition systems. We use SRI’s ICS decision procedure [9], the
default SAT-solver and decision procedure in SAL, but others can be plugged in.

Let (S, I, →) be a transition system where S is a set of states, I ⊆ S is a set
of initial states, and → is a binary transition relation. If k is a natural number,
then a k-trajectory is a sequence of states s0 → s1 → . . .→ sk (a 0-trajectory is a
single state). Let k be a natural number, and let P be property. The k-induction
principle is then defined as follows:

– Base Case: Show that for each k-trajectory s0 → s1 → . . . → sk such that
s0 ∈ I, P (sj) holds, for 0 ≤ j < k.

– Induction Step: Show that for all k-trajectories s0 → s1 → . . .→ sk, if P (sj)
holds for 0 ≤ j < k, then P (sk) holds.

The principle is equivalent to the usual transition-system induction principle
when k = 1. In SAL, the user specifies the depth at which to attempt an induc-
tion proof, but the attempt itself is automated. The main mode of user-guidance
in the proof process is in iteratively building up inductive invariants. While ar-
bitrary LTL safety formulas can be verified in SAL using k-induction, only state
predicates may be used as lemmas in a k-induction proof. Lemmas strengthen
the invariant. We have more to say about the proof methodology for k-induction
in Section 6.

3 Modeling

In this section, we discuss the general model of physical layer protocols, postpon-
ing the details of the BMP and 8N1 protocols to Sections 4 and 5, respectively.
We model the protocols using three processes asynchronously composed – a
transmitter (tx), a receiver (rx), and a global clock unit (clock). The general
arrangement of the three major modules along with the details of the transmit-
ter (tx) module are illustrated in Figure 2. The modules tx and rx model the
transmitters and receivers of the protocols; the clock is a modeling artifact that
records the passage of the global real time.

system : MODULE = clock [] rx [] tx;



62 G.M. Brown and L. Pike

tclock

tenv tenc

tbit

tready

clock

tclk

time

tdata

rclk

time

tx rx

phase

Fig. 2. System Block Diagram

The clock unit provides a single real output variable – time – and two inputs,
rclk and tclk, which are the timeout variables of the receiver and transmitter,
respectively. The basic idea, described as timeout automata by Dutertre and
Sorea, is that the progress of time is enforced cooperatively (but nondeterminis-
tically) [10, 11]. The receiver and transmitter have timeouts that mark the real
time at which they will respectively make transitions (timeouts are always in
the future and may be updated nondeterministically). Each module is allowed
to execute only if its timeout equals the value of time. When no module can
execute, clock updates time to be equal to the next timeout. The SAL module
below describes the transitions of the global clock.

TIME : TYPE = REAL;

clock: MODULE =
BEGIN

INPUT rclk, tclk : TIME
OUTPUT time : TIME

INITIALIZATION time = 0
TRANSITION

[ time < rclk AND rclk <= tclk --> time’ = rclk
[] time < tclk AND tclk <= rclk --> time’ = tclk ]

END;

The transmitter consists of a local clock module (tclock) that manages the
transmitter’s timeout variable, an encoder (tenc) module that implements the
basic protocol, and an environment module (tenv) that generates the data to
be transmitted. These modules are synchronously composed.

tx : MODULE = tclock || tenc || tenv;

The environment and clock modules, defined in Figure 3, are protocol indepen-
dent and used in both the BMP and 8N1 models. The tenv module determines
when new input data should be generated and is regulated by tenc (which is pro-
tocol dependent and described in the following two sections). Whenever tready
is true, a random datum is selected from {0, 1}; otherwise the old datum is
preserved (the syntax “var’ IN Set” defines the value of variable var after the
transition to be a random value from the set Set).



Easy Parameterized Verification of Biphase Mark and 8N1 Protocols 63

The tclock module regulates the tenc module. To model periods when the
value of a signal is either in transition or uncertain, we divide each period of
the transmitter into a settling phase TSETTLE, in which the wire might have a
value other than Zero or One, and a stable phase TSTABLE, in which the wire
may only be Zero or One. In our models, TSETTLE and TSTABLE are uninter-
preted constants; however they are parameterized, which allows us to verify the
models for any combination of settling time and receiver clock error (described
subsequently). The transmitter settling time can be used to capture the effects
of jitter and dispersion in data transmission as well as jitter in the transmitter’s
clock. In the case of the settling period, the model can be viewed as less deter-
ministic than an actual implementation which might reach stable transmission
values sooner. This means we verify the model under more pessimistic conditions
than an actual implementation would face.

tenv : MODULE =
BEGIN

INPUT tready : BOOLEAN
OUTPUT tbit : [0..1]
INITIALIZATION tbit = 1;
TRANSITION
[ tready --> tbit’ IN {0,1};

[] ELSE --> tbit’ = tbit; ]
END;

PHASE: TYPE = {Stable, Settle};

tclock : MODULE =
BEGIN

INPUT time : TIME
OUTPUT tclk : TIME
OUTPUT phase : PHASE

INITIALIZATION
phase = Stable;
tclk IN {x : TIME | 0 <= x AND x <= TSTABLE};

TRANSITION
[ time = tclk AND phase = Stable --> tclk’ = time + TSETTLE;

phase’ = Settle;
[] time = tclk AND phase = Settle --> tclk’ = time + TSTABLE;

phase’ = Stable; ]
END;

Fig. 3. Transmitter Environment and Clock

The decoders are protocol dependent, and are described in the following two
sections. Each decoder is composed of a receiver clock, rclock, which enforces
the timing discipline, and a decoder state machine, rdec.

rx : MODULE = rclock || rdec;

The receiver clock, operating at a multiple of the (nominal) transmitter clock
frequency, is used to digitally sample the received signal. These samples are used
to detect both transitions and level values which are in turn used to decode the
received data. As described in Section 1, the received signal is not purely digital



64 G.M. Brown and L. Pike

in nature – there are substantial periods when the received signal is neither 1 nor
0 (i.e., it falls outside of specified voltage bands). Sampling the received signal
in or near these transition bands can result in non-deterministic behavior. To
model these transition bands, we let a wire have four possible values:

WIRE: TYPE = {Zero, One, ToZero, ToOne};

Only three values are required, but in practice it is convenient to use the two
transition values (ToZero, ToOne) to store trajectory information. At the receiver
we use non-deterministic transition rules of the form var’ IN sample(tdata)
where sample(wire) defines the set of possible values obtained when sampling
a wire that may be in transition.

sample(w : WIRE) : [WIRE -> BOOLEAN] =
IF (w = ToZero OR w = ToOne) THEN {Zero, One} ELSE {w} ENDIF;

The result is always binary but is chosen randomly from the set {Zero, One}
whenever the wire has a transition value (ToZero, ToOne). Thus, the extra data
transition values in the model do not “leak” to the receiver.

We do not model constant transmission delay – the settling phase need only
capture the variable delay. While our proofs relate the state of the transmitter
and receiver at an instant in time, the results hold for a delayed version of the
transmitter state in the presence of a constant transmission delay.

As mentioned above, the transmitter clock period is constant (TSTABLE +
TSETTLE). The receiver’s clock is based upon this nominal period; however, in
order to capture the effects of frequency mismatch and receiver clock jitter, the
receiver’s timeout period has a random error component that can affect every
cycle. We model the transmitter clock as an integer number of unit length ticks
(e.g., 16). The receiver clock error is defined on a per-tick basis. For a given nom-
inal timeout of length T ticks, the actual receiver timeout value falls in the range

time+ T ∗ (1 − ERROR) ≤ rclk ≤ time+ T ∗ (1 +ERROR) ,

which we implement in SAL with the following timeout function:

timeout (min : TIME, max : TIME) : [TIME -> BOOLEAN] =
{x : TIME | min <= x AND x <= max};

As we shall show when we discuss the protocols, the receiver uses different nom-
inal timeout periods depending upon its state. The value of ERROR is parame-
terized by protocol-specific linear inequalities that depend upon TSETTLE, which
is constrained by the nominal clock periods – together they define the region of
reliable operation.

4 Biphase Mark Protocol

Recall from Section 1 that the BMP protocol encodes every bit as two symbols
– 00 or 11 for bit 0 and 01 or 10 for bit 1 – guaranteeing a transition at the
beginning of every encoded bit (called a cell). Our encoder module, illustrated



Easy Parameterized Verification of Biphase Mark and 8N1 Protocols 65

below, is a straightforward translation where the first two guarded commands
implement the basic protocol and are enabled only at end of the “stable” period
discussed in Section 3; the third command is enabled only at the end of the
“Settle” period and returns the output wire tdata to one of the two stable
values (One, Zero). The tready signal, which controls the environment module
tenv (Section 3), is defined as a function from the current state and phase that
is true only when the encoder transitions from state 1 to state 0.

Note that our implementation of the transmitter clock (Section 3) assumes
the two halves of a cell are of identical length.2 To modify the model in order to
support asymmetric cells requires a small change to the tclock module to make
the timeout period state-dependent.

tenc : MODULE =
BEGIN

INPUT phase : PHASE
OUTPUT tdata : WIRE
OUTPUT tstate : [0..1]
OUTPUT tready : BOOLEAN
INPUT tbit : [0..1]
LOCAL ttoggle : WIRE

INITIALIZATION
tdata = One;
tstate = 1;

DEFINITION
tready = phase = Stable AND tstate = 1;
ttoggle = IF (tdata = Zero) THEN ToOne ELSE ToZero ENDIF;

TRANSITION
[ phase = Stable AND tstate = 1 --> tdata’ = ttoggle;

tstate’ = 0;
[] phase = Stable AND tstate = 0 --> tdata’ = IF (tbit = 1)

THEN ttoggle ELSE tdata ENDIF;
tstate’ = 1;

[] phase = Settle -->
tdata’ = IF tdata = ToOne THEN One ELSIF tdata = ToZero

THEN Zero ELSE tdata ENDIF; ]
END;

Recall from Section 3 that to model wires in transition, we use a two-phase
clock model for the transmitter. At the beginning of a clock cycle, the transmit-
ter either leaves its output tdata at its current value (Zero or One) or initiates
a transition to the other stable value by setting tdata to the appropriate inter-
mediate value (ToOne or ToZero). After an appropriate settling time, the wire
is restored to a stable value.

The Biphase receiver is composed of two modules – a receiver clock rclock
which enforces the timing discipline and a decoder state machine rdec. The
receiver clock enables state transitions when time = rclk and it determines the
next receiver timeout based upon the decoder’s next state (either scanning for
an edge or sampling data). Notice that the timeouts are selected randomly from
ranges that are bound by the receiver clock error. The values of the various
constants are discussed shortly.

2 Although Moore [2] suggests that there are advantages to an asymmetric cell, this
is not generally done in practice because it alters the DC balance and transmitted
bandwidth of the signal.



66 G.M. Brown and L. Pike

rclock : MODULE =
BEGIN

INPUT time : TIME
INPUT rstate : [1..2]
OUTPUT rclk : TIME

INITIALIZATION
rclk IN { x : TIME | 0 <= x AND x < RSCANMAX };

TRANSITION
[ time = rclk -->

rclk’ IN IF (rstate’ = 2)
THEN timeout(time + RSCANMIN, time + RSCANMAX)
ELSE timeout(time + RSAMPMIN, time + RSAMPMAX) ENDIF; ]

END;

rdec : MODULE =
BEGIN

INPUT tdata : WIRE
OUTPUT rdata : WIRE
OUTPUT rstate : [1..2]
OUTPUT rbit : [0..1]

INITIALIZATION
rstate = 2;
rdata = One;
rbit = 1;

TRANSITION
[ rstate = 1 -->

rdata’ IN sample(tdata);
rbit’ = IF (rdata = rdata’) THEN 0 ELSE 1 ENDIF;
rstate’ = 2;

[] rstate = 2 -->
rdata’ IN sample(tdata);
rstate’ = IF (rdata = rdata’) THEN 2 ELSE 1 ENDIF; ]

END;

The decoder has two states – in state 2, the decoder scans for an edge while in
state 1 it determines the value of the transmitted bit.

We define the nominal transmitter clock period TPERIOD, the length of a half-
cell, as an constant integer number of units. The nominal number of ticks from
the beginning of the cell until the middle of the next half-cell is the constant
TSAMPLE. In practice, verification of the model is sufficiently fast that it’s feasible
to run the verification for any choice of TPERIOD and TSAMPLE.

TIME : TYPE = REAL;
TPERIOD : TIME = 16;
TSAMPLE : INTEGER = 23

The receiver runs at two rates – when it is “scanning” for an edge, its clock
rate is nominally 1 time unit. After detecting an edge, the receiver waits until
the middle of the next half cell. The actual receiver clock (timeout) depends
upon the per tick frequency error giving us the four constants used in generating
the receiver timeout, as shown in Figure 4.

RSAMPMAX : TIME = TSAMPLE * (1 + ERROR);
RSAMPMIN : TIME = TSAMPLE * (1 - ERROR);
RSCANMAX : TIME = 1 + ERROR;
RSCANMIN : TIME = 1 - ERROR;

Fig. 4. Receiver Rate Bounds



Easy Parameterized Verification of Biphase Mark and 8N1 Protocols 67

The limits on ERROR are related by a pair of linear inequalities to TSETTLE.
Even if ERROR = 0, there is a practical limit on TSETTLE – reading of the second
half-cell value must occur after the settling time but before the end of the cell.
This results in the following type constraints for the uninterpreted constants
TSETTLE and TSTABLE. Notice their values are both dependent on the value of
TPERIOD.

TSETTLE : {x : TIME | (0 <= x) AND (x + TPERIOD < TSAMPLE) AND
(x + TSAMPLE + 1 < 2 * TPERIOD)};

TSTABLE : TIME = TPERIOD - TSETTLE;

Finally, we derive the frequency error bounds. Again, we examine where the
reading of the second half-cell value occurs. It must occur after the mid-cell
transition, but before the end of the cell. The earliest the reading may occur is
RSAMPMIN after the beginning of the cell and the latest the reading may occur is
TSETTLE + RSCANMAX + RSAMPMAX. This observation leads to a bound on ERROR.

ERROR : {x : TIME | 0 <= x AND TPERIOD + TSETTLE < TSAMPLE * (1-x) AND
TSAMPLE * (1+x) + (1+x) + TSETTLE < 2 * TPERIOD};

Note that the type for ERROR is parameterized by linear inequalities since
TSAMPLE is an interpreted constant.

5 8N1 Protocol

In contrast with BMP, where the receiver clock is re-synchronized on every cell,
8N1, illustrated in Figure 5, is a frame-based protocol where re-synchronization
occurs once per frame. Each frame consists of a start bit (0), eight data bits,
and one or more stop bits (1), making 10 bits in total.

The 8N1 encoder module is very similar to the Biphase encoder. It contains
additional transitions for the special cases of delivering the start and stop bits.
The transmitter has ten states. In state 9, the encoder nondeterministically idles,
or it sends a start bit by transitioning tdata to Zero and transitioning to state
0. In states 1 through 8, the encoder sends data bits that are generated by the
tenv module described in Section 3. However, the interaction between the two
modules differs slightly. tenv is directed to generate a new value for tbit when

1 0 0 1 1 1 0 1

start bit stop bit

d0 d7

Frame

Fig. 5. 8N1 Code



68 G.M. Brown and L. Pike

phase = Stable and tstate < 8 – the states during which data bits are sent.
In state 8, the encoder generates a stop bit by transitioning tdata to One.

The 8N1 decoder model is also a simple adaption of the Biphase decoder
model. The 8N1 decoder has ten states. In state 10, the decoder samples for the
start bit; in state 9, it samples for the stop bit, and in the other states it samples
for data bits. As with the BMP decoder, detection of the start of the frame
causes the 8N1 decoder to wait until the middle of the first data bit to take its
next sample, skipping over the start bit (which has already been detected).

The timing parameters are similar to those in the Biphase model. Again, a
nominal transmitter clock period TPERIOD is defined. The 8N1 receiver runs at
three rates. While scanning for an edge, its nominal bit rate is 1 time unit. After
detecting a start bit, the receiver waits until the middle of the first data cell to
sample the data. The constraints on sampling and scanning are the same as in
Figure 4. To read the remaining data, the receiver waits for TPERIOD nominal
ticks to sample the middle of the next cell. RPERIODMAX and RPERIODMIN bound
the error of the receiver’s clock.

RPERIODMAX : TIME = TPERIOD * (1 + ERROR);
RPERIODMIN : TIME = TPERIOD * (1 - ERROR);

As with BMP, we can derive bounds on both TSETTLE and ERROR (we discuss
TSETTLE shortly). The basic intuition behind parameterizing ERROR is that the
accumulated error at the point of reading the stop bit must fall in the stable
part of the received signal. There are two bounds – the end of the stop bit and
the beginning of the stable period of the stop bit. Together, these define bounds
on the clock error value. Notice the similarity with the constraint for BMP.

ERROR : {x : TIME | 0 <= x AND 9 * TPERIOD + TSETTLE <
8 * TPERIOD * (1-x) + TSAMPLE * (1-x) AND
8 * TPERIOD * (1+x) + TSAMPLE * (1+x) + (1+x) + TSETTLE <
10 * TPERIOD};

ICS is unable to handle the ERROR constant parameterized by an uninter-
preted TSETTLE in this protocol. Thus, we parameterize ERROR by the worst-case
settling time calculated by hand. For example, if we bound the uninterpreted con-
stant TSETTLE such that 0 <= TSETTLE < TPERIOD/4, then we calculate from
the above formula that 0 <= ERROR < 3/151.

As we mention in Section 1, we discovered significant errors in the analysis
in an application note for UARTs [1]. The authors suggest that if TSTABLE is
TPERIOD/2 (they call this the “nasty” scenario), then a frequency error of ±2%
is permissible. In fact, even with zero frequency mismatch, the stable period is
too short – if we assume “infinitely” fast sampling, it is possible to show that
the settling time must be less than 50% of TPERIOD – otherwise it is impossible
to sample the first data bit after the settling period but before the end of the
bit period. With our choice of time constants, the longest settling time must be
less than 7 (43.75%). In reading the article, it becomes clear that the authors
neglected the temporal error introduced by sampling the start bit. They describe



Easy Parameterized Verification of Biphase Mark and 8N1 Protocols 69

a “normal” scenario with TSETTLE = TPERIOD/4 and assert that a frequency
error of ±3.3% is permissible. As our derivation above illustrates, the frequency
error in this case is limited to ±3/151 ≈ ±1.9%.

6 Verification

Our main goal is to prove that the Biphase and 8N1 decoders reliably extract
the data from the combined signal they receive. The statement of the main
correctness theorem for BMP is expressible in the LTL temporal logic, where
the G operator denotes that its argument holds in all states on a trajectory
through the transition system, and the X operator denotes that its argument
holds in the next state.

BMP_Thm : THEOREM
system |- G(rstate = 1 AND time = rclk =>

(time /= tclk) AND (tstate = 1) AND X(rbit = tbit));

Informally, suppose that rstate = 1, and the time has come for the receiver
to make a transition (time = rclk). At this time, the wire’s value should corre-
spond to the second half of a transmitted cell, and the transmitter should not be
changing the value of the wire at this time. Furthermore, in the next state – just
after the receiver has sampled the wire – the receiver should record the same
data bit as the receiver had encoded in that cell. Thus, rbit = tbit should
hold.

The main theorem for the 8N1 decoder is essentially the same. The only
substantial difference is that we prove that the decoder must reliably extract the
data over an entire frame (i.e., for states rstate < 9).

For both BMP and 8N1, supporting lemmas are necessary to prove the main
theorem. When a k-induction proof attempt fails, two options are available to
the user: the proof can be attempted at a greater depth, or supporting lemmas
can be added to restrict the state-space. A k-induction proof attempt is au-
tomated, but if the attempt is not successful for a sufficiently small k (i.e., the
attempt takes too long or too much memory), additional invariants are necessary
to reduce the necessary proof depth. The user must formulate the supporting
invariants manually, but their construction is facilitated by the counterexamples
returned by SAL for failed proof attempts. If the property is indeed invariant,
the counterexample is a trajectory that fails the induction step but lies outside
the set of reachable states, and the state-space can be appropriately constrained
by an auxiliary lemma based on the counterexample. The following lemmas are
built by examining the counterexamples returned from proof attempts for the
main theorem and the successive intermediary lemmas.

For both models, we begin by proving three simple preliminary invariants
that describe the behavior of the transmitter in both models, irrespective of the
receivers. The first invariant, l0, states that either the wire is in its settling
phase, or it is high or low. Invariants l1 and l2 constrain the transmitter’s
timeout tclk during the stable and settle phases: it will never be updated more



70 G.M. Brown and L. Pike

than TSTABLE and TSETTLE, respectively. Each lemma is inductive, so it is proved
at a depth of one.

l0 : LEMMA system |- G(phase = Settle OR tdata = One OR tdata = Zero);
l1 : LEMMA system |- G(phase = Stable => (tclk <= (time + TSTABLE)));
l2 : LEMMA system |- G(phase = Settle => (tclk <= (time + TSETTLE)));

One additional lemma is proved for the 8N1 transmitter stating that the stable
value of the stop bit is One. This lemma is proved at a depth of 13, using
invariants l0 - l2 as lemmas.

The essential part of the proof is an invariant describing the relationship be-
tween the transmitter and receiver. We must relate them both temporally and
with respect to their discrete state (e.g., tstate with rstate and tdata with
rdata). The number of and the complexity of the supporting lemmas necessary
to prove the main results is significantly reduced by proving a disjunctive in-
variant [12]. A disjunctive invariant has the form

∨
i∈I Pi where each Pi is a

state predicate (predicates Pi and Pj need not be disjoint for i �= j). Disjunc-
tive invariants are easier to generate iteratively than conjunctive invariants. If a
disjunctive invariant fails to cover the reachable states, additional disjuncts can
be incrementally added to it (in a conjunctive invariant, additional conjunctions
must hold in all the reachable states). Although this is a general proof technique,
it is particularly easy to build a disjunctive invariant in SAL. The counterex-
amples SAL returns can be used to iteratively weaken the disjunction until it is
invariant.

There are seven disjuncts in the both the BMP and the 8N1 disjunctive in-
variants. To get an idea about how the invariants are constructed, consider the
typical state predicate from the BMP model below. In general, each disjunct
states the phase, relates tstate and rstate, and then describes the relative
difference between tclk and rclk:

... OR ((phase = Settle) AND (rstate = tstate + 1) AND
(rclk - tclk - TPERIOD > 0) AND
(tclk + TPERIOD + TSTABLE - rclk > 0)) OR ...

Using lemmas l0, l1, l2 described above, the BMP disjunctive invariant is
proved at depth five. Using these lemmas and lemma l3, the 8N1 disjunctive
invariant is proved at depth three. All that remains is to prove the main theo-
rems, BMP_Thm and the corresponding theorem for the 8N1 decoder. Using the
respective disjunctive invariants as lemmas, the former is proved at depth two,
and the latter is proved at depth six.

7 Discussion

We have described a general model of physical layer data transmission, and we
have used this model to verify the correctness of BMP and 8N1 under parame-
terized timing constraints. We also present an error in a published application



Easy Parameterized Verification of Biphase Mark and 8N1 Protocols 71

note discovered during the verification. The verification is highly-automated us-
ing k-induction implemented with a SMT decision procedure and a bounded
model checker in SAL.

As mentioned in Section 1, a referee suggested an alternative approach that
fully parameterizes the BMP verification. The central idea is to leave TPERIOD
and TSAMPLE as uninterpreted constants and then constrain the times when the
receiver scans and samples directly in terms of TPERIOD, TSETTLE, and TSTABLE:

RSCANMIN : {x : TIME | 0 < x};
RSCANMAX : {x : TIME | RSCANMIN <= x AND x < TSTABLE};
RSAMPMIN : {x : TIME | TPERIOD + TSETTLE < x};
RSAMPMAX : {x : TIME | RSAMPMIN <= x AND x < 2 * TSTABLE - RSCANMAX};

Thus, no error term is necessary, and the verification is fully parameterized. The
BMP specification otherwise remains the same, and its proof of correctness suc-
ceeds using the same lemmas, proved at the same depth. The constraints on the
error can be easily recovered by hand from the fully parameterized verification
by replacing the constants RSCANMIN, RSAMPMIN, and RSCANMAX in the type defi-
nitions above by their definitions from Figure 4. The referees also point out that
because the error bounds are not explicit in this fully parameterized model in
SAL, it is less general than the verification by Vaandrager and de Groot using
mechanical theorem-proving [6]. Although the parameterized verification in SAL
with error bounds recovered by hand is neither fully automated nor machine-
checked, it is a more economical approach than mechanical theorem-proving.

As compared to real-time model checking, our SAL verification appears to be
more parameterized than the verifications reported by Ivanov and Griffioen in
Hytech [4] and at least as parameterized as the one suggested (but not described)
by Henzinger, Preussig, and Wong-Toi, also using Hytech, in which the verifica-
tion is fully automatic [5]. The tool TReX has similar capabilities to HyTech [13].
Note, however, that SAL is not specifically a real-time model checker.

The verification technology employed in SAL is recent, and only a few non-
trivial verifications using it exist [11, 14]. This work, along with recent work by
one of the authors, is the first known application of these techniques to the
verification of physical-layer protocols [15].

Acknowledgments. We thank Leonardo de Moura, John Rushby, and our three
anonymous TACAS referees for their careful comments and suggestions.

References

1. Maxim Integrated Products, Inc. Determining Clock Accuracy Requirements for
UART Communications, June 2003. Available at http://www.maxim-ic.com/
appnotes.cfm/appnote number/2141.

2. J Strother Moore. A formal model of asynchronous communication and its use
in mechanically verifying a biphase mark protocol. Formal Aspects of Computing,
6(1):60–91, 1994.



72 G.M. Brown and L. Pike

3. D. V. Hung. Modelling and verification of biphase mark protocols using PVS.
In Proceedings of the International Conference on Applications of Concurrency to
System Design (CSD’98), pages 88–98. IEEE Computer Society Press, 1998.

4. S. Ivanov and W. O. D. Griffioen. Verification of a biphase mark protocol. Technical
Report CSI-R9915, University of Nijmegen Computing Science Institute, 1999.

5. T. Henzinger, J. Preussig, and H. Wong-Toi. Some lessons from the Hytech ex-
perience. In Proceedings of the 40th Annual Conference on Decision and Control,
pages 2887–2892, 2001.

6. F. W. Vaandrager and A. L. de Groot. Analysis of a Biphase Mark Protocol with
Uppaal and PVS. Technical Report NIII-R0455, Nijmegen Institute for Computing
and Information Science, 2004.

7. Leonardo de Moura, Sam Owre, Harald Rueß, John Rushby, N. Shankar, Maria
Sorea, and Ashish Tiwari. SAL 2. In Computer-Aided Verification, CAV’04, volume
3114 of LNCS, pages 496–500, Boston, MA, July 2004. Springer-Verlag.

8. Leonardo de Moura, Harald Rueß, and Maria Sorea. Bounded model checking
and induction: From refutation to verification. In Computer-Aided Verification,
CAV’03, volume 2725 of LNCS, 2003.

9. Leonardo de Moura, Sam Owre, Harald Ruess, John Rushby, and N. Shankar.
The ICS decision procedures for embedded deduction. In 2nd International Joint
Conference on Automated Reasoning (IJCAR), volume 3097 of LNCS, pages 218–
222, Cork, Ireland, July 2004. Springer-Verlag.

10. Bruno Dutertre and Maria Sorea. Timed systems in SAL. Technical Report SRI-
SDL-04-03, SRI International, 2004.

11. Bruno Dutertre and Maria Sorea. Modeling and verification of a fault-tolerant real-
time startup protocol using calendar automata. In FORMATS/FTRTFT, pages
199–214, 2004.

12. John Rushby. Verification diagrams revisited: Disjunctive invariants for easy ver-
ification. In Computer-Aided Verification, CAV’00, volume 1855 of LNCS, pages
508–520, Chicago, IL, July 2000. Springer-Verlag.

13. Aurore Annichini, Ahmed Bouajjani, and Mihaela Sighireanu. TReX: A tool for
reachability analysis of complex systems. In Computer-Aided Verification, CAV’01,
pages 368–372, London, UK, 2001. Springer-Verlag.

14. Lee Pike and Steven D. Johnson. The formal verification of a reintegration pro-
tocol. In EMSOFT ’05: Proceedings of the 5th ACM international conference on
Embedded software, pages 286–289, New York, NY, USA, 2005. ACM Press.

15. Geoffrey M. Brown. Verification of a data synchronization circuit for all time.
Unpublished, 2005.



Evaluating the Effectiveness of Slicing for Model
Reduction of Concurrent Object-Oriented Programs

Matthew B. Dwyer1, John Hatcliff2, Matthew Hoosier2, Venkatesh Ranganath2,
Robby2, and Todd Wallentine2

1 University of Nebraska, Lincoln, NE 68588, USA
dwyer@cse.unl.edu

2 Kansas State University, Manhattan, KS 66506, USA
{hatcliff, matt, rvprasad, robby, tcw}@cis.ksu.edu

Abstract. Model checking techniques have proven effective for checking a num-
ber of non-trivial concurrent object-oriented software systems. However, due to
the high computational and memory costs, a variety of model reduction tech-
niques are needed to overcome current limitations on applicability and scalability.
Conventional wisdom holds that static program slicing can be an effective model
reduction technique, yet anecdotal evidence is mixed, and there has been no work
that has systematically studied the costs/benefits of slicing for model reduction in
the context of model checking source code for realistic systems.

In this paper, we present an overview of the sophisticated Indus program slicer
that is capable of handling full Java and is readily applicable to interesting off-
the-shelf concurrent Java programs. Using the Indus program slicer as part of the
next generation of the Bandera model checking framework, we experimentally
demonstrate significant benefits from using slicing as a fully automatic model re-
duction technique. Our experimental results consider a number of Java systems
with varying structural properties, the effects of combining slicing with other
well-known model reduction techniques such as partial order reductions, and the
effects of slicing for different classes of properties. Our conclusions are that slic-
ing concurrent object-oriented source code provides significant reductions that
are orthogonal to a number of other reduction techniques, and that slicing should
always be applied due to its automation and low computational costs.

1 Introduction

1.1 Motivation

Model checking techniques have proven effective for debugging a number of non-trivial
software systems. Due to the high computational and memory costs, a variety of model
reduction techniques such as data abstraction [11], predicate abstraction [2], system-
atic application of data and resource bounds, heuristic search strategies [16], and par-
tial order reduction techniques driven by synchronization and heap-structure properties
[36, 12] are needed to overcome current limitations on applicability and scalability. In
model reduction, the resulting transition system should be small enough to make au-
tomatic checking tractable, yet it should be large enough to capture all information
relevant to the property being checked. One of the primary difficulties is determining
which parts of the program are relevant to the property being checked.

H. Hermanns and J. Palsberg (Eds.): TACAS 2006, LNCS 3920, pp. 73–89, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



74 M.B. Dwyer et al.

Conventional wisdom holds that static program slicing can be an effective model
reduction technique for software model checking. Given a program and a slicing crite-
rion – a set of program points (e.g., statements) that a user is interested in, a program
slicer automatically calculates the portions of the program that are relevant for carrying
out the computation at the statements given in the criterion. All features of the program
(e.g., statements, fields, classes, methods, threads) that are irrelevant for the computa-
tion at the criterion statements are “sliced away.” Thus, by including the features of the
program mentioned in a property/specification to be model checked as a slicing crite-
rion, slicing will remove from the program features that are irrelevant for (i.e., do not
influence) the property to be checked.

However, existing experience with slicing for model reduction is sometime inconclu-
sive. For example, Holzmann’s experience shows that slicing in Spin usually does not
yield much reduction for realistic Promela design models [20]. While there have been
extensive experimental studies to evaluate the effectiveness of model reduction tech-
niques such as partial order reductions [15, 36, 12, 14] and abstraction [2] for software
model checking, there have been no such studies to evaluate the effectiveness of slicing
as a model reduction technique. In fact, there seem to be several factors that prevent
researchers and practitioners from drawing strong conclusions about the effectiveness
of slicing as a model reduction technique.

First, due to the lack of robustness of many model checking tools and the relative
immaturity of the field in general, researchers often tried to evaluate the effectiveness
of slicing using only small “text book” examples such as Dining Philosophers or Bakery
Algorithm in which the system under consideration has already been boiled down to its
bare essentials and possesses no property-irrelevant information to be sliced away. In
contrast, larger realistic systems often have many aspects that are irrelevant to specific
properties being checked.

Second, few software model checking frameworks include or make use of existing
program slicing frameworks (quite sophisticated static analysis frameworks
themselves – especially in the context of concurrent object-oriented programming lan-
guages). The Bandera model checking framework was the first to include slicing
capabilities with Spin following shortly thereafter with a Promela slicing capability. Al-
though one could imagine applying existing C program slicers in the context of model
checking C programs, we know of no other software model checking frameworks with
integrated slicing capabilities.

Lack of available slicing infrastructure in general has further hindered progress in
evaluating the effectiveness of slicing for model reduction. Simply put, building a slic-
ing framework capable of scaling to realistic applications and handling challenging
language features such as one would find, e.g., in full Java, is a very challenging
task.

1.2 This Paper

In this paper, we present an overview of our Java program slicer available as part of
Indus, a program analysis tool kit, and we use this slicer to carry out wide-ranging ex-
perimental studies that demonstrate program slicing to be a valuable model reduction
technique for model-checking concurrent object-oriented software. Both the slicer and



Evaluating the Effectiveness of Slicing 75

our extensible model checking framework Bogor [33] are components of the next gener-
ation of the Bandera Java model checking framework that translates Java programs into
models in the Bandera Intermediate Representation (BIR). Bogor model checks BIR
models, using state of the art techniques for heap symmetry, collapse compression for
object-oriented data structures, and partial order reductions driven by synchronization
and escape analysis.

We believe this work presents a number of results that will be of interest to both
researchers and practitioners working in the area of software model checking.

– It represents the first study to systematically demonstrate the effectiveness of pro-
gram slicing as a model reduction technique for an interesting range of Java pro-
grams. Specifically, we consider ten different programs including an example from
the Java Grande benchmarks as well as programs based on Siena – a generic scal-
able publish/subscribe Internet event-notification framework.

– It considers the relative benefits of state-of-the-art Java slicing techniques with
state-of-the-art implementations of other model reduction techniques such as partial
order reductions, and demonstrates that reductions provided by slicing are largely
orthogonal to the effect of these other techniques.

– It considers the effects of slicing for model reduction when considering different
classes of properties including deadlock checking and assertions.

– It shows that slicing can be applied as a low-cost (the costs are a very small per-
centage of the overall cost of model checking) and completely automated model
reduction technique that almost always yields both space and time reductions (of-
ten, significant reductions) while almost never causing an increase in end-to-end
run time.

– The Indus tool kit provides a sophisticated program slicer capable of handling full
Java and scaling to interesting off-the-shelf concurrent Java programs of more than
10,000 application bytecodes (49,314 application + library bytecodes). Indus is
freely available, and has been downloaded over 1100 times since its public release
in June 2004. Thus, the techniques described in this paper can be immediately ap-
plied to other Java model checking frameworks such as JPF [5] and jMoped [37].
In fact, Indus is already being used by researchers at Fujitsu for reduction when
model checking with JPF.

The rest of the paper is organized as follows. Section 2 overviews the architecture of
the Bandera Java model checking tool set. Section 3 gives a brief summary of slic-
ing and the Indus analysis framework. Section 4 explains how slicing can be used for
model reduction, and presents the hypotheses and research questions that we seek to
answer with our experimental studies. Section 5 provides an overview of the different
examples that we consider along with metrics capturing various static characteristics
of their implementation (no. of bytecodes, no. of classes, no. of fields, etc.). Section 6
presents the results of our experiments and provides assessment with respect to the
previously given research hypotheses. Section 7 surveys related work and Section 8
concludes.

The Indus web site [29] provides the Indus distribution as well as an extended version
of this paper that gives an expanded discussion of experimental results.



76 M.B. Dwyer et al.

2 Bandera Overview

Bandera is a tool framework for model checking concurrent Java programs. The tool
framework is organized as a modular pipeline – each tool in the pipeline communicates
with its predecessor and successor purely through its inputs and outputs. To create a
run of Bandera for a specific program and property, the user creates a session file that
indicates the components of the pipeline that should be applied as well as particular
settings or options for each component.

In the pipeline that we use for the experiments in this paper, the Soot tool [39]
first reads Java class files to be model checked and translates them to Jimple [39] –
Soot’s three-address code intermediate representation for Java. The Indus tool takes
the resulting Jimple program along with information about the property to be checked
and produces a sliced Jimple program. The Jimple-To-BIR (J2B) tool takes the sliced
Jimple program and translates it to BIR, which is then model checked by Bogor.

We are interested in determining the extent to which slicing can improve perfor-
mance beyond the best reduction strategies currently available in Bogor.

These reduction strategies include heap symmetry/canonicalization which represents
all execution states of a Java program that differ only in the physical addresses of ob-
jects or in the unreclaimed garbage using a single representative state, thread symmetry,
and collapse compression which reduces the space required to store a state by sharing
common parts of distinct states [34].

In this paper, we will be most interested in Bogor’s partial order reduction frame-
work that minimizes the set of paths that need to be explored in the state-space during
model checking. Classical partial order reductions (POR) (e.g., [15]) leverage the inde-
pendence of transitions to induce equivalence classes of paths such that it is sufficient
to explore a single path from each class. For multi-threaded Java programs, we leverage
the structure of the Java heap and Java synchronization idioms to infer more precise
information about transition independence [12]. For example, transitions that access
thread-local objects (i.e., objects that are reachable from a single thread) are indepen-
dent because no transition in another thread can possibly access such an object (until
the object becomes shared). Transitions that operate on a properly locked object (e.g,
where the set of locks held by each thread when accessing the object always contains
at least one common lock) are also independent as are operations on read-only objects.
An additional feature of Bogor’s POR implementation is that it biases the search to
coalesce transitions in a method into a consecutive run of transitions. By doing this,
the model checker is able to defer state-storage until the end of the run of independent
transitions effectively implementing on-the-fly detection of atomic blocks of transitions.
The combination of partial order reduction techniques in Bogor yields orders of magni-
tude reduction in the space and time required for model checking nearly all of the Java
programs we have encountered.

3 Program Slicing and the Indus Java Slicing Framework

3.1 A Brief Overview of Slicing Concurrent Java Programs

There are many variants of slicing (forward/backward, static/dynamic) [38]. We con-
sider static backward slicing – the variant usually applied for model reduction [6, 18, 26].



Evaluating the Effectiveness of Slicing 77

Static backward slicing uses static program analysis to look backwards along data and
control flows to discover the set SC of all program statements that influence the given
slicing criterion C – a set of select program statements. SC is guaranteed to contain all
the statements upon which computations at statements in C depend; SC will usually
contain additional program statement beyond those that actually influence C due to the
conservative nature of static analysis.

Slicing for concurrent Java programs is based on several notions of program state-
ment dependence, and it is well beyond the scope of this paper to present detailed def-
initions for each of these. Our previous work presents formalizations and correctness
proofs for the definitions of data and control dependence [18, 31] and dependences for
concurrent Java [17] that we use in this paper. Control and data dependences are well-
understood, so we focus below on the less familiar, but crucial, notions of dependence
needed to treat concurrency. Briefly, a node n is data-dependent on node m if, for a
variable v referenced at n, a definition of (i.e., an assignment to) v at m reaches n; a
node n is control-dependent on a conditional statement m if one of the branches of m
must always lead to n but the other branch of m can bypass n and reach the program’s
(i.e., method’s) end node.

For the definitions below, if a statement at control-flow graph (CFG) node n is in
the slice set SC and n depends on a statement at node m, then node m is also in SC .
Intuitively, the slicer begins with the statements in the slicing criteria C and computes a
transitive closure using data and control dependence along with the dependences below
(modulo some optimizations enabled by further static analysis) to obtain SC .

Divergence: To preserve behaviors with infinite delay (e.g., as required for checking
liveness properties or certain classes of deadlocks), our earlier work [18, 31] notes that
it is important to consider additional notions of control dependence that preserve di-
verging executions (e.g., as caused by infinite loops). One method for capturing depen-
dences caused by diverging loops is to use the notion of strong post-domination and
weak control dependence introduced by Podgurski and Clarke [28]. Node n strongly
post-dominates node m if n post-dominates m and there is an integer k ≥ 1 such that
every path from node m of length ≥ k passes through n [28]. The difference between
strong post-domination and the simple definition of post-domination above is that even
though node n occurs on every path fromm to e (and thus n post-dominatesm), it may
be the case that n does not strongly post-dominatem due to a loop in the CFG between
m and n that admits an infinite path beginning atm and not containing n. Hence, strong
post-domination is sensitive to the possibility of non-termination along paths from m
to n. Node nj is weakly control dependent on ni if ni has at least two successors, nk

and nl, nj strongly postdominates nk, nj does not strongly postdominate nl. We will
typically refer to control dependence and weak control dependence as termination in-
sensitive and termination sensitive control dependence, respectively. The experiments
in this paper will use the notion of weak control dependence – which guarantees that
if n is in the slice and there exists a (possibly infinite) loop in the CFG that could pre-
vent control from reaching n, then the control structure associated with the loop is also
included in the slice.



78 M.B. Dwyer et al.

Interference dependence: To capture data dependence across threads, node n from
thread tn is interference dependent on node m from thread tm with tn �= tm if there
exists a variable v ∈ def(m)∩ref(n) and there exists a schedule in whichm’s execution
is followed by n’s execution with no intervening definition of m [25]. A precise static
calculation of schedules that may give rise interference dependence is prohibitively ex-
pensive for large systems (exact precision is equivalent to the model checking problem
itself). Cheap but conservative/imprecise strategies [17, 26] simply assume that an inter-
ference exists whenever v ∈ def(m)∩ref(n) even though there may never be a schedule
that gives rise a flow of data betweenm and n. Other approaches use exponential sym-
bolic execution algorithms to try to detect realizable execution paths leading to such
flows [25, 27]. Indus strikes a balance between these by pruning infeasible interference
edges using escape/alias analysis and various “happens before” relations [32].

Ready dependence: Just as diverging loops may give rise to infinite delays within
a single thread, indefinite delays can also be generated due to interactions between
threads via synchronization primitives such as locking (synchronized statements) and
wait/notify. When the completion of a statement n of thread tn (e.g., an lock acquire
or a wait) depends of the completion of node m of thread tm (e.g., a lock release or a
notify), n is said to be ready dependent on m [17]. In addition, ready dependences can
also arise within a single thread tm: if node p is reachable in tm’s control flow graph
from m where m is either a lock acquire or wait statement, then p is ready dependent
on m since m’s failure to complete could cause p to never be executed.

Effects of references/aliasing: The calculation of above data dependences, interfer-
ence dependences, and ready dependences both in sequential and concurrent setting,
becomes much more challenging (and the results much less precise) when aliasing is
introduced. In the presence of aliasing, two variables can refer to the same data/object,
and so, it is possible that an update via a.f will affect the value of b.f when a and
b are aliases. Our previous work [32], describes the various forms of alias and escape
analyses that are used in Indus to address this issue.

3.2 Indus

The goal of the Indus project is to provide a Java library of program analyses and trans-
formations for Java to enable sophisticated program analyses such as program slicing
and program specialization via partial evaluation. In its current state, the project pro-
vides a large collection of program analyses, a Java program slicing framework, and a
sophisticated user interface for the slicer [23] built as an Eclipse [13] plug-in.

Static analysis support provided by Indus includes a general flow analysis framework
in which an object-sensitive object-flow analysis [30] is implemented that
provides points-to information for objects, a call graph analysis of varying levels of
precision, a thread graph analysis that calculates the method-to-thread containment
relation in a given program, an alias-aware interprocedural use-def analysis that pro-
vides use-def information for reference type variables across procedural boundaries,
and a side-effect analysis. Indus also provides two basic concurrency specific analyses:
an escape analysis [32] that detects if an object allocation is thread local and a monitor
analysis that calculates containment relation between various statements and locks in



Evaluating the Effectiveness of Slicing 79

the program. Building on these analyses, a rich set of dependence analyses calculate
data and control dependences in intra-procedural, inter-procedural, intra-thread, inter-
thread, non-termination sensitive, and/or non-termination insensitive settings. These
analyses subsume all dependences mentioned in Section 3.1. Further, the precision of
interference and ready dependence analyses is improved by leveraging escape analy-
sis to prune dependence based on non-thread local access to objects [32] and safe-lock
analysis to prune divergence based dependence due to synchronization constructs [17].

4 Slicing for Model Reduction

4.1 Issues

Property-directed slicing: In earlier work [18], we presented the foundations of slic-
ing as a model reduction technique with emphasis on the notion of “property-directed
slicing” – program features mentioned in the property to be checked formed the slicing
criteria, hence, leading to the automatic removal of program features that can be stati-
cally shown to be irrelevant to the property. In this paper, we evaluate the effectiveness
of slicing with respect to two classes of properties: deadlock checking and assertions.

For deadlock checking, the slicing criteria consists of all synchronized and wait/no-
tify statements. The sophisticated analyses of Indus allow us to optimize this in several
ways, e.g., if Indus escape analysis indicates that objects being used in a synchronized
statement are non-escaping, such statements can be omitted from the criteria since there
is no contention for these locks. For assertion checking, the slicing criteria simply con-
sists of the assertion statements in the program.

Call-graph reachability vs. slicing: Researchers familiar with static analysis might
initially conceive of obtaining functionality related to slicing by simply constructing
the call graph of the program to be checked and then eliminating code for methods
that are not reachable in the call graph. This is especially relevant in model checking
frameworks like Bandera that translate a program representation to a lower-level lan-
guage (e.g., BIR) for model checking. Removing the code for unreachable methods
via call-graph construction/analysis reduces overhead in the translation phase (code
for unreachable methods does not have to be translated). Precise call graph construc-
tion in a concurrent OO language is non-trivial; it must be intertwined with points-
to/alias analysis to resolve virtual method invocations, it must take control flow due
to exceptions into account, and it must account for the invocation of class initializ-
ers done implicitly by the virtual machine and not by explicit invocation sites in the
program.

The major drawback of mere call-graph reachability is that it does not eliminate
parts of the system that are reachable in the system but do not affect the property be-
ing verified. For example, while checking for deadlocks, every reachable call to Sys-
tem.out.println() in the system will be included when these calls (almost always) do not
affect the deadlocking behavior of the system. Inclusion of such calls increases model
checking cost due to simulation of unnecessary transitions and storage of data entities
required by such transitions in the state vector. On the other hand, slicing can detect
and exclude such unnecessary calls and provide increased reduction in terms of model
checking cost in comparison with call-graph reachability.



80 M.B. Dwyer et al.

Bandera implements pruning of unreachable methods and data using the static anal-
yses of Indus. Since such analyses are well-known in the static analysis community, we
consider an approach that includes them as the baseline for our experiments: we seek
to demonstrate the benefits of slicing beyond the already substantial reductions derived
from such analyses.

4.2 Research Questions

We have focused our empirical study on four specific questions related to the use of
slicing as a reduction technique.

(RQ 1) How does the net effect of applying program slicing to reduce the cost of model
checking multi-threaded Java programs vary with program size and complexity?

(RQ 2) What is the incremental benefit of program slicing compared to call-graph
based reachability optimizations in reducing the cost of model checking multi-
threaded Java programs?

(RQ 3) What is the incremental benefit of program slicing compared to state-of-the-
art partial order and thread symmetry reductions in reducing the cost of model
checking multi-threaded Java programs?

(RQ 4) Does program slicing yield greater reductions for model checking assertion-
based specifications of non-trivial multi-threaded Java programs in comparison
to checking for deadlock?

The lack of significant experimental has left the research community with intuitions
and opinions, but no definitive evidence on the effectiveness of slicing for model reduc-
tion. While some initial case studies point to the effectiveness of slicing [6, 8, 26] some
experts have developed what can only be described as negative intuitions about the ef-
fectiveness of slicing as a model reduction technique. In the latter case, the best justified
of these intuitions have been arrived at via formative studies of slicers implemented in
verification frameworks and applied to collections of transition system descriptions as
opposed to program source code. For example, Holzmann indicates that he has found
SPIN’s slicing capabilities useful for finding small redundancies in Promela models, but
not that effective for reduction in realistic Promela properties/systems [20]. Holzmann
notes that experience with program slicing on Java source code might be different, and
in fact, we hypothesize that one reason why slicing has not been widely recognized
as a reduction technique is that it has not been applied to realistic source code. With
(RQ 1) we seek to provide evidence to indicate whether software model checking re-
ductions can be achieved in analyzing realistic Java code bases. To answer this question,
we have selected both relatively small, and well-studied, examples from the software
model checking literature and larger examples that have not previously been analyzed
via model checking.

Section 4.1 explains how sophisticated, but well-understood static analyses, could
remove unreachable/non-accessed program components. However, these analyses do
not eliminate code fragments that are reachable but yet irrelevant with respect to the
property (e.g. writes to standard output via System.out.println()). Slicing is
more costly and much more difficult to implement, yet it is more precise and it is able
to eliminate reachable but irrelevant features. Answering (RQ 2) will provide evidence



Evaluating the Effectiveness of Slicing 81

on both the relative cost of these two analyses and their relative benefit. Given the
exponential complexity of model checking, if static call graph and slicing provide clear
benefits in terms of reduction then it is likely that those benefits would outweigh any
increase in static analysis cost. Such an answer would indicate that existing Java model
checking should always employ call-graph analysis or program slicing as a pre-phase.

Research on reduction techniques for model checking has produced significant re-
sults over the past decades. Partial order reductions [36, 12] and heap symmetry/canoni-
calization reductions [21, 34] are completely automated reductions that have been
applied to reduce the state space of concurrent OO software models. We believe that
the model checking research community is in broad agreement that these techniques
should always be used when model checking non-trivial programs. Note that while
counter-example guided predicate abstraction [2] has been applied with good success
in sequential settings where programs do not include a lot of heap data manipulation,
it has yet to be applied in the concurrent OO setting in a completely automatic way.
Moreover, tool-based data abstraction techniques for Java [11] still require some user
intervention. Thus, in (RQ 3), we seek evidence on the incremental improvement in re-
duction that can be achieved by slicing (a completely automated technique) relative to
existing completed automated reduction techniques concurrent OO programs. We be-
lieve that slicing should only be considered worthwhile for incorporating into tools if
it can provide reductions over-and-above what can be achieved by existing automated
state-space reductions.

As noted in Section 4.1, slicing for model reduction is property driven. Answering
(RQ 4) will provide evidence on the degree to which model reduction via program slic-
ing is sensitive to the class of property under analysis. We have selected two classes
of properties: deadlocks and assertions. A deadlocks can be considered a relatively
global property since it is potentially related to every blocking statement in the pro-
gram. It has been observed, e.g., [1, 7], that in many cases data manipulation can be
relatively cleanly separated from control structures involved in synchronization. Thus,
one might anticipate that significant data portions of the program could be removed
when slicing for deadlock. Unfortunately, distinctions between data and synchroniza-
tion are often blurred in the context of object-oriented programming where synchroniza-
tion is achieved by locking data structures. Thus, slicing multi-threaded Java programs
for deadlock preservation may not yield as significant a reduction as one might expect.
Assertions, in contrast, are often considered local properties since they reference a sin-
gle control point and an expression over variables in a program scope. In practice, the
locality of an assertion can vary widely depending on complexity of the asserted ex-
pression. Similar expressions form the definition of observable propositions [9] that
are used in defining temporal logic properties of programs. Thus, we expect that re-
duction results for assertional specifications will be indicative of the results for model
checking temporal logic formulae. In answering this question, we seek to determine
whether slicing on localized properties can yield additional reduction in model check-
ing. To emphasize the locality of assertions we defined a collection of simple parameter
and object field assertions that are enforced on method entry and that reflect comments
in the source code; we did not apply slicing to assertions attempting to capture data
structure properties of programs.



82 M.B. Dwyer et al.

5 Description of Code Bases

We evaluate the effectiveness of slicing as a model reduction technique relative to the re-
search questions stated in Section 4.2 over a collection of multi-threaded Java programs.
In this section, we describe these Java code bases and characterize them in terms of
static measures of their control, data and synchronization complexity. Table 1 presents
the counts for several measures of each example: bytecodes, classes, methods, fields,
new expressions, calls to Thread.start(), catch blocks, synchronized statements
and methods, wait statements, and notify/notifyall statements. For each ex-
ample, the first table row gives these measures both for the total of the application and
library code that comprise the program and, independently, for just the application code;
the values are given separated by a /. We provide the application measures for reference,
but the tools process both the application and referenced library code. The second row
gives the measures for the call-graph reachability based pruning from Section 4.1 and
deadlock-preserving slicing (separated by ’/’) when applied to the complete code base
(application+libraries). For example, 34479 bytecodes in the complete RAX system are
reduced to 768 bytecodes by call-graph reachability and to 101 bytecodes by slicing. It
is important to understand that these are static measures that the code base complexity
presented to the program slicer, rather than the state space complexity presented to the
model checker. For example, the static number of Thread.start() calls and new
expressions typically underestimate the number of running threads and object instances
in a system since these calls often appear in loops.

The set of programs includes five standard examples, that are commonly used in
experiments in the concurrency literature, but which are best thought of as implemen-
tations of algorithm sketches rather than realistic Java code bases. BBuffer implements
a thread-safe queue using an array and wait/notify synchronization and includes very
simple producer and consumer threads. Pipeline implements a dynamically assembled
sequence of threads that are used to parallelize a simple staged computation on integer
data. SBarbers is a classic synchronization problem that is presented in many oper-
ating systems textbooks (e.g., [1]). RW includes an abstract class that implements a
concurrent-read and exclusive-write policy for controlling access to program regions
of implemented as methods that override abstract methods; a simple set of reader and
writer threads complete this example. RAX is the distillation of a bug in the NASA
remote experiment platform that was presented in [5].

Two small programs implement simple discrete-event simulators for a DiskScheduler
and a non-trivial AlarmClock. In general, these examples are significantly more heap-
data intensive than the standard examples.

Of the three larger applications we considered, one is from the literature RepWorker
[3], one from the JavaGrande benchmark [22], RayTracer, and one is an Internet-scale
publish-subscribe infra-structure, named Siena, that has been the subject of
several studies of software testing techniques [10]. The RepWorker implements a highly-
configurable client-server data-distribution framework with a sample Jacobi relaxation
example running atop it as an application. The JavaGrande benchmark implements a
non-trivial scientific calculations whose synchronization is achieved through the use
of barriers.



Evaluating the Effectiveness of Slicing 83

Table 1. Static measures of examples

Name Bytecode Class Method Field New Thrd Except Synch Wait Nfy
AlarmClock 34728/319 349/6 3245/25 1295/19 1461/13 4/3 473/18 252/15 3/2 3/2
Reach/Slice 1020/345 49/25 98/41 57/18 45/18 3/3 23/17 18/15 2/2 2/2

BBuffer 34577/168 351/8 3238/18 1294/8 1455/7 4/3 462/7 241/4 3/2 3/2
Reach/Slice 873/194 50/23 91/30 151/15 38/10 3/3 12/7 8/5 2/2 2/2

DiskSched 35181/793 348/5 3238/18 1297/21 1510/63 2/1 458/3 239/2 3/2 2/1
Reach/Slice 1314/643 48/25 92/36 52/15 79/52 1/1 12/7 8/5 2/2 1/1

Pipeline 34475/66 347/4 3229/9 1280/4 1452/4 3/2 456/1 239/2 2/1 2/1
Reach/Slice 764/97 46/19 80/20 42/6 35/7 2/2 6/1 6/3 1/1 1/1

SBarber 34564/155 347/4 3229/9 1287/11 1455/7 3/2 474/19 245/8 4/3 4/3
Reach/Slice 853/184 46/19 80/20 48/12 38/10 2/2 24/19 12/9 3/3 3/3

RAX 34479/70 347/4 3229/9 1283/7 1452/4 3/2 456/1 239/2 2/1 2/1
Reach/Slice 768/101 46/19 80/20 45/9 35/7 2/2 6/1 6/3 1/1 1/1

RW 34699/290 348/5 3246/26 1287/11 1455/7 5/4 473/18 247/10 3/2 3/2
Reach/Slice 945/268 47/20 95/34 49/13 39/11 4/4 23/18 14/11 2/2 2/2

RepWorker 34885/574 356/14 3265/47 1317/42 1471/23 2/1 460/5 255/18 6/5 7/6
Reach/Slice 1792/1460 69/57 158/131 82/47 81/74 1/1 22/19 6/6 5/5 6/6

RayTracer 35544/1783 361/19 3327/109 1351/76 1538/91 2/1 486/31 142/15 1/1 1/1
Reach/Slice 2757/2520 72/65 195/179 126/95 119/114 1/1 29/26 12/12 1/1 1/1

Siena 49314/9229 489/74 4700/620 1688/296 2119/389 5/4 644/186 384/139 10/7 14/8
Reach/Slice 14213/13491 198/194 844/909 424/306 574/565 3/3 164/164 105/110 4/4 8/7

As the data indicate, slicing can yield reductions ranging up to two orders of mag-
nitude in the size of the code base to be analyzed by the model checker. While the
call-graph reachability reduction can also yield significant reductions, program slicing
always achieves better reductions. As we will see in the next section, the elimination of
additional statements and fields can give rise to substantial reductions in model check
times and more than compensate for the relatively modest slicer run-time which for
even the largest examples was at most several seconds.

6 Experimental Results

In this section, we report on the performance of model checking selected properties of
the examples described in Section 5 using different state-space reduction options. We
present statistics from different subsets of these model checking runs and discuss how
those results help to answer the research questions from Section 4.2.

Table 2 presents a sampling of the model check runs we performed. For the systems
we studied, we model checked a total of 31 different variations of those systems; vari-
ations were either applying fixes to known bugs or activating additional specifications
encoded as assertions in the code base. To conserve space, we only list runs for varia-
tions on a given program that are substantially different in performance. We differentiate
runs that found errors from those that did not by using an e subscript on example names;
note that several of our examples have buggy versions. For each system variation we



84 M.B. Dwyer et al.

Table 2. Effect of slicing on model checking

Name Conf. States Trans. Memory Time

AlarmClocke dR 11204 28931 2.45 25.2
dRP 106 870 0.12 11.1
dS 4867 11593 0.12 13.1
dSP 83 693 0.12 10.3

AlarmClock dR 1469917 5117602 4.49 57:56.4
dRP 2305 49801 2.55 50.6
dS 724666 2501705 3.69 13:1.6
dSP 1204 25298 2.19 20.1
aS 724666 2501705 3.22 12:56.4
aSP 1204 25298 2.13 20.4

BBuffer dR 36405 90882 3.9 1:1.2
dRP 138 3980 0.12 14.4
dS 7484 18578 0.11 13.9
dSP 28 630 0.12 10.7
aS 7484 18578 0.12 13.9
aSP 28 630 0.12 10.2

DiskSchede dR 7687219 2044564 5.71 9:48:1.8
dRP 7690 858963 4.16 30:59.7
dS 5487745 14302033 5.88 1:16:34.5
dSP 7688 816991 1.81 5:17.6
aS 5487745 14302033 5.88 1:16:26.7
aSP 7688 816991 3.65 5:11.8

Pipeline dR 9892140 43821449 5.52 5:41:5.7
dRP 7379 76307 4.21 45.6
dS 9881030 43771450 5.43 5:28:4.4
dSP 7379 76303 4.21 40.6

Name Conf. States Trans. Memory Time

SBarbere dR 197 197 0.12 13.4
dRP 31 197 0.12 11.6
dS 193 193 0.12 10.7
dSP 31 193 0.12 12.1

RAXe dR 268 279 0.80 28.4
dRP 33 252 0.80 27.2
dS 266 277 0.57 26.8
dSP 33 250 0.84 26.2

RW dR 25197913 26780595 5.86 13:21:24.6
dRP 603 44621 4.13 1:11.2
dS 113727 415098 4.15 1:29.8
dSP 134 2103 0.12 11.3

RepWorker dR 2818232 8102858 4.77 2:9:59.9
dRP 3091 96798 1.65 2:43.2
dS 2736984 7867615 4.74 1:25:34.9
dSP 2676 90735 3.52 2:1.1

RayTrace dR 2404257∗ 4754057∗ 6.26∗ 20:0:0∗

dRP 11610 2923881 5.35 9:8:45.4
dS 2803535∗ 5552933∗ 6.34∗ 20:0:0∗

dSP 10932 2776238 5.18 6:53:13.9

Sienae dR 11465 11475 2.8 9:37.4
dRP 116 11475 3.86 12:1.2
dS 11310 11319 3.93 6:30.4
dSP 114 11319 4.13 7:51.5

ran the model checker in at least four configurations. In each of these configurations,
the model checker was configured to terminate when the first error was encountered
in the state space search. The tables list statistics for different configurations of the
model checking tools where d indicates deadlock check, a indicates assertion check, R
indicates call-graph reduction, S indicates slicing, and P indicates the use of POR. For
each configuration, we give the total number of stored states, the number of transitions
searched, the maximum memory consumption of the toolset in giga-bytes, and the total
run-time for the toolset in hours:minutes:seconds format. The model checks were run
as the only application on an Opteron 250 processor with 12 Gigabytes of RAM run-
ning Linux using the SDK 1.5. The small number of runs that exceeded 20 hours were
terminated and they are noted in the table with ∗. Consequently, the reduction results
presented below should be viewed as lower bounds.

6.1 Analysis of Data and Research Questions

Our analysis of the experimental data confirms that slicing is a cost-effective state space
reduction technique, however the data do illustrate some of the limitations of program
slicing and suggest opportunities for additional approaches to refining slicing to achieve
greater reductions.

To assess the cost-effectiveness of slicing we calculate reduction factors that capture
the ratio of the total run-time of our toolset for specific pairs of configurations. The
mean of a reduction factor is calculated over a specified subset of the 31 model check
runs and positive outliers are removed; a positive outlier is a reduction factor that ex-
ceeds the mean by more than two standard deviations. We consider different pairs of



Evaluating the Effectiveness of Slicing 85

configurations of the model checker to address the different research questions. In the
discussions below, we focus on run-time reduction factors as opposed to factors related
to memory consumption or state-space size, since this measure best captures the total
time to apply slicing reductions which happen before the actual model checks run. We
have observed, however, that space reductions seem to follow the same trend as time
reductions.

(RQ 1) is concerned with the variation in effectiveness of slicing as a reduction with
program size and complexity. For this question, we consider the reduction factor dR/dS
which is a measure of the effectiveness of slicing. To assess this question, we group the
examples into the set of larger examples and the rest. The mean of dR/dS over set of
larger examples is 1.4 and for the smaller examples it is 2.7.

This data seems to suggest that slicing scales poorly as a state-space reduction. It
is well-understood, however, that static code measures, such as lines of code, are poor
indicators of state-space size and our real intention is to understand the reduction of
slicing as the size of the state-space scales. Furthermore, we believe that the real ben-
efit of slicing, and of many state-space reductions, is only apparent when the search is
stateful. To assess this, we compared the number of matched states to the number of
stored states during model checking. We term a model check run sparse if the ratio of
matched to stored states is less than 0.1. Most, but not all, of our error runs were clas-
sified as sparse, for example, there were runs of SBarber, RAX and Siena that required
no or only minimal backtracking to find the error. The non-sparse searches included
all of the model checks that verified the property being checked and several error re-
vealing checks where the error was found late in the search. Recalculating the mean
of dR/dS for this grouping of runs yields reduction factors of 1.9 for sparse and 4.0
for non-sparse searches. Even without this secondary analysis, it is clear that program
slicing is an effective reduction technique since the reduction factors account for the
cost of slicing.

(RQ 2) is concerned with the relative effectiveness of call-graph reachability and
slicing model reductions. The mean of dR/dS across all runs in our study was 2.5
indicating a non-trivial net benefit to slicing.

(RQ 3) is concerned with the relative effectiveness of partial-order reduction and
slicing. The mean of dRP/dSP over the total set of runs in our study was 2.1; the
means for sparse and non-sparse subsets of runs were 1.2 and 2.9, respectively. Clearly
slicing yields non-trivial additional reduction over POR. POR appears to be a more
powerful than slicing based on the fact that the mean of dR/dRP over the total set of
runs in our study was 48.3; the means for sparse and non-sparse subsets of runs were
1.2 and 105.5, respectively. Not surprisingly, POR and slicing appear to both provide
benefit only when a substantial portion of the state space is searched.

(RQ 4) is concerned with the relative reduction power of slicing when the prop-
erty being analyzed is deadlock or a simple assertion. The data indicate that there is
no statistically significant difference. For the set of examples on which both deadlock
and assertional specifications were checked the mean of dRP/dSP was 2.8 and the
mean of aRP/aSP was 2.7. This was surprising to us since we expected that a more
localized specification would require less of the program to be included in the slice. In
the programs we studied, however, there always existed a chain of dependences from



86 M.B. Dwyer et al.

the assertion expression to a program point that is part of the programs synchronization
skeleton. Once one such point is drawn into the slice so to is the rest of the skeleton.
This is an unfortunate consequence of high-degree of synchronization coupling in the
set of multi-threaded Java programs we studied.

7 Related Work

Since its development, the concept of slicing has been applied to a wide variety of
problems including: program understanding, debugging, differencing, integration, and
testing; we refer the reader to Tip’s survey article for a broad view of slicing [38].
Here, we focus on other work related to slicing for model reduction and verification
and slicing Java programs.

Millett and Teitelbaum [26] study static slicing of Promela (the model description
language for the model-checker SPIN [19]) and its application to model checking, sim-
ulation, and protocol understanding. Their work formed the basis of the Promela slic-
ing framework that is now included in the SPIN distribution. Both [26] and the SPIN
Promela slicer support slicing with criteria formed from assertions and never claims
(and thus LTL formulae), but do not include support for slicing to preserve deadlock.
Slicing systems in a modeling language like Promela is considerably simpler than slic-
ing Java programs due to the absence of challenging features like heap-allocated data,
exceptions, methods and dynamic dispatch, threads associated with object references,
etc. However, care must be taken to deal correctly with Promela features such as chan-
nels, richer intra-thread non-deterministic choice constructs, and more sophisticated
notions of blocking due to Promela’s rich guarded command language (as we noted
earlier, Java programs can only block due to lock acquisitions and wait statements.

The IF Validation Framework [4] also provides a slicing capability for the IF mod-
eling language which is similar to Promela in its level of abstraction. In a case-study of
using IF to verify properties of the MASCARA protocol for a wireless asynchronous
transfer protocol, Graf and Jia [24] report reductions from 1-2 orders of magnitude
for four different properties of the protocol while acknowledging that it is difficult to
make general conclusions about the effectiveness of slicing since amount of reduction
depends significantly on the particular property and system considered.

Clarke et al.[6] present a tool for slicing VHDL programs with dependence graphs.
Using the VHDL description of the controller logic for a RISC processor and two ac-
companying CTL properties (a safety and a liveness property), they show that slicing
reduces the reachable state space from roughly 1038 states to 1022 states. They also
observe a reverse scalability effect for slicing – smaller VHDL programs tend to have
fewer irrelevant components, and thus the benefits of slicing to improve (percentage-
wise) as programs grow in size. Sen et al.[35] use a substantively different technique
called computation slicing for model reduction in verification of “systems on a chip”
hardware designs.

8 Conclusion

Most researchers have developed strong opinions about the potential effectiveness of
program slicing as a reduction technique for software model checking. Many of those



Evaluating the Effectiveness of Slicing 87

opinions are in the negative. We believe that the study presented in this paper provides
convincing evidence that slicing is efficient to apply, taking no more than 40 seconds
on even the largest code base we considered, and yields non-trivial reductions in model
check time, averaging a factor of 4 improvement for non-trivial model checks. Given
the long-running nature of model checks, this magnitude of reduction can significantly
increase productivity. Furthermore, these reductions are orthogonal to existing state-
space reductions and can thus be considered an extension to the state of the art.

As with any experimental study, one can question the external validity of these con-
clusions, and we plan to increase the number of examples in our study and vary the
sources from which we draw those examples to provide more evidential force to our
findings. In spite of such questions, given that we never encountered a model check
run where slicing caused a non-trivial increase in run-time in our study, we believe that
concluding that slicing is a cost-effective model checking reduction is justified.

References

1. G. R. Andrews. Concurrent Programming: Principles and Practice. Addison-Wesley, 1991.
2. T. Ball, R. Majumdar, T. Millstein, and S. Rajamani. Automatic predicate abstraction of C

programs. In Proceedings of the ACM SIGPLAN ’01 Conference on Programming Language
Design and Implementation (PLDI-01), pages 203–213, June 2001.

3. Bandera. +http://bandera.projects.cis.ksu.edu+. SAnToS Laboratory.
4. M. Bozga, J.-C. Fernandez, L. Ghirvu, S. Graf, J.-P. Krimm, and L. Mounier. IF: A validation

environment for timed asynchronous systems. In 12th International Conference on Computer
Aided Verification (CAV 2000), LNCS 1855, pp. 543–547, July 2000.

5. G. Brat, K. Havelund, S. Park, and W. Visser. Java PathFinder – A second generation of a
Java model-checker. In Proceedings of the Workshop on Advances in Verification, July 2000.

6. E. Clarke, M. Fujita, S. Rajan, T.Reps, S. Shankar, and T. Teitelbaum. Program slicing of
hardware description languages. In Proceedings of CHARME’99, September 1999.

7. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons using
branching-time temporal logic. In Logic of Programs, Workshop, pages 52–71, London, UK,
1982. Springer.

8. J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Păsăreanu, Robby, and H. Zheng.
Bandera: Extracting finite-state models from Java source code. In Proceedings of the 22nd
International Conference on Software Engineering, June 2000.

9. J. C. Corbett, M. B. Dwyer, J. Hatcliff, and Robby. Expressing checkable properties of
dynamic systems: The Bandera Specification Language. International Journal on Software
Tools for Technology Transfer, 2002.

10. H. Do, S. Elbaum, and G. Rothermel. Infrastructure support for controlled experimentation
with software testing and regression testing techniques. In 2004 International Symposium on
Empirical Software Engineering (ISESE 2004), pages 60–70. IEEE Computer Society, 2004.

11. M. B. Dwyer, J. Hatcliff, R. Joehanes, S. Laubach, C. S. Păsăreanu, Robby, W. Visser, and
H. Zheng. Tool-supported program abstraction for finite-state verification. In Proceedings
of the 23rd International Conference on Software Engineering, May 2001.

12. M. B. Dwyer, J. Hatcliff, V. R. Prasad, and Robby. Exploiting object escape and locking
information in partial order reductions for concurrent object-oriented programs. Formal
Methods in System Designs, 25(2–3):199–240, September–November 2004.

13. Eclipse Consortium. Eclipse website. http://www.eclipse.org.



88 M.B. Dwyer et al.

14. C. Flanagan and P. Godefroid. Dynamic partial-order reduction for model checking soft-
ware. In J. Palsberg and M. Abadi, editors, Proceedings of the 32nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL, pages 110–121, Long Beach,
California, USA, January 2005. ACM.

15. P. Godefroid. Partial Order Methods for the Verification of Concurrent Systems, volume
1032 of Lecture Notes in Computer Science. Springer, 1996.

16. A. Groce and W. Visser. Model checking Java programs using structural heuristics. In
Proceedings of the International Symposium on Software Testing and Analysis, pages 12–21.
ACM Press, 2002.

17. J. Hatcliff, J. C. Corbett, M. B. Dwyer, S. Sokolowski, and H. Zheng. A formal study of
slicing for multi-threaded programs with JVM concurrency primitives. In Proceedings of
the 6th International Static Analysis Symposium (SAS’99), volume 1694 of Lecture Notes in
Computer Science, Sept. 1999.

18. J. Hatcliff, M. B. Dwyer, and H. Zheng. Slicing software for model construction. Journal of
Higher-order and Symbolic Computation, 13(4):315–353, 2000.

19. G. J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineering,
23(5):279–294, May 1997.

20. G. J. Holzmann. Personal communication, Oct. 2005.
21. R. Iosif. Symmetry reduction criteria for software model checking. In Proceedings of Ninth

International SPIN Workshop, volume 2318 of Lecture Notes in Computer Science, pages
22–41. Springer, Apr. 2002.

22. Java Grande Benchmarking Project. Java Grande forum benchmark suite – thread ver-
sion 1.0. http://www.epcc.ed.ac.uk/computing/research activities/
java grande/.

23. G. Jayaraman, V. P. Ranganath, and J. Hatcliff. Kaveri: Delivering Indus Java program slicer
to Eclipse. In Proceedings of the Fundamental Approaches to Software Engineering, FASE
2005. Springer, April 2005.

24. G. Jia and S. Graf. Verification experiments on the MASCARA protocol. In M. B. Dwyer,
editor, Model Checking Software: 8th International SPIN Workshop, volume 2057 of LNCS,
pages 123–142, Toronto, Canada, May 2001. Springer.

25. J. Krinke. Static slicing of threaded programs. In Proceedings ACM SIGPLAN/SIGFSOFT
Workshop on Program Analysis for Software Tools and Engineering (PASTE’98), pages 35–
42, Montreal, Canada, June 1998. ACM SIGPLAN Notices 33(7).

26. L. I. Millett and T. Teitelbaum. Slicing Promela and its applications to model checking, sim-
ulation, and protocol understanding. In Proceedings of the 4th International SPIN Workshop,
LNCS, 1998.

27. M. G. Nanda and S. Ramesh. Slicing concurrent programs. In Proceedings of International
Symposium on Software Testing and Analysis (ISSTA’00), pages 180–190, 2000.

28. A. Podgurski and L. Clarke. A formal model of program dependences and its implications for
software testing, debugging, and maintenance. IEEE Transactions on Software Engineering,
16(8):965–979, 1990.

29. V. P. Ranganath. Indus. +http://indus.projects.cis.ksu.edu+.
30. V. P. Ranganath. Object-flow analysis for optimizing finite-state models of Java software.

Master’s thesis, Kansas State University, 2002.
31. V. P. Ranganath, T. Amtoft, A. Banerjee, M. B. Dwyer, and J. Hatcliff. A new foundation

for control-dependence and slicing for modern program structures. In Programming Lan-
guages and Systems, Proceedings of 14th European Symposium on Programming, ESOP
2005. Springer, April 2005.

32. V. P. Ranganath and J. Hatcliff. Pruning interference and ready dependences for slicing
concurrent Java programs. In E. Duesterwald, editor, Proceedings of Compiler Construction
(CC’04), Lecture Notes in Computer Science 2985, pages 39–56. March 2004.



Evaluating the Effectiveness of Slicing 89

33. Robby, M. B. Dwyer, and J. Hatcliff. Bogor: An extensible and highly-modular model check-
ing framework. In Proceedings of the 9th European Software Engineering Conference / 11th
ACM SIGSOFT Symposium on the Foundations of Software Engineering, 2003.

34. Robby, M. B. Dwyer, J. Hatcliff, and R. Iosif. Space-reduction strategies for model checking
dynamic systems. In Proceedings of the 2003 Workshop on Software Model Checking, July
2003.

35. A. Sen, J. Bhadra, V. K. Garg, and J. A. Abraham. Formal verification of a system-on-chip
using computation slicing. In International Test Conference ITC, pages 810–819, October
2004.

36. S. Stoller. Model-checking multi-threaded distributed Java programs. In International Jour-
nal on Software Tools for Technology Transfer. Springer, 2002.

37. D. Suwimonteerabuth, S. Schwoon, and J. Esparza. jMoped: A Java bytecode checker based
on Moped. In Proceedings of the 11th Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS 2007), number 3440 in Lecture Notes in Computer
Science, pages 541–545, 2005.

38. F. Tip. A survey of program slicing techniques. Journal of programming languages, 3:121–
189, 1995.

39. R. Vallée-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and P. Co. Soot – A Java
optimization framework. In Proceedings of CASCON’99, Nov. 1999.



New Metrics for Static Variable Ordering
in Decision Diagrams�

Radu I. Siminiceanu1 and Gianfranco Ciardo2

1 National Institute of Aerospace, Hampton, Virgina 23666
2 University of California, Riverside, CA 92521

Abstract. We investigate a new class of metrics to find good variable
orders for decision diagrams in symbolic state-space generation. Most of
the previous work on static ordering is centered around the concept of
minimum variable span, which can also be found in the literature un-
der several other names. We use a similar concept, but applied to event
span, and generalize it to a family of metrics parameterized by a moment,
where the metric of moment 0 is the combined event span. Finding a good
variable order is then reduced to optimizing one of these metrics, and
we design extensive experiments to evaluate them. First, we investigate
how the actual optimal order performs in state-space generation, when
it can be computed by evaluating all possible permutations. Then, we
study the performance of these metrics on selected models and compare
their impact on two different state-space generation algorithms: classic
breadth-first and our own saturation strategy. We conclude that the new
metric of moment 1 is the best choice. In particular, the saturation algo-
rithm seems to benefit the most from using it, as it achieves the better
performance in nearly 80% of the cases.

1 Introduction

In automated system verification, the performance of symbolic model checking
algorithms based on binary decision diagrams (BDD) [4] is strongly influenced
by the variable ordering of the model. While the boundaries of what is now
amenable to BDD technology have been constantly pushed, many industrial-size
applications are still out of reach. A critical factor is that finding the optimal
BDD variable order is an NP-complete problem. Not knowing what the optimum
BDD performance could be, leaves the issue of what is actually achievable by
this method still uncertain.

Various heuristics have been proposed to tackle the variable order issue. One
direction is to attempt to find a good variable order statically [1, 2, 3, 20, 23], i.e.,
prior to generating the state space, hoping to keep the peak size of the BDD
as small as possible. The other direction is to dynamically alter the variable
ordering during state-space generation [24], usually when the size of the BDD
becomes too large, to reduce the current BDD size.
� Work supported in part by the National Aeronautics and Space Administration

under grant NCC1-02043 and by the National Science Foundation under grants
CNS-0501747 and CNS-0501748.

H. Hermanns and J. Palsberg (Eds.): TACAS 2006, LNCS 3920, pp. 90–104, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



New Metrics for Static Variable Ordering in Decision Diagrams 91

Most of the previous efforts on static ordering is centered around the concept
of minimum variable span, variants of which have been described as normalized
average lifetime [22], smallest communication graph [1], and diagonal dependency
matrix [15]. At its core is the idea that clustering variables that are interrelated
(in the transition relation expression, combinatorial circuit design, dependency
matrix, etc.) yields better results. This was hinted as early as in [6] and also
supports the idea of event locality [9], which ultimately produced the saturation
strategy [10], an efficient state-space generation algorithm.

However, simply minimizing the span as a metric does not always guaran-
tee good results in practice. Indeed, variable orders with the same span may
produce drastically different results. In the process of developing the saturation
strategy, we observed that the dynamics of the BDD growth can be significantly
different than for the classic breadth-first iterations. In general, the complex-
ity of symbolic state-space generation depends not only on the overall number
of BDD nodes, but also on the location of the region of BDD levels affected
by each event. In most cases, some regions tend to grow much larger than the
rest. Precisely pinpointing where those levels are concentrated cannot be done
in advance, as this is largely model-dependent, but experience indicates that
the BDDs grow larger mostly in the middle or middle-bottom area. Therefore,
BDD node operations tend to be more costly if performed at the top levels, as
the recursive calls propagate downstream. In this paper, we propose a metric
focused on the event span (over variables), rather than the variable span, and
propose a generalized version of this metric that takes into account the location
of the span with respect to the range of state variables.

The remainder of the paper is structured as follows. Section 2 contains a brief
digest of previous work on variable ordering. Section 3 recalls the background
on symbolic state-space generation and introduces the new metrics. Section 4
discusses the experimental results to evaluate the significance of these metrics
in the context of the saturation and breadth-first iteration strategies. Section 5
concludes and discusses future work.

2 Related Work

The importance of clustering interdependent variables was first pointed out by
Burch, Clarke, and Long [6]. Fujita et al. [15] provided an early overview and
evaluation of BDD variable orderings. On a closely related subject, a first static
heuristic for image computation with a partitioned transition relation was pro-
posed by Geist and Beer [13], based on the idea of ordering the conjuncts de-
pending on the number of affected variables. IWLS95, another successful but
quite elaborate heuristic, was proposed in [25] and is still widely used in various
BDD packages. Aziz et al. [1] also suggested clustering variables that depend on
each other based on an underlying communication graph.

Moon et al. [22] discusses the normalized average lifetime metric in the con-
text of efficiently applying the transition relation of a system using BDDs, either
disjunctively or conjunctively. They report significant improvements over previ-
ous heuristics in performing image computation within a unified framework that



92 R.I. Siminiceanu and G. Ciardo

combines conjunctive and splitting methods. In the same context, Chauhan et
al. [7] studied different algorithms for optimizing the lifetime metric and con-
cluded that the simulated annealing algorithm achieves the best results. They
also proved that the problem of minimizing the normalized average lifetime met-
ric is NP-complete.

Closer to our approach, [3] attempts to alter the minimum event span method.
Variables are assigned different weights, according to how many events in the
model affect them, then they are statically arranged in decreasing weight order.
MINCE [2] is a similar heuristic in the context of both BDD and SAT-based
verification, which exploits information from the conjunctive normal form.

Solving the BDD minimization problem by means of genetic algorithms is seen
in [14, 23]. One drawback in this type of work is that the evaluation function of
the chromosomes is the actual size of the resulting BDD for that order, hence the
optimization process is extremely time consuming. In Section 4.5, we propose
a much faster approach, where the fitness function is the value of the weighted
event span metric, which can be computed statically from the model information
for each order.

Other techniques for variable ordering that do not directly employ optimizing
a metric are found in [20], which proposes a sampling heuristic, [18], which
introduces the scatter search, and [17], which studies a learning based method.

3 Variable Ordering in Symbolic State-Space Generation

We focus on the important problem of symbolically generating the state-space
S of a discrete-state model. We assume a high-level description of the model
where each state i is a K-tuple of integer variables, i = (iK , ..., i1). Each of
these variables ik is in some range Sk = {0, 1, ..., nk−1}, so that the potential
state space of the model is Ŝ = SK × · · · × S1. The model has an initial state,
or, in full generality, an initial set of states Sinit ⊆ Ŝ. A next-state function
of the form N : Ŝ → 2Ŝ specifies the set of states reachable from each state,
we can also think of it as a transition relation of the form R ⊆ Ŝ × Ŝ, where
j ∈ N (i) ⇔ (i, j) ∈ R. We are interested in computing and storing the state
space S, which can be defined as the smallest set containing Sinit and satisfying
the fixed-point equation X = X ∪N (X ).

Symbolic methods to compute S use decision diagrams. We consider quasi-
reduced ordered multi-valued decision diagrams (MDDs) [19], formally defined as
a directed acyclic edge-labeled multi-graph where:

– Each node p belongs to a level k ∈ {K, ..., 1, 0}, denoted p.lvl .
– There is a single root node r at level K
– Level 0 can only contain the two terminal nodes Zero and One.
– A node p at level k > 0 has nk outgoing edges, labeled from 0 to nk−1. The

edge labeled by ik points to a node q at level k − 1; we write p[ik] = q.
– Given nodes p and q at level k > 0, if p[ik] = q[ik] for all ik ∈ Sk, then p = q,

i.e., there are no duplicates.



New Metrics for Static Variable Ordering in Decision Diagrams 93

The set of states encoded by an MDD is B(r), defined recursively as

B(p) =

{⋃
ik∈Sk

{ik} × B(p[ik]) if p.lvl = k > 1
{i1 : p[i1] = One} if p.lvl = 1

.

A basic breadth-first-search (BFS) algorithm to generate S implements exactly
the fixed-point definition of S, by initializing S to Sinit, then repeatedly updating
it to include the states reachable from it in one (more) application of N , until
no more new states are found, i.e., until N (S) ⊆ S. A 2K-level MDD, fixed for
the duration of the iterations, is used to store the next-state function N , while
a K-level MDD, which grows and shrinks during the iterations, is used to store
S. The peak size of this second MDD is critical, as it can exceed the available
memory.

To reduce the peak memory requirements of symbolic state-space genera-
tion, especially for globally-asynchronous locally-synchronous systems (GALS),
we proposed an alternative algorithm called saturation [10]. At its core is the
recognition that, in GALS, most events exhibit strong locality, i.e., they affect
only a small subset of the state variables, while the other state variables are
subject to identity transformations, i.e., they do not change.

Saturation requires a next-state function disjunctively-partitioned according
to a set E of (asynchronous) events in the high-level model, N =

⋃
e∈E Ne. As ini-

tially defined, saturation also requires that each Ne be conjunctively-partitioned
intoK local functions, Ne = NK,e×· · ·×N1,e, each one describing the interaction
between event e and a state variable k, Nk,e : Sk → 2Sk . Such a decomposition
always exists. However, for Petri nets, for example, the Nk,e functions always
exist regardless of how many places are grouped into a single state variable while,
in other formalisms, this conjunctive decomposition might exist only if we merge
state variables or split events, potentially leading to exponential growth of the
node sizes or of the number of events. A more recent version of saturation allows
the conjuncts to be functions of multiple state variables [12], but we limit our
discussion to the original version for simplicity (the findings of this paper are
equally applicable to this general version of saturation).

We say that level k does not depend on event e, and vice-versa, if Nk,e = Ik,
the identity function, i.e., Nk,e(ik) = {ik} for every local state ik ∈ Sk. Then, we
define Top(e) = max{k : Nk,e �= Ik} and Bot(e) = min{k : Nk,e �= Ik} to be the
highest and lowest levels that depend on event e. Letting Nk =

⋃
e:Top(e)=k Ne

and N≤k =
⋃

e:Top(e)≤k Ne, saturation applies N1 to each node p at level 1
in the MDD encoding of Sinit, by modifying it in place, until it has reached
a fixed-point, i.e., B(p) = B(p) ∪ N≤1(B(p)); then it moves to each node q at
level 2 and applies N2 to it, and N1 to any node at level 1 created by this
application, so that B(q) = B(q) ∪ N≤2(B(q)); then it moves to the nodes at
level 3, and so on. Once the root r is saturated in this manner, it encodes the
desired state space S. Saturation has been shown to have memory and time
requirements several orders of magnitude smaller than those of BFS in many
models of GALS.



94 R.I. Siminiceanu and G. Ciardo

3.1 BDD vs. MDD Variables and Their Order

It is well-known that the variable order can greatly affect the size of a BDD, thus
the efficiency of the symbolic iterations. Moreover, finding the optimal order that
minimizes the size of a BDD (or of multiple BDDs stored in a BDD forest to share
nodes) is an NP-complete problem [5]. The same applies to MDDs, of course,
but, in addition, the MDD variables themselves offer a greater degree of freedom,
thus more opportunities to introduce improvements, but also inefficiencies. For
example, we can choose to partition the P places of a Petri net into K ≤ P
groups, each one corresponding to a state variable. We do not address the issue
of defining these groups of MDD variables, but simply observe that it can be
seen as an improvement to be applied after having decided the order of the finest
possible partition (in the case of Petri nets, this means assigning a different place
to each level of the MDD, i.e., K = P ). Thus, since we focus on the problem of
finding a good order for the finest set of MDD state variables, the results that
follow are applicable to BDDs as well.

3.2 Event Span Metrics

A variable ordering is a permutation π of the K state variables (iK , . . . , i1),
so that variable ik is assigned to level π(k) of the MDD. In the following, we
write Topπ(e) and Botπ(e) to mean the value of Top(e) and Bot(e) when we
use the permutation π. We can also envision a boolean matrix describing the
dependence between levels and events, A ∈ {0, 1}|{K,...,1}|×|E| where A(k, e) = 1
iff Nk,e �= Ik and, for a given permutation π, let Aπ be matrix obtained by
permuting the rows of A according to π, i.e., row k of A equals row π(k) of Aπ .

For a given variable ordering π, we define the Normalized Event Span (NES)
metric as

NES(π) =
∑
e∈E

Topπ(e) − Botπ(e) + 1
K · |E|

The NES metric computes the average span of all events (the span is then
normalized by K) and its value is always between 0 and 1. A low NES indicates
that the event spans are small, i.e., that most events affect only state variables
close to each other in the order π.

We generalize this concept by introducing the Weighted Event Span metric
of moment i, WES (i) for variable ordering π as:

WES (i)(π) =
∑
e∈E

(
Topπ(e)
K/2

)i

· Topπ(e) − Botπ(e) + 1
K · |E|

We observe that WES (0) is exactly equivalent to NES . The WES (1) metric, in-
stead, adds to it a component that reflects the location of the affected region, by
assigning higher weights to locations closer to the top. This takes into account
that operations applied to nodes in the lower portion of the MDD tend to have
lower cost than those applied to higher nodes. Therefore the span of an event is



New Metrics for Static Variable Ordering in Decision Diagrams 95

scaled by απ(e) = Topπ(e)
K/2 , the relative position of the topmost level compared

to the average level, K/2. The weight of an event is thus between (2/K)i and
2i, but the average over all events, if their tops were uniformly distributed over
the MDD, should have an expected value of 1 for WES (1), like for NES . For
larger moments i, the emphasis on the location grows, as the weight multiplies
in powers of 2, while strong clustering is relatively less important.

The Normalized Average Lifetime (NAL) metric introduced in [22] is very
similar to our NES , but it is employed in a different context: that of finding a
good ordering of the conjuncts in the transition relation expression when per-
forming symbolic image computations. In essence, the target in [22] is still to
minimize the average span of rows, but computed on the transpose of our de-
pendence matrix. Therefore, the object of optimizing NAL can be ultimately
viewed as clustering events (the rows in our matrix), as opposed to variables
(the columns).

3.3 NP-Completeness of Our Metric

Intuitively, our WES (i) metric arises from two components, the size of the span
for each event, and the (ith power of the) position of the span for each event.

Given our matrix A ∈ {0, 1}|{K,...,1}|×|E| and considering all the matrices Aπ

obtained by permuting its rows according to π, the question (SUM-OF-SPANS,
i.e., NES)

“Is there an Aπ s.t.
∑
e∈E

Topπ(e) − Botπ(e) + 1
K · |E| ≤ T ”,

was proven in [7] to be NP-complete by reducing the directed optimal linear
arrangement problem (GT43 in [16]) to it.

Focusing on the position of the spans alone, the question (SUM-OF-TOPS )

“Is there an Aπ s.t.
∑
e∈E

Topπ(e) ≤ T ”

can also be shown to be NP-complete [26] by reducing the interval graph com-
pletion problem (GT35 in [16]) to it.

The corresponding question for our more general metric WES (i),

“Is there an Aπ s.t.
∑
e∈E

(
Topπ(e)
K/2

)i

· Topπ(e) − Botπ(e) + 1
K · |E| ≤ T ”

is clearly solvable in non-deterministic polynomial time, by simply evaluating
the metric for each non-deterministically chosen permutation π, but, while we
strongly suspect that it is NP-complete, just like SUM-OF-SPANS and SUM-
OF-TOPS, we have not yet been able to prove its NP-hardness so far. The major
obstacle in achieving the completeness result is posed by the non-linearity of the
target function for higher moments.



96 R.I. Siminiceanu and G. Ciardo

4 Results

Extensive tests were performed to shed light on the properties of the WES
metrics. We attempted as many exhaustive experiments as we could afford, given
that the number of runs required to determine the optimal ordering can be huge.

4.1 Methodology

We designed three set of experiments, which we ran on a 2.4GHz Linux work-
station with 1GB of memory. Our goal is to look for a connection between
optimizing one of the metrics, i.e., finding the variable ordering that results in
the smallest value for the metric, and optimizing the MDD performance, i.e.,
having the smallest peak number of MDD nodes during state-space generation.
Since the runtime and memory consumption are strongly related for MDD-based
algorithms, we can restrict ourselves to peak memory as a measure of the over-
all performance. In all the experiments, we limited ourselves to comparing the
metrics for the first three moments: WES (0), WES (1), and WES (2).

Finding the optimum peak MDD size among all possible K-variable orders
requires K! runs. This becomes infeasible for relatively small values of K. In
our first set of experiments, then, we tried this exhaustive search on a set of
five random models with K = 6 variables (for a total of 5 × 6! = 3600 runs).
The question we wanted to answer was whether variable orders that minimize
the MDD size coincide with orders that minimize any of the WES metrics, and
how often. This test was completed only for the saturation strategy, due to the
enormous amount of time required to finish the same tests on BFS.

The second set of experiments considered the inverse question: which metric
we should choose to minimize in order to achieve the best MDD performance. We
randomly generated 900 models of different size for which the minimum value of
the metric (not the state-space) for all K! variable orders can be computed in
a reasonable amount of time. We stopped at a maximum of K = 10 variables,
since after evaluating the 10! = 3, 628, 800 possible permutations, the optimum
one is run by BFS, for each model and each WES (i), in roughly ten minutes on
average. For all 900 models, the total runtime for BFS was 29 days. In contrast,
the same experiments took only 16 hours when running saturation, which is
more than 40 times faster.

The next value of K = 11 would have taken an estimated two hours per run
for BFS, for a grand total of close to one year. Even so, computing the value
of the WES functions statically for 10! orders and then generating the state
space for (one of) the order(s) that minimizes each metric takes much less time
than executing 6! different MDD-based state-space generation runs. While it
was not the purpose of this study, it would be of interest to generate all distinct
models of a given size K. The total number of such models is 2K(K−1), since,
in our setting, this is the number of all sub-digraphs of the complete digraph
of K nodes, as described in more detail in Section 4.2 (without considering any
symmetries, equivalences, or other possible reductions). At the same time, the
900 models used in this experiment are still relevant, precisely because they are



New Metrics for Static Variable Ordering in Decision Diagrams 97

randomly generated: they represent an unbiased statistical sample and offer a
reasonably even coverage of all possible models.

The first two sets of experiments can only be performed on small models. The
last set is instead taken from larger, more practical models. The methodology in
this case is different, as generating all models or all orders is out of the question.
We generated various orders, ranging from nearly optimal to nearly random, by
running a basic genetic algorithm for permutations [21]. The algorithm is stopped
after a varying number of generations, and the fittest chromosome (order) at the
end is fed into the state-space generator. The resulting MDD size is then used to
compare how the variations in the metric value relate to the MDD performance.

4.2 The Random Model Generator

A small program written in C++ generates models as bounded Petri nets to be
fed to the SMART [8] tool. The user specifies the number of Petri net places
(state variables) and transitions (model events), and the maximum number of
tokens allowed in each place (range of each state variable). Each transition is
adjacent to one input and one output arc. Hence, this technique of “filling out”
the Petri net with transitions is very similar to randomly filling a directed graph
with arcs between its nodes. The program rejects disconnected models, but allows
sinks, traps, and deadlocks.

4.3 Experiments Where the MDD Optimum Is Known

Table 1 presents a synopsis of the results from the first set of experiments. We
generate all possible 720 permutations of six variables and report the number of
permutations (“per”) that led to the smallest peak MDD size. The next three
pairs of columns report the minimum value of each WES metric on these orders,
and also how many of those reached the MDD optimum. For comparison, we
also list, in the last three pairs of columns, the overall optimum of each metric
and in how many instances this was reached.

Figure 1 illustrates the five random models used in this experiment, as directed
graphs (instead of Petri nets). An arrow represents a transition that removes a
token from (i.e., decreases the value of) the source place (variable) and adds it
to (i.e., increments) the target place (variable). The initial value of p0 is written
inside the place p0.

Table 1. Experiment 1: MDD optimum vs. WES optimums

smallest MDD overall metric optimum
per metric value on smallest MDDs WES (0) WES (1) WES (2)

WES (0) per WES (1) per WES (2) per min per min per min per
model 1 10 0.444 1 0.648 1 0.977 1 0.426 2 0.623 1 0.949 1
model 2 10 0.407 1 0.574 1 0.819 1 0.407 2 0.574 1 0.819 1
model 3 2 0.438 1 0.674 1 1.111 1 0.396 4 0.542 1 0.806 1
model 4 4 0.467 4 0.689 2 1.081 2 0.467 16 0.689 4 1.081 2
model 5 4 0.467 2 0.661 1 1.046 1 0.450 4 0.661 1 1.046 1



98 R.I. Siminiceanu and G. Ciardo

10

p
4

p
2

p
5

p
3

p
0

p
1

20

p
2

p
0

p
4

p
3

p
5

p
1

20
p

0

p
1

p
3

p
5

p
4

p
2

25

p
0

p
5

p
2

p
1

p
3

p
4 p p

pp

0 1

4 2

10

p
3

p
5

Fig. 1. The five random models used in the first set of experiments

Note that the minimums for the metrics differ substantially, depending on the
moment. This is because our assumption about the expected value of the scalars
απ(e) was imprecise. The average on the top level of all events is actually higher
thanK/2 as the width of the affected region pushes this value up. Similarly, the av-
erage bottom level would sit lower thanK/2. To achieve a better common ground
when comparing the metrics, we should consider the middle level as a scalar:

απ(e) =
(Topπ(e) + Botπ(e))/2

K/2

However, that would be a completely different metric, which will not capture
the effect we were targeting: the top level is most important, because that is
where the recursive calls in MDD operations start. Therefore, we will forgo the
property of having common expected values for the metrics in our present study.

The results show that in two of the five models (1 and 3), none of the
metrics’ optimums led to a MDD optimum. In two other models (2 and 4), all
metrics reach the MDD optimum. However, for the WES (0) metric, there are
multiple orderings that have minimum value and only a fraction of them are also
among those that coincide with the smallest MDD (1/2 and 4/16). For the other
two metrics this proportion is better (1/1 and 2/4). For the last model, WES (0)

does not reach the MDD optimum, while the others do, and they do so for a
single value. Moreover, we observe that overall (and this trend continues in the
next batch of experiments) WES (0) has multiple minimums, making it difficult
to choose the particular order among them that might lead to the MDD opti-
mum. With the other metrics, the number of minimums is much smaller, thus
the selection has a greater chance to succeed in matching the MDD’s best. Most
encouraging are cases such as models 2 and 5, where WES (1) has a unique min-
imum which coincides with the MDD optimum.



New Metrics for Static Variable Ordering in Decision Diagrams 99

4.4 Experiments Where the WES Optimums Are Known

This set of experiments used three parameters for generating the random nets:

– number of variables P : from 8 to 10;
– number of transitions T : from 11 to 25;
– number of tokens in the initial marking (i.e., the range of variables): from 5

to 100, in increments of 5.

for a total of 900 cases.
In many instances, the best order was the same for two, or even all three

metrics. A synopsis of the results is presented in Figure 2, as the percentage of
runs where each metric performed best among the three (there are many ties,
thus the sum of the three plots is over 100%). While for BFS the choice of metric
does not appear to have a large impact, this is not the case for saturation. The
table in the left of Figure 3 (left) presents a digest of the results for saturation,
where it can be seen that WES (1) clearly performs the best.

At first glance, WES (1) is the best choice among the three metrics. It also
appears that models that are not “dense” with transitions favor higher mo-
ment metrics (WES (1) and WES (2)). Since WES (1) seems to be consistently
slightly better than WES (2), it is then interesting to examine when it also “beats”
WES (0). Figure 3 (right) shows the percentage of runs where WES (1) is at least
as good as WES (0), as a function of T , for the choices P = 8 and P = 10. The
overall percentage is 79%.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

BFS WES0 P=8
BFS WES1 P=8
BFS WES2 P=8

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

BFS WES0 P=10
BFS WES1 P=10
BFS WES2 P=10

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

SAT WES0 P=8
SAT WES1 P=8
SAT WES2 P=8

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

SAT WES0 P=10
SAT WES1 P=10
SAT WES2 P=10

Fig. 2. Experiment 2: % of runs where WES (0), WES (1), or WES (2) is best, as a
function of T (x-axis) and P , for BFS (top) and saturation (bottom)



100 R.I. Siminiceanu and G. Ciardo

WES (0) WES (1) WES (2)

P = 8, T = 15 35% 80% 65%
P = 8, T = 20 50% 75% 65%
P = 8, T = 25 50% 70% 60%
P = 8, total 51% 73% 70%
P = 10, T = 15 50% 85% 50%
P = 10, T = 20 45% 85% 65%
P = 10, T = 25 50% 55% 60%
P = 10, total 48% 66% 55%

% of runs where each metric is best
(for saturation)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

P=8
P=10

% of runs where WES (1) beats WES (0)

as a function of the number of events

Fig. 3. Experiment 2 results: focus on saturation

4.5 Experiments Where Optimums Are Not Known

The collection of experimental results presented here is trying to answer the
question: “Is WES (1) more appropriate than WES (0), i.e., NES , to evaluate good
variable orderings in large models?”. We compare the effect of NES and WES (1)

in generating the state space with the two algorithms, saturation and BFS, and
measure the runtime and peak number of nodes in the MDD (final number of
nodes, as well as peak and final memory consumption are also collected, but not
shown in the graphs for conciseness). The experiments are set up in SMART for
three models: dining philosophers of size 10, slotted ring with 6 slots, and round
robin mutex with 8 processes (see [11] for a description of these models).

A genetic algorithm computes the variable order and evaluates the metrics
NES and WES (1) (as the actual fitness function for the chromosomes). To cover
as many values of the metrics as possible, the genetic algorithm is run for a
limited number of generations, before it converges to a good solution. As the
convergence happens relatively fast, the genetic algorithm is stopped after at
least 10 and no more than 1000 generations. The population size is also varied
from 10 to 100 chromosomes.

We stress that a single data point in the scatter plots corresponds to one run
of SMART, which can take up to an hour (the script aborts a run if the one hour
timeout has expired). To increase the density of the data points in the top-right
corners of the graphs would require months, spent running bad orders, so more
data in those sections is hard to come by.

The scatter plots in Figure 4 reveal a few interesting facts. First and foremost,
static variable ordering based on event span works: as a trend, higher values of
the metric tend to correspond to larger peak number of nodes. However, there is
some dispersion for both metrics, showing that neither metric is completely ac-
curate in predicting the effect of a particular order. For example, with a variable
order of NES 0.35 the state space of the slotted ring model can be built with
BFS as fast as in 80 seconds, but also as slow as in 550 seconds. Bad orderings
can have low NES , and also a good NES can yield poor results. An important
question is then: are the WES (1) plots less scattered? The answer is yes, even if
not impressively so. Nonetheless, a conclusion is that, using the WES (1) metric



New Metrics for Static Variable Ordering in Decision Diagrams 101

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 5e+06

 0  0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Philosophers BFS NES
Philosophers SAT NES

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 5e+06

 0  0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Philosophers BFS WES1
Philosophers SAT WES1

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0  0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Slotted ring BFS NES
Slotted ring SAT NES

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0  0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Slotted ring BFS WES1
Slotted ring SAT WES1

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0  0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Round robin BFS NES
Round robin SAT NES

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0  0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Round robin BFS WES1
Round robin SAT WES1

Fig. 4. Peak no. of nodes as a function of the NES/WES (1) metric: BFS vs. saturation



102 R.I. Siminiceanu and G. Ciardo

and given an input variable order of fitness 0.35, it is at least guaranteed that
state-space generation will take less than 350 seconds for this model. In conjunc-
tion to this, we recall that the WES (1) minimums have the tendency to be up
to 80% larger than NES ’s, so the above statement is actually conservative.

Beside the connection between the metric values and the MDD size, the scat-
ter plots also reveal a clear separation between the peak size when using BFS
and saturation. Most importantly, for near optimal values the performance of
saturation is consistently better. In conclusion, we can safely state that investing
time in optimizing the WES (1) metric will result in lower runtime and memory
consumption for MDD state-space generation, and that WES (1) is better suited
for saturation than for BFS.

Finally, a remark about the genetic algorithm employed here is due. As
prompted by [7], simulated annealing (essentially a degenerate form of genetic
optimization) was found to be faster at finding the global optimum of certain
fitness functions. We used this information to circumvent the need to compare
genetic optimization with other heuristics. A more comprehensive study on this
issue is due in the near future.

5 Conclusions and Future Work

We introduced a new family of metrics WES (i), indexed by a moment i, to
be used as a guide for static variable ordering in symbolic methods. We pro-
vided sufficient evidence that the connection between minimizing WES (1) and
minimizing the peak MDDs size in symbolic state-space generation is stronger
than for the unweighted metric WES (0). We attribute this to the fact that the
weighted metrics incorporate more specific information about the model, by re-
warding what is considered a good placement for the state variables affected by
an event, in addition to only a compact clustering of interdependent state vari-
ables. Another clear advantage of the metrics of higher moment is that they tend
to have fewer minimums than WES (0). We designed extensive experiments to
analyze the properties of the new metrics, including exhaustive searches for the
best variable orders in small models. To the best of our knowledge, this brute-
force approach had not been attempted before, yet it clearly can provide very
useful insight. We have also attested once more that the saturation algorithm is
vastly superior to breadth-first search, and, quite interestingly, it benefits even
more from adopting the metric WES (1) for its variable ordering.

For future research, one question is whether there is room for more fine-
tuning of the metrics or more “creative” ways to choose the scalars απ(e). An
open alternative is to scale the weights not by the index of the highest level
in the decision diagram, but by some middle value so that the the expected
average of the weights is 1. Of great interest would also be an exhaustive search
of all models of a given size, even if such an endeavour obviously has enormous
computational costs. This might enable us to classify the models into classes
that are best suited to a specific choice of metric. Where exhaustive searches are
not possible, data of statistical nature should be collected from more extensive
experiments. The behavior of the metrics near the optimums for the metrics, and



New Metrics for Static Variable Ordering in Decision Diagrams 103

how this behavior relates to the minimization of the peak MDD size should be
considered. From the algorithmic standpoint, heuristics to minimize the metrics,
other than genetic optimization, and approximation methods should be studied
and compared.

References

1. A. Aziz, S. Tasiran, and R.K. Brayton. BDD Variable Ordering for Interacting
Finite State Machines. In 31st ACM/IEEE Design Automation Conference (DAC),
San Diego, CA, June 1994. San Diego Convention Center. ch. 18.3.

2. F. A. Aloul, I. L. Markov, and K. A. Sakallah. MINCE: A static global variable-
ordering heuristic for SAT search and BDD manipulation. J. UCS, 10(12):1562–
1596, 2004.

3. D. Borrione and J. Vidal. Improving static ordering of BDDs for reachability
analysis, Apr. 29 2002.

4. R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Trans. Comput., 35(8):677–691, Aug. 1986.

5. R. E. Bryant. Symbolic boolean manipulation with ordered binary-decision dia-
grams. ACM Comp. Surv., 24(3):293–318, 1992.

6. J. R. Burch, E. M. Clarke, and D. E. Long. Symbolic model checking with parti-
tioned transistion relations. In VLSI, pages 49–58, 1991.

7. P. Chauhan, E. Clarke, S. Jha, J. Kukula, H. Veith, and D. Wang. Using com-
binatorial optimization methods for quantification scheduling. Lecture Notes in
Computer Science, 2144:293–302, 2001.

8. G. Ciardo, R. L. Jones, A. S. Miner, and R. Siminiceaunu. Logical and stochastic
modeling with SMART. In Proc. Modelling Techniques and Tools for Computer
Performance Evaluation, LNCS 2794, pages 78–97, Urbana, IL, USA, Sept. 2003.
Springer-Verlag.

9. G. Ciardo, G. Lüttgen, and R. Siminiceanu. Efficient symbolic state-space con-
struction for asynchronous systems. In Proc. 21th Int. Conf. on Applications and
Theory of Petri Nets, LNCS 1825, pages 103–122, Aarhus, Denmark, June 2000.
Springer-Verlag.

10. G. Ciardo, G. Lüttgen, and R. Siminiceanu. Saturation: An efficient iteration
strategy for symbolic state space generation. In T. Margaria and W. Yi, editors,
Proc. TACAS, LNCS 2031, pages 328–342, Genova, Italy, Apr. 2001. Springer-
Verlag.

11. G. Ciardo, R. Marmorstein, and R. Siminiceanu. Saturation unbound. In Proc.
Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
LNCS 2619, pages 379–393, Warsaw, Poland, Apr. 2003. Springer-Verlag.

12. G. Ciardo and J. Yu. Saturation-based symbolic reachability analysis using con-
junctive and disjunctive partitioning. In Proc. CHARME, Saarbrücken, Germany,
Oct. 2005. Springer-Verlag. To appear.

13. D. Geist and I. Beer. Efficient model checking by automated ordering of transition
relation. In David L. Dill, editor, Proceedings of the sixth International Confer-
ence on Computer-Aided Verification CAV, volume 818, pages 299–310, Standford,
California, USA, 1994. Springer-Verlag.

14. R. Drechsler, B. Becker, and N. Gockel. A genetic algorithm for variable ordering
of OBDDs. In Int’l Workshop on Logic Synthesis. ACM/IEEE, May 1995.



104 R.I. Siminiceanu and G. Ciardo

15. M. Fujita, H. Fujisawa, and Y. Matsunaga. Variable ordering algorithms for ordered
binary decision diagrams and their evaluation. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 12(1):6–12, Jan. 1993.

16. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman Press, 1979.

17. O. Grumberg, S. Livne, and S. Markovitch. Learning to order BDD variables in
verification. Journal of Artificial Intelligence Research, 18:83–116, 2003.

18. W. N. N. Hung and X. Song. BDD variable ordering by scatter search. In ICCD,
pages 368–373, 2001.

19. T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli. Multi-valued deci-
sion diagrams: theory and applications. Multiple-Valued Logic, 4(1–2):9–62, 1998.

20. Y. Lu, J. Jain, E. M. Clarke, and M. Fujita. Efficient variable ordering using a
BDD based sampling. In Design Automation Conference, pages 687–692, 2000.

21. Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.
Springer-Verlag, New York, NY, USA, 1996.

22. I.-H. Moon, J. H. Kukula, K. Ravi, and F. Somenzi. To split or to conjoin: the
question in image computation. In Proceedings of the 37th Conference on Design
Automation (DAC-00), pages 23–28, NY, June 5–9 2000. ACM/IEEE.

23. A. M. Moreira, D. Déharbe, and U. S. Costa. Advances in BDD reduction using
parallel genetic algorithms, May 2001.

24. R. Rudell. Dynamic Variable Ordering for Ordered Binary Decision Diagrams. In
IEEE /ACM International Conference on CAD, pages 42–47, Santa Clara, Cali-
fornia, Nov. 1993. ACM/IEEE, IEEE Computer Society Press.

25. R. Ranjan, A. Aziz, R. Brayton, B. Plessier, and C. Pixley. Efficient BDD algo-
rithms for FSM synthesis and verification, May 1995.

26. Y. Wu and J. Robert. Personal communication, Oct. 2005.



Widening ROBDDs with Prime Implicants

Neil Kettle1, Andy King1, and Tadeusz Strzemecki2

1 University of Kent, Canterbury, CT2 7NF, UK
2 Fordham University, New York, NY 10023, USA

Abstract. Despite the ubiquity of ROBDDs in program analysis, and
extensive literature on ROBDD minimisation, there is a dearth of work
on approximating ROBDDs. The need for approximation arises because
many ROBDD operations result in an ROBDD whose size is quadratic
in the size of the inputs. Furthermore, if ROBDDs are used in abstract
interpretation, the running time of the analysis is related not only to the
complexity of the individual ROBDD operations but also the number
of operations applied. The number of operations is, in turn, constrained
by the number of times a Boolean function can be weakened before sta-
bility is achieved. This paper proposes a widening that can be used to
both constrain the size of an ROBDD and also ensure that the number
of times that it is weakened is bounded by some given constant. The
widening can be used to either systematically approximate from above
(i.e. derive a weaker function) or below (i.e. infer a stronger function).

Keywords: ROBDD, widening, approximation, abstract interpretation.

1 Introduction

Reduced-Ordered Binary Decision Diagrams (ROBDDs) have numerous appli-
cations in model checking [4], program analysis [25] and abstract interpreta-
tion [1]. The popularity of ROBDDs stems from their memory-efficient encoding
of Boolean functions and a canonical representation that supports the memoi-
sation of ROBDD operations. The worst-case complexity of many ROBDD op-
erations is quadratic in the size of the inputs [2], but the inherent intractability
of Boolean function manipulation inevitably manifests itself; even though ROB-
DDs are constructed so as to factor out all replicated sub-ROBDDs, Boolean
functions exist whose size is exponential in the number of variables no matter
what variable ordering is employed [3]. Intractably large ROBDDs can [6] and
do [11] arise in program analysis. In particular, when an analysis associates each
program variable with n attributes and m program variables appear in scope,
then an ROBDD over m�lg(n)� propositional variables are required to encode
the dependencies between the attributes of the program variables. Even with
the use of sophisticated tree-automata techniques to improve the encoding [12],
problematically large ROBDDs still arise even when m ≈ 100 [11].

ROBDDs are not only problematic in terms of space but also in terms of time.
This is not only due to the complexity of individual ROBDD operations, but
because the number of ROBDD operations is itself potentially exponential. In

H. Hermanns and J. Palsberg (Eds.): TACAS 2006, LNCS 3920, pp. 105–119, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



106 N. Kettle, A. King, and T. Strzemecki

the context of abstract interpretation, this has particular relevance as analysis
is typically formulated as a fixpoint. Suppose, for example, that the result of an
analysis is conceived as the least fixpoint of a series of equations:

f1 = F1(f1, . . . , fn)
...

...
...

fn = Fn(f1, . . . , fn)

where each fi is a propositional function overm variables x1, . . . , xm and each Fi

is an operation on f1, . . . , fn obtained by, say, composing monotonic operations
such as disjunction fi ∨ fj, conjunction fi ∧ fj and existential quantification
∃xi(fj). The least fixpoint can be computed by setting fi = false and then
reapplying the n equations until stability is achieved. In the worst-case, each
application of n equations might weaken exactly one fi by adding a single model.
Since each fi can possess 2m models, a chain of n2m iterates are required in the
worst-case which violates the general requirement for a polynomial analysis. (The
reader is referred to [6] for examples that manifest this behaviour).

In program analysis, it is generally better to return an approximate answer
in an acceptable time than an exact answer in an exorbitant time. To this end,
widening operators have been proposed [9] that accelerate convergence on com-
putational domains that possess either infinite or very long chains. This use of
widening trades precision for time. However, widening can also be used to trade
precision for space, for example, replace one ROBDD with another that has more
models yet has a more compact representation [11, 15, 18, 21]. Despite extensive
literature on reducing the size of an ROBDD by selecting a propitious variable
ordering (the reader is referred to citations of the classic paper [19] on variable
reordering and minimisation), the problem of widening ROBDDs has received
relatively scant attention. This paper plugs this gap by proposing a new widen-
ing for ROBDDs based upon the enumeration of prime implicants [8] that has a
number of attractive properties:

– The widening can ensure that each fi is not weakened more than a prescribed
number of times. Previous attempts at bounding the iterations have confined
the analysis to a fixed sub-domain of Boolean formulae [13]. The widening
can support richer classes of dependencies without sacrificing scalability.

– The widening can compute dense approximations of an ROBDD. Moreover,
by constructing the new ROBDD in terms of the progressively longer impli-
cants, the widening can be tuned to achieve the desired degree of precision.

– The widening is not dependent on the variable ordering. State-of-the-art in
ROBDD approximation is represented by heuristic algorithms [21, 18] that
prune branches from an ROBDD by checking whether each branch is sub-
sumed by its sibling. These algorithms are syntactic in that they are informed
only by the structure of the ROBDD. In this paper, widening is formulated
in terms of the prime implicants of the underlying Boolean function. The
advantage of this semantic approach is that the widening is not sensitive to
the variable ordering, hence improving the predictability of the analysis.



Widening ROBDDs with Prime Implicants 107

– The widening can be realised in a surprisingly straightforward manner by
introducing a cardinality constraint into the algorithm of Coudert and Madre
[8] that removes all prime implicants of excessive length. Experimental work
suggests that although this widening produces accurate approximations, the
running time of our implementation is not significantly worse than state-of-
the-art methods [21, 18].

The paper is structured as follows: Section 2 presents the necessary preliminaries.
Section 3 specifies a widening for ROBDDs and Sect. 4 details algorithms for
realising it. Section 5 presents the experimental results. Finally, Sect. 6 surveys
the related work and Sect. 7 concludes.

2 Preliminaries

2.1 Boolean Functions

A Boolean function is a mapping f : Bool n → Bool where Bool = {0, 1} that is
conventionally written as a propositional formula defined over a totally ordered
set of propositional variables X = {x1, . . . , xn}. For instance, x1 ∨ x2 represents
the dyadic function {〈0, 0〉 �→ 0, 〈0, 1〉 �→ 1, 〈1, 0〉 �→ 1, 〈1, 1〉 �→ 1}. The set
of propositional formulae over X is denoted Bool X and henceforth functions
and formulae will be used interchangeably. We define the set of models of a
Boolean function f as the mapping modelX(f) : Bool X → ℘(Bool n) such that
modelX(f) = {〈b1, . . . , bn〉 | f(b1, . . . , bn) = 1} where ℘ denotes the power-
set operator. For example, if X = {x1, x2, x3} then modelX(x1 ∧ (x2 → x3)) =
{〈1, 0, 0〉, 〈1, 0, 1〉, 〈1, 1, 1〉}. One Boolean function f1 entails another f2, denoted
f1 |= f2 iff modelX(f1) ⊆ modelX(f2). The structure 〈Bool X , |=,∨,∧, 0, 1〉 is
a finite lattice where 0 and 1 abbreviate the Boolean functions λb.0 and λb.1
respectively and b ∈ Bool n. A chain of Boolean functions C is a set C ⊆ Bool X

such that either f |= f ′ or f ′ |= f for all f, f ′ ∈ C. An anti-chain of Boolean
functions A is a set A ⊆ Bool X such that f �|= f or f = f ′ for all f, f ′ ∈ A. The
Shannon co-factor of a Boolean function f w.r.t. a variable xi and a Boolean
constant b is defined by f|xi←b = f(x1, . . . , xi−1, b, xi+1, . . . , xn). Finally, we
denote existential quantification w.r.t. a variable xi by ∃xi(f) which can be
computed using Schröder elimination, that is, by ∃xi(f) = f|xi←0 ∨ f|xi←1.

A cube p is a Boolean function of the form (∧y∈Y y) ∧ (∧z∈Z¬z) such that
Y ∪Z ⊆ X and Y ∩Z = ∅ where Y, Z are sets of variables; moreover, the length of
p is denoted ‖p‖ and defined by ‖p‖ = ‖Y ‖ + ‖Z‖. An implicant p of a Boolean
function f is a cube p such that p |= f . The Boolean function 1 is the cube
obtained by putting Y = Z = ∅. A prime implicant p of a Boolean function f is
an implicant p of f such that there exists no other implicant p′ of f where p |= p′

and p′ �= p. Let primes(f) denote the set of prime implicants of the Boolean
function f . To illustrate, consider f = (¬x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x3) ∧ (¬x3 ∨ x4)
and p = (¬x1 ∧ ¬x3). Observe that p |= f and therefore p is a implicant of f .
Further, suppose p |= p′ and p �= p′. Then p′ = ¬x1 or p′ = ¬x3 and, in either
case, p′ �|= f . Hence p is a prime implicant of f . In fact, primes(f) = {¬x1∧¬x3,
¬x2 ∧ ¬x3,¬x1 ∧ x4}. Finally, observe primes(1) = {1} and primes(0) = ∅.



108 N. Kettle, A. King, and T. Strzemecki

2.2 Binary Decision Diagrams

A Binary Decision Diagram (BDD) [2] is a rooted directed acyclic graph where
each internal node is labelled with a variable xi. Each internal node has one
successor node connected via an edge labelled 0, and another successor connected
via an edge labelled 1. An external (leaf) node is represented by one of two nodes
labelled with the Boolean constants 0 or 1. The Boolean function represented by
a BDD can be evaluated for a given variable assignment by traversing the graph
from the root, taking the 1 edge at a node when the variable is assigned to 1
and the 0 edge when the variable is assigned to 0. The external node reached
in this traversal indicates the value of the Boolean function for the assignment.
Observe that each sub-BDD of a BDD also itself represents a Boolean function.

An ROBDD is a BDD that obeys the following restrictions to obtain a canon-
ical representation and thereby permit constant-time equivalence checks. Firstly,
the label of a node xi is always less than the label xj of any internal node im-
mediately reachable via its successors, that is, i < j. Secondly, there can exist
no sub-ROBDD that is rooted at a node labelled with xi that represents the
function f such that f|xi←0 = f|xi←1. Thirdly, there are no two nodes labelled
with the same variable that have identical successor nodes.

3 Specification of the Widening

To decouple the widening from implementation concerns, we first specify how to
widen Boolean functions for both space and time using prime implicants.

3.1 Widening for Space

The ROBDD approximation algorithms of Shiple [21] and Ravi et al [18] seek
to improve the density of an ROBDD which is defined as the ratio of minterms
in the represented function to the number of nodes in the representing ROBDD.
Both algorithms identify the non-dense sub-ROBDDs within a ROBDD and
substitute them with other sub-ROBDDs which are denser and yet possess more
models. Ultimately this culminates in a dense upper-approximation. Although
this approach is well-intended, density comparisons and ROBDD restructuring is
limited to those sub-ROBDDs that actually arise in the ROBDD whose presence,
in turn, depends on the variable ordering. Our thesis is that prime implicants
are natural variable order-independent candidates for reasoning about density.
To illustrate this, consider the set of implicants S = {p | p |= f} of a function f .
Any S′ ⊆ S is a sound under-approximation of f in the sense that ∨S′ |= f yet
different S′, even of the same size, can yield better approximations. For instance,
consider an implicant p ∈ S and a prime implicant p′ strictly contained within
it, that is, p |= p′ and p �= p′. Then ‖p′‖ < ‖p‖. Hence p′ contributes 2n−‖p′‖

minterms to f whereas p contributes only 2n−‖p‖. Thus p′ is a better candidate
for inclusion in S′ than p. Moreover, since p′ is shorter than p, it is likely to
contribute a shorter path in an ROBDD that represents ∨S′. The following
family of widening operators draw together these ideas to compute a sound over-
approximation by combining negation with systematic under-approximation.



Widening ROBDDs with Prime Implicants 109

Definition 1. The family of operators ∇k : Bool X → Bool X where k ∈ N∪{0}
are defined by ∇k(f) =

∧
{¬p | p ∈ primes(¬f) ∧ ‖p‖ ≤ k}.

The proposition asserts that ∇k is anti-monotonic in its parameter k and hence
∇k is uniformly more precise than ∇k−1. Furthermore, in the limit, ∇k(f) con-
verges onto f from above. The widening is also monotonic in its argument f .

Proposition 1. Suppose ‖X‖ = n. Then

– If f ∈ Bool X then f = ∇n(f) |= ∇n−1(f) |= . . . |= ∇0(f) = 1
– If f, f ′ ∈ Bool X , f |= f ′ and 0 ≤ k ≤ n then ∇k(f) |= ∇k(f ′).

Proof.

– Since f =
∨

primes(f) (Blake canonical form [10]), f = ∇n(f). Let 0≤ k< n.
Note {¬p | p ∈ primes(¬f)∧‖p‖ ≤ k} ⊆ {¬p | p ∈ primes(¬f)∧‖p‖ ≤ k+1},
hence ∇k+1(f) |= ∇k(f). Finally observe ∇0(f) = ∧∅ = 1 as required.

– Let 0 ≤ k ≤ n, p′ ∈ primes(¬f ′) and ‖p′‖ ≤ k. Then p′ |= ¬f ′ |= ¬f .
There exists p ∈ primes(¬f) such that p′ |= p. Thus ‖p‖ ≤ ‖p′‖ ≤ k. Since
p′ |= p, ¬p |= ¬p′, hence ∇k(f) =

∧
{¬p | p ∈ primes(¬f)∧ ‖p‖ ≤ k} |= ¬p′.

Therefore ∇k(f) |= ∇k(f ′) as required. "#

3.2 Widening for Time

To explain the role of implications in widening for time, consider a chain of
functions {f1, f2, . . .} ⊆ Bool X where fi+1 = F (fi) and F : Bool X → Bool X is
a monotonic operator. The problem is to extract an invariant from that chain,
that is, find a function g such that fi |= g for all fi. Such an invariant can be
found, whilst applying F only a bounded number of times, by constructing a set
of m Boolean functions S1 = {g1, . . . , gm} such that f1 |= gi for all gi. This set is
then iteratively pruned until stability is reached. This is realised by constructing
Si+1 = {g ∈ Si | F (∧Si) |= g}. By construction f1 |= ∧S1 and, because F is
monotonic, it follows by induction that fi |= ∧Si. If Sl denotes the limit, that
is Sl = Sl+1, then fi |= ∧Sl for all fi, hence ∧Sl is an invariant. The key point
about this construction is that F is applied at most m iterations rather than
possibly 2‖X‖ times. This gives a performance guarantee and a parameter m
that can be increased (if necessary) to improve precision. This merely leaves the
problem of constructing S1.

An uninformed approach to computing S1 is to extractm arbitrary implicants
of ¬f1, that is, p |= ¬f1. Then each ¬p is a clause of f1. However, consider a prime
implicant p′ of ¬f1 such that p |= p′. Then ¬p′ |= ¬p, therefore substituting a
prime implicant p′ for p we obtain a more accurate initial ∧S1, without increasing
its size. This motivates constructing S1 from prime implicants. Furthermore,
consider two prime implicants p and p′ such that ‖p′‖ < ‖p‖. Then p′ is a more
propitious candidate for inclusion in S1 since the clause ¬p′ possesses fewer
minterms than ¬p which motivates a greedy approach to constructing S1 in
terms of prime implicants of minimal length.



110 N. Kettle, A. King, and T. Strzemecki

One may wonder whether a bound k on the length of prime implicants, in-
duces a bound on the number m of primes, and hence a bound on the number of
iterates. A straightforward relationship between k and m follows from the obser-
vation that there are nC121, nC222, . . . , nCk2k different cubes of length 1, 2, . . . , k
respectively where iCj = i!

(i−j)!j! . Hence a bound onm is min({2n,
∑k

i=1
nCk2k})

where n = ‖X‖. However, by adapting an argument relating to anti-chains of
implicants [5, proof of Theorem 2.2], the following tighter bound can be obtained:

Proposition 2. ‖{p ∈ primes(f) | ‖p‖ ≤ k}‖ ≤ max({nC121, . . . , nCk2k}).
Proof. Let f ∈ Bool X , X = {x1, . . . , xn}, C denote the set of cubes over X and
P = {p ∈ primes(f) | ‖p‖ ≤ k}. P is anti-chain of Bool X and also C. It has
been shown [14] that in a poset such as 〈C, |=〉, there exists a maximal anti-chain
which is invariant under any isomorphism of C. Let A be such an anti-chain.
Now let c, c′ ∈ A such that ‖c‖ = ‖c′‖ and consider a mapping F : Y → Y
where Y = {x1,¬x1, . . . , xn,¬xn} such that F (xi) = ¬F (¬xi). Suppose that
F (c) = c′ where F is extended from Y to C in the natural way. Since F is an
automorphism, it follows that c′ ∈ A, hence {c′′ ∈ C | |c| = |c′′|} ⊆ A. Since A
is an anti-chain, then if p ∈ C and ‖p‖ < ‖c‖ then there exists c′′ ∈ A such that
p |= c′′ and p �= c′′. Hence p �∈ A. Similarly, if ‖p‖ > ‖c‖ then p �∈ A. Therefore
‖A‖ = nC‖c‖2‖c‖ and, since ‖P‖ ≤ ‖A‖, the result follows. "#

Whenever 3k ≤ 2(n+1) the above bound on m collapses to nCk2k. This follows
since nC121 ≤ . . . ≤ nCk−12k−1 ≤ nCk2k iff 1

(n−k+1) ≤ 2
k iff 3k ≤ 2(n + 1).

Because this bound is so conservative, a more pragmatic tactic is needed for
generating the shortest m prime implicants. One such tactic is to compute all
prime implicants of length 1 for f1, then all primes whose length does not exceed
2, then all primes whose length does not exceed 3 etc, until m prime implicants
are discovered. The following section presents new algorithm that is designed for
solving this specific form of the prime implicant enumeration problem.

4 Implementation of the Widening

The complexity of finding the shortest prime implicant given a DNF formula
over n variables is in GC(log2 n, coNP )-complete [24], hence at least as hard as
coNP , and therefore one would expect the widening to be completely intractable.
However, Coudert and Madre [8] give an elegant algorithm for computing all the
prime implicants of a Boolean function presented as an ROBDD. The primes
are, in turn, represented in an ROBDD and hence the complexity of prime
enumeration is not necessarily reliant on the number of implicants but the size
of the ROBDD. Alas, a detailed analysis of the complexity of this algorithm has
not been forthcoming and it is unknown whether the algorithm is polynomial
in the size of the input ROBDD [7]. Furthermore, it remains unclear how the
results of Umans [24] relate to the complexity of this algorithm.

This section proposes a refinement to the algorithm of Coudert and Madre [8]
that enumerates all primes implicants whose length does not exceed k. This re-
fined algorithm can be applied iteratively to find a shortest prime implicant and



Widening ROBDDs with Prime Implicants 111

thus is unlikely to be polynomial. The essence of the Coudert and Madre [8]
scheme is a transformation that maps an ROBDD representing f over the vari-
ables X to another representing a function f ′ over the variables o1, s1, . . . , on, sn

where n = ‖X‖. The idea is that any implicant p′ of f ′ can be reinterpreted as
a prime implicant of f in the sense that p is a prime implicant of f whenever:

p = (∧{xi | p′ |= oi ∧ p′ |= si}) ∧ (∧{¬xi | p′ |= oi ∧ p′ |= ¬si})

The intuition is that oi indicates whether the variable xi occurs within a prime
and si encodes the polarity of that occurrence. Coudert and Madre [8] present
an ROBDD transformation that recursively builds f ′ from f . Our new insight is
that it is possible to build f ′ from f whilst enforcing the cardinality constraint∑n

i=1 oi ≤ k. The following algorithm builds toward the refined algorithm by
generating an ROBDD which expresses the cardinality constraint. The constraint
is realised as a cascade of n full-adders that together output the sum that is
expressed in �lg(n)� bits. These bits are then constrained so as to not exceed k.

Algorithm 1. CONSTRAIN(k)
for i← 1 to �lg n� do

sum[i]← 0
for i← 1 to n do

c← oi

for j ← 1 to �lg n� do
c′ ← c ∧ sum[j]
sum[j]← sum[j]⊕ c
c← c′

f ← 0
for i← 1 to n do

f ← (¬sum[i] ∧ k[i]) ∨ ((sum[i]↔ k[i]) ∧ f)
return f

In the above algorithm, the bound k is represented as an array of �lgn� bits k[i]
such that k = k[1] + 2k[2] + . . . + 2�lg n�k[�lgn�]. The first loop initialises the
elements of the temporary array sum[i] to false. The second loop iteratively
calculates o1 + . . .+ on and stores the result in the temporary array sum. The
ith iteration of the loop initialises the carry c to be oi and then proceeds to add
the carry into the sum that has accumulated thus far. The formula sum[j] ⊕ c
merely denotes the exclusive-or of the jth bit of sum with the carry c. The third
loop constrains the array sum to not exceed the k vector. Algorithm 2 details
how this constraint can be integrated in the algorithm of Coudert and Madre [8].
Because of reasons of space, those readers who wish to follow the structure of
the algorithm and the underlying meta-product construct are referred to [8].

Algorithm 2 repeatedly imposes the cardinality constraint which trims the
size of all intermediate ROBDDs. The astute reader will notice that each call
to PRIMESLEQ operates on a sub-ROBDD that is only defined over {xj , . . . , xn}.



112 N. Kettle, A. King, and T. Strzemecki

Algorithm 2. PRIMESLEQ(f, k)
xi ← var(f)
g ←PRIMESLEQ(f|xi←0 ∧ f|xi←1, k)
g′ ←PRIMESLEQ(f|xi←1, k) ∧ ¬g
g′′ ←PRIMESLEQ(f|xi←0, k) ∧ ¬g
return ((¬oi ∧ g) ∨ (oi ∧ si ∧ g′) ∨ (oi ∧ ¬si ∧ g′′)) ∧ CONSTRAIN(k)

However, CONSTRAIN(k) imposes a constraint over {x1, . . . , xn}. This is no error
since

∑n
i=1 oi ≤ k entails

∑n
i=j oi ≤ k and therefore it is not necessary to

manufacture a different cardinality constraint for each level in the ROBDD.
When widening for time, it is necessary to extract m primes from the trans-

formed ROBDD. This can be accomplished by a partial, depth-first traversal
that sweeps the ROBDD until m primes have been retrieved. When widening
for space, an ROBDD over-approximation is required. The following algorithm
details how this can be constructed by applying existential quantification:

Algorithm 3. PRIMES2BDD(f)
for i← 0 to n do

f ′ ← ∃si(∃oi(f ∧ (oi → (xi ↔ si))))
f ← f ′

return f

5 Experimental Results

To assess the precision and tractability of the widening, it was implemented
within the CUDD [22] Decision Diagram package. This package supports the
algorithms of Shiple [21] and Ravi et al. [18] which, following the CUDD naming
scheme, will henceforth be referred to as bddOverApprox and remapOverApprox
respectively. Table 1 presents details of the Boolean functions, drawn from the
MCNC and ISCAS benchmark circuits, used to assess the widening. For ease of
reference, all Boolean functions are labelled with a numeric identifier. The second
and third columns give the circuit name and specific output number taken from
the circuits; outputs were selected so as to evaluate the widening on ROBDDs
with varying size. The fourth, fifth, sixth and seventh columns respectively give
the number of variables, number of ROBDD nodes, the number of minterms of
the Boolean function represented by the ROBDD and the density of the ROBDD.
All experiments were performed on an UltraSPARC IIIi 900MHz based system,
equipped with 16GB RAM, running the Solaris 9 Operating System, and using
getrusage to calibrate CPU usage in seconds.

5.1 Our Method

The topmost graph of Fig. 1 presents the time required to apply Algorithm 2 and
then Algorithm 3 to the benchmarks for various k. (Note that this time is dom-



Widening ROBDDs with Prime Implicants 113

Table 1. Benchmark formulae

ID Circuit # ‖X‖ size minterms density

1. pair 177 51 26253 1.86× 1014 7.08× 109

2. 182 53 33190 8.12× 1014 2.45× 1010

3. mm9b 420 31 94328 1.61× 109 1.71× 104

4. 421 31 96875 1.62× 109 1.67× 104

5. s9234 288 76 655192 3.59× 1022 5.48× 1016

6. 488 75 1304371 1.95× 1022 1.49× 1016

7. rot 149 53 1315 5.18× 1015 3.94× 1012

8. 172 55 1700 1.08× 1016 6.35× 1012

inated by the cost of applying Algorithm 2 and therefore the times reported
in the table closely tally with the times required to apply Algorithm 2 and
then walk the ROBDD to extract a bounded number of primes). Interestingly,
Coudert and Madre [8] suggest that “[their] procedures have costs that are in-
dependent of the sizes of [the prime] sets”, “since there is no relation between
the size of a set and the size of the [ROBDD] that denotes it”. However, this
does not square with our results which suggest that the size of the ROBDDs
depends, at least to some extent, on the number of primes that it represents.
This is witnessed by the sharp increase in runtime that occurs for some cir-
cuits as k increases. However, the crucial point is not that the runtime spikes,
but the degree of precision achieved before the escalation in complexity. To this
end, the middle graph plots the ratio of minterms of the original Boolean func-
tion against that of the approximation for increasing values of k. Observe that
the quality of the approximation rapidly converges onto 1 as k increases. This
suggests the tactic of incrementally increasing k until either the precision is ac-
ceptable or a timeout is reached. Applying this tactic achieves precision rates of
70, 80, and 90% yielding runtimes of less than 5, 20 and 60 seconds respectively.
On the other hand, repeatedly incrementing k until the accumulated runtime
exceeds 30 seconds, achieves minterm precision rates for benchmarks 1–8 of
99, 99, 99, 99, 99, 92, 96, 95% respectively. This realises an anytime approach to
prime generation and ROBDD approximation in which the quality of the result
is limited only be the quantity of resource available. Incrementing k until at
least 1024 prime implicants are found (which if anything is rather high for the
purposes of analysis), requires the following values of k: 5, 5, 7, 7, 5, 6, 7, 7.

It should be noted that these figures are, if anything, rather pessimistic for
many types of program analysis. For example, in the context of groundness
analysis that is widely used in logic programming, it has been observed that the
vast majority of clauses that arise during analysis are very small in length [13].
This implies that widening with small k is unlikely to have any discernable
impact on the overall precision.

The value of an approximation algorithm has traditionally been reported in
terms of density [21, 18] which gives an indication as to the compactness of the
approximating ROBDD. The lower graph thus reports how the density varies



114 N. Kettle, A. King, and T. Strzemecki

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  2  4  6  8  10  12  14  16

Ti
m

e 
(s

ec
on

ds
)

k

pair #177
pair #182

mm9b #420
mm9b #421
s9234 #288
s9234 #488

rot #149
rot #172

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  4  6  8  10  12  14  16

M
int

er
m

 R
at

io

k

pair #177
pair #182

mm9b #420
mm9b #421
s9234 #288
s9234 #488

rot #149
rot #172

 1

 100000

 1e+010

 1e+015

 1e+020

 1e+025

 2  4  6  8  10  12  14  16

De
ns

ity

k

pair #177
pair #182

mm9b #420
mm9b #421
s9234 #288
s9234 #488

rot #149
rot #172

Fig. 1. Time, Minterm ratio and Density against k



Widening ROBDDs with Prime Implicants 115

with k. By comparing the densities reported in Table 1 against those presented
in the graph, it can be seen that the widening can significantly improve on the
density of the original ROBDD.

5.2 Comparison Against Existing Methods

Table 2 summaries the results obtained by exercising the bddOverApprox and
remapOverApprox algorithms on the circuits in our benchmark suit. The table
is partitioned horizontally, into three groups of rows according to whether the
bddOverApprox algorithm, remapOverApprox algorithm, or the widening algo-
rithm proposed in this paper was applied. The second and third columns give
the size of the approximating ROBDD and the number of minterms in its un-
derlying Boolean function. The fourth and fifth columns detail the ratio of these
values with respect to the size and number of minterms in the original ROBDD
(as given in Table 1). The bddOverApprox and remapOverApprox algorithms
are parameterised by a quality parameter q ∈ [0, 1], that specifies the minimal
acceptable density improvement. That is, these algorithms ensure that the new

Table 2. Comparison of approximation

ID Approximation Ratios Time Notes
size minterms size minterms

[18] 1. 8382 3.40 × 1014 0.32 1.83 4.61 q: 0.94
2. 9711 1.47 × 1015 0.29 1.81 6.32 q: 0.84
3. 933 1.88 × 109 0.01 1.16 10.85 q: 0.75
4. 722 1.88 × 109 0.01 1.16 11.96 q: 0.84
5. 15 5.68 × 1022 0.01 1.58 1086.12 q: 0.88
6. 11 2.89 × 1022 0.01 1.49 2321.68 q: 0.92
7. 91 7.30 × 1015 0.07 1.41 1.13 q: 0.96
8. 838 2.96 × 1016 0.49 2.75 1.50 q: 0.98

[21] 1. 8385 1.72 × 1015 0.32 10.85 4.86 q: 0.92
2. 9714 8.06 × 1015 0.29 9.93 6.35 q: 0.81
3. 933 1.88 × 109 0.01 1.16 12.39 q: 0.75
4. 722 1.88 × 109 0.01 1.16 13.10 q: 0.84
5. 15 5.68 × 1022 0.01 1.58 1057.62 q: 0.87
6. 11 2.89 × 1022 0.01 1.49 2562.30 q: 0.92
7. 168 8.10 × 1015 0.13 1.56 1.25 q: 0.92
8. 837 1.73 × 1016 0.49 1.60 1.67 q: 0.94

§ 3 1. 11027 2.06 × 1014 0.42 1.11 0.58 k: 5
2. 7301 8.32 × 1014 0.22 1.03 0.85 k: 6
3. 44334 1.68 × 109 0.47 1.02 6.38 k: 12
4. 39718 1.69 × 109 0.41 1.05 8.19 k: 11
5. 75 3.64 × 1022 0.01 1.01 20.36 k: 7
6. 103 1.96 × 1022 0.01 1.01 47.53 k: 6
7. 289 6.29 × 1015 0.22 1.21 0.88 k: 7
8. 527 1.09 × 1016 0.31 1.01 1.66 k: 7



116 N. Kettle, A. King, and T. Strzemecki

density d′ satisfies q ≥ d/d′ where d is the density of the original ROBDD. As
Shiple himself says [21], “The bddUnderApprox method is highly sensitive to the
[quality] parameter”. Added to this, there is no clear way to choose q so as to
obtain a desired reduction in ROBDD size.

For purposes of comparison, we chose to reduce the size of an ROBDD
by at least 50%, but ideally not significantly more than 50% (it was the de-
sire to solve this particular analysis problem that motivated this study). Both
bddOverApprox and remapOverApprox were called repeatedly under the bisec-
tion algorithm to search for a quality value that yielded an acceptable reduction
in size. The algorithm terminated when the difference between the high and
lower quality bounds was less than 0.01. The notes column gives the particu-
lar quality values that achieved the best ROBDD approximation and the time
column presents the total time required to call bisection which, of course, was
dominated by the time to approximate the ROBDDs. Despite the systematic
use of bisection, the reduction in ROBDD size was often significantly more than
50%. This was due to the ROBDD collapsing at certain quality thresholds.

The lower rows of the Table 2 summarise the results of incrementing k until
a space reduction of at least 50% was obtained. The notes column gives the re-
quired values of k and the cumulative execution time. Observe that the minterm
ratios thus obtained compare favourably with those derived using bddOverApprox
and remapOverApproxwhilst the overall execution time is also reduced. Note that
other variable orderings may give different results for the bddOverApprox and
remapOverApprox. (As a sanity check, the widening was tested to verify that it
delivered the same approximations under different variable orderings.)

6 Related Work

Quite apart from the heuristic algorithms of Shiple [21] and Ravi et al. [18] that
both reside in O(‖G‖2) where ‖G‖ is the number of nodes in the ROBDD, other
less well-known widenings have been proposed in the literature. Mauborgne [15]
shows how to perform strictness analysis with an ROBDD variant referred to
as a typed decision graph (TDG). Mauborgne advocates widening TDGs for
space, using an operator ∇(l, f) that takes, as input, a TDG that encodes a
Boolean function f and returns, as output, a TDG g with at most l nodes
such that f |= g. The first widening he proposes is in O(‖G‖4) where ‖G‖ is
the number of nodes in the TDG. To improve efficiency, Mauborgne suggests
a second widening that resembles those of Shiple and Ravi et al. This algo-
rithm computes the TDGs f1, . . . , fn obtained by replacing each node i with 1.
The fi are filtered to remove those TDGs whose size exceed ‖G‖/2. Of the
remaining fi, an fmax is selected which “gives best results” and the widening
is reapplied to fmax if its TDG contains more than l nodes. More recently,
Schachte and Søndergaard [20] have presented elegant ROBDD algorithms for
approximating functions to various sub-domains of Boolean formulae. Although
complexity theoretic issues still remain, these algorithms are potentially useful as
widenings.



Widening ROBDDs with Prime Implicants 117

Algorithm 4. EquivVars(f)
xi ← var(f)
if f|xi←0 = true then

return 〈i, 0, 1〉 :: ε
if f|xi←1 = true then

return 〈i, 1, 0〉 :: ε
if f|xi←0 = false then

return 〈i, 1, 0〉 ::EquivVars(f|xi ←1)
if f|xi←1 = false then

return 〈i, 0, 1〉 ::EquivVars(f|xi ←0)
v1 ← 〈i, 0, 1〉 ::EquivVars(f|xi ←0)
v2 ← 〈i, 1, 0〉 ::EquivVars(f|xi ←1)
return anti unify(v1, v2)

The widening presented in this paper relies upon the generation of prime
implicants. This problem was first addressed by Quine [17] and, since then,
there has been much interest in developing efficient prime implicant enumeration
algorithms (interested readers should consult [23] for a detailed history of the
problem and known algorithms). Interestingly, the ROBDD literature already
suggests an approach to widening ROBDDs that is based on prime implicants
(albeit of a restricted form). Bagnara and Schachte [1] propose an O(n2‖G‖)
ROBDD algorithm for finding all pairs x, y ∈ X such that ¬(x↔ y) |= f where

f

〈1,1,0〉:〈2,A,B〉:〈4,A,B〉:〈5,B,A〉 ��
�������	x1

1

〈2,A,B〉:〈4,A,B〉:〈5,B,A〉
〈1,1,0〉:〈2,A,B〉:〈4,A,B〉:〈5,B,A〉

�����
��

�
0

�����������

�������	x21

〈4,1,0〉:〈5,0,1〉

〈2,1,0〉:〈4,1,0〉:〈5,0,1〉

���������������������������� 0

〈3,1,0〉:〈4,0,1〉:〈5,1,0〉

〈2,0,1〉:〈3,1,0〉:〈4,0,1〉:〈5,1,0〉

��������������� 0

�������	x3
1〈4,0,1〉:〈5,1,0〉

����
��

�� 0

���
��

��

�������	x4
0

����
��

� 1〈5,0,1〉

���
��

��
�

�������	x4
0〈5,1,0〉

����
��

�� 1

���
��

��
0

0 �������	x5
1

����
��

� 0

���
��

��
�������	x5

1

����
��

� 0

���
��

��
0

0 1 1 0

Fig. 2. Algorithm 4 when applied to f = (x1 ∧ (x2 ∨ x3)) ∧ (x2 ↔ x4) ∧ (x2 ↔ ¬x5)



118 N. Kettle, A. King, and T. Strzemecki

n = ‖X‖. The formula ¬(x ↔ y) = (x ∧ ¬y) ∨ (¬x ∧ y) is actually a quadratic
prime implicant and this hints at an ROBDD widening. The algorithm sketched
in Algorithm 4 applies Plotkin’s anti-unification algorithm [16] to detect all
quadratic prime implicants of the form ¬(x↔ y) and (x↔ y) whilst reducing the
complexity fromO(n2‖G‖) [1] to O(n lg n‖G‖) where n is the number of variables
in the ROBDD. A run of the algorithm is illustrated for an ROBDD representing
f = (x1∧(x2∨x3))∧(x2 ↔ x4)∧(x2 ↔ ¬x5). The intuition behind the algorithm
is that lists such as 〈2, 1, 0〉 : 〈4, 1, 0〉 : 〈5, 0, 1〉 and 〈2, 0, 1〉 : 〈3, 1, 0〉 : 〈4, 0, 1〉 :
〈5, 1, 0〉 represent x2 ∧ x4 ∧ ¬x5 and ¬x2 ∧ x3 ∧ ¬x4 ∧ x5. Anti-unification can
then be applied to these lists to obtain 〈2, A,B〉 : 〈4, A,B〉 : 〈5, B,A〉 which
encodes (x2 ↔ x4) ∧ (x4 ↔ ¬x5) where A and B are special symbols that
represent simple dependencies between variables. The algorithm finally returns
a list that represents x1 ∧ (x2 ↔ x4)∧ (x4 ↔ ¬x5) which, indeed, is a safe upper
approximation of f . By adapting an argument given in [13], it can be shown
that this algorithm returns an upper-approximation in a sub-class of Boolean
formulae that admits chains of maximal length 2n. Although not as general as
the approach proposed in this paper, this algorithm offers a compromise between
efficiency and generality that might suit some analyses [13].

7 Conclusions

The paper has proposed a new widening for ROBDDs and an algorithm for
realising it. The widening can be used to either bound the number of times
that an ROBDD is updated in an iterative analysis or approximate an ROBDD
with another that has a more space-efficient representation. Empirical evidence
suggests that the widening is potentially useful and surprisingly tractable.

Acknowledgements. We thank Jacob Howe, Laurent Mauborgne, Axel Simon,
Peter Schachte and Harald Søndergaard for useful discussions. This work was
funded by EPSRC Grant EP/C015517 and the British Council Grant PN 05.021.

References

[1] R. Bagnara and P. Schachte. Factorizing Equivalent Variable Pairs in ROBDD-
Based Implementations of Pos. In Algebraic Methodology and Software Technol-
ogy, volume 1548 of LNCS, pages 471–485. Springer, 1999.

[2] R. E. Bryant. Graph-based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers, 35(8):677–691, 1986.

[3] R. E. Bryant. On the Complexity of VLSI Implementations and Graph Represen-
tations of Boolean Functions with Application to Integer Multiplication. IEEE
Transactions on Computers, 40(2):205–213, 1991.

[4] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Sym-
bolic Model Checking: 1020 States and Beyond. Information and Compututation,
98(2):142–170, 1992.

[5] A. K. Chandra and G. Markowsky. On The Number of Prime Implicants. Discrete
Mathematics, 24(1):7–11, 1978.



Widening ROBDDs with Prime Implicants 119

[6] M. Codish. Worst-Case Groundness Analysis using Positive Boolean Functions.
Journal of Logic Programming, 41(1):125–128, 1999.

[7] O. Coudert. Two Open Questions On ROBDDs and Prime Implicants.
http://www.informatik.uni-trier.de/Design and Test/abstract30.html.

[8] O. Coudert and J. C. Madre. Implicit and Incremental Computation of Primes and
Essential Primes of Boolean Functions. In Proceedings of the Design Automation
Conference, pages 36–39. IEEE, 1992.

[9] P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Symposium on Principles of Programming Languages, pages 238–252, 1977.

[10] Y. Crama and P. L. Hammer. Boolean Functions. To appear.
[11] C. Fecht. Abstrakte Interpretation logischer Programme: Theorie, Implemen-

tierung, Generierung. PhD thesis, Universität des Saarlandes, 1997.
[12] J. P. Gallagher, K. S. Henriksen, and G. Banda. Techniques for Scaling Up Analy-

ses Based on Pre-interpretations. In International Conference on Logic Program-
ming, volume 3668 of LNCS, pages 280–296. Springer, 2005.

[13] A. Heaton, M. Abo-Zaed, M. Codish, and A. King. A Simple Polynomial Ground-
ness Analysis for Logic Programs. Journal of Logic Programming, 45:143–156,
2000.

[14] D. J. Kleitman, M. Edelberg, and D. Lubell. Maximal Sized Antichains in Partial
Orders. Discrete Mathematics, 1(1):47–53, 1971.

[15] L. Mauborgne. Abstract Interpretation Using Typed Decision Graphs. Science
of Computer Programming, 31(1):91–112, 1998.

[16] G. Plotkin. A Note on Inductive Generalisation. In Machine Intelligence, vol-
ume 5, pages 153–163. Edinburgh University Press, 1970.

[17] W. V. Quine. The Problem of Simplifying Truth Functions. American Mathe-
matical Monthly, (52):521–531, 1952.

[18] K. Ravi, K. L. McMillan, T. R. Shiple, and F. Somenzi. Approximation and
Decomposition of Binary Decision Diagrams. In Proceedings of the Design Au-
tomation Conference, pages 445–450. IEEE, 1998.

[19] R. Rudell. Dynamic Variable Ordering for Ordered Binary Decision Diagrams. In
International Conference on Computer-Aided Design, pages 42–47. IEEE, 1993.

[20] P. Schachte and H. Søndergaard. Closure Operators for ROBDDs. In Proceed-
ings of the Seventh International Conference on Verification, Model Checking and
Abstract Interpretation, volume 3855 of LNCS, pages 1–16. Springer, 2006.

[21] T. R. Shiple. Formal Analysis of Synchronous Circuits. PhD thesis, University of
California at Berkeley, Electronics Research Laboratory, 1996.

[22] F. Somenzi. CUDD Package, Release 2.4.1. http://vlsi.colorado.edu/∼fabio/.
[23] T. Strzemecki. Polynomial-time Algorithms for Generation of Prime Implicants.

ACM Journal of Complexity, 8(1):37–63, 1992.
[24] C. Umans. On the Complexity and Inapproximability of Shortest Implicant Prob-

lems. In International Colloqium on Automata, Languages and Programming,
volume 1644 of LNCS, pages 687–696. Springer, 1999.

[25] J. Whaley and M. S. Lam. Cloning-Based Context-Sensitive Pointer Alias Anal-
ysis Using Binary Decision Diagrams. In Programming Language Design and
Implementation, pages 131–144. ACM Press, 2004.



Efficient Guided Symbolic Reachability Using
Reachability Expressions

Dina Thomas1, Supratik Chakraborty1, and Paritosh Pandya2

1 Indian Institute of Technology, Bombay, India
dina@cfdvs.iitb.ac.in, supratik@cse.iitb.ac.in

2 Tata Institute of Fundamental Research, India
pandya@tifr.res.in

Abstract. Asynchronous systems consist of a set of transitions which
are non-deterministically chosen and executed. We present a theory of
guiding symbolic reachability in such systems by scheduling clusters of
transitions. A theory of reachability expressions which specify the sched-
ules is presented. This theory allows proving equivalence of different
schedules which may have radically different performance in BDD-based
search. We present experimental evidence to show that optimized reach-
ability expressions give rise to significant performance advantages. The
profiling is carried out in the NuSMV framework using examples from
discrete timed automata and circuits with delays. A variant tool called
NuSMV-DP has been developed for interpreting reachability expressions
to carry out the experiments.

1 Introduction

Asynchronous systems consist of a set of processes which execute independently
of each other and synchronize occasionally. A standard model of their execu-
tion consists of non-deterministically interleaving the actions of individual pro-
cesses. Activities of such processes can be modeled by a global transition system
consisting of a set of guarded transitions (G �→ A). The system starts non-
deterministically in one of a set of designated initial states. In any state, one
of the enabled transitions is non-deterministically chosen and executed atom-
ically. This causes a state change. This process is then repeated until no new
state is reached. Safety verification of such systems typically reduces to exploring
whether some undesirable state is reachable by some execution.

Symbolic model checking [7] has emerged as an important technique for pro-
gram verification and for finding deep logical bugs in reactive systems. Programs
are modeled as finite state transition systems. BDD-based [3] symbolic search
techniques, e.g. those used in NuSMV [6], can explore very large but finite state
spaces efficiently. However, there is wide variability in the computational effi-
ciency of BDD-based searches. It is well-known that the performance of these
techniques strongly depends on the size of the BDD representation of transition
relations and of intermediate sets of states.

H. Hermanns and J. Palsberg (Eds.): TACAS 2006, LNCS 3920, pp. 120–134, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Efficient Guided Symbolic Reachability Using Reachability Expressions 121

Earlier work in this area has addressed this issue by identifying good vari-
able orders for BDDs representing transition relations [1], by partitioning the
transition relation conjunctively or disjunctively [8], and by determining good
quantification schedules for conjunctive partitioning [4, 5]. Yet another technique
is to use guided search where hints [2] are used to direct initial parts of the
search.

In this paper, we propose using clusters of individual guarded transitions
within the global transition system in ways that generalize conjunctive and dis-
junctive partitioning. We introduce a notation called reachability expressions
and investigate its algebraic properties. Each reachability expression denotes a
way of computing the set of final states from a set of initial states. Thus, each
reachability expression is a predicate transformer. Reachability expressions are
rich enough to specify diverse search strategies such as symbolic breadth-first,
round-robin etc. They also include familiar operations like sequential composi-
tion, union and Kleene closure. Importantly, they allow us to encode more effi-
cient ways of computing the set of reachable states than symbolic breadth-first
search.

We have implemented an interpreter for reachability expressions in a tool
called NuSMV-DP that works as a wrapper on top of the reachability engine of
NuSMV [6]. Using the semantics of reachability expressions, we show that sev-
eral distinct reachability expressions are equivalent, i.e. they compute the same
predicate transformation. However, as our experiments show, the computational
effort involved in applying these equivalent predicate transformers to a given
predicate using our BDD-based NuSMV-DP tool can vary significantly. We dis-
cuss some equivalence transformations which improve the efficiency of evaluating
reachability expressions on finite state systems. A Kleene algebra of reachability
expressions has also been investigated by Pandya and Raut [9].

We apply our theory to some examples drawn from discrete timed automata.
Such automata can be represented as finite state global transition systems, as
discussed in [11]. We experimentally evaluate the performance of BDD-based
symbolic reachability analysis on these examples using multiple equivalent reach-
ability expressions. A previous technical report [11] gives details of experiments
carried out using NuSMV-DP with diverse problems such as the Fischer proto-
col, the job-shop scheduling problem and some asynchronous circuits with delays.
These experiments show a significant improvement in the efficiency of computing
reachable states using our technique. For example, we have been able to model
check the Fischer protocol with 100 processes, whereas classical techniques such
as symbolic search using polyhedra or difference bound matrices can handle in-
stances of this protocol with only up to 20 processes. On other examples, the
relative gains are significant but more modest.

The remainder of this paper is organized as follows. In Section 2, we present
the basic theory of reachability expressions. Section 3 gives experimental results
obtained by applying this theory to improve the efficiency of reachability anal-
ysis. The experiments are carried out using the NuSMV-DP tool. Finally, we
conclude the paper in Section 4.



122 D. Thomas, S. Chakraborty, and P. Pandya

2 A Theory of Reachability Expressions

We consider a state transition system as a 4-tuple (V,Q,Q0, Υ ), where V is a
finite set of state variables, Q is the set of states, Q0 ⊆ Q is the set of initial
states, and Υ is a finite set of guarded actions. Each variable vi ∈ V has an
associated domain Di. A state q ∈ Q is an assignment of a value from Di to
each variable vi in V . The set of all such assignments constitutes the set of
states Q. A guarded action is a pair (G �→ A), where the guard G denotes
a Boolean combination of predicates on the variables in V or a constant in
{True,False}. The action A is either a multiple assignment statement denoting
simultaneous assignments to a finite set of variables in V , or the special action
skip. We leave the concrete syntax of guarded actions unspecified. Note that each
state variable vi ∈ V may be assigned a value from Di at most once in A. The
execution semantics of guarded actions is as usual: If A consists of the special
action skip, the values of all state variables remain unchanged. If the system is in
state s1, and if the corresponding assignment of values to variables in V satisfies
the guard G, we say that the guarded action (G �→ A) is enabled in state s1.
The new state reached after executing the action A from state s1 is obtained
by simultaneously assigning to all variables that have been assigned in A, their
corresponding values. All state variables that have not been assigned in A retain
their values from state s1 in state s2.

Let B = (V,Q,Q0, Υ ) be a state transition system. We define a cluster to
be a non-empty set of guarded actions of B. We also define a special singleton
set δ consisting of the guarded action (True �→ skip). Thus, the action in δ can
be executed from every state, and its execution takes every state to itself. The
empty set of guarded actions is denoted by Θ. An extended cluster of the state
transition system B is either a subset of Υ or δ or Θ. Every extended cluster C
defines a relation, RC , on the set Q of states. We say that (s1, s2) ∈ RC iff there
exists a guarded action (G �→ A) ∈ C such that G evaluates to True in s1, and
action A takes the system from s1 to s2. Given an extended cluster T and a set
of states S (⊆ Q), the image of S under T is ImT (S) = {s | ∃s′ ∈ S, RT (s′, s)}.
It is easy to see that ImT : 2Q → 2Q is a monotone function.

2.1 Syntax and Semantics

Let T = {τ1, . . . τk} be a set of extended clusters of B. Syntactically, a reachabil-
ity expression over T is a terminal string obtained from the following grammar:

E → E + E | E ; E | E ◦ E | (E) | ∗E | T1 | . . . | Tk

In the above syntax, we have used T1, . . . ,Tk to denote reachability expressions
corresponding to the extended clusters τ1, . . . , τk in B. We will use this notation
throughout this paper.

The notion of evaluating reachability expressions can be formalized by defin-
ing their semantics. The semantics of a reachability expression is defined with
respect to an underlying state transition system, and is naturally described as
a mapping from sets of states to sets of states. Let B = (V,Q, qo, Υ ) be a state



Efficient Guided Symbolic Reachability Using Reachability Expressions 123

transition system, and T be a set of extended clusters of B. Let σ be a reacha-
bility expression over T and let S ⊆ Q. The semantics of σ with respect to B,
denoted by [[σ ]] B, is a mapping from 2Q to 2Q defined inductively as follows.
We shall henceforth omit the subscript B when it is clear from the context.

– [[Ti ]] (S) = Imτi(S), for all τi ∈ T
– [[σ1 + σ2 ]] (S) = [[σ1 ]] (S) ∪ [[σ2 ]] (S)
– [[σ1 ◦ σ2 ]] (S) = [[σ2 ]] ( [[σ1 ]] (S))
– [[σ1 ; σ2 ]] (S) = [[ (σ1 + δ) ◦ (σ2 + δ) ]] (S)
– [[ (σ) ]] (S) = [[σ ]] (S)
– [[ ∗σ ]] (S) =

⋃∞
i=0 [[ (σ)i ]] (S)

Although “ ; ” is seen to be a derived operator, we retain it for notational con-
venience.

2.2 Properties of Reachability Expressions

Let σ1 and σ2 be reachability expressions over a set T of symbolic extended
clusters. We say that σ1 is covered by σ2 iff [[σ1 ]] B(S) ⊆ [[σ2 ]] B(S) for every
state transition system B, for every subset S of states of B, and for every in-
stantiation of symbolic clusters in T with extended clusters of B. We denote
this by σ1 � σ2. We say that σ1 = σ2, iff σ1 � σ2 and σ2 � σ1. For example,
it can be shown from the semantics of reachability expressions that (σ1 ; σ2) =
δ + σ1 + σ2 + (σ1 ◦ σ2).

Given a set T of extended clusters, let Π(T ) denote the set of all reachabil-
ity expressions over T . It can be shown that (Π(T ), + ) forms an idempotent,
commutative monoid with Θ as the identity element. Similarly, (Π(T ), ◦ ) forms
a monoid with δ as the identity element, and (Π(T ), + , ◦ ) forms an idempo-
tent semiring. In particular, “ ◦ ” distributes over “ + ” from both left and right.
Detailed proofs of these properties are given in the extended version of this
paper [10].

Lemma 1. Let σ1, σ2, σ3, σ4 be reachability expressions.

(a) If σ1�σ2 and σ3 � σ4, then (σ1 op σ3) � (σ2 op σ4), where op ∈ {+ , ◦ , ; }.
(b) (σ1 ; σ2)i � (σ1 ; σ2)i+1 for all i ≥ 0.
(c) If σ1 � σ2, then (σ1)i � (σ2)i for all i ≥ 0, and (∗σ1) � (∗σ2).
(d) (∗σ1)i = (∗σ1) for all i ≥ 1, and ∗(∗σ1) = (∗σ1).

Proof sketch. Part (a) follows from the semantics of reachability expressions.
Parts (b) through (d) are proved by induction on i. Detailed proofs are given in
the extended version of this paper [10].

Lemma 2. For all reachability expressions σ1 and σ2, ∗(σ1 ; σ2)=∗(σ1 ; (∗σ2))=
∗((∗σ1) ; σ2)=∗((∗σ1) ; (∗σ2)).

Proof sketch. Bythe semantics of “∗”,wehaveσ2�(∗σ2).Therefore, byLemma1(a),
(σ1 ; σ2) � (σ1 ; (∗σ2)), and by Lemma 1(c), ∗(σ1 ; σ2) � ∗(σ1 ; (∗σ2)).



124 D. Thomas, S. Chakraborty, and P. Pandya

To show that ∗(σ1 ; (∗σ2)) � ∗(σ1 ; σ2), we first prove that (σ1 ; (∗σ2)) �
∗(σ1 ; σ2). Details of this proof are available in the extended version of our
paper [10].

Applying Lemmas 1(c) and (d), we then get ∗(σ1 ; (∗σ2)) � ∗(σ1 ; σ2). Since
we also have ∗(σ1 ; σ2) � ∗(σ1 ; (∗σ2)), it follows that ∗(σ1 ; σ2) = ∗(σ1 ; (∗σ2)).
The proof of ∗(σ1 ; σ2) = ∗((∗σ1) ; σ2) is similar with the roles of σ1 and σ2
interchanged.

If we substitute ∗σ1 for σ1 in the result proved above, we get ∗((∗σ1) ; σ2) =
∗((∗σ1) ; (∗σ2)). However, ∗((∗σ1) ; σ2) = ∗(σ1 ; σ2), as argued above. Therefore,
∗(σ1 ; σ2) = ∗((∗σ1) ; (∗σ2)).

Theorem 1. Let {σ1, . . . , σk}, k ≥ 1, be a finite set of reachability expressions.
Then ∗(σ1 + · · · + σk) = ∗(σ1 ; · · · ; σk).

Proof sketch. We prove the theorem by induction on k.
Basis (k = 1) : The result holds trivially.
Hypothesis: Assume the result holds for all k in 1 through m.
Induction step: Consider a set of m + 1 reachability expressions, and let σY =
(σ2 + · · · + σm+1). We first prove that ∗(σ1 + σY ) = ∗(σ1 ; σY ). Details of this
proof are given in the extended version of this paper [10].

By Lemma 2, we know that ∗(σ1 ; σY ) = ∗(σ1 ; (∗σY )). By the induction hy-
pothesis, (∗σY ) = (∗σZ), where σZ = (σ2 ; . . . ; σm+1). Therefore, ∗(σ1 + σY ) =
∗(σ1 ; (∗σZ)). Applying Lemma 2 again, we get ∗(σ1 + σY ) = ∗(σ1 ; σZ). The
proof is completed by noting that “ + ” and “ ; ” are associative.

Theorem 2. Let {σ1, . . . , σk}, k ≥ 2, be a finite set of reachability expressions.
Let σY = (σ1 + · · · + σk) and σZ = (σ1 ; · · · ; σk).

(a) For all n ≥ 0, (
n

+
j=0

(σY )j) � (σZ)n.

(b) Furthermore, if (σp)2 � σp for all p, then (
n

+
j=0

(σY )j) � (σZ)n−(�n/k�−1).

Proof sketch.

(a) Since σY � σZ , by Lemma 1(c), (σY )j � (σZ)j for all j ≥ 0. Therefore,

(
n

+
j=0

(σY )j) � (
n

+
j=0

(σZ)j). Applying Lemma 1(b), it can now be shown that

(
n

+
j=0

(σZ)j) = σn
Z . Hence, (

n

+
j=0

(σY )j) � σn
Z .

(b) Let n = k.i + r, where i ≥ 0 and 0 ≤ r < k. Using induction on k, it can

be shown that (
k.i

+
j=0

(σY )j) � (σZ)(k−1).i+1 for k ≥ 2. The detailed proof is

presented in the extended version of this paper [10].

Since (
k.i+r

+
j=0

(σY )j) = (
k.i

+
j=0

(σY )j) ◦ (
r

+
j=0

(σY )j) and (
r

+
j=0

(σY )j) � σr
Z

(by Theorem 2(a)), we can apply Lemma 1(a) to show that (
k.i+r

+
j=0

(σY )j)

� σ
(k−1).i+1
Z ◦ σr

Z = σ
(k.i+r−(i−1))
Z . The theorem is proved by noting that

k.i+ r = n and i = %n/k&.



Efficient Guided Symbolic Reachability Using Reachability Expressions 125

Let B = (V,Q,Q0, Υ ) be a finite state transition system, and let {τ1, . . . τk} be
a set of extended clusters, satisfying

⋃k
i=1 τi = Υ . From the definition of the

semantics of reachability expressions, the set of reachable states of B, denoted
reach(B), is given by [[ ∗(T1 + . . . + Tk) ]] (Q0). By Theorem 1, this is also
given by [[ ∗(T1 ; . . . ; Tk) ]] (Q0). Furthermore, Theorem 2(a) guarantees that
the number of image computation iterations using ∗(T1 ; . . . ; Tk) never exceeds
that required with ∗(T1 + . . . + Tk). Therefore, if computing [[ (σY )i+1 ]] (S)
and computing [[ (σZ)i+1 ]] (S) (using the terminology of Theorem 2) are of com-
parable complexity, it is advantageous to use ∗(T1 ; . . . ; Tk). This advantage is
also demonstrated by our experiments, as reported in Section 3. If (σp)2 � σp

for all p, Theorem 2(b) improves the upper bound of Theorem 2(a) even further.
Note that we can have (σp)2 � σp under several circumstances, e.g. if σp is of
the form ∗σq.

Theorem 3. Let B = (V,Q,Q0, Υ ) be a finite state transition system with ex-
tended clusters {τ1, . . . τk}, such that

⋃k
i=1 τi =Υ and Tk �� ∗(T1 + · · · + Tk−1).

Let σX denote (T1 + · · · + Tk−1), and σ̂ denote (∗σX) ◦ ∗(Tk ; (∗σX)).

(a) [[ σ̂ ]] (Q0) = reach(B).
(b) Let σ be any reachability expression over {τ1, . . . τk} such that [[σ ]] (Q0) =

reach(B). Let Nk(σ,Q0) denote the number of times image under Tk is
computed until the complete set of states reachable from Q0 is obtained during
evaluation of [[σ ]] (Q0). Then Nk(σ̂, Q0) ≤ Nk(σ,Q0) + 1.

Proof sketch.

(a) From Lemma 2 and Theorem 1, ∗(Tk ; (∗σX))=∗(Tk ; σX) = ∗(Tk + σX).
Since δ � ∗σX , by composing both sides with ∗(Tk + σX) (or, equiva-
lently with ∗(Tk ; (∗σX))) and by applying Lemma 1(a), we get ∗(Tk + σX)
� (∗σX) ◦ ∗(Tk ; (∗σX)). Therefore, ∗(Tk + σX) � σ̂. However, σ̂ �
∗(Tk + σX). Hence, σ̂ = ∗(Tk + σX). Since [[ ∗(Tk + σX) ]] (Q0)) =
reach(B), it follows that that [[ σ̂ ]] (Q0) = reach(B).

(b) Let σ be an arbitrary reachability expression over {τ1, . . . , τk} such that
[[σ ]] (Q0) = reach(B). The theorem is proved by showing that the compu-
tation of the set of reachable states with σ can be mimicked by σ̂ with no
more than Nk(σ,Q0) + 1 iterations of evaluation of (Tk ; (∗σX)). Details of
the proof are given in the extended version of this paper [10].

Given a finite-state system, Theorem 3 gives us a reachability expression that
guarantees that the number of image computations under τk is at worst 1 more
than the minimum number needed to compute the reachable state space us-
ing any reachability expression. This is particularly useful when we have clus-
ters with disparate image computation costs. For example, when performing
reachability analysis of a network of timed automata, the discrete (or non-time-
elapse) transitions of individual automata might be represented by τ1 through
τk−1, while a combined time-elapse transition for all automata might be repre-
sented by τk. Since clocks of all automata change synchronously, computing the



126 D. Thomas, S. Chakraborty, and P. Pandya

image under τk requires synchronizing all the processes and updating the clocks
of all automata, unlike computing the image under τ1 through τk−1. Conse-
quently, image computation under τk is expected to be more expensive (in terms
of memory usage and CPU time) in general compared to image computation
under τ1 through τk−1. In such cases, it may be advantageous to minimize the
number of expensive image computations by application of Theorem 3(b).

Often the set of extended clusters in a state transition system are related
in such a way that starting from an initial set of states S0, if we compute the
image under a cluster σj , no new states are reached unless the image under
another cluster σi has already been computed. As an illustration, consider a
combinational circuit in which the behaviour of each gate is modeled as a finite
state transition system. Suppose the circuit contains a single-input gate g1 that
is fed by another gate g2. Suppose further that the circuit starts from a stable
internal state (i.e., the output of no gate is scheduled to change). The inputs
of the circuit are then changed after some delay, leading to a new state. If we
compute the image of this new state under a cluster modeling the behaviour
of g1, the set of reachable states cannot change unless the image under clusters
corresponding to g2 has already been computed. The following theorem shows
that such dependencies can be exploited to simplify reachability expressions.

Theorem 4. Let {σ1, . . . σk} be a set of extended clusters and S be a set of
states satisfying the following conditions:

C1: (σi ◦ ((∗σi+1) ◦ · · · (∗σk)) ◦ σi) � (σi ◦ ((∗σi) ◦ · · · (∗σk))) for all 1 ≤ i < k.
C2: There exists m, 1 ≤ m ≤ k such that

C21: (σi ◦ σj) � (σi + σj) for 1 ≤ i, j ≤ m and i �= j.
C22: [[ ∗σi ]] (S) = S, for all i > m.

Then [[ ∗(σ1 ; · · · ; σk) ]] (S) = [[ (∗σ1) ; · · · ; (∗σk) ]] (S).

Proof sketch. We first note that [[ ∗(σ1 ; · · ·σk) ]] (S)= [[ ∗((∗σ1) ; · · · ; (∗σk)) ]] (S)
by Lemma 2. The theorem is then proved by using induction on r to show that
[[ ((∗σ1) ; · · · ; (∗σk))r ]] (S) � [[ (∗σ1) ; · · · ; (∗σk) ]] (S) for all r ≥ 0. Details of
the proof are given in the extended version of this paper [10].

Condition C1 in Theorem 4 formalizes an ordering of dependencies between
the σi’s. Effectively, C1 states that the effect of computing the image under ex-
pressions {σi+1, . . . σk} does not affect the computation of image under σi for
all 1 ≤ i < k. Condition C21 asserts that the first few expressions in the above
ordering do not depend on any other expressions. Hence, computing the image
under the composition of two such expressions gives the same result as computing
the image under the expressions individually and then taking their union. Condi-
tion C22 states an additional ordering requirement: unless the image of S under
one of {σ1, . . . σm} is computed, the reachability expressions {σm+1, . . . σk} do
not result in any new states being reached. If all three conditions are satisfied,
Theorem 4 permits a simplification in the computation of reachable states. In
particular, it allows us to obtain the entire set of reachable states by computing
the reachable states under each σi only once.



Efficient Guided Symbolic Reachability Using Reachability Expressions 127

3 Experimental Results and Their Analysis

In the previous section, we presented theorems on reachability expressions which
embody heuristic strategies for improving the efficiency of symbolic search. These
include strategies such as replacing symbolic breadth-first search by round-robin
search, and minimizing the number of applications of costly transitions. In order
to evaluate the effectiveness of these heuristics, we have implemented an inter-
preter for reachability expressions in a tool called NuSMV-DP. Our tool acts
as a wrapper on top of the reachability analysis engine of NuSMV [6]. It takes
as inputs: (a) a description of a finite state transition system as a collection of
named clusters, (b) a reachability expression, and (c) an initial set of states. Our
tool explores the reachable state space according to the reachability expression
and reports performance statistics on termination of the search.

Brief overview of example suite: We have used two classes of examples
for our experiments – Fischer protocol and gate-level circuits with delays. Our
choice of examples is motivated by their popularity in the domain of timed
system analysis, and also by the ease of scaling their sizes.

Uncritical

Critical Wait

Assign
xi <= a-1

k=0, xi’ = 0

k’ = i
xi’ = 0k != i

xi >= b

xi >= b, k=i

k’ = 0

Fig. 1. Fischer’s mutual exclusion protocol

Fischer protocol: This is a distributed timed protocol used to ensure mutual
exclusion when a number of processes access a shared resource. Each process
Pi is modeled as a timed automaton, as shown in Figure 1, where xi is the
clock of Pi and k is a shared variable for communication between processes.
In Figure 1, a and b are integer constants that bound the time spent by each
process in the “Assign” and “Wait” states. For an n-process Fischer protocol, a
network of timed automata is obtained by asynchronous parallel composition of
n automata. Details of the model can be found in our technical report [11].

A natural clustering for an n-process Fischer protocol is to have one cluster
per process, containing all discrete or non-time-elapse guarded actions of the
process. Additionally, we must have one cluster containing the guarded action
representing the synchronous advancement of time for all processes.

Circuits with inertial and bi-bounded delays: Our second set of examples consists
of gate-level circuits. Each gate is modeled as consisting of three parts:

– A boolean logic block that gives the boolean value of the output as a function
of the boolean values of the inputs.



128 D. Thomas, S. Chakraborty, and P. Pandya

clk < D in=1

in=0, out=0

in=1, out=0, clk’=0

clk=D
out’=1

in=1
out=1

out=0

in=0
out=0

in=0
out=1

clk < D
in=1, out=1

in=0, out=1, clk’=0

clk=D
out’ = 0

Zero

One

Zero

One

in=1
in=1, out=0, clk’=0

out’=1

in=1
out=1

out=0

in=0
out=0

in=0
out=1 in=0, out=1, clk’=0

out’ = 0

clk < U

clk < U

clk >= L clk >= L

Logic
Delay Bounded DelayInertial

(a) (b)

Fig. 2. (a) Inertial delay model (b) Bi-bounded pure delay model

– The output of the logic block is fed to an inertial delay element modeled as
in Figure 2(a). If the inertial delay is D, the output of this element changes
only if a change in its input persists for at least D units of time.

– The output of the inertial delay element is fed to a bi-bounded pure delay
element which is modeled as shown in Figure 2(b). If the lower and upper
bounds associated with this element are l and u respectively, it delays each
transition on its input by a non-deterministic delay between l and u units.

Given an interconnection of gates representing a circuit, we compose the state
transition behaviours of the logic block, inertial delay element and bi-bounded
delay element of each gate to form a network of timed automata. To simplify
the model, we assume that D, l and u are identical for all gates. To ensure
that every pure delay element causes its output to change once between two
consecutive changes at its input, we also assume that u < D. When the output
of a gate feeds the input of another gate, we ensure during composition that
the corresponding output and input transitions occur simultaneously. Time is
assumed to flow synchronously for all gates.

A natural clustering for an n-gate circuit modeled as above is to have a clus-
ter for the discrete (non-time-elapse) transitions of each logic function, inertial
and bi-bounded delay element, and an additional cluster for the synchronous
advancement of time for all clocks. When the output of a gate feeds the input of
another gate, we must combine the corresponding guarded actions at the output
and input. For our experiments, the circuit inputs are modeled as signals that
non-deterministically change their boolean values after a predefined delay Δin.
The exact circuits used in our experiments as well as details about our model can
be found in [11]. For both classes of examples, we assume that time is discrete,
and model the timed behaviour using bounded-counter automata.

Performance comparisons: For the examples described above, let {τ1,. . ., τk}
be the set of extended clusters representing non-time-elapse transitions, and let



Efficient Guided Symbolic Reachability Using Reachability Expressions 129

τt be the cluster representing synchronous advancement of time. Let Γ be the
monolithic transition relation obtained by combining all transitions into a single
cluster. Then, the reachability expression S0 = ∗Γ mimics symbolic breadth-first
search using this monolithic transition relation, as in the original NuSMV tool.
Γ can also be disjunctively partitioned into its component clusters and the im-
age computed using the reachability expression S1 = ∗(T1 + · · · + Tk + Tt).
While this reduces the effort for each image computation, the number of image
computations increases significantly. To control this, we apply Theorem 2, and
consider the reachability expression S2 = ∗(T1 ; · · · ; Tk ; Tt) instead.

We have experimentally profiled the performance of reachability analysis using
the expressions S0, S1 and S2. All our experiments were run on a 3 GHz Intel
Pentium 686 processor with 1 GB of main memory, and running Fedora Core
Linux 3.4.3-6.fc3.

For the Fischer protocol examples, we computed the set of backward reach-
able states starting from a set of states in which mutual exclusion is violated.
For simplicity, the parameters a and b were set to 1 and 2 respectively, for all
processes. The results are shown as bar graphs in Figures 3 and 4. The total
number of image computation iterations needed to compute the reachable states
using S0, S1 and S2 respectively are shown as triples within parentheses along
the abscissa in Figure 3. The missing data corresponds to experiments that did
not terminate in 30 minutes. For the circuit examples, we computed the set of
forward reachable states starting from a given set of initial states. The results
are shown as bar graphs in Figures 5 and 6. In these figures, bar graphs cor-
responding to experiments on the same circuit but with different values of the
parameters l, u,D and Δin have been grouped together. The total number of
image computation iterations needed to compute the reachable states using S1
and S2 respectively are shown as comma-separated pairs along the abscissa in
Figure 5. For each circuit with r different combinations of l, u,D and Δin (r
ranges from 2 to 4 in our experiments), there are r sets of bar graphs and r
lines of comma-separated pairs above the circuit’s name. The ith pair from the
top and the ith set of bar graphs from the left represent data obtained with the
same set of parameters for a given circuit. The number of iterations using S0
and S1 were identical for all our circuit experiments. Details of the parameter
values used for each circuit are available in a detailed version of this paper [10].

In Figures 3 and 5, “Time (s)” denotes the time in seconds to compute the
reachable state space. In Figures 4 and 6, “max BDD” denotes the maximum
number of BDD nodes required to store the (partially computed) state space at
any time during the state space search.

It can be seen that unguided disjunctive partitioning of the transition relation,
as in S1, results in worse performance than reachability search using a mono-
lithic transition relation. In the absence of guidance, disjunctive partitioning is,
therefore, not an effective strategy. Theorem 2 guarantees that S2 requires no
more iterations of image computation than S1. This is clearly seen in the it-
eration counts in Figures 3 and 5. A reduction in CPU time is expected from
the combined effect of fewer iterations and operations on smaller BDDs. In the



130 D. Thomas, S. Chakraborty, and P. Pandya

 0.015625

 0.0625

 0.25

 1

 4

 16

 64

 256

 1024

( -, -,7)
 100

( -, -,7)
 70

(55, -,7)
 50

(45,45,7)
 40

(35,35,7)
 30

(25,25,7)
 20

(15,15,7)
 10

T
im

e(
s)

No. of processes

S0
S1
S2

Fig. 3. Analysis of Fischer processes: Time and iteration counts for S0, S1, S2

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

100705040302010

ra
tio

 o
f m

ax
-B

D
D

Number of processes

max-BDD in S0/max-BDD in S2
max-BDD in S1/max-BDD in S2

Fig. 4. Analysis of Fischer processes: Ratios of “max BDD”

Fischer protocol examples, S2 has the best performance. The only exception is
the example with 10 processes. Here, the BDDs are small even when using S0,
and no significant gains are obtained by decomposing the transition relation.
Instead, iterating through the clusters incurs time overhead when using S2. For
circuits, the ratios in Figure 6 are always greater than 1. Thus, S2 results in
the minimum “max BDD” value. However, as seen in Figure 5, circuits 6, 7 and
8 show better performance using S0 with respect to time. These circuits were
found to have very low “max BDD” values compared to the largest transition
cluster size. This is in contrast to circuits 2, 3 and 4 where this ratio was much
higher. Therefore, unlike in circuits 2, 3 and 4, BDD sizes of partially computed
state sets do not significantly influence the performance of reachability analysis
in circuits 6, 7 and 8. Since the largest transition cluster size is large compared
to “max BDD”, reducing the total number of image computation iterations gives
better performance. Thus S0 performs better than S2 for circuits 6, 7 and 8.

The BDD representation of the cluster “τt” is usually larger than that of other
τi’s since the transitions in τt involve clock variables of all processes. These large
BDDs, in turn, lead to higher costs for computing the image under τt vis-a-vis
the cost of computing the image under a τi. We have seen above that Theorem 3



Efficient Guided Symbolic Reachability Using Reachability Expressions 131

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

117,55
 139,78
 175,115
 189,132

 ckt8

107,55
 129,78
 165,115
 182,132

 ckt7

97,55
 121,78
 159,115

 ckt6

135,88
 178,130
 198,148

 ckt3

132,95
 155,117

 
 ckt2

104,61
 157,114
 229,181

 
 ckt4

T
im

e(
s)

S0
S1
S2

Fig. 5. Analysis of circuits: Time and iteration counts for S1, S2. Iteration counts for
S0 are identical to those for S1.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

ckt8ckt7ckt6ckt3ckt2ckt4

ra
tio

 o
f m

ax
-B

D
D

max-BDD in S0/max-BDD in S2
max-BDD in S1/max-BDD in S2

Fig. 6. Analysis of circuits: Ratios of “max BDD”

gives us a way to reduce the number of costly image computations, potentially
leading to performance improvements. To validate this experimentally, we mea-
sured and recorded the performance of computing the reachable state set using a
reachability expression obtained from Theorem 3. In the Fischer protocol exam-
ples, the size of the BDD representation of τt is comparable to that of the other
τi clusters. Hence, the effect of minimizing applications of τt does not produce a
significant performance difference for the Fischer examples, and we report results
for only the circuits. Let σx = (T1 ; · · · ; Tk) and let S3 = (∗σx) ◦ ∗(Tt ; (∗σx)).
As seen in Theorem 3, S3 minimizes the number of image computations under
τt (up to 1 additional computation). We now compare its performance with an
equivalent schedule S4, which is defined as: S4 = ∗(T1 ; · · · ; Tk ; ∗Tt).

Figure 7 shows the ratios of “max BDD” using S4 to that using S3 for the
circuit examples. For each circuit, we used different sets of delay parameters, as
in the earlier experiments. Within the set of experiments for each circuit, the



132 D. Thomas, S. Chakraborty, and P. Pandya

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

ckt8ckt7ckt6ckt3ckt2ckt4

ra
tio

 o
f m

ax
-B

D
D

max-BDD in S4/max-BDD in S3

Fig. 7. Analysis of circuits: Ratios of “max BDD” using S4 to that using S3

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

ckt8ckt7ckt6ckt3ckt2ckt4

T
im

e(
s)

S3
S5
S6

Fig. 8. Analysis of circuits: Time for schedules S3, S5 and S6

number of image computations under τt until all reachable states are computed,
increases from left to right for both S4 and S3. As the number of computations
increases, the effect of minimizing applications of τt becomes more pronounced,
as can be seen from the rising ratio of “max BDD” using S4 to that using S3.

Theorem 4 relates to the effect of applying a sequence of clusters consistently
with the topological dependencies between them. To evaluate the effectiveness
of this Theorem, we performed an additional set of experiments with the circuit
examples. In these examples, one can obtain a topological ordering of the gates
and circuit elements from the inputs to the outputs. When computing this order,
a sub-circuit with a loop must be considered as a single circuit element without
exposing the loop. Since the output of each gate/circuit element is fed to a gate
or element with a higher topological index, there is an ordering of dependencies
between the non-time-elapse clusters τi. By choosing the initial state S to be
such that all gates are stable (i.e. no gate is scheduled to change its output), we
ensure that condition C22 required in Theorem 4 is satisfied.

Let the input-to-output topological ordering of the non-time-elapse clusters be
τ1 < · · · < τk. Let σx = (T1 ; · · · ; Tk) as before, and let σy = (Tk ; · · · ; T1)



Efficient Guided Symbolic Reachability Using Reachability Expressions 133

compute images of the clusters in reverse topological order. Moreover, let σz =
(∗T1 ; · · · ; ∗Tk). Then, by Theorem 1, we have ∗σx = ∗σy and by Theorem 4,
we have ∗σx = σz . Earlier, we have considered the reachability expression
S3 = (∗σx) ◦ ∗(Tt ; (∗σx)) that minimizes (up to 1 additional computation)
the number of image computations under time transition cluster τt. We now
consider the reachability expressions S5 = (∗σy) ◦ ∗(Tt ; (∗σy)) and S6 =
σz ◦ ∗(Tt ; σz). Using the above mentioned identities, it is easy to see that that
S3 = S5 = S6, i.e. all three reachability expressions compute the same set of
reachable states.

Using S3, S5, and S6 in the circuit examples, “max BDD” was found to be
nearly identical. However, the CPU times were different because of additional
fix-point checks in S5 and S3 compared to those in S6. In Figure 8, the circuits
are arranged from left to right in order of increasing topological depth. The
increased number of fix-point checks due to an increase in the number of ordered
clusters results in the increased time difference between schedules S5 and S3
from circuit 4 to 8 as seen in Figure 8. For circuits with short topological depth,
the performance of S5 and S3 are similar. However, as the topological depth
increases, computing images in topologically sorted order leads to significant
improvements compared to computing in reverse topological order. Furthermore,
S6 improves over S3, albeit marginally, in most cases. This is because all clusters
τi other than the time transition cluster τt are self-disabling; hence computing
the image under Ti and ∗Ti require similar computational effort.

4 Discussion and Conclusion

Reachability expressions give the user the ability to specify the heuristics of
symbolic state space search. Semantically equivalent reachability expressions
can have radically different costs of computation. In this paper, we presented
a theory to reason about the equivalence and relative performance of alternative
reachability expressions, and validated our predictions with experiments.

Our experimental investigations indicate that when the absolute size of the
BDD representation of a monolithic transition relation is small, it is advanta-
geous to perform classical symbolic breadth-first search using the monolithic
relation directly. Similarly, when the maximum BDD size encountered in rep-
resenting (partially) computed state sets is small compared to the BDD size of
the monolithic transition relation or the BDD size of the largest transition clus-
ter, it helps to minimize the number of image computation iterations by using
classical symbolic breadth-first search. However, if the maximum BDD size for
representing (partially) computed state sets is large and there is a dominant
cluster represented as a large BDD, it is advantageous to adopt a round-robin
scheduling of clusters in a way that minimizes the image computations under
the dominant cluster. Further, in round-robin scheduling, ordering the clusters
in topological order is effective in examples such as deep circuits, which have
considerable forward propagation of events.

The experiments and conclusions reported in this paper are promising, al-
though preliminary. Much more data on a wider set of examples is needed before



134 D. Thomas, S. Chakraborty, and P. Pandya

a comprehensive evaluation of the effectiveness of reachability expressions in im-
proving the performance of state space search can be done. However, we believe
that reachability expressions will serve as a useful addition to the existing repos-
itory of tools and techniques for making symbolic reachability analyzers more
efficient.

Acknowledgments. We thank Varun Kanade for help with the experiments.

References

1. D. Beyer, C. Lewerentz, and A. Noack. Rabbit: A tool for BDD-based verification
of real-time systems. In Proceedings of CAV, LNCS 2725, pages 122–125, 2003.

2. R. Bloem, K. Ravi, and F. Somenzi. Symbolic guided search for CTL model
checking. In Proceeding of ACM/IEEE DAC, pages 29–34, 2000.

3. R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, 35(8):677–691, 1986.

4. P. Chauhan, E. M. Clarke, S. Jha, J. Kukula, T. Shiple, H. Veith, and D. Wang.
Non-linear quantification scheduling in image computation. In Proceedings of
ACM/IEEE ICCAD, pages 293–298, 2001.

5. P. Chauhan, E. M. Clarke, S. Jha, J. Kukula, H. Veith, and D. Wang. Using
combinatorial optimization methods for quantification scheduling. In Proceedings
of CHARME, LNCS 2144, pages 293–309, 2001.

6. A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Se-
bastiani, and A. Tacchella. NuSMV version 2: An opensource tool for symbolic
model checkin. In Proceedings of CAV, LNCS 2404, pages 359–364, 2002.

7. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
Model Checking: 1020 States and Beyond. In Proceedings of LICS, pages 1–33,
1990.

8. A. Narayan, A. J. Isles, J. Jain, R. K. Brayton, and A. L. Sangiovanni-Vincentelli.
Reachability analysis using partitioned-robdds. In Proceedings of ACM/IEEE IC-
CAD, pages 388–393, 1997.

9. P. K. Pandya and M. Raut. A kleene algebra of reachability expressions and its
use in efficient symbolic guided search. Technical Report (in preparation), STCS,
Tata Institute of Fundamental Research, 2005.

10. D. Thomas, S. Chakraborty, and P. K. Pandya. Efficient guided symbolic reach-
ability using reachability expressions. Technical Report TR-06-1 (http://www.
cfdvs.iitb.ac.in/reports/techrep06.php3), CFDVS, IIT Bombay, January 2006.

11. D. Thomas, P. K. Pandya, and S. Chakraborty. Scheduling clusters in model check-
ing of real time systems. Technical Report TR-04-16 (http://www.cfdvs.iitb.ac.in/
reports/techrep04.php3), CFDVS, IIT Bombay, September 2004.



 

H. Hermanns and J. Palsberg (Eds.): TACAS 2006, LNCS 3920, pp. 135 – 150, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

SDSAT: Tight Integration of Small Domain Encoding  
and Lazy Approaches in a Separation Logic Solver 

Malay K Ganai1, Muralidhar Talupur2, and Aarti Gupta1 

1 NEC LABS America, Princeton, NJ, USA 
2 Carnegie Mellon University, Pittsburgh, PA, USA 

Abstract.  Existing Separation Logic (a.k.a Difference Logic, DL) solvers can 
be broadly classified as eager or lazy, each with its own merits and de-merits. 
We propose a novel Separation Logic Solver SDSAT that combines the 
strengths of both these approaches and provides a robust performance over a 
wide set of benchmarks. The solver SDSAT works in two phases: allocation and 
solve. In the allocation phase, it allocates non-uniform adequate ranges for 
variables appearing in separation predicates. This phase is similar to previous 
small domain encoding approaches, but uses a novel algorithm Nu-SMOD with 
1-2 orders of magnitude improvement in performance and smaller ranges for 
variables. Furthermore, the Separation Logic formula is not transformed into an 
equi-satisfiable Boolean formula in one step, but rather done lazily in the fol-
lowing phase. In the solve phase, SDSAT uses a lazy refinement approach to 
search for a satisfying model within the allocated ranges. Thus, any partially 
DL-theory consistent model can be discarded if it can not be satisfied within the 
allocated ranges. Note the crucial difference: in eager approaches, such a par-
tially consistent model is not allowed in the first place, while in lazy approaches 
such a model is never discarded. Moreover, we dynamically refine the allocated 
ranges and search for a feasible solution within the updated ranges. This com-
bined approach benefits from both the smaller search space (as in eager  
approaches) and also from the theory-specific graph-based algorithms (charac-
teristic of lazy approaches). Experimental results show that our method is ro-
bust and always better than or comparable to state-of-the art solvers. 

1   Introduction 

Separation Logic, (a.k.a Difference Logic, DL) extends propositional logic with 
predicates of the form x+c > y where > ∈ {>,≥}, c is a constant, and x, y are variables 
of some ordered infinite type integer or real. All other equalities and inequalities can 
be expressed in this logic. Uninterpreted functions can be handled by reducing to 
Boolean equalities [1]. Separation predicates play a pivotal role in verification of 
timed systems [2] and hardware models with ordered data structures like queues and 
stacks, and modeling job scheduling problem [3].  Deciding a Separation Logic prob-
lem is NP-Complete. Decision procedures based on graph algorithms use a weighted 
directed graph to represent Separation predicates; with nodes representing variables 



136 M.K. Ganai, M. Talupur, and A. Gupta 

 

appearing in the predicates and edges representing the predicates. A predicate of the 
form x+c ≥ y is represented as directed edge from node x to node y with weight c. A 
conjunction of separation predicates is consistent if and only if the corresponding 
graph does not have a cycle with negative accumulated weight. The task for decision 
procedures is reduced to finding solutions without negative cycles. Note, some deci-
sion procedures can decide the more general problem of linear arithmetic where the 
predicates are of the form Σi aixi ≥ c where ai, c are constants and xi are variables. 
Most of them ICS [4], HDPLL [5], PVS [6], and ASAP [7] are based on a variable 
elimination technique like Fourier-Motzkin [8].  Here, we restrict ourselves to a dis-
cussion of decision procedures dedicated for Separation Logic.  

Satisfiability of a Separation formula can be checked by translating the formula 
into an equi-satisfiable Boolean formula and checking for a satisfying model using a 
Boolean satisfiability solver (SAT). In the past, several dedicated decision procedures 
have taken this approach to leverage off recent advances in SAT engines [9]. These 
procedures can be classified as either eager or lazy, based on whether the Boolean 
model is refined (i.e., transformed) eagerly or lazily, respectively. In eager approaches 
[10-14] , the Separation formula is reduced to an equi-satisfiable Boolean formula in 
one step and SAT is used to check the satisfiability. Reduction to Propositional Logic 
is done either by deriving adequate ranges for formula variables (a.k.a small domain 
encoding) [12] or by deriving all possible transitivity constraints (a.k.a per-constraint 
encoding) [11]. A hybrid method [13] combines the strengths of the two encoding 
schemes and was shown to give robust performance over the two. In lazy approaches 
[15-19], SAT is used to obtain a possibly feasible model corresponding to a conjunc-
tion of separation predicates and feasibility of the conjunct is checked separately 
using graph-based algorithms. If the conjunct is infeasible, the Boolean formula is 
refined and thus, an equi-satisfiable Boolean formula is built lazily by adding the 
transitivity constraints on a need-to basis.   

Both the eager and lazy approaches have relative strengths and weaknesses. 
Though the small model encoding approaches [12, 20] reduce the range space allo-
cated to a finite domain,  Boolean encoding  of the formula often leads to large pro-
positional logic formula, eclipsing the advantage gained from the reduced search 
space. Researchers [14] have also experimented with the pseudo-Boolean Solver PBS 
[21] to obtain a polynomial size formula, but without any significant performance 
gain. In a per-constraint encoding, the formula is abstracted by replacing each predi-
cate with a Boolean variable, and then pre-emptively adding all transitivity constraints 
over the predicates. Often the transitivity constraints are redundant and adding them 
eagerly can lead to an exponentially large formula. The Boolean SAT solvers  
are often unable to decide “smartly” in the presence of such overwhelmingly large 
number of constraints. As a result the advantage gained from reduced search often 
takes a backseat due to lack of proper search guidance. Lazy approaches overcome 
this problem by adding the constraints as required. Moreover, they use advanced 
graph algorithms based on Bellman-Ford shortest path algorithm  [22] to detect infea-
sible combination of predicates in polynomial time in the size of the graph. These 
approaches exploit incremental propagation and efficient backtracking schemes  
to obtain improved performance. Moreover, several techniques have been proposed 
[17, 18] to add pre-emptively some subset of infeasible combination of predicates. 
This approach has been shown to reduce the number of backtracks significantly in 



 SDSAT: Tight Integration of Small Domain Encoding and Lazy Approaches 137 

 

some cases. Note, the feasibility check is based on detection of a negative cycle 
(negative accumulation of edge weights) in the graph. Potentially, there could be an 
exponential number of such cycles and eliminating them lazily can be quite costly. 
Due to this reason, lazy approaches do not perform as well as eager approaches on 
benchmarks like diamonds which have an exponential number of cycles (~2n cycles 
where n is the number of variables). Thus, we are naturally motivated to combine the 
strength of the two approaches as tightly as possible.  

We propose a robust Separation Logic Solver SDSAT (short for Small Domain 
SATisfiability solver) that combines the strengths of both eager (small domain encod-
ing) and lazy approaches and gives a robust performance over a wide set of bench-
marks. Without overwhelming the SAT solver with a large number of constraint 
clauses and thereby adversely affecting its performance, we take advantage of both 
the (finite) reduced search space and the need-to basis transitivity constraints which 
are able to guide the SAT solver more efficiently.  

Outline: We give a short background on Separation Logic and the state-of-the-art 
solvers in Section 2. We describe our solver SDSAT in detail, highlighting the techni-
calities and novelties in Section 3.  This is followed by experiments and conclusions 
in Sections 4 and 5, respectively.  

2   Background: Separation Logic  

Separation predicates are of the form x+c > y where > ∈ {>,≥}, c is a constant and x, 
y are variables of some ordered infinite type integer or real, D. Separation Logic is a 
decidable theory combining Propositional Logic with these predicates. If all variables 
are integers then a strict inequality x + c > y can be translated into a weak inequality x 
+ (c-1) ≥ y without changing the decidability of the problem. Similar transformations 
exist for mixed types, by decreasing c by small enough amounts determined by re-
maining constants in the predicates [16]. Note, an inequality of the form x > c, can be 
also be translated into a weak inequality of two variables, by introducing a reference 
node z.  Henceforth, we will consider separation predicates of the form x+c≥ y. 

2.1   State-of-the-Art Lazy Approach: Negative-Cycle Detection 

We discuss briefly the essential components in the state-of-the-art Separation Logic 
solvers based on lazy approaches as shown in Figure 1. 
 
Problem Formulation: In this class of decision procedures, a Separation formula ϕ is 
abstracted into Boolean formula ϕB by mapping predicates x+c ≥  y and y+ (-1-c) ≥ x 
to a Boolean variable and its negation respectively (or vice versa, depending on some 
ordering of  x and y.) An assignment (or interpretation) is a function mapping each 
variable to value in D and each Boolean variable to {T, F}. An assignment α is ex-
tended to map a Separation formula ψ  to {T, F} by defining the following mapping 
over the Separation predicates, i.e., α (x+c ≥ y) = T iff  α (x)+c ≥ α (y). A Boolean 
SAT solver is used to obtain a consistent assignment for Boolean variables in ϕB. If 
such an assignment does not exist, it declares the problem unsatisfiable. On the other 



138 M.K. Ganai, M. Talupur, and A. Gupta 

 

hand, for any satisfying assignment to ϕB, an additional consistency check is required 
for the underlying separation predicates. Note, incremental solvers [17, 19, 23] per-
form this check on a partial assignment to detect conflict early. The problem is de-
clared SAT only when the satisfying assignment is consistent under the check.  
 
Constraint Feasibility: Any partial assignment (also referred to as a partial Boolean 
model) to variables in ϕB represents a conjunction of separation predicates. The Boo-
lean model is represented as a weighted directed graph (a.k.a constraint graph) [24], 
where an edge x→ y with weight c (denoted as (x,y,c)) corresponds to the predicate e 
≡ (x+c ≥  y) where α (e)=T. The constraint graph is said to be consistent if and only if 
it does not have an accumulated negative weighted cycle (or simply, negative cycle.)  
Intuitively, a negative cycle violates the transitivity property of the separation predi-
cates. The building of the constraint graph and detection of negative cycles, as shown 
in Figure 1, are done incrementally to amortize the cost of constraint propagation. It 
has been shown [25] that addition of a predicate and update of a feasible assignment α 
can be done in O(m+n log n) where m is the number of predicates and n is the number 
of variables. After the constraint graph is detected consistent i.e. feasible (shown by 
the feasible arc in Figure 1), more assignments are made to the unassigned variables 
in ϕB. leading to a more constraint graph. Problem is declared satisfiable by Boolean 
SAT, if there are no more assignments to make. 

Boolean 

Formula, ϕB

Constraint Feasibility
Find assignment:  α:x→D(x) 
Check feasibility: Neg. cycle

Boolean 
SAT

Partial Model
Build Sub-graph

Refine
Theory Deduction

Find potential 
infeasible condition

Infeasible
Feasible

SAT /
UNSAT

Separation 

Formula, ϕ

Abstract
Boolean 

Formula, ϕB

Constraint Feasibility
Find assignment:  α:x→D(x) 
Check feasibility: Neg. cycle

Boolean 
SAT

Partial Model
Build Sub-graph

Refine
Theory Deduction

Find potential 
infeasible condition

Infeasible
Feasible

SAT /
UNSAT

Separation 

Formula, ϕ

Abstract

 

Fig. 1. Overview of state-of-the-art Separation Logic Solver based on lazy approach 

Refinement: Whenever a negative cycle is encountered during constraint feasibility 
(a.k.a. constraint propagation), a transitivity constraint not yet implied by ϕB is learnt 
and added to ϕB as a conflicting clause.  For example, if the subgraph corresponding 
to a conjunction of predicates, i.e., e1∧e2∧e3∧¬e4 has a negative cycle, then a clause 
(¬e1∨¬e2∨¬e3∨ e4 ) is added to ϕB to avoid re-discovering it. As shown in [16],  
instead of stopping at the first negative cycle, one can detect all negative cycles and 
then choose a clause with minimum size representing a stronger constraint. Note, due 
to large overhead, addition of all detected negative cycle clauses, though possible, is 
not done usually. Moreover, like in Boolean SAT solvers, incremental solvers [17, 19, 
23] restore the assignments to the variables to a state just before the inconsistency was 
detected, instead of starting from scratch.  
 
Pre-emptive Learning (Theory Deduction): Some solvers [17, 18] have capabilities 
to add transitivity constraints preemptively to ϕB so as to avoid finding them later. 



 SDSAT: Tight Integration of Small Domain Encoding and Lazy Approaches 139 

 

However, as the overhead of adding all transitivity constraints can be prohibitive as 
observed in per-constraint eager approach, solvers often use heuristics to add them 
selectively and optionally (shown as dotted arrow in Figure 1). 

2.2   Eager Approach: Finite Instantiation 

 Range allocation (a.k.a. small domain encoding) approaches find the adequate set of 
values (a.k.a. ranges) for each variable in the finite model. We briefly describe the 
range allocation problem for Separation Logic which has been discussed at greater 
depth in [20, 26]. Let Vars(ϕ) denote the set of variables used in a Separation formula 
ϕ over the set of integers Ζ. We assume ϕ  is in Non-Negated Form (NNF), i.e., every 
predicate occurring negatively in the formula is converted into its dual positive predi-
cate a priori (e.g., ¬(x+c< y)  x+c≥ y) A domain (or range) R(ϕ) of a formula ϕ is a 
function from Vars(ϕ) to 2Z. Let Vars(ϕ) = {v1,…,vn} and |R(vi)| denote the number of 
elements in the set R(vi), domain of vi. The size of domain R(ϕ), denoted by |R(ϕ)| is 
given by |R(ϕ)| = |R(v1)|⋅|R(v2)|⋅⋅⋅|R(vn)|. Let SATR(ϕ) denote that ϕ is satisfiable in a 
domain R. The goal is to find a small domain R such that  

SATR(ϕ) ⇔ SATZ(ϕ) (1) 

We say that a domain R is adequate for ϕ if it satisfies formula (1). As finding the 
smallest domain for a given formula is at least as hard as checking the satisfiability of 
ϕ, the goal (1) is relaxed  to  finding the adequate domain for the set of all separation 
formulas with the same set of predicates as ϕ, denoted by Φ(ϕ) as adequacy for Φ(ϕ) 
implies adequacy for ϕ.  As discussed in the previous section, separation predicates 
can be represented by a constraint directed graph G(V,E). Thus, the set of all the sub-
graphs of G represents the set Φ(ϕ). Given G, the range allocation problem is setup to 
finding a domain R such that every consistent sub graph of G can be satisfied from the 
values in R.  

It has been shown [12] that for a Separation formula with n variables, a range 
[1..n+maxC] is adequate for each variable, with maxC being equal to the sum of 
absolute constants in the formula. This leads to a state space of (n+maxC)n where all 
variables are given uniform ranges regardless of the formula structure. This small 
model encoding approach in UCLID [12], would require log2|R(x)|  Boolean  
variables to encode the range R(x), allocated for variable x. There has been further 
work [20] to reduce the overall ranges and hence, the size of the Boolean formula. In 
[20], a method SMOD was proposed to allocate non-uniform ranges to variables, 
exploiting the problem structure. The method builds cut-point SCC graph recursively 
in top-down manner and allocates ranges to the nodes in a bottom-up style, propagat-
ing the range values. The approach is based on enumeration of all cycles and there-
fore, the worst-case complexity of such an approach is exponential. In this paper, we 
propose an efficient and robust technique Nu-SMOD that computes non-uniform 
ranges in polynomial-time; polynomial in the number of predicate variables and size 
of the constants. Moreover, the ranges are comparable to or better than the non-
uniform ranges obtained using SMOD, and consistently better than the uniform ranges 
obtained using UCLID [12]. In experimental evaluation, Nu-SMOD completes alloca-
tion for all the benchmarks unlike SMOD, with 1-2 orders of magnitude performance 



140 M.K. Ganai, M. Talupur, and A. Gupta 

 

improvement over SMOD. Unlike SMOD, we do not compute cutpoint-graph or enu-
merate cycles in our new procedure Nu-SMOD; rather we propagate only distinct 
values along a path from a cut-point.  As the ranges will be used subsequently by the 
lazy search-engine, we emphasize improvement in performance instead of ranges. 
Thus, our objective differs slightly from SMOD procedure. 

3   SDSAT: Integrating Small Domain and Lazy Approaches 

We propose a Separation Logic Solver SDSAT as shown in Figure 2, that combines 
the strengths of both eager (small domain encoding) and lazy approaches and gives a 
robust performance over a wide set of benchmarks. This combined approach benefits 
both from the reduced search space (as in eager approaches) and also from the need-to 
basis refinement of the Boolean formula with the transitivity constraints (as in lazy 
approaches). The solver SDSAT proceeds in two phases: allocation and solve.  

In the allocation phase (shown as Phase I in Figure 2), it computes non-uniform 
adequate ranges using an efficient technique Nu-SMOD that runs in polynomial time; 
polynomial in the number of predicate variables and size of the constants. This phase 
is similar to previous small domain encoding approaches; however, the Separation 
Logic formula is not transformed into an equi-satisfiable Boolean formula in one step, 
but rather done lazily in the following phase.  

Feasible

Boolean 

Formula, ϕB

Constraint Feasibility
Find assignment:  α:x→D(x) 
Check feasibility: Neg. cycle

L(x) ≤ α(x) ≤ U(x)

Boolean 

SAT

Partial 
Model
Build 

Sub-graph

Refine
Theory Deduction

Find potential 
infeasible conditionInfeasible

Update Ranges (RCP)
x +c ≥ y

L(x)⇐ Max(L(x), L(y)-c)
U(y)⇐ Min(U(y), U(x)+c)

Record reasons

Check feasibility
L(x) ≤ U(x)

L(x) ≤ α(x) ≤ U(x)

ALLOCATE 
(Nu-SMOD)

Find cutpoint set  C
Allocate ranges R(x) ∀x

SAT /
UNSAT

Separation 

Formula, ϕ

Abstract

Phase IPhase II

Feasible

Boolean 

Formula, ϕB

Constraint Feasibility
Find assignment:  α:x→D(x) 
Check feasibility: Neg. cycle

L(x) ≤ α(x) ≤ U(x)

Boolean 

SAT

Partial 
Model
Build 

Sub-graph

Refine
Theory Deduction

Find potential 
infeasible conditionInfeasible

Update Ranges (RCP)
x +c ≥ y

L(x)⇐ Max(L(x), L(y)-c)
U(y)⇐ Min(U(y), U(x)+c)

Record reasons

Check feasibility
L(x) ≤ U(x)

L(x) ≤ α(x) ≤ U(x)

ALLOCATE 
(Nu-SMOD)

Find cutpoint set  C
Allocate ranges R(x) ∀x

SAT /
UNSAT

Separation 

Formula, ϕ

Abstract

Phase IPhase II
 

Fig. 2. Overview of our Separation Logic solver SDSAT 

In the solve phase (shown as Phase II in Figure 2), SDSAT searches for a satisfying 
model within the allocated ranges using a lazy refinement approach. Thus, any par-
tially DL-theory consistent model is discarded if it can not be satisfied within the 
allocated ranges (The check is done in the blocks “Check feasibility” and “Constraint 
feasibility” in Figure 2). Note the key difference: in eager approaches, such a par-
tially consistent model is not allowed in the first place, while in lazy approaches such 
a model is never discarded. By focusing on adequate ranges and not just consistency 



 SDSAT: Tight Integration of Small Domain Encoding and Lazy Approaches 141 

 

of the separation predicates we are able to learn more constraints leading to larger 
reductions in search space. Furthermore, we dynamically refine the ranges allocated 
to variables in the allocation phase using range constraint propagation (described in 
Section 3.2.2) and search for a feasible solution within the updated ranges (shown in 
the block “Updated Ranges (RCP)” in Figure 2). Another novelty is in the use of 
cutpoints to determine whether an added edge (to a consistent model) leads to an 
infeasible condition, based on the observation that any cycle will have at least one 
cutpoint (Given a directed graph G (V, E), a cutpoint set C ⊆ V is a set of nodes 
whose removal breaks all the cycles in G). If an added edge x→ y (corresponding to 
the predicate x+ c ≥ y) is not reachable from some cutpoint and x is not a cutpoint, 
then a previously consistent subgraph modified with this new edge is guaranteed not 
to have a negative cycle. Moreover like in most lazy approaches, SDSAT has incre-
mental propagation and cycle detection, and preemptive learning of infeasible condi-
tion (theory deduction shown as dotted arrow in Figure 2). 

3.1   Allocation Phase: Non-uniform Range Allocation 

We discuss the algorithm Nu-SMOD to allocate non-uniform ranges to the variables 
in the predicates.  The algorithm assumes that the constraint directed graph G(V,E) is 
a Strongly Connected Component (SCC). Extension to non-SCCs is straightforward: 
compute the ranges for SCCs individually and then offset the ranges appropriately to 
account for the edges between the SCCs starting from some root SCC. As far as valid-
ity of the Separation Logic problem is concerned, it is easy to see that these edges can 
be removed from the problem as they will never contribute to a cycle.   
 
Algorithm Nu-SMOD: We first derive a cutpoint set C using polynomial approxima-
tion [27], as finding a minimal cutpoint set is an NP-Hard problem. Using the set C, 
we invoke the procedure (line 1 of the procedure NU-SMOD, Figure 3) Nu-SMOD-1 
which is described as follows (lines 11-19, Figure 3): Range of each node x, denoted 
by R(x), is divided into several sets; each identified with unique id or simply level. Let 
the level k set of the node x be denoted by Lk(x). Note, R(x)=∪k L

k(x). Initially, all the 
level sets are empty. The nodes in Level 1 set, denoted by I, are allocated 0 value, i.e., 
L1(x)={0}, ∀x∈I. To compute Level (k+1) values, i.e., Lk+1(y) for node y (line 17), we 
use the Level k values of the nodes x that have a direct edge, i.e., fanout (x,y,c) (corre-
sponding to the predicate x+c≥  y) to y and offset with edge weight c. Note, we in-
clude only the cutpoints C in the set I. Once the ranges for the cutpoints C are ob-
tained using Nu-SMOD-1, another pass is made (in lines 2-5) to obtain reverse_dfs 
values Q[y] for each non-cutpoint y. Starting from each cutpoint (line 4-5) with value 
M (equal to maximum range value allocated among the cutpoints), we do a re-
verse_dfs (lines 7-10) to update Q values (line 9) of all the non-cutpoints by reverse 
propagating a tight value (higher than the previous Q value, line 8) without traversing 
through any other cutpoints (line 7). Note that the reverse dfs path from a cutpoint to 
non-cutpoint is a simple path as there is no cycle. All the inequalities from non-
cutpoint to cutpoint are satisfied using reverse_dfs Q values.    

 



142 M.K. Ganai, M. Talupur, and A. Gupta 

 

/Range Allocation for an  
//SCC G(V,E)   
 
Input: G(V,E), Cutpoint set C 
Output: R(x) for ∀x∈V 
Procedure: Nu-SMOD 
1. Nu-SMOD-1 {INPUT: G(V,E), I=C 

           OUTPUT: R(x)∀x∈V } 
2. ∀y∈V-C Q[y]=-∞ 
3. M=max(∪∀x∈CR(x)) 
4. foreach x∈C do 
5.   reverse_dfs(x,M); 
6. end 
 
reverse_dfs(x,v) 
7. foreach (y,x,w) s.t. y∉C do 
8.  if (Q[y]+w ≥ v) continue; 
9.  Q[y] = v – w; 
10. reverse_dfs(y,Q[y]) 

 
 
 
Input: G(V,E), I⊆V 
 Output: R(x) for ∀x∈V 
 Procedure: Nu-SMOD-1 
 
11. L1(x)={0}∀x∈I, L1(x)={}∀x∈V\I 
12. Lk(x)={} ∀x∈V, 1<k≤|V| 
 

13. foreach k, 1≤k<|V| do 
14.  foreach node x∈V do 
15.   foreach(x,y,c)∈fanouts(x)do 
16.    foreach value v ∈ Lk(x) do 
17.      Lk+1(y)=Lk+1(y)∪{v+c} 
18.  
19. ∀x∈V  R(x)=∪1≤k≤|V| L

k(x) 
 
//Assignment for subgraph D of G 
Input: D(Vd,Ed)  
Output: {(x,vx)|x∈Vd, vx∈R(x)} 
Procedure: ASSIGN 
20. S = {set of root nodes} 
21. ∀y ∈ Vd-S vy = +∞; 
22. foreach x ∈ S do 
23.    vx = 0; enqueue(x) 
24.    bfm(x); 
25. end 
26. ∀y∈Vd-S if (vy == +∞) vy=Q[y] 

 
bfm(x) 
27. while (x = dequeue())!=null)  
28.  foreach(x,y,c)∈fanouts(x)do 
29.     if (vx+c >= vy) continue; 
30.     vy = vx+c; 
31.     enqueue(y); 
32.   end 
33. end 
 

Fig. 3. Pseudo-code for the algorithm Nu-SMOD and ASSIGN procedures 

Theorem 1: Ranges allocated by Nu-SMOD are adequate. 

Proof Sketch: We now show that the ranges allocated by Nu-SMOD are adequate, 
i.e., any satisfiable sub-graph D(Vd,Ed) of G(V,E) (Vd ⊆V, Ed⊆E) has a satisfying as-
signment from the allocated set of ranges. We further assume D is connected. If not, 
then each component is a satisfiable sub-graph of G and ranges can be assigned to 
variables in each component independently of the other.  

We construct the adequacy proof by devising an assignment procedure ASSIGN as 
shown in Figure 3 (lines 20-33) which will generate a satisfying solution from the 
allocated set of ranges. We first construct a set S of root nodes (those nodes in Vd∩ C 
that can not be reached from any other node in Vd∩ C) in D (line 20). If S is empty 
either Vd∩C is empty or all nodes are in some cycle. In the former case, we skip to 
line 26, else we pick any node in Vd∩C and continue. We initially assign all the nodes 
not in S with +∞ (a large positive value, line 21). We denote the value assigned to a 
node x as vx. Starting from each node in S (with initial value 0 as in line 23), we call 
bfm (similar to Bellman-Ford-Moore Shortest Path algorithm [22]) procedure to as-
sign tight values on the nodes that can be reached. The edge (x,y,c) is said to be stable 
if the current value of x and y is said to satisfy the constraint (x+c ≥ y). Note that the 
value of the node can change only if the current value is lower than the previously 



 SDSAT: Tight Integration of Small Domain Encoding and Lazy Approaches 143 

 

assigned value (line 30). Such an operation is also called an edge relaxation [22]. 
Only under such a scenario, the node is en-queued (line 31). Those nodes whose value 
are still +∞, are given reverse_dfs Q values (line 26). To show that the given assign-
ment procedure ASSIGN generates a satisfying solution from the ranges allocated, we 
need to prove the following lemmas (Contact author for proof details).  

Lemma 1: The procedure ASSIGN terminates. 

Lemma 2: All inequalities corresponding to edges of D are satisfied.  

Lemma 3: Each assigned value vx belongs to R(x).  

The above theorem guarantees the existence of the solution for a satisfying subgraph 
D with all the root nodes in Vd∩ C having special value 0 and the other nodes in Vd\C 
having either tight values or reverse_dfs values Q, depending on whether they are 
reachable from root nodes or not, respectively. Note that the cutpoints do not need Q 
values as they are the root nodes. As we will see shortly, the solve phase is based 
primarily on this observation. 

3.2   Solve Phase 

Similar to standard lazy solvers, we first build an abstract Boolean formula ϕB from the 
given Separation formula ϕ  and search for a partial consistent Boolean model. As the 
partial model is being incrementally built up, we search for a satisfying model using 
cutpoint-relaxation algorithm (described in Section 3.2.1) within the dynamically up-
dated ranges achieved by range constraint propagation (described in Section 3.2.2). We 
build these algorithms by augmenting the procedure ASSIGN (described above) with 

• inconsistency detection due to negative cycles, 
• range violations check, and 
• pre-emptive learning. 

In the following, we restrict our discussion to novelties in detecting the inconsisten-
cies. (For details on pre-emptive learning please refer [17, 18]).  

3.2.1   Incremental Cycle Detection Using Cutpoint Relaxation 
In the past [23, 28], the detection of negative cycles and finding satisfying assign-
ments are done incrementally in a weighted digraph that is built incrementally. Each 
of these algorithms uses a variant (mostly in the ordering of the relaxed edges) of 
Bellman-Ford-Moore (BFM) Shortest Path algorithm and extends it with an ability to 
detect negative cycle. Our approach is also based on BFM with the following differ-
ence: For a satisfiable sub-graph D, we consider only those solutions which lie within 
the ranges allocated by the Nu-SMOD procedure. Note, a satisfying assignment set 
{α (x)} represents a class of satisfying assignments {α (x)+k} for some constant k.  

As shown in the procedure ASSIGN, the existence of the solution for a satisfying 
subgraph D is guaranteed with all the root nodes in Vd∩ C having special value 0 and 
the other nodes in Vd\C having either tight values or reverse_dfs values Q, depending 
on whether they are reachable from root nodes or not, respectively. Thus, in our ap-
proach, we restrict the set of satisfying assignments such that α (x)=0 for the root 
nodes x ∈Vd∩ C. We discuss the implication of such restriction in our incremental 



144 M.K. Ganai, M. Talupur, and A. Gupta 

 

cycle detection algorithm cutpoint relaxation. As will be clear shortly, the theoretical 
complexity of the algorithm is not different from BFM and its variants. In our cut-
point relaxation algorithm (unlike ASSIGN procedure) we do not change α (x) from 
+∞  to Q[x] if a node x is not reachable from a root node (due to incremental addition 
of edges, such a node may be reachable later). Now, we discuss how the incremental 
addition and deletion of edges affect the negative cycle detection. 

Edge Addition: Suppose, we add an edge (x,y,c) to D and obtain a subgraph D’. If 
α (x) ≠ + ∞, x is reachable from some root node in D and we do the usual BFM. If  
α (x) = + ∞, we consider two cases depending on x∈ C or x∉C.  

Case x∈C: Clearly, x is root node in D’ as it is not reachable from any other root node 
in D. We choose α (x)=0 and do usual BFM with negative cycle detection after relax-
ing (x,y,c). 

Case x∉ C:  Note, x is not reachable from any node in Vd∩ C. As any cycle will have 
at least one cutpoint and since x is not a cutpoint in G, there cannot be any cycle in 
subgraph D’ (of G) with the edge (x,y,c). Based on this observation, we skip edge 
relaxation and cycle detection for this case.  

Edge Deletion: When an edge (x,y,c) is deleted, we need to restore the previous α (y) 
value only if it is different from +∞. Since, deletion of edges takes place at the time of 
backtracking, we restore only those α (y) that got affected after the backtrack level. 
We use a standard stack-based approach for efficient backtracking.  

Thus, our algorithm cutpoint relaxation has two main novelties: First, the approach 
allows us to identify cases where we guarantee no negative cycles in a subgraph with-
out edge relaxation. Second, we reduce the search space by restricting our solution 
space in a spirit similar to finite instantiation. Though maintaining such a restriction 
on assignment values on root nodes has an overhead, yet we did not find it to be a 
significant bottleneck. Besides using cutpoints and restricted solutions to reduce the 
search space, we can further reduce the search space by dynamically updating the 
ranges of the variables as discussed in the following section. 

3.2.2   Range Constraint Propagation (RCP) 
Ranges computed by the allocation phase guarantee the adequacy for a satisfiable 
subgraph D; however, the ranges are often more than those required to obtain a satis-
fying solution for D. We allow range constraint propagation (RCP) to dynamically 
refine the ranges of the variables for the given subgraph D, while maintaining the 
range adequacy (Theorem 2). This approach is similar to  the more general approach 
for interval arithmetic [29, 30].  We achieve RCP as follows: Let the minimum and 
maximum values in the range of a variable x be denoted by L(x) and U(x), respec-
tively. Initially, these limits are obtained during the allocation phase. RCP on an edge 
x+c ≥  y, denoted by RCP(x + c ≥  y), updates the limits L(x) and U(y) as follows: 

L(x)  ⇐ MAX{L(x), L(y)-c} 
U(y)  ⇐ MIN{U(y), U(x)+c} 

We apply this process recursively, i.e., whenever the L (or U) value of a node 
changes, we update the L (or U) values of all the nodes with a direct edge to (or from) 



 SDSAT: Tight Integration of Small Domain Encoding and Lazy Approaches 145 

 

the node. The process stops when either a range violation is detected, i.e. L(x) > U(x) 
or all the limits have stabilized. As constraint propagation reduces the range sizes 
monotonically, the process is guaranteed to terminate. A conflict can also be detected 
due to range violation of the invariant L(x) ≤ α (x) ≤ U(x) where α (x) is a satisfying 
assignment for x reachable from some root node. Note, these range violations can 
occur in a subgraph even without a negative cycle. (These checks are carried out in 
the block “Check feasibility” in Figure 2. We illustrate this with an example later.) 
Thus, the reduced range space leads to faster detection of conflicts and hence, re-
duced search. We can also obtain the set of conflicting edges by storing the edges as 
reasons for the change in minimum and maximum limits. The following theorem 
addresses the range adequacy after RCP (please contact authors for proof details). 

Theorem 2: Reduced ranges obtained by RCP are adequate for subgraph D. 

Example: We illustrate RCP and its roles in reducing the search space on a diamond 
example shown in Figure 4. Let the Separation formula F be e1 ∧ e4 ∧ e5 ∧ e8 ∧ e9  ∧ 
(e2∨ e3) ∧ (e6 ∨ e7) where ei represents a separation predicate. Let n0...n5 represent the 
integer variables. The separation predicates are shown as edges ei in Figure 4(a) (with 
weights in brackets). For example: e1≡(n0≥n1) and e9≡(n5-1≥n0). The previous ap-
proaches based on only negative cycle detection have to find all four negative cycles 
before F is declared unsatisfiable.  Using our approach of combined negative cycle 
detection with RCP, we decide unsatisfiability with detection of two negative cycles 
and one range violation as described below.  

e1(0) e2(0) e6(0)

e5(0)

e7(0)
e8(0)

e9(-1)

e3(0) e4(0)

n0

n1

n3

n2

n6

n5

n4

Allocated Ranges

R(n2): {0}
R(n0),R(n1),R(n3): {-1,0}
R(n4),R(n5),R(n6): {0,1}

Range Constraint Propagation 

1. RCP(e1≡(n0≥n1)):  L(n0)=-1, U(n1)=0
2. RCP(e2≡(n1≥n2)):  *L(n1)=0, U(n2)=0
3. RCP(¬e3≡n0≤n3-1)): *L(n3)=0, *U(n0)=-1
4. RCP(e1≡(n0≥n1)):  *L(n0)=0, *U(n1)=-1
5. RCP(e2≡(n1≥n2)):  L(n1)=0, *U(n2)=-1

F ≡ e1 ∧ e4 ∧ e5 ∧ e8 ∧
e9 ∧(e2∨e3) ∧(e6 ∨e7)e1(0) e2(0) e6(0)

e5(0)

e7(0)
e8(0)

e9(-1)

e3(0) e4(0)

n0

n1

n3

n2

n6

n5

n4

Allocated Ranges

R(n2): {0}
R(n0),R(n1),R(n3): {-1,0}
R(n4),R(n5),R(n6): {0,1}

Range Constraint Propagation 

1. RCP(e1≡(n0≥n1)):  L(n0)=-1, U(n1)=0
2. RCP(e2≡(n1≥n2)):  *L(n1)=0, U(n2)=0
3. RCP(¬e3≡n0≤n3-1)): *L(n3)=0, *U(n0)=-1
4. RCP(e1≡(n0≥n1)):  *L(n0)=0, *U(n1)=-1
5. RCP(e2≡(n1≥n2)):  L(n1)=0, *U(n2)=-1

F ≡ e1 ∧ e4 ∧ e5 ∧ e8 ∧
e9 ∧(e2∨e3) ∧(e6 ∨e7)

 

                    (a)                    (b)                   (c) 

Fig. 4. (a) Example (b) Allocated Ranges (c) RCP w/ negative cycle detection 

As shown in Figure 4(b), L and U of each variable are initially set to corresponding 
minimum and maximum range R values as obtained by Nu-SMOD (for example: 
L(n0)=-1, U(n0)=0 ). Note, that these ranges are adequate for this graph. Consider the 
subgraph e1 ∧ e2 ∧ ¬e3 . When we apply RCP as shown in the Figure 4(c), we detect a 
range violation as follows (note, *L and *U denote changes from the previous step): 
As U(n0) changes in step 3, we change U(n1) to -1 in step 4 as the edge e1 is incident 
on n1 and U(n2) to -1 in step 5 as the edge e2 is incident on n2. Now, as L(n2)=0 > 
U(n2)=-1, we detect a range violation and learn a clause  (¬e1∨¬e2 ∨ e3) by doing 
conflict analysis. The learnt clause (¬e1∨¬e2 ∨ e3), together with the formula clause 
(e2∨e3) implies a clause (¬e1∨ e3); which in turn with formula clause (e1) implies (e3). 
When we detect two negative cycles with edge pairs (e3, e7) and (e3, e6), we learn that 



146 M.K. Ganai, M. Talupur, and A. Gupta 

 

e3 implies (¬e6∧¬e7). As (e6 ∨ e7) is a formula clause, we could declare the formula F 
unsatisfiable without the need to detect further negative cycles.   

4   Experimental Results 

We have integrated our incremental cycle detection using cutpoint relaxation and 
RCP with the zChaff Boolean SAT solver [31]. We have also implemented pre-
emptive learning but have not done controlled experiments to ascertain its usefulness. 
We conducted experiments on a set of six public benchmark suites generated from 
verification and scheduling problems: diamonds, DTP, DLSAT, mathsat, sal and 
uclid. We ran our experiments on a workstation with 3.0 GHz Intel Pentium 4 proces-
sor and 2 GB of RAM running Red Hat Linux 7.2. First, we compare the range alloca-
tion algorithms; second, we evaluate the effectiveness of RCP in SDSAT and third, we 
compare it with the state-of-the-art solvers. 
 
Comparison of Range Allocations Algorithms: We compared our approach Nu-
SMOD with previous approaches SMOD [20] and UCLID [12] on these benchmarks 
and present results in Figure 5. We used a time limit of 2 minutes for each run. Note, 
the UCLID procedure allocates each of n nodes in an SCC a continuous range from 1 
to n+maxC where maxC is the sum of all constant absolute values. We compare the 
number of Boolean variables required to encode the ranges assigned by the different 
approaches as the ratio between the approach and Nu-SMOD. Note, for range set 
R(y), we require log2(|R(y)|)   Boolean variables to encode the set R(y).    

 
 

                       (a)                    (b)                   (c) 

Fig. 5. Ratio of range bits allocated between (a) UCLID v/s Nu-SMOD, (b) SMOD v/s Nu-
SMOD. (c) Scatter plot of time taken (in sec) between SMOD v/s Nu-SMOD. 

 UCLID v/s Nu-SMOD: As shown in Figure 5(a), compared to UCLID, Nu-SMOD 
allocates on average about 40% less range bits (about 4X less on diamond set).  Note 
that such linear reductions amount to exponential reduction in range space.  

SMOD v/s Nu-SMOD: Of 432 benchmarks, SMOD could complete only 262 in the 
given time limit of 2 minutes. If we increase the time limit to 20 minutes, it solves 23 

Range Allocated Bits 
UCLID v/s Nu-SMOD

3.5

3.7

3.9

4.1

4.3

4.5

1

1.2

1.4

1.6

1.8

2

1 35 69 103 137 171 205 239 273 307 341 375 409

Benchmarks

R
at

io
= 

U
C

L
ID

 / 
N

u
-S

M
O

D ≈

 Time Taken (in sec) 
SMOD v/s Nu-SMOD

0.01

0.1

1

10

100

1000

10000

0.01 0.1 1 10 100 1000 10000
Nu-SMOD

S
M

O
D

 Range Allocated Bits 
SMOD v/s Nu-SMOD

0

0.5

1

1.5

2

2.5

1 26 51 76 101 126 151 176 201 226 251 276

Benchmarks

R
a

tio
 S

M
O

D
 / 

N
u

-S
M

O
D



 SDSAT: Tight Integration of Small Domain Encoding and Lazy Approaches 147 

 

more cases.  Not surprisingly, time-out occurs mostly for dense graph as also  
observed by the authors [20]. Baring a few benchmarks, the ranges allocated by  
Nu-SMOD are comparable to SMOD as seen in Figure 5(b). Moreover, SMOD is 1-2 
orders of magnitude slower on the completed benchmarks as compared to Nu-SMOD 
as shown in the scatter plot (in logarithmic scale) in Figure 5(c). 
 
Allocation and Role of RCP in SDSAT: In the second set of experiments, we pre-
sent the results of allocation phase and compare the effectiveness of refinement in 
SDSAT with and without RCP as shown in Table 1. In our experience, the number of 
refinements did not distinct the role of RCP. We observed performance improvement 
using RCP with more refinements as well as with fewer refinements. Thus, instead of 
using the number of refinements, we introduce two metrics to measure its effective-
ness: refinement overhead and refinement penalty. We define refinement overhead as 
the time taken in the corresponding graph algorithm per refinement, and refinement 
penalty as the time taken by Boolean SAT per refinement. The former metric meas-
ures the cost in detecting the inconsistency, whereas the latter measures the cost of 
Boolean search after refinement, evaluating its effectiveness. Ideally, we would like 
to have a low number for both the metrics. In the Table 1, Column 1 shows the bench-
marks suites with the number in brackets indicating the number of problems 
considered. Columns 2-3 show the results of allocation phase: especially, Column 2 
shows the average size of range bits per variable computed in the allocation phase.  
Column 3 shows the average time taken for allocation phase. Columns 4-5 show the 
result of incremental negative cycle detection without RCP. Column 4 shows the 
average refinement overhead (in milliseconds) and Column 5 gives the average re-
finement penalty (in milliseconds). Similarly, Columns 6-8 show the result of incre-
mental negative cycle detection with RCP. Column 6 shows the average refinement 
overhead (in milliseconds), Column 7 shows the average refinement penalty (in milli-
seconds), and Column 8 shows the average percentage of refinements due to RCP.  

Note first that the time overhead in the allocation phase is not very significant. The 
bits allocated for the ranges averages around 10 bits per variable. Though the solution 
space is reduced, the bit blasted translation of the formula could be quite large if we 
were to apply small domain encoding [12]. Note that in the presence of RCP the re-
finement overhead is not affected significantly. Moreover, a lower refinement penalty 
with RCP indicates improvement in quality of refinements and Boolean search. We 
also observe that, except for diamonds, on average 50% refinements are due to range 
violations discovered during RCP. 
 
Comparison with other Separation Logic Solvers: In the third set of experiments, 
we compare our approach SDSAT (the solve phase) with other latest available state-
of-the-art tools, including UCLID[13], MathSAT[17], ICS[4], TSAT++[16], and 
DPLL(T)[18]. As allocation phase has a constant time overhead, we use the solver 
phase run-time for comparison to understand the results better. We used a common 
platform and 1 hour time limit for each of the benchmarks. We present the cumulative 
results in Table 2. Due to unavailability of appropriate translators, we could not com-
pare on uclid benchmarks for this experiment. Pairs of the form (n t) represent that the 



148 M.K. Ganai, M. Talupur, and A. Gupta 

 

particular approach timed out in n number of cases for that benchmark suite.  Overall, 
we observe that SDSAT and DPLL(T) have superior performance compared to other 
lazy and eager approaches by several orders of magnitude. Comparing SDSAT with 
DPLL(T), we see an improvement in some suites, in particular, diamonds and math-
sat. Especially for diamonds, SDSAT is able to detect unsatisfiability in less than 1 sec 
for 32 out of 36 problems. Though there are many negative cycles in these diamonds 
problems, RCP is able to take advantage of the significantly reduced ranges as shown 
in Column 2 in Table 1. On the whole, SDSAT times out in 7 cases as compared to 10 
cases for DPLL(T). Thus, overall our approach is relatively more robust than the pure 
lazy approaches which can also benefit using our ideas. 

Table 1. SDSAT: Allocation and role of RCP 

Allocation -ve cycle w/o RCP -ve cycle with RCP 
Bench Avg.  Range bits 

per var 
Avg.Time 
taken (s)

Ref   ovhd
(ms) 

Ref  pnlty
(ms) 

Ref  ovhd 
(ms) 

Ref  Pnlty 
(ms) 

Range 
violation (%) 

DTP (59) 13 0.46 0.2 0.3 0.2 0.18 48 
diamonds(36) 0.99 0.14 0.1 0.12 0.006 0.02 100 
mathsat (147) 9.97 0.94 32 713 32 371 48 
DLSAT (31) 11.9 3 0.2 1.6 0.3 0.9 45 

sal (99) 10.9 3.34 1 36 1 19 49 

Table 2. Performance comparison (in sec) of state-of-the-art Separation Logic Solvers 

Bench TSAT++ UCLID MathSAT ICS DPLL(T) SDSAT 

DTP (59) 642 122590 (34 t) 120 188592 (48 t) 10 202 
diamonds(36) 6571 32489 (9 t) 24302 (1 t) 51783 (11 t) 679 41 
mathsat (147) 62863 (15 t) 73751 (20 t) 41673 (9 t) 51789 (13 t) 37696 (8 t) 31279 (6 t) 

DLSAT (31) 276 97334 (27 t) 429 12671 (2 t) 13 46 
sal (99) 135909 (34 t) 156399 (43 t) 57401 (15 t) 107313 (28 t) 18721 (2 t) 22178 (1 t) 

5   Conclusions 

We proposed a novel Separation Logic Solver SDSAT that takes advantage of  
the small domain property of Separation logic to perform a lazy search of the state 
space. The solver tightly integrates the strengths of both lazy and eager approaches 
and gives a robust performance over a wide range of benchmarks. It first allocates 
non-uniform adequate ranges efficiently and then uses the graph-based algorithms to 
search lazily for a satisfying model within the allocated ranges. It combines a state-of-
the-art negative cycle detection algorithm with range constraint propagation to prune 
out infeasible search space very efficiently. Moreover, it also benefits from incre-
mental propagation and cycle detection using cutpoint relaxation algorithm. Experi-
mental evidence presented here bears out the efficacy of our technique. 



 SDSAT: Tight Integration of Small Domain Encoding and Lazy Approaches 149 

 

References 

[1] W. Ackermann, "Solvable Cases of the Decision Problem," in Studies in Logic and the 
Foundations of Mathematics, 1954. 

[2] P. Niebert, M. Mahfoudh, E. Asarin, M. Bozga, O. Maler, and N. Jain, "Verification of 
Timed Automata via Satisfiability Checking," in Proc. of Formal Techniques in Real-
Time and Fault Tolerant Systems, 2002. 

[3] J. Adams, E. Balas, and D. Zawack, "The shifting bottleneck procedure for job shop 
scheduling," in Management Science, 1988. 

[4] J.-C. Filliatre, S. Owre, H. Rueβ, and N. Shankar, "ICS: Integrated Canonizer and 
Solver," in Proceedings of CAV, 2001. 

[5] G. Parthasarathy, M. K. Iyer, K.-T. Cheng, and C. Wang, "An Efficient Finite-Domain 
Constraint Solver for RTL Circuits," in Proceedings of DAC, 2004. 

[6] S. Owre, J. M. Rushby, and N. Shankar, "PVS: A Prototype Verification System," in 
Proceedings of CADE, 1992. 

[7] D. Kroening, J. Ouaknine, S. A. Seshia, and O. Strichman, "Abstraction-Based Satisfiabil-
ity Solving of Presburger Arithmetic," in Proceedings of CAV, 2004. 

[8] A. J. C. Bik and H. A. G. Wijshoff, "Implementation of Fourier-Motzkin Elimination.," in 
Technical Report 94-42, Dept. of Computer Science, Leiden University, 1994. 

[9] L. Zhang and S. Malik, "The Quest for Efficient Boolean Satisfiability Solvers," in Pro-
ceeding of CAV, 2002. 

[10] A. Pnueli, Y. Rodeh, O. Strichman, and M. Siegel, "The Small Model Property: How 
small can it be?," in Information and computation, vol. 178(1), Oct 2002, pp. 279-293. 

[11] O. Strichman, S. A. Seshia, and R. E. Bryant, "Deciding Separation Formulas with SAT," 
in CAV, July 2002. 

[12] R. E. Bryant, S. K. Lahiri, and S. A. Seshia, "Modeling and Verifying Systems using a 
Logic of Counter Arithmetic with Lambda Expressions and Uninterpreted Functions," in 
Computer-Aided Verification, 2002. 

[13] S. A. Seshia, S. K. Lahiri, and R. E. Bryant, "A Hybrid SAT-based Decision Procedure 
for Separation Logic with Uninterpreted Functions," in Proceedings of DAC, 2003. 

[14] R. E. Bryant, S. K. Lahiri, and S. A. Seshia, "Deciding CLU logic formulas via Boolean 
and peudo-Boolean encodings," in Workshop on Constraints in Formal Verification, 
2002. 

[15] C. Barrett, D. L. Dill, and J. Levitt, "Validity Checking for Combination of Theories with 
Equality," in Proceedings of FMCAD, 1996. 

[16] A. Armando, C. Castellini, E. Giunchiglia, M. Idini, and M. Maratea, "TSAT++: An Open 
Platform for Satisfiability Modulo Theories," in Proceedings of Pragmatics of Decision 
Procedures in Automated Resonings (PDPAR'04), 2004. 

[17] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. V. Rossum, S. Schulz, and  
R. Sebastiani, "An Incremental and Layered Procedure for the Satisfiability of Integer 
Arithmetic Logic," in Proceedings of TACAS, 2005. 

[18] R. Nieuwenhuis and A. Oliveras, "DPLL(T) with Exhaustive Theory Propogation and its 
Application to Difference Logic," in CAV, 2005. 

[19] C. Wang, F. Ivancic, M. Ganai, and A. Gupta, "Deciding Separation Logic Formulae with 
SAT by Incremental Negative Cycle Elimination," in Proceeding of Logic for Program-
ming, Artificial Intelligence and Reasoning, 2005. 

[20] M. Talupur, N. Sinha, and O. Strichman, "Range Allocation for Separation Logic," in 
CAV, 2004. 



150 M.K. Ganai, M. Talupur, and A. Gupta 

 

[21] F. Aloul, A. Ramani, I. Markov, and K. Sakallah, "PBS: A backtrack search pseudo-
Boolean solver," in Symposium on the Theory and Applications of Satisfiability Testing 
(SAT), 2002. 

[22] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms. Cambridge, 
MA: MIT Press, 1990. 

[23] S. Cotton, "Satisfiability Checking with Difference Constraints," in IMPRS Computer 
Science, Saarbruceken, 2005. 

[24] V. Pratt, "Two Easy Theories Whose Combination is Hard," in Technical report, MIT, 
1977. 

[25] G. Ramalingam, J. Song, L. Joscovicz, and R. Miller, "Solving difference constraints  
incrementally," in Alogrithmica, 1999. 

[26] O. Strichman, "http://iew3.techninon.ac.il/~ofers." 
[27] D. S. Hochbaum, Approximation Algorithms for NP-hard Problems: PWS Publishing 

Company, 1997. 
[28] B. V. Cherkassky and E. Goldberg, "Negative-cycle Detection Algorithms," in European 

Symposium on Algorithms, 1996. 
[29] R. E. Moore, Interval Analysis. NJ: Prentice-Hall, 1966. 
[30] T. Hickey, Q. Ju, and H. V. Emden, "Interval Arithmetic: from principles to implementa-

tion," in Journal of the ACM, 2001. 
[31] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, "Chaff: Engineering an  

Efficient SAT Solver," in Proceedings of Design Automation Conference, 2001. 



SAT-Based Software Certification

Sagar Chaki

Carnegie Mellon Software Engineering Institute
chaki@sei.cmu.edu

Abstract. We formalize a notion of witnesses for satisfaction of lin-
ear temporal logic specifications by infinite state programs. We show
how such witnesses may be constructed via predicate abstraction, and
validated by generating verification conditions and proving them. We
propose the use of SAT-based theorem provers and resolution proofs in
proving these verification conditions. In addition to yielding extremely
compact proofs, a SAT-based approach overcomes several limitations of
conventional theorem provers when applied to the verification of pro-
grams written in real-life programming languages. We also formalize a
notion of witnesses of simulation conformance between infinite state pro-
grams and finite state machine specifications. We present algorithms to
construct simulation witnesses of minimal size by solving pseudo-Boolean
constraints. We present experimental results on several non-trivial bench-
marks which suggest that a SAT-based approach can yield extremely
compact proofs, in some cases by a factor of over 105, when compared
to existing non-SAT-based theorem provers.

1 Introduction

There is an evident and urgent need for objective measures of confidence in the
behavior of software obtained from untrusted sources. In general, the lack of
trust in a piece of code stems from two sources: (i) the code producer, and (ii)
the mechanism of delivery of the code to the consumer. Unfortunately, the vast
majority of current software assurance techniques target the above sources of
mistrust in isolation, but fail to account for them both.

For instance, cryptographic techniques are typically unable to say anything
substantial about the run-time behavior of the program. Techniques such as
sandboxing and analytic redundancy require mechanisms for run-time moni-
toring and appropriate responses to failure. Additionally, such approaches are
inherently dynamic and unable to provide adequate levels of static correctness
guarantees. Extrinsic software quality standards typically have a heavy focus on
process and are usually quite subjective. Moreover, software qualities are weakly
related to desired behavior, if at all.

This article presents a technique that uses proofs to certify software. More
specifically, we certify a rich set of safety and liveness policies on C source
code. Our approach consists of two broad stages. We first use model check-
ing [13, 11] in conjunction with CounterExample Guided Abstraction Refine-
ment (CEGAR) [12] and predicate abstraction [17] to verify that a C program

H. Hermanns and J. Palsberg (Eds.): TACAS 2006, LNCS 3920, pp. 151–166, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



152 S. Chaki

C satisfies a policy S. The policy S may be expressed either as a linear temporal
logic (LTL) formula or a finite state machine.

Subsequently, we use information generated by the verification procedure to
extract a witness Ω. We show how the witness may be used to generate a verifi-
cation condition VC . We also prove that C respects the policy S iff VC is valid.
The witness Ω is constructed and shipped by the code producer along with C
and the proof P of VC . The code consumer uses Ω to reconstruct VC and verify
that P truly corresponds to VC . Therefore, in our setting, the witness Ω and
the proof P may together be viewed as the certificate that C respects S.

While the above strategy is theoretically sound, it must overcome two key
pragmatic obstacles. First, since certificates have to be transmitted and verified,
they must be small and efficiently checkable. Unfortunately, proofs generated
by conventional theorem-provers, such as cvc and vampyre, are often pro-
hibitively large. Second, conventional theorem provers are usually unfaithful to
the semantics of C. For example, they often do not support features of integer
operations such as overflow and underflow. This means that certificates gener-
ated by such theorem provers are, in general, not trustworthy. For example, the
following VC is declared valid by most conventional theorem provers, including
cvc and vampyre: ∀x � (x + 1) > x. However, the above statement is actually
invalid according to the semantics of the C language due to the possibility of
overflow.

In this article, we propose the use of Boolean satisfiability (SAT) to solve both
these problems. More specifically, we translate VC to a propositional formula
Φ such that VC is valid iff Φ is unsatisfiable. Therefore, a resolution refutation
(proof of the unsatisfiability) of Φ serves as a proof of the validity of VC . We
use the state-of-the-art SAT solver zchaff [25], which also generates resolution
refutations, to prove that Φ is unsatisfiable. The translation from VC to Φ is
faithful to the semantics of C and therefore handles issues such as overflow.

We have implemented our proposed technique in the ComFoRT [10] rea-
soning framework and experimented with several non-trivial benchmarks. Our
results indicate that the use of SAT leads to extremely compact (in some cases
over 105 times smaller) proofs in comparison to conventional theorem-provers.
Further details of our experiments can be found in Section 7.

We believe that this paper contributes to not just the area of software certifi-
cation, but to the much broader spectrum of scientific disciplines where compact
proofs are desirable. Algorithms to compress proof representations are currently
a topic of active research. This article demonstrates that the use of SAT tech-
nology is a very promising idea in this context. In the rest of this paper, we omit
proofs of lemmas and theorems for the sake of brevity. Detailed proofs can be
found in an extended version of this paper [6].

2 Related Work

Necula and Lee [28, 30, 31] proposed PCC as a means for checkably certifying that
untrusted binaries respect certain fundamental safety (such as memory safety)



SAT-Based Software Certification 153

criteria. Foundational PCC [2, 18] attempts to reduce the trusted computing base
of PCC to solely the foundations of mathematical logic. Bernard and Lee [5]
propose a new temporal logic to express PCC policies for machine code.Non-
SAT-based techniques for minimizing PCC proof sizes [29, 32] and formalizing
machine code semantics [24] have also been proposed. Our work uses proofs to
certify software but is applicable to safety as well as liveness specifications, and
at the source code level.

Certifying model checkers [26, 22] emit an independently checkable certificate
of correctness when a temporal logic formula is found to be satisfiable by a
finite state model. Namjoshi [27] has proposed a two-step technique for obtaining
proofs of μ-calculus specifications on infinite-state systems. In the first step, a
proof is obtained via certifying model checking. In the second step, the proof is
lifted via an abstraction. This approach is more general than ours as far as LTL
model checking is concerned, but does not handle simulation. It also does not
propose the use of SAT or provide experimental validation.

Magill et al. [23] have proposed a two-step procedure for certifying simula-
tion conformance between an infinite-state system and a finite state machine
specification. In the first step they certify that a finite-state abstraction simu-
lates the infinite-state system. In the second step they prove simulation between
the finite-state abstraction and the specification. Their approach does not cover
LTL specifications, and in particular, is unable to handle liveness policies. Also,
it does not propose the use of SAT.

Predicate abstraction [17] in combination with CEGAR [12] has been applied
successfully by several software model checkers such as slam [4], blast [20]
and magic [7]. Out of these slam and magic do not generate any proof cer-
tificates when claiming the validity of program specifications. blast includes a
method [19] for lifting linear time safety proofs through the abstraction com-
puted by their algorithm into a checkable proof of correctness for the original
program. It does not handle liveness specifications and uses the non-SAT-based
theorem prover vampyre for proof generation. The use of SAT for software
model checking has also been explored in the context of both sequential ANSI-C
programs [14] and asynchronous concurrent Boolean programs [15]. Proving pro-
gram termination via ranking functions is also a rich, and developing, research
area [16, 3].

3 Preliminaries

In this section we present preliminary definitions and results. Let Act be a denu-
merable set of actions. We begin with the notion of labeled transition systems.

Definition 1 (LTS). A Labeled Transition System (LTS) is a quadruple
(S, Init , Σ, T ) where: (i) S is a finite set of states, (ii) Init ⊆ S is a set of
initial states, (iii) Σ ⊆ Act is a finite alphabet, and (iv) T ⊆ S × Σ × S is a
transition relation.



154 S. Chaki

Given an LTS M = (S, Init , Σ, T ) we write s α−→ s′ to mean (s, α, s′) ∈ T . Also
for any s ∈ S and any α ∈ Σ we denote by Succ(s, α) the set of successors of s
under α. In other words: Succ(s, α) = {s′ | s α−→ s′}.
Linear Temporal Logic. We now define our notion of linear temporal logic
(LTL). Unlike standard practice, the flavor of LTL we use is based on actions
instead of propositions. This distinction is, however, inessential as far as this
article is concerned. The syntax of LTL is defined by the following BNF-style
grammar (where α ∈ Act): φ := α | ¬φ1 | φ1 ∧ φ2 | Xφ1 | φ1Uφ2.

The semantics of LTL is fairly standard and we do not describe it here. In
fact, we do not deal with LTL specifications directly but rather via an equivalent
automata-theoretic formalism called Büchi automata.

Definition 2 (Büchi Automaton). A Büchi automaton (or simply an au-
tomaton) is 5-tuple (S, Init , Σ, T, F ) where: (i) S is a finite set of states, (ii)
Init ⊆ S is a set of initial states, (iii) Σ ⊆ Act is a finite alphabet, (iv)
T ⊆ S × Σ × S is a transition relation, and (v) F ⊆ S is a set of final (or
accepting) states.

As in the case of LTSs, given a Büchi Automaton B = (S, Init , Σ, T, F ), we write
s

α−→ s′ to mean (s, α, s′) ∈ T . Also for any s ∈ S and any α ∈ Σ, we denote by
Succ(s, α) the set {s′ | s α−→ s′}.
Language. A trace t ∈ Actω is an infinite sequence of actions. The lan-
guage accepted by an automaton is a set of traces defined as follows. Let
B = (S, Init , Σ, T, F ) be any automaton and t = 〈α0, α1, . . .〉 be any trace.
A run r of B on t is an infinite sequence of states 〈s0, s1, . . .〉 such that: (i)
s0 ∈ Init and (ii) ∀i ≥ 0 � si

αi−→ si+1. For any run r we write Inf (r) to denote
the set of states appearing infinitely often in r. Then a trace t is accepted by
B iff there exists a run r of B on t such that Inf (r) ∩ F �= ∅. The language of
B, denoted by L(B) is the set of traces accepted by B. We define the product
between an LTS and an automaton in the standard manner as follows:

Definition 3 (Product Automaton). Let M = (S1, Init1, Σ1, T1) be an LTS
and B = (S2, Init2, Σ2, T2, F2) be an automaton such that Σ1 = Σ2. Then
the product of M and B is denoted by M ⊗ B and defined as the automaton
(S, Init , Σ, T, F) where: (i) S = S1 × S2, (ii) Init = Init1 × Init2, (iii) Σ = Σ1,
(iv) F = S1 × F2 and (v) T is defined as follows: (s1, s2)

α−→ (s′1, s′2) ⇐⇒
s1

α−→ s′1 ∧ s2
α−→ s′2.

Program. We have applied our ideas to actual C programs. However, for clar-
ity and simplicity of presentation, we use a programming language based on
guarded commands. Let Var be a denumerable set of integer variables. The
set of expressions Expr is defined over Var using the following operators :
+,−,×,÷,=, <,¬,∧ and the C bit-wise operators.

Program Syntax. An assignment is a pair (v, e) where v ∈ Var denotes the
left-hand-side (LHS) and e ∈ Expr denotes the right-hand-side (RHS). The set of



SAT-Based Software Certification 155

assignments is denoted by Asgn. A guarded command is a triple (Grd ,Evt ,Cmd)
where Grd ∈ Expr is a guard, Evt ∈ Act is an event and Cmd ∈ Asgn is
an assignment. The set of guarded commands is denoted by GrdCmd . Given
a guarded command gc = (g, e, c) we write Grd(gc), Evt(gc) and Cmd(gc) to
denote g, e and c respectively. Finally, a program is a pair (I, C) where I ∈ Expr
expresses constraints on the initial states of the program and C ⊆ GrdCmd is a
finite set of guarded commands.

Store. A store is a function σ : Var → Z from variables to integers. The set
of all stores is denoted by Sto. Any store σ naturally induces a function from
expressions to integers: σ(e) is the integer obtained by evaluating e under σ.

Our language has a C-like semantics as far as variables and operators are
concerned. Integers are treated as 32-bit vectors. Also, the arithmetic, relational,
Boolean and bit-wise operators are interpreted in a C-like manner. In particular,
there is overflow and underflow, zero is treated as false, while all other integers
are treated as true.

Definition 4 (Store Update). Given a store σ and an assignment a = (v, e)
we write a[σ] to denote the store resulting after executing a from σ. In other
words, a[σ] is the same as σ for all variables other than v, while a[σ](v) = σ(e).

Definition 5 (Satisfaction). Given a store σ and an expression e we say that
σ satisfies e iff σ(e) �= 0. We denote the satisfaction of e by σ as σ |= e and
write σ �|= e to mean ¬(σ |= e).

In the rest of this article we use the terms formula and expression synonymously
since, as we have seen, any expression e can also be viewed as a logical formula.
The models of e are simply the stores satisfying e.

Program Semantics. We now define the semantics of a program Prog in
terms of a labeled transition system. Intuitively, the states of the LTS are
stores, its initial states are determined by the initial condition of Prog , and
its transitions are determined by the guarded commands in Prog . Formally, let
Prog = (I, C) be a program. Then the semantics of Prog , denoted by [[Prog ]],
is an LTS (S, Init , Σ, T ) such that: (i) S = Sto, (ii) Init = {σ | σ |= I}, (iii)
Σ = {Evt(gc) | gc ∈ C}, and (iv) σ α−→ σ′ iff: ∃gc ∈ C � σ |= Grd(gc) ∧ α =
Evt(gc) ∧ σ′ = Cmd(gc)[σ]. Given a specification as a negated automaton
Spec, we say that Prog satisfies Spec, and denote this by Prog |= Spec, iff
L([[Prog ]] ⊗ Spec) = ∅.

4 Temporal Logic Witness

In this section we present our proof framework for programs. We consider a
program Prog = (I, C). We begin with the notion of strongest postconditions.
For any expression e, variable v and expression t, we denote the expression
obtained by simultaneously replacing all occurrences of v in e by t as e[v/t].



156 S. Chaki

Definition 6 (Strongest Postcondition). Let Prog = (I, C) be a program,
e be an expression and α be an action. Then the strongest postcondition of
e w.r.t. α is denoted by SP [e]{α} and defined as follows: SP [e]{α} = ∃v′ �∨

(g,α,(v,t))∈C(g ∧ e)[v/v′] ∧ (v = t[v/v′]).

The concept of strongest postconditions is quite standard. In particular, the
following fact about strongest postconditions is fairly well-known. Recall that a
state of Prog is a store. Consider any expression e and any action α. Let σ and
σ′ be stores such that σ |= e and σ α−→ σ′. Then σ′ |= SP [e]{α}. This idea is
captured by the following well-known fact.

Fact 1. Let Prog be a program and [[Prog ]] = (S, Init , Σ, T ) be its semantics. Let
e be any expression. Then the following holds: ∀σ ∈ S � ∀σ′ ∈ S � ∀α ∈ Σ � ((σ |=
e) ∧ (σ α−→ σ′)) ⇒ (σ′ |= SP [e]{α}).

Lemma 1. Let e1, e2 be any expressions and α be any action. Then the following
holds: (SP [e1]{α} ∨ SP [e2]{α}) ⇐⇒ SP [e1 ∨ e2]{α}.

We are now ready to present the formal notion of a proof of Prog |= Spec. Recall
that our goal is to prove L([[Prog ]]⊗ Spec) = ∅. Such a proof essentially encodes
a stratified ranking function between [[Prog ]] and Spec. Let us write M⊗ to mean
[[Prog ]]⊗Spec. Let M⊗ = (S⊗, Init⊗, Σ, T⊗, F⊗) and R be a finite set of integral
ranks. Suppose that there exists a ranking function ρ : S⊗ → R such that the
following holds:

- (RANK1) Init⊗ ⊆ Domain(ρ), i.e., all initial states of M⊗ have a rank.
- (RANK2) ∀s α−→ s′ � s �∈ F⊗ ⇒ ρ(s) ≥ ρ(s′).
- (RANK3) ∀s α−→ s′ � s ∈ F⊗ ⇒ ρ(s) > ρ(s′).

Then there is no infinite path of M⊗ that visits an accepting state infinitely
often, i.e., L(M⊗) = ∅. We use a witness to encode a ranking function. We also
use appropriate side-conditions to ensure that the ranking function satisfies the
three conditions mentioned above. We now state this formally:

Theorem 1. Let Prog = (I, C) be a program and Spec = (S, Init , Σ, T, F) be a
specification automaton. Let R be a finite set of integral ranks. Suppose that there
exists a function Ω : S ×R→ Expr that satisfies the following four conditions:

(C1) ∀s ∈ S � ∀r ∈ R � ∀r′ ∈ R � r �= r′ ⇒ ¬(Ω(s, r) ∧Ω(s, r′))
(C2) ∀s ∈ Init � I ⇒

∨
r∈RΩ(s, r)

(C3) ∀s ∈ S \F �∀α �∀r ∈ R �∀s′ ∈ Succ(s, α) �SP [Ω(s, r)]{α} ⇒
∨

r′≤rΩ(s′, r′)
(C4) ∀s ∈ F � ∀α � ∀r ∈ R � ∀s′ ∈ Succ(s, α) � SP [Ω(s, r)]{α} ⇒

∨
r′<rΩ(s′, r′)

Then [[Prog ]] |= Spec and we say that Ω is a witness to [[Prog ]] |= Spec.

Suppose we are given Prog , Spec = (S, Init , Σ, T ) and a candidate witness Ω over
a set of ranks R. Since S, Σ andR are all finite, it is straightforward to generate a
formula equivalent to the conditions C1 – C4 enumerated in Theorem 1. We call
such a formula our verification condition and denote it by VC (Prog ,Spec, Ω).



SAT-Based Software Certification 157

In essence, on account of Theorem 1, a valid proof of VC (Prog ,Spec, Ω) is also
a valid proof of Prog |= Spec.

Theorem 1 is useful in checking the validity of a proposed witness Ω. How-
ever, it yields no technique to construct such a Ω. In this section we present
a procedure called predicate abstraction. In the next section we show how to
construct a valid witness using predicate abstraction. More specifically, if our
procedure actually results in a witness Ω, then Ω is guaranteed to be valid. In
other words, the verification condition VC (Prog ,Spec, Ω) is guaranteed to be a
valid formula. We begin with some preliminary definitions:

Definition 7 (Predicate). A predicate is simply an expression. Let P be a
finite set of predicates. A valuation of P is a function from P to {true, false}.
The set of all valuations of P is denoted by V(P). Given a valuation V ∈ V(P)
of P, the concretization of P w.r.t. V is denoted by γP(V ) and is the expression
defined as follows: γP(V ) =

∧
p∈P p

V (p), where for any predicate p, we have
ptrue = p and pfalse = ¬p.

In this article we only consider finite sets of predicates. We write γ(V ) to mean
γP(V ) when P is clear from context. The notion of concretization presented
above means that any valuation V can also be thought of as the expression
γ(V ). This leads naturally to the notion of consistency between valuations and
expressions and between two valuations.

Definition 8 (Consistency). Let V be a valuation of a set of predicates P and
e be an expression. We say that V is consistent with e, and denote this by V � e,
iff the expression γ(V ) ⇒ ¬e is invalid. In other words: V � e ⇐⇒ ∃σ ∈ Sto �
σ |= γ(V )∧σ |= e. Equivalently, ¬(V � e) iff the expression γ(V ) ⇒ ¬e is valid.

Consistency essentially means that a valuation and an expression are not mu-
tually exclusive. We now define weakest preconditions, a concept closely related
to strongest postconditions. Recall that for any expression e, variable v and ex-
pression t, we denote the expression obtained by simultaneously replacing all
occurrences of v in e by t as e[v/t].

Definition 9 (Weakest Precondition). Let Prog = (I, C) be a program, e be
an expression and α be an action. Then the weakest precondition of e w.r.t. α is
denoted by WP [e]{α} and defined as: WP[e]{α} =

∨
(g,α,(v,t))∈C g ∧ e[v/t].

The relationship between strongest postconditions and weakest preconditions is
expressed formally by the following lemma.

Lemma 2. Let e, e′ be expressions and α be an action. Then the following holds:
(e⇒ ¬WP [e′]{α}) ⇒ (SP [e]{α} ⇒ ¬e′).

Predicate Abstraction. Let Prog = (I, C) be a program and P be a set
of predicates. Let [[Prog ]] = (S, Init , Σ, T ) be the semantics of Prog . Then the
predicate abstraction of Prog w.r.t. P is denoted by {{Prog}}P and is defined as
an LTS (Ŝ, Înit , Σ̂, T̂ ) where: (i) Ŝ = V(P) : the states are the valuations of P ,



158 S. Chaki

(ii) Înit = {V ∈ V(P) | V � I}, (iii) Σ̂ = Σ, and (iv) T̂ is defined as follows:
V

α−→ V ′ ⇐⇒ V � WP [γ(V ′)]{α}.
Predicate abstraction enables us to create finite LTS abstractions of our in-

finite state programs. More importantly, it can be automated. Given Prog and
P it is easy to construct {{Prog}}P from the definition given above. In order to
check for consistency we use an automated theorem-prover. More specifically,
suppose we want to check if V � e. Then, in accordance with Definition 8, we
check for the validity of γ(V ) ⇒ ¬e using a (sound) theorem prover. We assume
¬(V � e) iff the theorem says that γ(V ) ⇒ ¬e is valid.

Generating LTL Witnesses. We now present an algorithm WitGen for con-
structing a valid witness to [[Prog ]] |= Spec. The input to WitGen is: (i) a set
of predicates P such that {{Prog}}P |= Spec, and (ii) a ranking function ρ from
the states of {{Prog}}P ⊗ Spec to a finite set of ranks R that obeys conditions
RANK1 – RANK3 given in Section 4. We defer the question as to how such
a set of predicates P and ranking function ρ may be constructed till later. The
output of WitGen is a valid witness Ω. The following theorem conveys the key
ideas behind our algorithm.

Theorem 2 (Valid Witness). Let Prog = (I, C) be a program, Spec =
(S, Init , Σ, T, F) be a finite specification automaton and P be a set of predi-
cates such that {{Prog}}P |= Spec. Let {{Prog}}P = (V(P), Înit , Σ̂, T̂ ). Let R be a
finite set of integral ranks and ρ : V(P)×S → R be a ranking function that obeys
conditions RANK1 – RANK3 given in Section 4. Now consider the witness
Ω : S × R → Expr defined as follows: Ω(s, r) =

∨
V :ρ(V,s)=r γ(V ). Then Ω is a

valid witness to [[Prog ]] |= Spec.

Getting Predicates and Ranking Functions. Theorem 2 immediately leads
to an algorithm WitGen to construct a valid witness Ω to Prog |= Spec. How-
ever, WitGen requires as input an appropriate set of predicates P such that
{{Prog}}P |= Spec, as well as a ranking function ρ satisfying the conditions men-
tioned in Theorem 2. A suitable P may be constructed by combining predi-
cate abstraction with CEGAR. Full details of such a procedure can be found
elsewhere [9]. Due to the fundamental undecidability of the problem, such an
approach is not always guaranteed to terminate. However, CEGAR-based tech-
niques have been reported to be quite successful [4, 20, 7] in software verification
in recent times.

Generating the Ranking Function. Once an appropriate set of predicates
P has been found by the above procedure, we have to construct a ranking
function ρ. More precisely, suppose that {{Prog}}P = (V(P), Înit , Σ̂, T̂ ) and
Spec = (S, Init , Σ, T, F). Then we have to construct: (i) a finite set of integral
ranks R, and (ii) a ranking function ρ : V(P) × S → R that obeys conditions
RANK1 – RANK3 given in Section 4. We now give an algorithm to achieve
these two goals.

Let us denote {{Prog}}P ⊗ Spec by M⊗ and let M⊗ = (S⊗, Init⊗, Σ, T⊗, F⊗).
Without loss of generality we assume that both S⊗ and F⊗ only contain the



SAT-Based Software Certification 159

states of M⊗ that are reachable from Init⊗ via the transition relation. Our rank-
ing function is defined on only S⊗, and undefined for unreachable states of M⊗.

First, we note that M⊗ can be viewed as a directed graph G⊗ = (N,E) such
that: (N = S⊗)

∧
(E = {(s, s′) | ∃α ∈ Σ � s α−→ s′}). Given any two nodes s and

s′ we say that s � s′ iff there is a path from s to s′ in G. In other words,
s � s′ iff there exists a finite non-empty sequence of states s1, s2, . . . , sk such
that: (s = s1)

∧
(s′ = sk)

∧
(∀i ∈ {1, . . . , k − 1} � (si, si+1) ∈ E). A strongly

connected component (SCC) of G⊗ is a set of nodes X ⊆ N such that: ∀s ∈
X � ∀s′ ∈ X � s � s′. A node of G⊗ that does not belong to any SCC is called a
finitary node. It is evident that a node n is finitary iff for every run x of M⊗ we
have n �∈ Inf (x). We also know that {{Prog}}P |= Spec and hence L(M⊗) = ∅.
This means that every accepting state s ∈ F⊗ must be finitary.

It is also well known that every directed graph G induces a directed acyclic
graph GSCC . The nodes of GSCC are the maximal strongly connected compo-
nents and the finitary nodes of G while its edges are induced by those of G. Let
GSCC
⊗ be the directed acyclic graph induced by G⊗. Let O = 〈n1, n2, . . . , nk〉

be a topological ordering of the nodes of GSCC
⊗ such that if ni � nj, then nj

appears before ni in O. We now fix our set of ranks R to be {1, 2, . . . , k} where
k = |O|. We first define a ranking function ρSCC for the nodes of GSCC

⊗ as fol-
lows: ρSCC (n) = i iff n = ni according to the ordering O. We then use ρSCC to
define a ranking function ρ for G⊗ as follows:

– If n is a finitary node then it is also a node of GSCC
⊗ . Then ρ(n) = ρSCC (n).

– Otherwise n belongs to an unique maximal SCC nSCC which is a node of
GSCC
⊗ . In this case ρ(n) = ρSCC (nSCC ).

We now show that ρ satisfies conditions RANK1 – RANK3 given in
Section 4. Condition RANK1 holds because Init⊗ ⊆ S⊗ = Domain(ρ). For
condition RANK2, consider any transition s α−→ s′ of M⊗ such that s �∈ F⊗.
Now since s � s′ we have ρ(s) ≥ ρ(s′) which is precisely RANK2. For condition
RANK3, consider any transition s α−→ s′ of M⊗ such that s ∈ F⊗. Recall that
in this case s must be a finitary node. Hence ρ(s) �= ρ(s′). Since s � s′ we have
ρ(s) > ρ(s′) which is precisely RANK3.

The use of ranking functions for proofs of liveness properties is well studied
and ours is but another instance of this methodology. The use, and limitations,
of CEGAR for generating appropriate predicates is orthogonal to the witness
construction procedure. In practice, any oracle capable of providing a suitable set
of predicates can be substituted for CEGAR. For instance, some of the predicates
can be manually supplied and the remaining predicates may be constructed
automatically.

5 SAT-Based Certificates

Suppose we are given a program Prog , a specification Spec and a candidate
witness Ω. We wish to check the validity of Ω. To this end we construct the
verification condition VC = VC (Prog ,Spec, Ω) and prove that VC is valid. One



160 S. Chaki

way to achieve this goal is to pass VC as a query to an existing proof-generating
automated theorem-prover such as cvc or vampyre. However, there are at least
two shortcomings of this approach:

First, most theorem provers treat integers, as well as operations on inte-
gers, in a manner that is incompatible with the semantics of our programming
language. For example, our language defines integers to be 32-bit vectors and
operations such as addition and multiplication are defined in accordance with
two’s-complement arithmetic. In contrast, for most theorem provers, integers
have an infinite domain and operations on them are the ones we learn in pri-
mary school. An important consequence of this discrepancy is that certificates
generated by conventional theorem provers may be untrustworthy for our pur-
poses. For example, the following verification condition is declared valid by most
conventional theorem provers, including cvc and vampyre: ∀x � (x + 1) > x.
However, the above statement is actually invalid according to our language se-
mantics due to the possibility of overflow.

In addition, the proofs generated by such theorem provers are usually quite
large (cf. Figure 2). We propose the use of a SAT-based proof-generating decision
procedure to overcome both these hurdles. Recall that the verification conditions
we are required to prove are essentially expressions. Given a verification condition
VC , we check its validity as follows:

1. We translate VC to a SAT formula Φ in conjunctive normal form such that
VC is valid iff Φ is unsatisfiable. In essence Φ represents the negation of VC .

2. We check for the satisfiability of Φ using a SAT solver. If Φ is found to be
satisfiable then VC is invalid. Otherwise, Φ is unsatisfiable and therefore VC
is valid. In such a case our SAT solver also emits a resolution1 proof P that
refutes Φ. We use P as the proof of validity of VC .

In our implementation, we use the cprover [21] tool to perform Step 1
above. Step 2 is performed by the state-of-the-art SAT solver zchaff [25] which
is capable of generating resolution-based refutation proofs [34]. The zchaff dis-
tribution also comes with a proof checker which we use to verify the correctness
of the proofs emitted by zchaff as a sanity-check. We discuss our experimental
results in detail in Section 7. We note here that in almost all cases, SAT-based
proofs are over 100 times (in one case over 105 times) more compact than those
generated by cvc and vampyre. Of course, our proofs are additionally faithful
to the semantics of our programming language.

It is important to understand how our approach addresses the two shortcom-
ings of conventional theorem provers presented at the beginning of this section.
The first problem regarding language semantics is handled by the translation
from VC to Φ in Step 1 above. Of course, the translator itself now becomes part
of our trusted computing base. However, we believe that such a decision is amply
justified by the resulting benefits.

The second difficulty with large proof sizes is mitigated by the fact that a
Φ generated from real-life programs and specifications often has an extremely
1 Resolution is a sound and complete inference rule for refuting propositional formulas.



SAT-Based Software Certification 161

compact resolution refutation. Intuitively, if a program is correct, it is usually
correct because of some simple reason. In practice, this results in Φ having a much
smaller unsatisfiable core C. In essence, C is a subset of the clauses in Φ that is
itself unsatisfiable. Since Φ is in CNF form, it is possible to refute Φ by simply
refuting C. State-of-the-art SAT solvers, such as zchaff, leverage this idea by
first computing a small unsatisfiable core of the target formula and then generat-
ing a refutation for only the core. Section 7 contains more details about the kind
of compression we are typically able to obtain by using the unsatisfiable core.

Finally, we note that the use of SAT guarantees trustworthiness of the gen-
erated certificate even if we use a non-SAT-based theorem prover, such as sim-
plify [33], for predicate abstraction. This enables us to use fast, but potentially
unfaithful, theorem provers during the verification stage and still remain faithful
to C semantics as far as certification is concerned.

6 Simulation

While LTL allows us to reason about both safety and liveness properties, it is
nevertheless restricted to a purely linear notion of time. Simulation enables us to
reason about branching time properties of programs since it preserves all ACTL*
specifications.

Definition 10 (Simulation). Let M1 = (S1, Init1, Σ, T1) and M2 =
(S2, Init2, Σ, T2) be two LTSs. Note that M1 and M2 have the same alphabet. A
relation R ⊆ S1×S2 is said to be a simulation relation if it satisfies the following
condition: (SIM) ∀s1 ∈ S1 � ∀s′1 ∈ S1 � ∀s2 ∈ S2 � ∀α ∈ Σ � (s1, s2) ∈ R∧ s1

α−→
s′1 ⇒ ∃s′2 ∈ S2 � s2 α−→ s′2 ∧ (s′1, s

′
2) ∈ R. We say that M1 is simulated by M2,

and denote this by M1 � M2, iff there exists a simulation relation R ⊆ S1 × S2
such that ∀s1 ∈ Init1 � ∃s2 ∈ Init2 � (s1, s2) ∈ R.

Simulation Witness. We are now ready to present the formal notion of a proof
of Prog � Spec. Such a proof essentially encodes a simulation relation between
Prog and Spec. The idea is to use a mapping Ω from states of Spec to expressions
such that for any state s of Spec, Ω(s) is satisfied by those states of Prog that
are simulated by Spec. We now state this formally:

Theorem 3. Let Prog = (I, C) be a program and Spec = (S, Init , Σ, T ) be a
finite LTS. Suppose that there exists a function Ω : S → Expr that satisfies
the following two conditions: (D1) I ⇒

∨
s∈Init Ω(s) and (D2) ∀s ∈ S � ∀α ∈

Σ � SP [Ω(s)]{α} ⇒
∨

s′∈Succ(s,α)Ω(s′). Then [[Prog ]] � Spec and we say that Ω
is a witness to [[Prog ]] � Spec.

Suppose we are given Prog , Spec = (S, Init , Σ, T ) and a candidate witness Ω.
Since both S and Σ are finite, it is straightforward to generate a formula equiva-
lent to the conditions D1 – D2 enumerated in Theorem 3. We call such a formula
our verification condition and denote it by VC (Prog ,Spec, Ω). In essence, on ac-
count of Theorem 3, a valid proof of VC (Prog ,Spec, Ω) is also a valid proof of
Prog � Spec.



162 S. Chaki

Generating Simulation Witnesses. We now present an algorithm
WitGenSimul for constructing a valid witness to [[Prog ]] � Spec. The input
to WitGenSimul is a set of predicates P such that {{Prog}}P � Spec, and a
simulation relation R between the states of {{Prog}}P and the states of Spec. We
defer the question as to how such a set of predicates P and simulation relation
R may be constructed till later. The output of WitGenSimul is a valid witness
Ω. The following theorem conveys the key ideas behind our algorithm.

Theorem 4 (Valid Witness). Let Prog = (I, C) be a program, Spec =
(S, Init , Σ, T ) be a finite LTS and P be a set of predicates such that {{Prog}}P �
Spec. Let {{Prog}}P = (V(P), Înit , Σ̂, T̂ ) and R ⊆ V(P) × S be a simulation
relation such that: (A1) ∀V ∈ Înit � ∃s ∈ Init � (V, s) ∈ R. Let us also define a
function θ : S → 2V(P) as follows: (A2) ∀s ∈ S � θ(s) = {V | (V, s) ∈ R}. Now
consider the witness Ω : S → Expr defined as follows: (A3) ∀s ∈ S � Ω(s) =∨

V ∈θ(s) γ(V ). Then Ω is a valid witness to [[Prog ]] � Spec.

Getting Simulation Predicates. Theorem 4 immediately leads to an algo-
rithm WitGenSimul to construct a valid witness Ω to Prog � Spec. However,
WitGenSimul requires as input an appropriate set of predicates P such that
{{Prog}}P � Spec. As in the case of LTL model checking, such a P may be con-
structed by combining predicate abstraction with CEGAR. Full details of such
a procedure can be found elsewhere [8]. As in the case of LTL, due to the funda-
mental undecidability of the problem, such an approach is not always guaranteed
to terminate, but has been found to be quite effective in practice.

Witness Minimization. It is clear from Theorem 4 that the size of witnesses
and proofs generated by WitGenSimul is directly related to the size of the
simulation relation R between {{Prog}}P and Spec. In this section we describe
an algorithm to construct a minimal simulation relation between two finite LTSs
if such a relation exists. Clearly, such an algorithm can be used to construct an
R of minimal size which would in turn lead to a witness Ω of small size.

Our algorithm relies on a well-known technique [7] to check for simulation
between finite LTSs using satisfiability for weakly negated HORNSAT formulas.
More specifically suppose we are given two finite LTSs M1 = (S1, Init1, Σ, T1)
and M2 = (S2, Init2, Σ, T2). Then one can construct a propositional CNF for-
mula Ψ such that the set of variables appearing in Ψ is S1 × S2. Intuitively, a
variable (s1, s2) stands for the proposition that state s1 can be simulated by
state s2.

The clauses of Ψ encode constraints imposed by a simulation relation and are
constructed as follows. For each s1 ∈ S1, each s2 ∈ S2, each α ∈ Σ, and each s′1 ∈
Succ(s1, α) we add the following clause to Ψ : (s1, s2) ⇒

∨
s′
2∈Succ(s2,α)(s

′
1, s

′
2).

Intuitively the above clause expresses the requirement that for s2 to simulate
s1, at least one α-successor of s2 must simulate s′1. Also, for each s1 ∈ Init1 we
add the following clause to Ψ :

∨
s2∈Init2(s1, s2). These clauses assert that every

initial state of M1 must be simulated by some initial state ofM2. Now, Ψ has the
following simple property. Let X be any satisfying assignment of Ψ and for any



SAT-Based Software Certification 163

variable v = (s1, s2) let us write X(s1, s2) to mean the Boolean value assigned
to v by X . Then the relation R = {(s1, s2) | X(s1, s2) = true} is a simulation
relation between M1 and M2.

Therefore, we can construct a minimal simulation between M1 and M2 by
constructing Ψ and then looking for a satisfying assignment X such that the
number of variables assigned true by X is as small as possible. This can be
achieved by using a solver for pseudo-Boolean formulas [1]. A pseudo-Boolean
formula is essentially a propositional formula coupled with an arithmetic con-
straint over the propositional variables (where true is treated as one and false
as zero). More specifically, recall that the set of variables of Ψ is S1 × S2. We
thus solve for Ψ along with the constraint that the following sum be minimized:
Υ =

∑
s∈S1×S2

s. We then construct a minimal simulation relation using any
satisfying assignment to Ψ that also minimizes Υ .

Hardness of Finding Minimal Simulation Relations. One may complain
that solving pseudo-Boolean formula satisfiability (an NP-complete problem)
to verify simulation (for which polynomial time algorithms exist) is overkill.
However, the use of a pseudo-Boolean solver is justified by the fact that finding
a minimal simulation between two finite LTSs is actually an NP-hard problem.

We now prove this claim by reducing sub-graph isomorphism, a well-known
NP-complete problem, to the problem of finding a minimal simulation relation
between two LTSs. In the rest of this section, whenever we mention a simulation
relation between two LTSs M1 and M2 we also tacitly assume that every initial
state of M1 is simulated by some initial state of M2.

Definition 11 (Graph). An undirected graph is a pair (V ,E ) where V is a
set of vertices and E ⊆ V ×V is a symmetric irreflexive relation denoting edges.

Definition 12 (Subgraph Isomorphism). Given two graphs G1 = (V1,E1)
and G2 = (V2,E2) such that |V1| < |V2|, we say that G1 is sub-graph isomorphic
to G2 iff there exists an injection μ : V1 → V2 that obeys the following condition:
∀v ∈ V1 � ∀v′ ∈ V1 � (v, v′) ∈ E1 ⇐⇒ (μ(v), μ(v′)) ∈ E2.

Note that we do not allow self-loops in graphs. It is well-known that given two
arbitrary graphs G1 and G2, the problem of deciding whether G1 is sub-graph
isomorphic to G2 is NP-complete. We now show that this problem has a log-
space reduction to the problem of finding a minimal simulation relation between
two LTSs. In essence, from G1 and G2, we construct two LTSs M1 and M2 such
that G1 is sub-graph isomorphic to G2 iff a minimal simulation relation between
M1 and M2 has the same size as G1.

Recall that G1 = (V1,E1). We construct M1 = (S1, Init1, Σ, T1) as follows:
(i) the states of M1 are exactly the vertices of V1, i.e., S1 = V1, (ii) all states of
M1 are initial, i.e., Init1 = S1, (iii) M1 has two actions a and b, i.e., Σ = {a, b},
and (iv) the transitions T1 of M1 are set up as follows: (i) for each (v, v′) ∈ E1

we add v
a−→ v′ and v′

a−→ v to T1, and (ii) for each (v, v′) �∈ E1 we add
v

b−→ v′ and v′ b−→ v to T1. The LTS M2 is constructed from graph G2 in an
analogous manner. As an example, Figure 1 shows two graphs G1 and G2 as well



164 S. Chaki

2M

a

a a

b

b

b

G 2

1M

a a

b

G 1

Fig. 1. Example graphs and LTSs constructed from them. A bi-directional arrow be-
tween two states represents a pair of transitions – one from each state to the other.

as the LTSs M1 and M2 constructed from them. Note that M1 and M2 can be
constructed using logarithmic additional space. Now our NP-hardness reduction
is completed by the following theorem.

Theorem 5. Let n be the number of states of M1, i.e., n = |S1|. Then G1 is
sub-graph isomorphic to G2 iff a minimal simulation relation between M1 and
M2 has n elements.

7 Experimental Results

We implemented our techniques in ComFoRT [10] and experimented with a set
of Linux and Windows NT device drivers, OpenSSL, and the Micro-C operat-
ing system. All our experiments were carried out on a dual Intel Xeon 2.4 GHz
machine with 4 GB RAM and running Redhat 9. Our results are summarized
in Figure 2. The Linux device drivers were obtained from kernel 2.6.11.10. We
checked that the drivers obey the following conventions with spin lock and
spin unlock: (i) locks must be acquired and released alternately beginning with
an acquire (safe), and (ii) every acquire must be eventually followed by a re-
lease (live). The Windows drivers are instrumented so that an ERROR location is
reached if any illegal behavior is executed. We certified that ERROR is unreach-
able for all the drivers we experimented with. For OpenSSL (version 0.9.6c)
we certified that the initial handshake between a server and a client obeys the
protocol specified in the SSL 3.0 specification. For Micro-C (version 2.72) we
certified that the calls to OS ENTER CRITICAL and OS EXIT CRITICAL obey the
two locking conventions mentioned above.

In almost all cases, SAT-based proofs are over 100 times more compact than
those generated by cvc and vampyre. In one instance – tlan.c (live) – the
improvement is by a factor of more than 105. We also find that an important
reason for such improvement is that the UNSAT-cores are much smaller (by over
two to three orders of magnitude) than the actual SAT formulas. Upon closer
inspection, we discovered that this is due to the simplicity of the verification
conditions (VCs). For instance, the device drivers satisfy the locking conventions
because of local coding conventions (every procedure with a lock has a matching



SAT-Based Software Certification 165

Name LOC CVC Vampyre SAT Cert Core Improve
ide.c (safe) 7428 80720 × 100 703 >2000 807
ide.c (live) 7428 82653 × 100 1319 >2000 827
tlan.c (safe) 6523 11145980 × 517 4663 >200 21559
tlan.c (live) 6523 90155057 × 572 74281 >200 157614

aha152x.c (safe) 10069 247435 × 210 2102 >1500 1178
aha152x.c (live) 10069 247718 × 210 3968 >1500 1180
synclink.c (safe) 17104 9822 × 53 185 >500 185
synclink.c (live) 17104 9862 × 53 327 >500 186
hooks.c (safe) 30923 597642 × 369 2004 >1500 1629
hooks.c (live) 30923 601175 × 368 3102 >1500 1624

cdaudio.c (safe) 17798 248915 156787* 209 2006 >1000 750
diskperf.c (safe) 4824 117172 × 106 955 >2500 1105
floppy.c (safe) 17386 451085 60129* 318 2595 >3000 189
kbfiltr.c (safe) 12131 56682 7619* 51 528 >2500 149

parclass.c (safe) 26623 460973 × 262 2156 >4500 1759
parport.c (safe) 61781 2278120 102967* 529 3568 >5000 195
SSL-srvr (simul) 2483 1287290 19916 261 1055 >150 76
SSL-clnt (simul) 2484 189401 27189 155 740 >200 175
Micro-C (safe) 6272 416930 118162 262 2694 >5500 451
Micro-C (live) 6272 435450 × 263 7571 >5500 1656

Fig. 2. Comparison between cvc, vampyre and SAT-based proof generation. A ×
indicates that results are not available. Best figures are highlighted. LOC = lines of
code. CVC, Vampyre and SAT = proof size in bytes (after compressing with the gzip
utility) with cvc, vampyre and SAT. cvc statistics obtained via ComFoRT, blast
statistics obtained from version 2.0 or existing publication [19] (indicated by *). Cert
= gzipped certificate (i.e., witness + proof of the verification condition) size with SAT.
Core = factor by which the unsatisfiable core is smaller than the original SAT formula.
Improve = factor by which SAT-based proofs are smaller than nearest other proofs.

unlock). In practice, this results in very simple VCs. Proofs generated by cvc
and vampyre suffer from redundancies and inefficient encodings and therefore
turn out to be large even for such simple formulas. In contrast, SAT formulas
generated from these simple VCs are characterized by small unsatisfiable cores.

We note that the total size of the certificate is usually dominated by the size of
the witness. Finally, we find that certificates for liveness policies tend to be larger
than those for the corresponding safety policies. This is due to the additional
information required to encode the ranking function, which is considerably more
complex for liveness specifications.

Acknowledgment. We are grateful to Stephen Magill, Aleksandar Nanevski,
Peter Lee and Edmund Clarke for insight on PCC and model checking. We also
thank Rupak Majumdar and Ranjit Jhala for providing us with the Windows
driver benchmarks, and Anubhav Gupta for advice on zchaff.

References

1. F. Aloul, A. Ramani, I. Markov, and K. Sakallah. PBS: A backtrack search pseudo
Boolean solver. In Proc. of SAT, 2002.

2. A. Appel. Foundational proof-carrying code. In Proc. of LICS, 2001.



166 S. Chaki

3. I. Balaban, A. Pnueli, and L. Zuck. Shape analysis by predicate abstraction. In
Proc. of VMCAI, 2005.

4. T. Ball and S. Rajamani. Automatically validating temporal safety properties of
interfaces. In Proc. of SPIN, 2001.

5. A. Bernard and P. Lee. Temporal logic for proof-carrying code. In CADE, 2002.
6. S. Chaki. SAT-based Software Certification. Technical report CMU/SEI-2006-TN-

004, Carnegie Mellon Software Engineering Institute, Pittsburgh, USA, 2006.
7. S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification of

software components in C. IEEE TSE, 30(6):388–402, 2004.
8. S. Chaki, E. Clarke, S. Jha, and H. Veith. An iterative framework for simulation

conformance. Journal of Logic and Computation, 15(4), 2005.
9. S. Chaki, E. Clarke, J. Ouaknine, N. Sharygina, and N. Sinha. State/event-based

software model checking. In Proc. of IFM, 2004.
10. S. Chaki, J. Ivers, N. Sharygina, and K. Wallnau. The ComFoRT reasoning frame-

work. In Proc. of CAV, 2005.
11. E. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for branching

time temporal logic. In Proceedings of WLP, 1981.
12. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided

abstraction refinement for symbolic model checking. J. ACM, 50(5), 2003.
13. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.
14. E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs. In

Proc. of TACAS, 2004.
15. B. Cook, D. Kroening, and N. Sharygina. Symbolic model checking for asyn-

chronous boolean programs. In Proc. of SPIN, 2005.
16. B. Cook, A. Podelski, and A. Rybalchenko. Abstraction refinement for termination.

In Proc. of SAS, 2005.
17. S. Graf and H. Säıdi. Construction of abstract state graphs with PVS. In CAV’97.
18. N. Hamid, Z. Shao, V. Trifonov, S. Monnier, and Z. Ni. A syntactic approach to

foundational proof-carrying code. In Proc. of LICS, 2002.
19. T. Henzinger, R. Jhala, R. Majumdar, G. Necula, G. Sutre, and W. Weimer.

Temporal-safety proofs for systems code. In Proc. of CAV, 2002.
20. T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. POPL’02.
21. D. Kroening. Application specific higher order logic theorem proving. VERIFY’02.
22. O. Kupferman and M. Vardi. From complementation to certification. TACAS’04.
23. S. Magill, A. Nanevski, E. Clarke, and P. Lee. Simulation-based safety proofs by

MAGIC. In preparation.
24. N. Michael and A. Appel. Machine instruction syntax and semantics in higher

order logic. In Proc. of CADE, 2000.
25. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering

an efficient SAT solver. In Proc. of DAC, 2001.
26. K. Namjoshi. Certifying model checkers. In Proc. of CAV’01.
27. K. Namjoshi. Lifting temporal proofs through abstractions. In VMCAI’03.
28. G. Necula. Proof-carrying code. In POPL’97.
29. G. Necula and P Lee. Efficient representation and validation of proofs. In LICS’98.
30. G. Necula and P. Lee. Safe kernel extensions without run-time checking. OSDI’96.
31. G. Necula and P. Lee. Safe, untrusted agents using proof-carrying code. In Proc.

of Mobile Agents and Security, 1998.
32. G. Necula and S. P. Rahul. Oracle-based checking of untrusted software. POPL’01.
33. G. Nelson. Techniques for Program Verification. PhD thesis, 1980.
34. L. Zhang and S. Malik. Validating sat solvers using an independent resolution-

based checker: Practical implementations and other applications. In DATE’03.



Expressiveness + Automation + Soundness:
Towards Combining SMT Solvers
and Interactive Proof Assistants

Pascal Fontaine, Jean-Yves Marion, Stephan Merz,
Leonor Prensa Nieto, and Alwen Tiu

LORIA – INRIA Lorraine – Université de Nancy

Abstract. Formal system development needs expressive specification languages,
but also calls for highly automated tools. These two goals are not easy to recon-
cile, especially if one also aims at high assurances for correctness. In this paper,
we describe a combination of Isabelle/HOL with a proof-producing SMT (Sat-
isfiability Modulo Theories) solver that contains a SAT engine and a decision
procedure for quantifier-free first-order logic with equality. As a result, a user
benefits from the expressiveness of Isabelle/HOL when modeling a system, but
obtains much better automation for those fragments of the proofs that fall within
the scope of the (automatic) SMT solver. Soundness is not compromised because
all proofs are submitted to the trusted kernel of Isabelle for certification. This ar-
chitecture is straightforward to extend for other interactive proof assistants and
proof-producing reasoners.

1 Introduction

Deductive tools for system verification can be classified according to the axes of ex-
pressiveness, degree of automation and guarantees of soundness. An ideal tool would
score high everywhere: expressive input languages such as higher-order logic or set
theory allow a user to write natural and concise models, automatic verification takes
care of a large fraction of the proof obligations, and the assurance of soundness gives
confidence in the result. In practice, these goals are in conflict. For example, interactive
proof assistants encode rich logics, which are at the basis of highly expressive (and user-
extensible) modeling languages. Their verification environment is usually built around
a small trusted code base, ensuring that theorems can only be produced from explicitly
stated axioms and proof rules. At the other end of the spectrum one finds automatic
verification tools, including model checkers and decision procedures. These tools come
with fixed input languages in which to express the models, and they implement fully
automatic verification algorithms tailored for these languages. Using sophisticated op-
timizations, they aim to scale up to large problems; however, it is all too easy to inad-
vertently introduce bugs that compromise soundness.

It is clearly desirable to combine interactive and automatic verification tools in order
to benefit from their respective strengths. Proof assistants often provide a back door
for using automated tools in the form of trusted oracles: it suffices to translate the
formulas to prove into the input language of the automatic reasoner and to invoke it. If
the proof succeeds, the proof assistant will accept the formula as a theorem. However,

H. Hermanns and J. Palsberg (Eds.): TACAS 2006, LNCS 3920, pp. 167–181, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



168 P. Fontaine et al.

this mechanism makes the oracle a part of the trusted code base, and therefore weakens
the guarantees of soundness. Even if one may be inclined to trust the external reasoner,
the translation function can be non-trivial, for example when translating from higher-
order to first-order logic; moreover, the translation will often undergo much less testing
than the external reasoner itself.

One way to avoid this problem is to make the external reasoner produce proof traces
that can be checked independently. Usually, checking a proof is a much simpler prob-
lem than finding it in the first place, so the checker can be accepted as part of the trusted
code base. Even more, proof checking can be implemented relatively easily within an
interactive proof assistant so that the size of the trusted kernel does not augment beyond
what users of the proof assistant accept anyway. The combined tool offers the full ex-
pressiveness of the proof assistant, but provides the automation of the external reasoner
over its domain, without compromising soundness guarantees.

An alternative would be to verify the algorithm of the automatic prover within a
proof assistant and to extract an implementation whose soundness is guaranteed, with-
out the need of checking individual proofs. (Note that code extraction or interpretation
becomes part of the trusted code base.) It is not clear yet that this approach can produce
implementations whose efficiency can compete with reasoners implemented as, say,
highly optimized C programs. Mahboubi [14] describes ongoing work with the aim of
implementing cylindrical algebraic decomposition in Coq.

In this paper we describe an implementation of proof certification for a decision pro-
cedure for the quantifier-free first-order language of uninterpreted function and pred-
icate symbols implemented in haRVey [7] within Isabelle/HOL [23], the encoding of
higher-order logic in Isabelle. The SMT (Satisfiability Modulo Theories) solver haR-
Vey combines a SAT solver with decision procedures. In a nutshell, the SAT solver
maintains a Boolean abstraction of the input formula. Whenever a propositional model
for this abstraction is found, it is submitted to the decision procedure(s). If the model
is found to be incompatible with a theory, a conflict clause is produced in order to ex-
clude a class of models. This process continues until either a model is found, in which
case the input formula is satisfiable, or until the SAT solver determines the Boolean
abstraction to be unsatisfiable. Because the SAT solver plays a central role in haRVey,
we first introduce in Sect. 3 proof reconstruction in Isabelle for SAT solvers. In Sect. 4
we describe how haRVey has been extended to produce proof traces and how we imple-
ment proof reconstruction for these traces (Sect. 5). The overall approach generalizes
to other theories implemented in SMT solvers, including fragments of arithmetic and
set-theoretical constructions.

Related Work. We are not aware of any existing combination of SMT solvers and proof
assistants, but the use of proof certification for tool combination is widely accepted. For
example, an interface between Coq and the rewriting system ELAN [21] lets ELAN
compute proof objects (as λ-terms) that are submitted to Coq, and a similar approach
has been implemented for Coq and the first-order theorem provers Bliksem [4] and
Zenon. Because explicit proof objects can be huge, Necula and Lee [18] propose tech-
niques to compress them. In contrast, we do not compute full proof objects but just
“hints” that guide Isabelle during proof reconstruction. Meng et al. describe a combina-
tion of Isabelle and resolution-based first-order theorem provers [16], and a similar ap-



Towards Combining SMT Solvers and Interactive Proof Assistants 169

proach underlies the combination of Gandalf and HOL within the Prosper project [13].
The work on the TRAMP system reported by Meier [15] is used in the Omega sys-
tem [25], and it appears to be closely related to ours because the target logic is similar;
also, our “proof hints” can be understood as a form of proof planning.

2 Motivation for Tool Integration

Our motivation for combining interactive proof assistants and SMT solvers comes from
case studies that we performed for the verification of distributed algorithms, including
a framework for clock synchronization protocols [3, 26]. These case studies were car-
ried out in Isabelle/HOL, and this formalism allowed us to write easily understandable
system specifications. When it came to verification, we would typically instantiate the
higher-order abstractions in a few initial proof steps, leaving us with first-order verifi-
cation conditions. Many of these subgoals would fall within the domain of automatic
decision procedures. A typical example is provided by the following lemma that appears
within the context of clock synchronization:

lemma bounded-drift:
assumes s ≤ t and correct p t and correct q t

and rbound1 C and rbound2 C and rbound1 D and rbound2 D
shows |C p t −D q t| ≤ |C p s−D q s|+ 2×ρ× (t− s)

The lemma establishes a bound on the drift between two ρ-bounded clocks C and D
for processors p and q that are supposed non-faulty (correct) at time t. It relies on the
following definition of ρ-boundedness:

rbound1 C
Δ= ∀p,s, t. correct p t ∧ s ≤ t −→C p t −C p s ≤ (1 +ρ)× (t− s)

rbound2 C
Δ= ∀p,s, t. correct p t ∧ s ≤ t −→ (1−ρ)× (t− s) ≤C p t −C p s

The Isabelle proof of this lemma in [26] requires a series of intermediate lemmas,
which were rather tedious to prove. In particular, Isabelle’s built-in tactic for linear
arithmetic is unable to prove the lemma, even after manual instantiation of the quanti-
fiers. This is mainly due to the appearance of the subterm ρ×(t−s), which falls outside
the scope of linear arithmetic. In contrast, it is not hard to see that the lemma is correct,
and CVC-Lite [2] was able to prove it automatically. CVC-Lite is an SMT solver whose
core consists of a combination of decision procedures for fragments of first-order logic;
other tools in this category include MathSAT [5], ICS [10] and Yices.

As a first step towards tool combination, we tried an oracle-style integration and
implemented ML functions that translate a fragment of Isabelle/HOL to the input lan-
guages of SMT solvers. The recent emergence of the common SMT-LIB input for-
mat [24] turned out to be very helpful, because the same translations worked for many
different tools. By using SMT solvers as oracles, we could concentrate on the high-
level structure of the verification and leave tedious details such as the above lemma to
the external tools.

However, we were also quickly reminded of the dangers with oracle-style integra-
tion: a simple typo in the translation functions was enough to corrupt soundness. The



170 P. Fontaine et al.

translation from a higher-order setting to a (multi-sorted) first-order language is non-
trivial. In short, it was all too easy to introduce bugs in the translation, which suggested
to us that we should investigate techniques of proof certification.

3 Proof Reconstruction for Propositional Logic

SAT solvers decide the satisfiability problem for propositional logic, and they are an es-
sential component of SMT solvers. Given a propositional formula, a SAT solver either
computes a satisfying valuation or reports that the formula is unsatisfiable. Modern SAT
solvers implement the DPLL algorithm [6] due to Davis, Putnam, Logemann, and Love-
land, enhanced by optimizations such as conflict analysis and non-chronological back-
tracking, good branching heuristics, and efficient data structures [29]. These solvers
expect the input to be presented as a set (i.e., conjunction) of clauses, which are dis-
junctions of literals. In preparation for using a SAT solver, we must convert arbitrary
propositional formulas into conjunctions of clauses, preserving satisfiability.

A naive conversion to conjunctive normal form (CNF) simply distributes disjunc-
tions over conjunctions. However, this could result in a conjunction whose size is expo-
nential in the size of the original formula. For example, the formula

(a1 ∧b1)∨ . . .∨ (an ∧bn)

gives rise to 2n conjuncts. For our purposes, we do not need to produce an equivalent
CNF formula, but only have to preserve (un)satisfiability, and it is well known that a
conversion of linear complexity is possible in this case. The classical technique, due to
Tseitin [1, 27], is to introduce new Boolean variables to represent complex subformulas.
In the above example, we would introduce additional variables x1, . . . ,xn and obtain the
clauses

x1 ∨ . . .∨ xn, ¬xi ∨ai, ¬xi ∨bi, xi ∨¬ai ∨¬bi (i = 1, . . . ,n).

The first clause represents the original formula, whereas the remaining clauses arise
from “definitional” equivalences xi = ai∧bi. This idea can be implemented in Isabelle
by a tactic that repeatedly applies the theorem

(A∧B)∨C = (∃x.(x = A∧B)∧ (x∨C))

in order to obtain a quantified Boolean formula ∃x.c1 ∧ . . .∧cm that is equivalent to the
original formula. The clauses c1, . . . , cm are then passed on to the SAT solver.

SAT solvers try to compute a satisfying assignment of truth values to atoms by re-
peatedly applying two basic operations [17]: Boolean constraint propagation determines
the values of Boolean variables that appear in unit clauses, i.e. clauses that contain a
single unassigned literal. Second, truth values are guessed for variables whose value has
not yet been determined. In case these guesses are found to be incompatible with the in-
put clauses, the search backtracks, remembering the unsuccessful guesses as a learned
clause that is added to the original set of clauses in order to help direct the search.

In a theorem-proving context, we show a formula to be valid by establishing the
unsatisfiability of its negation, and we are therefore mostly interested in verdicts of
unsatisfiability. As explained in [30], SAT solvers such as MiniSAT [9] or zChaff [29]



Towards Combining SMT Solvers and Interactive Proof Assistants 171

can produce justifications of unsatisfiability verdicts as lists of binary resolution steps.
Each step operates on two clauses c1 ≡ a1∨ . . .∨ak and c2 ≡ b1∨ . . .∨bl that contain
a complementary literal (say, b1 ≡ a1) to produce the clause a2 ∨ . . .∨ak ∨b2 ∨ . . .∨bl ;
hence, a step can be represented as a triple of integers identifying the two participating
clauses and the propositional variable to resolve on. The proof ends with establishing
the empty clause, which is trivially unsatisfiable.

The proof trace produced by the SAT solver is passed to Isabelle, where it is used to
guide a proof of the unsatisfiability of the formula ∃x.c1∧ . . .∧cm obtained by the CNF
transformation. The unsatisfiability of this latter formula is easily reduced to the proof
of the sequent [[c1; . . . ;cm]] =⇒ False, i.e. to deriving a contradiction from the hypothe-
ses c1, . . . , cm. At this point, the representation of the clauses ci in Isabelle becomes
important. A naive representation of clauses as disjunctions of literals in Isabelle/HOL
requires associativity and commutativity of disjunction to be applied prior to each res-
olution step so that the complementary literal appears, say, as the first disjunct. This
complication can be circumvented when clauses are encoded as sequents, observing
that the clause a1 ∨ . . .∨ ak can be represented as the sequent [[a1; . . . ;ak]] =⇒ False
where ai denotes the complement of the literal ai. With this representation, binary res-
olution essentially becomes an application of the cut rule. More precisely, given two
clauses c1 ≡ [[a1; . . . ;ak]] =⇒ False and c2 ≡ [[b1; . . . ;bl]] =⇒ False in sequent repre-
sentation such that, say, b j ≡ ai, we deduce from c1 the equivalent sequent

c′1 ≡ [[a1; . . . ;ai−1;ai+1; . . . ;ak]] =⇒ ai

and then join the two sequents using a primitive operation provided by Isabelle to obtain
the sequent representation of the resolvent, i.e.

[[a1; . . . ;ai−1;ai+1; . . . ;ak;b1; . . . ;b j−1;b j+1; . . . ;bl]] =⇒ False.

We have tested our method with proofs generated by MiniSAT and by zChaff, and
it is now available as the sat and satx tactics (the latter based on the definitional CNF
conversion described above) in the Isabelle 2005 standard distribution. Table 1 shows
experimental results for several examples taken from the TPTP benchmark, based on the
solver zChaff. We can successfully check proofs for problems of a few hundred clauses
and that require about 10000 binary resolutions. As for the execution time (given in
seconds, measured on a Pentium-IV with 1.6 GHz and 512 MB main memory under

Table 1. Running time for SAT proof reconstruction

Problem # clauses SAT time Total time

MSC007-1.008 204 0.208 11.546
PUZ015-2.006 184 0.005 2.435
PUZ016-2.005 117 0.003 1.158
PUZ030-2 63 0.002 0.485
PUZ033-1 13 0.003 0.078
SYN090-1.008 65 0.002 0.492
SYN093-1.002 26 0.005 0.133
SYN094-1.005 82 0.005 0.742



172 P. Fontaine et al.

Linux), “SAT time” refers to the running time of the SAT solver alone whereas “Total
time” includes the time taken by Isabelle to reconstruct the proof. One can see that proof
checking by Isabelle takes at least two orders of magnitude longer than it takes zChaff
to determine unsatisfiability and to produce the proof. This mainly comes from the
underlying representation of formulas and theorems in Isabelle, which accommodates
arbitrary higher-order syntax, and is not optimized for propositional logic. On the other
hand, the default automated tactics offered by Isabelle cannot solve any but the smallest
problems of Tab. 1.

Weber [28] has independently suggested a way to perform proof reconstruction in
Isabelle from proof traces obtained from SAT solvers. His approach is based on rewrit-
ing entire sets of clauses, whereas our sequent representation allows us to operate on
comparatively small objects, and our implementation is about an order of magnitude
faster for most of the examples of Tab. 1.

4 Proof Traces from SMT Solvers

The integration of SAT solving with Isabelle is essential for supporting SMT solvers
that handle more expressive, though still quantifier-free, languages. Roughly, SMT
solvers are SAT solvers working together with theory reasoners, as illustrated in Fig. 1.
The information exchanged at the interface are conflict clauses of the theory reasoner,
introduced in Sections 4.1 and 4.2. These clauses also contain the essence of a formal
proof: the conjunction of the clauses implies the unsatisfiability of the goal formula by
purely propositional reasoning. The conflict clauses themselves are proved by laws of
equational logic (reflexivity, symmetry, transitivity, and congruence), and in Sect. 4.3
we address the generation of these proofs from the data structures of the underlying
decision procedure.

Conflict clause

Theory
reasoning

Propositional “model”

SAT solver

Fig. 1. Cooperation between a SAT solver and a theory reasoner

4.1 SAT Solvers Beyond Boolean Logic

Assume that we wish to decide the satisfiability of the formula

x = y∧
(

f (x) �= f (y)∨ (¬p(x)∧ p(z))
)
. (1)

We first construct a Boolean abstraction by consistently replacing first-order atoms by
Boolean variables. For our example, we obtain the propositional formula

p1 ∧
(
¬p2 ∨ (¬p3 ∧ p4)

)
(2)



Towards Combining SMT Solvers and Interactive Proof Assistants 173

where the Boolean variables p1, p2, p3 and p4 correspond to the first-order atoms x = y,
f (x) = f (y), p(x) and p(z). This Boolean abstraction has two (sets of) models that
respectively satisfy the literals {p1,¬p2} and {p1,¬p3, p4}. The first abstract model
(i.e. the one that makes p1 true and p2 false) does not correspond to a model for the
original formula (1), because it is not possible to have a model that would make x = y
true and f (x) = f (y) false. The second abstract model corresponds to a concrete one,
since {x = y,¬p(x), p(z)} is satisfiable. In general, a formula is satisfiable if and only
if there exists a model for the Boolean abstraction of the formula that corresponds to a
satisfiable set of literals. Formula (1) is indeed satisfiable.

Notice that this process of first building a Boolean abstraction to extract an abstract
model, and then checking the corresponding sets of first-order literals, allows the the-
ory reasoner to operate on sets of literals only. The Boolean structure of formulas is
managed efficiently by the SAT solver.

Now if in Formula (1) we replace p(z) by p(y), we obtain the unsatisfiable formula

x = y∧
(

f (x) �= f (y)∨ (¬p(x)∧ p(y))
)
.

Its Boolean abstraction is still (2) but p4 now represents p(y). The models for the ab-
straction do not correspond to models for the original formula, since the sets of literals
{x = y, f (x) �= f (y)} and {x = y,¬p(x), p(y)} are both unsatisfiable. To reduce the satis-
fiability problem to a purely propositional one, it is sufficient to add conjunctively to (2)
conflict clauses that express the unsatisfiability of the abstract models in the first-order
theory. In our example, we obtain the conflict clauses ¬p1 ∨ p2 and ¬p1 ∨ p3 ∨¬p4,
corresponding to the valid formulas x �= y∨ f (x) = f (y) and x �= y∨ p(x)∨¬p(y).

To summarize, the cooperation between the SAT solver and the decision procedure
for sets of literals is depicted in Fig. 1. The SAT solver produces models for the Boolean
abstraction (that are not necessarily models for the original formula). If the sets of first-
order literals that correspond to those models are unsatisfiable, they are rejected by the
theory reasoning module, and the Boolean abstraction is refined by a conflict clause.
For a satisfiable input, an abstract model corresponding to a satisfiable set of first-order
literals will eventually be found. For an unsatisfiable input, the successive refinements
with conflict clauses will eventually produce an unsatisfiable propositional formula.

4.2 Improving Efficiency

In practice, the Boolean abstraction of a given formula will have many models. It is
therefore important to find conflict clauses that eliminate not just one, but many abstract
models.

The first ingredient to remove several abstract models simultaneously is to extract
partial models from the propositional abstraction rather than full models. A partial
model assigns a truth value to a subset of the propositional variables used in the ab-
straction, such that every interpretation that extends this partial model is a (full) model.
A partial model assigning n variables for a formula using m variables represents 2m−n

full models. Adding a conflict clause to reject a partial model allows us to reject a large
number of full models. In [11] we introduced a simple technique to efficiently compute
a minimal partial model from a full model for a set of clauses.



174 P. Fontaine et al.

Second, the set of literals L corresponding to an abstract (partial) model can still
be huge. On the contrary, the very reason for which this set is unsatisfiable is often
quite small: it can be expressed as a small subset of L that is unsatisfiable with re-
spect to the theory, the remaining literals being irrelevant. Generating conflict clauses
that correspond to small unsatisfiable subsets will, in practice, contribute to an efficient
cooperation of the SAT solver with the theory reasoner. The theory reasoner should
therefore be able, given an unsatisfiable set of literals, to detect those literals that were
really useful to conclude that the set is unsatisfiable. The congruence closure algorithm
described in Sect. 4.3 has been designed for this purpose.

Because proof reconstruction essentially relies on the conflict clauses produced by
the theory reasoner, it also benefits from this effort to compute small conflict clauses.

4.3 Congruence Closure

A congruence closure algorithm decides the satisfiability of a set of ground first-order
logic literals in the theory of uninterpreted predicates and functions. It does so by con-
structing equivalence classes of terms. Two terms belong to the same class if and only
if the equalities from the input force the terms to be equal: disequalities play no role
in building equivalence classes. A set of literals may be unsatisfiable for two rea-
sons. First, if it contains a pair of complementary literals built from the same pred-
icate such that the corresponding arguments are in the same congruence class as in
{a = b, p(a,b),¬p(b,a)}. Second, if there is a disequality between two terms in a sin-
gle congruence class: for instance the set {a = b, f (a) �= f (b)} is unsatisfiable.

Many implementations of congruence closure exist, notably the Nelson-Oppen algo-
rithm [20], and the algorithm due to Downey, Sethi and Tarjan (DST for short) [8]. The
simple Nelson-Oppen algorithm has a complexity of O

(
n2
)

where n is the total number
of nodes in the tree or DAG representations of the set of literals. The DST algorithm
is more complicated but is of complexity O (n logn), as long as enter and query opera-
tions on a hash table are assumed to be constant in time. haRVey implements a variant
of DST: its complexity is O (n logn), and terms are represented as DAGs for maximal
sharing of subterms. This algorithm is described in detail in [11].

Very abstractly, the congruence closure algorithms work on a partition of a set of
terms. This set must be closed under the subterm relation. Initially each term is alone in
its own class. The partition of terms is successively updated to take into account a set
of equalities. When an equality t = t ′ is given to the algorithm, the classes for terms t
and t ′ are merged. Any class merge may produce the merge of further classes because
of the congruence rule

t1 = t ′1 · · · tn = t ′n
f (t1, . . . tn) = f (t ′1, . . . t ′n)

(3)

For instance, assume x and y belong to two classes that are merged. Then, if f (x)
and f (y) belong to two different classes, those two classes should also be merged. Im-
plementations of congruence closure algorithms rely on efficient data structures to rep-
resent classes of terms, and on indexing techniques to quickly find the classes that have
to be merged because of the congruence rule.

As an example, consider the set of terms{
a,b, f (a),g(a),g(b),g(g(a)), f (g(b)),g( f (a))

}
.



Towards Combining SMT Solvers and Interactive Proof Assistants 175

This set is closed under the subterm relation. Assume that we wish to compute the
equivalence classes of this set of terms for the equalities a = f (a), f (a) = f (g(b)),
f (g(b)) = g( f (a)) and g(b) = g(g(a)). Initially every term is in its own class. Process-
ing the equality a = f (a) merges the classes for a and f (a). Because of congruence,
the classes for g(a) and g( f (a)) will also be merged. Taking into account the equal-
ity f (a) = f (g(b)) merges the classes for the two terms, without inducing any further
merging operations. At this point, the partition of terms is{

{a, f (a), f (g(b))},{b},{g(a),g( f (a))},{g(b)},{g(g(a))}
}
.

Now, processing the equality f (g(b)) = g( f (a)) merges the classes for those two terms,
that is, the classes for a and g(a). This entails, by congruence, that g(a) and g(g(a))
are equal. Processing the last equality g(b) = g(g(a)) results in all terms except for b
forming a single class.

Notice that only the congruence axiom is applied explicitly: the data structure (i.e. a
partition of terms) makes implicit the equivalence properties of equality, i.e. the laws of
reflexivity, symmetry, and transitivity. Two classes are merged because two terms are
found to be equal, either because a literal in the input equates them, or by propagation
according to the congruence rule. If we want to store that information for later use, we
can store the pair of terms that are responsible for a merge, together with its reason.
This information is enough to reconstruct, for any two terms of a class, a small set of
equations that entail their equality.

Back to the previous example, we can draw a graph that summarizes the successive
merges. The nodes of the graph are just the terms handled by the algorithm. Each time
two classes are merged because of an equation in the input (for instance a = f (a)),
we draw a plain edge between the left- and right-hand side terms of the equation, and
label the edge by the equation. If two classes are merged because of an application
of the congruence rule (for instance g(a) and g( f (a))), we draw a dashed edge. The
full merge-history graph for the congruence closure algorithm applied to our example
appears in Fig. 2.

g(a) g( f (a)) g(g(a))

a f (a) f (g(b)) g(b)
a = f (a)

f (g(b)) = g( f (a))

f (a) = f (g(b))

Fig. 2. Merge-history graph

It is easy to verify that merge-history graphs enjoy the following properties:

– the equality of two terms is entailed by a set of equations (i.e. the two terms are in
the same class), if and only if there is a path between the corresponding nodes in
the merge-history graph;

– there is a unique path between any two terms in the same class;



176 P. Fontaine et al.

– the equality between two terms in the same class follows by reflexivity, symmetry,
and transitivity of equality from the conjunction of the edge labels along the path
between the two terms;

– two terms connected by a dashed edge have the same topmost symbol, and the
corresponding subterms are in the same classes. The equality between those two
terms follows, by congruence only, from equalities between direct subterms.

As a consequence, it is easy to use a merge-history graph to decompose1 the jus-
tification of the equality of two terms into elementary steps that involve either only
congruence or only reflexivity, symmetry, and transitivity of equality.

Assume that the algorithm concludes the unsatisfiability of a set containing the
equalities a = f (a), f (a) = f (g(b)), f (g(b)) = g( f (a)) and g(b) = g(g(a)) and the
disequality a �= g(b), possibly among many other literals. It does so by building the
classes of terms according to the equalities in the input, and then discovering a conflict
with the disequality a �= g(b). At this point, the algorithm uses the merge-history graph
to produce a minimal unsatisfiable subset of the input literals and outputs a justification
of the unsatisfiability of this set that will be used for proof reconstruction.

The idea of using representations similar to merge-history graphs to extract small
conflict sets has appeared before [19, 12, 22], but we are not aware of a previous use of
these graphs to justify a posteriori the equality of terms by elementary proof steps.

5 Proof Reconstruction for Congruence Closure

In this section we describe our implementation of the interface between Isabelle and
haRVey, with the focus on proof reconstruction for the congruence closure reasoning
part of haRVey, as it is described in Section 4. This interface is implemented as a proof
method called rv in Isabelle, i.e., as an ML program.

The idea behind the interface is not to use haRVey to give a complete proof for a
given goal, rather, it is used to provide a list of intermediate lemmas, namely the conflict
clauses described in Section 4, to guide proof search in Isabelle. More precisely, given
a goal formula F , the interface performs the following steps:

1. Convert the negated goal (¬F) to SMT-LIB format and give it to haRVey.
2. If ¬F is unsatisfiable, haRVey produces a list of formulas C1, . . . ,Cn (the conflict

clauses) along with a proof trace for each Ci. If ¬F is satisfiable, the interface
displays the model found by haRVey and aborts.

3. Construct a proof for each conflict clause Ci in Isabelle, based on the justification
output by haRVey.

4. Construct a proof for the sequent [[¬F ;C1; · · · ;Cn]] =⇒ False.
5. Apply modus ponens to the formulas obtained in (3) and (4) to get ¬F =⇒ False,

and hence prove F .

Step (5) is implemented straightforwardly in Isabelle using resolution. Step (4) applies
the SAT interface described in Section 3. We now describe the proof reconstruction for
each conflict clause Ci.

1 Decomposition terminates due to the inductive construction of merge-history graphs from the
two elementary merge operations.



Towards Combining SMT Solvers and Interactive Proof Assistants 177

The haRVey prover produces a compact proof trace for each conflict clause, summa-
rizing the kind of reasoning needed to prove the clause. These proof traces consist of
lists of sequents labeled with hints how they can be proved, as follows:

TRANS: <sequent>
CONGR: <sequent>
PRED : <sequent>
INEQ : <sequent>

and end with the line

CONFL: <formula>

The formula following the keyword CONFL is the conflict clause. We shall look at the
overall structure of the proof trace, before explaining in details the meaning of the
other keywords. Implicit in the proof format is the (backward) resolution proof for
deriving the conflict clause. More precisely, suppose that the list of sequents preceding
the conflict clause are

l1 : [[C11; · · · ;C1k1 ]] =⇒ B1
...

...
ln : [[Cn1; · · · ;Cnkn ]] =⇒ Bn

where each label li is either TRANS, CONGR, PRED or INEQ. The first sequent is always a
statement of a contradiction, i.e., B1 is False. The assumptionsCi j in the sequent i satisfy
the following requirement: each of them either appears in negated form in the conflict
clause, or it is the conclusion of a later sequent, i.e. it is Bk, for some k> i. The conflict
clause is therefore proved by contradiction, as the result of resolving its negation with
all the intermediate sequents above until False is derived. The corresponding inference
in Isabelle looks something like:

[[¬C;Cn1; · · · ;Cnkn ]] =⇒ Bn · · · [[¬C;C11; · · · ;C1k1 ]] =⇒ False

C

where C is the conflict clause. This is a valid inference because each Ci j is either justified
by¬C, or it is Bk for some k> i. In the implementation, this inference scheme is realized
by a series of resolution steps between sequent i, for several (possibly all) i > 1, with
the first sequent.

We shall now turn to the proofs of the intermediate sequents. The keywords pre-
ceding the sequents indicate the kind of reasoning needed to prove the sequent. The
keyword PRED indicates that the sequent can be proved using one substitution and fol-
lowed by proof-by-contradiction. That is, the sequent in this case is of the form:

[[s = t;P s;¬(P t)]] =⇒ False.

The keyword INEQ indicates that the sequent contains a contradictory pair of equalities:

[[s = t;s �= t]] =⇒ False.

Proof reconstruction for both cases are easily done in Isabelle using substitution and
proof by contradiction.



178 P. Fontaine et al.

The keyword TRANS means that the sequent is provable by using the reflexivity, sym-
metry, and transitivity of equality alone. We have implemented a special tactic in Is-
abelle to do this type of equality reasoning. We could have used the built-in simplifier
tactics (based on rewriting) but these may not terminate in case of equalities that result
in looping rewrite rules.

The label CONGR indicates that the sequent is provable by using the congruence
rule (3). As in the case with TRANS, we could use Isabelle’s built-in rewriting engine,
but faster proofs are obtained using a custom-built tactic. Because terms are represented
in curried notation in Isabelle/HOL, we only need to rely on a single axiom scheme, in-
dependently of the arity of the function symbol:

[[ f = g; x = y]] =⇒ f x = g y.

Proof construction proceeds recursively from the last argument of a function applica-
tion: to prove f x1 · · ·xn = g y1 · · ·yn, first show xn = yn and then recursively construct a
proof for f x1 · · ·xn−1 = g y1 · · ·yn−1.

Example. Given the formula (cf. Fig. 2)

a = f a∧ f a = f (g b)∧ f (g b) = g ( f a)∧g b = g (g a) =⇒ a = g b,

haRVey produces one conflict clause, which is just the formula itself, but in CNF. It
also produces a proof trace for the conflict clause, which appears in Fig. 3. For better
readability, we have presented in boldface letters the (dis)equations that come from the
conflict clause (the last line of the proof trace). The remaining (dis)equations appear
as conclusions of sequents below in the proof trace. It is straightforward to construct a
refutation proof from the above sequents.

INEQ: [[a = g b; a �= g b]] =⇒ False
TRANS: [[a = f a; f a = f (g b); f (g b) = g (f a);

g ( f a) = g (g a); g b = g (g a)]] =⇒ a = g b
CONGR: f a = g a =⇒ g ( f a) = g (g a)
TRANS: [[g ( f a) = g a; f (g b) = g (f a); f a = f (g b)]] =⇒ f a = g a
CONGR: a = f a =⇒ g ( f a) = g a
CONFL: a = g b∨a �= f a∨ f a �= f (g b)∨ f (g b) �= g ( f a)∨g b �= g (g a)

Fig. 3. Proof trace for a conflict clause

Benchmark. We have tested our interface to haRVey with proof reconstruction with a
number of example formulas. The running times needed to solve these problems using
the rv tactic are given in Tab. 2. The benchmarks were run on a machine with a 1.5 GHz
Intel Pentium-IV processor and 1024 MB memory under Linux. For each formula, we
indicate the number of nodes in the dag representation of the formula, the number of
distinct atoms that occur in the formula, and the number of conflict clauses produced by
haRVey. We also indicate the times taken by haRVey to refute the formula and output
the proof trace, and by Isabelle to parse the proof trace and check the proof.

For all these examples, the running time it took for haRVey to find a refutation is neg-
ligible (less than a second). For formulas of small size, the number of conflict clauses



Towards Combining SMT Solvers and Interactive Proof Assistants 179

Table 2. Running time for proof reconstruction for congruence closure

Formula Size # confl. Times (s)
nodes atoms clauses haRVey Isabelle

SEQ004-size5 18795 6967 143 0.41 115.68
SEQ011-size2 7355 3471 73 0.02 9.69
SEQ015-size2 331 47 20 0.02 3.10
SEQ020-size2 7963 3775 74 0.02 7.16
SEQ032-size2 255 43 20 0.01 2.66
SEQ042-size2 947 293 49 0.09 11.17
SEQ050-size2 779 213 105 0.11 32.42

produced is up to 20 clauses. In those cases, proof reconstruction succeeds within one
to five seconds. For larger test cases, we make use of some of the benchmark problems
used in the SMT 2005 competition. Note that “small problems” in the competition are
actually quite large formulas, in comparison to the kind of lemmas shown in Sect. 2.
We see that the times taken for proof reconstruction in Isabelle are again more than
two orders of magnitude larger than the running times of haRVey, and that they depend
mostly on the number of conflict clauses produced (remember also that each conflict
clause is justified by a number of low-level reasoning steps).

None of these examples succumbs to Isabelle’s existing automatic proof methods.
Isabelle 2005 contains a preliminary implementation, without proof reconstruction, of
the combination of resolution-based theorem provers and Isabelle described by Meng et
al. [16], and we have not succeeded in using this implementation to prove the examples
of Tab. 2: for the larger examples, the first-order prover did not complete within 5 min-
utes. For the smaller examples, Isabelle was unable to parse the result of the prover,
which also took orders of magnitude longer than haRVey. This experiment seems to in-
dicate to us that the combination with an SMT solver can be useful for certain problems.

6 Conclusion

We have proposed a technique for combining interactive proof assistants and proof-
producing SMT solvers. Because proofs are certified by the trusted kernel of the interac-
tive prover, theorems established in this way come with the same soundness guarantees
as those theorems established interactively. The combination with an efficient exter-
nal reasoner allows us to significantly raise the degree of automation while retaining
the expressiveness of the input language for specification. Our current implementation
combines Isabelle/HOL with the fragment of haRVey that handles quantifier-free first-
order logic with uninterpreted function and predicate symbols. However, the overall
approach extends to other interactive provers and to other decidable fragments of first-
order logic. In particular, we plan to address linear arithmetic along the same lines by
making haRVey output compact proof traces that can be replayed within Isabelle/HOL.

On the implementation level, we observe that the time Isabelle takes to replay a
proof trace significantly exceeds the time taken by haRVey to find the proof, although
basically no proof search is required. We believe that a significant part of this run-time



180 P. Fontaine et al.

penalty comes from the overhead incurred by the support for higher-order abstract syn-
tax, but more investigation will be necessary into this matter. It also remains to be seen
whether efficiency of proof reconstruction is a big issue for those verification condi-
tions that we expect to see in practical applications (where we are mostly interested in
stronger theories). Also, proof reconstruction can be done off-line, whereas an oracle-
style combination should be sufficient for interactive proof.

On a conceptual level, we propose to study and identify uniform formats for proof
traces for SMT solvers, akin to the SMT-LIB input format, to enable comparisons be-
tween different solvers and to standardize the interface towards interactive proof assis-
tants (and, in fact, independent proof checkers).

Acknowledgements. We are grateful to Kamal Kant Gupta, who contributed to the syn-
tactic translation from Isabelle to the SMT format, and to Tjark Weber for his help with
integrating and maintaining our code for SAT proofs within the Isabelle distribution.

References

1. M. Baaz, U. Egly, and A. Leitsch. Normal form transformations. In J. A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, volume I, chapter 5, pages 273–
333. Elsevier Science B.V., 2001.

2. C. Barrett and S. Berezin. CVC Lite: A new implementation of the cooperating validity
checker. In CAV, volume 3114 of LNCS, pages 515–518. Springer, Apr. 2004.

3. D. Barsotti, L. Prensa-Nieto, and A. Tiu. Verification of clock synchronization algorithms:
Experiments on a combination of deductive tools. In Proc. of the Fifth Workshop on Auto-
mated Verification of Critical Systems (AVOCS), ENTCS, 2005. to appear.

4. M. Bezem, D. Hendriks, and H. de Nivelle. Automated proof construction in type theory
using resolution. J. Autom. Reasoning, 29(3-4):253–275, 2002.

5. M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. van Rossum, S. Schulz, and R. Se-
bastiani. The MathSAT 3 System. In CADE, volume 3632 of LNCS, pages 315–321, Tallinn,
Estonia, 2005. Springer.

6. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving. Comm.
of the ACM, 5(7):394–397, 1962.

7. D. Déharbe and S. Ranise. Light-weight theorem proving for debugging and verifying units
of code. In Software Engineering and Formal Methods (SEFM), pages 220–228. IEEE Comp.
Soc., Sept. 2003.

8. P. J. Downey, R. Sethi, and R. E. Tarjan. Variations on the common subexpressions problem.
Journal of the ACM, 27(4):758–771, 1980.

9. N. Eén and N. Sörensson. An extensible SAT-solver. In E. Giunchiglia and A. Tacchella,
editors, SAT, volume 2919 of LNCS, pages 502–518. Springer, 2003.

10. J.-C. Filliâtre, S. Owre, H. Rueß, and N. Shankar. ICS: integrated canonizer and solver. In
G. Berry, H. Comon, and A. Finkel, editors, CAV, volume 2102 of LNCS, pages 246–249.
Springer, 2001.

11. P. Fontaine. Techniques for verification of concurrent systems with invariants. PhD thesis,
Institut Montefiore, Université de Liège, Belgium, Sept. 2004.

12. P. Fontaine and E. P. Gribomont. Using BDDs with combinations of theories. In M. Baaz
and A. Voronkov, editors, LPAR, volume 2514 of LNCS, pages 190–201. Springer, 2002.

13. J. Hurd. Integrating Gandalf and HOL. In Theorem Proving in Higher-Order Logics
(TPHOLs’99), volume 1690 of LNCS, pages 311–322, Nice, France, 1999. Springer.



Towards Combining SMT Solvers and Interactive Proof Assistants 181

14. A. Mahboubi. Programming and certifying the CAD algorithm inside the coq system. In
T. Coquand, H. Lombardi, and M.-F. Roy, editors, Mathematics, Algorithms, Proofs, volume
05021 of Dagstuhl Seminar Proceedings, Schloss Dagstuhl, Germany, 2005.

15. A. Meier. TRAMP: Transformation of machine-found proofs into ND-proofs at the assertion
level. In D. McAllester, editor, CADE, volume 1831 of LNCS, pages 460–464, Pittsburgh,
PA, 2000. Springer.

16. J. Meng, C. Quigley, and L. C. Paulson. Automation for interactive proof: First prototype.
Information and Computation, to appear.

17. D. G. Mitchell. A SAT solver primer. EATCS Bulletin, 85:112–133, 2005.
18. G. Necula and P. Lee. Efficient representation and validation of logical proofs. In Logics in

Computer Science (LICS’98), pages 93–104. IEEE Press, 1998.
19. G. C. Necula. Compiling with Proofs. PhD thesis, Carnegie Mellon University, Oct. 1998.

Available as Technical Report CMU-CS-98-154.
20. G. Nelson and D. C. Oppen. Fast decision procedures based on congruence closure. Journal

of the ACM, 27(2):356–364, 1980.
21. Q. H. Nguyen, C. Kirchner, and H. Kirchner. External rewriting for skeptical proof assistants.

J. Autom. Reason., 29(3-4):309–336, 2002.
22. R. Nieuwenhuis and A. Oliveras. Union-find and congruence closure algorithms that produce

proofs. In C. Tinelli and S. Ranise, editors, PDPAR, 2004.
23. T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL. A Proof Assistant for Higher-Order

Logic. Number 2283 in LNCS. Springer, 2002.
24. S. Ranise and C. Tinelli. The SMT-LIB standard : Version 1.1, Mar. 2005.
25. J. H. Siekmann and many others. Proof development with OMEGA. In CADE, pages 144–

149, 2002.
26. A. Tiu. Formalization of a generalized protocol for clock synchronization in Isabelle/HOL.

Archive of Formal Proofs: http://afp.sourceforge.net, 2005.
27. G. S. Tseitin. On the complexity of derivation in propositional calculus. In A. O. Slisenko,

editor, Studies in Constructive Mathematics and Mathematical Logic, volume II, pages 115–
125. 1970.

28. T. Weber. Using a SAT solver as a fast decision procedure for propositional logic in an
LCF-style theorem prover. In J. Hurd, E. Smith, and A. Darbari, editors, Theorem Proving
in Higher Order Logics (TPHOLs 2005), Emerging Trends, pages 180–189. Oxford Univ.
Comp. Lab., Prog. Res. Group, 2005. Report PRG-RR-05-02.

29. L. Zhang and S. Malik. The quest for efficient Boolean satisfiability solvers. In A. Voronkov,
editor, CADE, volume 2392 of LNCS, pages 295–313. Springer, 2002.

30. L. Zhang and S. Malik. Validating SAT solvers using an independent resolution-based
checker. In Design, Automation and Test in Europe (DATE 2003), pages 10880–85, Mu-
nich, Germany, 2003. IEEE Comp. Soc.



Exploration of the Capabilities of Constraint
Programming for Software Verification

Hélène Collavizza and Michel Rueher

Université de Nice–Sophia-Antipolis – I3S/CNRS,
930, route des Colles - B.P. 145, 06903 Sophia-Antipolis, France

{helen, rueher}@essi.fr

Abstract. Verification and validation are two of the most critical issues
in the software engineering process. Numerous techniques ranging from
formal proofs to testing methods have been used during the last years to
verify the conformity of a program with its specification. Recently, con-
straint programming techniques have been used to generate test data.
In this paper we investigate the capabilities of constraint programming
techniques to verify the conformity of a program with its specification.
We introduce here a new approach based on a transformation of both
the program and its specification in a constraint system. To establish
the conformity we demonstrate that the union of the constraint system
derived from the program and the negation of the constraint system de-
rived from its specification is inconsistent (for the considered domains of
values). This verification process consists of three steps. First, we gen-
erate a Boolean constraint system which captures the information pro-
vided by the control flow graph. Then, we use a SAT solver to solve the
Boolean constraint system. Finally, for each Boolean solution we build
a new constraint system over finite domains and solve it. The latter
system captures the operational part of the program and the specifi-
cation. Boolean constraints play an essential role since they drastically
reduce the search space before the search and enumeration processes
start. Moreover, in the case where the program is not conforming with
its specification, Boolean constraints provide a powerful tool for find-
ing wrong behaviours in different execution paths of the program. First
experimental results on standard benchmarks are very promising.

1 Introduction

Verification and validation are two of the most critical issues in the software
engineering process. These expensive and difficult tasks may account for up to
50% of the cost of software development [12]. Numerous techniques ranging from
formal proofs to testing methods have been used during the last years to verify
the conformity of a program with its specification. The goal of the SLAM project
is to build “tools that can do actual proofs about the software and how it works
in order to guarantee the reliability”1.

1 See http://research.microsoft.com/slam

H. Hermanns and J. Palsberg (Eds.): TACAS 2006, LNCS 3920, pp. 182–196, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Exploration of the Capabilities of Constraint Programming 183

Constraint programming techniques have been used to generate test data
(e.g., [9, 10, 22, 23]) and to develop efficient model checking tools (e.g. [17, 6]).
SAT based model checking platforms have been able to scale and perform well
due to many advances in SAT solvers [20]. Recently Bouquet et al [3] devel-
oped a symbolic animator for specifications written in Java Modeling Language
(JML) [15]. Their JML animator– based on constraint programming techniques–
allows to simulate the execution of a JML specification and to verify on the fly
class invariant properties.

In this paper we investigate the capabilities of constraint programming tech-
niques to verify the conformity of a program with its specification. We introduce
a new approach based on a transformation of both a program and its specifica-
tion in a constraint system. To establish the conformity we demonstrate that the
union of the constraints derived from the program and the negation of the con-
straints derived from its specification is inconsistent. Roughly speaking, pruning
techniques -that reduce the domain of the variables- are combined with search
and enumeration heuristics to demonstrate that this constraint system has no
solutions.

The verification process consists of three steps:

1. Generating of a Boolean constraint system which captures the information
provided by the control flow graph of the program and the specification;

2. Using a SAT solver to find the solutions of the Boolean constraint system.
For each Boolean solution a new constraint system over finite domains –
denoted CSP in the following– is built; the latter captures the operational
part of the program and the specification.

3. Solving the CSP with a finite domain solver.

Boolean constraints play an essential role since they drastically reduce the
search space before the search and enumeration processes start on the gener-
ated CSP. Moreover, in the case where the program is not conforming with its
specification, Boolean constraints provide a powerful tool for finding wrong be-
haviors in different execution paths of the program. An essential observation is
that in this approach we do not transform all assignments and numerical instruc-
tions into Boolean constraints2. The point is that it is much more convenient to
transform these instructions in finite domain constraints and to solve them with
a CSP solver. So the collaboration between the SAT solver and the CSP solver
is the cornerstone of our approach. Indeed, since we first identify the feasible
paths, the finite domain solver will work with both smaller constraint systems
and reduced domains.

The prototype system we have developed takes as input a JAVA program
and its specification written in JML [15]. Currently, we only consider JAVA
unit code without function calls, without return inside loops, and without in-
heritance. Moreover, we assume that all numerical operations only concern
integers.

2 Contrary to the most popular Model Checking approaches based on SAT Solvers
[4, 5].



184 H. Collavizza and M. Rueher

The rest of this paper is organised as follows. Section 2 gives an overview of
our approach whereas Section 3 recalls some basics on constraint programming
techniques. Section 4 details the verification process we propose and introduces
the translation process we use to generate the constraint systems. Section 5
describes the experimental results and discusses some critical issues.

Before going into the details, let us illustrate the capabilities of our approach
on a well-known benchmark.

2 Motivating Example

We illustrate our approach on the well-known tritype program for classifica-
tion of triangles [7]. We first describe the program, then we show very infor-
mally how the transformation process works, and finally we describe different
experimentations.

2.1 The Problem

The tritype program is a basic benchmark in test case generation since it
contains numerous non feasible paths. tritype takes three positive integers as
inputs (the triangle sides) and returns 1 if the inputs correspond to any triangle,
2 if the inputs correspond to an isoscele triangle, 3 if the inputs correspond to
an equilateral one, 4 if the inputs do not correspond to any triangle. Figure 1
gives the tritype program in JAVA with its specification in JML. Note that
\result in JML corresponds to the value returned by the program.

2.2 The Verification Process

We first translate this program and the negation of its specification into a set of
constraints, using the process detailed in Section 4.2.

Then, in order to delay the enumeration on integers, we introduce boolean
variables for each decision on input variables, e.g., we introduce variable eqij for
condition i = j, variable eqik for condition i = k, and so on. So the resolution
process is decomposed into two parts:

1. Finding a set of paths that correspond to potential non-conformities;
2. Solving the CSP which corresponds to the identified set of paths.

For instance, if the boolean solver finds the solution {eqij = true, eqjk = true,
eqik = false} we generate the CSP {i = j, j = k, i �= k}; the domain of i, j, k
being {0,...,65635}. If the CSP has a solution we have found a test case which
corresponds to a non-conformity. If none of the generated CSP has a solution
the verification is done.

The constraints generated for lines 4 to 7 in Fig. 1 are displayed in Fig. 2.
cond → c denotes a guarded constraint: roughly speaking, constraint c has to be
satisfied when condition cond holds (see section 3.3 for the exact semantic). r0 and
r1 are the two first renamings of variable r. nuli (resp. nulj, nulk) is the boolean
variable that captures the decision i = 0 (resp. j = 0, k = 0). eqij is the boolean



Exploration of the Capabilities of Constraint Programming 185

/*@ public normal_behavior
@ requires (i>=0)&&(j>=0)&&(k>=0);
@ ensures
@ ((i+j<=k)||(j+k<=i)||(i+k<=j)) ==> \result == 4 &&
@ !((i+j<=k)||(j+k<=i)||(i+k<=j))&&((i==j)&&(j==k)) ==> \result == 3 &&
@ !((i+j<=k)||(j+k<=i)||(i+k<=j))&&!((i==j)&&(j==k))
@ &&((i==j)||(j==k)||(i==k)) ==> \result == 2 &&
@ !((i+j<=k)||(j+k<=i)||(i+k<=j))&&!((i==j)&&(j==k))
@ &&!((i==j)||(j==k)||(i==k)) ==> \result == 1;

@*/

1 public static int tritype(int i, int j, int k){
2 int trityp ;
3 // not a triangle
4 if ((i==0)||(j==0)||(k==0)) trityp = 4 ; //ERR: trityp = 3
5 else {
6 trityp = 0 ;
7 if (i==j) trityp = trityp + 1 ;
8 if (i==k) trityp = trityp + 2 ;
9 if (j==k) trityp = trityp + 3 ;
10 if (trityp==0){
11 // triangular inequality not verified
12 if ((i+j <= k)||(j+k <= i)||(i+k <= j)) trityp = 4 ;
13 else trityp = 1 ; // any triangle
14 }
15 else {
16 if (trityp > 3) trityp = 3 ; // equilateral
17 else
18 //i=j and triangular inequality verified
19 if ((trityp==1)&&(i+j>k)) trityp = 2 ;
20 else
21 //i=k and triangular inequality verified
22 if ((trityp==2)&&(i+k>j)) trityp = 2 ; //ERR: (trityp == 1)
23 else
24 //j=k and triangular inequality verified
25 if ((trityp==3)&&(j+k>i)) trityp = 2 ;
26 else trityp = 4 ; // not a triangle
27 }
28 }
29 return trityp;
30 }

Fig. 1. tritype program in java with a specification in JML

variable for decision i == j. The constraint ((nuli = 1) ∨ (nulj = 1) ∨ (nulk =
1)) → r0 = 4 corresponds to the if part of instruction on line 4 in Fig. 1, the fol-
lowing constraint corresponds to the else part. The last two constraints correspond
to the if instruction on line 7 in Fig. 1. The full constraint system for the tritype
program can be found in http://www.essi.fr/ rueher/appendix-tacas06.pdf.



186 H. Collavizza and M. Rueher

// SSA variables for multiple definitions of result in the program
r0 : {0,...,65635}, r1 : {0,...,65635},
// boolean variables
nuli : {0,1}, nulj : {0,1}, nulk : {0,1}, eqij : {0,1}
//constraints of line 4 to 7 of the program
((nuli=1) ∨ (nulj=1) ∨ (nulk=1)) → r0=4
¬ ((nuli=1) ∨ (nulj=1) ∨ (nulk=1)) → r0=0
¬ ((nuli=1) ∨ (nulj=1) ∨ (nulk=1)) ∧ (eqij=1) → r1=r0 + 1
¬ ((nuli=1) ∨ (nulj=1) ∨ (nulk=1)) ∧ ¬ (eqij=1) → r1=r0

Fig. 2. Constraints generated for lines 4 to 7 of the tritype program

2.3 Experimentations

We have introduced two errors into the tritype program:

1. A wrong return value when one of the inputs is zero (line 4 of the java
program);

2. A wrong test on the trityp variable (line 22 of the java program).

These two errors occur in two different execution paths of the program. Figure 3
displays the four first non-conformities we have found: we successively display
the path (i.e the value of decision variables), then three solutions of the corre-
sponding integer system, and finally the value returned by the specification and
the program.

The two first non-conformities are due to the wrong test on variable trityp,
line 22 of the program. The first one is generated when “i=k”, and so “trityp=2”.
Since the test on line 22 is “trityp==1” instead of “trityp==2”, the execution
goes through the else part on line 25, so the value of result equals 4 instead of 2.

The second non-conformity corresponds to the case where “i=j”. So
“trityp=1” and due to the wrong test on line 22 result equals 2 instead of 4
since the triangular inequality is verified.

The other errors we have found are those where at least one of the input is
zero. Since we have introduced the error “trytyp = 3” instead of “trytyp = 4” on
line 4 of Fig. 1, the program returns 3 instead of 4 whenever an input is equal to
zero. The overall process finds 15 non-conformities in less than 5 seconds CPU
time.3

We did also run the verification process with a correct program. It required
2.36 seconds CPU time to perform the complete verification. Note that we ex-
plored only 92 solutions of the Boolean constraint system although there are
9 variables, and thus 29 combinations. This clearly shows that the constraint
system is strong enough to prune the search space, and to avoid a costly enu-
meration of all paths.
3 All experimentations have been performed with ILOG Solver (see http://www.

ilog.com/products/solver) and run on a Intel(R) Pentium(R) 4 CPU 2.00GHz com-
puter with 256 Mb memory.



Exploration of the Capabilities of Constraint Programming 187

Error 1
Path : !(i=j), i=k, !(j=k), !(i+j≤ k), !(j+k ≤ i), !(i+k ≤ j), !(i=0), !(j=0), !(k=0)
Input values : i:2, j:1, k:2 – i:2, j:3, k:2 – i:3, j:1, k:3
Specification : 2, program : 4
Error 2
Path :i=j, !(i=k), !(j=k), i+j ≤ k , !(j+k ≤ i), !(i+k ≤ j), !(i=0), !(j=0), !(k=0)
Input values : i:1, j:1, k:2 – i:1, j:1, k:3 – i:1, j:1, k:4
Specification : 4, program : 2,
Error 3
Path : !(i=j), !(i=k), !(j=k), !(i+j ≤ k) , !(j+k ≤ i), i+k ≤ j, !(i=0), !(j=0), k=0
Input values : i:1, j:2, k:0 – i:1, j:3, k:0 – i:1, j:4, k:0
Specification : 4, program : 3
Error 4
Path : !(i=j), !(i=k), !(j=k), !(i+j ≤ k), j+k ≤ i, !(i+k ≤ j), !(i=0), !(j=0), k=0
Input values: i:2, j:1, k:0 – i:3, j:1, k:0 – i:3, j:2, k:0
Specification : 4, program : 3

Fig. 3. Four first non-conformities for the tritype program with two errors

3 Constraint Programming

This section recalls some basic concept of constraint programming which are
useful to understand this paper. More details can be found in [21, 18, 13].

3.1 Definition of a CSP

Constraint programming is a paradigm that is tailored to hard search problems.
The main application areas are planning, scheduling, timetabling, routing, place-
ment, investment, configuration, design and insurance. Constraint programming
incorporates techniques from mathematics, artificial intelligence and operational
research; it offers significant advantages in these areas since it supports fast
program development, economic program maintenance, and efficient runtime
performance.

Constraint programming solvers are based on a branch and prune algorithm
that combines local consistencies and efficient search heuristics.

More precisely, a Constraint Satisfaction Problem (CSP) is defined as:

– a set of variables X = {x1, ..., xn},
– a finite set Di of possible values for each variable xi, called domain,
– a set of constraints C = {c1, ..., cn} restricting the values that the variables

can simultaneously take; Xj denotes the set of variables that occur in con-
straint cj .

Note that the domains are a convenient way to express some specific con-
straints.

A solution of a CSP is an assignment of a value from its domain to every
variable, in such a way that all constraints are satisfied.



188 H. Collavizza and M. Rueher

3.2 Solving a CSP

To solve a CSP pruning techniques -that reduce the domain of the variables-
are combined with search and enumeration heuristics. We only detail here local
consistencies techniques.

Local consistencies are a key issue in finite domains where arc–consistency
[19, 16] is very popular. A constraint cj is arc-consistent if for any variable xi in
Xj , each value in Di has a support in the domains of all other variables of Xj . In
other words, a constraint c is arc–consistent for variable x, if values exist in the
domains of all other variables such that constraint c holds when x is assigned
to any value of its domain. The essential observation is that local consistency
filtering algorithms try to reduce the size of the domain of some variable by
considering only one constraint.

The following example shows in a very informal way how arc–consistency
works. Consider the constraint system C1 = {c1 : x1 + x2 > 2, c2 : x2

1 + x2
2 ≤

4, D1 = {0, 1, 2}, D2 = {0, 1, 2}}.
Constraint c1 cannot be satisfied when either x1 or x2 are equal to 0. So arc–

consistency will remove value 0 from domainD1 and domainD2. Now, constraint
c2 can no longer be satisfied when x1 or x2 are equal to 2, and thus value 2 will be
removed from both domains. However, since the domain of one of the variables
of constraint c1 has been modified, we have to reconsider this constraint. Now,
c1 can no more be satisfied, the value 1 is removed from its domain which
become empty; thus arc-consistency has detected the inconsistency of the whole
constraint system.

Constraint system C2 (see below) shows a case where the constraint system
is arc-consistent but no solution satisfying all constraints exists.

C2 = {c1 : x1 �= x2, c2 : x2 �= x3, c1 : x3 �= x2}, D1 = D2 = D3 = {0, 1}.

3.3 Guarded Constraints

In this paper we also use guarded constraints. Guarded constraints are condi-
tional constraints whose evaluation depends upon other constraints. C0 → C1
denotes a guarded constraint where C0 and C1 are conjunctions of basic con-
straints. Relation C0 → C1 states that constraints C1 have to be added to the
current constraint store when the solver can prove that constraints C0 hold.
More precisely, let C0 be a boolean expression and C1 a set of constraints, the
guarded constraint C0 → C1 behaves as follows:

– When the solver can prove that C0 is true, then constraints C1 are added to
the store of constraints;

– When the solver can prove that C0 is false, then the guarded constraint is
just discarded;

– When the solver can neither prove that C0 is true, nor prove that C0 is false,
that is when not enough variables of C0 are instantiated, then the guarded
constraint is suspended.



Exploration of the Capabilities of Constraint Programming 189

The solver tries to prove that the guard C0 of a suspended constraint holds
whenever the domain of some variable occurring in C0 has been reduced. Of
course, some guarded constraints may never become active.

One major difficulty with guarded constraints is that nothing can be done
before the solver can demonstrate that the condition is either true or false. Let
us consider a very simple piece of code:

//@ ensures \result ≥ 0
public int absolute(int i, int j) {

if (i<j) return j-i;
else return i - j;

}

This code is translated into the following set of constraints:

{i < j → r = j − i,¬(i < j) → r = i− j, r < 0, Di = Dj = Dr = {0, ..., 65635}}

A standard CSP solver cannot achieve any pruning on this system since
nothing is known about i and j. So a very costly enumeration process is started:
the inconsistency is only detected when the domain of i and j are reduced to
one value. The advantages of combining SAT solver and CSP are obvious here.
After having introduced a boolean variable for modeling i < j, the SAT solver
enumerates the two paths, that is to say the two CSP {r = j − i, i < j, r < 0}
and {r = i− j, i ≥ j, r < 0}. When the constraints of the CSP are transformed
in binary constraints, arc-consistency immediately detects the inconsistency.

4 Verification Process

In this section we describe the overall verification process and explain how we
transform the program and its specification into a set of constraints.

4.1 Verification Steps

The different operations which are performed during the verification process are
detailed in Fig. 4.

Note that in step 3, we introduce boolean variables only to model decisions
about input variables. This is sufficient to delay the enumeration process induced
by guarded constraints (see Section 3.3). On the other hand, assignments are
modeled using integer variables. Thus, we lose less information than with a
translation of any statement into a boolean variable.

4.2 Translating the Program into a Set of Constraints

We first transform the program into its SSA form: for each new definition of a
program variable, we introduce a fresh variable. In order to manage control in-
structions, we use φ–functions for if then else statements and we unfold loops.
We use guarded constraints to model conditional execution flow (see part 3.3).



190 H. Collavizza and M. Rueher

1. Put the program into a simplified Single State Assignment (SSA) form [14]
and translate the SSA program into a set of constraints.

2. Add the constraints corresponding to the negation of the property
to be proved.

3. Introduce a boolean variable for each decision on an input variable;
Let BoolSystem be the constraint system obtained after steps 1, 2, and 3.

4. Start a solving process on BoolSystem and for each solution of BoolSystem:
a. Build a CSP IntSystem that corresponds to the boolean values

found in the current solution of BoolSystem
b. Start a solving on IntSystem and for each solution of IntSystem

print the current values of boolean variables (path trace)
and find some errors of IntSystem (wrong input values).

5. If BoolSystem has no solution or if for each boolean solution IntSystem
has no solution, print “the program is conform with is specification”.

Fig. 4. Verification process

Basic Statements. Each assignment var ← value is translated as a constraint
var = value. Each boolean condition is translated as the corresponding con-
straint. We denote SSA(s) the constraint corresponding to the basic statement
s where each new definition of a variable has been replaced by the current re-
naming of this variable.

The If then Statement. For the sake of clarity, we only focus on the
assignment of a single variable. Trivially, the same process could be applied
individually for each variable appearing in a block with many variable assign-
ments. Let us consider the statement S : if (cond) {var=val1;var=val2;
...; var=valq;}. Assume that var has already been defined p times before
this statement. S is translated into the following set of guarded constraints:

SSA(cond) → varp+1 = SSA(val1)
SSA(cond) → varp+2 = SSA(val2)
...
SSA(cond) → varp+q = SSA(valq)
// else part
SSA(¬cond) → varp+1 = varp
SSA(¬cond) → varp+2 = varp
...
SSA(¬cond) → varp+q = varp

The else part is useful to ensure that the q fresh variables will not remain
uninstantiated in the corresponding CSP.

The If then else Statement. Let us consider the statement S : if (cond)
{var=val11;var=val12; ...;var=val1q;} else {var=val21;var=val22;...
var=val2r;}. Assume that var has already been defined p times before this state-
ment and assume that q < r. Since var has not the same number of definitions in



Exploration of the Capabilities of Constraint Programming 191

the if part and the else part, we need to introduce a guarded constraint to take
the place of the φ function. So, S is translated into the following set of guarded
constraints:

// if part
SSA(cond) → varp+1 = SSA(val11)
SSA(cond) → varp+2 = SSA(val12)
...
SSA(cond) → varp+q = SSA(val1q)
// else part
SSA(¬cond) → varp+1 = SSA(val21)
SSA(¬cond) → varp+2 = SSA(val22)
...
SSA(¬cond) → varp+r = SSA(val2q)
// φ function
SSA(cond) → varp+q+1 = varp+q

SSA(cond) → varp+q+2 = varp+q

...
SSA(cond) → varp+r = varp+q

Remark: If q > r the same principle is applied and the guarded constraints
of the φ function are guarded by SSA(¬ cond). If q=r then no φ function is
required.

Figure 5 gives the translation of an overlapped if then else.

1 if (i < j) x = 0; (i<j) → x1=0
else { (¬(i<j)∧(i<30))→ (x1=x0+1∧x2=x1+y0)

2 if (i < 30) { (¬(i<j)∧ ¬(i<30)∧(j>43))→ x1=2
x = x+1; (¬(i<j)∧ ¬(i<30)∧ ¬(j>43))→ x1=3
x = x+y; // φ-function for #2 if

} (¬(i<j)∧¬(i<30)) → x2=x1
else { // φ-function for #1 if

3 if (j > 43) x=2; (i<j) → x2=x1
else x=3;

}
}

Fig. 5. Example of if then else translation

The Loop Statement. We first transform any loop into the equivalent while
loop. Then we unfold the while loop using an overestimate of the number of
loop steps. This overestimate may be the worst case complexity of the loop or
could be given by the user. To describe all possible paths inside the loop, we
guard the constraints of the loop with the entrance condition. Our process is
close to the one described in [4] except that we use guarded constraints instead
of boolean operators to combine condition and assignment. More precisely, let us



192 H. Collavizza and M. Rueher

consider the following while loop L : while (cond) var = value;. We assume
that this loop is executed at most max time and that var was defined p times
before this statement. Then the loop statement L is translated into the following
set of guarded constraints:

cond1 → varp+1 = valp+1
¬ cond1 → varp+1 = varp
cond1 ∧ cond2 → varp+2 = valp+2
¬ (cond1 ∧ cond2) → varp+2 = varp+1
.....
cond1 ∧ cond2 ∧ ... ∧ condmax → varp+max = valp+max

¬ (cond1 ∧ cond2 ∧ ... ∧ condmax) → varp+max = varp+max−1

where vali denotes the ith SSA form of value.
With this system of guarded constraints, if the loop condition has never been

true, then varp+max = varp, if it has been true only once then varp+max =
varp+1 = valp+1, if it has been true max times then varp+max = valmax.

Remarks
- The number of unfoldings may not be sufficient to detect all non-conformities

especially when an error in the program entails more iterations than specified
by the theoretical bound.

- When the bound of a for loop is well-known and when the index variable is
not modified inside the loop block, it is more efficient to generate n constraint
systems, one for each value of the decision variable. This is due to the fact that
the guarded constraints are expensive to manage, even when the conditions are
instantiated very early.

5 Experimental Results and Discussion

In this section we analyse the experimentations we have performed on three
non-trivial academic examples.

5.1 The tritype Program

The first example we consider is the tritype program. As we mentioned in
the introduction, we can find some errors in the program as well as prove the
correctness of the program. Introducing boolean variables only for decisions on
input variables gave very good results in this case. Indeed, tritype is a typical
example of pure decisional program, so the proof mainly consists in showing that
the same decision in program and specification gives the same code condition
return value.

5.2 The merge Example

This merge program referenced in [11] computes five outputs from five inputs4.
A partial order is given on the inputs and the property to be proved is that the
4 The merge program and its JML specification can be found in http://www.

essi.fr/∼rueher/appendix-tacas06.pdf



Exploration of the Capabilities of Constraint Programming 193

outputs are sorted in decreasing order. In this program, a contrario to tritype
program, the link between the specification and the program goes through the
operational part. So we need to introduce boolean variables not only to model
decisions but also to model the assignments. We have introduced the same error
as in [11]. We found four error paths including the one shown in [11]. For each
error path we search five different integer values for the inputs. The overall
process took 159.71 seconds CPU time whereas the proof of the correctness
required 310.67 seconds CPU time (no CPU time is given in [11]).

5.3 The bsearch Program

The bsearch program5 takes as input an array of integers t sorted by increasing
order, an integer value val to search in the array, and returns the index of the
value if it is found or -1 otherwise. The worst case complexity of this program
is O(log2(n)) where n is the size of the array.

To perform the verification, we introduce boolean variables for condition tests
on input variables (i.e t[i] = val, t[i] < val, t[i] < t[i+ 1]). Since the worst case
complexity of bsearch is O(log2(n)) we unfold the program loop �(log2(n))�
times. We successively introduce two errors. The first one is to return the value
middle+1 when the t[middle] = val. This error was detected by the CSP solver.
The errors found by the solver correspond to all the possible paths through the
loop when it stops with t[middle] = val. The second error consists in assigning
the right bound with middle instead of middle+ 1 when t[middle] < val. With
this second error the program will not terminate in some cases, for example when
searching a value which is bigger than all the values in the array. This error was
also detected.

The correctness proof was also performed. The required time exponentially
increases according to the length of the array. The solver runs out of memory
for arrays of size > 8 and values in [0,216].

6 Discussion and Related Work

The new framework we have introduced in this paper has of course some lim-
itations, e.g., there is no way to prove temporal properties, it works well with
JAVA program but it would be difficult to handle C programs with pointers.
Even for JAVA programs there are some restrictions: inheritance and functions
calls are currently not handled6.

A critical issue concerns the detection of inconsistencies in the CSP generated
for each Boolean constraint system. Indeed, the constraints in some CSP may be
too weak to achieve any pruning of the solution space, even when this CSP has
no solution. In this case, a very costly search process is required to demonstrate

5 The bsearch program and its JML specification can be found in http://www.
essi.fr/∼rueher/appendix-tacas06.pdf

6 As long as we only consider finite structures, it should be possible to incorporate
these features into our framework without major difficulties.



194 H. Collavizza and M. Rueher

that the CSP is inconsistent. To overcome - at least partly - this problem some
dedicated solvers could be used. For instance, when the finite domain constraints
are linear, linear programming solvers could be used to reduce the domains.
Formal simplifications of the constraint system could also be useful in some
cases.

Of course, this problem is highly dependent from the modelling of the program
and its specification. In other words, the kind of constraints that are generated
will have strong influence on the performances of the solver 7.

Ganziger et al [8] have introduced a general DPLL(X) engine, where pa-
rameter X can be instantiated with a specialized solver SolverT . That’s to say
DPLL(X) is a general engine for propositional solving. The authors illustrate
their approach on their solver for EUF(logic with equality with uninterpreted
functions). The goal of the approach introduced in this paper is not to inte-
grate a CSP solver in a general DPLL engine. In our framework the essen-
tial role of the SAT solver is to boost the CSP solver by reducing the search
space.

Armando et al [1] have recently proposed to use SMT solvers instead of SAT
solvers for bounded model checking of software. We have compared our solver
with their SMT-CBMC solver, which use CVC Lite for the theory of bit vectors.
We have performed experimentations on the two sorting benchmarks contained
in their last paper [1]. SMT-CBMC requires more than 600 seconds to analyse
a bubble sort program with an array of size 26 whereas our solver analyses the
same program with an array of size 100 in less than one second. Similarly, SMT-
CBMC requires more about 200 seconds to analyse a selection sort program with
an array of size 29 whereas our solver analyses the same program with an array
of size 100 in less than 3 seconds.

We have also started an evaluation of our framework on standard SMT bench-
marks (http://www.csl.sri.com/users/demoura/smt-comp/2005/). First results
are promising; for instance we did prove the unsatisfiability of DTP k2 n35 c210-
s7.smt and DTP k2 n35 c245 s10.smt in less than one second.

7 Conclusion

In this paper we have performed a first exploration of the capabilities of
constraint techniques for verifying the conformity of a program with its specifi-
cation.

First experimentations show that these techniques can be very efficient on
some non trivial problems. Further work concerns the inclusion of dedicated
solvers or simplifiers in our framework as well as a deeper study of the modelling
issue.

Acknowledgements. Many thanks to Laurent ARDITI and Claude MICHEL for
numerous and enriching discussions on this work.
7 This is a well known problem in constraint programming: the performances of a

solver may be very different on two constraint systems that are logically equivalent.



Exploration of the Capabilities of Constraint Programming 195

References

1. Armando, A., Mantovani, J., and Platania, L.: Bounded Model Checking of C
Programs using a SMT solver instead of a SAT solver Technical Report, AI-Lab,
DIST, University of Genova, December 19, 2005, 16 pages.

2. Ball T., Rajamani S. K., : Boolean Programs : A Model and Process For Software
Analysis. Technical Report MSR TR 200-14, 2000

3. Bouquet, F., Dadeau, F., Legeard, B. and Utting, M: JML-Testing-Tools: a Sym-
bolic Animator for JML Specifications using CLP. Procs of the 11th Int. Conf. on
Tools and Algorithms for the Construction and Analysis of Systems, Tool session
(TACAS’05). Springer-Verlag. LNCS 3440, pp. 551–556, 2005.

4. Clarke E., Kroenig D., Lerda F. : A Tool for Checking ANSI-C programs. TACAS
2004, LNCS 2988, pp. 168-176, 2004

5. Clarke E., Kroenig D., Sharygina N., Yorav K. : Predicate abstraction of ANSI-
C Programs using SAT. Formal Methods in System Design, Vol 25, pp. 105-127,
Kluwer Academic Press, 2004

6. Edmund M. Clarke, Daniel Kroening, Natasha Sharygina, Karen Yorav: SATABS:
SAT-Based Predicate Abstraction for ANSI-C. Procs of the 11th Int. Conf. on
Tools and Algorithms for the Construction and Analysis of Systems, Tool session
(TACAS’05). Springer-Verlag. LNCS 3440, pp. 570–574, 2005.

7. Demillo R. A., Offut A.J. : Experimental Results from an Automatic Test Case
Generator. ACM Transactions on Software Engineering Methodology. vol. 2, num-
ber 2, 1993, pp. 109-175

8. Ganzinger,H., Hagen,G., Nieuwenhuis, R.,Oliveras, A., and C. Tinelli: DPLL(T):
Fast Decision Procedures. Proc. of CAV 2004. Springer-Verlag. LNCS 3114,
pp. 175-188, 2004.

9. Gotlieb A., Botella B. and Rueher M : Automatic Test Data Generation using
Constraint Solving Techniques. Proc. ISSTA 98, ACM SIGSOFT, vol. 2, pp. 53-
62, 1998.

10. Gotlieb A., Botella B. and Rueher M : A CLP Framework for Computing Structural
Test Data Proc of Computational Logic (CL2000), pp. 399-413, 2000.

11. Keller C. W., Saha D., Basu S., Smolka S.A. : FocusCheck : A tool for Model
Checking and Debugging Sequantial C Programs. TACAS 2005, LNCS 3440, pp.
563-569, 2005

12. Kon O. and Castanet R. : Test generation for interworking systems. Computer
Communications,vol. 23, pp. 642–652, 2000.

13. Krzystof R. Apt : Principles of Constraint Programming Cambridge University
Press, 2003.

14. Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-
neth Zadeck. Efficently Computing Static Single Assignment Form and the Con-
trol Dependence Graph. Transactions on Programming Languages and Systems,
13(4):451–490, October 1991.

15. Leavens Gary T. and Cheon Yoonsik : Design by Contract with JML.
www.jmlspecs.org, August 2005.

16. A. Mackworth : Consistency in networks of relations. Journal of Artificial Intelli-
gence, pages 8(1):99–118, 1977.

17. Malay K. Ganai, Aarti Gupta, Pranav Ashar: DiVer: SAT-Based Model Check-
ing Platform for Verifying Large Scale Systems. Procs of the 11th Int. Conf. on
Tools and Algorithms for the Construction and Analysis of Systems, Tool session
(TACAS’05). Springer-Verlag. LNCS 3440, pp. 575–580, 2005.



196 H. Collavizza and M. Rueher

18. Michela Milano (editor): Constraint and integer programming Kluwer Academic
Publisher, 2004.

19. U. Montanari : Networks of constraints : Fundamental properties and applications
to image processing. Information science, 7:95–132, 1974.

20. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik,M: Chaff: Engineering
an Efficient SAT Solver. Proc of DAC, pp. 530–535, 2001

21. Rina Dechter: Constraint Processing. Morgan Kaufmann publisher, 2003
22. Sy N.T. and Deville Y.: Automatic test data generation for programs with integer

and float variables. Proc of. 16th IEEE International Conference on Automated
Software Engineering(ASE01), 2001.

23. Sy N.T. and Deville Y.: Consistency Techniques for interprocedural Test Data
Generation. Proc. of the Joint 9th European Software Engineering Conference
and 11th ACM SIGSOFT Symposium on the Foundation of Software Engineering
(ESEC/FSE03), Helsinki, Finland, 2003.



Counterexample-Guided Abstraction
Refinement for the Analysis of Graph

Transformation Systems�

Barbara König and Vitali Kozioura

Institut für Formale Methoden der Informatik, Universität Stuttgart, Germany
{koenigba, koziouvi}@fmi.uni-stuttgart.de

Abstract. Graph transformation systems are a general specification
language for systems with dynamically changing topologies, such as mo-
bile and distributed systems. We propose a counterexample-guided ab-
straction refinement technique which is based on the over-approximation
of graph transformation systems (gts) by Petri nets. We show that a
spurious counterexample is caused by merging nodes during the approx-
imation. We present a technique for identifying these merged nodes and
splitting them using abstraction refinement, which removes the spuri-
ous run. The technique has been implemented in the Augur tool and
experimental results are discussed.

1 Introduction

In the last years verification techniques based on counterexample-guided abstrac-
tion refinement [8] have been very successful. The idea behind this approach is
to start with a coarse initial over-approximation and to refine this abstraction by
eliminating spurious counterexamples. The technique has been used successfully
in several tools such as slam [6], blast [10] or magic [7].

Abstraction is also important for graph structures that can arise in several
applications, for instance as evolving pointer structures on the heap, as object
graphs or as networks with mobile processes. So far, little work has been done
in this area concerning abstraction refinement. We are only aware of [12] where
models of a 3-valued logics representing pointer structures are refined in the
framework of shape analysis [16] by generating new instrumentation relations.

Here we are working in a different framework where we are using graph trans-
formation systems (gts)—instead of 3-valued logics—in order to represent and
transform graph structures. Graph transformation systems are an expressive and
useful specification formalism, allowing to describe dynamic properties of con-
current and distributed systems [15]. They can be used to model systems such
as pointer structures, object-oriented languages and mobile processes.

In this paper the technique of counterexample-guided abstraction refinement
is applied to the verification of graph transformation systems. Our approach is
based on a (partial order) technique that approximates gtss by Petri nets via

� Research supported by DFG project SANDS and SFB 627 (NEXUS).

H. Hermanns and J. Palsberg (Eds.): TACAS 2006, LNCS 3920, pp. 197–211, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



198 B. König and V. Kozioura

an unfolding construction [3]. More specifically, in this approach a finite over-
approximation called Petri graph is constructed, which consists of a graph and a
Petri net having the edges of the graph as places. The important property of the
approximation obtained in this way is that each graph reachable from the start
graph in the gts can be mapped, by merging some of its nodes, to a reachable
marking of the over-approximating Petri net. On the other hand there may be
some markings reachable in the obtained Petri graph, which have no counterpart
in the original gts. The sequence of events in the approximation leading to such
a graph is called a spurious run.

In our case spurious runs are caused by the merging of graph nodes in the
construction of the over-approximation. This is similar to the concept of sum-
mary nodes in shape analysis [16]. This paper describes how to construct a more
exact over-approximation by separating merged nodes for which these spurious
runs disappear. This procedure can be performed repeatedly for any number of
spurious runs.

We believe that the technique of identifying the reason for the spurious run
is independent of the abstraction mechanism used in this paper and could also
be used in other frameworks dealing with approximations of graph structures.

The techniques presented here are implemented as an extension of the tool
Augur1. The experimental part of the paper compares this approach with an
already existing abstraction refinement technique which reduces the number of
spurious examples by constructing an over-approximation which is exact up to
some pre-defined depth [5]. It is shown experimentally that counterexample-
guided abstraction refinement is faster and produces smaller Petri graphs.

A long version of this paper is available as a technical report [11].

2 Basic Notions

In this section we describe the notions of hypergraph, gts, Petri net and Petri
graph and also show in an informal way how to construct over-approximating
Petri graphs.

Definition 1 (hypergraphs and hypergraph morphisms). Let Λ be a set
of labels where each label l ∈ Λ has an arity ar(l) ∈ N. A labelled hypergraph
G is a tuple (VG, EG, cG, lG), where VG is a finite set of nodes, EG is a finite
set of edges, cG : EG → V ∗G is a connection function and lG : EG → L is the
labeling function satisfying ar(lG(e)) = |cG(e)| for every e ∈ EG. The nodes are
not labelled.

Let G and G′ be two labelled hypergraphs. A hypergraph morphism (or simply
morphism) ϕ : G1 → G2 consists of a pair of total functions ϕV : VG1 → VG2

and ϕE : EG1 → EG2 such that for every e ∈ EG1 it holds that lG1(e) =
lG2(ϕE(e)) and ϕV (cG1(e)) = cG2(ϕE(e)). A morphism is called edge-bijective
(edge-injective) whenever it is bijective (injective) on edges. It is an isomorphism
whenever it is bijective on nodes and edges.

Hypergraphs can be rewritten using rules of the following kind.
1 Available from http://www.fmi.uni-stuttgart.de/szs/tools/augur/



Counterexample-Guided Abstraction Refinement for the Analysis of GTS 199

Definition 2 (rewriting rule). A rewriting rule r is a triple (L,R, α), where
L and R are hypergraphs, called left-hand side and right-hand side respectively
and α : VL → VR is an injective mapping, indicating how nodes are preserved.

We demand that there are no isolated nodes in the left-hand side L and no
isolated nodes in VR − α(VL). Additionally EL must not be empty.

The first condition says that we abstract from isolated nodes, whereas the second
is a standard requirement for unfolding-based techniques, where every rule must
be consuming. Note furthermore that we do not consider rules that preserve
edges of the left-hand side.

For convenience we will in the following often assume that α is an inclusion
denoted by id, which can be enforced by renaming the nodes of the left or right-
hand side appropriately, and that the node and edge sets of L and R are disjoint
otherwise. That is, we demand that VL ⊆ VR and EL ∩ ER = ∅ which implies
that the union L ∪R is well-defined.

Given a hypergraph, a rewriting rule and a match of the left-hand side, we
can apply this rule and replace the left-hand side by the right-hand side in the
following way. Additionally we define a partial morphism ν from the original
graph to the rewritten graph, keeping track of preserved nodes and edges.

Definition 3 (rewriting step). Let r = (L,R, id) be a rewriting rule. A match
of r in a hypergraph G is any morphism ϕ : L → G injective on edges. We can
apply r to G according to the match ϕ and obtain a new graph H, written G⇒r

H, which is defined as follows: VH = VG + (VR −VL), EH = (EG −ϕ(EL))+ER

and, defining ϕ:VR → VH by ϕ(v) = ϕ(v) if v ∈ VL and ϕ(v) = v otherwise, the
connection and labelling functions are given by cH(e) = cG(e), lH(e) = lG(e) if
e ∈ EG − ϕ(EL) and cH(e) = ϕ(cR(e)), lH(e) = lR(e) if e ∈ ER.

We also define an injective partial morphism ν : G→ H where νV : VG → VH

and νE : (EG − ϕ(EL)) → EH with ν(x) = x for every node or edge x.

A graph transformation system (gts) G = (R, G0) is a finite set of rules together
with a start hypergraph (also called initial graph).

Example: We illustrate the definitions of this chapter with an example describing
a firewall system similar to the one introduced in [4]. This system contains an
(arbitrarily large) set of processes running behind a firewall (safe processes) and
one process in a public area (unsafe process). Any number of safe processes (SP)
and connected locations (L) can be generated during runtime. The property to
verify is that the unsafe process from the public area does not penetrate the
firewall. If this situation is detected, rule “Error” will be applied and an edge
labelled Error is created.

Fig. 1 and Table 1 depict the initial graph and the rules of the firewall system.
A double-headed arrow in a rule means that the rule can be applied in both
directions. Numbers close to the nodes indicate the mapping α. The private and
public areas are connected by the firewall (F ), and initially there is one unsafe
processes (UP) in the public area. Only safe processes will be generated and
the firewall can be crossed in one direction only. Our aim is to show that no
reachable graph contains the 0-ary edge Error .



200 B. König and V. Kozioura

L F L

UP

v1 w1 w2 v2

Fig. 1. Initial graph of the firewall system

Table 1. Rules of the firewall system

Create Process Cross Location

1 2 1 2
L

SP

L
1 2 1 2

L L

SP/UPSP/UP

Cross Connection Cross Firewall

1 2 1 2
C

SP/UP

C

SP/UP

1 2 1 2

SP/UP

F F

SP/UP

Create Connected Location Error

1 2

1 2

L C

L

L

1 2

1 2

UP
UP

F

F

Error

In order to approximate gtss we will employ Petri nets, which, as multi-
set rewriting systems, can be seen as a special case of graph rewriting. Petri
nets are an easier model than gts and hence more amenable to analysis. Sev-
eral algorithms and tools are available for their verification. Furthermore, by
approximating with Petri nets we will be able to preserve nice properties of
the gts model, such as locality (state changes are only described locally) and
concurrency (no unnecessary interleaving of events) in the approximation.

We will now introduce a notation for Petri nets.2

Definition 4 (Petri net). Let Δ be a finite set of labels. A Δ-labelled Petri
net is a tuple N = (S, T, •(), ()•, p), where S is the set of places, T is a set of
transitions, •(), ()• : T → S⊕ assign to each transition its pre-set and post-set
and p : T → Δ assigns a label to each transition. A marked Petri net is a pair
(N,mN ), where N is a Petri net and mN ∈ S⊕ is the initial marking.

3 Approximated Unfolding

In this section we will give a short overview of a technique that approximates
a graph transformation system by a structure that is both a Petri net and a
hypergraph [3, 4, 5].
2 By A⊕ we denote a multiset over A and for a function f : A → B we denote by

f⊕ : A⊕ → B⊕ its extension to multisets. Furthermore for m ∈ A⊕ and a ∈ A we
denote by m(a) the multiplicity of a in m.



Counterexample-Guided Abstraction Refinement for the Analysis of GTS 201

First we define the notion of Petri graph which will be used to represent an
over-approximation for a given gts. Note that the edges of the graph are at the
same time the places of the net and that the transitions are labelled with rules
of the gts.

Definition 5 (Petri graph). Let G = (R, G0) be a gts. A Petri graph (over
R) is a tuple P = (G,N, μ), where G is a hypergraph, N = (EG, TN ,

•(), ()•, pN)
is an R-labelled Petri net where the places are the edges of G and μ associates
to each transition t ∈ TN , with pN (t) = (L,R, id), a hypergraph morphism
μ(t) : L ∪R→ G such that •t = μ(t)⊕(EL) and t• = μ(t)⊕(ER).

A Petri graph for the gts G is a pair (P, ι), where P = (G,N, μ) is a Petri
graph over R and ι : G0 → G is a graph morphism. A marking is reachable
(coverable) in Petri graph if it is reachable (coverable) in the underlying Petri
net with the multiset ι⊕(EG0) as the initial marking.

We view Petri graphs as symbolic representations of transition systems with
graphs as states. Specifically each marking m of a Petri graph (G,N,m0) can
be seen as representation of a graph, denoted by graph(m), according to the
following definition: We take the marked subgraph of G and duplicate each edge
as indicated by the marking.

Alternatively one can define graph(m) as the unique graph H , up to iso-
morphism, such that H has no isolated nodes and there exists a morphism
ψ : H → G, injective on nodes, with ψ⊕(EH) = m. Furthermore, whenever
there exists a morphism ϕ : G′ → G such that ϕ⊕(EG′) ≤ m, then there exists
an edge-injective morphism em,ϕ:G′ → graph(m) such that ψ ◦ em,ϕ = ϕ.

In order to obtain a Petri graph approximating a gts, we first need—as
building blocks—Petri graphs that describe the effect of a single rule.

Definition 6 (Petri graph for a rewriting rule). Let r = (L,R, id) be a
rewriting rule. By P (t, r) = (G,N, μ) we denote a Petri graph with G = L∪R and
N is a net with places SN = EL ∪ER and one transition t such that pN(t) = r,
•t = EL and t• = ER. Furthermore the morphism μ(t):L∪R→ G is the identity.

Given a gts G = (R, G0) one can construct an over-approximating Petri graph
CG (also called the covering of G), using the following algorithm (see [3]). It
starts with a Petri graph P0 that consists only of the start graph and computes
CG iteratively. It is based on an unfolding technique which is combined with
over-approximating folding steps which guarantee a finite approximation.

Algorithm 7 (approximated unfolding). We set P0 = (G0, N0,m0), where
N0 contains no transitions, m0 = EG0 and let ι0:G0 → G0 be the identity. As
long as one of the following steps is applicable, transform Pi into Pi+1 accord-
ing to the possibilities given below (where folding steps take precedence over
unfolding steps).

Unfolding: Find a rule r = (L,R, id) ∈ R and a match ϕ : L→ Gi. Then choose
a new transition t and extend Pi by attaching P (t, r), i.e., take the disjoint union



202 B. König and V. Kozioura

of both Petri graphs and factor through the equivalence ≡ generated by e ≡ ϕ(e)
for every e ∈ EL.

Folding: Find a rule r = (L,R, id) ∈ R and two matches ϕ, ϕ′ : L → Gi

such that ϕ⊕(EL) and ϕ′⊕(EL) are coverable in Ni and the second match is
causally dependent on the transition unfolding the first match. Then merge the
two matches by setting ϕ(e) ≡ ϕ′(e) for each e ∈ EL and factoring through the
resulting equivalence relation ≡.

If neither possibility applies the Petri graph Pi obtained in the last step is
returned. The result is denoted by CG . In [3] it has been shown that the algorithm
always terminates with a result unique up to isomorphism.

In our running example, the constructed over-approximation consists of the hy-
pergraph in Fig. 2 and the Petri net in Fig. 3. (Ignore the highlighted transitions
for the moment.) Note that the set of edges of the graph corresponds exactly to
the set of places of the net (the correspondence is indicated by giving indices to
the labels).

Before we can show in what way Petri graphs can be considered as abstractions
of gtss and before we discuss how they can be analyzed, we first need the
definition of an abstract run of a gts and a notion of correspondence of two
abstract runs. Then we can define how Petri graphs can be seen as abstractions
of gtss.

C

F

Error
L

SP2

UP2

SP1

UP1
w1,2

v1,2

Fig. 2. Hypergraph component of the approximating Petri graph (firewall example)

Error

Cross
Firewall

Location
Create

Cross
Location

Create
Process

Connection
Cross Create

Location

Cross
Location

Cross
Location

Cross Location

Cross Firewall

Error

F SP2

L

SP1

UP2

C UP1

Fig. 3. Petri net component of the approximating Petri graph (firewall example)



Counterexample-Guided Abstraction Refinement for the Analysis of GTS 203

Definition 8 (Abstract run). An abstract run of a gts (R, G0) is a sequence
of hypergraphs J = (J0 	r1 J1 	r2 . . . 	rn Jn), where ri is a rule name,
together with morphisms ϕi : Li+1 → Ji for each i = 1, . . . , n−1, where Li is the
left-hand side of rule ri ∈ R.

Note that we do not demand that Ji can be derived from Ji−1 by applying rule
ri at match ϕi. In this case J will be called a real run and we will also use the
symbol ⇒ instead of 	.

Let J ′ = (J ′0 	r1 J
′
1 	r2 . . . 	rn J

′
n) be another abstract run with morphisms

ϕ′i:Li+1 → J ′i for each i = 1, . . . , n−1. We say that J ′ weakly corresponds to
J (in symbols J ′ , J ) if for each i = 1, . . . , n−1 there exist edge-bijective
morphism ξi : J ′i → Ji for i = 0, . . . , n. If furthermore the following diagram
commutes we say that J ′ corresponds to J and write J ′ ≪ J .

Li+1
ϕ′

i ��

ϕi

��J ′i
ξi �� Ji

Petri graphs can, as mentioned above, be seen as symbolic representations of
graph transition systems and also as representations of sets of abstract runs.

Definition 9 (Abstract runs of a Petri graph). Let (P, ι) with P =(G,N, μ)
be a Petri graph for a gts (R, G0). Furthermore let m0[t1〉 . . . [tn〉mn be a fir-
ing sequence of the net N and let ri = pN (ti) be the rules corresponding to the
transitions. We define morphisms ϕi = emi,μ(ti+1)|Li+1

: Li+1 → graph(mi),
where Li+1 is the left-hand side of rule ri+1. The sequence graph(m0) 	r1

graph(m1) 	r2 . . . 	rn graph(mn) together with the morphisms ϕi is an ab-
stract run. We denote by RunA(P, ι) the set of all abstract runs of the Petri
graph (P, ι).

Each real run Jr = (G0 ⇒r1 G1 ⇒r2 . . . ⇒rn Gn) of the gts (R, G0) can be
considered as an abstract run where the ϕi : Li+1 → Gi represent the matches
of the left-hand sides of the rules ri.

Proposition 1. Let CG be an over-approximation for a gts G computed by
Algorithm 7. Then, for every real run Jr of the graph transformation system
there exists an abstract run J ∈ RunA(CG) such that Jr corresponds to J , i.e.,
Jr ≪ J .

An abstract run J for which there does not exist a real run corresponding to J
is called spurious. If, at the same time, it violates the property we attempt to
verify, it is called a counterexample or error trace.

We can now verify the gts by analyzing the Petri graph underlying the Petri
net. For instance, in order to show that no reachable graph contains a subgraph
Gs we add a new rule to the gts with Gs as left-hand side and an edge with
a new label Error in the right-hand side (see rule “Error” in Table 1). If we
can show that either no place labelled Error exists in the net or every such
place is not coverable (this can be done using coverability graphs or backward
reachability algorithms [1]), then we can deduce that this property holds.



204 B. König and V. Kozioura

However, if the approximation is too coarse, we might not be able to verify the
property. We have shown in [5] how to construct a sequence of subsequently bet-
ter unfolding—which however grow in size fairly rapidly—by forbidding folding
steps up to depth k. Therefore we will now show how to successfully apply the
technique of counterexample-guided abstraction refinement in our framework.

4 Abstraction Refinement

In order to eliminate spurious runs, we will show that they are always caused
by the fact that certain nodes were merged. We will identify these nodes and
show how to avoid their being merged in the next iteration, thereby avoiding
this particular spurious run and all other abstract runs corresponding to it in
a sense made precise later. Merging of nodes is harmful since it might produce
new left-hand sides, thereby leading to additional rewriting steps.

4.1 Spurious Runs

For a given abstract run J = (graph(m0) 	r1 graph(m1) 	r2 . . . 	rn

graph(mn)) of the Petri graph with morphisms ϕi : Li+1 → graph(mi) we define
H to be the set of real runs corresponding to the prefixes of J . Furthermore let
Hi be the set of hypergraphs reachable after i steps in a real run Jr ∈ H. It
holds that H0 = {G0}.

An abstract run J is spurious if Hn = ∅. If the run is spurious, there exists
a k such that Hk �= ∅, but Hk+1 = ∅ (and therefore also Hl = ∅ for l > k). It will
be shown in the following how to construct a new refined over-approximation
C′G , which does not contain J and some other spurious runs corresponding to J .

Example: We illustrate the idea of a spurious abstract run with the run corre-
sponding to the firing of the highlighted transitions “Cross Location” and “Er-
ror” in Fig. 3. In fact, there is not real run in the original gts that corresponds
to it.

4.2 Relations on Nodes for Refining Abstract Runs

According to Algorithm 7 and Definition 8 it holds that Hk �= ∅ and Hk+1 = ∅
if and only if for each G ∈ Hk there exists no edge-injective morphism η :
Lk+1 → G such that the following diagram commutes, where ξk is an edge-
bijective morphism derived from the correspondence property (see Definition 8).
In other words: there is no way to find a match of the left-hand side in G that
agrees with the abstract run.

Lk+1
η ��

ϕk

��G
ξk �� graph(mk)

For if there were such a match morphism η, we could rewrite G to G′ with
rule rk+1 corresponding to the transition transforming mk to mk+1. Because of



Counterexample-Guided Abstraction Refinement for the Analysis of GTS 205

the construction of the Petri graph, where the right-hand side of ri+1 has been
attached during an unfolding step, we would then be able to find an edge-bijective
morphism ξk+1:G′ → graph(mk+1) thus continuing the correspondence.

Such a situation is only possible if ξk is non-injective on some nodes of G,
i.e., these nodes were merged during construction of the over-approximation CG ,
which is the reason for the spurious run.

Example: In our running example (see Fig. 1 and 2) the nodes v1 and v2 as
well as w1 and w2 of the initial hypergraph have been merged by the over-
approximation, becoming v1,2 and w1,2. This led to the spurious abstract run
described above.

We will now show how to determine the node merges which caused the spuri-
ous run. Consider, for a fixed graph G and a morphism ξk, the set Θ of possible
equivalence relations ∼ on nodes for a graph G ∈ Hk such that, after merging
the nodes in each equivalence class, we can find an appropriate match of the
left-hand side Lk+1 in the graph G/∼. More formally, we demand the existence
of an edge-injective morphism η′ : Lk+1 → G/∼ such that the following diagram
commutes, where ξ′k : G/∼ → graph(mk) is obtained by quotienting ξk according
to ∼.

Lk+1
η′

��

ϕk

��
G/∼

ξ′
k �� graph(mk)

In order to characterize the smallest equivalence in Θ consider a node v of the
left-hand side and determine a set Qv of nodes in G which have to be fused into
one node which is the image of v under η′. Let v ∈ VLk+1 and let e be an edge
of Lk+1 with3 ci(e) = v for some i. For every edge e′ in G with ξk(e′) = ϕk(e)
we require that ci(e′) ∈ Qv.

Consider the relation Q, where for each v ∈ VLk+1 all nodes in Qv are related
and the relation Q̂ which is the smallest equivalence containing Q.

Proposition 2. The equivalence Q̂ constructed above is the smallest equivalence
contained in Θ.

Example: We consider again the abstract error trace J which can be obtained
by firing transitions “Cross Location” and “Error”. However, this error trace has
no real runs that correspond to it, which can be seen by computing the set H
of runs corresponding to prefixes of J . Here, the set H0 consists of the initial
hypergraph and the set H1 contains one graph G1. The next rule “Error” cannot
be applied to G1 in such a way that the corresponding diagram commutes and
therefore the set H2 is empty.

Fig. 4 shows the left-hand side of rule “Error”, G1 ∈ H1 and graph(m1), the
graph corresponding to the marking reached after one step. One notices that
no appropriate morphism η can be found unless the nodes w1 and w2 in G1
are merged. Therefore we have Qw′

1
= {w1, w2}, Qw′

2
= {w2} and the smallest

3 Note that by ci(e) we denote the i-the node in the sequence c(e).



206 B. König and V. Kozioura

L L

UP

F
v1 w1 w2 v2

UP

F
w′

1 w′
2

L

L

UP

F

v1,2w1,2

η

ϕ

ξ

”real graph” G1 graph(m1) (graph generated by m1)left-hand side of rule ”Error”
L2

Fig. 4. Hypergraphs G1 ∈ H1, L2 and graph(m1) from the firewall example

equivalence relation Q̂ relates the nodes w1 and w2 and no other nodes. Note
for instance that w2 must be contained in Qw′

1
since both are attached to the

unary edge labelled UP .

4.3 Elimination of Spurious Runs

The general idea for destroying spurious runs is to avoid the merging of nodes
from the same equivalence class of Q̂. For this reason we assign colours to the
nodes of the graphs contained in H and disallow the merging of nodes cor-
responding to nodes with the same colour. For reasons that will become clear
below a node may have several colours, i.e., a node v is associated to a set cols(v)
of colours.

For each G ∈ Hk we and each morphism ξk : G → graph(mk) we consider
the corresponding relation QG,ξk

. Then we assign colours to nodes in such a
way that there exists at least one pair v1, v2 of nodes such that v1 QG,ξk

v2 and
cols(v1) ∩ cols(v2) �= ∅. There are several ways to do this and all of them will
help to eliminate the counterexample. In our implementation we choose a color
for each set of nodes Qv and assign it to all nodes contained in Qv.

In order to catch “bad” mergings as early as possible, these colours have to
be distributed to the remaining graphs contained in H. Let us recall here that
according to Definition 3 for each real run Jr = (G0 ⇒r1 G1 . . . ⇒rk

Gk) from
H we have injective partial morphisms νi : Gi → Gi+1 for i = 0, . . . , k−1. Using
these partial morphisms we assign the colours of Gk to the remaining graphs Gi

contained in H. We start from Gk and proceed as follows: if a node v ∈ Gi+1 has
a colour then we also assign this colour to the node ν−1(v) if such a node exists.
In this way a node may obtain several colours, due to the branching structure
of the runs contained in H. We denote by cols(v) the set of colours of the node
v ∈ VGj where Gj ∈ Hj .

We are now ready to give the algorithm for computing the refined over-
approximation.

Algorithm 10 (Refined approximated unfolding).

Input: A gts G, a set H of runs corresponding to prefixes of the counterexample
and a function cols assigning sets of colours to the nodes of the graphs in H.

Output: The refined over-approximation C′G .



Counterexample-Guided Abstraction Refinement for the Analysis of GTS 207

We start constructing the new over-approximation C′G with the initial graph G0.
Unfolding steps will be performed as described in Algorithm 7.

For a folding step we disallow the merging of nodes corresponding to nodes in
H having the same colour. More specifically, consider the over-approximation C′G ,
which is currently being constructed. Now for each run Jr = G0 	r1 . . . 	r�

G�

in H where � < k check the following:
We consider all abstract runs J = graph(m0) 	r1 . . . 	r�

graph(m�) of
the current Petri graph C′G for which Jr , J and all edge-bijective morphisms
ξ:Gi → graph(mi) for i = 0, . . . , �. Whenever there are two nodes v1, v2 in Gi

with cols(v1) ∩ cols(v2) �= ∅ and ξ(v1) = ξ(v2), we have erroneously merged two
nodes in the approximation which should not have been merged. Consequently
this folding step is undone.

Previously rejected folding steps are recorded and are not any more considered
by the algorithm.

In this way we will eliminate not only the spurious run but several more runs
which are characterized below (see Proposition 5).

Example: Fig. 5 depicts the hypergraph obtained for the firewall example after
the abstraction refinement procedure. As one can see, the “critical nodes” of the
hypergraph, namely the nodes w1 and w2, are now separated.

L

C
SP

SP
UP

UP SP

L

SP

C

F
w1 w2

v1 v2

Fig. 5. Hypergraph obtained after abstraction refinement

4.4 Correctness

In the following we will show that Algorithm 10 terminates and that the refined
over-approximation is correct and more exact then the previous one.

Let CG be an over-approximation with a spurious run J and let C′G be the
corresponding refined over-approximation. In [3] it is shown that the algorithm
constructing the over-approximating Petri graph terminates. We modified the
algorithm by forbidding some of the folding steps and hence we have to reprove
termination for the new version of the algorithm.

Proposition 3. The algorithm computing the refined over-approximation C′G for
a given gts G and a (spurious) abstract run J of CG terminates.

Furthermore the new over-approximation is still a valid over-approximation as
before.



208 B. König and V. Kozioura

Proposition 4. Let C′G be the refined over-approximation of the gts. Then, for
every real run Jr of the graph transformation system there exists an abstract run
J ∈ RunA(C′G) such that Jr corresponds to J , i.e., Jr ≪ J .

In the following two propositions we will show that we have eliminated the given
spurious counterexample and have not added any new ones. First we should an-
swer the following question: what kind of runs have we eliminated by abstraction
refinement? It is easy to see that in the refined over-approximation we have lost
the initial spurious counter-example J . In fact we have not only eliminated J ,
but some more runs as described below.

Definition 11 (Correspondence with respect to runs). Let (P, ι) and
(P ′, ι′) be two Petri graphs for a gts (R, G0). Furthermore let J ∈ RunA(P, ι)
and J ′ ∈ RunA(P ′, ι′) be two abstract runs of these Petri graphs and let H be
the set of real runs considered earlier. We say that J ′ corresponds to J with
respect to H if J ′ corresponds to J and a run J ′′ ∈ H of maximal length weakly
corresponds to a prefix of J ′.

Using this definition we can now state and prove the following propositions.

Proposition 5. The refined over-approximation C′G, constructed above does not
contain any run J ′ corresponding to the spurious run J of CG with respect to H.

We can also show that no new spurious runs have appeared, which means that
the new approximation is strictly better than the old one.

Proposition 6. If the refined over-approximation C′G contains a spurious run
J ′, then it corresponds to some spurious run J in CG.

We remark that the considered abstraction refinement approach can also be im-
plemented in the case of any number of spurious counterexamples by iteratively
refining the abstraction. Naturally, due to undecidability and the fact that gtss
are in general Turing-complete, there is no guarantee that it will ever terminate.

5 Implementation and Experimental Results

In this section we consider examples of gtss and compare the experimental
results obtained by refining the approximation by forbidding folding steps up to
a certain depth (see [5]) and counterexample-guided abstraction refinement as
presented in this paper. It is shown that for practical purposes the new technique
is usually more efficient.

The algorithm was implemented in C++ under Linux and the computer pa-
rameters are 2*Xeon 2.4 GHz, 2 GB RAM.

For case studies we have chosen two distributed systems: the running exam-
ple of this paper (firewall example) and a system of public and private servers
(for a description of the second example see [11]). If we compare the results in



Counterexample-Guided Abstraction Refinement for the Analysis of GTS 209

Table 2. Verification results (abstraction refinement by forbidding folding steps up to
a certain depth k, i.e., by computing k-coverings)

example k (depth) nodes edges transitions time (sec) verified
Public/private servers I 0 1 9 13 0.05 no
Public/private servers I 1 2 19 34 0.72 yes
Public/private servers II 0 1 10 14 0.05 no
Public/private servers II 1 1 11 16 0.07 no
Public/private servers II 2 3 31 63 7.16 yes

Firewall I 0 2 8 13 0.05 no
Firewall I 1 6 25 50 2.4 no
Firewall I 2 10 51 148 138.18 no
Firewall II 0 2 8 13 0.14 no
Firewall II 1 8 39 82 13.7 no
Firewall II 2 14 79 242 858.4 no

Table 3. Verification results (counterexample-guided abstraction refinement)

example nodes edges transitions time (sec) verified
Public/private servers I 2 16 25 0.67 yes
Public/private servers II 2 17 26 0.68 yes

Firewall I 4 11 17 0.16 yes
Firewall II 4 12 18 0.33 yes

Tables 2 and 3 it can be seen that in the case of counterexample-guided abstrac-
tion refinement we have an advantage both in runtime for computing the ap-
proximation and in the size of the over-approximations, which are consequently
easier to analyze. The difference is especially pronounced for versions II, which
use larger start graphs.

The efficiency of the abstraction refinement approach can be explained by the
fact that we forbid to merge only those parts of the unfolding which are respon-
sible for the spurious counterexample. This means that the over-approximation
remains rather compact compared to the depth-based (or k-covering) approach,
where we are not allowed to merge all items having depth smaller than k. Note
that for the firewall example it was not possible to verify the properties using
the depth-based approached.

6 Conclusion

In this paper we have shown how counterexample-guided abstraction refinement
can be applied to the analysis of dynamically evolving graphical structures in
a fully automatic way. In this case we are not concerned with the abstraction
of data values, but rather with graphs that are abstracted by merging nodes



210 B. König and V. Kozioura

and edges, using the concept of graph morphisms. Hence, abstraction refine-
ment can in this case be described by exploiting commutativity or rather non-
commutativity of morphisms as described in Section 4. Also, since we are dealing
with the approximation of graph structures rather than data values, no theorem
prover is needed in order to determine the initial abstraction, instead we use
techniques for approximated unfolding developed in [3].

Apart from smaller case studies we have used our approximated unfolding
technique to verify a mutual exclusion protocol [9] and to verify insertion of
elements into red-black trees [2]. We are currently working on an encoding of
simple pointer programs into graph rewriting which will enable us to directly
verify operations on pointer structures.

Research concerned with the verification of dynamically evolving graph struc-
tures which can be used to model distribution and mobility is fairly recent.
There are contributions coming from the area of dataflow analysis such as
shape analysis [16] as well as work directed more specifically towards the anal-
ysis of graph transformation systems [14, 13, 17, 9]. We believe that introducing
counterexample-based abstraction refinement is an important step in order to
make such verification techniques usable in practice. We also think that some of
the techniques presented here can be employed in fairly general settings.

Compared to shape analysis [16, 12] which is also concerned with over-approx-
imation techniques for graphical structures and which represents these structures
as models of a 3-valued logic, we follow a different approach where graphs are
represented directly and graph morphisms are used as a convenient abstraction
mechanism. Furthermore we approximate with Petri nets, which enable us to talk
about multiplicities of edges and can be conveniently analyzed using a variety
of existing Petri net tool.

Acknowledgments. We would like to thank Tobias Heindel, Paolo Baldan and
Andrea Corradini for many interesting discussions on the topics of this paper.

References

1. P.A. Abdulla, B. Jonsson, M. Kindahl, and D. Peled. A general approach to partial
order reductions in symbolic verification. In Proc. of CAV ’98, pages 379–390.
Springer, 1998. LNCS 1427.

2. P. Baldan, A. Corradini, J. Esparza, T. Heindel, B. König, and V. Kozioura. Ver-
ifying red-black trees. In Proc. of COSMICAH ’05, 2005. Proceedings available as
report RR-05-04 (Queen Mary, University of London).

3. P. Baldan, A. Corradini, and B. König. A static analysis technique for graph
transformation systems. In Proc. of CONCUR ’01, pages 381–395. Springer, 2001.
LNCS 2154.

4. P. Baldan, A. Corradini, and B. König. Static analysis of distributed systems with
mobility specified by graph grammars - a case study. In Proc. of IDPT ’02. Society
for Design and Process Science, 2002.

5. P. Baldan and B. König. Approximating the behaviour of graph transformation
systems. In Proc. of ICGT ’02, pages 14–29. Springer, 2002. LNCS 2505.



Counterexample-Guided Abstraction Refinement for the Analysis of GTS 211

6. T. Ball and S.K. Rajamani. Automatically validating temporal safety properties
of interfaces. In Proc. of SPIN ’01, pages 103–122. Springer, 2001. LNCS 2057.

7. S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification of
software components in C. In Proc. of ICSE ’03, pages 385–395. IEEE Computer
Society, 2003.

8. E. Clarke, S. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In Proc. of CAV ’00, pages 154–169. Springer, 2000. LNCS
1855.

9. F.L. Dotti, L. Foss, L. Ribeiro, and O. Marchi Santos. Verification of distributed
object-based systems. In Proc. of FMOODS ’03, pages 261–275. Springer, 2003.
LNCS 2884.

10. T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In Proc.
of POPL ’02, pages 58–70. ACM, 2002.

11. Barbara König and Vitali Kozioura. Counterexample-guided abstraction refine-
ment for the analysis of graph transformation systems. Technical Report 01/2006,
Universität Stuttgart, 2006.

12. A. Loginov, T. Reps, and M. Sagiv. Abstraction refinement via inductive learning.
In Proc. of CAV ’05, pages 519–533. Springer, 2005. LNCS 3576.

13. A. Rensink. Canonical graph shapes. In Proc. of ESOP ’04, pages 401–415.
Springer, 2004. LNCS 2986.

14. A. Rensink. State space abstraction using shape graphs. In Proc. of AVIS ’04,
ENTCS, 2004. to appear.

15. G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph
Transformation, Vol. 1: Foundations. World Scientific, 1997.

16. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.
TOPLAS, 24(3):217–298, 2002.

17. D. Varró. Towards symbolic analysis of visual modeling languages. In Proc. of
GT-VMT ’02, volume 72 of ENTCS. Elsevier, 2002.



Why Waste a Perfectly Good Abstraction?

Arie Gurfinkel and Marsha Chechik

Department of Computer Science, University of Toronto,
Toronto, ON M5S 3G4, Canada

{arie, chechik}@cs.toronto.edu

Abstract. Software model-checking based on the CEGAR framework can be
made more precise by separating non-determinism from the lack of information
due to abstraction. The two can be modeled individually using four-valued Bel-
nap logic. In addition, this logic allows reasoning about negations effectively and
thus enables checking of full CTL. In this paper, we present YASM – a new sym-
bolic software model-checker. Preliminary experience with YASM shows that our
implementation can effectively construct and analyze Belnap models without a
substantial overhead when compared to its classical counterparts.

1 Introduction

Symbolic software model-checking, pioneered by the Microsoft’s SLAM [1] project, is
a technique that works directly on code and checks the program by combining auto-
mated predicate abstraction [13] with counterexample-guided abstraction refinement
(CEGAR) [6]. The approach is divided into three phases: abstraction, model-checking,
and refinement. During the abstraction phase, a theorem-prover is typically used to
construct, using a list of predicates, a finite model that approximates the program being
verified. The model is analyzed by the model-checker, and counterexamples generated
by it are used to find additional predicates, if necessary. The process continues until
either the property is successfully proved or disproved, or resources are exhausted.

For example, suppose our goal is to verify whether the line labelled P1 can be
reached in the (deterministic) C program shown in Figure 1(a). This can be expressed
in CTL as AG(pc �= P1). Figure 1(c)-(e) gives a series of predicate programs which are
automatically constructed while checking this property. The abstraction in Figure 1(c)
is just the control-flow graph of the program, where the symbol ‘∗’ indicates that the
condition was abstracted away, and its value is not known. ‘∗’ is thus interpreted as
“either true or false”, and treated as a non-deterministic choice during model-checking.
Verifying AG(pc �= P1) on this abstraction yields false. It is possible to resolve non-
determinism so as to reach the line labeled P1, i.e., by exiting the while and entering
the if statement. We then check the feasibility of this execution in the concrete pro-
gram, with the goal of replacing the undesired non-determinism. Specifically, a pred-
icate x = 2 is needed to determine whether the control flow enters the if statement.
The new abstraction is shown in Figure 1(d): x = 2 becomes true during initialization,
is not affected by the body of the loop, and is checked in the condition of the if state-
ment. Now, the analysis yields that the property is violated if the loop terminates, and
the condition y ≤ 2 of the loop is added to the list of predicates, yielding an abstraction
in Figure 1(e). The statement y = y− 1 is abstracted as follows: if y ≤ 2 is true, then

H. Hermanns and J. Palsberg (Eds.): TACAS 2006, LNCS 3920, pp. 212–226, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Why Waste a Perfectly Good Abstraction? 213

(a)

void main (void) {
1: int x = 2;

int y = 2;
2: while (y <= 2)
3: {y = y - 1;}
4: if (x == 2)
5: {P1:}
6:}

(d)

void main (void) {
(x=2) := T;
while (*)

{(x=2) := (x=2);}
if (x=2)

{P1:}
}

(b)

1

2

34

P1

6

x := 2
y := 2

y > 2
y := y − 1

y ≤ 2

x = 2

x �= 2

skip

skip

(c)

void main (void) {
while (*)

{}
if (*)

{P1:}
}

(e)

void main (void) {
(x=2) := T;
(y <= 2) := T;
while (y<=2)

{(y<=2) := (y<=2)? T : *;
(x=2) := (x=2);}

if (x=2)
{P1:}

}

Fig. 1. A simple C program (a), its control-flow graph (b) and its predicate abstractions: (c): no
predicates; (d): after adding x = 2; (e): after adding y ≤ 2

(a)

int x;
x = 0;
if (x > 0)

{x++}
else

{x--}
P1:

(b)
if (*)

{}
else

{}
P1:

(c)

int x = 0;
if (fopen (...) != NULL)
{ if (x > 0)

{x++;}
else
{x--}

P1:
}

(d)

if (NONDET)
{ if (*)

{}
else
{}

P1:
}

Fig. 2. (a): a C program where line P1 is not reachable; (b): abstraction of (a) without predicates;
(c): a non-deterministic C program; (d) abstraction of (c)

decrementing y leaves it as true; otherwise, its value is unknown. The predicate x = 2
is not affected. The predicate program in Figure 1(e) is sufficient to determine that the
loop does not terminate, and thus the propertyAG(pc �= P1) holds.

Now consider an example in Figure 2(a). Here, the property ϕ = AG(pc �= P1)
fails in the concrete program. However, existing techniques (i.e., SLAM or BLAST) will
not be able to determine this from the abstract program in Figure 2(b). To find a pos-
sible counterexample to ϕ, e.g., an execution which passes through the else part of
the if statement, these techniques need to add another predicate, x > 0, and repeat
the refinement and the model-checking phases. On the other hand, a human can easily
determine that ϕ fails just by looking at the abstract program in Figure 2(b): line P1 is
reachable along every path, regardless of which of these are feasible. Thus, the abstrac-
tion in Figure 2(b) is conclusive for ϕ, and we will use it in our analysis. Specifically,
given an abstraction and a property AG(pc �= x) for some line x, we first attempt to
prove it directly, just like other approaches. If the proof fails, we then attempt to prove
its negation, i.e., that pc = x is always reachable, without considering which abstract
executions are possible. If this proof fails as well, we gather additional predicates and
proceed to the refinement phase.

So far, we have assumed that programs are deterministic. This assumption is un-
realistic even for sequential programs, e.g., because of user input or other external
factors, such as presence or absence of files that the program attempts to use. For exam-
ple, consider the program in Figure 2(d) which abstracts the one in Figure 2(c). Here,
the computation not leading to P1 occurs when the file cannot be opened; since this



214 A. Gurfinkel and M. Chechik

behaviour is controlled by the environment, there exists a concrete execution leading
to P1. Thus, we can conclude AG(pc �= P1) fails, without any further refinements or
analysis of the feasibility of this execution.

In this paper, we present an approach to proving truth and falsity of reachability prop-
erties. It is based on treating unknowns resulting from abstraction, ‘∗’, differently from
unknowns resulting from the environment, non-determinism, as shown in the above ex-
ample. Our approach is similar to the one taken by Reps and Sagiv [26] in the sense
that it uses a logic with additional truth values (we use Belnap logic [4] which is an ex-
tension of Kleene logic [22] used in [26]) enabling us to perform both checks during a
single analysis phase. The analysis yields one of the following answers: (1) the property
holds; (2) the property fails (as in the model in Figure 2(d)); (3) the value of the property
depends on the resolution of ‘∗’, and thus the abstraction needs to be further refined.

We also present an implementation of this approach via a symbolic software model-
checker YASM1. Although similar approaches have been studied theoretically, e.g. see
[8, 12], we believe this to be the first efficient implementation with performance that is
comparable to SLAM and BLAST. The implementation makes use of a number of ideas
from existing CEGAR approaches, which we have generalized for our purposes. In
particular, our implementation is applicable to programs with non-deterministic control-
flow, and is not restricted to reachability analysis.

The rest of this paper is organized as follows. After giving the necessary back-
ground in Section 2, we describe, in Section 3, the process of creating and interpreting
abstractions of programs we want to check. We discuss three abstract semantics:
over-approximation, under-approximation and exact approximation, used in YASM. In
Section 4, we describe model-checking of the models constructed via the exact approx-
imation and the use of counterexamples for conclusiveness, generated by the model-
checker, for computing refined abstractions. Exact approximations enable the use of
effective techniques for improving the speed and the precision of the analysis. We dis-
cuss a few of them in Section 5. We describe the tool and give its performance data in
Section 6, and conclude in Section 7 with a comparison of our approach with related
work, a summary of the paper, and a discussion of future research directions.

2 Background

In this section, we review multi-valued logics, define multi-valued Kripke, and a multi-
valued version of the modal μ-calculus.

Logics. Boolean logic 2 is a set {t, f} together with the truth ordering relation �, s.t.
f � t. Conjunction ∧ and disjunction ∨ represent meet and join with respect to the truth
ordering. Additionally, a negation operator is defined as ¬t � f and ¬f � t. Kleene
logic [22] 3 extends 2 with an additional element ⊥, representing “unknown” informa-
tion. In this paper, ⊥ is used to represent ‘∗’, discussed in Section 1. The truth ordering
of the logic is extended as f � ⊥ and ⊥ � t, and negation as ¬⊥ = ⊥. We define
an additional ordering ., that relates values based on the amount of information; thus
⊥ . t and ⊥ . f, so that ⊥ represents the least amount of information. Belnap logic [4]

1 YASM stands for a Yet Another Software Model-checker.



Why Waste a Perfectly Good Abstraction? 215

(a) (b)f

� ⊥

t

⊥

t f

�

Fig. 3. Belnap logic: (a) truth order; (b) information order

4 extends 3 with an additional element �. The truth ordering is extended so that f � �
and � � t, and negation as ¬� = �, i.e., � is equivalent to ⊥ with respect to this
ordering. Finally, the information ordering is extended by making � be the largest ele-
ment, i.e., f . � and t . �. This makes 4 into the smallest structure containing 2 that
is a complete distributive lattice under both truth and information orderings. The truth
and information orderings of 4 are shown in Figure 3.

Temporal Logic. Temporal logic properties are specified in propositional μ-calculus
Lμ(AP ) [23]. Properties are often expressed in CTL, which is a subset of Lμ [7].

Definition 1. Let Var be a set of variable names, and AP be a set of atomic proposi-
tions. The logic Lμ(AP ) is the set of formulas defined as:

ϕ ::=Z | p | ¬ϕ | ϕ ∧ ϕ | ♦ϕ | μZ · ϕ(Z)

where p ∈ AP , Z ∈ Var, and ϕ(Z) is syntactically monotone in Z .

We use the following syntactic abbreviations:

ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ) �ϕ = ¬♦¬ϕ νZ · ϕ(Z) = ¬μZ · ¬ϕ(¬Z)

The semantics of Lμ is defined with respect to an L-valued Kripke structures.

Definition 2. An L-valued Kripke structure over a set of atomic propositions AP is
a tuple K = 〈S,L, R, I〉, where S is a set of states, L ∈ {2,3,4} is a logic, R :
S × S → L is a transition relation, and I : AP → [S → L] is an interpretation of
atomic propositions that assigns to each atomic proposition a mapping from states to
values in L.

We often refer to L-valued Kripke structures simply as Kripke structures when L is
irrelevant or clear from the context. For a transition relation R : S × S → L, we define
the preimage of Q : S → L w.r.t. R, pre[R] : [S → L] → [S → L], as

pre[R](Q) � λs ∈ S ·
∨

t∈S R(s, t) ∧Q(t)

pre[R](Q) is a set of states that have an R-successor in Q. A dual of pre is wp:

wp[R](Q) � ¬pre[R](¬Q)

wp[R](Q) is a set of states whose R-successors are all in Q.
The semantics of Lμ formula ϕ in a Kripke structure K , written ||ϕ||Kσ , is defined

inductively on the structure of the formula, where σ : Var → LS is an object assignment
for free variables:



216 A. Gurfinkel and M. Chechik

||p||Kσ � I(p) ||z||Kσ � σ(z)
||ϕ ∧ ψ||Kσ � ||ϕ||Kσ ∧ ||ψ||Kσ ||¬ϕ||Kσ � ¬||ϕ||Kσ
||μx · ϕ||Kσ � lfp!

(
λS · ||ϕ||Kσ[x �→S]

)
||♦ϕ||Kσ � pre[R](||ϕ||Kσ )

where lfp!f is the �-least fixpoint of f . For a closed Lμ formula ϕ, ||ϕ||Kσ = ||ϕ||Kσ′

for any σ and σ′, written as ||ϕ||K . For a Kripke structure K and a state s, we write
K, s |= ϕ to mean ||ϕ||K(s) = true. Note that whenK is 4-valued,K, s �|= ϕ does not
mean that K, s |= ¬ϕ, i.e., proving that ϕ is false is not the same as failing to prove
that ϕ is true. Finally, we define �Lμ and ♦Lμ to be subsets of Lμ, where the modal
operations are just � and ♦, respectively, and negation is allowed only at the level of
atomic propositions.

3 Program Abstraction

In this section, we show how programs are approximated by Boolean programs and
present three approximation semantics.

3.1 Programs

Operations. Let V denote the set of program variables. A program is built out of oper-
ations Ops of which there are two kinds: (1) an assignment l := e, where l is a variable
from V and e is an expression over program variables, and (2) an operation assume(e),
where e is a boolean expression. Assume operations are used to model conditional
branches. We also use an operation skip as a syntactic abbreviation for assume(t).

Programs as Control Flow Graphs. A Control Flow Graph CFG is a structure G =
〈Loc, δ〉, where Loc is a finite set of locations, and δ : Loc × Loc → 2 is a transition
relation. A program is modeled by a labeled CFG 〈G, τ〉, where τ labels each edge
of the CFG G with an operation from Ops. A CFG corresponding to the program in
Figure 1(a) is shown in Figure 1(b).

Programs as Kripke Structures. A state is a type-correct valuation of all program
variables. We use S to denote the set of all states, and s(x) to denote the value of the
variable x in s. Each operation op corresponds to a transition relation S(op) defined as:

S(op)(s, t) ⇔ t =

{
s if op is assume(e) and s |= e

s[l �→ s.e] if op is l := e

Finally, a program Prg = 〈G, τ〉 corresponds to a Kripke structure KPrg � 〈Loc ×
S,2, RPrg, IPrg〉, where R and I are defined as:

RPrg(〈l, s〉, 〈k, t〉) � δ(l, k) ∧ (S(τ(l, k)))(s, t)
IPrg(pc = j)(〈l, s〉) � (l = j)
IPrg(e)(〈l, s〉) � s |= e

and e is a boolean expression.
The semantics of Lμ is extended to programs in the obvious way: a program Prg

satisfies ϕ iff the corresponding Kripke structureKPrg satisfies ϕ.



Why Waste a Perfectly Good Abstraction? 217

3.2 Boolean Programs

Boolean Operations. Let P = {p1, . . . , pn} be a set of quantifier-free first-order
boolean predicates over program variables V . A Boolean (or Predicate) program [2]
is a program constructed out of Boolean operations BOps. As before, the operations
are divided into two kinds: (1) a parallel assignment p1 := e1, . . . , pn := en, and (2)
an operation assume(e). We refer to elements of a parallel assignment as updates, e.g.,
p1 := e1, p2 := e2 consists of two updates, for predicates p1 and p2, respectively. The
expressions on the right-hand-side of the assignment and in the argument of the assume
operation are partial boolean expressions with the following grammar:

pb expr ::= ∗ | choice(bool expr, bool expr) | ¬pb expr | bool expr
Intuitively, ∗ stands for an unknown expression, and choice(a, b) – for an expression that
evaluates to true when a is true, to false when b is true, and whose value is unknown
otherwise. In Boolean programs, we use skip as a syntactic abbreviation for a parallel
assignment p1 := choice(p1,¬p1), . . . , pn := choice(pn,¬pn), and ¬choice(a, b) for
choice(b, a). As before, a Boolean program is a CFG whose edges are labeled with
operations from BOps.

Syntactic Abstraction. We now show how a Boolean program BPrg is used to approx-
imate a program Prg by describing the behavior of Prg using a finite set of predicates.
We present the approximation in a bottom-up fashion, starting with approximation of
expressions, and ending with approximation of programs.

A partial boolean expression pe approximates a boolean expression e (denoted as
pe . e), if (a) pe is a boolean expression logically equivalent to e, (b) pe is the ∗
expression, (c) pe is of the form choice(a, b) and a logically implies e, and b logically
implies ¬e. For example, y > 0 is approximated by choice(y > 1, f). Note that from
the perspective of the approximation, ∗ is equivalent to choice(f, f).

The approximation is extended to the assume operations in the obvious way:
assume(pe) . assume(e) iff pe . e, e.g., assume(y > 0) is approximated by
assume(choice(y > 1, f)). A single update p := choice(a, b) approximates an assign-
ment l := e if choice(a, b) approximates the weakest pre-condition of the predicate p
with respect to the assignment. In other words, a approximates the condition under
which p becomes true after the assignment, and b approximates the condition under
which p becomes false. For example, a program assignment y := y− 1 is approximated
by (y ≤ 2) := choice(y ≤ 2, f). Finally, a parallel assignment A approximates an as-
signment l :=e if all update operations ofA approximate l :=e. For example, y :=y−1
is approximated by (y ≤ 2):=choice(y ≤ 2, f), (x = 2):=choice((x = 2),¬(x = 2)).

We say that a Boolean program BPrg = 〈G, τB〉 approximates a program Prg =
〈G, τ〉 if each operation of BPrg approximates the corresponding operation of Prg.
Since we have not yet given an operational semantics to Boolean programs, we call
this approximation a syntactic predicate abstraction. There are standard techniques to
compute such abstractions [1, 13].

3.3 Three Semantics of Boolean Programs

In order to evaluate temporal properties on Boolean programs, we must equip them with
Kripke semantics. The only difficulty is to find a proper way to model the partial expres-



218 A. Gurfinkel and M. Chechik

sions, i.e., ∗ and choice(a, b). In this section, we describe three choices for this approx-
imation: (a) an over-approximating semantics where “unknown” is modeled as a non-
deterministic choice between true and false – this is the semantics used by most existing
model-checkers such as SLAM [2] and BLAST [20]; (b) an under-approximating seman-
tics where “unknown” is modeled by a partial assignment; and (c) the exact semantics
that uses Belnap logic to combine over- and under-approximation – this is the seman-
tics used by our model-checker YASM. The three semantics are illustrated on a parallel
assignment A : (y ≤ 2) := choice(y ≤ 2, f), (x = 2) := choice((x = 2),¬(x = 2))
that approximates y := y − 1 using predicates y ≤ 2 and x = 2.

Over-Approximation. In this case, a state is a boolean valuation of predicates, i.e., it
is an element of 2P . Each operation bop in BOp is associated with a transition rela-
tion O(bop) ⊆ 2P × 2P , such that abstract states a and b are not connected if we can
conclude from the boolean operation that there is no transition between the correspond-
ing states of the concrete program. That is, if the current state a does not satisfy the
precondition for p to become false, a has a successor, b, in which p is true.

Formally, the semantics of an update operation is

O(p := choice(q, r))(a, b(p)) ⇔ (b(p) = t and a �|= r) or (b(p) = f and a �|= q)

and semantics of a parallel assignment is the conjunction of all of its updates:

O({pi := choice(qi, ri)}n
i=1)(a, b) ⇔

∧n
i=1(O(pi := choice(qi, ri))(a, b(pi)))

For our running example, a part of a transition relation O(A) is shown in Figure 4(a).
Note that a state a1 corresponding to concrete states where (y �≤ 2) and x = 2 has two
outgoing transitions, to states a0 and a1, indicating that it is possible for y ≤ 2 to non-
deterministically become true or false in the next state. That is, the fact that the value of
y ≤ 2 is unknown in the next state is modeled by non-determinism.

Finally, the semantics of the assume operator is:

O(assume(e))(a, b) ⇔ a �|= ¬e and O(skip)(a, b)

Under-Approximation. In this case, a state is a partial valuation of predicates, i.e, an
element of 3P , or a “tri-vector” [1]. Each operation bop ∈ BOp is associated with a
transition relation U(bop) ⊆ 3P × 3P , such that each predicate p is true in the next
state, b, only if the current state, a, satisfies a precondition for p to become true.

Formally, the semantics of an update operation is

U(p := choice(q, r))(a, b(p)) ⇔ (b(p) = t and a |= q) or (b(p) = f and a |= r) or (b(p)=⊥)

and semantics of a parallel assignment is the conjunction of all of its updates:

U({pi := choice(qi, ri)}n
i=1)(a, b) ⇔

∧n
i=1

(
U(pi := choice(qi, ri))(a, b(pi))

)
For our running example, a part of a transition relation U(A) is shown in Figure 4(b).

Here, state a1 has a single outgoing transition to state a3 indicating that in the next state
the value of y ≤ 2 is unknown, and x = 2 remains true.



Why Waste a Perfectly Good Abstraction? 219

(a) (b) (c)

y ≤ 2
x = 2

y �≤ 2
x = 2

a0

a1

y ≤ 2
x = 2

y �≤ 2
x = 2

y ≤ 2

x = 2

a0

a1

a2

a3

y ≤ 2
x = 2

y �≤ 2
x = 2

y ≤ 2

x = 2

a0

a1

a2

a3

⊥

�

�

�

t

�

�

⊥

Fig. 4. Fragment of a transition relation: (a) over-approximation, (b) under-approximation, and
(c) exact approximation

Finally, the semantics of the assume operator is:

U(assume(e))(a, b) ⇔ a |= e and U(skip)(a, b)

Exact Approximation. This approximation combines the over- and under-
approximating semantics in a single 4-valued model. Thus, the states are partial valu-
ations of predicates, i.e., elements of 3P . Each operation bop in BOp is associated with
a 4-valued transition relation E(bop) : 3P × 3P → 4. Intuitively, a transition is t if it
appears both in the over- and the under-approximations,⊥ if it appears only in the over-
approximation, and � if it appears only in the under-approximation. For our running
example, a part of a transition relation E(A) is shown in Figure 4(c).

To define the semantics formally, we first introduce a function eval():

eval(ϕ, a) �

⎧⎪⎨⎪⎩
t if a |= ϕ

f if a |= ¬ϕ
⊥ if a �|= ϕ and a �|= ¬ϕ

Then, the semantics of an update is

E(p := choice(q, r))(a, b(p)) =

⎧⎪⎨⎪⎩
eval(choice(q, r), a) if b(p) = t
eval(¬choice(q, r), a) if b(p) = f
� if b(p) = ⊥

and the semantics of a parallel assignment is the conjunction of all of its updates:

E({pi := choice(qi, ri)}n
i=1)(a, b) ⇔

∧n
i=1

(
E(pi := choice(qi, ri))(a, b(pi))

)
Finally, the semantics of the assume operation is:

E(assume(e))(a, b) � eval(e, a) ∧ E(skip)(a, b)

The semantics of operations is extended to Boolean programs in an obvious way.
Thus, each semantics associates a Boolean program with a Kripke structure. For exam-
ple, the Kripke structure corresponding to the boolean program in Figure 2(d) is shown
in Figure 5(a). The following theorem shows that over- and under-approximating se-
mantics preserve universal and existential fragments of Lμ, respectively, whereas the
exact semantics preserves full Lμ.



220 A. Gurfinkel and M. Chechik

1

2

34

P1

6

t

t

⊥⊥

t t

t

t

1

2

34 3,4

P1

6

t

t

⊥⊥

t t

t

t

�

t

int x;
INIT:
x = 10;
P1:while(x > 0)
x = x - 1;

END:

int x = 4;
if(x > 0){
x=(int)(sqrt(x)+xˆ3);
if(x < 212){

x=(int)((3*x)/13);
if(x*x > 100){

; }}}
END:

(a) (b) (c) (d)

Fig. 5. (a) a Kripke structure corresponding to the Boolean program in Figure 2(d); (b) improving
precision of if; (c) and (d) two example programs

Theorem 1. Let Prg and BPrg be a program and its Boolean abstraction, respec-
tively. Then, for an abstract state, a, and a corresponding concrete state, s, the follow-
ing holds:

1. ∀ϕ ∈ �Lμ · O(BPrg), a |= ϕ ⇒ Prg, s |= ϕ
2. ∀ϕ ∈ ♦Lμ · U(BPrg), a |= ϕ ⇒ Prg, s |= ϕ
3. ∀ϕ ∈ Lμ · E(BPrg), a |= ϕ ⇒ Prg, s |= ϕ

The over-approximating semantics has been used in standard software model-checking
tools to prove truth of AG properties. Our approach uses the exact semantics, which
enables us to prove truth and falsity of such properties. We discuss it in the next section.

4 Abstract Model-Checking

To model-check a temporal logic formula ϕ in a state s and location l of a Boolean pro-
gram BPrg, we use the techniques of Section 3 to construct a 4-valued Kripke structure
KBPrg and then compute the value of ||ϕ||KBPrg (〈l, s〉). The latter step involves multi-
valued model-checking, e.g., using the algorithm implemented in χChek [5]. In Sec-
tion 4.1, we describe how to perform model-checking with Belnap logic using standard
BDD packages.In Section 4.2, we show how to find additional predicates to refine the
abstraction if the result of model-checking a formula ϕ is inconclusive.

4.1 Model-Checking

A symbolic multi-valued model-checking algorithm depends on an efficient represen-
tation and manipulation of Belnap functions, i.e., functions from some set S into 4.
These functions are represented in YASM as BDDs using the ideas below. First, any set
S can be encoded by r boolean variables v1, . . . , vr, for a sufficiently large r. Thus, we
only need to find a representation for Belnap functions whose domain is 2r. Second,
any Belnap function f : 2r → 4 can be represented by a pair of boolean functions
〈f�, f⊥〉 over 2r [16], where f� is λx · f(x) / � and f⊥ is λx · f(x) / ⊥. With
this decomposition, f(x) is equivalent to (f�(x) ∧ �) ∨ (f⊥(x) ∧ ⊥). The following
equivalences enable the direct computation of conjunction and disjunction of Belnap
functions: (a) f ∧ g = 〈f� ∧ g�, f⊥ ∧ g⊥〉; (b) f ∨ g = 〈f� ∨ g�, f⊥ ∨ g⊥〉; (c)
¬f = ¬〈f�, f⊥〉 = 〈¬f⊥,¬f�〉. Thus, we can represent each Belnap function by a pair
of BDDs, one for each boolean function in the decomposition. Third, a pair of boolean



Why Waste a Perfectly Good Abstraction? 221

functions 〈f, g〉 over variables v1, . . . , vr is represented by a single boolean function h
with a new boolean variable z, using the encoding h = z ∧ f ∨ ¬z ∧ g. So, Belnap
functions can be represented and manipulated as standard BDDs at the expense of one
additional variable. Furthermore, as many other symbolic model-checkers, we use the
control-flow graph to partition the transition relation and its pre-image computation.

4.2 Abstraction Refinement

Whenever model-checking ϕ is inconclusive, our model-checker produces a behaviour
of the system explaining why this is the case [15, 14]. So, we can use any of the existing
techniques, e.g., [21], to determine whether this trace is feasible and use it to obtain
additional predicates to refine the abstraction. However, in the multi-valued framework,
checking feasibility of the trace is not necessary: we know exactly which part is incon-
clusive, and concentrate the refinement on it.

For example, consider the program in Figure 2(c), its abstraction in Figure 2(d), and
the corresponding Kripke structure in Figure 5(a). Since the abstraction is built without
any predicates, the Kripke structure is essentially equivalent to the CFG of the program.
In this abstraction, ||EF (pc = P1)||(1) is inconclusive, i.e., ⊥, which is exemplified
by a path 1, 2, 4, P1 with an ⊥-transition between states 2 and 4. In this example, the
⊥-transition is the result of executing a boolean operation assume(∗) that syntactically
abstracts assume(x > 0) in the concrete program. Thus, the value of the predicatex > 0
is required to make the proof conclusive, which is done by refining the abstraction with
this predicate, and repeating model-checking on the refined program.

In general, a path exemplifying why the result of model-checking is inconclusive
always contains at least one ⊥-transition. Suppose such a transition is between states
〈k, a〉 and 〈l, b〉, where k and l are program locations, and a and b are boolean valuations
of predicates. By construction, this transition corresponds to a boolean operation bop
such that E(bop)(a, b) = ⊥. If bop is a parallel assignment, then by the definition of the
exact semantics there exists a predicate p and an update of the form p := choice(q, r)
in bop such that a �|= q and a �|= r. The idea is to refine the update, by strengthening
the expressions q and r by the precondition for p to become true after execution of
the concrete operation op corresponding to bop. This is done by refining the Boolean
program with the predicate corresponding to the weakest precondition of p with respect
to op, i.e., wp[op](p).

For example, suppose we have model-checked a Boolean program with two predi-
cates y ≤ 2 and x = 2, and the cause of inconclusiveness is a ⊥-transition between
states a = {(y ≤ 2) �→ f, (x = 2) �→ t} and b = {(y ≤ 2) �→ t, (x = 2) �→ t} Further,
assume that the corresponding boolean operation is (y ≤ 2) := choice(y ≤ 2, f), (x =
2) := choice(x = 2, x �= 2), which is the result of abstracting the concrete operation
y := y− 1. The transition is unknown since the prestate a does not guarantee that y ≤ 2
is true or false in the next state, i.e., a �|= y ≤ 2 and a �|= f. We can then refine the
Boolean program by adding the predicate wp[y := y − 1](y ≤ 2) = (y ≤ 3).

The above approach to abstraction-refinement is not limited to reachability prop-
erties. Our multi-valued model-checker can provide explanations to inconclusiveness
of arbitrary CTL properties in the form of proofs [15], which we mine for additional
predicates.



222 A. Gurfinkel and M. Chechik

5 Exploiting Exact Approximations

The use of precise (Belnap) abstractions, described in Section 3, opens way to creating
a number of techniques for improving the speed and the precision of the analysis. In
this section, we discuss two of them.

Reusing Results of Previous Abstractions. One of the obvious limitations of the CE-
GAR framework is the fact that intermediate results are not shared between succes-
sive abstraction-refinement iterations. For example, consider applying the framework
to check whether the propertyEF (pc = END) holds in location INIT in the program in
Figure 5(c).

In the first iteration, we conclude that reachability of END depends on the value of
x > 0, which is added to the list of predicates. During the model-checking phase of the
second iteration, it is proved that END is reachable from P1 if x ≤ 0, i.e., ||EF (pc =
END)||(〈P1, {(x > 0) �→ f}〉) holds in the corresponding Kripke structure. Additionally,
during the refinement phase, a new predicate x > 1 is added. The third iteration once
again reproves that END is reachable from P1 provided that x ≤ 0 or x ≤ 1, adding
a predicate x > 2. The process continues, repeating the work done at the previous
iterations, until all predicates of the form x > i, where 0 ≤ i ≤ 10, are added, and
termination of the loop is established.

To reuse results of previous computations, we must first identify which results are
preserved between iterations. For a program Prg, let KP be a Kripke structure ab-
stracting Prg using predicates P = {p1, . . . , pn}, constructed during an iteration i,
and let KP ′ be a Kripke structure constructed during the i + 1 iteration using predi-
cates P ′ = P ∪ {pn+1}. From the construction of the abstractions, ||ϕ||KP (〈l, u〉) .
||ϕ||KP ′ (〈l, v〉) for a formula ϕ and those states 〈l, v〉 of KP and 〈l, u〉 of KP ′ , where
v(pi) = u(pi) for all i ≤ n (i.e., v and u agree on the values of the first n predi-
cates). In particular, if the concretization of v is not empty, then, if ϕ is either t or f
in 〈l, u〉, it is correspondingly t or f in 〈l, v〉. This allows us to use ||ϕ||KP , the result
of model-checking ϕ on KP , to help compute ||ϕ||KP ′ Formally, we define DP as
follows:

DP (〈l, 〈u1, . . . , un+1〉〉) =

{
t if ||ϕ||KP (〈l, 〈u1, . . . , un〉〉) = t

f otherwise

The function DP is an under-approximation of ||ϕ||KP ′ : for any state s of KP ′ with
a non-empty concretization, DP (s) � ||ϕ||KP ′ (s). If ϕ is computed using a least fix-
point, e.g., ϕ = EFψ, DP can be used as the starting point in computing ϕ on KP ′ .
For formulas that are computed using a greatest fixpoint, an over-approximation with
respect to the truth ordering can be constructed and used in a similar manner. For a
formula ϕ = EFψ, the above optimization computes, at iteration i + 1, reachability
of states proved to satisfy EFψ at iteration i. In our example, this results in EF (pc =
END) during the first and the second iteration, EF (pc = END ∨ (pc = P1 ∧ x ≤ 0))
during the third, EF (pc = END ∨ (pc = P1 ∧ x ≤ 1)) during the fourth, etc. In the
standard approach, we would have been checking EF (pc = END) from scratch after
each refinement.



Why Waste a Perfectly Good Abstraction? 223

Handling Conditional Statements. In this paper, every abstract state corresponds to
a unique control flow location, which simplifies construction of the abstract model but
limits its precision. Recall that the goal of checking our program in Figure 2(d) and
its corresponding Kripke structure in Figure 5(a) was to establish whether the location
pc = P1 is reachable. Intuitively, model-checking begins by labeling node P1 by t, i.e.,
P1 is reachable from itself, and then propagates this labeling along the edges of the
Kripke structure. Thus, in the second iteration, nodes pc = 4 and pc = 3 are labeled
by t, i.e., pc = P1 is definitely reachable from these nodes. In the third iteration, we
run into a problem. We would like to conclude that pc = P1 is reachable from the node
pc = 2 – it is reachable from both branches of the if-statement. However, according to
our algorithm, the value at pc = 2 is obtained by (a) propagating the labeling of pc = 3
through the (2, 3)-edge, (b) propagating the labeling of pc = 4 through the (2, 4)-edge,
and (c) taking a disjunction of (a) and (b). Thus, after the third iteration, the node pc = 2
is labeled with (⊥ ∧ t) ∨ (⊥ ∧ t) = ⊥, allowing us to conclude only that pc = P1 is
⊥-reachable from pc = 2.

The cause of this problem is that in our abstract domain, we cannot express that
one of the branches of the if-statements is taken, although we do not know which. One
solution is to increase the abstract domain to include a state corresponding to several
control flow locations. Figure 5(b) shows a possible abstraction with an additional ab-
stract state pc = (3, 4), corresponding to the set of program states in which the control
location is either 3 or 4. It has a t-transition to pc = P1 since all states corresponding
to it have a transition there, and has a �-transition from pc = 2, indicating that the
execution of the if-statement definitely results in the control passing to either location
3 or 4. In this case, after the second iteration of the model-checking algorithm, nodes
P1, 3, 4, and (3, 4) are labeled with t, and the third iteration results in the desired result:
(⊥ ∧ t) ∨ (� ∧ t) ∨ (⊥ ∧ t) = t.

Additional abstract states solve our problem; however, they can significantly in-
crease the size of the abstract model and complicate the abstraction process. In YASM,
we take a different approach, similar in spirit to “hyper-transitions” (e.g., [24, 27, 9]).
Instead of increasing the abstract domain, we use the fact that for any concrete (2-
valued) left-total transition relation R, wp[R](Q) ⊆ pre[R](Q) – if all successors of
a state s are in Q, then at least one successor is in Q. Thus, the pre-image com-
putation of an abstract transition relation Ra can be augmented from pre[Ra](Q) to
pre[Ra](Q)∨(wp[Ra](Q) 0 t), i.e., a state is assigned t if either it has a definite succes-
sor in Q, or all of its non-f successors are definitely in Q. In our example, this changes
the third iteration of model-checking of the Kripke structure in Figure 5(a) as follows:
in addition to computing pre along the edges (2, 3) and (2, 4), wp along each edge is
computed to be ¬⊥ ∨ t = t, and the node pc = 2 is marked with t as desired. Thus, we
can obtain a conclusive abstraction without the need to add the predicate x > 0.

Our approach also enables us to give definite results for certain programs with non-
linear predicates. Consider the program in Figure 5(d). If the goal of a successful
model-checking run is to examplify the path to END (as is the case in standard soft-
ware model-checking approaches), the presence of complex mathematical operations
will make the theorem-proving quite difficult, if not impossible. Our approach enables
us to avoid these problems: we simply conclude that the path to END exists, whether



224 A. Gurfinkel and M. Chechik

it goes through the nested if statement or not. For such cases, we effectively perform
context-sensitive slicing, removing parts of the abstraction which are not necessary to
achieve a conclusive answer.

6 Experiments

The techniques described in this paper have been implemented in a software model-
checker YASM. YASM is written in JAVA and uses theorem prover CVC Lite [3] to
approximate program statements, and CUDD [28] library as a decision diagram engine.

Table 1 summarizes the performance of YASM on several programs based on the
examples distributed with BLAST [20]. The experiments were performed on a Pentium
4 2.4 GHz machine running Linux 2.4.20. For each experiment, we list the number of
iterations required by the abstraction-refinement phase, the final number of predicates,
the overall model-checking time, and the final analysis result. For example, running
YASM on a 4065-line qpmouse program took three iterations and yielded two predi-
cates, in 2.5 seconds, whereas BLAST solved this problem in 1 second, also using two
predicates. For every example, we checked whether an error condition is unreachable,
which holds everywhere except qpmouse err.

Table 1. Experimental results

Name LOC YASM Result BLAST

Iterations # of Pred Time (sec) Time (sec) # of Pred

tlan 6885 4 3 15.4 t 52 9
qpmouse 4065 3 2 2.5 t 1 2
qpmouse err 4065 12 20 5.7 f – –
s3 srvr 2261 3 30 2.9 t 16.6 15
s3 srvr.3 2240 3 38 25.1 t 152 20

For these experiments, YASM was configured to prefer adding new predicates instead
of computing a more precise abstraction. Our results clearly show that the running time
of YASM is comparable to that of BLAST. We ran the latter as a baseline, to determine
a reasonable performance for a software model-checker: a more direct comparison is
not possible because the techniques used in the two model-checkers are significantly
different. We do not report the results of running BLAST on qpmouse err because
the answer it gives when error is reachable is unsound: the paths reported by the tool
are often infeasible.

7 Conclusion and Related Work

In this paper, we have presented YASM – a BDD-based software model-checker that
combines automatic predicate abstraction-refinement with reasoning over Belnap logic.
Our experience indicates that the CEGAR framework can be successfully extended to
do proofs of reachability and proofs of unreachability, using the same abstraction. This



Why Waste a Perfectly Good Abstraction? 225

approach allows us to shorten the abstraction-refinement cycle, is applicable to pro-
grams with non-deterministic control-flow, and provides support for model-checking of
arbitrary CTL formulas.

There has been a lot of progress in applying automatic predicate abstraction of Graf
and Saı̈di [13] to software model-checking. The approach closest to ours is the one
taken by SLAM [1] – YASM simply reinterprets SLAM’s boolean programs using 4-
valued semantics. Like our work, [25] makes a distinction between “non-deterministic”
and “unknown” transitions and shows that performance of an explicit-state software
model-checker is improved by guiding it towards the former. In our terminology, this
would mean guiding the search to prefer non-⊥ transition, which happens automatically
in our (symbolic) approach.

4-valued Kripke structures and their application to abstraction are equivalent to
Mixed Transition Systems [8, 18]. They can also be seen as an extension of Modal
Transition Systems [11] that are defined using Kleene logic.

We are not the first to use multi-valued logic to model abstraction in model-checking.
Specifically, Kleene logic has been previously applied to reason about abstractions [26],
and suggested as a basis for abstract model-checking [11]. Belnap logic has also been
used to model abstraction in the context of (G)STEs [19] in a manner similar to ours.

Models based on Kleene logic have been used in [10] to separate handling of “un-
known” and “non-determinism”. Unlike our work or that of [8], it does not account
for the relationship between abstract states, i.e., the case where γ(a) ⊆ γ(b) for some
abstract states a and b. It uses a (rather expensive [10, 17]) generalized model-checking
approach and does not address the issue of generating counterexamples which are es-
sential for an application of the CEGAR framework.

We are currently working on an implementation of YASM that combines exact ap-
proximations with function summaries for handling recursive functions. This is subject
of a forthcoming paper.

Acknowledgments

We are grateful to Xin Ma, Kelvin Ku and Shiva Nejati for their help implementing,
evaluating and improving YASM, and to Ou Wei for thoroughly reading an earlier draft
of this paper and for many interesting discussions. We would like to acknowledge the
financial support provided by NSERC. The first author has also been partially supported
by an IBM Ph.D. Fellowship.

References

1. T. Ball, A. Podelski, and S. Rajamani. “Boolean and Cartesian Abstraction for Model Check-
ing C Programs”. STTT, 5(1):49–58, 2003.

2. T. Ball and S. Rajamani. “The SLAM Toolkit”. In Proceedings of CAV’01, volume 2102 of
LNCS, pages 260–264, 2001.

3. C. Barrett and S. Berezin. “CVC Lite: A New Implementation of the Cooperating Validity
Checker”. In Proceedings of CAV’04, volume 3114 of LNCS, pages 515–518, 2004.

4. N.D. Belnap. “A Useful Four-Valued Logic”. In Dunn and Epstein, editors, Modern Uses of
Multiple-Valued Logic, pages 30–56. Reidel, 1977.



226 A. Gurfinkel and M. Chechik

5. M. Chechik, B. Devereux, and A. Gurfinkel. “χChek: A Multi-Valued Model-Checker”. In
Proceedings of CAV’02, volume 2404 of LNCS, pages 505–509, 2002.

6. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. “Counterexample-Guided Abstraction
Refinement for Symbolic Model Checking”. Journal of the ACM, 50(5):752–794, 2003.

7. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
8. D. Dams, R. Gerth, and O. Grumberg. “Abstract Interpretation of Reactive Systems”. ACM

TOPLAS, 2(19):253–291, 1997.
9. L. de Alfaro, P. Godefroid, and R. Jagadeesan. “Three-Valued Abstractions of Games: Un-

certainty, but with Precision”. In Proceedings of LICS’04, pages 170–179, 2004.
10. P. Godefroid. “Reasoning about Abstract Open Systems with Generalized Module Check-

ing”. In Proceedings of EMSOFT’2003, volume 2855 of LNCS, pages 223–240, 2003.
11. P. Godefroid, M. Huth, and R. Jagadeesan. “Abstraction-based Model Checking using

Modal Transition Systems”. In Proceedings of CONCUR’01, volume 2154 of LNCS, pages
426–440, 2001.

12. P. Godefroid and R. Jagadeesan. “Automatic Abstraction Using Generalized Model-
Checking”. In Proceedings of CAV’02, volume 2404 of LNCS, pages 137–150, 2002.

13. S. Graf and H. Saı̈di. “Construction of Abstract State Graphs with PVS”. In Proceedings of
CAV’97, volume 1254 of LNCS, pages 72–83, 1997.

14. O. Grumberg, M. Lange, M. Leucker, and S. Shoham. “Don’t Know in the μ-Calculus”. In
Proceedings of CAV’05, volume 3385 of LNCS, pages 233–249, 2005.

15. A. Gurfinkel and M. Chechik. “Generating Counterexamples for Multi-Valued Model-
Checking”. In Proceedings of FME’03, volume 2805 of LNCS, 2003.

16. A. Gurfinkel and M. Chechik. “Multi-Valued Model-Checking via Classical Model-
Checking”. In Proceedings of CONCUR’03, volume 2761 of LNCS, pages 263–277, 2003.

17. A. Gurfinkel and M. Chechik. “How Thorough is Thorough Enough”. In Proceedings of
CHARME’05, volume 3725 of LNCS, pages 65–80, 2005.

18. A. Gurfinkel, O. Wei, and M. Chechik. “Systematic Construction of Abstractions for Model-
Checking”. In Proceedings of VMCAI’06, volume 3855 of LNCS, pages 381–397, 2006.

19. S. Hazelhurst and C. H. Seger. “Model Checking Lattices: Using and Reasoning about In-
formation Orders for Abstraction”. Logic Journal of the IGPL, 7(3):375–411, May 1999.

20. T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. “Lazy Abstraction”. In Proceedings of
POPL’02, pages 58–70, 2002.

21. T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. “Abstractions from Proofs”.
In Proceedings of POPL’04, pages 232–244, 2004.

22. S. C. Kleene. Introduction to Metamathematics. New York: Van Nostrand, 1952.
23. D Kozen. “Results on the Propositional μ-calculus”. Theoretical Computer Science, 27:

334–354, 1983.
24. K.G. Larsen and L. Xinxin. “Equation Solving Using Modal Transition Systems”. In Pro-

ceedings of LICS’90, 1990.
25. C. Pasareanu, M. Dwyer, and W. Visser. “Finding Feasible Counter-examples when Model

Checking Abstracted Java Programs”. In Proceedings of TACAS’03, volume 2031 of LNCS,
pages 284–298, 2003.

26. T.W. Reps, M. Sagiv, and R. Wilhelm. “Static Program Analysis via 3-Valued Logic”. In
Proceedings of CAV’04, volume 3114 of LNCS, pages 15–30, 2004.

27. S. Shoham and O. Grumberg. “Monotonic Abstraction-Refinement for CTL”. In Proceedings
of TACAS’04, volume 2988 of LNCS, 2004.

28. F. Somenzi. “CUDD: CU Decision Diagram Package Release”, 2001.



Efficient Abstraction Refinement in Interpolation-Based
Unbounded Model Checking�

Bing Li and Fabio Somenzi

University of Colorado at Boulder
{Bing.Li, Fabio}@Colorado.EDU

Abstract. It has been pointed out by McMillan that modern satisfiability (SAT)
solvers have the ability to perform on-the-fly model abstraction when examining
it for the existence of paths satisfying certain conditions. The issue has therefore
been raised of whether explicit abstraction refinement schemes still have a role
to play in SAT-based model checking. Recent work by Gupta and Strichman has
addressed this issue for bounded model checking (BMC), while in this paper
we consider unbounded model checking based on interpolation. We show that
for passing properties abstraction refinement leads to proofs that often require
examination of shorter paths. On the other hand, there is significant overhead
involved in computing efficient abstractions. We describe the techniques we have
developed to minimize such overhead to the point that even for failing properties
the abstraction refinement scheme remains competitive.

1 Introduction

Model checking algorithms that employ propositional satisfiability (SAT) as basic deci-
sion procedure have enjoyed considerable success in the last few years. Bounded Model
Checking (BMC, [2]) can often find counterexamples to properties of models that are
too complex for other techniques. In BMC the problem of finding a trace violating a
linear-time property is formulated as the satisfiability of a formula derived from the
transition relation of the model, the initial state condition, and the property to be dis-
proved. The practical success of this approach is due in part to the great efficiency
achieved by today’s SAT solvers, and in part to the fact that storing a representation of
the set of reachable states of the model is not required.

Although theoretically complete for finite-state systems, the basic BMC algorithm
is not useful to prove properties (rather than refuting them). Auxiliary techniques have
been developed to provide termination conditions for true properties. The method of
[17] checks for simple paths of certain lengths that either start from initial states or
end in bad states. From the non-existence of such paths it is possible to deduce the
non-reachability of the bad states, and hence to prove an invariant. A criterion for all
linear-time properties also relying on simple paths was proposed in [1]; it is based on
representing the property as a Büchi automaton.

A different approach to proving termination is taken in [15], which relies on the no-
tion of Craig’s interpolant of an unsatisfiability proof. A properly chosen interpolant of
the proof that no counterexample of length L to an invariant exists can be interpreted as

� This work was supported in part by SRC contract 2004-TJ-920.

H. Hermanns and J. Palsberg (Eds.): TACAS 2006, LNCS 3920, pp. 227–241, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



228 B. Li and F. Somenzi

a set of states with two properties: It includes all states reachable in one transition from
the initial states; and it contains no state that can reach a state violating the invariant
in L − 1 transitions or less. This observation suggests an iterative procedure which, if
it converges without discovering any (possibly spurious) counterexample, guarantees
the unreachability of the bad states. The advantage of interpolation-based termination
check is that the paths to be encoded in the SAT instances are never longer than those
examined by the simple-path method and sometimes much shorter. Both approaches
turn bounded model checking algorithms into unbounded ones. There also exist SAT-
based algorithms that are not extensions of BMC (e.g., [14]) but so far they have proved
competitive only for a limited class of problems.

Abstraction refinement [10] is another technique that has greatly improved the ca-
pacity of model checkers. To prove a (universal) linear-time property, one starts with a
coarse abstraction that simulates the given model. If no counterexample is found in the
abstract model, the property is known to hold in the original, concrete system as well. If
a counterexample is found, which is not also a counterexample of the concrete model,
the abstraction is too coarse and is refined. Refinement may aim at removing the error
trace that was discovered [5], or all error traces of a certain length [16, 4, 20, 12].

Whether SAT-based model checking and abstraction refinement can be profitably
combined is an interesting question. It has been argued convincingly by McMillan
that modern SAT solvers effectively perform an on-the-fly abstraction of the model.
They can prove unsatisfiability of a formula without ever assigning values to many
of its variables. The heuristics used to choose decision variables indeed tend to iden-
tify a good subset of the variables and mostly work on them. With abstraction al-
ready taking place inside the SAT solver, it is not clear that abstraction outside the
solver would provide additional benefit. On the other hand, there may be significant
overhead in checking spurious counterexamples and computing the corresponding
refinements.

Gupta and Strichman [8] have addressed this issue for BMC, that is, for failing prop-
erties. They observed that SAT solvers may spend time on needless Boolean constraint
propagation and local conflicts if working directly on a large concrete model.

In this paper we look at the combination of abstraction refinement and interpolation-
based model checking. We show that termination test carried out on the abstract model
increases the ability to prove properties for large models by reducing the length of the
paths to be examined. This improvement depends on the model checker ability to keep
the abstract model small. Therefore, our algorithm invests considerable time in identify-
ing small refinements. This, however, adds a significant overhead in the case of failing
properties, for which the ability to prove termination sooner is immaterial. Therefore,
we present several techniques that we have devised to speed up the computation of re-
finements without compromising their quality. The resulting algorithm outperforms the
corresponding one without abstraction refinement for passing properties, while remain-
ing competitive for the failing ones.

The rest of the paper is organized as follows. Section 2 reviews background material.
Sections 3 and 4 present the abstraction refinement algorithm with termination check
based on interpolation. Experimental results are discussed in Sect. 5 and conclusions
are drawn in Sect. 6.



Efficient Abstraction Refinement in Interpolation-Based Unbounded Model Checking 229

2 Preliminaries

2.1 Open Systems and Safety Properties

Let V = {v1, . . . , vn} and W = {w1, . . . , wm} be sets of Boolean variables. We
designate by V ′ the set {v′1, . . . , v′n} consisting of the primed version of the elements
of V , and by V i the set {vi

1, . . . , v
i
n}. Likewise, W i = {wi

1, . . . , w
i
m}. An open system

is a 4-tuple 〈V,W, I, T 〉, where V is the set of (current) state variables, W is the set
of combinational variables, I(V ) is the initial state predicate, and T (V,W, V ′) is the
transition relation. The variables in V ′ are the next state variables. We assume that
T (V,W, V ′) is given by a circuit graph, that is, by a labeled graph C = (V ∪W,E)
such that m ≥ n, node vi ∈ V is labeled by wi ∈ W , node wi ∈ W is labeled by
a Boolean formula Ti = wi ↔ δi(V,W ), (wi, vi) ∈ E for i ∈ {1, . . . , n}, and, for
x ∈ V ∪W , wi ∈ W , (x,wi) ∈ E iff x appears in δi. The transition relation is then
defined by:

T (V,W, V ′) =
∧

1≤i≤n

(v′i ↔ wi) ∧
∧

1≤i≤m

Ti(W,V ) . (1)

In this paper, we use a form of circuit graph known as And-Inverter Graph [9] from the
only types of gates allowed in it. AIGs can be manipulated efficiently.

An open system Ω defines a labeled transition structure in the usual way, with states
QΩ corresponding to the valuations of the variables in V , and transition labels corre-
sponding to the valuations of the variables in W . Conversely, a set of states S ⊆ QΩ

corresponds to a predicate S(V ) or S(V ′). Predicate S(V ) (S(V ′)) is the characteristic
function of S expressed in terms of the current (next) state variables. State q ∈ QΩ is
an initial state if it satisfies I(V ). State set S ⊆ QΩ is reachable from state set S′ in k
steps if there is a path of length k in the labeled transition structure defined by Ω that
connects some state in S′ to some state in S; equivalently if

S′(V 0) ∧
∧

1≤i≤k

T (V i−1,W i, V i) ∧ S(V k) (2)

is satisfiable. State set S is reachable from S′ if there exists k ∈ N such that S is
reachable in k steps from S′. A state set is reachable (in k steps) if it is reachable (in
k steps) from I . A sequence of states ρ ∈ Q∗Ω (∈ Qω

Ω) is a run of Ω if the first state is
initial, and every other state is reachable from its predecessor in one step.

An invariant is a property that states that a certain predicate holds of all reachable
states ofΩ. Let P be the set of states that satisfy that predicate. We identify the property
with the set of states that satisfy it. Hence, property P is satisfied by Ω if there is no
k ∈ N such that

I(V 0) ∧
∧

1≤i≤k

T (V i−1,W i, V i) ∧ ¬P (V k) (3)

is satisfiable. This approach extends to all safety properties. (See, for instance, [12].)
The search for a k such that (3) is satisfiable can obviously be restricted to the range

{0, . . . , |QΩ|−1}. Hence, in theory, the process is guaranteed to terminate. In practice,
the number of states is too large to be of any practical use, and tighter upper bounds for
k are sought [17, 15].



230 B. Li and F. Somenzi

2.2 Abstraction Refinement

Open system Ω̂ = 〈V̂ , Ŵ , Î, T̂ 〉 is an abstraction of Ω if

– V̂ ⊆ V ;
– Ŵ = Ŵ1 ∪ (V \ V̂ );
– Ŵ1 ⊆W such that vi ∈ V̂ implies wi ∈ Ŵ1;
– Î(V̂ ) = ∃(V \ V̂ ) . I(V );
– T̂ (V̂ , Ŵ , V̂ ′) = ∃(W \ Ŵ ) . ∃(V ′ \ V̂ ′) . T (V,W, V ′).

(Note that wi is the combinational variable associated to v′i). This definition entails that
every run of Ω has a matching run in Ω̂. Property P̂ is the abstraction of property P
with respect to Ω̂ if P̂ (V̂ ) = ∀(V \ V̂ ) . P (V ). If Ω̂ satisfies (or models) P̂ , then Ω
satisfies P . That is, Ω̂ |= P̂ → Ω |= P . This preservation result is the basis for the
following abstraction refinement approach to the verification of P . One starts with a
coarse abstraction Ω̂0 of the concrete open system Ω and checks whether Ω̂0 |= P̂0. If
that is the case, then Ω |= P ; otherwise, there exists a least k′ ∈ N such that

Î(V̂ 0) ∧
∧

1≤i≤k′
T (V̂ i−1, Ŵ i, V̂ i) ∧ ¬P̂ (V̂ k′

) (4)

is satisfiable. The satisfying assignments to (4) are the shortest-length abstract coun-
terexamples (ACEs). If Ω̂0 �|= P̂0 one or more ACEs are checked for concretization.
That is, one checks whether (3) has solutions that agree with the ACE(s) being checked.
Because of the additional constraints provided by the ACEs, a concretization test is of-
ten less expensive that the satisfiability check of (3). However, its failure only indicates
that the abstract error traces are spurious. Therefore, if the concretization test fails, one
chooses a refined abstraction Ω̂1 and repeats the process, until one of these cases occurs.

1. Ω̂i |= P̂i for some i, in which case Ω |= P is inferred.
2. The concretization test passes for some i, in which case it is concluded thatΩ �|= P

and the satisfying assignment to (3) found is returned as counterexample to P .
3. The refinement eventually produces Ω̂i = Ω. In this final case, the satisfiability

check of (4) answers the model checking question conclusively.

The cone of influence (COI), or direct support, of a property is the union of the
COIs (direct supports) of all the variables mentioned in the predicate P that defines the
property. COI reduction refers to the abstraction in which V̂ is the COI of the property.
It is commonly applied before any model checking is attempted, because it satisfies

Ω̂ |= P̂ ↔ Ω |= P. (5)

2.3 Satisfiability Solvers, Proofs of Unsatisfiability, and Interpolants

The Davis-Putnam-Logemann-Loveland (DPLL) procedure is the basic algorithm for
most modern SAT solvers, which add conflict-driven learning and non-chronological
backtracking [18] to the basic branching and backtracking approach.



Efficient Abstraction Refinement in Interpolation-Based Unbounded Model Checking 231

Conflict-driven learning is an important feature of many modern SAT solvers, which
is normally based on conflict clause recording. Whenever SAT solvers detect a con-
flicting assignment to a formula f (one that causes f to evaluate to false), they conjoin
a conflict clause to f . The clause is generated by analyzing the so-called implication
graph, which shows which decisions and clauses are responsible for the conflict. The
new clause prevents the solver from attempting the same assignment again. It may also
exclude from future consideration other parts of the search space that can be inferred to
contain no satisfying assignments.

The clauses that make up the edges of an implication graph can be used to explain
the conflict clause deduced from it. Keeping track of the explanations of conflict clauses
results in the ability to identify an unsatisfiable core (or unsatisfiability proof) [7, 21]
of the given formula when it is indeed unsatisfiable. This can be done by recursively
replacing conflict clauses with those that produced them, the resolvent of which is ex-
actly the conflict clause. The process starts from the final empty clause (final unsolvable
conflict) and terminates when only clauses of the original formula are left.

When the check for existence of counterexamples of a certain length fails, the un-
satisfiable core produced by the SAT solver can be used to guide the refinement of the
abstract model. AROSAT [11] is a specialized SAT solver that tries to find an unsatisfi-
ability proof that relies on a small number of state variables of the model, so as to speed
up the computation of a minimal refinement.

From the proof of unsatisfiability it is also possible to extract interpolants, that is,
formulae that summarize part of the proof, while depending only on a specified set of
variables [15]. Interpolants can be computed in time linear in the size of the resolution
tree associated with the unsatisfiability proof.

3 Algorithm

Our algorithm is called IPAR because it combines interpolation and abstraction refine-
ment. The pseudocode of our main procedure is shown in Fig. 1. The input to the algo-
rithm is an open system Ω = 〈V,W, I, T 〉 whose transition relation T is specified by
a circuit graph C = (V ∪W,E), and a predicate P (V ) describing a set of accepting
states. The return value is TRUE if the property passes, FALSE otherwise.

Initially, an abstract model Ω̂ is computed by collecting in V̂ only the state variables
that appear in P (V ); hence, P̂ = P throughout. Then the procedure of GETREFINE-
MENTFROMREFPREDICT is applied to get probable future refinement and add it to Ω̂.
After the initial abstract model is created, the algorithm progressively increases L from
its initial value 0 until either a counterexample of length L is found in the concrete sys-
tem Ω, or it is concluded that no counterexample exists in the current abstract model
Ω̂. For each abstract model, the procedure CHECKINTERPOLATION is invoked to de-
tect the existence of counterexamples as well as prove absence of counterexamples by
detecting convergence of the interpolants, which is similar to what is described in [15],
with the differences that 1) the constraint due to the property is added only to the last
timeframe, 2) each time the length is increased, its new value is the sum of the previous
length and the number of iterations in the previous termination check minus one [13].

CHECKINTERPOLATION returns two parameters. The first is CEXFOUND; if it is
FALSE, there is no counterexample of any length in the abstract model, and the prop-



232 B. Li and F. Somenzi

boolean IPAR(Ω,P, C) {
1 L = 0;
2 Ω̂ = CREATEINITIALABSTRACTION(Ω,P );
3 refinement = GETREFINEMENTFROMREFPREDICT(Ω,Ω̂);
4 Ω̂ = ADDREFTOABSMODEL(Ω̂, refinement);
5 while (Ω̂ �= Ω) {
6 (CEXFOUND,L) = CHECKINTERPOLATION(Ω̂,P ,L)
7 if (¬ CEXFOUND)
8 return TRUE;
9 Ω̃ = ADDLAYER(Ω̃, Ω, C);
10 while (EXISTCEX(Ω̃,P ,L)) {
11 if (Ω̃ == Ω)
12 return FALSE;
13 else
14 Ω̃ = ADDLAYER(Ω̃, Ω, C);
15 }
16 Ω̂ = GENERATENEWABSTRACTION(Ω̂,Ω̃,P ,L);
17 L = L + 1;
18 }
19 (CEXFOUND,L) = CHECKINTERPOLATION(Ω̂,P ,L);
20 return ¬ CEXFOUND;
21 }

Fig. 1. The IPAR algorithm

erty is true of the concrete model. Otherwise, an abstract counterexample has been
found, and we should try to find a corresponding real counterexample. The other pa-
rameter is L; if CEXFOUND is TRUE, there is no counterexample of length< L, but at
least one counterexample of length L in the abstract model. If CHECKINTERPOLATION

fails to prove termination, we try to find a sufficient model—one that has no coun-
terexample up to length L—by incrementally adding, with ADDLAYER, latches to the
current abstract model one layer at the time, until we either find a sufficient model or a
real counterexample. Function EXISTCEX decides whether a counterexample exists by
calling the SAT solver. Lines 9–15 in Fig. 1 implement a procedure called incremen-
tal concretization; more details can be found in [12]. Line 16 shows that if a sufficient
model is found, a refinement is computed and added to the abstract model; the detailed
pseudocode is shown in Fig. 2. Once a new abstract model is generated, we increase
the length L by one and iterate. The abstract model may eventually equal the concrete
model; in this case we just apply the interpolation algorithm to the concrete model, as
shown in Lines 19–20.

The pseudocode of GENERATENEWABSTRACTION is shown in Fig. 2. It takes four
input parameters—concrete model Ω, abstract model Ω̂, property P , current checking
length L—and returns a new abstract model. In this procedure, first a compact unsat-
isfiability proof is generated in procedure GENERATEUNSATPROOFFROMIAROSAT
by utilizing IAROSAT (see Sect. 3.1); then bridge abstraction is applied to extract a
sufficient refinement candidate set which, if added to Ω̂, would kill all abstract coun-
terexamples of length up to L. All latch variables (variables corresponding to some



Efficient Abstraction Refinement in Interpolation-Based Unbounded Model Checking 233

model GENERATENEWABSTRACTION(Ω, Ω̂,P ,L) {
Ψ = GENERATEUNSATPROOFFROMIAROSAT(Ω,P ,L);
ζ = GENERATESUFFISETBYBRIDGEABS(Ω, Ω̂, Ψ );
RCArray = COMPUTERELATIVECORRELATIONARRAY(ζ,Ω,Ω̂);
refinement = UNSATPROOFGUIDEDRM(Ω̂,RCArray);
Ω̂ = ADDREFTOABSMODEL(Ω̂, refinement);
refinement = GETREFINEMENTFROMREFPREDICT(Ω,Ω̂);
Ω̂ = ADDREFTOABSMODEL(Ω̂, refinement);
return Ω̂

}

Fig. 2. The refinement algorithm

latch in the AIG) in the unsatisfiability proof would guarantee a sufficient set; however,
too many latch variables in the proof may lead to too many refinement candidates and a
time-consuming refinement minimization procedure. Oftentimes, some latch variables
can be eliminated without affecting unsatisfiability. If we define the latch-bridge-pair
for a latch to be the pair of the present and the next state variables of a latch for the same
time frame, we can claim that a latch can be eliminated without damaging the unsatis-
fiability of the formula if none of its latch-bridge-pairs appears in the proof [11]. So if
we pick all latches that have at least one latch-bridge-pair in the unsatisfiability proof,
we can build a sufficient set. Since each such latch works like a bridge for propagating
the implications, we call this kind of abstraction extraction bridge abstraction.

After refinement candidates are generated, to keep the abstract model compact af-
ter refining, we use the structural guidance provided by relative correlation [12] to
order the candidates for the unsatisfiability proof-guided refinement procedure, UN-
SATPROOFGUIDEDRM, the result of which is a minimal refinement set (see Sect. 3.2).
This refinement will be added to the current abstract model to obtain a new abstrac-
tion. Then a refinement prediction procedure, GETREFINEMENTFROMREFPREDICT,
described in Sect. 3.3, is applied to it to generate another refinement. The final new ab-
stract model, which will be returned to the main procedure, will be obtained by adding
the second refinement to the abstract model.

In the abstraction refinement approach, if abstract models become close to concrete
models, due to the inner abstraction refinement mechanism of SAT solver, we may not
gain much by using abstraction refinement even after various techniques like IAROSAT,
URM and RP—descibed in the sequel—have been used. So, at each length, we calcu-
late what percentage the abstract model is in the concrete model. If it is larger than a
threshold, we switch to flat model checking. We call this simple, yet effective technique
abstraction switching.

3.1 Improved AROSAT

Given a circuit C, let V be a set of variables of C, and {V1, V2, . . . , Vn} a partition
of V . Then V1, V2, . . . , Vn are called layers of C. AROSAT [12] is a SAT algorithm
designed especially for the abstraction and refinement approach, to generate unsat-
isfiability proofs that use latch variables corresponding to fewer different latches. In



234 B. Li and F. Somenzi

AROSAT, layered constraints are enforced on the choice of decision variables and on
implication propagation to make sure only necessary latch variables are involved in
the SAT search. AROSAT normally obtains much better unsatisfiability proof than an
ordinary SAT solver, however, the speed of AROSAT is much slower, 5 times slower
according to [11]. Here we propose an improved version of the old AROSAT which is
called IAROSAT. Compared to AROSAT, IAROSAT has the following features:

In AROSAT, only latch variables are divided into different layers and given higher
priority to be selected as decision variables than other variables. This causes the de-
cision variables to be just latch variables in most cases. In [6] the observation was
made that the choice of branching variables should be very dynamic. Accordingly, in
IAROSAT, instead of concentrating only on latch variables for decision variable selec-
tion, we divide the whole variable space into different layers, and all variables in the
same layer have the same priority. We first form clusters of latches according to the
latch order with respect to their relative correlation values. We then start from latches
in higher priority clusters, cluster by cluster, to do cone-of-influence search. We gener-
ate the layers by collecting all variables which are in the direct cone-of-influence, DCOI
for short, of latches in a certain cluster but not in the DCOI of any latch in any higher
priority clusters, as the corresponding layer.

In AROSAT, latch variables are divided into different layers and implications can be
propagated beyond the border of a certain layer if and only if all variables in higher
priority layer have all been assigned. Hence, we have the following lemma:

Lemma 1. In AROSAT, if a variable in Layer i has been assigned a value, the sub-SAT
instance formed by collecting the clauses containing only variables belonging to the
i− 1 highest priority layers is satisfiable.

From Lemma 1, we see that once a variable has been assigned, keeping layers at higher
priority separate is meaningless because unless some variables outside these layers are
involved, there is no way that we can get an unsatisfiability proof. So, in IAROSAT,
if any layer is involved in the SAT searching process, we just merge this layer with
all the layers with higher priority. In IAROSAT, to gain more speed, score decay is
allowed, but only within each layer to guarantee the different priorities of layers. From
our experiments, the speed of IAROSAT is only 2.8 times slower than a conventional
SAT solver while AROSAT is 5 times slower.

3.2 Unsatisfiability Proof-Guided Refinement Minimization (URM)

In PureSAT [12], refinement minimization is an important technique to guarantee the
final refinement is minimal so that the cumulative abstract models do not grow too
quickly. However, even after we apply IAROSAT, the refinement candidates generated
directly from unsatisfiability proofs may still be numerous, which results in a time-
consuming refinement minimization procedure.

Here we propose an unsatisfiability proof-guided refinement minimization procedure
which works as follows: After the refinement candidates are generated, they are given
to the refinement minimization engine to be tested one by one. During each test, an un-
satisfiability proof is generated. Since we are trying to find a small set of latches, which,
when added to the old abstraction, can form a new abstraction without any current coun-
terexamples, any untested latches that do not appear in the current unsatisfiability proof



Efficient Abstraction Refinement in Interpolation-Based Unbounded Model Checking 235

can be eliminated from the candidate list. In this way, one test may eliminate multiple
candidates.

3.3 Refinement Prediction (RP)

The refinement minimization engine is only responsible for finding a sufficient set to
kill all counterexamples up to the current length without any concern about future re-
finements. Such an approach guarantees a minimal refinement. However, some latches
which are also eliminated would prevent spurious abstract counterexamples and de-
crease the number of refinement iterations.

Here we propose a refinement prediction approach that utilizes current available in-
formation. The criteria we use for judging whether a latch is a good candidate for future
refinements are the following:

1. Including this latch into the current abstract model will not add too much burden to
the model checking engine.

2. This latch is closely related to the current abstraction.

For the first criterion, since we only add all the gates in the DCOI of a latch into
our abstract model once we include this latch into the current abstraction, we tend to
add those latches such that most gates of their direct cones are already in the current
abstraction. For the second criterion, we have two assumptions: 1) If most gates in
the DCOI of a latch are in the current abstraction, then this latch is closely related to
current abstract model. 2) If we take the current abstraction as core and do a DFS and
we only consider latches, then a latch with a smaller DFS level is more closely related
to the current abstract model than a latch with a larger DFS level. Considering all these
criteria and assumptions, we regard a latch as a future refinement and add it to current
abstraction if most gates in its DCOI are already in the current abstraction and it has a
very small DFS level.

4 Implementation

4.1 AIG-Based Implementation

Our implementation is based on AIG, which is a Boolean circuit containing only AND
gates and inverters. To reuse the AIG nodes previously built as much as possible, when
we unfold the AIG, we directly build it for the whole concrete model. Then, for each
abstraction, we mark all the nodes which are in the current abstract model, and only
these nodes marked are involved in the SAT solving process.

If the SAT instance turns out to be unsatisfiable and an interpolant needs to be gener-
ated, a resolution graph is then created, the leaves of which are CNF clauses translated
from AIG nodes, and the root of which is the empty clause. The interpolant is then
computed based on this resolution graph.

4.2 Elimination of Pseudo-global Variables

In the interpolation-based model checking algorithm [15], the model checking problem
is first translated into a SAT instance in the form of CNF clauses, and then all clauses are



236 B. Li and F. Somenzi

Q’

QD

Q’

QD

c

B

a
b

A

Ci+1Ci

Cut for Interpolation Computation

Fig. 3. Elimination of pseudo-global variables

divided into disjoint subset {C1, C2}, which corresponds to placing a cut in the original
circuit. A variable is a global variable if it appears in both subsets; otherwise, it is a
local variable. Only global variables can appear in interpolants. If an interpolant is to
be an overapproximation of the reachable states, the global variables are normally latch
variables. However, if interpolants are computed on abstract models, we may introduce
pseudo-global variables, PGV for short.

Figure 3 illustrates this problem. In the figure, A and B are two latches. In the con-
crete model, a is a global variable since it appears in both clauses of (¬c ∨ a) and
(¬c ∨ b), which belong to C1 and C2, respectively. However, if we assume A is in the
abstract model while B is not, then a is treated as a pseudo-input, that is, all the logic
feeding latch B is eliminated. After this abstraction, a remains a global variable be-
cause it still appears in C1 and C2, which means that a may appear in the computed
interpolant, while an expression in terms of only visible latch variables is desired here.

There may be various ways to deal with this problem. In this paper, we use a method
called variable-splitting, which works as follows: Before the SAT instance is sent to
the SAT solver, a preprocessing step finds all the possible PGVs, and splits each of
them into two variables; one is connected to the nodes of Ci, the other is connected to
the nodes of Ci+1. After the preprocessing step, only visible latch variables are global
variables. A postprocessing step for recovering those PGVs is also utilized after the
interpolant is generated.

5 Experimental Results

To evaluate the efficiency of our algorithm, we compared different algorithms on 21 test
cases using models from both industry and the VIS verification benchmarks
[3, 19]. Thirteen of the properties fail; the other 8 pass. In the following tables, fail-
ing examples are shown on top, and both kinds of examples are sorted by increasing
number of latches in the concrete model. A line is used to separate the two kinds of
examples. All the experiments were run under Linux on an IBM IntelliStation with a
1.7 GHz Intel Pentium 4 CPU and 2 GB of RAM.

Table 1 shows the comparison among five algorithms: 1) the algorithm of [12],
named PureSAT, 2) the PureSAT+AROSAT algorithm [11], named AROSAT, 3) our



Efficient Abstraction Refinement in Interpolation-Based Unbounded Model Checking 237

Table 1. Experimental results

model size Fail/ PureSAT AROSAT AigIP IP IPAR
Pass time len. time len. time len. time len. time len.

D14-p1 96 F 486 14 824 14 158 14 36 14 31 14
28-batch 108 F 443 14 3723 14 155 14 51 14 36 14
03-batch 119 F 300 32 736 32 157 32 72 32 97 32

bj-2 122 F 88 17 201 17 54 17 65 17 40 17
18-batch 133 F 2148 23 TO (21) 1391 23 571 23 426 23
06-batch 140 F 1936 31 TO (29) 1935 31 257 31 218 31
04-batch 252 F 72 24 96 24 36 24 25 24 22 24
D5-p1 319 F 51 31 32 31 15 31 27 31 14 31

D18-p1 506 F MO (22) 1185 23 154 23 64 23 63 23
D20-p1 562 F MO (9) 3154 14 848 14 20 14 82 14

24-batch-3 701 F MO (21) TO (12) 6447 24 2425 24 1956 24
24-batch-1 766 F MO (20) TO (12) 5435 24 1133 24 2179 24
24-batch-2 766 F MO (21) TO (12) 6874 24 1760 24 2786 24

bj-3 122 P TO (48) TO (49) TO (16-14) 7352 13-14 507 6-10
bj-4 122 P TO (37) TO (52) 242 7-8 TO (25-2) 578 7-12

02-batch-2 140 P TO (109) TO (86) 6.7 7-19 1.2 4-12 6.8 7-19
02-batch-1 141 P MO (111) TO (84) 133 24-24 993 66-18 134 24-24
25-batch 218 P 7 9 20 9 3.8 6-4 1.2 4-4 3.1 5-3
motoro 222 P 2100 14 1219 14 39 4-3 70 3-6 45 4-3
IU-p1 4494 P MO (69) TO (19) 664 24-17 TO (35-6) 2136 72-8
IU-p2 4494 P 780 11 868 11 192 8-8 73 3-6 92 2-5

basic algorithm which combines together interpolation, abstraction by localization re-
duction, and refinement based on unsatisfiability proof and bridge abstraction, named
AigIP, 4) the flat interpolation algorithm of [15], named IP, and 5) our final algorithm,
which is built on top of AigIP by adding various techniques described in Sect. 3, called
IPAR. A comparison to PureSAT and AROSAT shows that our baseline algorithm,
AigIP, is competitive, and that our implementation of interpolation is efficient.

In Table 1, the first column gives the names of models, the second column shows
the size of each model in terms of latches in the COI of the property. The third column
tells whether the property of the model is passing or failing. In this and the following
tables, MO means memory out, and TO means time out where the time limit is set to
12000 s. Columns 4–13 indicate the results for the five algorithms. For each algorithm,
the left column is the total time, and the right one is the termination length: for a fail-
ing property, it is the length of the shortest counterexample; for a passing property, it
is the length at which the property is proved. For a passing property, in PureSAT and
AROSAT, the termination length is the longest simple path +1 [17], while for AigIP,
IP, and IPAR, the first number is the length on termination, the second number is the
number of iterations at the length on termination. For example, for IU-p1, IPAR termi-
nated at the 8th iteration of length 72. Since we increase the current checking length by
L = L+ iterations −1, it is fair to think of termination length as the sum of length on
termination and the number of iterations for this length. In this and the following tables,
a number in parentheses indicates the length at which the run was aborted due to insuffi-



238 B. Li and F. Somenzi

cient resources. From Table 1, if we compare PureSAT, AROSAT vs. IPAR, we see that
we got a substantial improvement over our starting point, which is due to two factors:
one is interpolation is more efficient than simple path checking in terms of termination
length and computational cost, the other is that various techniques we developed, which
are described in Sect. 3, prove to be very efficient in the abstraction refinement proce-
dure. If we compare IP and IPAR, we can see that for true properties, IPAR wins most
of the time, especially in large examples. For some passing examples, like IU-p2, even
though IPAR loses because of the overhead, it still wins if we consider the termination
length. For false properties, IPAR is a bit better, but generally, comparable to IP. Hence,
we can conclude that abstraction helps to shorten termination length.

Comparison of AigIP and IP shows that the former is significantly faster for passing
properties, but correspondingly slower for failing properties. Table 2 shows that the
problem is due to excessive time spent in refinement. The improvements brought by
the various techniques described in Sect. 3 (except for abstraction switching) are also
shown in Table 2, which compares the algorithms AigIP and IPAR3. Algorithm IPAR
is not used here because the information on refinement in algorithm IPAR may not
be accurate enough due to abstraction switching. Columns 4–6 and 7–9 represent data
from algorithms AigIP and IPAR3, respectively. In each algorithm, we collect the data
for refinement time, total time, and the percentage of total time spent for refinement.
From this table, we can see that the techniques in Sect. 3 drastically decrease refinement

Table 2. Impact of refinement computation on CPU time

Model Size F/P AigIP IPAR3
Ref. Total Perc. Ref. Total Perc.

D14-p1 96 14 128 158 81 29 54 54
28-batch 108 14 121 155 78 27 60 45
03-batch 119 32 106 157 68 42 142 30

bj-2 122 17 6 54 11 4 53 8
18-batch 133 23 920 1391 66 558 1432 39
06-batch 140 31 1643 1935 85 376 547 69
04-batch 252 24 20 36 56 8 21 38
D5-p1 319 31 4 15 27 3 13 23

D18-p1 506 23 120 154 78 93 128 73
D20-p1 562 14 760 848 90 736 814 90

24-batch-3 701 24 4930 6447 76 1380 2964 47
24-batch-1 766 24 4741 5435 87 1375 2198 63
24-batch-2 766 24 4455 6874 65 2038 2901 70

bj-3 122 P 58 >12000 <0.5 49 504 10
bj-4 122 P 109 242 45 47 180 26

02-batch-2 140 P 0.17 6.7 3 0.1 6.8 1
02-batch-1 141 P 0.16 133 0.1 0.16 48 0.3
25-batch 218 P 1.15 3.8 30 0.5 3 17
motoro 222 P 12 39 31 17 44 38
IU-p1 4494 P 101 664 15 452 2127 21
IU-p2 4494 P 11 192 6 0 92 0



Efficient Abstraction Refinement in Interpolation-Based Unbounded Model Checking 239

Table 3. Impact of different speedup techniques

model size F/P AigIP IPAR1 IPAR2 IPAR3 IPAR
D14-p1 96 14 158 133 118 54 31
28-batch 108 14 155 96 99 60 36
03-batch 119 32 157 168 144 142 97

bj-2 122 17 54 40 38 53 40
18-batch 133 23 1391 1272 1057 1432 426
06-batch 140 31 1935 658 535 547 218
04-batch 252 24 36 18 19 21 22
D5-p1 319 31 15 13 13 13 14
D18-p1 506 23 154 126 127 128 63
D20-p1 562 14 848 803 582 814 82

24-batch-3 701 24 6447 5793 5312 2964 1956
24-batch-1 766 24 5435 2046 1921 2198 2179
24-batch-2 766 24 6874 4123 3954 2901 2786

bj-3 122 P TO 502 498 504 507
bj-4 122 P 242 575 545 180 578

02-batch-2 140 P 6.7 3.4 3.4 6.8 6.8
02-batch-1 141 P 133 132 132 48 134
25-batch 218 P 3.8 2.5 2.6 3.1 3.1
motoro 222 P 39 46 42 44 45
IU-p1 4494 P 664 2232 2212 2127 2136
IU-p2 4494 P 192 128 128 92 92

time for failing properties. Even for examples like 24-batch-2, in which the percentage
of refinement time increases, we still get a much smaller absolute refinement time.
However, for passing properties, we don’t see much improvement, and even occasional
deterioration. The reasons are two: First, most time for passing properties is spent on
convergence checking instead of refinement, while techniques we described in Sect. 3
are mainly designed to tackle the problem of time-consuming refinement. Second, the
termination lengths for passing properties are not very stable.

A detailed examination of different techniques we described in Sect. 3 is shown in
Table 3, which compares five variants of the IPAR algorithm. The basic one is AigIP in
Table 1, the other four algorithms are formed by adding techniques one at the time: 1)
IAROSAT gives IPAR1, 2) Unsatisfiability proof based refinement minimization gives
IPAR2, 3) Refinement prediction results in IPAR3, and 4) Abstraction switching, which
finally gives IPAR. Columns 4–8 show the results for these algorithms, respectively. For
failing properties, a clear trend of improvements can be seen over these five algorithms
from this table. For passing properties, we don’t gain much because of the same reasons
as we pointed out in the discussion for Table 2.

6 Conclusions

We have presented an abstraction refinement algorithm for model checking that uses
interpolants to prove termination. Experimental results show that, in most cases, ab-
straction helps prove termination for passing properties. The challenge of combining



240 B. Li and F. Somenzi

the two techniques lies in the overhead associated with the computation of refinement,
which incurs a significant overhead for failing properties. We have therefore developed
a set of techniques designed to speed up refinement to the point that the new algorithm is
competitive for failing properties, while retaining its advantage for passing properties.
Our results support the conclusion that, in spite of the abstraction implicitly performed
by a modern SAT solver, there is benefit in applying an explicit abstraction refinement
scheme.

References

[1] M. Awedh and F. Somenzi. Proving more properties with bounded model checking.
In R. Alur and D. Peled, editors, Sixteenth Conference on Computer Aided Verification
(CAV’04), pages 96–108. Springer-Verlag, Berlin, July 2004. LNCS 3114.

[2] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without BDDs.
In Fifth International Conference on Tools and Algorithms for Construction and Analysis
of Systems (TACAS’99), pages 193–207, Amsterdam, The Netherlands, Mar. 1999. LNCS
1579.

[3] R. K. Brayton et al. VIS: A system for verification and synthesis. In T. Henzinger and
R. Alur, editors, Eighth Conference on Computer Aided Verification (CAV’96), pages 428–
432. Springer-Verlag, Rutgers University, 1996. LNCS 1102.

[4] P. Chauhan, E. Clarke, J. Kukula, S. Sapra, H. Veith, and D. Wang. Automated abstraction
refinement for model checking large state spaces using SAT based conflict analysis. In
M. D. Aagaard and J. W. O’Leary, editors, Formal Methods in Computer Aided Design,
pages 33–51. Springer-Verlag, Nov. 2002. LNCS 2517.

[5] E. Clarke, A. Gupta, J. Kukula, and O. Strichman. SAT based abstraction-refinement using
ILP and machine learning. In E. Brinksma and K. G. Larsen, editors, Fourteenth Confer-
ence on Computer Aided Verification (CAV 2002), pages 265–279. Springer-Verlag, July
2002. LNCS 2404.

[6] E. Goldberg and Y. Novikov. BerkMin: A fast and robust SAT-solver. In Proceedings of
the Conference on Design, Automation and Test in Europe, pages 142–149, Paris, France,
Mar. 2002.

[7] E. Goldberg and Y. Novikov. Verification of proofs of unsatisfiability for CNF formulas.
In Design, Automation and Test in Europe (DATE’03), pages 886–891, Munich, Germany,
Mar. 2003.

[8] A. Gupta and O. Strichman. Abstraction refinement for bounded model checking. In Sev-
enteenth Conference on Computer Aided Verification (CAV’05), pages 112–124. Springer-
Verlag, Berlin, July 2005. LNCS 3576.

[9] A. Kuehlmann and F. Krohm. Equivalence checking using cuts and heaps. In Proceedings
of the Design Automation Conference, pages 263–268, Anaheim, CA, June 1997.

[10] R. P. Kurshan. Computer-Aided Verification of Coordinating Processes. Princeton Univer-
sity Press, Princeton, NJ, 1994.

[11] B. Li and F. Somenzi. Efficient computation of small abstraction refinements. In Proceed-
ings of the International Conference on Computer-Aided Design, pages 518–525, San Jose,
CA, Nov. 2004.

[12] B. Li, C. Wang, and F. Somenzi. Abstraction refinement in symbolic model checking
using satisfiability as the only decision procedure. Software Tools for Technology Transfer,
7(2):143–155, Apr. 2005.

[13] J. P. Marques-Silva. Improvements to the implementation of interpolant-based model
checking. In Correct Hardware Design and Verification Methods (CHARME’05), pages
367–370, Saarbrucken, Germany, Oct. 2005. Springer-Verlag. LNCS 3725.



Efficient Abstraction Refinement in Interpolation-Based Unbounded Model Checking 241

[14] K. L. McMillan. Applying SAT methods in unbounded symbolic model checking. In
E. Brinksma and K. G. Larsen, editors, Fourteenth Conference on Computer Aided Verifi-
cation (CAV’02), pages 250–264. Springer-Verlag, Berlin, July 2002. LNCS 2404.

[15] K. L. McMillan. Interpolation and SAT-based model checking. In W. A. Hunt, Jr. and
F. Somenzi, editors, Fifteenth Conference on Computer Aided Verification (CAV’03), pages
1–13. Springer-Verlag, Berlin, July 2003. LNCS 2725.

[16] K. L. McMillan and N. Amla. Automatic abstraction without counterexamples. In Inter-
national Conference on Tools and Algorithms for Construction and Analysis of Systems
(TACAS’03), pages 2–17, Warsaw, Poland, Apr. 2003. LNCS 2619.

[17] M. Sheeran, S. Singh, and G. Stålmarck. Checking safety properties using induction and
a SAT-solver. In W. A. Hunt, Jr. and S. D. Johnson, editors, Formal Methods in Computer
Aided Design, pages 108–125. Springer-Verlag, Nov. 2000. LNCS 1954.

[18] J. P. M. Silva and K. A. Sakallah. Grasp—a new search algorithm for satisfiability. In
Proceedings of the International Conference on Computer-Aided Design, pages 220–227,
San Jose, CA, Nov. 1996.

[19] URL: http://vlsi.colorado.edu/∼vis.
[20] C. Wang, B. Li, H. Jin, G. D. Hachtel, and F. Somenzi. Improving Ariadne’s bundle by

following multiple threads in abstraction refinement. In Proceedings of the International
Conference on Computer-Aided Design, pages 408–415, Nov. 2003.

[21] L. Zhang and S. Malik. Validating SAT solvers using an independent resolution-based
checker: Practical implementations and other applications. In Design, Automation and Test
in Europe (DATE’03), pages 880–885, Munich, Germany, Mar. 2003.



Approximating Predicate Images for Bit-Vector Logic�

Daniel Kroening1 and Natasha Sharygina2

1 Computer Systems Institute, ETH Zürich
2 University of Lugano, Switzerland

Abstract. Predicate abstraction refinement is a successful technique for verify-
ing large ANSI-C programs. However, computing the image of the predicates
with respect to the transition relation is computationally expensive. Recent re-
sults have shown that predicate images can be computed by transforming a proof
of a formula over integers into a Boolean formula that is satisfiable if and only if
the original formula is satisfiable. However, the existing algorithms compute the
closure of the proof rules that are used to axiomatize the logic, and thus, rely on
the fact that the set of axioms is small. They are therefore limited to logics of low
complexity, such as difference logic.

We describe a proof-based algorithm that computes an over-approximation of
the predicate image but in turn allows a rich set of axioms. The algorithm can
be used to compute images of predicates using a combination of bit-vector logic,
the theory of arrays, and pointer arithmetic. The proof-based approach can also
be used to refine the image. We quantify the performance of the algorithm in
comparison with a Das/Dill-like greedy incremental refinement of the image and
a proof-based incremental refinement.

1 Introduction

In the hardware industry, formal verification is well established. Introduced in 1981,
Model Checking [1, 2] is one of the most commonly used formal verification techniques
in a commercial setting. However, it suffers from the state-space explosion problem. In
case of BDD-based symbolic model checking this problem manifests itself in the form
of unmanageably large BDDs [3].

A principal method for addressing the state-space explosion problem is abstraction.
Abstraction techniques reduce the state space by mapping the set of states of the actual,
concrete system to an abstract, and smaller, set of states in a way that preserves the
relevant behaviors of the system.

Predicate abstraction [4, 5] is one of the most popular and widely applied meth-
ods for systematic abstraction of programs. It abstracts data by only keeping track of
certain predicates on the data. Each predicate is represented by a Boolean variable in
the abstract program, while the original data variables are eliminated. Verification of
a software system with predicate abstraction consists of constructing and evaluating a
finite-state system that is an abstraction of the original system with respect to a set of
predicates.

� Ideas of this paper first appeared as a position paper at “Verified Software: Theories, Tools, Ex-
periments”, an international conference of Working Group 2.3 (Programming Methodology)
of the International Federation for Information Processing.

H. Hermanns and J. Palsberg (Eds.): TACAS 2006, LNCS 3920, pp. 242–256, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Approximating Predicate Images for Bit-Vector Logic 243

The abstraction refinement process using predicate abstraction has been promoted by
the success of the SLAM [6, 7, 8, 9, 10, 11, 12] project at Microsoft Research. One starts
with a coarse abstraction of the program. If the property holds on the abstract model,
we can conclude that the property holds on the original model as well. If the abstract
model contains an error trace, the algorithm attempts to simulate this error trace on the
original model. If this succeeds, the error trace is reported to the user.

If it is found that the error-trace reported by the model checker is not realistic, the
error trace is used to refine the abstract program, and the process proceeds until no
spurious error traces can be found or the simulation succeeds. The actual steps of the
loop follow the abstract-verify-refine paradigm [13] and depend on the abstraction and
refinement techniques used [14].

A main task of the refinement loop is to compute an abstract model M̂ from the
concrete modelM given a set of n predicatesΠ = {π1, . . . , πn}. An abstract state x̂ is
a valuation of the n predicates. Most algorithms that aim at verifying safety properties
compute an existential abstraction [15], i.e., any concrete transition in M has a cor-
responding abstract transition in the transition relation R̂ of M̂ . Formally, the abstract
transition relation R̂ is the image of the current state vector x̂ and next state vector x̂′

under the concrete transition relation R of M .
Computationally, this corresponds to an existential quantification of the concrete

state vectors x and x′. This computation, if done in a precise manner, is very expensive
and typically exponential in the number of predicates n. All existing tools, with the
exception of MAGIC, therefore compute over-approximations R̂′ ⊇ R̂. Computing
such an over-approximation can be substantially faster than computing the exact image.
This is a safe and sound technique if the goal is to show safety properties, as any safety
property that holds on M̂ also holds on M .

However, the over-approximation in M̂ may result in additional spurious counterex-
amples, which are costly to eliminate. There therefore exists a trade-off between the
cost of computing the initial abstraction and the cost related to successive refinements.
A wide range of options exists between the two extremes of a) computing the precise
image and b) using R̂′(x̂, x̂′) = true as initial abstraction.

Most existing approaches that compute or refine predicate images are based on deci-
sion procedures for the respective logic. In contrast to that, the authors of [16] generate
a generic proof that the transition x̂, x̂′ does not exist. They then extract a Boolean
formula from the proof steps. This formula is satisfiable if and only if the transition
from x̂ to x̂′ exists in the concrete model. This Boolean formula is then used as the ab-
stract transition relation. For equality and difference logic, the approach is shown to be
polynomial instead of exponential. Results on a more expressive logic, e.g., full linear
arithmetic, are not reported.

Most program analysis tools use theories for arithmetic over unbounded integers or
even the reals to reason about the program variables. As motivated in [17], these theo-
ries are a poor fit for program analysis, especially when applied to low-level software.
Programs in languages such as Java, C or C++ require reasoning for bounded-width
bit-vector arithmetic that takes overflow into account, and allows bit-wise operators.

We proposed the use of propositional SAT-solvers as a reasoning engine for the ver-
ification of low-level software in [18]. The astonishing progress SAT solvers made in



244 D. Kroening and N. Sharygina

the past few years is the enabling technology for this approach. As in Bounded Model
Checking (BMC), the arithmetic operators in the formula are replaced by correspond-
ing circuits. The resulting net-list is converted into CNF and passed to a propositional
SAT solver. This allows supporting all operators as defined in the ANSI-C standard.

We report experimental results that quantify the impact of replacing ZAPATO, a de-
cision procedure for integers, with Cogent, a decision procedure built using a SAT
solver [17]: The increased precision of Cogent improves the performance of SLAM,
while the support for bit-level operators resulted in the discovery of a previously un-
known bug in a Windows device driver.

The disadvantage of such a bit-level representation of arithmetic operators is that
the variables are split into individual bits and the word-level information is lost. For
example, encoding an addition in propositional logic results in one XOR per bit, which
are chained together through the carry bit. It is known that such XOR chains can result
in very hard SAT instances. As a result, there are many programs (and circuits) that
cannot be verified by means of a bit-level SAT solver. This is a justification for using
a solver for linear arithmetic for program verification, as the reasoning is done at the
word-level, and not at the bit-level.

Contribution. This paper makes two contributions.

1. We present a word-level algorithm for approximating predicate images in bit-vector
logic. The algorithm is based on the approach in [16]. In contrast to [16], we com-
pute an over-approximation instead of the precise image. This allows us to support
a rich logic, as the size of the formula that is generated no longer explodes as
the number of proof rules grows. The implementation reported in [16] is limited
to difference predicates. In contrast to that we implement combined theories for
bit-vector-, array-, and pointer-logic, including non-linear arithmetic. In contrast
to [16], we also support transition relations with a non-trivial propositional struc-
ture.

2. The Boolean formulas obtained from proof trees contain fresh Boolean variables.
These variables have to be quantified in order to obtain a formula over the predi-
cates. The implementation reported in [16] is enumerating the cubes of a BDD for
this task, whereas we are integrating this step into the model checker used for the
abstract model.

We present experimental results on software model checking benchmarks that show
that the new algorithm outperforms a predicate abstraction refinement loop that uses
proof-based refinement of transitions.

Related Work. Abstract interpretation [19] is a very general framework to reason about
transition systems. ASTRÉE implements static program analysis [20] using abstract
interpretation and widening. It automatically refines abstractions of programs in order
to prove the specification. However, if the proof fails, no simulation step is attempted,
and thus, the algorithm may generate false alarms.

MAGIC [21] implements predicate abstraction and computes the exact image. The
individual transitions x̂, x̂′ are enumerated and checked individually using Simplify
[22]. Lahiri et al. [23] use SAT-based existential quantification taken from [18] to



Approximating Predicate Images for Bit-Vector Logic 245

compute the exact image. The quantification is performed over reductions from linear
arithmetic over integers to propositional logic computed using UCLID.

In the SLAM framework, the abstract model is computed by the C2BP compo-
nent [7]. It enumerates Boolean combinations of a bounded number of current state
predicates in order to infer constraints on the next state. C2BP has been replaced by
FASTABS, which computes faster, but also more coarse abstractions. In order to ad-
dress the spurious traces introduced this way, SLAM uses a component called CON-
STRAIN [9]. CONSTRAIN uses the decision procedure ZAPATO [24] in order to decide
if a given abstract transition is spurious or not. ZAPATO implements a fragment of linear
arithmetic over integers.

A completely demand-driven way of constructing M̂ was proposed by Das and
Dill [25]: starting with no restrictions on abstract transitions, the spurious abstract tran-
sitions are removed following the counterexamples produced by the model checker.
A similar approach is implemented in BLAST [26]: initially, BLAST computes an ab-
straction based on the Cartesian product, which is refined subsequently. This refinement
is done using Craig interpolants in the current version of BLAST [27].

The first efficient proof-based reduction from integer and real valued linear arith-
metic to propositional logic was introduced by Strichman [28]. The proof is generated
using Fourier-Motzkin variable elimination for the reals and the Omega test for the in-
tegers. These algorithms come with various heuristics to guide the proof, a fact which
promises more compact proofs.

Decision procedures for bit-vector arithmetic have been found in tools such as SVC
and ICS for years. ICS uses BDDs in order to represent the arithmetic operators,
whereas SVC is based on a computation of a canonizer and a solver [29]. SVC has been
superseded by CVC, and then CVC-Lite [30], which uses a propositional SAT-solver to
decide satisfiability of a circuit-based translation of the bit-vector formula.

The related work on bit-vector decision procedures is mostly in the hardware ver-
ification domain. Wedler et al. normalize bit-vector formulas in order to simplify the
generated SAT instance in [31]. Word-level reasoning using a decision procedure such
as the Omega test or the like is typically not employed. One exception is Brinkmann and
Drechsler [32], who use an encoding of linear bit-vector arithmetic into ILP in order to
decide properties of circuit data-paths given at the RT-level. The Omega test is used as a
decision procedure for the ILP instance. However, [32] only aims at the data-paths, and
thus, does not allow a Boolean part within the original formula. This is mended by [33]
using a lazy encoding with a modified DPLL search.

Outline. In Section 2, we provide background information about lazy and eager en-
codings of decision problems. We describe how to use proof encodings as over-appro-
ximations of abstractions in Section 3. Experimental results are reported in Section 4.

2 Background

2.1 Bit-Vector Arithmetic

The subset of bit-vector arithmetic we consider is defined by the languageLB according
to the following grammar:



246 D. Kroening and N. Sharygina

formula : formula ∨ formula | formula ∧ formula | ¬formula | atom
atom : term rel term | Boolean-Identifier

rel : = | �= | ≤ | ≥ | < | >
term : term op term | identifier | ∼ term | constant | atom?term:term

op : ⊕ | 1 | ⊗ | 2 | << | >> | & | | | ˆ

With each expression, we associate a type. The type is the width of the expression in
bits and whether it is signed (two’s complement encoding) or unsigned (binary encod-
ing). Assigning semantics to this language is straight-forward, e.g., as done in [32].

We do not consider bit-extraction and concatenation operators, as they are not of-
fered by ANSI-C. However, adding these operators as part of the bit-wise operators is a
simple extension. We use the ANSI-C symbols to denote the bit-wise operators, e.g., &
denotes bit-wise AND, while ˆ denotes bit-wise XOR. The trinary operator c?a:b is a
case-split: the operator evaluates to a if c holds, and to b otherwise.

We use ⊕ to distinguish addition on bit-vectors with modular arithmetic from ad-
dition on unbounded integers. Note that the relational operators >,<,≤,≥, the mul-
tiplicative operators ⊗,2 and the right-shift operator depend on whether an unsigned,
binary encoding or a two’s complement encoding is used. We assume that the type of
the expression is clear from the context.

Following the notation in [32], we add an index to the operator and operands in order
to denote the bit-width. As an example, a[32]⊗[32] b[32] denotes the 32-bit multiplication
of a and b. Both the result and the operands are 32 bits wide, the remaining 32 bits of
the result are discarded.

Example 1. As a motivating example, the following formula obviously holds on the
integers:

(x− y > 0) ⇐⇒ (x > y) (1)

However, if x and y are interpreted as bit-vectors, this equivalence no longer holds,
due to possible overflow on the subtraction operation.

Definition 1. Let φB denote a formula. The set of all atoms in φB that are not Boolean
identifiers is denoted by A(φB). The i-th distinct atom in φB is denoted by Ai(φB).
The Propositional Skeleton φsk of a bit-vector formula φB is obtained by replacing all
atoms a ∈ A(φB) by fresh Boolean identifiers e1, . . . , eν , where ν = |A(φB)|.

As an example, the propositional skeleton of φB = (x = y) ∧ ((a⊕ b = c) ∨ (x �= y))
is e1 ∧ (e2 ∨ ¬e1), and A(φB) = {x = y, a⊕ b = c}.

We denote the vector of the variables E = {e1, . . . , eν} by e. Furthermore, let
ψ(a, p) denote the atom a with polarity p:

ψ(a, p) :=
{
a : p
¬a : otherwise

. (2)

2.2 Encoding Decision Problems into Propositional Logic

Lazy vs. Eager Encodings. There are two basic ways to compute an encoding of a
decision problem φ into propositional logic. In both cases, the propositional part φsk



Approximating Predicate Images for Bit-Vector Logic 247

of the formula is converted into CNF first. Linear-time algorithms for computing CNF
for φsk are well-known [34]. The algorithms differ in how the non-propositional part is
handled.

The vector of variables e : A(φ) −→ {true, false} as defined above denotes a truth
assignment to the atoms in φ. Let ΨA(φ)(e) denote the conjunction of the atoms A(φ)i,
where the atom number i is in the polarity given by ei:

ΨA(φ)(e) :=
ν∧

i=1

ψ(Ai(φ), ei) (3)

An Eager Encoding considers all possible truth assignments e before invoking the
SAT solver, and computes a Boolean constraint φE(e) such that

φE(e) ⇐⇒ ΨA(φ)(e) (4)

The number of cases considered while building φE can often be dramatically re-
duced by exploiting the polarity information of the atoms, i.e., whether Ai(φ) appears
in negated form or without negation in the negation normal form (NNF) of φ. After
computing φE , φE is conjoined with φsk , and passed to a SAT solver. A prominent
example of a decision procedure implemented using an eager encoding is UCLID [35].

A Lazy Encoding means that a series of encodings φ1
L, φ

2
L and so on with φ =⇒

φi
L is built. Most tools implementing a lazy encoding start off with φ1

L = φsk . In
each iteration, φi

L is passed to the SAT solver. If the SAT solver determines φi
L to be

unsatisfiable, so is φ. If the SAT solver determines φi
L to be satisfiable, it also provides

a satisfying assignment, and thus, an assignment ei to A(φ).
The algorithm proceeds by checking if ΨAφ(ei) is satisfiable. If so, φ is satisfiable,

and the algorithm terminates. If not so, a subset of the atoms A′ ⊆ A(φ) is determined
that is already unsatisfiable under ei. The algorithm builds a blocking clause b, which
prohibits this truth assignment to A′. The next encoding φi+1

L is φi
L ∧ b. Since the

formula becomes only stronger, the algorithm can be tightly integrated into one SAT-
solver run, which preserves the learning done in prior iterations.

Among many others, CVC-Lite [30] implements a lazy encoding of integer lin-
ear arithmetic. The decision problem for the conjunction ΨAφ(ei) is solved using the
Omega test.

2.3 Encodings from Proofs

A proof is a sequence of transformations of facts. The transformations follow specific
rules, i.e., proof rules, which are usually derived from an axiomatization of the logic at
hand. A proof of a formula φ in a particular logic can be used to obtain another formula
φP in propositional logic that is valid if and only if the original formula is valid, i.e.,
φ ⇐⇒ φP . Let F denote the set of facts used in the proof.

Given a proof of φ, a propositional encoding of φ can be obtained as follows:

1. Assign a fresh propositional variable vf to each fact f ∈ F that occurs anywhere
in the proof.



248 D. Kroening and N. Sharygina

2. For each proof step i, generate a constraint ci that captures the dependencies be-
tween the facts. As an example, the derivation

A,B

C

with variables vA, vB, vC for the facts A,B, and C generates the constraint (vA ∧
vB) −→ vC .

3. The formula φP is obtained by conjoining the constraints:

φP :=
∧
i

ci

However, the generation of such a proof is often difficult to begin with. In particular,
it often suffers from a blowup due to case-splitting caused by the Boolean structure
present in φ. This is addressed by a technique introduced by Strichman in [28]. His
paper describes an eager encoding of linear arithmetic on both real numbers and integers
into propositional logic using the Fourier-Motzkin transformation for the reals and the
Omega-Test [36] for the integers. The idea of [28] is applicable to any proof-generating
decision-procedure:

– All atoms A(φ) are passed to the prover completely disregarding the Boolean struc-
ture of φ.

– For facts f that are also atoms assign vf := ef .
– The prover must be modified to obtain all possible proofs, i.e., must not terminate

even if the empty clause is resolved.

Since the formula that is passed to the prover does not contain any propositional
structure, obtaining a proof is considerably simplified. The formula φP obtained from
the proof as described above is then conjoined with the propositional skeleton φsk . The
conjunction of both is equi-satisfiable with φ. As φP ∧ φsk is purely propositional, it
can be solved by an efficient propositional SAT-solver.

3 Computing Predicate Images

3.1 Existential Abstraction

Let S denote the set of concrete states, and R(x, x′) denote the concrete transition
relation. As an example, consider the basic block

i++;
j=i;

We use x.v to denote the value of the variable v in state x. The transition relation
corresponding to this basic block is then x′.i = x.i+ 1 ∧ x′.j = x′.i.

Let Π = {π1, . . . , πn} denote the set of predicates. The abstraction function α(x)
maps a concrete state x ∈ S to an abstract state x̂ ∈ {true, false}n:

α(x) := (π1(x), . . . , πn(x))



Approximating Predicate Images for Bit-Vector Logic 249

Definition 2 (Abstract Transition Relation). The abstract model can make a transi-
tion from an abstract state x̂ to x̂′ iff there is a transition from x to x′ in the concrete
model and x is abstracted to x̂ and x′ is abstracted to x̂′. We denote abstract transition
relation by R̂:

R̂ := {(x̂, x̂′) | ∃x, x′ ∈ S : R(x, x′) ∧ α(x) = x̂ ∧ α(x′) = x̂′}

R̂ is also called the image of the predicatesΠ overR. In [23], R̂ is computed following
the definition above by means of SAT or BDD-based quantification. Due to the quan-
tification over the concrete states this corresponds to an all-SAT instance. Solving such
instances is usually exponential in n.

3.2 Predicate Images from Proofs

As an alternative, R̂ can be computed using a generic proof of validity of the following
formula:

R(x, x′) ∧ α(x) = x̂ ∧ α(x′) = x̂′

Within this formula, only R contains propositional operators, as the predicates in
α are assumed to be atomic. The computation of φsk therefore only has to take the
propositional structure ofR into account. In case of software, the propositional structure
of R is typically trivial, as the abstraction is performed for each basic block separately.
Thus, the facts (atoms) given to the prover are:

1. All the predicates evaluated over state x, i.e., πi(x),
2. all the predicates evaluated over state x′, i.e., πi(x′),
3. the atoms in the transition relation R(x, x′).

We then obtain φP as described in section 2.3. Both φP and φsk contain fresh propo-
sitional variables for the atoms A(R) in R, for the predicatesΠ over x and x′, and for
the facts f ∈ F found during the derivation. Let VR denote the set of propositional
variables corresponding to atoms in R that are not predicates, and let VF denote the set
of propositional variables corresponding to facts f ∈ F that are not predicates.

The propositional variables that do not correspond to predicates are quantified exis-
tentially to obtain the predicate image. Let vR denote the vector of variables in VR, let
vF denote the vector of variables in VF , and let μR = |VR| and μF = |VF | denote the
number of such variables.

R̂ := {(x̂, x̂′) | ∃vR ∈ {0, 1}μR, vF ∈ {0, 1}μF :
φsk(x̂, x̂′, vR) ∧ φP (x̂, x̂′, vF )} (5)

Thus, we replace the existential quantification of concrete program variables
x, x′ ∈ S2 by an existential quantification of μR + μF Boolean variables. The au-
thors of [23, 37] report experiments in which this quantification is actually performed
by means of either BDDs or the SAT-engine of [18].

The authors of [16] use BDDs to obtain all cubes over the variables in VF , and then
enumerate these cubes. This operation is again worst-case exponential. The next two
sections describe how to overcome the limitations of the proof-based predicate image
computation.



250 D. Kroening and N. Sharygina

3.3 Quantification as Part of the Abstract Model

Instead of performing the quantification in equation 5 upfront, we propose to perform
this step inside the model checker for the abstract model. When performing the fixed-
point iteration, a symbolic model checker computes an image of the given transition
relation, and usually contains algorithms that are well optimized for this task. Further-
more, the image only has to be computed with respect to the set of reachable states,
whereas performing the quantification upfront has to consider all possible state pairs
(x̂, x̂′).

It is important to point out that most model checkers for abstract models do not
require modifications for this purpose. As an example, consider the following abstract
transition relation over state variables x, y, and their next-state versions x′ and y′:

∃v1 ∈ {0, 1}.(x′ ⇐⇒ v1) ∧ (v1 ⇐⇒ x ∨ y) ∧ (y′ ⇐⇒ v1) (6)

This abstract transition relation can be translated into a closed form by enumerating
the values of v1, as done in [16]:

(¬x′ ∧ ¬(x ∨ y) ∧ ¬y′)∨
(x′ ∧ (x ∨ y) ∧ y′) (7)

However, if we add v1 as a state variable to the abstract model, we can use the
following equivalent SMV code without having to resort to existential quantification1:

TRANS next(x)=next(v1) &
next(v1)=(x|y) &
next(y)=next(v1)

Integration in Boppo. The addition of state variables comes at an expense. Since these
variables never have direct constraints that relate their current state to their next-state
value, it is not actually necessary to store any representation of their values. BOPPO [38]
is a symbolic model checker for Boolean programs, i.e., abstract models of C programs.
It uses symbolic simulation for checking reachability. We have modified BOPPO to
allow the definition of variables that can be used in constrain clauses, but are not
part of the state vector and are therefore disregarded during the fixed-point detection.
Our experiments indicate that the additional variables do not noticeably increase the
run-time of BOPPO.

3.4 Predicate Images in Bit-Vector Logic

As motivated above, reasoning for integers is a bad fit for system-level software. We
would therefore like a proof-based method for a bit-vector logic. The main challenge
is that any axiomatization for a reasonably rich bit-vector logic permits too many ways
of proving the same fact, as the procedure as described above relies on enumerating all
proofs.

1 We use next(v1) instead of v1 in order to avoid a transition relation that is not total.



Approximating Predicate Images for Bit-Vector Logic 251

Even if great care is taken to obtain a small set of axioms, the number of proofs
is still too large. Furthermore, the proofs include derivations that are based on reason-
ing about single bits of the vectors involved, resulting in a flattening of the formula,
which resembles the circuit-based models used for encodings of bit-vector logic into
propositional logic.

We therefore sacrifice precision in order to be able to reason about bit-vectors, and
compute an over-approximation of R̂. This is a commonly applied technique, e.g., used
by SLAM and BLAST. If this over-approximation results in a spurious transition, it can
be refined by any of the existing refinement methods, e.g., based on UNSAT cores as
in [39] or based on interpolants as in [27].

The over-approximation of R̂ is obtained as follows: Instead of aiming at a minimal-
istic set of axioms, we aim at the richest possible set of axioms. This permits proofs (or
refutations) of facts with very few proof steps. It also allows to support a very rich logic,
which is bit-vector logic including bit-wise shifts, extraction, concatenation, non-linear
arithmetic, the theory of arrays, and pointer logic permitting pointer arithmetic in our
case.

Definition 3. The derivation depth d(f) of a fact f ∈ F is defined recursively as
follows:

– Axioms and the facts given as input have depth zero.
– Any new fact f derived from a set of existing facts f1, . . . , fk has depth d(f) =

max{d(f1), . . . , d(fk)} + 1.

In order to avoid that d(f) depends on the order the facts are derived, we generate the
facts in a BFS manner, i.e., new facts are derived preferably from existing facts with a
low number of derivation steps.

Definition 4. Given a maximum depth δ, a depth-bounded derivation tree is a set of
derivations of facts fi such that d(fi) ≤ δ.

Note that a depth-bounded derivation tree not necessarily constitutes a proof or refuta-
tion of any of the facts that are given as input, as the shortest proof or refutation could
require more than δ steps.

Claim. Let φδ
P denote the formula corresponding to a derivation tree with maximum

depth δ. The formula corresponding to the full unbounded proof tree φP implies φδ
P .

Let R̂δ denote the transition relation obtained by using φδ
P instead of φP . R̂δ is an

over-approximation of R̂, i.e., R̂(x̂, x̂′) −→ R̂δ(x̂, x̂′), and thus, R̂δ is a conservative
abstraction for reachability properties.

Example. Assume we have, among others, the following derivation rules:

(a|b)&b == b
(8) b&c == 0

(a|b)&c == a&c
(9)

The predicates we consider are π1 ⇐⇒ (x&1 = 0) and π2 ⇐⇒ (x&2 = 0), and
the statement to be executed is:

x|=2;



252 D. Kroening and N. Sharygina

⊥

x′&2 = 0 x′ = x|2

(x|2)&2 = 0 (x|2)&2 = 2

Rule 8

F

π′
2 T

v1 T

T

Fig. 1. Derivation of constraints for π′
2

x′ = x|2x′&1 = 0

(x|2)&1 = 0 (x|2)&1 = x&1

Rule 9

x&1 = 0 π1

π′
1 T

v2 T

T

Fig. 2. Derivation of constraints for π′
1

The facts passed to the prover are x&1 = 0, x&2 = 0, x′&1 = 0, x′&2 = 0, and
x′ = x|2. Figure 1 shows a derivation on the left hand side and on the right hand side the
same derivation tree in which the atoms are replaced by their propositional variables.
The derivation results in the constraint (π′2 −→ v1) ∧ (v1 −→ F), which is equivalent
to ¬π′2. Figure 2 shows a derivation that ends in an existing atom π1 rather than F. The
constraint generated is equivalent to π′1 −→ π1.

We collected a set of over 100 (highly redundant) proof rules for bit-vector arith-
metic, pointer arithmetic, and the theory of arrays; we typically limit the depth of the
proofs to 3 derivation steps.

4 Experimental Results

We implemented the proof-based predicate image approximation as described above
in SATABS [40]. SATABS uses an abstraction refinement loop to prove reachability
properties of ANSI-C programs. We make our implementation available to other re-
searchers2 for experimentation. We have three different configurations:

1. The first configuration (“Greedy Ref.”) follows the suggestions by Das/Dill [25]: a
syntactic heuristic is used to compute the initial image. The image is subsequently
refined using a greedy heuristic.

2 http://www.inf.ethz.ch/personal/daniekro/satabs/



Approximating Predicate Images for Bit-Vector Logic 253

Table 1. Summary of results: the column “Max. n” shows the largest number of predicates in
any program location. The columns under “Greedy Ref.” show the number of iterations, the time
spent during refinement, and the total run-time of SATABS using the Greedy heuristic described
in [25]. The columns under “Proof Ref.” show the results using a proof-based refinement. The
columns under “Proof Image+Ref.” show the results using the technique proposed in this paper
in order to obtain the initial predicate image and to refine the image. A star denotes that the one
hour timeout was exceeded.

Greedy Ref. Proof Ref. Proof Image+Ref.
Benchmark Result Max. n It. Ref. Total It. Ref. Total It. Abstr. Ref. Total

B1 T 25 85 � � 180 � � 2 1.3s 0.2s 2.0s
B2 F 11 51 4.8s 5.9s 46 3.5s 5.2s 8 0.1s 0.8s 1.2s
B3 T 7 14 8.4s 9.5s 15 4.8s 5.3s 6 0.1s 1.9s 2.2s
B4 F 21 102 65.2s 70.2s 78 15.1s 20.9s 20 2.1s 13.6s 18.3s

MD2 T 10 62 58.8s 67.9s 50 19.1s 24.7s 14 0.3s 9.2s 11.1s
B5’ F 81 242 � � 241 � � 80 123.1s 843.7s 1112.7s
AP1 F 149 31 � � 154 � � 201 210.8s 1532.2s 2102.8s

2. The second configuration (“Proof Ref.”) replaces the greedy heuristic proposed
in [25] by a proof-based refinement strategy that uses the proof of unsatisfiabil-
ity to refine the transitions.

3. The third configuration (“Proof Image+Ref.”) combines the proof-based refinement
with the word-level proof-based initial abstraction as proposed in this paper.

To the best of our knowledge, a comparison of these image approximation heuristics
on software given in C has not yet been made; Das/Dill [25] use examples from protocol
verification.

For all configurations, we use the modified version of BOPPO [38] as Model
Checker for the abstract model. All configurations use the following simulation phase:
the path generated by model checker is transformed into SSA (static single assignment)
form. The resulting bit-vector formula is translated using a circuit representation and
passed to a propositional SAT-solver. We are using Booleforce3 for our experiments.
We also experimented with ZChaff 2003, but Booleforce outperformed ZChaff on all
benchmarks.

The refinement phase depends on whether the spurious trace is due to predicate im-
age over-approximation or due to a lack of sufficiently strong predicates. This is de-
termined by the simulation phase. If a transition is found to be spurious due to image
over-approximation, the incremental approach described in [25] uses a greedy heuristic
to generalize the transition and refine the abstract transition relation. In contrast to that,
configuration 2) and 3) use the proof of unsatisfiability to generalize the transition.

If the spurious counterexample is due to insufficient predicates, we use weakest pre-
conditions to compute new predicates. The set of new predicates is limited to those
transitions found in the UNSAT core of the SAT instance used for simulation.

The experiments have been performed on an Intel Xenon Processor with a clock fre-
quency of 2.8 GHz running Linux. The results are summarized in table 1. The bench-

3 A recent SAT-solver based on MiniSAT written by A. Biere.



254 D. Kroening and N. Sharygina

marks are C programs that require a moderate to large number of predicates per program
location (the table shows the largest number of predicates required in any program lo-
cation). All benchmarks make use of bit-vector and pointer arithmetic, and arrays. The
benchmark AP1 is an array-bounds property of the Apache httpd server, which makes
heavy use of pointers and pointer arithmetic.

The experiments show that a small additional expense for computing an initial pred-
icate image can reduce the number of iterations required and the time spent for refine-
ment dramatically. The larger the number of predicates, the bigger the benefit of using
an initial abstraction usually is. Due to the depth bound of the proofs, the abstraction
phase never uses an excessive amount of time.

5 Conclusion

This paper shows two things:

1. When extracting predicate images for abstract models, it is not necessary to perform
the existential quantification upfront. It can be performed within the model checker
instead. Potentially expensive methods, such as BDD-based enumeration as in [16],
can be avoided that way.

2. A rich logic, including bit-vector logic, can be supported if we sacrifice some pre-
cision and abort proofs after a small number of steps. The experiments show that
we in many cases still right away obtain an abstract model that is strong enough to
terminate without many refinement iterations, and thus, often as good as a model
computed using the precise image.

Future Work. The algorithm presented here uses the propositional encoding φsk to
handle a complex Boolean structure of the transition relation. The transition relation
of software programs, when partitioned using a program counter construction, usually
only contains very few facts (one per statement of any basic block). As future work,
we plan to experiment with the algorithm using larger transition relations, e.g., those of
circuits given in Verilog.

We also plan to investigate even richer logics, e.g., non-standard logics such as sep-
aration logic [41] in order to reason about dynamic data structures.

Acknowledgment

The authors would like to thank Ofer Strichman for valuable comments, and Armin
Biere for his proof-generating SAT solver Booleforce.

References

1. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)
2. Clarke, E.M., Emerson, E.A.: Synthesis of synchronization skeletons for branching time

temporal logic. In: Logic of Programs: Workshop. Volume 131 of LNCS. Springer (1981)
52–71



Approximating Predicate Images for Bit-Vector Logic 255

3. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model check-
ing: 1020 states and beyond. Information and Computation 98 (1992) 142–170

4. Graf, S., Saı̈di, H.: Construction of abstract state graphs with PVS. In: Computer Aided
Verification (CAV). Volume 1254 of LNCS. Springer (1997) 72–83

5. Colón, M., Uribe, T.: Generating finite-state abstractions of reactive systems using decision
procedures. In: Computer Aided Verification (CAV). Volume 1427 of LNCS. Springer (1998)
293–304

6. Ball, T., Rajamani, S.: Boolean programs: A model and process for software analysis. Tech-
nical Report 2000-14, Microsoft Research (2000)

7. Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic predicate abstraction of
C programs. In: Programming Language Design and Implementation (PLDI), ACM (2001)
203–213

8. Ball, T., Rajamani, S.K.: Generating abstract explanations of spurious counterexamples in C
programs. Technical Report MSR-TR-2002-09, Microsoft Research (2002)

9. Ball, T., Cook, B., Das, S., Rajamani, S.K.: Refining approximations in software predi-
cate abstraction. In: Tools and Algorithms for the Construction and Analysis of Systems
(TACAS). Volume 2988 of LNCS. Springer (2004)

10. Ball, T., Rajamani, S.K.: Bebop: A symbolic model checker for Boolean programs. In: SPIN.
Volume 1885 of LNCS. Springer (2000) 113–130

11. Ball, T., Rajamani, S.K.: Automatically validating temporal safety properties of interfaces.
In: SPIN. Volume 1885 of LNCS. Springer (2000) 113–130

12. Ball, T., Rajamani, S.K.: Bebop: A path-sensitive interprocedural dataflow engine. In: Pro-
ceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop on Program analysis for software
tools and engineering, ACM (2001) 97–103

13. Kurshan, R.: Computer-Aided Verification of Coordinating Processes. Princeton University
Press, Princeton (1995)

14. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction
refinement. In: Computer Aided Verification (CAV). Volume 1855 of LNCS. Springer (2000)
154–169

15. Clarke, E., Grumberg, O., Long, D.: Model checking and abstraction. In: Principles of
Programming Languages (POPL), ACM (1992) 343–354

16. Lahiri, S.K., Ball, T., Cook, B.: Predicate abstraction via symbolic decision procedures. In:
Computer Aided Verification (CAV). Volume 3576 of LNCS., Springer (2005) 24–38

17. Cook, B., Kroening, D., Sharygina, N.: Cogent: Accurate theorem proving for program ver-
ification. In: Computer Aided Verification (CAV). Volume 3576 of LNCS., Springer (2005)

18. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: Predicate abstraction of ANSI–C pro-
grams using SAT. Formal Methods in System Design 25 (2004) 105–127

19. Cousot, P.: Abstract interpretation. Symposium on Models of Programming Languages and
Computation, ACM Computing Surveys 28 (1996) 324–328

20. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.: The
ASTREÉ analyzer. In: European Symposium on Programming (ESOP). Volume 3444 of
LNCS. Springer (2005) 21–30

21. Chaki, S., Clarke, E., Groce, A., Strichman, O.: Predicate abstraction with minimum predi-
cates. In: Correct Hardware Design and Verification Methods (CHARME). Volume 2860 of
LNCS. Springer (2003) 19 – 34

22. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: A theorem prover for program checking. Tech-
nical Report HPL-2003-148, HP Labs (2003)

23. Lahiri, S.K., Bryant, R.E., Cook, B.: A symbolic approach to predicate abstraction. In:
Computer-Aided Verification (CAV). Volume 2725 of LNCS. Springer (2003) 141–153



256 D. Kroening and N. Sharygina

24. Ball, T., Cook, B., Lahiri, S.K., Zhang, L.: Zapato: Automatic theorem proving for predicate
abstraction refinement. In: Computer Aided Verification (CAV). Volume 3114 of LNCS.,
Springer (2004)

25. Das, S., Dill, D.: Successive approximation of abstract transition relations. In: Logic in
Computer Science (LICS). (2001) 51–60

26. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Principles of
programming languages (POPL). (2002) 58–70

27. Henzinger, T., Jhala, R., Majumdar, R., McMillan, K.: Abstractions from proofs. In: Princi-
ples of Programming Languages (POPL), ACM (2004) 232–244

28. Strichman, O.: On solving presburger and linear arithmetic with SAT. In: Formal Methods
in Computer-Aided Design (FMCAD). Volume 2517 of LNCS. Springer (2002) 160–170

29. Barret, C.W., Dill, D.L., Levitt, J.R.: A decision procedure for bit-vector arithmetic. In:
Design Automation Conference (DAC), ACM (1998)

30. Barrett, C., Berezin, S.: CVC Lite: A new implementation of the cooperating validity
checker. In: Computer-Aided Verification. Volume 3114 of LNCS. Springer (2004)

31. Wedler, M., Stoffel, D., Kunz, W.: Normalization at the arithmetic bit level. In: Design
Automation Conference (DAC), ACM (2005) 457–462

32. Brinkmann, R., Drechsler, R.: RTL-datapath verification using integer linear programming.
In: VLSI Design, IEEE (2002) 741–746

33. Parthasarathy, G., Iyer, M.K., Cheng, K.T., Wang, L.C.: An efficient finite-domain con-
straint solver for circuits. In: Design Automation Conference (DAC), ACM (2004)
212–217

34. Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. Symbolic
Computation 2 (1986) 293–304

35. Bryant, R.E., Lahiri, S.K., Seshia, S.A.: Modeling and verifying systems using a logic of
counter arithmetic with lambda expressions and uninterpreted functions. In: Computer-Aided
Verification. Volume 2404 of LNCS. Springer (2002)

36. Pugh, W.: The Omega test: a fast and practical integer programming algorithm for depen-
dence analysis. Communications of the ACM (1992) 102–114

37. Lahiri, S.K., Bryant, R.E.: Constructing quantified invariants via predicate abstraction. In:
Verification, Model Checking and Abstract Interpretation (VMCAI). Volume 2937 of LNCS.
Springer (2004) 267–281

38. Cook, B., Kroening, D., Sharygina, N.: Symbolic model checking for asynchronous Boolean
programs. In: SPIN. Volume 3639 of LNCS. Springer (2005) 75–90

39. Jain, H., Kroening, D., Sharygina, N., Clarke, E.: Word level predicate abstraction and re-
finement for verifying RTL Verilog. In: Design Automation Conference (DAC), ACM (2005)
445–450

40. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: SATABS: SAT-based predicate abstrac-
tion for ANSI-C. In: Tools and Algorithms for the Construction and Analysis of Systems
(TACAS). Volume 3440 of LNCS. Springer (2005) 570–574

41. Reynolds, J.: Separation logic: A logic for shared mutable data structures. In: Logic in
Computer Science (LICS), IEEE (2002) 55–74



Finitary Winning in ω-Regular Games�

Krishnendu Chatterjee1 and Thomas A. Henzinger1,2

1 University of California, Berkeley, USA
2 EPFL, Switzerland

{c krish, tah}@eecs.berkeley.edu

Abstract. Games on graphs with ω-regular objectives provide a model
for the control and synthesis of reactive systems. Every ω-regular objective
can be decomposed into a safety part and a liveness part. The liveness part
ensures that something good happens “eventually.” Two main strengths
of the classical, infinite-limit formulation of liveness are robustness
(independence from the granularity of transitions) and simplicity (ab-
straction of complicated time bounds). However, the classical liveness for-
mulation suffers from the drawback that the time until something good
happens may be unbounded. A stronger formulation of liveness, so-called
finitary liveness, overcomes this drawback, while still retaining robustness
and simplicity. Finitary liveness requires that there exists an unknown,
fixed bound b such that something good happens within b transitions.
While for one-shot liveness (reachability) objectives, classical and finitary
liveness coincide, for repeated liveness (Büchi) objectives, the finitary for-
mulation is strictly stronger. In this work we study games with finitary
parity and Streett (fairness) objectives. We prove the determinacy of these
games, present algorithms for solving these games, and characterize the
memory requirements of winning strategies. Our algorithms can be used,
for example, for synthesizing controllers that do not let the response time
of a system increase without bound.

1 Introduction

Games played on graphs are suitable models for multi-component systems: ver-
tices represent states; edges represent transitions; players represent components;
and objectives represent specifications. The specification of a component is typi-
cally given as an ω-regular condition [9], and the resulting ω-regular games have
been used for solving control and verification problems (see, e.g., [3, 11, 12]).

Every ω-regular specification (indeed, every specification) can be decomposed
into a safety part and a liveness part [1]. The safety part ensures that the com-
ponent will not do anything “bad” (such as violate an invariant) within any
finite number of transitions. The liveness part ensures that the component will
do something “good” (such as proceed, or respond, or terminate) within some
finite number of transitions. Liveness can be violated only in the limit, by infinite
sequences of transitions, as no bound is stipulated on when the “good” thing
� This research was supported in part by the AFOSR MURI grant F49620-00-1-0327

and the NSF ITR grant CCR-0225610.

H. Hermanns and J. Palsberg (Eds.): TACAS 2006, LNCS 3920, pp. 257–271, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



258 K. Chatterjee and T.A. Henzinger

must happen. This infinitary, classical formulation of liveness has both strengths
and weaknesses. A main strength is robustness, in particular, independence from
the chosen granularity of transitions. Another main strength is simplicity, allow-
ing liveness to serve as an abstraction for complicated safety conditions. For
example, a component may always respond in a number of transitions that de-
pends, in some complicated manner, on the exact size of the stimulus. Yet for
correctness, we may be interested only that the component will respond “eventu-
ally.” However, these strengths also point to a weakness of the classical definition
of liveness: it can be satisfied by components that in practice are quite unsatis-
factory because no bound can be put on their response time. It is for this reason
that alternative, stronger formulations of liveness have been proposed. One of
these is finitary liveness [2, 4]: finitary liveness does not insist on response within
a known bound b (i.e., every stimulus is followed by a response within b transi-
tions), but on response within some unknown bound (i.e., there exists b such that
every stimulus is followed by a response within b transitions). Note that in the
finitary case, the bound b may be arbitrarily large, but the response time must
not grow forever from one stimulus to the next. In this way, finitary liveness
still maintains the robustness (independence of step granularity) and simplic-
ity (abstraction of complicated safety) of traditional liveness, while removing
unsatisfactory implementations.

In this paper, we study graph games with finitary winning conditions. The
motivation is the same as for finitary liveness. Consider, for example, the synthe-
sis of an elevator controller as a strategy in a game where one player represents
the environment (i.e., the pushing of call buttons on various floors, and the push-
ing of target buttons inside the elevators), and the other player represents the
elevator control (i.e., the commands to move an elevator up or down, and the
opening and closing of elevator doors). Clearly, one objective of the controller is
that whenever a call button is pushed on a floor, then an elevator will eventu-
ally arrive, and whenever a target button is pushed inside an elevator, then the
elevator will eventually get to the corresponding floor. Note that this objective
is formulated in an infinitary way (the key term is “eventually”). This is be-
cause, for robustness and simplicity, we do not wish to specify for each state the
exact number of transitions until the objective must be met. However, a truly
unbounded implementation of elevator control (where the response time grows
from request to request, without bound) would be utterly unsatisfactory. A fini-
tary interpretation of the objective prohibits such undesirable control strategies:
there must exist a bound b such that the controller meets every call request, and
every target request, within b transitions.

We formalize finitary winning for the normal form of ω-regular objectives
called parity conditions [13]. A parity objective assigns a non-negative integer
priority to every vertex, and the objective of player 1 is to make sure that
the lowest priority that repeats infinitely often is even. This is an infinitary
objective, as player 1 can win by ensuring that every odd priority that repeats
infinitely often is followed by a smaller even priority “eventually” (arbitrarily
many transitions later). The finitary parity objective, by contrast, insists that



Finitary Winning in ω-Regular Games 259

s1

1
s0

1
s2s3

0 2

Fig. 1. A simple game graph

player 1 ensures that there exists a bound b such that every odd priority that
repeats infinitely often is followed by a smaller even priority within b transitions.
The finitary parity objective is stronger than the classical parity objective, as is
illustrated by the following example.

Example 1. Consider the game shown in Figure 1. The square-shaped states are
player 1 states, where player 1 chooses the successor state, and the diamond-
shaped states are player 2 states (we will follow this convention throughout this
paper). The priorities of states are shown next to each state in the figure. If
player 1 follows a memoryless strategy σ that chooses the successor s2 at state
s0, this ensures that against all strategies π for player 2, the minimum priority
of the states that are visited infinitely often is even (either state s3 is visited
infinitely often, or both states s0 and s1 are visited finitely often). However,
consider the strategy πw for player 2: the strategy πw is played in rounds, and
in round k ≥ 0, whenever player 1 chooses the successor s2 at state s0, player 2
stays in state s2 for k transitions, and then goes to state s3 and proceeds to
round k+1. The strategy πw ensures that for all strategies σ for player 1, either
the minimum priority visited infinitely often is 1 (i.e., both states s0 and s1 are
visited infinitely often and state s3 is visited finitely often); or states of priority 1
are visited infinitely often, and the distances between visits to states of priority 1
and subsequent visits to states of priority 0 increase without bound (i.e., the limit
of the distances is ∞). Hence it follows that in this game, although player 1 can
win for the parity objective, she cannot win for the finitary parity objective.

We prove that games with finitary parity objectives are determined: for every
state either there is a player 1 strategy (a winning strategy for player 1) that en-
sures that the finitary parity objective is satisfied against all player 2 strategies,
or there is a player 2 strategy (a winning strategy for player 2) that ensures that
the finitary parity objective is violated against all player 1 strategies. Similar
to games with infinitary parity objectives, we establish the existence of win-
ning strategies that are memoryless (independent of the history of the play)
for player 1. However, winning strategies for player 2 in general require infinite
memory; this is in contrast to infinitary parity objectives, where memoryless
winning strategies exist also for player 2 [5]. We present an algorithm to com-
pute the winning sets in time O(n2d−3 · d · m) for game graphs with n states
and m edges, and for finitary parity objectives with d priorities. Games with
infinitary parity objectives can be solved in time O(n�

d
2 � · m) [8]. Since in the

case of finitary parity objectives, winning strategies for player 2 require infinite
memory in general, the analysis and the algorithm for games with finitary parity
objectives is more involved. We also show that polynomial-size witnesses exist
for the winning strategies of both players; in particular, even though the win-



260 K. Chatterjee and T.A. Henzinger

ning strategies for player 2 may require infinite memory, there exist polynomial
witnesses for these strategies. This allows us to conclude that, similar to games
with infinitary parity objectives, the winning sets for games with finitary parity
objectives can be decided in NP ∩ coNP.

In addition to finitary parity, we study finitary Streett objectives. Streett
objectives require that if some stimuli are repeated infinitely often, then the cor-
responding responses occur infinitely often. The finitary interpretation requires,
in addition, that there exists a bound b on all required response times (i.e., on
the number of transitions between stimulus and corresponding response). We
show that games with finitary Streett objectives can be solved by a reduction to
finitary parity objectives (on a different game graph). The reduction establishes
that games with finitary Streett objectives are determined. It also gives an algo-
rithm that computes the winning sets in time (n ·d!)O(d) ·O(m) for game graphs
with n states, m edges, and finitary Streett objectives with d pairs. Hence, the
winning sets can be decided in EXPTIME. The decision problem for winning
sets for games with infinitary Streett objectives is coNP-complete [5], and the
winning sets can be computed in time O(nd ·d!·m) [7]. For classical as well as fini-
tary Streett games, finite-memory winning strategies exist for player 1. However,
while in the classical case memoryless winning strategies exist for player 2 [5], in
the finitary case the winning strategies for player 2 may require infinite memory.

We focus on finitary parity and Streett objectives. The finitary parity objec-
tives are a canonical form to express finitary versions of ω-regular objectives;
they subsume finitary reachability, finitary Büchi, and finitary co-Büchi objec-
tives as special cases. The Streett objectives capture liveness conditions that
are of particular interest in system design, as they correspond to strong fairness
(compassion) constraints [9]. The finitary Streett objectives, therefore, give the
finitary formulation of strong fairness.

2 Games with ω-Regular Objectives

Game graphs. A game graph G = ((S,E), (S1, S2)) consists of a directed graph
(S,E) with a finite state space S and a set E of edges, and a partition (S1, S2) of
the state space S into two sets. The states in S1 are player 1 states, and the states
in S2 are player 2 states. For a state s ∈ S, we write E(s) = {t ∈ S | (s, t) ∈ E}
for the set of successor states of s. We assume that every state has at least one
out-going edge, i.e., E(s) is non-empty for all states s ∈ S.

Plays. A game is played by two players: player 1 and player 2, who form an
infinite path in the game graph by moving a token along edges. They start by
placing the token on an initial state, and then they take moves indefinitely in
the following way. If the token is on a state in S1, then player 1 moves the token
along one of the edges going out of the state. If the token is on a state in S2,
then player 2 does likewise. The result is an infinite path in the game graph;
we refer to such infinite paths as plays. Formally, a play is an infinite sequence
〈s0, s1, s2, . . .〉 of states such that (sk, sk+1) ∈ E for all k ≥ 0. We write Ω for
the set of all plays.



Finitary Winning in ω-Regular Games 261

Strategies. A strategy for a player is a recipe that specifies how to extend plays.
Formally, a strategy σ for player 1 is a function σ: S∗ ·S1 → S that, given a finite
sequence of states (representing the history of the play so far) which ends in a
player 1 state, chooses the next state. The strategy must choose only available
successors, i.e., for all w ∈ S∗ and s ∈ S1, if σ(w · s) = t, then t ∈ E(s). The
strategies for player 2 are defined analogously. We write Σ and Π for the sets of
all strategies for player 1 and player 2, respectively. Strategies in general require
memory to remember the history of plays. An equivalent definition of strategies
is as follows. Let M be a set called memory. A strategy with memory can be
described as a pair of functions: (a) a memory-update function σu: S ×M →M
that, given the memory and the current state, updates the memory; and (b) a
next-state function σn: S × M → S that, given the memory and the current
state, specifies the successor state. The strategy is finite-memory if the memory
M is finite. The strategy is memoryless if the memory M is a singleton set.
The memoryless strategies do not depend on the history of a play, but only
on the current state. Each memoryless strategy for player 1 can be specified as
a function σ: S1 → S such that σ(s) ∈ E(s) for all s ∈ S1, and analogously
for memoryless player 2 strategies. Given a starting state s ∈ S, a strategy
σ ∈ Σ for player 1, and a strategy π ∈ Π for player 2, there is a unique play,
denoted ω(s, σ, π) = 〈s0, s1, s2, . . .〉, which is defined as follows: s0 = s and
for all k ≥ 0, if sk ∈ S1, then σ(s0, s1, . . . , sk) = sk+1, and if sk ∈ S2, then
π(s0, s1, . . . , sk) = sk+1.

Classical winning conditions. We first define the class of ω-regular objectives
and the classical notion of winning.

Objectives. Objectives for the players in non-terminating games are specified
by providing the sets Φ, Ψ ⊆ Ω of winning plays for player 1 and player 2,
respectively. We consider zero-sum games, where the objectives of both players
are complementary, i.e., Ψ = Ω \ Φ. The class of ω-regular objectives [13] are of
special interest since they form a robust class of objectives for verification and
synthesis. The ω-regular objectives, and subclasses thereof, can be specified in
the following forms. For a play ω = 〈s0, s1, s2, . . .〉 ∈ Ω, we define Inf(ω) = {s ∈
S | sk = s for infinitely many k ≥ 0} to be the set of states that occur infinitely
often in ω.

1. Reachability and safety objectives. Given a set F ⊆ S of states, the reachabil-
ity objective Reach(F ) requires that some state in F be visited, and dually,
the safety objective Safe(F ) requires that only states in F be visited. For-
mally, the sets of winning plays are Reach(F ) = {〈s0, s1, s2, . . .〉 ∈ Ω | ∃k ≥
0. sk ∈ F} and Safe(F ) = {〈s0, s1, s2, . . .〉 ∈ Ω | ∀k ≥ 0. sk ∈ F}.

2. Büchi and co-Büchi objectives. Given a set F ⊆ S of states, the Büchi objec-
tive Buchi(F ) requires that some state in F be visited infinitely often, and
dually, the co-Büchi objective coBuchi(F ) requires that only states in F be
visited infinitely often. Thus, the sets of winning plays are Buchi(F ) = {ω ∈
Ω | Inf(ω) ∩ F �= ∅} and coBuchi(F ) = {ω ∈ Ω | Inf(ω) ⊆ F}.

3. Rabin and Streett objectives. Given a set P = {(E1, F1), . . . , (Ed, Fd)} of
pairs of sets of states (i.e, for all 1 ≤ j ≤ d, both Ej ⊆ S and Fj ⊆ S), the



262 K. Chatterjee and T.A. Henzinger

Rabin objective Rabin(P ) requires that for some pair 1 ≤ j ≤ d, all states in
Ej be visited finitely often, and some state in Fj be visited infinitely often.
Hence, the winning plays are Rabin(P ) = {ω ∈ Ω | ∃1 ≤ j ≤ d. (Inf(ω) ∩
Ej = ∅ and Inf(ω) ∩ Fj �= ∅)}. Dually, given P = {(E1, F1), . . . , (Ed, Fd)},
the Streett objective Streett(P ) requires that for all pairs 1 ≤ j ≤ d, if
some state in Fj is visited infinitely often, then some state in Ej be visited
infinitely often, i.e., Streett(P ) = {ω ∈ Ω | ∀1 ≤ j ≤ d. (Inf(ω) ∩ Ej �=
∅ or Inf(ω) ∩ Fj = ∅)}.

4. Parity objectives. Given a function p: S → {0, 1, 2, . . . , d−1} that maps every
state to an integer priority, the parity objective Parity(p) requires that of the
states that are visited infinitely often, the least priority be even. Formally,
the set of winning plays is Parity(p) = {ω ∈ Ω | min{p(Inf(ω))} is even}.
The dual, co-parity objective has the set coParity(p) = {ω ∈ Ω |
min{p(Inf(ω))} is odd} of winning plays.

Every parity objective is both a Rabin objective and a Streett objective. Hence,
the parity objectives are closed under complementation. The Büchi and co-Büchi
objectives are special cases of parity objectives with two priorities, namely, p:
S → {0, 1} for Büchi objectives with F = p−1(0), and p: S → {1, 2} for co-
Büchi objectives with F = p−1(2). The reachability and safety objectives can
be turned into Büchi and co-Büchi objectives, respectively, on slightly modified
game graphs.

Winning. Given an objective Φ ⊆ Ω for player 1, a strategy σ ∈ Σ is a winning
strategy for player 1 from a set U ⊆ S of states if for all player 2 strategies
π ∈ Π and all states s ∈ U , the play ω(s, σ, π) is winning, i.e., ω(s, σ, π) ∈ Φ.
The winning strategies for player 2 are defined analogously. A state s ∈ S is
winning for player 1 with respect to the objective Φ if player 1 has a winning
strategy from {s}. Formally, the set of winning states for player 1 with respect
to the objective Φ is W1(Φ) = {s ∈ S | ∃σ ∈ Σ. ∀π ∈ Π. ω(s, σ, π) ∈ Φ}.
Analogously, the set of winning states for player 2 with respect to an objective
Ψ ⊆ Ω is W2(Ψ) = {s ∈ S | ∃π ∈ Π. ∀σ ∈ Σ. ω(s, σ, π) ∈ Ψ}. We say that
there exists a (memoryless; finite-memory) winning strategy for player 1 with
respect to the objective Φ if there exists such a strategy from the set W1(Φ); and
similarly for player 2.

Theorem 1 (Classical determinacy and strategy complexity).

1. [6] For all game graphs, all Rabin objectives Φ for player 1, and the comple-
mentary Streett objective Ψ = Ω\Φ for player 2, we have W1(Φ) = S\W2(Ψ).

2. [5] For all game graphs and all Rabin objectives for player 1, there exists a
memoryless winning strategy for player 1.

3. [6] For all game graphs and all Streett objectives for player 2, there exists a
finite-memory winning strategy for player 2. However, in general no memo-
ryless winning strategy exists.



Finitary Winning in ω-Regular Games 263

3 Finitary Winning Conditions

We now define a stronger notion of winning, namely, finitary winning, in games
with parity and Streett objectives.

Finitary winning for parity objectives. For parity objectives, the finitary
winning notion requires that for each visit to an odd priority that is visited
infinitely often, the distance to a stronger (i.e., lower) even priority be bounded.
To define the winning plays formally, we need the concept of a distance sequence.

Distance sequences for parity objectives. Given a play ω = 〈s0, s1, s2, . . .〉 and a
priority function p: S → {0, 1, . . . , d − 1}, we define a sequence of distances
distk(ω, p), for all k ≥ 0, as follows: distk(ω, p) = 0 if p(sk) is even, and
distk(ω, p) = inf{k′ ≥ k | p(sk′) is even and p(sk′ ) < p(sk)} if p(sk) is odd.
Intuitively, the distance for a position k in a play with an odd priority at posi-
tion k, denotes the shortest distance to a stronger even priority in the play. We
assume the standard convention that the infimum of the empty set is ∞.

Finitary parity objectives. The finitary parity objective finParity(p) for a priority
function p requires that the sequence of distances for the positions with odd pri-
orities that occur infinitely often be bounded. This is equivalent to requiring that
the sequence of all distances be bounded in the limit, and captures the notion
that the “good” (even) priorities that appear infinitely often do not appear in-
finitely rarely. Formally, the sets of winning plays for the finitary parity objective
and its complement are finParity(p) = {ω ∈ Ω | lim supk→∞ distk(ω, p) < ∞}
and infParity(p) = {ω ∈ Ω | lim supk→∞ distk(ω, p) = ∞}, respectively. Observe
that if a play ω is winning for a co-parity objective, then the lim sup of the dis-
tance sequence for ω is ∞, that is, coParity(p) ⊆ infParity(p). However, if a play
ω is winning for a (classical) parity objective, then the lim sup of the distance se-
quence for ω can be ∞ (as shown in Example 1), that is, finParity(p) � Parity(p).
Given a game graph G and a priority function p, solving the finitary parity game
requires computing the two winning sets W1(finParity(p)) and W2(infParity(p)).

Remark 1. Recall that Büchi and co-Büchi objectives correspond to parity ob-
jectives with two priorities. A finitary Büchi objective is in general a strict subset
of the corresponding classical Büchi objective; a finitary co-Büchi objective co-
incides with the corresponding classical co-Büchi objective. However, it can be
shown that for parity objectives with two priorities, the classical winning sets and
the finitary winning sets are the same; that is, for all game graphs G and all pri-
ority functions p with two priorities, we have W1(finParity(p)) = W1(Parity(p))
and W2(infParity(p)) = W2(coParity(p)). Note that in Example 1, we have
s0 ∈ W1(Parity(p)) and s0 �∈ W1(finParity(p)). This shows that for priority
functions with three or more priorities, the winning set for a finitary parity ob-
jective can be a strict subset of the winning set for the corresponding classical
parity objective, that is, W1(finParity(p)) � W1(Parity(p)).

Finitary winning for Streett objectives. The notion of distance sequence
for parity objectives has a natural extension to Streett objectives.



264 K. Chatterjee and T.A. Henzinger

Distance sequences for Streett objectives. Given a play ω = 〈s0, s1, s2, . . .〉 and
a set P = {(E1, F1), . . . , (Ed, Fd)} of Streett pairs of state sets, the d sequences
of distances dist j

k(ω, P ), for all k ≥ 0 and 1 ≤ j ≤ d, are defined as follows:
dist j

k(ω, P ) = 0 if sk �∈ Fj , and dist j
k(ω, P ) = inf{k′ ≥ k | sk′ ∈ Ej} if sk ∈ Fj .

Let distk(ω, P ) = max{dist j
k(ω, P ) | 1 ≤ j ≤ d} for all k ≥ 0.

Finitary Streett objectives. The finitary Streett objective finStreett(P ) for a set P
of Streett pairs requires that the distance sequence be bounded in the limit, i.e.,
the winning plays are finStreett(P ) = {ω ∈ Ω | lim supk→∞ distk(ω, P ) <∞}.

Example 2. Consider the game graph of Figure 2. Player 2 generates requests
of type Req1 and Req2; these are shown as labeled edges in the figure. Player 1
services a request of type Reqi by choosing an edge labeled Serv i, for i = 1, 2.
Whenever a request is received, further requests of the same type are disabled
until the request is serviced; then the requests of this type are enabled again. The
state s0 represents the case when there are no unserviced requests; the states
s1 and s2 represent the cases when there are unserviced requests of type Req1
and Req2, respectively; and the states s7 and s8 represent the cases when there
are unserviced requests of both types, having arrived in either order. On arrival
of a request of type Reqi, a state in Fi is visited, and when a request of type
Reqi is serviced, a state in Ei is visited, for i = 1, 2. Hence F1 = {s1, s8}, F2 =
{s2, s7}, E1 = {s5, s12}, and E2 = {s6, s11}. The Streett objective Streett(P )
with P = {(E1, F1), (E2, F2)} requires that if a request of type Reqi is received
infinitely often, then it be serviced infinitely often, for both i = 1, 2. The player 1
strategy s9 → s11 and s10 → s12 is a stack strategy, which always services first
the request type received last. The player 1 strategy s9 → s12 and s10 → s11
is a queue strategy, which always services first the request type received first.
Both the stack strategy and the queue strategy ensure that the classical Streett
objective Streett(P ) is satisfied. However, for the stack strategy, the number of
transitions between the arrival of a request of type Reqi and its service can be
unbounded. Hence the stack strategy is not a winning strategy for player 1 with
respect to the finitary Streett objective finStreett(P ). The queue strategy, by
contrast, ensures not only that every request that is received infinitely often is
serviced, but it also ensures that the number of transitions between the arrival

E1

s0s1 s2s3 s4s5 s6

s7 s8

Serv2

Serv2 Serv1

Serv1

Req1 Req2

Req2
Req1

s9 s10

St.

s11
Qu.

St.

Qu.
s12

E1 E2

F1 F2

F2 F1

E2

Fig. 2. A request-service game graph



Finitary Winning in ω-Regular Games 265

of a request and its service is at most 6. Thus the queue strategy is winning for
player 1 with respect to finStreett(P ).

4 Finitary Determinacy and Algorithmic Analysis

We present an algorithm to solve games with finitary parity objectives. The cor-
rectness argument for the algorithm also proves determinacy for finitary parity
games.1 We then show that games with finitary Streett objectives can be solved
via a reduction to finitary parity games.

Solving games with finitary parity objectives. We start with some prelim-
inary notation and facts that will be required for the analysis of the algorithm.

Closed sets. A set U ⊆ S of states is a closed set for player 2 if the following
two conditions hold: (a) for all states u ∈ (U ∩ S2), we have E(u) ⊆ U , i.e., all
successors of player 2 states in U are again in U ; and (b) for all u ∈ (U ∩ S1),
we have E(u) ∩ U �= ∅, i.e., every player 1 state in U has a successor in U . The
closed sets for player 1 are defined analogously. Every closed set U for player �,
for � ∈ {1, 2}, induces a sub-game graph, denoted G  U . For winning sets W1
and W2, we write WG

1 and WG
2 to explicitly specify the game graph G.

Proposition 1. Consider a game graph G, and a closed set U for player 2. For
every objective Φ for player 1, we have WG�U

1 (Φ) ⊆WG
1 (Φ).

Attractors. Given a game graph G, a set U ⊆ S of states, and a player � ∈ {1, 2},
the set Attr�(U,G) contains the states from which player � has a strategy to reach
a state in U against all strategies of the other player; that is, Attr�(U,G) =
WG

� (Reach(U)). The set Attr1(U,G) can be computed inductively as follows:
let R0 = U ; let Ri+1 = Ri ∪ {s ∈ S1 | E(s) ∩ Ri �= ∅} ∪ {s ∈ S2 | E(s) ⊆
Ri} for all i ≥ 0; then Attr1(U,G) =

⋃
i≥0 Ri. The inductive computation of

Attr2(U,G) is analogous. For all states s ∈ Attr1(U,G), define rank(s) = i if
s ∈ Ri \Ri−1, that is, rank(s) denotes the least i ≥ 0 such that s is included in
Ri. Define a memoryless strategy σ ∈ Σ for player 1 as follows: for each state
s ∈ (Attr1(U,G)∩S1) with rank(s) = i, choose a successor σ(s) ∈ (Ri−1 ∩E(s))
(such a successor exists by the inductive definition). It follows that for all states
s ∈ Attr1(U,G) and all strategies π ∈ Π for player 2, the play ω(s, σ, π) reaches
U in at most |Attr1(U,G)| transitions.

Proposition 2. For all game graphs G, all players � ∈ {1, 2}, and all sets
U ⊆ S of states, the set S \ Attr�(U,G) is a closed set for player �.

Notation. Given a priority function p: S → {0, 1, . . . , d − 1}, and a priority
j ∈ {0, 1, . . . , d − 1}, we write p−1(j) ⊆ S for the set of states with pri-
ority j. For #$∈ {<,≤, >,≥}, let p−1(#$ j) =

⋃
j′��j p

−1(j′). Moreover, let

1 The determinacy of games with finitary parity objectives can also be proved by
reduction to Borel objectives, using the determinacy of Borel games [10]; however,
our proof is direct.



266 K. Chatterjee and T.A. Henzinger

even(p) =
⋃

2j<d p
−1(2j) be the set of states with even priorities. We define

the set ReachSafe(p) =
⋃

2j+1<d(Reach(p−1(2j + 1)) ∩ Safe(p−1(≥ 2j + 1))) of
plays, i.e., the objective ReachSafe(p) requires that a state of some odd pri-
ority 2j + 1 be reached, and that the play stay within the set of states with
priorities at least 2j + 1. The complementary objective is Ω \ ReachSafe(p) =⋂

2j+1<d((Ω \ Reach(p−1(2j + 1))) ∪ Reach(p−1(≤ 2j) ∩ even(p))).

Informal description of Algorithm 1. The algorithm takes as input a game graph
G and a priority function p: S → {0, 1, . . . , d−1} with d priorities. The algorithm
iteratively computes the winning sets W1(finParity(p)) and W2(infParity(p)) for
player 1 and player 2, respectively. We describe one iteration of the algorithm
(i.e., one execution of the loop body at Step 2). Let Gi be the game graph at
iteration i, and let (Si, Ei) be the underlying directed graph. In Step 2.1, the
set A = Attr1(p−1(0), Gi) is computed as the set of states from which player 1
can reach a state of priority 0. In the sub-game Gi  B, where B = Si \ A, the
set C denotes the set of player 2 states that have an edge into A. In Step 2.3,
the set D = Attr2(C,Gi  B) is computed and the sub-game Gi  H is solved
recursively, where H = B \ D. If a non-empty player 1 winning set U1 is dis-
covered in the sub-game Gi  H , then U1 and Attr1(U1, G

i) are identified as
subsets of W1(finParity(p)), removed from Gi, and the algorithm proceeds to
iteration i + 1 (Step 2.5). Otherwise, the game graph Gi  B is solved with
the objective ReachSafe(p) for player 2 (and the complementary objective for
player 1). If the winning set for player 2 is empty, then all of Si is identified
as a subset of W1(finParity(p)), and the algorithm stops (Step 2.7). Otherwise,
let X2 be the winning set for player 2 in the sub-game Gi  B with respect to
the objective ReachSafe(p), and let L = Attr2(X2, G

i). The sub-game Gi  Q
is solved recursively, where Q = Si \ L. If a non-empty player 1 winning set Z1
is discovered in Gi  Q, then Z1 and Attr1(Z1, G

i) are identified as subsets of
W1(finParity(p)), removed from Gi, and the algorithm proceeds to iteration i+1
(Step 2.8.3). Otherwise, all of Si is identified as a subset of W2(infParity(p)),
and the algorithm stops (Step 2.8.4).

Claim 1: Correctness of Step 2.5. We first argue that the setH defined in Step 2.3
is a closed set for player 2. Observe that for all states s ∈ (S2 ∩ B), if E(s) is
not a subset of B, then s ∈ C. Hence for all states in s ∈ B \ C, we have
E(s) ⊆ B. It follows from Proposition 2 that H = B \ Attr2(C,Gi  B) is a
player 2 closed set in the game graph Gi. It follows from Proposition 1 that the
set U1 = WGi�H

1 (finParity(p)) in the sub-game Gi  H is winning for player 1.
Hence U1 and Attr1(U1, G

i) are correctly identified as subsets of the player 1
winning set W1(finParity(p)).

Claim 2: Correctness of Step 2.7. Observe that if Step 2.7 is executed, then
X2 = ∅, and hence player 1 wins with respect to the objective Φ =

⋂
2j+1≤d((Ω \

Reach(p−1(2j + 1))) ∪ Reach(p−1(≤ 2j) ∩ even(p))) from every state s ∈ B in
the sub-game Gi  B. Recall that B = Si \ A, and A = Attr1(p−1(0), Gi). It
follows that player 1 wins with respect to the objective Φ from all states s ∈ Si



Finitary Winning in ω-Regular Games 267

Algorithm 1. FinitaryParity

Input: a game graph G and a priority function p.
Output: the sets W1 = W1(finParity(p)) and W2 = W2(infParity(p)).

1. W1 = ∅; W2 = ∅; G0 = G; i = 0;
2. repeat

2.1. A = Attr1(p−1(0), Gi); B = Si \A;
2.2. C = {s ∈ (B ∩ S2) | Ei(s) ∩ A �= ∅};
2.3. D = Attr2(C,Gi  B); H = B \D;
2.4. (U1, U2) = FinitaryParity(Gi  H,p);
2.5. if U1 �= ∅ then

2.5.1. W1 = W1 ∪Attr 1(U1, G
i); Si+1 = Si \Attr 1(U1, G

i);
2.5.2. goto Step 2.9;

2.6. (X1, X2) = GameSolve(Gi  B, Ω \ReachSafe(p));
2.7. if X2 = ∅ then

2.7.1. W1 = W1 ∪ Si;
2.7.2. return (W1, W2);

2.8. else
2.8.1. L = Attr2(X2, G

i); Q = Si \ L;
2.8.2. (Z1, Z2) = FinitaryParity(Gi  Q,p);
2.8.3. if Z1 �= ∅ then

2.8.3.1. W1 = W1 ∪ Attr1(Z1, G
i); Si+1 = Si \ Attr1(Z1, G

i);
2.8.3.2. goto Step 2.9;

2.8.4. else
2.8.4.1. W2 = W2 ∪ Si;
2.8.4.2. return (W1, W2);

2.9. Gi+1 = Gi  Si+1; i := i + 1;
until Si = ∅;

3. return (W1, W2).

in the game graph Gi. Hence p−1(2j + 1) ⊆ Attr1(p−1(≤ 2j) ∩ even(p), Gi)
for all 2j + 1 < d. We inductively define the following sets: let A0 = A =
Attr1(p−1(0), Gi); and let A2j = Attr1(p−1(2j), Gi  (Si\A2j−2)) for 2 ≤ 2j < d.
Observe that p−1(2j + 1) ⊆

⋃
j′≤j A2j′ . A memoryless strategy σ for player 1

can be constructed as follows: in A0, reach p−1(0) within |A0| transitions;
and in the sub-game Gi  (Si \ A2j−2), reach p−1(2j) within |A2j | transi-
tions from all states in A2j . If player 1 follows the strategy σ, then for all
player 2 strategies π, if the play visits a state in p−1(2j + 1), then it visits
p−1(≤ 2j)∩even(p) within |Si| transitions. Thus, for all states s and all player 2
strategies π, we have distk(ω(s, σ, π), p) ≤ |Si| for all k ≥ 0, and therefore
lim supk→∞ distk(ω(s, σ, π), p) <∞.

Claim 3: Correctness of Step 2.8.3. Observe that L = Attr2(X2, G
i), and hence

Q = Si \ L is a closed set for player 2 (by Proposition 2). It follows from
arguments similar to the correctness of Step 2.5 that Z1 and Attr1(Z1, G

i) are
correctly identified as subsets of W1(finParity(p)).



268 K. Chatterjee and T.A. Henzinger

Claim 4: Correctness of Step 2.8.4. Observe that if Step 2.8.4 is executed, then
the following two conditions hold: (i) player 2 has a winning strategy πH from
H with respect to the objective infParity(p) in the sub-game Gi  H (because
the test of Step 2.5 fails); and (ii) player 2 has a winning strategy πQ from Q
with respect to the objective infParity(p) in the sub-game Gi  Q (because the
test of Step 2.8.3 fails). We construct a winning strategy π for player 2 from Si

which is played in rounds. In every round, there are five stages, and we describe
each stage of the strategy π for round r as follows:

Stage 1. [play in Q] As long as the play stays in Q, play the strategy πQ (the
player 2 winning strategy from Q in the sub-game Gi  Q with respect to
the objective infParity(p)). If the play enters L = Si \Q, proceed to Stage 2.

Stage 2. [play in L] Play a strategy πL to reach X2 within |L| transitions, and
proceed to Stage 3 when the play reaches X2.

Stage 3. [play in X2] Play a winning strategy πX2 with respect to the objective
ReachSafe(p) in the sub-game Gi  B. After the play reaches a state in
p−1(2j + 1) ∩ B, and stays in p−1(≥ 2j + 1) ∩ B for r transitions, proceed
to Stage 4.

Stage 4. [play in H ] As long as the play stays in H , play the strategy πH (the
player 2 winning strategy from H in the sub-game Gi  H with respect to
the objective infParity(p)). If the play enters D = B \H , proceed to Stage 5.

Stage 5. [play in D] Play a strategy to reach C within |D| transitions, then
leave B via an edge from C to A, and proceed to Stage 1 of round r + 1.

Given the player 2 strategy π, consider a player 1 strategy σ and a state s ∈ Si.
Observe that if the play ω(s, σ, π) reaches Stage 2 of a round r, then Stages 3
and 4 of round r are also reached. Similarly, if stage 5 of round r is reached, then
Stages 1 or 2 of round r+1 are also reached. If the play ω(s, σ, π) remains forever
in Stage 1 or Stage 4 for some round r, then by properties of πH and πQ (condi-
tions (i) and (ii) from above), it follows that ω(s, σ, π) ∈ infParity(p). Otherwise,
the play proceeds through infinitely many rounds. Stage 3 of the strategy π en-
sures that in round r, there is a position k ≥ 0 such that distk(ω(s, σ, π), p) ≥ r.
Hence it follows that lim supk→∞ distk(ω(s, σ, π), p) = ∞, and thus again
ω(s, σ, π) ∈ infParity(p).

The claims 1–4 establish the correctness of Algorithm 1, and also establish the
determinacy of games with finitary parity objectives.

Theorem 2 (Finitary determinacy). For all game graphs and all priority
functions p, we have W1(finParity(p)) = S \W2(infParity(p)).

Running time of Algorithm 1. Recall from Remark 1 that for priority functions
p with two priorities, the winning sets for the classical parity objective Parity(p)
and for the finitary parity objective finParity(p) coincide. Hence, for two priori-
ties the winning set W1(finParity(p)) can be computed in O(n ·m) time, where
n is the number of states and m is the number of edges (by algorithms for
solving Büchi and co-Büchi games). For priority functions with d priorities, let
T (n,m, d) be the running time of Algorithm 1 to compute W1(finParity(p)) and



Finitary Winning in ω-Regular Games 269

W2(infParity(p)). The running time of one iteration of the algorithm (i.e., one
execution of the loop body at Step 2) can be bounded by n · (T (n,m, d − 1) +
O(d · m)). Since in each iteration at least one state is removed from the game
graph, we obtain the recurrence T (n,m, d) = n2 · (T (n,m, d− 1) +O(d ·m)) for
d > 2. This yields the time bound in the following theorem.

Theorem 3 (Algorithm 1). Given a game graph with n states and m edges,
and a priority function p with d priorities, Algorithm 1 computes the winning
sets W1(finParity(p)) and W2(infParity(p)) in O

(
n2d−3 · d ·m

)
time.

Winning strategies for finitary parity objectives. We first show that win-
ning strategies for player 2 with respect to the objective infParity(p) in general
require infinite memory. To see this, recall Example 1: the player 2 winning
strategy πw constructed in the example requires infinite memory, and against
any finite-memory strategy πf for player 2, the player 1 strategy σ that chooses
the successor s2 at state s0, ensures that in the play ω(s0, σ, πf ) the distances
between states of priority 1 and priority 0 are always bounded. In contrast to
winning strategies for player 2, which may require infinite memory, we now ar-
gue that memoryless winning strategies exist for player 1. This follows from the
analysis of Steps 2.5, 2.7, and 2.8.3 of Algorithm 1. In the correctness argu-
ment for Step 2.7, a memoryless winning strategy is constructed. The existence
of memoryless winning strategies for Steps 2.5 and 2.8.3 follow from inductive
arguments (induction on the number of priorities for Step 2.5, and induction on
the size of the state space for Step 2.8.3).

Witness sizes for winning strategies. Since memoryless winning strategies exist
for player 1, there exist polynomial-size witnesses (in fact, linear-size witnesses)
for player 1 winning strategies. We now argue that although player 2 winning
strategies may require infinite memory, there exist polynomial-size witnesses for
these strategies as well. Consider the correctness argument for Step 2.8.4 of
Algorithm 1. The sets used in the analysis can serve as witness for the player 2
winning strategy. The witness consists of the following components: (a) the sets
A = Attr1(p−1(0), Gi) and B = Si \ A; (b) the sets C and D = Attr2(C,Gi 
B) and H = B \ D; (c) the set X2 = WGi�B

2 (ReachSafe(p)), and a player 2
winning strategy in X2 with respect to the objective ReachSafe(p); (d) the set
L = Attr2(X2, G

i), and a player 2 winning strategy in L to reach X2; and
(e) player 2 winning strategies in the sub-games Gi  H and Gi  Q. Given
such a witness, the existence of a player 2 winning strategy follows from the
construction presented in the correctness argument for Step 2.8.4. It is easy to
argue that linear-size witnesses exist for parts (a)–(d). The witness for part (e) is
recursive. A key observation to obtain a polynomial-size witness is the following:
in Stage 1 of the strategy construction, in the set Q∩H player 2 can follow the
winning strategy inH of the sub-game Gi  H . Hence the witness in Q can follow
the witness of H in the set Q ∩ H , and we need to exhibit a different witness
in Q only for the subset that is disjoint from H . Let Size(t) denote the size of
the witness for a set of size t. Hence the witness consists of the witness in H of
Size(|H |), the witness in Q of size Size(|Q\H |), and witnesses of linear size. Thus



270 K. Chatterjee and T.A. Henzinger

we have the recurrence Size(n) ≤ max{Size(h)+Size(n−h)+O(n) | 1 ≤ h ≤ n},
where h denotes the size of the setH , that is, h = |H |. This recurrence is satisfied
by Size(n) = O(n2).

Theorem 4 (Finitary strategy complexity). For all game graphs and all
priority functions p, there exists a memoryless winning strategy for player 1
with respect to the objective finParity(p). However, in general no finite-memory
winning strategy exists for player 2 with respect to the complementary objective
infParity(p). For game graphs with n states, there are witnesses of size O(n) and
O(n2) for the winning strategies for player 1 and player 2, respectively.

Computational complexity. The existence of memoryless winning strategies for
player 1 implies that whether a given state lies in W1(finParity(p)) can be de-
cided in NP. Moreover, because of the existence of polynomial-size witnesses for
player 2 winning strategies, also whether a given state lies in W2(infParity(p))
can be decided in NP.

Corollary 1. For all game graphs, all priority functions p, and all states s,
whether s ∈W1(finParity(p)) can be decided in NP ∩ coNP.

It remains an open problem if there is a polynomial-time algorithm to compute
W1(finParity(p)). The existence of memoryless winning strategies for finitary
parity objectives also gives the following refined characterization of the winning
set, which shows that distances can be bounded by the size of the state space.

Corollary 2. For all game graphs with n states, and all priority func-
tions p, we have W1(finParity(p)) = {s ∈ S | ∃σ ∈ Σ. ∀π ∈ Π.
lim supk→∞ distk(ω(s, σ, π), p) ≤ n}.

Solving games with finitary Streett objectives. The index appearance
record (IAR) construction [13] translates games with player 1 Streett objec-
tives into games with parity objectives, preserving the abilities of both play-
ers to win. Given a game graph G with n states and m edges, and a set
P = {(E1, F1), . . . , (Ed, Fd)} of d Streett pairs, the IAR construction yields a
game graph G′ with n · d! · d2 states and m · d! · d2 edges, and a priority function
p with O(d) priorities. We only sketch the construction here. An IAR is a triple
(τ, e, f), where τ is a permutation of (1, 2, . . . , d), and e, f ∈ {1, 2, . . . , d}. The
permuation τ remembers the order of the latest appearances of the sets Ej , for
1 ≤ j ≤ d, and the indices e and f remember the previous positions in τ of the
most recent sets Ej and Fj , respectively. The new game graph G′ is obtained as
the synchronous product of the original game graph G and the IAR; see [13]. For
a state 〈s, (τ, e, f)〉 ofG′ (where s is a state ofG), the priority function p is defined
such that p(〈s, (τ, e, f)〉) = 2e if f ≤ e, and otherwise p(〈s, (τ, e, f)〉) = 2f − 1.
The IAR reduction from Streett to parity games ensures that for every play
in G, the limsup of the Streett distance sequence is bounded by d! · d2 times the
limsup of the parity distance sequence for the corresponding play in G′.

Theorem 5 (Finitary Streett games). Given a game graph G with n states,
m edges, and a set P of d Streett pairs, let G′ be the game graph with n · d! · d2



Finitary Winning in ω-Regular Games 271

states and m · d! · d2 edges, and let p be the corresponding priority function
with O(d) priorities, obtained by the IAR construction. For a play ω′ in G′, let
ω be the corresponding play in G. If lim supk→∞ distk(ω′, p) = α < ∞, then
lim supk→∞ distk(ω, P ) ≤ α · d! · d2, and if lim supk→∞ distk(ω′, p) = ∞, then
lim supk→∞ distk(ω, P ) = ∞.

Hence solving games with finitary Streett objectives can be reduced to solv-
ing games with finitary parity objectives. Using Theorem 2, Theorem 3, and
Theorem 4 we obtain the following corollary.

Corollary 3. For all game graphs with n states and m edges, and all sets P of
d Streett pairs, the following assertions hold.

1. W1(finStreett(P )) = S \W2(Ω \ finStreett(P )).
2. W1(finStreett(P )) can be computed in O((n · d! · d2)2d−3 ·m · d! · d3) time.
3. There exists a finite-memory winning strategy for player 1 with respect to the

objective finStreett(P ). However, in general no finite-memory strategy exists
for player 2 with respect to the complementary objective Ω \ finStreett(P ).

It follows that whether a state lies in W1(finStreett(P )) can be decided in
EXPTIME. The exact complexity of the problem remains open.

References

1. B. Alpern and F.B. Schneider. Defining liveness. Information Processing Letters,
21:181–185, 1985.

2. R. Alur and T.A. Henzinger. Finitary fairness. In Proc. Logic in Computer Science,
pages 52–61. IEEE Computer Society, 1994.

3. R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic. J.
ACM, 49:672–713, 2002.

4. N. Dershowitz, D.N. Jayasimha, and S. Park. Bounded fairness. In Verification:
Theory and Practice, pages 304–317. LNCS 2772, Springer, 2003.

5. E.A. Emerson and C. Jutla. The complexity of tree automata and logics of pro-
grams. In Proc. Foundations of Computer Science, pages 328–337. IEEE Computer
Society, 1988.

6. Y. Gurevich and L. Harrington. Trees, automata, and games. In Proc. Symp.
Theory of Computing, pages 60–65. ACM, 1982.

7. F. Horn. Streett games on finite graphs. Workshop on Games in Design and
Verification, 2005.

8. M. Jurdzinski. Small progress measures for solving parity games. In Symp. Theo-
retical Aspects of Computer Science, pages 290–301. LNCS 1770, Springer, 2000.

9. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer, 1992.

10. D.A. Martin. Borel determinacy. Annals of Mathematics, 102:363–371, 1975.
11. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. Principles

of Programming Languages, pages 179–190. ACM, 1989.
12. P.J. Ramadge and W.M. Wonham. Supervisory control of a class of discrete-event

processes. SIAM J. Control and Optimization, 25:206–230, 1987.
13. W. Thomas. Languages, automata, and logic. In Handbook of Formal Languages,

volume 3, pages 389–455. Springer, 1997.



Efficient Model Checking for LTL with Partial
Order Snapshots

Peter Niebert1 and Doron Peled2

1 Laboratoire d’Informatique Fondamentale de Marseille,
CMI, 39, rue Joliot Curie, 13453 Marseille Cedex 13, France
2 Department of Computer Science, University of Warwick,

Coventry CV4 7AL, United Kingdom

Abstract. Certain behavioral properties of distributed systems are dif-
ficult to express in interleaving semantics, whereas they are naturally ex-
pressed in terms of partial orders of events or, equivalently, Mazurkiewicz
traces. Examples of such properties are serializability of a database or
snapshots. Recently, a modest extension for LTL by an operator that
expresses snapshots has been proposed. It combines the ease of linear
(interleaving) specification with this useful partial order concept. The
new construct allows one to assert that a global snapshot (also called
a slice or a cut) was passed, perhaps not in the observed (interleaved)
execution sequence, but possibly in a (trace) equivalent one. A model
checking algorithm was suggested for a subset of this logic, with PSPACE
complexity in the size of the system and the checked formula. For the
whole logic, a solution that is in EXSPACE in the size of the system
(PSPACE in the number of its global states) was given.

In this paper, we provide a model checking algorithm in PSPACE in
the size of a system of communicating sequential processes when restrict-
ing snapshots to boolean combinations of local properties of each process.
Concerning size of the formula, it is PSPACE for the case of snapshot
properties expressed in DNF, and EXPSPACE where a translation to
DNF is necessary.

1 Introduction

Automatic verification of concurrent systems is highly challenging. The exponen-
tial growth of the state space with the number of processes makes the problem
intractable, as well as all the more important. Except for the intractability is-
sue, one needs also to consider expressiveness, i.e., the ability to formulate the
desired properties of the verified system. These two issues are not independent,
as increasing the expressiveness may also increase complexity. The goal is there-
fore to find a formalism that can express common and useful specifications in a
compact way, while still having a relatively efficient decision procedure.

Traditionally, concurrent systems are modeled using interleaving semantics,
where occurrence of actions from different processes appear in either order in
different execution sequences. Intuitively, sequences that differ only in the rela-
tive order of such occurrences can be considered as two representations for the
same behavior. However, the interleaving model does not make any use of this

H. Hermanns and J. Palsberg (Eds.): TACAS 2006, LNCS 3920, pp. 272–286, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Efficient Model Checking for LTL with Partial Order Snapshots 273

observation. The interleaving model is rather simple, and as such enjoys the
benefit of using powerful mathematical tools for verification, e.g., based on fi-
nite automata [11]. The partial order model has been extensively studied within
concurrency theory. It offers a more intuitive view than the interleaving seman-
tics, as concurrent occurrences appear unordered, rather than one after another.
However, formalisms that are based on that model and include global states have
turned out to have highly intractable computational complexity. For example,
EXSPACE-complete for the until-free version of ISTL [8, 1], and non-elementary
for LTrL [1, 10].

This situation promoted a debate about the practicality of using the partial
order model in automatic verification. Independent of this debate, practice shows
that to a large extent, using the interleaving model for concurrency is sufficient in
most cases. On the other hand, there are some cases where it is highly beneficial
to exploit the connection between the interleaving and partial order models. In
particular, one can consider all the linearizations (completions into total orders)
of a partial order as equivalent; indistinguishable from each other for an observer
that can simultaneously compare local states at multiple processes. Although not
very common, such a distinction is made in some concurrent algorithms. One
example of this is the calculation of global snapshots [2], i.e., a distributed global
state of the system. Such a snapshot may not appear on an interleaving sequence
in which it is accumulated, but rather on an equivalent one. Another example
is database serializability, where transactions are designed to appear one after
another in at least one representative out of every equivalence class of sequences.

The challenge here is therefore to design a specification formalism that allows
using the traditional interleaving view, yet allow expressing some useful partial
order aspects. Moreover, we would like to keep the complexity as low as possible.
As learned from the high complexity of temporal logics with global states, we aim
at a modest extension. We follow [4], where the logic LTL was expanded with the
snapshot operator [p], with p a propositional formula. The new operator asserts
that a global snapshot satisfying p appears in the past on some interleaving
sequence equivalent to the current one. This logic was titled in [4] SLTL, for
Snapshot Linear Temporal Logic.

A model checking algorithm for SLTL was given in [4]. The complexity of
this logic was rather high. Given a verified system B with set of actions Σ
and an SLTL property ϕ, the space complexity was polynomial in 2|B|+|Σ| +
|ϕ|, where |B| is the size of the system calculated by adding the size of the
local processes. For comparison, model checking for LTL can be done in space
complexity polynomial in O(|B| + |ϕ|).

In this paper we provide a more efficient algorithm tailored for synchronous
communication systems in the style of CSP [5]. This means that each action is
either local to one process or synchronously involving groups (pairs) of processes
(changing their local states simultaneously). Moreover, we restrict specifying
snapshots by using Boolean combinations of propositional assertions expressing
properties of local states. For example, we do not allow a proposition q that
asserts that the sum of a variable x of process p1 and y of process p2 is even.



274 P. Niebert and D. Peled

Instead, we may need to have a proposition q1 representing that x is even and
q2 representing that y is even, and can replace q by q1 ↔ q2.

Under these definitions, we give a new model checking algorithm for SLTL
with space complexity polynomial in (|B| + 2|ϕ|). The substantial improvement
over previous work is that the current algorithm is PSPACE in terms of the
system description, which is typically the big part of the input. Moreover, the
exponential complexity in the formula results from the requirement of the con-
struction that occurrences of the snapshot operator [p] are applied to proposi-
tional formulas in disjunctive normal form. In transforming arbitrary boolean
properties to DNF, an exponential blowup may occur. When restricting occur-
rences of the snapshot operator to formulae in DNF, the space complexity is
polynomial in (|B| + |ϕ|).

Our construction introduces freeze automata, which are capable of determin-
ing the first state in the computation where we subsumed some global snapshot
from an equivalent execution.

Webelieve that ourmodel checking algorithm,whose complexity is not farworse
than that for LTL, makes model checking using partial order with snapshot prac-
tical, as opposed to the high complexity of using previous such temporal logics.

The paper is structured as follows. In Section 2, we formalize communication
sequential processes as a model of concurrent systems. In Section 3, we recall
Snapshot LTL, slightly adapted to the model proposed in Section 2. In Section 4,
we present the new model checking algorithm, prove its correctness and analyze
its complexity.

2 Preliminaries

Communicating Sequential Processes

We first give a simple model of communicating sequential processes [5]. A sys-
tem of communicating sequential processes is a structure B with the following
components:

1. Proc is a finite set of processes,
2. Σx an alphabet of actions for every x ∈ Proc.
3. Px a set of local properties for every x ∈ Proc, such that Px ∩ Py = ∅ for
x �= y.

4. Sx a set of local-states of the process x for every x ∈ Proc, s0x ∈ Sx the
initial state.

5. λx : Sx −→ 2Px an evaluation function of local properties for every x ∈ Proc.
6. δx : Sx ×Σx −→ Sx the deterministic transition function. The functions δx

are partial in the sense that δx(sx, a) does not have to be defined. If it is
defined, we say that a is enabled at sx, otherwise, a is disabled.

Note that we do not require the local alphabets to be disjoint. Common actions
are used to synchronize local processes, giving rise to a global transition system.

The transition system for B is a structure TB = 〈S,Σ, δ, s0, P, λ〉, where

1. S =
∏

x∈Proc Sx,
2. Σ =

⋃
x∈ProcΣx the global alphabet of actions,



Efficient Model Checking for LTL with Partial Order Snapshots 275

3. δ : S × Σ −→ S the global transition relation with δ(Πx∈Proc(sx), a) =
Πx∈Proc(tx) iff for all x with a /∈ Σx it holds that sx = tx (non participants
do not change state), tx = δx(sx, a) and a is enabled from sx for each process
x such that a ∈ Σx.

4. s0 = Πx∈Proc(s0x),
5. P =

⋃
x∈Proc Px.

6. λ : S −→ 2P such that for p ∈ Py it holds that p ∈ λ(Πx∈Proc(sx)) iff
p ∈ λy(sy).

For convenience, we inductively extend the transition function δ to words:
δ(s, ε) = s and δ(s, ua) = δ(δ(s, u), a). Denote proc(a) = {x|a ∈ Σx}, and
extend it to proc(v) =

⋃
i{proc(ai)|v = a1a2 . . . an}.

For simplicity, we assume that δ is total, i.e., for every state s ∈ S there exists
some a ∈ Σ and s′ ∈ S such that δ(s, a) = s′. An execution of B is an infinite
sequence v ∈ Σω such that v = a0a1a2 . . . and there exists an infinite sequence
of states from S, g0g1g2 . . . where,

1. g0 = s0, i.e., the sequence starts with the initial state of B.
2. si+1 = δ(si, ai), for i ≥ 0.

Trace Equivalence

Based on B, we define an independence relation on Σ, the irreflexive and sym-
metric relation I ⊆ Σ × Σ, such that a I b iff proc(a) ∩ proc(b) = ∅. For two

words u, v ∈ Σ∗, write u
1≡ v if there exist words w1, w2 and letters a, b such

that (a, b) ∈ I, u = w1abw2 and v = w1baw2, i. e., if u is obtained from v by
exchanging the order of two adjacent independent letters. Let ≡ be the reflexive
and transitive closure of the relation

1≡. We say that u and v are trace equiv-
alent [6] over (Σ, I) if u ≡ v. That is, u is trace equivalent to v if u can be
obtained from v by repeatedly commuting adjacent independent letters.

By simple induction, if u and v are trace equivalent, then δ(s, u) = δ(s, v)
and this holds in particular at s = s0, the initial state. Let a ∈ Σ and p ∈ Px for
some x. Then we say that a is visible w.r.t. p if a ∈ Σx, invisible otherwise. If a
is invisible w.r.t. p, then in particular p ∈ λ(s) iff p ∈ λ(δ(s, a)) for any state s.

A global execution sequence (or interleaving sequence) ξ = g0a0g1a1g2 . . . of
B is an infinite (alternating) sequence in (S × Σ)ω such that g0 = s0, and for
each i ≥ 0 we have gi+1 = δ(gi, ai). Note, that this sequence is determined by
the infinite sequence a0a1 . . . ∈ Σω because B is deterministic.

Denote by u ≺ v the fact that u is a finite prefix of v.

Definition 1. The limit extension ≈lim ⊆ Σω ×Σω of an equivalence relation
≈ ⊆ Σ∗ ×Σ∗ is defined by w1 ≈lim w2 if and only if

– for every u ∈ Σ� such that u ≺ w1 there exist v, v′ ∈ Σ� such that v ≺ w2
and uv′ ≈ v, and

– for every u ∈ Σ� such that u ≺ w2 there exist v, v′ ∈ Σ� such that v ≺ w1
and uv′ ≈ v.



276 P. Niebert and D. Peled

Two infinite words w1 and w2 are said to be trace equivalent if w1 ≡lim w2. We
denote trace equivalence for both finite and infinite words by using ≡. A trace
is then defined to be such an equivalence class. We sometimes denote a trace by
writing one representative of the equivalence class in square brackets, e.g., when
aIb and aIc but ¬bIc, [abac] = {baac, abac, aabc, baca, abca bcaa}. The alphabet
and independence relation should be clear from the context. We say that a trace
[u] subsumes [v], denoted [v] � [u] if there exists some v′ such that u ≡ vv′.

3 Snapshot Linear Temporal Logic

We recall the definition of Snapshot Linear Temporal Logic (SLTL) as an ex-
tension of LTL with a construct for dealing with snapshots. We call the new
extension Snapshot Linear Temporal Logic or SLTL. Let P be the finite set of
propositional formulas of a system of communicating sequential processes. Let
Bool (P ) be the set of Boolean combinations with propositions over P .

ϕ ::= (ϕ) | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | © ϕ | �ϕ | �ϕ | ϕUϕ | ϕVϕ | q | [q]

where q ∈ Bool (P ). Note that the ‘[ ]’ construct is applied only to a Boolean
expression of local propositions, never to a formula with modalities. Note also
that we use square brackets for two different (although related) notions: for trace
equivalence classes, as in the previous section, and in the SLTL logic to denote
that a Boolean combination holds in a subsumed snapshot.

The semantic interpretation of SLTL with respect to a system B is defined
over a pair of sequences u ∈ Σ� and v ∈ Σω.

• (u, v) |= ©ϕ iff for some a ∈ Σ such that v = av′ it holds that (ua, v′) |= ϕ.
• (u, v) |= ϕUψ iff there exists w, v′, where v = wv′, such that (uw, v′) |= ψ

and for any decomposition w=w1w2 where w2 is nonempty, (uw1, w2v) |= ϕ.
• (u, v) |= ¬ϕ iff it is not the case that (u, v) |= ϕ.
• (u, v) |= ϕ ∨ ψ iff either (u, v) |= ϕ or (u, v) |= ψ.
• (u, v) |= p iff p ∈ λ(δ(s0, u)).
• (u, v) |= [q] iff there exist a sequence u1, u2 ∈ Σ� such that u ≡ u1u2 and

(u1, u2v) |= q. Note that since q is restricted to be a boolean combination of
atomic propositions, this depends only on a subsumed trace [u1] � [u] and
the set of satisfied propositions λ(δ(s0, u1)).

For the rest of the temporal operators, their semantics is implied by the
following definitions as usual: ϕ ∧ ψ = ¬((¬ϕ) ∨ (¬ψ)), ϕ → ψ = (¬ϕ) ∨ ψ,
ϕVψ = ¬((¬ϕ)U(¬ψ)), true = p ∨ ¬p, false = p ∧ ¬p, �ϕ = falseVϕ, and
�ϕ = trueUϕ.

We recall some properties of the snapshot operator:

�([p] → �[p]) Monotonicity of the snapshot operator.
�(p→ [p])
�(([p ∧ q]) → [p] ∧ [q])
�(([p] ∨ [q]) ↔ [p ∨ q])
�(¬[p] → [¬p])



Efficient Model Checking for LTL with Partial Order Snapshots 277

A formula ϕ holds for a system (or program) B (written B |= ϕ) iff (ε, u) |= ϕ
for every execution u of B, u ∈ Σω. Given B and ϕ, the model checking problem
is to verify whether B |= ϕ, or, equivalently, if there exists an execution u such
that (ε, u) |= ¬ϕ.

We refer to each state subsumed by the execution as a snapshot. Formally, a
snapshot of an infinite execution u of a system B is any state s such that there
exists a finite prefix v of u with u = v w, [v] = [v1 v2] and s = δ(s0, v1). Thus,
the “S” in SLTL, which stands for “snapshot” refers to the ability of the logic
to refer also to subsumed states, rather than only to the states appearing on a
given execution sequence.

Consider the formula �ϕ ∧ �[ψ], where ϕ and ψ are Boolean combinations
of local properties of the involved processes. It asserts that ϕ holds in every
state of an execution, while ψ holds on a snapshot of at least one equivalent
sequence, but not necessarily the observed one, as opposed to the usual LTL
formula �ϕ ∧ �ψ. The formula (¬[ϕ])U [ψ] means that ϕ does not hold for any
snapshot subsumed by states of the execution until the first state that subsumes
a snapshot satisfying ψ. This can be compared to (¬ϕ)Uψ, in which ϕ and ψ
only refer to the states on the current execution sequence. For more motivation
for the SLTL logic, refer to [4].

In [4], a model checking algorithm for Snapshot LTL was given. It is in EX-
PSPACE with a space complexity of O(|S| × 2|Σ| × |ϕ|). Note, that the com-
plexity is actually EXPSPACE in |B|. This is due to the fact that the algorithm
remembers sets of visited states. For a sublogic with only negative occurrences
of the snapshot operator [q], a PSPACE algorithm was given.

3.1 Elements of the Original Snapshot Construction

In [4], the algorithm for model checking SLTL uses particular components based
on remembering past global states, which is the source of its EXPSPACE
complexity.

The core of that construction is a deterministic automaton that remembers
subsumed states. Formally, for a sequence u we keep track of all states s such that
[u] = [u1u2] and s = δ(s0, u1), even when u1 is a proper prefix of u. In order to
find these global states, more information is required. As a first attempt, we could
remember all pairs (s, u2) for this decomposition. A state of such an automaton,
which keeps track of subsumed states thus, consists of a set of such pairs. It
always contains the pair (δ(u), ε) with the current state δ(u) obtained from the
initial state s0 after executing the sequence u. When performing a transition and
appending the action a to u (thus arriving at the prefix ua), this induces the
substitution of (s, u2) by (s, u2a). If a is independent of all of u2, another state
is subsumed, as is expressed by the pair (δ(s, a), u2). It can be shown that this
approach actually maintains all subsumed states (with the information how to
go “backwards” to them). However, because of keeping sequences of actions, the
set of pairs maintained in this way may be infinite.

Now observe that the only relevant aspect of u2 (as in [u1u2]) is whether an
appended label a is fully independent of u2 or not. Hence, instead of having a
sequence component u2 in a pair, as above, u2 can be abstracted to information



278 P. Niebert and D. Peled

representing dependency. In [4] this is done by remembering the set of occurring
labels, thus the “subsumed states tracker” contains, in addition to the current
state, pairs (s,A), where s ∈ S and A ⊆ Σ.

• The number of pairs of such a tracker is 2S×2Σ

, and the memory required
for representation of a tracker is thus |S| × 2|Σ| bits. Note that typically |S|
is already exponential in the number of concurrent components.

• The initial tracker is {(s0, ∅)}.
• For a tracker M and an action a, the successor tracker is the least set M ′

such that if (s,A) ∈M ,
1. (s,A ∪ {a}) ∈M ′,
2. (δ(s, a), A) ∈M ′ if for all b ∈ A we have a I b.

Then, given a snapshot formula [q] the automaton has as accepting states those
that include a pair (s,A) such that λ(s) implies the satisfaction of q at s. It was
shown in [4], that without assumptions on the properties that could be satisfied
by arbitrary subsets of the set of states, no smaller deterministic automaton
accepting [q] prefixes exists.

In this paper, we follow a different path by looking in more detail on the
structure of the properties in the snapshot operator.

4 A New Model Checking Algorithm

The construction given in this paper is based on a generic LTL model checking
procedure, augmented with additional components for the snapshot formulas.

4.1 Freeze Automaton

Let q =
∧

i∈Proc qi be a conjunction of local state properties (that is, each qi ∈
Bool (Pi)). With respect to the full logic, this restriction excludes, for instance,
disjunctions between propositions of distinct processes. We will see later how to
treat the general case. For simplicity, we assume a conjunct for every process,
hence this can include in particular qi = true.

We present a construction of a deterministic freeze automaton that recognizes
prefixes u of sequences uv such that (u, v) |= [q].

• The statesof the freeze automaton freeze(
∧

i∈Proc qi) arepairs (s, {F1, . . . , Fk})
of a system state s and a set of freeze sets Fj ⊆ Proc. Each such set Fj rep-
resents a subset of the processes where a collection of local states that satisfy
a part of the above conjunction were found. Namely

∧
i∈Fj

qi. Furthermore,
this collection of local states can still be potentially completed after u into
a full state that satisfies q.

We add a flag that is set to true when we have in the state a freeze set that
contains all the processes. Subsequently, the flag remains true and thereafter
we do not need to update the freeze sets.

• The initial state is the set of all subsets of {i | qi ∈ λ(s0)}.
• The successor relation is defined as follows. Let a ∈ Σ and (s,G) with G =
{F1, . . . , Fk} some set of freeze sets, s a state of the system and s′ = δ(s, a)



Efficient Model Checking for LTL with Partial Order Snapshots 279

the successor system state and addproc(s, a) = {j | a ∈ Σj ∧ qj ∈ λ(δ(s, a))}
the set of processes participating in a such that their parts of the state
property q are satisfied after the transition a. Then the successor state in
the freeze set automaton is (s′, G′) where G′ is the least set such that
extension For every F1 ⊆ addproc(s, a) and every F2 ∈ G such that proc(a)∩
F2 = ∅ we have F1 ∪F2 ∈ G′. Note that F1, F2 can also include here the
empty set.
This is the case where we can extend (or propagate, when F2 = ∅) a
freeze set from a previous state with some processes; these processes are
not in the old freeze set and have just participated in the execution of
the most recent action, and furthermore their new local states satisfy the
corresponding literals of the conjunction q.

propagation For every F ∈ G with proc(a) ⊆ F also F ∈ G′.
This is the case where freeze sets propagate (without extension) from a
previous state to the current one when the set of processes involved in
the most recent action is included in the freeze set.

The crucial aspect of the freeze automata is given in the following lemma.

Lemma 1. Let u ∈ Σ∗ and let (s,G) be the state of the freeze automaton reached
after u (in particular s = δ(s0, u)), and let F ⊆ Proc be some set of processes.
Then F ∈ G iff there exists a decomposition [u] = [u1u2] such that proc(u2) ⊆ F
(actions in u2 are limited to processes in F ) and qj ∈ λ(δ(s0, u1)) for all j ∈ F .

Proof. The lemma states an invariant, which we prove by induction on |u|.
In the case of u = ε the obvious decomposition is u1 = u2 = ε with proc(u1) =

∅ ⊆ F for any F ⊆ Proc. The statement of the lemma then degenerates to the
fact that F ⊆ {x|qx ∈ λ(s0)}, which corresponds precisely to the definition of
the initial state of the freeze automaton.

Now let u = u′a, (s,G) be the state of the freeze automaton reached by u′a,
and (s′, G′) be the state of the freeze automaton reached by u′.

⇒: Let F ∈ G. The inductive definition of the sets G allows for two cases
(according to the two rules used in the transition relation of the freeze set au-
tomaton):

• By using the extension rule, there is some F ′ ∈ G′ with F = F ′ ∪ F ′′ with
F ′′ ⊆ addproc(s′, a) ⊆ proc(a) and moreover

F ′ ∩ proc(a) = ∅. (1)

Then apply by induction the lemma to u′, F ′. Let u1 = u1
′ and u2 = u2

′.
We obtain a decomposition [u′] = [u′1u

′
2] with [u′1u

′
2a] = [u′a], where

proc(u2
′) ⊆ F ′ (2)

and qx ∈ λ(δ(s0, u′1)) for each x ∈ F ′. Because of (1) and (2), all actions in u′2
are independent of a and hence [u1

′au2
′] = [u1

′u2
′a]. Thus, the actions in u2

are also invisible for qx for each x ∈ F ′′ ⊆ proc(a), and we also obtain qx ∈
λ(δ(s0, u′1a)) for each x ∈ F ′′. Hence, the decomposition [u′a] = [(u′1a)u′2]
satisfies the desired consequence.



280 P. Niebert and D. Peled

• By using the propagation rule, F ∈ G′ and proc(a) ⊆ F . In this case, we apply
the induction hypothesis to u′ thus obtaining a decomposition [u′] = [u′1u

′
2]

with qx ∈ λ(δ(s0, u′1)) for each x ∈ F and proc(u′2) ⊆ F and we can extend
it to a desired decomposition [u] = [u1u2] with u1 = u′1 and u2 = u′2a.

⇐: Now let [u′a] = [u1u2] such that proc(u2) ⊆ F and qx ∈ λ(δ(s0, u1)) for
all x ∈ F . We have to show that F ∈ G for the set G reached by u = u′a. There
are three cases concerning this decomposition:

• proc(a) ⊆ F . Then either (1a) a decomposition as required exists already
for u′, i.e.[u′] = [u′1u

′
2], proc(u

′
2) ⊆ F , qx ∈ λ(δ(s0, u′1)) with x ∈ F , in

which case the induction hypothesis will yield F ∈ G′ where G′ is the set
of freeze sets reached by u′, which is preserved in G due to the propagation
rule for freeze sets. Or (1b) a decomposition as required does not exist for
u′. In this case, the decomposition [u′a] = [u1u2] with qx ∈ λ(δ(s0, u1)) for
all x ∈ F will not have a occur in u2 and can be assumed to have it occur
as last element of u1 = u′1a, but then the decomposition [u′] = [u′1u2] (we
simply remove a from u1, where a is independent of u2, the price is that
we may modify its visible properties) satisfies all the preconditions for F ′ =
F \ proc(a). By independence of a with u2, all the actions of u2 are invisible
for qx, for each x ∈ proc(a). Therefore, gx ∈ λ(δ(s0, u)). By induction,
F ′ ∈ G′ reached by u′. Thus, by the extension rule we obtain F ∈ G.

• proc(a) ∩ F = ∅. Then we can assume for the decomposition [u′a] = [u1u2]
that u1 = u′1a, where a is independent of u2, and we obtain a decomposition
[u′] = [u′1u2] as required by the lemma and by induction we obtain F ∈ G′
and by the extension rule we obtain F ∈ G.

• There is a non trivial intersection proc(a)∩F �= ∅, but proc(a) �⊆ F . This case
is quite similar to (1b) above, but here we partition F into F ′ := F \ proc(a)
and F ′′ := F ∩ proc(a). Thus, a cannot occur in u2 and the decomposition of
[u] = [u1 u2] must have a occurring in [u1]. Without loss of generality u1 =
u′1a, where qx ∈ λ(δ(s0, u′1a)) for qx ∈ F . Then we can apply the induction
hypothesis to [u′] = [u′1u2] and F ′ to find F ′ ∈ G′. On the other hand, due
to the invisibility with respect to the propositions ∪{Px|x ∈ F ′′} of all of u2
(because of independence of u2 w.r.t. a), we also have that qx ∈ λ(δ(s0, u′a))
for all x ∈ F ′′, thus by the extension rule we obtain F ∈ G.

�

Corollary 1. Let uv be some infinite execution and (s,G) be a state of the freeze
automaton reached by a word u. Then (u, v) |= [

∧
i∈Proc qi] iff Proc ∈ G.

Proof. The case of F = Proc in Lemma 1 means that there exists a decompo-
sition [u] = [u1u2] with qx ∈ λ(δ(s0, u1)) for all x ∈ Proc. This means that the
decomposition [u] = [u1u2] corresponds to the existence of a previous snapshot
satisfying the conjunction. �

This completes the correctness proof of the freeze automaton. However, a naive
“implementation” of the set of freeze sets would require space exponential in
the number of processes. Next, we show that a polynomial memory representa-
tion with an efficient update operation is possible. The first step is a technical
observation:



Efficient Model Checking for LTL with Partial Order Snapshots 281

Lemma 2. For any state (s,G) reachable in the freeze automaton, the set of sets
G is closed under arbitrary union and intersection and thus forms a complete
lattice.

Proof. The lemma states an invariant that we prove by induction: We have to
show that the property is preserved over the execution of transitions. First note
that invariantly ∅ ∈ G. Since G is finite, to show closure under arbitrary union
and intersection it is sufficient to show that F1, F2∈G implies F1∪F2, F1∩F2∈ G.

Now let (s′, G′) satisfy the property and let (s,G) be a successor state reached
from it by executing a ∈ Σ. Let F1, F2 ∈ G. For each Fi there are two cases: (1)
F ′i := Fi \ proc(a) ∈ G′ and for all i ∈ proc(a) ∩ Fi it holds that s |= qi (this
corresponds to the extension rule) and (2) proc(a) ⊆ Fi, where Fi = F ′i ∈ G′

(this is the case of the propagation).
By induction, we know that F ′1 ∩ F ′2, F ′1 ∪ F ′2 ∈ G′. Now, there are several

cases of combinations for the two sets F1, F2:
If both F1, F2 satisfy (1), then F ′1 ∩ F ′2 = (F1 \ proc(a)) ∩ (F2 \ proc(a)) =

(F1 ∩ F2) \ proc(a) ∈ G′, and for all i ∈ (F1 ∩ proc(a) ∩ (F2 ∩ proc(a))) = (F1 ∩
F2)∩proc(a) we have s |= qi. Hence, by the extension rule, we obtain F1∩F2 ∈ G.
Similarly, F ′1∪F ′2 = (F1 \proc(a))∪ (F2 \proc(a)) = (F1 ∪F2)\proc(a) ∈ G and
for all i ∈ (F1 ∩ proc(a)) ∪ (F2 ∩ proc(a)) = (F1 ∪ F2) ∩ proc(a) we have s |= qi,
thus by rule extension we have (F1 ∪ F2) ∈ G.

If both satisfy (2), then one immediately finds (F1 ∩ F2), (F1 ∪ F2) ∈ G′

and proc(a) ⊆ (F1 ∩ F2) ⊆ F1 ∪ F2, hence, by the propagation rule we obtain
(F1 ∩ F2), (F1 ∪ F2) ∈ G.

Now let one (say F1) satisfy (1) and the other (F2) satisfy (2), then F1 \
proc(a), F2 ∈ G′. Then (F1 \ proc(a)) ∩ F2 = (F1 ∩ F2) \ proc(a) ∈ G′ and for
all i ∈ proc(a) ∩ (F1 ∩ F2) ⊆ proc(a) ∩ F1 we have s |= qi and hence by the
rule extension we obtain F1 ∩ F2 ∈ G. On the other hand, (F1 \ proc(a)) ∪ F2 =
F1∪F2 ∈ G′ as proc(a) ⊆ F2 ⊆ F1∪F2, hence by the propagation rule F1∪F2 ∈ G.

�

The closure properties of sets of freeze sets of Lemma 2 allow us to keep a
compact representation, where we do not represent sets that are unions of other
sets. In terms of lattice theory, we represent the sublattice of the powerset lattice
by a minimal basis, which is very small, as expressed by the following constructive
formulation of Birkhoff’s theorem on distributive lattices.

Definition 2. Let S be a finite set of elements and T ⊆ 2S a set of subsets S,
such that ∅ ∈ T and for T1, T2 ∈ T also T1 ∩ T2, T1 ∪ T2 ∈ T . Let B ⊆ T be the
set of nonempty elements of T such that each element is not a trivial (i.e., of
size one) union of any subset of T .

Proposition 1. For every set T ∈ T , (a) T =
⋃
{B ∈ B | B ⊆ T }, i.e. B is a

basis of T and (b) |B| ≤ |
⋃
B| ≤ |S|.

Proof. Let us first define Ui :=
⋂
{V ∈ T | i ∈ V } and observe that Ui ∈ T

because of closure under intersection. In fact Ui ∈ B because if Ui = V1 ∪ V2
either i ∈ V1 (and hence Ui = V1) or i ∈ V2 (and hence Ui = V2).



282 P. Niebert and D. Peled

For claim (a), it suffices to observe that V =
⋃
{Ui | i ∈ V }. For claim (b),

we will show that for each V ∈ B, there exists some i ∈ V such that V = Ui.
By contradiction, suppose that this is not the case. Let K = {Ui|i ∈ V }. Then
V �∈ K. But V = ∪K, which contradicts the fact that V ∈ B. This gives a
surjective function

⋃
T −→ B (surjective since it can be that Ui = Uj for i �= j)

and hence |B| ≤ |
⋃
T | ≤ |S| as required. �

Hence, we can represent a basis for freeze sets using a |Proc|2 matrix where each
row represents a basis set and each column represents an element. Unused rows
can be filled with the empty set.

4.2 Updating Freeze Sets Bases

Let Bs be a basis for the freeze sets Gs at a state s, with action a occurring,
producing a successor state s′ with set of freeze sets Gs′ with basis Bs′ . We
describe now how to update Bs into Bs′ using a polynomial amount of space
and, in fact, polynomial time.

To understand the updating, we first construct a set C which will satisfy
Bs′ ⊆ C ⊆ Gs′ . In a second step, C can be reduced by omitting elements that
are non-trivial unions of other elements in the basis, so as to obtain Bs′ .
C is the least set such that:

1. If F ∈ Bs with F ∩ proc(a) = ∅, then F ∈ C.
2. If F ∈ Bs with proc(a) ⊆ F , then F ∈ C.
3. If proc(a) ⊆

⋃
Bs, then for each F ′ ∈ Bs such that neither F ′ ∩ proc(a) = ∅

nor proc(a) ⊆ F ′, we have F ′ ∪
⋃

x∈proc(a)
⋂
{F ∈ Bs | x ∈ F} ∈ C.

4. If x ∈ proc(a) such that qx ∈ λ(s′), then {x} ∈ C.

We prove that C ⊆ Gs′ . It is sufficient to check that for each of the for
cases, the corresponding set is added to Gs′ either due to the extension rule
or due to the propagation rule. Case 1 is added by extension with the empty
set. Case 4 is added by extending the empty set. Case 2 is an obvious con-
sequence of the propagation rule. To understand the slightly more complicated
case 3, observe that Bs ⊆ Gs and that due to the closure properties of Gs (union
and intersection), the constructed sets are in Gs also; moreover by construction
proc(a) ⊆ F ′ ∪

⋃
x∈proc(a)

⋂
{F ∈ Bs | x ∈ F} and hence these sets are in Gs′ by

propagation.
Now we prove that Bs′ ⊆ C. For this, it is sufficient to check that every set

in Gs′ is a union of elements of C. First suppose some F ∈ Gs′ is obtained by
the extension rule. Then F = F1 ∪ F2 with F1 ∈ Gs, F1 ∩ proc(a) = ∅ and
F2 ⊆ {x ∈ proc(a) | qx ∈ λ(s′)}. Now, F2 is a union of the elements added to C
under case 4, and F1 is a union of sets F ′ in Bs which are added to C according
to case 1. Suppose, on the other hand, that F is obtained by the propagation rule.
To find that F is a union of sets in C let us consider a set F ′ ∈ Bs with F ′ ⊆ F .
Now, either F ′ ∈ C according to case 1 or 2 or F ′ is incomparable with proc(a),
therefore not propagated. But then, the preconditions of case 3 are satisfied, and
F ′ ∪

⋃
x∈proc(a)

⋂
{F1 ∈ Bs | x ∈ F1} ∈ C. Moreover, for each x ∈ proc(a) it

holds that
⋂
{F1 ∈ Bs | x ∈ F1} ⊆ F (because for some F1 with x ∈ F1 it must



Efficient Model Checking for LTL with Partial Order Snapshots 283

hold that F1 ⊆ F ). Thus, we can conclude that F ′ ∪
⋃

x∈proc(a)
⋂
{F1 ∈ Bs | x ∈

F1} ⊆ F . Hence, for each set F ′ ∈ Bs with F ′ ⊆ F we find a set F ′′ ∈ C with
F ′ ⊆ F ′′ ⊆ F , hence F is a union of sets in C.

The size of C is limited by |Bs|+ |proc(a)|, because for each set in Bs, at most
one set is added to C according to the disjoint cases 1, 2 and 3. Additionally case 4
results in some singletons. More coarsely, |C| ≤ 2 · |Proc| (see Proposition 1),
and the update can be performed with 3 × |Proc| sets, or O(|Proc|2) space.
The time requirement of computing C is easily seen to be equally O(|Proc|2).
The identification of a subset Bs′ can be done on the same space by first or-
dering the vectors representing elements of C by set size (this can be done in
O(|Proc|2 × log2(|Proc|)) steps) and then searching for each x ∈ Proc the first
set F containing it (in O(|Proc|×log2(|Proc|)) steps), finally compressing the list
by eliminating the sets that are not minimal sets of any element (in O(|Proc|2)
steps), all in essentially the space of memory containing C (additional 2×|Proc|
bits are needed to mark elements in C).

4.3 Integration into a Model Checking Algorithm

We assume that in the negated property ¬ϕ, the (negative) occurrences of the
snapshot operator only occur as conjunctions [

∧
i∈Proc qi] as given in Section 4.1.

In a more general setting, the observation that [ϕ∨ψ] is equivalent to [ϕ]∨[ψ] can
be used to distribute the snapshot operator over disjunctions with an at most
linear growth of the size of the formula (each disjunction potentially introducing
an additional snapshot operator). In the case of arbitrary boolean properties, a
translation to DNF has to be applied first, leading to a potentially exponential
blowup of the formula.

The freeze automaton is deterministic, it thus can be used to determine both
the satisfaction of positive and negative occurrences of [q] provided that q is of
the form indicated above. Pragmatically, the construction can be optimized using
sharing of data structures on several levels (the system state space is needed just
once, for instance).

In order to check that a concurrent system B satisfies a property ϕ, we inter-
sect several automata components as follows. For optimizing on space complex-
ity, we perform a binary search, hence do not fully construct the components.
Instead, we only need to be able to enumerate pairs of successor states.

• The verified system B. This can be itself obtained as an asynchronous
product of several subcomponents, one per each processor, as described in
Section 2.

• For each snapshot formula [
∧

i∈Proc qi] occurring in ¬ϕ we construct a com-
ponent freeze(

∧
i∈Proc qi) as above (basis representation). Recall that each

such component has states that include sets of subsets of processes, whereas
they can share the access to B (the states S). The transition between two
such states is marked by an action. If a state of freeze(

∧
i∈Proc qi) contains a

component that includes all the processes, then [
∧

i∈Proc qi] holds thereafter.
A special stable flag marks this situation.



284 P. Niebert and D. Peled

• A component A¬ϕ for the Büchi translation of ¬ϕ. We keep the snapshot
subformulas [d] unprocessed as if they were special new propositions. Accord-
ing to the translation algorithm in [3], ¬ϕ is written in a negated normal form
first, and [d] may appear negated or non-negated.

The product of these components enforces the following correspondences:

• Between a triple (s, a, s′) with δ(s, a) = s′ of the checked system B and a
triple (ti, bi, t′i) of freeze(

∧
i∈Proc qi):

• a = bi.
• The freeze sets of t′i are updated from ti according to a and the state s′,

as explained above. In particular, it depends on whether the components
of s that belong to the processes of a satisfy the local predicates of∧

i∈Proc qi.
• Between the collection of triples (ti, bi, t′i) of freeze(

∧
i∈Proc qi) and a triple

(r, c, r′) of the property automaton A¬ϕ. The node r contains propositions
and snapshot subformulas negated or non-negated, according to the case
where they need to hold or not in the current state. Accordingly, if r contains
[q] where q =

∧
i∈Proc qi, then we will have that ti (and thus also t′i) indicates

that [
∧

i∈Proc qi] was detected. Conversely, if r contains ¬[
∧

i∈Proc qi] then
for each ti we must have not yet detected

∧
i∈Proc qi.

• Between triples (s, a, s′) of B and (r, c, r′) of Aϕ we have the usual corre-
spondence, i.e., that r and s (and r′ and s′) agree on propositions.

The space needed for a single state of the constructed Büchi automaton is
thus the sum of the space needed for a state of B (that is O(|B|)), the space
needed for the property automaton A¬ϕ which requires O(|ϕ|) bits, and the
space required for the freeze automata (without the B component, which is
shared). Each freeze automaton thus requires |Proc|2 bits to store the basis of
the set of freeze sets and there is one for every snapshot formula [q], which we
bound by O(|ϕ| × |Proc|2). A single state thus requires O(|B| + |ϕ| + |ϕ| ×
|Proc|2) = O(|B| + |ϕ| × |Proc|2) ≤ O(|ϕ| × |B|2) bits, the algorithm (based
on binary search) requiring O((|B| + |ϕ| × |Proc|2)2) bits, which subsumes the
O(|Proc|2) space needed for the computation of successors on bases. This was
based on the assumption that ϕ only contained occurrences of the snapshot
operator with conjunctions of local properties as required in Section 4.1. To
obtain them, a transformation to DNF of properties in some snapshot operators
may be necessary, resulting in a potentially exponential blowup of the size of ϕ.
Taking this step into account thus gives us O(|B|+2|ϕ|× |Proc|2) bits per state
and O((|B| + 2|ϕ| × |Proc|2)2) bits for the algorithm.

4.4 Optimization for Negative Snapshots

In searching for a counter example, a negative occurrence of some [q] in ϕ be-
comes a positive occurrence in ¬ϕ. On a given infinite sequence v , either [q]
never holds or there is a first prefix, i.e. a first decomposition v = v1v2 such
that (v1, v2) |= [q], i.e. there exists a trace decomposition [v1] = [v′1v′′1 ] such that
(v′1, v

′′′) |= q, where v1′v′′′ = v1v2. Then choosing q′ :=
∧
λ(δ(s0, v′1)) provides a



Efficient Model Checking for LTL with Partial Order Snapshots 285

formula which implies q and such that on v the snapshot formula [q] holds ex-
actly where [q′] holds. Hence, a non-deterministic freeze automaton for [q] first
guesses a truth assignment implying q and then runs as normal. In terms of
DNF, this automaton guesses a witness minterm of q transformed to DNF. On
any run where this non-deterministic freeze automaton says that [q′] holds we
know that [q] holds and conversely for a sequence where [q] holds there exists a
guess q′ such that [q′] is observed in the freeze automaton and this guess can be
done in a coherent manner for all prefixes satisfying [q].

Note that this optimization relies on a construction that does not force ev-
ery state of the property automaton A¬ϕ to have each snapshot formula either
negated or non-negated (i.e., a construction in the style of [3] rather than as
in [11] needs to be used). This trick allows to enumerate the satisfying truth as-
signments of the different such positive subformulas separately. This may induce
an exponential number of repetitions, but does not increase space. Unfortunately,
this trick does not work for positive occurrences of formulas of the type ¬[q] in
ϕ. It is interesting to observe that in [4], the negated snapshots also make an
easier case, treated by a separate construction called lazy automata.

5 Conclusion

We described in this paper a refined model checking algorithm for Snapshot Linear
Temporal Logic. Due to a refined analysis we were able to obtain an algorithm with
PSPACE-Complexity in terms of the system description, albeit EXPSPACE in
the size of the formula - unless the use of the Snapshot operator is restricted to,
essentially, disjunctive normal form. An open problem remains to prove non-trivial
lower bounds for the space complexity in terms of the properties.

Moreover, our analysis was based on boolean combinations of local properties,
whereas certain uses of the snapshot operator might require global properties
(like the sum of integer variables of the processes, etc), where the approach
applied here cannot be applied directly. However, depending on the nature of
the properties, a compromise between the state storing approach of [4] and the
symbolic approach here may be possible: by freezing one process, one might
symbolically induce a property remaining to be satisfied for the other processes.
If for example the global property is x1 + x2 > 5 and x1 of process 1 is frozen
when x1 = 3, the remaining property can be factored to x2 > 2 without full
knowledge of the state of process 1.

We believe that our construction is of value beyond model checking: The fact
that the freeze automaton is deterministic with a polynomial time computable
successor function suggests use in further applications, where one might actually
want to implement and execute it, for instance in the domain of testing.

Acknowledgements

This work was done while the second author was on visit as invited professor
at the Université de Provence, Marseille. The authors thank Blaise Genest for
useful comments on a previous version of the paper.



286 P. Niebert and D. Peled

References

1. Rajeev Alur, Ken McMillan, Doron Peled. Deciding Global Partial-Order Proper-
ties. In ICALP 1998, LNCS 1443, 41–52.

2. K. M. Chandy, L. Lamport, Distributed Snapshots: determining the global state
of distributed systems, ACM Transactions on Computer Systems 3 (1985), 63–75.

3. R. Gerth, D. Peled, M. Vardi, P. Wolper, Simple on-the-fly automatic verification
of linear temporal logic, PSTV 1995, 3–18.

4. B. Genest, D. Kuske, A. Muscholl, D. Peled, Snaphot Verification, TACAS 2005,
LNCS 3440, 510-525.

5. C. A. R. Hoare. Communicating Sequential Processes Communication of the ACM
21 (8), 1978, 666-677.

6. A. Mazurkiewicz, Trace semantics In Proceedings of Advances in Petri Nets 1986,
Bad Honnef, LNCS 255, pp. 279–324, 1987.

7. D. Peled. Specification and verification of Message Sequence Charts. In
FORTE/PSTV 2000, pp.139-154.

8. D. Peled, A. Pnueli. Proving Partial Order Properties. Theoretical Computer
Science, 126:143–182, 1994.

9. S. Stoller, Y.A. Liu, Efficient Symbolic Detection of Global Properties in Dis-
tributed Systems, CAV 1998, LNCS 1427, 357–368.

10. I. Walukiewicz. Difficult Configurations – On the Complexity of LTrL. In ICALP
1998, LNCS 1443, 140–151.

11. M.Y. Vardi, P. Wolper. Reasoning about infinite computations. Information and
Computation, 115(1994), 1–37.



A Local Shape Analysis Based on
Separation Logic

Dino Distefano1, Peter W. O’Hearn1, and Hongseok Yang2

1 Queen Mary, University of London
2 Seoul National University

Abstract. We describe a program analysis for linked list programs
where the abstract domain uses formulae from separation logic.

1 Introduction

A shape analysis attempts to discover the shapes of data structures in the heap at
program points encountered during a program’s execution. It is a form of pointer
analysis which goes beyond the tabulation of shallow aliasing information (e.g.,
can these two variables be aliases?) to deeper properties of the heap (e.g., is this
an acyclic linked list?).

The leading current shape analysis is that of Sagiv, Reps and Wilhelm, which
uses very generic and powerful abstractions based on three-valued logic [17].
Although powerful, a problem with this shape analysis is that it behaves in a
global way. For example, when one updates a single abstract heap cell this may
require also the updating of properties associated with all other cells. Further-
more, each update of another cell might itself depend on the whole heap. This
global nature stems from the use of certain instrumentation predicates, such as
ones for reachability, to track properties of nodes in the heap: an update to a
single cell might alter the value of a host of instrumentation predicates.

In contrast, separation logic provides an approach to reasoning about the heap
that has a strong form of locality built in [14]. Typically, one reasons about a
collection of cells in isolation, and their update does not necessitate checking or
updating cells that are held in a different component of a separating conjunction.
It thus seems reasonable to try to use ideas from separation logic in program
analysis, with an eye towards the central problem of modularity in the analysis.

Our technical starting point is recent work of Berdine, Calcagno and O’Hearn
[5], who defined a method of symbolic execution of certain separation logic for-
mulae called symbolic heaps. Their method is not, by itself, suitable as an ab-
stract semantics because there are infinitely many symbolic heaps and there is
no immediate way to guarantee convergence of fixed-point calculations. Here,
we obtain a suitable abstract domain by working with (a variation on) their
method of symbolic execution, and adding to it an abstraction or widening op-
erator which converts any symbolic heap to one in a certain “canonical form”.
This abstraction method is an adaptation of work in [7, 8] to the symbolic heaps
of Berdine et. al. In contrast to unrestricted symbolic heaps we show that there

H. Hermanns and J. Palsberg (Eds.): TACAS 2006, LNCS 3920, pp. 287–302, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



288 D. Distefano, P.W. O’Hearn, and H. Yang

are only finitely many canonical forms, resulting in termination of the fixed-point
calculation used in the abstract semantics of while loops.

Our abstract domain uses linked lists only. Other abstractions based on sep-
aration logic might be considered as well.

After defining the analysis we turn to locality. We describe a sense in which
the abstract semantics obeys the Frame Rule of separation logic, and we iden-
tify a notion of footprint as an input-output relation that mentions only those
symbolic heap cells accessed by a program. The footprint provides a sound over-
approximation of a program’s entire (abstract) meaning. The results on locality
give a way to automatically infer sound answers for large states from those
obtained on small ones as input, suggesting further possible developments in
interprocedural and concurrency analyses.

1.1 Related Work

In work on heap analysis (see [15] for discussion) much use has been made of a
“storeless semantics” where the model is built from equivalence classes of paths
rather than locations. The storeless semantics has the pleasant property that it
is garbage collecting by its very nature, but it is also extremely complex. This
makes it highly nontrivial to see that a particular analysis based on it is sound.
In contrast, here we work directly with a store model, and soundness is almost
immediate. The abstraction we use is defined by rewrite rules which are all true
implications in separation logic, and the symbolic execution rules are derived
from true Hoare triples.

Recent work on shape analysis [15, 16] might be regarded as taking some
steps towards separation logic. Early on in separation logic there was an empha-
sis on what was referred to as “local reasoning”: reasoning concentrates on the
cells accessed during computation [12]. In [15, 16] an interprocedural analysis
is described where a procedure summary is constructed which involves only the
(abstract) cells reachable from input parameters or variables free in a proce-
dure. The method of applying a procedure does not, however, explicitly utilize a
separating conjunction operator ∗; one might say that the general idea of local
reasoning is adopted (or altered), but the formal apparatus of separation logic
is not.

In this paper we reciprocate by taking some steps towards shape analysis. Our
intention initially was full reciprocation: to build an interprocedural analysis.
But, after labouring for the better part of a year, we decided to aim lower: to
define an abstract domain and abstract post operator, together with an account
of its locality, for a language without procedures. In doing this we have been
influenced by shape analysis, but have not adopted the formal apparatus of shape
graphs or 3-valued logic. We hope that this paper can serve as a springboard for
further developments in local interprocedural and modular concurrency analysis.

We want to make clear that we do not claim that our analysis is superior,
in a practical sense, to existing shape analyses. Although it works well on small
examples, we have not yet demonstrated that it scales to large programs. Also,
from a methodological point of view, in the framework of [17] different abstrac-



A Local Shape Analysis Based on Separation Logic 289

tions are obtained in a uniform way, where a notion of “canonical abstraction”
results once instrumentation predicates are nailed down. In contrast, here we
have just one particular set of rewrite rules that have been hand-built; how this
might be turned into a more general scheme is not obvious.

Nonetheless, we believe that research on how separation logic, or more partic-
ularly, the local reasoning idea, might be used in program analysis is of interest
because it suggests a genuinely different approach which has promise for the
central problem of obtaining modular analyses. A very good example of this is
the recent work of Amtoft et. al. [2, 1] which uses local reasoning in information
flow analysis (this is a more shallow form of analysis than shape analysis, but
they are successful in formulating a very modular analysis).

Finally, in work carried out independently of (and virtually in parallel to) that
here, Magill et. al. have defined a method of inferring invariants for linked list
programs in separation logic [9]. They also utilize a symbolic execution mecha-
nism related to [5], and give rewrite rules to attempt to find fixed points. There
are many detailed differences: (i) they use a different basic list predicate than we
do and, as they point out, have difficulty dealing with acyclic lists, where that
is a strong point of our analysis; (ii) they do predicate abstraction of arithmetic
operations, where we do not; (iii) and they use an embedding into Presburger
arithmetic to help decide implications and Hoare triples, where we do not pro-
vide a method for deciding implications (or Hoare triples); (iv) their algorithm
does not always terminate, where ours does. But, there is remarkable similarity.

2 Semantic Setting

We first describe the general semantic setting for this work. Following the frame-
work of abstract interpretation [6], we will work with complete lattices D: The
semantics of a command c will be given by a continuous function [[c]]:D → D.

If we are given a programming language with certain primitive operations
p, together with conditionals, sequencing and while loops, then to define the
semantics we must specify the meaning [[p]] of each primitive operation as well as
a continuous function, filter(b):D → D, for each boolean. Typically, D is built
from subsets of a set of states, and the filter function removes those elements
that are not consistent with b’s truth. The semantics extends to the rest of the
language in the usual way.

[[c ; c′]] = [[c]] ; [[c′]] [[if b then c else c′]] = (filter(b) ; [[c]]) � (filter(¬b) ; [[c′]])

[[while b do c]] = λd. filter(¬b)
(
fix λd′. d � (filter(b) ; [[c]])(d′)

)
One way to understand the semantics of while is to view d′ as a loop invariant.
The d in the lhs of # means that the loop invariant d′ should be implied by the
precondition, and the rhs of # means that d′ is preserved by the body. (Here, the
fixed-point operator has been moved inward from its usual position in semantics,
so that it applies to predicates instead of two command denotations.)

Our domains D will be constructed using a powerset operation. If S is a set
we denote by P(S) the “topped” powerset of S, that is, the set of subsets of
S ∪ {�}. Here, � �∈ S is a special element that corresponds to memory fault



290 D. Distefano, P.W. O’Hearn, and H. Yang

(accessing a dangling pointer). If we were to take logical implications between
elements of P(S) into account then we would make {�} the top and equate all
sets containing �. For simplicity in this paper we just use the subset order.

Given a relation (p=⇒) ⊆ S×(S∪{�}), with membership notated σ, p =⇒ σ′,
we can lift it to a function p†:P(S) → P(S) by

p†X = {σ′ | ∃σ ∈ X. (σ, p =⇒ σ′) or (σ = σ′ = �)}.

The semantics of primitive commands will be given by first specifying an exe-
cution semantics =⇒ and then lifting it to P(S) .

Every semantics we work with will have two additional properties: that {�}
is mapped to {�} and that it preserves unions. Because of this we could in fact
work with a corresponding map [[c]]†:S → P(S) instead of [[c]]:P(S) → P(S).

3 Concrete and Symbolic Heaps

Throughout this paper we assume a fixed finite set Vars of program variables
(ranged over by x, y, . . .), and an infinite set Vars′ of primed variables (ranged
over by x′, y′, . . .). The primed variables will not be used within programs,
only within logical formulae (where they will be implicitly existentially
quantified).

Definition 1. A symbolic heap Π � Σ consists of a finite set Π of equalities and
a finite set Σ of heap predicates. The equalities E=F are between expressions E
and F , which are variables x, or primed variables x′, or nil. The elements of Σ
are of the form

E �→F ls(E, F ) junk.

We use SH to denote the set of consistent symbolic heaps. (For the definition
of consistency, see below.)

The first two heap predicates are “precise” in the sense of [13]; each cuts out a
unique piece of (concrete) heap. The points-to assertion E �→F can hold only in
a singleton heap, where E is the only active cell. Similarly, when a list segment
holds of a given heap, the path it traces out is unique, and goes through all the
cells in the heap. This precise nature of the predicates is helpful when accounting
for deallocation. For each symbolic heap Π � Σ, we call Π pure part of Π � Σ,
and Σ spatial part of Π � Σ.

The junk predicate is used in the canonicalization phase of our analysis to
swallow up garbage. It is crucial for termination of our analysis, and it has the
useful property to reveal memory leaks.

Besides the heap formulae, symbolic heaps also keep track of equalities in-
volving pointer variables and nil.

We often use the notation Σ ∗ P for the (disjoint) union of a formula P onto
the spatial part of a symbolic heap, and we similarly use Π ∧P in the pure part.

The meaning of a symbolic heap corresponds to a formula

∃x′
1x

′
2 . . . x′

n.
(∧

P ∈Π

P
)
∧
(
�Q∈Σ Q

)
,



A Local Shape Analysis Based on Separation Logic 291

C[[x]]s = s(x) C[[x′]]s = s(x′) C[[nil]]s = nil

s, h � {} iff h is the empty heap []

s, h � {E �→F} iff h = [C[[E]]s �→C[[F ]]s]

s, h � {ls(E, F )} iff there is a nonempty acyclic path from C[[E]]s to C[[F ]]s in h

and this path contains all heap cells in h
s, h � {junk} iff h �= ∅
s, h � Σ0 ∗Σ1 iff ∃h0, h1. h = h0 ∗ h1 and s, h0 � Σ0 and s, h1 � Σ1

s � {} always

s � {E=F} iff C[[E]]s = C[[F ]]s

s � Π0 ∪Π1 iff s � Π0 and s � Π1

s, h � Π � Σ iff ∃v′. (s(x′ �→ v′) � Π) and (s(x′ �→ v′), h � Σ)

where x′ is the collection of primed variables in Π � Σ

Table 1. Semantics of Symbolic Heaps

in separation logic, where {x′1, . . . , x′n} is the set of all the primed variables in Σ
and Π . More formally, the meaning of a symbolic heap is given by a satisfaction
relation s, h � Π � Σ, where s is a stack and h a (concrete) heap.

Values = Locations ∪ {nil} Heaps = Locations ⇀f Values

Stacks = (Vars ∪ Vars′)→ Values States = Stacks× Heaps

The semantics is given in Table 1. The operation h0 ∗ h1 there is the union of
heaps with disjoint domains. We give the semantics for the singleton sets in the
pure and spatial parts, and then for unions. There, the clause for list segments
is given informally, but corresponds to the least predicate satisfying

ls(E,F )⇐⇒ E �=F ∧ (E �→F ∨ (∃x′.E �→x′ ∗ ls(x′, F ))).

Our analysis will require us to be able to answer some questions about sym-
bolic heaps algorithmically: whether two expressions are equal, whether they are
unequal, whether the heap is inconsistent, and whether a cell is allocated.

Π ! E=F Π � Σ ! E �=F (when Vars′(E, F ) = ∅)
Π � Σ ! false Π � Σ ! Allocated(E) (when Vars′(E) = ∅)

Π 5 E=F is easy to check. It just considers whether E and F are in the
same equivalence class induced by the equalities in Π . The other operators use
subroutine allocated, which takes Σ and an expression E, and decides whether
Σ implies that E points to an allocated cell, by a “nontrivial reason”: allocated
ignores the case where Σ is not satisfiable and implies all formulae.

allocated(Σ,E) = ∃E′. (E �→ E′ ∈ Σ) or (ls(E, E′) ∈ Σ).



292 D. Distefano, P.W. O’Hearn, and H. Yang

We then define the other querying operators as follows:

Π � Σ ! false ⇐⇒ (∃E. Π ! E=nil and allocated(Σ, E)), or

(∃E,F. Π ! E=F and ls(E, F ) ∈ Σ), or(
∃E,F. Π ! E=F and Σ contains two distinct

predicates whose lhs’s are, respectively, E and F

)
Π � Σ ! E �=F ⇐⇒ (E=F ∧Π � Σ) ! false

Π � Σ ! Allocated(E) ⇐⇒ Π � Σ ! false, or (∃E′. Π ! E=E′ and allocated(Σ, E′))
These definitions agree with what one would obtain from a definition in terms

of the satisfaction relation �, but they are simple syntactic checks that do not
require calling a theorem prover.

The rules that define our analysis will preserve consistency of symbolic heaps
(that Π � Σ �5 false). In particular, inconsistent heaps introduced in branches of
if statements or as a result of tests in a while loop will be filtered out.

4 Concrete and Symbolic Execution Semantics

The grammar of commands for the programming language used in this paper is
given by

b E=E | E �=E

p x E | x [E] | [E] F | new(x) | dispose(E) Primitive Commands

c p | c ; c | while b do c | if b then c else c Commands

We do not consider commands that contain any primed variables amongst their
expressions. We include only a single heap dereferencing operator [·] which refers
to the “next” field. In the usual way, our experimental implementation ignores
commands that access fields other than “next” (say, a data field), and treats any
boolean conditions other than those given as nondeterministic.

4.1 Concrete Semantics

The execution rules for the primitive commands are as follows, where in the
faulting rule (the last rule) we use notation for primitive commands that access
heap cell E:

A(E) [E] F | x [E] | dispose(E)

Concrete Execution Rules

C[[E]]s = n

s, h, x E =⇒ (s | x �→ n), h

C[[E]]s = � h(�) = n

s, h, x [E] =⇒ (s | x �→ n), h

C[[E]]s = � C[[F ]]s = n � ∈ dom(h)
s, h, [E] F =⇒ s, (h | � �→ n)

� �∈ dom(h)
s, h, new(x) =⇒ (s | x �→ �), (h | � �→ n)

C[[E]]s = �

s, h ∗ [� �→ n], dispose(E) =⇒ s, h

C[[E]]s �∈ dom(h)

s, h, A(E) =⇒ �



A Local Shape Analysis Based on Separation Logic 293

Notice the tremendous amount of nondeterminism in new: it picks out any
location not in the domain of the heap, and any value n for its contents.

The concrete semantics is given in the topped powerset P(States), where the
filter map is

filter(b)X = {(s, h) ∈ X | C[[b]]s = true} ∪ {� | � ∈ X}

where C[[b]]s ∈ {true,false} just checks equalities by looking up in the stack s.
With these definitions we may then set C[[p]] = p† and by the recipe of

Section 2 we obtain the concrete semantics, C[[c]] : P(States) → P(States), of
every command c.

4.2 Symbolic Semantics

The symbolic execution semantics σ,A =⇒ σ′ takes a symbolic heap σ and a
primitive command, and transforms it into an output symbolic heap or �. In
these rules we require that the primed variables x′, y′ be fresh.

Symbolic Execution Rules

Π � Σ, x E =⇒ x=E[x′/x] ∧ (Π � Σ)[x′/x]

Π � Σ ∗E �→F , x [E] =⇒ x=F [x′/x] ∧ (Π � Σ ∗ E �→F )[x′/x]

Π � Σ ∗E �→F , [E] G =⇒ Π � Σ ∗E �→G

Π � Σ, new(x) =⇒ (Π � Σ)[x′/x] ∗ x �→y′

Π � Σ ∗E �→F , dispose(E) =⇒ Π � Σ
Π � Σ �! Allocated(E)

Π � Σ, A(E) =⇒ �
Rearrangement Rules

P (E,F ) E �→F | ls(E,F )

Π0 � Σ0 ∗ P (E, G), A(E) =⇒ Π1 � Σ1

Π0 � Σ0 ∗ P (F, G), A(E) =⇒ Π1 � Σ1
Π0 ! E=F

Π0 � Σ0 ∗E �→x′ ∗ ls(x′, G), A(E) =⇒ Π1 � Σ1

Π0 � Σ0 ∗ ls(E, G), A(E) =⇒ Π1 � Σ1

Π � Σ ∗E �→F, A(E) =⇒ Π ′ � Σ′

Π � Σ ∗ ls(E, F ), A(E) =⇒ Π ′ � Σ′

The execution rules that access heap cell E are stated in a way that requires
their pre-states to explicitly have E �→F . Sometimes the knowledge that E is
allocated is less explicit, such as in {E=x} � {x�→y} or ls(E,F ), and we use
rearrangement rules to put the pre-state in the proper form. The first rearrange-
ment rule simply makes use of equalities to recognize that a dereferencing step
is possible, and the other two correspond to unrolling a list segment.

In contrast to the concrete semantics, the treatment of allocation is completely
deterministic (up to renaming of primed variables). However, a different kind of
nondeterminism results in rearrangement rules that unroll list segments.



294 D. Distefano, P.W. O’Hearn, and H. Yang

All that is left to define the symbolic (intermediate) semantics I[[c]]:P(SH) →
P(SH) by the recipe before is to define the filter map. It adds the equality for
the E=F case, but does not do so for the E �=F case because we do not have
inequalities in our symbolic domain.

filter(E=F )X = {� | �∈X} ∪ {(E=F ∧Π � Σ) | Π � Σ ∈ X and Π � Σ �! E �=F}
filter(E �=F )X = {� | �∈X} ∪ {(Π � Σ) ∈ X | Π �! E=F and Π � Σ �! false}

To state the sense in which the symbolic semantics is sound we define the
“meaning function” γ:P(SH) → P(States):

γ(X) = if (� ∈ X) then (States ∪ {�}) else ({(s, h) | ∃Π � Σ ∈ X. (s, h) |= Π � Σ})
Theorem 2. The symbolic semantics is a sound overapproximation of the con-
crete semantics: ∀X ∈ P(SH). C[[c]](γ(X)) ⊆ γ(I[[c]]X).

5 The Analysis

The domain SH of symbolic heaps is infinite. Even though there are finitely
many program variables, primed variables can be introduced during symbolic
execution. For example, in a loop that includes allocation we can generate for-
mulae x�→x′ ∗ x′ �→x′′ · · · of arbitrary length.

In order to ensure fixed-point convergence we perform abstraction. The ab-
straction we consider is specified by a collection of rewrite rules which perform
abstraction by gobbling up primed variables. This is done by merging lists, swal-
lowing single cells into lists, and abstracting two cells by a list. We also remove
primed variables from the pure parts of formulae, and we collect all garbage into
the predicate junk.

5.1 Canonicalization Rules

The canonicalization rules are reported in Table 2. We again use the notation
P (E,F ) to stand for an atomic formula either of the form E �→F or ls(E,F ).

E=x′ ∧Π � Σ � (Π � Σ)[E/x′]
(St1)

x′=E ∧Π � Σ � (Π � Σ)[E/x′]
(St2)

x′ �∈ Vars′(Π,Σ)

Π � Σ ∗P (x′, E) � Π � Σ ∪ junk
(Gb1)

x′, y′ �∈ Vars′(Π, Σ)

Π � Σ ∗P1(x′, y′) ∗P2(y′, x′) � Π � Σ ∪ junk
(Gb2)

x′ /∈ Vars′(Π,Σ, E, F ) Π ! F=nil

Π � Σ ∗ P1(E, x′) ∗ P2(x′, F ) � Π � Σ ∗ ls(E,nil)
(Abs1)

x′ /∈ Vars′(Π,Σ, E, F, G, H) Π ! F=G

Π � Σ ∗ P1(E,x′) ∗ P2(x′, F ) ∗ P3(G, H) � Π � Σ ∗ ls(E, F ) ∗ P3(G, H)
(Abs2)

Table 2. Abstraction Rules



A Local Shape Analysis Based on Separation Logic 295

The most important rules are the last two. The sense of abstraction that
these rules implement is that we ignore any facts that depend on a midpoint in
a list segment, unless it is named by a program variable. There is a subtlety in
interpreting this statement, however. One might perhaps have expected the last
rule to leave out the P3(G,H) ∗-conjunct, but this would result in unsoundness;
as Berdine and Calcagno pointed out [4, 5] (our abstraction rules are obtained
from their proof rules), we must know that the end of a second list segment
does not point back into the first if we are to concatenate them. We are forced,
by considerations of soundness, to keep some primed midpoints, such as in the
formula ls(x, x′) ∗ ls(x′, y), to which no rewrite rule applies.

Notice the use of a ∪ rather than a ∗ on the rhs of the (Gb1) and (Gb2)
rules. This has the effect that when more than one unreachable node named by
a primed variable is present, all of them get put into the unique junk node.

5.2 The Algorithm

We say that Π � Σ is a canonical symbolic heap if it is consistent (i.e., Π � Σ �5
false) and no canonicalization rule applies to it, and we denote by CSH the set
of all such. We can immediately observe:

Lemma 3 (Strong Normalization). � has no infinite reduction sequences.

This, together with the results in the next section, would be enough to define a
terminating analysis. But, there are many distinct reduction sequences and to
try all of them in an analysis would lead to a massive increase in nondetermin-
ism. We have not proven a result to the effect that choosing different reduction
sequences matters in the final result (after applying the meaning function γ),
but neither have we found examples where the difference can be detected. So, in
our implementation we have chosen a specific strategy which applies the equality
rules, followed by (Gb1), followed by abstraction rules, followed by (Gb2). In the
theory, we just presume that we have a function (rather than relation)

can:SH → CSH

which takes a symbolic heapΠ � Σ and returns a canonical symbolic heapΠ ′ � Σ′
where Π � Σ �∗ Π ′ � Σ′.

[We remark that can(Π � Σ) is not the best (logically strongest) canonical
heap implied by Π � Σ. A counterexample is {} � {x�→x′, x′ �→y, y �→nil}. This
symbolic heap is reduced to {} � {ls(x, y), y �→nil} by the canonicalization, but
implies another symbolic heap {} � {x�→x′, x′ �→z′, y �→nil}, which is not (logically)
weaker than {} � {ls(x, y), y �→nil}. We believe that this “problem” is fixable; we
conjecture that there is a preorder � on SH such that (i) � is a sub preorder
of the logical implication and (ii) can(Π � Σ) is the smallest canonical heap
greater than or equal to Π � Σ with respect to �. As of this writing we have not
succeeded in proving this conjecture. If true, it would perhaps open the way to a
study pinpointing where precision is and is not lost (as in, e.g., [3]) using Galois
connections. Although valuable, such questions are secondary to our more basic
aim of existence (soundness and termination) of the analysis.]



296 D. Distefano, P.W. O’Hearn, and H. Yang

Let in:P(CSH) → P(SH) denote the inclusion function. We define the ab-
stract semantics for each primitive command p by the equation

A[[p]] = in ; I[[p]] ; (can†).

The filtering map in the abstract semantics is just the restriction of the symbolic
one to CSH. Then, by the recipe from Section 2 we obtain a semantics

A[[c]] : P(CSH)→ P(CSH)

for every command.
The soundness of the abstract semantics relies on the soundness of the rewrit-

ing rules.

Lemma 4 (Soundness of �). If Σ � Π � Σ′ � Π ′ then Σ � Π 5 Σ′ � Π ′.
The statement of soundness of the abstract semantics is then the same as for the
symbolic semantics, except that we quantify over P(CSH) instead of P(SH).

Theorem 5. The abstract semantics is a sound overapproximation of the con-
crete semantics: ∀X ∈ P(CSH). C[[c]](γ(X)) ⊆ γ(A[[c]]X).

Here are some examples of running the analysis on particular pre-states, taken
from an implementation of it in OCaml.

Example 1 . This is the usual program to reverse a list. Here 0 is used to denote
nil, x�tl is used instead of [x], and the commas in the analysis results are replaced
by the corresponding logical connectives.

Program: p 0 ; while (c�=0) do (n c�tl ; c�tl p ; p c ; c n)

Pre: {} �{ls(c, 0)} Post: {c=0∧ c=n∧n=0} � {ls(p, 0)} ∨ {c=0∧c=n∧n=0} � {p �→0}
Inv: {p=0} � {ls(c, 0)} ∨ {c=n∧n=0} � {p �→0} ∨ {c=n∧n=0} � {ls(p, 0)} ∨

{c=n} � {p �→0 ∗ ls(n, 0)} ∨ {c=n} � {ls(p, 0) ∗ ls(n, 0)}

Given a linked list as a precondition, the analysis calculates that the postcon-
dition might be a linked list or a single points-to fact. The postcondition has
some redundancy, in that we could remove the second disjunct without affecting
the meaning; this is because we have used the subset ordering on sets of states,
rather than one based on implication. The analysis also calculates the pictured
loop invariant, which captures that p and c point to separated linked lists.

Running the analysis to the same program with a circular linked list as input
gives the following (we omit the calculated invariant, which has 11 disjuncts).

Pre: {} � {ls(c, c′) ∗ ls(c′, c)}
Post: {c=0 ∧ c=n∧n=0} � {p �→p′ ∗ ls(p′, p)} ∨ {c=0 ∧ c=n ∧ n=0} � {p �→p′ ∗ p′ �→p}

Example 2 . This is the program to dispose a list.

Program: while (c�=0) do (t c ; c c�tl ; dispose(t))

Pre: {} � {ls(c, 0)} Post: {c=0} � {} Inv: {c=0} � {} ∨ {} � {ls(c, 0)}



A Local Shape Analysis Based on Separation Logic 297

The spatial part {} of the postcondition expresses that the heap is empty on
termination. If we leave out the dispose instruction, it returns postcondition
{c=nil} � {t �→nil ∗ junk} (showing memory leak). When we run the analysis on
this program on a circular list or ls(c, d) it reports a memory fault.

In addition to these examples we have run the analysis on a range of other
small programs, such as list append, list copy, programs to insert and delete from
the middle of a list, programs to delete and filter from circular lists, and to delete
a segment between two values from a sorted list. The execution times ranged
from a few milliseconds for reverse, copy and append to three seconds for delete-
a-segment (running on a 1.5GHz PowerBook G4), and in space requirements
none of them exceeded the OCaml default initial heap size of 400kB.

In coverage of examples, and in the nature of the abstraction itself, the analysis
here appears to be somewhat similar to the one reported in [10]. A careful study
of this relationship could be worthwhile.

6 Termination

Although the abstract semantics exists, we have not yet established that the
algorithm it determines always terminates. We do that by showing that the
domain CSH, consisting of the normal forms of the rewriting rules, is finite.

To gain some insight into the nature of the canonical symbolic heaps here are
some examples, where the pure part Π is empty (and left out).

Irreducible Reducible

ls(x, x′) ∗ ls(y, x′) ∗ ls(x′, nil) ls(x, x′) ∗ ls(x′, y′) ∗ ls(y′, nil)

ls(x, x′) ∗ ls(x′, x) ls(x, y′) ∗ ls(y′, x′) ∗ ls(x′, x)

ls(x, x′) ls(x′, x)

ls(x, x′) ∗ ls(x′, y) ls(x, x′) ∗ ls(x′, y) ∗ ls(y, z)

In the first element of the first row, variable x′ is shared (pointed to by x and y),
and this blocks the application of rule (Abs1) because of its variable condition.
On the other hand, the second element can be reduced, in fact twice, to end up
with ls(x, nil). The second row contains two cycles, one of (syntactic) length two
and the other of length three. The first of these cannot be reduced. We would
need to know that x=nil to apply (Abs1) and we cannot, because x in ls(x, x′)
cannot be nil or else we would have an inconsistent formula. The second in
this row can, however, be reduced, to the first. In the third row x′ is a reachable
variable that possibly denotes a dangling pointer and there is no way to eliminate
it. In the second it is not reachable, and can be removed using the (Gb1) rule.
Note that this removal is sound, because all heap predicates, including ls(x′, x),
imply junk. In the final row, first x′ points to a possibly dangling variable y. We
cannot remove x′, because transforming ls(x, x′) ∗ ls(x′, y) to ls(x, y) is unsound;
when y = x = 10, no heap can satisfy ls(x, y), while a cycle from location 10 of
length 2 satisfies ls(x, x′) ∗ ls(x′, y). The rule (Abs2) is arranged to prevent this
unsoundness. If we tack on another heap formula to ensure that y does not point
to any internal cells of the list segment ls(x, x′), then (Abs2) can apply.



298 D. Distefano, P.W. O’Hearn, and H. Yang

Based on these ideas we can characterize the normal forms of �∗ using
“graphical” ideas of path and reachability, as well as conditions about sharing,
cycles, and dangling pointers.

Definition 6. 1. A path in Π � Σ is a sequence of expressions E0, E1, . . . , En

such that
∀i ∈ {1, . . . , n}. ∃E,E′. Π ! Ei−1=E and Π ! Ei=E′ and P (E,E′) ∈ Σ.

Reachability between expressions is defined in the usual way: E is reachable
from E′ in Π � Σ if and only if there is a path in Π � Σ that starts from E
and ends in E′.

2. An expression E in Π � Σ is shared if and only if Σ contains two distinct
elements P0(E0, E

′
0) and P1(E1, E

′
1) such that Π 5 E=E′0 and Π 5 E=E′1.

3. A primed variable x′ in a cycle (a path from E to itself) is an internal node
if and only if it is not shared.

4. E is called possibly dangling in Π � Σ if and only if
(a) Π �5 E=nil,
(b) there exists some E′ such that Π 5 E=E′ and E′ is the second argument

of some heap predicate in Σ, and
(c) there are no expressions F ′ such that Π 5 E=F ′ and F ′ is the first

argument of some heap predicate in Σ.
5. E points to a possibly dangling expression if and only if there are E′, F such

that Π 5 E=E′, P (E′, F ) ∈ Σ, and F possibly dangles.

Definition 7 (Reduced Symbolic Heap). A symbolic heap Π � Σ is reduced
if and only if

1. Π does not contain primed variables;
2. every primed variable x′ in Σ is reachable from some unprimed variable; and
3. for every reachable variable x′, either (a) x′ is shared, or (b) x′ is the internal

node of a cycle of length precisely two, or (c) x′ points to a possibly dangling
variable, or (d) x′ is possibly dangling.

In (b) of this definition the length refers to the syntactic length of a path, not
the length of a denoted cycle. For example, ls(x, x′)∗ ls(x′, x) has syntactic length
two, even though it denotes cycles of length two or greater.

This definition of reduced heaps is not particularly pretty; its main point is
to give us a way to prove termination of our analysis.

Proposition 8 (Canonical Characterization). When a symbolic heap Π � Σ
is consistent, Π � Σ is reduced if and only if Π � Σ �/ .

We consider the formulae in CSH as being equivalent up to renaming of primed
variables. With this convention, we can show CSH finite.

Proposition 9. CSH is finite.

The proof of this proposition proceeds by first showing a lemma that bounds
the number of primed variables in any reduced form. In essence, the condition 3
of the definition of “reduced” stops there being infinitely many possible primed



A Local Shape Analysis Based on Separation Logic 299

variables (starting from a fixed finite set of program variables). This then limits
the number of atomic formulas that can appear, giving us finiteness. The overall
bound one obtains is exponential (for the record, we have an argument that gives
a very coarse bound of 2(129n2+18n+2)). This the leads us to

Theorem 10. The algorithm specified by A[[·]] always terminates.

7 Locality

We now describe locality properties of the semantics, beginning with an example.
Suppose that we have a queue, represented in memory as a list segment from c
to d. An operation for getting an element is

x c ; c c�tl /* get from left of queue, put in x */

The list segment might not be the whole storage, of course. In particular, we
might have an additional element pointed to by d which is (perhaps) used to
place an element into the queue. When we run our tool on an input reflecting
this state of affairs we obtain

Pre: {} � {ls(c, d)∗d �→d′} Post: {c=d} � {x �→d∗d �→d′} ∨ {} � {x �→c∗ls(c, d)∗d �→d′}

However, it is clear that the d �→ d′ information is irrelevant, that a run of the
tool on the smaller input gives us all the information we need.

Pre: {} � {ls(c, d)} Post: {c=d} � {x �→d} ∨ {} � {x �→c ∗ ls(c, d)}

In fact, the behaviour of the tool in the first case follows from that in the
second, using the Frame Rule of separation logic. This example is motivated by
the treatment of a concurrent queue in [11]. The fact that we do not have to
consider the cell d when inserting is crucial for a verification which shows that
the two ends of a nonempty queue can be manipulated concurrently. To produce
such results from an analysis, rather than a by-hand proof, we would similarly
like to avoid the need to analyze the entire state including the cell d.

We can give a theoretical account of the locality of our analysis using the
following notions. First, we define a notion of ∗ on entire symbolic heaps.

(Π1 � Σ1) ∗ (Π2 � Σ2) = (Π1 ∪Π2 � Σ1 ∗Σ2).

This is a partial operation, which is undefined when Σ1 ∗ Σ2 is undefined, or
when (Π1 ∪Π2 � Σ1 ∗Σ2) is inconsistent, or when some primed variable appears
both in Π1 � Σ1 and in Π2 � Σ2. We extend this to SH ∪ {�} by stipulating
(Π � Σ) ∗ � = � = � ∗ (Π � Σ). It then lifts to a total binary operation on
P(SH) by

X ∗ Y = {σ1 ∗ σ2 | σ1 ∈ X, σ2 ∈ Y }.
To formulate the locality property we suppose a fixed set Mod of modified

variables, that appear to the left of or in new(x) in a given command c.



300 D. Distefano, P.W. O’Hearn, and H. Yang

Theorem 11 (Frame Rule). For all X,Y ∈ P(CSH), if Vars(Y ) ∩ Mod = ∅
then γ(A[[c]](X ∗ Y )) ⊆ γ((A[[c]]X) ∗ Y ).

There are two reasons why we get an overapproximation ⊆ rather than exact
match here. First, and trivially, there might be states in X where c faults, returns
�, while it never does for states inX∗Y . The second reason is best understood by
example. When the program new(x);(if x=y then z a else z b);dispose(x)
is run in the empty heap, it returns two post-states, one where z=a and the
another where z=b. But when run in y �→y′ the if branch is ruled out and we
only get z=b � y �→y′ as a conclusion. However, we get z=a � y �→y′ as an additional
possibility starting from y �→y′, when we put the small output together with y �→y′

using ∗. Although precision can be lost when passing to smaller states, in many
examples we have considered it is an acceptable loss or none.

For a given command c and symbolic heap σ we define

1. safe(c, σ) iff � �∈ A[[c]]{σ}
2. σ1 . σ3 iff ∃σ2. σ3 = σ1 ∗ σ2

3. σ ≺ σ′ iff σ . σ′ and σ �= σ′

4. onlyaccesses(c, σ) iff safe(c, σ) and ¬∃σ′ ≺ σ. safe(c, σ′).

The notion of accesses is coarse. For example, onlyaccesses([x] y, ls(x, nil)) holds,
even though a single cell can be picked out of the list segment. A stronger
notion of accesses, and hence footprint, might be formulated taking implications
between symbolic heaps into account as well as ..

The footprint is partial function foot(c): CSH⇀ P(CSH),

foot(c)σ = if (onlyaccesses(c, σ)) then (A[[c]]{σ}) else (undefined).

The point of the footprint is that, as a set of pairs, it can be compact compared to
the entire meaning. For the disposelist program in Example 2, the footprint has
three entries, with preconditions {} � {ls(c, nil)}, {} � {c �→nil} and {c=nil} � {}.
The entire meaning has 16 entries, corresponding to the number of canonical
symbolic heaps over a single input variable c.

To express the sense in which the footprint is a sound representation of the
semantics of c we show how any potential footprint can be “fleshed out” by
applying the idea behind the Frame Rule. Again, let Mod be the set of modified
variables in a given command c, and for each Π � Σ, let unaffectedEqs(Π � Σ) be
the set of equalities E=F in Π such that Vars(E=F ) ∩ Mod = ∅. If f : CSH ⇀
P(CSH), then flesh(f): CSH → P(CSH) is defined as follows:

validSplit(σ0, σ1, σ) ⇐⇒ σ0 ∗ σ1 = σ and Vars(σ1) ∩Mod = ∅ and

σ0 ∈ dom(f) and unaffectedEqs(σ1) = unaffectedEqs(σ)
flesh(f)σ = if (¬∃σ0, σ1. validSplit(σ0, σ1, σ)) then {�}

else let σ′
0, σ

′
1 be symbolic heaps s.t. validSplit(σ′

0, σ
′
1, σ)

in P(can)(f(σ′
0) ∗ {σ′

1})

The fleshing out picks one access point, and adds as many ∗-separated invariants
as possible to the access point.



A Local Shape Analysis Based on Separation Logic 301

Theorem 12. The footprint is a sound overapproximation of the abstract se-
mantics: ∀X ∈ P(CSH). γ(A[[c]]X) ⊆ γ(foot(c)†X).

The calculation of whole footprints is, of course, not realistic. A more practical
way to employ the footprint idea would be, given an input state σ, to look
at substates on which a procedure or command does not produce a fault. In
interprocedural analysis, we might record the input-output behaviour on as small
states as possible when tabulating a procedure summary. This would be similar
to [16], but would not involve entire reachable substates. In concurrency, we
would look for disjoint substates of an input state on which to run parallel
commands: if these input states were safe for the commands in question, then
we could soundly avoid (many) interleavings during symbolic execution. We hope
to report on these matters at a later time.

Acknowledgements. Thanks to Josh Berdine, Cristiano Calcagno, Ivana Mija-
jlovic, Anindya Banerjee, Andreas Podelski, Noam Rinetzky, Mooly Sagiv, and
the anonymous referees for helpful comments on this work. Yang was supported
by R08-2003-000-10370-0 from the Basic Research Program of Korea Science &
Engineering Foundation. Distefano and O’Hearn were supported by the EPSRC.

References

[1] T. Amtoft, S. Bandhakavi, and A. Banerjee. A logic for information flow analysis
of pointer programs. 33rd POPL, to appear, 2006.

[2] T. Amtoft and A. Banerjee. Information flow analysis in logical form. 11th Static
Analysis Symposium, LNCS3184, pp100-115, 2004.

[3] T. Ball, A. Podelski, and S. K. Rajamani. Boolean and Cartesian abstraction for
model checking C programs. 7th TACAS, LNCS, 2031:268–283, 2001.

[4] J. Berdine, C. Calcagno, and P. O’Hearn. A decidable fragment of separation
logic. Proceedings of FSTTCS, LNCS 3328, Chennai, December, 2004.

[5] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Symbolic execution
with separation logic. In K. Yi, editor, APLAS 2005, volume 3780 of LNCS,
2005.

[6] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. 4th
ACM Symposium on Principles of Programming Languages. pages 238–252, 1977.

[7] D. Distefano. On model checking the dynamics of object-based software: a foun-
dational approach. PhD thesis, University of Twente, 2003.

[8] D. Distefano, A. Rensink, and J.-P. Katoen. Who is pointing when to whom:
on model-checking pointer structures. CTIT Technical Report TR-CTIT-03-12,
Faculty of Informatics, University of Twente, March 2003.

[9] S. Magill, A. Nanevski, E. Clarke, and P. Lee. Inferring invariants in Separation
Logic for imperative list-processing programs. Draft, July 2005, 2005.

[10] R. Manevich, E. Yahav, G. Ramalingam, and S. Sagiv. Predicate abstraction and
canonical abstraction for singly-linked lists. Proceedings of 6th VMCAI , pp181-
198, 2005.

[11] P. O’Hearn. Resources, concurrency and local reasoning. Theoretical Computer
Science, 2006. to appear. Preliminary version appeared in CONCUR’04, LNCS
3170, 49–67.



302 D. Distefano, P.W. O’Hearn, and H. Yang

[12] P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about programs that alter
data structures. In Proc. of 15th CSL, LNCS, pages 1–19. Springer-Verlag, 2001.

[13] P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation and information hiding.
In 31st POPL, pages 268–280, 2004.

[14] J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In
17th LICS, pp 55-74, 2002.

[15] N. Rinetzky, J. Bauer, T. Reps, S. Sagiv, and R. Wilhelm. A semantics for
procedure local heaps and its abstractions. 32nd POPL, pp296–309, 2005.

[16] N. Rinetzky, M. Sagiv, and E. Yahav. Interprocedural shape analysis for cutpoint-
free programs. In 12th International Static Analysis Symposium (SAS), 2005.

[17] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3valued logic.
ACM Trans. Program. Lang. Syst., 24(3):217–298, 2002.



Compositional Model Extraction for
Higher-Order Concurrent Programs

D.R. Ghica1 and A.S. Murawski2,�

1 School of Computer Science, Univ. of Birmingham, Birmingham B15 2TT, UK
2 Oxford University Computing Laboratory, Oxford OX1 3QD, UK

Abstract. The extraction of accurate finite-state models of higher-order
or open programs is a difficult problem. We show how it can be addressed
using newly developed game-semantic techniques and illustrate the solu-
tion with a model-checking tool based on such techniques. The approach
has several important advantages over more traditional ones: precise ac-
count of inter-procedural behaviour, concise procedure summaries and
economical extracted models.

1 Introduction and Background

Automated verification of software systems is one of the most urgent problems
in computer science. This hardly needs to be argued for, as we are exposed to
a world increasingly dominated by software. The theoretical and practical diffi-
culty of the problem is well known. In general, the problem is undecidable but,
even subject to simplifying assumptions and approximation techniques which
make it decidable, the complexity poses a substantial challenge. Nevertheless,
theoretical developments combined with an increase in available computational
power give grounds for optimism, and automated verification of software sys-
tems is becoming increasingly feasible, to the point that it is about to become a
meaningful part of industrial software development [1].

The most effective methods of automated software verification turn out to be
based on model checking (MC) [2], in particular on finite-state model checking.
A software system is represented as (or approximated by) a finite-state machine
(FSM) and its interesting properties are expressed as temporal properties of
the FSM. The challenges that need to be tackled include efficient extraction of
models and automatic derivation of smaller but safe approximations. Some of the
most advanced MC frameworks available centre around these issues [3, 4, 5, 6].

For programming languages with procedures, especially higher-order proce-
dures, the extraction of an FSM representation or approximation is especially
difficult because one needs to account for the often subtle interaction between
procedures and other computational features such as state, concurrency or con-
trol. We can illustrate this point with a very simple example. Consider the fol-
lowing (second-order) procedure p taking as argument procedure c:

int p(void c(int d)) { int x=1; c(2); return x }.

� Supported by the UK EPSRC (GR/R88861/01) and St John’s College, Oxford.

H. Hermanns and J. Palsberg (Eds.): TACAS 2006, LNCS 3920, pp. 303–317, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



304 D.R. Ghica and A.S. Murawski

In virtually any programming language if p returns a value then that value
will be 1. There should be no way that the non-local procedure c, taken as
an argument, can modify the value of the locally-scoped variable x. However,
producing a FSM representation of this procedure, which makes it obvious that x
and c cannot interact, turns out quite difficult. The same issues arise in modeling
open programs, i.e. programs with procedures which are not defined locally.
In both cases the obstacle is that operational techniques, which are ordinarily
employed for model extraction, only apply for closed, ground-type terms.

Dealing with issues pertaining to inter-procedural interactions such as the one
illustrated above is the subject of numerous lines of research: data-flow analysis,
control-flow analysis, effect analysis, locality analysis and so on. Many of these
analyses are syntactic or operational, and it is quite awkward to integrate them
into a MC framework. However, they are essential in modeling and verifying
higher-order programs. The problem of model extraction is particularly difficult
in the presence of concurrency, because the naive model based on interleaved
execution is very computationally expensive.

The research programme we are pursuing proposes a new kind of analysis,
called algorithmic game semantics, which subsumes inter-procedural analysis
and is compatible with FSM representation and model-checking. This analysis
focuses on finding concrete representations for game-semantic models (or game
models, for brevity) of programming languages. Having a semantics-directed ap-
proach to model construction has several important advantages:

Consistency. A semantics-directed approach provides a unified framework
which encompasses and supersedes the techniques mentioned earlier in a
uniform, substantially simplified fashion.

Correctness. The model extraction is correct (and in fact complete) by con-
struction, relative to a specified notion of observation. In principle, any inter-
procedural analysis compatible with the specified notion of observation can
be derived from the semantics. For example, we will see that game models
immediately validate the earlier observation about the interaction between
local state and non-local procedures.

Concreteness. We can construct a concrete FSM representation of the be-
haviour of a higher-order program, which is independent of the syntax. Once
the model is constructed we can apply standard model-checking methods to
verify its properties efficiently.

Compositionality. Models are constructed inductively on the structure of the
program, i.e. the model of a program P is constructed out of the models
of its subprograms Pi. Most importantly, in constructing the models for
subprograms Pi’s we need not know the larger context in which they will be
used. The beneficial consequences of a compositional method are:
– an ability to model and verify open programs, i.e. programs which must

function in an unknown environment (for example libraries);
– the possibility to break up a larger system in smaller systems which can

be modeled and verified independently (scalability);
– modeling procedures independently and incorporating their models effi-

ciently into the model of a larger program (procedure summaries) [7].



Compositional Model Extraction for Higher-Order Concurrent Programs 305

Code-level specification. Program properties are described at code-level us-
ing assertions, rather than at model-level using temporal logics.

Note that a semantics-directed approach to model extraction was not feasible
using the traditional styles of semantics extant before the introduction of game
semantics, i.e. operational and denotational. Operational semantics is concrete
enough, but has virtually no meta-theory, is not compositional and cannot model
open programs. Denotational semantics, on the other hand, meets these require-
ments but is abstract and essentially non-finitary. Game semantics seems to
combine the advantages of the two in a way that is particularly promising for
automated verification.

Game semantics was introduced in order to tackle the long-standing full ab-
straction problem for the functional language PCF [8, 9]. The framework proved
to be very useful for constructing semantics for a variety of programming lan-
guages involving diverse computational features such as state [10], control [11],
concurrency [12] and more. The first steps in the direction of application of game
semantics for program analysis were taken by Hankin and Malacaria [13]. The
first application to model checking was proposed by Ghica and McCusker [14],
and further developed by Ghica [15]. A model-checker based on these ideas was
implemented in [16] with very positive results: it illustrates the ability to model
open second-order programs by verifying invariants of abstract data type imple-
mentations (ADT) and it shows how the compositionality of the model construc-
tion allows the modeling of data-intensive programs such as sorting programs.

Contribution

The model checking technique described in [16] is for a second-order sequential
procedural language. In this paper we substantially expand the expressivity of
the programming language we model, by adding higher-order procedures, shared-
variable concurrency and semaphores. The immediately relevant theoretical de-
velopments which led to this new model checking technique are a game model
for shared-variable concurrency [12] and a type system used to identify decidable
terms in the language [19].

Note that in this paper we focus almost exclusively on the problem of model
extraction and representation. In order to tackle the other standard problems of
MC (specification and efficient verification) we rely on the commercially-available
model-checker FDR [17].

2 The Language SCC

We consider a higher-order call-by-name procedural language with parallel com-
position and binary semaphores. Its types are generated by the grammar given
below

β ::= com | int | var | sem θ ::= β | θ → θ,



306 D.R. Ghica and A.S. Murawski

where com is the type of commands, int is a finite data-type of expressions which
can take values from the set { 0, · · · ,max } (max > 0), var is the type of variables
holding values from { 0, . . . ,max } and sem is the type of binary semaphores. The
syntax of the language is defined by the standard λ-calculus rules (λx.M,MN)
augmented with rules for arithmetic, branching, iteration (whileM doN), vari-
able manipulation (assignment M :=N , dereferencing !M , variable definition
with initialisation newvarX :=i inM), parallel composition (M1 ||M2) and bi-
nary semaphore manipulation (grb(S), release(S), semaphore definition with ini-
tialisation newsemS:=i inM , where S:=0 means that the semaphore is released
initially).

The semantics of the language is defined using a (small-step) transition re-
lation Σ 5 M, s −→ M ′, s′. Σ is a set of names of variables denoting memory
cells and names of semaphores denoting locks ; s, s′ are states, i.e. functions
s, s′ : Σ → N, and M,M ′ are terms.

We say that a term M may terminate from state s, written M, s ⇓, if there
exists a terminating evaluation at start state s: ∃s′, M, s −→∗ c, s′, with c ∈
{ 0, · · · ,max , skip }. If M is closed and M, ∅ ⇓ we write M ⇓. We consider the
program approximation and equivalence relations induced by this angelic notion
of termination. They are defined contextually as follows. Two terms Γ 5 M1
and Γ 5 M2 are deemed may-equivalent (written Γ 5 M1 ∼= M2) iff ∀C[−] :
com, C[M1] ⇓ if and only if C[M2] ⇓, where C[Mi] are closed programs of type
com. The corresponding notion of program approximation is defined by: Γ 5
M1 �∼M2 iff ∀C[−] : com, C[M1] ⇓ implies C[M2] ⇓ (where as before C[Mi] are
closed programs of com type). Note that the two notions apply to terms with
free identifiers (open terms) and are defined with respect to all possible uses
(instantiations of the free identifiers).

Although we consider finite data-types and iteration rather than general re-
cursion, it turns out that both ∼= and �∼ are undecidable even for terms with
free identifiers of first order. Indeed, in [19] we show that, unlike in the sequen-
tial case, it is impossible to decide the equivalence or approximation of terms
of the shape p : com → com 5 M : com. The reason is that functions of type
com → com can use their argument in any number of concurrently running
threads, which is powerful enough for encoding the halting problem for counter
machines as an equivalence query. In order to recover decidability one needs to
weaken the meaning of free identifiers and impose bounds on the number of
concurrent threads of execution.

To formalise this sort of constraint specification we introduced a new type
system, called Syntactic Control of Concurrency (SCC) [19]. Types of that sys-
tem are the same as before except that they are annotated with numeric bounds.
Thus an SCC typing judgment has the shape x1:θn1

1 , . . . , xk:θnk

k 5r M : θ where
θ is generated by the grammar θ ::= β | θn → θ, n ∈ N. The numeric bounds
concern the number of concurrent threads of execution that can arise during
various stages of computation.

The key rules are the four rules below. Parallel composition and applica-
tion increase the degree of concurrency, whereas sequential composition (and its



Compositional Model Extraction for Higher-Order Concurrent Programs 307

iterated form, the while loop) does not affect the bounds in any way. Technically
this is achieved by using disjoint contexts for || and application (unlike in the
rule for sequential composition). The bounds for shared variables can then be
added up using a special contraction rule.

Γ 5r M1 : com Γ 5r M2 : com
Γ 5r M1;M2 : com

Γ 5r M1 : com Δ 5r M2 : com
Γ,Δ 5r M1 ||M2 : com

Γ 5r M : θn → θ′ Δ 5r N : θ
Γ, nΔ 5r MN : θ′

Γ, x1 : θm, x2 : θn 5r M : θ′

Γ, x : θm+n 5r M [x/x1, x/x2] : θ′

nΔ is the environmentΔ in which all the outermost bounds have been multiplied
by n.

Bounds have an intuitive assume-guarantee interpretation. A bound n is an
assume (resp. guarantee) if it occurs in the left-hand scope of an even (resp.
odd) number of → (the turnstile 5 is also considered an arrow for this purpose).
Assumes concern the behaviour of the program context and guarantees that of
the program. Intuitively, if the environment behaves according to the assumes,
the program’s behaviour satisfies the guarantees. For example, SCC can derive:

f : (comn → com)2, x : com2n 5r f(x) || f(x) : com,

where n (occurring in the type of f) is the only assume. SCC is made flexible
by the use of subsumption: assumes can be decreased and guarantees increased.

Given an SCC typing derivation of M and a context C[−] such that C[M ] is
closed, we can verify whether C[−] is consistent with the assumes of M simply by
checking if 5r C[M ] can be derived from the typing derivation of M . Given Γ 5r

M1 and Γ 5r M2 sharing the same assumes, we now define new approximation
and equivalence relations, denoted by �∼ r and ∼=r. The definitions are analogous
to those of �∼ and ∼= with the exception that the quantification ranges over all
contexts C[−] that respect the assumes of M1 and M2.

Unlike �∼ and ∼=, �∼ r and ∼=r are decidable, which can be proved using game
semantics. �∼ r and ∼=r can then be shown to correspond to containment and
equality of the sets of the complete plays generated by the two terms in question.
These in turn can be represented by regular languages. Thus the game model for
SCC seems an ideal foundation for a model-checking tool: it is sound, complete
(for �∼ r and ∼=r) and decidable [19].

The primary interest is, of course, to verify programs written in the original
type system, without bounds on concurrency. Imposing the numerical bounds
brings about two limitations. First, only terms with redexes of order less than
two are guaranteed to admit an SCC typing. There exist known programs, albeit
contrived, that do not admit any SCC typing and thus cannot be analysed us-
ing the technique proposed here, e.g.: (λg.g(λx.g(λy.x)))(λf.f(fskip)). Second,
bounds on concurrency in the environment (i.e. the assumes) must be imposed
somewhat arbitrarily, and the resulting analysis is sound only within the assumed
bounds. Fortunately, the type system SCC will (automatically) certify whether
in given execution contexts free identifiers are bound to terms that satisfy the
bounds.



308 D.R. Ghica and A.S. Murawski

3 CSP Representation of Strategies

Game semantics interprets programs as strategies in two-player games between
O (Opponent) and P (Proponent), who represent the context and the program
respectively. Strategies can be viewed simply as sequences of moves (actions) of
the two players, which makes it possible to employ automata-theoretic techniques
to their analysis. Strategies corresponding to SCC terms can be represented by
regular languages. In this section we show how to do that using CSP [17].

CSP is a particularly convenient formalism for expressing strategies, because it
features primitives for (selectively synchronised) parallel composition and hiding,
the two operations on which composition of strategies is based. Additionally, we
will take advantage of CSP channels (to indicate the source of a move), the
flexibility to define new alphabets for multiple tagging (to indicate and compare
membership in threads) and substitution (for re-tagging). CSP has been used
before to represent strategies, but only for sequential programs [18].

First we briefly review the game-theoretic notions involved in the interpre-
tation of terms. Due to space restrictions we omit many technical details, and
only try to give the flavour of the approach. Formally, games can be regarded as
triples G = 〈MG, λG, P

max
G 〉 whereMG is the set of available moves, λG : MG →

{O,P } indicates the ownership of moves and Pmax
G ⊆M∗

G is the set of complete
(maximal) positions. All other positions are simply prefixes of complete posi-
tions, so we can define the set of positions on G as PG = { s | ∃t ∈ Pmax

G .s ≤ t }.
Below we list the complete positions in the games corresponding to base types
(the initial moves are O-moves, the final ones are P-moves; 0 ≤ i ≤ max ):

�com� �int� �var� �sem�
run · done q · i read · i grb · okg

write(i) · ok rls · okr .

SCC higher-order types have shape θn → θ′, but for technical reasons it is useful
to decompose such types using more elementary type constructors ⊗ (interleaved
product), !◦ (iteration), and � (linear function space): θn → θ′ = (

⊗
n !◦θ) � θ′.

The definitions of the three game constructions are:

(MG) M!◦G = MG,MG1⊗G2 = MG1�G2 = MG1 +MG2

(λG) The constructions of !◦G and G1 ⊗ G2 preserve ownership of moves. In
G1 � G2 moves originating from G2 have the same owners as in G2, whereas
O-moves (resp. P-moves) from G1 are P-moves (resp. O-moves) in G1 � G2.

(Pmax
G ) Pmax

!◦G consists of sequences of complete positions from Pmax
G (Pmax

!◦G =
{ s1 · · · sn |n > 0 and ∀1≤i≤nsi ∈ Pmax

G }). Pmax
G1⊗G2

contains interleavings of
a position from Pmax

G1
with a position from Pmax

G2
. Pmax

G1�G2
is similar except

that the interleavings have to start and end with moves from G2.

Game semantics interprets programs as strategies over games defined by the
associated types (strategies are simply prefix-closed sets of positions). A term-
in-context x1:θn1

1 , . . . , xk:θnk

k 5r M : θ is then interpreted by a strategy for the
game �θn1

1 � ⊗ · · · ⊗ �θnk

k � � �θ�. Suppose θ = αml

l → · · · → αm1
1 → β. Because



Compositional Model Extraction for Higher-Order Concurrent Programs 309

the sets of moves M!◦G = MG and MG1⊗G2 = MG1�G2 = MG1 + MG2 , the
game corresponding to a type consists of disjoint copies of games for base types.
Hence, M�θ

n1
1 �⊗···⊗�θ

nk
k ���θ� =

∑
i=1,k M�θ

ni
i � +

∑
j=1,lM�α

mj
j �

+M�β�.
A major design decision in employing CSP to represent strategies concerns the

way all the disjoint sums + are interpreted. For the instances of + distinguished
above we are going to use k + l + 1 different channels (one for each of the
components). The disjoint sums involved in the construction of θni

i or αmj

j will
be tackled differently by using subscripts for � and numeric tags for ⊗ (to
enumerate the threads in the game !◦G ⊗ · · · ⊗ !◦G). In general the moves will
have the shape mc1,...,cv .d1. . . . .dw (abbreviated as mc.d), where ci, dj ∈ N are
indices identifying the type-component of a higher-order type (the cis) and the
thread-component of a nested set of threads (the dis). To be precise, in order
to represent moves of M�θn� we will use the alphabet A(θn) which is defined as
follows. For base types we take A(β) = M�β� and further:

A(θn) = {mc.i.d | mc.d ∈ A(θ), 1 ≤ i ≤ n }

A(γn → · · · → γ1 → β) =
n⋃

i=1

{mi,c.d | mc.d ∈ A(γi) } ∪ A(β).

Concretely, the structure of an action used to represent a move is
identifier .moverank .thread . The channel identifier represents the free identifier
associated with the move, or special identifier “main” if the move is associated
with the term type. The rank is a tag representing the type component (from
right to left) associated with the move. Finally, the list of thread indices identify
the threads and the (nested) sub-threads containing the move.

We are going to define CSP processes whose traces will coincide with strategies
denoting terms in such a way that complete positions comp(�Γ 5r M�) will be
followed by special action

√
. This will enable us to compare complete positions

defined by terms and, by the theorem below, verify program equivalence and
approximation. Because we use tags for identifying threads, in order to compare
strategies we will have to introduce a canonical way of tag usage, e.g. lowest
unused. The convention can be enforced by putting the processes corresponding
to terms in parallel with a separate CSP process that acts as a “name server”.

Theorem 1 ([19]). Given Γ 5r Mi : θ (i = 1, 2) let us write comp(�Γ 5r

Mi�) for the set of complete positions in �Γ 5r Mi�. Then Γ 5 M1 �∼ rM2 iff
comp(�Γ 5r M1�) ⊆ comp(�Γ 5r M2�) and Γ 5 M1 ∼=r M2 iff comp(�Γ 5r

M1�) = comp(�Γ 5r M2�).

CSP processes corresponding to terms can be defined by induction on their
structure. Free identifiers x : θ1 5r x : θ are interpreted by the copy-cat strategy
in which O-moves are simply copied by P between the two copies of �θ� (possibly
with a delay) subject to the exchange of moves being a position in the relevant
game. The behaviour of this strategy resembles that of an unbounded buffer. Its
CSP process can be defined inductively on the structure of types.

Suppose θ = θnk

k → · · · → θn1
1 → β. ID(L,Rk, · · · , R0, θ) returns a process

representing �x : θ1 5r x : θ� in such a way that the moves from �θ1� are



310 D.R. Ghica and A.S. Murawski

PLUS(A1,A2,A,b) = A.q ->A1.q ->A1?x ->A2.q ->A2?y ->A.((x+y)%b) ->SKIP
EQ(A1,A2,A,b) = A.q -> A1.q -> A1?x -> A2.q -> A2?y

-> A.(if x==y then 1 else 0) -> SKIP
ASSIGN(A2,A1,A) = A.run -> A2.q -> A2?y -> A1.write.y -> A1.wok

-> A.done -> SKIP
PAR(A1,A2,A) = A.run -> ((A1.run -> A1.done -> SKIP)

||| (A2.run -> A2.done -> SKIP));(A.done -> SKIP)
SEQCOM(A1,A2,A) = A.run -> A1.run -> A1.done -> A2.run -> A2.done

-> A.done -> SKIP
IFCOM(A0,A1,A2,A) = A.run -> A0.q -> A0?y -> if (y==0) then

(A2.run -> A2.done -> A.done -> SKIP)
else (A1.run -> A1.done -> A.done -> SKIP)

WHILE(A1,A2,A) = A.run -> WHILE_AUX(A1,A2,A)
WHILE_AUX(A1,A2,A) = A1.q -> A1?y -> if (y==0) then (A.done -> SKIP)

else (A2.run -> A2.done -> WHILE_AUX(A1,A2,A))
GRAB(A1,A) = A.run -> A1.grb -> A1.gok -> A.done -> SKIP
RELEASE(A1,A) = A.run -> A1.rls -> A1.rok -> A.done -> SKIP
CELL(A,m) = (A.read?b -> A.m.b -> CELL(A,m))

[] (A.write?v?b -> A.wok.b -> CELL(A,v)) [] SKIP
SEM(A,m) = if (m==0) then (A.grb?b -> A.gok.b -> SEM(A,1) [] SKIP)

else (A.rls?b -> A.rok.b -> SEM(A,0) [] SKIP)

Fig. 1. CSP representation of some strategies

transmitted on channel L, those from �θni

i � on channel Ri and those from �β�
on R0. Let Pi = IDaux(LL,RR, θi) (1 ≤ i ≤ k) for some fresh channel names
LL,RR, where IDaux(LL,RR, θi) is defined below. For 1 ≤ i ≤ k, 1 ≤ j ≤ ni

define Pi,j = Pi[[RR.mc.d ← L.mi,c.j.d, LL.mc.1.d ← Ri.mi,c.j.d ]]. Let P ′ =
|||ki=1|||ni

j=1STAR(Pi,j), where STAR(P ) = SKIP [ ] (P ;STAR(P )). Then return
[ ]m1m2∈P�β�

(R.m1 → L.m1.1 → P ′); (L.m2.1 → R.m2 → SKIP).
IDaux(L,R, θ) returns a process representing �x : θ1 5r x : θ� in such a

way that the moves from �θ1� are transmitted on channel L and those from
�θ� on R. It can be defined recursively as follows. Suppose θ = θnk

k → · · · →
θn1
1 → β. Let Pi = IDaux(LL,RR, θi) (1 ≤ i ≤ k) for some fresh channel

names LL,RR. For 1 ≤ i ≤ k, 1 ≤ j ≤ ni define Pi,j = Pi[[RR.mc.d ←
L.mi,c.j.d, LL.mc.1.d ← R.mi,c.j.d ]]. Let P ′ = |||ki=1|||ni

j=1STAR(Pi,j), where
STAR(P )=SKIP [ ] (P ;STAR(P )). Then return [ ]m1m2∈P�β�

(R.m1→L.m1.1 →
P ′); (L.m2.1 → R.m2 → SKIP).

The CSP representation of some of the key constants of the language is
given in Fig. 1. Using different channels for moves of �α

mj

j � makes interpreting
application relatively easy, because it suffices to use the channel correspond-
ing αml

l to synchronise the process corresponding to the function term with
ml interleaved copies of that corresponding to the argument. Suppose P1, P2
are the CSP processes representing �Γ 5r M1 : θ1� and �Γ 5r M2 : θ2� re-
spectively and Ri

0 are the channels on which moves from the right copies of
respectively �θi�, i = 1, 2 are transmitted. Then the process P representing
Γ 5r M1�M2 is:



Compositional Model Extraction for Higher-Order Concurrent Programs 311

P = ((P1 |||P2) [ |R1
0, R

2
0| ] PROC�(R1

0, R
1
0, R0)) \ {|R1

0, R
2
0|},

where PROC�(· · · ) is the CSP representation of the � binary operator (+, =, ;,
:=, etc), as given in Fig. 1. Operators of different arity (if-then-else, grab, release,
etc.) are treated analogously.

Application is parallel composition synchronised on the actions corresponding
to the type of the argument, followed by the hiding of those actions. Contraction
amounts to renumbering threads: m threads (indexed by 1, . . . ,m) on one chan-
nel and n threads on another (with indices from 1, . . . , n) have to be renumbered
as threads indexed 1, · · · ,m+ n on a new channel, done by CSP substitution.

For example, the main processes generated in the representation of the strate-
gies for f : com2 → com, x : com 5 fx : com are:

P8 = ||| j:{0..1} @ STAR(ADD(ADD(P7,j,C7,C3),j,C5,C6))
P9 = (P8[|{|C3|}|]P3)\{|C3|}
ADD(P,j,IN,OUT)=P[[IN.done.x<-OUT.done.((x+j)%(3))|x<-{0..2}]]

[[IN.run.x<-OUT.run.((x+j)%(3))|x<-{0..2}]]
[[IN.done_1.x<-OUT.done_1.((x+j)%(2))|x<-{0..1}]]
[[IN.run_1.x<-OUT.run_1.((x+j)%(2))|x<-{0..1}]]

In the above, process P8 generates 2 interleavings of the argument (represented
by P7, not shown) using auxiliary processes STAR (which iterates its argument)
and ADD (which serves as the renaming server). Process P9 is the actual ap-
plication (in which P3 represents the free variable f , not shown) consisting on
synchronisation on channel C3 followed by the hiding of C3.

Variable and semaphore introduction can be represented by application of
special (higher-order) constants newvarm and newsemm: newvar x:=m inM ≡
newvarm(λx.M), and newsemx:=m inM ≡ newsemm(λx.M). The applications
are modeled by parallel composition with hiding using the CSP processes
CELL(· · ·,m) and SEM(· · ·,m) respectively.

4 Tool Support and Case Studies

Using translation to CSP we can employ FDR to verify several classes of proper-
ties: program equivalences (∼=r) and inequivalences, approximation (�∼ r),
assertions, invariants and other safety properties.

In our examples, the channel names associated with free identifiers will always
have a name related to the identifier, int$i will stand for the type { 0, . . . , i−1 }.
We also use n-ary semaphores (n > 1), which can be easily added to SCC, writing
sem$n for the corresponding type (sem$1 is identical to the type sem of binary
semaphores). In the programs below, the assumed bounds on the behaviour of
the environment, e.g. p : com2 → int, are represented as p:com{2}->exp.

We implemented a tool which takes as input SCC terms (only the assumes
are actually required), infers the missing guarantee bounds then compiles the
term in the CSP process algebra. The FDR model-checker is invoked to verify
safety properties or to check (may) equivalence of terms.



312 D.R. Ghica and A.S. Murawski

4.1 Warm-Up Example

Let us illustrate the model with a classic example from the literature [20]:

p : com → int → com 5 newvar x:=0 in p(x:=x + 1;x:=x − 1)(x) �≡ p skip0.

The non-local procedure p can increment then decrement the local variable x
or dereference it, but has no other access to it. Therefore, in a sequential pro-
gramming language the equivalence stands. However, in a concurrent language
the equivalence may fail because the arguments can generate race conditions.
Indeed, if we give p the SCC typing comm → intn → com for some m,n > 0,
FDR identifies a trace which can occur in the LHS but not in the RHS (we
present it along with a move-by-move interpretation):

main .run start execution, first main thread
p.run.1 start executing p’s main thread
p.q1.1.1 start executing p’s right argument, first thread
p.run2.1.1 start executing p’s left argument, first thread
p.11.1.1 p’s right argument in first thread produces 1

We can see that the reason for the equivalence failing was a race condition.
SCC is call-by-name, i.e. the arguments are thunks, so the right argument may
begin to be evaluated before the evaluation of the left argument has completed
(p.ok2.1.1). In fact, the diagrammatic representation of the processes produced
by FDR shows quite clearly that the two processes are not similar (Fig. 2).

0 1 2 3
4

5

6
7

8
9

10

11
12

13 14

�∼=r

0 1 2 3
4

5

6
7

8

Fig. 2. Two inequivalent processes

4.2 Verifying Algorithm Implementations

Consider the code in Fig. 3, implementing the tie-breaker algorithm [21] as a
procedure which takes as arguments two critical regions, two non-critical re-
gions and two termination conditions (LHS). We can verify the algorithm by
comparing it against a simpler implementation which assumes the existence of
semaphores in the language and serves as a specification (RHS). By compiling
the two implementations into CSP, we can use FDR to verify that, indeed, they
are equivalent.



Compositional Model Extraction for Higher-Order Concurrent Programs 313

1 mutex1(crtc1:com, crtc2:com, nonc1:com, nonc2:com, b1:int$2, b2:int$2) =
2 int in1, in2, last;
3 while b1 do {
4 in1:=1; last:=1; while (in2 & last=1) do skip; crtc1; in1:=0; nonc1 }
5 || while b2 do {
6 in2:=1; last:=2; while (in1 & last=2) do skip; crtc2; in2:=0; nonc2 }
7 ∼= mutex2(crtc1:com, crtc2:com, nonc1:com, nonc2:com, b1:int$2, b2:int$2)=
8 sem s; while b1 do {grab(s); crtc1; release(s); nonc1}
9 || while b2 do {grab(s); crtc2; release(s); nonc2}

Fig. 3. The tie-breaker algorithm vs semaphores

4.3 Verifying ADT Implementations

One of the principal advantages of our approach is that we can model open
programs, such as ADTs. For example, let us consider the stack implemen-
tation given in Fig. 4, where n is the size of the stack and empty, overflow
are (unspecified) user-defined procedures to handle usage errors. The imple-
mentation stores the stack elements in an array and uses a semaphore to pro-
tect the changes to the array as well as the variable crt that indicates the
top of the stack. However, it is not actually thread-safe and contains a non-
trivial (but common) error which we will “discover” using our model-checker.
In order to model and verify the ADT we consider the program VERIFY
push pop top, where VERIFY : (int → com)1 → com1 → int1 → com plays
the role of the most general environment. After generating the game model with
FDR we can check the stack ADT for safety properties such as buffer over-runs
or assertion failures. For instance, if we introduce an additional free identifier

empty:com, overflow:com, VERIFY:(int->com){1}->com{1}->int{1}->com |- 1

int buf[n], crt; sem s; 2

let size:int = n 3

isempty:int = (crt = 0) 4

isfull:int = (crt = size) 5

push:(int->com) = fun x : int. 6

if isfull then overflow 7

else (grab(s); buf[crt]:=x; crt:=crt+1; release(s)) 8

top:int = 9

int tmp; 10

if isempty then (empty; 0) 11

else (grab(s); tmp:=buf[crt-1]; release(s); tmp) 12

pop:com = 13

if isempty then empty else (grab(s); crt:=crt-1; release(s)) 14

in VERIFY push pop top : com. 15

Fig. 4. A bounded-stack implementation



314 D.R. Ghica and A.S. Murawski

segf : com (segmentation fault) and arrange for segf to be invoked for buffer
overrun errors, the FDR will identify the following safety violation:

main.run start execution
VERIFY .run.1 start running VERIFY
VERIFY .run3.1.1 call push
VERIFY .q3,1.1.1.1 push requests an argument
VERIFY .q1.1.1 call top
VERIFY .03,1.1.1.1 provide an argument to push
VERIFY .run2.1.1 call pop
segf .run a violation has occurred.

The reason for the violation is the fact that only the changes to the buffer and
the top of the stack have been protected by a semaphore. As seen in the trace,
a violation can still occur if top starts executing on a one-element stack, then
pop is executed concurrently between the empty-stack check and the dereferenc-
ing of the buffer. A thread-safe implementation must protect with semaphores
the entire scope of the stack methods, including the testing for empty and full
buffer.

5 Higher-Order Procedures: Producer-Consumer

Our final example will examine a producer-consumer algorithm [21]: the proce-
dure accepts as arguments a producer and a consumer function along with a
parameter indicating when termination should occur. The value returned by the
producer function is stored in a circular buffer. The consumer function takes a
value from the circular buffer and performs some (unknown) action. The main
procedure executes p copies of the producer process in parallel with c copies
of the consumer process, each in a loop controlled by the argument b1 or b2.
Information in the form of numbers from 0 to i − 1 is shared using an n-place
buffer. The values of n, p, c, i are constants.

In the implementation shown in Fig. 5, semaphores s and t are used to pre-
vent race conditions between the producers and, respectively, the consumers.
Note that a producer and a consumer may access the buffer concurrently. N -ary
semaphores full and empty make the producers and the consumers wait if the
buffer is full, respectively empty.

This procedure is interesting because it is not possible to reduce it meaning-
fully to a first-order program. The SCC typing of the prodcon procedure means
that the analysis requires that the consume procedure uses its argument in at
most one thread of execution, which is not an unreasonable restriction. We can
perform the same safety analyses as described before, and the implementation
in Fig. 5 does not produce violations. We can also perform various safety tests
using the FDR-specific idiom, refinement [17].

However, in the case of a complex program such as this, the real challenge
lies in constructing the model, so we will use this example primarily to illustrate
how the state space of the model is affected by the various constants occurring in



Compositional Model Extraction for Higher-Order Concurrent Programs 315

1 prodcon(produce:int$i, consume:int$i{1}->com, b1:int$2, b2:int$2) =
2 int$i buf[n], front, rear;
3 sem$n full=n, empty;
4 sem s, t;
5 dopar j := 1,p while b1 do {
6 int$i tmp := produce;
7 grab(empty); grab(s);
8 buf[rear] := tmp;
9 rear := (rear + 1) mod n;

10 release(s); release(full) }
11 || dopar j := 1,c while b2 do {
12 grab(full); grab(t);
13 int$i tmp := buf[front];
14 front := (front + 1) mod n;
15 release(t); release(empty);
16 consume(tmp) }

Fig. 5. A higher-order producer-consumer procedure

the program. We will also compare the size of the resulting model, as produced
by FDR, with the size of a naive model generated by state exploration and
interleaving of basic operational steps. (According to the operational semantics
of the language each thread needs around 30 such steps.)

The results of the comparison are given in Tbl. 1. The workspace column
indicates the largest intermediate model generated in the course of creating
the final model. It is clear from the data above that the savings achieved us-
ing an observational model, which hides state changes that are not externally
observable, are substantial. This is consistent with our earlier analysis of data-
intensive algorithms. We can also see the importance of compositional model
construction and concise procedure summaries, because a client of the prodcon
procedure can now be modeled using the very compact observational model.
Inlining the procedure even a couple of times would generate models of unman-
ageable size.

Table 1. Benchmark results

n p c i naive model game model FDR workspace time (s)
3 1 1 1 40,000 114 2,554 112
4 1 1 1 62,500 143 5,168 142
3 2 1 1 1,000,000 1,684 39,758 247
3 1 2 1 1,000,000 1,735 43,206 351
3 1 1 2 5,120,000 464 4,632 223
2 2 2 1 14,062,500 6,478 495,621 1,733
3 2 2 1 25,000,000 13,813 760,389 4,889
2 2 2 2 3,600,000,000 24,489 1,763,637 54,617



316 D.R. Ghica and A.S. Murawski

Our experiments also confirm that increasing the amount of observable con-
currency in the system has a far worse effect over model size than increasing
the amount of data available to the system. The last case is perhaps the most
interesting. The very large naive model state space is due to increasing the size
of variable tmp which occurs in 4 threads. But the variable is local, hence in-
visible from outside its scope, so it does not contribute directly to the final
model.

6 Conclusions

Game semantics provides a new technique for software model extraction which,
as we have seen, has several advantages. The semantics-directed nature of the
approach ensures correctness and completeness by construction and a compo-
sitional, incremental way of generating the model. What makes game models
substantially different from more traditional models is a focus on observational
behaviour, i.e. on the interaction between a program and its context, and hiding
the non-observable details such as internal state changes.

Our experiments show that game semantics leads to much more compact
models than those obtained by naive interleaving. We believe that further gains
in efficiency are possible with the help of partial-order reduction techniques [23].
However, their incorporation into game semantics has not been investigated yet,
especially the subtle relation between partial-order reduction and composition,
and we leave it for future work.

Software verification using game models is still in its infancy but the initial
developments are promising. However, we are some distance away from providing
true competition to industrial-level tools. The following developments, which are
within reach, will however bring us closer to realistic applications:

Real languages. The language we study here is realistic and expressive, but it
is ultimately an academic exercise. We believe game-semantic techniques are
now mature enough so that we can soon tackle a real programming language,
such as a substantial subset of Java or C.

Liveness. The game model for SCC is derived from an angelic notion of ter-
mination which corresponds to trace equivalence. This does not account for
deadlock or live-lock. Upgrading the semantic model to handle these phe-
nomena is the subject of on-going research.

Algorithmics. So far we have used off-the-shelf model checkers which do not
exploit the features of our semantics perfectly. FDR, for example lacks fea-
tures which are common in modern model checkers, such as BDD represen-
tation. SPIN [6] is a powerful model-checker, but (unlike FDR) is essentially
stateful. Moreover, neither of the two supports composition, i.e. creating a
model from two independently generated models (although FDR uses com-
positional reductions internally).

Refinement. Our use of data abstraction in this model checker is relatively
informal. The problem of automatically abstracting and refining the model
is critical for software verification, and is dealt with separately [22].



Compositional Model Extraction for Higher-Order Concurrent Programs 317

References

1. Ball, T., Cook, B., Levin, V., Rajamani, S.K.: SLAM and static driver verifier:
technology transfer of formal methods inside Microsoft. In: IFM 2004, LNCS 2999
1–20

2. Clarke, E.M., Grumberg, O., Peled, P.: Model Checking. The MIT Press, Cam-
bridge, Massachusetts (1999)

3. Robby, Dwyer, M.B., Hatcliff, J.: Bogor: an extensible and highly-modular software
model checking framework. In: ESEC / SIGSOFT FSE (2003) 267–276

4. Ball, T., Rajamani, S.K.: The SLAM toolkit. In: CAV 2001, LNCS 2102 260–264
5. Andrews, T., Qadeer, S., Rajamani, S.K., Rehof, J., Xie, Y.: Zing: A model checker

for concurrent software. In: CAV 2004, LNCS 3114 484–487
6. Holzmann, G.J.: The Spin model checker. IEEE Trans. on Soft. Eng. 23 (1997)

279–295
7. Qadeer, S., Rajamani, S.K., Rehof, J.: Summarizing procedures in concurrent

programs. In: POPL (2004) 245–255
8. Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. Information

and Computation 163 (2000)
9. Hyland, J. M. E., Ong, C.-H. L.: On full abstraction for PCF: I, II and III.

Information and Computation 163 (2000)
10. Abramsky, S., McCusker, G.: Linearity, sharing and state: a fully abstract game

semantics for Idealized Algol with active expressions. ENTCS 3 (1996)
11. Laird, J.: Full abstraction for functional languages with control. In: LICS (1997)

58–67
12. Ghica, D.R., Murawski, A.S.: Angelic semantics of fine-grained concurrency. In:

FOSSACS 2004, LNCS 2987 211–225
13. Hankin, C., Malacaria, P.: Generalised flowcharts and games. In: ICALP (1998)

363–374
14. Ghica, D.R., McCusker, G.: Reasoning about Idealized algol using regular lan-

guages. In: ICALP 2000, LNCS 1853 103–116
15. Ghica, D.R.: A Games-based Foundation for Compositional Software Model Check-

ing. PhD thesis, Queen’s University, Kingston, Canada (2002)
16. Abramsky, S., Ghica, D. R., Murawski, A. S., Ong, C.-H. L.: Applying game

semantics to compositional software modeling and verification. In: TACAS’04,
LNCS 2988 421–435

17. Roscoe, W.A.: Theory and Practice of Concurrency. Prentice-Hall (1998)
18. Dimovski, A., Lazic, R.: CSP Representation of Game Semantics for Second-Order

Idealized Algol. In: ICFEM 2004, LNCS 3308 146–191.
19. Ghica, D.R., Murawski, A. S., Ong, C.-H. L.: Syntactic control of concurrency. In:

ICALP’04, LNCS 3142 683–694
20. Brookes, S.: The essence of Parallel Algol. In: LICS (1996) 164–173
21. Andrews, G.: Concurrent Programming: principles and practice. Addison-Wesley

Publishing Company (1991)
22. Dimovski, A., Ghica, D.R., Lazic, R.: Data-Abstraction Refinement: A Game

Semantic Approach In: SAS’05, LNCS 3672 102-117
23. Rajeev, A., et. al.: Partial-Order Reduction in Symbolic State-Space Exploration.

Formal Methods in System Design 18(2): 97-116 (2001)



A Region Graph Based Approach to Termination Proofs

Stefan Leue and Wei Wei

Department of Computer and Information Science, University of Konstanz,
D-78457 Konstanz, Germany

{Stefan.Leue, wei}@inf.uni-konstanz.de

Abstract. Automated termination proofs are indispensable in the mechanic ver-
ification of many program properties. While most of the recent work on auto-
mated termination proofs focuses on the construction of linear ranking functions,
we develop an approach based on region graphs in which regions define subsets
of variable values that have different effects on loop termination. In order to es-
tablish termination, we check whether (1) any region will be exited once it is
entered, and (2) no region is entered an infinite number of times. We show the ef-
fectiveness of our proof method by experiments with Java code using a prototype
implementation of our approach.

1 Introduction

Automated termination proofs are indispensable in the mechanic verification of many
program properties. Our interest in automated termination proofs comes from the pre-
cursory work on determining communication buffer boundedness for communicating
finite state machine based models such as they occur in UML RT models [6, 7, 8]. In
UML RT models the action code of a transition in a state machine can contain arbitrary
program code, for instance Java code. When the action code contains a program loop
within which some messages are sent, we need the information of how many times the
loop iterates in order to determine how many messages are sent along the transition.

Automated termination proving has recently received intensive attention
[10, 12, 2, 1, 4, 3], in particular those approaches based on transition invariants [11].
Most of the recent work [10, 1] focuses on the construction of linear ranking func-
tions. However, loops may not always possess linear ranking functions, c.f. Example 1
in Section 2.

We develop a method to prove termination for an important class of loops, deter-
ministic multiple-path linear numerical loops with conjunctive conditions, whose sub-
classes are also studied in [10, 12]. Given a loop, we construct one or more region
graphs in which regions define subsets of variable values that have different effects on
loop termination. In order to establish termination, we check for some generated region
graph whether (1) any region will be exited once it is entered, and (2) no region is en-
tered an infinite number of times. We show the effectiveness of our proof method by
experiments with Java code using a prototype implementation of our approach.

Related Work. [10] gives a complete and efficient linear ranking function synthesis
method for loops that can be represented as a linear inequality system. It considers non-
deterministic update of variable values to allow for abstraction. However, it does not

H. Hermanns and J. Palsberg (Eds.): TACAS 2006, LNCS 3920, pp. 318–333, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



A Region Graph Based Approach to Termination Proofs 319

apply to multiple-path loops. [1] can discover linear ranking functions for any linear
loops over integer variables based on building ranking function templates and check-
ing satisfiability of template instantiations that are Presburger formulas. The method
is complete but neither efficient nor terminating on some loops. [2] gives a novel so-
lution to proving termination for polynomial loops based on finite difference trees. In
fact it applies only to those polynomial loops whose behavior is also polynomial, i.e.,
the considered guarding function value at any time can be represented as a polynomial
expression in terms of the initial guarding function value. Note that Example 1 does
not have a polynomial behavior. [12] proves the decidability of termination for linear
single-path loops over real variables. However, the decidability of termination for in-
teger loops remains a conjecture. [4] suggests a constraint solving based method of
synthesizing nonlinear ranking functions for linear and quadratic loops. The method
is incomplete due to the Lagrangian Relaxation of verification conditions that it takes
advantage of.

Outline. We define loops, regions, and region graphs in Sections 2 and 3. The region
graph based termination proof methods are explained for three subclasses of loops: (1)
G1P 1 in Section 4, (2) G1P ∗ in Section 5, and (3) G∗P 1 in Section 6. We generalize
these methods to handle the whole loop class that we consider in this paper in the
end of Section 6. Experimental results are reported in Section 7 before a conclusion in
Section 8.

2 Loops

We formalize the class of loops that we consider in this paper. We call this class deter-
ministic multiple-path linear numerical1 loops with conjunctive conditions, or G∗P ∗

(multiple-guard-multiple-path) in short. Loops in G∗P ∗ have the following syntactic
form:

while lc do
pc1 → x̄′ = U1x̄ + ū1

...
pcp → x̄′ = Upx̄ + ūp

od

where

– x̄ = [x1, ..., xn]T is a column variable vector where T is transposition of matrices.
x1, ..., xn can be either integer variables or real variables. We use x̄′ = [x′1, ..., x

′
n]T

to denote the new variable values after one loop iteration.
– lc =

∧m
i=1 lc

i is the loop condition. Each conjunct lci is a linear inequality in the
form āix̄ ≥ bi where āi = [ai

1, ..., a
i
n] is a constant row vector of coefficients of

variables and bi is a constant. We call āix̄ a guard. We know that values of āix̄ are
always bounded from below during loop iterations.

1 With numerical loops we will not consider the rounding and overflow problems as usually
considered while analyzing programs.



320 S. Leue and W. Wei

– Each pci → x̄′ = U ix̄ + ūi is a path with a path condition pci which is a con-
junction of linear inequalities. We require that

∨p
i=1 pc

i = true, which guarantees
a complete specification of the loop body. We further require that, for any i and j
such that i �= j, pci ∧ pcj = false. This means that only one path can be taken at
any given point in time.

– Each U i is a constant matrix of dimension n × n. Each ūi is a constant column
vector of dimension n. They together describe how values of variables are updated
along the i-th path.

If a loop has only one single path, then the loop body can be written as x̄′ = U1x̄+
ū1, in which we leave out the path condition true. Here are some examples of G∗P ∗

loops.

Example 1. This loop is an example of a loop without linear ranking functions [10]:
while x ≥ 0 do

x′ = −2x + 10
od

Example 2. This is a loop with two paths:
while x ≥ −4 do

x ≥ 0→ x′ = −x− 1
x < 0→ x′ = −x + 1

od

Example 3. This loop has more than one inequality in its loop condition:
while x1 ≥ 1 ∧ x2 ≥ 1 do[

x′
1

x′
2

]
=
[
1 −1
0 1

] [
x1

x2

]
od

The three examples above represent three interesting subclasses ofG∗P ∗ that are stud-
ied in the paper: (1) G1P 1 are single-guard-single-path loops such as Example 1;
(2) G1P ∗ are single-guard-multiple-path loops such as Example 2; and (3) G∗P 1 are
multiple-guard-single-path loops such as Example 3.

We say that a loop is terminating if it terminates on any initial assignment of variable
values.

3 Region Graph

We define regions, positive and negative regions, still regions, and region graphs.

Definition 1. Given a loop, a region is a set of vectors of variable values such that

– all the vectors in the region satisfy the loop condition.
– it forms a convex polyhedron, i.e., it can be expressed as a system of linear inequal-

ities.

We will also call a vector of variable values a point. We say that the loop iteration is at
some point when the variables have the same values as in the point.



A Region Graph Based Approach to Termination Proofs 321

Definition 2. Given a loop and a guard in the loop condition, a positive (negative, still,
resp.) region with respect to the guard is a region such that, starting at any point in
the region, the value of the guard is decreased (increased, unchanged, resp.) after one
iteration.

For instance, a positive region of Example 1 with respect to the guard x is {v | v >
10/3}, a negative region with respect to x is {v | 0 ≤ v < 10/3}, and the only still
region with respect to x is {10/3}. Moreover, if x is an integer variable, then there is no
still region with respect to x. In the remainder, when we mention a positive (or negative
or still) region, we will omit the respective guard if it is clear from the context.

Definition 3. Given a loop and two regionsR1 andR2 of the loop, there is a transition
from R1 to R2 if and only if, starting at some point p in R1, a point p′ in R2 is reached
after one iteration. R1 is the origin of the transition. R2 is the target of the transition.

In the definition, if R1 and R2 are distinct, then we say that R1 is exited at p and R2
is entered at p′. A transition is a self-transition if it starts and ends in one same region.
We define that a self-transition on a region means that the region is neither exited nor
entered.

For instance, there is a transition from the positive region {v | v > 10/3} to the
negative region {v | 0 ≤ v < 10/3} of Example 1 because −2× 4 + 10 = 2 while 4 is
in the positive region and 2 is in the negative region.

Definition 4. Given a loop, a region graph is a pair < R,T > such that

– R is a finite set of pairwisely disjoint regions such that the union of all the regions
is the complete set of points satisfying the loop condition.

– T is the complete set of transitions among regions in R.

In general, a region graph may contain regions that are neither positive, nor negative,
nor still. However, the region graphs constructed by our termination proving methods
contain only positive, negative, or still regions. A loop may have infinitely many region
graphs.

Definition 5. Given a region graph, a cycle is a sequence of transitions< T1, ..., Tn >,
where n ≥ 2, such that

– for any two successive transitions Ti and Ti+1, the origin of Ti+1 is the target
of Ti;

– the origin of T1 is the target of Tn.

The condition (n ≥ 2) in the above definition excludes self-transitions to be cycles.
Cycles such as < T1, T2, T3 >,< T3, T1, T2 > and < T2, T3, T1 > are regarded as one

0=<x
and
x<4

x>=4

Fig. 1. A Region Graph



322 S. Leue and W. Wei

same cycle. A simple cycle is a cycle that cannot be further decomposed into smaller
cycles. In the remainder, all the cycles under consideration are simple cycles.

A region graph of Example 1 is illustrated in Figure 1, assuming that x is an integer
variable. There is one cycle passing the two regions.

The basic idea of our region graph based termination proofs is stated in Theorem 1.

Theorem 1. Given a loop and one of its region graphs, the loop is terminating, if and
only if, during loop iterations starting with any variable values, we have

– once a region is entered, it will be exited eventually.
– and no region is entered infinitely often.

Proof (sketched). During loop iterations starting with some variable values, we con-
struct a sequence of points by recording the variable values before each iteration. If
the two conditions in the theorem are satisfied, then there exists no infinite sequence of
points during loop iterations, and vice versa. �

In the next sections we will show how to construct region graphs for proving termination.

4 Proving Termination for G1P 1

We first show how to prove termination based on region graphs for loops in the simplest
classG1P 1. The concepts and methods described in this section can also apply to more
general subclasses with little adaption as explained in the subsequent sections.

4.1 Constructing Region Graphs

Given a G1P 1 loop as below,
while āx̄ ≥ b do

x̄′ = Ux̄ + ū

od
we construct a region graph as follows in a straightforward way:

– The only positive region is defined by the system of the linear inequalities (1–3) in
Figure 2 if it has solutions. Otherwise, there is no positive region.

– The only negative region is defined by the system of the linear inequalities (4–6) if
it has solutions. Otherwise, there is no negative region.

– The only still region is defined by the system of the linear inequalities (7–9) if it
has solutions. Otherwise, there is no still region.

āx̄ ≥ b (1)

x̄′ = Ux̄ + ū (2)

āx̄ > āx̄′ (3)

āx̄ ≥ b (4)

x̄′ = Ux̄ + ū (5)

āx̄ < āx̄′ (6)

āx̄ ≥ b (7)

x̄′ = Ux̄ + ū (8)

āx̄ = āx̄′ (9)

Fig. 2. Region defining linear inequality systems



A Region Graph Based Approach to Termination Proofs 323

– For a region R1 defined by an inequality system I1 and a region R2 defined by
I2, there is a transition from R1 to R2 if the following system of inequalities has
solutions:

∧
e∈I1

e ∧
∧

e∈I2
e[x̄ �→ x̄′, x̄′ �→ x̄′′] where e[x̄ �→ x̄′, x̄′ �→ x̄′′] is the

same inequality as e except that x̄ is substituted with x̄′ and x̄′ is substituted with
x̄′′ simultaneously.

The constructed region graph for Example 1 is exactly the one in Figure 1, assuming
that x is an integer variable. The right region is positive and defined by the inequalities
(10–12). The left region is negative and defined by the inequalities (13–15). There is
a transition from the positive region to the negative region because the system of the
inequalities (16–21) has solutions.

x ≥ 0 (10)

x′ = −2x + 10 (11)

x > x′ (12)

x ≥ 0 (13)

x′ = −2x + 10 (14)

x < x′ (15)

x ≥ 0 (16)

x′ = −2x + 10 (17)

x > x′ (18)

x′ ≥ 0 (19)

x′′ = −2x′ + 10 (20)

x′ < x′′ (21)

Fig. 3. The above linear inequality systems define regions and a transition in a region graph of
Example 1

Construction of region graphs can be fully automated since feasibility of linear in-
equality systems can be checked using linear optimization tools such as a linear pro-
gramming problem solver.

Next, we propose a method of proving termination by studying region graphs.

4.2 Checking Regions

One of the two termination conditions in Theorem 1 is that any region will be eventu-
ally exited once it is entered. For any region without a self-transition, after it is entered,
it will be exited after one iteration. For any positive region with a self-transition, the
runtime values of variables cannot stay in the region forever. This is because the re-
spective guard value is always decreased during self-transitions and also bounded from
below as imposed by the loop condition. On the contrary, negative and still regions with
self-transitions introduce the potential of staying in one region forever.

Every time that the self-transition of a negative region is taken, the respective guard
value is increased. However, if the guard value has an upper bound within the region,
then the self-transition cannot be continuously taken forever. In such a case, we call this
region a bounded region.

The boundedness of a negative (or positive or still, respectively) region can be
checked at the same time when the region is created during region graph construc-
tion. For instance, the system of the inequalities (13–15) defines the negative region of
Example 1. We can use an optimizer to determine the maximum of guard values under
the constraint of the inequalities (13–15) while checking feasibility, by adding the ob-
jective function max : x. In this example, the negative region is bounded since x has
an upper bound 3 within the region.



324 S. Leue and W. Wei

Having an unbounded negative region, however, does not imply that the runtime
values of variables can stay in the region forever. Consider Example 4 whose negative
region is unbounded and defined by the inequalities (22–25). Note that the difference
of the guard values before and after one iteration is the value of x2 before the iteration.
By Inequality (24) we know that the value of x2 is always decreased in this region and
cannot remain positive forever. This implies eventual leaving of the region. We call such
a region a slowdown region.

Example 4. This loop has an unbounded negative region.
while x1 ≥ 0 do[

x′
1

x′
2

]
=
[
1 1
0 1

] [
x1

x2

]
+
[

0
−1

]
od

x1 ≥ 0 (22)

x′
1 = x1 + x2 (23)

x′
2 = x2 − 1 (24)

x′
1 > x1 (25)

x′
2 ≥ x2 (26)

Checking whether a negative regionR is a slowdown region can be done by checking
the feasibility of a linear inequality system. The checked inequality system describes a
subregion of R in which the difference of the respective guard value is increased or
unchanged after one iteration. If no such a subregion exists, then R is a slowdown
region. For instance, the negative region of Example 4 is a slowdown region because
the system of the inequalities (22–26) has no solutions.

We generalize the concept of slowdown regions using an idea similar to the concept
of finite difference trees [2]. For an unbounded negative region and an arbitrary natural
number n, we build a finite chain d0, d1, ..., dn where the root d0 is the difference of the
respective guard values before and after one loop iteration within the region, and d1 is
the difference of d0 before and after one iteration within the region, i.e, the “difference
of difference”, and so forth. When any di of the d0, d1, ..., dn is decreased within the
region, the region is a slowdown region since di dominates the change of d0, making it
impossible to remain positive forever.

4.3 Checking Cycles

Eventual exiting of regions is not enough to show termination. We must make sure that
no region is entered an infinite number of times.

In a region graph, if there are no cycles, then no region is entered infinitely often.
The region graph in Figure 1 of Example 1 does not have this property. There is a cycle
passing the positive region and the negative region. If this cycle can be taken forever,
then both regions are entered infinitely often.

We observe that, for Example 1, if the negative region is entered at some point p,
then it will be entered at the next time at such a point p′ that the value of the guard x
at p is greater than the value of x at p′. Because of the loop condition x ≥ 0, we know
that the cycle cannot be taken forever. So, no region is entered infinitely often.

We generalize the above idea by the following definition.



A Region Graph Based Approach to Termination Proofs 325

Definition 6. A cycle is progressive on a region R if one of the following is satisfied:

– Along the cycle, every time that R is entered, the respective guard value is greater
than the guard value at the last time that R is entered. In such a case, we say that
the cycle is upward progressive if R is bounded.

– Along the cycle, every time that R is entered, the respective guard value is smaller
than the guard value at the last time that R is entered. In such a case, we say that
the cycle is downward progressive.

It is easy to prove that the following cycles are progressive: (1) a cycle passing the
positive region and the still region, and (2) a cycle passing the negative region and the
still region if the negative region is bounded.

For other types of cycles, we can check their progressiveness by checking feasibility
of a set of linear inequality systems. We have at most six choices: checking whether the
cycle is upward (or downward) progressive on the positive (or negative or still) region.
For the purpose of illustration, we show how to check downward progressiveness on
negative regions. The idea can be easily adapted for other choices and other cases.

Given a G1P 1 loop as below,
while āx̄ ≥ b do

x̄′ = Ux̄ + ū

od
we assume that there is a cycle passing the positive region and negative region in its
constructed region graph. If both regions have no self-transitions, then we can use the
linear inequality system in Figure 4 to describe the behavior in which the respective
guard value is not decreased every time that the negative region is entered along the cy-
cle. The inequalities (27–29) define that the negative region is entered at a point x̄. The
inequalities (30–32) define that the positive region is then entered at x̄′. The inequalities
(33–35) define that the negative region is re-entered at x̄′′. Inequality (36) imposes that
the guard value at x̄′′ is no smaller than the guard value at x̄. If the inequality system
has no solutions, then the guard value is always decreased and the cycle is downward
progressive on the negative region.

āx̄ ≥ b (27)

x̄′ = Ux̄ + ū (28)

āx̄′ > āx̄ (29)

āx̄′ ≥ b (30)

x̄′′ = Ux̄′ + ū (31)

āx̄′ > āx̄′′ (32)

āx̄′′ ≥ b (33)

x̄′′′ = Ux̄′′ + ū (34)

āx̄′′ > āx̄′′′ (35)

āx̄ ≤ āx̄′′ (36)

Fig. 4. A linear inequality system for checking progressiveness

If one of the regions above has a self-transition, then we do not know precisely
at which point this region is exited after being entered. In such a case, we have to
overapproximate the exit point. Assume that both regions have a self-transition. The
linear inequality system to check downward progressiveness is shown in Figure 5. Note
that the negative region is entered at a point x̄ as defined by the inequalities (37–39),
and it is exited at p̄x′ as defined by the inequalities (41–43). An additional inequality
(40) guarantees that the successor s̄x of x̄ satisfies the loop condition because loop



326 S. Leue and W. Wei

iterations cannot continue otherwise. Inequality (44) relates the entry point and the exit
point by imposing that the guard value at x̄ is no larger than the guard value at p̄x′ due
to the effect of self-transitions of a negative region. Note that the “equal” part cannot be
dropped since it is still possible to leave the negative region immediately without taking
the self-transition. The inequalities (45–52) describe the entering and the exiting of the
positive region similarly.

āx̄ ≥ b (37)

s̄x = Ux̄ + ū (38)

ās̄x > āx̄ (39)

ās̄x ≥ b (40)

āp̄x′ ≥ b (41)

x̄′ = Up̄x′ + ū (42)

āx̄′ > āp̄x′ (43)

āp̄x′ ≥ āx̄ (44)

āx̄′ ≥ b (45)

s̄x′ = Ux̄′ + ū (46)

āx̄′ > ās̄x′ (47)

ās̄x′ ≥ b (48)

ā ¯px′′ ≥ b (49)

x̄′′ = U ¯px′′ + ū (50)

ā ¯px′′ > āx̄′′ (51)

āx̄′ ≥ ā ¯px′′ (52)

āx̄′′ ≥ b (53)

x̄′′′ = Ux̄′′ + ū (54)

āx̄′′ > āx̄′′′ (55)

āx̄ ≤ āx̄′′ (56)

Fig. 5. A linear inequality system for checking progressiveness

The progressiveness of each individual cycle is sufficient to show no infinite number
of entering of any region only if any two cycles do not pass a same region (see [9] for
the proof). Otherwise, this condition is insufficient.

Definition 7. Given a region graph, if two cycles pass one same region, then we say
that these two cycles interfere with each other on this region. The region is called an
interfered region of both cycles.

T3T4

R1 R2

R3

T1

T2

Fig. 6. Two interfering cycles

R1

R2

R3

Fig. 7. Three interfering cycles

Consider the region graph in Figure 6 where transitions are distinctly named for con-
venience. Two cycles < T1, T2 > and < T1, T3, T4 > interfere with each other on
R1 and R2.

We say that a cycle is completed when, starting from a region in the cycle, the region
is re-entered along the cycle. Furthermore, a cycle C is uninterruptedly completed if
no other cycle is completed during the completion of C. If a cycle C1 interferes with
some other cycle C2 on a region R, then a completion of C1 can be interrupted at R
to enter C2 and resumed from R after C2 is completed. In such a case, even if C1
is progressive on some region R′, R′ may still be entered infinitely often since the
respective guard value can be arbitrary when the completion of C1 is resumed from R
after one interruption. However, the following case deserves special attention.



A Region Graph Based Approach to Termination Proofs 327

Definition 8. A region R is a base region if the following is satisfied. For any cycle
C that passes R, all the cycles that interfere with C also pass R. The set of cycles
{C | C passes R} is called an orbital cycle set.

An orbital cycle set can have more than one base region. For instance, in Figure 6 both
R1 and R2 are base regions of the orbital set consisting of two cycles. In contrast no
region in Figure 7 is a base region.

Orbital sets have an interesting property as follows. Given a base region and its
corresponding orbital set, between two successive times that the base region is entered,
some cycle in the orbital set is uninterruptedly completed. The proof is sketched here.
It is trivial to show that a cycle is completed between two successive times that the
base region is entered. Assume that this completion is interrupted at some regionR and
resumed after some other cycle C is completed. Because C is also in the same orbital
set, the base region must be entered while completingC, which contradicts that there is
no entering of the base region in-between.

Lemma 1. Given an orbital cycle set O, any region in any cycle in O is entered only a
finite number of times during loop iterations if all the cycles inO are uniformly upward
or uniformly downward progressive on some base region (see [9] for the proof).

4.4 Determining Termination

Based on the previous discussion, we suggest a termination proving algorithm for loops
in G1P 1 as follows. Given a loop,

1. Check the existence of a still region2. If it exists, then check whether it has a self-
transition. If the self-transition exists, then return “UNKNOWN”.

2. Check the existence of a negative region. If neither a negative region nor a still
region exists, then return “TERMINATING”. In such a case, the loop has linear
ranking functions (see Theorem 2).

3. If the negative region exists, then check whether it has a self-transition. If the self-
transition exists and the region is unbounded, then check whether it is a slowdown
region. If it cannot be determined to be a slowdown region, then return “UN-
KNOWN”.

4. Complete construction of the region graph by constructing the positive region and
the rest of the transitions.

5. Check if there are any cycles. If no cycle exists, then return “TERMINATING”.
6. Construct all the orbital cycle sets. If there is any interfering cycle that does not

belong to any orbital set, then return “UNKNOWN”.
7. Check if all the simple cycles are progressive. If there is one simple cycle whose

progressiveness cannot be determined, then return “UNKNOWN”. With presence
of an orbital set, check whether all the cycles in the set are progressive on one
base region and agree on the direction of progress (upward or downward). If it is
satisfied, then return “TERMINATING”.

2 Remember that the boundedness of a region is checked at the same time that the region is
created.



328 S. Leue and W. Wei

All the steps in this algorithm are arranged in an optimal order so that no unneces-
sary step is taken. Since all the constructions and checks are performed by automatic
translation into linear inequality systems and and automated solving of these systems,
the algorithm requires no human intervention.

Complexity. Let N be a parameter to the algorithm as the upper bound on the length
of finite difference chains built to check slowdown regions. The number of the linear
inequality systems constructed by the algorithm is no more than 16 + N . Each con-
structed inequality system has a size linear in the number of variables. If all the vari-
ables used in the loop are real variables, then solving of a linear inequality system is
polynomial. Otherwise, it is NP-complete. However, in practice constructed inequality
systems are usually very small. For the class of loops that have linear ranking functions,
the algorithm in [10] needs to construct only one linear inequality system to determine
termination, which seems much more efficient than our method. However, we can show
that, for anyG1P 1 loop with linear ranking functions, its constructed region graph con-
tains only one positive region as stated in Theorem 2 (see [9] for the proof). So, for any
G1P 1 loop that has linear ranking functions, our algorithm only generates 2 inequality
systems to check the existence of a negative region and a still region.

Theorem 2. A G1P 1 loop has linear ranking functions if and only if its constructed
region graph contains no negative region and no still region.

Soundness. The algorithm is sound. The proof is sketched in [9]. The basic idea is to
show that, if the algorithm returns “TERMINATING” for a loop, then the two termina-
tion conditions in Theorem 1 are satisfied by the constructed region graph.

Completeness. The algorithm is incomplete and may return “UNKNOWN”. Although
termination for G1P 1 loops in which all the variables are real variables is decidable,
the decidability of termination for G1P 1 loops that have integer variables remains a
conjecture [12]. Furthermore, our algorithm can prove termination for a large set of
G1P 1 loops whose iterations change the guard value in one of the patterns as informally
illustrated in Figure 8. The horizontal axes represent passage of time and the vertical
axes represent change of guard values. The left pattern corresponds to existence of linear
ranking functions. The middle one corresponds to existence of slowdown regions. The
right one corresponds to progressiveness of cycles.

Fig. 8. Patterns in which the guard value changes

In the next two sections, we will generalize the idea of determining termination for
G1P ∗ and G∗P 1 loops.



A Region Graph Based Approach to Termination Proofs 329

5 Proving Termination for G1P ∗

All the ideas in the previous section can be used for G1P ∗ loops without too much
adaption except that some concepts are generalized with path conditions.

5.1 Constructing Region Graphs

Given a G1P ∗ loop as below,
while āx̄ ≥ b do

pc1 → x̄′ = U1x̄ + ū1

...
pcp → x̄′ = Upx̄ + ūp

od
the construction of region graphs is similar to the construction for G1P 1 loops as
follows:

– For each i-th path, we create a positive region, a negative region and a still region
if their respective defining inequality system has solutions. Let the path condition
be pci = c̄1x̄ ≥ d1 ∧ ... ∧ c̄qx̄ ≥ dq . The system of the linear inequalities (57–60)
defines the positive region. The linear inequality systems to define the negative and
the still region differ only in the relational operator in Inequality (60) accordingly.

– Transitions are built in exactly the same way as for G1P 1.

āx̄ ≥ b (57)
q∧

j=1

c̄j x̄ ≥ dj (58)

x̄′ = U j x̄ + ūj (59)

āx̄ > āx̄′ (60)

5.2 Using Path Conditions

Path conditions can be used to determine eventual exiting of still regions and negative
regions with self-transitions.

Consider Example 5. If the first path is taken, the guard value x1 remains unchanged.
However, the path cannot be taken forever. This is because the value of x2 is always
decreased every time that the path is taken and is bounded by 0 as imposed by the path
condition.

Example 5. This is a loop with two paths.
while x1 ≥ 0 do

x2 ≥ 0→
[
x′

1

x′
2

]
=
[
1 0
0 1

] [
x1

x2

]
+
[

0
−1

]
x2 < 0→

[
x′

1

x′
2

]
=
[
1 1
0 1

] [
x1

x2

]
od

To generalize the idea, we define drag regions as follows.



330 S. Leue and W. Wei

Definition 9. A negative region or a still region is a drag region with respect to the
respective path condition pc = c̄1x̄ ≥ d1 ∧ ... ∧ c̄qx̄ ≥ dq if, for some c̄j x̄ in pc, the
value of c̄j x̄ is always decreased within the region.

Drag regions can be checked by solving a linear inequality systems. The construction is
similar to the linear inequality system for checking slowdown. Due to space limitations
we do not give the full detail here.

Progressiveness of cycles can also be generalized when taking path conditions into
consideration. For a region R with respect to a path condition pc = c̄1x̄ ≥ d1 ∧ ... ∧
c̄qx̄ ≥ dq, a cycle is progressive on R if, along the cycle, every time that R is entered,
the value of some c̄jx̄ in pc is smaller than the value of c̄j x̄ at the last time that R is
entered.

5.3 Determining Termination

The algorithm in Subsection 4.4 is modified for proving termination forG1P ∗ loops as
follows.

– Positive, negative, and still regions are created for all paths.
– When a still region has a self-transition, instead of returning “UNKNOWN”, check

whether it is a drag region. If not, return “UNKNOWN”.
– For an unbounded negative region, check whether it is a drag region. If not, check

whether it is a slowdown region. If not, return “UNKNOWN”.
– Progressiveness is checked also with respect to path conditions.

Since the number of cycles is exponential in the number of loop paths, so is the
number of linear inequality systems constructed by the modified algorithm. The size
of each constructed inequality system is linear both in the number of loop paths and in
the number of variables. The algorithm is sound and incomplete. In fact, termination of
G1P ∗ has been shown undecidable [12].

6 Proving Termination for G∗P 1

The basic idea to prove termination for a G∗P 1 loop (c.f. Example 3) is to check
whether termination can be proved by the region graph constructed with respect to
some guard in the loop condition. While analyzing the region graph with respect to a
chosen guard, we also consider other guards in the loop condition as explained below.

Construction of region graphs. Choosing a guard in the loop condition, the construc-
tion of the region graph is similar to the construction for G1P 1. The linear inequality
system to define the positive region contains (1) all the inequalities in the loop condi-
tion, (2) variable update equations, and (3) the inequality that expresses the decrease
of the chosen guard value. The inequality systems defining the negative region and the
still region are constructed similarly.

Generalization of concepts. A negative or a still region is a drag region with respect
to some guard that is not chosen for constructing the region graph if the value of the
considered guard is decreased within the region. For a region R and some guard g that
is not chosen for constructing the region graph, a cycle is progressive onR also if, along



A Region Graph Based Approach to Termination Proofs 331

the cycle, every time that R is entered, the value of g is smaller than the value of g at
the last time that R is entered.

Determining termination. The algorithm to determine termination for a G∗P 1 loops
is as follows. Given a G∗P 1 loop, a guard in the loop condition is chosen nondeter-
ministically. The algorithm in Subsection 4.4 is then used to construct and check the
region graph with respect to the chosen guard, with a slight modification which allows
for checking drag regions and generalized progressiveness. If termination cannot be de-
termined, then another guard is chosen. This procedure is repeated until termination is
proved or all the guards have been checked.

Complexity, soundness and completeness. Let m be the number of guards in the loop
condition and N be the parameter as the upper bound on the length of finite difference
chains. In the worst case m region graphs are constructed and checked. For each region
graph, the number of constructed linear inequality systems is no more than 14+2m+N .
The size of each inequality system is linear in bothm and the number of variables. The
algorithm is sound and incomplete. In fact it remains a conjecture that termination of
G∗P 1 loops that have integer variables is decidable [12]. Furthermore, we conjecture
that the algorithm can prove termination for any G∗P 1 loop that has linear ranking
functions.

Proving termination forG∗P ∗. In our paper we present incomplete approaches to prove
termination for G1P ∗ and G∗P 1. These two methods are orthogonal and can be easily
combined to yield an approach to prove termination for the G∗P ∗ class.

7 Experimental Results

We implemented our method in a prototype tool named “PONES” (positive-negative-
still). Finding a representative sample of realistic software systems that exhibit a large
number of non-trivial loops that fall into our categorization is not easy, as it was
also observed in [2]. Also, automated extraction of loop code and the resulting loop
information has not yet been but will be implemented in the future. For the experi-
ments described here, we manually collected program loops from the source code of
Azureus3 which is a peer-to-peer file sharing software written in Java. The software
contains 3567 while- and for-loops. We analyzed the 1636 loops that fall into our cat-
egorization. There were only 3 loops in G1P ∗ and 4 in G∗P 1. In fact, most of the
loops were of the form ”while (i<j) i++”. The prevalent simplicity of the loops
encountered corresponds to the desire of programmers to code loops that are easy to
comprehend.

PONES failed to prove termination for 14 of the analyzed loops and proved termi-
nation within 65 milliseconds for each of all other loops on a Pentium IV 3.20GHz
machine with 2GB memory. Manual inspection revealed that the 14 loops that PONES
failed on are not terminating on arbitrary initial variable values but do terminate in the
context of the Azureus software system which limits the range of the initial variable
values.

3 Available from sourceforge.net.



332 S. Leue and W. Wei

We propose that our analysis method can be improved by incorporating value analy-
sis [5] to generate linear inequalities over variables as loop invariants. These inequalities
are then used to shrink some regions in the constructed region graph in order to exclude
those points that will never be reached during loop iterations.

As further future work we propose to generalize the concept of program loops as
explicitly constructed by the while or for constructs to control flow cycles resulting
from mutual and recursive function calls. These control flow cycles are usually more
complex but we expect that our analysis can handle them nonetheless.

We cannot give a direct comparison with other termination proof methods because
other works use different extraction and abstraction techniques than our method to col-
lect loops from programs. It should also be noted that our method can be considered as
being complementary to linear ranking function based approaches.

8 Conclusion

We propose a new termination proof method based on constructing and analyzing region
graphs. The method is incomplete and efficient in practice. It can prove termination
for some loops that have no linear ranking functions. We implemented the method in
the PONES tool and conducted several experiments with Java programs. Future work
includes: (1) the adaption of the method to approximate loop iteration times; (2) refining
the method by discovering other useful information from loops; (3) analysis of loops
with more general loop conditions, i.e., with the presence of disjunction; (4) abstraction
of nested loops and control flow cycles into G∗P ∗ loops.

Acknowledgment. We thank Alin Stefanescu for his beneficial and helpful comments on
our work and Daniel Butnaru for his assistance in programming the PONES prototype.
We also thank anonymous reviewers for their useful comments and suggestions.

References

1. Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. Termination analysis of integer linear
loops. In Concurrency Theory, 16th International Conference, CONCUR 2005, Proceedings,
volume 3653 of Lecture Notes in Computer Science, pages 488–502. Springer, 2005.

2. Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. Termination of polynomial programs.
In Verification, Model Checking, and Abstract Interpretation, 6th International Conference,
VMCAI 2005, Proceedings, volume 3385 of Lecture Notes in Computer Science, pages 113–
129. Springer, 2005.

3. Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Abstraction refinement for termi-
nation. In Static Analysis, 12th International Symposium, SAS 2005, Proceedings, volume
3672 of Lecture Notes in Computer Science, pages 87–101. Springer, 2005.

4. Patrick Cousot. Proving program invariance and termination by parametric abstraction, la-
grangian relaxation and semidefinite programming. In Verification, Model Checking, and
Abstract Interpretation, 6th International Conference, VMCAI 2005, Proceedings, volume
3385 of Lecture Notes in Computer Science, pages 1–24. Springer, 2005.

5. Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints among
variables of a program. In 5th Symposium on Principles of Programming Languages (POPL
1978), Proceedings, pages 84–97, 1978.



A Region Graph Based Approach to Termination Proofs 333

6. Stefan Leue, Richard Mayr, and Wei Wei. A scalable incomplete boundedness test for UML
RT models. In Tools and Algorithms for the Construction and Analysis of Systems, 10th Inter-
national Conference, TACAS 2004, Proceedings, volume 2988 of Lecture Notes in Computer
Science, pages 327–341. Springer, 2004.

7. Stefan Leue, Richard Mayr, and Wei Wei. A scalable incomplete test for buffer overflow of
Promela models. In Model Checking Software, 11th International SPIN Workshop, Proceed-
ings, volume 2989 of Lecture Notes in Computer Science, pages 216–233. Springer, 2004.

8. Stefan Leue and Wei Wei. Counterexample-based refinement for a boundedness test for
CFSM languages. In Model Checking Software, 12th International SPIN Workshop, Pro-
ceedings, volume 3639 of Lecture Notes in Computer Science, pages 58–74. Springer, 2005.

9. Stefan Leue and Wei Wei. A region graph based approach to termination proofs. Technical
report soft-06-01, University of Konstantz, 2006.

10. Andreas Podelski and Andrey Rybalchenko. A complete method for the synthesis of linear
ranking functions. In Verification, Model Checking, and Abstract Interpretation, 5th Interna-
tional Conference, VMCAI 2004, Proceedings, volume 2937 of Lecture Notes in Computer
Science, pages 239–251. Springer, 2004.

11. Andreas Podelski and Andrey Rybalchenko. Transition invariants. In 19th IEEE Symposium
on Logic in Computer Science (LICS 2004), Proceedings, pages 32–41. IEEE Computer
Society, 2004.

12. Ashish Tiwari. Termination of linear programs. In Computer Aided Verification, 16th Inter-
national Conference, CAV 2004, Proceedings, volume 3114 of Lecture Notes in Computer
Science, pages 70–82. Springer, 2004.



Verifying Concurrent Message-Passing C Programs
with Recursive Calls'

S. Chaki1, E. Clarke1, N. Kidd2, T. Reps2, and T. Touili3

1 Carnegie Mellon University, Pittsburgh, USA
2 University of Wisconsin, Madison, USA

3 LIAFA, CNRS & University of Paris 7, Paris, France

Abstract. We consider the model-checking problem for C programs with (1)
data ranging over very large domains, (2) (recursive) procedure calls, and (3)
concurrent parallel components that communicate via synchronizing actions. We
model such programs using communicating pushdown systems, and reduce the
reachability problem for this model to deciding the emptiness of the intersection
of two context-free languages L1 and L2. We tackle this undecidable problem
using a CounterExample Guided Abstraction Refinement (CEGAR) scheme. We
implemented our technique in the model checker MAGIC and found a previously
unknown bug in a version of a Windows NT Bluetooth driver.

1 Introduction

Analysis of concurrent software represents a major challenge in the model-checking
community. Concurrent programs include various complex features such as: (1) the
manipulation of data ranging over unbounded domains, e.g., integers and reals (or very
large domains like 32-bit ints and floats), (2) the presence of recursive procedure calls,
which can lead to an unbounded number of calls, (3) concurrency and the existence of
synchronization statements. Unfortunately, checking whether a given control point is
reachable is undecidable, even if the program includes only recursive procedures and
synchronization statements [1]. Consequently, any method for solving the reachability
problem for these systems is incomplete, and all we can hope for is either an approxi-
mate technique, or a semi-decision procedure for which termination is not guaranteed.
This work uses the latter approach to sidestep the undecidability issue. Though not guar-
anteed to terminate, such an approach can still be useful; for instance, our tool found a
previously unknown bug in a version of a Windows NT Bluetooth driver.

During the last few years, several authors have addressed related issues. Pushown
systems have been proposed as an adequate formalism to describe pure sequential re-
cursive programs [2, 3]. They are able to represent the potentially infinite configurations
of recursive programs in a symbolic manner using regular languages [4, 5]. Recently,
compositions of pushown systems, called communicating pushown systems, have been
used to model concurrent recursive programs [6, 7]. However, in these cases, all data
were assumed to have a small finite domain.

On the other hand, abstract-interpretation techniques [8] have been used to deal
with data ranging over unbounded (or very large) domains. More recently, automated

' Supported by ONR under contracts N00014-01-1-{0796,0708}.

H. Hermanns and J. Palsberg (Eds.): TACAS 2006, LNCS 3920, pp. 334–349, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Verifying Concurrent Message-Passing C Programs with Recursive Calls 335

predicate-abstraction techniques [9] have been proposed to deal with this issue. The
idea of predicate abstraction is to abstract the infinite data domain into a finite one
defined by a given set of predicates. The precision of the abstraction and the model-
checking algorithm depend on the number and the form of the predicates. The size of
the model increases with the number of predicates, which increases the cost of model
checking. Hence, a central problem in predicate abstraction is the discovery of a small
set of predicates sufficient to prove the desired property. CounterExample Guided Ab-
staction Refinement (CEGAR) techniques [10, 11] have been used to find such a small
set. The idea is: (1) Start with an empty set of predicates. (2) Perform the verification
procedure on the obtained model; if the property is satisfied by the model, we conclude
that it is also satisfied by the real program because the program has fewer behaviors
than the model; otherwise, we obtain a counterexample. (3) If the counterexample cor-
responds to an execution of the program, we conclude that the program does not satisfy
the property. (4) Otherwise, we compute a new set of predicates that eliminate future
exploration of the spurious trace, and go back to step (2).

This schema has been successfully applied to handle both pure non-concurrent (se-
quential) recursive programs in the tool SLAM [12], and concurrent non-recursive pro-
grams in the tools BLAST [13] and MAGIC [14].

In this work, we go one step further, and combine CEGAR predicate-abstraction
techniques with pushdown-system modeling to handle concurrency, recursion, and very
large data domains at the same time. Our approach consists of using communicating
pushdown systems (CPDSs) to model concurrent programs. To do this, we (1) define
CEGAR predicate-abstraction techniques to obtain successively more precise CPDSs
from the C source code of a parallel program, and (2) define model-checking algorithms
for CPDSs. The main contributions of this paper are:

1. Defining new automatic CEGAR predicate-abstraction techniques that can create a
CPDS from the source code of a concurrent (recursive) C program that manipulates
variables that range over very large domains, and that can refine CPDS abstractions
to eliminate a given counterexample. Our techniques are defined componentwise,
which makes them compositional and scalable to large programs (e.g., one exper-
iment on an 18 KLOC program ran in less than 2.2 seconds).

2. Defining new model-checking techniques for CPDSs. We restrict ourselves in this
work to solving reachability queries. We reduce the reachability problem for CPDSs
to the undecidable problem of checking the emptiness of the intersection of two
context-free languages (CFLs) L1 and L2. To tackle this problem, we apply a sec-
ond CEGAR scheme that consists of (1) computing over-approximations A1 and A2

of L1 and L2. (2) If A1 ∩A2 = /0, we conclude that L1 ∩L2 = /0. (3) Otherwise, we
check whether the intersection A1 ∩A2 is spurious. In this case, we refine the over-
approximations A1 and A2, and return to step (2). This semi-decision procedure is
guaranteed to terminate if the intersection L1 ∩L2 is not empty.

3. Implementing our technique in the model-checker MAGIC, and carrying out a num-
ber of non-trivial experiments. Our implementation was able to handle two non-
trivial examples (a Windows NT Bluetooth driver and an algorithm for concurrent
insertions in a binary search tree) that could not be handled with the previous ver-
sion of MAGIC. In addition, it discovered a previously unknown bug in a second



336 S. Chaki et al.

version of the Windows NT Bluetooth driver. Moreover, the implementation pro-
vides improved performance for non-recursive examples that the previous version
of MAGIC was able to handle only via in-lining. This shows that our technique
represents an advance for non-recursive as well as recursive concurrent programs.

One of the novel features of this work is that it applies the CEGAR scheme at two
levels: (1) at the model-checking level to solve reachability queries in CPDSs: the CPDS
model checker uses a CEGAR scheme in its semi-decision procedure for testing empti-
ness of the intersection of two CFLs (see §4), and (2) at the predicate-abstraction level
to deal with unbounded domain variables (see §5). As far as we know, this is the first
time that CEGAR is used in the model-checker itself.

The remainder of the paper is organized as follows: §2 defines the CPDS model;
§3 describes how to generate a CPDS from a C program using predicate abstraction;
§4 presents the semi-decision procedure for model-checking a CPDS; §5 presents our
predicate-abstraction-refinement techniques; §6 reports experimental results; §7 dis-
cusses related work.

2 Preliminary Definitions

A pushdown system (PDS) is a four-tuple P = (Q,Act,Γ,Δ) where Q is a finite set of
states, Act is a finite set of actions, Γ is a finite stack alphabet, and Δ is a finite set

of transition rules of the form 〈q,γ〉 a
↪−→ 〈q′,w〉, where q,q′ ∈ Q,a ∈ Act, γ ∈ Γ, and

w ∈ Γ∗. Without loss of generality, we assume that for all rules of Δ, |w| ≤ 2. This is not
restrictive because any PDS can be transformed into a PDS of this form [15]; moreover,
the transition rules obtained from a program have this form. A configuration of P is a
pair 〈q,w〉, where q ∈ Q and w ∈ Γ∗ is the contents of the stack. A set of configurations
C is regular if for each q ∈ Q the language {w ∈ Γ∗ | 〈q,w〉 ∈C} is regular.

For every a ∈ Act, we define a transition relation a−→ between the configurations

of P as follows: if 〈q,γ〉 a
↪−→ 〈q′,w〉 ∈ Δ, then 〈q,γv〉 a−→〈q′,wv〉 for every v ∈ Γ∗. For

a1 · · ·an ∈ Act∗, the relation a1···an−−−−→ is defined in the obvious way. Let C be a set of
configurations. Post∗(C) is the set of successors of C, defined as follows:

Post∗(C) = {c′ | ∃c ∈C,a1 · · ·an ∈ Act∗,c
a1···an−−−−→c′}.

A communicating pushdown system (CPDS) [7] is a tuple CP = (P1, . . . ,Pn) of PDSs
over the same set of actions Act such that Act = Lab∪ {τ}, where Lab is the set of
synchronization actions, and τ represents internal actions: τ has the property that for
every a ∈ Lab, τa = aτ = a. As we will see later, we need this to reduce the reachability
problem for CPDSs to checking the emptiness of the intersection of two CFLs.

A global configuration of CP is a tuple g = (c1, . . . ,cn) of configurations of P1, . . .Pn.
The relation a−→ is extended to global configurations as follows:

– (c1, . . . ,cn)
τ−→(c′1, . . . ,c

′
n) if there is an index 1 ≤ i ≤ n such that ci

τ−→c′i and, for
every j �= i, c′j = c j.

– (c1, . . . ,cn)
a−→(c′1, . . . ,c

′
n) if there are two distinct indices i �= j such that ci

a−→c′i
and c j

a−→c′j, and, for every k such that i �= k �= j, c′k = ck.

Given a set of global configurations G, the successors of G (denoted by Post∗(G)) are
defined as before.



Verifying Concurrent Message-Passing C Programs with Recursive Calls 337

3 Componentwise Predicate Abstraction

We model concurrent recursive programs using CPDSs. This section describes how to
extract a CPDS from a parallel program. (A more in-depth discussion is given in [16].)

Suppose that we are given n concurrent recursive C components. For each compo-
nent i, we extract a PDS Pi. The parallel composition of the C components is represented
by the CPDS corresponding to the tuple (P1,...,Pn). To extract each Pi, we extend the
approach originally used in MAGIC [14], which automatically extracts a finite-state
automaton from C code, to extract a PDS. Without loss of generality, we assume there
are only six kinds of statements in programs: assignments, procedure calls, if-then-else
branches, gotos, synchronization statements, and returns. We use CIL [17] to transform
arbitrary C programs into this form.

Each PDS is defined in terms of a current set of seed predicates (which is initially
empty). Each predicate represents a set of assignments over the variables of the pro-
gram. Let p be a predicate over the sets of variables X and Y , where X (resp. Y ) is a set
of local (resp. global) variables. Then ploc (resp. pglob) is the “projection” of p over the
local variables X (resp. global variables Y ). For example, let p = (x > 0 & y< 8) be a
predicate that represents the set of values {x> 0,y< 8}. If x is a local variable, and y
is a global one; ploc denotes the predicate (x > 0); and pglob the predicate (y< 8). We
extend these notations to sets of predicates in the obvious manner.

3.1 Predicate Inference

The weakest precondition of a set of predicates p is defined as follows. Let s be an
assignment of the form v = e. Then, the weakest precondition of p with respect to s
(denoted by Ws(p)) is obtained from p by replacing every occurrence of v in p by e.
Assignments through pointers, i.e., statements of the form ∗p = e, are handled by the
approach of Morris [18].

Let C be a set of seed predicates. To create a PDS that is an abstraction of a sequential
component relative to the predicates in seed set C , we repeatedly compute weakest
preconditions. That is, for every control point n, we compute a set of predicates P[C ]n
as follows:

Initially, P[C ]n = /0 for every point n. We repeat the following until for every n, P[C ]n
is no longer modified. Let sn be the statement that corresponds to control point n:

1. if sn is an assignment that has n′ as successor, then add Wsn

(
P[C ]n′

)
to P[C ]n.

2. if sn is an if statement and n′ is its then or else successor, then add P[C ]n′ to P[C ]n.
Moreover, if c is the corresponding condition of sn such that c ∈ C , then add c to
P[C ]n.

3. if sn is a goto or a synchronisation statement that has n′ as successor, then add
P[C ]n′ to P[C ]n.

4. if sn is a call to a procedure π, where sn has n′ as successor, and if eπ is the initial
control point of procedure π, then add P[C ]loc

n′ and P[C ]glob
eπ to P[C ]n.

(This method might not terminate in the presence of loops and recursive procedure calls.
In this case, we impose termination by bounding the number of predicates in P [C ]n, for
every control point n.)



338 S. Chaki et al.

Let us explain the intuition behind item 1. Predicate set P[C ]n is only capable of mak-
ing a certain set of distinctions among the concrete states that can arise at execution time
at point n. Let sn be an assignment that has n′ as successor. Item 1 adds Wsn

(
P[C ]n′

)
to P[C ]n because if Wsn(ϕ) is true at n, then ϕ must be true at n′. We wish to minimize
the loss of precision in characterizing the states at n′: to be able to determine whether ϕ
holds at n′, we need to know whether Wsn(ϕ) holds at n.

Finally, let P[C ] = ∪P[C ]n, where the union is taken over all the control points n of
the sequential component, be the set of all the generated predicates.

3.2 PDS Extraction

Using C , we assign to a sequential (possibly recursive) component the PDS P =
(Q,Act,Γ,Δ), defined as follows: Q is the set of valuations on P[C ]glob; Act contains
the action τ, as well as the other synchronization actions of the program; Γ is the set of
all pairs (n, loc), where n is a control point of the sequential component, and loc is a val-
uation of P[C ]loc

n ; Δ is defined using the sequential component’s control flow graph. For
example, if s is a non-synchronizing assignment statement at control location n1 with

successor n2, then Δ contains all the PDS rules 〈glob,(n1, loc)〉 τ
↪−→ 〈glob′,(n2, loc′)〉,

where glob ∈ P[C ]glob
n1 , glob′ ∈ P[C ]glob′

n2 (resp. loc ∈ P[C ]loc
n1

, loc′ ∈ P[C ]loc′
n2

), such that
they potentially satisfy (Ws(glob′)∧ glob) (resp. (Ws(loc′)∧ loc)).1 These formulas
ensure that the generated PDS has more behaviors than the concrete program.

If instead s is a synchronizing statement with action a, then Δ contains all the PDS

rules 〈glob,(n1, loc)〉 a
↪−→ 〈glob′,(n2, loc′)〉, where again glob and glob′ (resp. loc and

loc′) potentially satisfy the conditions stated above. Further details about converting the
various types of C statements to their corresponding PDS rules are given in [16].

3.3 Comparision with the Predicate-Abstraction Technique of SLAM

The SLAM tool [12] uses predicate-abstraction techniques to extract a Boolean program
from C source code. One can then use Schwoon’s translation [15] to obtain a PDS
from a Boolean program. Compared with the techniques used in SLAM, the approach
sketched in §3.2 has two main differences:

1. Our translation is more efficient because it produces directly, in one step, a PDS
from C code without going through an intermediate Boolean program.

2. We close a given set of seed predicates C by computing weakest preconditions
along the different possible paths of the program. In contrast, SLAM uses the seed
set of predicates C as is, without computing its closure by weakest precondition.
Instead, it computes largest disjunctions of predicates in C that imply the weakest
preconditions. Consequently, the abstract model we obtain is more precise than
SLAM’s because it uses more predicates.

1 Determining whether (p1∧p2) is satisfiable is in general undecidable when p1 and p2 are first-
order formulas over the integers. To sidestep this problem, we use a sound validity checker [19]
that always terminates and answers TRUE, FALSE, or UNKNOWN to the question whether
a given formula ¬(p1 ∧p2) is valid. If the validity checker returns FALSE or UNKNOWN to
the question “Is ¬(p1 ∧p2) valid?”, then (p1 ∧p2) is potentially satisfiable.



Verifying Concurrent Message-Passing C Programs with Recursive Calls 339

4 Reachability Analysis of CPDSs

Given a program that consists of n sequential components, we usually ask the following
query: “Suppose that the system starts from a configuration where each component i,
for i = 1, . . . ,n, is at its initial control point ni

0. Can one of the components reach an
error point?” Our technique answers this kind of question by modeling the program
as the CPDS (P1, . . . ,Pn) with initial configurations C1 × . . .×Cn and error configura-
tions C′

1 × . . .×C′
n (where the states of configurations in some C′

i correspond to error
points and the states of configurations in C′

1, . . . ,C
′
i−1,C

′
i+1, . . . ,C

′
n are unconstrained).

If the error configurations are reachable from the initial configurations, our algorithm
returns a sequence of synchronization actions that yield a failing program run. We show
in this section how to tackle the reachability analysis of these systems. In the remain-
der of the paper, we restrict ourselves to systems that consist of two components. The
technique can be extended in a straightforward manner to the general case (see [7]
for more details); the implementation discussed in §6 supports an arbitrary number of
components.

We reduce the reachability problem for CPDSs to deciding the emptiness question
for the intersection of two CFLs as follows: Let (P1,P2) be a CPDS, and let C1 ×
C2 and C′

1 ×C′
2 be two sets of global configurations of the system. Because all the

internal actions are represented by τ (which is a neutral element for concatenation),
C′

1 ×C′
2 is reachable from C1 ×C2 if and only if there exists at least one sequence of

synchronization actions that simultaneously leads P1 from a configuration in C1 to a
configuration in C′

1 and P2 from a configuration in C2 to a configuration in C′
2. This

holds iff L(C1,C′
1)∩ L(C2,C′

2) �= /0, where L(Ci,C′
i) is the CFL consisting of all the

sequences of actions (or, equivalently, of synchronization actions because the internal
actions are represented by τ) that lead Pi from Ci to C′

i .
Because deciding the emptiness of the intersection of two CFLs is undecidable,

we propose a semi-decision procedure that, in case of termination, answers exactly
whether the intersection is empty or not. Moreover, if L(C1,C′

1)∩ L(C2,C′
2) �= /0, the

semi-decision procedure is guaranteed to terminate and return a witness sequence in
the intersection.

The semi-decision procedure is based on a CounterExample Guided Abstraction Re-
finement (CEGAR) scheme as follows:

1. Abstraction: We compute an over-approximation Ai of each path language
L(Ci,C′

i).
2. Verification: We check if A1 ∩A2 = /0, and, if so, we conclude that L(C1,C′

1)∩
L(C2,C′

2) = /0, i.e., that C′
1 ×C′

2 is unreachable from C1 ×C2. Otherwise, we com-
pute the “counterexample” I = A1 ∩A2.

3. Counterexample Validation: We check whether I contains a sequence x that is in
L(C1,C′

1) ∩ L(C2,C′
2). In this case I is not spurious, and we conclude that

L(C1,C′
1)∩L(C2,C′

2) �= /0, i.e., that C′
1 ×C′

2 is reachable from C1 ×C2. Otherwise,
we proceed to the next step.

4. Refinement: If I is spurious, we refine the over-approximations A1 and A2, i.e., we
compute other over-approximations A′

1 and A′
2 such that L(Ci,C′

i) ⊆ A′
i ⊆ Ai. We

then continue from step 2.



340 S. Chaki et al.

In the remainder of this section, we discuss these steps in detail. We fix two sets of
global configurations C1 ×C2 and C′

1 ×C′
2. For brevity, we denote L(C1,C′

1) by L1, and
L(C2,C′

2) by L2.

4.1 Computing Over-Approximations of Path Languages

To compute over-approximations of PDS path languages, our technique is based on the
approach presented by Bouajjani et al. [7], which is summarized below.

Consider an abstract lattice (D,≤,",#,⊥,�) associated with an idempotent semir-
ing (D,⊕,8, 0̄, 1̄) such that ⊕ = # is an associative, commutative, and idempotent
(a⊕ a = a) operation; 8 is an associative operation; 0̄ = ⊥; 0̄ and 1̄ are neutral ele-
ments for ⊕ and 8, respectively; 0̄ is an annihilator for 8 (a8 0̄ = 0̄8 a = 0̄); and 8
distributes over ⊕. Finally, ∀a,b ∈ D,a ≤ b ⇐⇒ a⊕b = a.

Let D be related to the concrete domain 2Lab∗ as follows:

– D contains an element va for every letter a ∈ Lab,
– There is an abstraction function α : 2Lab∗ → D and a concretization function γ : D→

2Lab∗ defined as follows:
α(L) =

⊕
a1···an∈L

va1 8·· ·8 van and γ(x) = {a1 · · ·an ∈ Lab∗ | va1 8·· ·8 van ≤ x},

such that γ(⊥) = /0.

It is easy to see that for every language L ⊆ Lab∗; α(L) ∈ D, and γ
(
α(L)

)
⊇ L. In

other words, γ
(
α(L)

)
is an over-approximation of L that is represented in the abstract

domain D by the element α(L). Intuitively, the abstract operations 8 and ⊕ correspond
to concatenation and union, respectively; ≤ and " correspond to inclusion and intersec-
tion, respectively; and the abstract elements 0̄ and 1̄ correspond to the empty language
and {ε}, respectively.

Therefore, to compute the over-approximation γ
(
α(Li)

)
, we need to compute its rep-

resentative α(Li) in the abstract domain D. Let a finite-chain abstraction be an abstrac-
tion such that D does not contain an infinite ascending chain, and let h be the maximal
height of a chain in D. Then we have:

Theorem 1. [7, 20] Let P = (Q,Act,Γ,Δ) be a PDS; let C,C′ be two regular sets of
configurations of P ; and let α be a finite-chain abstraction defined on the abstract
domain D. Then α

(
L(C,C′)

)
can be effectively computed in time O(h|Δ||Q|2).

Two different algorithms provide the basis of this theorem, one due to Bouajjani et
al. [6, 7], the other to Reps et al. [20, 21]. The latter has been implemented in a tool
called WPDS++ [22]. We use this tool to compute abstractions of path languages.

To check the emptiness of the intersection of the over-approximations γ
(
α(L1)

)
and

γ
(
α(L2)

)
, it suffices to check whether α(L1)"α(L2) = ⊥. Indeed, using the fact that

γ(⊥) = /0, we can show that
∀L1,L2 ∈ Lab∗,α(L1)"α(L2) = ⊥⇔ γ

(
α(L1)

)
∩ γ
(
α(L2)

)
= /0.

4.2 Defining Refinable Finite-Chain Abstractions

To be able to apply our CEGAR scheme, we need to define refinable finite-chain ab-
stractions, i.e., a series (αi)i≥1 such that αi is at least as precise as α j if i > j; i.e., for
every language L ⊆ Lab∗, if i> j then L ⊆ γi

(
αi(L)

)
⊆ γ j
(
α j(L)

)
.



Verifying Concurrent Message-Passing C Programs with Recursive Calls 341

For this we define the ith-prefix abstraction as follows: Let Wi be the set of words of
Lab∗ of length less than or equal to i. The abstract lattice Di is equal to 2Wi ; for every
a ∈ Lab, va = a; ⊕=∪; "=∩; U 8V = {(uv)i | u ∈U,v ∈V}, where (w)i is the prefix
of w of length i; 0̄ = /0; 1̄ = {ε}; ≤=⊆.

Let αi and γi be the abstraction and concretization functions associated with this
domain. It is easy to see that αi(L) is the set of words of L of length less than i, union the
set of prefixes of length i of L, i.e., αi(L) = {w | |w|< i and w ∈ L, or |w| = i and ∃v ∈
Lab∗ s.t. wv ∈ L}. Therefore, γi

(
αi(L)

)
= {w ∈ αi(L) | |w|< i}∪{wv | w ∈ αi(L), |w|=

i,v ∈ Lab∗}.
Note that it is possible to decide whether αi(L1)∩αi(L2) = /0 because, for every

L ⊆ Lab∗, αi(L) is a finite set of words.
It is also easy to see that if i > j, then αi is at least as precise as α j . Indeed, we

have L ⊆ γi
(
αi(L)

)
⊆ γ j
(
α j(L)

)
. We have thus defined a refinable series of finite-chain

abstractions α1,α2,α3, . . ..

Remark 1. The ith-prefix abstraction is only one abstraction that can be used to instanti-
ate the framework. Others are possible, such as the ith-suffix or the ith-subword abstrac-
tions (defined in an analogous way).

4.3 Checking Whether the Counterexample Is Spurious

It remains to check whether I = γi
(
αi
(
L1)
)
∩γi
(
αi(L2)

)
contains an element x such that

x ∈ L1 ∩L2. This amounts to deciding whether I∩L1 ∩L2 = /0. Unfortunately, this prob-
lem is undecidable because I is a regular language (because for L ⊆ Lab∗, γi

(
αi(L)

)
is

regular). To sidestep this problem, we check instead whether L1 and L2 have a common
word of length at most i. This amounts to checking whether

(
αi(L1)∩L1

)
∩
(
αi(L2)∩

L2
)

= /0. This is decidable because αi(L) is a finite set.

4.4 The Semi-decision Procedure

Summarizing the previous discussion, we obtain the following semi-decision procedure
(based on the ith-prefix abstraction) for the reachability problem for CPDSs:

1. Initially, i = 1;
2. Compute the common words of length less than i, and the common prefixes of

length i of L(C1,C′
1) and L(C2,C′

2): I′ = αi
(
L(C1,C′

1)
)
∩αi
(
L(C2,C′

2)
)
.

3. If I′ = /0, conclude that L(C1,C′
1)∩L(C2,C′

2) = /0, and that C′
1 ×C′

2 is unreachable
from C1 ×C2. Otherwise, determine whether or not I′ is spurious: Check whether
I′ ∩L(C1,C′

1)∩L(C2,C′
2) �= /0. If this holds, conclude that L(C1,C′

1) and L(C2,C′
2)

have a common word of length less than or equal to i, and therefore, that L(C1,C′
1)∩

L(C2,C′
2) �= /0, and C′

1 ×C′
2 is reachable from C1 ×C2.

4. Otherwise, increment i and continue from step 2.

Theorem 2. If L(C1,C′
1)∩L(C2,C′

2) �= /0, then the above semi-decision procedure ter-
minates with the exact solution.

Proof. Let x ∈ L(C1,C′
1)∩L(C2,C′

2), and let k be the length of x. Then
x ∈ αk

(
L(C1,C′

1)
)
∩αk
(
L(C2,C′

2)
)
.



342 S. Chaki et al.

Remark 2. It follows from Theorem 1 that at each step i, computing αi(L) necessitates
O(2|Lab|i |Δ||Q|2) time since there are at most |Lab|i words of length i, and therefore at
most 2|Lab|i elements in Di. This is the worst-case complexity of the algorithm. How-
ever, in practice, our implementation behaves well, as discussed in §6.

4.5 Example

Let P1 be the PDS that has the following rules:

r1 : 〈p,n0〉
a
↪−→ 〈p,n1〉; r2 : 〈p,n1〉

τ
↪−→ 〈p,n0n2〉; r3 : 〈p,n2〉

b
↪−→ 〈p,ε〉; r4 : 〈p,n0〉

b
↪−→ 〈p,ε〉.

Let P2 be the PDS that has the following rules:

r′1 : 〈q,m0〉
a
↪−→ 〈q,m1〉; r′2 : 〈q,m1〉

b
↪−→ 〈q,m2〉; r′3 : 〈q,m2〉

τ
↪−→ 〈q,m0m3〉;

r′4 : 〈q,m3〉
b
↪−→ 〈q,ε〉; and r′5 : 〈q,m0〉

d
↪−→ 〈q,ε〉.

For P1, let L1 be L
(
〈p,n0〉,〈p,ε〉

)
= {akbbk | k ≥ 0}. For P2, let L2 be L

(
〈q,m0〉,

〈q,ε〉
)
= {(ab)kdbk | k ≥ 0}. Note that L1∩L2 = /0. We use this straightforward example

to illustrate our approach:

– α1(L1)∩α1(L2) = {a} �= /0;
– a /∈ L1, therefore, we refine the abstraction and go to α2;
– α2(L1)∩α2(L2) = {ab} �= /0;
– ab /∈ L2, therefore, we refine the abstraction and go to α3;
– α3(L1)∩α3(L2) = /0. Therefore, we conclude that L1 ∩L2 = /0.

5 Componentwise Refinement

The construction of the CPDS model from the C program involves predicate abstrac-
tion. It is parametrized by a set of predicates. A central issue in predicate abstraction
is how to find a small set of predicates that allows a property of interest to be estab-
lished. In our case, the property in question is whether the system can reach an error
configuration from the initial configuration, where component i (where, e.g., i = 1,2)
starts in configuration 〈globi

0,(n
i
0, loci

0)〉, ni
0 is the initial control point of component

i, and globi
0, loci

0 are initial valuations of the global and local variables, respectively.
Similarly, an error configuration is a configuration where at least one component i is in
a configuration of the form 〈glob,(ni

e, loc)〉, where ni
e correponds to an error point, and

glob and loc are arbitrary valuations of the variables. MAGIC finds an appropriate set
of predicates by applying a CEGAR approach, as described below.

We start with a model involving an empty set of seed predicates, and perform the
model-checking step described in §4. If the model checker answers that the error state
is unreachable in the CPDS model, we are sure that this is also the case for the con-
crete program, because the program has fewer behaviors than the model. Otherwise,
if the model checker finds that the CPDS can reach an error state by performing a se-
quence of synchronization actions a1 · · ·an (a1 · · ·an ∈ I′ ∩ L(C1,C′

1)∩ L(C2,C′
2)), we

need to verify whether this behavior corresponds to a real execution of the program (in
which case, we have shown that the program is not correct), or whether the apparently-
erroneous behavior has been introduced by abstraction. If the latter is the case, we need



Verifying Concurrent Message-Passing C Programs with Recursive Calls 343

to refine the CPDS model. More precisely, the model checker returns two sequences of
rules r1

1, . . . ,r
1
m1

and r2
1, . . . ,r

2
m2

such that the CPDS (P1,P2) reaches the error state if
Pi performs the sequence ri

1, . . . ,r
i
mi

(in this case, a1 · · ·an is the sequence of synchro-
nization actions corresponding to these sequences of rules). We say that the sequence
ri

1, . . . ,r
i
mi

is a counterexample for component i. To check whether this counterexam-
ple is spurious, we need to check whether component i can perform the sequence of
statements that correspond to the rule sequence ri

1, . . . ,r
i
mi

. If either component fails
to perform its corresponding sequence, we refine its corresponding PDS to eliminate
the spurious rule sequence. Note that all of these steps are done componentwise, which
makes the technique compositional and scalable to large programs.

5.1 Counterexample Validation

We present in this subsection an algorithm that takes as input a counterexample given by
a sequence of rules r1, . . . ,rn of a PDS that models a sequential component, and answers
whether it is spurious. Let s1, . . . ,sn be the sequence of statements that corresponds to
r1, . . . ,rn. Intuitively, the algorithm simulates the different steps to determine whether
the concrete component could possibly perform them. The algorithm starts from the
initial point n0, and the valuations glob0 and loc0 of the variables. Then, it applies suc-
cessively the different statements si, i = 1, . . . ,n, updates the values of the variables, and
checks whether the if-then-else conditions are satisfied in this sequence of instructions.
More precisely, the algorithm works as follows:

– Initially ϕ = glob0 ∧ loc0,
– For i = 1 to n do

• if si is an assignment, compute the strongest postcondition of ϕ with respect
to si. For example, if si is the assignment x := x + 5, and ϕ is the valuation
(1< x< 4) = true; the updated valuation ϕ is (6< x< 9) = true.

• if si is an if statement with condition c, then if si+1 corresponds to its then
successor, ϕ := ϕ∧c. Otherwise, if si+1 corresponds to its else successor, ϕ :=
ϕ∧¬c.

– If ϕ is satisfiable, then the program can execute the sequence of statements, and the
counterexample is valid; otherwise, the counterexample is spurious.

5.2 Eliminating the Counterexample

If the counterexample is spurious for component i, we need to refine the PDS model
Pi corresponding to this component by adding new seed predicates. The predicates that
we add are subsets of the set of conditions of the if-then-else branches of the program.
Intuitively, it works as follows: In most cases, the counterexample is spurious because in
the abstract model we have not modeled an if condition with sufficient precision, and we
have allowed both of its branches to be followed (at some “moment” during an abstract
execution), whereas in any concrete execution run only one branch can be followed; the
counterexample corresponds to a trace that takes the “wrong” branch. So, to eliminate
this trace, we need to add the condition c of this if statement as a seed predicate. More
precisely, let X = {c1, . . . ,ck} be the set of conditions of the if statements of the program,
and let C be the current set of seed predicates, i.e., such that Pi is computed as described
in §3 using the set of predicates P[C ]. We proceed as follows:



344 S. Chaki et al.

1. i := 1,
2. if ci ∈ C , then increment i and go to step 2,
3. C ′ := C ∪{ci},
4. Create the PDS P ′

i that corresponds to the predicates P[C ′] as described in §3.2. If
the new model eliminates the counterexample, then let the new seed set be C := C ′.
Otherwise increment i and go to step 2.

If none of the predicates c1, . . . ,ck succeeds in eliminating the counterexample, we try
to add two predicates at each step. If we try all the possibilities, and the counterexample
is still not eliminated, we try to add three predicates at each step, etc.

5.3 An Example Illustrating the CEGAR Predicate-Abstraction Technique

Consider the following two sequential components D1 and D2 running in parallel, where
a is a synchronization action:

D1: D2:
main() { void proc() { main() {

n0: int x=10; n3: if (x< 10) m0: a;
n1: proc(); n4: a; m1: return;
n2: return; n5: else proc(); }

} n6: return;
}

The CPDS Model

Case #1: The set of seed predicates C is empty: Let us model first the component D1

by a PDS P1. There are no local variables, so the stack alphabet is the set of the control
points. Moreover, because the set of seed predicates C is empty, let p be the unique state
of P1 (p corresponds to the valuation empty). P1 contains the following rules:

r1 : 〈p,n0〉
τ

↪−→ 〈p,n1〉; r2 : 〈p,n1〉
τ
↪−→ 〈p,n3n2〉; r3 : 〈p,n2〉

τ
↪−→ 〈p,ε〉; r4 : 〈p,n3〉

τ
↪−→ 〈p,n4〉;

r5 : 〈p,n3〉
τ

↪−→ 〈p,n5〉; r6 : 〈p,n4〉
a
↪−→ 〈p,n6〉; r7 : 〈p,n5〉

τ
↪−→ 〈p,n3n6〉; r8 : 〈p,n6〉

τ
↪−→ 〈p,ε〉.

Similarly, we represent the second component by a PDS P2 that has a unique state q,
and the following rules:

r′1 : 〈q,m0〉
a
↪−→ 〈q,m1〉; and r′2 : 〈q,m1〉

τ
↪−→ 〈q,ε〉.

Case #2: We have C = {(x < 10)}: We model the component D1 by the following
PDS P ′

1. We have: P[C ]n1 = P[C ]n3 = P[C ]n5 = {x < 10}, and P[C ]n = /0 for the other
points (while computing P[C ]n0 , we find the predicate 10 < 10. Because we ignore
predicates that are trivially true or false, we keep P[C ]n0 = /0). The states of P ′

1 are:
p1 : (x < 10) = f alse, p2 : (x < 10) = true, and p3 : empty. P ′

1 contains the following
rules:

〈p3,n0〉
τ

↪−→ 〈p1,n1〉; 〈p1,n1〉
τ

↪−→ 〈p1,n3n2〉; 〈p3,n2〉
τ

↪−→ 〈p3,ε〉; 〈p2,n3〉
τ

↪−→ 〈p3,n4〉;
〈p1,n3〉

τ
↪−→ 〈p1,n5〉; 〈p3,n4〉

a
↪−→ 〈p3,n6〉; 〈p1,n5〉

τ
↪−→ 〈p1,n3n6〉; 〈p3,n6〉

τ
↪−→ 〈p3,ε〉.



Verifying Concurrent Message-Passing C Programs with Recursive Calls 345

Refinement. Consider the query “Can D2 reach the point m1 if the system starts from
(n0,m0)?” Obviously, this is not the case, because the second component can go to m1

only if it synchronizes with D1 using the action a, whereas the first component can never
perform a, because at n3 we do not have x < 10. If we model the concurrent program
using no seed predicates, i.e., if we consider the model (P1,P2), the model checker
answers that (n6n2,m1) is reachable with the following sequences: r1r2r4r6 for P1, and
r′1 for P2. Using our method, we can check that r1r2r4r6 is spurious because ϕ = (x =
10)∧ (x< 10) is not satisfiable. Therefore, we refine PDS P1 using C = {(x< 10)} to
obtain the PDS P ′

1. Then it is easy to see that in the CPDS (P ′
1,P2), P2 cannot reach m1.

6 Experimental Results

We implemented our method in ComFoRT [23], a model checker built on top of MAGIC
[14], and experimented with a set of non-trivial benchmarks. The implementation sup-
ports two kinds of abstractions described in §4.2: the ith-prefix and the ith-suffix
abstractions.

6.1 Application to Concurrent Recursive Programs

We applied the technique to two nontrivial recursive concurrent programs that could
not be handled with the original (non-recursive) version of MAGIC: a Windows NT
Bluetooth driver, and an algorithm for concurrent insertions in a binary search tree. The
experiments were performed on a 3.0 GHz P4 SMP with 2 GB memory, running Linux
2.4.21-27.0.1.

A New Bug in a Windows NT Bluetooth Driver. The tool found bugs in two ver-
sions of this program (BT1 and BT2) and verified the correctness for a two-process
instantiation of a third version (BT3). BT1 was the version for which KISS had pre-
viously found a bug [24], and our tool identified the same bug. In contrast to KISS

Table 1. Performance for the Bluetooth driver (len. = coun-
terexample length, except for BT3, where it indicates the ab-
straction length;mem. = memory usage (MB))

version # procs. abstraction len. time(secs.) mem.

BT1 1 ith-prefix 8 8 358
BT1 1 ith-suffix 8 5 334
BT2 2 ith-prefix 14 67 490
BT2 2 ith-suffix 14 20 391
BT3 1 ith-suffix 6 2 304
BT3 2 ith-suffix 7 25 441

(as well as the work reported
in [25]), our approach can
also verify correctness by de-
termining that all error con-
figurations are unreachable.
The authors of [24] sent us
BT2 to see if correctness
could be verified. Instead,
we found a bug in BT2 that
can arise when two concur-
rent processes are running.
Both bugs could be detected
with the ith-prefix abstrac-
tion as well as the ith-suffix
abstraction. Using the coun-
terexample found by our tool, we modified BT2 to create BT3, and analyzed BT3 for a
two-process configuration. The tool reported that the error state is unreachable in BT3.



346 S. Chaki et al.

Tab. 1 shows the running times and memory consumption for these experiments. The
ith-suffix abstraction is more efficient because we use it to compute Pre∗ from the error
states. Therefore, the language will stop growing once Pre∗ has traversed i actions from
the error state.

Note that the Bluetooth driver is not recursive; however, we use a recursive process
to model a counter. In the real program, the counter is an integer (which is a global
variable). Because we needed to represent global variables by means of synchronization
actions, we had to represent the counter as a process. We modeled the counter process
as a PDS with stack alphabet {1}. The number of 1’s on the stack corresponds to the
value of the counter. Then, incrementing the counter amounts to pushing a 1 onto the
stack, and decrementing it amounts to popping a 1 off the stack.

Table 2. Times needed to detect the bug in the
concurrent-insertions algorithm

# procs. len. time (secs.)

2 1 0.8
3 1 0.8
4 1 0.8
5 1 1.1
6 1 2.7
7 1 12.9

An Algorithm for Concurrent Inser-
tions in a Binary Search Tree. We
also considered an algorithm that han-
dles a finite number of concurrent inser-
tions in a binary search tree [26]. The
algorithm can be applied to handle si-
multaneous insertions into a database
(by several users), or to reduce the time
necessary for a single insertion. The
algorithm was modified so that one pro-
cess does not adhere to the required
lock and unlock semantics, and we then
applied our tool (using the ith-prefix abstraction) to the modified version. The times
needed to detect the bug (as a function of number of processes) are shown in Tab. 2.

6.2 Application to Non-recursive Examples

We applied our implementation to several examples without recursion to which MAGIC
had already been applied. The previous version of MAGIC handles non-recursive pro-
cedure calls by in-line expansion. The purpose of the non-recursive experiments was to
test whether our technique was better than inlining.

We tested sequential programs to determine whether the implementations were of
comparable speed (without the complication of concurrency). They were not: the times
for the srvr-i and clnt-i examples show that the overhead introduced by our technique is
substantial (cf. the times in the two columns of Tab. 3 labeled “Verif”). The reason for
this difference is that MAGIC performs a reachability query over an FSM, whereas we
use the full CPDS machinery (which includes the inner CEGAR loop).

Despite this handicap, when model checking concurrent programs, our technique
was almost always better than the in-lining technique of the base MAGIC system (see
the bold entries in the right-hand table of Tab. 3). The new technique outperforms
MAGIC in these cases because it avoids the state-space explosion that can occur be-
cause of in-lining. The cost of the technique depends heavily on the length of the syn-
chronization sequences examined by the model checker. This can be seen by comparing
the times for the non-recursive examples and for the Bluetooth example. Each of the



Verifying Concurrent Message-Passing C Programs with Recursive Calls 347

Table 3. Abs = predicate-abstraction time (sec); Verif = model-checking time (sec); Mem = mem-
ory usage (MB); * = exceeded 2 GB memory limit; Len = abstraction length

Sequential Experiments Concurrent Experiments

Program MAGIC CPDS
Abs Verif Mem Abs Verif Mem Len

srvr-1 25.5 0.001 24.3 25.5 1.2 31.3 2
srvr-2 25.8 0.001 22.2 25.7 1.3 31.3 2
srvr-3 25.7 0.003 23.3 25.6 1.2 31.3 2
srvr-4 25.5 0.025 24.3 25.6 1.2 31.3 2
srvr-5 25.4 0.034 25.4 25.7 2.2 34.4 2
srvr-6 25.7 0.038 22.3 25.7 2.3 34.1 2
srvr-7 25.5 0.024 24.3 25.9 2.1 34.0 2
srvr-8 25.4 0.035 25.4 25.8 2.1 34.0 2

clnt-1 18.9 0.001 16.1 19.3 0.881 22.1 2
clnt-2 19.2 0.001 14.1 19.0 0.950 24.9 2
clnt-3 18.9 0.002 16.1 19.2 0.856 23.2 2
clnt-4 19.1 0.001 14.6 18.9 0.880 24.9 2
clnt-5 18.7 0.026 18.7 19.1 1.65 27.2 2
clnt-6 18.9 0.027 16.1 19.3 1.78 27.2 2
clnt-7 19.2 0.027 14.1 19.1 1.71 27.2 2
clnt-8 19.2 0.027 14.1 19.3 1.68 27.2 2

Program MAGIC CPDS
Abs Verif Mem Abs Verif Mem Len

ssl-1 46.2 16.2 56.3 46.8 2.82 58.0 2
ssl-2 46.2 16.1 56.3 46.4 3.83 68.7 2
ssl-3 46.8 14.0 56.2 46.8 19.2 450 4
ssl-4 46.7 14.2 56.2 46.2 2.76 57.1 2
ssl-5 46.7 14.0 56.2 46.8 3.02 58.3 2
ssl-6 46.1 14.0 53.5 46.8 2.93 58.3 2
ssl-7 46.3 15.0 56.3 46.2 3.34 58.3 2

ucos 29.1 0.044 293 6.8 0.702 110 2
ucos-2 84.8 578 639 16.5 1.324 161 2
ucos-3 168 * * 29.2 2.144 213 2

casting 45.7 0.257 196.1 40.3 38.2 2145 3

non-recursive examples are verifed using strings of only 2–4 synchronization actions.
However, BT1, BT2, and BT3 need 8, 14, and 7 actions, respectively, which causes
the running times to be much larger. This is an interesting aspect of our technique,
namely, the limiting factor is the length of the synchronization sequences considered,
not program size. Indeed, the analysis times are encouraging for the programs ucos-2
and ucos-3, which are 12K LOC and 18K LOC, respectively (see Tab. 3).

7 Related Work

Bouajjani et al. also reduced the reachability problem for CPDSs to computing over-
approximations of CFLs; however, no CEGAR techniques were presented there [6, 7].
More precisely, their work computes over-approximations A1 and A2 of two given CFLs
L1 and L2, and if A1 ∩A2 = /0, one concludes that L1 ∩L2 = /0. However, no conclusion
can be made automatically if A1 ∩A2 �= /0. In particular, one can never conclude that
L1 ∩L2 �= /0. In contrast, our CEGAR-based semi-decision procedure is guaranteed to
terminate in this case, with the correct answer.

CEGAR-based predicate-abstraction techniques are used in several C-program
model-checking tools, such as SLAM [12], BLAST [13], ZING [27], and KISS [24].
However, as mentioned previously, SLAM cannot deal with concurrency, BLAST can-
not handle recursion, and KISS cannot discover errors that appear after a number of in-
terleavings between the parallel components greater than three. ZING is an extension of
SLAM to concurrent programs. SLAM and ZING are based on procedure summariza-
tion; hence, ZING might not terminate in cases where our technique will. Indeed, in the



348 S. Chaki et al.

concurrent case, one needs to keep track of the calling stack, which can be unbounded
in the presence of recursive calls. The contents of the stack are explicitly represented in
ZING. In contrast, in our PDS modeling framework, they are symbolically represented
with regular languages. On the other hand, SLAM and ZING use predicate-abstraction
techniques to extract a Boolean program from a C program with recursion. Schwoon
has implemented a translation from Boolean programs to PDSs in the MOPED tool
[15]. However, MOPED cannot handle concurrent programs. Our CPDS predicate-
abstraction-refinement techniques are performed componentwise, and amount to per-
forming successive sequential PDS predicate-abstractions and refinements. These suc-
cessive steps could be performed using SLAM and then MOPED; however, in this pa-
per, we present predicate-abstraction techniques that create a PDS from C source code
of a sequential component directly and more efficently (i.e., without going through an
intermediate Boolean program).

Finally, the techniques presented in [28, 25] also use multiple PDSs to model concur-
rent recursive programs. However, [28] is restricted to programs that communicate via
a finite number of locks, and assumes a certain nesting condition on the locks. As for
[25], it uses shared-variables for communication between threads, whereas we use syn-
chronizing actions (these two models can simulate each other). The technique presented
in [25] sidesteps the undecidability of the reachability problem for multiple PDSs by
putting a bound k on the number of interleavings between different threads, whereas
we sidestep undecidability by computing abstractions of CFLs (without bounding the
number of interleavings). In certain cases, our technique can be more powerful than the
one presented in [25]. Namely, when we find A1 ∩A2 = /0, we can infer that the target
configurations are not reachable, whereas the technique of [25] can never establish such
a property because it computes an underapproximation. Indeed, after correcting BT2 to
create BT3, our tool verified that BT3 is correct for two processes. Finally, the technique
of [25] has not been implemented, and no automatic techniques to translate C code to
PDS are presented there.

Acknowledgments. We thank M. Sighireanu for helpful discussions about the Blue-
tooth driver program, S. Qadeer for providing us with BT2, and A. Lal for his helpful
insights.

References

1. Ramalingam, G.: Context-sensitive synchronization-sensitive analysis is undecidable.
TOPLAS 22 (2000) 416–430

2. Esparza, J., Knoop, J.: An automata-theoretic approach to interprocedural data-flow analysis.
In: FOSSACS. (1999)

3. Esparza, J., Schwoon, S.: A BDD-based model checker for recursive programs. In: CAV.
(2001)

4. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata: Applica-
tion to model checking. In: CONCUR. (1997)

5. Finkel, A., Willems, B., Wolper, P.: A direct symbolic approach to model checking pushdown
systems. In: Infinity. (1997)

6. Bouajjani, A., Esparza, J., Touili, T.: A generic approach to the static analysis of concurrent
programs with procedures. In: POPL. (2003)



Verifying Concurrent Message-Passing C Programs with Recursive Calls 349

7. Bouajjani, A., Esparza, J., Touili, T.: A generic approach to the static analysis of concurrent
programs with procedures. Int. J. Found. of Comp. Sci. (2003)

8. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of
programs by construction of approximation of fixed points. In: POPL. (1977)

9. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: CAV. (1997)
10. Kurshan, R.P.: Computer-aided verification of coordinating processes: The automata-

theoretic approach. In: Princeton University Press. (1994)
11. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction

refinement. In: CAV. (2000)
12. Ball, T., Rajamani, S.: Automatically validating temporal safety properties of interfaces. In:

SPIN. (2001)
13. Henzinger, T., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL. (2002)
14. Chaki, S., Clarke, E., Groce, A., Jha, S., Veith, H.: Modular verification of software compo-

nents in C. In: ICSE. (2003)
15. Schwoon, S.: Model-Checking Pushdown Systems. PhD thesis, TUM (2002)
16. Chaki, S., Clarke, E., Kidd, N., Reps, T., Touili, T.: Verifying concurrent message-passing C

programs with recursive calls. Tech. Rep. 1532, Univ. of Wisconsin (2005)
17. Necula, G., McPeak, S., Weimer, W., Liblit, B., To, R., Bhargava, A.: C intermediate lang.

(2001) http://manju.cs.berkeley.edu/cil.
18. Morris, J.: Assignment and linked data structures. In: Theoretical Foundations of Program-

ming Methodology. D. Reidel Publishing Co. (1982)
19. Nelson, G.: Techniques for Program Verification. PhD thesis, Stanford University (1980)
20. Reps, T., Schwoon, S., Jha, S.: Weighted pushdown systems and their application to inter-

procedural dataflow analysis. In: SAS. (2003)
21. Reps, T., Schwoon, S., Jha, S., Melski, D.: Weighted pushdown systems and their application

to interprocedural dataflow analysis. SCP 58 (2005)
22. Kidd, N., Reps, T., Melski, D., Lal, A.: WPDS++: A C++ library for weighted pushdown

systems (2004) http://www.cs.wisc.edu/wpis/wpds++/.
23. Chaki, S., Ivers, J., Sharygina, N., Wallnau, K.: The ComFoRT reasoning framework. In:

CAV. (2005)
24. Qadeer, S., Wu, D.: KISS: Keep it simple and sequential. In: PLDI. (2004)
25. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software. In: TACAS.

(2005)
26. Kung, H., Lehman, P.: Concurrent manipulation of binary search trees. TODS 5 (1980)
27. Qadeer, S., Rajamani, S., Rehof, J.: Summarizing procedures in concurrent programs. In:

POPL. (2004)
28. Kahlon, V., Ivancic, F., Gupta, A.: Reasoning about threads communicating via locks. In:

CAV. (2005)



Automata-Based Verification of Programs
with Tree Updates'

Peter Habermehl1, Radu Iosif2, and Tomas Vojnar3

1 LIAFA/Université Paris 7, 175 rue du Chevaleret, 75013 Paris, France
haberm@liafa.jussieu.fr

2 VERIMAG/CNRS, 2 Avenue de Vignate, 38610 Gières, France
iosif@imag.fr

3 Brno University of Technology, Bozetechova 2, CZ-612 66 Brno, Czech Republic
vojnar@fit.vutbr.cz

Abstract. This paper describes an effective verification procedure for imperative
programs that handle (balanced) tree-like data structures. Since the verification
problem considered is undecidable, we appeal to a classical semi-algorithmic ap-
proach in which the user has to provide manually the loop invariants in order to
check the validity of Hoare triples of the form {P}C{Q}, where P,Q are the sets
of states corresponding to the pre- and post-conditions, and C is the program to
be verified. We specify the sets of states (representing tree-like memory config-
urations) using a special class of tree automata named Tree Automata with Size
Constraints (TASC). The main advantage of using TASC in program specifica-
tions is that they recognize non-regular sets of tree languages such as the AVL
trees, the red-black trees, and in general, specifications involving arithmetic rea-
soning about the lengths (depths) of various (possibly all) paths in the tree. The
class of TASC is closed under the operations of union, intersection and com-
plement, and moreover, the emptiness problem is decidable, which makes it a
practical verification tool. We validate our approach considering red-black trees
and the insertion procedure, for which we verify that the output of the insertion
algorithm is a balanced red-black tree, i.e. the longest path is at most twice as
long as the shortest path.

1 Introduction

Verification of programs using dynamic memory primitives, such as allocation, deallo-
cation, and pointer manipulations, is crucial for a feasible method of software verifi-
cation. In this paper, we address the problem of proving correctness of programs that
manipulate balanced tree-like data structures. Such structures are very often applied to
implement in an efficient way lookup tables, associative arrays, sets, or similar higher-
level structures, especially when they are used in critical applications like real-time
systems, kernels of operating systems, etc. Therefore, there arised a number of such
search tree structures like the AVL trees, red-black trees, splay trees, and so on [7].

Tree automata [6] are a powerful formalism for specifying sets of trees and reason-
ing about them. However, one obstacle preventing them from being used currently in

' This work was supported in part by the French Ministry of Research (ACI project Securité
Informatique) and the Czech Grant Agency (projects GA CR 102/04/0780 and 102/03/D211).

H. Hermanns and J. Palsberg (Eds.): TACAS 2006, LNCS 3920, pp. 350–364, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Automata-Based Verification of Programs with Tree Updates 351

program verification is that imperative programs perform destructive updates on selec-
tor fields, by temporarily violating the fact that the shape of the dynamic memory is a
tree. Another impediment is the fact that tree automata represent regular sets of trees,
which is not the case when one needs to reason in terms of balanced trees, as in the case
of AVL and red-black tree algorithms.

In order to overcome the first problem, we observe that most algorithms [7] use tree
rotations (plus the low-level addition/removal of a node to/from a tree) as the only op-
erations that effectively change the structure of the input tree. Such updates are usually
implemented as short low-level pointer manipulations [16], which are assumed to be
correct in this paper. However, their correctness can be checked separately in a different
formalism, such as [17], or by using tree automata extended with additional “routing”
expressions on the tree backbone as in [11].

The second inconvenience has been solved in the present paper by introducing a
novel class of tree automata, called Tree Automata with Size Constraints (TASC). TASC
are tree automata whose actions are triggered by arithmetic constraints involving the
sizes of the subtrees at the current node. The size of a tree is a numerical function de-
fined inductively on the structure, as for instance the height, or the maximum number
of black nodes on all paths, etc. The main advantage of using TASC in program specifi-
cations is that they recognize non-regular sets of tree languages, such as the AVL trees,
the red-black trees, and in general, specifications involving arithmetic reasoning about
the lengths (depths) of various (possibly all) paths in the tree. We show that the class
of TASC is closed under the operations of union, intersection and complement. Also,
the emptiness problem is decidable, and the semantics of the programs performing tree
updates (node recoloring, rotations, nodes appending/removal) can be effectively rep-
resented as changes on the structure of the automata.

Our approach consists in writing pre- and post-condition specifications of a (sequen-
tial) imperative program and asking the user to provide loop invariants. The verification
problem consists in checking the validity of the invariants and of the Hoare triples of the
form {P}C{Q} where P,Q are the sets of configurations corresponding to the pre- and
post-condition, and C is the program to be verified. We need to stress the fact that here
P and Q are languages accepted by TASC, instead of logical formulae, as it is usually
the case with Hoare logic. The validity of the triple is established by computing the set
of states reachable from a state in P by executing C, i.e. post(P,C), and then deciding
whether post(P,C) ⊆ Q holds.

We have validated our approach on an example of the insertion algorithm for the
red-black trees, for which we verify that for a balanced red-black tree input, the output
of the insertion algorithm is also a balanced red-black tree, i.e. the number of black
nodes is the same on each path.

Related Work. Verification of programs that handle tree-like structures has attracted
researchers with various backgrounds, such as static analysis [12], [16], proof theory
[4], and formal language theory [11]. The approach that is the closest to ours is probably
the one of PALE (Pointer Assertion Logic Engine) [11], which consists in translating
the verification problem into the logic SkS [15] and using tree automata to solve it.
Our approach is similar in that we also specify the pre-, post-conditions and the loop
invariants, reducing the validity problem for Hoare triples to the language emptiness



352 P. Habermehl, R. Iosif, and T. Vojnar

problem. However, the use of the novel class of tree automata with arithmetic guards
allows us to encode quantitative properties such as tree balancing that are not tackled
in PALE. The verification of red-black trees (with balancing) is reported also in [2] by
using hyper-graph rewriting systems. Two different approaches, namely net unfoldings,
and graph types, are used to check that red nodes have black children and that the tree
is balanced, respectively.

The definition of TASC is the result of searching for a class of counter tree au-
tomata that combines nice closure properties (union, intersection, complementation)
with decidability of the emptiness problem. Existing work on extending tree automata
with counters [8, 18] concentrates mostly on in-breadth counting of nodes with appli-
cations on verifying consistency of XML documents. Our work gives the possibility of
in-depth counting in order to express balancing of recursive tree structures. It is worth
noticing that similar computation models, such as alternating multi-tape and counter
automata, have undecidable emptiness problems in the presence of two or more 1-letter
input tapes, or, equivalently, non-increasing counters [13]. This result improves on early
work on alternating multi-tape automata recognizing 1-letter languages [9]. However,
restricting the number of counters is problematic for obtaining closure of automata un-
der intersection. The solution is to let the actions of the counters depend exclusively on
the input tree alphabet, in other words, encode them directly in the input, as size func-
tions. This solution can be seen as a generalization of Visibly Pushdown Languages
[1] to trees, for singleton stack alphabets. The general case, with more than one stack
symbol, is a subject of future work.

1.1 Running Example

In this section, we introduce our verification methodology for programs using balanced
trees. Several data structures based on balanced trees are commonly used, e.g. AVL
trees. Here, we will use as a running example red-black trees, which are binary search
trees whose nodes are colored by red or black. They are approximately balanced by
constraining the way nodes can be colored. The constraints insure that no maximal path
can be more than twice as long as any other path. Formally, a node contains an element
of an ordered data domain, a color, a left and right pointer and a pointer to its parent.
A red-black tree is a binary search tree that satisfies the following properties:

1. Every node is either red or black.
2. The root is black.
3. Every leaf is black.
4. If a node is red, both its children are black.
5. Each path from the root to a leaf contains the same number of black nodes.

An example of a red-black tree is given in Figure 1 (a). Because of the last condition,
it is obvious that the set of red-black trees is not regular, i.e. not recognisable by standard
tree automata [6]. The main operations on balanced trees are searching, insertion, and
deletion. When implementing the last two operations, one has to make sure that the
trees remain balanced. This is usually done using tree rotations (Figure 1 (b)) which can
change the number of black nodes on a given path. The pseudo-code of the inserting
operation is the following (see [7]):



Automata-Based Verification of Programs with Tree Updates 353

nil nil nil nil

nil nil

nil nil8

10

18

15 19

27

5

y

x

x

y

α β

γ α

β γ
RightRotate(T,y)

LeftRotate(T’,x)

(a) (b)

T: T’:

Fig. 1. (a) A red-black tree—nodes 10, 15, and 19 are red, (b) the left and right tree rotation

RB-Insert(T,x):
Tree-Insert(T,x); % Inserts a new leaf node x
x->color = red;
while (x != root && x->parent->color == red) {
if (x->parent == x->parent->parent->left) {

if (x->parent->parent->right->color == red) {
x->parent->color = black; % Case 1
x->parent->parent->right->color = black;
x->parent->parent->color = red;
x = x->parent->parent; }

else {
if (x == x->parent->right) { % Case 2
x = x->parent;
LeftRotate(T,x) }

x->parent->color = black; % Case 3
x->parent->parent->color = red;
RightRotate(T,x->parent->parent); }}

else .... % same as above with right and left exchanged
root->color = black;

For this program, we want to show that after an insertion of a node, a red-black tree
remains a red-black tree. In this paper, we restrict ourselves to calculating the effects
of program blocks which preserve the tree structure of the heap. This is not the case
in general since pointer operations can temporarily break the tree structure, e.g. in the
code for performing a rotation. The operations we handle are the following:

1. tests on the tree structure (like x->parent == x->parent->parent->left),
2. changing data of a node (as, e.g., recoloring of a node x->color = red),
3. left or right rotation (Figure 1 (b)),
4. moving a pointer up or down a tree structure (like x = x->parent->parent),
5. low-level insertion/deletion, i.e. the physical addition/removal of a node to/from

a suitable place that is then followed by the re-balancing operations.

2 Preliminaries

In this paper, we work with the set D of all boolean combinations of formulae of the
form x− y 9 c or x 9 c, for some c ∈ Z and 9 ∈ {≤,≥}. We introduce the equality sign



354 P. Habermehl, R. Iosif, and T. Vojnar

as syntactic sugar, i.e. x− y = c ⇐⇒ x− y ≤ c∧x− y ≥ c. Notice that negation can be
eliminated from any formula of D, since x− y �≤ c ⇐⇒ x− y ≥ c+1, and so on. Also,
any constraint of the form x− y ≥ c can be equivalently written as y− x ≤ −c. For a
closed formula ϕ, we write |= ϕ meaning that it is valid, i.e. equivalent to true.

A ranked alphabet Σ is a set of symbols together with a function # : Σ → N. For
f ∈ Σ, the value #( f ) is said to be the arity of f . We denote by Σn the set of all symbols
of arity n from Σ. Let λ denote the empty sequence. A tree t over an alphabet Σ is a
partial mapping t : N∗ → Σ that satisfies the following conditions:

– dom(t) is a finite prefix-closed subset of N∗, and
– for each p ∈ dom(t), if #(t(p)) = n> 0 then {i | pi ∈ dom(t)} = {1, . . . ,n}.

A subtree of t starting at position p ∈ dom(t) is a tree t|p defined as t|p(q) = t(pq) if
pq ∈ dom(t), and undefined otherwise. Given a set of positions P ⊆ N∗, we define the
frontier of P as the set f r(P) = {p ∈ P | ∀i ∈ N pi �∈ P}. For a tree t, we use f r(t) as a
shortcut for f r(dom(t)). We denote by T (Σ) the set of all trees over the alphabet Σ.

Definition 1. Given two trees t : N∗ → Σ and t ′ : N∗ → Σ′, a function h : dom(t) →
dom(t ′) is said to be a tree mapping between t and t ′ if the following hold:

– h(λ) = λ, and
– for any p ∈ dom(t), if #(t(p)) = n> 0 then there exists a prefix-closed set Q ⊆ N∗

such that pQ ⊆ dom(t ′) and h(pi) ∈ f r(pQ) for all 1 ≤ i ≤ n.

A size function (or measure) associates to every tree t ∈ T (Σ) an integer |t| ∈ Z. Size
functions are defined inductively on the structure of the tree. For each f ∈ Σ, if #( f ) = 0
then | f | is a constant c f , otherwise, for #( f ) = n, we have:

| f (t1, . . . ,tn)| =

⎧⎨⎩b1|t1|+ c1 if |= δ1(|t1|, . . . , |tn|)
. . .

bn|tn|+ cn if |= δn(|t1|, . . . , |tn|)

where b1, . . . ,bn ∈{0,1}, c1, . . . ,cn ∈Z, and δ1, . . . ,δn ∈D, all depending on f . In order
to have a consistent definition, it is required that δ1, . . . ,δn define a partition of Nn, i.e.
|= ∀x1 . . .∀xn

∨
1≤i≤nδi ∧ ∧1≤i< j≤n¬(δi ∧ δ j). 1 A sized alphabet (Σ, |.|) is a ranked

alphabet with an associated size function.
A tree automaton with size constraints (TASC) over a sized alphabet (Σ, |.|) is a 3-

tuple A = (Q,Δ,F) where Q is a finite set of states, F ⊆ Q is a designated set of final

states, and Δ is a set of transition rules of the form f (q1, . . . ,qn)
ϕ(|1|,...,|n|)−−−−−−→ q, where

f ∈ Σ, #( f ) = n, and ϕ ∈ D is a formula with n free variables. For constant symbols
a ∈ Σ, #(a) = 0, the automaton has unconstrained rules of the form a −→ q.

A run of A over a tree t : N∗ → Σ is a mapping π : dom(t) → Q such that, for each
position p ∈ dom(t), where q = π(p), we have:

1 For technical reasons related to the decidability of the emptiness problem for TASC, we do not
allow arbitrary linear combinations of |ti| in the definition of | f (t1, . . . ,tn)|.



Automata-Based Verification of Programs with Tree Updates 355

– if #(t(p)) = n > 0 and qi = π(pi), 1 ≤ i ≤ n, then Δ has a rule

t(p)(q1, . . . ,qn)
ϕ(|1|,...,|n|)−−−−−−→ q and |= ϕ(|t|p1|, . . . , |t|pn|),

– otherwise, if #(t(p)) = 0, then Δ has a rule t(p) −→ q.

A run π is said to be accepting, if and only if π(λ) ∈ F . As usual, the language of A,
denoted as L(A) is the set of all trees over which A has an accepting run.

As an example, let us consider a TASC recognising the set of all balanced red-black
trees. Let Σ = {red,black,nil} with #(red) = #(black) = 2 and #(nil) = 0. First, we
define the size function to be the maximal number of black nodes from the root to a leaf:
|nil| = 1, |red(t1,t2)| = max(|t1|, |t2|), and |black(t1,t2)| = max(|t1|, |t2|)+1. Let Arb =

({qb,qr},Δ,{qb}) with Δ = {nil −→ qb,black(qb/r,qb/r)
|1|=|2|−−−−→ qb,red(qb,qb)

|1|=|2|−−−−→
qr}. By using qx/y within the left-hand side of a transition rule, we mean the set of rules
in which either qx or qy take the place of qx/y.

3 Closure Properties and Decidability of TASC

This section is devoted to the closure of the class of TASC under the operations of union,
intersection and complement. The decidability of the emptiness problem is also proved.

3.1 Closure Properties

A TASC is said to be deterministic if, for every input tree, the automaton has at most one
run. For every TASC A, we can effectively construct a deterministic TASC Ad such that
L(A) = L(Ad). Concretely, let A = (Q,Δ,F) and GA be the set of all guards labelling
the transitions from Δ and Gn

A = {ϕ ∈ GA | ||FV (ϕ)|| = n} where n ∈ N and ||FV (ϕ)||
denotes the number of free variables in ϕ. Without loss of generality, we assume that

any guard ϕ labelling a transition of A of the form f (q1, . . . ,qn)
ϕ−→ q has exactly n

free variables.2 Define Bn
A as the set of all conjunctions of formulae from Gn

A and their
negations. Let BA =

⋃
n∈N Bn

A∪{�}. With this notation, define Ad = (Qd ,Δd ,Fd) where
Qd = P (Q)×BA, Fd = {〈s,ϕ〉 ∈ Qd | s∩F �= /0}, and:

f (〈s1,ϕ1〉 . . . 〈sn,ϕn〉)
ϕ−→ 〈s,ϕ〉 ∈ Δd

iff

⎧⎪⎪⎪⎨⎪⎪⎪⎩
s ⊆ {q| f (q1, . . . ,qn)

ψ−→ q ∈ Δ,qi ∈ si} and s �= /0

ϕ =
∧ {ψ| f (q1, . . . ,qn)

ψ−→ q ∈ Δ,qi ∈ si,q ∈ s} ∧∧ {¬ψ| f (q1, . . . ,qn)
ψ−→ q ∈ Δ,qi ∈ si,q ∈ Q\ s}

a −→ 〈s,�〉 ∈ Δd iff s = {q |a −→ q ∈ Δ}

Notice that Ad has no states of the form 〈s,⊥〉 since they would necessarily be unreach-
able. The following theorem shows that non-deterministic and deterministic TASC rec-
ognize exactly the same languages (for a proof of the theorem see [10]).

2 We can add conjuncts of the form xi = xi for all missing variables.



356 P. Habermehl, R. Iosif, and T. Vojnar

Theorem 1. Ad is deterministic and L(Ad) = L(A).

Determinisation is crucial to show closure of TASC under language complementation.
However, given a deterministic TASC A, the construction of a TASC recognizing the
language T (Σ)\L(A) is fairly standard [6], using the fact that D is closed under nega-
tion. One needs to first build the complete TASC, i.e. in which each input leads to one
state, and then switch between accepting and non-accepting states. Fairly standard is
also the union of TASC, i.e. given A1 and A2, one can build a TASC A∪ recognizing
L(A1)∪L(A2) by simply merging their (supposedly disjoint) sets of states and tran-
sitions. The TASC A∩ recognizing intersection of languages, i.e. L(A1) ∩ L(A2), is
the automaton whose set of states is the cartesian product of the sets of states of A1

and A2, and the transitions are of the form f ((q′1,q
′′
1), . . . ,(q

′
n,q

′′
n))

ϕ′∧ϕ′′−−−→
A∩

(q′,q′′), for

f (q′1, . . . ,q
′
n)

ϕ′−→
A1

q′ and f (q′′1 , . . . ,q
′′
n)

ϕ′′−→
A2

q′′. For more details, we refer the reader to

the full version of the paper [10].

3.2 Emptiness

In this section, we give an effective method for deciding emptiness of a TASC. In
fact, we address the slightly more general problem: given a TASC A = (Q,Δ,F) we
construct, for each state q ∈ Q, an arithmetic formula φq(x) in one variable that pre-
cisely characterizes the sizes of the trees whose roots are labelled with q by A, i.e.
|= φq(n) iff ∃t |t| = n and t

∗−→
A

q. As it will turn out, the φq formulae are expressible

in Presburger arithmetic, therefore satisfiability is decidable [14]. This entails the de-
cidability of the emptiness problem, which can be expressed as the satisfiability of the
disjunction

∨
q∈F φq.

In order to construct φq, we shall translate our TASC into an Alternating Pushdown
System (APDS) [3] whose stack encodes the value of one integer counter. An APDS is
a triple S = (Q,Γ,δ,F) where Q is the set of control locations, Γ is the stack alphabet, F
is the set of final control locations, and δ is a mapping from Q×Γ into P (P (Q×Γ∗)).
Notice that APDS do not have an input alphabet since we are interested in the behaviors
they generate, rather than the accepted languages. A run of the APDS is a tree t : N∗ →
(Q×Γ∗) satisfying the following property: for any p ∈ dom(t), if t(p) = 〈q,γw〉, then
{t(pi) | 1 ≤ i ≤ #(t(p))} = {〈q1,w1w〉, . . . ,〈qn,wnw〉} where {〈q1,w1〉, . . . ,〈qn,wn〉} ∈
δ(q,γ). The run is accepting if all control locations occurring on the frontier are final.

The idea behind the reduction is that any bottom-up run of a TASC on a given input
tree can be mapped (in the sense of Definition 1) onto a top-down run of an APDS. The
simulation invariant is that the size of a subtree from the run of the TASC is encoded
by the corresponding stack in the run of the APDS. Next, we use the construction of [3]
to calculate, for the given set of configurations σ, the set pre∗q(σ) of configurations with

control state q that have a successor set in σ, i.e. c = 〈q,w〉 ∗−→C ⊆ σ. It is shown in [3]

that if σ is a regular language, then so is pre∗(σ), and the alternating finite automaton
recognizing the latter can be constructed in time polynomial in the size of the APDS.
Hence, the Parikh images of such pre∗q(σ) sets are semilinear sets definable by Pres-
burger formulae. In our case, σ = {〈q,ε〉 | q ∈ F} is a finite set where ε is the (encoding



Automata-Based Verification of Programs with Tree Updates 357

of the) empty stack. Using a unary encoding of the counter (as a stack), we obtain the
needed formulae φq(x). For a detailed explanation, the reader is referred to [10].

Lemma 1. For each TASC A = (Q,Δ,F) over a sized alphabet (Σ, |.|) there exists an
APDS SA = (QA,Γ,δ,FA) such that:

1. for any tree t ∈ T (Σ) and any run π : dom(t)→Q of A on t, there exists an accepting
run ρ : N∗ → (QA×N) of SA and a one-to-one tree mapping h between π and ρ such
that: ∀p ∈ dom(t) ∃q ∈ QA . ρ(h(p)) = 〈q, |t|p|〉 (1)

2. for any accepting run ρ : N∗ → (QA ×N) of SA there exists a tree t ∈ T (Σ), a
run π : dom(t) → Q of A on t and a one-to-one tree mapping h between π and ρ
satisfying (1).

Moreover, SA can be effectively constructed from the description of A.

As a remark, the decidability of the emptiness problem for TASC can be also proved
via a reduction to the class of tree automata with one memory [5] by encoding the size
of a tree as a unary term, using essentially the same idea as in the reduction to APDS.
The complexity of the emptiness problem can be furthermore analyzed using the double
exponential bound of the emptiness problem for tree automata with one memory, and is
considered as further work.

4 Semantics of Tree Updates

As explained in Section 1.1, there are three types of operations that commonly appear in
procedures used for balancing binary trees after an insertion or deletion: (1) navigation
in a tree, i.e. testing or changing the position a pointer variable is pointing to in the
tree, (2) testing or changing certain data fields of the encountered tree nodes, such as
the color of a node in a red-black tree, and (3) tree rotations. In addition, one has to
consider the physical insertion or deletion to/from a suitable position in the tree as an
input for the re-balancing.

It turns out that the TASC defined in Section 2 are not closed with respect to the
effect of some of the above operations, in particular the ones that change the balance
of subtrees (the difference between the size of the left and right subtree at a given po-
sition in the tree). Therefore, we now introduce a subclass of TASC called restricted
TASC (rTASC) which we show to be closed with respect to all the needed operations
on balanced trees. Moreover, rTASC are closed with respect to intersection and union,
amenable to determinisation and minimization, though not closed with respect to com-
plementation. The idea is to use rTASC to express loop invariants and pre- and post-
conditions of programs as well as to perform the necessary reachability computations.
TASC are then used in the associated language inclusion checks. Notice that, since
rTASC are not closed under negation, inclusion of rTASC cannot be directly decided.
Therefore we have to appeal to the more general result concerning the decidability of
inclusion between TASC.

A restricted alphabet is a sized alphabet consisting only of nullary and binary sym-
bols and a size function of the form | f (t1,t2)|= max(|t1|, |t2|)+a with a ∈ Z for binary



358 P. Habermehl, R. Iosif, and T. Vojnar

symbols. A restricted TASC is a TASC with a restricted alphabet and with binary rules

only of the form f (q1,q2)
|1|−|2|=b−−−−−→ q with b ∈ Z. Notice that any conjunction of guards

of an rTASC and their negations reduces either to false, or to only one formula of the
same form, i.e. |1|− |2| = b. Using this fact, one can show that the intersection of two
rTASC is again an rTASC, and that applying the determinisation of Section 3.1 to an
rTASC yields another rTASC. Moreover, the intersection of an rTASC with a classical
tree automaton is again an rTASC.3 Clearly, rTASC are not closed under complemen-
tation, as inequality guards are not allowed.

4.1 Representing Sets of Memory Configurations

Let us consider a finite set of pointer variables V = {x,y, . . .} and a disjoint finite set
of data values D, e.g. D = {red,black}. In the following, we let Σ = P (V ∪D ∪{nil})
where nil indicates a null pointer value. The arity function is defined as follows: #( f ) =
2 if nil �∈ f , and #( f ) = 0 otherwise. For a tree t ∈ T (Σ) and a variable x ∈ V , we say
that a position p ∈ dom(t) is pointed to by x if and only if x ∈ t(p).

For the rest of this section, let A = (Q,Δ,F) be an rTASC over Σ. We say that A
represents a set of memory configurations if and only if, for each t ∈ L(A) and each
x ∈ V , there is at most one p ∈ dom(t) such that x ∈ t(p). This condition can be ensured
by the construction of A: let Q = Q ×P (V ) and Δ consist only of rules of the form

f (〈q1,v1〉,〈q2,v2〉)
ϕ−→ 〈q,v〉 where (1) v = ( f ∪ v1 ∪ v2)∩V and (2) f ∩ v1 = f ∩ v2 =

v1 ∩ v2 = /0. Intuitively, a control state 〈q,v〉 “remembers” all variables encountered by
condition (1), while condition (2) ensures that no variable is encountered twice.

4.2 Modelling Tree Rotations

Let x ∈ V be a fixed variable. We shall construct an rTASC A′ = (Q′,Δ′,F ′) that de-
scribes the set of trees that are the result of the left rotation of a tree from L(A) applied
at the node pointed to by x. The case of the right tree rotation is very similar.4 In the
description, we will be referring to Figure 2 illustrating the problem.

Let Rx = {(r1,r2) ∈ Δ2 | x ∈ g ∧ r1 : f (q1,q2)
ϕ3−→ q3 ∧ r2 : g(q4,q3)

ϕ5−→ q5} be the
set of all the pairs of automata rules that can yield a rotation, and be modified because
of it. Other rules may then have to be modified to reflect the change in one of their left
hand side states, e.g. the change of q5 to q′3 in the h-rule in Figure 2, or to reflect the
change in the balance that may result from the rotation, i.e. a change in the difference
of the sizes of the subtrees of some node. We discuss later what changes in the balance
can appear after a rotation, and Lemma 2 proves that the set D of the possible changes
in the balance in the described trees is finite. The automaton A′ can thus be constructed
from A as follows:

1. Q′ = Q∪Rx∪(Rx×D)∪(Q×D) where we add new states for the rotated parts and
to reflect the changes in the balance.

3 A bottom-up tree automaton can be seen as a TASC in which all guards are true.
4 In fact, it can be implemented by temporarily swapping the child nodes in the involved rules,

doing a left rotation, and then swapping the child nodes again.



Automata-Based Verification of Programs with Tree Updates 359

q1 q2

q3q4

q5

s1
s2

s3 = (s1 >= s2) ? (s1 + b1) : (s2 + b1)s4

f

g

[ ϕ3: s1 = s2 + a1 ]

[ ϕ5: s4 = s3 + a2 ]

s5 = (s4 >= s3) ? (s4 + b2) : (s3 + b2)

q4 q1

s4 s1
g

q2

s’5
f

s2

s’3

[ ϕ’3 ]

[ ϕ’5 ]r1:

r2:

h

q6

h

qd
6

(r1,r2)

(r1,r2)
dr1,r2q’3

q’5

x:

Fig. 2. Left rotation on an rTASC

2. Δ′ = Δ∪Δr ∪β(Δ∪Δa) where:

– Δr is the smallest set such that for all (r1,r2) ∈ Rx where r1 : f (q1,q2)
ϕ3−→ q3

and r2 : g(q4,q3)
ϕ5−→ q5, contains the rules g(q4,q1)

ϕ′5−→ q′5 and f (q′5,q2)
ϕ′3−→

q′3 where q′5 = (r1,r2) and q′3 = (r1,r2)dr1,r2 . Here, we use (r1,r2)dr1 ,r2 as a
shorthand for 〈(r1,r2),dr1,r2〉. The value dr1,r2 ∈ Z represents the change in the
balance caused by the rotation based on r1, r2. We describe the computation of
ϕ′

3, ϕ′
5, and dr1,r2 below.

– Δa is the set of rules that could be applied just above the position where a
rotation takes place. For each (r1,r2) ∈ Rx, we take all rules from Δ that have
q5 within the left hand side and add them to Δa, with (r1,r2) substituted for q5.

– β (described in detail in Section 4.3) is the function that implements the nec-
essary changes in the guards and input/output states (adding the d-component)
of the rules due to the changes in the balance.

3. F ′ = (F ×D)∪Fr. Here, Fr captures the case where q′3 becomes accepting, i.e. the
right child of the node previously labelled by q3 becomes the root of the entire tree.

Suppose that ϕ3 is |t1| = |t2|+ a1 and let us denote the sizes of the sub-trees read
at q1 and q2 before the rotation by s1 and s2, respectively. Let the size function associ-
ated with f be | f (t1, t2)| = max(|t1|, |t2|)+ b1, and let s3 denote the size of the subtree
labelled by q3 before the rotation. Also, suppose that ϕ5 is |t1| = |t2|+ a2 and let us
denote the size of the sub-tree read at q4 before the rotation as s4. Finally, let the size
function associated with g be |g(t1,t2)| = max(|t1|, |t2|)+ b2, and let s5 denote the size
of the subtree labelled by q5 before the rotation. We denote s′5 and s′3 the sizes obtained
at q′5 and q′3 after the rotation.

The key observation that allows us to compute ϕ′
3, ϕ′

5, and dr1,r2 is that due to the
chosen form of guards and sizes, we can always compute any two of the sizes s1, s2, s4

from the remaining one. Indeed,

– for a1 ≥ 0, we have s3 = s1 + b1 = s2 + a1 + b1 = s4 −a2, whereas
– for a1 < 0, we have s3 = s2 + b1 = s1 −a1 + b1 = s4 −a2.



360 P. Habermehl, R. Iosif, and T. Vojnar

q1 q2

q3

s1 s2

s3 = (s1 >= s2) ? (s1 + b) : (s2 + b)

f

[ ϕ: s1 = s2 + a ]

d

d’

q2

s’1 s2

s’3 = (s’1 >= s2) ? (s’1 + b) : (s2 + b)

f

[ ϕ’: s’1 = s2 + a + d ]

qd
1

qd’
3

Fig. 3. Propagation of changes in the balance in an rTASC

Computing ϕ′
3, ϕ′

5, and dr1,r2 is then just a complex exercise in case splitting. Notice
that all the cases can be distinguished statically according to the mutual relations of the
constants a1, b1, a2, and b2. For example, in the case of ϕ′

5, we obtain the following (the
other cases are explained in [10]):

1. For a1 ≥ 0, we have s4 = s1 +b1 +a2, and so ϕ′
5 relating a subtree of size s4 and s1

(cf. Figure 2) is |t1| = |t2|+ b1 + a2.
2. For a1 < 0, we have s4 = s1 −a1 + b1 + a2, and so ϕ′

5 is |t1| = |t2|−a1 + b1 + a2.

4.3 Propagating Changes in the Balance Through rTASC

As said, tree updates such as recoloring or rotations may introduce changes in the bal-
ance at certain points. These changes may affect the balance at all positions above
the considered node. The role of the β function is to propagate a change in balance
d upwards in the trees recognized by the rTASC. The way β changes a set of rules is

illustrated in Figure 3. For every d ∈ D, every input rule f (q1,q2)
ϕ−→ q3 is changed

to two rules f (qd
1 ,q2)

ϕ′−→ qd′
3 and f (q1,qd

2)
ϕ′′−→ qd′′

3 corresponding to the cases when

the change in the balance originates from the left or the right. Since we consider just
one rotation in every tree (at a given node pointed to by the pointer variable x), the
change can never come from both sides. The new guards are ϕ′ : |t1| = |t2|+ a + d and
ϕ′′ : |t1| = |t2|+ a− d. Let us further analyse the changes in the balance propagated
upwards after d comes from the bottom.

Suppose the change in balance is coming from the left as in Figure 3. We distinguish
the cases of a ≥ 0 and a < 0. (1) For a ≥ 0, the original size at q3 is s3 = s1 + b where
s1 is the original size at q1. After the change d happens at q1, i.e. s′1 − s1 = d, we
have the following subcases: (1.1) For a + d ≥ 0, we have s′3 = s′1 + b, i.e. d′ = d, and
so we have the same change in the size at q3 as at q1. (1.2) For a + d < 0, we have
s′3 = s2 + b = s1 − a + b, and hence d′ = −a. (2) For a < 0, s3 = s2 + b. In this case,
(2.1) for a + d ≥ 0, s′3 = s′1 + b = s1 + d + b = s2 + a + d + b, and so d′ = a + d, and
(2.2) for a + d < 0, s′3 = s2 + b, and thus d′ = 0. The case of the change in the balance
coming from the right is similar.

When a change d in the size happens at a child node, at its parent, the change is
either eliminated, d′ or d′′ is 0, stays the same, d′ or d′′ equals d, becomes −|a| (note
that a ≥ 0 for d′ =−a, and a< 0, for d′′ = a), or finally, becomes −|a|+d. We can now
close our construction by showing that the set D of possible changes in the sizes is finite.



Automata-Based Verification of Programs with Tree Updates 361

Lemma 2. For an rTASC A over a set of variables V and a variable x ∈ V , the set D
of the possible changes in the balance generated by a left tree rotation at x is finite.

Note that when we allow the use of two different constants b1
f and b2

f in the size function
for binary nodes, the resulting class of automata will not be closed with respect to left
or right rotations. It may happen that the changes in the balance could diverge, thus we
would need an infinite number of compensating constants to be used for the different
heights of the possible trees.

4.4 Other Operations on Sets of Trees Described by rTASC

It remains to show that in addition to tree rotations, rTASC are closed with respect to all
the other needed operations on balanced trees listed in Section 1.1. Showing this fact is
relatively simple, and so due to space limitations, we omit an exact description of this
issue here and refer the reader to the full paper. In general, the remaining operations
may be implemented by intersecting the given rTASC with a classical tree automaton
encoding all the trees that fulfil a certain condition (such as x->parent->left ==
x or x->parent->color == red) and/or doing certain limited changes to the given
rTASC. This includes changing the symbols read in certain rules (e.g., removing x from
the symbol read in a certain rule and adding it to the symbol read in another rule when
we move the pointer variable x in the tree) and adding, removing, and modifying certain
simple rules to express the low-level insertion/deletion of nodes. Afterwards, we may
possibly have to apply the function β from the previous section when the tree balance
is changed.

To give an intuition on how an rTASC encoding a certain condition on pointers may
look like, let us present the tree automaton describing the trees that fulfil the condition
x->parent->left == x. We will have rules f → q1 and g→ q2 for every f ,g ∈Σ such
that x∈ g\ f . We recall that Σ= P (V ∪D ∪{nil}). Then, we have rules f (q1,q1)→ q1,
g(q1,q1) → q2, f (q2,q1) → q3, f (q3,q1) → q3, and f (q1,q3) → q3, with q3 being the
only accepting state. Here, the pointer referencing pattern gets simply captured in the
rule f (q2,q1) → q3. An intersection with the described tree automaton may be used to
implement the if statement testing the given condition. Intersections with similar tree
automata may be used to isolate rules where certain changes of data, pointer locations,
or insertion/deletion of a new node should happen.

5 Case Study: Red-Black Tree Insertion

To illustrate our methodology, we show how to prove an invariant for the main loop
in procedure RB-Insert. (Note that all the steps are normally to be done fully auto-
matically.) This invariant is needed to prove the correctness of the insertion procedure
given in Section 1.1 that is, given a valid red-black tree as input to the procedure, the
output is also a valid red-black tree. The invariant is the conjunction of the following
facts:

1. x is pointing to a non-null node in the tree.
2. If a node is red, then (i) its left son is either black or pointed to by x, and (ii) its right

son is either black or pointed to by x. This condition is needed as during the



362 P. Habermehl, R. Iosif, and T. Vojnar

re-balancing of the tree, a red node can temporarily become a son of another red
node.

3. The root is either black or x is pointing to the root.
4. If x is not pointing to the the root and points to a node whose father is red, then x

points to a red node.
5. Each maximal path from the root to a leaf contains the same number of black

nodes. This is the last condition from the definition of red-black trees from
Section 1.1.

For presentation purposes, if no guard is specified on a binary rule, we assume it to
be |1| = |2|. Also, we denote singleton sets by their unique element, e.g. {red} by red,
and dx stands for {d,x}, where d ∈ {red,black,nil}. Let R = {nil −→ qb,red(qb,qb) −→
qr,black(qb/r,qb/r) −→ qb}. The loop invariant is given by the following rTASC A1.

A1 : F = {qrx,qbx,q′bx}, Δ = R ∪ {blackx(qb/r,qb/r) −→ qbx (1), black(qbx/rx,qb/r) −→ q′bx(2),

black(q′bx/rx,qb/r) −→ q′bx, black(qb/r ,q
′
bx/rx) −→ q′bx (3), black(qb/r ,q

′
bx/rx) −→ q′bx,

redx(qb,qb) −→ qrx, red(q′bx,qb) −→ q′rx, red(qb,q′bx) −→ q′rx,

red(qrx,qb) −→ q′rx (4), red(qb,qrx) −→ q′rx (5)}

Intuitively, qb labels black nodes and qr red nodes which do not have a node pointed
to by x below them. qbx and qrx mean the same except that they label a node which is
pointed to by x. Primed versions of qbx and qrx are used for nodes which have a subnode
pointed to by x. In the following, this intuitive meaning of states will be changed by the
program steps. We refer to the pseudo-code of Section 1.1.

We choose to illustrate Case 2 of the loop (the others are similar). If the loop en-
trance condition x!= root && x->parent->color == red is true, we obtain a new
automaton A2 given from A1 by setting F = {q′bx} and by removing rules (1), (2), (3).
After the condition x->parent == x->parent->parent->left, we get A3 from A2

by changing rule (4) to red(qrx,qb) −→ q′′rx, rule (5) to red(qb,qrx) −→ q′′rx and by adding

black(q′′rx,qb/r) −→ q′bx. In Case 2, x->parent->parent->right->color==red is false,

i.e. x->parent->parent->right->color == black. Applying this to A3, we get:

A4 : F = {q′bx},Δ = R ∪ {black(q′bx/rx,qb/r) −→ q′bx, black(qb/r ,q
′
bx/rx) −→ q′bx,

black(q′′rx,qb) −→ q′bx, redx(qb,qb) −→ qrx (8), red(q′bx,qb) −→ q′rx,

red(qb,q′bx) −→ q′rx, red(qb,qrx) −→ q′′rx (9), red(qrx,qb) −→ q′′rx (7)}

Now, q′′rx accepts the father of the node pointed by x and q′rx its grandfather. After
the condition x == x->parent->right, A4 is changed into A5 by removing rule (7).
After x = x->parent, A5 is changed into A6 by changing rule (8) to red(qb,qb) −→ qrx

and rule (9) to redx(qb,qrx) −→ q′′rx. The operation Left-Rotate(T,x) introduces new

states and transitions and we get the TASC A7. Notice that no rebalancing is necessary.

A7 : F = {q′bx},Δ = R ∪ {black(q′bx/rx,qb/r) −→ q′bx, black(qb/r ,q
′
bx/rx) −→ q′bx,

black(qrot2,qb) −→ q′bx, redx(qb,qb) −→ qrot1, red(q′bx,qb) −→ q′rx,

red(qb,q′bx) −→ q′rx, red(qrot1,qb) −→ qrot2}



Automata-Based Verification of Programs with Tree Updates 363

After x->parent->color = black, and the necessary propagation of the changes
in the balance through the tree, we obtain:

A8 : F = {q′bx},Δ = R ∪{black(q′bx/rx,qb/r)
|1|=|2|+1−−−−−−→ q′bx, redx(qb,qb) −→ qrot1,

black(qb/r ,q
′
bx/rx)

|1|+1=|2|−−−−−−→ q′bx, red(q′bx,qb)
|1|=|2|+1−−−−−−→ q′rx,

black(qrot2,qb)
|1|=|2|+1−−−−−−→ q′bx,red(qb,q′bx)

|1|+1=|2|−−−−−−→ q′rx, black(qrot1,qb) −→ qrot2}

After x->parent->parent->color = red, we obtain:

A9 : F = {q′bx},Δ = R ∪ {black(q′bx/rx,qb/r) −→ q′bx, redx(qb,qb) −→ qrot1,black(qb/r ,q
′
bx/rx) −→ q′bx,

red(q′bx,qb) −→ q′rx,red(qrot2,qb)
|1|=|2|+1
−−−−−−→ q′bx, red(qb,q′bx) −→ q′rx,black(qrot1,qb) −→ qrot2 }

Finally, after Right-Rotate(T,x->parent->parent), we get:

A10 : F = {q′bx},Δ = R ∪ {black(q′bx/rx,qb/r) −→ q′bx, black(qb/r ,q
′
bx/rx) −→ q′bx

black(qb/r ,qrot4) −→ q′bx, black(qrot4,qb/r) −→ q′bx, black(qrot1,qrot3) −→ qrot4,

redx(qb,qb) −→ qrot1, red(q′bx,qb) −→ q′rx, red(qb,q′bx) −→ q′rx,

red(qrot4,qb) −→ q′rx, red(qb,qb) −→ qrot3, red(qb,qrot4) −→ q′rx}

Now, it can be easily checked that L(A10) ⊆ L(A1). Case 3 is then very similar to
Case 2 and Case 1 is presented in [10].

6 Conclusions

We have presented a method for semi-algorithmic verification of programs that ma-
nipulate balanced trees. The approach is based on specifying program pre-conditions,
post-conditions, and invariants as sets of trees recognized by a novel class of extended
tree automata called TASC. TASC come with interesting closure properties and a de-
cidable emptiness problem. Moreover, the semantics of tree-updating programs can be
effectively represented as modifications on the internal structures of TASC. The frame-
work has been validated on a case study consisting of the node insertion procedure in a
red-black tree. Precisely, we verify that given a balanced red-black tree on the input to
the insertion procedure, the output is again a balanced red-black tree.

In the future, we plan to implement the method to be able to perform more case stud-
ies. An interesting subject for further research is then extending the method to a fully
automatic one. For this, a suitable acceleration method for the reachability computa-
tion on TASC is needed. Also, it is interesting to try to generalize the method to han-
dle even the internals of low-level manipulations that temporarily break the tree shape
of the considered structures (e.g., by lifting the technique to work over tree automata
extended with routing expressions describing additional pointers over the tree back-
bone).

Acknowledgement. We would like to thank Eugene Asarin, Ahmed Bouajjani, Yassine
Lakhnech, and Tayssir Touili for their valuable comments.



364 P. Habermehl, R. Iosif, and T. Vojnar

References

1. R. Alur and P. Madhusudan. Visibly Pushdown Languages. In Proceedings of STOC’04.
ACM Press, 2004.

2. P. Baldan, A. Corradini, J. Esparza, T. Heindel, B. König, and V. Kozioura. Verifying Red-
Black Trees. In Proc. of COSMICAH’05, 2005.

3. A. Bouajjani, J. Esparza, and O. Maler. Reachability Analysis of Pushdown Automata:
Application to Model-Checking. In Proceedings of CONCUR ’97, volume 1243 of LNCS.
Springer, 1997.

4. C. Calcagno, P. Gardner, and U. Zarfaty. Context Logic and Tree Update. In Proceedings of
POPL’05. ACM Press, 2005.

5. H. Comon and V. Cortier. Tree Automata with One Memory, Set Constraints and Crypto-
graphic Protocols. Theoretical Computer Science, 331, 2005.

6. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and M. Tommasi.
Tree Automata Techniques and Applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 1997. Release October 1, 2002.

7. T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. The MIT Press,
1990.

8. S. Dal Zilio and D. Lugiez. Multitrees Automata, Presburger’s Constraints and Tree Logics.
Technical Report 08-2002, LIF, 2002.

9. D. Geidmanis. Unsolvability of the Emptiness Problem for Alternating 1-way Multi-head
and Multi-tape Finite Automata over Single-letter Alphabet. In Computers and Artificial
Intelligence, volume 10, 1991.

10. P. Habermehl, R. Iosif, and T. Vojnar. Automata-based Verification of Programs with Tree
Updates. Technical Report TR-2005-16, Verimag, 2005.

11. A. Moeller and M. Schwartzbach. The Pointer Assertion Logic Engine. In Proceeedings of
PLDI’01. ACM Press, 2001.

12. S. Parduhn. Algorithm Animation Using Shape Analysis with Special Regard to Binary
Trees. Technical report, Universität des Saarlandes, 2005.

13. H. Petersen. Alternation in Simple Devices. In Proceedings of ICALP’95, volume 944 of
LNCS. Springer, 1995.

14. M. Presburger. Über die Vollstandigkeit eines Gewissen Systems der Arithmetik. Comptes
Rendus du I Congrés des Pays Slaves, Warsaw, 1929.

15. M.O. Rabin. Decidability of Second Order Theories and Automata on Infinite Trees. Trans-
actions of American Mathematical Society, 141, 1969.

16. R. Rugina. Quantitative Shape Analysis. In Proceedings of SAS’04, volume 3148 of LNCS.
Springer, 2004.

17. S. Sagiv, T.W. Reps, and R. Wilhelm. Parametric Shape Analysis via 3-Valued Logic.
TOPLAS, 24(3), 2002.

18. H. Seidl, T. Schwentick, A. Muscholl, and P. Habermehl. Counting in Trees for Free. In
Proceedings of ICALP’04, volume 3142 of LNCS. Springer, 2004.



An Experimental Comparison of the
Effectiveness of Control Flow Based Testing

Approaches on Seeded Faults

Atul Gupta and Pankaj Jalote

Dept. of Computer Science and Engineering,
Indian Institute of Technology Kanpur 208 016, India

{atulkg, jalote}@cse.iitk.ac.in

Abstract. In this paper, we describe the results of an experiment com-
paring the effectiveness of three structural coverage-testing methods,
namely, block coverage, branch coverage and predicate coverage crite-
ria on seeded faults. The implications of our work is two-fold: one, we
describe a controlled simulation comparing the effectiveness of these cri-
teria and two, we demonstrate a novel approach to generate minimal
test suites for these coverage criteria so as to be able to predict rela-
tive performance of the three coverage-adequate test suites. Using a byte
code coverage analyzer, five java programs of different sizes were tested.
Faults were seeded in all five programs using a set of applicable muta-
tion operators. Twenty-five different minimal JUnit test suites were then
constructed for each coverage criteria-program pair and executed on pro-
gram’s mutants to compare the effectiveness. Results suggest that gen-
erally, branch coverage criterion performed consistently and was found
to be most viable option for structural testing. However, in presence of
composite conditions, predicate testing does better and its effectiveness
increases with increase in the cardinality of the composite conditions.

Keywords: Block coverage, Branch coverage, Predicate coverage,
Software testing, Test case generation, Experiment, Mutation Operator,
Statistical analysis.

1 Introduction

Last two decades have seen rapid growth of research in software testing, design
and analysis of experiments. Experimentation in Software Engineering supports
the advancement of the field through an iterative learning process and software
testing is no exception [4, 5]. In the mid 70’s Goodenough and Gerhart [13] put
forward perhaps the most important question in software testing: What is a test
criterion for an adequate testing? Since then testing criteria has been a major
research focus. A great number of criteria have been proposed and investigated
[15]. E. J. Weyuker highlighted that measuring the effectiveness of testing is
generally not possible, but that comparison is [23, 24]. Comparing various criteria
systematically requires them to be classified and one well accepted classification
of the test adequacy criteria is by underlying testing approach where there are

H. Hermanns and J. Palsberg (Eds.): TACAS 2006, LNCS 3920, pp. 365–378, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



366 A. Gupta and P. Jalote

three basic approaches to software testing: structural testing, fault based testing
and error based testing.

Two main groups of program based structural testing are control flow testing
and data flow testing. The structural testing approaches are based on the flow
graph model of program structure. A basic requirement of many coverage criteria
is that all nodes and edges in the program are covered by test executions. But
all nodes or edges executions cannot always be achieved because of possible
existence of infeasible statements or edges. The problem to identify whether a
piece of code is unreachable is undecidable [11, 12]. Because of this unreachability
we cannot always attain 100% coverage of the program in terms of statements
and branches and criteria like 90% coverage are used in practice.

A number of comparisons and evaluations of testing adequacy criteria using
statistical methods have been studied and investigated by researchers [6, 9, 19].
Ntafos [19] compared branch coverage, random testing and required pair cover-
age with 14 small programs. Test cases for each program were selected from a
large set of random test cases and faults are inserted artificially in the programs
(mutants). The percentages of mutants killed by the test suite were considered
as the fault detection ability. The experiment was identified to have invalidating
factors which can influence the findings, by Hamlet [14].

To encounter potentially invalidating factors, Basily and Selby [6] used frac-
tional factorial design methodology of replicated statistical experiments. In their
comprehensive experiment, they compared code reading, functional testing
and statement coverage method in three distinct phases involving 74 subjects
(testers) of different background with four programs. The programs contained
natural as well as artificial faults. Authors reported about fault detecting abili-
ties of these testing strategies and efforts with respect to various classes of faults
and subjects were compared. In a replicated study of effectiveness of the three
testing methods, M. Wood et al. [25] have pointed out that overall effectiveness
of these testing methods is similar in terms of observing failures and finding
faults but their relative effectiveness depends on the nature of the program and
it’s faults.

E. J. Weyuker, et al [24] demonstrated that in comparing testing methods
the probabilistic comparison, i.e. comparing their effectiveness based on some
randomly drawn test suites satisfying desired coverage criteria, has better diag-
nostics than analytical comparison of testing methods. Frankl and Weiss [9] used
this approach to address potential invalidating factors associated with test data.
They compared branch coverage and all-uses data flow coverage criteria using 9
small programs. Instead of using one adequate test suite for each criterion, they
generated a large number of adequate test suites and used proportion of the test
suites that detect errors as an estimate of the probability of detecting errors.

It has been pointed out that branch coverage criterion is stronger than state-
ment coverage because if all edges in a flow graph are covered, all nodes are
necessarily covered. Therefore a test suite that satisfies the branch coverage
must also satisfy statement coverage. That is branch coverage subsumes state-
ment coverage. Interestingly, Frankl and Weyuker [11] proved that the fact that



An Experimental Comparison of the Effectiveness of Control Flow 367

criterion C1 SUBSUMES C2 does not always guarantee that C1 is better at
detecting faults.

Though a number of studies have been performed to compare and evaluate
different testing strategies, various control flow structural testing approaches like
block, branch, predicate coverage, etc. have not been compared experimentally
[18]. As theoretically branch coverage should do better than statement cover-
age, one might choose this to do a more through testing. However, statement
coverage analyzers are generally easier to build and results are easier to inter-
pret. Hence, if in practice the above two are similar, then one may choose to
use statement coverage only. Similarly, predicate coverage seems to require a
higher number of test cases and hence more effort but at the same time may
have better fault detecting abilities. It would be useful to understand the ef-
fectiveness of these different structural coverage criteria and the kinds of faults
for which they are more effective. Studying this effectiveness is the main goal of
our experiment. The experiment we have conducted also aims to provide some
understanding about conditions under which one criterion is more effective than
the other.

In our experiment, we have used five Java programs. For each program we
created many mutants for detecting the testing effectiveness. To test a program,
we created twenty-five different minimal test suites for each coverage criterion
using an algorithm to find the minimum number of test cases from a test pool to
satisfy that criterion. Performance data like number of mutants killed by the test
suites for the three coverage criteria and coverage information for each test suite
were obtained. Our experiment confirms that testing effectiveness of the criteria
are affected by the program structure, however, in most of the cases, branch
coverage performed consistently and needed more effort than block coverage but
considerably less effort for predicate coverage. Our results also suggest that for
testing a given program, branch coverage perform better than block coverage,
irrespective of the program structure and confirmed the same at statistically
significance α = 0.01. When compared to predicate coverage, the later does
better in programs with composite conditions in them, with statistical signifi-
cance of 0.05. In other cases, branch and predicate coverage have shown similar
effectiveness.

The rest of the paper is organized as follows. Its underlying experimental
approach is presented in Section 2. Data collection and analysis methods used for
comparison are explained in Section 3. Results of the experiments are presented
in Section 4. Threats to validity of our results are highlighted in Section 5 and
conclusions are given in Section 6.

2 Experimental Setup

Experimentation is an important method in software engineering for understand-
ing the processes and products. To help the researchers, guidelines [4, 5, 7, 21] are
laid down so as to design and conduct controlled experiments whose results can
be relied upon. In our study, we have taken great care to follow the guidelines and
controlling the variability that can be caused by known and unknown factors.



368 A. Gupta and P. Jalote

2.1 Goals

The goals of our experiment are to answer the following questions.

– Which coverage criterion has more fault detection ability?
– Which coverage criterion needs more testing effort?
– Are there any specific types of bugs which results in different effectiveness?
– Is there any co-relation between the parameters of the program and testing

approaches.
– How one type of coverage is related with others?
– How to choose a suitable criterion for a given program?

2.2 Some Definitions

Test Case - A set of inputs, execution preconditions and expected outcomes
developed for a particular objective.

Test Suite - A collection of one or more test cases for the software under test
normally having some completeness criterion.

Minimal Test Suite - A test suite with minimum number of test cases to satisfy
a given criterion.

Test-Pool - A collection of a large number of test cases which can be used for
generation of test suites by selecting a subset of test cases from the pool.

Mutation Operator - A handle to seed faults in a program in some specific
context.

Mutant - A faulty version of a correct program containing exactly one fault. It
is obtained by seeding a fault by applying a mutation operator at some place in
that program.

Block Coverage - A block is a set of sequential statements not having any in-
between flow of control, both inward and outward. Complete block coverage
requires that every such block in the program be exercised at least once.

Branch Coverage - Complete branch coverage requires that every branch be
exercised at least once in both the TRUE and FALSE directions.

Predicate Coverage (or Multi-Condition Coverage) - It requires that each of the
logical expressions in a logical expression must evaluate to TRUE in some test,
and to FALSE in some other test.

2.3 Criteria for Comparison

To answer the questions above we need suitable metrics. To measure the fault
detection effectiveness, we use the percentage of faults that are revealed. By
keeping it as percentage, it helps generalize across programs. The criteria used
to measure fault detection ability FDET of a test suite T is

FDET =
number of faults that are revealed

total number of faults present in the program
× 100%



An Experimental Comparison of the Effectiveness of Control Flow 369

The criteia used to measure testing effort TET of a test suite T is

TET = Number of test cases in the test suite T needed to satisfy a given
coverage criterion

To understand the connection of fault detecting effectiveness with efforts re-
quired in testing, we have used a metric called performance index PIT of a test
suite T, which is obtained as

PIT =
Number of faults revealed by test suite T

Size of the test suite T
.

2.4 Instruments Used

Test Programs. Results obtained from small programs are difficult to gener-
alize [19]. In this study, we have considered moderately sized programs ranging
300 to 1500 lines of code. The programs are taken from diversified domains with
general-purpose use to increase applicability of our results. The first program is
PostalCodes, which aims at recognizing postal codes of a few countries. The sec-
ond program, HotelManagement, is a simple command line hotel management
application program written by the first author. CruiseControl [27] is the third
program that is widely used for state based testing experiments. JavaVector is
the Vector class in the Java Collection framework. Our fifth program is a game
Monopoly [28], which is quite object-oriented in nature. Programs were written
in Java, though we believe that the results of this experiment can be applica-
ble to programs written in other object-oriented languages as well. Important
statistics of these programs are given in table 1.

Faults and Mutants. Selecting test programs is very critical to the study and
equally important issue is the bugs they contain. The number of bugs naturally
committed by the developers typically much less than what is needed in such
an experiment. The same is also true about the types of bugs. If bugs are in-
troduced manually without great care, then it risks invalidating experimental
findings. Most recently, Andrews et al. [1] demonstrated that mutation faults
can in fact be representative of real faults, and advocated the use of mutation
for effective testing experiments, although more studies are needed to generalize
their conclusions.

Table 1. Subject Programs statistics

Sl. Program NC # of # of # of # of # of Test-
No. Name LOC Faults/ Classes/faults Blocks Branches Predi- Pool

Mutants seeded in cates size
1 HotelManagement 450 56 6/4 118 136 40 55
2 PostalCodes 340 93 6/4 107 134 55 105
3 CruiseControl 540 41 6/4 100 105 33 72
4 JavaVector 300 72 1/1 142 161 39 70
5 Monopoly 1600 56 34/8 270 294 55 84



370 A. Gupta and P. Jalote

A number of studies have used a controlled approach of inserting bugs in
programs [2, 3], based on some set of mutation operators as proposed by [16].
We followed a similar approach in which a set of mutants of a program was
obtained by seeding faults in the program using a set of applicable mutation
operators. Bugs were introduced in the model part of the code and user interface
part (GUI) and setter-getter methods were kept bug-free to avoid unwanted
interaction between buggy code with testing code.

The mutation operators used and the kinds of faults inserted by them, in this
study were:

– Literal Change Operator (LCO) - changing increment to decrement or vice
versa, incorrect or missing initialization or increment, incorrect or missing
state assignment.

– Language Operator Replacement (LOR) - replacing a relational or logical
operator by another.

– Control Flow Disruption (CFD) - missing or incorrectly placed block mark-
ers, break, continue or return.

– Method Name Replacement (MNR) - replacing a method with other method
of similar definition but different behavior.

– Statement Swap Operator (SSO) - swapping two statement in the same
scope.

– Argument Order Interchange (AOI) - interchanging arguments of the same
type of a method in the definition or in method-call.

– Variable Replacement Operator (VRO) - replacing a variable with other of
similar type.

– Missing Condition Operator (MCO) - Missing out a condition in a composite
conditional statement.

– Null Reference Operator (NRO) - Causing a null reference.

Test-Pool. It is a known fact that different test suites for the same criteria
may lead to different kind of conclusions [9, 23]. To counter this, we have used a
definitive procedure of generating test suites from a large test-pool, which were
guided by the coverage information as to reach desired coverage early. The test-
pool was constructed by writing JUnit [26] tests for each non-trivial method
of the model classes in the program. It contained enough tests as to generate
coverage-adequate test suites for the code under test. It was also ensured that
the pool contains at least one test case for each mutant of the program to kill
and hence cover the structure of the mutants under study. Constructing all the
three coverage adequate test suites from the same test-pool, we ensured a fair
comparison to be possible among the three coverage criteria.

Coverage Adequate Minimal Test Suites. Twenty-five test suites for each
coverage criterion for each program were generated to statistically analyze the
behavior of the three coverage criteria under study. For each program, test case-
wise coverage information for all coverage criteria was obtained by executing the
test-pool on the correct version of the program. Coverage adequate test suites



An Experimental Comparison of the Effectiveness of Control Flow 371

then can be generated by simply picking random test cases from the test-pool
but this approach will not produce minimal test suites for obvious reasons such
as redundencies in elements covered by different test cases in a test suite. One of
the motivation of this work is to evaluate the performance of coverage adequate
test suites which is possible if we use minimal test suites. Coverage-adequate
minimal test suites for a program were constructed using following steps. For
constructing each minimal test suite T:

1. Select first test case randomly from the test-pool, remove it from the pool
and add it to T.

2. Update the coverage information for all other remaining test cases in the
test-pool so as to incorporate yet-to-cover elements in the test suite T being
so constructed.

3. Select a test case which provides maximum yet-to-cover coverage (> 0)and
add it to T.

4. Repeat step 2 and 3 until no more test cases can be added to T.

Monitoring Coverage and Testing. To obtain various coverage information,
a locally developed tool named JavaCoverage was used [22]. This tool provides
coverage information for each test case visually using different colors as to rep-
resent uncovered program elements, and therefore, effectively guides testers to
design and execute further tests to meet testing objectives. The tool does pro-
gram analysis at byte code level and use byte code instrumentation to obtain
various coverage information from test case executions. The coverage information
for each test case is recorded in a MySql database.

Each program was tested by executing all coverage-adequate test suites on all
its mutants. The information regarding killed-mutants was recorded.

3 Data Collection and Analysis

Twenty-five test suites for each criterion were exercised on each of the five
programs’ mutants. For each program, the following data were recorded and
analyzed:

– Number and type of mutants generated and killed by the coverage test suites
– All-coverage information of coverage test suites
– Number of blocks, branches, predicates, program size, test suite size.

Observations obtained for all five programs were separately analyzed to deter-
mine the effectiveness of the three coverage criteria. Subsequently, results were
also compared across the programs.

3.1 Program-Wise Analysis

For each program, we graphically demonstrate (i) faults seeded as per the muta-
tion operator used, (ii) average FDET of the three coverage criteria, (iii) average
coverage achived by the three coverage adequate test suites and (iv) average PIT
of these coverage adequate test suites in Figure 1 at the end of this paper. We
briefly discuss the program-wise results here.



372 A. Gupta and P. Jalote

Program-1: PostalCodes. The results showed that fault detecting effective-
ness FDET of predicate coverage test suites were better than branch and block
coverage test suites but required more testing effort TET . It has shown much
better results in the case of missing condition bugs (seeded using MCO opera-
tor). Block coverage based test suites has shown better performance index PIT
of the test suites then the other two but shown larger variability in the results.
They showed poor performance in case of control flow bugs seeded by CFD and
MCO operators. Branch coverage test suites identified more bugs than block test
suites and their PIT was more stable.

Remarks: This Program has some algorithmic methods with many composite con-
ditional statements. Hence predicate and branch coverage did perform well where
as block coverage performed rather poorly and inconsistently.

Program-2: HotelManagement. The results showed that in this case also
predicate coverage based test suites show better FDET but more TET than the
other two. The box plot for PIT shows that overall branch test suites performed
better and block test suites performed poorly.

Remarks: This program also has some methods with composite conditions but of
less cardinality than Postal Codes. We observed similar results here to that of
Postal Code.

Program-3: CruiseControl. The FDET of the predicate coverage criterion
were found to be similar to branch coverage with the fact that branch test suites
were also good at MCO bugs. Block tests showed better PIT than other two
but with highest variability. Once again branch test suites were consistent and
proved to be better than predicate tests. Block test suites PIT was significantly
better but having higher variance than the two other.

Remarks: This program consists of mostly small methods with states and transi-
tions. The conditionals are simple-if statements and therefore branch test suite
is somewhat larger than block test suites and consequently having considerably
less PIT . MCO bugs clearly dominate when there are conditionals of high car-
dinality, which wasn’t the case here, and branch test suites did perform well in
these conditions.

Program-4: JavaVector. The FDET of the three coverage criteria was found
to be quite different than the above three programs. Branch test performed
best followed by block followed by predicate tests. Their TET requirements were
in opposite order, i.e. branch coverage test suites size was more followed by
block test suites followed by predicate test suites. Three test suites demonstrated
similar PIT with predicate tests showing greatest variability.

Remarks: The reason for the diversity in results is due to the fact that there are
many methods in JavaVector that do not contain any conditionals and hence
predicate coverage test suites were unlikely to cover those. Also most of the con-
ditionals were simple and hence branch and block test suites have shown similar
behavior.



An Experimental Comparison of the Effectiveness of Control Flow 373

Program-5: Monopoly. This is a nicely designed object-oriented program as
it has inheritance hierarchies with small method sizes and other object-oriented
features. Many classes in the model part of the code are small and the methods
of the controller classes are well re-factored [8] to perform single functions. Intra-
method structural complexity is quite low but inter-method interaction is high.
The results of this program showed similar trends as previously obtained but with
lesser variability. The three coverage criteria seem to have similar FDET , TET

and PIT measures. Control flow bugs like MCO and CFD bugs were remained
as the cause of difference in FDET of the three criteria.

Remarks: The results are interesting in the sense that the three coverage criteria
show quite similarity in the results, importantly, size of the test suites and corre-
sponding PIT . We found comparatively fewer places to seed the kinds of faults, un-
der study, to be inserted. This explains that object-oriented programs are to be tested
with a focus on inter-method interactions rather than intra-method control flow.

3.2 Program Analysis at Method Scope

To obtain statistical evidences for coverage criteria effectiveness, we have inves-
tigated some important methods of the classes of these five programs. We col-
lected various statistics of these methods like size, number of blocks, branches
and predicates, number of faults inserted, faults identified by the coverage test
suites, etc. The reason for doing analysis at method level is that it provides more
data points, thereby allowing better statistical analysis of the results obtained.
Since the control structure is typically represented at method level, analysis at
method level is the right level of granularity for coverage analysis. Please refer
to table 2 for the statistical analysis results presented in this subsection where μ
denotes mean of effectiveness parameter in consideration i.e. FDET over twenty
five test suites and subscripts Bl, Br, and Pr represent block, branch and predi-
cate coverage criteria, respectively.

Our results show that FDET of branch coverage outperformed block coverage
with statistical significance of α = 0.01(row 1 table 2). When branch coverage is
compared with predicate coverage, from the experiment data, we found that there
is not enough evidence to reject the null hypothesis and both coverage criteria have
shown similar FDET (row 2 table 2). However, when we drill down further, we
found that predicate coverage criterion performs better then branch criterion in
methods which contains composite conditional statements. This observation was
confirmed statistically at a significance level of α = 0.05(row 3 table 2).

Table 2. Method-level Analysis Results

Sl. Effectiveness Null Alternate t-value t-critical p-value Result
No. Parameter Hypothesis Hypothesis
1 FDET μBr = μBl μBr > μBl 3.612 2.079 0.001 μBr > μBl

2 FDET μPr = μBr μPr > μBr 0.308 2.079 0.760 μPr = μBr

3 FDET ∗ μPr = μBr μPr > μBr 2.989 2.570 0.030 μPr > μBr



374 A. Gupta and P. Jalote

4 Results

Our results showed that predicate tests were the best in terms of fault detecting
effectiveness FDET under normal circumstances where programs have control
flow graphs with conditionals. On the other hand they took more test cases i.e.
more testing effort TET . Branch tests are more cost effective as the required
number of tests is less and giving comparable fault detecting effectiveness to
that of predicate tests. As the box-plots for PIT demonstrated, branch tests
were quite consistent in terms of their fault detecting capabilities that ensures a
level of performance from testing. Block test suites were small in size but were
quite inconsistent and have less FDET than the other two. A useful observation
in this experiment is whichever criteria results into minimum number of test
cases required, showed highest variability in the performance index. Table 3
shows the three idioms of effectiveness criteria for all five programs obtained as
a basis of average taken over all twenty-five test suites for each coverage criteria.

Table 3. Effectiveness Criteria Results

Program Name FDET TET PIT

Block Branch Pred Block Branch Pred Block Branch Pred
HotelManagement 0.64 0.81 0.91 17.4 19.7 24.2 2.13 2.33 2.12
PostalCodes 0.74 0.78 0.97 33.1 35.0 48.7 2.39 2.35 1.87
CruiseControl 0.44 0.82 0.87 9.68 16.8 19.6 2.86 2.15 1.80
JavaVector 0.92 0.99 0.84 51.7 54.5 43.0 1.33 1.32 1.35
Monopoly 0.81 0.87 0.96 29.0 31.4 33.3 1.64 1.58 1.60

From the bug analysis, we found that bug of the type LCO, VRO, SSO, VRO
and AOI are typically revealed by all the three coverage criteria where as LOR
and CFD bugs (mainly inserted in conditionals) are poses some challenge to
block coverage but likely to be identifiable by branch and predicate coverage.
Predicate coverage is especially found to be much more effective in MCO bugs
which might be prevalent in conditional statements with multiple conditions.

5 Validity and Generality

An important issue that greatly affects the effectiveness of writing automated
tests is use of proper test oracles. Great care was taken to write automated tests
with proper oracles. All the tests were written by first author and since same test
pool was used in generating test suites for the coverage criteria under study, we
argue that any variability, if present, should not influence our findings. Another
factor that can influence the results is the interaction between code under test
and test oracles. To control this effect, we did not seed any faults in the code
which is used to check test oracles, i.e. JUnit assertions [26].

In terms of external validity, we believe that our results should be general
enough to apply at least to other java programs in the context of the type of the



An Experimental Comparison of the Effectiveness of Control Flow 375

faults seeded as we have considered considerable number of faults of each type.
We have not considered object-oriented specific bugs such as those related with
inheritance and dynamic binding as we did not find enough opportunity to seed
these faults in the considered programs hence we make no claim regarding these
kind of faults. It will be interesting to pursue this issue in another study.

We have considered control structure at a class’s method level to obtained
information of blocks and branches and hence, method calls were not treated as
branches. So our results should also be viewed in this context.

6 Summary and Conclusions

The three main control-flow based coverage criteria are - block, branch and
predicate coverage. The aim of this work was to study the relative effectiveness
of these three criteria. In our experiment, we tested five moderately sized Java
programs by generating twenty-five different minimal test suites from a large test-
pool, for each program-coverage pair. To test a program, we created sufficient
number of mutants using a set of applicable mutation operators and tested them
with a set of generated minimal coverage test suites for each coverage criteria.
The three structural coverage criteria were than compared in terms of their fault
detection abilities (FDET , PIT ) and testing efforts (TET ) requirements.

We found that Predicate Coverage criterion demonstrated best FDET but at
more cost, i.e. more TET than the other two. On the other hand, Block coverage
criterion took least testing efforts TET , but at lower FDET than the other two.
Branch Coverage criterion performed in between the two in terms of FDET and
TET . Performance Index PIT of block coverage criterion found to be on higher
side but with greater variability where as PIT for branch coverage criterion found
to be slightly less than that of block criterion but was quite consistent. PIT for
predicate test suites was observed to be lower than the other two. Our results
show that branch test suites are likely to perform with consistent effectiveness
and their effort requirements in terms of test suite size is smaller than that of
predicate test suites but larger than the block test suites.

The results obtained from the analysis of PIT for all the three coverage criteria
revealed the fact that some block test suites may be more efficient, i.e. revealing
faults at par with the other two criteria with smaller test suite size but other may
perform worse, thereby being unreliable and in-consistent as compared to the
other two criteria. Predicate coverage criterion was found to be least efficient
but quite reliable whereas branch criteria demonstrated similar reliability to
predicate criteria with better efficiency.

Based on our investigation for choosing a suitable criterion to test a given
program, we observed that branch coverage is the best choice for getting better
results with moderate testing efforts. The testing effectiveness can be improved
considering predicate coverage for the methods containing composite condition-
als but with increased efforts requirements.

In this work, we have used a novel approach to randomize the effect of a
particular test suite. We generated twenty-five different coverage-adequate test



376 A. Gupta and P. Jalote

suites from a test-pool for each coverage criterion. The test suites were algo-
rithmically constructed in a manner that they contained minimum number of
test cases, thereby, enabling us to do a uniform analysis. This also facilitates
computation of performance indexes for the coverage test suites.

Based on our experience of testing of a well designed object-oriented program
like Monopoly, we argue that such programs are more robust as we found rel-
atively few places where we can insert faults related to the mutation operators
considered in this study. Also because of small methods implementing single
operation, the three testing approaches demonstrated similar effectiveness. It
will be interesting to investigate the effectiveness of these coverage criteria and
other testing approaches to test object-oriented programs with object-oriented-
specific bugs like related with hierarchies, dynamic binding, method over-riding,
etc. Also similar studies to be replicated to demonstrate the applicability of our
results

Acknowledgement

The authors would like to thank L. Raghu, for providing enough help to use his
tool JavaCoverage that he developed as part of his M Tech thesis at IIT Kanpur.

References

1. Andrews J.H., Briand L. C. and Y. Labiche Is mutation an appropriate tool for
testing experiments? In Proc. Int’l.Conf. Softw. Eng ICSE pages 402-411, May
2005.

2. Antoniol G at al A Case Study Using the Round-Trip Stretegy for State-Based
Class Testing In Proc of the 13th Int’l Symp. On Reliability ISSRE’02.

3. Briand L.C., Labiche Y. and Wang Y. Using Simulation to Empirically Investigate
Test Coverage Criteria Based on Statechart In Proc of the 26th Int’l Conf. on
Software Engineering ICSE 2004.

4. Barbara A. Kitchham, Shari Lawrence Pfleeger, Lesley M. Pickard, Peter W. Jones,
David C. Hoaglin, Khaled El Emam, Jarrett Rosenberg Preliminary Guidelines for
Empirical Research in Software Engineering In IEEE Trans. on Software Enginee-
ing Vol.28, No.8, August 2002.

5. Basili V.R.,R.W. Silby, David H. Huchens Experimentation in Software Engineer-
ing In IEEE Trans. on Software Engineeing Vol.SE-12, No.7, July 1986.

6. Basili V.R. and Selby R.W. Comparing the effectiveness of software testing In
IEEE Transactions on Software Engineering Vol. SE-13, No.12, pages 1278-1296,
December 1987.

7. Douglas C. Montgomery Design and Analysis of Experiments fifth edition, John
Wiley and Sons Inc., 2001.

8. Fowler M. Refactoring: Improving the Design of Existing Code Addison Wesley,
1999.

9. Frankl P.G. and Weiss S.N. An experimental comparison of the effectiveness of
branch testing and data flow testing In IEEE Transactions on Software Engineering
Vol. 19, No.8, pages 774-787, August 1993.



An Experimental Comparison of the Effectiveness of Control Flow 377

10. Frankl P.G. and Weyuker J.E. An applicable family of data flow testing criteria In
IEEE Transactions on Software Engineering Vol. SE-14, No.10, pages 1483-1498,
October 1988.

11. Frankl P.G. and Weyuker J.E. A formal analysis of the fault-detecting ability of
testing methods In IEEE Transactions on Software Engineering Vol 19, No.3, pages
202-213, March 1993.

12. Frankl P.G. and Weyuker J.E. Provable improvements on branch testing In IEEE
Transactions on Software Engineering Vol 19, No.10, pages 962 - 975, 1993.

13. Goodenough J.B. and Garhart S.L. Toward a theory of test data selection In IEEE
Transactions on Software Engineering Vol SE-3, 1975.

14. Hamlet R. Theoretical comparison of testing methods In Proceedings of SIGSOFT
Symposium on Software Testing, Analysis and Verification pages 28-37, December
1989.

15. Hong Zhu, Patrick A.V. Hall, John H.R. May. Software Unit Test Coverage and
Adequacy In ACM Computing Surveys Vol.29, No.4, December 1997.

16. Kim S, Clark J.A. and McDermid J.A. The Rogorous Generation of Java Mutation
Using HAZOP In Proc. ICSSEA- 3 pages 9-10(11), 1999.

17. M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments on the effective-
ness of dataflow- and controlflow-based test adequacy criteria. In Proceedings of
the 16th International Conference on Software Engineering ICSE May 1994.

18. Natalia Juristo, Ana M. Moreno and Sira Vegas Reviewing 25 Years of Software
Testing Experiments In Jour. Empirical Software Engineering Vol 9, 1-2 pp 7-44
March 2004.

19. Ntafos, S.C. An evaluation of required element testing strategies In Proceedings
of the Seventh International Conference on Software Engineering Pages 250-256.

20. Pankaj Jalote An Integrated Approach to Software Engineering second edition,
Narosa Publishing House, 1999.

21. Paul D. Berger, R.E. Maurer Experimental Design Thomson Duxbury, 2002.
22. Raghu L. Testing Changes made to the Code using Coverage Data, M Tech Thesis,

Dept of CSE, IIT Kanpur June 2005.
23. Weyuker E.J. Can We Measure Software Testing Effectiveness? In Proceedings of

IEEE-CS International Software Metrics Symposium pages 100-107, May 1993.
24. Weyuker E.J., Weiss S.N., Hamlet D. Comparison of Program Testing Strategies

In Proceedings of the Fourth Symposium on Software Testing, Analysis and Veri-
fication Pages 154-164, October 1991.

25. Wood M., Mark Roper, Andrew Brooks, James Miller Comparing and combining
software defect detection techniques: A Replicated Experimental Study In ACM
SIGSOFT Software Engineering Notes Vol. 22, No. 6, November 1997.

26. JUnit Home Page http://www.junit.org
27. http://www-dse.doc.ic.ac.uk/concurrency/book- applets/CruiseControl.html
28. http://open.ncsu.edu/se/monopoly/



378 A. Gupta and P. Jalote

Appendix

Mutation Operators Applied
(Postal Codes)

0
5

10
15

20
25
30
35
40

LOR
(8)

LCO
(39)

SSO
(10)

MNR
(15)

CFD
(6)

MCO
(9)

VRO
(2)

Mutants 

Fault Detecting Effectiveness
(Postal Codes)

0

0.2

0.4

0.6

0.8

1

LOR
(8)

LCO
(39)

SSO
(10)

MNR
(15)

CFD
(6)

MCO
(9)

VRO
(2)

Block Branch Predicate

Coverage Estimates
(Postal Codes)

0
20

40

60

80
100

Branch Test
Suite

Block Test
Suite

Predicate Test
Suite

#TC BRC BLC PC

(a) Graphical Analysis for PostalCode data 

Mutation Operators Applied
(Hotel Management)

0

5

10

15

20

Mutants 

Fault Detecting Effectiveness
(Hotel Management)

0
0.2

0.4
0.6

0.8
1

Block Branch Predicate

Coverage Estimates
(Hotel Management)

0

20

40

60

80

100

Branch Test
Suite

Block Test
Suite

Predicate Test
Suite

#TC BRC BLC PC

(b) Graphical Analysis for HotelManagement data 

Mutation Operators Applied
(CruiseControl)

0
5

10
15
20
25

LOR (9) CFD (4) LCO(23) MCO(5)

Mutants 

Fault Detecting Effectiveness
(Cruise Control)

0
0.2
0.4
0.6
0.8

1

LOR (9) CFD (4) LCO(23) MCO(5)

Block Branch Predicate

Coverage Estimates
(Cruise Control)

0
20
40
60
80

100

Branch Test
Suite

Block Test
Suite

Predicate Test
Suite

#TC BRC BLC PC

(c) Graphical Analysis for CruiseControl data 

Mutation Operators Applied
(JavaVector)

0
5

10
15
20
25

LOR
(18)

LCO
(24)

SSO (4) VRO
(12)

AOI
(15)

Mutants 

Fault Detecting Effectiveness
(JavaVector)

0
0.2
0.4
0.6
0.8

1

LOR
(18)

LCO
(24)

SSO (4) VRO
(12)

AOI
(15)

Block Branch Predicate

Coverage Estimates
(JavaVector)

0

20

40

60

80

100

Branch Test
Suite

Block Test
Suite

Predicate Test
Suite#TC BRC BLC PC

(d) Graphical Analysis for JavaVector data 

Mutation Operators Applied
(Monopoly)

0

5

10

15

LOR

(15)

LCO

(12)

SSO

(3)

MNR

(6)

CFD (3) MCO

(6)

VRO

(10)

AOI(1)

Mutants 

Fault Detecting Effectiveness
(Monopoly)

0
0.2
0.4
0.6
0.8

1

LOR

(15)

LCO

(12)

SSO

(3)

MNR

(6)

CFD (3) MCO

(6)

VRO

(10)

AOI(1)

Block Branch Predicate

Coverage Estimates
(Monopoly)

0

20

40

60

80

100

Branch Test
Suite

Block Test
Suite

Predicate Test
Suite

#TC BRC BLC PC

(e) Graphical Analysis for Monopoly data 

Max
Min

75th %
25th %

Median

Box Whisker Plot [Monopoly]
Test Suite Performance Index

1.46

1.52

1.58

1.64

1.70

1.76

Branch Block Predicate

Max
Min
75th %
25th %
Median

Box Whisker Plot ( JavaVector)
Test Suite Performance Index

1.26

1.28

1.30

1.32

1.34

1.36

1.38

1.40

1.42

Branch Block Predicate

Max
Min
75th %
25th %
Median

Box Whisker Plot ( CruiseControl )
Test Suite Performance Index

1.2

1.6

2.0

2.4

2.8

3.2

3.6

4.0

Branch Block Predicate

Max
Min
75th %
25th %
Median

Box Whisker Plot (Hotel Management)
Test Suite Performance Index

1.7

1.9

2.1

2.3

2.5

2.7

2.9

Branch Block Predicate

Max
Min

75th %
25th %

Median

Box Whisker Plot (Postal Codes)
Test Suite Performance Index

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

Branch Block Predicate 

Fig. 1. Program-wise Graphical Analysis of Experimental Data (left-to-right) (i) Faults
applied (ii) FDET of Coverage Test Suites (iii) All-Coverage information of Coverage
Test Suites (iv) Performance Index PIT



Exploiting Traces in Program Analysis�

Alex Groce and Rajeev Joshi

Laboratory for Reliable Software, Jet Propulsion Laboratory,
California Institute of Technology, Pasadena, CA 91109, USA

{Alex.D.Groce, Rajeev.Joshi}@jpl.nasa.gov
http://eis.jpl.nasa.gov/lars

Abstract. From operating systems and web browsers to spacecraft,
many software systems maintain a log of events that provides a partial
history of execution, supporting post-mortem (or post-reboot) analy-
sis. Unfortunately, bandwidth, storage limitations, and privacy concerns
limit the information content of logs, making it difficult to fully recon-
struct execution from these traces. This paper presents a technique for
modifying a program such that it can produce exactly those executions
consistent with a given (partial) trace of events, enabling efficient anal-
ysis of the reduced program. Our method requires no additional history
variables to track log events, and it can slice away code that does not exe-
cute in a given trace. We describe initial experiences with implementing
our ideas by extending the CBMC bounded model checker for C pro-
grams. Applying our technique to a small, 400-line file system written in
C, we get more than three orders of magnitude improvement in running
time over a näıve approach based on adding history variables, along with
fifty- to eighty-fold reductions in the sizes of the SAT problems solved.

1 Introduction

Analysis of systems that have failed after deployment is a fact of life in all engi-
neering fields. When a bridge collapses or an engine explodes — or a computer
program crashes — it is important to understand why in order to avoid future
failures arising from the same causes. In the case of software, a patch may be
able to correct the flaw and restore a system to working order, making tools for
analyzing failure even more valuable.

The motivation for trace-based analysis of programs is straightforward: crit-
ical software systems, including file systems, web servers, and even robots ex-
ploring the surface of Mars, often produce traces of system activity that humans
use to diagnose faulty behavior. Reconstructing the full state or history of a
program from these traces or logs is difficult: the traces contain limited informa-
tion, due to the overhead of instrumentation, privacy concerns, and (in the case
of space missions) limited storage space and communication bandwidth. Almost

� The work described in this paper was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National Aeronautics
and Space Administration.

H. Hermanns and J. Palsberg (Eds.): TACAS 2006, LNCS 3920, pp. 379–393, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



380 A. Groce and R. Joshi

all programmers are familiar with the difficulty of this detective work: after all,
“printf-debugging” is a particularly common case of trace-based analysis.

The goal of our work is to exploit failure traces in order to increase the
scalability of precise program analyses. In particular, we show how restricting
program behaviors given a trace can dramatically decrease the size of the SAT
formulas in bounded model checking. Given the program source and a trace log,
it should be possible to use bounded model checking to find detailed, concrete
program executions compatible with the trace — even in cases where the full
program is too large to be model checked.

Because the ultimate goal is to provide tool support for programmers dealing
with anomalies in remote spacecraft, we refer to trace elements (or printfs) as
EVRs, after the JPL shorthand for Event Reporting. An EVR is a command which
appends information to a running log. An EVR may print a constant string and
serve simply to indicate the control flow of the program, or it may contain the
current values of critical variables.

A secondary benefit of our work is that program traces are useful as spec-
ifications. EVRs and printfs are useful for debugging because they provide a
high-level description of program behavior. In many cases, a bug is discovered
by a programmer reading a trace and noticing an event sequence that should
not be possible. The techniques that allow reconstruction of concrete executions
given a trace also make it possible to check properties such as: “the system must
not produce trace σ” or “the system must be able to produce trace σ”. We ex-
tend the language of traces to include hidden and wildcard events, producing a
restrictive but convenient property language.

This paper contributes two novel techniques. First, we introduce a general
method for adding assume statements to a deterministic program to restrict its
behavior to exactly those executions compatible with a given trace — without
introducing history variables or state. Second, we make use of the information
gathered in the assume statement-generation to slice [20] the program, removing
portions of the source code based on the information in the program trace.

The first technique is best understood by noting that EVR(a) can be seen
as an operation that appends the string a to a history variable, log. Adding
assume(log = σ) at the end of the program will restrict it to behaviors match-
ing the trace σ. For deterministic programs, our analysis computes assumptions
that are logically equivalent but do not mention log. This direct encoding in
terms of control flow and data values aids the SAT solver in propagating con-
straints — and reduces the size of the state space. The value of slicing may be
observed in a more concrete example: consider a program containing complex
fault-handling routines. If execution of these routines always produces EVRs, and
those EVRs do not appear in the trace, the fault handling component(s) can be
completely eliminated during analysis, with a potential for a drastic reduction
in the size of SAT instances used in model checking. Our approach addresses
common variations of the basic problem, including the case where only a suffix
of the full trace is known, as well as the presence of multiple, unsynchronized
traces.



Exploiting Traces in Program Analysis 381

We implemented our approach as an extension to CBMC [13], a bounded
model checker for ANSI-C programs. Analyzing a trace with known length al-
lows us to avoid considering loops and non-terminating execution, making the
problem a natural fit for bounded model checking. BMC also determinizes C
programs by making all external inputs explicit. We analyzed a model of a small
file system and a resource arbiter. As expected, using a trace to guide explo-
ration improved the performance of model checking over a näıve approach based
on adding history variables, providing more than three orders of magnitude im-
provement in running times as well as a fifty- to eighty-fold reduction in the sizes
of the SAT problems produced.

2 Reducing a Program with Respect to a Trace

We now formalize the notion of reducing a statement S with respect to a trace σ.
The motivation for reduction is improving the scalability of tool-based program
analysis. Ideally, we would like to construct a new statement T such that T has
exactly those executions of S matching σ — i.e., (i) all executions of S that
produce σ are executions of T , (ii) all executions of T are executions of S, and
(iii) all executions of T produce σ. Here, (i) ensures that we miss no executions
that produce σ, (ii) ensures that the verifier produces no “false alarms”, and (iii)
ensures that we ignore executions that do not produce σ. Of these, (i) is critical:
soundness is essential to further analysis; (ii) and (iii) are desirable but not
necessary. Constructing a reduced statement T satisfying all three conditions
is difficult in general, but is possible given restrictions on S. In this section,
we describe these restrictions, and show how a reduced statement T may be
constructed given S satisfying these restrictions.

2.1 Notation

To simplify the exposition, we describe our approach in the context of a simple
do-od language with assume and EVR statements. A program is a tuple (V , Σ, S)
where V is a set of typed program variables that contains a special variable log
of type Σ∗, Σ is a finite alphabet of symbols, and S is a statement according to
the syntax shown in Figure 1. In this figure, the nonterminal v denotes a variable
name in V , the nonterminal E denotes an expression (whose syntax we do not
elaborate in this paper), and a denotes a symbol in Σ. A statement is said to be
“well-formed” when it does not mention the variable log.

The meaning of a program is given in terms of pre- and post-condition se-
mantics in the usual way. We expect that readers are familiar with all but the
last construct of this language, and thus omit a full semantics of the language.

<S> ::= v := E | IF E THEN S [ ELSE S ] FI | WHILE E DO S END
| S ; S | SKIP | ASSUME E | ASSERT E | EVR(a)

Fig. 1. Language syntax



382 A. Groce and R. Joshi

The semantics of the remaining construct, the EVR statement, is given as follows:
for any symbol a in Σ, EVR(a) is equivalent to “log := log • a”. That is, EVR(a)
appends the symbol a to the variable log.

2.2 A Simple Construction

Suppose that we are given a program (V , Σ, S) and a string σ over Σ. As de-
scribed above, we want to construct a reduced program (V , Σ, T ) satisfying con-
ditions (i), (ii) and (iii) above. It is not hard to show that the desired statement
T satisfies the following statement equality:

T = assume (log = 〈〉) ; S ; assume (log = σ) (1)

That is, T consists of exactly those executions of S that, started in a state in
which the log is empty, either terminate in a state in which the log is σ, or
do not terminate at all1. This equation suggests a simple construction: replace
occurrences of EVR(a) in S with code for appending a to log, and add the two
assume statements shown above.

As discussed in Section 4, experience with this simple construction for model
checking C programs shows that the addition of such assume statements some-
times reduces analysis time significantly (in one instance, time to find an error
improves from 17,608 seconds to 105 seconds). Unfortunately, this construction
does not suffice to analyze large programs (see Table 2 in Section 4). The lim-
itations of this construction are twofold: (a) knowledge of σ is not exploited in
order to simplify the program, and (b) the introduction of log as a new program
variable adds additional state, which increases the size of the state space to be
explored. We now discuss how we avoid these limitations.

2.3 Pushing assume Statements Through a Program

Consider the program shown in Figure 2a, where f and g denote complex com-
putations involving x and y. Suppose that we want to analyze this program given
the singleton trace 〈1〉. We see that this trace is produced only if x is assigned a
positive value; since the second branch of the first IF statement does not modify
x, knowledge of the trace should allow us to discard the (complex) details of the
computation of g in our analysis.

One way to achieve this is by pushing assume statements through a program.
As illustrated in Figure 2b, we can push the final assume statement with the
predicate (log = 〈1〉) backwards through the program. This allows us to add an
assume statement with the predicate (x > 0) between the two IF statements; in
turn, this allows us to introduce an assume(P) at the beginning of the program
and thus remove the first ELSE branch.

We are therefore interested in conditions under which we can push assumes
through a program. To this end, we consider the following equation: for given
statement S and predicate Q, solve for P in
1 Alternatively, we could require that T only have terminating executions. Since

CBMC produces unrolled (hence terminating) programs, we do not explore this
alternative in this paper.



Exploiting Traces in Program Analysis 383

solve P : S ; assume(Q) ⊆ assume(P ) ; S (2)

where we write S ⊆ T to mean that all executions of S are executions of T .
Note that this equation has many solutions in general — e.g., P = true. This is
related to the observation that one can always push weak assumptions through a
program. However, because we want T to include as few unnecessary executions
as possible, we are usually interested in the strongest solution in P to this equa-
tion. It is not hard to show that the strongest solution to this equation exists,
and can be expressed in terms of Dijkstra’s weakest-precondition transformer as
¬wp(S,¬Q). Recall that wp(S,Q) denotes the set of states from which all exe-
cutions of S terminate in states satisfying Q, whereas wlp(S,Q) denotes states
from which all terminating executions of S end in states satisfying Q. There-
fore, the dual expression ¬wp(S,¬Q) denotes the set of states from which either
there is an execution of S that terminates in Q, or an execution of S that fails
to terminate.

Unfortunately, although the strongest solution to equation (2) satisfies condi-
tions (i) and (ii) above, it does not guarantee (iii), because there may be execu-
tions of the RHS that are not in the LHS. To derive assumptions guaranteeing
(iii), we need to solve for P in the following equation:

solve P : S ; assume(Q) = assume(P ) ; S (3)

This equation is a strict equality. Thus, for any solution P , the right-hand side
denotes exactly those computations of S that end in states satisfying Q.

The problem with this strict condition is that solutions do not exist in general.
The difficulty is illustrated by the following simple example. With denoting
nondeterministic choice, consider the statement S given by

(x := x+1) (x := x+2)

and let Q be the predicate (x=2). Clearly, this equation has no solution for P .

x := 0 ; y := 0 ;
IF P THEN

x := f(x,y)
ELSE

y := g(x,y)
FI ;
IF x>0 THEN

EVR(1)
ELSE

EVR(2)
FI

(a) Original program

P ∧ f(0,0)>0
x := 0 ; y := 0 ;
IF P THEN

x := f(x,y)
ELSE

y := g(x,y)
FI ; x>0
IF x>0 THEN

EVR(1)
ELSE

EVR(2)
FI
log = 〈1〉

(b) With assumes

P ∧ f(0,0)>0
x := 0 ; y := 0 ;

x := f(x,y)

SKIP

(c) After slicing

Fig. 2. Example program for trace reduction. Shaded expressions are assumptions



384 A. Groce and R. Joshi

It is not hard to show that for programs that are total2(in the sense that they
can be executed from any state), equation (3) has at most one solution. The
more interesting question is when the equation has at least one solution in P .
This is addressed by the following result.

Lemma 1. Let S be a total, deterministic statement. For any predicate Q, equa-
tion (3) has a unique solution in P , given by wlp(S,Q), the weakest liberal pre-
condition of Q with respect to S.

This lemma states that for total, deterministic programs, pushing assumes
through the program is equivalent to computing wlp.

We can also ask when it is possible to push assumes forward through a pro-
gram. In this case, we are interested in solutions for Q in

solve Q : assume(P ) ; S ⊆ S ; assume(Q) (4)

It is not hard to show that the strongest solution for Q in this equation is
sp(S, P ), the strongest postcondition of P with respect to S. On the other hand,
the strict equation (3) has a solution in Q for arbitrary P only if S is invertible3.
In general, while determinism is not too strict a requirement (for instance, all
sequential C programs are deterministic), invertibility is typically too restrictive.
For instance, constant initializations, such as x := 1, are not invertible. (To see
this, try solving for Q in equation (4) with S being x:=1 and P being x=0.)

However, there are situations in which forward propagation is useful. For
instance, passive programs which consist only of assume statements are trivially
invertible. Such programs are often encountered in verification [7, 14]. Because
CBMC generates passive programs, we use forward propagation in our imple-
mentation.

Once assumes have been pushed through the program (either forward or back-
ward), they can be used to remove branches whose guards are refuted by the
assumptions. Note that this requires a check to determine which guards are re-
futed by each assumption. In our implementation, we achieve this with a simple
heuristic: for any assume(p) appearing before a conditional IF q THEN S1 ELSE
S2 FI, if p⇒ q then we may replace the conditional with S1 without altering the
semantics of the passive program. The amount of slicing obtained depends on
the amount of computational effort given to these implications. Our experience
so far is that even simple syntactic tests produce effective slicing.

2.4 Removing Trace Variables

By pushing assumptions through a program, we can determine that certain
guards are always false, and thus remove certain branches from the code, thereby
2 Such programs are sometimes called “non-miraculous” since they satisfy Dijkstra’s

Law of the Excluded Miracle [4].
3 To see this, replace S with its relational converse ∼S, and solve for Q instead of P

in equation (3). The equation is then identical to (3) but with S replaced by ∼S.
The condition above then states that ∼S should be deterministic, which is the same
as saying that S is invertible.



Exploiting Traces in Program Analysis 385

reducing the size of the program being analyzed. However, since the desired
postcondition is (log = σ), a naive application of this method requires explicit
introduction of the variable log. In general, if the alphabet Σ has k symbols,
and the given trace σ has length n, addition of log adds roughly n · log2(k) bits
to the state space. Since this is linear in n, the length of the trace, the overhead
can be considerable when σ is long. In this subsection, we discuss a technique
that allows us to work with predicates that do not mention the variable log,
thus avoiding any overhead.

The idea is to consider predicates in a “log-canonical” form. Let σ be a given
trace of length n over Σ, and let σ ↑ i (“σ upto i”) denote the first4 i characters
of the string σ. We say that a predicate R is in log-canonical form provided there
is a vector t of predicates, such that R can be expressed as

(∃ i : 0 ≤ i ≤ n ∧ ti ∧ log = σ ↑ i) (5)

where none of the predicates ti mention the variable log. Because σ is fixed, this
predicate is compactly represented by storing only the vector t (which does not
mention log). For any such vector t, we write t̂ to denote the predicate shown
in (5). The usefulness of this notion is due to the following result.

Lemma 2. Let S be a well-formed deterministic program as defined above, and
let P be a predicate in log-canonical form. Then wp(S, P ) is also in log-canonical
form.

The proof of Lemma (2) is by induction over the grammar shown in Figure 1.
Since S is deterministic, wp(S, ) distributes over the existential quantification in
P . For the first five constructs, the proof is straightforward, using the assumption
that none of the guards or expressions in the program mention log, since S is
well-formed. For the remaining case, EVR(a), we calculate

wp(EVR(a), t̂)
≡ { definition of t̂ }

wp(EVR(a), (∃ i : 0 ≤ i ≤ n ∧ ti ∧ log = σ ↑ i))
≡ { semantics of EVR(a); the ti don’t mention log }

(∃ i : 0 ≤ i ≤ n ∧ ti ∧ wp(EVR(a), log = σ ↑ i))
≡ { meaning of EVR(a) as appending to log }

(∃ i : 0 ≤ i ≤ n ∧ ti ∧ log • a = σ ↑ i)
≡ { properties of •, and using σ[i− 1] to mean the ith character in σ }

(∃ i : 0 < i ≤ n ∧ ti ∧ σ[i− 1] = a ∧ log = σ ↑ (i− 1))
≡ { introducing u (see below) and replacing i with j + 1 }

(∃ j : 0 ≤ j ≤ n ∧ uj ∧ log = σ ↑ j)
≡ { definition of û }

û

where we have introduced the vector of predicates u, defined as

uj ≡ (tj+1 ∧ σ[j] = a) for 0 ≤ j < n and un ≡ false
4 Thus, σ ↑ 0 denotes the empty string.



386 A. Groce and R. Joshi

Since σ is a fixed string, the predicate σ[j] = a is a constant predicate (either
true or false). Furthermore, by assumption, no tj mentions log. Thus the uj

don’t mention log either, and hence û is also in log-canonical form.
Finally, recall that we are interested in constructing a statement T satisfying

equation (1). Note that both the initial predicate (log = 〈〉) and the final predi-
cate (log = σ) can be written in log-canonical form using appropriate vectors of
predicates; for instance, (log = 〈〉) corresponds to the vector [true, false, ...false ].
As shown in this section, we can push these predicates through the program (ei-
ther backwards or forwards as appropriate). In doing so, we keep track of only
vectors of predicates ti that do not mention the variable log. Thus the assumes
added to the reduced statement T do not mention log.

2.5 Extension to Suffixes

Because a trace may have a bounded length, discarding old events after a buffer
fills, it is important to handle the case where σ is a suffix of the program’s
execution history. A useful benefit of handling suffixes is the potential to produce
a shorter trace matching the suffix; this may be critical when the actual execution
extended over a long period of time – both for reasons of analysis scalability and
human understanding. In this case, the problem definition is: given a program
(V , Σ, S) and a finite string σ of length n over Σ, construct a statement T such
that,

T = assume(log = 〈〉) ; S ; assume(log ↓ n = σ) (6)

where we write log ↓ i to mean the last i characters of log. In this case, we
define t̂ to mean the following:

(∃ i : 0 ≤ i ≤ n ∧ ti ∧ log ↓ i = σ ↑ i)

We leave it to the reader to check that this canonical form is preserved by wp
computations as discussed above.

3 Implementation

Our analysis is implemented as an extension to CBMC [13], a bounded model
checker [3] for ANSI-C programs. Given a program and a set of unwinding depths
U (the maximum number of times each loop may be executed), CBMC produces
constraints encoding all executions of the program not exceeding loop bounds.
CBMC converts constraints into CNF and calls a Boolean satisfiability solver,
such as zChaff [18] or LIMMAT [2]. A satisfying solution is a counterexample
showing a property violation, whereas a proof of unsatisfiability indicates that
the code cannot, within the given loop bounds, violate any properties. CBMC
handles all ANSI C types and pointer operations, and checks safety properties
such as assertion violations, null pointer dereferences, and array bound errors.
CBMC supports assume statements in C source, with the expected semantics.

In order to support analysis of traces, we extended CBMC to recognize two
event reporting functions in C source: EVR takes as argument a constant string



Exploiting Traces in Program Analysis 387

(an identifier for the event, e.g., EVR(‘‘timeout’’)) and EVR value takes an
event identifier and an expression (typically an event-relevant program variable,
e.g., EVR(‘‘timeout’’,thread id)). A trace, for CBMC, is a sequence of event
identifiers, where each identifier produced by an EVR value call includes a value.
Our trace language also allows event alphabet restrictions and the use of sets of
events in the sequence.

3.1 Analyzing a Simple Program

Consider the program in Figure 3. The program is atypical in that a trace allows
near-total reconstruction of the program inputs (though p and q cannot be pre-
cisely determined). For example, if the trace is σ = 〈foo 2, foo 1〉, we know
the value of input and constraints on the values of p and q. It is this knowledge
that our analysis will exploit in analyzing the program.

void foo () { void bar() {
x--; x++;
EVR value("foo",x); EVR("bar");

} }

int main (int input, bool p, bool q) {
x = input; x#1 == input#0

1 if (p) x#2 == x#1 - 1;
foo(); 2 x#3 == (p#0 ? x#2 : x#1)

3 if (q) x#4 == x#3 - 1;
foo(); 4 x#5 == (q#0 ? x#4 : x#3)

5 if (p && q)
bar(); 6 x#6 == x#5 + 1;

else x#7 == x#5 - 1;
foo(); 7 x#8 == (p#0 ∧ q#0 ? x#6 : x#7)

8 assert ((x+1) == input); assert ((x#8 + 1) == input#0)
}

Fig. 3. example.c

As discussed in Section 2.3, our implementation uses a forward analysis to
compute assumptions and slices as CBMC generates the equational form of the
program. This avoids a second pass over the transformed source code. The right
side of Figure 3 shows the passive equational form of example.c. In the remain-
der, we will omit the renamings of p and q, as these inputs are never assigned.

CBMC produces predicate vectors (as described in Section 2.4) as it converts
the program equations into SAT. If we restrict behavior to match σ, the vector
has three elements, corresponding to the conditions under which 0, 1, or all
elements of the trace have been consumed. As shown in eq. (5), the interpretation
of [t0, t1, t2] is (t0∧ log = 〈〉)∨(t1∧ log = 〈foo 1〉)∨(t2∧ log = 〈foo 2, foo 1〉).

Table 1 shows the elements of the vectors at 8 program locations (labeled
as 1-8 in Figure 3. When pushing assumptions forward, we begin with a vector



388 A. Groce and R. Joshi

Table 1. Vectors as example.c is analyzed with σ. We refer to previous vector entries
in a row-column format (i.e., 3B is row 3, column B: p ∧ x#2 == 2).

Loc Events Consumed
A B C
〈〉 〈foo 2〉 〈foo 2, foo 1〉

1 true false false
2 false x#2 == 2 false
3 ¬p p ∧ x#2 == 2 false
4 false 3A ∧ x#4 == 2 3B ∧ x#2 == 2 ∧ x#4 == 1
5 ¬q ∧ ¬p (q ∧ 4B) ∨ (¬q ∧ 3B) q ∧ 4C
6 false false false
7 false 5A ∧ x#7 == 2 5B ∧ x#7 == 1
8 false ¬(p ∧ q) ∧ 7B ¬(p ∧ q) ∧ 7C

interpreted as constraining the log to be empty: [true, false, false] (the first row
of Table 1). At location 2 the modified vector requires that x’s value at the
location of the EVR value call match the value in σ.

The vector for location 6 is false : if this branch is taken, the sequence of events
cannot possibly match σ. When the vector for a branch is false, that branch can
be sliced away. We slice the program by changing the equational form and relying
on the model checker’s ability to prevent un-referenced variables from appearing
in the SAT constraints. The final assumption will force the program to take the
ELSE-branch, which makes it safe to simplify the conditional expression for x#8 to
(false ? x#6 : x#7), which simplifies to x#7. The equation for x#6 can then be
discarded. The sliced version of the program produces a SAT problem with 696
variables and 2,312 clauses. Without slicing (leaving the irrelevant then-branch
in place), the program requires 834 variables and 2,701 clauses.

3.2 Analyzing with Only a Suffix of a Trace

If we allow σ to be a suffix of the complete trace, the allowed program behaviors
are the same (in this example, though not in general), but the analysis is altered.
The first row of each vector is always true, as it is always possible to begin con-
suming events. The then-branch of the third conditional cannot be sliced away
in the initial pass through the program — any events may appear before σ be-
gins. The bar-branch can still be sliced away, as it is easy to note that the final
condition (8C) implies ¬(p ∧ q) — all allowed executions of the program will
have to take the else-branch. Our analysis does not attempt to extract all such
implications, but slices based on those that are trivially implied by the assump-
tion (appearing on both sides of a disjunction, or either side of a conjunction,
recursively), which has provided near-optimal slicing in our experience.

3.3 Using Traces as Specifications

Traces can be also be used as specifications. In order to use a trace as a spec-
ification, CBMC performs the same analysis as above, but searches for



Exploiting Traces in Program Analysis 389

any execution of the program, rather than searching for property violations. We
allow for multiple traces, alphabet restriction, and sets of events. With multiple
traces, the tool maintains vectors for each trace and assumes the conjunction
of all final conditions. This feature can be useful for post-mortem analysis as
well, e. g., in the case of traces over different events produced by independent
threads without time-stamps. Restricting which EVRs are taken into account
is useful for specification: many events may be irrelevant to the property in
question, although they appear in the actual code and traces. The utility of
sets of events for specification should be obvious — e.g., for specifying that
a file should be written to disk when either a close or sync operation oc-
curs (see below in the experimental results). Handling alphabet restriction and
event sets requires only a small modification of the mechanism for checking
whether the ith event of a trace matches a particular alphabet symbol in an
EVR call.

4 Experimental Results

We applied the technique to a small file system model, consisting of about 400
lines of C code. The model allows basic operations such as opening, closing,
reading and writing files; it also supports reset events, which re-initialize all
data structures except the disk contents (which is modeled as an array).

As written, the system is not robust across resets: a file can be opened, written
to, and closed; if a reset happens at this point, the data in the file can be lost (the
sync to disk in the close operation is faulty). We first consider the use of a partial

0.1

1

10

100

1000

9 10 11 12 13 14 15 16 17 18

Time(s)

Unwindings

Sliced

� � � � � � � � � �

�
Assumes Only

+
+

+ + + + + + + +

+
Trace History Array

� �
� �

� � � � � �

�

Fig. 4. Results for 8 maximum files



390 A. Groce and R. Joshi

trace as a specification. Using a trace with an open, write, close, a sequence of
wildcard actions (not allowing a delete), and an open followed by a failed read5,
we can specify that data should not be lost across any file system event sequence
(of a bounded length), even if resets are present. Finding a counterexample
(an execution matching this bad trace) requires 105 seconds, when using our
technique and this trace as a specification. The utility of guiding the search with
a trace is evident: CBMC requires 17,608 seconds to find a counterexample when
checking the same property using a hand-coded monitor automaton (“blind”
search) as a specification but without even a partial trace of execution. Because
the wildcard actions limit the amount of slicing possible, the reduction in the
size of the SAT problem is less impressive than the decrease in running time:
the monitor-based approach produces a SAT instance with 613,857 variables
and 2,108,934 clauses; our approach brings this down to 328,142 variables and
1,128,272 clauses.

A more significant reduction in the size of the SAT problem is seen when
examining the same trace with reset in place of wildcards. Figure 4 provides a
logscale graph of SAT run-times, given a complete trace for the file system in
the smallest configuration we examined. Across a range of unwinding depths,
full application of our approach results in a reduction of running time by several
orders of magnitude. Applying our analysis to produce an assumption but using
no slicing produces a smaller, but still quite significant, reduction over using a
trace array semantics. Table 2 shows timing and SAT instance sizes for other
configurations of the file system. Checking the property on the largest configu-
ration and unwinding depth requires only 26,916 SAT variables when slicing is
used; the smallest configuration uses 899,989 variables if slicing is not applied,
and uses 3,266,123 variables in the largest configuration; running times for the
sliced version are uniformly less than one second; over a thousand seconds are
needed without slicing. Blind search — without a trace array — was consistently
at least an order of magnitude slower than search using a trace array, and did
not complete within a timeout period for larger system configurations such as
those shown in Table 2.

Applying trace-based analysis to a small model of the core of the resource
arbitration algorithm for the Mars Exploration Rovers also improved SAT prob-
lem sizes and running times significantly. Adding assumptions to match a failure
trace the SAT instance grew slightly, but the search time decreased. Applying
slicing to remove unreachable portions of the source code reduced the running
time to 0.12 seconds. Scaling up to a more complex version of the same model
with more properties (including some bounded liveness properties), blind search
required 33 seconds, unsliced assumptions needed a little over a second, and with
slicing the search time was only 0.29 seconds.

For both the resource arbiter and the file system, the additional overhead
for trace-based analysis (performed while computing the passive form of the
programs and unrolling loops) prior to calling the SAT solver was negligible.

5 In the log, success or failure is recorded in addition to which operation is performed.



Exploiting Traces in Program Analysis 391

Table 2. Results for file system and arbiter. U indicates the unwinding depth for
loops.

Sliced Assumes Only Trace Array
U Vars Clauses Time Vars Clauses Time Vars Clauses Time

File System Results (System Size = 10)
11 17,884 65,816 0.29 899,989 3,085,814 91.83 952,924 3,509,042 334.04
12 18,280 67,031 0.30 998,527 3,423,893 119.28 1,067,554 3,960,332 412.91
13 18,676 68,246 0.32 1,097,065 3,762,227 146.00 1,172,149 4,370,541 550.51
14 19,072 69,461 0.32 1,195,603 4,100,816 181.05 1,276,744 4,784,989 1,152.70
15 19,468 70,676 0.32 1,294,141 4,439,660 206.25 1,381,339 5,203,676 624.28
16 19,864 71,891 0.33 1,392,727 4,778,839 248.86 1,485,982 5,626,682 806.59
17 20,260 73,106 0.34 1,491,268 5,118,198 269.77 1,590,580 6,053,852 1,495.01
18 20,656 74,321 0.34 1,589,809 5,457,812 331.40 1,695,178 6,485,261 2,115.49

File System Results (System Size = 12)
30 26,916 94,931 0.57 3,266,123 11,291,540 1,216.78 3,451,137 13,761,421 2,889.41

Resource Arbiter Results (Safety)
40 10,497 34,118 0.12 39,273 142,399 1.19 38,936 141,388 1.77

Resource Arbiter Results (Liveness)
40 21,311 72,142 0.29 73,244 259,308 1.30 72,099 255,639 32.96

5 Related Work

This paper presents a use of traces in program analysis — as slicing criteria and
specification method — that differs in both motivation and technique from most
previous work on related topics.

Assumptions and never-claims are used in many program verifiers [10, 6] to
restrict explored system behavior; this kind of restriction is more general than
what is described here, but does not provide any a-priori state-space reduction —
the model checker may explore fewer states in an on-the-fly manner, but these
techniques do not preclude exploration of branches that cannot match a given
trace. Such methods are also less convenient than our approach for expressing
the constraint that system behavior must be able (or not able) to produce a
given sequence of events.

Removing code irrelevant to a given program trace is an extension of the idea
of program slicing [20] — in particular dynamic slicing [1]. Static slicing removes
the portions of a program that are not relevant to the analysis of a particular
program point, under any set of inputs. Dynamic slicing performs the same
task, for a known set of inputs. Parametric program slicing [5] makes use of a
more general constraint, allowing for partial knowledge of inputs. Static slicing’s
utility is limited by aliasing and error handling paths, while dynamic slicing is
of little utility when many program traces must be considered — for verification
or bug hunting. The path slicing [12] of BLAST [9] removes portions of an
abstract counterexample that are irrelevant to the feasibility of the path. Path
slicing resembles our approach in that both are hybrids of purely static slicing
and true dynamic slicing; the approaches differ in purpose (we apply slicing



392 A. Groce and R. Joshi

before model checking in order to limit system behaviors; path slicing is a step
in a counterexample-refinement loop) and representation of multiple paths (a
sequence of trace events vs. a fixed control flow). Millett and Teitelbaum applied
more traditional program slicing to Promela models [17]. Only our approach
addresses the notion of slicing based on a given event trace.

Howard et al. [11] use model checking to analyze traces produced by software,
Roger and Goubault-Larrecq propose similar techniques for use in log auditing
for intrusion detection [19], and Gannod and Murthy [8] describe the use of
model checking to reverse engineer software architectures from a set of log files,
in a largely non-automated approach.

Postmortem Symbolic Evaluation (PSE) [16] uses static analysis to produce
possible program traces given only a failure’s location and type. PSE builds on
the work of Liblit and Aiken on the use of backtraces in debugging [15]. The
work of Liblit and Aiken is closely related to our approach, in that they consider
event traces derived from “printf debugging,” including the suffix and multiple
trace variations. Their work focuses on producing all CFL-reachable paths to
a failure, rather than producing only feasible complete concrete executions. It
is interesting to note that Liblit and Aiken come to similar conclusions about
the advantages of backwards over forwards analysis, for largely independent
reasons.

6 Summary and Future Work

We have addressed the problem of analyzing a given program given one of its
traces, and demonstrated the utility of our approach for small examples such
as the file system and the resource arbiter. A larger concern is how to optimize
placement of EVRs in order to allow maximal slicing. The placement of EVRs is
at present largely an ad-hoc process: developing a methodology for placing EVRs
is critical if we are to analyze larger programs. We are pursuing these problems
while applying our method to a larger, in-development, production-quality file
system with over 2,000 lines of C source.

References

1. H. Agrawal and J. Horgan. Dynamic program slicing. In Programming Language
Design and Implementation, pages 246–256, 1990.

2. A. Biere. The evolution from Limmat to Nanosat. Technical Report 444, Dept. of
Computer Science, ETH Zŭrich, 2004.

3. A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In Tools and Algorithms for the Construction and Analysis of Systems,
pages 193–207, 1999.

4. E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood Cliffs,
New Jersey, 1976.

5. J. Field, G Ramalingam, and F. Tip. Parametric program slicing. In Principles of
Programming Languages, pages 379–392, 1995.



Exploiting Traces in Program Analysis 393

6. C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata.
Extended static checking for Java. In Proceedings of the 2002 ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), pages
234–245, May 2002.

7. C. Flanagan and J. B. Saxe. Avoiding exponential explosion: Generating compact
verification conditions. In Principles of Programming Languages, pages 193–205,
2002.

8. G. Gannod and S. Murthy. Using log files to reconstruct state-based software
architectures. In WCRE’02 Workshop on Software Architecture Reconstruction,
2002.

9. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In
Principles of Programming Languages, pages 58–70, 2002.

10. G. J. Holzmann. The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley Professional, 2003.

11. Y. Howard, S. Gruner, A. Gravell, C. Ferreira, and J. Augusto. Model-based trace-
checking. In SoftTest: UK Software Testing Research Workshop II, 2003.

12. R. Jhala and R. Majumdar. Path slicing. In Programming Language Design and
Implementation, pages 38–47, 2005.

13. D. Kroening, E. Clarke, and F. Lerda. A tool for checking ANSI-C programs. In
Tools and Algorithms for the Construction and Analysis of Systems, pages 168–176,
2004.

14. K. Rustan M. Leino. Efficient weakest preconditions. Information Processing
Letters, 93(6), 2005.

15. B. Liblit and A. Aiken. Building a better backtrace: Techniques for postmortem
program analysis. Technical Report UCB CSD-02-1203, Computer Science Divi-
sion, University of California at Berkeley, 2002.

16. R. Manevich, M. Sridharan, S. Adams, M. Das, and Z. Yang. PSE: explaining
program failures via postmortem static analysis. In Tools and Algorithms for the
Construction and Analysis of Systems, pages 63–72, 2004.

17. L. Millett and T. Teitelbaum. Slicing Promela and its applications to model check-
ing, simulation, and protocol understanding. In SPIN Workshop on Model Checking
of Software, pages 75–83, 1998.

18. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering
an Efficient SAT Solver. In Design Automation Conference, pages 530–535, 2001.

19. M. Roger and J. Goubault-Larrecq. Log auditing through model-checking. In IEEE
Workshop on Computer Security Foundations, page 220, 2001.

20. F. Tip. A survey of program slicing techniques. Journal of programming languages,
3:121–189, 1995.



Model-Checking Markov Chains in the Presence
of Uncertainties

Koushik Sen, Mahesh Viswanathan, and Gul Agha

Department of Computer Science,
University of Illinois at Urbana-Champaign
{ksen, vmahesh, agha}@uiuc.edu

Abstract. We investigate the problem of model checking Interval-valued
Discrete-time Markov Chains (IDTMC). IDTMCs are discrete-time finite
Markov Chains for which the exact transition probabilities are not known. In-
stead in IDTMCs, each transition is associated with an interval in which the ac-
tual transition probability must lie. We consider two semantic interpretations for
the uncertainty in the transition probabilities of an IDTMC. In the first interpre-
tation, we think of an IDTMC as representing a (possibly uncountable) family of
(classical) discrete-time Markov Chains, where each member of the family is a
Markov Chain whose transition probabilities lie within the interval range given
in the IDTMC. This semantic interpretation we call Uncertain Markov Chains
(UMC). In the second semantics for an IDTMC, which we call Interval Markov
Decision Process (IMDP), we view the uncertainty as being resolved through
non-determinism. In other words, each time a state is visited, we adversarially
pick a transition distribution that respects the interval constraints, and take a
probabilistic step according to the chosen distribution. We show that the PCTL
model checking problem for both Uncertain Markov Chain semantics and Inter-
val Markov Decision Process semantics is decidable in PSPACE. We also prove
lower bounds for these model checking problems.

1 Introduction

Discrete time stochastic models such as Discrete Time Markov Chains (DTMCs)
have been used to analyze the correctness, reliability, and performance of systems
[8, 11, 19, 13]. In a DTMC, the system is assumed to have finitely many states, and
the system’s future behavior is completely determined by its current state. From each
state of the system, the probability of transitioning to any other given state at the next
step is fixed and is given by the transition probability matrix of the DTMC.

The assumption that the system makes transitions according to a fixed distribution
at each step and that this distribution is precisely known when modeling, is a strong
assumption that may often not hold in practice [12, 15, 26, 14]. If the system being
modeled is an open system, i.e., interacts with an environment, then uncertainty in the
transitions may arise due to imperfect information about the environment. For example,
consider a system that interacts with an imperfect communication medium that may lose
messages. The probability of message loss may either depend on choice of the commu-
nication medium or on a complicated, time-varying dependence on events that are not

H. Hermanns and J. Palsberg (Eds.): TACAS 2006, LNCS 3920, pp. 394–410, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Model-Checking Markov Chains in the Presence of Uncertainties 395

precisely understood at the time of modeling the system. Another source of impreci-
sion is that the transition probabilities in the system model are often estimated through
statistical experiments, which only provide bounds on the transition probabilities.

In order to faithfully capture these system uncertainties in stochastic models, the
model of Interval-valued Discrete-time Markov Chains (IDTMC) has been introduced
[12, 14]. These are DTMC models where the exact probability of taking a state transi-
tion is not known, and instead the transition probability is assumed to lie within a range
associated with the transition. Two semantic interpretations have been suggested for
such models. Uncertain Markov Chains (UMC) [12] is an interpretation of an IDTMC
as a family of (possibly uncountably many) DTMCs, where each member of the fam-
ily is a DTMC whose transition probabilities lie within the interval range given in the
IDTMC. In the second interpretation, called Interval Markov Decision Process (IMDP),
we view the uncertainty as being resolved through non-determinism. In other words,
each time a state is visited, we adversarially pick a transition distribution that respects
the interval constraints, and take a probabilistic step according to the chosen distribu-
tion. Thus, IMDPs allow the possibility of modeling a non-deterministic choice made
from a set of (possibly) uncountably many choices. An IMDP can be seen as a general-
ization of Markov Decision Processes (MDPs) [17, 3, 21].

We investigate the problem of model checking PCTL specifications for IDTMC.
The two semantic interpretations of IDTMCs yield very different model checking re-
sults (whenever the property has at least two probabilistic operators, not necessarily
nested; see example in Figure 1) and require different algorithmic techniques. For the
case of UMCs, we show that PCTL model checking problem can be reduced to find-
ing feasible solutions to inequality constraints, much like in the case of DTMC and
MDP [8, 4, 3, 19, 7]. However, there is one important difference. The constraints to be
solved in the case of UMCs are polynomial and not just linear (as for DTMCs and
MDPs). Since the existential theory of reals is decidable in PSPACE [18, 6], the feasi-
bility of the polynomial constraints arising in model checking, can be determined by
making a “query” to the existential theory of reals. Thus, the PCTL model checking
problem for UMCs is in PSPACE. In practice, however, this algorithm may not be the
most efficient. The constraints we obtain during model checking all take a special form:
the polynomials are bilinear1. Therefore, it might be more efficient to instead use algo-
rithms for solving bilinear matrix inequalities (BMIs) [10, 9] or tools developed for this
purpose [16]. Checking feasibility of BMIs is known to be NP-hard [24], but the exact
complexity, which is lower than PSPACE, is unknown. On the other hand, in the case
of IMDPs, we show that the model checking problem can be reduced to model check-
ing an MDP of exponential size. We then use known results for MDPs to show that
IMDPs can be model checked in PSPACE. We also present an iterative model checking
algorithm for IMDPs which may prove to be more efficient in practice.

In addition to demonstrating the decidability of the model checking problem, we also
prove lower bounds on the complexity of the model checking problem. We show that
the model checking problem for UMCs is NP-hard and co-NP-hard; thus, for UMCs the
problem is unlikely to be in P. A straightforward corollary of our results is that solving

1 The highest power of any variable in the polynomial is 1, and any term is the product of at
most two variables.



396 K. Sen, M. Viswanathan, and G. Agha

BMIs is also co-NP-hard. For IMDPs, we can only show P-hardness; in fact, even this
is a consequence of the P-hardness of (classical) DTMC model checking.

The rest of the paper is organized as follows. We briefly discuss related work next.
In Section 2 we formally define IDTMC and give its semantics as UMC and IMDP.
PCTL and the model checking problem is introduced in Section 3. We then revisit the
model checking algorithm for DTMC (Section 4) and present a modified version of the
classical algorithm. The ideas in the section play a key role in our UMC model checking
algorithm. Section 5 (UMC) and Section 6 (IMDP) contain our main results about the
model checking problem, providing both upper and lower bounds. Finally we present
our conclusions in Section 7. Due to lack of space, we do not present any proofs here;
all proofs including motivating examples of UMCs and IMDPs can be found in [23].

Related Work. The model of IDTMCs has been introduced independently by Jons-
son and Larsen [12] and Kozine and Utkin [14] under the names interval specification
systems and interval-valued finite Markov chains, respectively. However, they consider
different semantic interpretations. Jonsson and Larsen consider the UMC interpreta-
tion and study bisimulation and simulation preorders for such an interpretation. Kozine
and Utkin, on the other hand, take the IMDP interpretation and present algorithms to
compute the probability distribution on the states after t steps. Neither of these papers
investigate the PCTL model checking problem which is the focus of this paper. We
introduce new names to emphasize the subtle semantic difference in the two interpreta-
tions. A more general model called generalized Markov processes for describing infinite
families of Markov Chains was introduced in [1]. In that paper, they showed that model
checking such models with respect to PCTL∗ (a more general logic than PCTL) is de-
cidable and has elementary complexity. PCTL model checking for classical DTMC and
MDP models has been considered in [8, 4, 3, 19, 7].

2 Formal Models

Definition 1. A discrete-time Markov chain (DTMC) is a 4-tuple M = (S, sI ,P, L),
where

1. S is a finite set of states,
2. sI ∈ S is the initial state,
3. P : S×S → [0, 1] is a transition probability matrix, such that

∑
s′∈S P(s, s′) = 1,

and
4. L : S → 2AP is a labeling function that maps states to sets of atomic propositions

from a set AP.

A non-empty sequence π = s0s1s2 · · · is called a path of M, if each si ∈ S and
P(si, si+1) > 0 for all i ≥ 0. We denote the ith state in a path π by π[i] = si. We let
Path(s) be the set of paths starting at state s. A probability measure on paths is induced
by the matrix P as follows.

Let s0, s1, . . . , sk ∈ S with P(si, si+1) > 0 for all 0 ≤ i < k. Then C(s0s1 . . . sk)
denotes a cylinder set consisting of all paths π ∈ Path(s0) such that π[i] = si (for
0 ≤ i ≤ k). Let B be the smallest σ-algebra on Path(s0) which contains all the cylinders
C(s0s1 . . . sk). The measure μ on cylinder sets can be defined as follows



Model-Checking Markov Chains in the Presence of Uncertainties 397

μ(C(s0s1 . . . sk)) =
{

1 if k = 0
P(s0, s1) · · ·P(sk−1, sk) otherwise

The probability measure on B is then defined as the unique measure that agrees with
μ (as defined above) on the cylinder sets.

Definition 2. An Interval-valued Discrete-time Markov chain (IDTMC) is a 5-tuple
I = (S, sI , P̌, P̂, L), where

1. S is a finite set of states,
2. sI ∈ S is the initial state,
3. P̌ : S × S → [0, 1] is a transition probability matrix, where each P̌(s, s′) gives the

lower bound of the transition probability from the state s to the state s′,
4. P̂ : S × S → [0, 1] is a transition probability matrix, where each P̂(s, s′) gives the

upper bound of the transition probability from the state s to the state s′,
5. L : S → 2AP is a labeling function that maps states to sets of atomic propositions

from a set AP.

We consider two semantics interpretations of an IDTMC model, namely Uncertain
Markov Chains (UMC) and Interval Markov Decision Processes (IMDP).

Uncertain Markov Chains. An IDTMC I may represent an infinite set of DTMCs,
denoted by [I], where for each DTMC (S, sI ,P, L) ∈ [I] the following is true,

– P̌(s, s′) ≤ P(s, s′) ≤ P̂(s, s′) for all pairs of states s and s′ in S

In the Uncertain Markov Chains semantics, or simply, in the UMCs, we assume that the
external environment non-deterministically picks a DTMC from the set [I] at the be-
ginning and then all the transitions take place according to the chosen DTMC. Note that
in this semantics, the external environment makes only one non-deterministic choice.
Henceforth, we will use the term UMC to denote an IDTMC interpreted according to
the Uncertain Markov Chains semantics.

Interval Markov Decision Processes. In the Interval Markov Decision Processes se-
mantics, or simply, in the IMDPs, we assume that before every transition the external
environment non-deterministically picks a DTMC from the set [I] and then takes a one-
step transition according to the probability distribution of the chosen DTMC. Note that
in this semantics, the external environment makes a non-deterministic choice before ev-
ery transition. Henceforth, we will use the term IMDP to denote an IDTMC interpreted
according to the Interval Markov Decision Processes semantics. We now formally de-
fine this semantics.

Let Steps(s) be the set of probability density functions over S defined as follows:

Steps(s) = {μ : S → R
≥0 |

∑
s′∈S

μ(s′) = 1 and P̌(s, s′) ≤ μ(s′) ≤ P̂(s, s′) for all s′ ∈ S}

In an IMDP, at every state s ∈ S, a probability density function μ is chosen non-
deterministically from the set Steps(s). A successor state s′ is then chosen according to
the probability distribution μ over S.



398 K. Sen, M. Viswanathan, and G. Agha

A path π in an IMDP I = (S, sI , P̌, P̂, L) is a non-empty sequence of the form
s0

μ1→ s1
μ2→ . . ., where si ∈ S, μi+1 ∈ Steps(si), and μi+1(si+1) > 0 for all i ≥ 0.

A path can be either finite or infinite. We use πfin to denote a finite path. Let last(πfin)
be the last state in the finite path πfin. As in DTMC, we denote the ith state in a path
π by π[i] = si. We let Path(s) and Pathfin(s) be the set of all infinite and finite paths,
respectively, starting at state s. To associate a probability measure with the paths, we
resolve the non-deterministic choices by an adversary, which is defined as follows:

Definition 3. An adversaryA of an IMDP I is a function mapping every finite path πfin
of I onto an element of the set Steps(last(πfin)). Let AI denote the set of all possible ad-
versaries of the IMDP I. Let PathA(s) denote the subset of Path(s) which corresponds
to A.

The behavior of an IMDP I = (S, sI , P̌, P̂, L) under a given adversary A is purely
deterministic. The behavior of a IMDP I from a state s can be described by an infinite-
state DTMC MA = (SA, sA

I ,P
A, LA) where

– SA = Pathfin(s),
– sA

I = s, and

– PA(πfin, π′
fin) =

{
A(πfin)(s′) if π′

fin is of the form πfin
A(πfin)→ s′

0 otherwise

There is a one-to-one correspondence between the paths of MA and PathA(s) of I.
Therefore, we can define a probability measure ProbA

s over the set of paths PathA(s)
using the probability measure of the DTMC MA.

3 Probabilistic Computation Tree Logic (PCTL)

In this paper we consider a sub-logic of PCTL that excludes the steady-state probabilis-
tic operators. The formal syntax and semantics of this logic is as follows.

PCTL Syntax

φ ::= true | a | ¬φ | φ ∧ φ | P��p(ψ)
ψ ::= φ U φ | Xφ

where a ∈ AP is an atomic propositions, #$ ∈ {<,≤, >,≥}, p ∈ [0, 1], and k ∈ N.
Here φ represents a state formula and ψ represents a path formula.

PCTL Semantics for DTMC

The notion that a state s (or a path π) satisfies a formula φ in a DTMC M is denoted
by s |=M φ (or π |=M φ), and is defined inductively as follows:

s |=M true
s |=M a iff a ∈ L(s)
s |=M ¬φ iff s �|=M φ
s |=M φ1 ∧ φ2 iff s |=M φ1 and s |=M φ2

s |=M P��p(ψ) iff Prob{π ∈ Path(s) | π |=M ψ} �� p
π |=M Xφ iff π[1] |=M φ
π |=M φ1 U φ2 iff ∃i ≥ 0 (π[i] |=M φ2 and ∀j < i. π[j] |=M φ1)



Model-Checking Markov Chains in the Presence of Uncertainties 399

Fig. 1. Example IDTMC and
PCTL formula φ. The UMC
interpretation of the IDTMC
satisfies φ, whereas the IMDP
interpretation of the IDTMC
violates φ.

s |= true
s |= a iff a ∈ AP(s)
s |= ¬φ iff s �|= φ
s |= φ1 ∧ φ2 iff s |= φ1 and s |= φ2

s |= P��p(ψ) iff ProbA
s ({π ∈ PathA(s) | π |= ψ}) �� p

for all A ∈ A
π |= Xφ iff π[1] |= φ
π |= φ1 U φ2 iff ∃i ≥ 0 (π[i] |= φ2 and ∀j < i. π[j] |=φ1)

Fig. 2. PCTL semantics for IMDP

It can shown that for any path formula ψ and any state s, the set {π ∈ Path(s) |
π |=M ψ} is measurable [25]. A formula P��p(ψ) is satisfied by a state s if Prob[path
starting at s satisfies ψ] #$ p. The path formula Xφ holds over a path if φ holds at the
second state on the path. The formula φ1 U φ2 is true over a path π if φ2 holds in some
state along π, and φ holds along all prior states along π.

Given a DTMC M and a PCTL state formula φ, M |= φ iff sI |=M φ.

PCTL Semantics for UMC

Given a UMC I and a PCTL state formula φ, we say I |= φ iff, for all M ∈ [I],
M |= φ. Note that I �|= φ does not imply that I |= ¬φ. This because if I �|= φ, there
may exist M,M′ ∈ [I] such that M |= φ and M′ |= ¬φ.

PCTL Semantics for IMDP

The interpretation of a state formula and a path formula of PCTL for IMDPs is same as
for DTMCs except for the state formulas of the form P��p(ψ).

The notion that a state s (or a path π) satisfies a formula φ in a IMDP I is denoted
by s |= φ (or π |= φ), and is defined inductively in Figure 2.

The model checking of IDTMC with respect to the two semantics can give different
results. For example, consider the IDTMC in Figure 1 and the PCTL formula φ. The
UMC semantics of this IDTMC satisfies φ, while the IMDP semantics violates φ.

4 Revisiting DTMC Model-Checking

In this section we outline the basic model checking algorithm for (classical) DTMCs.
The algorithm that we outline here for DTMCs is not the most efficient (like the one
presented in [8]); however the main ideas presented here will form the crux of our model
checking algorithm for UMCs.



400 K. Sen, M. Viswanathan, and G. Agha

The algorithm for model checking DTMCs will reduce the problem to checking the
feasibility of simultaneously satisfying a finite set of polynomial inequalities. This fea-
sibility test can be done by checking if a first-order formula with existential quantifiers
about the real numbers is true. More precisely, we need to check if a formula of the
form ∃x1, . . . , xnP (x1, . . . , xn) is valid over the reals, where P is a boolean function
of atomic predicates of the form fi(x1, . . . , xn) #$ 0, where fi is a multivariate poly-
nomial and #$∈ {=, �=,≤,≥, <,>}. It is well-known that this problem can be decided
in PSPACE [18, 6] 2.

The model checking algorithm for DTMC takes a DTMC M = (S, sI ,P, L) and a
PCTL formula φ as input. The output is the set Sat(φ) = {s ∈ S | s |=M φ}, i.e., the
set of all states of the model that satisfy φ. We say M |= φ iff sI ∈ Sat(φ).

The algorithm works by recursively computing the set Sat(φ′) for each sub-formula
φ′ of φ as follows.

Sat(true) = S Sat(a) = {s | a ∈ L(S)}
Sat(¬φ) = S \ Sat(φ) Sat(φ1 ∧ φ2) = Sat(φ1) ∩ Sat(φ2)

Sat(P��p(ψ)) = {s ∈ S | ps(ψ) �� p}

where ps(ψ)=Prob{π∈Path(s) |π |=M ψ}. The computation of the set Sat(P��p(ψ))
requires the computation of ps(ψ) at every state s ∈ S.

If ψ = Xφ, then ps(ψ) =
∑

s′∈Sat(φ) P(s, s′).
To compute ps(φ1 U φ2), we first split the set of states S into three disjoint subsets,

Sno, Syes, and S? where Sno = Sat(¬φ1 ∧ ¬φ2), Syes = Sat(φ2), and S? =
S \ (Sno ∪ Syes). Moreover, let S?no be the set {s | ps(φ1 U φ2) = 0} \ Sno and
S>0 be the set {s | ps(φ1 U φ2) > 0}. Note that S = S>0 ∪ S?no ∪ Sno. By [8],
{xs = ps(φ1 U φ2) | s ∈ S} is a solution of the following linear equation system.

xs =

⎧⎨⎩
0 if s ∈ Sno

1 if s ∈ Syes∑
s′∈S P(s, s′)xs′ if s ∈ S?

(1)

Note that the equation system (1) can have infinite number of solutions. For example,
consider the formula true U a, where a is an atomic proposition and the DTMC M =
({s}, s,P, L), where P(s, s) = 1 and L(s) = ∅. Note that s ∈ S?no. The linear
equation system (1) that is instantiated for computing ps(true U a) for M is xs = xs.
The system has infinite number of solutions.

We can ensure that {xs = ps(φ1 U φ2) | s ∈ S} is a unique solution of a system
of equations as follows. Fix a γ such that 0 < γ < 1. Consider the following linear
equation system.

x′
s =

⎧⎨⎩
0 if s ∈ Sno

1 if s ∈ Syes∑
s′∈S γP(s, s′)x′

s′ if s ∈ S?
(2)

2 If one takes the computational model to be Turing machines, then this result holds when the
coefficients of the polynomials are rationals. One the other hand, if one considers a model of
computation that is appropriate for real number computation, like the one proposed by Blum,
Shub, and Smale [5], then the algorithm can handle even real coefficients.



Model-Checking Markov Chains in the Presence of Uncertainties 401

Lemma 1. x′s > 0 iff s ∈ S>0.

Lemma 2. The system of linear equations in (2) has a unique solution.

Lemma 3. x′s = 0 iff s ∈ S?no ∪ Sno.

Consider the following system of constraints.

x′
s = 0 iff xs = 0 for all s ∈ S (3)

where x′s are variables of (2) and xs are variables of (1).

Lemma 4. The system of linear equations in (1) and (2) has a unique solution given
that the constraints in (3) hold. Moreover, for this unique solution xs = ps(φ1 U φ2),
for all s ∈ S.

Note that the set of constraints (1), (2), and (3) can be written compactly as follows.

xs =

⎧⎨⎩
0 if s ∈ Sno

1 if s ∈ Syes∑
s′∈S P(s, s′)xs′ if s ∈ S?

x′
s =

⎧⎨⎩
0 if s ∈ Sno

1 if s ∈ Syes∑
s′∈S γP(s, s′)x′

s′ if s ∈ S?
(4)

δs > 0 xs = δsx
′
s

where for each s ∈ S, we introduce the variable δs, such that we can impose the con-
straint that xs = 0 iff x′s = 0. The satisfiability of the set of constraints (4) can be easily
reduced to checking if a formula with existential quantifiers belongs to the theory of re-
als. The constructed formula is linear in the size of the DTMC.

5 Model Checking UMC

In this section, we reduce the problem of model-checking a UMC to checking the feasi-
bility of a bilinear matrix inequality. (More details about bilinear matrix inequality can
found in [23].) In the non-trivial reduction, we introduce a number of auxiliary variables
to achieve the goal. Note that a simpler PSPACE algorithm, which avoids the extra aux-
iliary variables by guessing their values non-deterministically, is possible and is easy
to come up from our reduction. However, we believe that the following reduction is
important from the perspective of implementation in practice using algorithms to solve
bilinear matrix inequalities (BMIs).

Given a UMC I and a PCTL state formula φ, our goal is to check whether I |=
φ. In other words, for every M ∈ [I], M |= φ. Thus, to check whether I |= φ,
we check if there exists some M ∈ [I] such that M |= ¬φ. If such an M does
not exist, we conclude that I |= φ. We will view the problem of discovering whether
a M ∈ [I] satisfies ¬φ as problem of checking the feasibility of a set of bilinear
inequality constraints as follows. Each transition probability of the DTMC M that we
are searching for, will be a variable taking a value within the bounds. We will also have
variables denoting the satisfaction (or non-satisfaction) of each subformula at each state,
and variables denoting the probability of a path subformula being satisfied at each state.
Inequality constraints on these variables will ensure that they all have consistent values.
We now describe this construction formally.



402 K. Sen, M. Viswanathan, and G. Agha

Let us fix an UMC I=(S, sI , P̌, P̂, L) and a PCTL formulaφ. LetM=(S, sI ,P, L)
be an arbitrary Markov chain in [I].

For every pair of states s, s′ ∈ S, let the variable pss′ denote the transition proba-
bility from s to s′ in M, i.e., pss′ denotes P(s, s′). Since M is an arbitrary DTMC in
[I], by the definition of UMC, the following constraints hold: For every state s ∈ S,∑

s′∈S pss′ = 1 and for every pair of states s, s′ ∈ S, P̌(s, s′) ≤ pss′ ≤ P̂(s, s′).
Given any PCTL formula φ, let us define the set subfS(φ) (of state sub-formulas)

recursively as follows:
subfS(a) = {a} subfS(¬φ) = {¬φ} ∪ subfS(φ)

subfS(φ1 ∧ φ2) = {φ1 ∧ φ2} ∪ subfS(φ1) ∪ subfS(φ2) subfS(P��p(ψ)) = {P��p(ψ)} ∪ subfS(ψ)
subfS(φ1 U φ2) = subfS(φ1 ∧ ¬φ2) subfS(Xφ) = subfS(φ)

Given a state s ∈ S and any formula φ′ ∈ subfS(φ), either s |=M φ′ or s �|=M φ′.
For each s ∈ S and each φ′ ∈ subfS(φ), let the variable tφ

′
s be such that tφ

′
s = 1

iff s |=M φ′; and, tφ
′

s = 0 iff s �|=M φ′. Following the definition of the various
logical operators in PCTL, we can set up a set of constraints among these variables
such that for any M ∈ [I], the values taken by these variables is consistent with their
intended semantic interpretation. We introduce the following additional variables to
aid in setting up these constraints. For every state s ∈ S and φ′ ∈ subfS(φ), let the
auxiliary variables fφ′

s , and uφ′
s be such that tφ

′
s = 1 ⇐⇒ fφ′

s = 0 ⇐⇒ uφ′
s = 1

and tφ
′

s = 0 ⇐⇒ fφ′
s = 1 ⇐⇒ uφ′

s = −1 Clearly, tφ
′

s , fφ′
s , and uφ′

s are related by
the following set of constraints:

tφ′
s fφ′

s = 0 tφ′
s + fφ′

s = 1 2tφ′
s = uφ′

s + 1

For every formula φ′ ∈ subfS(φ) of the form P��p(ψ) and for every state s ∈ S, let
pψ

s be the variable such that pψ
s denotes Prob{π ∈ Path(s) | π |=M ψ} in M.

For each state s ∈ S and for each φ′ ∈ subfS(φ) exactly one of the following
constraints hold depending on the form of φ′:

tφ′
s = 1 if φ′ = a ∈ L(s) tφ′

s = 0 if φ′ = a �∈ L(s)
tφ′
s = 1− tφ1

s if φ′ = ¬φ1 tφ1
s tφ2

s = tφ′
s if φ′ = φ1 ∧ φ2

uφ′
s pψ

s ≥ uφ′
s p + δfφ′

s if φ′ = P≥p(ψ) uφ′
s pψ

s ≥ uφ′
s p + δtφ′

s if φ′ = P>p(ψ)
uφ′

s pψ
s + δfφ′

s ≤ uφ′
s p if φ′ = P≤p(ψ) uφ′

s pψ
s + δtφ′

s ≤ uφ′
s p if φ′ = P<p(ψ)

where δ is slack variable that is required to be strictly greater than 0.
Note that the above constraints do not reflect the fact that for each φ′ ∈ subfS(φ)

of the form P��p(ψ), pψ
s denotes Prob{π ∈ Path(s) | π |=M ψ}. To set up such

constraints, we introduce the set subfP(φ) (of path sub-formulas) as follows:

subfP(a) = ∅ subfP(¬φ) = subfP(φ)
subfP(φ1 ∧ φ2) = subfP(φ1) ∪ subfP(φ2) subfP(P��p(ψ)) = {ψ} ∪ subfP(ψ)
subfP(φ1 U φ2) = subfP(φ1) ∪ subfP(φ2) subfP(Xφ) = subfP(φ)

Thus for all sub-formula of φ of the form P��p(ψ), subfP(φ) contains ψ.
For any ψ ∈ subfP(φ) of the form Xφ1 and for each s ∈ S the following constraint

holds:
pψ

s =
∑
s′∈S

pss′ tφ1
s′



Model-Checking Markov Chains in the Presence of Uncertainties 403

For each ψ ∈ subfS(φ) of the form φ1 U φ2 and s ∈ S the following constraints
hold.

pψ
s = tφ2

s + tφ1∧¬φ2
s wψ

s wψ
s =

∑
s′∈S

pss′pψ
s

As in simple DTMC, if we consider the above constraints only, then we may not have
unique solution for certain pψ

s . Therefore, we fix a γ such that 0 < γ < 1. Then, as in
simple DTMC model-checking, for each ψ ∈ subfP(φ) of the form φ1 U φ2 and s ∈ S,
we introduce the variables p

′ψ
s and w

′ψ
s , such that the following constraints hold.

p
′ψ
s = tφ2

s + tφ1∧¬φ2
s w

′ψ
s w

′ψ
s = γ

∑
s′∈S

pss′p
′ψ
s

We want pψ
s = 0 if p

′ψ
s = 0. To ensure this, for each ψ ∈ subfP(φ) of the form

φ1 U φ2 and s ∈ S, we introduce the auxiliary variable δψ
s and ensure that the following

constraint hold.

δψ
s > 0 pψ

s = δψ
s p

′ψ
s

Let V (I, φ) = {δ} ∪
⋃

s,s′∈S{pss′} ∪
⋃

s∈S,φ′∈subfS(φ){tφ
′

s , f
φ′
s , u

φ′
s } ∪⋃

s∈S,ψ∈subfP(φ){pψ
s , w

ψ
s , p

′ψ
s , w

′ψ
s , δ

ψ
s } denote the set of variables over which the

above constraints are described and let C(I, φ) denote the above set of constraints.

Lemma 5. For every solution I : V (I, φ) → R of C(I, φ), there exists a DTMC M =
(S, sI ,P, L) ∈ [I] such that the following holds:

1. I(pss′) = P(s, s′) for any s, s′ ∈ S
2. tφ

′
s , f

φ′
s ∈ {0, 1} and uφ′

s ∈ {−1, 1} for any s ∈ S and φ′ ∈ subfS(φ)
3. tφ

′
s = 1 ∧ fφ′

s = 0 ∧ uφ′
s = 1 iff s |=M φ′ for any s ∈ S and φ′ ∈ subfS(φ)

4. tφ
′

s = 0 ∧ fφ′
s = 1 ∧ uφ′

s = −1 iff s |=M φ′ for any s ∈ S and φ′ ∈ subfS(φ)
5. pψ

s = Prob{π ∈ Path(s) | π |=M ψ} for any ψ ∈ subfP(φ)

The proof follows from the observations made while setting up the constraints. An
immediate consequence of the Lemma 5 is the following theorem.

Theorem 1. If there exists a solution I of C(I, φ) such that I(tφsI
) = 1, then there

exists an M ∈ [I] such that M |= φ.

In order to check if I |= φ, the model checking algorithm sets up the constraints
C(I,¬φ) and checks its feasibility. Clearly, checking the feasibility of C(I,¬φ) is
equivalent to checking if a sentence with existential quantifiers is valid for the reals;
the size of the sentence is polynomial in the size of the UMC. However, the constraints
C(I,¬φ) are bilinear constraints, and we need to satisfy the conjunction of all these
constraints (not an arbitrary boolean function). The feasibility of such constraints can
be more efficiently checked viewing them as bilinear matrix inequalities (BMIs) for
which algorithms [10, 9] and tools [16] have been developed. (More details can seen
in [23].) We also observe that to prove that the model checking problem can be solved
in PSPACE, we could have constructed a simpler set of constraints by first guessing the
values of the variables tφ

′
s , u

φ′
s , and fφ′

s for the subformulas φ′, and then solving the



404 K. Sen, M. Viswanathan, and G. Agha

constraints resulting from those guesses; since NPSPACE = PSPACE, we can obtain
a deterministic algorithm from this. However, we believe that in practice solving this
single BMI presented here will be more efficient than solving the exponentially many
simpler BMIs that this alternative approach would yield.

5.1 Complexity of Model-Checking UMC

We showed that the model-checking problem for UMC can be reduced to checking the
validity of a formula in the existential theory of the reals. Therefore, the model-checking
problem of UMC is in PSPACE.

The model checking problem for UMCs is however intractable: we can reduce both
the satisfiability and validity of propositional boolean formulas to the model checking
problem (details in [23]).

Theorem 2. The model checking problem for UMC with respect to PCTL is NP-hard
and co-NP-hard.

6 Model-Checking IMDP

We consider the problem of model checking IMDPs in this section. We will solve the
problem by showing that we can reduce IMDP model checking to model checking
(classical) a Markov Decision Process (MDP) [4, 20]. Before presenting this reduction
we recall some basic properties of the feasible solutions of a linear program and the
definition of an MDP.

6.1 Linear Programming

Consider an IMDP I = (S, sI , P̌, P̂, L). For a given s ∈ S, let IE(s) be the following
set of inequalities over the variables {pss′ | s′ ∈ S}:∑

s′∈S

pss′ = 1 P̌(s, s′) ≤ pss′ ≤ P̂(s, s′) for all s′ ∈ S

Definition 4. A map θs : S → [0, 1] is called a basic feasible solution (BFS) to the
above set of inequalities IE(s) iff {pss′ = θs(s′) | s′ ∈ S} is a solution of IE(s)
and there exists a set S′ ⊆ S such that |S′| ≥ |S| − 1 and for all s′ ∈ S′ either
θs(s′) = P̌(s, s′) or θs(s′) = P̂(s, s′).

LetΘs be the set of all BFS of IE(s). The set of BFS of linear program have the special
property that every other feasible solution can be expressed as a linear combination of
basic feasible solutions. This is the content of the next proposition.

Proposition 1. Let {pss′ = p̄ss′ | s′ ∈ S} be some solution of IE(s). There there are
0 ≤ αθs ≤ 1 for all θs ∈ Θs, such that

p̄ss′ =
∑

θs∈Θs αθsθs(s′) for all s′ ∈ S and
∑

s∈S αθs = 1

Lemma 6. The number of basic feasible solutions of IE(s) in the worst case can be
O(|S|2|S|−1).



Model-Checking Markov Chains in the Presence of Uncertainties 405

6.2 Markov Decision Processes (MDP)

A Markov decision process (MDP) is a Markov chain that has non-deterministic tran-
sitions, in addition to the probabilistic ones. In this section we formally introduce this
model along with some well-known observations about them.

Definition 5. If S is the set of states of a system, a next-state probability distribution
is a function μ : S → [0, 1] such that

∑
s∈S μ(s) = 1. For s ∈ S, p(s) represents the

probability of making a direct transition to s from the current state.

Definition 6. A Markov decision Process (MDP) is a 4-tuple D = (S, sI , τ, L), where

1. S is a finite set of states,
2. sI ∈ S is the initial state,
3. L : S → 2AP is a labeling function that maps states to sets of atomic propositions

from a set AP,
4. τ is a function which associates to each s ∈ S a finite set τ(s) = {μs

1, . . . , μ
s
ks
} of

next-state probability distributions for transitions from s.

A path π in an MDP D = (S, sI , τ, L) is a non-empty sequence of the form s0
μ1→

s1
μ2→ . . ., where si ∈ S, μi+1 ∈ τ(si), and μi+1(si+1) > 0 for all i ≥ 0. A path can be

either finite or infinite. We use πfin to denote a finite path. Let last(πfin) be the last state
in the finite path πfin. As in DTMC, we denote the ith state in a path π by π[i] = si.
We let Path(s) and Pathfin(s) be the set of all infinite and finite paths, respectively,
starting at state s. To associate a probability measure with the paths, we resolve the
non-deterministic choices by a randomized adversary, which is defined as follows:

Definition 7. A randomized adversary A of an MDP D is a function mapping every
finite path πfin of D and an element of the set τ(last(πfin)) to [0, 1], such that for a
given finite path πfin of D,

∑
μ∈τ(last(πfin))A(πfin, μ) = 1. Let AD denote the set of

all possible randomized adversaries of the MDP D. Let PathA(s) denote the subset of
Path(s) which corresponds to an adversary A.

The behavior of an MDP under a given randomized adversary is purely probabilistic.
If an MDP has evolved to the state s after starting from the state sI and following the
finite path πfin, then it chooses the next-state distribution μs ∈ τ(s) with probability
A(πfin, μ

s). Then it chooses the next state s′ with probability μs(s′). Thus the proba-
bility that a direct transition to s′ takes place is

∑
μs∈τ(s)A(πfin, μ

s)μs(s′). Thus as for

IMDPs, one can define DTMC DA that captures the probabilistic behavior of MDP D
under adversary A and also associate a probability measure on execution paths. Given
a MDP D and a PCTL formula ϕ, we can define when D |= ϕ in a way analogous to
the IMDPs (see Figure 2).

6.3 The Reduction

We are now ready to describe the model checking algorithm for IMDPs. Consider an
IMDP I = (S, sI , P̌, P̂, L). Recall from Section 6.1, we can describe the transition
probability distributions from state s that satisfy the range constraints as the feasible



406 K. Sen, M. Viswanathan, and G. Agha

solutions of the linear program IE(s). Furthermore, we denote by Θs is the set of all
BFS of IE(s). Define the following MDP D = (S′, s′I , τ, L

′) where S′ = S, s′I = sI ,
L′ = L, and for all s ∈ S, τ(s) = Θs. Observe that D is exponentially sized in I, since
τ(s) is exponential (see Lemma 6).

The main observation behind the reduction is that the MDP D “captures” all the
possible behaviors of the IMDP I. This is the formal content of the next proposition.

Proposition 2. For any adversary A for I, we can define a randomized adversary A′

such that ProbI
A

s = ProbD
A′

s for every s, where ProbXA

s is measure on paths from s
defined by machine X under A. Similarly for every adversary A for D, we can find an
adversary A′ for I that defines the same probability measure on paths.

Proof. Consider an adversaryA for I. For a path πfin letA(πfin)=μ∈Steps(last(πfin)).
We know from Proposition 1, that there are αθs for θs ∈ Θs such that

μ(s′) =
∑

θs∈Θs αθsθs(s′) for all s′ ∈ S and
∑

s∈S αθs = 1

We now defineA′(πfin, θ
s) = αθs . It is straightforward to see that ProbI

A

s = ProbD
A′

s .
The converse direction also can be proved similarly. "#

An important consequence of the above observation is the following main theorem.

Theorem 3. For any PCTL formula ϕ, I |= ϕ iff D |= ϕ.

Thus, in order to model check IMDP I, we can model check the MDP D for which
algorithms are known [4, 20]. The algorithms for MDP run in time (and space) which is
polynomial in the size of the MDP. Thus, if we directly model check D we get an EXP-
TIME model checking algorithm for I. However, we can improve this to get a PSPACE
algorithm. The reason for this is that it is known that as far as model checking MDPs is
concerned, we can restrict our attention to deterministic, memoryless adversaries, i.e.,
adversaries that always pick the same single non-deterministic choice whenever a state
is visited.

Proposition 3 ([4, 20]). Let Adet be the set of deterministic, memoryless adversaries
for MDP D, i.e., for all A ∈ Adet, A(s, μ) = 1 for exactly one μ ∈ τ(s). Consider a
PCTL formula ϕ = P��p(ψ) such that the truth or falsity of every subformula of ψ in
every state of D is already determined. Then D |= ϕ iff DA |= ϕ for all A ∈ Adet.

For every subformula of the form P��p(ψ), our model checking algorithm, will model
check each of the DTMCs DA, where A is a deterministic, memoryless adversary. This
will give us the desired PSPACE algorithm.

Theorem 4. The model-checking algorithm for IMDP is in PSPACE.

Proof. From Lemma 6, we know that the total number of BFSs is O(|S|2|S|−1). Hence
the total number of DTMCs DA for A ∈ Adet is O(|S||S|2|S|2−|S|). By reusing space
for every subformula P��p(ψ), all of these model checking problems can be solved in
PSPACE. "#



Model-Checking Markov Chains in the Presence of Uncertainties 407

6.4 Iterative Algorithm

The above PSPACE algorithm is computationally expensive for large IMDPs. There-
fore, we propose an alternative iterative algorithm motivated by a similar algorithm
in [2].

The iterative model checking algorithm for PCTL over IMDPs works exactly as for
DTMCs with the exception of handling of P��p(ψ). For these, we need to check if
pA

s (ψ) = ProbA
s ({π ∈ PathA(s) | π |= ψ}) satisfies the bound #$ p for all adver-

saries A ∈ AI . Let pmax
s (ψ) and pmin

s (ψ) be the minimum or maximum probability,
respectively, for all adversaries A ∈ AI , i.e.,

pmax
s (ψ) def= supA∈AI [pA

s (ψ)], pmin
s (ψ) def= infA∈AI [pA

s (ψ)].

Then if #$∈ {<,≤},

Sat(P��p(ψ)) = {s ∈ S | pmax
s (ψ) �� p}

and if #$∈ {>,≥},
Sat(P��p(ψ)) = {s ∈ S | pmin

s (ψ) �� p}

We next describe how to compute the values pmax
s (ψ) and pmin

s (ψ) for ψ = Xφ and
ψ = φ1U φ2. Recall thatΘs is the set of all BFS of IE(s). It can be shown following [2]

that pmax
s = limn→∞p

max(n)
s where:

pmax(n)
s =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if s ∈ Syes

0 if s ∈ Sno

0 if s ∈ S? and n = 0
max{p̄ss′ |s′∈S}∈Θs

{∑
s′∈S p̄ss′ .p

max(n−1)
s′

}
if s ∈ S? and n > 0

and pmin
s = limn→∞p

min(n)
s where:

pmin(n)
s =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if s ∈ Syes

0 if s ∈ Sno

0 if s ∈ S? and n = 0
min{p̄ss′ |s′∈S}∈Θs

{∑
s′∈S p̄ss′ .p

min(n−1)
s′

}
if s ∈ S? and n > 0

Note that although the size of Θs can be O(|S|2|S|−1) (by Lemma 6), the computa-
tion of the expressions

max{p̄ss′ |s′∈S}∈Θs

{∑
s′∈S

p̄ss′ .p
max(n−1)
s′

}
or min{p̄ss′ |s′∈S}∈Θs

{∑
s′∈S

p̄ss′ .p
min(n−1)
s′

}
(5)

can be done in O(|S|) time as follows:



408 K. Sen, M. Viswanathan, and G. Agha

We consider the ordering s1, s2, . . . , s|S| of the states of S such that

p
max(n−1)
s1 , p

max(n−1)
s2 , . . . , p

max(n−1)
s|S| is in descending order. Then the following result

holds.

Lemma 7.

a) There exists an 1 ≤ i ≤ |S| such that {P̂(s, s1), . . . , P̂(s, si−1), q, P̌(s, si+1),
. . . , P̌(s, s|S|)} is a BFS of IE(s), where q = 1 −

∑
1≤j≤(i−1) P̂(s, sj) −∑

(i+1)≤j≤|S| P̌(s, sj).

b) and for that i

max{p̄ss′ |s′∈S}∈Θs

{∑
s′∈S

p̄ss′ .p
max(n−1)
s′

}
= pmax(n−1)

si
.q

+
∑

1≤j≤(i−1)

pmax(n−1)
sj

.P̂(s, sj) +
∑

(i+1)≤j≤|S|
pmax(n−1)

sj
.P̌(s, sj)

Proof.
a) Let i0 be defined as follows:

i0 = min{i |
i∑

j=1

P̂(s, sj) +
|S|∑

j=i+1

P̌(s, sj) ≥ 1}

Observe that such an i0 must exist if the IMDP is well-defined. Consider the solution
{P̂(s, s1), . . . , P̂(s, si0−1), q, P̌(s, si0+1), . . . , P̌(s, s|S|)} where q = 1 −∑

1≤j≤(i0−1) P̂(s, sj) −
∑

(i0+1)≤j≤|S| P̌(s, sj). This solution is a BFS of IE(s).

b) Let {p̄ss1 , . . . , p̄ss|S|} be any solution (it may be BFS or not) of IE(s). Then by
simple algebraic simplification it can be shown that

X

1≤j≤(i−1)

p
max(n−1)
sj

.P̂(s, sj)+p
max(n−1)
si

.q+
X

(i+1)≤j≤|S|

p
max(n−1)
sj

.P̌(s, sj) ≥
X

s′∈S

p̄ss′ .p
max(n−1)

s′

given the fact that pmax(n−1)
s1 ≥ p

max(n−1)
s2 ≥ . . . ≥ p

max(n−1)
s|S| , and P̌(s, s′) ≤ p̄ss′ ≤

P̂(s, s′) for all s′ ∈ S. "#

Similarly, if we consider the ordering s1, s2, . . . , s|S| of the states of S such that

p
min(n−1)
s1 , p

min(n−1)
s2 , . . . , p

min(n−1)
s|S| is in ascending order, then the above Lemma

holds with max replaced by min.
The expressions (5) can be computed in O(|S|) time by finding an i as in Lemma 7.

6.5 Lower Bound for IMDP Model-Checking

We can show that the model checking problem for IMDPs is P-hard. The result follows
from observing that the problem of determining the truth value of propositional logic
formula under an assignment (which is known to be P-complete) can be reduced to the
PCTL model checking problem of DTMCs; since DTMCs are special IMDPs, the result
follows. The details can be found in [23].



Model-Checking Markov Chains in the Presence of Uncertainties 409

7 Conclusion

We have investigated the PCTL model checking problem for two semantic interpreta-
tions of IDTMCs, namely UMC and IMDP. We proved the upper bounds and the lower
bounds on the complexity of the model checking problem for these models. Our bounds
however are not tight. Finding tight lower and upper bounds for these model-checking
problems is an interesting open problem.

Acknowledgment

We would like to thank anonymous referees and Timo Latvala for providing valuable
comments. This work is supported in part by the ONR Grant N00014-02-1-0715, the
NSF Grants NSF CNS 05-09321, NSF CCF 04-29639, NSF CCF 04-48178, and the
Motorola Grant Motorola RPF #23.

References

1. A. Aziz, V. Singhal, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. It usually works: The
temporal logic of stochastic systems. In Proc. of Computer Aided Verification, volume 939,
pages 155–165, 1995.

2. C. Baier. On algorithmic verification methods for probabilistic systems. Habilitation Thesis.
Fakultät für Mathematik and Informatik, Universität Mannheim, 1998.

3. C. Baier and M. Z. Kwiatkowska. Model checking for a probabilistic branching time logic
with fairness. Distributed Computing, 11(3):125–155, 1998.

4. A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic systems.
In Proceedings of 15th Conference on the Foundations of Software Technology and Theoret-
ical Computer Science (FSTTCS’95), volume 1026 of LNCS.

5. L. Blum, M. Shub, and S. Smale. On a theory of computation and complexity over real num-
bers: NP-completeness, recursive functions and universal machines. Bulletin of the American
Mathematical Society, 21:1–46, 1989.

6. J. Canny. Some algebraic and geometric computations in PSPACE. In 20th ACM Symposium
on Theory of Computing (STOC’88), pages 460–467, 1988.

7. C. Courcoubetis and M. Yannakakis. Markov decision processes and regular events. In
Proceedings of the seventeenth international colloquium on Automata, languages and pro-
gramming, pages 336–349, 1990.

8. C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification. Journal
of ACM, 42(4):857–907, 1995.

9. M. Fukuda and M. Kojima. Branch-and-cut algorithms for the bilinear matrix inequality
eigenvalue problem. Comput. Optim. Appl., 19(1):79–105, 2001.

10. K. C. Goh, M. G. Safonov, and G. P. Papavassilopoulos. Global optimization for the biaffine
matrix inequality problem. Journal of Global Optimization, 7:365–380, 1995.

11. H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal Aspects
of Computing, 6(5):512–535, 1994.

12. B. Jonsson and K. G. Larsen. Specification and refinement of probabilistic processes. In
Proceedings of the IEEE Symposium on Logic in Computer Science, pages 266–277, 1991.

13. J. Kemeny, J. Snell, and A. Knapp. Denumerable Markov chains. Springer, 1976.
14. I. O. Kozine and L. V. Utkin. Interval-valued finite markov chains. Reliable Computing,

8(2):97–113, 2002.



410 K. Sen, M. Viswanathan, and G. Agha

15. V. P. Kuznetsov. Interval statistical models. Radio and Communication, 1991.
16. PENbmi. http://www.penopt.com/.
17. M. Puterman. Markov decision processes: discrete stochastic dynamic programming. Wiley,

New York, 1994.
18. J. Renegar. A faster pspace algorithm for deciding the existential theory of the reals. In 29th

Annual IEEE Symposium on Foundations of Computer Science, pages 291–295, 1988.
19. J. Rutten, M. Kwiatkowska, G. Norman, and D. Parker. Mathematical Techniques for Analyz-

ing Concurrent and Probabilistic Systems, volume 23 of CRM Monograph Series. American
Mathematical Society, 2004.

20. R. Segala. Modeling and Verification of Randomized Distributed Real-Time Systems. PhD
thesis, MIT, 1995.

21. R. Segala and N. A. Lynch. Probabilistic simulations for probabilistic processes. In Interna-
tional Conference on Concurrency Theory, pages 481–496, 1994.

22. K. Sen, M. Viswanathan, and G. Agha. Statistical model checking of black-box probabilistic
systems. In 16th conference on Computer Aided Verification (CAV’04), volume 3114 of
LNCS, pages 202–215, 2004.

23. K. Sen, M. Viswanathan, and G. Agha. Model-checking markov chains in the presence of
uncertainties. Technical Report UIUCDCS-R-2006-2677, UIUC, 2006.

24. O. Toker and H. Özbay. On the NP-hardness of solving bilinear matrix in equalities and
simultaneous stabilization with static output feedback. In Proc. of American Control Con-
ference, 1995.

25. M. Y. Vardi. Automatic verification of probabilistic concurrent finite-state programs. In 26th
Annual Symposium on Foundations of Computer Science, pages 327–338. IEEE, 1985.

26. P. Walley. Measures of uncertainty in expert systems. Artificial Intelligence, 83:1–58, 1996.



Safety Metric Temporal Logic Is Fully Decidable

Joël Ouaknine and James Worrell

Oxford University Computing Laboratory, UK
{joel, jbw}@comlab.ox.ac.uk

Abstract. Metric Temporal Logic (MTL) is a widely-studied real-time
extension of Linear Temporal Logic. In this paper we consider a frag-
ment of MTL, called Safety MTL, capable of expressing properties such
as invariance and time-bounded response. Our main result is that the
satisfiability problem for Safety MTL is decidable. This is the first posi-
tive decidability result for MTL over timed ω-words that does not involve
restricting the precision of the timing constraints, or the granularity of
the semantics; the proof heavily uses the techniques of infinite-state ver-
ification. Combining this result with some of our previous work, we con-
clude that Safety MTL is fully decidable in that its satisfiability, model
checking, and refinement problems are all decidable.

1 Introduction

Timed automata and real-time temporal logics provide the foundation for sev-
eral well-known and mature tools for verifying timed and hybrid systems [21].
Despite this success in practice, certain aspects of the real-time theory are no-
tably less well-behaved than in the untimed case. In particular, timed automata
are not determinisable, and their language inclusion problem is undecidable [4].
In similar fashion, the model-checking problems for (linear-time) real-time logics
such as Metric Temporal Logic and Timed Propositional Temporal Logic are also
undecidable [5, 6, 17].

For this reason, much interest has focused on fully decidable real-time speci-
fication formalisms. We explain this term in the present context as follows. We
represent a computation of a real-time system as a timed word : a sequence of
instantaneous events, together with their associated timestamps. A specification
denotes a timed language: a set of allowable timed words. Then a formalism (a
logic or class of automata) is fully decidable if it defines a class of timed lan-
guages that is closed under finite unions and intersections and has a decidable
language-inclusion problem1. Note that language emptiness and universality are
special cases of language inclusion.

In this paper we are concerned in particular with Metric Temporal Logic
(MTL), one of the most widely known real-time logics. MTL is a variant of
1 This phrase was coined in [12] with a slightly more general meaning: a specification

formalism closed under finite unions, finite intersections and complementation, and
for which language emptiness is decidable. However, since the main use of comple-
mentation in this context is in deciding language inclusion, we feel that our definition
is in the same spirit.

H. Hermanns and J. Palsberg (Eds.): TACAS 2006, LNCS 3920, pp. 411–425, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



412 J. Ouaknine and J. Worrell

Linear Temporal Logic in which the temporal operators are replaced by time-
constrained versions. For example, the formula �[0,5]ϕ expresses that ϕ holds
for the next 5 time units. Until recently, the only positive decidability results for
MTL involved placing syntactic restrictions on the precision of the timing con-
straints, or restricting the granularity of the semantics. For example, [5, 12, 19]
ban punctual timing constraints, such as ♦=1ϕ (ϕ is true in exactly one time
unit). Semantic restrictions include adopting an integer-time model, as in [6, 11],
or a bounded-variation dense-time model, as in [22]. These restrictions guaran-
tee that a formula has a finite tableau: in fact they yield decision procedures
for model checking and satisfiability that use exponential space in the size of
the formula. However, both the satisfiability and model checking problems are
undecidable in the unrestricted logic, cf. [5, 17].

The main contribution of this paper is to identify a new fully decidable frag-
ment of MTL, called Safety MTL. Safety MTL consists of those MTL formulas
which, when expressed in negation normal form, are such that the interval I
is bounded in every instance of the constrained until operator UI and the con-
strained eventually operator ♦I . For example, the time-bounded response for-
mula �(a→ ♦=1b) (every a-event is followed after one time unit by a b-event) is
in Safety MTL, but not �(a→ ♦(1,∞)b). Because we place no limit on the preci-
sion of the timing constraints or the granularity of the semantics, the tableau of a
Safety MTL formula may have infinitely many states. However, using techniques
from infinite-state verification, we show that the restriction to safety properties
facilitates an effective analysis.

In [16] we already gave a procedure for model checking Alur-Dill timed au-
tomata against Safety MTL formulas. As a special case we obtained the de-
cidability of the validity problem for Safety MTL (‘Is a given formula satisfied
by every timed word?’). The two main contributions of the present paper com-
plement this result, and show that Safety MTL is fully decidable. We show the
decidability of the satisfiability problem (‘Is a given Safety MTL formula satisfied
by some timed word?’) and, more generally, we claim decidability of the refine-
ment problem (‘Given two Safety MTL formulas ϕ1 and ϕ2, does every timed
word that satisfies ϕ1 also satisfy ϕ2?’). Note that Safety MTL is not closed
under negation, so neither of these results follow trivially from the decidability
of validity.

Closely related to MTL are timed alternating automata, introduced in [15, 16].
Both cited works show that the language-emptiness problem for one-clock timed
alternating automata over finite timed words is decidable. This result is the
foundation of the above-mentioned model-checking procedure for Safety MTL.
The procedure involves translating the negation of a Safety MTL formula ϕ into
a one-clock timed alternating automaton over finite words that accepts all the
bad prefixes of ϕ. (Every infinite timed word that fails to satisfy a Safety MTL
formula ϕ has a finite bad prefix, that is, a finite prefix none of whose extensions
satisfies ϕ.) In contrast, the results in the present paper involve considering
timed alternating automata over infinite timed words.



Safety Metric Temporal Logic Is Fully Decidable 413

Our main technical contribution is to show the decidability of language-
emptiness over infinite timed words for a class of timed alternating automata
rich enough to capture Safety MTL formulas. A key restriction is that we only
consider automata in which every state is accepting. We have recently shown
that language emptiness is undecidable for one-clock alternating automata with
Büchi or even weak parity acceptance conditions [17]. Thus the restriction to
safety properties is crucial.

As in [16], we make use of the notion of a well-structured transition system
(WSTS) [9] to give our decision procedure. However, whereas the algorithm in
[16] involved reduction to a reachability problem on a WSTS, here we reduce
to a fair nontermination problem on a WSTS. The fairness requirement is con-
nected to the assumption that timed words are non-Zeno. Indeed, we remark
that our results provide a rare example of a decidable nontermination problem
on an infinite-state system with a nontrivial fairness condition. For comparison,
undecidability results for nontermination under various different fairness condi-
tions for Lossy Channel Systems, Timed Networks, and Timed Petri Nets can
be found in [2, 3].

Related Work. An important distinction among real-time models is whether one
records the state of the system of interest at every instant in time, leading to an
interval semantics [5, 12, 19], or whether one only sees a countable sequence of in-
stantaneous events, leading to a point-based or trace semantics [4, 6, 7, 10, 11, 22].
In the interval semantics the temporal operators of MTL quantify over the whole
time domain, whereas in the point-based semantics they quantify over a countable
set of positions in a timed word. For this reason the interval semantics is more nat-
ural for reasoning about states, whereas the point-based semantics is more natural
for reasoning about events. In this paper we adopt the latter.

MTL and Safety MTL do not differ in terms of their decidability in the interval
semantics: Alur, Feder, and Henzinger [5] showed that the satisfiability problem
for MTL is undecidable, and it is easy to see that their proof directly carries over
to Safety MTL. We pointed out in [16] that the same proof does not apply in the
point-based semantics, and we recently gave a different argument to show that
MTL is undecidable in this setting. However, our proof crucially uses a ‘liveness
formula’ of the form �♦p, and it does not apply to Safety MTL. The results in
this paper confirm that by excising such formulas we obtain a fully decidable
logic in the point-based setting.

2 Metric Temporal Logic

In this section we define the syntax and semantics of Metric Temporal Logic
(MTL). As discussed above, we adopt a point-based semantics over timed words.

A time sequence τ = τ0τ1τ2 . . . is an infinite nondecreasing sequence of time
values τi ∈ R≥0. Here it is helpful to adopt the convention that τ−1 = 0. If
{τi : i ∈ N} is bounded then we say that τ is Zeno, otherwise we say that
τ is non-Zeno. A timed word over finite alphabet Σ is a pair ρ = (σ, τ), where
σ = σ0σ1 . . . is an infinite word overΣ and τ is a time sequence. We also represent



414 J. Ouaknine and J. Worrell

a timed word as a sequence of timed events by writing ρ = (σ0, τ0)(σ1, τ1) . . ..
Finally, we write TΣω for the set of non-Zeno timed words over Σ.

Definition 1. Given an alphabet Σ of atomic events, the formulas of MTL are
built up from Σ by monotone Boolean connectives and time-constrained versions
of the next operator ©, until operator U and the dual until operator Ũ as
follows:

ϕ ::= � | ⊥ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | a | ©I ϕ | ϕ1 UI ϕ2 | ϕ1 ŨI ϕ2

where a ∈ Σ, and I ⊆ R≥0 is an open, closed, or half-open interval with end-
points in N ∪ {∞}.

Safety MTL is the fragment of MTL obtained by requiring that the interval I
in each ‘until’ operator UI have finite length. (Note that no restriction is placed
on the dual until operators ŨI or next operators ©I .)

Additional temporal operators are defined using the usual conventions. We have
the constrained eventually operator ♦Iϕ ≡ � UI ϕ, and the constrained al-
ways operator �I ϕ ≡ ⊥ ŨI ϕ. We use pseudo-arithmetic expressions to denote
intervals. For example, the expression ‘= 1’ denotes the interval [1, 1]. In case
I = [0,∞) we simply omit the annotation I on temporal operators. Finally,
given a ∈ Σ, we write ¬a for

∨
b∈Σ\{a} b.

Definition 2. Given a timed word ρ = (σ, τ) and an MTL formula ϕ, the satis-
faction relation (ρ, i) |= ϕ (read ρ satisfies ϕ at position i) is defined as follows:

– (ρ, i) |= a iff σi = a
– (ρ, i) |= ϕ1 ∧ ϕ2 iff (ρ, i) |= ϕ1 and (ρ, i) |= ϕ2
– (ρ, i) |= ϕ1 ∨ ϕ2 iff (ρ, i) |= ϕ1 or (ρ, i) |= ϕ2
– (ρ, i) |= ©I ϕ iff τi+1 − τi ∈ I and (ρ, i+ 1) |= ϕ
– (ρ, i) |= ϕ1 UI ϕ2 iff there exists j � i such that (ρ, j) |= ϕ2, τj − τi ∈ I, and

(ρ, k) |= ϕ1 for all k with i � k < j.
– (ρ, i) |= ϕ1 ŨI ϕ2 iff for all j � i such that τj − τi ∈ I, either (ρ, j) |= ϕ2 or

there exists k with i � k < j and (ρ, k) |= ϕ1.

We say that ρ satisfies ϕ, denoted ρ |= ϕ, if (ρ, 0) |= ϕ. The language of ϕ is
the set L(ϕ) = {ρ ∈ TΣω : ρ |= ϕ} of non-Zeno words that satisfy ϕ.

Example 1. Consider an alphabet Σ = {reqi, aq i, rel i : i = X,Y } denoting the
actions of two processes X and Y that request, acquire, and release a lock. The
following formulas are all in Safety MTL.

– �(aqX → �<3¬aqY ) says that Y cannot acquire the lock less than 3 seconds
after X acquires the lock.

– �(aqX → relX Ũ<3 ¬aqY ) says that Y cannot acquire the lock less than 3
seconds after X acquires the lock, unless X first releases it.

– �(reqX → ♦<2(aqX ∧♦=1relX)) says that whenever X requests the lock, it
acquires the lock within 2 seconds and releases it exactly one second later.



Safety Metric Temporal Logic Is Fully Decidable 415

3 Timed Alternating Automata

In this paper, following [15, 16], a timed alternating automaton is an alternating
automaton augmented with a single clock variable2.

We use x to denote the single clock variable of an automaton. A clock con-
straint is a term of the form x #$ c, where c ∈ N and #$ ∈ {<,�,�, >}. Given a
set S of locations, Φ(S) denotes the set of formulas generated from S and the set
of clock constraints by positive Boolean connectives and variable binding. Thus
Φ(S) is generated by the grammar

ϕ ::= s | x #$ c | � | ⊥ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | x.ϕ ,

where s ∈ S and x.ϕ binds x to 0 in ϕ.
In the definition of a timed alternating automaton, below, the transition func-

tion δ maps each location s ∈ S and event a ∈ Σ to an expression in Φ(S). Thus
alternating automata allow two modes of branching: existential branching, rep-
resented by disjunction, and universal branching, represented by conjunction.
Variable binding corresponds to the automaton resetting x to 0. For example,
δ(s, a) = (x < 1) ∧ s ∧ x.t means that when the automaton is in location s with
clock value less than 1, it can make a simultaneous a-labelled transition to loca-
tions s and t, resetting the clock as it enters t.

Definition 3. A timed alternating automaton is a tuple A = (Σ,S, s0, δ), where

– Σ is a finite alphabet
– S is a finite set of locations
– s0 ∈ S is the initial location
– δ : S ×Σ → Φ(S) is the transition function.

We consider all locations of A to be accepting.

The following example illustrates how a timed alternating automaton accepts a
language of timed words.

Example 2. We define an automatonA over the alphabetΣ = {a, b} that accepts
all those timed words in which every a-event is followed one time unit later by a
b-event. A has three locations {s, t, u}, with s the initial location. The transition
function δ is given by the following table:

a b
s s ∧ x.t s
t t ∧ (x � 1) (t ∧ (x < 1)) ∨ (u ∧ (x = 1))
u u u

A run of A starts in location s. Every time an a-event occurs, the automaton
makes a simultaneous transition to both s and t, thus opening up a new thread
2 Virtually all decision problems, and in particular language emptiness, are undecid-

able for alternating automata with more than one clock.



416 J. Ouaknine and J. Worrell

of computation. The automaton resets a fresh copy of clock x when it moves
from location s to t, and in location t it only performs transitions as long as the
clock does not exceed one. Therefore if location t is entered at some point in a
non-Zeno run, it must eventually be exited. Inspecting the transition table, we
see that the only way for this to happen is if a b-event occurs exactly one time
unit after the a-event that spawned the t-state.

Next we proceed to the formal definition of a run.
Define a tree to be a directed acyclic graph (V,E) with a distinguished root

node such that every node is reachable by a unique finite path from the root. It
is clear that every tree admits a stratification, level : V → N, such that v E v′

implies level(v′) = level(v) + 1 and the root has level 0.
Let A = (Σ,S, s0, δ) be an automaton. A state of A is a pair (s, ν), where

s ∈ S is a location and ν ∈ R≥0 is the clock value. Write Q = S × R≥0 for
the set of all states. A finite set of states is a configuration. Given a clock value
ν, we define a satisfaction relation |=ν between configurations and formulas in
Φ(S) according to the intuition that state (s, ν) can make an a-transition to
configuration C if C |=ν δ(s, a). The definition of C |=ν ϕ is given by induction
on ϕ ∈ Φ(S) as follows: C |=ν t if (t, ν) ∈ C, C |=ν x #$ c if ν #$ c, C |=ν x.ϕ if
C |=0 ϕ, and we handle the Boolean connectives in Φ(S) in the obvious way.

Definition 4. A run Δ of A on a timed word (σ, τ) consists of a tree (V,E)
and a labelling function l : V → Q such that if l(v) = (s, ν) for some level-n
node v ∈ V , then {l(v′) | v E v′} |=ν′ δ(s, σn), where ν′ = ν + (τn − τn−1).

The language of A, denoted L(A), consists of all non-Zeno words over which
A has a run whose root is labelled (s0, 0).

Figure 1 depicts part of a run of the automaton A from Example 2 on the timed
word 〈(a, 0.3), (b, 0.5), (a, 0.8), (b, 1.3), (b, 1.8) . . .〉.

(s,0.5)

(t,0.2)

(s,0.3)
(t,0)

(s,0.8)

(t,0)

(s,1.3) (s,1.8)
0.5,b0.2,b0.3,a

(s,0)

(t,0.5)

0.3,a 0.5,b

(t,0.5)

(u,1)

(u,1)

(u,1.5)

4 530 1 2Δ Δ Δ Δ ΔΔ
Fig. 1. Consecutive levels in a run of A

One typically applies the acceptance condition in an alternating automaton
to all paths in the run tree [20]. In the present context, since every location
is accepting, the tree structure plays no role in the definition of acceptance; in
this respect, a run could be viewed simply as a sequence of configurations. This
motivates the following definition.

Definition 5. Given a run Δ = ((V,E), l) of A, for each n ∈ N the configu-
ration Δn = {l(v) | v ∈ V, level(v) = n} consists of the states at level n in Δ
(cf. the dashed boxes in Figure 1).



Safety Metric Temporal Logic Is Fully Decidable 417

The reader may wonder why we mention trees at all in Definition 4. The reason
is quite subtle: the tree structure is convenient for expressing a certain fairness
property (cf. Lemma 2) that allows a Zeno run to be transformed into a non-Zeno
run by inserting extra time delays.

Definition 4 only allows runs that start in a single state. More generally, we
allow runs that start in an arbitrary configuration C = {(si, νi)}i∈I . Such a run
is a forest consisting of |I| different run trees, where the i-th run starts at (si, νi).

3.1 Translating Safety MTL into Timed Automata

Given a Safety MTL formula ϕ, one can define a timed alternating automaton
Aϕ such that L(Aϕ) = L(ϕ). Since space is restricted, and since we have already
given a similar translation in [16], we refer the reader to [18] for details. However,
we draw the reader’s attention to two important points. First, it is the restriction
to timed-bounded until operators combined with the adoption of a non-Zeno
semantics that allows us to translate a Safety MTL formula into an automaton
in which every location is accepting; this is illustrated in Example 2, where
location t, corresponding to the response formula ♦=1b, is accepting. Secondly,
we point out that each automaton Aϕ is local according to the definition below.
This last observation is important because it is the class of local automata for
which Section 5 shows decidability of language emptiness.

Definition 6. An automaton A = (Σ,S, s0, δ) is local if for each s ∈ S and
a ∈ Σ, each location t �= s appearing in δ(s, a) lies within the scope of a re-
set quantifier x.(−), i.e., the automaton resets the clock whenever it changes
location.

We call such automata local because the static and dynamic scope of any re-
set quantification agree, i.e., the scope does not ‘extend’ across transitions to
different locations. An investigation of the different expressiveness of local and
non-local temporal logics is carried out in [8].

4 The Region Automaton

Throughout this section let A = (Σ,S, s0, δ) be a timed alternating automaton,
and let cmax be the maximum constant appearing in a clock constraint in A.

4.1 Abstract Configurations

We partition the set R≥0 of nonnegative real numbers into the set REG =
{r0, r1, . . . , r2cmax+1} of regions, where r2i = {i} for i � cmax , r2i+1 = (i, i + 1)
for i < cmax , and r2cmax+1 = (cmax ,∞). The successor of each region is given by
succ(ri) = ri+1 for i < 2cmax + 1 and succ(r2cmax+1) = r2cmax+1. Henceforth let
rmax denote r2cmax+1 and write reg(u) to denote the region containing u ∈ R≥0.

The fractional part of a nonnegative real x ∈ R≥0 is frac(x) = x− %x&.
We use the regions to define a discrete representation of configurations that

abstracts away from precise clock values, recording only their values to the near-
est integer and the relative order of their fractional parts, cf. [4].



418 J. Ouaknine and J. Worrell

Definition 7. An abstract configuration is a finite word over the alphabet
Λ = ℘(S × REG) of nonempty finite subsets of S × REG.

Define an abstraction function H : ℘(Q) → Λ∗, yielding an abstract config-
uration H(C) for each configuration C as follows. First, lift the function reg
to configurations by reg(C) = {(s, reg(ν)) : (s, ν) ∈ C}. Now given a configu-
ration C, partition C into a sequence of subsets C1, . . . , Cn, such that for all
(s, ν) ∈ Ci and (t, ν′) ∈ Cj , frac(ν) � frac(ν′) iff i � j (so (s, ν) and (t, ν′) are
in the same block Ci iff ν and ν′ have the same fractional part). Then define
H(C) = 〈reg(C1), . . . , reg(Cn)〉 ∈ Λ∗.

Example 3. Consider the automaton A from Example 1. The maximum clock
constant appearing in A is 1, and the corresponding regions are r0 = {0},
r1 = (0, 1), r2 = {1} and r3 = (1,∞). Given a concrete configuration C =
{(s, 1), (t, 0.4), (s, 1.4), (t, 0.8)}, the corresponding abstract configuration H(C)
is 〈{(s, r2)}, {(t, r1), (s, r3)}, {(t, r1)}〉.

The image of the function H , which is a proper subset of Λ∗, is the set of well-
formed words according to the following definition.

Definition 8. Say that an abstract configuration w ∈ Λ∗ is well-formed if it
is empty or if both of the following hold.

– The only letter of w containing a pair (s, r) with r a singular region is the
first letter w0.

– Whenever w0 contains a singular region, the only nonsingular region that
also appears in w0 is rmax .

Write W ⊆ Λ∗ for the set of well formed words.

We model the progression of time by introducing the notion of the time successor
of an abstract configuration. We first illustrate the idea informally with concrete
configurations.

Example 4. Consider a configuration C = {(s, 1.2), (t, 2.5), (s, 0.8)}. Intuitively,
the time successor of C is C′ = {(s, 1.4), (t, 2.7), (s, 1)}, where time has advanced
0.2 units and the clock value in C with largest fractional part has moved to a new
region. On the other hand, a time successor of C = {(s, 1), (t, 0.5)} is obtained
after any time evolution δ, with 0 < δ < 0.5, so that the clock value with zero
fractional part moves to a new region, while all other clock values remain in
the same region. (Different values of δ lead to different configurations, but the
underlying abstract configuration is the same.)

The definition below formally introduces the time successor of an abstract con-
figuration. The two clauses correspond to the two different cases in Example 4.
The first clause models the case where a clock with zero fractional part advances
to the next region, while the second clause models the case where the clock with
maximum fractional part advances to the next region.



Safety Metric Temporal Logic Is Fully Decidable 419

Definition 9. Let w = w0 · · ·wn ∈W be an abstract configuration. We say that
w is transient if w0 contains a pair (s, r) with r singular.

– If w = w0 · · ·wn is transient, then its time successor is w′0w1 · · ·wn, where
w′0 = {(s, succ(r)) : (s, r) ∈ w0}.

– If w = w0 · · ·wn is not transient, then its time successor is w′nw0 · · ·wn−1,
where w′n = {(s, succ(r)) : (s, r) ∈ wn}.

4.2 Definition of R(A)

The region automaton R(A) is a nondeterministic infinite-state untimed au-
tomaton (with ε-transitions) that mimics A. The states of R(A) are abstract
configurations, representing levels in a run of A, and the transition relation
contains those pairs of states representing consecutive levels in a run. We par-
tition the transitions into two classes: conservative and progressive. Intuitively,
a transition is progressive if it cycles the fractional order of the clock values in
a configuration. This notion will play a role in our analysis of non-Zenoness in
Section 5.

The definition of R(A) is as follows:

– Alphabet. The alphabet of R(A) is Σ.
– States. The set of states of R(A) is the set W ⊆ Λ∗ of well-formed words

over alphabet Λ = ℘(S × REG). The initial state is {(s0, r0)}.
– ε-transitions. If w ∈ W has time successor w′ �= w, then we include a

transition w
ε−→ w′ (excluding self-loops here is a technical convenience).

This transition is classified as conservative if w is transient, otherwise it is
progressive.

– Labelled transitions. Σ-labelled transitions in R(A) represent instanta-
neous transitions of A. Given a ∈ Σ, we include a transition w a−→ w′ in
R(A) if there exist A-configurations C and C′ with H(C) = w, H(C′) = w′,
C = {(si, νi)}i∈I and

C′ =
⋃
i∈I

{Mi : Mi |=νi δ(si, a)} .

We say that this transition is progressive if C′ = ∅ or

max{frac(ν) : (s, ν) ∈ C′}<max{frac(ν) : (s, ν) ∈ C} , (1)

otherwise we say that the transition is conservative. Note that (1) says that
the clocks in C with maximal fractional part get reset in the course of the
transition.

The above definition of the Σ-labelled transition relation (as a quotient) is
meant to be succinct and intuitive. However, it is straightforward to compute
the successors of each state w ∈ W directly from the transition function δ of
A. For example, if δ(s, a) = s ∧ x.t then we include a transition 〈{(s, r1)}〉 a−→
〈{(t, r0)}, {(s, r1)}〉 in R(A).

Given a ∈ Σ, write w a=⇒ w′ if w′ can be reached from w by a sequence of
ε-transitions, followed by a single a-transition. The following is a variant of [16,
Definition 15].



420 J. Ouaknine and J. Worrell

Lemma 1. Let Δ be a run of A on a timed word (σ, τ), and recall that Δn ⊆ Q
is the set of states labelling the n-th level of Δ. Then R(A) has a run

[Δ] : H(Δ0)
σ0=⇒ H(Δ1)

σ1=⇒ H(Δ2)
σ2=⇒ · · ·

on the untimed word σ ∈ Σω.
Conversely, if R(A) has an infinite run r on σ ∈ Σω, then there is a time

sequence τ and a run Δ of A on (σ, τ) such that [Δ] = r.

Lemma 1 is a first step towards reducing the language-emptiness problem for
A to the language-emptiness problem for R(A). What is lacking is a characteri-
sation of non-Zeno runs of A in terms of R(A). Also, since R(A) has infinitely
many states, its own language-emptiness problem is nontrivial. We deal with
both these issues in Section 5.

5 A Decision Procedure for Satisfiability

Let A be a local timed alternating automaton. We give a procedure for deter-
mining whether A has nonempty language. The key ideas are as follows. We
define the notion of a progressive run of the region automaton R(A), such that
R(A) has a progressive run iff A has a non-Zeno run. We then use a backward-
reachability analysis to determine the set of states of R(A) from which there is a
progressive run. The effectiveness of this analysis depends on a well-quasi-order
on the states of R(A).

5.1 Background on Well-Quasi-Orders

Recall that a quasi-order on a set Q is a reflexive and transitive relation � ⊆
Q × Q. Given such an order we say that L ⊆ Q is a lower set if x ∈ Q, y ∈ L
and x � y implies x ∈ L. The notion of an upper set is similarly defined. We
define the upward closure of S ⊆ Q, denoted ↑ S, to be {x | ∃y ∈ S : y � x}.
This is the smallest upper set that contains S. A basis of an upper set U is a
subset Ub ⊆ U such that U = ↑Ub. A cobasis of a lower set L is a basis of the
upper set Q \ L.

Definition 10. A well-quasi-order (wqo) is a quasi-order (Q,�) such that
for any infinite sequence q0, q1, q2, . . . in Q, there exist indices i < j such that
qi � qj.

Example 5. Let � be a quasi-order on a finite alphabet Λ. Define the induced
monotone domination order �on Λ∗, the set of finite words over Λ, by a1 . . . am �
b1 . . . bn if there exists a strictly increasing function f : {1 . . .m} → {1, . . . , n}
such that ai � bf(i) for all i ∈ {1, . . . ,m}. Higman’s Lemma states that if � is
a wqo on Λ, then the induced monotone domination order � is a wqo on Λ∗.

Proposition 1. [9, Lemma 2.4] Let (Q,�) be a wqo. Then

1. each lower set L ⊆ Q has a finite cobasis;
2. each infinite decreasing sequence L0 ⊇ L1 ⊇ L2 ⊇ · · · of lower sets eventually

stabilises, i.e., there exists k ∈ N such that Ln = Lk for all n � k.



Safety Metric Temporal Logic Is Fully Decidable 421

5.2 Progressive Runs

Definition 11. Overloading terminology, we say that a run r : w −→ w′ −→
w′′ −→ · · · of R(A) is progressive if it contains infinitely many progressive
transitions.

The above definition is motivated by the notion of a progressive run of an (or-
dinary) timed automaton [4, Definition 4.11]. However our definition is more
primitive. In particular, Lemma 2, which for us is a property of progressive runs,
is the actual analog of Alur and Dill’s definition of a progressive run.

Lemma 2. Suppose Δ is a run of A over (σ, τ) such that the corresponding
run [Δ] of R(A) is progressive. Then there exists an infinite sequence of integers
n0<n1<· · · such that τn0<τn1<· · · and every path in Δ running from a level-ni

node to a level-ni+1 node contains a node (s, ν) in which ν = 0 or ν > cmax .

We use Lemma 2 in the proof of Theorem 1 below, which closely follows [4,
Lemma 4.13].

Theorem 1. A has a non-Zeno run iff R(A) has a progressive run.

Proof (sketch). It is straightforward that if Δ is a non-Zeno run of A, then [Δ]
is a progressive run of R(A). The interesting direction is the converse.

Suppose that R(A) has a progressive run r on a word σ ∈ Σω. Then by
Lemma 1 there is a time sequence τ and a run Δ of A over (σ, τ) such that
[Δ] = r. If τ is non-Zeno then there is nothing to prove. We therefore suppose
that τ is Zeno, and show how to modify Δ by inserting extra time delays to
obtain a non-Zeno run Δ′.

Since τ is Zeno there exists N ∈ N such that τj − τi < 1/4 for all i, j � N .
Let n0<n1< · · · be the sequence of integers in Lemma 2 where, without loss of
generality, N <n0. Define a new time sequence τ ′ by inserting extra delays in τ
as follows:

τ ′i+1 − τ ′i =
{
τi+1 − τi if i �∈ {n1, n2, . . .}
1/2 if i ∈ {n1, n2, . . .}.

Clearly τ ′ is non-Zeno. We claim that a run Δ′ over the timed word (σ, τ ′) can be
constructed by appropriately modifying the clock values of the states occurring
in Δ to account for the extra delay. What needs to be checked here is that the
modified clock values remain in the same region.

Consider a path π through Δ, and let π[m,n] denote the segment of π from
level m to level n in Δ. If the clock x does not get reset in the segment π[n0, ni]
for some i, then, by Lemma 2, it is continuously greater than cmax along the
segment π[n1, ni]: so the extra delay in Δ′ is harmless on this part of π. Now if
x gets reset in the segment π[ni, ni+1] for some i, it can thereafter never exceed
1/4 along π. Thus, by Lemma 2, it must get reset at least once in every segment
π[nj , nj+1] for j � i. In this case the extra delay in Δ′ is again harmless. "#

5.3 Fixed-Point Characterisation

Let PR ⊆W denote the set of states of R(A) from which a progressive run can
originate. In order to compute PR we first characterise it as a fixed-point.



422 J. Ouaknine and J. Worrell

Definition 12. Let I ⊆W be a set of states of R(A). Define Pred+(I) to consist
of those w ∈ W such that there is a (possibly empty) sequence of conservative
transitions w −→ w′ −→ w′′ −→ · · · −→ w(n), followed by a single progressive
transition w(n) −→ w(n+1), such that w(n+1) ∈ I.

It is straightforward that PR is the greatest fixed point of Pred+(−) : 2W → 2W

with respect to the set-inclusion order3. Given this characterisation, one idea to
compute PR is via the following decreasing chain of approximations:

W ⊇ Pred+(W ) ⊇ (Pred+)2(W ) ⊇ · · · . (2)

But it turns out that we have to refine this idea a little to get an effective
procedure. We start by observing the existence of a well-quasi-order on W .

Definition 13. Define the quasi-order � on W ⊆ Λ∗ to be the monotone dom-
ination order over Λ (cf. Example 5).

We might hope to use Proposition 1 to show that the chain (2) stabilises after
finitely many steps. However Pred+ does not map lower sets to lower sets in gen-
eral. This reflects a failure of the progressive-transition relation to be downwards
compatible with � in the sense of [9]. (This is not surprising—the possibility of
w ∈W performing a progressive transition depends on its first and last letters.)

Example 6. Consider the automaton A in Example 2, with associated regions in-
cluding r0 = {0}, r1 =(0, 1) and r2 ={1}. Then, in R(A), w = 〈{(s, r1)}, {(t, r1)}〉
makes a progressive ε-transition to w′ = 〈{(t, r2)}, {(s, r1)}〉. However, 〈{(s, r1)}〉,
which is a subword of w, does not belong to Pred+(↓ w′). Indeed, any state reach-
able from 〈{(s, r1)}〉 by a sequence of conservative transitions followed by a single
progressive transition must contain the letter {(s, r2)}.

Although Pred+ fails to enjoy one-step compatibility with �, it satisfies a kind of
infinitary compatibility. More precisely, even though Pred+ does not map lower
sets to lower sets, its greatest fixed point is a lower set.

Proposition 2. PR is a lower set.

Proof. We exploit the correspondence between non-Zeno runs of A and progres-
sive runs of R(A), as given in Proposition 1.

Suppose w′ ∈ PR and w � w′. Then there exist A-configurations C,C′ such
that C ⊆ C′, H(C) = w and H(C′) = w′. Since w′ ∈ PR, by Proposition 1 A
has a run Δ′ on some non-Zeno word ρ such that Δ′0 = C′. Now let Δ be the
subgraph of Δ′ consisting of all nodes reachable from those level-0 nodes of Δ′

labelled by elements of C ⊆ C′. Then Δ is also a run of A on ρ, so w ∈ PR by
Proposition 1 again. "#
3 It is not possible for w to belong to the greatest fixed point of Pred+ merely by virtue

of being able to perform an infinite consecutive sequence of ε-transitions that includes
infinitely many progressive ε-transitions. The reason is that once all the clock values
in a configuration have advanced beyond the maximum of clock constant cmax , then
the configuration is no longer capable of performing ε-transitions (cf. Section 4.2.)



Safety Metric Temporal Logic Is Fully Decidable 423

In anticipation of applying Proposition 2, we make the following definition.

Definition 14. Define Ψ : 2W → 2W by Ψ(I) = W\ ↑ (W \ Pred+(I)).

By construction, Ψ maps lower sets to lower sets. Also, being a monotone self-
map of (2W ,⊆), it has a greatest fixed point, denoted gfp(Ψ).

Proposition 3. PR is the greatest fixed point of Ψ .

Proof. Since PR is both a fixed point of Pred+ and a lower set we have:

Ψ(PR) = W\ ↑ (W \ Pred+(PR))
= W\ ↑ (W \ PR)
= W \ (W \ PR)
= PR .

That is, PR is a fixed point of Ψ . It follows that PR ⊆ gfp(Ψ).
The reverse inclusion, gfp(Ψ) ⊆ PR follows easily from the fact that Ψ(I) ⊆

Pred+(I) for all I ⊆W . "#

Next we assert that Ψ is computable.

Proposition 4. Given a finite cobasis of a lower set L ⊆W , there is a procedure
to compute a finite cobasis of Ψ(L).

Proposition 4 is nontrivial since the definition of Ψ involves Pred+, which refers to
multi-step reachability (by conservative transitions), not just single-step reacha-
bility. We refer the reader to [18] for a detailed proof. The proof exploits the fact
that conservative transitions on local automata have a very restricted ability to
transform a configuration—for instance, the only way they can change the order
of the fractional values of the clocks is by resetting some clocks to 0.

5.4 Main Results

Theorem 2. The satisfiability problem for Safety MTL is decidable.

Proof. Since every Safety MTL formula can be translated into a local automaton,
it suffices to show that language emptiness is decidable for local automata.

Given a local automaton A, let Ψ be as in Definition 14. Since Ψ is monotone
and maps lower sets to lower sets, W ⊇ Ψ(W ) ⊇ Ψ2(W ) ⊇ · · · is a decreasing
sequence of lower sets in (W,�). By Proposition 1 this sequence stabilises after
some finite number of iterations. By construction, the stabilising value is the
greatest fixed point of Ψ , which by Proposition 3 is the set PR. Furthermore,
using Proposition 4 we can compute a finite cobasis of each successive iterate
Ψn(W ) until we eventually obtain a cobasis for PR. We can then decide whether
the initial state of R(A) is in PR which, by Theorem 1, holds iff A has nonempty
language. "#



424 J. Ouaknine and J. Worrell

We leave the complexity of the satisfiability problem for future work. The argu-
ment used to derive the nonprimitive recursive lower bound for MTL satisfiability
over finite timed words [16] does not apply here.

By combining the techniques used to prove Theorem 2 with the techniques
used in [16] to show that the model-checking problem is decidable for Safety
MTL, one can show the decidability of the refinement problem: ‘Given two Safety
MTL formulas ϕ1 and ϕ2, does every word satisfying ϕ1 also satisfy ϕ2?’

Theorem 3. The refinement problem for Safety MTL is decidable.

6 Conclusion

It is folklore that extending linear temporal logic in any way that enables express-
ing the punctual specification ‘in one time unit ϕ will hold’ yields an undecidable
logic over a dense-time semantics. Together with [17], this paper reveals that
there is an unexpected factor affecting the truth or falsity of this belief. While
[17] shows that Metric Temporal Logic is undecidable over timed ω-words, the
proof depends on being able to express liveness properties, such as �♦p. On
the other hand, this paper shows that the safety fragment of MTL remains
fully decidable in the presence of punctual timing constraints. This fragment
is not closed under complement, and the decision procedures for satisfiability
and model checking are quite different. The algorithm for satisfiability solves a
nontermination problem on a well-structured transition system by iterated back-
ward reachability, while the algorithm for model checking, given in a previous
paper [16], used forward reachability.

Acknowledgement. The authors would like to thank the anonymous referees
for providing many helpful suggestions to improve the presentation of the paper.

References

1. P. A. Abdulla, J. Deneux, J. Ouaknine and J. Worrell. Decidability and complexity
results for timed automata via channel systems. In Proceedings of ICALP 05, LNCS
3580, 2005.

2. P. A. Abdulla and B. Jonsson. Undecidable verification problems with unreliable
channels. Information and Computation, 130:71–90, 1996.

3. P. A. Abdulla, B. Jonsson. Model checking of systems with many identical timed
processes. Theoretical Computer Science, 290(1):241–264, 2003.

4. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126:183–235, 1994.

5. R. Alur, T. Feder and T. A. Henzinger. The benefits of relaxing punctuality. Journal
of the ACM, 43:116–146, 1996.

6. R. Alur and T. A. Henzinger. Real-time logics: complexity and expressiveness.
Information and Computation, 104:35–77, 1993.

7. R. Alur and T. A. Henzinger. A really temporal logic. Journal of the ACM, 41:181–
204, 1994.



Safety Metric Temporal Logic Is Fully Decidable 425

8. P. Bouyer, F. Chevalier and N. Markey. On the expressiveness of TPTL and MTL.
Research report LSV-2005-05, Lab. Spécification et Vérification, May 2005.

9. A. Finkel and P. Schnoebelen. Well-structured transition systems everywhere! The-
oretical Computer Science, 256(1-2):63–92, 2001.

10. T. A. Henzinger. It’s about time: Real-time logics reviewed. In Proceedings of
CONCUR 98, LNCS 1466, 1998.

11. T. A. Henzinger, Z. Manna and A. Pnueli. What good are digital clocks? In Pro-
ceedings of ICALP 92, LNCS 623, 1992.

12. T. A. Henzinger, J.-F. Raskin, and P.-Y. Schobbens. The regular real-time lan-
guages. In Proceedings of ICALP 98, LNCS 1443, 1998.

13. G. Higman. Ordering by divisibility in abstract algebras. Proceedings of the London
Mathematical Society, 2:236–366, 1952.

14. R. Koymans. Specifying real-time properties with metric temporal logic. Real-time
Systems, 2(4):255–299, 1990.

15. S. Lasota and I. Walukiewicz. Alternating timed automata. In Proceedings of FOS-
SACS 05, LNCS 3441, 2005.

16. J. Ouaknine and J. Worrell. On the decidability of Metric Temporal Logic. In
Proceedings of LICS 05, IEEE Computer Society Press, 2005.

17. J. Ouaknine and J. Worrell. Metric temporal logic and faulty Turing machines.
Proceedings of FOSSACS 06, LNCS, 2006.

18. J. Ouaknine and J. Worrell. Safety MTL is fully decidable. Oxford University
Programming Research Group Research Report RR-06-02.

19. J.-F. Raskin and P.-Y. Schobbens. State-clock logic: a decidable real-time logic. In
Proceedings of HART 97, LNCS 1201, 1997.

20. M. Vardi. Alternating automata: Unifying truth and validity checking for temporal
logics. In Proceedings of CADE 97, LNCS 1249, 1997.

21. F. Wang. Formal Verification of Timed Systems: A Survey and Perspective. Pro-
ceedings of the IEEE, 92(8):1283–1307, 2004.

22. T. Wilke. Specifying timed state sequences in powerful decidable logics and timed
automata. Formal Techniques in Real-Time and Fault-Tolerant Systems, LNCS
863, 1994.



Simulation-Based Graph Similarity�

Oleg Sokolsky, Sampath Kannan, and Insup Lee

Department of Computer and Information Science,
University of Pennsylvania

{sokolsky, kannan, lee}@cis.upenn.edu

Abstract. We present symmetric and asymmetric similarity measures
for labeled directed rooted graphs that are inspired by the simulation
and bisimulation relations on labeled transition systems. Computation
of the similarity measures has close connections to discounted Markov
decision processes in the asymmetric case and to perfect-information
stochastic games in the symmetric case. For the symmetric case, we also
give a polynomial-time algorithm that approximates the similarity to any
desired precision.

1 Introduction

The motivation for this work comes from the need for rapid detection of new com-
puter viruses. The proliferation of virus development kits that can be downloaded
from the Internet has dramatically lowered the entry threshold for virus devel-
opers [16]. What used to require considerable skill and substantial knowledge
can now be accomplished by a relatively inexperienced hacker. As a result, large
numbers of new virus programs appear every week. They are different enough
from known viruses that conventional signature-based techniques become inef-
fective. Yet, since these viruses are developed using the same development kits,
they share distinctive similarities with known representatives of viruses devel-
oped using the same kit. The classification of viruses into families is an attempt
to capture such similarity.

The starting point of this work was the question of how the similarity between
viruses of the same family can be captured and quantified. Our approach to
similarity is behavioral, by which we mean that similar virus programs should
be able to perform similar actions, arranged in similar ways. In order to make
this intuition precise, we define a similarity metric on control flow graphs of
programs. Control flow graphs, which can be defined either at the object code
level or at the level of high-level programming language, are directed graphs,
whose nodes and possibly edges are labeled with code fragments. There is also a
dedicated initial node. Such labeled rooted graphs are often formalized as labeled
transition systems (LTS).

One notion commonly used for semantic comparison for LTSs is simulation.
The simulation relation defined on pairs of LTS nodes captures whether one node
� Research has been supported in part by the ONR MURI N00014-04-1-0735 and ARO

DAAD19-01-1-0473.

H. Hermanns and J. Palsberg (Eds.): TACAS 2006, LNCS 3920, pp. 426–440, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Simulation-Based Graph Similarity 427

simulates the other, or not. Intuitively, a node s1 in an LTS G1 simulates a node
t1 in another LTS G2 if any outgoing edge of t1 → t2 labeled by, say, a can be
matched by an edge s1 → s2, also labeled by a, in such a way that s2 simulates
t2. A symmetric version of the simulation relation is known as bisimulation.

For the purpose of comparing control flow graphs of similar programs, we
need to generalize the simulation relation into a function that captures how
well one control flow graph simulates another. The first step in defining such a
function is to introduce local similarity between graph nodes and edges. Local
similarity functions define how well the label of a node matches the label of
another node, and how well the label of an edge matches the label of another
edge. The definition of local similarity functions depends on the nature of the
labels of nodes and edges of the graphs. The labels may be viewed as symbols in
a given alphabet, variable-length strings over a fixed alphabet, or have a more
complicated structure such as, for example, assembly-language instructions or
short fragments of assembly-language code. Different local similarity functions
are appropriate in each of these situations. For the purpose of this paper, we
assume that local similarity functions are given to us, and abstract away the
nature of the graph labels.

In designing the similarity measure, we also need to decide whether we are
pursuing an aggregate or extremal measures. In extremal measures, the computed
value is based on the closest (or the most distant) match between components in
the graph. Aggregate measures take into consideration matches from all paths.
We argue that extremal measures can lead to counterintuitive results, where a
single unmatched component yields a very low similarity value for two otherwise
quite similar graphs. The advantage of extremal measures, on the other hand,
is that they allow us to easily obtain distance metrics that obey the triangle
inequality: the distance between two graphs does not exceed the sum of distances
between each of the graphs and an arbitrary third graph. In general, it is useful
to work with distance metrics. In our case, however, we do not necessarily need a
distance metric. Our goal is to raise an alarm when a graph of the new program
is similar enough to a known malicious program to warrant a closer inspection.
If the program is found to be close to two quite different malicious programs, so
much the better.

Guided by this motivation, we present new aggregate similarity measures
that generalize simulation and bisimulation. We call these measures quantita-
tive simulation and bisimulation. The contribution of this paper is a collection
of algorithms for computing quantitative simulation and bisimulation on finite
graphs. The algorithms rely on techniques similar to the ones used for the anal-
ysis of Markov decision processes and perfect-information stochastic games. Of
particular practical importance are polynomial-time approximation algorithms
for quantitative simulation and bisimulation.

Related Work. In [6], several metrics have been proposed for quantitative tran-
sition systems, which are labeled with tuples of numbers instead of more con-
ventional symbolic labels. The introduced measures are extremal and have the
advantage of relatively low computational complexity. Similar metrics for la-



428 O. Sokolsky, S. Kannan, and I. Lee

beled Markov processes have been considered in [8] as means of approximating
bisimulation relations. In both cases, quantitative information is present in the
transition system and serves as the basis for the metric. In our case, however,
transition systems do not contain quantitative information.

Existing work on graph similarity has been applied mostly in pattern recogni-
tion and data mining contexts. In these domains, graphs can have rich structures,
but little associated semantics with graphs nodes and edges. In our case, however,
similarity is rooted in graph labels and the structure is less important and serves
only to capture relationships between labels. The idea that similarity between
two graphs can be computed as a fixed point of local similarities propagated
through the transition relation has appeared in [2, 10], but was treated in an ad
hoc fashion.

a) b) c)a

a

a

ab b

b

b

c

c

c

Fig. 1. Different notions of graph similarity

Most other existing graph similarity measures can be grouped into two cate-
gories [14]. Cost-based distance measures (also known as edit distances) are based
on the number of modifications that are needed to transform one graph into the
other. On the other hand, feature-based distance measures, for example [13],
rely on extracting a set of structural features (such as vertex degrees) from the
graphs and comparing vectors of features. For our purposes, both kinds of mea-
sures have the disadvantage that they are purely structural, while the measures
we are proposing utilize significant amount of semantic information contained
in the graph and its labels. To see the difference between our approach and the
approach based on edit distances, consider the graphs is Figure 1. Graphs a) and
b) have very small edit distance (high similarity): one needs only to swap two
of the labels to make the graphs identical. However, if similarity between a and
c is small, we would consider these graphs to be quite different as they admit
different executions. Conversely, graphs a) and c) are quite different structurally,
but they are, in fact, bisimilar and thus should be considered identical for our
purposes.

Algorithmic techniques studied in this paper are similar to the approaches
used in solving perfect-information quantitative stochastic games [4].

Structure of the Paper. The rest of the paper is organized as follows. In
Section 2 we briefly consider an extremal simulation-like measure and discuss
its disadvantages. In Sections 3 and 4, we define strong and weak versions of an
aggregate measure called quantitative simulation, discuss its properties and in-
troduce an approach to compute quantitative simulation that is based on linear



Simulation-Based Graph Similarity 429

programming. Section 5 introduces quantitative bisimulation, which is a sym-
metric version of quantitative simulation. Computing quantitative bisimulation
turns out to be naturally related to finding the value of an appropriately defined
infinite stochastic game and has a number of interesting connections to the recent
work such as [4]. Finally, we offer a polynomial-time procedure to approximate
quantitative bisimulation to any desired precision.

2 Extremal Quantitative Simulation

Preliminaries. A labeled transition system (LTS) is a labeled directed graph
G = 〈S,L, T, s0〉, where S is a set of states, L is a set of labels, T ⊆ S × L× S
is a transition relation, and s0 ∈ S is the initial state. As usual, we denote
(s1, a, s2) ∈ T as s1

a→s2. In addition, assume two similarity functions: a node
similarity function N : S × S → [0, 1], and label similarity function L : L ×
L → [0, 1]. We assume that each node and each label is perfectly similar to
itself: N(s, s) = L(l, l) = 1, and that the similarity functions are symmetric:
N(s1, s2) = N(s2, s1) and L(a, b) = L(b, a).

Definition 1. Extremal quantitative simulation (mq-simulation, for short) is a
function Q : S×S → [0, 1], such that for all states s1, s2, the following condition
holds:

Q(s1, s2) =

{
N(s1, s2) if ∀a, s1

a

�→
N(s1, s2) ·

∏
s1

a→s′
1

max
s2

b→s′
2

L(a, b) ·Q(s′
1, s

′
2) otherwise (1)

If Q(s1, s2) = n, we say that s2 simulates s1 up to n. If we have two LTSs, G1
and G2 with initial states s10 and s20, respectively, we say that G2 simulates G1
up to n if Q(s10, s

2
0) = n.

As a motivation for this definition, consider the case when the node similarity
function does not distinguish nodes, that is, ∀s1, s2 ∈ S,N(s1, s2) = 1 and the
label similarity function is binary, that is, L(l1, l2) = 1 if l1 = l2 and 0 otherwise.
In this case, we recover the traditional definition for simulation relation � on
labeled transition systems: s1 � s2 iff s2 simulates s1 up to 1.

Example. Consider the classical example from the (bi)simulation literature,
shown in Figure 2. It is well-known that t1 simulates s1, but not vice versa. Let us

s1

s2 s3

s4 s5

t1

t2

t3 t4

a a
a

b
b

c
c

Fig. 2. Example of quantitative similarity



430 O. Sokolsky, S. Kannan, and I. Lee

assume, however, that b and c are not completely dissimilar. Let L(b, c) = 0.5.
With the definition above, we have that Q(s1, t1) = 1, which is not surpris-
ing because t1 simulates s1. In the reverse direction, we have that Q(t2, s2) =
Q(t2, s3) = 0.5. This is because s2 (and, similarly, s3) matches one transition
of t2 perfectly and the other by 0.5, the product of this yields 0.5. Finally,
Q(t1, s1) = 0.5.

Fixpoint Characterization of mq-Simulation. Consider the set of tuples Q =
{Qi,j} with i, j ∈ 1 . . . |S| and every Qi,j ∈ [0, 1]. Equipped with the operations
of pointwise minimum and maximum, the set forms a complete lattice.

Consider the function f : Q → Q, which is the simultaneous application
of Equation (1) for all i, j. The function is monotonic. By the Tarski-Knaster
theorem, a fixed point of f exists, and is an mq-simulation.

Discussion. The attractive feature of mq-simulation is that it is an immediate
generalization of the classical simulation relation to the domain of reals. However,
it does not make a good measure for LTS similarity, because it can produce quite
counterintuitive results. Consider the following two examples.

One problem of quantitative simulation is that it assigns too much importance
to “eventual dissimilarity.” Consider, for example, the LTSs

s1
a1→s2

a2→ . . . sn−1
an−1→ sn and t1

b1→t2
b2→ . . . tn−1

bn−1→ tn. (2)

Let L(ai, bi) = 1, except for the last pair, where L(an−1, bn−1) = 0, and
N(si, ti) = 1 for all i, j. Intuitively, one would expect to see these LTSs rather
similar, because the dissimilarity is far down the road. However, Q(s1, t1) = 0.

The second problem is that mq-simulation is too strict in combining alterna-
tives. Consider two star-shaped LTSs constructed as follows: s0

ai→si and t0
bi→ti.

Again, let all nodes be similar and let labels be pairwise similar L(ai, bi) = 1 for
all i except i = n. In all other cases, that is, i �= j or i = j = n, L(ai, bj) = 0.
Again, our intuition suggests that these LTSs should be considered similar since
all but one branches are matched perfectly. Still, Q(s1, t1) = 0.

Analysis of these two problems suggest that perhaps a more useful definition
would be a function, additive both in terms of different branches leaving the
same state and in terms of number of states along a path. To address the first
problem, this function should give more weight to close states and progressively
less weight to more distant states. It is important, however, to ensure that the
similarity measure remains bounded over long paths and for states with large
branching factors. The next section will be devoted to defining such a function.

3 Weighted Quantitative Simulation

3.1 Similarity on Paths

We begin by comparing states in paths of an LTS, and then generalize the
obtained notion of similarity to LTSs in general.



Simulation-Based Graph Similarity 431

In order to overcome the problems with the mq-simulation, we introduce
a parameter p that describes the relative importance of local similarity vs.
“step similarity.” Consider two edges in an LTS: s0

a→s1 and t0
b→t1. Similar-

ity between s0 and t0 based on these two edges can be defined to be (1 − p) ·
N(s0, t0) + p · L(a, b) · N(s1, t1). Consider now two paths of the same length,
s0

a1→s1
a2→s2

a3→ . . . sn and t0
b1→t1

b2→t2
b3→ . . . tn. We can extend the similarity be-

tween s0 and t0 to recursively consider paths instead of single edges as follows:
Q(s0, t0) = (1 − p) · N(s0, t0) + p · L(a1, b1) · Q(s1, t1). Unfolding the recursive
expression, we obtain that, for the paths of length n, the similarity between the
paths is

Q(s0, t0) =
n∑

i=0

(1 − p) · pi ·N(si, ti) ·
i∏

k=1

L(ak, bk), (3)

with the convention that the product over an empty set is 1.
The value of the similarity between two paths is bounded from above by the

similarity of two identical traces. Since all node and edge similarity functions
yield 1 in this case, it is clear that the similarity between two identical infinite
paths is 1.

Consider again the LTSs of (2). The effect of dissimilarity after n steps is now
negligible for large n: Q(s1, t1) = 1 − 2−n for p = 1/2.

3.2 Graph Similarity

Definition 2. For a parameter 0 < p < 1, p-weighted quantitative simulation
(q-simulation) is a function Q : S×S → [0, 1], such that for all states s1, s2, the
following condition holds:

Qp(s1, s2)=

{
N(s1, s2) if ∀a, s1

a

�→
(1−p) ·N(s1, s2)+ p

n
·
∑

s1
a→s′

1

max
s2

b→s′
2

L(a, b) ·Qp(s′
1, s

′
2) otherwise,

(4)
where n is the number of transitions leaving s1.

Consider the same example of Figure 2. Let p = 1/2. Here we again have
Q 1

2
(s1, t1) = 1. Indeed, Q 1

2
(s2, t2) = (1 − p) + p · Q 1

2
(s4, t3) = 1 (as well as

Q 1
2
(s3, t2)), and Q 1

2
(s1, t1) = (1 − p) + p · 1

2 · (Q 1
2
(s2, t2) + Q 1

2
(s3, t2)) = 1.

In the reverse direction, Q 1
2
(t2, s2) = (1 − p) + p · 1

2 · (1 + 1
2 ) = 7

8 . Finally,
Q 1

2
(t1, s1) = (1 − p) + p ·Q 1

2
(t2, s2) = 15

16 . The number is much higher than for
the mq-simulation, because here considerable weight is given to node similarity,
which in this case does not make any distinction between nodes and only drives
the similarity up.

We now show two important properties of q-simulation. Proofs of these prop-
erties use the functional T (Q)(s1, s2) derived from (4). That is, let Q be the set
of functions Q : S × S → [0, 1]. T : Q → Q is defined as

T (Q(s1, s2))=

⎧⎨⎩N(s1, s2) if ∀a, s1
a

�→
(1−p) ·N(s1, s2)+ p

n
·
∑

s1
a→s′

1

max
s2

b→s′
2

L(a, b) ·Q(s′
1, s

′
2) otherwise,



432 O. Sokolsky, S. Kannan, and I. Lee

The following theorem shows that q-simulation is well-defined:

Theorem 1. Equation (4) has a unique solution.

Proof (Sketch): We reduce the problem of computing q-simulation to the problem
of optimal control in discrete event systems, studied in [1]. Given an LTS G, we
construct the dynamical system

xi+1 = f(xi, ci, wi),

where the next state xi+1 depends on the current state xi, the current control
input ci, and random disturbance wi. The state space is given by pairs of graph
nodes, x ∈ S × S. Control inputs ci ∈ C(x) are state-dependent. Given the cur-
rent state xi = (s1, s2), C(x) = {s2 b→s′2}. That is, control inputs represent the
choice of transition in the simulating state. Disturbance wi ∈ W (x) = {s1 a→s′1},
on the other hand, represents the choice of transition in the simulated state.
Fixing a control strategy, that is, the sequence of control inputs, yields a ran-
dom trajectory x0, x1, . . .. The value of a given trajectory is given according
to (3). The optimal control problem for the given dynamical system is to de-
termine the maximum expected value over the set of possible control strategies.
For uniformly distributed disturbances, independently chosen in each step, this
maximum expected value coincides with 4. The proof then closely follows [1],
p. 182ff, which shows that the control problem – albeit for a different but also
monotonic value function – has a unique solution. We show that the functional
T (Q) is a contraction mapping over the space of functions Q : S × S → [0, 1],
measured by the distance function d(Q,Q′) = maxx∈S×S |Q(x)−Q′(x)|. Since T
is a contraction mapping, it has a unique fixed point by the Banach’s theorem,
and the fixed point coincides with Qp. �

A more direct proof in the style of Theorem 3 is also possible; however, the proof
we chose here points to a clear connection with an established approach. The
next theorem shows that q-simulation generalizes the simulation relation:

Theorem 2. Let N(s1, s2) = 1 for all s1, s2, and L(a, b) = 1 iff a = b, and 0
otherwise. Then s1 � s2 iff Qp(s1, s2) = 1 for any 0 < p < 1.

Proof: (⇒) We proceed by contradiction. Assume that s1 � s2 but Qp(s1, s2) �=
1. Consider the function Q+ : S × S → [0, 1], such that Q+(s1, s2) = 1 if
s1 � s2 and Q+(s1, s2) = Qp(s1, s2) otherwise. Clearly, Qp < Q+ in the lattice
of functions S × S → [0, 1]. Consider the functional T (Q) defined above. It is
clear that when s1 � s2, T (Q+)(s1, s2) = Q+(s1, s2), because the maximum
value over the transitions of s2 in Equation (4) will always be 1. It is also easy
to see that, for any s1 and s2, T (Q+)(s1, s2) ≥ Q+(s1, s2). By repeating this
argument, we see that T n(Q+)(s1, s2) ≥ Q+(s1, s2). Since T has a unique fixed
point by Theorem 1, the sequence T n converges to the fixed point of T , which
is Qp. Thus we have Qp < Q+ ≤ Qp, which is a contradiction. (⇐) Consider
relation R ⊆ S × S such that (s1, s2) ∈ R ⇔ Qp(s1, s2) = 1. We show that R
is a simulation relation. The case when s1 does not have outgoing transitions is



Simulation-Based Graph Similarity 433

obvious. Otherwise, for each transition s1
a→s′1, max

s2
b→s′

2

L(a, b) ·Qp(s′1, s
′
2) = 1,

which is possible only if a = b and Qp(s′1, s
′
2) = 1, that is, (s′1, s

′
2) ∈ R. �

3.3 Computing Weighted Quantitative Simulation

Given an LTS G and functions N and L, we transform (4) into an instance of the
linear programming problem in the following way. For every two states si, sj , we
introduce a variable Qi,j . For every edge e = si

a→sk and state sj , we introduce
a variable Xe,j . The objective function minimizes the sum of all variables:

min
∑

i,j∈S

Qi,j +
∑

e∈T,sj∈S

Xe,j .

We represent the relationship between variables using the following constraints:
0 ≤ Qi,j ≤ 1, 0 ≤ Xe,j ≤ 1 for all i, j, and e. For m such that sj

b→sm, Xe,j ≥
L(a, b) ·Qk,m. Finally, for all i, j,

Qi,j = (1 − p) ·N(si, sj) +
∑

e∈si

a→sk

p

n
Xe,j

By Theorem 1, this linear programming problem has a unique solution, so
that Qi,j = Qp(si, sj).

4 Weak Weighted Quantitative Simulation

A deficiency of q-simulation as defined by Equation 4 is that it requires the
graphs to unfold synchronously - that is, every step of one graph has to be
matched by a similar step of another graph. Consider two paths s1

a→s2
b→s3

c→ . . .

and t1
a→t2

a′
→t3

b→t4
c→ . . .. The paths are identical, except for the insertion of an

a′-step in the second path. If L(a′, b) = 0, the similarity of the two paths will be
very low, despite the fact that almost every step in the paths can be matched to
a step in the other path in the same order. Intuitively, the role of the inserted
step should be heavily discounted.

We can compare graph similarity to the well-known notion of string similarity,
known as the string alignment problem, widely used in biological sequence analy-
sis. We consider a particular dynamic-programming formulation of this problem
that serves as the basis for the Needleman-Wunsch alignment algorithm [12]. We
assume a similarity score between elements of the alphabets of the two strings.
Consider strings s1 = as′1 and s2 = bs′2. The optimal alignment score of s1
and s2, denoted F (s1, s2), is computed as the maximum of F (s′1, s

′
2) + s(a, b),

F (as′1, s′2)− d, and F (s′1, bs′2)− d. Here, s(a, b) is the similarity score of a and b,
and d is the gap penalty.

We want to introduce a similar notion – that “skipping a step” is permis-
sible but carries a penalty – into the q-simulation framework and define weak



434 O. Sokolsky, S. Kannan, and I. Lee

q-simulation. We remind the reader, that the classical definition of the weak
simulation relation, a transition of the simulated state labeled with the action
a can be matched by a finite sequence of transitions from the simulating state,
exactly one of which is labeled with a and the rest are labeled with a special
internal action τ1. The intuition for our definition comes from the fact that, in
the binary world, classical weak (bi)simulation is strong (bi)simulation applied
to the τ-closed transition system, in which every such sequence of transitions is
represented by a single transition.

It is tempting to use this intuition directly. Consider a special “skip” action
ε �∈ L. Suppose we construct the ε-closure of G. Since ε is a new action, the
closure amounts to adding a self-loop transition labeled ε to every state in G.
The edge similarity function L(a, ε) = L(ε, a) serves as the label-sensitive “gap
penalty”. Treating ε differently than any other action, we require that L(ε, ε) = 0.
This precludes the pathological case when both states stutter and yet similarity
increases. We can then use the same equation (4) to define weak q-simulation
using the extended transition relation instead of T .

Although such simple solution gives a very intuitive definition, it is easy to
see that this is not the definition we want. We lose a desirable property that q-
simulation reduces to classical simulation in the binary case. Indeed, according
to the definition above, a state will not be weakly q-similar to itself! To see
this, consider a deadlocked state. Its weak q-similarity to itself would be 1 − p
instead of 1. The source of this problem is that equation (4) is including the
stuttering step in computing the average of matches. To fix this problem, we use
the following definition.

Definition 3. A (weighted) weak quantitative simulation is a function QW :
S × S → [0, 1], such that for all s1, s2, the following condition holds:

QW (s1, s2) =

{
N(s1, s2) if ∀a, s1

a

�→
(1 − p) ·N(s1, s2) + max(W1,W2) otherwise,

(5)

where
W1 = max

s2
b→s′

2

L(b, ε) ·QW (s1, s′2)

W2 = p
n ·
∑

s1
a→s′

1

max(max
s2

b→s′
2

(L(a, b) ·QW (s′1, s′2)), L(a, ε) ·QW (s′1, s2)),

and n is the number of transitions leaving s1.

Weak q-simulation can be computed using a slightly modified linear program-
ming problem from the previous section.

5 Quantitative Bisimulation

A natural extension of the q-simulation idea is to define a symmetric similarity
function. That is, for all states s1 and s2, B(s1, s2) = B(s2, s1). It is natural to
1 Note that “skipping a step” is more similar to stuttering than to executing an

internal step. Therefore, our weak q-simulation is closer in spirit to stuttering
(bi)simulation [3, 11] than to classical weak (bi)simulation.



Simulation-Based Graph Similarity 435

think of this function as quantitative bisimulation (q-bisimulation). We construct
such a function by taking the minimum of the asymmetric one-step similarities
between two states.

Definition 4. Given the graph G = 〈S,L, T 〉, the (p-weighted) quantitative
bisimulation is the function Bp : S × S → [0, 1], defined as

Bp(s1, s2) = min(Bl
p(s1, s2), B

r
p(s1, s2)),

where Bl
p, B

r
p are left and right similarities, respectively, are defined as

Bl
p(s1, s2) =

{
N(s1, s2) if ∀a, s1

a

�→
(1 − p) ·N(s1, s2) +W (s1, s2) otherwise

Br
p(s1, s2) =

{
N(s2, s1) if ∀b, s2

b

�→
(1 − p) ·N(s2, s1) +W (s2, s1) otherwise,

where W (s, t) = p
n ·
∑

s
a→s′ max

t
b→t′

L(a, b) ·Bp(s′, t′)

Similarly to q-simulation, q-bisimulation can be considered in the strong as
well as the weak form by constructing a symmetric version of Definition 3.

5.1 Computing Quantitative Bisimulation

We can reduce the problem of computing strong quantitative bisimulation to
the problem of computing the value of a stochastic game with extended payoffs
and Büchi winning condition. Such games are extensions of simple stochastic
games [9, 5] to include value derived from infinite runs.

A stochastic game with payoffs is a graph B = 〈V,E,N,L〉, where V is a set
of vertices partitioned into three subsets Vmin, Vmax, and Vavg, E ⊆ V ×V is the
transition relation, N : V → [0, 1] is the node payoff function, and L : E → [0, 1]
is the edge payoff function. We use v1

l→v2 to denote L(v1 → v2) = l.
Given a graph G = 〈S,L, T 〉, we construct B(G) as follows. We introduce two

parameters, λ, δ ∈ (0, 1), to define edge payoffs and game values to match the
discounting structure of q-bisimulation. We set λ = 3

√
p and δ = 1 − p. For each

pair of states si, sj ∈ S, we introduce vertices vb
ij , v

t
ij ∈ Vmin, vs

ij ∈ Vavg, and,
for each edge e : si → sk, vm

ej ∈ Vmax. The edges in B are introduced according
to the following rules:

– vb
ij

1→vs
ij , v

b
ij

1→vs
ji;

– vt
ij

λ2

→vt
ij ;

– for each edge e : si
a→sk, vs

ij
1→vm

ej ;

– for each sn such that sj
b→sn, vm

ej

L(a,b)→ vb
kn.

– if si does not have outgoing transitions, then vs
ij

λ→vt
ij for every sj .

– if sj does not have outgoing transitions, then vm
ej

0→vt
ij for every e : si

a→sk.

For every si, sj ∈S and e ∈ T , N(vb
ij)=N(vt

ij)=N(si, sj), N(vs
ij)=N(vm

ej)=0.



436 O. Sokolsky, S. Kannan, and I. Lee

The game has two players, one of which selects the transitions at the max
vertices, while the other selects the transitions at the min vertices. The choice
of a transition by a player is given by a strategy of the player. We consider only
pure memoryless strategies, in which the choice depends only on the current
vertex and not on the history of the game. Such a strategy for the max player
is represented by a function σ : Vmax → V (respectively, π : Vmin → V for the
min player). The choices at a vertex v ∈ Vavg are made randomly according to
a uniform distribution over the successors of v.

Given strategies σ, π and a starting vertex v, a play wσ,π
v is an infinite random

path through the game graph, in which steps from the min and max vertices
comply with the strategies.

The Büchi winning condition for this game is defined as follows. A play is a
winning play for player min if it contains an infinite number of the vertices from
Vmin. It is easy to see from the construction of the game graph that every play
is a winning play for player min.

The discounted payoff of a play wv0 = v0
l1→v1

l2→ . . . for a discount factor λ and
a scaling factor δ is defined as

Q(wv) = δ ·
∞∑

i=0

λi ·N(vi) ·
i∏

k=1

lk. (6)

The value of the game for an initial state v and given strategies σ, π is given as
the expected payoff of wσ,π

v . Strategies σo, πo are called optimal for v if wσo,πo
v =

minπ maxσ w
σ,π
v The optimal value of the game B(G) for a node v, denoted B(v),

is the value of the play wσo,πo
v yielded by the optimal strategies.

Considering the structure of the game graph, we conclude that relations be-
tween optimal values of the nodes are as shown in Figure 3. Putting these equa-
tions together, we can see that the value of a node vb

i,j is the q-bisimulation
Bp(si, sj).

B(vt
ij) = δ ·N(vt

ij) ·
∑∞

i=0 λi · (λ2)i = δ ·N(vt
ij) · 1

1−λ3 = N(vt
ij)

B(vm
ej) = 0 if vm

ej→vt
ij

B(vm
ej) = λ ·max

vm
ijk

ln→vb
nk

(lk ·B(vb
k)) otherwise

B(vs
ij) = λ2 ·B(vt

ij) if vs
ij→vt

ij

B(vs
ij) = λ · avg

vs
ij→vm

ej
Q(vm

ej) otherwise

B(vb
ij) = δ ·N(vs

ij) + λ ·min
vb

ij→vs
k
B(vs

k)

Fig. 3. Relationships between optimal values in graph nodes

It is well known that there exist optimal pure memoryless strategies for both
players for similar payoffs. By using techniques similar to [4], we can show that
there are optimal pure memoryless strategies in our case as well. Thus the value
of the game can be computed, since there are finitely many pure memoryless
strategies. Several approaches for computing game values exist [7, 4], with com-
plexity no more than exponential in the size of the game graph. Since, in our



Simulation-Based Graph Similarity 437

1

2

3

4 5 6

a

b

c d

vb
14

vs
14

vm
(12)4

vm
(13)4

vm
(45)1vs

41

vb
25

vb
35 vs

53

vs
35

vs
52

vs
25

vm
(56)2

vm
(56)3

vt
25

vt
35

1

1

1

1

1 1

1

1

1

0

0

1

1

1/3

1/3

1/4

1/4

1/4

1/4
1/2

1/2

Fig. 4. Game graph construction

case, the game graph B(G) is polynomial in the size of G (O(|G|3), to be precise),
the complexity of computing q-bisimulation is also no worse than exponential in
the size of G.

To illustrate how the game graph construction works, consider the example
in Figure 4. Let L(a, c) = 1/3, L(b, c) = 1/4, and p = 1/8. Let N(s, t) = 1 for
all nodes s, t. Consider, for example, nodes 2 and 5. Bl(2, 5) = 1 since node 2
is deadlocked, while Br(2, 5) = 7/8 since node 2 cannot match the transition
of node 5, and B(2, 5) = 7/8. Accordingly, B(vb

25) = δ + λ · min(λ2, 0) = 7/8.
Similarly, Bl(1, 4) = (1 − p) + p · 1/2 · (L(a, c) · B(2, 5) + L(b, c) · B(3, 5) and
Br(1, 4) = (1 − p) + p · max(L(c, a) · B(2, 5), L(c, b) · B(3, 5). Game steps that
correspond to the computation of Bl(1, 4) and Br(1, 4) shown as block and
dashed arrows, respectively. Note that a path from vb

ij to vb
i′j′ is always three

steps long. Thus, discounting during a game is applied three times, where it is
applied once in the definition of q-bisimulation. This observation explains the
relationship between p and λ.

5.2 Approximating Quantitative Bisimulation

In many cases, it is not necessary to compute the precise value of q-bisimulation,
especially considering that the node and edge similarity functions are likely to
be heuristic estimates. It may be sufficient to know whether it exceeds a certain
threshold value. It is therefore useful to have a polynomial algorithm to compute
an approximation of q-bisimulation up to a required degree of accuracy.

Given the game B(G), we compute an approximation of q-bisimulation for all
states of G as follows. For a chosen n, we make n copies of B(G), B(0),. . . ,B(n−1).
The copy of a node v in B(i) is denoted v(i). We connect these copies into a single
graph by replacing every edge vm(i) l→vb(i) (i > 0) with vm(i) l→vb(i−1). All nodes
vt(i) and all incident edges are removed. In B(0), we keep only the nodes vb(0)

ij

and remove all other nodes and edges. As a result, we have an acyclic graph B+.
We assign initial values to terminal nodes of B+ as follows: (1) every node v(0)

is assigned δ · N(v); (2) every node vm(i) is assigned 0; (3) every node vs(i) is



438 O. Sokolsky, S. Kannan, and I. Lee

assigned N(v). With this initialization, we can compute the values for all nodes
in a bottom-up fashion according to the formulas in Figure 3, in time linear in
the size of the resulting graph. Let the value of a node v(i) computed in this
fashion be denoted B+(v(i)). It is easy to see that B+(v(i)) ≤ B(v). Indeed,
q ·N(v) ≤ B(v) by definition, thus B+(v(0)) ≤ B(v). For all other i, the result
follows by the monotonicity of the functional defining B.

Theorem 3. For any n and any node v in B(G), B(v) −B+(v(n)) ≤ λn.

Proof: The proof proceeds by induction on the copy number. The base case is
immediate, since for any node v, B(v), B+(v(0)) ∈ [0, 1], thus B(v)−B+(v(0)) ≤
λ0 = 1. Suppose now that for some i and every node v, B(v)−B+(v(i−1)) ≤ λi−1.
Consider a node vm(i). If it is a terminal node, its initial value is equal to B(v).
Otherwise,

B(vs) −B+(vs(i)) = max
vs

lm→vb
m

λ · lm ·B(vb
m) − max

vs
lk→vb

k

λ · lk · B+(vb(i−1)).

Here, we have to consider two cases. Either k = m, that is, the same strategy is
chosen by the original and the approximated computation. In that case, clearly,

B(vs) −B+(vs(i)) = λ · lm · (B(vb
m) −B+(vb(i−1)

m )) ≤
λ · (B(vb

m) −B+(vb(i−1)
m )) ≤ λ · λ(i−1) = λi.

Otherwise,

lm · B(vb
m) − lk ·B+(vb(i−1)

k ) ≤ lm ·B(vb
m) − lm · B+(vb(i−1)

m ),

since B+(vb(i−1)
k ) ≥ B+(vb(i−1)

m ), and the result follows by the same argument as
above. For a node vs(i) the result is immediate, since the calculation computes
the average of the values in vm(i), covered by the case above. Finally, for a node
vb(i), the argument is similar to the first case. The node has two successor nodes,
and the computed value is based on the minimum value of the two successors.
As above, the interesting case is the one where the exact and the approximate
values come from different successors. Let the successors of vb be vs

1 and vs
2,

considered in the previous case. Without loss of generality, let us assume that
B(vs

1) ≤ B(vs
2) and B+(vs(i)

1 ) ≥ B+(vs(i)
2 ). We then have

B(vb)−B+(vb(i))=λ · (B(vs
1)−B+(vs(i)

2 ))≤λ · (B(vs
2)−B+(vs(i)

2 ))≤λi.
�

6 Conclusions and Future Work

We have presented aggregate similarity measures for labeled transition systems.
The asymmetric similarity measure, called q-simulation, is well aligned with our
original motivation for this work, which involved asymmetric comparisons: a



Simulation-Based Graph Similarity 439

control-flow graph of a new program would compared to well-known representa-
tives of virus families. In general, a symmetric similarity measure may be more
useful. Such a symmetric measure, called q-bisimulation, is also more complex
to compute. However, for both measures, the more practical approach is to com-
pute an approximate value. Such value, which can be made arbitrarily close to
the exact value, can be obtained in time polynomial in the graph size.

A prototype tool for computing q-simulation using the approach of Section
3.3, has been implemented using the lp solve tool as a back-end, and applied
to the samples from the Virus Source Code Database [18]. The tool operates
on control-flow graphs in the VCG format produced by the GCC compiler. Our
initial experiments demonstrated the need for the weak q-simulation, which is
currently being implemented. Out current work concentrates on further experi-
mental evaluation. A matter of practical importance is the choice of the param-
eters of the function: the weight p and, for weak similarity, the gap penalty. We
are considering machine learning approaches for determining parameter values.

An interesting direction of future work is to identify areas of very high sim-
ilarity within graphs, instead of trying to compare the graphs in their entirety.
This would allow us to draw the user’s attention to programs that have com-
mon parts along with substantially different parts. An example of such programs
would be viruses that exploit different vulnerabilities but have the same payload.
The relationship between these two graph similarity approaches would be rem-
iniscent of the relationship between global [12] and local [15] string alignment
in bioinformatics. Another important direction is to modify the definition of q-
simulation to obtain a distance metric, which will make it appealing in various
applications, particularly, in bioinformatics.

Although the original motivation for this work comes from the goal to iden-
tify potential virus programs from their similarity to known virus family repre-
sentatives, quantitative simulation and bisimulation have many other potential
applications. Work on such applications in the domains of bioinformatics and
literature citation databases is already under way [17].

Acknowledgments. We are grateful to Lyle Ungar and Ted Sandler for many
fruitful discussions on further applications of q-simulation.

References

1. D. Bertsekas. Dynamic Programming: Deterministic and Stochastic Models.
Prentice-Hall, Inc., 1987.

2. V. D. Blondel, A. Gajardo, M. Heymans, P. Senellart, and P. Van Dooren. A
measure of similarity between graph vertices: Applications to synonym extraction
and web searching. SIAM Review, 46(4):647–666, 2004.

3. M. C. Browne, E. M. Clarke, and O. Grümberg. Characterizing finite Kripke
structures in propositional temporal logic. Theoretical Computer Science, 59(1–
2):115–131, 1988.

4. K. Chatterjee, M. Jurdziński, and T. Henzinger. Quantitative stochastic parity
games. In SODA ’04: Proceedings of the 15th annual ACM-SIAM Symposium on
Discrete Algorithms, pages 121–130, 2004.



440 O. Sokolsky, S. Kannan, and I. Lee

5. A. Condon. The complexity of stochastic games. Information and Computation,
96(2):203–224, 1992.

6. L. de Alfaro, M. Faella, and M. Stoelinga. Linear and branching metrics for quan-
titative transition systems. In ICALP ’04: 31st International Colloquium on Au-
tomata, Languages, and Programming, volume 3142 of LNCS, pages 97–109, 2004.

7. L. de Alfaro and R. Majumdar. Quantitative solution of omega-regular games.
Journal of Computer and System Sciences, 68:374–397, 2004.

8. J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Metrics for labelled
Markov processes. Theoretical Computer Science, 318(3):323–354, 2004.

9. J. A. Filar. Ordered field property for stochastic games when the player who
controls transitions changes from state to state. Journal of Optiraization Theory
and Applications, 34:503–515, 1981.

10. S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: A versatile graph
matching algorithm and its application to schema matching. In Proceedings of 18th

ICDE, 2002.
11. K. Namjoshi. A simple characterization of stuttering bisimulation. In Proceedings

of the 17th Conference on Foundations of Software Technology and Theoretical
Computer Science, pages 284–296, 1997.

12. S. Needleman and C. Wunsch. A general method applicable to the search for sim-
ilarities in the amino acid sequence of two proteins. Journal of Molecular Biology,
48:443–453, 1970.

13. A. Papadopoulos and Y. Manolopoulos. Structure-based similarity search with
graph histograms. In Proceedings International DEXA Workshop on Similarity
Search (IWOSS), Florence, Italy, pages 174–178, 1999.

14. A. Sanfeliu and K. Fu. A distance measure between attributed relational graphs
for pattern recognition. IEEE Transactions on Systems, Man and Cybernetics,
SMC-13(3):353–362, 1983.

15. T. F. Smith and M. S. Waterman. Identification of common molecular subse-
quences. Journal of Molecular Biology, 147:195–197, 1981.

16. P. Szor. The Art of Computer Virus Research and Defense. Addison Wesley
Professional, 2005.

17. L. Ungar and T. Sandler, Sept. 2005. Personal communication.
18. Virus source code database. http://www.totallygeek.com/vscdb/.



PRISM: A Tool for Automatic Verification
of Probabilistic Systems�

Andrew Hinton, Marta Kwiatkowska, Gethin Norman, and David Parker

School of Computer Science, University of Birmingham,
Birmingham B15 2TT, United Kingdom
{ug60axh, mzk, gxn, dxp}@cs.bham.ac.uk

Abstract. Probabilistic model checking is an automatic formal verifi-
cation technique for analysing quantitative properties of systems which
exhibit stochastic behaviour. PRISM is a probabilistic model checking
tool which has already been successfully deployed in a wide range of
application domains, from real-time communication protocols to biolog-
ical signalling pathways. The tool has recently undergone a significant
amount of development. Major additions include facilities to manually
explore models, Monte-Carlo discrete-event simulation techniques for ap-
proximate model analysis (including support for distributed simulation)
and the ability to compute cost- and reward-based measures, e.g. “the ex-
pected energy consumption of the system before the first failure occurs”.
This paper presents an overview of all the main features of PRISM. More
information can be found on the website: www.cs.bham.ac.uk/˜dxp/prism.

1 Overview

Probabilistic model checking is an automatic formal verification technique for the
analysis of systems which exhibit stochastic behaviour. Examples of such systems
include well-known communication protocols such as FireWire and Bluetooth,
which employ randomisation, and a wide range of computer and communica-
tion systems, unpredictable characteristics of which, such as message delays or
times to failure, are best represented in a probabilistic fashion. Like traditional
model checking, this technique involves constructing, from a description in some
high-level formalism, a finite-state model of a real-life system, but additionally
including information about the likelihood and timing of transitions between
states occurring. From this model, a wide range of quantitative measures of the
original system can be automatically computed.

PRISM is a probabilistic model checking tool which has already been used to
apply these techniques to a large and diverse set of case studies. In the following
sections we describe the types of probabilistic model supported by PRISM and
the properties of these models which can be analysed. We then give an overview
of the main features of the tool. Finally, we summarise the case studies to which
the tool has already been applied and the various resources which are available.
� Supported in part by EPSRC grants GR/S11107 and GR/S46727 and Microsoft

Research Cambridge contract MRL 2005-44.

H. Hermanns and J. Palsberg (Eds.): TACAS 2006, LNCS 3920, pp. 441–444, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



442 A. Hinton et al.

2 PRISM Model Specification

PRISM has direct support for three types of probabilistic models: discrete-time
Markov chains (DTMCs), Markov decision processes (MDPs) and continuous-
time Markov chains (CTMCs). In DTMCs, time is modelled as discrete time-
steps and the probabilities of transitions occurring are also discrete. They are
suitable for analysing systems with simple probabilistic behaviour and no con-
currency e.g. synchronous randomised distributed algorithms. MDPs extend
DTMCs by permitting a combination of nondeterminism and probability, mak-
ing them well suited to modelling multiple probabilistic processes executing in
parallel or to cases where some parameters of the system or the behaviour of
the environment in which it is operating are unknown. CTMCs do not support
nondeterminism but model time in a continuous fashion, through the use of
the negative exponential distributions, allowing accurate representation of the
timing characteristics of e.g. component failures and job arrivals.

PRISM now also allows models to be augmented with costs and rewards , real
values assigned to states and transitions of the model. This permits reasoning
about a much wider range of quantitative measures of a system, e.g. “completion
time”, “energy consumption” or “number of messages lost”.

Models are specified using the PRISM modelling language, a simple, state-
based language based on the Reactive Modules formalism. Systems are described
as the parallel composition of a set of modules. Each module’s state is given
by a set of finite-ranging variables and its behaviour by a set of probabilistic
guarded commands. The language also supports global variables, synchronisation
and various process algebraic operations. See the PRISM documentation and
example repository at [1] for more information.

3 PRISM Property Specification

The specification language for properties of the probabilistic models to be anal-
ysed in PRISM is based on temporal logic, in particular PCTL and CSL, proba-
bilistic extensions of the logic CTL. The principal operators are P, S and R which
refer, respectively, to the probability of an event occurring, the long-run prob-
ability of some condition being satisfied and the expected value of the model’s
costs or rewards. For precise details of the specification language, see the PRISM
documentation [1]. For the theoretical background and further references, see [2].
For illustrative purposes, a selection of example properties is shown below:

– P ≥ 0.9 [ !repair U ≤ 200 done ] - “with probability 0.9 or more, the process
will successfully complete within 200 hours and without requiring repairs”

– P =? [ F ≤ T error {init}{max} ] - “what is the worst-case probability, over
all possible initial configurations, that an error has occurred by time T ”

– S =? [ num sensors ≥ min sensors ] - “what is the long-run probability
that an acceptable number of sensors are operational?”

– R < 3 [ C ≤ T ] - “the expected number of messages lost during the first T
minutes of execution of the communication protocol is less than 3”



PRISM: A Tool for Automatic Verification of Probabilistic Systems 443

– R =? [ F shutdown {error detected}{max} ] - “from all situations where an
error has been detected, what is the worst-case expected power consumption
before the system shuts itself down?”

Note that is possible to either determine whether a probability or expected quan-
tity satisfies a given bound or obtain the actual value. In the latter case, it is often
beneficial to compute a range of values in order to identify trends or anomalies.
The ability to examine worst-case (or best-case) scenarios, as illustrated in the
examples above, is also very powerful.

4 The PRISM Tool

The core functionality of PRISM, namely constructing a probabilistic model, and
then evaluating the result of one or more corresponding properties, is available
from either a command-line or a graphical user interface. The latter includes
editors for the PRISM modelling and property specification languages. It also
facilitates generation of series of quantitative results and plotting of graphs to
visualise them. A recent addition is the ability to view specific traces of model
execution for the purposes of debugging or sanity checks. These are generated
either by manual exploration or automatically in probabilistic fashion. Figure 1
shows screenshots of some of this functionality in operation.

Fig. 1. Screenshots of PRISM running. Left: graphical visualisation of quantitative
model checking results. Right: manual exploration of model traces.

PRISM incorporates a range of model analysis techniques. These include quali-
tative methods, such as graph-based algorithms for reachability, and quantitative
methods for numerical computation of probabilities and expected cost or reward
values. For the latter, multiple implementations are provided. In particular, this
includes state-of-the-art symbolic approaches which use data structures based on
binary decision diagrams (BDDs) to exploit model structure and regularity.

The most recent addition is support for approximate numerical computation
using Monte-Carlo methods and discrete event simulation. PRISM can gener-
ate multiple executions through a model based on a faithful simulation of its



444 A. Hinton et al.

probabilistic and timing characteristics. These samples are then used to com-
pute approximate quantitative results. Since this approach avoids the (costly)
construction of the full probabilistic model, working instead with the PRISM
language description, it is potentially applicable to much larger models than the
alternative numerical solution approach. Furthermore, samples can be generated
independently, so it is possible to distribute the simulation process over multiple
computers. The PRISM user interface includes a tool to manage this process.

Connections to other tools and formalisms. To allow connections with ex-
ternal tools, PRISM allows the export of a model’s transition matrix and state
space in a variety of formats: either plain text or tailored for specific tools, in-
cluding Matlab, ETMCC and MRMC. Models specified in alternative formalisms
can also be imported via translation. PRISM already has native support for a
subset of the stochastic process algebra PEPA and others are underway. It is
now also possible to import the transition matrix and state space of a model
directly in a simple textual format.

Examples and case studies. PRISM has been successfully applied to a large
number of case studies from a wide array of application areas, on several occa-
sions resulting in the identification of interesting or anomalous behaviour. The
website [1] provides details of over thirty case studies, developed both by mem-
bers of the PRISM team and external research groups, including links to the
corresponding publications and source code. Examples include analysis of the
performance, reliability or correctness of:

– real-time communication protocols, including IEEE 1394 FireWire, Blue-
tooth, Zeroconf, IEEE 802.3 CSMA/CD and IEEE 802.11 wireless LANs;

– probabilistic security protocols for anonymity (Crowds protocol, synchronous
batching), contract signing, fair exchange and non-repudiation;

– randomised distributed algorithms for leader election, consensus, Byzantine
agreement, self-stabilisation and mutual exclusion;

– dynamic power management and voltage scaling schemes;
– biological signalling pathways.

Tool availability and resources. PRISM is a free and open source tool, dis-
tributed under the GNU General Public License (GPL), and now supports most
major operating systems: Linux, Solaris, Windows and Mac OS X. Ports have
also been developed for 64-bit architectures. The PRISM website [1] contains a
wealth of further information and resources, including related publications, the
tool source code and binaries, user manual and a large repository of illustrative
example models.

References

[1] PRISM web site. www.cs.bham.ac.uk/˜dxp/prism.
[2] J. Rutten, M. Kwiatkowska, G. Norman, and D. Parker. Mathematical Techniques

for Analyzing Concurrent and Probabilistic Systems, P. Panangaden and F. van
Breugel (eds.), volume 23 of CRM Monograph Series. AMS, 2004.



DISTRIBUTOR and BCG MERGE: Tools for
Distributed Explicit State Space Generation

Hubert Garavel, Radu Mateescu, Damien Bergamini, Adrian Curic,
Nicolas Descoubes, Christophe Joubert,

Irina Smarandache-Sturm, and Gilles Stragier

Inria Rhône-Alpes / Vasy,
655, avenue de l’Europe, F-38330 Montbonnot St Martin, France

1 Introduction

The explicit-state verification of complex concurrent systems, whose underlying
state spaces may be prohibitively large, requires an important amount of memory
and computation time. Although explicit state space generation is known to be
exponential as the number of concurrent processes in the system increases, it is
tempting to push forward the capabilities of verification tools by exploiting the
computing resources (memory and processors) of massively parallel machines,
such as clusters and grids.

Several distributed algorithms have been proposed for analyzing stochastic
Petri nets and Markov chains (e.g., by Nicol and Ciardo, by Haverkort, Bell,
and Bohnenkamp, etc.), as well as for model checking (e.g., by Stern and Dill,
by Lerda and Sisto, etc.). Our own distributed algorithms [3] allow the con-
struction of Labelled Transition Systems (Ltss) using several machines con-
nected by a network. These algorithms are implemented in the Distributor
and Bcg Merge tools using the facilities of the Cadp [2] verification toolbox. In
a nutshell, each machine used by Distributor is responsible for generating and
storing a fragment of the entire Lts. Upon termination of the distributed state
space generation, all these fragments are combined together using Bcg Merge
to obtain the entire Lts.

Between 2000 and 2005, we developed three successive versions (1.0, 2.0, and
3.0) of Distributor and Bcg Merge. This led to significant functionality
improvements. For instance, version 3.0 of Distributor can also reduce Ltss
on-the-fly, by applying τ -compression (elimination of τ -cycles denoting diver-
gence) or τ -confluence (a form of partial order reduction preserving branching
equivalence) [4] using the algorithms proposed in [6]. However, besides the
distributed algorithms themselves, we realized that it was also essential to
pay attention to often-neglected practical issues, such as software architecture
concepts and user-oriented features pertaining to ergonomy, and this is what
the present paper is about.

2 Software Architecture and User-Oriented Features

Source language independence. Developing verification tools for sequen-
tial machines is a demanding, long-term effort. But the development effort is

H. Hermanns and J. Palsberg (Eds.): TACAS 2006, LNCS 3920, pp. 445–449, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



446 H. Garavel et al.

even higher for verification tools intended to work on parallel machines. There-
fore, it is desirable to design tools that can support multiple input languages
instead of a single one. For this reason, Distributor is implemented using
the Open/Cæsar generic environment [1], which is the basis for all on-the-fly
verification algorithms implemented within Cadp. Open/Cæsar offers an im-
plicit representation for Ltss to be explored on-the-fly by providing a language-
independent Api that basically defines the states, labels, and transitions of the
Lts, together with functions for comparing, hashing, accessing the initial state,
and computing the successors of a given state. It also provides C libraries con-
taining a rich set of Lts exploration primitives (transition lists, stacks, tables,
etc.). Thus, Distributor can be used for any input language equipped with a
compiler supporting the Open/Cæsar Api.

Platform independence. A key design goal of Distributor and Bcg Merge
is to allow them to run on the largest possible number of computing platforms
(networks of workstations, clusters of Pcs, or even laptops, etc.) For this reason,
Distributor and Bcg Merge only use the features present in mainstream
operating systems and do not to rely on any dedicated middleware (such as Mpi,
etc.) that is not installed by default. Similarly, they do not assume the existence
of a common file system (e.g., Nfs, Samba, etc.) shared between machines.

Separation between algorithms and communications. Starting from
version 2.0 of Distributor and Bcg Merge, a clear separation was es-
tablished between, on the one hand, the distributed algorithms themselves
and, on the other hand, the primitives used for communication between
machines. Such primitives are encapsulated into a dedicated library (named
Cæsar Network), which provides functionalities such as blocking and
non-blocking buffered send/receive. Following the ”platform independence” re-
quirement, Cæsar Network only requires ordinary Tcp sockets and stan-
dard remote connection protocols (e.g., rsh/rcp, ssh/scp, etc.) to be available.
Cæsar Network is also used by other Vasy tools for distributed equivalence
checking [5] and distributed model checking.

Instances on local and remote machines. The machine on which
Distributor and Bcg Merge are launched by the end-user is called the local
machine, all the other ones being called remote machines. Distributor and
Bcg Merge work by launching distributed processes, called instances. Each
instance corresponds to a pair (M,D), indicating that a distributed process will
be launched on machine M and will store its files in directory D (the working
directory of the instance) located on some filesystem of M . Several instances
with different working directories may execute on the same machine. A working
directory may be either local to its machine, or shared between several machines.

Description of network resources. To specify the list of machines and in-
stances involved in the distributed computation, the Cæsar Network library
uses a dedicated file named Grid Configuration File (Gcf), whose format is
defined in [8]. This file also specifies the various configuration parameters to
be used for launching instances and connecting machines: Tcp port number(s)



DISTRIBUTOR and BCG MERGE 447

Open/Cæsar-

program
source

compliant

Open/Cæsar

(remote)

references

spawns

machine N
(remote)
machine 1

(local)
machine 0lts.bcg

bcg merge

...

.gcf

.pbg

distributor.exe
(coordinator)

cc

graph module

compiler

distributor.exe
(instance 1)

fragmentN.bcg

distributor.exe
(instance N)

Open/Cæsar
expl. module

fragment1.bcg

libcaesar.a

libBCG.a

used by sockets, remote connection protocol (rsh, ssh, etc.), remote copy protocol
(rcp, scp, etc.), login name(s) used for remote authentication, size of communi-
cation buffers, pathname of the Cadp installation directory, connection timeout,
pathname of the working directory, and list of files to be copied in the working
directories upon launching.

Partitioned Labelled Transition Systems. The result of the distributed Lts
generation performed by Distributor is a theoretical model defined in [3] and
called Partitioned Lts (Plts for short). A Plts is a collection of fragments (one
per instance), each fragment containing a subset of the states and transitions of
the entire Lts to be generated. Taken altogether, the fragments form a partition
of the entire Lts. Taken individually, each fragment can be seen as an Lts, with
the important difference that it may be a disconnected graph, which is never
the case with an Lts generated from a “meaningful” specification. The role of
Bcg Merge is to take a Plts and merge all its fragments into one single Lts.

To represent Ltss, as well as fragments, we use the Bcg (Binary-Coded
Graphs) format of Cadp. This format provides an explicit representation for
Ltss given by their states, labels, and transitions. It allows to store Ltss in



448 H. Garavel et al.

compact, binary files and is equipped with a set of C libraries and tools provid-
ing a wide range of functionalities (reading and writing, exploring the transition
relation, converting from/to other Lts formats, visualizing graphically, etc.). A
collection of Bcg files is available on-line in the Vlts benchmark suite [9], which
aims at providing realistic examples of Ltss for the assessment of verification
and graph manipulation tools. To represent Pltss, we developed (together with
Cwi in the framework of the international Senva research team) a dedicated
format named Pbg (Partitioned Bcg Graph). A Pbg is a text file containing
references to a Gcf file and to a collection of fragments stored as Bcg files.

The overall functioning of Distributor and Bcg Merge within the
Open/Cæsar environment is illustrated in the previous figure.

Initialization and termination protocols. Besides the normal termination of
the distributed Lts generation (when each instance has finished its local compu-
tations and no more messages are in transit), which is handled using a distributed
termination detection algorithm, abnormal termination must also be handled
properly. If the distributed Lts generation fails (e.g., because some machine has
exhausted its memory) or the user decides to cancel it (e.g., by pressing Ctrl-C),
Distributor must stop all the distributed activities of its instances. Therefore,
a dedicated protocol is necessary. The solution we adopted in Distributor
and Bcg Merge is based upon a special process, called coordinator, which is
launched on the local machine and has the charge of initializing the distributed
computation (parsing the Gcf file, establishing the connections from the local
to the remote machines, launching the instances) and of detecting termination.

Real-time monitoring. Because end-users naturally want to observe the
progression of distributed computations, Distributor and Bcg Merge are
equipped with (optional) graphical monitors providing information in real-time
about computation status (when generating or merging of the Pbg) and resource
usage (processors and memories). The monitor of Distributor (see the figure
above) is driven by the coordinator process, which periodically inspects the sta-
tus of each instance. The monitor window has five panels, each giving a different
view of the distributed computation. The “Overview” panel (on the left) shows,
for each instance, the number of explored states (whose successors have been



DISTRIBUTOR and BCG MERGE 449

visited), the number of remaining states (visited, but not explored yet), and
the number of transitions in the corresponding fragment; the variation of re-
maining states (increasing, decreasing, steady) is represented as a coloured box
(green, orange, red). The “Statistics” panel (on the right) shows various global
data, such as the total and average number of visited and remaining states, of
transitions, of labels, etc.

3 Conclusion and Future Work

Versions 3.0 of Distributor and Bcg Merge are documented [8, 7] and dis-
tributed as part of the Cadp toolbox. They run on several platforms (Linux,
MacOS, Solaris, Windows). Experiments performed on various case-studies and
different computing platforms have shown quasi-linear speedups and a good load
balancing between machines.

We plan to continue our work along two directions. Using Distributor,
generating very large Ltss becomes easier and one is now confronted to the
limits of standard 32-bit machines, especially when state numbers become larger
than 232 and/or when Bcg files become larger than 4 Gbytes. Shifting to 64-bit
machines should solve these issues and overcome the current size limitations.

Bcg Merge is valuable as it allows (at least for small or medium-sized mod-
els) to verify that the Ltss generated by Distributor are identical to those
generated on a single machine. For large models however, Bcg Merge may be a
bottleneck because of the aforementioned 4 Gbytes limit. This can be avoided by
performing verification directly on the Pbg file, without invoking Bcg Merge
first. We seek to develop a Pbg Open tool connecting the Pbg model to the
Api defined by Open/Cæsar, thus allowing the model checking and equivalence
checking tools of Cadp to be applied on Pbg models directly.

References

1. H. Garavel. OPEN/CÆSAR: An Open Software Architecture for Verification, Sim-
ulation, and Testing. In Proc. of TACAS’98, LNCS vol. 1384, pp. 68–84.

2. H. Garavel, F. Lang, and R. Mateescu. An Overview of CADP 2001. European As-
sociation for Software Science and Technology (EASST) Newsletter, 4:13–24, 2002.

3. H. Garavel, R. Mateescu, and I. Smarandache. Parallel State Space Construction
for Model-Checking. In Proc. SPIN’2001, LNCS vol. 2057, pp. 217–234.

4. J.F. Groote and J. van de Pol. State Space Reduction using Partial τ -Confluence.
In Proc. of MFCS’2000, LNCS vol. 1893, pp. 383–393.

5. Ch. Joubert and R. Mateescu. Distributed On-the-Fly Equivalence Checking. In
Proc. of PDMC’2004, ENTCS vol. 128.

6. R. Mateescu. On-the-fly State Space Reductions for Weak Equivalences. In Proc.
of FMICS’05, ACM, pp. 80–89.

7. Vasy. Bcg Merge Manual Page. http://www.inrialpes.fr/vasy/cadp/man/
bcg merge.html, December 2004.

8. Vasy. Distributor Manual Page. http://www.inrialpes.fr/vasy/cadp/man/
distributor.html, December 2004.

9. Vasy and Sen2. The Vlts benchmark suite. http://www.inrialpes.fr/vasy/cadp/
resources/benchmark bcg.html, March 2003.



MCMAS: A Model Checker for Multi-agent Systems

Alessio Lomuscio and Franco Raimondi�

Department of Computer Science,
University College London, London, UK

{a.lomuscio, f.raimondi}@cs.ucl.ac.uk

1 Overview

This paper presents MCMAS, a model checker for Multi-Agent Systems (MAS). Dif-
ferently from traditional model checkers, MCMAS permits the automatic verification of
specifications that use epistemic, correctness, and cooperation modalities, in addition to
the standard temporal modalities. These additional modalities are used to capture prop-
erties of various scenarios (including communication and security protocols, games,
etc.) that may be difficult or unnatural to express with temporal operators only; a small
number of applications are presented in Section 4. Agents are described in MCMAS by
means of the dedicated programming language ISPL (Interpreted Systems Program-
ming Language). The approach is symbolic and uses ordered binary decision diagrams
(OBDDs), thereby extending standard techniques for temporal logic to other modalities
distinctive of agents. MCMAS and all the examples presented in this paper are available
for download [14] under the terms of the GPL license.

2 Theoretical Background

Interpreted systems [5] provide the formal semantics for MCMAS programs. In the for-
malism of interpreted systems, each agent is characterised by a set of local states and
by a set of local actions that are performed following a local protocol. Given a set of ini-
tial states, the system evolves in compliance with an evolution function that determines
how the local state of an agent changes as a function of its local state and of the other
agents’ actions. The evolution of all the agents’ local states describes a set of runs and
a set of reachable states. These can be used to interpret formulae involving temporal
operators, epistemic operators to reason about what agents know, operators to reason
about the correct behaviour of the agents, and ATL operators expressing states of af-
fairs that agents can enforce. Due to space limitations, we refer to [5, 13, 10, 1, 7] for
a detailed presentation of this formalism, and for theoretical results on completeness,
decidability, complexity, etc.

Interpreted systems’ specifications can be given by means of ISPL programs: a sim-
ple example is depicted in Figure 1 (a). We refer to the files available online for the full
syntax of ISPL.

Given an interpreted system and a formula in the syntax of ISPL, MCMAS computes
the set of states in which the formula holds and compares it to the set of reachable
states. The methodology used to calculate this set extends the standard fix-point boolean

� Corresponding author. The authors acknowledge EPSRC grants CN04/04 and GR/S49353/01.

H. Hermanns and J. Palsberg (Eds.): TACAS 2006, LNCS 3920, pp. 450–454, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



MCMAS: A Model Checker for Multi-agent Systems 451

Agent SampleAgent

 Lstate = {s0,s1,s2,s3};

 Action = {a1,a2,a3};

 Protocol:

   s0: {a1};

   s1: {a2};

   s2: {a1,a3};

   s3: {a2,a3};

 end Protocol

 Ev:

   s2 if ((AnotherAgent.Action=a7);

   s3 if Lstate=s2;

 end Ev

end Agent

ISPL program
+

formula

Parse input

Build OBDD
parameters

Compute the set
of states in which
the formula holds

mcmas

TRUE FALSE

(and other output)

(a) (b)

Fig. 1. Implementation structure and ISPL example

characterisation for temporal operators [4] to epistemic, correctness, and cooperation
operators. We refer to [15] for more details.

3 Implementation

Figure 1 (b) shows the structure of the implementation of MCMAS. The tool can be
run from the command line and accepts various options to modify verbosity, to in-
spect OBDDs statistics [16] and memory usage, and to enable variable reordering in the
OBDDs. The tool is written in C/C++ and it has been compiled on various platforms,
including PowerPC (Mac OS X 10.2 and 10.3), x86 (various CPUs running Linux 2.4
and 2.6), SPARC (SunOS 5.8 and 5.9), and Windows using Cygwin. The source code
has been compiled with gcc/g++ from version 2.95 until version 3.4.

4 Examples and Experimental Results

Various ISPL programs are available for download from [14]. We consider here three
of them to illustrate different verification scenarios.

Communication protocol: The bit transmission protocol with faults. In this example
from [5], an agent (the Sender) wants to communicate the value of a bit to another
agent (the Receiver) using a faulty line that may drop messages. To achieve this, the
Sender starts sending messages to the Receiver; when the Receiver receives the bit,
it starts sending acknowledgements back to the Sender. The protocol terminates when
the Sender receives the acknowledgement. This scenario can be described in terms of
interpreted systems, and it is easy to verify with MCMAS the key specification of the
protocol: recack → AG(KS(KR(bit).)

This formula expresses formally that, upon receipt of an acknowledgement, the
Sender will forever know that the Receiver knows the value of the bit. This scenario is



452 A. Lomuscio and F. Raimondi

extended in [11] to include faulty behaviours of the Receiver. In particular, it is possible
to model two faulty scenarios. In the first one, the Receiver “forgets” to send acknowl-
edgements when it receives the bit. In the second scenario, the Receiver may send faulty
acknowledgements without receiving the bit first. It is possible to verify with MCMAS

the key specification of the protocol still holds in the first case, but it fails in the second.
More complex specifications, referring explicitly to violations in the local behaviours,
can also be verified.

Strategic games: A simple card game. This example is presented in [8] and in [9]:
an agent (the player) plays a simple card game against another agent, the environment.
There are just three cards in the deck: Ace (A), King (K), and Queen (Q); A wins over
K, K wins over Q, and Q wins over A. In the initial state no cards are distributed; in
the first step, the environment gives a card to the player and takes a card for itself. In
the second step, the player can either keep its card, or change it. The following ATL
formula can be checked by MCMAS: 〈〈player〉〉F (win).

The formula expresses that the player may always bring about a winning state, by
randomly selecting the correct action. In addition to this, MCMAS supports an operator
that considers only feasible strategies in the sense of [9, 8]. These are strategies that
cannot be “guessed”. MCMAS correctly verifies that in this example the player does not
have a feasible strategy to win.

Anonymity example: The protocol of the dining cryptographers. The protocol of
the dining cryptographers is introduced in [3] to describe a scenario in which informa-
tion is exchanged anonymously. The scenario consists of three cryptographers having
dinner at a restaurant. When the waiter informs them that the charge has been covered
already, they would like to find out whether it is one of them, or the company they
work for who paid for it. In order to guarantee the anonymity of the payer (in case it is
one of them), they proceed as follows: each of them flips a coin behind a menu on the
right hand side of his dish and observes this coin and the coin at his left (flipped by an-
other cryptographer). If the cryptographer did not pay for the dinner, then he announces
whether the two coins he can see are equal or different. However, if the cryptographer
paid for the dinner, he says the opposite of what he sees. It is possible to check that, if
a cryptographer did not pay for the dinner and he hears an odd number of “different”
utterances, then he knows that one of the remaining cryptographers paid for the dinner,
but he cannot say who. This property is captured by the following formula:

(¬paid1 ∧ odd) → AX(KC1(paid2 ∨ paid3) ∧ ¬KC1(paid2) ∧ ¬KC1(paid3))

Notice that the same protocol works for any number of cryptographers greater or
equal than three, thereby allowing for an evaluation of the scalability of MCMAS. The
ISPL code for various instances of the protocol, including some in which cheating cryp-
tographers are introduced, is available form [14].

5 Discussion

Differently from previous approaches [2], MCMAS does not involve the translation nor
the reduction of the model checking problem for MAS to other available model check-
ers. Our technique is based on OBDDs but, differently from [6], we consider various



MCMAS: A Model Checker for Multi-agent Systems 453

Table 1. Experimental results

N.Crypt. States (n. bool var) OBDDs nodes Memory (MBytes) Time (sec)
3 ≈ 7 · 1013(47) ≈ 104 ≈ 4.4 0.37
4 ≈ 2 · 1018(63) ≈ 6 · 104 ≈ 5.2 3.9
5 ≈ 2 · 7.522(77) ≈ 8 · 104 ≈ 5.6 12.6
6 ≈ 1.2 · 1027(91) ≈ 1.6 · 105 ≈ 7.1 64.5
7 ≈ 2 · 1031(105) ≈ 1.7 · 105 ≈ 7.5 168.8
8 ≈ 1.3 · 1036(121) ≈ 1.2 · 107 ≈ 450 28788

modalities on top of the epistemic and the temporal ones, and our semantics does not
assume perfect recall. The tool presented in [12] allows for the verification of tempo-
ral, epistemic, and correct behaviour operators but, differently form MCMAS, it uses
bounded and un-bounded techniques, and it has a different input language.

Average experimental results for the example of the dining cryptographers on a 2.8
GHz Pentium 4 running Linux 2.4.20 with 1 Gbytes of RAM are presented in Table 1.
We see these results as encouraging, considering that optimisation techniques have not
been included in MCMAS yet, and that the code is currently under active development.
In particular, we aim at including fairness constraints in the verification process, and
counter-example generation for false formulae.

References

1. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic. Journal of
the ACM, 49(5):672–713, 2002.

2. R. Bordini, M. Fisher, C. Pardavila, W. Visser, and M. Wooldridge. Model checking multi-
agent programs with CASP. In Proceedings of the 15th International Conference on Com-
puter Aided Verification (CAV’03), volume 2725 of LNCS, pages 110–113. Springer-Verlag,
2003.

3. D. Chaum. The dining cryptographers problem: Unconditional sender and recipient untrace-
ability. Journal of Cryptology, 1(1):65–75, 1988.

4. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press, Cambridge,
Massachusetts, 1999.

5. R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowledge. MIT Press,
Cambridge, 1995.

6. P. Gammie and R. van der Meyden. MCK: Model checking the logic of knowledge. In
Proceedings of 16th International Conference on Computer Aided Verification (CAV’04),
volume 3114 of LNCS, pages 479–483. Springer-Verlag, 2004.

7. W. van der Hoek and M. Wooldridge. Tractable multiagent planning for epistemic goals.
In M. Gini, T. Ishida, C. Castelfranchi, and W. L. Johnson, editors, Proceedings of the First
International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS’02),
pages 1167–1174. ACM Press, 2002.

8. W. Jamroga and W. van der Hoek. Agents that know how to play. Fundamenta Informaticae,
62:1–35, 2004.

9. G. Jonker. Feasible strategies in alternating-time temporal epistemic logic. Master’s thesis,
University of Utrech, The Netherlands, 2003.

10. A. Lomuscio and M. Sergot. Deontic interpreted systems. Studia Logica, 75(1):63–92, 2003.
11. A. Lomuscio and M. Sergot. A formalisation of violation, error recovery, and enforcement

in the bit transmission problem. Journal of Applied Logic, 2(1):93–116, March 2004.



454 A. Lomuscio and F. Raimondi

12. W. Nabialek, A. Niewiadomski, W. Penczek, A. Pólrola, and M. Szreter. VerICS 2004:
A model checker for real time and multi-agent systems. In Proceedings of the Interna-
tional Workshop on Concurrency, Specification and Programming (CS&P’04), volume 170
of Informatik-Berichte, pages 88–99. Humboldt University, 2004.

13. W. Penczek and A. Lomuscio. Verifying epistemic properties of multi-agent systems via
bounded model checking. Fundamenta Informaticae, 55(2):167–185.

14. F. Raimondi and A. Lomuscio. MCMAS - A tool for verification of multi-agent systems.
http://www.cs.ucl.ac.uk/staff/f.raimondi/MCMAS/.

15. F. Raimondi and A. Lomuscio. Automatic verification of multi-agent systems by model
checking via OBDDs. Journal of Applied Logic, 2005. To appear in Special issue on Logic-
based agent verification.

16. F. Somenzi. CUDD: CU decision diagram package - release 2.4.0. http:/ /vlsi.colorado.edu/
∼fabio/CUDD/cuddIntro.html.



MSCan – A Tool for Analyzing MSC
Specifications

Benedikt Bollig1, Carsten Kern2, Markus Schlütter3, and Volker Stolz2

1 LSV, CNRS UMR 8643 & ENS de Cachan, France
bollig@lsv.ens-cachan.fr

2 Software Modeling and Verification Group, RWTH Aachen University, Germany
{kern, stolz}@informatik.rwth-aachen.de

3 Department of Process Control Engineering, RWTH Aachen University, Germany
schluetter@plt.rwth-aachen.de

Abstract. We present the tool MSCan, which supports MSC-based
system development. In particular, it automatically checks high-level
MSC specifications for implementability.

1 Introduction

Message Sequence Charts (MSCs) constitute a prominent notion for describing
protocols in the early stages of system development [8]. An MSC depicts a col-
lection of processes, which, in their visual representation, are drawn as vertical
lines and interpreted as time axes. An arrow from one line to a second corre-
sponds to sending and receiving a message. Not only does the MSC standard
allow to specify single scenarios; to make MSCs a flexible specification language,
it also supports choice, concatenation, and iteration, which give rise to high-level
MSCs. Consider Fig. 1: the MSCs M1, M2, and M3 are the building blocks of
the high-level MSC G, which generates scenarios such as the MSC M .

A high-level MSC specification permits a global view of a distributed system,
whereas the future implementation thereof will usually be controlled locally by
rather autonomous processes. Due to this inherent discrepancy, a preliminary
high-level MSC specification might not be suitable for an implementation and
often requires further refinement and adjustment steps. If, for example, the spec-
ification admits some global system behavior where the choice of two alternatives
can be triggered by independent processes, inconsistent (local) decisions might
lead the system into a deadlock. This phenomenon is known as non-local choice
[2]. Otherwise, the high-level MSC from Fig. 1 has the local-choice property: the
only choice point is entirely under the control of process 2.

A system specification with the local-choice property can always be realized
by a deadlock-free distributed implementation. Other requirements ensuring im-
plementability with various characteristics are local cooperativity, global coop-
erativity, and regularity [5, 7]. Last but not least, high-level MSCs with above-
mentioned properties come along with decidable model-checking problems for
further analyses that, in general, are undecidable [1, 5].

H. Hermanns and J. Palsberg (Eds.): TACAS 2006, LNCS 3920, pp. 455–458, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



456 B. Bollig et al.

Fig. 1. A (local-choice) high-level MSC

2 The Tool MSCan

MSCan supports the system development based on high-level MSCs. It auto-
matically checks a high-level MSC specification for (several variants of) local
choice, local and global cooperativity, as well as regularity and many other rea-
sonable requirements to draw conclusions about implementability, consistency,
and decidable model-checking problems. Moreover, MSCan offers numerous fea-
tures for editing, displaying, and debugging high-level MSCs. It converts an ITU
Z.120 textual description of a high-level MSC specification into a graph structure
that naturally reflects choice, concatenation, and iteration. Based on the internal
graph representation, MSCan applies graph algorithms to explore the specifi-
cation and to detect global control structures that do not allow an embedding
into a locally controlled implementation.

Note that high-level MSCs, in their basic form, are only capable of specifying
finitely generated behavior [7]. To overcome those drawbacks and to be able
to specify non finitely generated behavior such as the alternating-bit protocol,
compositional high-level MSCs have been introduced by Gunter et al. [6]. We
would like to stress that, in all aspects, our tool supports this extension, which
enjoys many nice properties and increasing popularity [4].

2.1 Graphical User Interface

To grant the user a maximum degree of comfort, the graphical user interface is
partitioned into four main components (cf. Fig. 2). The upper part of the GUI
is taken by the menu component of the tool (1). It offers facilities to create,
load, and save MSC documents and to change the level of detail and the mode
of analysis (e.g., lazy evaluation). Moreover, the menu allows to select a single
high-level MSC property as well as grouping several properties together.

Further features that are controlled via the menu component of MSCan are:
(i) processing the MSC document and displaying its graph structure in the
graph component of the GUI, (ii) displaying the properties of the currently



MSCan – A Tool for Analyzing MSC Specifications 457

Fig. 2. An MSCan Session

selected high-level MSC that have been detected so far, and (iii) checking direc-
tories recursively for high-level MSCs, executing all tests currently supported by
the tool, and creating a text or HTML output containing the results of the
analysis. The left component (2) may be used for editing MSC documents.
Herein, the user can specify the system behavior to be analyzed as well as
alter faulty specifications to eventually converge to a protocol that exhibits
exactly the desired properties. Label (3) is associated with the graph com-
ponent of MSCan, in which the high-level MSC under consideration can be
displayed. It allows the user to zoom in and out partial behavior as well as
clicking onto nodes to depict the associated MSCs. The fourth component (4)
is addressed to the analysis output of a test execution providing the user with
counter examples, which may be used for debugging and system refinement.
It displays test results and calls the user’s attention to potential conflicts or
inconsistencies in the protocol specification. Additionally, it eases the protocol
designer’s task of ruling out errors by visualizing high-level MSC components
like nodes, edges, paths and all kinds of graphs (e.g., channel and communica-
tion graphs). This guides the user and substantially reduces her effort to detect
faulty or inconsistent system behavior. For further screenshots and a more elab-
orate feature description, the reader may visit the web page of MSCan located
at [11].



458 B. Bollig et al.

2.2 General Information

MSCan is written in Java 1.5 using the Java graph visualization package Grappa
[10] and the parser MSC2000 [9]. It consists of a console application started by
the class MSCExecute of the homonymous package and of a concise, interactive
graphical user interface. We developed the tool in a highly modular manner to
ease the integration of high-level MSC properties, analysis components, and the
graphical user interface. Instructions on how to extend the collection of currently
available properties can be found on the web page of the tool. We also offer a
web interface and a collection of predefined sample high-level MSCs to test the
basic features of the tool online [11].

3 Conclusion and Future Work

To our knowledge, there is no other tool that provides a protocol designer with
a likewise great variety of facilities to analyze high-level MSCs. Another project
is [3], which, in contrast to our tool, checks exclusively for the non-local choice
property. Moreover, it requires a high-level MSC to be in a normal form, de-
manding additional effort from the protocol designer.

MSCan is currently being enhanced to integrate a subsequent implementation
phase to automatically derive implementations from high-level MSCs. As a first
step in that direction, we are developing a code generation back-end, which emits
out-of-the-box compilable Java code from MSC documents [12].

References

1. R. Alur and M. Yannakakis. Model checking of message sequence charts. In
CONCUR 1999, volume 1664 of LNCS. Springer, 1999.

2. H. Ben-Abdallah and S. Leue. Syntactic detection of process divergence and non-
local choice in message sequence charts. In TACAS 1997, volume 1217 of LNCS.
Springer, 1997.

3. H. Ben-Abdallah and S. Leue. Mesa: Support for scenario-based design of concur-
rent systems. In TACAS 1998, volume 1384 of LNCS. Springer, 1998.

4. B. Genest. Compositional message sequence charts (CMSCs) are better to imple-
ment than MSCs. In TACAS 2005, volume 3340 of LNCS. Springer, 2005.

5. B. Genest, A. Muscholl, H. Seidl, and M. Zeitoun. Infinite-state high-level MSCs:
Model-checking and realizability. In ICALP 2002, volume 2380 of LNCS. Springer,
2002.

6. E. Gunter, A. Muscholl, and D. Peled. Compositional message sequence charts. In
TACAS 2001, volume 2031 of LNCS. Springer, 2001.

7. J. G. Henriksen, M. Mukund, K. Narayan Kumar, and P. S. Thiagarajan. On
message sequence graphs and finitely generated regular MSC languages. In ICALP
2000, volume 1853 of LNCS. Springer, 2000.

8. ITU-TS Recommendation Z.120: Message Sequence Chart 1999 (MSC99), 1999.
9. H. Neukirchen. MSC2000 Parser. CS Dept., University of Göttingen.

10. Grappa (Version 1.2). http://www.research.att.com/~john/Grappa/.
11. MSCan. http://www-i2.informatik.rwth-aachen.de/MSCan/.
12. MSC Execute. http://www-i2.informatik.rwth-aachen.de/MSCExecute/.



A Practical and Complete Approach
to Predicate Refinement

Ranjit Jhala and K.L. McMillan

1 University of California, San Diego
2 Cadence Berkeley Labs

Abstract. Predicate abstraction is a method of synthesizing the
strongest inductive invariant of a system expressible as a Boolean combi-
nation of a given set of atomic predicates. A predicate selection method
can be said to be complete for a given theory if it is guaranteed to even-
tually find atomic predicates sufficient to prove a given property, when
such exist. Current heuristics are incomplete, and often diverge on simple
examples. We present a practical method of predicate selection that is
complete in the above sense. The method is based on interpolation and
uses a “split prover”, somewhat in the style of structure-based provers
used in artificial intelligence. We show that it allows the verification of a
variety of simple programs that cannot be verified by existing software
model checkers.

1 Introduction

Predicate abstraction [14] is a technique commonly used in software model check-
ing in which an infinite-state system is represented abstractly by a finite-state
system whose states are the truth valuations of a chosen set of atomic predicates.
The reachable state set of the abstract system corresponds to the strongest induc-
tive invariant of the infinite-state system expressible as a Boolean combination
of the given predicates.

Given a decision procedure for the underlying theory, predicate abstraction
can prove a property of a system exactly when the property is implied by a
quantifier-free inductive invariant of that system. That is, suppose that a sys-
tem has a quantifier-free inductive invariant ψ that implies some condition that
we wish to prove invariant and suppose we can supply the atomic predicates
occurring in ψ. Since predicate abstraction synthesizes the strongest inductive
invariant expressible as a Boolean combination of these predicates, it is guaran-
teed to generate an invariant as strong as ψ, and hence to prove the property.
There remains only the question of how to guess these atomic predicates. We
will say that a predicate selection heuristic is complete if it is guaranteed eventu-
ally to choose enough predicates to prove any given property φ, as long as there
is some quantifier-free inductive invariant of the system that implies φ. This
definition of completeness is strictly stronger than that of [1], which restricts
invariants to atomic predicates generated by the “pre” operator.

There is, of course, a trivial complete heuristic. Since the atomic predicates
are countable, one has only to enumerate them in a complete way. Each time we

H. Hermanns and J. Palsberg (Eds.): TACAS 2006, LNCS 3920, pp. 459–473, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



460 R. Jhala and K.L. McMillan

generate a new predicate, we add it to our set, and try predicate abstraction.
Eventually our set of predicates will contain all the atomic predicates in ψ, and
we will prove the property.

Obviously, this approach is not practical. Since predicate abstraction is ex-
ponential (or worse!) in the number of predicates, a practical approach must
generate a sufficient set of predicates that is as small as possible. A number of
heuristic approaches based on computing weakest preconditions have been sug-
gested [8, 2, 3]. The approaches of [15, 7] derive predicates from proofs. None of
these is complete in the above sense (though [8] includes an acceleration heuristic
that may prevent divergence).

As an example of divergence of a predicate heuristic, consider the following
simple C program fragment:1

x = i; y = j;
while (x!=0) {x--; y--;}
if (i == j) assert (y == 0);

A typical predicate heuristic will examine counterexamples produced by model
checking the abstraction. A counterexample is a program execution path that
reaches an error state, and cannot be refuted using the available predicates (a
notion we will formally define later). Suppose our first counterexample passes
through the loop zero times (which means i = 0 initially). We might obtain
new predicates by computing the weakest precondition of the assertion in a
backward manner along the path. From this we obtain formulas containing the
atomic predicates i = j, x = 0, y = 0, i = 0 and j = 0. Using these predicates, we
obtain a counterexample in which the loop is executed once. Computing weakest
preconditions, we obtain the additional predicates x = 1, y = 1, i = 1, j = 1,
and so on. Thus, by analyzing counterexamples, we obtain a diverging sequence
of predicates in which the integer constants tend to infinity. On the other hand,
the predicates i = j, x = 0 and x = y are sufficient to prove the assertion (at
the level of basic blocks). The loop invariant is i = j ⇒ x = y. Thus, predicate
heuristics based on weakest precondition over counterexamples are incomplete,
essentially due to a failure to generalize.

Heuristics based on interpolation [7] are potentially more effective in focusing
on relevant predicates, but suffer from the same problem of divergence. In this
paper, we propose a method that is both heuristically useful and complete (in
the above limited sense). Like the method of [7], it is based on the computation
of interpolants from the refutation of counterexamples. However, in this case
the use of a specialized “split” prover allows us to restrict the language of the
interpolants in a way that prevents the atomic predicates from diverging as the
counterexamples become longer.

In the next section of the paper, we discuss the method of deriving predicates
from interpolants, which are in turn derived from the refutation of counterex-
amples. We then show that by restricting the interpolants to a finite language L,
and gradually expanding this language, we can guarantee convergence of predi-
1 Thanks to Anubhav Gupta for this example.



A Practical and Complete Approach to Predicate Refinement 461

cate abstraction (when the property is provable). In section 3 we introduce the
notion of a split prover, and show that such a prover can be used to generate
interpolants in a restricted language, and thus can be used as a complete predi-
cate heuristic. In section 4, we describe an implementation of such a prover for a
particular theory. In section 5, we show that this method is capable in practice of
verifying programs that cannot be verified by existing heuristic methods because
of predicate divergence.

2 Predicates from Interpolants

Throughout this paper, we will use standard first-order logic (FOL) and we
will use the notation L(Σ) to denote the set of well-formed formulas (wff’s) of
FOL over a vocabulary Σ of non-logical symbols. For a given formula or set of
formulas φ, we will use L(φ) to denote the wff’s over the vocabulary of φ.

For every non-logical symbol s, we presume the existence of a unique sym-
bol s′ (that is, s with one prime added). We think of s with n primes added
as representing the value of s at n time units in the future. For any formula or
term φ, we will use the notation φ〈n〉 to denote the addition of n primes to every
symbol in φ (meaning φ at n time units in the future). For any set Σ of symbols,
let Σ′ denote {s′ | s ∈ Σ} and Σ〈n〉 denote {s〈n〉 | s ∈ Σ}.

Modeling Programs. We will use first-order formulas to characterize pro-
grams. To this end, let S, the state vocabulary, be a set of individual variables
and uninterpreted n-ary functional and propositional constants. A state formula
is a formula in L(S) (which may also include various interpreted symbols, such
as = and +). A transition formula is a formula in L(S ∪ S′). We require a tech-
nical condition: a transition formula must contain an occurrence of every symbol
in S and S′. This condition can easily be made to hold by adding tautologies,
such as a = a.

A program will be represented (somewhat abstractly) by a pair (T , Π) where
T is a set of transition formulas (representing program statements) and Π ⊂ T ∗
is a regular language representing the possible execution paths of the program.

For any sequence of transitions π = T1, . . . , Tn in T ∗, we will say the unfolding
U(π) is the sequence T 〈0〉1 , . . . , T

〈n−1〉
n . For example, the unfolding of the error

path of our example program that executes the loop once is:

x〈1〉 = i〈0〉 ∧ y〈1〉 = j〈0〉 ∧ i〈1〉 = i〈0〉 ∧ i〈1〉 = j〈0〉,

x〈1〉 �= 0 ∧ x〈2〉 = x〈1〉 − 1 ∧ y〈2〉 = y〈1〉 − 1 ∧ i〈2〉 = i〈1〉 ∧ j〈2〉 = j〈1〉,

x〈2〉 = 0 ∧ i〈2〉 = j〈2〉 ∧ y〈2〉 �= 0

We will say that π is feasible when
∧
U(π) is consistent. We can think of a model

of
∧
U(π) as a concrete program execution, assigning a value to every program

variable at every time 0 . . . n. A program (T , Π) is said to be infeasible when
every path in Π is infeasible. The problem of safety verification can be reduced
to infeasibility by intersecting Π with the language of paths leading to “error”
states.



462 R. Jhala and K.L. McMillan

Predicate Abstraction. Given a set of predicates β, we will say that strongest
β-postcondition of a state formula φ with respect to transition T , denoted spβ

T (φ),
is the strongest Boolean combination ψ over β such that φ∧T implies ψ〈1〉. That
is, spβ

T (φ) is the strongest Boolean formula expressible over β that must be true
after executing T from a state satisfying φ. We define the notion of strongest
β-postcondition over sequences of transitions by induction over the sequence:

spβ
ε (φ) = φ

spβ
π·t(φ) = spβ

t (spβ
π(φ))

A sequence π of transitions is β-refutable when spβ
π(True) ≡ False. Further,

a program (T , Π) is β-refutable when every path in Π is β-refutable. This is
exactly the condition tested by predicate abstraction. That is, predicate abstrac-
tion can verify a program to be infeasible using predicates β exactly when the
program is β-refutable. We will say that a verifier is a procedure that takes
a program as input and returns True or False, or diverges. It is sound if it
returns True only when the program is infeasible. Moreover:

Definition 1. A verifier V is complete for predicate abstraction if, for every
program A = (T , Π) that is β-refutable for some set β of atomic predicates, V
converges on A and returns True.

Interpolants from Proofs. Given a pair of formulas (A,B), such that A ∧ B
is inconsistent, an interpolant for (A,B) is a formula Â with the following
properties:

– A implies Â,
– Â ∧B is unsatisfiable, and
– Â ⊆ L(A) ∩ L(B).

The Craig interpolation lemma [5] states that an interpolant always exists for
inconsistent formulas in FOL. To allow us to speak of interpolants of program
paths, we generalize this idea to sequences of formulas. That is, given a sequence
of formulas Γ = A1, . . . , An, we say that Â0, . . . Ân is an interpolant for Γ when

– Â0 = True and Ân = False and,
– for all 1 ≤ i ≤ n, Âi−1 ∧Ai implies Âi and
– for all 1 ≤ i < n, Âi ∈ L(Ai) ∩ L(Ai+1).

That is, the i-th element of the interpolant is a formula in the common language
of Ai and Ai+1, and is provable from the first i elements of Γ .

If Γ is quantifier-free, we can derive a quantifier-free interpolant for Γ from a
refutation of Γ , in certain interpreted theories [11]. This fact was exploited in [7]
to derive predicates for predicate abstraction. This is based on the following
result, where AP (φ) denotes the set of atomic predicates in φ:

Theorem 1. Given a set of atomic predicates β, a program path π = A1, . . . , An

is β-refutable iff U(π) has a quantifier-free interpolant Â0, . . . , Ân such that for
all 1 ≤ i < n, AP (Âi) ⊆ β〈i〉.



A Practical and Complete Approach to Predicate Refinement 463

Proof. For the only if direction, we observe that the sequence P̂0, . . . , P̂n, where
P̂i = spβ

A1,...,Ai
(True)〈i〉, is a suitable interpolant (guaranteeing that P̂i ∈

L(Ai−1) ∩ L(Ai) requires our technical condition on transition formulas). For
the if direction, we show by induction that Pi (as defined above) implies Âi,
hence spβ

π(True) ≡ False. �

If a counterexample path π is not β-refutable for the current set of predicates β
we can compute an interpolant for π, and augment β by adding the atomic
predicates occurring in the interpolant (dropping the primes). Thus, π is now
β-refutable (for the new β). For example, a possible interpolant for the error
path example above is

True, (x〈1〉 = i〈1〉 ∧ y〈1〉 = j〈1〉), (x〈2〉 = i〈2〉 − 1 ∧ y〈2〉 = j〈2〉 − 1),False

From this we derive the predicates x = i,y = j,x = i − 1 and y = j − 1.
This gives us a predicate heuristic (used in [7]) that is guaranteed to rule out
any given counterexample path, but may produce predicates that diverge as the
number of loop iterations increases. To prevent this divergence, we propose in
this work to restrict the interpolants to some finite language L. For example, we
could restrict L to contain numeric constants only in some fixed range, and thus
prevent constants in the predicates from tending to infinity.

Definition 2. Given a language L, an L-restricted interpolant for Γ=A1, . . . , An

is an interpolant Â0, . . . Ân for Γ , such that each Âi ∈ L.

By gradually enlarging the restriction language L, we obtain a complete proce-
dure. That is, let us define a chain of finite, quantifier-free, propositionally closed
languages L0 ⊆ L1 ⊆ · · · such that every atomic predicate is contained in some
Li. We can then use the following procedure for program verification:

procedure Relax(A)
let k = 0 and β = ∅
repeat

if A is β-refutable return True
else let π be a non-β-refutable path of A in

if π has an Lk-restricted interpolant Â0, . . . Ân

then let β = β ∪ {p | p〈i〉 ∈ AP (Âi), for some 1 ≤ i < n}
else let k = k + 1

That is, as long as the counterexamples produced by predicate abstraction are
refutable using predicates in language Lk we continue using Lk-restricted inter-
polants to generate predicates. When we obtain a counterexample not refutable
in Lk, we move on to Lk+1.

Theorem 2. Procedure Relax is complete for predicate abstraction.

Proof. Theorem 1 tells us that each interpolant must contain some atomic pred-
icate not in β. Thus in every iteration of the loop, either β increases, or k
increases. Since β ⊆ Lk, it cannot increase unboundedly without increasing k.



464 R. Jhala and K.L. McMillan

Thus either the procedure terminates, or k increases unboundedly. Now suppose
program A is β-refutable. β must be contained in some Lm. We know k cannot
increase beyond m, since by Theorem 1, every path of A has an Lm-restricted
interpolant. Thus the procedure terminates (and returns True). �

Of course, the choice of restriction languages Lk is a heuristic one, and we
would like to make that choice in a way that will lead to rapid convergence.
One observation we can make in this area is that invariants of loops rarely
contain large numeric constants. Thus, we might define Lk so as to contain
numeric constants no larger in absolute value than k. This heuristic is effective
for our example program. Note that L0 does not contain the interpolant we
obtained above for our example path (since it contains the constant 1). Thus,
it forces us to choose an interpolant like this: True,(x〈1〉 = i〈1〉 ∧ y〈1〉 = j〈1〉),
(i〈2〉 = j〈2〉 ⇒ x〈2〉 = y〈2〉), False. This yields predicates x = i,y = i,x = j
and x = y, which are adequate to prove the program. One way to view this is
that the inability to use the specific constant 1 forces us to generalize. Thus, the
verification terminates at L0.

3 The Split Prover

The problem of predicate selection has now been reduced to finding an
L-restricted interpolant for a given sequence of formulas A1, . . . , An. As in [11]
we derive interpolants from proofs. However, we restrict the interpolants to for-
mulas in L by placing a restriction on allowable proofs. We define a notion of split
proof in which all reasoning is local. That is, each deduction step is labeled by
some Ai, such that both its antecedents and consequent are contained in L(Ai),
and the deduction depends only on Ai. This is as if we have n communicating
provers, each of which knows one Ai, and can see the results of other provers
only if they are over the vocabulary of Ai. To be more precise:

Definition 3. A split proof over a set of hypotheses Γ is a triple (V,E, P ), such
that V is a set of formulas, (V,E) is a directed acyclic graph, and P is a labeling
function V → Γ , and

– for all edges (g, f) ∈ E, we have g, f ∈ L(P (f)), and
– preds(f), P (f) |= f .

where preds(f) = {g | (g, f) ∈ E}. A split refutation of Γ is a split proof over Γ
whose unique leaf is the formula False.

In order to restrict the interpolants to a given language L, we have only to
restrict the set of formulas that can be communicated between provers:

Definition 4. An L-restricted split proof over a set of hypotheses Γ is a split proof
(V,E, P ) over Γ , such that, for all edges (f, g) ∈ E, if P (f) �= P (g), then f ∈ L.

We will say that a sequence of hypotheses Γ = {A1, . . . , An} is strict if the
vocabularies ofAi and Aj only intersect when i−1 ≤ j ≤ i+1 (i.e., if only nearest
neighbors share non-logical symbols). This condition is satisfied by program path
unfoldings. We can now show the following:



A Practical and Complete Approach to Predicate Refinement 465

Theorem 3. Given a strict sequence of hypotheses Γ = {A1, . . . , An}, and a
propositionally closed language L, Γ has an L-restricted interpolant if and only
if it has an L-restricted split refutation.

Proof. The only if is straightforward, since the interpolant itself acts as the
refutation. That is, each formula in the interpolant proves the next, given the
next hypothesis, and each is over the common language of neighboring hypothe-
ses. For the if direction, we construct an interpolant from the proof as follows.
First, we rewrite the proof so that every edge is between vertices with dis-
tinct labels. If an edge (f, g) is such that P (f) = P (g), we eliminate it by
adding preds(f) to preds(g). Now we transform each vertex f into the formula
f ′ =

∧
preds(f) ⇒ f . We then create new strict hypotheses Γ ′ = {A′1, . . . , A′n}

where A′i = {f ′ |P (f) = Ai}. Note that Ai implies A′i and A′i ∈ L(Ai), by
Definition 3, and A′i ∈ L, by Definition 4. This set of formulas is propositionally
unsatisfiable (i.e., no truth assignment to the atoms makes it true). Therefore,
we can construct a propositional interpolant for it, without introducing new
atoms, by the method of [10] (this step requires strictness). Since each Ai im-
plies A′i, it follows that this is also an interpolant for A1, . . . , An, and moreover
it is L-restricted. �

The proof of this theorem also gives us a procedure for constructing an
L-restricted interpolant from an L-restricted split proof. We transform the proof
into a sequence of formulas, refute this sequence propositionally, and then derive
the interpolant from the propositional refutation. This is actually a polynomial-
time operation, since the refutation can be done by unit resolution (i.e., BCP).

The key question is how to find a suitable split proof. Proofs generated by an
arbitrary prover will not in general fit our restrictions. Interestingly, this question
has been studied in the artificial intelligence community, for the purpose not of
generating interpolants, but of creating more efficient provers by localizing the
proof effort. The method is based on the notion of consequence finding.

A consequence finder is a function that takes a set of hypotheses Γ in its input
language and generates a set of consequences of Γ . For a given language L, we
will say that a consequence finder R is complete for L-generation when every
consequence of Γ in L is implied by R(Γ ). That is, to be complete R need not
generate every consequence of Γ in L, but it must preserve all consequences of
Γ expressible in L. To be more formal:

Definition 5. A consequence finder R, with input language L(R) is a function
P(L(R)) → P(wff) that is monotone, ∪-continuous, and such that, for every
φ ∈ R(Γ ), Γ |= φ.

Definition 6. Given a language L, a consequence finder R is complete for
L-generation iff, for every formula f ∈ L, if Γ |= f , then R(Γ ) ∩ L |= f .

We now use this notion of consequence finding to build a prover that constructs
split proofs. For each partition Ai, we construct a consequence finder Ri that
is complete for L(Ai−1)-generation and for L(Ai+1)-generation. In other words,
each prover can generate all consequences in the languages of its neighbors. The



466 R. Jhala and K.L. McMillan

initial input of Ri is just Ai. Each time a consequence φ is generated by some
Ri, it is added to the input of every Rj such that φ ∈ L(Aj). We can formalize
this notion of a combination of local consequence finders as follows:

Definition 7. Let R be an indexed set of consequence finders {R1, . . . ,Rn}.
The composition of R, denoted ⊗R, is a function that takes an indexed set of
hypotheses Γ = {A1, . . . , An}, such that L(Ai) ⊆ L(Ri), and returns the least
fixed point of function F , where

F(Q) =
⋃
i

Ri(Ai ∪ (Q ∩ L(Ri)))

Note that the monotonicity of consequence finders guarantees the existence of
the least fixed point of F in the above definition. In [9] it is shown (in a somewhat
more general setting) that such a split prover is complete for refutation in FOL:

Theorem 4 ([9]). Let Γ = {A1, . . . , An} be a strict sequence of hypotheses in
FOL, and let R = R1, . . . ,Rn be an indexed set of consequence finders, such that
L(Ri) = L(Ai). If for every 1 ≤ i < n, Ri is complete for L(Ai+1)-generation,
then False ∈ (⊗R)(Γ ) iff Γ is inconsistent.

This is a simple consequence of Craig’s interpolation lemma. That is, assuming
Ri receives enough facts to prove component Âi of the interpolant, it produces
enough facts to imply Âi+1. Thus we must derive Ân, which is false.

In [9], various resolution strategies are discussed which are complete for L(Σ)-
generation in FOL, where Σ is an arbitrary vocabulary of non-logical symbols.
This makes it possible to construct a complete split prover for FOL. Our concern,
however, is not to implement a complete prover, but rather a prover that is
“complete” for generation of L-restricted split proofs, for a particular languageL.
Our approach to this is to restrict communication between consequence finders
to just sentences in the restriction language L:

Definition 8. Let R be an indexed set of consequence finders R1, . . . ,Rn, and
let L be a language. The L-restricted composition of R, denoted ⊗LR, is a
function that takes an indexed set of hypotheses Γ = {A1, . . . , An}, such that
L(Ai) ⊆ L(Ri), and returns the least fixed point of function F , where

F(Q) =
⋃
i

Ri(Ai ∪ (Q ∩ L(Ri) ∩ L))

We can show that the L-restricted split prover defined above is complete for
generation of L-restricted split refutations, provided the consequence finders are
complete for L-generation:

Theorem 5. Let Γ = {A1, . . . , An} be a strict sequence of hypotheses in FOL,
and let R = {R1, . . . ,Rn} be an indexed set of consequence finders, such that
L(Ri) = L(Ai), and let L be an arbitrary language. If for each 1 ≤ i < n, Ri

is complete for (L(Ai+1)∩L)-generation, then False ∈ (⊗LR)(Γ ) iff Γ has an
L-restricted split refutation.



A Practical and Complete Approach to Predicate Refinement 467

Proof. For the if direction, if Γ has an L-restricted split refutation, it has an
L-restricted interpolant Â0, . . . , Ân (by Theorem 3). By induction on i, each Ri

must generate facts implying Âi, since it is complete for (L(Ai+1)∩L)-generation.
Thus Rn generates False. For the only if direction, we show by induction that
each fact f ∈ (⊗R)(Γ ) has an L-restricted split proof. The function F is a finite
union of ∪-continuous functions and so is ∪-continuous. Therefore, by the Tarski-
Knaster theorem f must occur in some fixed point iteration F j(∅). Thus f is
a consequence of some facts Θ ⊆ F j−1(∅), generated by some Ri. By inductive
hypothesis, these facts have L-restricted split proofs. Thus f has an L-restricted
split proof. �

An immediate consequence is, of course, that the L-restricted split prover gener-
ates a proof exactly when Γ has an L-restricted interpolant, and moreover this
proof can be translated directly into an interpolant (Theorem 3).

Note that for completeness the fixed point of Definition 8 need not converge
finitely – the prover may generate consequences infinitely if no L-restricted refu-
tation exists. One could still obtain a complete verifier by trying all the restric-
tion languages Lk in parallel. In practice, of course, we want to obtain a negative
result quickly so we can advance to the next Lk.

4 Implementing a Split Prover

In this section we describe an attempt to implement an efficient split prover for
a limited theory. Our wff’s are limited to quantifier-free first-order sentences,
with equality, separation predicates (difference bounds), and restricted use of
the array operators “select” and “store”. The only arithmetic predicates allowed
in the theory are of the form x − y ≤ c, x ≤ c and c ≤ x, where c is an
integer constant. This simple theory appears to be sufficient to handle many
properties of programs that manipulate arrays. The prover is complete for split
proof generation for rational models, but not (yet) for integer models. The prover
generates interpolants in a restriction language L. This language is defined by
a finite set CD of constants that may occur in difference bounds of the form
x − y ≤ c, and a finite set CB of constants that may occur in absolute bounds
of the form x ≤ c or x ≥ c. To make L finite, we also require a bound bf on the
nesting depth of uninterpreted function symbols.

There is not space here to discuss all of the issues involved in constructing
an efficient prover. Rather, we will give an informal overview of the main fea-
tures of the prover, with emphasis on the issues that differentiate a split prover
from a non-split prover. For efficiency, we separate the propositional reasoning
from the theory reasoning. Propositional reasoning is handled by an efficient
Boolean satisfiability (SAT) solver, similar to Chaff [12]. We construct complete
consequence finders for the several theories, and combine them using the Nelson
Oppen approach [13]. As in that method, we rely on convexity of the theories
to avoid generating disjunctions, and we split cases when necessary to eliminate
non-convexities.



468 R. Jhala and K.L. McMillan

Coupling of propositional and theory reasoning is done in the “lazy” manner,
as in [6]. The SAT solver tests whether the entire set of hypotheses
Γ = {A1, . . . , An} is propositionally consistent. If so, it produces a propositional
satisfying assignment as a set of literals W . This set is partitioned into subsets
{W1, . . . ,Wn}, such that each atom of Wi occurs in Ai. This set of hypotheses is
then passed to the split theory prover for refutation. The hypotheses used in the
generated refutation are collected, and their dual is passed to the SAT solver as
a “blocking clause” – a tautology that rules out the given satisfying assignment.
The process continues until either the system becomes propositionally unsatis-
fiable (and thus Γ is refuted) or until some propositional satisfying assignment
cannot be refuted. The propositional decision procedure need not be “split”.
Rather the propositional proof and the split proofs of the blocking clauses can
be combined as in [11]. The interpolant derived from this combined proof is still
guaranteed to be L-restricted, since the propositional interpolation rules do not
generate new atoms.

By separating propositional and theory reasoning in this way, we limit the
hypotheses of the split prover to just sets of literals. This greatly simplifies con-
sequence generation. In particular, it allows us to take advantage of the convexity
of a given theory, as in [13]. We will say that a complete consequence finder is
convex if it generates only Horn clauses (clauses with at most one positive lit-
eral). If our consequence finders are convex, then we can further restrict the
language L by which the provers communicate to contain only positive literals.
This is because unit resolution is complete for Horn clause refutation (and is
exploited in the Nelson Oppen method).

Difference Bounds. The problem is thus reduced (in the convex case) to one of
“unit” consequence finding in the given theory, in the given language L. We will
begin with the theory of difference bounds (considering rational models first). For
this theory, we use the linear combination rule to generate consequences. This
derivation rule takes as antecedents two inequalities 0 ≤ x and 0 ≤ y (where x
and y are arbitrary terms) and derives an inequality 0 ≤ c1x + c2y, where c1
and c2 are positive constants. We restrict use of the rule to just cases where the
consequent is a difference bound. For example, from x ≤ y + 2 and y ≤ z + 3,
we can derive x ≤ z + 5. We can discard consequences that are subsumed by
previously generated consequences, and we terminate if a contradiction (say,
0 ≤ −1) is derived. This rule is complete for consequence generation over a
given vocabulary (applying it exhaustively amounts to an all-pairs shortest path
computation on a graph whose vertices are terms and whose edges are labeled
with difference bounds).

The rule is not complete, however, for consequence generation in our restric-
tion language L. Consider the case, for example, where we can derive x ≤ y− 1,
but the set CD of allowed difference constants is just {0}. Thus x ≤ y − 1 is
not in L, but its consequence x ≤ y is in L. Unfortunately, x ≤ y cannot be
derived by the linear combination rule. To remedy this, we add a weakening rule,
that derives from an inequality 0 ≤ x a weaker inequality 0 ≤ x + c, where c
is a positive constant. This rule is used to derive the strongest consequence of



A Practical and Complete Approach to Predicate Refinement 469

any inequality that is contained in L. With this rule, and similar rules for strict
inequalities, our system is complete for L-generation over the rationals.

Equality and Uninterpreted Functions. Next, we consider equality and un-
interpreted function symbols. For this theory, we use the usual derivation rules
for equality: symmetry, reflexivity, transitivity and congruence, along with the
contradiction rule (any literal and its negation imply False). These rules are
complete for unit consequence finding. They are not, however, finitely terminat-
ing, because of the congruence rule. For example, given a = b, we will derive
f(a) = f(b), f(f(a)) = f(f(b)), and so on. Though termination is not necessary
for completeness, it is, of course, desirable in practice. For purposes of refuta-
tion, we can force termination by restricting the congruence rule to generate only
terms that occur in the hypotheses. This is done in the usual congruence clo-
sure approach (completeness of this approach is another consequence of Craig’s
interpolation lemma). However, this method is not complete for consequence
finding. Suppose, for example, we have the hypotheses a = b and f(a) = c,
and L = L({b, c, f}). There are no consequences in this language over just the
terms a, b, c, f(a). However, f(b) = c is derivable. We can remedy this deficit by
allowing the congruence rule to derive equalities over any terms occurring in the
hypotheses or having function nesting depth within our bound bf on function
nesting. Since this is a finite set of terms, our rules are now terminating, and
complete for L-consequence generation.

We combine difference bound and equality reasoning in the manner of Nelson
and Oppen [13]. That is, we compose two consequence finders, one for differ-
ence bounds and one for equality. For difference bounds, complete consequence
generation in the language of equality is achieved by a rule that derives a = b
from a ≤ b and b ≤ a. For equality, complete consequence generation in the
language of difference bounds is obtained by a rule that derives a ≤ b and b ≤ a
from a = b.

The Theory of Arrays. The first-order theory of arrays provides two in-
terpreted functions select and store. The term select(a, n) represents the n-th
element of array a, while store(a, n, b) is the array resulting from setting the n-th
element of array a to value b. These functions obey the following axioms:

select(store(a, n, b), n) = b

n �= n′ ⇒ select(store(a, n, b), n′) = select(a, n′)

The second axiom is problematic on two counts. First, it generates an infinite
set of quantifier-free consequences. For example, if we have the hypothesis a′ =
store(a, n, b), then we can derive select(a′, n+ 1) = select(a, n+ 1), select(a′, n+
2) = select(a, n+ 2), . . .. There is one such consequence for every term provably
not equal to n. Although there is a finite number of such terms occurring in L,
enumerating them all would still be extremely inefficient. However, we can avoid
this difficulty by restricting the use of arrays. That is, we allow array-valued
terms to occur in Ai only as the first argument of select and in expressions of
the following form:



470 R. Jhala and K.L. McMillan

a′ = store(store(. . . store(a, n1, b1), n2, b2) . . . , nk, bk)

where a′ does not occur in Ai−1 and a does not occur in Ai+1. This corresponds
to the way in which arrays are used in imperative programs (that is, once the
array is modified, the old value of the array is no longer accessible). In this case,
it suffices to instantiate the second array axiom only for terms n′ that occur as
array indices in some select or store term (as no consequences are possible for
other array indices in L(Ai−1) or L(Ai+1)).

The second problem is the non-convexity of the array theory. That is, the
second axiom is in effect a disjunction of positive literals. In the case where we
cannot infer the truth value of either literal in the disjunction, and we cannot
otherwise obtain a refutation, we simply abandon the proof and introduce the
clause (n = n′ ∨ n �= n′) into the SAT solver, causing it to decide the value
n = n′, and thus eliminate the non-convexity. This tactic is also used in various
“lazy” decision procedures.

Integer Models. For program verification, we need to interpret formulas over
integer models. This is problematic, since integer difference-bound arithmetic is
non-convex when L includes equality formulas. In fact, deciding consistency of
a set of literals in this theory is already NP-complete. Moreover, our additional
restrictions on L introduce additional non-convexity. For example, suppose that
CD = {0} and we have x ≤ j and y ≤ x + 1. The disjunction x ≥ y ∨ y ≤ j is
a consequence, but is not implied by any unit consequence in L. At this point
we have not attempted to tackle the problem of a complete and heuristically
efficient split prover for integers. Rather, we have added two simple rules that
seem to be adequate in most practical cases for programs manipulating arrays.
The first derives a ≥ b+ 1 from ¬(a ≤ b) and the second derives a ≥ b+ 1 from
a ≥ b and a �= b.

Unfoldings in SSA Form. A common optimization used, e.g., in [7] is to write
the unfolding of a program path in the more compact “static single-assignment”
form (SSA). This can also be done with the split prover, if we relax our require-
ment of strictness in the unfolding (i.e., that each time frame shares symbols
only with its nearest neighbors). This complicates the above theory, but does not
present any difficulty in practice. Further, since in this scheme a fact may be de-
duced by many consequence finders, we adopt an approach in which such a fact
is deduced only once, and its derivation labeled with the range of time frames
in which it is deducible. Thus, we can more efficiently handle long unfoldings.

5 Experiments

To test the split prover as a predicate heuristic, we wrote a collection of small C
programs containing loops and decorated with assertions.2 The assertions are
all provable by quantifier-free invariants, and thus by predicate abstraction.
2 Available at http://www-cad.eecs.berkeley.edu/~kenmcmil



A Practical and Complete Approach to Predicate Refinement 471

Table 1. Outcomes on test programs

Outcome SatAbs Magic Blast (old) Blast (new)
Verified 0 0 8 12
Refinement failed 13 13 0 0
Did not finish 0 0 5 1

 0.01

 0.1

 1

 10

 100

 0.01  0.1  1  10  100

R
un

 ti
m

e,
 s

pl
it 

pr
ov

er

Run time, non-split prover

Fig. 1. Run time comparison of split and unsplit provers

All require non-trivial invariants, in the sense that the loop index variable(s)
must occur in the invariants. Most of the programs perform operations on ar-
rays or zero-terminated C strings, such as filling, copying, concatenating and
substring extraction. We tested four predicate abstraction tools on these pro-
grams: SatAbs [4], Magic [3], Blast [7] without the split prover (old), and
Blast with the split prover (new). The outcomes are tabulated in Table 1.
SatAbs and Magic, whose predicate heuristics are based on weakest pre-
conditions, are unable to verify any of the 13 programs.3 In all cases, the
predicate refinement step fails to produce new predicates at some point (ex-
cept for three cases in which Magic incorrectly produces counterexamples).
Blast, whose predicate heuristic is based on interpolation, verifies 8 of the
13 examples without using the split prover. On the remaining 5, the constants
in the predicates diverge to infinity (or toward some intractably large upper
bound).

For the split prover version of Blast, we define the restriction language Lk

by CD = {−k, . . . , k} and CB = {c + d | c ∈ CP , d ∈ CD}, where CP is the
set of numeric constants occurring in the program. That is, we allow difference
bounds nearby to zero, and absolute bounds (such as x ≤ c) nearby to some
constant occurring in the program. The latter are useful for loops whose upper
or lower bounds are fixed constants. As we increase k, we gradually expand

3 For SatAbs, we used version 1.1 with default settings. For Magic, we used version
1.0 with --optPred --predLoop 2.



472 R. Jhala and K.L. McMillan

the set of available constants until an inductive invariant can be expressed. For
these programs, we do not require a limit bf on function symbol nesting, since
no functions are iterated (we might require a limit, for example, if the programs
traversed linked lists). Using this heuristic, we find that 12 of the 13 programs
can be verified. All successful runs complete in under 30 seconds. In one case,
we time out because a loop requires the invariant i ≤ j <= 200, which does not
occur until L200. In this case, it appears that our notion of CD requires some
adjustment – perhaps allowing difference bounds nearby the large constants in
the program.

To test the performance of the split prover, we compare it with the non-split
interpolating prover of [11], which uses a conventional Nelson Oppen procedure
for theory reasoning. Figure 1 plots run times in seconds for the set of unfoldings
generated in verifying the two largest device driver examples from [7], with the
split prover restricted to L0. Two unfoldings that could not be refuted using L0
were removed. Each point represents one unfolding. It can be seen that the split
prover is only slightly less efficient than the unsplit prover.

6 Conclusion and Future Work

Existing predicate heuristics are incomplete, in that they may fail to find an
adequate set of predicates when one exists. However, by restricting the predi-
cates to a finite set, and progressively relaxing this restriction, we can obtain a
complete method. In an interpolant-based approach, this can be done using a
“split prover” that restricts the language of communication between time frames.
We have shown that a practical split prover can be built, at least for difference
bound arithmetic over the rationals. Moreover, a suitable choice of restriction
language allows us to verify programs for which existing methods fail in practice.
Thus, we have a predicate heuristic that is both theoretically complete and prac-
tically useful. For future work, it would be useful to expand the prover beyond
difference bound arithmetic (though it is not clear what a suitable restriction
language would be in this case) and to handle additional theories, such as the
theory of bit vectors.

The main limitation of the method is a limitation of predicate abstraction
itself, which cannot synthesize quantified invariants. For example, consider the
following simple C program:

for(i = 0; i < n; i++) x[i] = 0;
for(i = 0; i < n; i++) assert(x[i] == 0);

An invariant for this program requires a quantifier. Though in principle predicate
abstraction can use quantified predicates, they must be provided by the predicate
heuristic – predicate abstraction cannot synthesize them from atomic formulas.
The next step in this work is to produce quantified predicates. Some preliminary
results have been obtained in this area. For example, by removing the restriction
that interpolants be quantifier-free, we can obtain sufficient quantified predi-
cates to verify the above program (including the invariant for the first loop ∀j.



A Practical and Complete Approach to Predicate Refinement 473

(0 ≤ j < i) ⇒ x[j] = 0).4 Ultimately the goal is to extend the range of predicate
abstraction to a richer class of programs and properties.

Acknowledgment. The authors thank Tal Lev-Ami for pointing out related
work in Artificial Intelligence.

References

1. T. Ball, A. Podelski, and S. K. Rajamani. Relative completeness of abstraction
refinement for software model checking. In TACAS, pages 158–172, 2002.

2. T. Ball and S. K. Rajamani. Generating abstract explanations of spurious coun-
terexamples in c programs. Technical Report MSR-TR-2002-09, Microsoft, 2002.

3. S. Chaki, E. M. Clarke, A. Groce, and O. Strichman. Predicate abstraction with
minimum predicates. In CHARME, pages 19–34, 2003.

4. E. Clarke, D. Kroening, N. Sharygina, and K. Yorav. Predicate abstraction of
ANSI–C programs using SAT. Formal Methods in System Design (FMSD), 25:105–
127, September–November 2004.

5. W. Craig. Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. J. Symbolic Logic, 22(3):269–285, 1957.

6. L. de Moura, H. Rueß, and M. Sorea. Lazy theorem proving for bounded model
checking over infinite domains. In CADE, pages 438–455, 2002.

7. T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Abstractions from
proofs. In POPL, pages 232–244, 2004.

8. Y. Lakhnech, S. Bensalem, S. Berezin, and S. Owre. Incremental verification by
abstraction. In TACAS, pages 98–112, 2001.

9. S. McIlraith and E. Amir. Theorem proving in structured theories (full report).
Technical Report KSL-01-04, Stanford, 2001.

10. K. L. McMillan. Interpolation and sat-based model checking. In CAV, pages 1–13,
2003.

11. K. L. McMillan. An interpolating theorem prover. In TACAS, pages 16–30, 2004.
12. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engi-

neering an efficient SAT solver. In Design Automation Conference, pages 530–535,
2001.

13. G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures.
ACM Trans. on Prog. Lang. and Sys., 1(2):245–257, 1979.

14. H. Säıdi and S. Graf. Construction of abstract state graphs with PVS. In CAV,
pages 72–83, 1997.

15. R. Majumdar T. A. Henzinger, R. Jhala and G. Sutre. Lazy abstraction. In POPL,
pages 58–70, 2002.

4 Thanks to Daniel Kröning for integrating this in SatAbs.



Counterexample Driven Refinement
for Abstract Interpretation

Bhargav S. Gulavani1 and Sriram K. Rajamani2

1 IIT Bombay
2 Microsoft Research India

Abstract. Abstract interpretation techniques prove properties of pro-
grams by computing abstract fixpoints. All such analyses suffer from
the possibility of false errors. We present a new counterexample driven
refinement technique to reduce false errors in abstract interpretations.
Our technique keeps track of the precision losses during forward fixpoint
computation, and does a precise backward propagation from the error to
either confirm the error as a true error, or identify a refinement so as to
avoid the false error.

Our technique is quite simple, and is independent of the specific ab-
stract domain used. An implementation of our technique for affine tran-
sition systems is able to prove invariants generated by the StInG tool [19]
without doing any specialized analysis for linear relations. Thus, we hope
that the technique can work for other abstract domains as well. We sketch
how our technique can be used to perform shape analysis by simply defin-
ing an appropriate widening operator over shape graphs.

1 Introduction

Abstract interpretation [8] is a generic technique to compute sound fixpoints for
programs. Suppose we are interested in checking if a program satisfies invariant
ϕ. If the fixpoint computed by an abstract interpretation of the program P
satisfies ϕ, then we know that all concrete behaviors of the program satisfy ϕ.
However, if such a fixpoint does not satisfy the property ϕ, then there are two
possibilities: (1) the program does not satisfy ϕ (we have found a “true error” in
the program), or (2) the program indeed satisfies the property ϕ, but the abstract
interpretation was not precise enough to verify it (we have found a “false error”
in the program). Losing precision while computing fixpoints is inevitable if we
want to analyze programs with infinite domains, or scale the analysis to large
programs. However, losing too much precision leads to too many false errors and
reduces usability of the analysis tool.

Predicate abstraction [10] is a particular form of abstract interpretation. Tools
based on predicate abstraction to verify finite state interface protocols on pro-
grams have become popular over the past few years [4, 12, 6]. In order to reduce
false errors, these tools analyze an abstract counterexample to check if the coun-
terexample is feasible in the concrete program. If the counterexample is infeasible
they add more predicates to improve precision of predicate abstraction. This pro-
cess, called counterexample driven refinement continues iteratively until (1) the

H. Hermanns and J. Palsberg (Eds.): TACAS 2006, LNCS 3920, pp. 474–488, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Counterexample Driven Refinement for Abstract Interpretation 475

property is proved, or (2) a true error is found, or (3) either time or memory is
exhausted [14, 7].

Abstract interpretations operate over lattices, and compute overapproxima-
tions to semantics of programs as fixpoints. Such fixpoint computations may
not converge if the lattice has infinite ascending chains. Widening is a technique
used to ensure convergence of fixpoint computations. The widening operator ∇
has the property that for all x and y the result x∇y is greater than both x
and y. Furthermore, widening guarantees convergence of fixpoint computation
in the following sense. Given any infinite increasing sequence x0, x1, x2, . . ., the
sequence y0, y1, y2, . . . given by y0 = x0 and yi+1 = yi∇(yi ∪ xi+1) is guaran-
teed to converge. Examples of widening operators on polyhedral domains can be
found in [9, 3].

In this paper, we present a new counterexample driven refinement that can
be used to reduce false errors in any abstract interpretation. Precision loss in
abstract interpretation occurs primarily due to widen operators. We parameter-
ize the abstract interpreter with a set of hints, which specify the steps in the
fixpoint computation where more precise operators should be used in place of
widen. Initially the set of hints is empty. We analyze spurious counterexamples
and make additions to the set of hints, thereby guiding the fixpoint to be as
precise as necessary to prove the property of interest. Furthermore, powerset
domains can add further precision to abstract interpretation. However, power-
set domains do not scale to large programs without aggressive use of widening.
We describe how counterexample driven refinement can be applied to powerset
domains. The key idea here is a new connector that allows lifting a widening
operator from a base domain to the corresponding widen operator in a power-
set domain. We explain our technique informally using two examples below. A
formal description is given in Section 2.

Consider the example program shown in Figure 1(a). For this example, we use
the abstract domain of convex polyhedra. First, we perform a symbolic fixpoint
computation applying widening every time along the back edge of the while-
loop to ensure termination. When the loop head is first encountered, we have
the symbolic state S0

Δ= 0 ≤ x ≤ 2 ∧ 0 ≤ y ≤ 2. After executing the loop body
once, we get a new set of states 2 ≤ x ≤ 4 ∧ 2 ≤ y ≤ 4. We perform widening
to obtain the set S1

Δ= 0 ≤ x ∧ 0 ≤ y. It turns out that S1 is a fixpoint for the
loop. However, this loop invariant is not sufficient to ensure that x �= 4 ∨ y �= 0,
and the analysis reports that the assertion may fail.

The error state reached by the analysis is x = 4 ∧ y = 0, which is a false
error that resulted due to the imprecision in the widening operator. Inspired by
approaches to perform counterexample driven refinement for predicate abstrac-
tion [7], we propagate this error state backwards, using pre-image computations,
and determine that the first application of widening is responsible for the false
error, and that using least upper bound (lub) instead of widening in the first
iteration avoids the error. Thus, we add iteration count 1 to the set of hints.

Using the updated hints, we recompute the abstract fixpoint, using the lub
operator (convex hull for convex polyhedral domain) in the first iteration. This



476 B.S. Gulavani and S.K. Rajamani

(a)

(b)

assume 0 ≤ x ≤ 2
assume 0 ≤ y ≤ 2
while(∗)
x := x+ 2
y := y + 2

Fix point computed:

0 ≤ x ∧ 0 ≤ y∧
y ≤ x+ 2 ∧ x ≤ y + 2

x := 0;m := 0
while(x < N)

if(∗)
m := x

x := x+ 1
if(N > 0)

assert 0 ≤ m < N
x

m
Fix point computed:

0 ≤ x ∧m = 0 ∨
0 ≤ m ∧m+ 1 ≤ x

x

y

∧ x ≤ N

assert !((x = 4) ∧ (y = 0))

Fig. 1. (a) Example program that has a stair-case like reachable region (b) Example
program that finds the index of the minimum element in an array

results in the set of states S′1
Δ= 0 ≤ x ≤ 4 ∧ 0 ≤ y ≤ 4 ∧ y ≤ x + 2 ∧ x ≤ y + 2.

Applying widening after second iteration we get the set of states S′2
Δ= 0 ≤

x∧ 0 ≤ y ∧ y ≤ x+ 2 ∧ x ≤ y + 2. This turns out to be the fixpoint for the loop
as well and is strong enough to prove the assertion.

Next, consider the example program shown in Figure 1(b). The program
searches for the index m of the minimum element in an array of size N . The
array contents and the minimum element have been abstracted out, and only the
updates to the index variables m and x have been retained. No loop invariant
expressed as a single convex polyhedron is strong enough to prove the assertion.
Thus, we need to use sets of convex polyhedra as our abstract domain. As we
describe below, our technique discovers a disjunctive loop invariant that is strong
enough to prove the assertion.

We start by performing symbolic fixpoint computation, applying widening
every time along the back edge of the while-loop to ensure termination. When
the loop-head is first encountered, we have the set of states S0

Δ= x = 0 ∧ m = 0.
After executing the loop body once, we get a new set of states x = 1 ∧ m =
0 ∧ x ≤ N . We perform widening to obtain the set S1

Δ= x ≥ 0 ∧ m = 0. The
second iteration of the loop produces different states depending on whether the
if branch is taken inside the loop: (x ≥ 1 ∧ x ≤ N ∧ m = 0) ∨ (x ≤ N ∧ x =
m+1 ∧m ≥ 0). Applying widening again, we obtain the set S2

Δ= x ≥ 0 ∧ m ≥ 0.
It turns out that S2 is a fixpoint for the loop. However, this loop invariant is
not sufficient to ensure that m < N , and the analysis reports that the assertion
may fail.



Counterexample Driven Refinement for Abstract Interpretation 477

The error state reached by the analysis is m ≥ N ∧ x ≥ 0 ∧x ≥ N ∧N > 0.
This is a false error that resulted due to imprecision in the widening operator.
Here again we propagate this error state backwards using pre-image computa-
tions, and determine that the second application of widening is responsible for
the false error, and that using lub operation instead of widening in the second
iteration avoids the error. Thus, we add iteration count 2 to the set of hints.

Using the updated hints, we recompute the abstract fixpoint, taking care
to use lub operator after the second iteration. This results in the set of states
S′2

Δ= (x ≥ 0 ∧ m = 0)∨(x ≤ N ∧ x = m+1 ∧ m ≥ 0) after the second iteration.
Continuing the fixpoint computation, we apply widening after the third iteration
resulting in a set of states S′3

Δ= (x ≥ 0 ∧ m = 0)∨(x ≥ m+1 ∧ x ≤ N ∧ m ≥ 0).
It turns out that S′3 is a fixpoint for the loop. Further, it is strong enough to
prove the assertion. Note that the computed loop invariant has a disjunction,
and our refinement algorithm was necessary to prove the assertion.

The above description of our technique is informal and simplistic. We give
a precise description in Section 2. In our second example, we have assumed
the existence of widening operators that operate over finite powerset domains.
Section 3 shows how to lift widening operators over base domains to widen-
ing operators over power-set domains, using the theory developed in [1]. In
particular, we define a new connector �, which provides a lifted widening op-
erator over the powerset domain with appropriate precision necessary for our
purposes.

Widening is non-monotonic, and thus refining the widening operator in the
earlier stages of fixpoint computation, could result in a larger set of states in a
later iteration! We present a simple technique to avoid this problem in Section 4,
using reachable states computed from the previous iteration.

We have implemented our technique for affine transition systems. Our imple-
mentation is able to prove invariants generated by the StInG tool [19] without
doing any specialized analysis for linear relations. Section 5 presents empirical
results from running our implementation. Our technique is independent of the
specific abstract domain used. To illustrate this, Section 6 defines lub and widen
operators for an abstract domain of shape graphs, and enables our counterexam-
ple driven refinement to do shape analysis. Section 7 surveys related work and
Section 8 concludes the paper.

2 Algorithm

We first present the algorithm in a very simple setting. Assume that we have a
possibly infinite domain called States. We assume that the domain States has
a precise lub operator ∪, and a widening operator ∇. A transition system Θ
is a pair 〈I, θ〉. I ⊆ States and θ : 2States → 2States. Informally, θ is referred
to as the “image” operator, which takes a set of current states as input, gives
the set of possible next states as output. We use θ−1 to denote the “pre-image”
operator, which takes the set of current states as input, and gives the set of
previous states as output.



478 B.S. Gulavani and S.K. Rajamani

Transition systems are generated by programs. We describe the link between
programs and transition systems below. A program P is a triple 〈V, I, T 〉 where

– V is a finite set of variables, each of which takes valuations from a potentially
infinite domain. A state is a valuation to all the variables in V . The set of
all possible valuations to V is the domain States.

– I is a set of initial valuations to variables in V .
– T ⊆ States × States is a binary relation such that T (s, s′) holds whenever

it is possible for the program to transition from state s to state s′ in one
step.

A program P = 〈V, I, T 〉 gives rise to a transition system Θ = 〈I, θ〉, where
θ(S) = {s′ | ∃s ∈ S.T (s, s′)}, and θ−1(S) = {s | ∃s′ ∈ S.T (s, s′)}

A specification ψ ⊆ States is a set of bad states that we do not want the
system to reach. To check if a system Θ = 〈I, θ〉 satisfies a specification ψ,
we first compute an over-approximation to the set of reachable states of the
system, and check if the over-approximation intersects ψ. The least fixpoint
PreciseReach(Θ) = μX.I∪X∪θ(X) precisely represents the set of all reachable
states of the system, though the fixpoint computation may not terminate. The
system Θ satisfies specification ψ iff PreciseReach(Θ) ∩ ψ = ∅.

Widening operators from the abstract-interpretation community can help en-
sure termination of the fixpoint computation, at the cost of losing precision. If
S1 and S2 are two sets such that S1 ⊆ S2, then S3 = S1∇S2 is a set such that
S1 ⊆ S3 and S2 ⊆ S3. Further, there is some metric (such as the number of con-
juncts in the formula representing the set) that decreases from S1 to S3. Thus, if
we consider the least fixpoint WidenReach(Θ) = μX.(I ∪X)∇(I ∪X ∪ θ(X)),
it is guaranteed that (1) the computation of WidenReach(Θ) will terminate,
and (2) WidenReach(Θ) ⊇ PreciseReach(Θ). Thus, we can conclude that
Θ satisfies specification ψ if WidenReach(Θ) ∩ ψ = ∅. On the other hand, if
WidenReach(Θ) ∩ ψ �= ∅, we cannot distinguish between the possibilities that
either the system Θ does not satisfy ψ or the computation of WidenReach lost
too much precision.

If we can keep track of the intermediate states in the fixpoint computation,
then we can generate an abstract counterexample that can be automatically an-
alyzed to classify if the error found is a false error or true error. If it is a false
error, the analysis can also identify the precise point at which the abstract coun-
terexample needs to be refined to avoid the recurrence of this specific false error.

More formally, let us consider the stages of the fixpoint computation
WidenReach(Θ) = μX.(I ∪ X)∇(I ∪ X ∪ θ(X)). Let R0 = I, and let
Ri = Ri−1∇(Ri−1 ∪ θ(Ri−1)). Suppose n is the smallest index such that
Rn ∩ ψ �= ∅. Let ψn = ψ. If (Rn−1 ∪ θ(Rn−1)) ∩ ψn = ∅, then we note that
step n is the exact index where the precision loss for the false error happened,
and replace the widening operator with the lub operator in that particular step
of the fixpoint computation. Otherwise, if (Rn−1 ∪ θ(Rn−1)) ∩ ψn �= ∅, then we
compute ψn−1 = θ−1(Rn ∩ψn), and check if (Rn−2 ∪ θ(Rn−2))∩ψn−1 = ∅. This
process continues until either an index is found where the widening operator
needs to be refined into a lub operator (∪) to avoid the false error, or we find



Counterexample Driven Refinement for Abstract Interpretation 479

AbsRefine(Θ = 〈I, θ〉, ψ)

hints := ∅

(R,i,result) := AbstractFixPoint(Θ, ψ, hints)

if result = true then

return true

else

newHints := Refine(Θ, ψ, i, R)

hints := hints ∪ {newHints}

end if

end while

i := count

while true do

while i > 0 do

ψ := R[i] ∩ ψ

if (R[i − 1] ∪ θ(R[i − 1])) ∩ ψ = ∅ then

return i

else

i := i − 1; ψ := θ−1(ψ)

end if

end while

assert i = 0 ∧ R[i] ∩ ψ �= ∅

print error trace and exit

Refine(Θ = 〈I, θ〉, ψ, count, R)

Requires count ≥ 0 ∧ R[count] ∩ ψ �= ∅

Returns step i where ∇ is replaced by ∪

AbstractFixPoint(Θ = 〈I, θ〉, ψ, hints)

Returns (R, i, result), where array R is

an array of set of states, result is boolean

and i is integer

while true do

if i ∈ hints then

{precise next set of states}

R[i] := R[i − 1] ∪ θ(R[i − 1])

else

{next set of states using widen}

R[i] := R[i − 1]∇(R[i − 1] ∪ θ(R[i − 1]))

end if

if R[i] ∩ ψ �= ∅ then

{We are not sure if System Θ satisfies ψ}

return (R, i,false)

end if

if R[i] = R[i − 1] then

{fixpoint, System Θ satisfies ψ}

return (R, i,true)

end if

i := i + 1

endwhile

i := 1; R[0] := I

if I ∩ ψ �= ∅ then

return (R, 0,false)

end if

Fig. 2. Iterative Refinement

that the repeated backward propagation of the error state intersects with the
initial states R0 = I, in which case we have evidence of a true error.

The procedure AbsRefine in Figure 2, together with the procedures Abstract-
FixPoint and Refine give a complete description of our iterative refinement
procedure.

3 A Widening Operator for Finite Powerset Domains

In procedure AbstractFixPoint, we use a widening operator ∇ which takes as
operands two arbitrary sets of states. The widening operator for convex polyhedral
domain is studied at length in [9, 3]. The original widening operator as defined by
Cousot and Halbwachs [9] did not allow for disjunctions in the first operand. If
our abstraction refinement procedures are to be applied to powerset domains, a
widening operator needs to be defined for that domain. In this section we show
how to lift a widening operator over a base domain to a widening operator over
its powerset domain. We follow the framework provided by Bagnara, Hill and Zaf-
fanella [1], but define a new connector to provide the appropriate precision.

An abstract domain D̂ = 〈D,5,0,⊕〉 is a join-semilattice where 5 is the
partial order, 0 is the bottom element of the lattice and the lub d1 ⊕ d2 exists



480 B.S. Gulavani and S.K. Rajamani

for all d1, d2 ∈ D. For example, convex hull is such an operator for convex
polyhedra. For all d1, d2 ∈ D, we will use the notation d1 � d2 to mean that
d1 5 d2 and d1 �= d2.

Let d1 = ∧i ci. Then, the standard widening operator [9] is defined as

d1∇d2
Δ= ∧{cj | d2 5 cj}

For a set S, let ℘(S) be the powerset of S, and let ℘f (S) be the set of all finite
subsets of S. The operator ⊕ is overloaded so that, for each S ∈ ℘f (D), ⊕S
denotes the lub of S. A set S ∈ ℘(D) is non-redundant if and only if 0 /∈ S and
∀d1, d2 ∈ S : d1 5 d2 ⇒ d1 = d2. The set of finite non-redundant subsets of D
is denoted by ℘fn(D,5). The reduction function Ω%D : ℘f (D) → ℘fn(D) maps
each finite set into its non-redundant counterpart as follows:

Ω%D(S) Δ= S \ {d ∈ S | d = 0 ∨ ∃d′ ∈ S.d � d′}

The finite powerset domain over D̂ is the join-semilattice

D̂P = 〈℘fn(D,5),5P ,0P ,⊕P 〉

where 0P = ∅ and ∀S1, S2 ∈ ℘fn(D,5), S1 ⊕P S2
Δ= Ω%D(S1 ∪ S2), and S1 5P S2

if and only if ∀d1 ∈ S1 : ∃d2 ∈ S2.d1 5 d2.
We say that S1 . S2 if and only if either S1 = 0P or S1 5P S2 and ∀d2 ∈

S2 : ∃d1 ∈ S1.d1 5 d2. Our goal is to define a connector operator �, such that
for all S1, S2 ∈ ℘fn(D,5), if S1 5p S2, then S1 . (S1 � S2). Intuitively, S1 � S2
is obtained by minimally combining the elements of S2 so as to obtain an S′2
such that S1 . S′2. More precisely, let Ŝ2 be a maximal subset of S2 such that
∀d̂ ∈ Ŝ2 : ∃d1 ∈ S1. d1 5 d̂. and let S̃2

Δ= ⊕{d | d ∈ S2 \ Ŝ2}. For any d̂ ∈ Ŝ2, let
Jd̂

Δ= (S2 \ {d̂}) ∪ (d̂ ⊕ S̃2). We define S1 � S2 to be a minimal element(with
respect to 5P ) from the set {Jd̂ | d̂ ∈ Ŝ2}. We find that this particular definition
of the connector yields very good results in our abstraction refinement algorithm.
It is easily checked that if S1 5p S2, then S1 . S1 �S2. Let S1, S2 ∈ ℘fn(D,5),
where S1 � S2. Then, S1∇PS2 is defined as follows:

S1∇PS2
Δ= let S′2 = if (S1 . S2) then S2 else S1 � S2 in
S′2 ⊕P Ω%D({d1∇d2 ∈ D | d1 ∈ S1, d2 ∈ S′2, d1 � d2})

To illustrate the need for the connector operator, recall the example from
Figure 1(b) from Section 1. Recall that during the second iteration of the
refinement loop, the symbolic state after second iteration of the fixpoint is
S′2

Δ= (x ≥ 0 ∧ m = 0) ∨ (x ≤ N ∧ x = m + 1 ∧ m ≥ 0). The new
symbolic state that is generated after one more execution of the loop body is
Snew = (x ≤ N ∧ x = m+2 ∧ m ≥ 0). Here S′′2

Δ= S′2⊕P Snew
Δ= (x ≥ 0 ∧ m =

0) ∨ (x ≤ N ∧ x = m + 1 ∧ m ≥ 0) ∨ (x ≤ N ∧ x = m + 2 ∧ m ≥ 0).
Our goal is to compute S′3

Δ= S′2 ∇P S′′2 . Since S′2 . S′′2 does not hold,
we need to compute S′2 � S′′2 by merging some of the elements of S′′2 . Here



Counterexample Driven Refinement for Abstract Interpretation 481

Ŝ′′2
Δ= (x ≥ 0 ∧ m = 0) ∨ (x ≤ N ∧ x = m + 1 ∧ m ≥ 0) and

S̃′′2
Δ= (x ≤ N ∧ x = m + 2 ∧ m ≥ 0). If we merge S̃′′2 with first element

of Ŝ′′2 then the result is S′2 � S′′2
Δ= (x ≥ 0 ∧ m ≥ 0 ∧ x ≥ m) whereas if we

merge S̃′′2 with second element of Ŝ′′2 then the result is S′2 �S′′2
Δ= (x ≥ 0 ∧ m =

0) ∨ (x ≤ N ∧ m ≥ 0 ∧ x ≥ m+ 1 ∧ x ≤ m+ 2). The result of widening in
the first case is x ≥ 0 ∧ m ≥ 0 which is less precise than the widening result of
second case (x ≥ 0 ∧ m = 0) ∨ (x ≤ N ∧ x ≥ m + 1 ∧ m ≥ 0) when using
the widening operator defined in [9] for the base domain of convex polyhedra.
Thus, it is seen that choosing the minimal result (second case) is necessary to
obtain a fixpoint that is strong enough to prove the assertion. Our definition of
connector is necessary to prove this example, and most of the other examples
we have encountered.

Using the theory developed in [1], it can be shown that ∇P satisfies the
convergence properties of a widening operator. Without transforming S2 to S′2
using the � connector, such convergence guarantees cannot be given (see [1]).
In Section 2, when we discuss the algorithm, we did not explicitly mention the
difficulties of dealing with powerset domains. The operator ∪ used in Section 2
corresponds to ⊕P operator defined in this Section.

4 Dealing with Non-monotonicity

One technical issue with widening is its non-monotonicity. That is, if S1 ⊆ S′1
and S2 ⊆ S′2, then it is not necessarily the case that (S1∇S2) ⊆ (S′1∇S′2). Thus,
refining the widening operator to a least upper bound operation in step i of the
abstract fixpoint computation, could result in a larger set of states in a later
iteration! However, this problem can be easily avoided since we already keep
track of the intermediate set of states reached at each iteration of the abstract
fixpoint computation. At every iteration of the abstract fixpoint computation,
we can intersect the states reached at step i with the set of states reached at step
i during the previous iteration of the abstract fixpoint computation. If the step
count i is greater than the number of steps required in the previous iteration,
then we can intersect with the fixpoint computed in previous iteration. The
modified algorithm is shown in [11].

Progress guarantee. With the monotonic abstraction refinement procedure,
it is clear that in the successive abstraction iterations we compute more precise
abstract fixpoint as compared to the previous iteration. We can make a stronger
statement about progress by defining an ordering between counterexamples. An
abstract counterexample C is a sequence of set of states R0, R1, . . . , Rn such that
(1) Ri is the set of states computed in step i of the abstract fixpoint computation,
and (2) Rn ∩ ψ �= ∅ ∧ ∀i < n.Ri ∩ ψ = ∅. The length of counterexample C
is denoted by |C|. We define a binary relation ≺c on abstract counterexamples
as C1 ≺c C2 iff either (1) |C1| < |C2|, or (2) |C1| = |C2| and ∀i.0 ≤ i < |C1| :
Ri(C2) ⊆ Ri(C1) ∧ ∃i.0 ≤ i < |C1| : Ri(C2) ⊂ Ri(C1). We state our progress
guarantees below.



482 B.S. Gulavani and S.K. Rajamani

Theorem 1. Let Ci be the abstract counterexample generated during the itera-
tion i of abstraction computation. Then, we have for all i ≥ 0, Ci ≺c Ci+1.

Lemma 1. Let Ci be the counterexample of length n generated during the ith
iteration of abstraction, then after at most n iterations of refinement and ab-
straction, counter examples generated, if any, will be of length greater than n.

The proof of Theorem 1 is given in [11]. Lemma 1 follows from Theorem 1 and
the fact that the set of hints monotonically increases in successive iterations of
refinement. All these results make use of our assumption from Section 2 that the
lub operator ∪ in algorithm MAFixpoint is precise. Lemma 1 guarantees that if
an abstract counterexample is a false error, then it will necessarily get refined in
bounded number of refinement iterations and will never reappear as an abstract
counterexample at subsequent iterations of iterative refinement. However, there
is no guarantee that the iterative refinement loop will ever terminate. In practice,
we terminate the outer iterative refinement loop after a certain time or memory
limit is exhausted and return the answer “don’t know”.

Systematic abstraction refinement. For powerset abstract domains like the
sets of convex polyhedra, the least upper bound operator ⊕ is the non-redundant
union as defined in Section 3. Thus the refinement will add more and more dis-
juncts to the reachable set of states. It is possible that this increase in the number
of disjuncts will continue infinitely even though the assertion can be satisfied by
an abstract fixpoint computed by merging some intermediate disjuncts and do-
ing widening later on. Thus intermediate merging may provide convergence. We
use the connector � operator described in Section 3 as an operator to merge
some disjuncts into one convex polyhedra. The refinement algorithm now checks
whether using the merging operation instead of widening avoids error. If it does
then widening operator is replaced by the merge operation. Thus we have three
upper bound operators ∪, � and ∇ of decreasing precision. The refinement algo-
rithm can now refine a widening operator to either � operator or a ∪ operator.
It can also refine the � operator to ∪ operator. The hints that are generated
by the refinement algorithm now are of the form 〈i, op〉, where i is the step
number and op ∈ {∪,�} is the operator to be applied after that step. The
procedure MAFixPoint in [11] gives the abstraction procedure which ensures
monotonicity and uses the new hints just described.

If the refinement algorithm returns 〈i,∪〉 then, it is clear that refining the
widening operator in step i to lub will remove the abstract counterexample.
However, if the refinement algorithm returns 〈i,�〉, then the widening operator
in step i could be replaced either by a ∪ or by �. It is not clear whether it is
provident to convert the widening operation to ∪ or � in this case. It is possible
that exactly one choice results in computation of the abstract fixpoint necessary
to prove the property, whereas the other choice leads to non-termination of the
abstraction refinement cycle. Thus, it is more advantageous to try both possibil-
ities. The procedure SARefinement in [11] systematically tries both possibilities
if the refinement returns 〈i,�〉.



Counterexample Driven Refinement for Abstract Interpretation 483

5 Implementation and Empirical Results

Our implementation is for an imperative language with integer variables, and
usual control structures including sequencing, conditionals and loops. The im-
plementation is based on the algorithm SARefinement from [11], but it differs in
three ways: (1) While the algorithm SARefinement from [11] is fully symbolic,
the implementation does a mixture of explicit and symbolic state exploration.
In particular, the control (program counter) is kept explicit, and we never merge
symbolic constraints from two different program counters. (2) Widening is per-
formed in our implementation only along the back edges of loops. Thus, at join
points such as the end of if-then-else statements, the states from the two branches
are kept separate unless they turn out to be identical. (3) We use two heuristics
to prune the space of refinements explored by the algorithm. The first heuristic
disallows conversion of widening to � in consecutive iterations of refinement. In
such a case, we convert widening to ∪ in the latter iteration. The second heuris-
tic restricts the size of set H in procedure SARefinement to 3. Any successive
refinement does not increase size of H , but converts the widening to one of � or
∪ depending on the first heuristic.

Our prototype implementation uses the library PPL [2] for polyhedral op-
erations. We have run our program on a machine with Intel Pentium 3.0GHz
processor, 512 KB cache and 512 MB RAM.

We have experimented with two widening operators for polyhedral domain: (1)
the original widening operator defined by Cousot and Halbwachs [9] (we refer to
this as “CH78”), and (2) the widening operator defined by Bagnara,Hill, Ricci and
Zaffanella [3] (we refer to this as “BHRZ03”). Both these widening operators are
defined for convex polyhedra. Since our abstract domain is the set of convex poly-
hedra, we use Section 3 to lift these widening operators to the powerset domain.

We evaluated the implementation on two sets of examples. The results show
that our technique is robust, regardless of the widening operator used.

The first set of examples were obtained from Rustan Leino [15], and are part of
his test suite for the tool Boogie. All these programs have embedded assertions
in the program and our goal is to discover loop invariants strong enough to
prove the assertions. Two of these programs (Prog 7 and Prog 9) are incorrect,
in that the assertions fail. Table 1 shows for each of the two different widening
operators, the time taken, and the number of widenings that were converted
to ∪ and � respectively, to either prove the assertion or find the error. Our
implementation is able to successfully prove the assertions in all the 11 correct
programs, and it is able to find the error in the two erroneous programs. Out
of the 11 correct programs, 5 programs require non-trivial iterative refinement.
Prog0 is the example from Figure 1(b). Prog8 is very similar to Prog0, except
that the assertion after the while loop is stronger. It asserts that (0 ≤ m <
N ∧ x = N). Our iterative refinement computes the more precise invariant
(x−m = 1 ∧ 0 ≤ m ≤ 1 ∧ 1+m ≤ N)∨ (m = 0 ∧ 0 ≤ x ≤ 1)∨ (m = 0 ∧ 1 ≤
x ≤ N)∨ (2 ≤ x ≤ N ∧ m ≥ 0 ∧ x ≥ m+1) needed to prove the property. The
choice of the widening operator (CH78 or BHRZ03) influences only the number
of refinement steps, but not the ability of our technique to prove the property.



484 B.S. Gulavani and S.K. Rajamani

Table 1. Experimental results, Programs on left are from Rustan Leino [15], Programs
on right are from the StInG web page [18]. The column head (I) indicates the time
(in sec) taken for example program to be verified and column head (II). indicates the
number of refinement steps (∪, �). * programs are incorrect(i.e., assertion fails).

Program CH78 BHRZ03 Program CH78 BHRZ03
Name I II I II Name I II I II
Prog0 0.055 (1, 1) 0.054 (1, 1) See-Saw 0.816 (3, 3) 0.811 (3, 3)
Prog1 0.01 (0, 0) 0.011 (0, 0) Robot-HH96 0.01 (0, 0) 0.01 (0, 0)
Prog2 0.012 (0, 0) 0.014 (0, 0) Berkeley 0.098 (1, 1) 0.085 (0, 1)
Prog3 0.014 (0, 0) 0.01 (0, 0) Berkeley-nat 0.432 (2, 1) 3.44 (2, 1)
Prog4 0.047 (2, 0) 0.138 (2, 2) Heapsort 0.719 (2, 1) 0.162 (0, 1)
Prog5 0.058 (2, 0) 0.093 (2, 1) Train-RM03 0.022 (0, 0) 0.02 (0, 0)
Prog6 0.035 (1, 0) 0.021 (0, 0) EFM 0.06 (0, 0) 0.06 (0, 0)
Prog7* 0.01 (0, 0) 0.009 (0, 0) EFM1 0.06 (0, 0) 0.06 (0, 0)
Prog8 0.097 (2, 1) 0.268 (3, 2) LIFO 3.325 (3, 3) 1.29 (2, 1)
Prog9* 0.01 (0, 0) 0.008 (0, 0) LIFO-NAT 29.55 (7, 5) 2.537 (2, 2)
Prog10 0.015 (0, 0) 0.011 (0, 0) cars-midpt ≥10000 (≥3, ≥3) ≥10000 (≥3, ≥3)
Prog11 0.029 (0, 0) 0.032 (0, 0) barber 10.48 (3, 3) 17.12 (3, 3)
Prog12 0.01 (1, 0) 0.014 (1, 0) Swim-pool 11.13 (3, 3) 18.029 (3, 3)

Swim-pool-1 11.24 (3, 3) 18.50 (3, 3)

The second set of examples are available at the StInG website [18]. The StInG
tool [18, 19] uses Farkas’ Lemma to synthesize the strongest linear invariant. We
requested Sriram Sankaranarayanan to provide the exact invariants that StInG
computes. Then, we modified the examples to assert the invariant computed by
StInG (the invariants are also now available at [18]). Then, we used our iterative
refinement algorithm to prove these assertions. Our implementation is able to
prove the invariants in all examples with the exception of the program ‘cars-
midpt’. This run took more than 10000 seconds but had done only 6 refinement
steps. Thus, we are unsure if the algorithm will converge if more refinement steps
can be executed. We find that the polyhedral operations are very time consuming
in this example. The last powerset widening call to the PPL library took 6910
seconds, where both arguments to this widening operation had 4 disjuncts with
an average of 125 constraints per disjunct.

Though the invariants generated by StInG itself do not contain disjunctions,
our iterative refinement algorithm used disjunctions in some cases to prove these
invariants. Again, the choice of the widening operator (CH78 or BHRZ03) influ-
ences only the number of refinement steps, but not the ability of our technique
to prove the property.

6 Shape Analysis

We briefly sketch an abstract domain for representing heap configurations, with
lub and widen operators. This immediately enables application of our iterative
refinement algorithm to do shape analysis [17]. Our approach does not capture



Counterexample Driven Refinement for Abstract Interpretation 485

reachability information in the heap, and only certain programs with unbounded
state spaces can be verified using our approach. Our approach currently does not
have all the sophistications of [17].

A Boolean Linked List Program (BLL Program for short) is a single-procedure
program with a finite number of variables, where every variable has the following
datatype:

class Node {
bool data;
Node next;

}

BLL programs allow dynamic creation of objects, so they have potentially infinite
state spaces. Our abstract domain is the domain of abstract heap graphs Ĝ =
〈G,5,0G ,⊕〉. Let V = {v1, v2, . . . , vn} be the variables in a BLL Program P . An
abstract heap graph A of program P is a 5-tuple 〈UA,VA,DataA,NextA,ZA〉,
where (1) UA is a finite set of nodes {U0, U1, . . . , Uk}, (2) VA: V → 2UA

,
maps every variable to a set of nodes, (3) DataA : UA → {0, 1,�} maps the
data field of each node to boolean values or �, and (4) NextA: UA → 2UA

,
maps the next field of each node to a set of nodes, and (5) ZA ⊆ UA is the
subset of nodes that are designated as summary nodes. An abstract heap graph
represents a set of concrete heap graphs. A concrete heap graph represents a state
of a BLL Program, which is a set of heap addresses, with variables pointing
to specific addresses, and specific concrete values to objects in each of these
addresses. The concretization function γ maps every abstract heap graph to a
set of concrete heap graphs. The lub of two abstract heap graphs A and B
such that UA ∩ UB = ∅, is intuitively just the disjoint union of the two heap
graphs. The widen of two abstract heap graphs A and B, given by C = A∇B
is intuitively obtained by fixing the nodes of the result to UA and adding more
edges representing B into A, and updating to coarser data values representing
nodes of B into nodes of A. A precise description of the concretization function
γ, the lub operator, and the widening operator can be found in [11].

The intuition is that the application of the lub operator can add more nodes
to the abstract heap graph, but the application of the widening operator cannot.
Thus, if the lub operator is used only a finite number of times during the
fixpoint, the number of nodes in the abstract heap graph stops growing after
a finite number of iterations. Thereafter, the fixpoint converges after sufficient
applications of widening.

Using this abstract domain, we are able to prove some programs that allo-
cate unbounded number of nodes by using our refinement algorithm. Consider
the program shown in Figure 3. First, our abstract fixpoint computation uses
widening along the back edge of every while loop. Intuitively, repeated applica-
tions of the widening operator allow only one summary node, which results in
the second abstract heap graph in Figure 3. This invariant is not strong enough
to prove the assertion. Then, our refinement algorithm detects that the second
widening in the second while loop is the reason for the loss of precision and



486 B.S. Gulavani and S.K. Rajamani

head := null; p := null;

while (*) {

p := new node;

p.data := 0;

p.next := head;

head := p;

}

p := head;

while (p != null) {

assume (p != null);

p.data = 1;

p := p.next;

}

assume (p = null);

p := head;

while (*) {

assume (p != null);

assert (p.data = 1);

p := p.next;

}

Abstract heap graph after first while loop

Imprecise heap graph obtained using widening in the 

second while loop (not sufficient to prove assertion)

Heap graph obtained after doing one refinement, 

where widening in the second iteration of the second 

while loop is converted to LUB (sufficient to prove 

assertion)

Fig. 3. Example program that creates an unbounded linked list

converts this widen to lub. After this refinement, subsequent applications of the
widening operator are now able to allow two summary nodes as shown in the
third abstract heap graph in Figure 3. In this domain, converting widen to lub
results in allowing more nodes in the the resulting fixpoint. This is analogous
to adding more disjuncts by converting widen to lub in the powerset domain of
convex polyhedra.

7 Related Work

Counterexample driven refinement [14], has gained popularity in recent
years [7, 4], as a technique to prove properties of systems, while reducing false
errors. Several tools based on counterexample driven refinement have appeared
in the past few years [4, 12, 6]. All these efforts use predicate abstraction [10],
which is a particular case of abstract interpretation [8]. In contrast to these ef-
forts, we present a technique to refine any abstract interpretation automatically
using counterexamples. Thus, our work has the potential to make counterexam-
ple driven refinement more broadly applicable to a variety of abstract domains,
in order to reduce false errors.

Techniques to reduce precision loss due to widening have been studied in
the abstract interpretation community. We compare our work with (1) generic



Counterexample Driven Refinement for Abstract Interpretation 487

approaches that work for any abstract domain, and (2) specific approaches for
particular abstract domains. In the category of generic approaches, Jeannet,
Halbwachs and Raymond partition the abstract domain with predicates on the
control state [13] to improve precision. They first perform a combination of for-
ward and backward analysis, and use predicates present in the conditionals in
the program to do such partitioning. Unlike their approach we use a backward
propagation of the abstract counterexample in the spirit of [7] to generate re-
finement hints. Bourdouncle has noted that more precise abstract domains can
be obtained by applying widening only in certain equations (cutting of depen-
dence loops) [5]. Bourdouncle also defines new widening operators together with
disjunctive completion by representing sets of abstract elements. This approach
does not use counterexamples to refine the abstract domain. In the category
of approaches that are specific to particular domains, the StInG tool [18, 19]
uses Farkas’ Lemma to synthesize linear invariants by extracting non-linear con-
straints on the coefficients of a target invariant from an affine program. Unlike
StInG, our technique uses fixpoints, and is independent of the abstract domain.

Leino and Logozzo use counterexample contexts obtained from the theorem
prover to re-run the abstract interpreter restricted to the counterexample con-
text, with the hope of obtaining more precise loop invariants [16]. This approach
has philosophical similarities to our approach, but there are several technical
differences. Their approach is implemented entirely inside the theorem prover,
unlike ours. Unlike the technique presented here, there is no progress guarantee
with their approach, and their technique does not stop the iterative refinement
if there is a true error.

8 Conclusion

We presented a new counterexample driven refinement technique that can refine
any abstract interpretation, and tune the precision depending on the property of
interest. Our technique is independent of the abstract domain used. We instan-
tiated the technique for affine programs and our implementation is able to prove
invariants generated by the StInG tool. We also sketched how the technique can
be applied to do shape analysis.

Acknowledgment. We thank Rustan Leino for providing his example programs
from the Boogie project, and Sriram Sankaranarayanan for providing us the
invariants generated by StInG. We thank Supratik Chakraborty, Prasad Naldurg
and Mooly Sagiv for insightful discussions.

References

1. R. Bagnara, P. Hill, and E. Zaffanella. Widening operators for powerset domains.
In VMCAI 04: Verification, Model Checking and Abstract Interpretation. Springer-
Verlag, 2004.

2. R. Bagnara, P. M. Hill, and E. Zaffanella. PPL: The Parma Polyhedral Library —
http://www.cs.unipr.it/ppl/.



488 B.S. Gulavani and S.K. Rajamani

3. R. Bagnara, P.M. Hill, E. Ricci, and E. Zaffanella. Precise widening opertors for
convex polyhedra. In SAS 03: Static Analysis. Springer-Verlag, 2003.

4. T. Ball and S. K. Rajamani. Automatically validating temporal safety properties
of interfaces. In SPIN 01: SPIN Workshop, LNCS 2057. Springer-Verlag, 2001.

5. F. Bourdoncle. Abstract interpretation by dynamic partitioning. Journal of Func-
tional Programming, 2(4):407–423, 1992.

6. S. Chaki, E. M. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification of
software components in C. IEEE Transactions on Software Engineering, 30(6):388–
402, 2004.

7. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In CAV 00: Computer-Aided Verification, LNCS 1855,
pages 154–169. Springer-Verlag, 2000.

8. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for the
static analysis of programs by construction or approximation of fixpoints. In POPL
77: Principles of Programming Languages, pages 238–252. ACM, 1977.

9. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In POPL 78: Principles of Programming Languages, pages
84–97. ACM Press, 1978.

10. S. Graf and H. Säıdi. Construction of abstract state graphs with PVS. In CAV
97: Computer-aided Verification, LNCS 1254, pages 72–83. Springer-Verlag, 1997.

11. B. S. Gulavani and S. K. Rajamani. Counterexample driven refinement for abstract
interpretation. Technical Report MSR-TR-2006-02, Microsoft Research, 2006.

12. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In
POPL ’02, pages 58–70. ACM, January 2002.

13. B. Jeannet, N. Halbwachs, and P. Raymond. Dynamic partitioning in analyses
of numerical properties. In SAS 99: Static Analysis, LNCS 1694, pages 39–50.
Springer-Verlag, 1999.

14. R.P. Kurshan. Computer-aided Verification of Coordinating Processes. Princeton
University Press, 1994.

15. K. Rustan M. Leino. Personal communication, September 2005.
16. K. Rustan M. Leino and Francesco Logozzo. Loop invariants on demand. In

APLAS 2005: Asian Symposium on Programming Languages and Systems, 2005.
To appear.

17. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.
In POPL 99: Principles of Programming Languages, pages 105–118. ACM, 1999.

18. S. Sankaranarayanan. StInG: The Stanford Invarint Generator —
http://theory.stanford.edu/ srirams/software/sting.html.

19. S. Sankaranarayanan, H. Sipma, and Z. Manna. Constraint based linear-relations
analysis. In SAS 04: Static Analysis. Springer-Verlag, 2004.



Abstraction Refinement with Craig
Interpolation and Symbolic Pushdown Systems�

Javier Esparza, Stefan Kiefer, and Stefan Schwoon

Institute for Formal Methods in Computer Science, University of Stuttgart
{esparza, kiefersn, schwoosn}@informatik.uni-stuttgart.de

Abstract. Counterexample-guided abstraction refinement (CEGAR)
has proven to be a powerful method for software model-checking. In this
paper, we investigate this concept in the context of sequential (possibly
recursive) programs whose statements are given as BDDs. We exam-
ine how Craig interpolants can be computed efficiently in this case and
propose a new, special type of interpolants. Moreover, we show how to
treat multiple counterexamples in one refinement cycle. We have imple-
mented this approach within the model-checker Moped and report on
experiments.

1 Introduction

CEGAR is a powerful tool for automated abstraction of hardware and software
systems. Originally designed for verification of hardware designs, this technique
has been successfully utilized for software verification as well. Particularly, the
SLAM project [1] has gained attention and has demonstrated the effectiveness of
software verification for device drivers. The BLAST tool [2] and the MAGIC tool
[3] have been applied successfully in domains of security protocols and real-time
operating-system kernels.

The CEGAR paradigm was introduced in [4]. The goal is to check if a given
concrete program can reach a certain error label. Since the data space of the con-
crete program is too large, it is abstracted with a predicate abstraction method.
Initially, there are no predicates, therefore the initial abstraction is very coarse
(no data, only control flow). This abstract program is then model-checked.

Since the abstract program is, by construction, an overapproximation of the
concrete one, model-checking it can have two possible outcomes: Either the error
label is not reachable, then we know that it is not reachable in the concrete
program either and the CEGAR process terminates. Or it is reachable in the
abstract program, illustrated by means of a counterexample, i.e., a path leading
to the error label. Due to the overapproximation, this path may be spurious, i.e.,
not realizable in the concrete system. If it is not spurious (real counterexample),
it can be reported to the user and the process terminates. If it is spurious, then
suitable new predicates have to be introduced to refine the abstraction such that
this counterexample is excluded in future predicate abstractions.
� This work was partially supported by the DFG project Algorithms for Software

Model Checking.

H. Hermanns and J. Palsberg (Eds.): TACAS 2006, LNCS 3920, pp. 489–503, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



490 J. Esparza, S. Kiefer, and S. Schwoon

This process continues in cycles, until the abstraction is fine enough to either
conclude that the error label is unreachable or that a real counterexample exists.

1.1 Our Work and Related Work

We develop a CEGAR scheme for the BDD-based model-checker Moped, a com-
bined reachability and LTL model-checker for symbolic pushdown systems [5].

From a high-level perspective, our approach can be characterized as follows:
We first translate a program with integer variables to a program with finitely
many variable bits (e.g. 8 or 16 bits per variable), as it is also done by com-
pilers. Thus, we reduce an infinite data space to a finite, but possibly still
large data space. Then we use CEGAR to reduce the state space even fur-
ther. Whereas, in the first step, we might lose some bugs that occur only with
large numbers, no precision is lost in the second step, because the abstraction
is appropriately refined during the process. Since we do not change the pro-
cedural structure in both steps, recursion may always induce an infinite state
space.

The input for our CEGAR scheme is essentially a sequential program with
procedures (potentially recursive) whose variables are represented by a finite
number of bits. BDDs capture the modification of the variables through the
program statements. The problem is whether this program can reach a specific
error label or not.

Moped could be directly used for this problem, but we use a CEGAR scheme
to reduce its resource consumption. Our abstract programs are other boolean
programs whose variables are previously introduced predicates. The statements
of the abstract programs modify the truth values of the predicates. This is again
captured by BDDs. Those abstract programs are checked using Moped.

The consequent use of BDDs throughout the CEGAR process distinguishes
our work from related work about CEGAR in software. For instance, in the
SLAM project [1], a BDD-based model-checker is employed on the abstract level,
but symbolic expression representations together with theorem provers are ap-
plied on the concrete level. [3] does not use BDDs at all, but relies on SAT solvers
and theorem provers. Also [2, 6] make use of theorem provers, whereas we use
BDD technology for the concrete program, the abstract programs, and for the
predicates in our abstraction mechanism. We therefore avoid theorem provers,
which assume infinite ranges of integer variables and often form bottlenecks in
related projects, e.g. in [1].

Another feature of our work is the use of multiple counterexamples in a sin-
gle refinement step. Moped constructs a “witness graph” (see [7]) which, in the
model-checking phase, records information about which program states can be
reached via which previously reached program states. When viewed from the
perspective of the error label, this graph is a DAG containing possible (ab-
stract) error traces. We use this DAG for abstraction refinement, not only a sin-
gle counterexample. If the counterexample DAG contains a real (non-spurious)
counterexample, it is reported. Otherwise we compute predicates that ensure
that none of the counterexamples in the DAG will occur again in future abstrac-



Abstraction Refinement with Craig Interpolation 491

tions. In [8], multiple counterexamples are also used in a CEGAR scheme, but
not for software and not in a DAG structure.

For the predicate generation we use Craig interpolation (see [6, 9]). In contrast
to [6], we consider Craig interpolation for pure propositional logics. We show that
the computation of Craig interpolants works well with BDDs and that their use
gives us flexibility for heuristics about which interpolants to use, since Craig
interpolants are, in general, not unique.

Organization of the Paper. This paper proceeds as follows. In Sect. 2 we
investigate Craig interpolation for propositional logics and derive computation
schemes that are suitable for BDDs. In Sect. 3, symbolic pushdown systems, a
model for sequential programs, are reviewed. In Sect. 4, the techniques of Sect. 2
are applied to the computation of predicates that rule out DAGs of abstract
counterexamples. Section 5 sketches our predicate abstraction scheme. We give
evidence for the usefulness of our concepts in Sect. 6 and conclude in Sect. 7.
In [10], we give further details and proofs.

2 Craig Interpolation

In [11, 6], Craig interpolation was used to automatize abstraction refinement.
As in [11] (and in contrast to [6], where a specialized arithmetic proof system
is used) we are interested in Craig interpolants for pure propositional logic. We
write Occ(F ) for the set of variables that occur (syntactically) in a formula F .

Definition 1. Let (F,G) be a pair of formulas with F ∧G unsatisfiable. A (syn-
tactic) interpolant for (F,G) is a formula I s.t. F implies I (written: F |= I),
I ∧G is unsatisfiable and Occ(I ) ⊆ Occ(F ) ∩ Occ(G).

Craig’s Interpolation Theorem [12] states that interpolants always exist, but
they are not unique. In [11], interpolants are obtained from a resolution proof
of the unsatisfiability of F ∧G, which is, in turn, constructed by a SAT solver.
However, in our BDD-based setting this result is no longer useful, because we
do not prove unsatisfiability of F ∧G by means of a SAT solver. We show that
there exist interpolants that do not depend on the internal strategies of a SAT
solver or a theorem prover, and can be naturally computed by standard BDD
operations.

2.1 Strongest and Weakest Interpolants

It is easy to see that if I and I ′ are interpolants for (F,G), then so are I ∨ I ′
and I ∧ I ′ (see also [13]). It follows that “the strongest interpolant” and “the
weakest interpolant”, as defined below, exist and are unique.

Definition 2. The strongest interpolant for (F,G), denoted SI (F,G), is the
unique interpolant for (F,G) that implies any other interpolant. The weakest
interpolant for (F,G), denoted WI (F,G), is the unique interpolant implied by
any other interpolant.



492 J. Esparza, S. Kiefer, and S. Schwoon

Clearly, SI (F,G) |= WI (F,G) holds. Proposition 1 below shows that SI (F,G)
and WI (F,G) can be obtained by standard BDD operations (quantification over
variables). If F and G are any formulas, we define the notation F ↑ G :=
∃(Occ(F ) \Occ(G)).F and F ↓ G := ∀(Occ(F ) \Occ(G)).F . Notice that F ↓ G
|= F |= F ↑ G always holds.

Proposition 1 (Strongest and Weakest Interpolants). Let (F,G) be a for-
mula pair with F∧G unsatisfiable. Then SI (F,G)≡F↑G and WI (F,G)≡(¬G)↓F .

In the next sections, we consider the following problem: Given a formula F =
F1 ∧ . . . ∧ Fn, determine if F is unsatisfiable, and if so, find interpolants for the
pairs (Gi, Gi), i ∈ {1, . . . , n}, where Gi := F1∧ . . .∧Fi and Gi := Fi+1∧ . . .∧Fn.
We show that strongest and weakest interpolants for (Gi, Gi) can be computed
iteratively.

Proposition 2. Let F = F1 ∧ F2 ∧ . . . ∧ Fn be a formula and let Gi and Gi be
defined as above. Let {Ii} and {Ji} be families of predicates defined according to
the following procedures:
I0 := true, Ii+1 := (Ii∧Fi+1) ↑ Gi+1 and Jn := false, Ji−1 := (Fi → Ji) ↓ Gi−1.

(i) F is unsatisfiable iff In ≡ false iff J0 ≡ true.
(ii) If F is unsatisfiable, then Ii ≡ SI (Gi, Gi) and Ji ≡ WI (Gi, Gi).

Now, given F = F1∧ . . .∧Fn, we can iteratively compute BDDs for the sequence
Ii or Ji with the above procedure. We can decide if F is satisfiable using (i). If
F is unsatisfiable, then, by (ii), we have computed SI (Gi, Gi) or WI (Gi, Gi).

For our CEGAR purposes, we will need the following property:

Definition 3 (Tracking Property). Let F1 ∧ . . . ∧ Fn be unsatisfiable, and
let Ki be interpolants for (Gi, Gi). We say that the family {Ki} satisfies the
tracking property if Ki ∧ Fi+1 |= Ki+1.

Proposition 3. Let F1 ∧ F2 ∧ . . . ∧ Fn be unsatisfiable. Let {Ii} and {Ji} be
families of predicates defined according to the following procedures:

I0 := true, Ii+1 := any interpolant for (Ii ∧ Fi+1, Gi+1),
Jn := false, Ji−1 := any interpolant for (Gi−1,¬(Fi → Ji)).

Then {Ii} and {Ji} are interpolants for (Gi, Gi) and satisfy the tracking property.

Corollary 1. {SI (Gi, Gi)} and {WI (Gi, Gi)} satisfy the tracking property.

Finally, Prop. 4 shows the interplay between interpolants and disjunction:

Proposition 4.

(i) If (F ∨G) ∧H is unsatisfiable, then SI (F ∨G,H) ≡ SI (F,H) ∨ SI (G,H).
(ii) If F ∧ (G∨H) is unsatisfiable, then WI (F,G∨H) ≡ WI (F,G)∧WI (F,H).



Abstraction Refinement with Craig Interpolation 493

2.2 Conciliated Interpolants

Interpolants can be seen as explanations indicating why counterexamples are
spurious. It makes sense to look for “simple” explanations. It seems reasonable
to consider an interpolant “simple” if few variables occur in it. Since we work with
BDD libraries, it is natural to strengthen the notion of occurrence semantically:

Definition 4. A variable v occurs semantically in F if ∃v.F �≡ F . The set of
variables that occur semantically in F is denoted by OccSem(F ).

One could strengthen the notion of interpolants accordingly (by replacing Occ
by OccSem in Def. 1). Such semantic interpolants are also syntactic interpolants.
We now show that one can find simpler interpolants than the weakest and
strongest ones, still using only quantifications. If I and J are strongest and
weakest (syntactic or semantic) interpolants for (F,G), respectively, then we
have F |= I |= J |= ¬G, but not necessarily OccSem(I ) = OccSem(J ). Now
we can compute the strongest and weakest semantic interpolants I1, J1 for the
pair (I,¬J). Since F |= I |= I1 |= J1 |= J |= ¬G, we have that I1 and J1 are
also interpolants for (F,G). If OccSem(I ) �= OccSem(J ), then at least one of
I1 and J1 will be simpler than I and J , since the variables in the symmetric
difference are quantified out. This simplification procedure can be iterated until
a pair In, Jn is reached such that OccSem(In) = OccSem(Jn).

Definition 5. Let (F,G) be formulas over a set V of variables s.t. F ∧G is un-
satisfiable, and let Z ⊆ V s.t. ∃Z.F and ∀Z.¬G are interpolants for (F,G).
We say that ∃Z.F,∀Z.¬G are conciliated interpolants if OccSem(∃Z .F ) =
OccSem(∀Z .¬G). We call OccSem(∃Z .F ) a conciliating set in this case.

The algorithm in Fig. 1 computes a pair of conciliated interpolants.

function conciliate(formulas F, G) returns (Z,∃(V \ Z).F, ∀(V \ Z).¬G)
/* F ∧G unsatisfiable is an input requirement */
/* Z is the maximal conciliating set */

I := F ; J := ¬G; Z := OccSem(F ) ∪OccSem(G)
repeat X := OccSem(I ) \OccSem(J ); I := ∃X.I ; Z := Z \X

Y := OccSem(J ) \OccSem(I ); J := ∀Y.J ; Z := Z \ Y
until Y = ∅
return (Z, I, J)

Fig. 1. Computation of conciliated interpolants

Given a pair of formulas, the pair of conciliated interpolants is not unique.
Proposition 5 characterizes the pair computed by the algorithm.

Proposition 5.

(i) Let C1, C2 be the conciliating sets of the pairs I1, J1 and I2, J2 of conciliated
interpolants. Then C1 = C2 if and only if I1 ≡ I2 and J1 ≡ J2.



494 J. Esparza, S. Kiefer, and S. Schwoon

(ii) Conciliating sets are closed under union, but not under intersection.
(iii) There is a unique maximal conciliating set.
(iv) The algorithm of Fig. 1 computes the unique maximal conciliating set.

One may argue that, since we are interested in simple interpolants, we would
like to compute a minimal conciliating set. Unfortunately, there may be several.
We can compute one by means of a greedy algorithm that tries to quantify out
more and more variables. The interpolants produced by such a procedure might
be “simpler”, but could strongly depend on the arbitrarily chosen variable order.

In the context of abstraction refinement, one can use the algorithm from
Fig. 1 as interpolation (and simplification) method when computing a family of
interpolants according to Prop. 3. Thus, the tracking property is satisfied.

3 Symbolic Pushdown Systems

As our program model, we use symbolic pushdown systems (SPDSs) [5].

Definition 6 (SPDS1). An SPDS is a quadruple (G,Γ0 × L,Δ, γ0), where

– G = {true, false}nG , nG ≥ 0, is the set of global variable valuations,
– Γ0 is a set of control points,
– L = {true, false}nL , nL ≥ 0, is the set of local variable valuations,
– Δ is a set of symbolic transition rules, where each rule is of the form 〈γ〉 ↪→

〈γ1 . . . γn〉 (R) with 0 ≤ n ≤ 2, γ, γ1, . . . , γn ∈ Γ0 and R ⊆ (G×L)×(G×Ln),
– γ0 ∈ Γ0 is the start address.

SPDSs model (possibly recursive) programs with procedures. The rules model
statements in a programming language. The relation R of a rule describes the
relation between the variables before and after execution of the rule. In our
setting, they are given as BDDs.

The right side of the rules can consist of zero, one or two control points.
Whereas a rule with one control point on the right side describes an intrapro-
cedural statement, a rule with two control points on the right side describes a
procedure call, a push: γ1 is the start address of the newly called procedure,
and γ2 the return address of the calling procedure. Parameter passing can be
encoded in the relation R of the rule by initializing the local variables of the
called procedure. A rule with zero statements is the termination of a procedure,
a pop. Return values can be encoded in the relation R of the rule by restricting
the global variables. SPDSs are discussed in greater detail in [5] and [13].

Example 1. Consider the procedures in Fig. 2. The procedure m calls the pro-
cedure f. Procedure f returns a value using the global variable G. Procedure m
has a local variable L, procedure f has a local variable A. The transition rules
of a corresponding SPDS are shown on the right side. The start address is m0.

Moped can model-check such a concrete SPDS. However, in our CEGAR scheme
we use Moped only to model-check boolean SPDSs that have the same control
flow structure, but overapproximate the given concrete SPDS.
1 This definition is slightly more restrictive than in [5].



Abstraction Refinement with Craig Interpolation 495

procedure m

m0: L := L · (L + 1)
m1: call f(L)
m2: if G �= 0 then goto error

〈m0〉 ↪→ 〈m1〉 (L′ = L · (L + 1) ∧ G′ = G)
〈m1〉 ↪→ 〈f0, m2〉 (L′′ = A′ = L ∧ G′ = G)
〈m2〉 ↪→ 〈error〉 (G �= 0 ∧ G′ = G)

procedure f(A)

f0: if A even then
f1: A := 0
f2: else A := 561
f3: G := A

〈f0〉 ↪→ 〈f1〉 (A even ∧ G′ = G)
〈f1〉 ↪→ 〈f3〉 (A′ = 0 ∧ G′ = G)
〈f0〉 ↪→ 〈f2〉 (A odd ∧ G′ = G)
〈f2〉 ↪→ 〈f3〉 (A′ = 561 ∧ G′ = G)
〈f3〉 ↪→ 〈〉 (G′ = A)

Fig. 2. Two simple procedures along with an equivalent SPDS

4 Computing Predicates for a DAG of Counterexamples

We use Moped to model-check the (abstract) SPDSs generated in our refinement
cycle. If Moped finds that the error label is reachable in a given SPDS, it con-
structs a DAG that illustrates the abstract paths leading to the error (see [7] for
details on this construction). In brief, the nodes of the DAG are the configura-
tions of the SPDS, the arcs are labeled by symbolic transition rules. There is a
single “sink” node with no outgoing arcs, the error configuration.

For instance, consider the program in Fig. 3. In the initial abstraction, all
data is discarded, therefore Moped finds two counterexamples, one that does
not enter the loop body, and one that enters it exactly once. The resulting
counterexample DAG produced by Moped is shown on the right side of Fig. 3.
(For the time being, ignore the predicates in curly brackets.)

Once we have the DAG, we discard the information about the abstract vari-
able values and replace the abstract rules by their concrete counterparts. We
then need to decide if all counterexamples in the DAG are spurious or not. We
call the DAG spurious in the first case.

Let D be a DAG for the rest of the section. We describe our predicate gen-
eration method in three steps: for single counterexamples without procedures,
for counterexample DAGs without procedures, and finally for counterexamples
DAGs with a procedural structure. In all cases, we proceed as follows:

– We construct a so-called characteristic formula FD that is unsatisfiable if
and only if the DAG is spurious.

– For each node n in D, we compute a predicate Pn in such a way that, for
every edge (n1, R, n2) in D, {Pn1} R {Pn2} is a valid Hoare triple (recall
that a SPDS rule R corresponds to a program instruction).

– We show that unsatisfiability of FD can be decided by computing and exam-
ining these predicates Pn. If FD is unsatisfiable, i.e., if D is spurious, then
the predicates explain the infeasibility of the traces of D, and adding them
in future abstractions excludes those traces.



496 J. Esparza, S. Kiefer, and S. Schwoon

1: X := X · (X + 1)
2: while Y odd do

3: Y := Y + 1
4: if (X + Y ) odd

then goto error

5: end

2′ {X even ∨ Y odd}

(Y even)

3 {X even ∨ Y even}

(Y odd)

{(X even ∨ Y odd) ∧ (X even ∨ Y even)}
≡ {X even}

(Y even)

1 {true}

X := X · (X + 1)

2

4 {X + Y even}

(X + Y odd)

Y := Y + 1

{false}error

Fig. 3. Program and counterexample DAG with weakest interpolants

4.1 Single Counterexamples

We first consider the case where D contains a single path. Since we do not
consider procedures yet, the nodes in D correspond to control points in the
program (without any calling context). In this case, we can equivalently view D
as a sequence of (intraprocedural) statements.

Consider the following SPDS with its equivalent program formulation:

〈0〉 ↪→ 〈1〉 (x′ ∧ (y′ ↔ y) ∧ (z′ ↔ z))
〈1〉 ↪→ 〈2〉 ((x′ ↔ x) ∧ (y′ ↔ x) ∧ (z′ ↔ z))
〈2〉 ↪→ 〈3〉 ((¬y ∧ z) ∧ (x′ ↔ x) ∧ (y′ ↔ y) ∧ (z′ ↔ z))

0: x := true
1: y := x
2: if (¬y ∧ z) then
3: error

Clearly, error is not reachable. However, if we check the initial abstraction
that ignores data, we obtain the (unique) abstract counterexample trace x :=
true; y := x; assume(¬y ∧ z). We demonstrate how by computing interpolants
we can simultaneously show that the trace is spurious and find an explanation
of why it is so. Renaming the variables in the trace yields the following formulas:

F1 ≡ x1 ∧ (y1 ↔ y0) ∧ (z1 ↔ z0) // x := true
F2 ≡ (x2 ↔ x1) ∧ (y2 ↔ x1) ∧ (z2 ↔ z1) // y := x
F3 ≡ (¬y2 ∧ z2) ∧ (x3 ↔ x2) ∧ (y3 ↔ y2) ∧ (z3 ↔ z2) // assume(¬y ∧ z)

For instance, the variables with index 2 (x2, y2 and z2) refer to the values of x, y
and z after x := true; y := x has been executed, and before assume(¬y ∧ z)
has been executed. The characteristic formula of the trace is FD ≡ F1 ∧F2 ∧F3.
It is unsatisfiable if and only if the trace is spurious.

The procedures derived from Prop. 2 show that FD is indeed unsatisfiable
and yield the following strongest and weakest interpolants:



Abstraction Refinement with Craig Interpolation 497

I1 = SI (G1, G1) ≡ ∃{y0, z0, y1}.F1 ≡ x1
I2 = SI (G2, G2) ≡ ∃{x1, z1}.(SI (G1, G1) ∧ F2) ≡ (x2 ∧ y2)
J2 = WI (G2, G2) ≡ ∀{x3, y3, z3}.¬F3 ≡ (y2 ∨ ¬z2)
J1 = WI (G1, G1) ≡ ∀{x2, y2, z2}.(F2 → WI (G2, G2)) ≡ (x1 ∨ ¬z1)

Thus, the predicate Pn we are interested in at node n (where n = 0, 1, 2, 3), is
an interpolant for the formula pair (Gn, Gn), which is in fact a predicate over
variable values at n. For instance, the interpolants SI (G2, G2) and WI (G2, G2),
or any other interpolant for this pair, can only contain logical variables common
to G2 and G2, which must necessarily have index 2. These logical variables refer
to the values of the program variables after the execution of x := true; y := x
and before the execution of assume(¬y ∧ z).

Fact 1. Let F1 ∧ . . . ∧ Fk be the (unsatisfiable) characteristic formula of a spu-
rious trace consisting of statements c1; c2; . . . ; ck, let {Ki} be a family of inter-
polants satisfying the tracking property, and let Pi be the predicate over program
variables obtained by removing the index i from all logical variables in Ki.

Then {true}c1{P1}c2{P2} . . . {Pk−1}ck{false} is a valid Hoare annotation.

Hence, interpolants satisfying the tracking property “explain” the infeasibility
of a trace by providing Hoare annotations. In our example we obtain

{true} x := true {x} y := x {x ∧ y} assume(¬y ∧ z) {false} (Ii),
{true} x := true {x ∨ ¬z} y := x {y ∨ ¬z} assume(¬y ∧ z) {false} (Ji).

Notice that, by definition, we have Ii |= Ji; for instance, x∧ y |= y ∨ ¬z. In this
example, conciliated interpolants provide a better explanation of infeasibility.
The procedures of Prop. 3 guarantee the tracking property and lead to the
Hoare annotation {true} x := true {x} y := x {y} assume(¬y ∧ z) {false}.

4.2 Multiple Counterexamples

We now extend the techniques from Sect. 4.1 to the more general case where
D contains multiple paths to the error. First, we adapt the construction of FD.
This is illustrated by the following formula, which represents the DAG in Fig. 3.
The main addition to the technique from Sect. 4.1 is the disjunction at control
point 4, where two branches of the DAG merge:

(X2 = X1 · (X1 + 1)) ∧ (Y2 = Y1)
∧ (X3 = X2) ∧ (Y3 = Y2 odd)
∧ (X2′ = X3) ∧ (Y2′ = Y3 + 1)
∧ (((X4 = X2) ∧ (Y4 = Y2 even)) ∨ ((X4 = X2′) ∧ (Y4 = Y2′ even)))
∧ (Xerror = X4) ∧ (Yerror = Y4) ∧ (X4 + Y4 odd).

As before, D is spurious if and only if FD is unsatisfiable [13]. For a node n, let us
define the formula pair of n as (F,G), where F is the formula corresponding to
the DAG “above n” and G is the formula corresponding to the DAG “below n”.



498 J. Esparza, S. Kiefer, and S. Schwoon

Then, our predicate Pn is an interpolant for its formula pair (F,G). In the
example above, P3 is an interpolant for the formula pair (F3, G3), where

F3 ≡ (X2 = X1 · (X1 + 1)) ∧ (Y2 = Y1) ∧ (X3 = X2) ∧ (Y3 = Y2 odd),
G3 ≡ (X2′ = X3) ∧ (Y2′ = Y3 + 1) ∧ (X4 = X2′) ∧ (Y4 = Y2′ even)

∧ (Xerror = X4) ∧ (Yerror = Y4) ∧ (X4 + Y4 odd).

It is easy to see that, in spurious DAGs, such formula pairs are unsatisfiable. By
definition, only current variable values can occur in interpolants for those pairs,
in above example, variable values with index 3.

Strongest and weakest interpolants at each control point in D can be com-
puted in a stepwise way as sketched in Props. 2 and 4.

In the example, the predicates in curly brackets in Fig. 3 are weakest in-
terpolants. Proposition 4 (ii) is used to compute the interpolant at point 2, as
sketched in the figure. Since the predicate computed at 1 turns out to be true,
one can infer (cf. Prop. 2) that the DAG is spurious and the computed predicates
are indeed interpolants. Strongest interpolants could be computed similarly. In
that case, the DAG is spurious if the predicate at error is indeed false.

Thanks to the tracking property, the interpolants computed in this manner
explain the infeasibility of the traces in the DAG. For instance, we have the valid
Hoare triple {X even ∨ Y even} Y := Y + 1 {X even ∨ Y odd}. Combined,
we have for the whole DAG D the Hoare triple {true} D {false}, which is an
alternative way to state the spuriousness of D.

In [10], we provide an example where exponentially (in the size of the DAG)
many counterexamples are excluded in only one refinement cycle.

4.3 Programs with Procedures

We now show how to handle the case where the underlying SPDS represents
a program with (possibly recursive) procedures. The nodes of D now represent
control points of the program plus calling context, i.e., a stack of return addresses.

The construction of the characteristic formula FD is the same as in Sect. 4.2.
However, FD now contains global and local variables. Local variables are saved
during procedure calls and restored upon completion of a procedure. Thus, if
we consider the formula pair (F,G) at a node n, where n is inside a callee, the
local variables of the callers become part of the common variables of F and G
and could occur in Pn. However, we believe that Pn should be independent of
the calling context, for two reasons:

– To generate the abstract transition rules in a simple and efficient way (see
Sect. 5), the predicate Pn should depend only on the data that is available
in the concrete transition rules that lead into or out of n.

– Allowing local data from the callers to ‘pollute’ the abstract data space of
the callee would severely impair the usefulness of the SPDS model, effectively
‘flattening’ the system into one that resembles a version where all procedures
have been inlined.



Abstraction Refinement with Craig Interpolation 499

In the following, we sketch the modifications that arise in this case. Our goals
are to ensure that the predicates Pn at each node n are independent of the
calling context and still satisfy the tracking property. More details, in particular
concerning the computation of strongest and weakest interpolants, are given
in [10, 13].

– For all nodes n, we generate a predicate Pn(gin, lin, g, l) recording a relation
between the global/local data g, l at n and the data gin, lin that was valid
when entering the procedure that n belongs to. If n0 corresponds to the
entry point of a procedure, we ensure (gin ↔ g) ∧ (lin ↔ l) |= Pn0 .

– If an edge from node n is labeled by a transition rule Push(g, l, g′, l′, l′′)
(modeling a call), we generate an interpolant P>n(gin, lin, g

′, l′, l′′) s.t. Pn ∧
Push |= P>n. Thus, P>n contains information about the arguments given to
the callee and the saved local data.

– If an edge from node n′ is labeled by transition rule Pop(g, l, g′) (a return
statement) and n is the node at which the corresponding call took place,
we first generate an interpolant P<n(gin, lin, g

′), effectively a predicate that
argues about the effect of the callee, s.t. Pn′ ∧Pop |= P<n. Then, if n′′ is the
target node of the edge, we ensure that P>n ∧ P<n |= Pn′′ .

– If an edge from n to n′ is labeled by an intraprocedural rule R, we ensure
Pn ∧R |= Pn′ , preserving the tracking property.

f3m2

f0m2

(A odd)(A even)

Pf1m2
≡{true}

A := 0 A := 561

f2m2

G := A

f1m2

Pf3m2
≡ {Ain even → A = 0}

Pf2m2
≡ {Ain odd}

Pf0m2
≡ {A odd → Ain odd}

P<m1
≡ {Ain even → G = 0}

m2

(G �= 0)

error

m1

L := L · (L + 1)

m0

Ain := L

Pm0
≡ {true}

Pm1
≡ {L even}

Pm2
≡ {G = 0}

Perror ≡ {false}

P>m1
≡ {Ain even}

Fig. 4. An example for counterexample DAG with procedure call

Figure 4 gives an example for a (spurious) counterexample DAG to the SPDS
in Fig. 2, which contains a procedure call. The left-hand side shows the control
flow in the procedure m, which is interrupted by a call to a function f, whose
control flow is shown on the right. The predicates associated with the nodes are
the weakest interpolants for our example.



500 J. Esparza, S. Kiefer, and S. Schwoon

5 Computing the Abstract SPDS

In each CEGAR cycle, we derive predicates to refine our abstraction. By the
methods of Sect. 4, each predicate naturally belongs to a control point. Thus,
as in [6], we maintain for each control point a list of predicates that are useful
there. In this section we sketch how to compute an (overapproximating) abstract
SPDS given a concrete one along with the predicate lists.

Consider the example SPDS of Sect. 4.1. We derived conciliated interpolants
that explain the infeasibility of the error trace. At each control point, we now
associate each predicate (except for true and false) with a boolean variable
that reflects the truth of the predicate: [1] := l1 ↔ x and [2] := l2 ↔ y. A
concretization [i] would be a conjunction of more than one equivalence if the
predicate list of control point i consists of more than one predicate.

For the computation of the abstract rules, we use existential abstraction. For
instance, the concrete BDD R ≡ (x′ = x) ∧ (y′ = x) ∧ (z′ = z) of the SPDS rule
〈1〉 ↪→ 〈2〉 (R) is replaced by an “abstract” BDD

∃{x,y,z,x′,y′,z′}.
(
(l2 ↔ x)∧((x′ ↔ x)∧(y′ ↔ x)∧(z′ ↔ z))∧(l′3 ↔ y′)

)
≡ l′2 ↔ l1.

We can save variables, because we track the predicates only at the control points
where they were derived. In our example, we have only one predicate per control
point. Therefore, one abstract boolean variable suffices for the abstract SPDS:

〈0〉 ↪→ 〈1〉 (l′)
〈1〉 ↪→ 〈2〉 (l′ ↔ l)
〈2〉 ↪→ 〈3〉 (¬l)

0: l := true
1: skip
2: if ¬l then
3: error

The error label is no longer reachable in the abstract program. This is due to
the fact that the Hoare annotation of a concrete program can be abstractly
translated:
{true} x := true {x} y := x {y} assume(¬y ∧ z) {false} translates into
{true} l := true {l} skip {l} assume(¬l) {false}. Hence, if the predicates
that explain the infeasibility of a trace are added to the program by means of
an existential abstraction as above, this spurious trace is excluded.

The procedural case is more involved and is omitted for space reasons. We
sketch only one important concept here: The effect of a called procedure (the
predicate P<n) must be captured in an abstract variable and inspected by the
caller in order to incorporate the procedure effect into its local abstract variable
values. The details can be found in [13].

6 Case Studies

We have implemented the ideas of this paper in an extension of Moped, in
order to decrease resources needed for model-checking SPDSs. Moped accepts
multiple input languages including a subset of Java [14]. We did not compare our
program with existing CEGAR tools, since the assumptions of tools like BLAST
and SLAM (infinite variable ranges, theorem provers) differ significantly from
ours (finite variable ranges).



Abstraction Refinement with Craig Interpolation 501

6.1 Locking Example

Figure 5 shows an example of a program where CEGAR clearly pays off, espe-
cially when the number of bits for the integer variables (“bit width”) is increased.
We want to model-check the fact that the assertions in the program always hold.
This property is actually independent of the integer variables. Table 1 shows per-
formance results (on an Intel Xeon CPU 2.40GHz and using 8 bits of bit width).

struct file {
bool locked;

int pos;

};
open(file f) {

assert(¬f.locked);
f.locked = true;

f.pos = 0;

}
close(file f) {

assert(f.locked ∨
f.pos==0);

f.locked = false;

}

rw(file f) {
assert(f.locked ∨ f.pos==0);

f.pos = f.pos + 1;

}
main() {

file f1,f2;

f1.locked = f2.locked = false;

open(f1);

while(*) { open(f2);

while(*) { rw(f2); rw(f1); }
close(f2);

}
close(f1);

}

Fig. 5. Locking example (pseudo code)

Table 1. Results of different Moped versions applied on the locking example

time/s memory/BDD nodes # cycles # gl. var. # loc. var.
w/o abstraction 460 440482 n/a n/a n/a
weakest interp. 0.43 89936 14 13 6
concil. interp. 0.29 80738 10 10 7

Moped without abstraction needs exponential time in the bit width. On the
other hand, using weakest or conciliated interpolants, our CEGAR scheme au-
tomatically abstracts from the integers and proves the assertions in constantly
many refinement cycles. The number of global and local variables in the final ab-
stract program (containing no spurious error traces anymore) is also shown in the
table and is also independent of the bit width. Time and memory consumption
of the abstract versions grows modestly with the bit width. Conciliated inter-
polants have the best performance, because the predicate simplification allows
them to “discover” that the f.pos fields are irrelevant to the property.

6.2 LinkedList Example

Abstraction can also be useful in positive instances (where the error label is
reachable) and in larger programs. As an example, we took Java code for
the class LinkedList from a textbook on data structures [15] and modified
only the main method simulating a user who accesses class methods randomly:



502 J. Esparza, S. Kiefer, and S. Schwoon

public class LinkedList { · · ·
private ListNode header;
public static void main (String[ ] args) {

LinkedList l = new LinkedList();
while (NONDET()) if (NONDET()) l.insert(null, l.zeroth());

else l.remove(null);
assert(l.header == null);

} }

The assertion to be checked is not valid in the class implementation. (This
is not a bug though.) Using 4 bits of bit width and 64 bits for Moped’s heap
representation, Moped without abstraction needs 143 seconds to find an error
trace, whereas with CEGAR, only 7.4 seconds are needed (memory consump-
tion: about 2.5 Mio. BDD nodes in both cases). A refinement is not necessary.
Moped’s performance without abstraction quickly degrades with growing heap
size, whereas with abstraction, the influence of the heap size is small.

We also discovered cases where with our predicate generation heuristics, ab-
straction did not pay off, particularly if complicated properties are checked.

7 Conclusions

Whereas Craig interpolation has been used for CEGAR in SAT solver and theo-
rem prover contexts, we found that it is useful as well to enhance a BDD-based
model-checker. Strongest and weakest interpolants, which are defined indepen-
dently from other tools, form a frame inside which heuristics can be applied
to find good predicates, e.g. conciliated interpolants. The number of refinement
cycles often depends crucially on the quality of the derived predicates.

BDD-based model-checkers record how program states can be reached, to be
able to report possible counterexamples. This information can be exploited by
a CEGAR scheme to exclude multiple counterexamples at the same time. This
can save exponentially (in the size of the DAG) many refinement cycles.

Our CEGAR scheme can achieve large savings, especially if the property to
be checked is much simpler than the full functionality of the program. For future
research, we plan to further improve predicate generation heuristics. Possibilities
include an adapted form of lazy abstraction [2, 13] and the incorporation of
dataflow information to detect relevant counterexample parts [16].

Acknowledgement. We thank Dejvuth Suwimonteerabuth for his great sup-
port with jMoped.

References

1. Ball, T., Rajamani, S.: Automatically validating temporal safety properties of
interfaces. In: SPIN 01. LNCS 2057 (2001) 103–122

2. Henzinger, T., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Proc.
POPL’02, ACM Press (2002) 58–70



Abstraction Refinement with Craig Interpolation 503

3. Chaki, S., Clarke, E., Groce, A., Jha, S., Veith, H.: Modular verification of software
components in C. In: Proc. 25th International Conference on Software Engineering
(ICSE), IEEE Computer Society Press (2003) 385–395

4. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Proc. CAV’00. LNCS 1855, Springer (2000) 154–169

5. Schwoon, S.: Model-Checking Pushdown Systems. PhD thesis, TU München (2002)
6. Henzinger, T., Jhala, R., Majumdar, R., McMillan, K.: Abstractions from proofs.

In: Proc. POPL’04, ACM Press (2004) 232–244
7. Reps, T., Schwoon, S., Jha, S., Melski, D.: Weighted pushdown systems and their

application to interprocedural dataflow analysis. Science of Computer Program-
ming 58 (2005) 206–263 Special Issue on the Static Analysis Symposium 2003.

8. Glusman, M., Kamhi, G., Mador-Haim, S., Fraer, R., Vardi, M.: Multiple-
counterexample guided iterative abstraction refinement: An industrial evaluation.
In: Proceedings of TACAS 2003. LNCS 2619, Springer (2003) 176–191

9. McMillan, K.: Applications of Craig interpolants in model checking. [17] 1–12
10. Esparza, J., Kiefer, S., Schwoon, S.: Abstraction refinement with Craig interpo-

lation and symbolic pushdown systems. Technical Report 2006/02, University of
Stuttgart (2006)

11. McMillan, K.: Interpolation and SAT-based Model Checking. In: Proc. CAV’03.
LNCS 2725, Springer (2003) 1–13

12. Craig, W.: Linear reasoning. A new form of the Herbrand-Genzen theorem. Journal
of Symbolic Logic 22 (1957) 250–268

13. Kiefer, S.: Abstraction refinement for pushdown systems. Master’s thesis, Univer-
sity of Stuttgart (2005)

14. Suwimonteerabuth, D., Schwoon, S., Esparza, J.: jMoped: A Java bytecode checker
based on Moped. [17] 541–545

15. Weiss, M.: Data Structures and Algorithm Analysis in Java. Addison-W. (1998)
16. Jhala, R., Majumdar, R.: Path slicing. In: Proc. of PLDI ’05, ACM (2005) 38–47
17. Proceedings of TACAS 2005. LNCS 3440, Springer (2005)



Author Index

Agha, Gul 394

Basu, Samik 42
Bergamini, Damien 445
Bollig, Benedikt 455
Brown, Geoffrey M. 58

Chaki, Sagar 151, 334
Chakraborty, Supratik 120
Chatterjee, Krishnendu 257
Chechik, Marsha 212
Ciardo, Gianfranco 90
Clarke, E. 334
Collavizza, Hélène 182
Curic, Adrian 445

Descoubes, Nicolas 445
Deshmukh, Jyotirmoy V. 27
Distefano, Dino 287
Dwyer, Matthew B. 73

Emerson, E. Allen 27
Esparza, Javier 489

Fontaine, Pascal 167

Ganai, Malay K 135
Garavel, Hubert 445
Ghica, D.R. 303
Groce, Alex 379
Gulavani, Bhargav S. 474
Gupta, Aarti 135
Gupta, Atul 365
Gupta, Prateek 27
Gurfinkel, Arie 212

Habermehl, Peter 350
Hatcliff, John 73
Henzinger, Thomas A. 257
Hinton, Andrew 441
Hoosier, Matthew 73

Iosif, Radu 350

Jalote, Pankaj 365
Jha, Somesh 1

Jhala, Ranjit 459
Joshi, Rajeev 379
Joubert, Christophe 445

Kannan, Sampath 426
Kern, Carsten 455
Kettle, Neil 105
Kidd, N. 334
Kiefer, Stefan 489
King, Andy 105
König, Barbara 197
Kozioura, Vitali 197
Kroening, Daniel 242
Kwiatkowska, Marta 441

Lee, Insup 426
Leue, Stefan 318
Li, Bing 227
Lomuscio, Alessio 450

Marion, Jean-Yves 167
Mateescu, Radu 445
McMillan, K.L. 459
Merz, Stephan 167
Murawski, A.S. 303

Niebert, Peter 272
Nieto, Leonor Prensa 167
Norman, Gethin 441

O’Hearn, Peter W. 287
Ouaknine, Joël 411

Pandya, Paritosh 120
Parker, David 441
Peled, Doron 272
Pike, Lee 58

Raimondi, Franco 450
Rajamani, Sriram K. 474
Ramakrishnan, C.R. 42
Ranganath, Venkatesh 73
Reps, Thomas 1, 334
Robby 73
Rueher, Michel 182



506 Author Index

Schlütter, Markus 455
Schwoon, Stefan 1, 489
Sen, Koushik 394
Sharygina, Natasha 242
Siminiceanu, Radu I. 90
Smarandache-Sturm, Irina 445
Sokolsky, Oleg 426
Somenzi, Fabio 227
Stolz, Volker 455
Stragier, Gilles 445
Strzemecki, Tadeusz 105

Talupur, Muralidhar 135
Thomas, Dina 120

Tiu, Alwen 167
Touili, T. 334

Viswanathan, Mahesh 394
Vojnar, Tomas 350

Wallentine, Todd 73
Wang, Hao 1
Wei, Wei 318
Worrell, James 411

Yang, Hongseok 287
Yang, Ping 42


	Frontmatter
	Invited Contributions
	Weighted Pushdown Systems and Trust-Management Systems

	Parametrization and Slicing
	Automatic Verification of Parameterized Data Structures
	Parameterized Verification of $\pi$-Calculus Systems
	Easy Parameterized Verification of Biphase Mark and 8N1 Protocols
	Evaluating the Effectiveness of Slicing for Model Reduction of Concurrent Object-Oriented Programs

	Symbolic Techniques
	New Metrics for Static Variable Ordering in Decision Diagrams
	Widening ROBDDs with Prime Implicants
	Efficient Guided Symbolic Reachability Using Reachability Expressions

	Satisfiability
	{\itshape SDSAT}: Tight Integration of {\itshape Small Domain Encoding} and {\itshape Lazy} Approaches in a Separation Logic Solver
	SAT-Based Software Certification
	Expressiveness + Automation + Soundness: Towards Combining SMT Solvers and Interactive Proof Assistants
	Exploration of the Capabilities of Constraint Programming for Software Verification

	Abstraction
	Counterexample-Guided Abstraction Refinement for the Analysis of Graph Transformation Systems
	Why Waste a Perfectly Good Abstraction?
	Efficient Abstraction Refinement in Interpolation-Based Unbounded Model Checking
	Approximating Predicate Images for Bit-Vector Logic

	Model Checking Algorithms
	Finitary Winning in $\omega$-Regular Games
	Efficient Model Checking for LTL with Partial Order Snapshots
	A Local Shape Analysis Based on Separation Logic

	Program Verification
	Compositional Model Extraction for Higher-Order Concurrent Programs
	A Region Graph Based Approach to Termination Proofs
	Verifying Concurrent Message-Passing C Programs with Recursive Calls
	Automata-Based Verification of Programs with Tree Updates

	Runtime Diagnostics
	An Experimental Comparison of the Effectiveness of Control Flow Based Testing Approaches on Seeded Faults
	Exploiting Traces in Program Analysis

	Quantitative Techniques
	Model-Checking Markov Chains in the Presence of Uncertainties
	Safety Metric Temporal Logic Is Fully Decidable
	Simulation-Based Graph Similarity

	Tool Demonstrations
	PRISM: A Tool for Automatic Verification of Probabilistic Systems
	DISTRIBUTOR and BCG\_MERGE: Tools for Distributed Explicit State Space Generation
	{\sc mcmas}: A Model Checker for Multi-agent Systems
	{\sc MSCan}~-- A Tool for Analyzing MSC Specifications

	Refinement
	A Practical and Complete Approach to Predicate Refinement
	Counterexample Driven Refinement for Abstract Interpretation
	Abstraction Refinement with Craig Interpolation and Symbolic Pushdown Systems

	Backmatter


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




