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Abstract. We consider parity games played on special pushdown
graphs, namely those generated by one-counter processes. For parity
games on pushdown graphs, it is known from [23] that deciding the win-
ner is an ExpTime-complete problem. An important corollary of this
result is that the µ-calculus model checking problem for pushdown pro-
cesses is ExpTime-complete. As one-counter processes are special cases
of pushdown processes, it follows that deciding the winner in a parity
game played on the transition graph of a one-counter process can be
achieved in ExpTime. Nevertheless the proof for the ExpTime-hardness
lower bound of [23] cannot be adapted to that case. Therefore, a natural
question is whether the ExpTime upper bound can be improved in this
special case. In this paper, we adapt techniques from [11, 4] and provide
a PSpace upper bound and a DP-hard lower bound for this problem.
We also give two important consequences of this result. First, we improve
the best upper bound known for model-checking one-counter processes
against µ-calculus. Second, we show how these games can be used to
solve pushdown games with winning conditions that are Boolean com-
binations of a parity condition on the control states with conditions on
the stack height.

1 Introduction

Infinite two-player games with perfect information allow us to encode several
challenging problems from formal verification, and this is one of the reasons why
they are so intensively studied for several years. Several model-checking prob-
lems can be expressed as decision problems for games: the most famous example
is that the µ-calculus model-checking problem is polynomially equivalent to the
solution of a parity game. This correspondence was first proved for finite graphs
[6] and later extended to various classes of infinite graphs, e.g. pushdown graphs
[23, 24]. Two-player games also offer a very convenient framework to represent
interaction of a program with some (possibly hostile) environment. In this ap-
proach, the first player represents the program while the second player simulates
the environment. A winning strategy expresses a property that must hold what-
ever the environment does. Hence, finding a winning strategy for the first player
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allows to synthesize a controller that restricts the program and ensures that the
property expressed by the winning condition always holds [2].

The most standard setting of verification and synthesis only considers finite
games. Nevertheless infinite models arise when recursive programs or programs
with variable on infinite domains are considered. Therefore, solving games on
such infinite objects is a natural question. The special case of pushdown pro-
cesses, have been intensively studied from the games point of view (see e.g.
[23, 11, 5, 3, 7, 19]) and the most important consequence for model-checking is
that for pushdown processes, the µ-calculus model-checking problem is Exp-

Time-complete [23].
In this paper, we consider a natural subclass of pushdown processes, namely

one-counter processes with zero test. Verification problems for one-counter
processes have intensively been studied (see e.g. [9, 8]) but, for model-checking
problems, most of the complexity results concern lower bounds whereas upper
bounds generally follow from known results for pushdown processes. Hence, this
frequently yields complexity gaps, as for µ-calculus model-checking where the
lower bound is DP-hard [8] whereas the upper bound is ExpTime [23].

We consider parity games played on one-counter graphs and provide a
PSpace algorithm to decide the winner in such games. Our procedure relies
on a tricky adaptation and a precise analysis of the techniques from [11, 4] that
were originally developed for pushdown games. Our result improves the Exp-

Time upper bound inherited from pushdown games [23]. As a by-product, it
improves the best known upper bound for the µ-calculus model-checking for
one-counter processes from ExpTime to PSpace.

Another consequence of our main result concerns pushdown games equipped
with winning conditions that combine both regular conditions and conditions on
how the stack height evolves during a play (e.g. unboundedness). Special cases
of these games have been studied and shown to be decidable [5, 3, 7]. Here, we
capture a larger class of games and we provide a more intuitive construction
which generalizes those for parity games [23] and for strict unboundedness [19].
Moreover, our construction is very general, and one does not need to provide a
specific construction/proof for each possible kind of winning condition neither
to prove preliminary results on the existence of memoryless strategy.

The paper is organized as follows. In Section 2, we give the main definitions.
Section 3 provides a PSpace algorithm to solve one-counter parity games and
a DP lower-bound is presented for one-counter reachability games. The conse-
quences of these results are presented in the two last sections: Section 4 consid-
ers the µ-calculus model-checking problem while Section 5 focuses on pushdown
games. Due to the page limit, missing proofs and extra details can be found
in [20].

2 Definitions

An alphabet A is a finite set of letters. A∗ denotes the set of finite words on A
and Aω the set of infinite words on A. The empty word is denoted by ε.
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Infinite two-player games. Let G = (V, E) denote a (possibly infinite) graph
with vertices V and edges E ⊆ V × V . Let VE ∪ VA be a partition of V between
two players Eve and Adam. A game graph is such a tuple G = (VE, VA, E). An
infinite two-player game on a game graph G is a pair G = (G, Ω), where Ω ⊆ V ω

is a winning condition.
The players, Eve and Adam, play in G by moving a token between vertices.

A play from some vertex v0 proceeds as follows: the player owning v0 chooses
a successor v1 such that (v0, v1) ∈ E. Then the player owning v1 chooses a
successor v2 and so on, forever. If at some point one of the players cannot move,
she/he looses the play. Otherwise, the play is an infinite word Λ ∈ V ω and is
won by Eve if and only if Λ ∈ Ω. As one can always add loops on dead-end
vertices, and slightly modify the winning condition to make looping plays on
some dead-end vertex loosing for the player that controls it, we will assume in
the sequel that all plays are infinite. A partial play is any prefix of a play.

A strategy for Eve is a function assigning, to any partial play ending in some
vertex v ∈ VE, a vertex v′ such that (v, v′) ∈ E. Eve respects a strategy Φ
during some play Λ = v0v1v2 · · · if vi+1 = Φ(v0 · · · vi), for all i ≥ 0 such that
vi ∈ VE. Finally a strategy for Eve is winning from some position v ∈ V , if any
play starting from v, where Eve respects Φ, is won by her. A vertex v ∈ V is
winning for Eve if she has a winning strategy from v. Symmetrically, one defines
strategies and winning positions for Adam.

A game G is determined if, from any position, either Eve or Adam has a
winning strategy. For all games considered in this article one can use Martin’s
Theorem [15] and conclude that they are determined.

For more details and basic results on games, we refer to [21, 26].

Pushdown games. Pushdown processes provide a natural model for programs
with recursive procedures. They are like nondeterministic pushdown automata
except that they have no input (and therefore no initial state neither final state).

More formally, a pushdown process is a tuple P = 〈Q, Γ, ⊥, ∆〉 where Q is a
finite set of states, Γ is a finite stack alphabet that contains a special bottom-
of-stack symbol ⊥ and ∆ : Q×Γ → 2({skip(q),pop(q),push(q,γ)|q∈Q,γ∈Γ\{⊥}}) is the
transition relation. We additionally require that, for all q ∈ Q, ∆(q, ⊥) does not
contain any element of the form pop(q′).

A stack is any word in St = (Γ \{⊥})∗ ·⊥. A configuration of P is a pair (q, σ)
with q ∈ Q and σ ∈ St. Note that the top stack symbol in some configuration
(q, σ) is the leftmost symbol of σ.

Any pushdown process P induces an infinite graph, called pushdown graph,
denoted G = (V, E), whose vertices are the configurations of P , and edges are
defined by the transition relation ∆, i.e., from a vertex (p, γσ) one has edges to:

– (q, γσ) whenever skip(q) ∈ ∆(p, γ).
– (q, σ) whenever pop(q) ∈ ∆(p, γ).
– (q, γ′γσ) whenever push(q, γ′) ∈ ∆(p, γ).

Consider a partition QE ∪ QA of Q between Eve and Adam. It induces a
natural partition VE ∪VA of V by setting VE = QE ×St and VA = QA×St. The
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resulting game graph G = (VE, VA, E) is called a pushdown game graph. Finally,
a pushdown game is a game played on such a game graph.

The regular winning conditions on pushdown games are inherited from the
standard acceptance condition for automata on infinite words. The simplest one
is the reachability condition. Let F ⊆ Q be a set of final states, and let VF be
the set of configuration which control state is in F . The reachability condition is
the winning condition defined by Ωreach(F ) = {v0v1 · · · | ∃vi ∈ VF }. Using the
notion of final states one can define the Büchi condition and its dual winning con-
dition the co-Büchi conditions: ΩBuc(F ) = {v0v1 · · · | ∀i ≥ 0 ∃j ≥ i s.t. vi ∈ VF }
and Ωco−Buc(F ) = V ω \ ΩBuc(F ).

Let col be a coloring function from Q into a finite set of colors C ⊂ N. This
function is easily extended into a function from V into C by setting col((q, σ)) =
col(q). The parity condition is the winning condition defined by:

Ωpar = {v0v1 · · · | lim inf((col(vi))i≥0) is even} .

For a parity game played on a pushdown graph, the main question is to decide
which player has a winning strategy from some given configuration. It is easily
seen that this last question can be reduced to decide the winner for configurations
with empty stack. For the general case of parity games played on pushdown
graph, this last problem has been fully characterized by Walukiewicz [23].

Theorem 1. [23] Deciding the winner from some configuration of empty stack
in a pushdown parity game is an ExpTime problem. Moreover, this problem is
ExpTime-hard even if the winning condition is a reachability one.

One-counter games. A one-counter process is a special case of a pushdown
process P = 〈Q, Γ, ⊥, ∆〉 where Γ = {1, ⊥} consists of a single stack symbol 1
together with the bottom-of-stack symbol. It therefore corresponds to a finite
state machine equipped with a counter that can be test to zero. The notions
of one-counter graphs, one-counter game graphs and one-counter games are in-
duced by the one for pushdown processes.

Remark 1. Note that our model of one-counter processes can test whether the
stack (equivalently the counter value) is empty (equivalently equals 0). This
follows from the fact that in the definition of pushdown processes the bottom-
of-stack belongs to the stack alphabet, and hence can be checked as top stack
symbol when performing an action.

Theorem 1 implies an ExpTime upper bound to decide the winner in a one-
counter parity game. The ExpTime-hard lower bound of Theorem 1 is estab-
lished by coding the computation of an alternating Turing machine using linear
space into a reachability pushdown game. The main idea of the reduction is
that the pushdown process is built so that its stack is a description of the prefix
of a computation of the Turing machine. Therefore this construction strongly
relies on the fact that the stack alphabet is large enough to describe configura-
tions of the Turing machine. Hence this proof cannot be adapted to the case of
one-counter game.
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A natural question is thus to check whether it is possible, in the special case of
one-counter games, to improve the ExpTime upper bound. We positively answer
this question in Theorem 2 by providing a PSpace algorithm.

3 Deciding the Winner in a One-Counter Parity Game

3.1 Upper Bound

Intuition. In [11], Kupferman and Vardi have proposed a new approach, based
on automata, to solve model-checking problem for pushdown graphs. The main
idea was to reduce a model-checking problem to an emptiness problem for a
class of tree automata, namely alternating two-way parity tree automata. This
technique can then be adapted to solve parity pushdown games [4].

Let us first informally recall the construction of [4], and explain how to sim-
plify it in the special case of one-counter parity games. It is rather standard to
consider that the complete infinite tree of arity k is a representation of the set of
all finite words on an alphabet of cardinality k. Each node in this tree is labeled
by the last letter of the word it represents: hence the word associated to some
node is obtained by considering the sequence of labels of the nodes on the path
from the root to the current one. Using this fact, a play in a pushdown game can
be considered as an (infinite) path in such a tree in which a node encodes the
stack content while an extra information describes the control state. As there are
finitely many control states, and as the possible moves only depend on the con-
trol state and on the top stack symbol (that is the label of the current node), this
representation of a play can be seen as a path in the run of some tree automaton
on the complete infinite tree of arity k, where k is the size of the pushdown
stack alphabet without the bottom-of-stack symbol. This tree automaton can
go in both directions in the tree: it goes down to simulate a rule that pushes
some new symbol, it goes up to simulate a popping rule and it stay in the same
node to simulates a skip rule. For each possible move, the control state has to
be updated in accordance with the pushdown transition rules. As we aim to
simulate a game, the tree automaton needs to be alternating: existential states
are those associated to Eve’s states while universal states are those associated to
Adam’s states. Finally, the acceptance condition is inherited from the winning
condition, and is therefore a parity condition. The complete infinite tree of arity
k is accepted if and only if Eve has a winning strategy in the pushdown game.

The previous tree automaton works on the complete infinite tree and the
arity of this tree is the cardinality of the stack alphabet without the bottom-of-
stack symbol. Hence, if we restrict ourselves to one-counter processes instead of
general pushdown processes, the arity is equal to 1 and instead of a tree we have
to consider a simpler model, namely the infinite word ⊥1ω. Therefore, it follows
that to decide the winner in a one-counter parity game it is sufficient to check
emptiness for an alternating two-way parity word automaton. In Proposition 2
we will show that emptiness for these word automata can be checked in PSpace

and hence it will yield a PSpace procedure to decide the winner in a one-counter
parity game (Theorem 2).



342 O. Serre

Definitions. Given a set S of variables, we denote by B+(S) the set of positive
boolean formulas over S with true and false. A subset S′ ⊆ S satisfies a formula
in B+(S) if this formula is satisfied by the valuation assigning true to every
variable in S′ and false to every variable in S \ S′.

An alternating two-way parity word automaton A is a tuple 〈Q, A, qin, δ, col〉,
where Q is a finite set of control states, A is a finite input alphabet, qin ∈ Q is
an initial state, δ is a mapping from Q × A to B+(Q × {−1, 0, 1}), and col is a
mapping from Q to a finite set of colors C ⊂ N. An alternating one-way parity
word automaton corresponds to the special case where δ : Q×A → B+(Q×{1}).

A run of A on an infinite word u = a0a1 · · · ∈ Aω is an infinite (Q×N)-labeled
tree such that its root is labeled by (qin, 0), and for every vertex x labeled by some
(q, n) with sons labeled by (q1, n1), . . . , (qk, nk), the set {(q1, n1−n), . . . , (qk, nk−
n)} ⊂ Q × {−1, 0, 1} satisfies δ(q, an). A run is accepting if and only if for every
infinite branch, the smallest infinitely repeated color is even, where the color of
a node labeled by some (q, n) is col(q). Finally, an infinite word is accepted if
there exists an accepting run on it, and we denote by L(A) the set of all words
accepted by A.

The construction. Let C = 〈Q, {1, ⊥}, ⊥, ∆〉 be a one-counter process eq-
uipped with a partition QE ∪ QA of its control states, and with a coloring
function col : Q → C. Let G be the one-counter parity game induced by the
preceding partition and the coloring function col. Let qin be some state in Q.
We are interesting in deciding whether (qin, ⊥) is winning for Eve in G.

To solve this problem, instead of using the techniques from [23], that would
lead to an ExpTime procedure, we adapt the techniques developed in [11, 4],
and note that it reduces our problem to the emptiness problem for alternating
two-way parity word automaton.

Let us consider the alternating two-way parity word automaton A = 〈Q,
{1, ⊥}, qin, δ, col} where the transition function δ is defined by:

– for every q ∈ QE and for every a ∈ {1, ⊥}, δ(q, a) equals
[
∨

push(q′,1)∈∆(q,a)(q
′, 1)] ∨ [

∨
skip(q′)∈∆(q,a)(q

′, 0)] ∨ [
∨

pop(q′)∈∆(q,a)(q
′, −1)].

– for every q ∈ QA and for every a ∈ {1, ⊥}, δ(q, a) equals
[
∧

push(q′,1)∈∆(q,a)(q
′, 1)] ∧ [

∧
skip(q′)∈∆(q,a)(q

′, 0)] ∧ [
∧

pop(q′)∈∆(q,a)(q
′, −1)].

We have the following straightforward proposition.

Proposition 1. [11, 4] The configuration (qin, ⊥) is winning for Eve in G if and
only if A accepts the infinite word ⊥1ω.

Checking whether A accepts the word ⊥1ω is closely related to checking empti-
ness for a language accepted by an alternating two-way parity word automaton.
This problem was studied by Vardi in [22] in the more general setting of two-way
alternating parity tree automata, and then this construction was adapted for al-
ternating two-way Büchi word automata in [17, 10]. In the case of tree automata,
checking emptiness is in ExpTime, while in the case of Büchi word automata
the problem is in PSpace. The following proposition, extends this last result to
the case of parity acceptance condition.
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Proposition 2. Deciding emptiness for a language accepted by an alternating
two-way parity word automaton can be achieved in PSpace.

Proof. We only give the main ideas and explain how the construction of [17, 10]
is extended to our setting.

Let A be an alternating two-way parity word automaton. The first step is to
build an alternating one-way parity automaton B such that L(B) �= ∅ if and only
if L(A) �= ∅. Moreover the number of control states of B is polynomial in the
number of control states of A. However the size of its alphabet is exponential
but note that it is not important for the complexity of emptiness checking.The
construction of B directly follows from the ones in [22, 17, 10]. A precise analysis
of the structure of B is given by the following lemma.

Lemma 1. Let A = 〈Q, A, qin, δ, col〉 be an alternating two-way parity word au-
tomaton, let n = |Q| and let d be the number of colors involved in the parity
condition. Then there exists an alternating one-way parity word automaton B
such that L(B) �= ∅ if and only if L(A) �= ∅. Moreover, L(B) = L(B1) ∩ L(B2),
where B1 is an alternating one-way automaton without acceptance condition (ev-
ery run, when exists, is accepting) and has O(nd) states, and B2 is a purely uni-
versal (its transition function takes value into the boolean formulas made only of
conjunctions) one-way parity automaton (with d colors) and has O(nd) states.

Let n1 and n2 be the respective sizes of the set of control states of B1 and B2.
As B2 is purely universal, its dual automaton B2 is a non deterministic parity
automaton using d colors and having O(n2) states. It is then standard to build
a nondeterministic Büchi automaton B′

2 that recognizes the same language than
B2 (that is the complement of L(B2)) and having O(n2d) states (see [13] for
instance). Dualizing B′

2 yields a purely universal co-Büchi automaton B′
2 with

O(n2d) states and such that L(B′
2) = L(B2).

Now, the intersection of B1 and B′
2 provides an alternating co-Büchi au-

tomaton B′ with O(n2d + n1) = O(n2d) states that recognizes the language
L(B1) ∩ L(B′

2) = L(B1) ∩ L(B2) = L(B). As checking emptiness for an alternat-
ing co-Büchi automaton can be achieved in PSpace (see [12] for instance), we
conclude that one can check whether L(A) is empty in PSpace. �∪

Propositions 1 and 2 directly imply the following theorem.

Theorem 2. Deciding the winner in a one-counter parity game can be done in
PSpace.

3.2 Lower Bound

In this section, we give a lower bound for the problem of deciding the winner
in a one-counter reachability game. Due to the symmetry of the problem, the
lower bound should be robust under complementation: we provide such a lower
bound, namely DP-hardness. Note that DP-hardness is a rather standard lower
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bound for problems related to one-counter process, e.g. the EF model-checking
problem for one-counter processes [8].

A language L is in the complexity class DP if and only if there are two
languages L1 ∈ NP and L2 ∈ co-NP such that L = L1 ∩ L2.

The sat-unsat problem is the following one: given two Boolean formulas ψ1
and ψ2, both in conjunctive normal form with three literals per clause, decide
whether ϕ1 is satisfiable and ϕ2 is not. It is rather immediate to prove that
sat-unsat is DP-complete [16].

Let us first explain how to polynomially reduce 3-sat to decide the winner
in a one-counter reachability game. Let X = {x1, . . . , xk} be a set of variables
and let ψ be some Boolean formula in conjunctive normal form with 3 literals
per clause. Let denote ψ = C1 ∧ C2 ∧ · · · ∧ Ch, where Ci = li,1 ∨ li,2 ∨ li,3 for all
i = 1, . . . , h with li,j ∈ {x, x | x ∈ X}, for j = 1, 2, 3.

For every i ≥ 1, let ρi denote the i-th prime number. A valuation of X is a
mapping from X into {0, 1}, that is a tuple in {0, 1}k. Let τ : N → {0, 1}k be
the function defined by τ(n) = (b1, b2, . . . , bk) where bj = 0 if n = 0 mod ρj and
bj = 1 otherwise. The Chinese remainder lemma implies that τ is surjective.

Consider now the following informal game. Eve chooses some integer n en-
coding a valuation that she claims to satisfy ψ. Then Adam picks a clause Ci

that he claims not to be satisfied by the preceding valuation. Eve contests by
giving a literal of Ci that she claims to be evaluated to true by the preceding
valuation. Finally Adam checks whether this literal is evaluated to true: if it is
the case, then Eve wins, otherwise Adam does. It is then easily seen that Eve
has a winning strategy if and only if ψ is satisfiable.

This game can be encoded into a one-counter reachability game. For the
first step, Eve increments the counter until it equals n. For the second step,
Adam indicates the clause by changing the control state. In the third step, Eve
indicates the literal by changing the control state. Finally, Adam check whether
the literal evaluates to true by decrementing the counter while performing a
modulo ρk counting, where the literal was xk or xk.

Now, if one wants to reduce sat-unsat, it suffices to add a preliminary step
to the previous game. Let (ψ1, ψ2) be the instance of sat-unsat. First Adam
picks ψ1 or ψ2. In the first case Eve and Adam play the previous game. In the
second case, they play the dual game where Adam is now the one that has to
provide a valuation for ψ2, and where Eve wins if and only if ψ2 is not satisfiable.
Eve wins the main game if and only if she can win both sub-games, that is if
and only if ψ1 is satisfiable while ψ2 is not. Hence, we have the following result.

Theorem 3. Deciding the winner in a one-counter reachability game is a DP-
hard problem.

Remark 2. An alternative proof for this result is the following one: consider the
EF model-checking problem for one-counter automata. In [8] this problem is
shown to be DP-hard. One can then easily reduce it to decide the winner in a
one-counter reachability game. Nevertheless, we think that the proof we gave for
Theorem 3 is more intuitive and better here as it is self-contained.
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4 Model-Checking Propositional µ-Calculus Against
One-Counter Trees

In this section we rephrase Theorem 3 in the framework of propositional µ-
calculus model-checking problem for one-counter trees. An important conse-
quence is that it improves from ExpTime to PSpace the best complexity bound
known for this problem.

Propositional µ-calculus is a very powerful fix point logic that allows to specify
a large class of properties of (non-terminating) systems. Moreover, many impor-
tant temporal logic were shown to be fragments of µ-calculus. For definitions
and results on µ-calculus, we refer to [1].

Models of µ-calculus formulas are transitions systems, that is graphs equipped
with functions that assign to any propositional constant the set of vertices where
it holds. The µ-calculus model-checking problem is to decide, for a given model
M, a state s of M, and a µ-calculus formula ϕ, whether ϕ holds in s. In the
sequel we are interested in the special case where M is the unfolding of a one-
counter graph, called a one-counter tree.

A standard technique to solve a µ-calculus model-checking problem is to con-
struct a parity game in which Eve has a winning strategy if and only if the
model satisfies the formula. The game graph is obtained by considering the syn-
chronized product of a finite game graph, representing the formula ϕ, with the
model M. This idea was first used in [6] for finite transition systems, and was
then adapted in [23] for pushdown trees (see also [25] for a general presentation
of the technique). In the case of pushdown trees, an important point to note is
that in the synchronized product, the stack alphabet remains unchanged (the
product is done in the control states). Hence, using the same construction for one-
counter trees reduces the µ-calculus model-checking problem for a one-counter
tree to solve a one-counter parity game. Conversely, it follows from [23] that
solving a one-counter parity game reduces to a µ-calculus model checking prob-
lem. As both reductions are polynomial, we obtain the following consequence of
Theorem 2.

Theorem 4. The propositional µ-calculus model-checking problem for one-
counter trees can be solved in PSpace and is DP-hard.

Remark 3. Note that the DP-hardness was already known, as it is a consequence
of the DP-hardness of the model-checking problem for the branching-time tem-
poral logic EF [8] which is a fragment of the propositional µ-calculus.

5 Application to Pushdown Games

In section 2 we have defined the regular winning conditions. Nevertheless, when
considering pushdown games, non-regular winning conditions arise naturally. In
particular, one can require conditions on how the stack height evolves during the
play. For some configuration v = (q, σ⊥) in a pushdown graph, let sh(v) = |σ|
denote the stack height in v. The unboundedness condition requires that the



346 O. Serre

stack height is not bounded. Its dual condition is the boundedness condition.
Both conditions are formally defined as follows:

– ΩUbd = {v0v1 · · · | lim sup((sh(vi)i≥0) = ω}.
– ΩBd = {v0v1 · · · | ∃B ≥ 0 s.t. sh(vi) < B ∀i ≥ 0}.

If we replace the lim sup by a lim in the definition of the unboundedness
condition then we obtain the strict unboundedness condition which enforces the
stack height to converge to infinity. Its dual version, the repeating condition
requires that some stack height (equivalently, some vertex) is infinitely often
visited. Both conditions are formally defined as follows:

– ΩStUbd = {v0v1 · · · | lim((sh(vi))i≥0) = ω}.
– ΩRep = {v0v1 · · · | ∃B ≥ 0 s.t. ∀j ≥ 0 ∃i ≥ j s.t. sh(vi) = B}.

These four winning conditions will be designated as stack conditions. Push-
down games with stack conditions are known to be decidable in ExpTime

[5, 19, 3, 7, 18]. In the sequel we consider winning conditions that are a Boolean
combination of stack conditions with a parity condition. For instance the win-
ning condition Ωpar ∩ ΩUbd ∩ ΩRep requires that the smallest infinitely visited
color has to be even and that arbitrary large stack height occurs while some level
is infinitely repeated. Note that the winning condition ΩUbd ∩ ΩRep was already
mentioned in [5] and can be rephrased as: there exists infinitely many vertices
that are infinitely often visited during the play. Decidability of pushdown games
with this winning condition was open and is a consequence of the main result of
this section.

Games equipped with winning conditions that are a Boolean combination of
a parity condition and of an unboundedness condition have been shown to be
decidable in [3] when restricting to Büchi conditions and in [7] for the general
case. For all these games an ExpTime-complete complexity bound has been
provided.

The main result of this section is to provide an ExpSpace procedure to solve
these games and more generally to solve the ones equipped with a Boolean com-
bination of a parity condition and of stack conditions. Even if the complexity
bound may not be optimal here, the results are more general and the presenta-
tion and proof techniques are much simpler and unified. Indeed, the construction
is a generalization of the one for parity condition, and it separates all conditions
involved in the Boolean combination, which allows to reason independently on
these conditions and leads to a very flexible construction. Moreover, no prelim-
inary result on memoryless strategy is needed, while it was the case in [7].

From now on, we fix a pushdown process P = 〈Q, Γ, ⊥, ∆〉, a partition QE ∪
QA of its control states and a coloring function col : Q → {0, . . . , d}. Let G
be the corresponding game graph, and let Ωpar be the parity condition induced
by col.

For an infinite play Λ = v0v1 · · · , let StepsΛ be the set of indices of positions
where no configuration of strictly smaller stack height is visited later in the play.
More formally, StepsΛ = {i ∈ N | ∀j ≥ i sh(vj) ≥ sh(vi)}. Note that StepsΛ is
always infinite and hence induces a factorization of the play Λ into finite pieces.
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For all pair (i, j) ∈ StepsΛ, with i �= j and such that there is no k ∈ StepsΛ

such that i < k < j, we define mcol(i, j) = min{col(vk) | i ≤ k ≤ j} and

kind(i, j) =

{
S if sh(vj) = sh(vi) + 1
(B, h) if sh(vj) = sh(vi) andh=max{sh(vk)− sh(vi) | i≤ k ≤ j}

In the factorization induced by StepsΛ, a factor vi · · · vj will be called a bump
of height h if kind(i, j) = (B, h), and will be called a Stair if kind(i, j) = S.

For any play Λ with StepsΛ = {n0 < n1 < · · · }, one can define two sequences
(mcolΛi )i≥0 ∈ NN and (kindΛ

i )i≥0 ∈ ({S} ∪ ({B} × N))N defined by mcolΛi =
mcol(ni, ni+1) and kindΛ

i = kind(ni, ni+1).
These sequences fully characterize the parity conditions and the stack

conditions.

Proposition 3. For a play Λ the following equivalences hold

1. Λ ∈ Ωpar iff lim inf((mcolΛi )i≥0) is even.
2. Λ ∈ ΩUbd iff either {kindΛ

i | i ≥ 0} contains (B, h) for any h ≥ 0, or S
appears infinitely often in (kindΛ

i )i≥0.
3. Λ ∈ ΩStUbd iff S appears infinitely often in (kindΛ

i )i≥0.

By dualization, one obtains similar characterizations for ΩBd and ΩRep.

The main idea used in [23] to solve parity pushdown game is to build a par-
ity game played on an exponentially larger finite graph with the same number
of colors. This new game simulates the pushdown game, in the sense that the
sequences of visited colors during a correct simulation play are exactly the se-
quences (mcolΛi )i≥0 for plays Λ in the original pushdown game. Moreover, a play
in which a player does not correctly simulate the pushdown game is loosing for
that player. From this construction follows the ExpTime upper bound.

Let us explain how to extend this technique to handle stack conditions. When
considering the strict unboundedness condition, it is sufficient to detect in the
simulation game of [23] whether the currently simulated factor is a stair or a
bump. Therefore, this construction can be easily adapted to reduce a pushdown
games with a strict unboundedness winning condition to a Büchi game played on
a finite game graph (the Büchi condition enforcing to simulate an infinite number
of stairs) [19, 18]. Nevertheless, for bumps, one cannot express any property on
their height.

Consider the unboundedness condition. A play satisfies it either if it satisfies
the strict unboundedness condition (which can be encoded by a Büchi condition)
or if some stack height is infinitely often repeated and arbitrarily high bumps
appear. For this last case, it would be sufficient to detect whether a bump is the
highest one since the play is on the current stack level: indeed in a non strictly
unbounded game, this happens infinitely often if and only if arbitrarily high
bumps occur during the play. In order to detect this phenomena, we enrich the
finite game graph of [23] with a counter that is incremented whenever a bump
higher than the counter value is simulated, and that is decremented (mainly for
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technical reasons) when a stair is simulated: if finitely many stair are simulated,
the counter is incremented infinitely often if and only if arbitrarily high bumps
occur on some fixed level (the one reached after the last stair). Therefore the
unboundedness condition is simulated in this new one-counter game by requiring
that either one simulates infinitely many stairs or the counter is infinitely often
incremented.

Hence, when considering as winning condition a Boolean combination of a
parity condition and of stack conditions, one gets a reduction to a one-counter
game equipped with a simple combination of parity, Büchi and co-Büchi condi-
tion that can easily be expressed as a parity condition by slightly modifying the
underlying one-counter process.

Before providing a description of the one-counter game graph G̃, let us consider
the following informal description of this simulation game. We aim at simulating
a play in the pushdown game from some initial vertex (pin, ⊥). In G̃ we keep track
of only the control state and the top stack symbol of the simulated configuration,
and we maintain a counter κ. The interesting case is when it is in a control
state p with top stack symbol α, and the player owning p wants to push a
letter β onto the stack and change control state to q. For every strategy of
Eve, there is a certain set of possible (finite) continuations of the play that
will end with popping β from the stack. We require Eve to declare a vector−→
S = ((S−

0 , S+
0 ), . . . , (S−

d , S+
d )) of (d + 1) pairs in (2Q)2, where S−

i (resp. S+
i ) is

the set of all states the game can be in after popping of β along these plays where
in addition the stack height in the induced bump is strictly smaller (resp. equal
or larger) than κ and the smallest visited color while β was on the stack is i.

Adam has two main choices. He can continue the game by pushing β onto
the stack and update the state (we call this a pursue move). Otherwise, he can
pick a set S�

i (for � = − or +) and a state s ∈ S�
i , and continue the simulation

from that state s (we call this a jump move). If he does a pursue move, then
he remembers the vector

−→
S claimed by Eve and the counter κ is decreased; if

later on a pop transition is simulated, the play stops and Eve wins if and only
if the resulting state is in S�

θ where θ is the smallest color seen in the current
level (this information is encoded in the control state, reset after each pursue
move and updated after each jump move) and � = + if κ = 0 and � = −
otherwise. If Adam does a jump move to a state s in S�

i , the currently stored
value for θ is updated to min(θ, i, col(s)), which is the smallest color seen since
the current stack level was reached, and if � = +, the currently stored vector
−→
R = ((R−

0 , R+
0 ), . . . , (R−

d , R+
d )) is changed to

−→
R+ = ((R+

0 , R+
0 ), . . . , (R+

d , R+
d ))

and κ is incremented.
Therefore the main vertices of the one-counter game graph are configurations

of the form [(p, α,
−→
R, θ), κ] and they are controlled by the player that control p.

Intermediate configurations are used to handle the previously described inter-
mediate steps. The local structure is given in Figure 1 (circle vertex are those
controlled by Eve). Two special control states tt and ff are used to simulate pop
moves. This game graph is equipped with a coloring function on the vertices and
on the edges: vertices of the form [(p, α,

−→
R, θ), κ] have color col(p), edges leaving
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[(q, α,
−→
R, min(θ, col(q))), κ]

tt, κ ff, κ[(p, α,
−→
R, θ), κ]

[(p, α,
−→
R, θ, q, β), κ]

[(p, α,
−→
R, θ, q, β,

−→
S ), κ]

[(q, β,
−→
S , col(q)), κ − 1] [(s, α,

−→
R, min(θ, i, col(s))), κ] [(s, α,

−→
R+, min(θ, i, col(s))), κ + 1]

S
b, i

B, i

If ∃ pop(r) ∈ ∆(p, α)
s.t. r ∈ R−

θ if κ > 0
and r ∈ R+

θ if κ = 0

If ∃ pop(r) ∈ ∆(p,α)
s.t. r /∈ R−

θ if κ > 0
and r /∈ R−

θ if κ = 0

∀ skip(q) ∈ ∆(p,α)

∀ push(q, β) ∈ ∆(p, α)

∀−→
S ∈ P(Q)2d+2

∀ s ∈ S−
i ∀ s ∈ S+

i

Fig. 1. Local structure of �G

from a vertex [(p, α,
−→
R, θ, q, β,

−→
S ), κ] have two colors, one in {S, b, B} (the color

is S if the edge simulates a stair, b if it simulates a bump smaller than κ and
B otherwise) and one in {0, . . . , d} if it simulates a bump (the color is θ is the
bump has color θ). It is easily seen that intermediate control states can be used
to have only colors on vertices.

The winning condition for the game played on G̃ depends on the winning
condition considered in the pushdown graph. If the winning condition is of the
form ψ(Ω1, . . . , Ωk) for a Boolean formula ψ, the winning condition on G̃ will be
ψ(Ω̃1, . . . , Ω̃k), where

Ω̃ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ωpar if Ω = Ωpar

ΩBuc({S, B}) if Ω = ΩUbd

Ωco−Buc({S, B}) if Ω = ΩBd

ΩBuc({S}) if Ω = ΩStUbd

Ωco−Buc({S}) if Ω = ΩRep

Our main result is the following.

Theorem 5. A configuration (pin, ⊥) is winning for Eve in G = (G, ψ(Ω1, . . . ,
Ωk)) if and only if [(pin, ⊥, ((∅, ∅), . . . , (∅, ∅), col(pin)), 0] is winning for Eve in
G̃ = (G̃, ψ(Ω̃1, . . . , Ω̃k)). Hence, deciding the winner in such a pushdown game
can be done in ExpSpace.
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6 Conclusion

Refining the techniques from [11, 4], we have obtained a PSpace algorithm to
decide the winner in a one-counter parity game. As this problem was shown to be
DP-hard, a remaining question is whether the complexity gap can be reduced.

As a corollary of our main result, we have improved the best known upper
bound for the µ-calculus model-checking problem against one-counter processes.

We have shown how to use one-counter parity games to solve pushdown
games equipped with winning conditions requiring both regular properties and
stack height properties. We briefly mention here an extension of our result. In
[14] pushdown games equipped with visibly pushdown winning conditions were
considered. Such winning conditions capture all regular properties and several
natural non-regular properties. In this setting, one can express the strict un-
boundedness condition but not the unboundedness one. The technique to solve
these games is similar to the one for parity pushdown games: it uses a reduction
to a parity game played on a finite game graph. One can easily show that the
techniques of Section 5 can be adapted to solve pushdown games equipped with
a winning condition combining a visibly pushdown condition with an unbound-
edness condition.
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W. Thomas, and T. Wilke, editors, Automata, Logics, and Infinite Games, vol-
ume 2500 of LNCS, pages 303–317. Springer, 2002.

5. T. Cachat, J. Duparc, and W. Thomas. Solving pushdown games with a Σ3-
winning condition. In Proceedings of CSL’02, volume 2471 of LNCS, pages 322–336.
Springer, 2002.

6. E. A. Emerson, C. Jutla, and A. Sistla. On model-checking for fragments of mu-
calculus. In Proceedings of CAV’93, volume 697 of LNCS, pages 385–396. Springer,
1993.

7. H. Gimbert. Parity and exploration games on infinite graphs. In Springer, editor,
Proceedings of CSL’04, volume 3210 of LNCS, pages 56–70, 2004.
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