

Lecture Notes in Computer Science 3921
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Luca Aceto Anna Ingólfsdóttir (Eds.)

Foundations
of Software Science and
Computation Structures

9th International Conference, FOSSACS 2006
Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2006
Vienna, Austria, March 25-31, 2006
Proceedings

13

Volume Editors

Luca Aceto
Anna Ingólfsdóttir

Reykjavík University,
Department of Computer Science
Ofanleiti 2, 103 Reykjavík, Iceland
E-mail:{luca,annai}@ru.is

Library of Congress Control Number: 2006922023

CR Subject Classification (1998): F.3, F.4.2, F.1.1, D.3.3-4, D.2.1

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-33045-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-33045-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11690634 06/3142 5 4 3 2 1 0

Foreword

ETAPS 2006 was the ninth instance of the European Joint Conferences on Theory and
Practice of Software. ETAPS is an annual federated conference that was established in
1998 by combining a number of existing and new conferences. This year it comprised
five conferences (CC, ESOP, FASE, FOSSACS, TACAS), 18 satellite workshops (AC-
CAT, AVIS, CMCS, COCV, DCC, EAAI, FESCA, FRCSS, GT-VMT, LDTA, MBT,
QAPL, SC, SLAP, SPIN, TERMGRAPH, WITS and WRLA), two tutorials, and seven
invited lectures (not including those that were specific to the satellite events). We re-
ceived over 550 submissions to the five conferences this year, giving an overall accep-
tance rate of 23%, with acceptance rates below 30% for each conference. Congratula-
tions to all the authors who made it to the final programme! I hope that most of the
other authors still found a way of participating in this exciting event and I hope you will
continue submitting.

The events that comprise ETAPS address various aspects of the system develop-
ment process, including specification, design, implementation, analysis and improve-
ment. The languages, methodologies and tools which support these activities are all
well within its scope. Different blends of theory and practice are represented, with an
inclination towards theory with a practical motivation on the one hand and soundly
based practice on the other. Many of the issues involved in software design apply to
systems in general, including hardware systems, and the emphasis on software is not
intended to be exclusive.

ETAPS is a loose confederation in which each event retains its own identity, with
a separate Program Committee and proceedings. Its format is open-ended, allowing
it to grow and evolve as time goes by. Contributed talks and system demonstrations
are in synchronized parallel sessions, with invited lectures in plenary sessions. Two of
the invited lectures are reserved for “unifying” talks on topics of interest to the whole
range of ETAPS attendees. The aim of cramming all this activity into a single one-week
meeting is to create a strong magnet for academic and industrial researchers working on
topics within its scope, giving them the opportunity to learn about research in related
areas, and thereby to foster new and existing links between work in areas that were
formerly addressed in separate meetings.

ETAPS 2006 was organized by the Vienna University of Technology, in cooperation
with:

- European Association for Theoretical Computer Science (EATCS);
- European Association for Programming Languages and Systems (EAPLS);
- European Association of Software Science and Technology (EASST);
- Institute for Computer Languages, Vienna;
- Austrian Computing Society;
- The Bürgermeister der Bundeshauptstadt Wien;
- Vienna Convention Bureau;
- Intel.

VI Foreword

The organizing team comprised:

Chair: Jens Knoop
Local Arrangements: Anton Ertl
Publicity: Joost-Pieter Katoen
Satellite Events: Andreas Krall
Industrial Liaison: Eva Kühn
Liaison with City of Vienna: Ulrich Neumerkel
Tutorials Chair, Website: Franz Puntigam
Website: Fabian Schmied
Local Organization, Workshops Proceedings: Markus Schordan

Overall planning for ETAPS conferences is the responsibility of its Steering Com-
mittee, whose current membership is:

Perdita Stevens (Edinburgh, Chair), Luca Aceto (Aalborg and Reykjavı́k), Rastislav
Bodı́k (Berkeley), Maura Cerioli (Genova), Matt Dwyer (Nebraska), Hartmut Ehrig
(Berlin), José Fiadeiro (Leicester), Marie-Claude Gaudel (Paris), Roberto Gorrieri
(Bologna), Reiko Heckel (Leicester), Michael Huth (London), Joost-Pieter Katoen
(Aachen), Paul Klint (Amsterdam), Jens Knoop (Vienna), Shriram Krishnamurthi
(Brown), Kim Larsen (Aalborg), Tiziana Margaria (Göttingen), Ugo Montanari (Pisa),
Rocco de Nicola (Florence), Hanne Riis Nielson (Copenhagen), Jens Palsberg (UCLA),
Mooly Sagiv (Tel-Aviv), João Saraiva (Minho), Don Sannella (Edinburgh), Vladimiro
Sassone (Southampton), Helmut Seidl (Munich), Peter Sestoft (Copenhagen), Andreas
Zeller (Saarbrücken).

I would like to express my sincere gratitude to all of these people and organizations,
the Program Committee chairs and PC members of the ETAPS conferences, the orga-
nizers of the satellite events, the speakers themselves, the many reviewers, and Springer
for agreeing to publish the ETAPS proceedings. Finally, I would like to thank the Or-
ganizing Chair of ETAPS 2006, Jens Knoop, for arranging for us to have ETAPS in the
beautiful city of Vienna.

Edinburgh Perdita Stevens
January 2006 ETAPS Steering Committee Chair

Preface

This volume collects the proceedings of “Foundations of Software Science and Com-
putation Structures,” FOSSACS 2006. FOSSACS is a member conference of ETAPS,
the “European Joint Conferences on Theory and Practice of Software,” dedicated to
foundational research for software science. It invites submissions on theories and meth-
ods to underpin the analysis, integration, synthesis, transformation, and verification of
programs and software systems. Topics covered usually include: algebraic models; au-
tomata and language theory; behavioral equivalences; categorical models; computa-
tion processes over discrete and continuous data; computation structures; logics of pro-
grams; modal, spatial, and temporal logics; models of concurrent, reactive, distributed,
and mobile systems; models of security and trust; language-based security; process al-
gebras and calculi; semantics of programming languages; software specification and
refinement; type systems and type theory.

FOSSACS 2006 consisted of one invited and 28 contributed papers, selected out
of 107 submissions, yielding an acceptance rate of roughly 26%. The quality of the
submitted papers was very high indeed, and several good manuscripts could not be
selected for presentation at the conference by the Program Committee. This indicates
that FOSSACS is by now an established conference on theoretical computer science to
which the authors are submitting some of their best work.

Besides the contributed papers, this volume includes an article by Wan Fokkink,
the FOSSACS invited speaker. Wan’s contribution, entitled ‘On Finite Alphabets and
Infinite Bases II: Completed and Ready Simulation,’ is coauthored with Taolue Chen
and Sumit Nain—two young, up-and-coming researchers—and presents new results
on the equational theory of simulation-based preordering relations between concurrent
processes.

The order of presentation of the contributed papers in this volume follows the struc-
ture of the program for the conference.

We owe a huge debt of gratitude to the Program Committee for their sterling effort
during the difficult process of selecting a program for the conference; to the referees,
for carrying out the reviewing tasks with outstanding competence, care, and timeliness;
and ultimately to the authors for making our selection very hard by submitting their
best work to FOSSACS. Thanks to Jens Knoop for the local organization, and to Martin
Karusseit for his support with the conference electronic management system.

We hope that you will enjoy reading this volume.

Reykjavı́k Luca Aceto and Anna Ingólfsdóttir
January 2006 Program Chairs

FOSSACS 2006

Organization

Program Committee

Luca Aceto Roberto Amadio
(Reykjavı́k, Iceland) (Paris VII, France)

Bruno Blanchet Gerard Boudol
(ENS Paris, France) (INRIA Sophia Antipolis, France)

Nadia Busi Luca Cardelli
(Bologna, Italy) (Microsoft Research, UK)

Flavio Corradini Luca de Alfaro
(Camerino, Italy) (Santa Cruz, USA)

Zoltan Ésik Thomas Henzinger
(Szeged, Hungary) (EPFL, Switzerland)

Anna Ingólfsdóttir Bengt Jonsson
(Reykjavı́k, Iceland) (Uppsala , Sweden)

Dexter Kozen Antonin Kucera
(Cornell, USA) (Brno, Czech Republic)

Orna Kupferman Marta Kwiatkowska
(Jerusalem, Israel) (Birmingham, UK)

Catuscia Palamidessi Erik Poll
(INRIA/Futurs, France) (Nijmegen, The Netherlands)

Alban Ponse Edmund Robinson
(Amsterdam, The Netherlands) (Queen Mary College, UK)

Vladimiro Sassone (Sussex, UK) Steve Schneider (Surrey, UK)
Igor Walukiewicz (Labri, France) Thomas Wilke (Kiel, Germany)

Referees

Rezine Ahmed
Carlos Areces
Vincent Balat
Michael Baldamus
Paolo Baldan
Vince Barany
Franco Barbanera
Massimo Bartoletti
Emmanuel Beffara
Nick Benton
Joshua Berdine
Martin Berger
Rudolf Berghammer

Marco Bernardo
Yves Bertot
Dietmar Berwanger
Inge Bethke
Dirk Beyer
Karthik Bhargavan
Gavin Bierman
Andreas Blass
Stefan Blom
Achim Blumensath
Frank de Boer
Johannes Borgstroem
Julian Bradfield

Tomas Bradzil
Mario Bravetti
Diletta R. Cacciagrano
Cristiano Calcagno
Marco Carbone
Ilaria Castellani
Dario Catalano
Rohit Chadha
Krishnendu Chatterjee
Alessandra Cherubini
Yannick Chevalier
Tom Chothia
Corina Cirstea

X Organization

Giovanni Conforti
Byron Cook
Martin Cooper
Andrea Corradini
Veronique Cortier
Jean-Michel Couvreur
Silvia Crafa
Rosario Culmone
Frederic Dabrowski
Silvano Dal Zilio
Giorgio Delzanno
Jolie de Miranda
Moshe Deutsch
Razvan Diaconescu
Maria Rita Di Berardini
Bob Diertens
Pietro Di Gianantonio
Marie Duflot-Kremer
Jan van Eijck
Neil Evans
Maribel Fernandes
Riccardo Focardi
Cedric Fournet
Adrian Francalanza
Sibylle Froeschle
Maurizio Gabbrielli
Fabio Gadducci
David Galindo
Blaise Genest
Georges Gonthier
Andrew D. Gordon
Clemens Grabmayer
Stefano Guerrini
Christian Haack
Magnus M. Halldórsson
James Heather
Frederic Herbreteau
Thomas Hildebrandt
Thai Son Hoang
Jan Holecek
Engelbert Hubbers
Marieke Huisman
Hans Hüttel
Samuel Hym
Lucian Ilie

Bart Jacobs
Radha Jagadeesan
Petr Jancar
David Janin
Ole H. Jensen
Thierry Joly
Christine Julien
Jarkko Kari
Felix Klaedtke
Bartek Klin
Naoki Kobayashi
Simon Kramer
Tomas Kratochvila
Steve Kremer
Hans-Joerg Kreowski
Ralf Kuesters
Alexander Kurz
Anna Labella
Cosimo Laneve
Martin Lange
James Leifer
Daniel Leivant
Giacomo Lenzi
Jerome Leroux
Martin Leucker
Jean-Jacques Levy
Paul Levy
Huimin Lin
Etienne Lozes
Denis Lugiez
Yoad Lustig
Bas Luttik
Carsten Lutz
Parthasarathy Madhusudan
Henning Makholm
Claude Marche
Ralph Matthes
Guy McCusker
Alistair McEwan
Paul-Andre Mellies
Emanuela Merelli
Massimo Merro
Marino Miculan
Dale Miller
Anders Moeller

Eugenio Moggi
Sotiris Moschoyiannis
Larry Moss
Wojciech Mostowski
MohammadReza Mousavi
Andrzej Murawski
Anca Muscholl
Gopalan Nadathur
Damian Niwinski
Gethin Norman
Peter O’Hearn
Martijn Oostdijk
Vincent van Oostrom
Friederich Otto
Luca Padovani
David Parker
Augusto Parma
Joachim Parrow
Dirk Pattison
Romain Pechoux
Giovanni Michele Pinna
Adolfo Piperno
Nir Piterman
David Pitt
Francois Pottier
Damien Pous
John Power
Rosario Pugliese
Femke van Raamsdonk
Anders P. Ravn
Vojtech Rehak
Michel Reniers
Eike Ritter
Piet Rodenburg
Michael Rusinowitch
Peter Ryan
Claudio Sacerdoti Coen
Mayank Saksena
Davide Sangiorgi
Alan Schmitt
Roberto Segala
Olivier Serre
Mike Shields
Alex Simpson
Christian Skalka

Organization XI

Jeremy Sproston
Jiřı́ Srba
Oldrich Strazovsky
Jan Strejcek
Grégoire Sutre
Andrzej Tarlecki
David Teller
Luca Tesei
Hendrik Tews
Sophie Tison

Nikola Trcka
Helen Treharne
Mathieu Turuani
Sandor Vagvolgyi
Frank D. Valencia
Vasco T. Vasconcelos
Gerard Verfaillie
Björn Victor
Maria Grazia Vigliotti
Aymeric Vincent

Fer-Jan de Vries
Wang Xu
Daria Walukiewicz
Andrzej Wasowski
Muck van Weerdenburg
Graham White
Kidane Yemane
Tsai Yih-Kuen
Mark van der Zwaag

Table of Contents

Invited Talk

On Finite Alphabets and Infinite Bases II: Completed and Ready
Simulation

Taolue Chen, Wan Fokkink, Sumit Nain . 1

Mobile Processes

A Theory for Observational Fault Tolerance
Adrian Francalanza, Matthew Hennessy . 16

Smooth Orchestrators
Cosimo Laneve, Luca Padovani . 32

On the Relative Expressive Power of Asynchronous Communication
Primitives

Daniele Gorla . 47

More on Bisimulations for Higher Order π-Calculus
Zining Cao . 63

Software Science

Register Allocation After Classical SSA Elimination is NP-Complete
Fernando Magno Quintão Pereira,
Jens Palsberg . 79

A Logic of Reachable Patterns in Linked Data-Structures
Greta Yorsh, Alexander Rabinovich, Mooly Sagiv, Antoine Meyer,
Ahmed Bouajjani . 94

Distributed Computation

Dynamic Policy Discovery with Remote Attestation
Corin Pitcher, James Riely . 111

Distributed Unfolding of Petri Nets
Paolo Baldan, Stefan Haar, Barbara König . 126

XIV Table of Contents

On the μ-Calculus Augmented with Sabotage
Philipp Rohde . 142

Categorical Models

A Finite Model Construction for Coalgebraic Modal Logic
Lutz Schröder . 157

Presenting Functors by Operations and Equations
Marcello M. Bonsangue, Alexander Kurz . 172

Bigraphical Models of Context-Aware Systems
L. Birkedal, S. Debois, E. Elsborg,
T. Hildebrandt, H. Niss . 187

Processes for Adhesive Rewriting Systems
Paolo Baldan, Andrea Corradini, Tobias Heindel, Barbara König,
Pawe�l Sobociński . 202

Real Time and Hybrid Systems

On Metric Temporal Logic and Faulty Turing Machines
Joël Ouaknine, James Worrell . 217

Denotational Semantics of Hybrid Automata
Abbas Edalat, Dirk Pattinson . 231

Process Calculi

Reversing Algebraic Process Calculi
Iain Phillips, Irek Ulidowski . 246

Conjunction on Processes: Full–Abstraction Via Ready–Tree Semantics
Gerald Lüttgen, Walter Vogler . 261

Undecidability Results for Bisimilarity on Prefix Rewrite Systems
Petr Jančar, Jǐŕı Srba . 277

Automata and Logic

Propositional Dynamic Logic with Recursive Programs
Christof Löding, Olivier Serre . 292

Table of Contents XV

A Semantic Approach to Interpolation
Andrei Popescu, Traian Florin Şerbănuţă, Grigore Roşu 307

First-Order and Counting Theories of ω-Automatic Structures
Dietrich Kuske, Markus Lohrey . 322

Parity Games Played on Transition Graphs of One-Counter Processes
Olivier Serre . 337

Domains, Lambda Calculus, Types

Bidomains and Full Abstraction for Countable Nondeterminism
James Laird . 352

An Operational Characterization of Strong Normalization
Luca Paolini, Elaine Pimentel, Simona Ronchi Della Rocca 367

On the Confluence of λ-Calculus with Conditional Rewriting
Frédéric Blanqui, Claude Kirchner, Colin Riba . 382

Security

Guessing Attacks and the Computational Soundness of Static
Equivalence

Mart́ın Abadi, Mathieu Baudet, Bogdan Warinschi 398

Handling exp,× (and Timestamps) in Protocol Analysis
Roberto Zunino, Pierpaolo Degano . 413

Symbolic and Cryptographic Analysis of the Secure
WS-ReliableMessaging Scenario

Michael Backes, Sebastian Mödersheim, Birgit Pfitzmann,
Luca Viganò . 428

Author Index . 447

On Finite Alphabets and Infinite Bases II:
Completed and Ready Simulation�

Taolue Chen1,2, Wan Fokkink1,3, and Sumit Nain4

1 CWI, Department of Software Engineering, PO Box 94079,
1090 GB Amsterdam, The Netherlands

chen@cwi.nl
2 Nanjing University, State Key Laboratory of Novel Software Technology, Nanjing,

Jiangsu, P.R. China, 210093
3 Vrije Universiteit Amsterdam, Department of Theoretical Computer Science,

De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
wanf@cs.vu.nl

4 Rice University, Department of Computer Science, 6100 S. Main Street, Houston,
TX 77005-1892, USA
sumitnain@yahoo.com

Abstract. We prove that the equational theory of the process algebra
BCCSP modulo completed simulation equivalence does not have a finite
basis. Furhermore, we prove that with a finite alphabet of actions, the
equational theory of BCCSP modulo ready simulation equivalence does
not have a finite basis. In contrast, with an infinite alphabet, the latter
equational theory does have a finite basis.

1 Introduction

Labeled transition systems constitute a fundamental model of concurrent com-
putation which is widely used in light of its flexibility and applicability. They
model processes by explicitly describing their states and their transitions from
state to state, together with the actions that produce them. Several notions
of behavioral equivalence have been proposed, with the aim to identify those
states of labeled transition systems that afford the same observations. The lack
of consensus on what constitutes an appropriate notion of observable behav-
ior for reactive systems has led to a large number of proposals for behavioral
equivalences for concurrent processes.

Van Glabbeek [6] presented the linear time - branching time spectrum of
behavioral preorders and equivalences for finitely branching, concrete, sequential
processes. In this paper we focus on two semantics in this spectrum. A relation
R between processes is a simulation if s0 R s1 and s0

a→ s′0 implies s1
a→ s′1 with

s′0 R s′1. Such a relation is a completed simulation if whenever s0 cannot perform
any transition, the same holds for s1. It is a ready simulation if s0 and s1 can
� Partially supported by the Dutch Bsik project BRICKS (Basic Research in Informat-

ics for Creating the Knowledge Society), 973 Program of China (No. 2002CB312002),
and NNSFC (No. 60233010, No. 60273034, No. 60403014).

L. Aceto and A. Ingólfsdóttir (Eds.): FOSSACS 2006, LNCS 3921, pp. 1–15, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 T. Chen, W. Fokkink, and S. Nain

possible futures

ready simulation

ready pairs

2-nested simulation

failure traces

simulation

completed simulation

bisimulation

possible worlds

traces

completed traces

failure pairs

ready traces

Fig. 1. The linear time - branching time spectrum

perform exactly the same initial actions. Simulation semantics is coarser than
completed simulation semantics (meaning that it distinguishes fewer processes),
which in turn is coarser than ready simulation semantics. Other semantics in the
linear time - branching time spectrum are also based on simulation notions, or
on decorated traces. Figure 1 depicts the linear time - branching time spectrum,
where a directed edge from one equivalence to another means that the source of
the edge is finer than the target.

Van Glabbeek [6] studied the semantics in his spectrum in the setting of the
process algebra BCCSP, which contains only basic process algebraic operators
from CCS and CSP, but is sufficiently powerful to express all finite synchroniza-
tion trees. Van Glabbeek gave axiomatizations for the semantics in the spectrum,
such that two closed BCCSP terms can be equated by the axioms if and only if
they are equivalent.

Having defined a model of an axiomatization for a process algebra in terms of
LTSs, it is natural to study the connection between the equations that are valid
in the chosen model, and those that are derivable from the axioms using the rules
of equational logic. A key question here is whether there is a finite axiomatization
that is ω-complete. That is, if all closed instances of an equation can be derived,
does this imply that the equation itself can be derived from the axiomatization
using the rules of equational logic? (We also refer to an ω-complete axiom system
as a basis for the algebra it axiomatizes.) An ω-complete axiomatization of a

On Finite Alphabets and Infinite Bases II: Completed and Ready Simulation 3

behavioral congruence yields a purely syntactic characterization, independent
of LTSs and of the actual details of the definition of the chosen behavioral
equivalence, of the semantics of the process algebra. This bridge between syntax
and semantics plays an important role in both the practice and the theory of
process algebras. From the point of view of practice, these proof systems can
be used to perform system verifications in a purely syntactic way using general
purpose theorem provers or proof checkers, and form the basis of purpose-built
axiomatic verification tools like, e.g., PAM [8].

A notable example of an ω-incomplete axiomatization in the literature is the
equational theory of CCS [9]. Therefore laws such as commutativity of paral-
lelism, which are valid in the initial model but which cannot be derived, are
often added to the latter equational theory. For such extended equational the-
ories, ω-completeness results were presented in the setting of CCS [10] and
ACP [3].

A number of positive and negative results regarding finite ω-complete axioma-
tizations for BCCSP occur in the literature. Moller [10] proved that the finite ax-
iomatization for BCCSP modulo bisimulation equivalence is ω-complete. Groote
[7] presented a similar result for completed trace equivalence, for trace equiv-
alence (in case of an alphabet with more than one element), and for readiness
and failures equivalence (in case of an infinite alphabet). Fokkink and Nain [5]
obtained a finite ω-complete axiomatization for BCCSP modulo failures equiv-
alence in case of a finite alphabet, by adding one extra axiom that uses the
cardinality of the alphabet. In [4] they proved that in case of a finite alphabet
of at least two elements, BCCSP modulo any semantics in between readiness
and possible worlds equivalence does not have a finite basis. Blom, Fokkink and
Nain [2] proved that in case of an infinite alphabet, BCCSP modulo ready trace
equivalence does not have a finite sound and ground-complete axiomatization.
Aceto, Fokkink, van Glabbeek and Ingolfsdottir [1] proved a similar negative
result for 2-nested simulation and possible futures equivalence, independent of
the cardinality of the alphabet.1

In this paper we consider BCCSP modulo completed simulation and ready
simulation semantics. We prove that no finite sound and ground-complete axiom-
atization for BCCSP modulo completed simulation preorder and equivalence is
ω-complete. To be more precise, we prove that the infinite family of inequations

anx � an0 + an(x + y) (n ≥ 1)

which are sound modulo completed simulation preorder, cannot be axiomatized
in a finite fashion. This result is surprising in the sense that completed simulation
is the only semantics in the linear time - branching time spectrum that in case
of an infinite alphabet has a finite sound and ground-complete axiomatization
for BCCSP, but no finite ω-complete axiomatization.

1 In case of an infinite alphabet, occurrences of action names in axioms should be inter-
preted as variables, as else most of the axiomatizations mentioned in this paragraph
would be infinite.

4 T. Chen, W. Fokkink, and S. Nain

Next we prove that in case of a finite alphabet {b1, . . . , bk}, no finite sound and
ground-complete axiomatization for BCCSP modulo ready simulation preorder
and equivalence is ω-complete. To be more precise, we prove that the infinite
family of inequations

anx � an0 + an(x + b10) + · · ·+ an(x + bk0) (n ≥ 1)

which are sound modulo ready simulation preorder, cannot be axiomatized in a
finite fashion.

Finally, we prove, using the technique of inverted substitutions from [7], that
in case of an infinite alphabet, the equational theory of BCCSP modulo ready
simulation equivalence does have a finite basis.

This paper is set up as follows. Section 2 presents basic definitions regard-
ing simulation semantics, the process algebra BCCSP, and (in)equational logic.
Section 3 contains the proofs of the negative results for completed simulation
preorder and equivalence. And Section 4 contains the proofs of the negative and
positive results for ready simulation preorder and equivalence.

2 Preliminaries

Simulation semantics: A labeled transition system contains a set of states, with
typical element s, and a set of transitions s

a→ s′, where a ranges over some set A
of labels. The set I(s) consists of those a ∈ A for which there exists a transition
s

a→ s′.

Definition 1 (Simulation). Assume a labeled transition system.

– A binary relation R on states is a simulation if s0 R s1 and s0
a→ s′0 imply

s1
a→ s′1 with s′0 R s′1.

– A simulation R is a completed simulation if s0 R s1 and I(s0) = ∅ imply
I(s1) = ∅.

– A simulation R is a ready simulation if s0 R s1 and a �∈ I(s0) imply a �∈
I(s1).

We write s0 �CS s1 or s0 �RS s1 if s0 R s1 with R a completed or ready
simulation, respectively. The kernels of �CS and �RS are denoted by �CS and
�RS, respectively.

Syntax of BCCSP: BCCSP(A) is a basic process algebra for expressing finite
process behavior. Its syntax consists of closed (process) terms p, q that are con-
structed from a constant 0, a binary operator + called alternative composition,
and unary prefix operators a , where a ranges over some nonempty set A of ac-
tions. Open terms t, u, v, w can moreover contain variables from a countably
infinite set V (with typical elements x, y, z).

On Finite Alphabets and Infinite Bases II: Completed and Ready Simulation 5

Transition rules: Intuitively, closed BCCSP(A) terms represent finite process
behaviors, where 0 does not exhibit any behavior, p + q is the nondeterministic
choice between the behaviors of p and q, and ap executes action a to transform
into p. This intuition is captured, in the style of Plotkin, by the transition rules
below, which give rise to A-labeled transitions between closed terms.

ax
a→ x

x
a→ x′

x + y
a→ x′

y
a→ y′

x + y
a→ y′

Completed simulation preorder �CS and ready simulation preorder �RS con-
stitute a precongruence for closed BCCSP(A)-terms. That is, p1 �N q1 and
p2 �N q2 implies ap1 �N aq1 for a ∈ A and p1 + p2 �N q1 + q2, where N ranges
over {CS, RS}.

We extend the operational interpretation above to open terms by assuming
that variables do not exhibit any behavior. For open terms t and u, we define
t �N u (or t �N u) if for any closed substitution σ, σ(t) �N σ(u) (or σ(t) �N
σ(u), respectively).

Equations and inequations: Let axiomatization E be a collection of either in-
equations t � u or equations t ≈ u. We write E 	 t � u or E 	 t ≈ u if this
(in)equation can be derived from the (in)equations in E using the standard rules
of (in)equational logic, where the rule for symmetry can be applied for equational
derivations but not for inequational ones. A collection E of (in)equations is sound
modulo a preorder � or equivalence � on closed terms if (E 	 p � q)⇒ p � q or
(E 	 p ≈ q)⇒ p � q, respectively, for all closed terms p and q. Vice versa, E is
ground-complete modulo � or � if p � q ⇒ (E 	 p � q) or p � q ⇒ (E 	 p ≈ q),
respectively, for all closed terms p and q. Finally, E is ω-complete modulo � or
� if t � u⇒ (E 	 t � u) or t � u⇒ (E 	 t ≈ u), respectively for all open terms
t and u.

The core axioms A1-4 [9] for BCCSP(A) below are ω-complete, and sound
modulo bisimulation equivalence, which is the finest semantics in van Glabbeek’s
linear time - branching time spectrum (see Fig. 1).

A1 x + y ≈ y + x
A2 (x + y) + z ≈ x + (y + z)
A3 x + x ≈ x
A4 x + 0 ≈ x

In the remainder of this paper, process terms are considered modulo A1-2 and
A4. A term x or at is a summand of each term x + u or at + u, respectively. We
use summation

∑
i∈{i1,...,ik} ti (with k ≥ 0) to denote ti1 + · · · + tik

, where the
empty sum denotes 0.

As binding convention, alternative composition and summation bind weaker
than prefixing. A (closed) substitution maps variables in V to (closed) terms.
For every term t and substitution σ, the term σ(t) is obtained by replacing every
occurrence of a variable x in t by σ(x).

6 T. Chen, W. Fokkink, and S. Nain

3 Completed Similarity

In [6], van Glabbeek gave a finite equational axiomatization that is sound and
ground-complete for BCCSP(A) modulo�CS. It consists of axioms A1-4 together
with

CS a(bx + y + z) ≈ a(bx + y + z) + a(bx + z)

where a, b range over A. Likewise, a finite sound and ground-complete axiomati-
zation for BCCSP(A) modulo �CS is obtained by adding bx + z �CS bx + y + z
to A1-4.

In this section we present a proof that the (in)equational theory of BCCSP(A)
modulo completed similarity does not have a finite basis.

3.1 Completed Simulation Preorder

We start with proving that the inequational theory of BCCSP(A) modulo �CS
does not have a finite basis. The corner stone for this negative result is the
infinite family of inequations

anx � an0 + an(x + y)

for n ≥ 1. Here ant denotes n prefixes of a: a0t = t and an+1t = a(ant). It is
not hard to see that these inequations are sound modulo �CS. The idea is that
either x cannot perform any action, in which case anx is completed simulated
by an0, or x can perform some action, in which case anx is completed simulated
by an(x + y).

The depth of a term t, denoted by depth(t), is the maximal number of transi-
tions in sequence that t can exhibit. It is defined by: depth(0) = 0, depth(x) = 0,
depth(t + u) = max{depth(t), depth(u)}, and depth(at) = depth(t) + 1.

Proposition 1. Let E be a finite collection of inequations over BCCSP(A) that
is sound modulo �CS. Let n be larger than the depth of any term in E. Then
from E we cannot derive the inequation

anx � an0 + an(x + y).

The main part of this section is devoted to proving Proposition 1. We start with
two basic lemmas.

Let t
a1···ak→ t′ (with k ≥ 0) denote that there is a trace t = t0

a1→ t1
a2→ · · · ak→

tk = t′. If moreover t′ = x + t′′, then we say that x occurs at depth k in t. If t′

cannot perform any transitions (meaning that each summand of t′ is a variable
or 0), then t

a1···ak→ t′ is called a termination trace of t.

Lemma 1. Let t �CS u. If t
a1···ak→ x + t′, then u

a1···ak→ x + u′.

Proof. Let d > depth(u) and ρ a closed substitution such that ρ(x) = ad0 and
ρ(y) = 0 for any variable y �= x. By assumption, t

a1···ak→ x+ t′, so ρ(t)
a1···ak+d→ 0

On Finite Alphabets and Infinite Bases II: Completed and Ready Simulation 7

(with ak+1 · · · ak+d = ad). Since ρ(t) �CS ρ(u), it follows that ρ(u)
a1···ak+d→ v

with 0 �CS v, which implies v �CS 0. Since d > depth(u), clearly u
a1···ai→ y + u′

where ρ(y)
ai+1···ak+d→ v. We have i ≤ depth(u) < d, so ρ(y) �= 0, and hence y = x

and i = k. Concluding, u
a1···ak→ x + u′. �

Lemma 2. If at �CS an0+an(x+y), then at is completed similar to an0, anx,
any or an(x + y).

Proof. By assumption, at �CS an0 + an(x + y). Then clearly every termination
trace of t has length n − 1, and executes only a’s. Moreover, by Lemma 1,
t can only contain the variables x and y. It follows that for every trace of t

such that t
an−1→ t′, t′ is completed similar to either 0, x, y or x + y. Suppose,

towards a contradiction, that t
an−1→ t1 and t

an−1→ t2 with t1 ��CS t2. In each of
the six possible cases (modulo symmetry) we give a closed substitution ρ with
ρ(at) ��CS ρ(an0 + an(x + y)).

– Cases 1,2,3: t1 �CS 0 and t2 �CS x, y or x + y. Let ρ(x) ��CS 0 and

ρ(y) ��CS 0. Then ρ(t) ��CS an−10 (because ρ(t) an−1→ ρ(t2) ��CS 0) and

ρ(t) ��CS an−1ρ(x + y) (because ρ(t) an−1

→ ρ(t1) �CS 0 and ρ(x + y) ��CS 0).

– Cases 4,5: t1 �CS x and t2 �CS y or x + y. Let ρ(x) = 0 and ρ(y) ��CS

0. Then ρ(t) ��CS an−10 (because ρ(t) an−1→ ρ(t2) ��CS 0) and ρ(t) ��CS

an−1ρ(x + y) (because ρ(t) an−1→ ρ(t1) �CS 0 and ρ(x + y) ��CS 0).

– Case 6: t1 �CS y and t2 �CS x + y. Let ρ(x) ��CS 0 and ρ(y) = 0. Then

ρ(t) ��CS an−10 (because ρ(t) an−1→ ρ(t2) ��CS 0) and ρ(t) ��CS an−1ρ(x + y)

(because ρ(t) an−1→ ρ(t1) �CS 0 and ρ(x + y) ��CS 0).

We conclude that the six cases above all contradict at �CS an0 + an(x + y).

Hence it must be the case that for each pair of traces t
an−1→ t1 and t

an−1→ t2,
t1 �CS t2. Moreover, by Lemma 1, t does not contain variables at depths smaller
than n− 1. It is not hard to see that this implies the lemma. �

The following key lemma paves the way for the proof of Proposition 1.

Lemma 3. Let E be a finite collection of inequations over BCCSP(A) that is
sound modulo �CS. Let n be greater than the depth of any term in E. Assume
that:

– E 	 t � u;
– u �CS an0 + an(x + y); and
– t has a summand completed similar to anx.

Then u has a summand completed similar to anx.

8 T. Chen, W. Fokkink, and S. Nain

Proof. By induction on the depth of the proof of the inequation t � u from E.
We proceed by a case analysis on the last rule used in the proof of t � u from E.

– Case 1: E 	 t � u because σ(v) = t and σ(w) = u for some v � w ∈ E and
substitution σ.
Since t = σ(v) has a summand completed similar to anx, we can distinguish
two cases.
• Case 1.1: v has as summand some variable z where σ(z) has a summand

completed similar to anx.
Since v has z as summand, and soundness of E yields v �CS w, by
Lemma 1, w also has z as summand. Then clearly u = σ(w) has a sum-
mand completed similar to anx.

• Case 1.2: v has a summand av′ where σ(av′) �CS anx.
Since n is larger than the depth of v, depth(av′) < n. So, since σ(av′) �CS

anx, av′ ak→ z+v′′ where 1 ≤ k < n and σ(z) �CS an−kx. Since v �CS w,

by Lemma 1, w has a summand aw′ such that w′ ak−1→ z + w′′, and

consequently σ(w′) an−1

→ w′′′ with w′′′ �CS x. Furthermore, aσ(w′) �CS
σ(w) �CS an0+an(x+y). Then Lemma 2 yields σ(w′) �CS an−1x. Hence
σ(aw′) �CS anx. So u = σ(w) has a summand completed similar to anx.

– Case 2: E 	 t � u by reflexivity. Then t = u, so u trivially has a summand
completed similar to anx.

– Case 3: E 	 t � u by transitivity.
Then E 	 t � v and E 	 v � u for some term v. By the soundness of E,
v �CS u �CS an0+ an(x+ y). So by induction, v has a summand completed
similar to anx. Hence, again by induction, u has a summand completed sim-
ilar to anx.

– Case 4: E 	 t � u because t = t′ + t′′ and u = u′ + u′′ for some t′, u′, t′′, u′′

such that E 	 t′ � u′ and E 	 t′′ � u′′.
Since t has a summand completed similar to anx, so does either t′ or t′′.
Assume, without loss of generality, that t′ has a summand completed similar
to anx. Then clearly u′ ��CS 0. So, since u �CS an0 + an(x + y), it follows
that u′ �CS an0 + an(x + y). By induction, u′ (and thus u) has a summand
completed similar to anx.

– Case 5: E 	 t � u because t = at′ and u = au′ for some t′, u′ such that
E 	 t′ � u′.
Since t = at′ consists of a single summand, at′ �CS anx. By the soundness
of E, anx �CS au′. Since moreover au′ �CS an0+an(x+y), Lemma 2 yields
u = au′ �CS anx. �

Now we are in a position to prove Proposition 1.

Proof. Let E be a finite collection of inequations over BCCSP(A) that is sound
modulo �CS. Let n be larger than the depth of any term in E.

On Finite Alphabets and Infinite Bases II: Completed and Ready Simulation 9

an0 + an(x + y) does not contain a summand completed similar to anx. So
according to Lemma 3, the inequation anx � an0 + an(x + y), which is sound
modulo �CS, cannot be derived from E. �

Theorem 1. �CS is not finitely based over BCCSP(A).

Proof. By Proposition 1, no finite collection of inequations over BCCSP(A) that
is sound modulo �CS proves all inequations that are sound modulo �CS. �

3.2 Completed Simulation Equivalence

Following the same line as in Section 3.1, we can prove that the equational theory
of BCCSP(A) modulo �CS does not have a finite basis. The proofs are similar
to the proofs of the corresponding results in the previous section.

Lemma 4. Let E be a finite collection of equations over BCCSP(A) that is
sound modulo �CS. Let n be greater than the depth of any term in E. Assume
that:

– E 	 t ≈ u;
– u �CS an0 + an(x + y); and
– t has a summand completed similar to anx.

Then u has a summand completed similar to anx.

Proof. By induction on the depth of the proof of the equation t ≈ u from E. First
note that by postulating that for each axiom in E also its symmetric counterpart
is present in E, one may assume that, without loss of generality, applications
of symmetry happen first in equational proof. Thus in the proof, we can tacitly
assume that equational axiomatization E is closed with respect to symmetry.

Now the proof proceeds by a case analysis on the last rule used in the proof
of t ≈ u from E, similar to the proof of Lemma 3. This case analysis is omitted
here. �

Proposition 2. Let E be a finite collection of equations over BCCSP(A) that
is sound modulo �CS. Let n be larger than the depth of any term in E. Then
from E we cannot derive the equation

anx + an0 + an(x + y) ≈ an0 + an(x + y)

Proof. an0 + an(x + y) does not contain a summand completed similar to anx.
So according to Lemma 4, the equation anx+an0+an(x+y) ≈ an0+an(x+y),
which is sound modulo �CS, cannot be derived from E. �

Theorem 2. �CS is not finitely based over BCCSP(A).

Proof. By Proposition 2, no finite collection of equations over BCCSP(A) that
is sound modulo �CS proves all equations that are sound modulo �CS. �

10 T. Chen, W. Fokkink, and S. Nain

4 Ready Similarity

Blom, Fokkink and Nain [2] gave a finite equational axiomatization that is sound
and ground-complete for BCCSP(A) modulo �RS. It consists of axioms A1-4
together with

RS a(bx + by + z) ≈ a(bx + by + z) + a(bx + z)

where a, b range over A. If A is infinite, then Groote’s technique of inverted sub-
stitutions from [7] can be applied in a straightforward fashion to prove that this
axiomatization is ω-complete. So in this case, ready simulation equivalence is
finitely based over BCCSP(A). This finite basis can be adapted in a straightfor-
ward fashion to a finite basis for BCCSP(A) modulo ready simulation preorder
(simply add bx + z �RS bx + by + z to A1-4).

In this section we prove that if A is finite, then ready simulation preorder
and equivalence are not finitely based over BCCSP(A). The infinite family of
equations, and the structure of the proof, are very similar to the case of com-
pleted similarity in the previous section (where we obtained a negative result for
arbitrary alphabets).

4.1 Ready Simulation Preorder with |A| < ∞
First we present a proof that if A is finite, then the inequational theory of
BCCSP(A) modulo �RS does not have a finite basis. The corner stone for this
negative result is the infinite family of inequations

anx � an0 +
∑
b∈A

an(x + b0)

for n ≥ 1. It is not hard to see that these inequations are sound modulo �RS.
The idea is that either x cannot perform any action, in which case anx is ready
simulated by an0, or x can perform some action b, in which case anx is ready
simulated by an(x + b0).

Proposition 3. Let |A| < ∞. Let E be a finite collection of inequations over
BCCSP(A) that is sound modulo �RS. Let n be larger than the depth of any
term in E. Then from E we cannot derive the inequation

anx � an0 +
∑
b∈A

an(x + b0).

The main part of this section is devoted to proving Proposition 3. Note that
Lemma 1 also applies to ready simulation preorder, as it is finer than completed
simulation preorder.

Lemma 5. Let |A| < ∞. If at �RS an0 +
∑

b∈A an(x + b0), then at is ready
similar to an0, anx or an(x + b0) for some b ∈ A.

On Finite Alphabets and Infinite Bases II: Completed and Ready Simulation 11

Proof. By assumption, at �RS an0 +
∑

b∈A an(x + b0). Then clearly every ter-

mination trace of t is of the form t
an−1→ t′ or t

an−1b→ t′. Moreover, by Lemma 1,
t can only contain the variable x, and x cannot occur at depth n in t. It follows

that for every trace of t such that t
an−1→ t′, t′ is ready similar to either 0, x or

x + b00 for some b0 ∈ A. Suppose, towards a contradiction, that t
an−1→ t1 and

t
an−1→ t2 with t1 ��RS t2. In each of the four possible cases (modulo symmetry)

we give a closed substitution ρ with ρ(at) ��RS ρ(an0 +
∑

b∈A an(x + b0)).

– Cases 1,2: t1 �RS 0 and t2 �RS x or x+ b00 for some b0 ∈ A. Let ρ(x) ��RS

0. Then ρ(t) ��RS an−10 (because ρ(t) an−1→ ρ(t2) ��RS 0) and ρ(t) ��RS

an−1ρ(x + b0) for each b ∈ A (because ρ(t) an−1→ ρ(t1) �RS 0 and ρ(x +
b0) ��RS 0).

– Case 3: t1 �RS x and t2 �RS x + b00 for some b0 ∈ A. Let ρ(x) = 0. Then

ρ(t) ��RS an−10 (because ρ(t) an−1→ ρ(t2) ��RS 0) and ρ(t) ��RS an−1ρ(x + b0)

for each b ∈ A (because ρ(t) an−1→ ρ(t1) �RS 0 and ρ(x + b0) ��RS 0).

– Case 4: t1 �RS x+ b00 and t2 �RS x+ b10 for some b0, b1 ∈ A with b0 �= b1.

Let ρ(x) = 0. Then ρ(t) ��RS an−10 (because ρ(t) an−1→ ρ(t1) ��RS 0) and
ρ(t) ��RS an−1ρ(x + b0) for each b ∈ A (because b �= bi for i = 0 or i = 1, so

that ρ(t) an−1→ ρ(ti) �RS bi0 and ρ(x + b0) ��RS bi0).

We conclude that the four cases above all contradict at �RS an0+
∑

b∈A an(x+

b0). Hence it must be the case that for each pair of traces t
an−1→ t1 and t

an−1→ t2,
t1 �RS t2. Moreover, by Lemma 1, t does not contain variables at depths smaller
than n− 1. It is not hard to see that this implies the lemma. �

The following key lemma paves the way for the proof of Proposition 3.

Lemma 6. Let |A| <∞. Let E be a finite collection of inequations over BCCSP
(A) that is sound modulo �RS. Let n be greater than the depth of any term in
E. Assume that:

– E 	 t � u;
– u �RS an0 +

∑
b∈A an(x + b0); and

– t has a summand ready similar to anx.

Then u has a summand ready similar to anx.

Proof. By induction on the depth of the proof of the inequation t � u from E.
We proceed by a case analysis on the last rule used in the proof of t � u from E.

– Case 1: E 	 t � u because σ(v) = t and σ(w) = u for some v � w ∈ E and
substitution σ.
Since t = σ(v) has a summand ready similar to anx, we can distinguish two
cases.

12 T. Chen, W. Fokkink, and S. Nain

• Case 1.1: v has as summand some variable z where σ(z) has a summand
ready similar to anx.
Since v has z as summand, and soundness of E yields v �RS w, by
Lemma 1, w also has z as summand. Then clearly u = σ(w) has a sum-
mand ready similar to anx.

• Case 1.2: v has a summand av′ where σ(av′) �RS anx.
Since n is larger than the depth of v, depth(av′) < n. So, since σ(av′) �RS

anx, av′ ak→ z + v′′ where 1 ≤ k < n and σ(z) �RS an−kx. Since

v �RS w, by Lemma 1, w has a summand aw′ such that w′ ak−1→
z + w′′, and consequently σ(w′) an−1→ w′′′ with w′′′ �RS x. Furthermore,
aσ(w′) �RS σ(w) �RS an0 +

∑
b∈A an(x + b0). Then Lemma 5 yields

σ(w′) �RS an−1x. Hence σ(aw′) �RS anx. So u = σ(w) has a summand
ready similar to anx.

– Case 2: E 	 t � u by reflexivity. Then t = u, so u trivially has a summand
ready similar to anx.

– Case 3: E 	 t � u by transitivity.
Then E 	 t � v and E 	 v � u for some term v. By the soundness of E,
v �RS u �RS an0 +

∑
b∈A an(x + b0). So by induction, v has a summand

ready similar to anx. Hence, again by induction, u has a summand ready
similar to anx.

– Case 4: E 	 t � u because t = t′ + t′′ and u = u′ + u′′ for some t′, u′, t′′, u′′

such that E 	 t′ � u′ and E 	 t′′ � u′′.
Since t has a summand ready similar to anx, so does either t′ or t′′. Assume,
without loss of generality, that t′ has a summand ready similar to anx. Then
clearly u′ ��RS 0. So, since u �RS an0 +

∑
b∈A an(x + b0), it follows that

u′ �RS an0+
∑

b∈A an(x+b0). By induction, u′ (and thus u) has a summand
ready similar to anx.

– Case 5: E 	 t � u because t = at′ and u = au′ for some t′, u′ such that
E 	 t′ � u′.
Since t = at′ consists of a single summand, at′ �RS anx. By the soundness of
E, anx �RS au′. Since moreover au′ �RS an0 +

∑
b∈A an(x + b0), Lemma 5

yields u = au′ �RS anx. �

Now we are in a position to prove Proposition 3.

Proof. Let E be a finite collection of inequations over BCCSP(A) that is sound
modulo �RS. Let n be larger than the depth of any term in E.

an0+
∑

b∈A an(x+ b0) does not contain a summand ready similar to anx. So
according to Lemma 6, the inequation anx � an0 +

∑
b∈A an(x + b0), which is

sound modulo �RS, cannot be derived from E. �

Theorem 3. Let |A| <∞. Then �RS is not finitely based over BCCSP(A).

Proof. By Proposition 3, no finite collection of inequations over BCCSP(A) that
is sound modulo �RS proves all inequations that are sound modulo �RS. �

On Finite Alphabets and Infinite Bases II: Completed and Ready Simulation 13

4.2 Ready Simulation Equivalence with |A| < ∞
Following the same line as in Section 4.1, we can prove that if A is finite, then
the equational theory of BCCSP(A) modulo �RS does not have a finite basis.
The proofs are similar to the proofs of the corresponding results in the previous
section.

Lemma 7. Let |A| <∞. Let E be a finite collection of equations over BCCSP
(A) that is sound modulo �RS. Let n be greater than the depth of any term in
E. Assume that:

– E 	 t ≈ u;
– u �RS an0 +

∑
b∈A an(x + b0); and

– t has a summand ready similar to anx.

Then u has a summand ready similar to anx.

Proof. By induction on the depth of the proof of the equation t ≈ u from E.
Recall that as in the proof of Lemma 4, without loss of generality, we may assume
that applications of symmetry happen first in equational proof, i.e. E is closed
with respect to symmetry.

Now the proof proceeds by a case analysis on the last rule used in the proof
of t ≈ u from E, similar to the proof of Lemma 6. This case analysis is omitted
here. �

Proposition 4. Let |A| < ∞. Let E be a finite collection of equations over
BCCSP(A) that is sound modulo �RS. Let n be larger than the depth of any
term in E. Then from E we cannot derive the equation

anx + an0 +
∑
b∈A

an(x + b0) ≈ an0 +
∑
b∈A

an(x + b0)

Proof. Let E be a finite collection of equations over BCCSP(A) that is sound
modulo �RS. Let n be larger than the depth of any term in E.

an0 +
∑

b∈A an(x + b0) does not contain a summand ready similar to anx.
So according to Lemma 7, the equation anx + an0 +

∑
b∈A an(x + b0) ≈ an0 +∑

b∈A an(x + b0), which is sound modulo �RS, cannot be derived from E. �

Theorem 4. Let |A| <∞. Then �RS is not finitely based over BCCSP(A).

Proof. By Proposition 4, no finite collection of equations over BCCSP(A) that
is sound modulo �RS proves all equations that are sound modulo �RS. �

4.3 Ready Simulation Equivalence with |A| = ∞
In this section we prove that if A is infinite, then the axiomatization A1-4
together with

RS a(bx + by + z) ≈ a(bx + by + z) + a(bx + z)

14 T. Chen, W. Fokkink, and S. Nain

from [2], which is ground-complete for BCCSP(A) modulo �RS, is ω-complete.
The proof is based on inverted substitutions; this technique, which is due to
Groote [7], works as follows. Consider an axiomatization E. For each equation
t ≈ u of which all closed instances can be derived from E, one must define a
closed substitution ρ and a mapping R : T(BCCSP)→ T(BCCSP) such that:

(1) E 	 R(ρ(t)) ≈ t and E 	 R(ρ(u)) ≈ u;

(2) for each function symbol f (with arity n), E ∪ {pi ≈ qi, R(pi) ≈ R(qi) |
i = 1, . . . , n} 	 R(f(p1, . . . , pn)) ≈ R(f(q1, . . . , qn)) for all closed terms
p1, . . . , pn, q1, . . . , qn; and

(3) E 	 R(σ(v)) ≈ R(σ(w)) for each v ≈ w ∈ E and closed substitution σ.

Then, as proved in [7], E is ω-complete.

Theorem 5. If |A| =∞, then A1-4+RS is ω-complete.

Proof. Consider two terms t, u ∈ T(BCCSP). Define ρ : V → T(BCCSP) by
ρ(x) = ax0, where ax is a unique action for x ∈ V that occurs in neither t nor u.
Such actions exist because A is infinite. We define R : T(BCCSP)→ T(BCCSP)
as follows: ⎧⎪⎪⎨⎪⎪⎩

R(0) = 0
R(at) = aR(t) if a �= ax for all x ∈ V
R(axt) = x
R(t + u) = R(t) + R(u)

We now check the three properties from [7]:

(1) Since t and u do not contain actions of the form ax, clearly R(ρ(t)) = t.

(2) Consider the operator + . From R(p1) ≈ R(q1) and R(p2) ≈ R(q2) we
derive R(p1 + p2) = R(p1) + R(p2) ≈ R(q1) + R(q2) = R(q1 + q2).
Consider the prefix operator a . We distinguish two cases.
• a �= ay for all y ∈ V . Then from R(p1) ≈ R(q1) we derive R(ap1) =

aR(p1) ≈ aR(q1) = R(aq1).
• a = ay for some y ∈ V . Then R(ayp1) = y = R(ayq1).

(3) For A1-4, the proof is trivial. We check the remaining case RS. Let σ be a
closed substitution. We consider three cases.
• a = ay for some y ∈ V .

Then R(ay(bσ(x1) + bσ(x2) + σ(x3))) = y ≈ y + y = R(ay(bσ(x1) +
bσ(x2) + σ(x3)) + ay(bσ(x1) + σ(x3))).
• a �= ay for all y ∈ V and b = bz for some z ∈ V .

Then R(a(bzσ(x1) + bzσ(x2) + σ(x3))) = a(z + z + R(σ(x3))) ≈ a(z +
z + R(σ(x3))) + a(z + R(σ(x3))) = R(a(bzσ(x1) + bzσ(x2) + σ(x3)) +
a(bzσ(x1) + σ(x3))).
• a �= ay for all y ∈ V and b �= bz for all z ∈ V .

Then R(a(bσ(x1)+bσ(x2)+σ(x3)))=a(bR(σ(x1))+bR(σ(x2))+R(σ(x3)))
≈ a(bR(σ(x1)) + bR(σ(x2)) + R(σ(x3))) + a(bR(σ(x1)) + R(σ(x3))) =
R(a(bσ(x1) + bσ(x2) + σ(x3)) + a(bσ(x1) + σ(x3))). �

On Finite Alphabets and Infinite Bases II: Completed and Ready Simulation 15

References

1. L. Aceto, W.J. Fokkink, R.J. van Glabbeek, and A. Ingolfsdottir. Nested seman-
tics over finite trees are equationally hard. Information and Computation, 191(2):
203–232, 2004.

2. S.C.C. Blom, W.J. Fokkink, and S. Nain. On the axiomatizability of ready traces,
ready simulation and failure traces. In Proceedings 30th Colloquium on Automata,
Languages and Programming (ICALP’03), Eindhoven, LNCS 2719, pp. 109–118.
Springer, 2003.

3. W.J. Fokkink and S.P. Luttik. An ω-complete equational specification of interleav-
ing. In Proceedings 27th Colloquium on Automata, Languages and Programming
(ICALP’00), Geneva, LNCS 1853, pp. 729–743. Springer, 2000.

4. W.J. Fokkink and S. Nain. On finite alphabets and infinite bases: From ready
pairs to possible worlds. In Proceedings 7th Conference on Foundations of Software
Science and Computation Structures (FOSSACS’04), Barcelona, LNCS 2987, pp.
182–194. Springer, 2004.

5. W.J. Fokkink and S. Nain. A finite basis for failure semantics. In Proceedings
32nd Colloquium on Automata, Languages and Programming (ICALP’05), Lisbon,
LNCS 3580, pp. 755–765. Springer, 2005.

6. R.J. van Glabbeek. The linear time – branching time spectrum I. The semantics of
concrete, sequential processes. In J.A. Bergstra, A. Ponse, and S.A. Smolka, eds,
Handbook of Process Algebra, pp. 3–99. Elsevier, 2001.

7. J.F. Groote. A new strategy for proving ω-completeness with applications in
process algebra. In Proceedings 1st Conference on Concurrency Theory (CON-
CUR’90), Amsterdam, LNCS 458, pp. 314–331. Springer, 1990.

8. H. Lin. PAM: A process algebra manipulator. Formal Methods in System Design,
7(3):243–259, 1995.

9. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
10. F. Moller. Axioms for Concurrency. PhD thesis, University of Edinburgh, 1989.

A Theory for Observational Fault Tolerance
(Extended Abstract)

Adrian Francalanza1 and Matthew Hennessy2

1 University of Malta, Msida MSD 06, Malta
afra1@um.edu.mt

2 University of Sussex, Brighton BN1 9RH, England
matthewh@sussex.ac.uk

Abstract. In general, faults cannot be prevented; instead, they need
to be tolerated to guarantee certain degrees of software dependability.
We develop a theory for fault tolerance for a distributed pi-calculus,
whereby locations act as units of failure and redundancy is distributed
across independently failing locations. We give formal definitions for fault
tolerant programs in our calculus, based on the well studied notion of
contextual equivalence. We then develop bisimulation proof techniques
to verify fault tolerance properties of distributed programs and show
they are sound with respect to our definitions for fault tolerance.

1 Introduction

One reason for the study of programs in the presence of faults, i.e. defects at
the lowest level of abstractions [2], is to be able to construct more dependable
systems, meaning systems exhibiting a high probability of behaving according
to their specification [13]. System dependability is often expressed through at-
tributes like maintainability, availability, safety and reliability, the latter of which
is defined as a measure of the continuous delivery of correct behaviour, [13]. There
are a number of approaches for achieving system dependability in the presence
of faults, ranging from fault removal, fault prevention and fault tolerance.

The fault tolerant approach to system dependability consist of various tech-
niques that employ redundancy to prevent faults from generating failure, i.e.
abnormal behaviour caused by faults [2]. Two forms of redundancy are space re-
dundancy (replication), i.e. using several copies of the same system components,
and time redundancy, i.e. performing the same chunk of computation more than
once. Certain fault tolerant techniques are based on fault detection which sub-
sequently trigger fault recovery. If enough redundancy is used, fault recovery
can lead to fault masking, where the specified behaviour is preserved without
noticeable glitch.

Fault tolerance is of particular relevance in distributed computing; distribu-
tion yield a natural notion of partial failure, whereby faults affect a subset of
the computation. Partial failure, in turn, gives scope for introducing redundancy
as replication, distributed across independently failing entities such as locations.
In general, the higher the replication, the greater the potential for fault toler-
ance. Nevertheless, fault tolerance also depends on how replicas are managed.

L. Aceto and A. Ingólfsdóttir (Eds.): FOSSACS 2006, LNCS 3921, pp. 16–31, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Theory for Observational Fault Tolerance 17

One classification, due to [13], identifies three classes, namely active replication
(all replicas are invoked for every operation), passive replication (operations are
invoked on primary replicas and secondary replicas are updated in batches at
checkpoints), and lazy replication (a hybrid of the previous two, exploiting the
separation between write and read operations).

In this paper we address fault tolerance in a distributed setting, focussing on
simple examples using stateless (read-only) replicas which are invoked only once.
We code these examples in Dπ [8] with failing locations [5], a simple distributed
version of the standard π-calculus [11], where the locations that host processes
model closely physical network nodes.

Example 1. Consider the systems serveri, three server implementations accepting
client requests on channel req with two arguments, x being the value to process
and y being the reply channel on which the answer is returned.

server1 ⇐ (ν data)
(

l[[req?(x, y).go k1.data!〈x, y, l〉]]
| k1[[data?(x, y, z).go z.y!〈f(x)〉]]

)

server2 ⇐ (ν data)

⎛⎜⎜⎜⎜⎝
l

⎡⎣⎡⎣req?(x, y).(νsync)

⎛⎝go k1.data!〈x, sync, l〉
| go k2.data!〈x, sync, l〉
| sync?(x).y!〈x〉

⎞⎠⎤⎦⎤⎦
| k1[[data?(x, y, z).go z.y!〈f(x)〉]]
| k2[[data?(x, y, z).go z.y!〈f(x)〉]]

⎞⎟⎟⎟⎟⎠

server3 ⇐ (ν data)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
l

⎡⎢⎢⎣
⎡⎢⎢⎣req?(x, y).(νsync)

⎛⎜⎜⎝
go k1.data!〈x, sync, l〉
| go k2.data!〈x, sync, l〉
| go k3.data!〈x, sync, l〉
| sync?(x).y!〈x〉

⎞⎟⎟⎠
⎤⎥⎥⎦
⎤⎥⎥⎦

| k1[[data?(x, y, z).go z.y!〈f(x)〉]]
| k2[[data?(x, y, z).go z.y!〈f(x)〉]]
| k3[[data?(x, y, z).go z.y!〈f(x)〉]]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Requests are forwarded to internal databases, denoted by the scoped channel
data, distributed and replicated across the auxiliary locations ki. A database
looks up the mapping of the value x using some unspecified function f(−) and
returns the answer, f(x), back on port y. When multiple replicas are used, as in
server2,3, requests are sent to all replicas in an arbitrary fashion, without the use
of failure detection, and multiple answers are synchronised at l on the scoped
channel sync, returning the first answer received on y.

The theory developed in [5] enables us to differentiate between these systems,
based on the different behaviour observed when composed with systems such as

client ⇐ l[[req!〈v, ret〉]]

in a setting where locations may fail. Here we go one step further, allowing
us to quantify in some sense the difference between these systems. Intuitively,

18 A. Francalanza and M. Hennessy

if locations ki, i = 1, 2, 3, can fail in fail-stop fashion[12] and observations are
limited to location l only, then server2 seems to be more fault tolerant than
server1; observers limited to l, such as client, cannot observe changes in behaviour
in server2 when at most 1 location from ki fails. Similarly, server3 is more fault
tolerant than server1 and server2 because server3 | client preserves its behaviour
at l up to 2 faults occurring at k1..3.

In this paper we give a formal definition of when a system is deemed to be
fault tolerant up to n-faults, which coincides with this intuition. As in [5] we
need to consider systems M , running on some network, which we will represent
as Γ 	 M . Then we will say that M is fault-tolerant up to n faults if

Fn[Γ 	 M] ∼= Γ 	 M (1)

where Fn[] is some context which induces at most n faults, and ∼= is some
behavioural equivalence between systems descriptions. A key aspect of this be-
havioural equivalence is the implicit separation between reliable locations, which
are assumed not to fail, and unreliable locations, which may fail. In the above ex-
ample l is reliable, at which observations can be made, while the ki are assumed
unreliable, subject to failure. Furthermore it is essential that observers not have
access to to these unreliable locations, at any time during a computation. Other-
wise (1) would no longer represent M being fault tolerant; for example we would
no longer have

F 1[Γ 	 server2] ∼= Γ 	 server2

as an observer with access to ki would be able to detect possible failures in
F 1[Γ 	 server2], not present in Γ 	 server2.

We enforce this separation between reliable, observable, locations, and unre-
liable, unobservable, locations, using a simple type system in which the former
are called public, and the latter confined. This is outlined in Section 2, where we
also formally define the language we use, DπLoc, give its reduction semantics,
and also outline the behavioural equivalence ∼=; this last is simply an instance
of reduction barbed congruence, [6], modified so that observations can only be
made at public locations. In Section 3 we give our formal definition of fault-
tolerance; actually we give two versions of (1) above, called static and dynamic
fault tolerance; we also motivate the difference with examples. Proof techniques
for establishing fault tolerance are given in Section 4; in particular we give a
complete co-induction characterisation of ∼=, using labelled actions, and some
useful up-to techniques for presenting witness bisimulations. In Section 5 we
refine these proof techniques for the more demanding fault tolerant definition,
dynamic fault tolerance, using simulations. Finally Section 6 outlines the main
contributions of the paper and discusses future and related work.

2 The Language

We assume a set of variables Vars, ranged over by x, y, z, . . . and a separate
set of names, Names, ranged over by n, m, . . . , which is divided into locations,

A Theory for Observational Fault Tolerance 19

Table 1. Syntax of typed DπF

Types
T ::= chv〈P̃〉 | locsv (stateful types) s ::= a | d (status)
U ::= chv〈P̃〉 | locv (stateless types) v ::= p | c (visibility)
P ::= chp〈P̃〉 | locp (public stateless types)

Processes
P,Q ::= u!〈V〉.P (output) | u?(X).P (input)

| if v=u then P else Q (matching) | ∗ u?(X).P (replicated input)
| (ν n :T)P (channel/location definition) | go u.P (migration)
| 0 (inertion) | P|Q (fork)
| ping u.P else Q (status testing)

Systems
M,N,O ::= l[[P]] (located process) | N|M (parallel)

| (ν n :T)N (hiding)

Locs, ranged over by l, k, . . . and channels, Chans, ranged over by a, b, c,
Finally we use u, v, . . . to range over the set of identifiers, consisting of either
variables and names.

The syntax of our language, DπLoc, is a variation of Dπ [8] and is given
in Table 1. The main syntactic category is that of systems, ranged over by
M, N : these are essentially a collection of located processes, or agents, com-
posed in parallel where location and channel names may be scoped to a sub-
set of agents. The syntax for processes, P, Q, is an extension of that in Dπ:
there is input and output on channels - here V is a tuple of identifiers, and
X a tuple of variables, to be interpreted as a pattern - and standard forms
of parallel composition, inertion, replicated input, local declarations, a test for
equality between identifiers and migration. The only addition on the original
Dπ is ping k.P elseQ, which tests for the status of k in the style of [1, 10]
and branches to P if k is alive and Q otherwise. For these terms we assume
the standard notions of free and bound occurrences of both names and vari-
ables, together with the associated concepts of α-conversion and substitution.
We also assume that systems are closed, that is they have no free variable oc-
currences.

As explained in the Introduction we use a variation (and simplification) of
the type system of Dπ [8] in which the the two main categories, channels and
locations, are now annotated by visibility constraints, giving chv〈P̃〉 and locv,
where v may either be p (i.e. public) or c (i.e. confined); in Table 1 these are
called stateless types, and are ranged over by U. As explained in [5] a simple
reduction semantics can be defined if we also allow types which record the status
of a location, whether it is alive, a, or dead, d; these are refereed to as stateful
types, ranged over by T. Finally P ranges over public types, the types assigned
to all names which are visible to observers.

Type System: Γ denotes a type environment, an unordered list of tuples assigning
a single stateful type to names, and we write Γ 	 n : T to mean that Γ assigns

20 A. Francalanza and M. Hennessy

Table 2. Typing rules for typed DπLoc

Processes
(t-out)
Σ � u :ch〈Ũ〉
Σ � V : Ũ
Σ � P
Σ � u!〈V〉.P

(t-in-rep)
Σ � u :ch〈Ũ〉
Σ, X : Ũ � P
Σ � u?(X).P
Σ � ∗u?(X).P

(t-nw)
Σ, ñ : T̃ � P
Σ � (ν ñ : T̃)P

(t-cond)
Σ � u :U, v :U
Σ � P, Q
Σ � if u=v then P else Q

(t-fork)
Σ � P, Q
Σ � P|Q

(t-axiom)

Σ � 0

(t-go)
Σ � u : loc
Σ � P
Σ � go u.P

(t-ping)
Σ � u : loc
Σ � P, Q
Σ � ping u.P else Q

Systems Observers

(t-rest)
Γ, ñ : T̃ � N
Γ � (ν ñ : T̃)N

(t-par)
Γ � N, M
Γ � N |M

(t-proc)
Γ � l : loc
Γ � P
Γ � l[[P]]

(t-obs)
pub(Γ) � O
Γ �obs O

the type T to n; when it is not relevant to the discussion we will sometimes drop
the various annotations on these types; for example Γ 	 n : ch〈U〉 signifies that
chv〈U〉 for some visibility status v. Typing judgements take the form Γ 	 N and
defined by the rules in Table 2. In these rules, we use an extended form of type
environment, Σ, which, in addition to names, also maps variables to stateless
types. Note that none of the rules depend on the status (dead or alive) of names
in the environment. Also the visibility constraints are enforced indirectly, by
virtue of the formation rules for valid types, given in Table 1.

In this extended abstract we omit even the statement of the Subject Reduction
and appropriate Type Safety result for our language.

Reduction Semantics: We call pairs Γ 	 N configurations, whenever Γ 	 N .
Reductions then take the form of a binary relation over configurations

Γ 	 N −→ Γ 	 N ′

defined in terms of the reduction rules in Table 3, whereby systems reduce with
respect to the status of the locations in Γ ; we write Γ 	 l :alive as a shorthand
for Γ 	 l : loca. So all reduction rules assume the location where the code is
executing is alive. Moreover, (r-go), (r-ngo), (r-ping) and (r-nping) reduce according
to the status of the remote location concerned. The reader is refered to [5]
for more details; but note that here the status of locations is unchanged by
reductions.

Behavioural equivalence: First note that the type system does indeed enforce
the intuitive separation of concerns discussion in the Introduction. For example
let Γe denote the environment

A Theory for Observational Fault Tolerance 21

Table 3. Reduction Rules for DπLoc

Assuming Γ � l :alive

(r-comm)

Γ � l[[a!〈V〉.P]] | l[[a?(X).Q]] −→ Γ � l[[P]] | l[[Q{V/X}]]

(r-rep)

Γ � l[[∗a?(X).P]] −→ Γ � l[[a?(X).(P| ∗ a?(X).P)]]

(r-fork)

Γ � l[[P|Q]] −→ Γ � l[[P]] | l[[Q]]

(r-eq)

Γ � l[[if u=u then P else Q]] −→ Γ � l[[P]]

(r-neq)

Γ � l[[if u=v then P else Q]] −→ Γ � l[[Q]]
u � v

(r-go)

Γ � l[[go k.P]] −→ Γ � k[[P]]
Γ � k : alive

(r-ngo)

Γ � l[[go k.P]] −→ Γ � k[[0]]
Γ � k : alive

(r-ping)

Γ � l[[ping k.P else Q]] −→ Γ � l[[P]]
Γ � k : alive

(r-nping)

Γ � l[[ping k.P else Q]] −→ Γ � l[[Q]]
Γ � k : alive

(r-new)

Γ � l[[(ν n :T)P]] −→ Γ � (ν n :T) l[[P]]

(r-str)
Γ � N′ ≡ Γ � N Γ � N −→ Γ′ � M Γ′ � M ≡ Γ′ � M′

Γ � N′ −→ Γ′ � M′

(r-ctxt-rest)
Γ + n : T � N −→ Γ′ + n : U � M
Γ � (ν n : T)N −→ Γ′ � (ν n : U)M

(r-ctxt-par)
Γ � N −→ Γ′ � N′

Γ � N |M −→ Γ′ � N′|M
Γ � M|N −→ Γ′ � M|N′

Table 4. Structural Rules for DπLoc

(s-comm) N |M ≡ M|N
(s-assoc) (N |M)|M′ ≡ N |(M|M′)
(s-unit) N |l[[0]] ≡ N
(s-extr) (ν n :T)(N|M) ≡ N |(ν n :T)M n � fn(N)
(s-flip) (ν n :T)(νm :U)N ≡ (νm :U)(ν n :T)N
(s-inact) (ν n :T)N ≡ N n � fn(N)

Γe= l:locap, k1 :locac, k2 :locac, k3 :locac, req :chp〈T, chp〈T〉〉, a:chp〈A〉, ret :chp〈T〉
where T is an arbitrary public type; Then one can check

Γe 	 serveri

where serveri is defined in the Introduction, provided the locally declared chan-
nels data and sync are declared at the types ch〈T, chp〈T〉, locp〉 and ch〈T〉
respectively. Now consider

22 A. Francalanza and M. Hennessy

serverBad⇐ server1 | l[[a!〈k1〉]]
which attempts to export a confined location k1, which could subsequently could
be tested for failure by a public observer. Once more one can check that Γe �	
serverBad.

Intuitively an observer is any system which only uses public names. Formally
let pub(Γ) be the environment obtained by omitting from Γ any name not
assigned a public type. Then pub(Γ) 	 O ensures that O can only use public
names. For example consider

observer ⇐ l[[req!〈v, ret〉]]
observerBad ⇐ l[[go k1.go l.ok!〈〉]]

Here one can check that pub(Γe) 	 observer and pub(Γe) �	 observerBad.
Our behavioural equivalence will in general relate arbitrary configurations;

but we would expect equivalent configurations to have the same public interface,
and be preserved by public observers.

Definition 1 (p-Contextual). A relation over configurations is called
p-Contextual if, whenever Γ 	M R Γ ′	N

– (p-Interfaces:) pub(Γ) = pub(Γ ′)
– (Parallel:) Γ 	M | O R Γ ′	N | O and Γ 	M | O R Γ ′	N | O whenever

pub(Γ) 	 O
– (Fresh extensions:) Γ, n ::P	M R Γ ′, n ::P	N whenever n is fresh

Definition 2 (p-Barb). Γ 	 N ⇓pa@l denotes a p-observable barb by configura-
tion Γ 	 N , on channel a at location l, defined as:

∃N′. Γ�N −→∗ Γ�N′ such that N′ ≡ (ν ñ : T̃)M|l[[a!〈V〉.Q]] where Γ � l : locap, a : chp〈P̃〉
Using this concept, we can now modify the standard definition of reduction barbed
equivalence, [6]:

Definition 3 (Reduction barbed congruence). Let ∼= be the largest rela-
tion between configurations which is p-contextual, reduction-closed (see [6]) and
preserves p-barbs.

3 Defining Fault Tolerance

Our first notion of n-fault-tolerance, formalising the intuitive (1), is when the
faulting context induces at most n location failures, prior to the execution of the
system; of course these failures must only be induced on locations which are not
public. Formally for any set of location names l̃ let F l̃

S be the function which
maps any configuration Γ 	 N to Γ − l̃ 	 N , where Γ − l̃ is the environment
obtained from Γ by changing the status of every li to dead. We say F l̃

S is a valid
static n-fault context with respect to Γ , if the size of l̃ is at most n, and for every
li ∈ l̃, li is confined and alive (Γ 	 li : locac).

A Theory for Observational Fault Tolerance 23

Definition 4 (Static Fault Tolerance). A configuration Γ	N is n-static fault
tolerant if

Γ 	 N ∼= F l̃
S(Γ) 	 N

for every static n-fault context F l̃
S which is valid with respect to Γ .

With this formal definition we can now examine the systems serveri, using the
Γe defined above. We can easily check that Γ 	 server1 is not 1-fault tolerant,
by considering the fault context F k1

S . Similarly we can show that Γe 	 server2 is
not 2-fault tolerant, by considering F k1,k2

S . But establishing positive results, for
example that Γe 	 server2 is 1-fault tolerant, is difficult because the definition of
∼= quantifies over all valid observers. This point will be addressed in the next
section, when we give a co-inductive characterisation of ∼=.

Instead let us consider another manner of inducing faults. Let l[[kill]] be a
system which asynchronously kills a confined location l. Its operation is defined
by the rule

(r-kill)

Γ � l[[kill]] −→ (Γ − l) � l[[0]]

For any set of locations l̃ let F l̃
D denote the function which maps the system M

to M | l1[[kill]] | . . . | ln[[kill]]. It is said to be a valid dynamic n-fault context with
respect to Γ if again the size of l̃ is at most n and Γ 	 li : locac, for every li in l̃.

Definition 5 (Dynamic Fault Tolerance). A configuration Γ	N is n-dynamic
fault tolerant if

Γ 	 F l̃
D(M) ∼= Γ 	 M

for every dynamic n-fault context which is valid with respect to Γ .

Example 2. The system sPassive defined below uses two identical replicas of
the distributed database at k1 and k2, but treats the replica at k1 as pri-
mary replica and the one at k2 as a secondary (backup) replica - once again
W = ch〈T, chp〈T〉, locp〉.

sPassive⇐ (ν data :W)

⎛⎜⎜⎝ l

[[
serv?(x, y).ping k1.go k1.data!〈x, y, l〉

else go k2.data!〈x, y, l〉
]]

| k1[[data?(x, y, z).go z .y!〈f(x)〉]]
| k2[[data?(x, y, z).go z .y!〈f(x)〉]]

⎞⎟⎟⎠
The coordinating interface at l uses the ping construct to detect failures in the
primary replica: if k1 is alive, the request is sent to the primary replica and the
secondary replica at k2 is not invoked ; if, on the other hand, the primary replica
is dead, then the passive replica at k2 is promoted to a primary replica and the
request is sent to it. This implementation saves on time redundancy since, for
any request, only one replica is invoked. Another passive replication server is
sMonitor, defined as

24 A. Francalanza and M. Hennessy

sMonitor⇐ (ν data :W)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

l

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣
serv?(x, y).(ν sync :ch〈〉)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

go k1.data!〈x, sync, l〉
| mntr k1.go k2.data!〈x, sync, l〉
| sync?(z).y!〈z〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

| k1[[data?(x, y, z).go z .y!〈 f (x)〉]]
| k2[[data?(x, y, z).go z .y!〈 f (x)〉]]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where again, W = ch〈T, chp〈T〉, locp〉. It uses a monitor process for failure
detection

mntr k.P ⇐ (ν test :ch〈〉)(test!〈〉 | ∗ test?().ping k. test!〈〉 elseP)

instead of a single ping test on the primary replica at k1; mntr k.P repeatedly
tests the status of the monitored location (k) and continues as P when k becomes
dead. Similar to server2..3, sMonitor synchronises multiple answers from replicas
with channel sync.

Using the techniques of the next section, one can show that both Γe 	 sPassive
and Γ 	sMonitor, are 1-static fault tolerant, similar to server2. However there is a
difference between these two systems;if k1 fails after sPassive tests for its status,
then an answer will never reach l. Thus sPassive is not 1-dynamic fault tolerant;
formally one can show Γe 	 F k1

D (sPassive) �∼= Γe 	 sPassive. But, as we will see in
the next section, sMonitor can be shown to be 1-dynamic fault tolerant, just like
server2..3.

4 Proof Techniques for Fault Tolerance

We define a labelled transition system (lts) for DπLoce, which consists of a
collection of actions over (closed) configurations, Γ 	 N

μ−→ Γ ′ 	 N ′, where μ
can be an internal action, τ , a bound input, (ñ : T̃)l : a?(V) or bound output,
(ñ : T̃)l : a!〈V 〉. These actions are defined by transition rules given in Table 5,
inspired by [7, 6, 5]. In accordance with Definition 2 (observable barbs) and Def-
initions 1 (valid observers), (l-in) and (l-out) restrict external communication to
public channels at public locations (Γ 	obs l, a). Furthermore, in (l-in) we require
that the type of the values inputted, V , match the object type of channel a;
since a is public and configurations are well-typed, this also implies that V are
public values defined in Γ . The restriction on output action, together with the as-
sumption of well-typed configurations also means that, in (l-open), we only scope
extrude public values. Contrary to [5], the lts does not allow external killing of
locations (through the label kill : l) since public locations are reliable and never
fail. Finally, the transition rule for internal communication, (l-par-comm), uses
an overloaded function ↑ () for inferring input/output capabilities of the sub-
systems: when applied to types, ↑(T) transforms all the type tags to public (p);
when applied to environments, ↑(Γ) changes all the types to public types in the
same manner. All the remaining rules are a simplified version of the rules in [5].

Definition 6 (Weak bisimulation equivalence). This is denoted as ≈, and
is defined to be the largest typed relation over configurations such that if Γ 	M ≈
Γ ′ 	 N then

A Theory for Observational Fault Tolerance 25

Table 5. Operational Rules for Typed DπLoc

Assuming Γ � l : alive

(l-in)

Γ � l[[a?(X).P]]
l:a?(V)−−−−→ Γ � l[[P{V/X}]]

Γ �obs l, Γ � a : chp〈W̃〉, V : W̃
(l-fork)

Γ � l[[P|Q]]
τ−→ Γ � l[[P]] | l[[Q]]

(l-out)

Γ � l[[a!〈V〉.P]]
l:a!〈V〉−−−−→ Γ � l[[P]]

Γ �obs l, a

(l-in-rep)

Γ � l[[∗a?(X).P]]
τ−→ Γ � l[[a?(X).(P| ∗ a?(Y).P{Y/X})]]

(l-eq)

Γ � l[[if u=u then P else Q]]
τ−→ Γ � l[[P]]

(l-neq)

Γ � l[[if u=v then P else Q]]
τ−→ Γ � l[[Q]]

u � v

(l-new)

Γ � l[[(νn : T)P]] −→ Γ � (ν n : T) l[[P]]

(l-kill)

Γ � l[[kill]]
τ−→ (Γ − l) � l[[0]]

(l-go)

Γ � l[[go k.P]]
τ−→ Γ � k[[P]]

Γ � k : alive
(l-ngo)

Γ � l[[go k.P]]
τ−→ Γ � k[[0]]

Γ � k : alive

(l-ping)

Γ � l[[ping k.P else Q]]
τ−→ Γ � l[[P]]

Γ � k : alive
(l-nping)

Γ � l[[ping k.P else Q]]
τ−→ Γ � l[[Q]]

Γ � k : alive

(l-open)

Γ + n : T � N
(ñ:T̃)l:a!〈V〉−−−−−−−→ Γ′ � N′

Γ � (ν n : T)N
(n:T,ñ:T̃)l:a!〈V〉−−−−−−−−−−→ Γ′ � N′

l, a � n ∈ V

(l-weak)

Γ + n : T � N
(ñ:T̃)l:a?(V)−−−−−−−−→ Γ′ � N′

Γ � N
(n:T,ñ:T̃)l:a?(V)−−−−−−−−−−→ Γ′ � N′

l, a � n ∈ V

(l-rest)

Γ + n : T � N
μ−→ Γ′ + n : U � N′

Γ � (ν n : T)N
μ−→ Γ′ � (ν n : U)N′

n � fn(μ)

(l-par-ctxt)

Γ � N
μ−→ Γ′ � N′

Γ � N |M μ−→ Γ′ � N′ |M
Γ � M |N μ−→ Γ′ � M |N′

(l-par-comm)

↑ (Γ) � N
(ñ:↑(T̃))l:a!〈V〉−−−−−−−−−→ Γ′ � N′ ↑ (Γ) � M

(ñ:↑(T̃))l:a?(V)−−−−−−−−−→ Γ′′ � M′

Γ � N |M τ−→ Γ � (ν ñ : T̃)(N′ |M′)
Γ � M |N τ−→ Γ � (ν ñ : T̃)(M′ |N′)

– Γ 	M
μ−→ Γ ′′ 	M ′ implies Γ ′ 	N

μ̂
=⇒ Γ ′′′ 	N ′ such that Γ ′′ 	M ′ ≈ Γ ′′′ 	N ′

– Γ ′ 	N
μ−→ Γ ′′ 	N ′ implies Γ 	M

μ̂
=⇒ Γ ′′ 	M ′ such that Γ ′′ 	M ′ ≈ Γ ′′′ 	N ′

Theorem 1 (Full Abstraction). For any DπLoc configurations Γ	M, Γ ′	N :

Γ 	 M ∼= Γ ′	N if and only if Γ 	 M ≈ Γ ′	N

26 A. Francalanza and M. Hennessy

Table 6. β-Transition Rules for Typed DπLoc

Assuming Γ � l : alive

(b-in-rep)

Γ � l[[∗a?(X).P]]
τ
−→β Γ � l[[a?(X).(P| ∗ a?(Y).P{Y/X})]]

(b-fork)

Γ � l[[P|Q]]
τ
−→β Γ � l[[P]] | l[[Q]]

(b-eq)

Γ � l[[if u=u then P else Q]]
τ
−→β Γ � l[[P]]

(b-neq)

Γ � l[[if u=v then P else Q]]
τ
−→β Γ � l[[Q]]

u � v

(b-ngo)

Γ � l[[go k.P]]
τ
−→β Γ � k[[0]]

Γ � k : alive
(b-nping)

Γ � l[[ping k.P else Q]]
τ
−→β Γ � l[[Q]]

Γ � k : alive

(b-new)

Γ�l[[(ν n :T)P]]
τ
−→β Γ�(ν n :T)l[[P]]

(b-rest)

Γ, n :T�N
τ
−→β Γ′, n :W�N′

Γ�(ν n :T)N
τ
−→β Γ′�(ν n :W)N′

(b-par)

Γ � N
τ
−→β Γ′ � N′

Γ�N |M τ
−→β Γ′�N′|M
Γ�M|N τ
−→β Γ′�M|N′

Theorem 1 allows us to prove positive fault tolerance results by giving a bisim-
ulation for every reduction barbed congruent pair required by Definitions 4 and
5. We next develop up-to bisimulation techniques that can relieve some of the
burden of exhibiting the required bisimulations. We identify a number of τ ac-
tions, which we refer to as β-actions or β-moves, inspired by the work in [3].
These are denoted as Γ 	 N

τ�−→β Γ ′ 	 N and are defined in Table 6. With these
β-moves we develop up-to bisimulation techniques, by showing that our witness
bisimulations can abstract away from matching configurations that denote β-
moves. Our details are more complicated than in [3] because we deal with failure:
apart from local rules ((b-eq) and (b-fork)) and context rules ((b-rest) and (b-par)),
Table 6 includes rules dealing with failed locations such as (b-ngo) and (b-nping).
To obtain the required results for β-moves with failure, we define a new struc-
tural equivalence ranging over configurations, denoted as ≡f and defined by the
rules in Table 7, which takes into consideration location status as well. This en-
ables us to obtain confluence for β-moves with respect to actions that change the
status of locations. The only rule worth highlighting is (bs-dead), which allows
us to ignore dead code.

Lemma 1 (Confluence of β-moves). τ�−→β observes the diamond property:

Γ � N

μ

��

� τ

β
�� Γ � M

Γ′ � N′ Γ′ � M′

implies Γ � N

μ

��

� τ

β
�� Γ � M

μ

��
Γ′ � N′

�� τ
β
�� ≡f Γ

′ � M′

or μ=τ and Γ�M = Γ′�N′

A Theory for Observational Fault Tolerance 27

Table 7. β-Equivalence Rules for Typed DπLoc

(bs-comm) Γ |= N |M ≡f M|N
(bs-assoc) Γ |= (N |M)|M′ ≡f N |(M|M′)
(bs-unit) Γ |= N |l[[0]] ≡f N
(bs-extr) Γ |= (ν n :T)(N|M) ≡f N |(ν n :T)M n � fn(N)
(bs-flip) Γ |= (ν n :T)(νm :U)N ≡f (νm :U)(ν n :T)N
(bs-inact) Γ |= (ν n :T)N ≡f N n � fn(N)
(bs-dead) Γ |= l[[P]] ≡f l[[Q]] Γ � l : alive

Proof. The proof proceeds by case analysis of the different types of μ and then
by induction on the derivation of the β-move.

Proposition 1. Suppose Γ 	 N |==⇒β Γ ′ 	 M . Then Γ 	 N≈Γ ′ 	 M .

Proof. We prove the above statement by defining R={Γ 	N, Γ ′	M|Γ 	N |==⇒β

Γ ′	M} and showing that R is a bisimulation, which follows as a consequence of
Lemma 1.

Definition 7 (Bisimulation up-to β-moves). Bisimulation up-to β-moves,
denoted as ≈β, is the largest typed relation between configurations such that
Γ1	M1 ≈β Γ2	M2 and

– Γ1 	 M1
μ−→ Γ ′

1 	 M ′
1 implies Γ2 	 M2

μ̂
=⇒ Γ ′

2 	 M ′
2 such that Γ ′

1 	 M ′
1Al ◦ ≈β

◦ ≈ Γ ′
2 	 M ′

2

– Γ2 	 M2
μ−→ Γ ′

2 	 M ′
2 implies Γ1 	 M1

μ̂
=⇒ Γ ′

1 	 M ′
1 such that Γ ′

2 	 M ′
2Al ◦ ≈β

◦ ≈ Γ ′
1 	 M ′

1

where Al is the relation |==⇒β ◦ ≡.

Proposition 1 provides us with a powerful method for approximating bisimula-
tions. In the approximate bisimulation ≈β , an action Γ1 	 M1

μ−→ Γ ′
1 	 M ′

1 can
be matched by a β-derivative of Γ ′

1 	 M ′
1, that is Γ ′

1 	 M ′
1 |==⇒β Γ ′

1 	 M ′′
1 , and a

weak matching action Γ2 	 M2
μ̂

=⇒ Γ ′
2 	 M ′

2 such that, up to structural equiva-
lence on the one side and up-to bisimilarity on the other, the pairs Γ ′

1 	 M ′′
1 and

Γ ′
2 	 M ′

2 are once more related. Intuitively then, in any relation satisfying ≈β ,
a configuration can represent all the configurations to which it can evolve using
β-moves. We justify the use of ≈β by proving Proposition 2.

Proposition 2 (Inclusion of bisimulation up-to β-moves). If Γ1 	 M1 ≈β

Γ2 	 M2 then Γ1 	 M1 ≈ Γ2 	 M2

Proof. We prove the above proposition by defining the relation R as

R =
{

Γ1 	 M1 , Γ2 	 M2 Γ1 	 M1 ≈ ◦ ≈β ◦ ≈ Γ2 	 M2
}

and show that R ⊆≈. The required result can then be extracted from this result
by considering the special cases where the ≈ on either side are the identity
relations.

28 A. Francalanza and M. Hennessy

Example 3. We are now in a position to prove positive fault tolerance result.
For instance to show that Γ 	 sPassive is 1-static fault tolerant we just need to
provide 3 witness bisimulations up-to β-moves to prove∏3

i=1 Γ 	 sPassive ∼= (Γ − ki) 	 sPassive

We here give the witness relation for the most involving case (where i = 1), and
leave the simpler relations for the interested reader. Thus, the witness relation
is R defined as

R def= {〈Γ 	 sPassive, Γ − k1 	 sPassive〉} ∪
⎛⎝ ⋃

u,v∈Names

R′(u, v)

⎞⎠

R′(u, v)
def
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Γ � (νd)l[[Png(u, v)]] | R1 | R2 , Γ − k1 � (νd)l[[Png(u, v)]] | R1 | R2

Γ � (νd)l[[Q1(u, v)]] |R1 |R2 , Γ − k1 � (νd)l[[Q2(u, v)]] |R1 |R2

Γ � (νd)k1[[d!〈u, v, l〉]] |R1 |R2 , Γ − k1 � (νd)k2[[d!〈u, v, l〉]] |R1 |R2

Γ � (νd)k1[[go l .v!〈 f (u)〉]] |R2 , Γ − k1 � (νd)R1 | k2[[go l .v!〈 f (u)〉]]
Γ � (νd)l[[v!〈 f (u)〉]] |R2 , Γ − k1 � (νd)R1 | l[[v!〈 f (u)〉]]
Γ � (νd)R2 , Γ − k1 � (νd)R1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

where d stands for data and
Png(x, y)⇐ ping k1.Q1(x, y) else Q2(x, y)
Qi(x, y)⇐ go ki.d !〈x, y, l〉

Ri ⇐ ki[[d?(x, y, z).go z .y!〈f(x)〉]]

5 Generic Techniques for Dynamic Fault Tolerance

Despite the fault tolerance proof techniques developed in Section 4, proving
positive fault tolerance results entails a lot of unnecessary repeated work because
Definition 4 and Definition 5 quantify over all valid fault contexts: to prove that
server3 is 2-dynamic fault tolerant, we need to provide 6 relations, one for every
different case in∏3

i�=j=1 Γ 	 server3 ∼= Γ 	 server3|ki[[kill]]|kj [[kill]]

A closer inspection of the required relations reveals that there is a lot of overlap
between them: these overlapping states would be automatically circumvented if
we require a single relation that is somewhat the merging of all of these separate
relations. Hence we reformulate our fault tolerance definition for dynamic fault
tolerance (the most demanding), to reflect such a merging of relations; a similar
definition for the static case should not be more difficult to construct. The new
definition is based on the actions given earlier in Section 4 together with a new
action, fail, defined as

(l-fail)

Γ � N
fail−→ (Γ − l) � N

Γ � l :locac

A Theory for Observational Fault Tolerance 29

permitting external killing of confined locations. Intuitively, this action allow us
to count the number of failures, but prohibits us from determining which specific
location failed.1 The asymmetric relation �n

D, defined below, is parameterised
with an integer n, denoting the number of confined locations that can still be
killed on the right hand side: the additional third clause states that a fail move
on the right hand side may be matched by a weak τ -move on the left hand side
and the two residuals need to be related in �n−1

D .

Definition 8 (Dynamic Fault Tolerance Simulation). Dynamic n-fault
tolerant simulation, denoted �n

D, is the largest asymmetric typed relation over
configurations such that whenever Γ1 	 M1 �n

D Γ2 	 M2,

– Γ1	M1
γ−→ Γ ′

1	M ′
1 implies Γ2	M2

γ
=⇒ Γ ′

2	M ′
2 such that Γ ′

1	M ′
1 �n

D Γ ′
2	M ′

2

– Γ2	M2
γ−→ Γ ′

2	M ′
2 implies Γ1	M1

γ
=⇒ Γ ′

1	M ′
1 such that Γ ′

1	N ′
1 �n

D Γ ′
2	M ′

2

– if n > 0, Γ2 	 M2
fail−→Γ ′

2 	 M ′
2 implies Γ1 	 M1 =⇒Γ ′

1 	 M ′
1 such that Γ ′

1 	 M ′
1

�n−1
D Γ ′

2 	 M ′
2

Before we can use Definition 8 to prove dynamic fault tolerance, we need to show
that the new definition is sound with respect to Definition 5.

Proposition 3 (Soundness of �n
D). If Γ |=M1 �n

D M2 then for any dynamic
n-fault context F l̃

D that is valid with respect to Γ we have Γ |= M1 ∼= F l̃
D(M2)

Proof. Let Rn be a relation parameterised by a number n and defined as

Rn
def= Γ1 � M1 , Γ2 � M2 | F i

D Γ1 � M1�i
DΓ2 � M2,

2
j=1 Γj � F i

D and 0 ≤ i ≤ n

By showing Rn ⊆≈ we prove that �n
D is sound with respect to n-dynamic fault

tolerance

It would be ideal if we could reuse up-to techniques and give relations satisfying
�n

D that abstract away from β-moves. Similar to Section 4, we define a fault
tolerance simulation up-to β-moves and show that this is sound with respect
to �n

D. This definition uses a weak bisimulation (Definition 6) that ranges over
α actions, that is μ and the new action fail. We refer to this bisimulation as a
counting bisimulation over configurations, denoted as ≈cnt, because it allows us
to count failing confined locations on each side and match subsequent observable
behaviour.

Definition 9 (Fault Tolerant Simulation up-to β-moves). An n-fault tol-
erant simulation up-to β-moves, denoted as �n

β, is the largest typed relation R
between configurations parameterised by the number n, such that whenever we
have Γ1 	 M1 �n

β Γ2 	 M2

– Γ1	M1
μ−→Γ ′

1 	 M ′
1 implies Γ2	M2

μ̂
=⇒Γ ′

2 	 M ′
2 such that Γ ′

1 	 M ′
1 Al ◦ �n

β

◦ ≈cnt Γ ′
2 	 M ′

2

1 This point differs from [5], where labels for external killing carried the location name,
kill:l.

30 A. Francalanza and M. Hennessy

– Γ2 	 M2
μ−→ Γ ′

2 	 M ′
2 implies Γ1 	 M1

μ̂
=⇒ Γ ′

1 	 M ′
1 such that Γ ′

2 	 M ′
2Al ◦ �n

β

◦ ≈ Γ ′
1 	 M ′

1

– If n > 0 then Γ2 	 M2
fail−→ Γ ′

2 	 M ′
2 implies Γ1 	 M1 =⇒ Γ ′

1 	 M ′
1 such that

Γ ′
2 	 M ′

2 �n−1
β ◦ ≈ Γ ′

1 	 M ′
1

where Al is the relation |==⇒β ◦ ≡. We highlight the use of ≈cnt for matching
configurations in the first clause.

The work required to show that �n
β is sound with respect to �n

D is similar to
earlier up-to β-moves work discussed in Section 4: we have to show that β-
move confluence (similar to Lemma 1) is also preserved for the new action fail;
we also have to show that after a β-move, the redex and reduct configurations
are counting-bisimilar (similar to Proposition 1). Finally we prove the following
proposition

Proposition 4 (Inclusion of fault tolerant simulation up-to β-moves).
If Γ1 	 M1 �n

β Γ2 	 M2 then Γ1 	 M1 �n
D Γ2 	 M2

Proof. We prove the above proposition by defining the relation Rn as

Rn =
{

Γ1 	 M1 , Γ2 	 M2 Γ1 	 M1 ≈ ◦ �i
β ◦ ≈cnt Γ2 	 M2 and 0 ≤ i ≤ n

}
and show that Rn ⊆�n

D. The required result can then be extracted from this
result by considering the special cases where ≈ and ≈cnt on either side are the
identity relations.

Example 4. The results of Proposition 3 and Proposition 4 allow us to prove that
the configuration Γ 	 server2 is 1-dynamically fault tolerant by providing a single
witness fault tolerance simulation up-to β-moves showing that Γ 	 server2 �1

β

Γ 	 server2 Due to lack of space, we relegate the presentation of this relation to
the full paper [4].

6 Conclusions and Related Work

We adopted a subset of [5] and developed a theory for system fault tolerance
in the presence of fail-stop node failure. We formalised two definitions for fault
tolerance based on the well studied concept of observational equivalence. Sub-
sequently, we developed various sound proof techniques with respect to these
definitions.

Future Work. The immediate next step is to apply the theory to a wider spec-
trum of examples, namely using replicas with state and fault tolerance techniques
such as lazy replication: we postulate that the existing theory should suffice. An-
other avenue worth considering is extending the theory to deal with link failure
and the interplay between node and link failure [5]. In the long run, we plan to
develop of a compositional theory of fault tolerance, enabling the construction
of fault tolerant systems from smaller component sub-systems. For both cases,
this paper should provide a good starting point.

A Theory for Observational Fault Tolerance 31

Related Work. To the best of our knowledge, Prasad’s thesis [9] is the closest
work to ours, addressing fault tolerance for process calculi. Even though similar
concepts such as redundancy (called ”duplication”) and failure-free execution
are identified, the setting and development of Prasad differs considerably form
ours. In essence, three new operators (”displace”, ”audit” and ”checkpoint”) are
introduced in a CCS variant; equational laws for terms using these operators are
then developed so that algebraic manipulation can be used to show that terms in
this calculus are, in some sense, fault tolerant with respect to their specification.

References

1. Roberto M. Amadio and Sanjiva Prasad. Localities and failures. FSTTCS: Foun-
dations of Software Technology and Theoretical Computer Science, 14, 1994.

2. Flavin Christian. Understanding fault tolerant distributed systems. Communica-
tions of the ACM, 34(2):56–78, February 1991.

3. Alberto Ciaffaglione, Matthew Hennessy, and Julian Rathke. Proof methodologies
for behavioural equivalence in Dπ. Technical Report 03/2005, University of Sussex,
2005.

4. Adrian Francalanza and Matthew Hennessy. A theory for observational fault tol-
erance. www.cs.um.edu.mt/~ afran/.

5. Adrian Francalanza and Matthew Hennessy. A theory of system behaviour in the
presence of node and link failures. In CONCUR, volume 3653 of Lecture Notes in
Computer Science, pages 368–382. Springer, 2005.

6. Matthew Hennessy, Massimo Merro, and Julian Rathke. Towards a behavioural
theory of access and mobility control in distributed systems. Theoretical Computer
Science, 322:615–669, 2004.

7. Matthew Hennessy and Julian Rathke. Typed behavioural equivalences for pro-
cesses in the presence of subtyping. Mathematical Structures in Computer Science,
14:651–684, 2004.

8. Matthew Hennessy and James Riely. Resource access control in systems of mobile
agents. Information and Computation, 173:82–120, 2002.

9. K. V. S. Prasad. Combinators and Bisimulation Proofs for Restartable Systems.
PhD thesis, Department of Computer Science, University of Edinburgh, December
1987.

10. James Riely and Matthew Hennessy. Distributed processes and location failures.
Theoretical Computer Science, 226:693–735, 2001.

11. Davide Sangiorgi and David Walker. The π-calculus. Cambridge University Press,
2001.

12. Richard D. Schlichting and Fred B. Schneider. Fail-stop processors: An approach
to designing fault-tolerant computing systems. Computer Systems, 1(3):222–238,
1983.

13. Paulo Verissimo and Luis Rodrigues. Distributed Systems for System Architects.
Kluwer Academic Publishers, 2001.

Smooth Orchestrators�

Cosimo Laneve1 and Luca Padovani2

1 Department of Computer Science, University of Bologna
laneve@cs.unibo.it

2 Information Science and Technology Institute, University of Urbino
padovani@sti.uniurb.it

Abstract. A smooth orchestrator is a process with several alternative branches,
every one defining synchronizations among co-located channels. Smooth orches-
trators constitute a basic mechanism that may express standard workflow patterns
in Web services as well as common synchronization constructs in programming
languages. Smooth orchestrators may be created in one location and migrated to
a different one, still not manifesting problems that usually afflict generic mobile
agents.

We encode an extension of Milner’s (asynchronous) pi calculus with join pat-
terns into a calculus of smooth orchestrators and we yield a strong correctness
result (full abstraction) when the subjects of the join patterns are co-located. We
also study the translation of smooth orchestrators into finite-state automata, there-
fore addressing the implementation of co-location constraints and the case when
synchronizations are not linear with respect to subjects.

1 Introduction

Web services programming languages use mechanisms for defining services available
on the Web. Examples of these languages are Microsoft XLANG [13] and its visual en-
vironment BizTalk, IBM WSFL [10], BPEL [2], WS-CDL [8], and WSCI [8]. Among
the basic mechanisms used by such technologies, there are the so-called orchestra-
tors, which compose available services, possibly located at different administrative do-
mains, by adding a central coordinator that is responsible for invoking and combining
sub-activities.

This contribution addresses a very simple class of orchestrators, those triggering a
continuation when a pattern of messages on a set of services is available. For example,
the orchestrator

x(u)& y(v) 	 z uv

enables the continuation z uv if one message to the service x and one message to the
service y are available. The orchestrator expires once it has executed. This process is
easy to implement if the two services x and y – called channels in the following –
are co-located: it suffices to migrate x(u)& y(v) 	 z uv to the location of x and y. The
general case when the continuation z uv is a large process may be always reduced to
the simpler one.

� Aspects of this investigation were partly supported by a Microsoft initiative in concurrent
computing and Web services.

L. Aceto and A. Ingólfsdóttir (Eds.): FOSSACS 2006, LNCS 3921, pp. 32–46, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Smooth Orchestrators 33

If x and y are not co-located then we immediately face a global consensus problem:
the location running the channel(-manager)s for x and y must agree with the one run-
ning x(u)& y(v)	 z uv for consuming outputs. (Migrating x(u)& y(v)	P , or a variant
of it, to the location of x or of y does not simplify the problem because x and y are not
co-located.) Observe that similar problems are manifested by orchestrators such as

x(u) 	 z u + y(v) 	 z′ v

where “+” picks either one of x(u) 	 z u or y(v) 	 z′ v according to the availability of
a message on x or on y.

A language with orchestrators should therefore simply disallow those ones that com-
bine not co-located channels, on the grounds that they are un-implementable. There
are several ways for removing such problematic orchestrators. The join calculus [6]
achieves (co-)locality with an elegant syntactic constraint in which the same language
construct is used both to declare channels and to define their continuations. Channels
that are being orchestrated are, by definition, co-located. For example, the process

x(u) 	 (y, z)(s uy | t uz
| y(v) 	 P + z(w) 	 Q)

specifies a service x that starts the sub-activities s and t with local channels y and z,
respectively. The orchestrator – defined on these local channels – takes into account
the first activity that completes. It is worth to remark that the above process remains
implementable even if y and z are not co-located with x (this may be the case when,
for load-balancing reasons, it is preferable to create the two channels remotely). To
formalize this constraint on y and z it suffices to add an explicit co-location construct
to channel definitions. Write z @ y to mean that z is created at the same location as y.
Then the above process may be rewritten as x(u) 	 (y @ y, z @ y)(s uy | t uz | y(v) 	
P + z(w) 	 Q), where the constraint y @ y means that y may be created at whatever
location.

We also consider a further relaxation of the join calculus locality constraint, which
combines co-location and input capability. Input capability is the ability to receive a
channel name and subsequently accept inputs on it. Orchestrators that join received
channels and locally defined ones are again implementable if all the channels are co-
located. In this case, the co-location constraint may be enforced statically if the lan-
guage has mechanisms for extracting the location information out of received channels.
In practice this is trivial because channels contains the IP addresses of their location.
Technically we write x(u @ u)& y(v @ u) 	 P to select messages on x and y that carry
co-located channels. In this case, the continuation P could orchestrate u and v, that is
P might be u(u′ @u′)& v(v′ @ v′) 	 P ′.

We end up in considering a class of orchestrators, which we call smooth (the ter-
minology is drawn from [1]), that consist of several alternative branches, every one
defining synchronizations among co-located channels and having an output as contin-
uation. The implementation of (smooth) orchestrators poses a number of challenges
because they may be dynamically created and because of the co-location constraints
that may introduce dependencies between different channels in the same join pattern.
With respect to Le Fessant and Maranget’s compilation technique of join patterns [9]

34 C. Laneve and L. Padovani

we discuss a number of extensions for implementing smooth orchestrators of increas-
ing complexity. In particular, we show that it is still possible to use finite state au-
tomata for handling join pattern definitions, even when the joined channels are not
fresh.

Related work. Distributed implementations of input-guarded choices have already been
studied in detail by the pi community. Nestmann and Pierce have proposed the following
encoding of the orchestrator

∑
i∈1..n xi(ui)	P (we rewrite the solution in our notation):

(� @ �)(� t |
∏

i∈1..n

xi(ui @ui) 	
(
�(u @ t) 	 (� f | P) + �(u @ f) 	 (� f | xi ui)

)
where t and f are two free channels that are not co-located. While this technique may
be refined so that every branch of the choice inputs on different channels � (c.f. linear
forwarders [7]), it seems not useful for our orchestrators where guards are complex
input patterns. Implementations of “defined once”-orchestrators on co-located channels
have been studied in detail for the join calculus in [9]. There are similarities between
our calculus and MAGNETs [3]. In MAGNETs orchestrators are implemented as agents
that migrate to the location where the synchronized channels are defined. As in this
paper, MAGNETs only synchronize co-located channels, even though this condition is
not enforced by a type system.

The calculus of orchestrators that we study is actually intermediate between pi cal-
culus [11] and join calculus [6]. Its motivations are pretty practical. We have recently
developed a distributed machine for the pi calculus – PiDuce [5, 4] – where it is pos-
sible to create channels and their managers in remote locations. This machine supports
inputs on received channels by decoupling them into a particle migrating to the remote
channel (the linear forwarder) and the continuation. This contribution analyzes an ex-
tension of this feature with patterns of inputs and discusses the technical problems we
found in prototyping them. Smooth orchestrators that coordinate local channels have
been already implemented in the current PiDuce prototype [4]. In the next release
we expect to extend the prototype with migrating smooth orchestrators and co-location
constraints.

Plan of paper. The paper is structured as follows. Section 2 gives the calculus with
orchestrators, and its reference semantics – barbed congruence. Section 3 gives the
encoding of few sample workflow patterns. Section 4 gives the smoothness constraint
on orchestrators that makes them implementable. We demonstrate the invariance of the
constraint with respect to the reduction and the implementation of the full calculus.
Section 5 describes the implementation of smooth orchestrators.

2 Processes with Orchestrators

In this section we introduce the calculus with orchestrators. We first present the syntax,
then the co-location relation, which is preparatory to the operational semantics, and
finally the operational semantics.

Smooth Orchestrators 35

2.1 Syntax

We assume an infinite set of names ranged over by x, u, v, . . . Names represent com-
munication channels, which are also the values being transmitted in communications.
We write x̃ for a (possibly empty) finite sequence x1 · · ·xn of names. Name substi-
tutions {y/x} are as usual and ranged over ρ, ρ′. We let dom({y/x}) = x̃. We also
write (x1, · · · , xn @ y1, · · · , yn) for (x1 @ y1) · · · (xn @ yn). These sequences, called
co-location sequences, are ranged over by Λ, Λ′.

The syntax consists of processes P and join patterns J :

P ::= processes J ::= join patterns
0 (nil) x(ũ @ ṽ) (input)

| x ũ (output) | J &J (join)
| ∑i∈I Ji 	 Pi (orchestrator)
| (x@ y)P (new)
| P | P (parallel)
| !P (replication)

In the rest of the paper, we write
∏

i∈1..n Pi for P1 | · · · | Pn and J1 	P1+ · · ·+Jn 	Pn

for
∑

i∈1..n Ji 	 Pi. We also write (x)P for (x@ x)P and x(u) for x(u @u).
Free and bound names are standard: x is bound in (x@ y)P and ũ is bound in

x(ũ @ ṽ); names are free when they occur non-bound. Write bn(P) and bn(J) for the
bound names of P and J , respectively; similarly write fn(P) and fn(J) for the free
names. For example, fn(x(u @ u)& y(v @u)) = fn(x(v @u)& y(u @u)) = {x, y}.
The scope of the name x in (x@ y)P is y and the process P ; the scope of a name bound
by J in J 	 P is J and P . The name x in x ũ and in x(ũ @ ṽ) is called subject; sn(J)
collects all the subjects of J . The names

⋃
i∈I ũi in&i∈Ixi(ũi @ ṽi) are called defined

names.
Processes define the computational entities of the calculus. Most of the operators are

standard from the pi calculus [11], except new (x@ y)P , orchestrator
∑

i∈I Ji 	 Pi,
and input x(ũ @ ṽ). The process (x@ y)P creates a channel x at the same location of
y. The process (x@ x)P creates a channel x at a fresh location. The term x@ y in
new and input is called co-location pair. Orchestrators are reminiscent of join calcu-
lus definitions [6] and pi calculus input guarded choices. A branch Ji 	 Pi is chosen
provided a pattern of outputs that matches with Ji is present. In this case the con-
tinuation Pi is run and all the other alternatives are discarded. A pattern of outputs
x1 ũ1 | · · · | xn ũn matches with x1(ṽ1 @ w̃1)& · · · &xn(ṽn @ w̃n) provided ũi and
ṽi have the same length and the location constraints in w̃i are satisfied. For example,
xu | z u′ matches with x(v)& z(v′ @ v) if u and u′ are two co-located channels.

Join patterns J satisfy the following well-formedness constraints:

1. defined names of J are pairwise different;
2. (left-constraining) if J = &i∈1..nxi(ũi @ ṽi) then (ũ1 · · · ũn @ ṽ1 · · · ṽn) is such

that, for every decomposition (ũ′ @ ṽ′)(u @ v)(ũ′′ @ ṽ′′) of it, we have v �∈ ũ′′.
With an abuse of terminology, a co-location sequence that satisfies this property is
said left-constraining.

36 C. Laneve and L. Padovani

Remark 1. Left-constraining makes & not commutative. For example the pattern J =
x(u @u)& y(v @u) is well-formed while J ′ = y(v @ u)&x(u @u) is not. Left-
constraining makes join patterns parsable from left to right; on the contrary, in
y(v @u)&x(u @u), to find the binder for the occurrence of u in y(v @ u) one has to
read the whole join pattern. Left-constraining also simplifies some technical discussions
later in the paper.

Remark 2. The well-formedness condition on join patterns does not enforce their
linearity with respect to subject names. For example, the pattern x(u)&x(v) is well-
formed. This linearity constraint is not easy to formalize because, in our calculus, re-
ceived names may be used as subjects of inputs in the continuations – input capability.
Removing the feature of input capability, the linearity constraint may be defined as in
join calculus [6].

2.2 Co-location Relation

Process reduction is possible if the co-location constraints specified in the join pattern
are fulfilled. This fulfillment is defined in terms of the co-location relation.

Definition 1. Let x̃@ ỹ 	 u�v, called the co-location relation, be the equivalence
relation on names that is induced by the following rules:

(BASE)

(x̃@ ỹ)(u @ v) 	 u�v

(LIFT)

x̃@ ỹ 	 u�v u, v �= z

(x̃@ ỹ)(z @ z′) 	 u�v

For example (x@ y)(z @ y) 	 x�z by transitivity. A less evident entailment is
(x@ y)(z @ y)(y @ u) 	 x�z. This is due to (x@ y)(z @ y) 	 x�z and to the (LIFT)
rule because x, z �= y. We write x̃@ ỹ 	 u1 · · ·un

�v1 · · · vn if x̃@ ỹ 	 ui
�vi for

every i.
The co-location relation induces a partition on names that is left informal in this con-

tribution. For instance (x@ y)(z @ y)(y @u) gives the partition {x, z}, {y, u}. There
are permutations of co-location sequences that preserve the induced partition. A rele-
vant one is the following.

Proposition 1. If x �= x′, x �= y′, and x′ �= y then Λ(x@ y)(x′ @ y′) 	 u�v implies
Λ(x′ @ y′)(x@ y) 	 u�v.

Proof. For brevity we only examine four cases, and we assume u �= v.

(u, v �= x, x′) From Λ(x@ y)(x′ @ y′) 	 u�v and the hypotheses we derive Λ 	 u�v.
From this and the hypotheses we conclude Λ(x′ @ y′)(x@ y) 	 u�v by (LIFT).

(u = x, u, v �= x′) From Λ(u @ y)(x′ @ y′) 	 u�v we derive Λ(u @ y) 	 u�v. There
are two sub-cases:
(v = y) We conclude Λ(x′ @ y′)(u @ v) 	 u�v by (BASE).
(v �= y) Since u�y we must have derived u�v by transitivity from Λ 	 v�y.

From Λ 	 v�y and the hypotheses v, y �= x′, u we get Λ(x′ @ y′)(u @ y) 	
v�y. From this and Λ(x′ @ y′)(u @ y) 	 u�y by transitivity we obtain
Λ(x′ @ y′)(u @ y) 	 u�v.

Smooth Orchestrators 37

(u = x′, u, v �= x) We have Λ(x@ y)(u @ y′) 	 u�v. There are two sub-cases:
(v = y′) We have Λ(u @ v) 	 u�v. From this and the hypotheses u, v �= x we

conclude Λ(u @ v)(x@ y) 	 u�v.
(v �= y′) Since u�y′ we must have derived u�v by transitivity from Λ(x@ y) 	

v�y′. From this and the hypotheses v, y′ �= x we get Λ 	 v�y′. From this and
the hypotheses v, y′ �= u, x we get Λ(u @ y′)(x@ y) 	 v�y′. Using similar
arguments we derive Λ(u @ y′)(x@ y) 	 u�y′ and by transitivity we conclude
Λ(u @ y′)(x@ y) 	 u�v.

(u = x, v = x′) We have Λ(u @ y)(v @ y′) 	 u�v. From the hypotheses we have
u, v �= y′ and u, v �= y. We must have concluded u�v by transitivity from y�y′.
From this and y, y′ �= v, u we get Λ(v @ y′)(u @ y) 	 y�y′. From this and
Λ(v @ y′)(u @ y) 	 u�v we conclude Λ(v @ y′)(u @ y) 	 u�v. �

It is possible to establish a relation between the partition induced by a co-location se-
quence and the one obtained when bound names in a suffix of the same sequence are
substituted.

Proposition 2. Let ρ be a substitution such that Λ 	 x̃ρ�ỹρ. Then Λ(x̃@ ỹ) 	 u�v
implies Λ 	 uρ�vρ.

Proof. By induction on the proof of Λ(x̃@ ỹ) 	 u�v. The base case is straightfor-
ward. The inductive case is when the last rule is an instance of (LIFT). Let (x̃ @ ỹ) =
(x̃′′ @ ỹ′′)(x′ @ y′) and let Λ(x̃ @ ỹ) 	 u�v be demonstrated by (LIFT) with premises
Λ(x̃′′ @ ỹ′′) 	 u�v and u, v �= x′. We have that Λ 	 x̃ρ�ỹρ implies Λ 	 x̃′′ρ�ỹ′′ρ.
Henceforth, by inductive hypothesis, we conclude Λ 	 uρ�vρ. �

2.3 Operational Semantics

The operational semantic is defined by means of a structural congruence that equates
all processes that have essentially the same structure and that are never distinguished.

Definition 2. Structural congruence ≡ is the smallest equivalence relation that satis-
fies the following axioms and is closed with respect to contexts and alpha-renaming:

P | 0 ≡ P P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R !P ≡ P | !P
(x@ y)0 ≡ 0 (x@ y)(P | Q) ≡ P | (x@ y)Q if x �∈ fn(P)

(x@ y)(x′ @ y′)P ≡ (x′ @ y′)(x@ y)P if x �= x′, x �= y′, and y �= x′

Notice that the last congruence axiom is strictly related to Proposition 1.

Definition 3. The reduction relation→ is the least relation satisfying the rule

M =
∏

j∈1..n xj ũj Jk = &j∈1..nxj(ũj @ ṽj) k ∈ I

dom(ρ) =
⋃

j∈I ũj

(
z̃ @ ỹ 	 ũjρ

�ṽjρ
)j∈1..n

(z̃ @ ỹ)
(
Mρ |∑i∈I Ji 	 Pi | R

)
→ (z̃ @ ỹ)

(
Pkρ | R

)
and closed under≡, | and (z @ z′) .

38 C. Laneve and L. Padovani

The last premise of the reduction rule requires that the interacting processes are un-
derneath a sequence of news that is long enough. For example, the process P = xu |
x(u @ v) 	 Q is inactive. On the contrary (u @ v)P reduces to Q. We refer to the intro-
duction for few sample processes in our calculus.

The semantics is completed by the notion of barbed congruence [12]. According to
this notion, two processes are considered equivalent if their reductions match and they
are indistinguishable under global observations and under any context.

Definition 4. The name x is a barb of P , written P ↓ x, when

x ũ ↓ x
(z @ y)P ↓ x if P ↓ x and x �= z
!P ↓ x if P ↓ x
P | Q ↓ x if P ↓ x or Q ↓ x

Write⇒ for→∗ and ⇓ for⇒↓.
A barbed bisimulation is a symmetric relation φ such that whenever P φ Q then

(1) P ↓ x implies Q ⇓ x, and (2) P → P ′ implies Q ⇒ Q′ and P ′ φ Q′. The largest

barbed bisimulation is noted
�≈.

Let C[] be the set of contexts generated by the grammar:

C[] ::= [·] |
∑
i∈I

Ji 	 C[] | (x@ y)C[] | P |C[] | C[]|P | !C[]

The barbed congruence is the largest symmetric relation ≈ such that whenever P ≈ Q

then, for all contexts C[], C[P]
�≈ C[Q].

3 On the Expressivity of Orchestrators

Orchestrators constitute a basic mechanism that may express standard workflow pat-
terns in Web services as well as common synchronization constructs in programming
languages. A few paradigmatic encodings of patterns are described below.

Client/supplier/bank interaction. The first example describes a Supplier that waits for
requests from clients. Upon receiving a buy request, the supplier asks the client about
his financial availability. The client must reassure the supplier by letting his financial
institution (a bank) vouch directly for him. In the meantime, the supplier forwards the
client’s request to the appropriate manufacturer, which will proceed with the delivery
as soon as he receives a confirmation from the bank. We write x [ũ] instead of x ũ:

Supplier def= buy(item, x)� (voucher @ item)(
x [voucher , amount]
| voucher (u)& item(v) � deliver [u, v] | record [u, v])

We note that several clients may compete for the same item. In this case, delivery oc-
curs only when the payment for the item is available. We also observe that the channel
voucher is co-located with item. Henceforth, the orchestrator voucher (u)& item() 	
deliver [u, v] | record [u, v] will coordinate two channel managers at a same location.

Smooth Orchestrators 39

Synchronizing merge. Synchronizing merge is one of the advanced synchronization pat-
terns in [14]. According to this pattern, an activity A may trigger one or two concurrent
activities B and C. These activities B and C signal their completion by sending mes-
sages to a fourth activity D. Synchronization occurs only if both B and C have been
triggered. We assume that the choice of A of triggering one between B and C or both is
manifested to D by emitting a signal over one or not, respectively. This signal is similar
to the so-called “false tokens” in those workflow engines that support this synchroniza-
tion pattern:

SynchMerge def= b(v)& one() 	 d [v] + c(v)& one() 	 d [v] + b(v)& c(v′) 	 d [v, v′]

Dynamic load balancing. Our last example models a load balancing mechanism for
Web services. We assume the existence of two message queues: job , where requests for
services are posted, ready where services make themselves available for processing one
or more requests:

LoadBal def= . . . ready(w)& job(u) 	 w [u]

This is a typical load balancing mechanism that can handle multiple requests concur-
rently, or may distribute the computational load among different servers, possibly de-
pending on request’s priority. In addition, in our language it is possible to change the
load dynamically. For instance, a supplier could run the code

job(u)& job(v) 	 w [u, u′]

that changes the policy by processing two jobs at a same time. This small piece of code
– a smooth orchestrator – may migrate to the location of the load balance process in
order to update the current policy.

4 The Smoothness Restriction

A distributed prototype of the calculus in Section 2 may be designed with difficulties.
Let us commit to a standard abstract machine of several distributed implementations
of process calculi [15, 6, 4]. Such a machine consists of processors running at different
locations with channels that are uniquely located to processors. Outputs are always
delivered to the processor of the corresponding subject where they may be consumed.
In this machine, the process

x(u @ u, v @ v) 	
(
u(w)& v(w′) 	 P

)
dynamically creates an orchestrator on the received channels u and v. There are at least
two problematic issues as far as distribution is concerned. Let z and y be the names
respectively replacing u and v at run-time:

1. the orchestrator z(w)& y(w′)	P is consuming inputs on channels z and y that may
be not co-located. This means that the processors running such channel(-manager)s
must compete with the processor running z(w)& y(w′) 	 P for consuming output.
This is a classical global consensus problem.

40 C. Laneve and L. Padovani

2. if the channels z and y were co-located, the global consensus problem could be
solved by migrating the orchestrator z(w)& y(w′) 	 P to the right processor. How-
ever, this migration is expensive, because P may be large and could require a large
closure.

Due to these problems, it is preferable to restrain our study to a sub-calculus of that
in Section 2, which is more amenable to distributed implementations. The restrictions
we consider are the following two:

1. every orchestrator is smooth, namely it has the shape
∑

i∈I Ji 	 zi ũi where ũi

is the sequence of bound names in Ji in the same order as they appear in Ji and⋃
i∈I sn(Ji) are all co-located;

2. we admit processes z(ũ@ ṽ) 	 P , namely generic continuations are restricted to
simple inputs.

The formalization of the co-location restriction of joins in smooth orchestrators is
defined by means of the type system in Table 1. Let ε denote the empty co-location
sequence.

Table 1. Co-location checks for the full calculus

(NIL)

Λ 	 0
(OUTPUT)

Λ 	 x ũ
(ORCH)

(Ji :: Λi ΛΛi 	 Pi)i∈I (Λ 	 x�y)x∈sn(Ji),y∈sn(Jj)

Λ 	∑i∈I Ji � Pi

(NEW)

Λ(x@ y) 	 P

Λ 	 (x@ y)P

(PAR)

Λ 	 P Λ 	 Q

Λ 	 P | Q

(BANG)

Λ 	 P

Λ 	 !P

(INPUT)

	 x(ũ @ ṽ) :: ũ @ ṽ

(JOIN)

	 J :: Λ′ 	 J ′ :: Λ′′

	 J & J ′ :: Λ′Λ′′

Definition 5. A process P is distributable if ε 	 P .

We defer the analysis of the distributed implementation of smooth orchestrators to
Section 5. The rest of the section is devoted to the correctness of the co-location sys-
tem and the encoding of the calculus in Section 2 into the sub-calculus with smooth
orchestrators. We begin with a couple of technical statements.

Lemma 1. 1. Let Λ and Λ′ be such that, for every x, y ∈ fn(P), if Λ 	 x�y then
Λ′ 	 x�y. Then Λ 	 P implies Λ′ 	 P .

2. Let x′ be fresh with respect to names in Λ and in fn(P). Then Λ(x@ y) 	 P
implies Λ(x′ @ y{x′

/x}) 	 P{x′
/x}.

Proof. We prove item 2; the first is simpler. The argument is by induction on the proof
of Λ(x@ y) 	 P and we discuss the case when the last rule is an instance of (NEW); the
others are similar or straightforward.

Smooth Orchestrators 41

In this case P = (u @ v)P ′ and Λ(x@ y) 	 (u @ v)P ′. By (NEW) one reduces to
Λ(x@ y)(u @ v) 	 P ′. There are two sub-cases (a) u �= x, y and v �= x and (b) the
others. In (a), by Proposition 1 and item 1, we also have Λ(u @ v)(x@ y) 	 P ′. Then,
by inductive hypotheses, it is possible to obtain Λ(u @ v)(x′ @ y{x′

/x}) 	 P ′{x′
/x}.

Using again item 1 we derive Λ(x′ @ y{x′
/x})(u @ v) 	 P ′{x′

/x} and we conclude by
(NEW). The sub-case (b) is proved as follows. Let Λ(x@ y)(u @ v) 	 P ′. The clashes
of u with x or y may be removed by inductive hypothesis. Therefore, the problematic
case is Λ(x@ y)(u @x) 	 P ′.

If x �= y then consider the co-location sequence Λ(u @ y)(x@ y). It is easy to
prove that Λ(x@ y)(u @x) 	 u′�v′ implies Λ(u @ y)(x@ y) 	 u′�v′. Therefore,
by item 1 we may derive Λ(u @ y)(x@ y) 	 P and, by inductive hypothesis, we de-
rive Λ(u @ y)(x′ @ y{x′

/x}) 	 P{x′
/x}. With a same argument it is possible to obtain

Λ(x′ @ y{x′
/x})(u @x′) 	 P{x′

/x} and by (NEW) we conclude Λ(x′ @ y{x′
/x}) 	

(u @x′)P{x′
/x}.

If x = y then we consider the co-location sequence Λ(u @u)(x@ u). The proof may
be completed as in the previous sub-case. �

It is worth to notice that Lemma 1 entails the weakening statement: if Λ 	 P and x is
fresh then Λ(x@ y) 	 P .

Lemma 2 (substitution). Let ρ be a substitution such that dom(ρ) = x̃. If Λ(x̃@ ỹ) 	
P and Λ 	 x̃ρ�ỹρ then Λ 	 Pρ.

Proof. The argument is by induction on the proof of Λ(x̃@ ỹ) 	 P . The interesting
cases are when the last rule is an instance of (NEW) and of (ORCH).

(NEW). Let P = (u @ v)P ′ and u �= v (the case u = v is similar). By (NEW) we are
reduced to

Λ(x̃@ ỹ)(u @ v) 	 P ′ (1)

There are a number of sub-cases:

– u �∈ x̃ỹ and v �∈ x̃. Then by Proposition 1 the contexts Λ(x̃@ ỹ)(u @ v) and
Λ(u @ v)(x̃ @ ỹ) are equivalent and by item 1 we have Λ(u @ v)(x̃ @ ỹ) 	 P ′.
By applying the inductive hypothesis and (NEW) we obtain Λ 	 (u @ v)(Pρ) that
leads to Λ 	 ((u @ v)P)ρ since u, v �∈ x̃.

– u �∈ x̃ỹ and v ∈ x̃. We discuss two possibilities. If (v @w) ∈ (x̃ @ ỹ) and
w �∈ x̃ the contexts Λ(x̃@ ỹ)(u @ v) and Λ(x̃@ ỹ)(u @ w) are equivalent and
we can apply the same arguments as for the previous case. If (v @ v) ∈ (x̃@ ỹ)
consider the context Λ(u @ vρ)(x̃′ @ ỹ′) where (x̃′ @ ỹ′) is obtained by substitut-
ing (v @ v) with (v @ u) in (x̃@ ỹ). Note that Λ(x̃@ ỹ)(u @ v) 	 u′�v′ implies
Λ(u @ vρ)(x̃′ @ ỹ′) 	 u′�v′ so we can apply item 1 followed by the inductive
hypothesis and obtain Λ(u @ vρ) 	 P ′ρ. From this we derive Λ 	 (u @ vρ)P ′ρ,
which is equivalent to Λ 	 ((u @ v)P ′)ρ.

– u ∈ x̃ỹ. By Lemma 1(2) we reduce to Λ(x̃@ ỹ)(u′ @ v) 	 P ′{u′
/u}, where u′

is fresh, therefore u′ �∈ x̃ỹ. In the same way as in the first sub-case, we obtain
Λ 	 ((u′ @ v)P ′{u′

/u})ρ and we conclude because, by definition of substitution,
((u′ @ v)P ′{u′

/u})ρ = ((u @ v)P ′)ρ when u ∈ x̃ỹ.

42 C. Laneve and L. Padovani

(ORCH). We discuss the case when P = J � P ′. The general case is similar. By
(ORCH), and letting 	 J :: (z̃ @ w̃) we are reduced to

Λ(x̃@ ỹ)(z̃ @ w̃) 	 P ′ (2)

and
(Λ(x̃@ ỹ) 	 x′�y′)x′,y′∈sn(J) (3)

We may apply Proposition 2 to (3) and obtain

(Λ 	 x′ρ�y′ρ)x′,y′∈sn(J) (4)

From (2), with a similar argument as in (NEW), we may derive Λ(z̃ @ w̃ρ) 	 P ′ρ or
similar judgments renaming names in z̃ when they clash with x̃ỹ (we omit these last
cases). By applying (ORCH) to this judgment, to (4) and to 	 Jρ :: (z̃ @ w̃ρ) we there-
fore derive Λ 	 Jρ � P ′ρ. We conclude by observing that Jρ � P ′ρ = (J � P ′)ρ. �

A brief discussion about the substitution lemma follows. Consider

(a @ a)(u @u)(v @ u) 	 u& v � 0

and the substitution {a/v}. Note that (a @ a)(u @u) �	 v{a/v}�u{a/v}. Indeed, if we
were allowed to apply {a/v} to the above judgment, we would obtain

(a @ a)(u @u) �	 u& a � 0

Actually, the process u& v � 0 is well-typed in a context that co-locates u and v. While
this is the case for (a @ a)(u @u)(v @ u), it is not the case for (a @ a)(u @u). The
condition Λ 	 x̃ρ�ỹρ in the substitution establishes that co-located names remain co-
located after having been substituted. Therefore, if we insist in replacing v with a, we
must also map u to a. In this case the substitution lemma may be applied and we obtain:

(a @ a) 	 a& a � 0

Theorem 1 (subject reduction). If (x̃@ ỹ) 	 P and (x̃@ ỹ)P → (x̃ @ ỹ)Q then
(x̃@ ỹ) 	 Q. In particular, if P is distributable and P → Q then Q is distributable
as well.

Proof. It is sufficient to show that well-typedness is preserved by any structural con-
gruence rule (in both directions) and by the reduction rule. We omit the easy cases.

– Let Λ 	 (x@ y)(x′ @ y′)P with x �= y′, x �= x′, and y �= x′. By (NEW):
Λ(x@ y)(x′ @ y′) 	 P . By Lemma 1(1): Λ(x′ @ y′)(x@ y) 	 P . We conclude
by (NEW).

– Let Λ 	 (x@ y)(P | Q) and x �∈ fn(P). It is sufficient to show that if u, v �= x then
Λ 	 u�v iff Λ(x@ y) 	 u�v. This follows by the rule (LIFT) of the co-location
relation.

Smooth Orchestrators 43

– Let Λ 	 (Mρ | ∑i∈I Ji � Pi | R) and let (Λ)(Mρ | ∑i∈I Ji � Pi | R) →
(Λ)(Pkρ | R). By the hypotheses of the reduction rule: M =

∏
j=1..n xj uj , Jk =

&j∈1..nxj(ũj @ ṽj), dom(ρ) =
⋃

j=1..n ũj and Λ 	 ũjρ
�ṽjρ for all j ∈ 1..n. The

type system yields 	 Jk :: (ũj @ ṽj)j∈1..n. Therefore, by the Substitution Lemma
applied to Λ(ũj @ ṽj)j∈1..n 	 Pk, we obtain Λ 	 Pkρ. From this we conclude
Λ 	 Pkρ | R. �

The calculus with distributable orchestrators may be encoded into the calculus with
smooth ones. We first define an encoding that decouples complex continuations from
join patterns.

Definition 6. The encoding [[·]] is defined on processes in Section 2. The function [[·]] is
an homomorphism except for orchestrators. In the definition below we assume that, for
every j, zj �∈

⋃
i∈I(fn(Ji)∪bn(Ji)) and the tuple ũj is exactly the sequence of defined

names in Jj:

[[
∑
i∈I

Ji � Pi]] = (zi
i∈I)
(∑

i∈I

Ji � zi ũi | zi(ũi) � [[Pi]]
)

It is folklore to demonstrate the correctness of the encoding [[·]], namely P ≈ Q if and
only if [[P]] ≈ [[Q]]. This is an immediate consequence of the following statement, that
in turn uses a generalization of the pi calculus law x(ũ).P ≈ (z)(x(ũ).z ũ | z(ũ).P).

Proposition 3. For every P , P ≈ [[P]].

Of course, if P is a generic process with orchestrators then join patterns in [[P]] may
have subjects that are not co-located. It is possible to avoid such problematic cases by
restricting the domain of [[·]] to distributable processes.

Proposition 4. If P is distributable then [[P]] is a process with smooth orchestrators.

5 The Implementation of Smooth Orchestrators

Smooth orchestrators are small pieces of code that may migrate over the network for
reaching the location where they execute. Unlike mobile agents, they exhibit a simple,
finite behavior and they require a limited-size message to migrate. Consider a single
branch smooth orchestrator:

x1(ũ1 @ ṽ1)& · · · &xn(ũn @ ṽn) � z ũ1 · · · ũn

It may be encoded as a vector of n+1 names – the subjects x1, · · · , xn plus the destina-
tion channel z – and a vector of k1 + · · ·+ kn values, where ki is the length of the tuple
ũi. Each value can be either an integer or a (free) name and it encodes a co-location
constraint: (1) the integer value j at position h indicates that the j-th and h-th bound
names must be co-located; (2) the constant c at position h indicates that the h-th bound
name must be co-located with c. An orchestrator of m branches is encoded by a vector
of length m whose elements are pairs of vectors of the above shape.

44 C. Laneve and L. Padovani

The destination of this vector is driven by the location of the subjects (remember
that the subjects are co-located). When this vector arrives at destination, it triggers an
appropriate process that monitors the states of the message queues of the subjects. We
discuss the implementation of smooth orchestrators of increasing complexity, starting
from the automata-based technique for implementing join patterns in the join calculus,
and gradually extending the technique to include the new features. Initially we omit the
discussion of nonlinear patterns and orchestrators with multiple branches.

In the join calculus a join definition is compiled as a finite state automaton that
keeps track of the status of the message queues associated with the corresponding chan-
nels [9]. Formally, let x1(ũ1)& · · · &xn(ũn) � z ũi be the definition, which is also a
smooth orchestrator. The associated automaton is

M = (℘({x1, . . . , xn}), {+x1,−x1, . . . ,+xn,−xn}, δ, ∅, {x1, . . . , xn}) (5)

where
δ(q, +xi) = q ∪ {xi} δ(q,−xi) = q \ {xi}

The automaton reacts to symbols of the form +x, meaning “the message queue of the
channel x is not empty” and −x, meaning “the message queue of the channel x is
empty”. Every time a message queue changes (either because a new message arrives, or
because a message is removed) it notifies all the automata associated with it. When the
joined channels are all fresh (and join definitions cannot be extended at runtime, like in
the join calculus) there will be a unique automaton for handling the whole definition. In
our case channel orchestrations may be added and/or removed at runtime, thus making
the set of automata associated with them change over time. The consequent competi-
tions for messages in shared channel queues are solved without difficulties because the
automata are all co-located.

This mechanism may be easily extended with co-location constraints when the scope
of such constraints is limited to the message itself. This is the case in
x(u @u, v @u)& y(w @w)�P . To model this extension the alphabet of the automata is
patched by admitting symbols of the form +x(ũ @ ṽ) and−x(ũ@ ṽ) instead of +x and
−x. When a new message x ã is available, each automaton associated with x makes
a +x(ũ@ ṽ) transition only if the co-location constraints are satisfied. When a mes-
sage x ã is removed from the x-queue, every automaton that has been affected by the
message checks whether the queue contains another message satisfying its co-location
constraints or not. In case there is no such message, the state of the automaton is ade-
quately reset in accordance with the new state of the queue.

When different joined channels have co-location dependencies, the constraints to be
verified may involve names that have been bound during previous transitions. For exam-
ple, take x(u @ u)& y(v @u) and assume that the corresponding automaton has made
a transition on a message x a. The subsequent transition on y depends on a’s location:
only a message y b such that a and b are co-located will make the automaton move into
the accepting state. Symmetrically, the automaton may start with a message y b. In this
case the automaton may progress provided a message x a has been enqueued with a
co-located with b. In facts, we are rewriting the above pattern into y(v @ v)&x(u @ v),
which preserves the co-location constraints (this operation is sustained by Lemma 1.1)

Smooth Orchestrators 45

and is left-constraining. More precisely, in the case of J = & i∈1..nxi(ũi @ ṽi) the
automaton is defined as follows. Let W =

⋃
j∈1..n ũj ṽj and w̃j be tuples in W . Then

M = ({& i∈Ixi(ũi @ w̃i) | I ⊆ 1..n}, {xi(ũi @ w̃i) | i ∈ 1..n}, δ, J, ∅)
where the transition relation δ is defined by(

& i∈Ixi(ũi @ w̃i)
)
&x(ũ @ w̃)&

(
& j∈I′xj(ũj @ w̃j)

)
x(u @ w′)−→

(
& i∈Ixi(ũi @ w̃′

i)
)
&
(
& j∈I′xj(ũj @ w̃j)

)
where (ũi @ w̃i)i∈I(ũ @ w̃) is equivalent (in the sense of Lemma 1.1) to the sequence
(ũ @ w̃′)(ũi @ w̃′

i)
i∈I . (This rewriting can always be accomplished with simple syntac-

tic transformations because the join pattern is left constrained.)
The instantaneous description of an automaton is a pair (q, ρ) where q is the current

state and ρ is the substitution over names that have been bound while the automaton
moved from the initial state to q. The behavior of the automaton can be defined by the
following transition relation between instantaneous descriptions:

(q, ρ)
x a1,...,an−→ (q′, ρ[u1 �→ a1] · · · [un �→ an])

if q′ = δ(q, x(u1 @ v1, . . . , un @ vn)) and ai
�viρ. Note that the behavior is not deter-

ministic: an incoming message may spawn a new automaton at any time.
As usual this nondeterminism may be described in terms of multiple automata run-

ning simultaneously, or by means of backtracking when there is a choice. It is well
known that nondeterministic automata are considerably more expensive than the de-
terministic ones in terms of space occupation or computational complexity. Since this
complexity is unavoidable if constraints make two or more input channels depend on
each other, it makes sense to look for solutions that limits the use of nondeterministic
automata as much as possible. One of such solutions that we consider is the following.
Given a pattern J = & i∈Ixi(ũi @ ṽi) we can partition the set of xi’s so that two chan-
nels stay in the same partition only if they have co-location dependencies. Inputs that
only have local co-location constraints, like x(u @u) or y(u @u, v @u), are placed in
singleton partitions. Then, a deterministic automaton can be created for handling the
pattern J partition-wise. On the contrary, every partition that contains inputs with co-
location dependencies will be implemented by means of a nondeterministic automaton.
It turns out that this simple optimization is effective since most of the orchestrators with
complex join patterns that are used in practice have very few co-location dependencies.

So far the implementation of smooth orchestrators that are not linear with respect
to subjects have been purposely overlooked. The deterministic automaton 5 described
above can handle nonlinear patterns following the suggestion of Maranget and Le Fes-
sant in [9]. The basic observation is that the number of channels involved in a pattern is
finite and the automata can query the associated message queues for the number of the
needed messages. Because of their nature, nondeterministic automata can also handle
nonlinear patterns. On the contrary, deterministic automata with co-location constraints
cannot be extended in a straightforward way. Consider the pattern x(u @ u, v @ v)&
x(w @ w, z @ w). If a message satisfies x(w @ w, z @ w), but the automaton uses it for

46 C. Laneve and L. Padovani

making a transition on x(u @ u, v @ v), then it might be not possible to reach the ac-
cepting state. What is needed in this case is again a form of nondeterminism.

The implementation of orchestrators that consist of several branches makes use of the
solution adopted in join calculus that mostly merges the automata for different branches
into a single automaton. The idea being that if the branches involve shared inputs, the
automata usually share some common structure and the resulting automaton is smaller
than the sum of the automata for the branches taken separately.

References

1. Aceto, L., Bloom, B., Vaandrager, F.W.: Turning SOS rules into equations. Information and
Computation 111(1) (1994) 1–52

2. Andrews, T., et.al.: Business Process Execution Language for Web Services. Version 1.1.
Specification, BEA Systems, IBM Corp., Microsoft Corp., SAP AG, Siebel Systems (2003)

3. Busi, N., Padovani, L.: A distributed implementation of mobile nets as mobile agents. In:
Proceedings of the 7th IFIP International Conference on Formal Methods for Open Object-
Based Distributed Systems (FMOODS 2005). Volume 3535 of LNCS., Springer Verlag
(2005) 259–274

4. Brown, A., Laneve, C., Meredith, G.L.: PiDuce: a process calculus with native XML
datatypes. In: 2nd International Workshop on Web Services and Formal Methods (WS-FM
2005). Volume 3670 of LNCS., Springer Verlag (2005) 18–34

5. Carpineti, S., Laneve, C., Milazzo, P.: The BoPi machine: a distributed machine for ex-
perimenting web services technologies. In: Fifth International Conference on Application
of Concurrency to System Design (ACSD 2005), IEEE Computer Society Press (2005)
202–211

6. Fournet, C.: The Join-Calculus: A Calculus for Distributed Mobile Programming. PhD
thesis, École Polytechnique, Paris, France (1998)

7. Gardner, P., Laneve, C., Wischik, L.: Linear forwarders. In R. Amadio, D.L., ed.: CONCUR
2002. Volume 2761 of Lecture Notes in Computer Science., Springer-Verlag (2003) 415–430

8. Kavantzas, N., Olsson, G., Mischkinsky, J., Chapman, M.: Web Services Choreography
Description Languages. Oracle Corporation (2003)

9. Le Fessant, F., Maranget, L.: Compiling join-patterns. In Nestmann, U., Pierce, B.C., eds.:
Proceedings of High-Level Concurrent Languages ’98. Volume 16.3 of Electronic Notes in
Computer Science. (1998)

10. Leymann, F.: Web Services Flow Language (wsfl 1.0). Technical report, IBM Software
Group (2001)

11. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, part I/II. Information and
Computation 100 (1992) 1–77

12. Milner, R., Sangiorgi, D.: Barbed bisimulation. In: Proceedings of ICALP ’92. Volume 623
of Lecture Notes in Computer Science., Springer-Verlag (1992) 685–695

13. Thatte, S.: XLANG: Web services for business process design. Microsoft Corporation (2001)
14. van der Aalst, W.: Workflow patterns. At www.workflowpatterns.com (2001)
15. Wojciechowski, P., Sewell, P.: Nomadic pict: Language and infrastructure design for mobile

agents. In: Proceedings of ASA/MA ’99 (First International Symposium on Agent Systems
and Applications/Third International Symposium on Mobile Agents). (1999)

On the Relative Expressive Power of
Asynchronous Communication Primitives�

Daniele Gorla

Dipartimento di Informatica,
Università di Roma “La Sapienza”

Abstract. In this paper, we study eight asynchronous communication primitives,
arising from the combination of three features: arity (monadic vs polyadic data),
communication medium (message passing vs shared dataspaces) and pattern-
matching. Each primitive has been already used in at least one language appeared
in literature; however, to uniformly reason on such primitives, we plugged them in
a common framework inspired by the asynchronous π-calculus. By means of pos-
sibility/impossibility of ‘reasonable’ encodings, we compare every pair of primi-
tives to obtain a hierarchy of languages based on their relative expressive power.

1 Introduction

In the last 25 years, several languages and formalisms for distributed and concurrent
systems appeared in literature. Some of them (e.g., CCS [18] and the π-calculus [23])
are mostly mathematical models, mainly used to formally reason on concurrent sys-
tems; other ones (e.g., LINDA [15]) are closer to actual programming languages and are
mainly focused on issues like usability and flexibility. As a consequence, the former
ones are usually very essential, while the latter ones provide more sophisticated and
powerful programming constructs.

Despite their differences, there are, however, some basic features that are somewhat
implemented in all these languages. Roughly speaking, these features can be described
as the possibility of having different execution threads (or processes) that run con-
currently by interacting via some form of communication. At least at a first glance,
the last feature (i.e., the inter-process communication) has yield the highest variety of
proposals. These arose from the possibility of having synchronous/asynchronous
primitives, monadic/polyadic data, first-order/higher-order values, dataspace-
based/channel-based communication media, local/remote exchanges (whenever
processes are explicitly distributed, like in [8, 11]), built-in pattern-matching mech-
anisms, point-to-point/broadcasting primitives, and so on. The aim of this work is
to formally study some of these proposals and to organise them in a clear hierarchy,
based on their expressive power. Hopefully, our results should help to understand the
peculiarities of every communication primitive and, as a consequence, they could be
exploited to choose the ‘right’ primitive when designing new languages and formalisms.

We focus on asynchronous communication primitives, since they are the most basi-
lar ones. Among the remaining features mentioned above, we focus on arity of data,

� This work has been partially supported by Project SENSORIA, founded by EU-IST
Programme, contract number 016004.

L. Aceto and A. Ingólfsdóttir (Eds.): FOSSACS 2006, LNCS 3921, pp. 47–62, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

48 D. Gorla

communication medium and possibility of pattern-matching. The expressiveness of the
omitted features has been already dealt with elsewhere [25, 11, 13]; we leave as a future
work the integration of these results in our framework. Notice that we studied pattern-
matching because it is nowadays becoming more and more important, especially in
languages that deal with complex data like XML [1, 5, 9]. However, for the sake of sim-
plicity, we consider here a very basic form of pattern-matching, that only checks for
name equality while retrieving a datum; the formal study of more flexible and powerful
mechanisms (e.g., those in [12]) is left for future work.

By combining the three features chosen, we obtain eight communication primitives
that have been all already employed elsewhere, e.g. in [17, 4, 15, 8, 11, 9]. However, to
uniformly reason on such primitives, we plugged them in a common framework inspired
by the asynchronous π-calculus; we choose the π-calculus because nowadays it is one of
the best-established workbenches for theoretical reasoning on concurrent systems. By
following [26, 10, 22], we shall compare the resulting languages by means of their rela-
tive expressive power, i.e. we shall try to encode one in the other and study the properties
of the encoding function. More precisely, we shall exploit possibility/impossibility of
‘reasonable’ encodings (as introduced in [22]) to compare every pair of primitives, thus
obtaining a hierarchy of languages based on their relative expressive power.

Our results show that the communication paradigm underlying LINDA [15]
(polyadic, dataspace-based and with pattern-matching) is at the top of the hierarchy;
not incidentally, LINDA’s paradigm has been used in actual programming languages
[3, 14]. On the opposite extreme, we have the communication paradigm used in Ambi-
ent [8] (monadic, dataspace-based but without pattern-matching). Such a paradigm is
very simple but also very poor; indeed, Ambient’s expressive power mostly arises from
the mobility primitives. Strictly in the middle, we find the asynchronous π-calculus
(channel-based and without pattern-matching), in its monadic and polyadic version.
This result stresses the fact that the π-calculus is a good compromise between ex-
pressiveness and simplicity. As a further contribution, we also prove that the polyadic
π-calculus is strictly more expressive than the monadic one. A posteriori, this fact justi-
fies the use of type-systems [19, 27, 24] to obtain a fragment of the former calculus that
can be reasonably translated in the latter one.

This paper is organised as follows. In Section 2, we present a family of eight
π-based asynchronous calculi arising from the combination of the three features stud-
ied. In Section 3, we present the criteria an encoding should satisfy to be a reasonable
means for language comparison; there, we also sum-up the results of the paper, that
are proved in Sections 4 and 5. We start with the encodability results and then we
present the impossibility results, that are the main contribution of our work. Finally, in
Section 6, we conclude the paper by also touching upon related work.

2 A Family of π-Based Calculi

As we said in the Introduction, we shall assess the expressiveness of the commu-
nication primitives studied by putting them in a common framework, inspired by
the asynchronous π-calculus. We assume two disjoint and countable sets: names, N ,
ranged over by a, b, x, y, n, m, · · ·, and process variables, X , ranged over by X, Y, · · ·.

On the Relative Expressive Power of Asynchronous Communication Primitives 49

Notationally, when a name is used as a channel, we shall prefer letters a, b, c, · · ·; when
a name is used as an input variable, we shall prefer letters x, y, z, · · ·; to denote a generic
name, we shall use letters n, m, · · ·. The (parametric) syntax of our calculi is

P, Q, R ::= 0
∣∣ OUT

∣∣ IN.P
∣∣ (νn)P

∣∣ P |Q∣∣ if n = m then P else Q
∣∣ recX.P

∣∣ X

The different calculi will be obtained by plugging into this basic syntax a proper defini-
tion for input (IN) and output (OUT) actions. As usual, 0 and P |Q denote the termi-
nated process and the parallel composition of two processes, while (νn)P restricts to P
the visibility of n; finally, if n = m then P else Q, recX.P and X are the standard
constructs for conditional evolution, process definition and process invocation.

In this paper, we study the possible combinations of three features for asynchronous
communications: arity (monadic vs. polyadic data), communication medium (channels
vs. shared dataspaces) and pattern-matching. As a result, we have a family of eight
calculi, denoted as Πa,m,p, whose generic element is denoted as πβ1β2β3 , where βi ∈
{0, 1}. Intuitively, β1 = 1 iff we have polyadic data, β2 = 1 iff we have channel-based
communications and β3 = 1 iff we have pattern-matching. Thus, the full syntax of
every calculus is obtained from the following productions:

π000 : P, Q, R ::= . . . IN ::= (x) OUT ::= 〈b〉
π001 : P, Q, R ::= . . . IN ::= (T) OUT ::= 〈b〉
π010 : P, Q, R ::= . . . IN ::= a(x) OUT ::= a〈b〉
π011 : P, Q, R ::= . . . IN ::= a(T) OUT ::= a〈b〉
π100 : P, Q, R ::= . . . IN ::= (x̃) OUT ::= 〈̃b〉
π101 : P, Q, R ::= . . . IN ::= (T̃) OUT ::= 〈̃b〉
π110 : P, Q, R ::= . . . IN ::= a(x̃) OUT ::= a〈̃b〉
π111 : P, Q, R ::= . . . IN ::= a(T̃) OUT ::= a〈̃b〉

where
T ::= x

∣∣ �n� (Template)

and ˜ denotes a (possibly empty) sequence of elements of kind (whenever useful, we
shall write a tuple ˜ as the sequence of its elements, separated by a comma). Template
fields of kind x are called formal and can be replaced by every name upon withdrawal
of a datum; template fields of kind �n� are called actual and impose that the datum
withdrawn contains exactly name n.

Πa,m,p can be easily ordered by language containment; in particular, πβ1β2β3 can be
seen as a sub-language of πβ′

1β′
2β′

3
if and only if, for every i ∈ {1, 2, 3}, it holds that

βi ≤ β′
i. As an extremal example, consider π000 and π111: monadic data are a particular

case of polyadic data (all of length one); a shared dataspace can be modelled by letting
all communications happen on the same global channel, say ether; finally, absence of
pattern-matching can be obtained by only considering templates without actual fields.

50 D. Gorla

Notice that π010 and π110 are very similar to the (monadic/polyadic) asynchronous
π-calculus [17, 4]; π101 relies on the communication paradigm adopted in LINDA [15];
π000 and π100 rely on the communication paradigm adopted in the (monadic/polyadic)
Ambient Calculus [8]; π001 and π011 rely on the communication paradigm adopted in
LCKLAIM and CKLAIM [11], respectively; finally, π111 relies on the communication
paradigm adopted, e.g., in μKLAIM [11] or in semantic-π [9].

As usual, a(· · · , x, · · ·).P and (νx)P bind x in P , while recX.P binds X in P .
The corresponding notions of free and bound names of a process, FN(P) and BN(P),
and of alpha-conversion, =α, are assumed. We let N(P) denote FN(P) ∪ BN(P).

Operational semantics. The operational semantics of the calculi is given by means of a
labelled transition system (LTS) describing the actions a process can perform to evolve.
Judgements take the form P

α−→ P ′, meaning that P can become P ′ upon execution of
α. Labels take the form

α ::= τ
∣∣ a?b̃

∣∣ (νc̃)a!̃b
∣∣ ?b̃ ∣∣ (νc̃)!̃b

Traditionally, τ denotes an internal computation; a?b̃ and (νc̃)a!̃b denote the recep-
tion/sending of a sequence of names b̃ along channel a; when channels are not present
(namely, in π 0), ?b̃ and (νc̃)!̃b denote the withdrawal/emission of b̃ from/in the shared
dataspace. In (νc̃)a!̃b and (νc̃)!̃b, some of the sent names, viz. c̃ (⊆ b̃), are restricted.
Notationally, (νc̃) !̃b stands for either (νc̃)a!̃b or (νc̃)!̃b. As usual, BN((νc̃) !̃b) � c̃;
FN(α) and N(α) are defined accordingly.

The LTS provides some rules shared by all the calculi; the different semantics are
obtained from the axioms for input/output actions. The common rules, reported below,
are an easy adaptation of an early-style LTS for the π-calculus; thus, we do not comment
them and refer the interested reader to [23].

P
?b−−→ P ′ Q

!b−→ Q′

P | Q τ−→ P ′ | Q′
P

a?b−−→ P ′ Q
a!b−−→ Q′

P | Q τ−→ P ′ | Q′

P
α−→ P ′ n �∈ N(α)

(νn)P α−→ (νn)P ′
P

(νc) !b−−−−−→ P ′ n ∈ FN(̃b) \ { , c̃}

(νn)P
(νn,c) !b−−−−−−→ P ′

P
α−→ P ′ BN(α) ∩ FN(Q) = ∅

P | Q α−→ P ′ | Q
P ≡ P1

α−→ P2 ≡ P ′

P
α−→ P ′

The structural equivalence,≡, rearranges a process to let it evolve according to the rules
of the LTS. Its defining axioms are the standard π-calculus’ ones [23]:

P | 0 ≡ P P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R

if n = n then P else Q ≡ P if n = m then P else Q ≡ Q if n �= m

On the Relative Expressive Power of Asynchronous Communication Primitives 51

P ≡ P ′ if P =α P ′ (νn)0 ≡ 0 (νn)(νm)P ≡ (νm)(νn)P

P | (νn)Q ≡ (νn)(P |Q) if n �∈ FN(P) recX.P ≡ P{recX.P/X}

To define the semantics for the basic actions of the various calculi, we must specify
when a template matches a datum. Intuitively, this happens whenever both have the
same length and corresponding fields match (i.e., �n� matches n and x matches every
name). This can be formalised via a partial function, called pattern-matching and writ-
ten MATCH, that also returns a substitution σ; the latter will be applied to the process
that performed the input to replace template formal fields with the corresponding names
of the datum retrieved. These intuitions are formalised by the following rules:

MATCH(;) = ε MATCH(�n�; n) = ε MATCH(x; n) = {n/x}

MATCH(T ; b) = σ1 MATCH(T̃ ; b̃) = σ2

MATCH(T, T̃ ; b, b̃) = σ1 ◦ σ2

where ‘ε’ denotes the empty substitution and ‘◦’ denotes substitution composition. Now,
the operational rules for output/input actions in calculi π 0 are

〈̃b〉 !b−→ 0 (T̃).P ?b−−→ Pσ if MATCH(T̃ ; b̃) = σ

and, similarly, the rules for calculi π 1 are

a〈̃b〉 a!b−−→ 0 a(T̃).P a?b−−→ Pσ if MATCH(T̃ ; b̃) = σ

Notation. A substitution σ is a finite partial mapping of names for names; Pσ denotes
the (capture avoiding) application of σ to P . As usual, we let =⇒ stand for

τ−→∗
(i.e.,

the reflexive and transitive closure of
τ−→) and

α=⇒ stand for =⇒ α−→=⇒ . We shall
write P

α−→ to mean that there exists a process P ′ such that P
α−→ P ′; a similar nota-

tion is adopted for P =⇒ and P
α=⇒ . Moreover, we let φ range over visible actions (i.e.

labels different from τ) and ρ to range over (possibly empty) sequences of visible ac-
tions. Formally, ρ ::= ε | φ · ρ, where ‘ε’ denotes the empty sequence of actions and

‘·’ represents concatenation; then, N
ε=⇒ is defined as N =⇒ and N

φ·ρ
==⇒ is defined

as N
φ

=⇒ ρ
=⇒ .

3 Quality of an Encoding and Overview of Our Results

We now study the relative expressive power of the calculi in Πa,m,p by trying to encode
one in another. Formally, an encoding [[·]] is a function mapping terms of the source
language into terms of the target language. As pointed out elsewhere [26, 10, 22], the
relative expressive power of our calculi can be established by defining some criteria to
evaluate the quality of the encodings or to prove impossibility results.

The main requirement, that we call faithfulness, is that the encoding must not change
the semantics of a source term, i.e. it must preserve the observable behaviour of the term

52 D. Gorla

without introducing new behaviours. As very clearly discussed in [21], there are several
ways to formalise this idea; we shall define it in the simplest possible way, by means of
barbs and divergence.

Definition 1 (Barbs and Divergence). P offers a barb, written P ⇓, iff P
(νc) !b

=====⇒ .
P diverges, written P ⇑, iff P

τ−→ω.

The idea is to identify a basic observable behaviour (or barb) for the languages con-
sidered and require that the encoding preserves and reflects it (i.e., the encoding should
maintain all the original barbs without introducing new ones). In the setting of an asyn-
chronous language [2, 6], a barb is the possibility of emitting some datum.1 Since barb
preservation and reflection alone are too weak, it is also required that the computa-
tions of a process correspond to the computations of its encoding, and vice versa; this
property is usually known as operational correspondence. Barb preservation and oper-
ational correspondence together yield (weak) barbed bisimulation [20, 2] that, however,
is insensitive to divergence (i.e., it can equate a term with an infinite computation and
a term with only finite computations). In our setting, it is clearly undesirable to have
an encoding that turns a terminating term into a divergent one, since this would change
the behaviour of the source term. So, we need a further requirement stating that also
divergence must be preserved and reflected by the encoding.

Finally, a good encoding cannot depend on the particular names involved in the
source process, since we are dealing with a family of name-passing calculi; we call this
property name invariance. Furthermore, the encoding should not decrease the degree
of parallelism in favour of centralised entities that control the behaviour of the encoded
term: if we can find some process behaviour that cannot be implemented in the target
language with the same degree of distribution as in the source one, then surely the
former language will be “weaker” than the latter one. We express this last property as
homomorphism w.r.t. ‘|’.

To sum up, we consider an encoding as a ‘reasonable’ means to compare the expres-
sive power of two languages if it enjoys all the properties discussed so far.

Definition 2 (Reasonable Encoding). An encoding [[·]] is reasonable if it enjoys the
following properties:

1. (homomorphism w.r.t. ‘|’): [[P1|P2]] � [[P1]] | [[P2]]
2. (name invariance): [[Pσ]] � [[P]]σ, for every permutation of names σ
3. (faithfulness): P ⇓ iff [[P]] ⇓; P ⇑ iff [[P]] ⇑
4. (operational correspondence):

(a) if P
τ−→ P ′ then [[P]] τ=⇒ [[P ′]]

(b) if [[P]] τ−→ Q then there exists a P ′ such that P =⇒ P ′ and Q =⇒ [[P ′]]

The results of our paper are summarised in Table 1. It is worth noting that all the lan-
guages are Turing complete: it is easy to show that π000 can encode (by introducing

1 We choose here a very weak form of barbs. This fact strengthens our impossibility results; on
the other hand, our possibility results are not undermined by this choice, since they would also
enjoy properties expressed in terms of more significant barbs, such as those in [2, 6].

On the Relative Expressive Power of Asynchronous Communication Primitives 53

Table 1. Overview of the Results

π111 ←−−−−−⊃

−−−−−−→
π101

↑
|∪
|/↓

π011

↑
|
|/↓

π110

↑
|∪
|/↓

π010

↗
�

�−↙
�−↘

↖
�

π001
←−−−/−−−
−−−/−−−→

π100

↖
��
�−↘

�−↙
↗

��
π000

where • “→” denotes existence of a reasonable encoding
• “
→” denotes impossibility for a reasonable encoding
• “↪→” denotes language inclusion

divergence2) π001 that, in turn, is Turing complete (actually, the fragment without tem-
plate formal fields suffices, see [6]). Moreover, notice that Definition 2(4).b is a weak
form of correspondence; this makes our impossibility results stronger. However, for the
encodability results, a better definition should keep into account every possible compu-
tation [[P]] =⇒ Q. With this stronger property, the encodings provided in Sections 4.2
and 4.4 would not enjoy operational correspondence; we leave for future work the task
of establishing whether encodings of π001 and π110 in π010 and π011 satisfying this
stronger property exist or not.

4 Encodability Results

We start with the positive results, i.e. the “→” arrows of Table 1. In all the cases, we
shall describe only the translation of the input and output actions; the remaining opera-
tors will be translated homomorphically (this trivially satisfies Definition 2(1)). More-
over, in what follows we are going to prove only that the encodings do not introduce
divergence; preservation of divergence is a trivial consequence of Definition 2(4).a;
Definition 2(2) and barb preservation/reflection will hold by construction of the encod-
ings; Definition 2(4) can be routinely proved.

2 To study Turing completeness, the fact that the encoding introduces divergence is irrelevant.

54 D. Gorla

4.1 An Encoding of π111 in π101

The only feature of π111 not present in π101 is the possibility of specifying the name
of a channel where the exchange happens. However, thanks to pattern-matching, this
feature can be very easily encoded in π101: it suffices to impose that the first name of
every datum represents the name of the channel where the interaction is scheduled and
that every template starts with the corresponding actual field. This discipline is rendered
by the following encoding:

[[a〈̃b〉]] � 〈a, b̃〉
[[a(T̃).P]] � (�a�, T̃).[[P]]

Proposition 1. The encoding [[·]] : π111 −→ π101 is reasonable.

Proof. Definition 2(2) holds by construction. Definition 2(4).b can be proved as a
stronger claim: if [[P]] τ−→ Q, then Q ≡ [[P ′]] and P

τ−→ P ′ (this result, like Def-
inition 2(4).a, is proved by an easy induction over the shortest inference for

τ−→).
Definition 2(3) holds easily; just notice that the stronger formulation of operational cor-
respondence mentioned above implies that the encoding cannot introduce divergence.

�

4.2 An Encoding of π001 in π010

We now have to translate the monadic pattern-matching of π001 into the channel-based
exchanges of π010. This would have been an easy task, if only actual fields occurred in
templates: indeed, 〈b〉 would have been translated in b〈b〉 and, correspondingly, (�b�).P
would have been translated in b(y).[[P]], for y fresh. This encoding, however, does not
work well when trying to translate (x).P .

Thus, 〈b〉 in π001 should correspond to two outputs in π010: one over b, to mimic
name matching as described above, and one over a fresh and reserved channel ether,
to enable inputs with formal fields. Symmetrically, an input action is translated in two
successive inputs: the first one from ether and the second one from the received value,
if we are translating an input with a formal field, and vice versa, otherwise. For example,
〈b〉 | 〈c〉 | (�c�).P is translated to b〈b〉 | ether〈b〉 | c〈c〉 | ether〈c〉 | c(y).ether(z).[[P]].
We believe that this encoding is reasonable, but proving that it does not introduce diver-
gence is hard because of the possible interferences between parallel components (e.g.,
the above example could evolve in b〈b〉 | ether〈c〉 | [[P]], by performing a communi-
cation between c(y) and c〈c〉 and between ether(z) and ether〈b〉).

The problem is that the two outputs in the translation of 〈b〉 are totally unrelated.
This can be fixed by associating every output with a restricted name and by using such
a name to reduce the effects of interferences. Formally,

[[〈b〉]] � (νn)(ether〈n〉 | b〈n〉 | n〈b〉)
[[(x).P]] � ether(y).y(x).x(z).if y = z then [[P]]

[[(�b�).P]] � b(y).y(y′).ether(z).if y = z then [[P]]

On the Relative Expressive Power of Asynchronous Communication Primitives 55

for n, y, y′ and z fresh names. Clearly, this solution does not rule out interferences; it
simply blocks interfering processes. This suffices to make the proof of reasonableness
easier; to this aim, the key result is the following Lemma.

Lemma 1. Let κ be the number of top-level outputs in P . If [[P]] τ−→3κ+1 Q, then
there exists a P ′ such that P

τ−→ P ′ and [[P]] τ−→3 [[P ′]] =⇒ Q.

Proposition 2. The encoding [[·]] : π001 −→ π010 is reasonable.

Proof. We only prove that [[·]] does not introduce divergence; the other require-
ments are simple. Assume that [[P]] ⇑, i.e. there exists an infinite computation
[[P]] � Q0

τ−→ Q1
τ−→ · · · τ−→ Q3κ+1

τ−→ · · ·. By Lemma 1, there exists a P ′ such
that [[P]] τ−→3 [[P ′]] =⇒ Q3κ+1 and P

τ−→ P ′. But [[P ′]] is still divergent; indeed,
[[P ′]] =⇒ Q3κ+1

τ−→ · · ·. By iterating this reasoning, we can build up a divergent com-
putation for P , i.e. P

τ−→ P ′ τ−→ · · ·; hence, [[·]] does not introduce divergence. �

4.3 An Encoding of π100 in π010

The only feature of π100 is that it can check the arity of a datum before retrieving it (see
the definition of function MATCH). This, however, can be mimicked by the channel-
based communication of π010. Indeed, we assume a (reserved) channel for every pos-
sible arity: a datum of arity k will be represented as an output over channel k; an input
of arity k will be represented as an input from k; a communication over k in π010 can
happen if and only if pattern-matching succeeds in π100; finally, the exchanged datum
is a restricted name that will be used in the actual data exchange.

The encoding assumes that 0, 1, . . . , k, . . . are fresh and reserved names; then

[[〈b1, · · · , bk〉]] � (νn)(k〈n〉 | n(y).(y〈b1〉 | n(y).(y〈b2〉 |
n(y).(· · ·n(y).y〈bk〉) · · ·)))

[[(x1, · · · , xk).P]] � k(x).(νm)(x〈m〉 |m(x1).(x〈m〉 |
m(x2).(· · · (x〈m〉 |m(xk).[[P]]) · · ·)))

for n, m, x and y fresh names. The datum emitted over k (viz. n) is used as a “synchro-
niser”, to keep the order of the transmitted data and force the right name-to-variable
association. The actual exchange takes place over a restricted channel created by the
receiver (viz. m) and transmitted along n as an ack to the sender.

Like before, reasonableness of this encoding can be proved by using the following
Lemma. Moreover, notice that for this encoding the stronger version of Definition 2(4).b
holds: if [[P]] =⇒ Q, then there is a P ′ such that P =⇒ P ′ and Q =⇒ [[P ′]].

Lemma 2. Let κ and λ be the number and the maximum arity of top-level outputs in
P , respectively. If [[P]] τ−→κ(2λ+1) Q, then there exists a P ′ such that P

τ−→ P ′ and
[[P]] τ−→2h+1 [[P ′]] =⇒ Q, for 0 ≤ h ≤ λ.

Proposition 3. The encoding [[·]] : π100 −→ π010 is reasonable.

56 D. Gorla

4.4 An Encoding of π110 in π011

In π110, a communication succeeds if (and only if) a datum of a proper length is present
over the channel specified by the inputting process. So, two kinds of information are
atomically verified: the length of the message and the channel where it should be trans-
mitted. This can be mimicked in π011 by having one fresh and reserved name for every
length (say, 0, 1, . . . , k, . . .); a k-ary input from a is then translated into a process start-
ing with a(�k�) and, correspondingly, a k-ary output on a is translated into a process
offering k at a. Once this communication took place, we are sure that a k-ary datum is
available on a; we then proceed similarly to Section 4.3 for the actual data exchange: a
new channel n is made available on a, to maintain the order of messages, while a new
channel m is sent back on n to transmit the datum name by name.

However, we need to enhance the encoding of Section 4.3 to avoid interfer-
ences due to the fact that the existence of a k-ary output and the acquisition of the
new name for the actual exchange are not atomic here. Indeed, the translation of
a〈b1, b2〉 | a〈c1, c2, c3〉 | a(x1, x2).P | a(x1, x2, x3).Q can originate interferences that
can lead to divergence. Thus, like in Section 4.2, we shall verify at the end of the data
exchange the consistency of the exchange, i.e. that a k-ary data has really been retrieved.
To this aim, let end be another fresh and reserved name; then

[[a〈b1, · · · , bk〉]] � a〈k〉 | (νn)(a〈n〉 | n(y).(y〈b1〉 | · · · n(y).(y〈bk〉 |
n(y).y〈end〉) · · ·))

[[a(x1, · · · , xk).P]] � a(�k�).a(x).(νm)(x〈m〉 |m(x1).(· · · | (x〈m〉 |m(xk).
(x〈m〉 |m(�end�).[[P]]) · · ·)))

for n, m, x and y fresh names. Reasonableness of this encoding can be proved like in
Proposition 2, as a consequence of the following Lemma.

Lemma 3. Let κ and λ be the number and the maximum arity of top-level outputs in
P , respectively. If [[P]] τ−→κ(2λ+3)+1 Q, then there exists a P ′ such that P

τ−→ P ′ and
[[P]] τ−→2h+4 [[P ′]] =⇒ Q, for 0 ≤ h ≤ λ.

Proposition 4. The encoding [[·]] : π110 −→ π011 is reasonable.

5 Impossibility Results

We now consider the impossibility results, i.e. the “ �→” arrows of Table 1, that are the
main technical contribution of this paper. They are all proved by contradiction: we as-
sume that a reasonable encoding exists and show that it introduces divergence. Often,
the contradiction is obtained by exhibiting a process that cannot reduce but whose en-
coding reduces. This fact, together with operational correspondence, implies that the
encoding introduces divergence, as stated by the following simple result.

Proposition 5. Let [[·]] be an operationally corresponding encoding. If there exists a
process P such that P

τ−→/ but [[P]] τ−→ , then [[·]] introduces divergence.

On the Relative Expressive Power of Asynchronous Communication Primitives 57

Proof. The fact that [[P]] τ−→ Q implies, by operational correspondence, that P =⇒ P ′,
for some P ′ such that Q =⇒ [[P ′]]. But the only P ′ such that P =⇒ P ′ is P itself; thus,
[[P]] τ−→+ [[P]], i.e. [[P]] diverges. �

Theorem 1. There exists no reasonable encoding of π011 in π110.

Proof. Assume that [[·]] is reasonable and consider the process a(�b�) | a〈b〉, for a �= b,
that evolves in 0. By operational correspondence, [[a(�b�) | a〈b〉]] =⇒ [[0]]; moreover,
by faithfulness, [[a(�b�)]] �⇓, [[a〈b〉]] ⇓ and [[0]] �⇓. Thus, the barb of [[a〈b〉]] must be
consumed in the computation leading [[a(�b�) | a〈b〉]] to [[0]].

Now, notice that [[a〈b〉]] cannot perform a τ -step otherwise, by Proposition 5,
[[·]] would introduce divergence. This fact, together with [[a(�b�) | a〈b〉]] �
[[a(�b�)]] | [[a〈b〉]], implies that [[a(�b�)]] consumed the barb offered by [[a〈b〉]]. Thus,

it must be that [[a(�b�)]] n?c−−−→, for some n and c̃ such that [[a〈b〉]] (νc′)n!c−−−−−→; then

[[a(�b�)]] n?d−−−→, for every d̃ of the same arity as c̃, i.e. |d̃| = |c̃|.
If n �= b, then pick up e �∈ {a, b, n} and the permutation of names swapping b and

e; by name invariance, it holds that [[a〈e〉]] (νf ′)n!f−−−−−−→, where f̃ and f̃ ′ are the renaming
of c̃ and c̃′. In particular, |c̃| = |f̃ |. Then, [[a(�b�) | a〈e〉]] τ−→ , while a(�b�) | a〈e〉 τ−→/ .
By Proposition 5, [[·]] is not reasonable, as it introduces divergence; contradiction.

If n = b, then pick up e �∈ {a, b}, the permutation of names swapping a and e, and
work like before, with process [[a(�b�) | e〈b〉]]. �

Corollary 1. There exists no reasonable encoding of π001 in π100.

Proof. Trivial consequence of Theorem 1, since π001 and π100 can be seen as the sub-
calculi of π011 and π110 where all the communications happen on the same (unique and
global) channel. �

Theorem 2. There exists no reasonable encoding of π010 in π100.

Proof. The proof is similar to that of Theorem 1. We start with process a〈b〉 | a(x), for

a �= b; it holds that [[a〈b〉]] (νc′)!c−−−−→ and [[a(x)]] ?c−−→ , for some c̃. By name invariance,

[[b〈a〉]] (νd′)!d−−−−−→ , where d̃ and d̃′ are obtained by swapping a and b in c̃ and c̃′; thus,

|d̃| = |c̃|. Now, trivially, [[a(x)]] ?d−−→ and [[b〈a〉 | a(x)]] τ−→ , while b〈a〉 | a(x) τ−→/ .�

Theorem 3. There exists no reasonable encoding of π110 in π010.

Proof. Similarly to the proof of Theorem 1, consider the process a(x, y) | a〈b, c〉;
again, [[a〈b, c〉]] (νd′)n!d−−−−−−→ and [[a(x, y)]] n?d−−−→ , for some d and d̃′. If n �= a,

choose e �= a; by name invariance, [[e〈b, c〉]] (νf ′)n!f−−−−−−→ and [[a(x, y) | e〈b, c〉]] τ−→ ,
while a(x, y) | e〈b, c〉 �τ−→ . If n = a, consider a(x, y, z) | a〈b, c, c〉; like be-

fore, [[a〈b, c, c〉]] (νe′)m!e−−−−−−→ and [[a(x, y, z)]] m?e−−−→ . Then, if m = a, we have
that [[a(x, y) | a〈b, c, c〉]] τ−→ ; otherwise, choose f �= a and conclude that
[[a(x, y, z) | f〈b, c, c〉]] τ−→ . �

58 D. Gorla

Corollary 2. There exist no reasonable encodings of π001 and π100 in π000.

Proof. Easily derivable from Corollary 1 and Theorem 3, respectively. �

Theorem 4. There exists no reasonable encoding of π111 in π011.

Proof. Consider the process a〈b, c〉 | a(�b�, �c�), for a, b and c pairwise distinct. Like

in Theorem 1, we have that [[a(�b�, �c�)]] n?m−−−→ and [[a〈b, c〉]] (νm)n!m−−−−−−→. If the in-
put of [[a(�b�, �c�)]] has been generated by relying on a template formal field, then

[[a(�b�, �c�)]] n?l−−→ , for every l; by Proposition 5, this would suffice to build up a di-
vergent computation for [[a(�b�, �c�) | a〈b, d〉]], for every d �= c. Otherwise, the input of
[[a(�b�, �c�)]] relies on an actual field; we then consider the following possibilities for n
and m:

1. c �∈ {n, m}: let d �= c and consider the permutation that swaps c and d; then,

[[a〈b, d〉]] (νm)n!m−−−−−−→ and [[a〈b, d〉 | a(�b�, �c�)]] τ−→ .
2. n = c, m �= b: let d �= b and consider the permutation that swaps b and d; like

before, [[a〈d, c〉 | a(�b�, �c�)]] τ−→ .
3. n = c, m = b: let d �= a and consider the permutation that swaps a and d; then,

[[d〈b, c〉 | a(�b�, �c�)]] τ−→ .
4. m = c, n �= b: like case 2.
5. m = c, n = b: like case 3. �

Theorem 5. There exists no reasonable encoding of π010 in π001.

Proof. By contradiction, assume that there exists a reasonable encoding [[·]]. Let a,
b, c and d be pairwise distinct names; let Ω denote a divergent process and define
P � if x = d then Ω. Faithfulness implies that [[if d = d then Ω]] diverges,
[[a(x).P]] cannot offer data and [[a〈b〉]] must offer some datum. Moreover, because
of Proposition 5, [[a(x).P]] and [[a〈b〉]] cannot perform τ -steps in isolation; however,
because of operational correspondence, when put in parallel they must perform at least
one τ -step to become [[P{b/x}]]. If the input performed by [[a(x).P]] relies on a formal
field, then we can obtain a divergent computation from [[a(x).P | c〈b〉]]. So, it must be
that [[a(x).P]] starts with an input relying on an actual template field �a� (it must be a
otherwise, by name invariance, [[a(x).P | c〈b〉]] would diverge).

Now, it is easy to prove that [[a(x).P]] | [[a〈b〉]] =⇒ [[P{b/x}]] if and only if

[[a(x).P]]
ρ

=⇒ R, [[a〈b〉]] ρ
=⇒ R′ and R | R′ ≡ [[P{b/x}]]. It must be that ρ �

?a · ρ1 · ?b · ρ2, for b not occurring in ρ1 and ?b generated by an input ac-

tion with a formal template field; moreover, [[a(x).P]]
?a·ρ1====⇒ R1

?b−−→ R2
ρ2==⇒ R and

[[a〈b〉]] !a·ρ1===⇒ R3
!b−→ R4

ρ2==⇒ R′. In particular, ρ2 � �1n1 · . . . · �knk, for �i ∈
{?, !}, and ρ2 � ♦1n1 · . . . · ♦knk, for ♦i ∈ {?, !} − {�i}.

Let σ be the permutation that swaps a and c and b and d; by name invariance,

[[c(x).P]]
?c·ρ′

1===⇒ R1σ
?d−−→ R2σ

ρ′
2==⇒ Rσ and [[c〈d〉]] !c·ρ′

1===⇒ R3σ
!d−→ R4σ

ρ′
2==⇒ R′σ,

for ρ′1 = ρ1σ and ρ′2 = ρ2σ. More precisely, ρ′2 � �1n
′
1 · . . . · �kn′

k and
ρ′2 � ♦1n

′
1 · . . . · ♦kn′

k, for n′
i � σ(ni).

On the Relative Expressive Power of Asynchronous Communication Primitives 59

Now, consider Q � a(x).P | a〈b〉 | c〈d〉 | c(x).P ′, where P ′ � if x = b then Ω;
trivially, Q �⇑ while, as we shall see, [[Q]] ⇑. This yields the desired contradiction.
Consider

[[Q]] =⇒ R1 | R3 | R1σ | R3σ −→−→ R2{d/b} | R4 | (R2σ){b/d} | R4σ

where R1 received d in place of b and R1σ received b in place of d (this is possible

since these inputs do not rely on actual fields). Now, R2{d/b} �1m1·...·�kmk==========⇒ , where

mk �
{

d if ni = b
ni otherwise

and (R2σ){b/d} �1m′
1·...·�km′

k==========⇒ , where

m′
k �

{
b if n′

i = d
n′

i otherwise

Finally, consider the computation

R2{d/b} | R4 | (R2σ){b/d} | R4σ =⇒ R{d/b} | R′{d/b} | (Rσ){b/d} | (R′σ){b/d}
obtained by performing a communication

– between �imi and ♦ini and between �im
′
i and ♦in

′
i, if ni �= b, or

– between �imi and ♦in
′
i and between �im

′
i and ♦ini, otherwise.

Now, R{d/b} | R′{d/b} � (R |R′){d/b} ≡ [[P{b/x}]]{d/b} � [[if d = d then Ω]], that
is a divergent process. �

Theorem 6. There exists no reasonable encoding of π100 in π001.

Proof. The proof is similar to that of Theorem 5. Assume that [[·]] is reasonable; con-
sider the process P � (x, y).if x = a then if y = d then Ω; pick up c �= a and
d �= b; consider the permutation of names σ swapping a with c and b with d; finally,
show that Q � P | 〈a, b〉 | Pσ | 〈c, d〉 is not divergent, while [[Q]] ⇑. �

6 Conclusion and Related Work

We have studied the expressive power of eight communication primitives, arising from
the combination of three features: arity of data, communication medium and presence
of pattern-matching. By relying on possibility/impossibility of ‘reasonable’ encodings,
we obtained a clear hierarchy of communication primitives. Notably, LINDA’s com-
munication paradigm [15] is at the top of this hierarchy, while the π-calculus is in the
middle. A posteriori, this can justify the fact that the former one is usually exploited in
actual programming languages [3, 14], where flexibility and expressive power are the
driving issues, while the latter one is mostly used for theoretical reasoning.

One of the pioneering works in the study of communication primitives for dis-
tributed systems is [16]. There, the expressive power of several “classical” primitives

60 D. Gorla

(like test-and-set, compare-and-swap, ...) is studied by associating to every primitive
the highest number of parallel processes that can reach a distributed consensus with
that primitive, under conditions similar to the ‘reasonableness’ of our Definition 2.
It then follows that a primitive with number n is less expressive than every primi-
tive with number m (> n): the latter one can solve a problem (i.e. the consensus
among m processes) that the former one cannot reasonably solve. This idea is also
exploited in [22] to assess the expressive power of the non-deterministic choice in the
π-calculus.

In [10], the notion of relative expressive power is used to measure the expressive-
ness of programming languages. In particular, a simple class of three concurrent con-
straint languages is studied and organised in a strict hierarchy. The languages have
guarded constructs and only differ in the features offered by the guards: a guard is al-
ways passed in the less expressive language; a guard is passed only if a given constraint
is satisfied by the current knowledge; and, finally, a guard is passed only if a new con-
straint, that must be atomically added to the knowledge, is consistent with the current
knowledge. Very roughly, the last kind of guards can be related to the pattern-matching
construct of our calculi, for the possibility of atomically testing and modifying the en-
vironment; in both cases, this feature sensibly increases the expressive power of the
language.

By the way, the form of pattern-matching considered here is very minimal: only the
equality of names can be tested while retrieving a datum. However, many other forms
of pattern-matching can be exploited [12], to yield more and more flexible formalisms;
some proposals have been investigated from the expressiveness point of view in [28].

Finally, in [7] a form of atomic polyadic name matching is presented, but with a dif-
ferent approach w.r.t. ours. Indeed, while in our π111 the tuple of names to be matched
is in the transmitted/received value (by using a standard π-calculus terminology, the tu-
ple is in the ‘object’ part of an output/input), in [7] there are composite channel names
that must be matched to enable a communication (thus, the tuple is in the ‘subject’
part of the output/input). This feature enables a nice modelling of distributed and cryp-
tographic process calculi; nevertheless, our LINDA-like pattern-matching is stronger,
since the possibility of using both formal and actual fields in a template yield a more
flexible form of input actions.

To conclude, this paper is one of the first attempts to classify languages according
to their communication primitive. A lot of work still remains to be done. For example,
it would be interesting to study more concrete languages, maybe by encoding them in
one of the calculi presented in this paper. Moreover, other common features (such as
synchrony) could be added to the picture. Finally, it would also be interesting to prove
stronger properties for the encodings of Section 4, whenever possible; indeed, since we
were mostly interested in the impossibility results, we intentionally exploited quite a
weak form of ‘reasonableness’.

Acknowledgements. I would like to thank Rosario Pugliese for his suggestions that
improved a first draft of this paper and Catuscia Palamidessi for her encouragements
and discussions. Finally, I also thank the anonymous FoSSaCS’06 referees for their
positive attitude and fruitful comments.

On the Relative Expressive Power of Asynchronous Communication Primitives 61

References

1. L. Acciai and M. Boreale. XPi: a typed process calculus for XML messaging. In Proc. of
FMOODS’05, volume 3535 of LNCS, pages 47–66. Springer, 2005.

2. R. M. Amadio, I. Castellani and D. Sangiorgi. On bisimulations for the asynchronous
π-calculus. Theoretical Computer Science, 195(2):291–324, 1998.

3. K. Arnold, E. Freeman and S. Hupfer. JavaSpaces Principles, Patterns and Practice.
Addison-Wesley, 1999.

4. G. Boudol. Asynchrony and the π-calculus (note). Rapport de Recherche 1702, INRIA
Sophia-Antipolis, May 1992.

5. A. Brown, C. Laneve and G. Meredith. πduce: a process calculus with native XML datatypes.
In Proc. of Services and Formal Methods, volume 3670 of LNCS. Springer, 2005.

6. N. Busi, R. Gorrieri and G. Zavattaro. A process algebraic view of LINDA coordination
primitives. Theoretical Computer Science, 192(2):167–199, 1998.

7. M. Carbone and S. Maffeis. On the expressive power of polyadic synchronisation in
π-calculus. Nordic Journal of Computing, 10(2):70–98, 2003.

8. L. Cardelli and A. D. Gordon. Mobile ambients. Theoretical Computer Science, 240(1):
177–213, 2000.

9. G. Castagna, R. De Nicola and D. Varacca. Semantic subtyping for the π-calculus. In Proc.
of LICS’05, pages 92–101. IEEE Computer Society, 2005.

10. F. de Boer and C. Palamidessi. Embedding as a tool for language comparison. Information
and Computation, 108(1):128–157, 1994.

11. R. De Nicola, D. Gorla and R. Pugliese. On the expressive power of KLAIM-based calculi.
Tech. Rep. 09/2004, Dip. Informatica, Univ. Roma “La Sapienza”. To appear in TCS.

12. R. De Nicola, D. Gorla and R. Pugliese. Pattern Matching over a Dynamic Network of Tuple
Spaces. In Proc. of FMOODS’05, volume 3535 of LNCS, pages 1–14. Springer, 2005.

13. C. Ene and T. Muntean. Expressiveness of point-to-point versus broadcast communications.
In Proc. of FCT’99, volume 1684 of LNCS, pages 258–268. Springer, 1999.

14. D. Ford, T. Lehman, S. McLaughry and P. Wyckoff. T Spaces. IBM Systems Journal, pages
454–474, August 1998.

15. D. Gelernter. Generative Communication in Linda. ACM Transactions on Programming
Languages and Systems, 7(1):80–112, 1985.

16. M. Herlihy. Impossibility and universality results for wait-free synchronization. In Proc. of
PODC’88, pages 276–290. ACM Press, 1988.

17. K. Honda and M. Tokoro. An object calculus for asynchronous communication. In Proc. of
ECOOP’91, volume 512 of LNCS, pages 133–147. Springer, 1991.

18. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
19. R. Milner. The polyadic π-calculus: A tutorial. In Logic and Algebra of Specification, volume

94 of Series F. NATO ASI, Springer, 1993.
20. R. Milner and D. Sangiorgi. Barbed bisimulation. In Proc. of ICALP’92, volume 623 of

LNCS, pages 685–695. Springer, 1992.
21. U. Nestmann and B. Pierce. Decoding choice encodings. Information and Computation,

163:1–59, 2000.
22. C. Palamidessi. Comparing the expressive power of the synchronous and the asynchronous

π-calculi. Mathematical Structures in Computer Science, 13(5):685–719, 2003.
23. J. Parrow. An introduction to the π-calculus. In Handbook of Process Algebra, pages

479–543. Elsevier Science, 2001.
24. P. Quaglia and D. Walker. On encoding pπ in mπ. In Proc. of FSTTCS’98, volume 1530 of

LNCS, pages 42–51. Springer, 1998.

62 D. Gorla

25. D. Sangiorgi. Bisimulation in higher-order process calculi. Information and Computation,
131:141–178, 1996.

26. E. Shapiro. Separating concurrent languages with categories of language embeddings. In
Proc. of 23rd STOC, pages 198–208. ACM Press, 1991.

27. N. Yoshida. Graph types for monadic mobile processes. In Proc. of FSTTCS’96, volume
1180 of LNCS, pages 371–386. Springer, 1996.

28. G. Zavattaro. Towards a hierarchy of negative test operators for generative communication.
In Proc. of EXPRESS’98, volume 16 of ENTCS, 1998.

More on Bisimulations for Higher Order
π-Calculus�

Zining Cao

Department of Computer Science and Engineering,
Nanjing University of Aero. & Astro., Nanjing 210016, P.R. China

caozn@nuaa.edu.cn

Abstract. In this paper, we prove the coincidence between strong/weak
context bisimulation and strong/weak normal bisimulation for higher or-
der π-calculus, which generalizes Sangiorgi’s work. To achieve this aim,
we introduce indexed higher order π-calculus, which is similar to higher
order π-calculus except that every prefix of any process is assigned to
indices. Furthermore we present corresponding indexed bisimulations for
this calculus, and prove the equivalence between these indexed bisimula-
tions. As an application of this result, we prove the equivalence between
strong/weak context bisimulation and strong/weak normal bisimulation.

1 Introduction

Higher order π-calculus was proposed and studied intensively in Sangiorgi’s dis-
sertation [6]. It is an extension of the π-calculus [5] to allow communication
of processes rather than names alone. In [6], some interesting bisimulations
for higher order π-calculus were presented, such as barbed equivalence, con-
text bisimulation and normal bisimulation. Barbed equivalence can be regarded
as a uniform definition of bisimulation for a variety of concurrency calculi. Con-
text bisimulation is a very intuitive definition of bisimulation for higher order
π-calculus, but it is heavy to handle, due to the appearance of universal quan-
tifications in its definition. In the definition of normal bisimulation, all universal
quantifications disappeared, therefore normal bisimulation is a very economic
characterisation of bisimulation for higher order π-calculus.

The main difficulty with definitions of context bisimulation and barbed equiv-
alence that involve quantification over contexts is that they are often awkward
to work with directly. It is therefore important to look for more tractable char-
acterisations of the bisimulations. In [6, 7], the equivalence between weak nor-
mal bisimulation, weak context bisimulation and weak barbed equivalence was
proved for early and late semantics respectively, but the proof method cannot
be adapted to prove the equivalence between strong context bisimulation and
strong normal bisimulation.

To the best of our knowledge, no paper gives the proof of equivalence be-
tween strong context bisimulation and strong normal bisimulation. In [7], this
� This work was supported by the National Science Foundation of China under Grant

60473036.

L. Aceto and A. Ingólfsdóttir (Eds.): FOSSACS 2006, LNCS 3921, pp. 63–78, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

64 Z. Cao

problem was stated as an open problem. The main difficulty is that the proof
strategy for the equivalence between weak context bisimulation and weak nor-
mal bisimulation does not work for the strong case. Roughly speaking, for the
case of weak bisimulations, the mapping to triggered processes will bring some
redundant tau actions. Since weak bisimulations abstract from tau action, the
problem is inessential. But for the case of strong bisimulations, the situation
is different. We have to match these redundant tau actions to prove that two
processes are bisimilar. Therefore we need some new proof strategies to solve the
problem.

The main aim of this paper is to give a uniform proof for the equivalence be-
tween strong/weak context bisimulation and strong/weak normal bisimulation.
Especially, we will give a proof of the coincidence between strong context bisimu-
lation and strong normal bisimulation, which solves an open problem presented
by Sangiorgi in [7]. To achieve this aim, we introduce the notion of indexed
processes and define several bisimulations on indexed processes such as indexed
context bisimulation and indexed normal bisimulation. Furthermore, we present
indexed triggered mapping, prove an indexed factorisation theorem, and give
the equivalence between these indexed bisimulations. As an application of this
result, we get a uniform proof for the equivalence between strong/weak context
bisimulation and strong/weak normal bisimulation.

This paper is organized as follows: Section 2 gives a brief review of syntax and
operational semantics of the higher order π-calculus, then recalls the definitions
of context and normal bisimulations. Section 3 introduces indexed higher order π-
calculus and some indexed bisimulations. The equivalence between these indexed
bisimulations also be proved. In Section 4 we give a proof for the equivalence be-
tween strong/weak context bisimulation and strong/weak normal bisimulation.
The paper is concluded in section 5.

2 Higher Order π-Calculus

2.1 Syntax and Labelled Transition System of Higher Order
π-Calculus

In this section we briefly recall the syntax and labelled transition system of the
higher order π-calculus. Similar to [7], we only focus on a second-order fragment
of the higher order π-calculus, i.e., there is no abstraction in this fragment.

We assume a set N of names, ranged over by a, b, c, ... and a set V ar of
process variables, ranged over by X, Y, Z, U, We use E, F, P, Q, ... to stand for
processes. P r denotes the set of all processes.

We first give the grammar for the higher order π-calculus processes as follows:

P ::= 0 | U | π.P | P1|P2 | (νa)P | !P
π is called a prefix and can have one of the following forms:
π ::= τ | l | l | a(U) | a〈P 〉, here τ is a tau prefix; l is a first order input prefix;

l is a first order output prefix; a(U) is a higher order input prefix and a〈P 〉 is a
higher order output prefix.

More on Bisimulations for Higher Order π-Calculus 65

Table 1.

ALP :
P

α−→ P ′

Q
α−→ Q′P ≡α Q, P ′ ≡α Q′ TAU : τ.P

τ−→ P

OUT1 : l.P
l−→ P IN1 : l.P

l−→ P

OUT2 : a〈E〉.P a〈E〉−→ P IN2 : a(U).P
a〈E〉−→ P{E/U}

PAR :
P

α−→ P ′

P |Q α−→ P ′|Qbn(α) ∩ fn(Q) = Ø

COM1 :
P

l−→ P ′ Q
l−→ Q′

P |Q τ−→ P ′|Q′

COM2 :
P

(νb)a〈E〉−→ P ′ Q
a〈E〉−→ Q′

P |Q τ−→ (νb̃)(P ′|Q′)
b̃ ∩ fn(Q) = Ø

RES :
P

α−→ P ′

(νa)P α−→ (νa)P ′ a /∈ n(α) REP :
P |!P α−→ P ′

!P α−→ P ′

OPEN :
P

(νc)a〈E〉−→ P ′

(νb)P
(νb,c)a〈E〉−→ P ′

a �= b, b ∈ fn(E)− c̃

For higher order π-calculus, the notations of free name, bound name, free
variable, bound variable and etc are given in [6, 7]. The set of all closed processes,
i.e., the processes which have no free variable, is denoted as P rc.

The operational semantics of higher order processes is given in Table 1. We
have omitted the symmetric of the parallelism and communication rules.

2.2 Bisimulations in Higher Order π-Calculus

Context and normal bisimulations were presented in [6, 7] to describe the be-
havioral equivalences for higher order π-calculus. In the following, we abbreviate
P{E/U} as P 〈E〉.
Definition 1. A symmetric relation R ⊆ P rc × P rc is a strong context bisimu-
lation if P R Q implies:

(1) whenever P
α−→ P ′, there exists Q′ such that Q

α−→ Q′, here α is not a
higher order action and P ′ R Q′;

(2) whenever P
a〈E〉−→ P ′, there exists Q′ such that Q

a〈E〉−→ Q′ and P ′ R Q′;

(3) whenever P
(νb)a〈E〉−→ P ′, there exist Q′, F , c̃ such that Q

(νc)a〈F 〉−→ Q′ and for
all C(U) with fn(C(U)) ∩ {b̃, c̃} = ∅, (νb̃)(P ′|C〈E〉) R (νc̃)(Q′|C〈F 〉). Here
C(U) is a process containing a unique variable U .

We write P ∼Ct Q if P and Q are strong context bisimilar.

66 Z. Cao

Distinguished from strong context bisimulation, strong normal bisimulation
does not have universal quantifications in the clauses of its definition. In the
following, a name is called fresh in a statement if it is different from any other
name occurring in the processes of the statement.

Definition 2. A symmetric relation R ⊆ P rc × P rc is a strong normal bisimu-
lation if P R Q implies:

(1) whenever P
α−→ P ′, there exists Q′ such that Q

α−→ Q′, here α is not a
higher order action and P ′ R Q′;

(2) whenever P
a〈m.0〉−→ P ′, there exists Q′ such that Q

a〈m.0〉−→ Q′ and P ′ R Q′,
here m is a fresh name;

(3) whenever P
(νb)a〈E〉−→ P ′, there exist Q′, F , c̃ such that Q

(νc)a〈F 〉−→ Q′ and
(νb̃)(P ′|!m.E) R (νc̃)(Q′|!m.F), here m is a fresh name.

We write P ∼Nr Q if P and Q are strong normal bisimilar.

In the following, we use ε=⇒ to abbreviate the reflexive and transitive closure of
τ−→, and use α=⇒ to abbreviate ε=⇒ α−→ ε=⇒ . By neglecting the tau action, we

can get the following formal definitions of weak bisimulations:

Definition 3. A symmetric relation R ⊆ P rc × P rc is a weak context bisimu-
lation if P R Q implies:

(1) whenever P
ε=⇒ P ′, there exists Q′ such that Q

ε=⇒ Q′ and P ′ R Q′;
(2) whenever P

α=⇒ P ′, there exists Q′ such that Q
α=⇒ Q′, here α is not a

higher order action, α �= τ and P ′ R Q′;

(3) whenever P
a〈E〉
=⇒ P ′, there exists Q′ such that Q

a〈E〉
=⇒ Q′ and P ′ R Q′;

(4) whenever P
(νb)a〈E〉

=⇒ P ′, there exist Q′, F , c̃ such that Q
(νc)a〈F 〉

=⇒ Q′ and for
all C(U) with fn(C(U)) ∩ {b̃, c̃} = ∅, (νb̃)(P ′|C〈E〉) R (νc̃)(Q′|C〈F 〉).

We write P ≈Ct Q if P and Q are weak context bisimilar.

Definition 4. A symmetric relation R ⊆ P rc × P rc is a weak normal bisimula-
tion if P R Q implies:

(1) whenever P
ε=⇒ P ′, there exists Q′ such that Q

ε=⇒ Q′ and P ′ R Q′;
(2) whenever P

α=⇒ P ′, there exists Q′ such that Q
α=⇒ Q′, here α is not a

higher order action, α �= τ and P ′ R Q′;

(3) whenever P
a〈m.0〉
=⇒ P ′, there exists Q′ such that Q

a〈m.0〉
=⇒ Q′ and P ′ R Q′,

here m is a fresh name;

(4) whenever P
(νb)a〈E〉

=⇒ P ′, there exist Q′, F , c̃ such that Q
(νc)a〈F 〉

=⇒ Q′ and
(νb̃)(P ′|!m.E) R (νc̃)(Q′|!m.F), here m is a fresh name.

We write P ≈Nr Q if P and Q are weak normal bisimilar.

More on Bisimulations for Higher Order π-Calculus 67

3 Indexed Processes and Indexed Bisimulations

3.1 Syntax and Labelled Transition System of Indexed Higher
Order π-Calculus

The aim of this paper is to propose a general argument for showing the cor-
respondence of context and normal bisimulations in both the strong and weak
cases, by relying on a notion of indexed processes. Roughly, the intention is that
indexed processes allow the labelled transition system semantics to record in
action labels the indices of the interacting components. This mechanism is then
used to filter out some tau transitions in the considered definition of bisimulation.

Now we introduce the concept of indexed processes.The index set I, w.l.o.g.,
will be the set of natural numbers. Intuitively, the concept of index can be viewed
as the name or location of components. The class of the indexed processes IP r
is built similar to P r, except that every prefix is assigned to indices. We usually
use K, L, M , N to denote indexed processes.

The formal definition of indexed process is given as follows:

M ::= 0 | U | Iπ.M | M1|M2 | (νa)M | !M
Iπ is called indexed prefix and can be an indexed tau prefix or an indexed

input prefix or an indexed output prefix:
Iπ ::= {τ}i,j | {l}i | {l}i | {a(U)}i | {a〈N〉}i, i, j ∈index set I (here N is an

indexed process).

Similar to the original higher order π-calculus, in each indexed process of the
form (νa)M the occurrence of a is bound within the scope of M . An occurrence of
a in M is said to be free iff it does not lie within the scope of a bound occurrence
of a. The set of names occurring free in M is denoted fn(M). An occurrence of
a name in M is said to be bound if it is not free, we write the set of bound names
as bn(M). n(M) denotes the set of names of M , i.e., n(M) = fn(M) ∪ bn(M).
We use n(M, N) to denote n(M) ∪ n(N). Indexed higher order input prefix
{a(U)}i.M binds all free occurrences of U in M . The set of variables occurring
free in M is denoted as fv(M). We write the set of bound variables in M as
bv(M). An indexed process is closed if it has no free variable; it is open if it
may have free variables. IP rc is the set of all closed indexed processes. Indexed
processes M and N are α-convertible, M ≡α N , if N can be obtained from M
by a finite number of changes of bound names and bound variables.

The set of all indices that occur in M , Index(M), is defined inductively as
follows:

(1) if M = 0 or U , then Index(M) ::= ∅;
(2) if M = Iπ.M1, then Index(M) ::= Index(Iπ)∪ Index(M1), here Index(Iπ)

::= {i, j} if Iπ is in the form of {τ}i,j ; Index(Iπ) ::= {i} ∪ Index(N) if
Iπ is in the form of {x〈N〉}i; Index(Iπ) ::= {i} if Iπ is in the form of
{l}i or {l}i or {x(U)}i.

(3) if M = M1|M2, then Index(M) ::= Index(M1) ∪ Index(M2);
(4) if M = (νa)M1, then Index(M) ::= Index(M1);
(5) if M =!M1, then Index(M) ::= Index(M1).

We use Index(M, N) to denote Index(M) ∪ Index(N).

68 Z. Cao

In the remainder of this paper, {P}i is an abbreviation for the indexed process
with the same given index i on every prefix in the scope of P . The formal
definition can be given inductively as follows:

(1) {0}i ::= 0;
(2) {U}i ::= U ;
(3) {τ.P}i ::= {τ}i,i.{P}i;
(4) {l.P}i ::= {l}i.{P}i;
(5) {l.P}i ::= {l}i.{P}i;
(6) {a(U).P}i ::= {a(U)}i.{P}i;
(7) {a〈E〉.P}i ::= {a〈{E}i〉}i.{P}i;
(8) {P1|P2}i ::= {P1}i|{P2}i;
(9) {(νa)P}i ::= (νa){P}i;

(10) {!P}i ::=!{P}i.

In the labelled transition system of indexed higher order π-calculus, the label
on the transition arrow is an indexed action, whose definition is given as follows:

Iα ::= {τ}i,j | {l}i | {l}i | {a〈K〉}i | {a〈K〉}i | {(νb̃)a〈K〉}i, here {τ}i,j is an
indexed tau action, {l}i is an indexed first order input action, {l}i is an indexed
first order output action, {a〈K〉}i is an indexed higher order input action, and
{a〈K〉}i and {(νb̃)a〈K〉}i are indexed higher order output actions.

We write bn(Iα) to represent the set of names bound in Iα, which is {b̃} if
Iα is {(νb̃)a〈K〉}i and ∅ otherwise. n(Iα) is the set of names that occur in Iα.

Table 2.

ALP :
M

Iα−→M ′

N
Iα−→ N ′

M ≡α N, M ′ ≡α N ′ TAU : {τ}i,j .M {τ}i,j−→ M

OUT1 : {l}i.M {l}i−→M IN1 : {l}i.M {l}i−→M

OUT2 : {a〈K〉}i.M {a〈K〉}i−→ M IN2 : {a(U)}i.M {a〈K〉}i−→ M{K/U}
PAR :

M
Iα−→M ′

M |N Iα−→M ′|N
bn(Iα) ∩ fn(N) = Ø

COM1 :
M

{l}i−→M ′ N
{l}j−→ N ′

M |N {τ}i,j−→ (M ′|N ′)

COM2 :
M

{(νb)a〈K〉}i−→ M ′ N
{a〈K〉}j−→ N ′

M |N {τ}i,j−→ (νb̃)(M ′|N ′)
b̃ ∩ fn(N) = Ø

RES :
M

Iα−→M ′

(νa)M Iα−→ (νa)M ′
a /∈ n(Iα) REP :

M |!M Iα−→M ′

!M Iα−→M ′

OPEN :
M

{(νc)a〈K〉}i−→ M ′

(νb)M
{(νb,c)a〈K〉}i−→ M ′

a �= b, b ∈ fn(K)− c̃

More on Bisimulations for Higher Order π-Calculus 69

The operational semantics of indexed processes is given in Table 2. Similar to
Table 1, we have omitted the symmetric of the parallelism and communication.
The main difference between Table 1 and Table 2 is that the label Iα on the
transition arrow is in the form of {α}i or {τ}i,j . If we adopt the distributed view,
{α}i can be regarded as an input or output action performed by component i,
and {τ}i,j can be regarded as a communication between components i and j.

Remark: Since {τ}i,j and {τ}j,i have the same meaning: a communication be-
tween components i and j, hence i, j should be considered as a set {i, j}, and
not as an ordered pair. Therefore in the above labelled transition system, {τ}i,j
and {τ}j,i are considered as the same label, i.e., M

{τ}i,j−→ M ′ is viewed to be

same as M
{τ}j,i−→ M ′.

3.2 Indexed Context Bisimulation and Indexed Normal
Bisimulation

Now we can give the concept of indexed context bisimulation and indexed nor-
mal bisimulation for indexed processes. In the remainder of this paper, we ab-
breviate M{K/U} as M〈K〉. In the following, we use M

ε,S
=⇒ M ′ to abbreviate

M
{τ}i1,i1−→ ...

{τ}in,in−→ M ′, and use M
Iα,S=⇒ M ′ to abbreviate M

ε,S=⇒ Iα−→ ε,S=⇒ M ′,
here i1, ..., in ∈ S ⊆ I. An index is called fresh in a statement if it is different from
any other index occurring in the processes of the statement. Let us see two exam-

ples. For the transition (νa)((νb)({a}n.0|{b}m.0|{a}n.{b}m.0))
{τ}n,n−→ {τ}m,m−→ 0, we

can abbreviate it as (νa)((νb)({a}n.0|{b}m.0|{a}n.{b}m.0))
ε,{m,n}
=⇒ 0. Similarly,

since (νa)((νb)({a}n.0|{b}m.0|{a}n.{c}k.{b}m.0))
{τ}n,n−→ {c}k−→{τ}m,m−→ 0, we can ab-

breviate it as (νa)((νb)({a}n.0|{b}m.0|{a}n.{c}k.{b}m.0))
{c}k,{m,n}

=⇒ 0.
This paper’s main result states that strong context bisimulation coincides with

strong normal bisimulation. Technically, the proof rests on the notion of indexed
bisimulations. The idea is to generalize the usual notion of weak bisimulations so
that tau actions can be ignored selectively, depending on a chosen set of indices
S. The cases S = ∅ and S = I correspond to strong and weak bisimulations
respectively.

Definition 5. Let M , N be two closed indexed processes, and S ⊆ I be an index
set, we write M �S

Ct N , if there is a symmetric relation R and M R N implies:

(1) whenever M
ε,S
=⇒M ′, there exists N ′ such that N

ε,S
=⇒ N ′ and M ′ R N ′;

(2) whenever M
Iα,S
=⇒ M ′, there exists N ′ such that N

Iα,S
=⇒ N ′ and M ′ R N ′,

here Iα �= {τ}i,i for any i ∈ S, Iα is not an indexed higher order action;

(3) whenever M
{a〈K〉}i,S=⇒ M ′, there exists N ′ such that N

{a〈K〉}i,S=⇒ N ′ and M ′

R N ′;

70 Z. Cao

(4) whenever M
{(νb)a〈K〉}i,S=⇒ M ′, there exists N ′ such that N

{(νc)a〈L〉}i,S=⇒ N ′

and for any indexed process C(U) with fn(C(U))∩{b̃, c̃} = �, (νb̃)(M ′|C〈K〉)
R (νc̃)(N ′|C〈L〉).

We say that M and N are indexed context bisimilar w.r.t. S if M �S
Ct N.

Definition 6. Let M , N be two closed indexed processes, and S ⊆ I be an
index set, we write M �S

Nr N , if there is a symmetric relation R and M R N
implies:

(1) whenever M
ε,S
=⇒M ′, there exists N ′ such that N

ε,S
=⇒ N ′ and M ′ R N ′;

(2) whenever M
Iα,S
=⇒ M ′, there exists N ′ such that N

Iα,S
=⇒ N ′ and M ′ R N ′,

here Iα �= {τ}i,i for any i ∈ S, Iα is not an indexed higher order action;

(3) whenever M
{a〈{m}n.0〉}i,S=⇒ M ′, here m is a fresh name, there exists N ′ such

that N
{a〈{m}n.0〉}i,S=⇒ N ′ and M ′ R N ′;

(4) whenever M
{(νb)a〈K〉}i,S=⇒ M ′, there exists N ′ such that N

{(νc)a〈L〉}i,S=⇒ N ′,
and (νb̃)(M ′|!{m}n.K) R (νc̃)(N ′|!{m}n.L) with a fresh name m and a fresh
index n.

We say that M and N are indexed normal bisimilar w.r.t. S if M �S
Nr N.

The above definitions have some geometric intuition. From a distributed view,
{τ}i,i is an internal communication in component i, and {τ}i,j , where i �= j,
represents an external communication between components i and j. Therefore
in Definitions 5 and 6, we regard {τ}i,i as a private event in component i, which
can be neglected if i is in S, a chosen set of indices; and we view {τ}i,j as a
visible event between components i and j.

For example, by the above definition, we have (νa)({a}n.0|{a}n.M) �{n}
Ct M,

(νa)({a}n.0|{a}n.M) ��∅
Ct M and (νa)({a}n.0|{a}n.M) �I

Nr M.

3.3 Indexed Triggered Processes and Indexed Triggered
Bisimulation

The concept of triggered processes was introduced in [6, 7]. The distinguishing
feature of triggered processes is that every communication among them is the
exchange of a trigger, here a trigger is an elementary process whose only func-
tionality is to activate a copy of another process. In this section, we introduce
the indexed version of triggered processes. Indexed triggered process can be seen
as a sort of normal form for the indexed processes, and every communication
among them is the exchange of an indexed trigger. We shall use indexed triggers
to perform indexed process transformations which make the treatment of the
constructs of indexed higher order processes easier.

The formal definition of indexed triggered process is given as follows:

M ::= 0 | U | {τ}i,j .M | {l}i.M | {l}i.M | {a(U)}i.M | (νm)({a〈{m}n.0〉}i.M |
!{m}n.N) with m /∈ fn(M, N) ∪ {a} | M1|M2 | (νa)M | !M .

More on Bisimulations for Higher Order π-Calculus 71

The class of the indexed triggered processes is denoted as ITP r. The class of
the closed indexed triggered processes is denoted as ITP rc.

Definition 7. We give a mapping Trn which transforms every indexed process
M into the indexed triggered process Trn[M] with respect to index n. The
mapping is defined inductively on the structure of M.

(1) Trn[0] ::= 0;
(2) Trn[U] ::= U ;
(3) Trn[{τ}i,j .M] ::= {τ}i,j .T rn[M];
(4) Trn[{l}i.M] ::= {l}i.T rn[M];
(5) Trn[{l}i.M] ::= {l}i.T rn[M];
(6) Trn[{a(U)}i.M] ::= {a(U)}i.T rn[M];
(7) Trn[{a〈N〉}i.M] ::= (νm)({a〈{m}n.0〉}i.T rn[M]|!{m}n.T rn[N]), where

m is a fresh name;
(8) Trn[M1|M2] ::= Trn[M1]|Trn[M2];
(9) Trn[(νa)M] ::= (νa)Trn[M];

(10) Trn[!M] ::=!Trn[M].

Transformation Trn[] may expand the number of {τ}n,n steps in a process. But
the behavior is otherwise the same. The expansion is due to the fact that if in
M a process N is transmitted and used k times then, in Trn[M] k additional
{τ}n,n interactions are required to activate the copies of N.

For example, let M
def
= {a〈N〉}i.L|{a(U)}j.(U |U), then M

{τ}i,j−→ L|N |N def
=

M ′. In Trn[M], this is simulated using two additional {τ}n,n interactions:

Trn[M] = (νm)({a〈{m}n.0〉}i.T rn[L]|!{m}n.T rn[N])|{a(U)}j.(U |U)
{τ}i,j−→ (νm)(Trn[L]|!{m}n.T rn[N]|{m}n.0|{m}n.0)
{τ}n,n−→ {τ}n,n−→ (νm)(Trn[L]|Trn[N]|Trn[N]|!{m}n.T rn[N])
�∅

Ct Trn[L]|Trn[N]|Trn[N] since m is a fresh name
= Trn[M ′].

Now we can give the indexed version of triggered bisimulation as follows.

Definition 8. Let M , N be two closed indexed triggered processes, and S ⊆ I
be an index set, we write M �S

Tr N , if there is a symmetric relation R and M
R N implies:

(1) whenever M
ε,S
=⇒M ′, there exists N ′ such that N

ε,S
=⇒ N ′ and M ′ R N ′;

(2) whenever M
Iα,S
=⇒ M ′, there exists N ′ such that N

Iα,S
=⇒ N ′ and M ′ R N ′,

here Iα �= {τ}i,i for any i ∈ S, Iα is not an indexed higher order action;

(3) whenever M
{a〈{m}n.0〉}i,S=⇒ M ′, here m is a fresh name, there exists N ′ such

that N
{a〈{m}n.0〉}i,S=⇒ N ′ and M ′ R N ′;

(4) whenever M
{(νm)a〈{m}n.0〉}i,S=⇒ M ′, there exists N ′ such that N

{(νm)a〈{m}n.0〉}i,S=⇒ N ′ and M ′ R N ′.

We say that M and N are indexed triggered bisimilar w.r.t. S if M �S
Tr N.

72 Z. Cao

3.4 The Equivalence Between Indexed Bisimulations

In [6, 7], the equivalence between weak context bisimulation and weak normal
bisimulation was proved. In the proof, the factorisation theorem was firstly given.
It allows us to factorise out certain subprocesses of a given process. Thus, a
complex process can be decomposed into the parallel composition of simpler
processes. Then the concept of triggered processes was introduced, which is the
key step in the proof. Triggered processes represent a sort of normal form for the
processes. Most importantly, there is a very simple characterisation of context
bisimulation on triggered processes, called triggered bisimulation. By the factori-
sation theorem, a process can be transformed to a triggered process. The trans-
form allows us to use the simpler theory of triggered processes to reason about
the set of all processes. In [6, 7], weak context bisimulation was firstly proved to
be equivalent to weak triggered bisimulation on triggered processes, then by the
mapping from general processes to triggered processes, the equivalence between
weak context bisimulation and weak normal bisimulation was proved.

In the case of strong bisimulations, the above proof strategy does not work.
The main problem is that the mapping to triggered processes brings some re-
dundant tau actions. Since weak bisimulations abstract from tau action, the full
abstraction of the mapping to triggered processes holds. But in the case of strong
bisimulations, the triggered mapping does not preserve the strong bisimulations,
and therefore some central technical results in [6, 7], like the factorisation theo-
rem, are not true in the strong case.

To resolve this difficulty we introduced the concept of indexed processes and
the indexed version of context and normal bisimulations. Roughly, the actions of
indexed processes have added indices, which are used to identify in which compo-
nent or between which components an action takes place. Indexed bisimulations
with respect to an indices set S neglect the indexed tau action of the form
{τ}i,i for any i ∈ S, but distinguish the indexed tau action of the form {τ}i,j if
i /∈ S or j /∈ S or i �= j. One can see that the mapping from M to Trn[M] brings
redundant indexed tau actions {τ}n,n. Therefore indexed triggered mapping pre-
serves the indexed bisimulations with respect to S ∪{n} for any S. Similarly, we
also have the indexed version of factorisation theorem. Following the proof strat-
egy in [6, 7], we prove the equivalence between indexed context bisimulation and
indexed normal bisimulation. Furthermore, when S is the empty set ∅, we discuss
the relation between indexed bisimulations and strong bisimulations, and get the
proposition: P ∼ Nr Q ⇔ {P}k �∅

Nr {Q}k ⇔ Trn[{P}k] �{n}
Tr Trn[{Q}k] ⇔

{P}k �∅
Ct {Q}k ⇔ P ∼Ct Q. This solves the open problem in [7]. We also ap-

ply the proof idea to the case of weak bisimulations. When S is the full index
set I, we study the relation between indexed bisimulations and weak bisimula-
tions, and get the proposition: P ≈Nr Q⇔ {P}k �I

Nr {Q}k ⇔ Trn[{P}k] �I
Tr

Trn[{Q}k] ⇔ {P}k �I
Ct {Q}k ⇔ P ≈Ct Q. Therefore the proof presented here

seems to be a uniform approach to the equivalence between strong/weak context
bisimulation and strong/weak normal bisimulation.

Now we study the relations between the three indexed bisimulations. The
main result is summarized in Proposition 8: M �S

Nr N ⇔ Trn[M] �S∪{n}
Tr

More on Bisimulations for Higher Order π-Calculus 73

Trn[N] ⇔ M �S
Ct N . We achieve this result by proving several propositions:

including indexed factorisation theorem (Proposition 4), full abstraction of the
mapping to indexed triggered processes (Proposition 5), the relation between
indexed triggered bisimulation and indexed normal bisimulation (Proposition
6), and the relation between indexed triggered bisimulation and indexed context
bisimulation (Proposition 7).

In the following, we first give congruence of �S
Ct and �S

Tr.

Proposition 1 (Congruence of �S
Ct). For all M , N , K ∈ IP rc, M �S

Ct N
implies:

1. Iπ.M �S
Ct Iπ.N ;

2. M |K �S
Ct N |K;

3. (νa)M �S
Ct (νa)N ;

4. !M �S
Ct!N ;

5. a〈M〉.K �S
Ct a〈N〉.K.

P roof : Similar to the argument of the analogous result for context bisimulation
in [6, Theorem 4.2.7].

Proposition 2 (Congruence of �S
Tr). For all M , N , K ∈ ITP rc, M �S

Tr N
implies:

1. M |K �S
Tr N |K;

2. (νa)M �S
Tr (νa)N.

P roof : Similar to the argument of the analogous result for triggered bisimula-
tion in [6, Lemma 4.6.3].

Proposition 3 states the easy part of the relation between �S
Ct and �S

Nr.

Proposition 3. For any M , N ∈ IP rc, M �S
Ct N ⇒M �S

Nr N.

P roof : It is trivial by the definition of �S
Ct and �S

Nr.
Now we give the indexed version of the factorisation theorem, which states that,
by means of indexed triggers, an indexed subprocess of a given indexed process
can be factorised out.

Proposition 4. For any indexed processes M and N with m /∈ fn(M, N), it
holds that M{{τ}i,j.N/U} �S

Ct (νm)(M{{m}i.0/U}|!{m}j.N) for any S.

P roof : Similar to the proof of P{τ.R/X} ∼Ct (νm)(P{m.0/X}|!m.R) in [6],
by induction on the structure of M .

Corollary 1. For any indexed processes M and N with m /∈ fn(M, N), it holds
that M{N/U} �S∪{n}

Ct (νm)(M{{m}n.0/U}|!{m}n.N) for any S.

P roof : It is straightforward by {τ}n,n.M �S∪{n}
Ct M and Propositions 1 and 4.

74 Z. Cao

To prove the correctness of Trn[], which is stated as Proposition 5, we first give
the following lemma:

Lemma 1. For any M , N ∈ ITP rc, M �S
Ct N ⇒M �S

Tr N.

Proposition 5. For each M ∈ IP rc,

1. Trn[M] is an indexed triggered process;
2. Trn[M] �S∪{n}

Ct M ;
3. Trn[M] �S∪{n}

Tr M, if M is an indexed triggered process.

P roof : 1. It is straightforward.
2. It can be proved by induction on the structure of M and using Corollary 1.
3. By Lemma 1 and Case 2.

Proposition 6 below states the relation between �S
Nr and �S∪{n}

Tr :

Proposition 6. For any M , N ∈ IP rc, M �S
Nr N ⇒ Trn[M] �S∪{n}

Tr Trn[N],
here n /∈ Index(M, N).

The following Lemma 2 and Lemma 3 are necessary to the proof of Proposition 7.

Lemma 2. For any M , N ∈ IP rc, Trn[M] �S∪{n}
Tr Trn[N] ⇒ M �S∪{n}

Ct N,
here n /∈ Index(M, N).

Lemma 3. For any M , N ∈ IP rc, M �S∪{n}
Ct N ⇒ M �S

Ct N, here n /∈
Index(M, N).

P roof : It is clear since n /∈ Index(M, N).
Now we get the relation between �S∪{n}

Tr and �S
Ct as follows:

Proposition 7. For any M , N ∈ IP rc, Trn[M] �S∪{n}
Tr Trn[N] ⇒ M �S

Ct N,
here n /∈ Index(M, N).

P roof : By Lemmas 2 and 3.
The following proposition is the main result of this section, which states the
equivalence between indexed context bisimulation, indexed normal bisimulation
and indexed triggered bisimulation.

Proposition 8. For any M , N ∈ IP rc, M �S
Nr N ⇔ Trn[M] �S∪{n}

Tr

Trn[N]⇔M �S
Ct N, here n /∈ Index(M, N).

P roof : By Propositions 3, 6 and 7.

For indexed triggered processes, the above proposition can be simplified as
Corollary 2.

Lemma 4. For any M , N ∈ ITP rc, M �S∪{n}
Tr N ⇒ M �S

Tr N, here n /∈
Index(M, N).

P roof : It is clear since n /∈ Index(M, N).

More on Bisimulations for Higher Order π-Calculus 75

Corollary 2. For any M , N ∈ ITP rc, M �S
Nr N ⇔M �S

Tr N ⇔M �S
Ct N.

P roof : By Proposition 8, M �S
Nr N ⇔ Trn[M] �S∪{n}

Tr Trn[N] ⇔ M �S
Ct N ,

here n /∈ Index(M, N). Since M , N ∈ ITP rc, M �S∪{n}
Tr Trn[M] �S∪{n}

Tr

Trn[N] �S∪{n}
Tr N. By Lemma 4, we have M �S

Tr N.

Sangiorgi [6] proved that barbed equivalence coincides with context bisimulation.
We generalize this result to our indexed process calculus. In the following, we
first present an indexed variant of barbed equivalence called indexed reduction
bisimulation and then give the equivalence between indexed reduction bisimula-
tion, indexed context bisimulation and indexed normal bisimulation. This result
shows that all our indexed bisimulations are same and capture the essential of
equivalence of indexed processes.

Definition 9. Let M , N be two indexed processes, and S ⊆ I be an index set,
we write M �S

Rd N , if there is a symmetric relation R and K R L implies:

(1) K|M R L|M for any indexed process M ;

(2) whenever K
ε,S
=⇒ K ′, there exists L′ such that L

ε,S
=⇒ L′ and K ′ R L′;

(3) whenever K
{τ}i,j ,S
=⇒ K ′, here (i, j) /∈ {(k, k)|k ∈ S}, there exists L′ such that

L
{τ}i,j,S
=⇒ L′ and K ′ R L′.

We say that M and N are indexed reduction bisimilar w.r.t. S if M �S
Rd N.

Since �S
Ct is equivalent to �S

Nr, the following proposition states that �S
Ct, �S

Nr

and �S
Rd are same.

Proposition 9. For any M , N ∈ IP rc, M �S
Ct N ⇒M �S

Rd N ⇒M �S
Nr N .

In [1], the concept of indexed reduction bisimulation was used to give a uniform
equivalence for different process calculi.

4 The Equivalence Between Bisimulations in Higher
Order π-Calculus

4.1 Strong Context Bisimulation Coincides with Strong Normal
Bisimulation

The equivalence between strong context bisimulation and strong normal bisim-
ulation can be derived by the mapping to indexed triggered process and the
equivalence between indexed bisimulations.

For example, let us see the following two processes:

P = (νa)(a〈b.0〉.0|a(X).X);
Q = (νa)(a〈0〉.0|a(X).b.0).

They are clearly strong context bisimilar. However, their triggered mappings
are not strong triggered bisimilar. Indeed, the mapping of Q is (νa)((νm)

76 Z. Cao

(a〈m.0〉.0|!m.0)|a(X).b.0), after the communication between a and a, the resid-
ual process can perform action b without using silent tau actions, whereas the
mapping of P is (νa)((νm)(a〈m.0〉.0|!m.b.0)|a(X).X), and to match this behav-
ior, one has to go through a trigger and this therefore requires some form of
weak transition. Hence the proof strategy in [6, 7] cannot be generalized to the
case of strong bisimulation.

In our approach, we first consider the indexed version of P and Q:

{P}0 = (νa)({a〈{b}0.0〉}0.0|{a(X)}0.X);
{Q}0 = (νa)({a〈0〉}0.0|{a(X)}0.{b}0.0).

It is clearly {P}0 �∅
Ct {Q}0. Now the indexed triggered mapping of {P}0 is

Trn[{P}0] = (νa)((νm)({a〈{m}n.0〉}0.0|!{m}n.{b}0.0)|{a(X)}0.X), and the in-
dexed triggered mapping of {Q}0 is Trn[{Q}0] = (νa)((νm)({a〈{m}n.0〉}0.0|
!{m}n.0)|{a(X)}0.{b}0.0). Unlike the un-indexed case, Trn[{P}0] and Trn[{Q}0]
are indexed triggered bisimilar w.r.t. S = {n}. For example, let us consider the

transition: Trn[{P}0] {τ}0,0−→ (νa)((νm)(0|!{m}n.{b}0.0|{m}n.0))
{τ}n,n−→ (νa)((νm)

(0|{b}0.0|!{m}n.{b}0.0|0))
{b}0−→ (νa)((νm)(0|0|!{m}n.{b}0.0|0)). Since we neglect

indexed tau action of the form {τ}n,n in the definition of �{n}
Tr , we have a match-

ing transition Trn[{Q}0] {τ}0,0−→ (νa)((νm)(0|!{m}n.0|{b}0.0))
{b}0−→ (νa)((νm)

(0|!{m}n.0|0)). Hence Trn[{P}0] and Trn[{Q}0] are bisimilar. Formally, we have
Trn[{P}0] �{n}

Tr Trn[{Q}0]. Similarly, we can further build the relation between
�{n}

Tr and �∅
Nr: Trn[{P}0] �{n}

Tr Trn[{Q}0]⇔ {P}0 �∅
Nr {Q}0.

In this section, we will show that P ∼Nr Q⇒ {P}0 �∅
Nr {Q}0 and {P}0 �∅

Ct

{Q}0 ⇒ P ∼Ct Q ⇒ P ∼Nr Q. Since {P}0 �∅
Ct {Q}0 ⇔ {P}0 �∅

Nr {Q}0 by
Proposition 8, the equivalence between P ∼Nr Q and P ∼Ct Q is obvious.

Now we prove that strong context bisimulation and strong normal bisimula-
tion coincide, which was presented in [7] as an open problem.

Firstly, we introduce the concept of strong indexed context equivalence, strong
indexed normal equivalence and strong indexed triggered equivalence.

Definition 10. Strong indexed context equivalence.
Let P , Q ∈ P rc, we write P ∼i

Ct Q, if {P}k �∅
Ct {Q}k for some index k. As we

defined before, here {P}k denotes indexed process with the same given index k
on every prefix in P .

Definition 11. Strong indexed normal equivalence.
Let P , Q ∈ P rc, we write P ∼i

Nr Q, if {P}k �∅
Nr {Q}k for some index k.

Definition 12. Strong indexed triggered equivalence.
Let P , Q ∈ P rc, we write P ∼i,{n}

Tr Q, if Trn[{P}k] �{n}
Tr Trn[{Q}k] for some

index k with k �= n.

The following lemma states that strong normal bisimulation implies strong in-
dexed normal equivalence.

More on Bisimulations for Higher Order π-Calculus 77

Lemma 5. For any P , Q ∈ P rc, P ∼Nr Q⇒ P ∼i
Nr Q.

Now, the equivalence between ∼Nr and ∼Ct can be given.

Proposition 10. For any P , Q ∈ P rc and any index n, P ∼ Nr Q ⇔ P ∼i
Nr

Q⇔ P ∼i,{n}
Tr Q⇔ P ∼i

Ct Q⇔ P ∼Ct Q.

P roof : Firstly, it is easy to prove P ∼i
Ct Q ⇒ P ∼Ct Q ⇒ P ∼Nr Q. By

Lemma 5, P ∼Nr Q ⇒ P ∼i
Nr Q. Hence P ∼i

Ct Q ⇒ P ∼Ct Q ⇒ P ∼Nr Q ⇒
P ∼i

Nr Q. By Proposition 8, we have P ∼i
Nr Q ⇔ P ∼i,{n}

Tr Q ⇔ P ∼i
Ct Q for

any index n. Therefore the proposition holds.

Moreover, we can define strong indexed reduction equivalence ∼i
Rd as follows:

let P , Q ∈ P rc, we write P ∼i
Rd Q, if {P}k �∅

Rd {Q}k for some index k. By
Propositions 9 and 10, we know that ∼i

Rd coincides with ∼Nr and ∼Ct .

4.2 Weak Context Bisimulation Coincides with Weak Normal
Bisimulation

Based on the equivalence between indexed bisimulations, we can give an alter-
native proof for the equivalence between weak context bisimulation and weak
normal bisimulation.

Definition 13. Weak indexed context equivalence.
Let P , Q ∈ P rc, we write P ≈i

Ct Q, if {P}k �I
Ct {Q}k for some index k, here I

is the full index set.

Definition 14. Weak indexed normal equivalence.
Let P , Q ∈ P rc, we write P ≈i

Nr Q, if {P}k �I
Nr {Q}k for some index k, here

I is the full index set.

Definition 15. Weak indexed triggered equivalence.
Let P , Q ∈ P rc, we write P ≈i

Tr Q, if Trn[{P}k] �I
Tr Trn[{Q}k] for some

indices k and n, here k �= n and I is the full index set.

Lemma 6. For any P , Q ∈ P rc, P ≈Nr Q⇒ P ≈i
Nr Q.

Proposition 11. For any P , Q ∈ P rc, P ≈Nr Q ⇔ P ≈i
Nr Q ⇔ P ≈i

Tr Q ⇔
P ≈i

Ct Q⇔ P ≈Ct Q.

P roof : By Proposition 8, it is easy to get P ≈i
Nr Q ⇒ P ≈i

Tr Q ⇒ P ≈i
Ct

Q⇒ P ≈Ct Q⇒ P ≈Nr Q. By Lemma 6, P ≈Nr Q⇒ P ≈i
Nr Q, therefore the

proposition holds.

Similarly, we can define weak indexed reduction equivalence ≈i
Rd as follows: let

P , Q ∈ P rc, we write P ≈i
Rd Q, if {P}k �I

Rd {Q}k for some index k. By
Propositions 9 and 11, ≈i

Rd coincides with ≈Nr and ≈Ct .
In [6, 7], the proposition: P ≈Nr Q ⇔ Tr[P] ≈Tr Tr[Q] ⇔ P ≈Ct Q was

proved, where Tr[] is the triggered mapping and ≈Tr is the weak triggered
bisimulation. In fact, this proposition can be get from Proposition 11. Firstly by

78 Z. Cao

Proposition 11, we have P ≈Nr Q ⇔ Trn[{P}k] �I
Tr Trn[{Q}k] ⇔ P ≈Ct Q.

Secondly, we can prove that Tr[P] ≈Tr Tr[Q] ⇔ Trn[{P}k] �I
Tr Trn[{Q}k].

Hence P ≈Nr Q ⇔ Tr[P] ≈Tr Tr[Q] ⇔ P ≈Ct Q is a corollary of Proposi-
tion 11. But for the strong case, the claim: P ∼Nr Q ⇔ Tr[P] ∼Tr Tr[Q] ⇔
P ∼Ct Q does not hold. For example, let P = (νa)(a〈b.0〉.0|a(X).X) and
Q = (νa)(a〈0〉.0|a(X).b.0), then P ∼Nr Q, P ∼Ct Q and Tr[P] �∼Tr Tr[Q].
Hence P ∼Nr Q �⇔ Tr[P] ∼Tr Tr[Q] �⇔ P ∼Ct Q. This also shows that we
cannot prove the equivalence between strong context bisimulation and strong
normal bisimulation by the original technique of triggered mapping.

5 Conclusions

To prove the equivalence between context bisimulation and normal bisimulation,
this paper proposed an indexed higher order π-calculus. In fact, this indexed
calculus can also be viewed as a model of distributed computing, where indices
represent locations, indexed action {α}i represents an input/output action α per-
formed in location i, and {τ}i,j represents a communication between locations i
and j. There are a few results on bisimulations for higher order π-calculus. In [6],
context bisimulation and normal bisimulation were compared with barbed equiv-
alence. In [3], authors proved a correspondence between weak normal bisimula-
tion and a variant of barbed equivalence, called contextual barbed equivalence. In
[4] an alternative proof of the correspondence between context bisimulation and
barbed equivalence was given. It would be interesting to understand whether
our concept of indexed processes and indexed bisimulations can be helpful to
study the relation between bisimulations in the framework of other higher order
concurrency languages.

References

1. Z. Cao. A uniform reduction equivalence for process calculi, In Proc. APLAS’04,
Lecture Notes in Computer Science 3302, 179-195. Springer-Verlag, 2004.

2. A. Jeffrey, J. Rathke. A theory of bisimulation for a fragment of concurrent ML
with local names. Theoretical Computer Science. 323:1-48, 2004.

3. A. Jeffrey, J. Rathke. Contextual equivalence for higher-order π-calculus revisited.
Logical Methods in Computer Science, 1(1:4):1-22, 2005.

4. Y. Li, X. Liu: Towards a theory of bisimulation for the higher-order process calculi.
Journal of Computer Science and Technology. 19(3): 352-363, 2004.

5. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, (Part I and
II). Information and Computation, 100:1-77, 1992.

6. D. Sangiorgi. Expressing mobility in process algebras: first-order and higher-order
paradigms, Ph.D thesis, University of Einburgh, 1992.

7. D. Sangiorgi. Bisimulation in higher-order calculi, Information and Computation,
131(2):141-178, 1996.

8. D. Sangiorgi, D. Walker. The π-calculus: a theory of mobile processes, Cambridge
University Press, 2001.

9. B. Thomsen. Plain CHOCS, a second generation calculus for higher order processes,
Acta Information, 30:1-59, 1993.

Register Allocation After Classical SSA
Elimination is NP-Complete

Fernando Magno Quintão Pereira and Jens Palsberg

UCLA, University of California, Los Angeles

Abstract. Chaitin proved that register allocation is equivalent to graph
coloring and hence NP-complete. Recently, Bouchez, Brisk, and Hack
have proved independently that the interference graph of a program in
static single assignment (SSA) form is chordal and therefore colorable
in linear time. Can we use the result of Bouchez et al. to do register
allocation in polynomial time by first transforming the program to SSA
form, then performing register allocation, and finally doing the classical
SSA elimination that replaces φ-functions with copy instructions? In this
paper we show that the answer is no, unless P = NP: register allocation
after classical SSA elimination is NP-complete. Chaitin’s proof technique
does not work for programs after classical SSA elimination; instead we
use a reduction from the graph coloring problem for circular arc graphs.

1 Introduction

In Section 1.1 we define three central notions that we will use in the paper:
the core register allocation problem, static single assignment (SSA) form, and
post-SSA programs. In Section 1.2 we explain why recent results on programs
in SSA form might lead one to speculate that we can solve the core register
allocation problem in polynomial time. Finally, in Section 1.3 we outline our
result that register allocation is NP-complete for post-SSA programs produced
by the classical approach that replaces φ-functions with copy instructions.

1.1 Background

Register Allocation. In a compiler, register allocation is the problem of mapping
temporaries to machine registers. In this paper we will focus on:

Core register allocation problem:
Instance: a program P and a number K of available registers.
Problem: can each of the temporaries of P be mapped to one of the K
registers such that temporary variables with interfering live ranges are
assigned to different registers?

Notice that K is part of the input to the problem. Fixing K would correspond to
the register allocation problem solved by a compiler for a fixed architecture. Our
core register allocation problem is related to the kind of register allocation prob-
lem solved by gcc; the problem does not make assumptions about the number
of registers in the target architecture.

L. Aceto and A. Ingólfsdóttir (Eds.): FOSSACS 2006, LNCS 3921, pp. 79–93, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

80 F.M.Q. Pereira and J. Palsberg

a1

a2

. . .
an

= φ

a11 a12 . . . a1m

a21 a22 . . . a2m

. . .
an1 an2 . . . anm

(a)

a1

a2
= φ

a11 a12 a13

a21 a22 a23

a a

a a

12 22

1 2

a a

a a

11 21

1 2

a a

a a

13 23

1 2

def(a)11

21
def(a)

12def(a)

22
def(a)

13

def(a)
23def(a)

use(a)
 1

use(a) 2

(b) (c)

Fig. 1. (a) φ-functions represented as a matrix equation. (b) Matrix equation repre-
senting two φ-functions and three possible execution paths. (c) Control flow graph
illustrating the semantics of φ-functions.

Chaitin et al. [8] showed that the core register allocationproblem isNP-complete
bya reduction fromthegraphcoloringproblem.The essence ofChaitin et al.’s proof
is that every graph is the interference graph of some program.

SSA form. Static single assignment (SSA) form [21] is an intermediate represen-
tation used in many compilers, including gcc version 4. If a program is in SSA
form, then every variable is assigned exactly once, and each use refers to exactly
one definition. A compiler such as gcc version 4 translates a given program to
SSA form and later to an executable form.

SSA form uses φ-functions to join the live ranges of different names that rep-
resent the same value. We will describe the syntax and semantics of φ-functions
using the matrix notation introduced by Hack et al. [17]. Figure 1 (a) outlines
the general representation of a φ-matrix. And Figure 1 (c) gives the intuitive
semantics of the matrix shown in Figure 1 (b).

An equation such as V = φM , where V is a n-dimensional vector, and M is
a n × m matrix, contains n φ-functions such as ai ← φ(ai1, ai2, . . . aim). Each
possible execution path has a corresponding column in the φ-matrix, and adds
one parameter to each φ-function. The φ symbol works as a multiplexer. It will
assign to each element ai of V an element aij of M , where j is determined by
the actual path taken during the program’s execution.

All the φ-functions are evaluated simultaneously at the beginning of the basic
block where they are located. As noted by Hack et al. [17], the live ranges of
temporaries in the same column of a φ-matrix overlap, while the live ranges
of temporaries in the same row do not overlap. Therefore, we can allocate the
same register to two temporaries in the same row. For example, Figure 2 shows
a program, its SSA version, and the program after classical SSA elimination.

Register Allocation After Classical SSA Elimination is NP-Complete 81

If the control flow reaches block 2 from block 1, φ(v11, v12) will return v11; v12
being returned otherwise. Variables i2 and v11 do not interfere. In contrast, the
variables v11 and i1 interfere because both are alive at the end of block 1.

int m(int p1, int p2) {
int v1 = p1;
int i = p2;
while (i < 10) {

i = i+1;
if (v1 > 11) break;
v1 = i+2;

}
return v1;

}

int v11 = p1;

int i1 = p2;

i < 10

return v1;

int i2 = i + 1;

if (v1 > 11) break;

int v12 = i2 + 2;

1

2

3

4

5

int v1

 int i
=

 v11 v12

 i1 i2
phi

int m(int p1, int p2) {
int v11 = p1;
int i1 = p2;
int v1 = v11;
int i = i1;
while (i < 10) {

int i2 = i+1;
if (v1 > 11) break;
int v12 = i2+2;
v1 = v12;
i = i2;

}
return v1;

}

(a) (b) (c)

Fig. 2. (a) A program. (b) The same program in SSA form. (c) The program after
classical SSA elimination.

Post-SSA programs. SSA form simplifies many analyses that are performed on
the control flow graph of programs. However, traditional instruction sets do not
implement φ-functions [10]. Thus, in order to generate executable code, compilers
have a phase called SSA-elimination in which φ-functions are destroyed. Hence-
forth, we will refer to programs after SSA elimination as post-SSA programs.

The classical approach to SSA-elimination replaces the φ-functions with copy
instructions [1, 5, 7, 10, 18, 20]. For example, consider v1 = φ(v11, ..., v1m) in block
b. The algorithm explained by Appel [1] adds at the end of each block i that
precedes b, one copy instruction such as v1 = v1i.

In this paper we concentrate on SSA programs whose control flow graphs
have the structure outlined in Figure 3 (a). The equivalent post-SSA programs,
generated by the classical approach to SSA-elimination, are given by the
grammar in Figure 3 (b). We will say that a program generated by the gram-
mar in Figure 3 (b) is a simple post-SSA program. For example, the program in
Figure 2(c) is a simple post-SSA program. A simple post-SSA program contains
a single loop. Just before the loop, and at the end of it (see Figure 3 (b)),
the program contains copy instructions that correspond to the elimination of a
φ-matrix such as: ⎛⎜⎜⎝

v1
. . .
vK

i

⎞⎟⎟⎠ = φ

⎡⎢⎢⎣
v11 v21

. . .
v1K v2K

i1 i2

⎤⎥⎥⎦

82 F.M.Q. Pereira and J. Palsberg

int v = p ;

....

int v = p ;

int i = p ;

i < C

return v ;
int i = i + 1;

S*

1

2

3

4
5

11 1

1K

K+1

K

1

 int v v v

 int v v v

 int i i i

1 11

K 1K

true

1

false

= phi

1

21

2K

2

2

P ::= int m(int p1, . . . , int pK+1) {
int v11 = p1; . . . ; int v1K = pK ;
int i1 = pK+1;
int v1 = v11; . . . ; int vK = v1K ;
int i = i1;
while (i< C) {

int i2 = i+1;
S∗
v1 = v21; . . . ; vK = v2K ;
i = i2;

}
return v1;

}
S ::= int vj = i+C;

| vj = vk;
| if (vj > C) break;

C ranges over integer constants

(a) (b)

Fig. 3. (a) Control flow representation of simple SSA programs. (b) The grammar for
simple post-SSA programs.

1.2 Programs in SSA-Form Have Chordal Interference Graphs

The core register allocation problem is NP-complete and a compiler can trans-
form a given program into SSA form in cubic time [9]. Thus we might expect that
the core register allocation problem for programs in SSA form is NP-complete.
However, that intuition would be wrong, unless P = NP, as demonstrated by
the following result.

In 2005, Brisk et al. [6] proved that strict programs in SSA form have perfect
interference graphs; independently, Bouchez [4] and Hack [16] proved the stronger
result that strict programs in SSA form have chordal interference graphs. In a
strict program, every path from the initial block to the use of a variable v passes
through a definition of v [7]. The proofs presented in [4, 16] rely on two well-
known facts: (i) the chordal graphs are the intersection graphs of subtrees in
trees [14], and (ii) live ranges in an SSA program are subtrees of the dominance
tree [16].

We can color a chordal graph in linear time [15] so we can solve the core
register allocation problem for programs in SSA form in linear time. Thus,
the transformation to SSA form seemingly maps an NP-complete problem to
a polynomial-time problem in polynomial time! The key to understanding how
such a transformation is possible lies in the following observation. Given a pro-
gram P , its SSA-form version P ′, and a number of registers K, the core register
allocation problem (P, K) is not equivalent to (P ′, K). While we can map a
(P, K)-solution to a (P ′, K)-solution, we can not necessarily map a (P ′, K)-
solution to a (P, K)-solution. The SSA transformation splits the live ranges of
temporaries in P in such a way that P ′ may need fewer registers than P .

Register Allocation After Classical SSA Elimination is NP-Complete 83

Given that the core register allocation problem for programs in SSA form
can be solved in polynomial time and given that a compiler can do classical
SSA elimination in linear time, we might expect that the core register allocation
problem after classical SSA elimination is in polynomial time. In this paper we
show that also that intuition would be wrong!

1.3 Our Result

We prove that the core register allocation problem for simple post-SSA programs
is NP-complete. Our result has until now been a commonly-believed folk theorem
without a published proof. The recent results on register allocation for programs
in SSA form have increased the interest in a proof. Our result implies that the
core register allocation problem for post-SSA programs is NP-complete for any
language with loops or with jumps that can implement loops.

The proof technique used by Chaitin et al. [8] does not work for post-SSA
programs. Chaitin et al.’s proof constructs programs from graphs, and if we
transform those programs to SSA form and then post-SSA form, we can color
the interference graph of each of the post-SSA programs with just three colors.
For example, in order to represent C4, their technique would generate the graph
in the upper part of Figure 4 (b). The minimal coloring of such graph can be
trivially mapped to a minimal coloring of C4, by simply deleting node x. Figure 4
(a) shows the control flow graph of the program generated by Chaitin et al.’s
proof technique, and Figure 4 (c) shows the program in post-SSA form. The
interference graph of the transformed program is shown in the lower part of
Figure 4 (b); that graph is chordal, as expected.

We prove our result using a reduction from the graph coloring problem for
circular arc graphs, henceforth called simply circular graphs. A circular graph
can be depicted as a set of intervals around a circle (e.g. Figure 5 (a)). The
idea of our proof is that the live ranges of the variables in the loop in a simple
post-SSA program form a circular graph. From a circular graph and an integer
K we build a simple post-SSA program such that the graph is K-colorable if

a = 1
b = 2
x = a + b

b = 1
c = 2
x = b + c

c = 1
d = 2
x = c + d

a = 1
d = 2
x = a + d

switch()

return a+xreturn b+x return c+x return d+x

a b

cd

a1

b1

b2c2

c1

d1

a2 d2

xx1

x2

x3

x4

x

a1 = 1
b1 = 2
x1 = a1 + b1

b2 = 1
c2 = 2
x2 = b2 + c2

c1 = 1
d1 = 2
x3 = c1 + d1

a2 = 1
d2 = 2
x4 = a2 + d2

switch()

return a+xreturn b+x return c+x return d+x

x := x1
b := b1

x := x2
b := b2

x := x1
a := a1

x := x2
c := c2

x := x4
a := a2

x := x3
c := c1

x := x3
d := d1

x := x4
d := d2

(a) (b) (c)

Fig. 4. (a) Chaitin et al.’s program to represent C4. (b) The interference graph of the
original program (top) and of the program in SSA form (bottom). (c) The program of
Chaitin et al. in SSA form.

84 F.M.Q. Pereira and J. Palsberg

and only if we can solve the core register allocation problem for the program
and K + 1 registers. Our reduction proceeds in two steps. In Section 2 we define
the notion of SSA-circular graphs and we show that the coloring problem for
SSA-circular graphs is NP-complete. In Section 3 we present a reduction from
coloring of SSA-circular graphs to register allocation for simple post-SSA pro-
grams. An SSA-circular graph is a special case of a circular graph in which
some of the intervals come in pairs that correspond to the copy instructions
at the end of the loop in a simple post-SSA program. From a circular graph
we build an SSA-circular graph by splitting some arcs. By adding new inter-
vals at the end of the loop, we artificially increase the color pressure at that
point, and ensure that two intervals that share an extreme point receive the
same color. In Section 4 we give a brief survey of related work on complex-
ity results for a variety of register allocation problems, and in Section 5 we
conclude.

14

6

8
10

7

9

11

13

12

5 14

6

8

7

9

11

13

12

5

1

10

182122
15

(22,7)

(6,9)

(8,11)

(10,13)

(21,5)

(18,1)

(15,18)

(14,22)

(12,21)

(a) (b) (c)

Fig. 5. (a) C5 represented as a set of intervals. (b) The set of intervals that represent
W = F(C5, 3). (c) W represented as a graph.

Recently, Hack et al. [17] presented an SSA-elimination algorithm that does
not use move instructions to replace φ-functions. Instead, Hack et al.’s algorithm
uses xor instructions to permute the values of the parameters of the φ-functions
in a way that preserves both the semantics of the original program and the
chordal structure of the interference graph, without demanding extra registers.
As a result, register allocation after the Hack et al.’s approach to SSA elimination
is in polynomial time. In contrast, register allocation after the classical approach
to SSA elimination is NP-complete.

2 From Circular Graphs to SSA-Circular Graphs

Let N denote the set of positive, natural numbers {1, 2, 3, . . .}. A circular graph
is an undirected graph given by a finite set of vertices V ⊆ N × N , such that
∀d ∈ N : (d, d) �∈ V and ∀(d, u), (d′, u′) ∈ V : d = d′ ⇔ u = u′. We sometimes

Register Allocation After Classical SSA Elimination is NP-Complete 85

refer to a vertex (d, u) as an interval, and we call d, u extreme points. The set of
vertices of a circular graph defines the edges implicitly, as follows. Define

b : N ×N → finite unions of intervals of the real numbers

b(d, u) =
{

]d, u[if d < u
]0, u[∪]d,∞[if d > u.

Two vertices (d, u), (d′, u′) are connected by an edge if and only if b(d, u) ∩
b(d′, u′) �= ∅. We use V to denote the set of such representations of circular
graphs. We use max(V) to denote the largest number used in V , and we use
min(V) to denote the smallest number used in V . We distinguish three subsets
of vertices of a circular graph, Vl, Vi and Vz :

Vi = { (d, u) ∈ V | d < u }
Vl = { (d, u) ∈ V | d > u }
Vz = { (d, y) ∈ Vi | ∃(y, u) ∈ Vl }

Notice that V = Vi ∪ Vl, Vi ∩ Vl = ∅, and Vz ⊆ Vi.
Figure 5 (a) shows a representation of C5 = ({a, b, c, d, e}, {ab, bc, cd, de, ea})

as a collection of intervals, where a = (14, 7), b = (6, 9), c = (8, 11), d =
(10, 13), e = (12, 5), Vi = {b, c, d}, Vl = {a, e}, and Vz = ∅. Intuitively, when the
intervals of the circular graph are arranged around a circle, overlapping intervals
determine edges between the corresponding vertices.

An SSA-circular graph W is a circular graph with two additional properties:

∀(y, u) ∈Wl : ∃d ∈ N : (d, y) ∈ Wz (1)
∀(d, u) ∈ Wi \Wz : ∀(d′, u′) ∈Wl : u < d′ (2)

We use W to denote the set of SSA-circular graphs.
Let W be an SSA-circular graph. Property (1) says that for each interval in

Wl there is an interval in Wz so that these intervals share an extreme point
y. In Section 3 it will be shown that the y points represent copy instructions
used to propagate the parameters of φ-functions. Henceforth, the y points will
be called copy points. Figure 5 (b) shows W ∈ W as an example of SSA-circular
graph. Wl = {(18, 1), (21, 5), (22, 7)}, Wi = {(6, 9), (8, 11), (10, 13)} ∪Wz , and
Wz = {(15, 18), (12, 21), (14, 22)}. Notice that for every interval (y, u) ∈ Wl,
there is an interval (d, y) ∈ Wz . Figure 5 (c) exhibits W using the traditional
representation of graphs.

Let n = |Vl|. We will now define a mapping F on pairs (V, K):

F : V ×N →W
F(V, K) = Vi ∪ G(Vl, K, max(V))

G : V ×N ×N → V
G({ (di, ui) | i ∈ 1..n }, K, m) = { (m + i, m + K + i) | i ∈ 1..K − n } (3)

∪ { (m + K + i, i) | i ∈ 1..K − n } (4)
∪ { (di, m + 2K + i) | i ∈ 1..n } (5)
∪ { (m + 2K + i, ui) | i ∈ 1..n } (6)

86 F.M.Q. Pereira and J. Palsberg

Given V , the function F splits each interval of Vl into two nonadjacent intervals
that share an extreme point: (d, y) ∈ Wz, and (y, u) ∈ Wl. We call those intervals
the main vertices. Given V , the function F also creates 2(K − n) new intervals,
namely K − n pairs of intervals such that the two intervals of each pair are
nonadjacent and share an extreme point: (d, y) ∈ Wz , and (y, u) ∈ Wl. We call
those intervals the auxiliary vertices. Figures 5 (b) and 5 (c) represent F(C5, 3),
and Figure 6 outlines the critical points between m = max(V) and K − n.

m
m+1 m+K-n m+K+1 m+2K-n m+2K+1 m+2K+n 0 1 K-n

K-n co
py

points

n co
py

points

Wl

Wz

Auxiliary vertices
created by operation (3)

Auxiliary vertices
created by operation (4)

Main vertices created by operation (5)

Main vertices created
by operation (6)

max(V)

max(W)

Wz

Wl

Fig. 6. The critical points created by F(V, K)

Lemma 1. If V is a circular graph and min(V) > K, then F(V, K) is an
SSA-circular graph.

Proof. Let W = F(V, K). Notice first that W is a circular graph because the
condition min(V) > K ensures that rules (4) and (6) define vertices that don’t
share any extreme points. To see that W is an SSA-circular graph let us consider
in turn the two conditions (1) and (2). Regarding condition (1), Wl consists of the
sets defined by (4), (6), while Wz consists of the sets defined by (3), (5), and for
each (y, u) ∈Wl, we can find (d, y) ∈Wz . Regarding condition (2), we have that
if (d, u) ∈Wi \Wz and (d′, u′) ∈Wl, then u ≤ max(V) < max(V) + K + 1 ≤ d′.

�

Lemma 2. If W = F(V, K) is K-colorable, then two intervals in Wz ∪Wl that
share an extreme point must be assigned the same color by any K-coloring of W .

Proof. Let c be a K-coloring of W . Let v1 = (d, y) and v2 = (y, u) be a pair
of intervals in Wz ∪Wl. From the definition of F(V, K) we have that those two
intervals are not connected by an edge. The common copy point y is crossed by
exactly K − 1 intervals (see Figure 6). Each of those K − 1 intervals must be
assigned a different color by c so there remains just one color that c can assign
to v1 and v2. Therefore, c has assigned the same color to v1 and v2. �

Lemma 3. Suppose V is a circular graph and min(V) > K. We have V is
K-colorable if and only if F(V, K) is K-colorable.

Register Allocation After Classical SSA Elimination is NP-Complete 87

Proof. Let Vl = { (di, ui) | i ∈ 1..n } and let m = max(V).
First, suppose c is a K-coloring of V . The vertices of Vl form a clique so c

must use |Vl| colors to color Vl. Let n = |Vl|. Let {x1, . . . , xK−n} be the set of
colors not used by c to color Vl. We now define a K-coloring c′ of F(V, K):

c′(v) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
c(v) if v ∈ Vi

xi if v = (m + i, m + K + i), i ∈ 1..K − n
xi if v = (m + K + i, i), i ∈ 1..K − n
c(di, ui) if v = (di, m + 2K + i), i ∈ 1..n
c(di, ui) if v = (m + 2K + i, ui), i ∈ 1..n

To see that c′ is indeed a K-coloring of F(V, K), first notice that the colors of
the main vertices don’t overlap with the colors of the auxiliary vertices. Second,
notice that since min(V) > K, no auxiliary edge is connected to a vertex in Vi.
Third, notice that since c is a K-coloring of V , the main vertices have colors
that don’t conflict with their neighbors in Vi.

Conversely, suppose c′ is a K-coloring of F(V, K). We now define a K-coloring
c of V :

c(v) =
{

c′(v) if v ∈ Vi

c′(di, m + 2K + i) if v = (di, ui), i ∈ 1..n

To see that c is indeed a K-coloring of V , notice that from Lemma 2 we have
that c′ assigns the same color to the intervals (di, m + 2K + i), (m + 2K + i, ui)
for each i ∈ 1..n. So, since c′ is a K-coloring of F(V, K), the vertices in Vl have
colors that don’t conflict with their neighbors in Vi. �

Lemma 4. Graph coloring for SSA-circular graphs is NP-complete.

Proof. First notice that graph coloring for SSA-circular graphs is in NP because
we can verify any color assignment in polynomial time. To prove NP-hardness,
we will do a reduction from graph coloring for circular graphs, which is known to
be NP-complete [12, 19]. Given a graph coloring problem instance (V, K) where
V is a circular graph, we first transform V into an isomorphic graph V ′ by
adding K to all the integers used in V . Notice that min(V ′) > K. Next we
produce the graph coloring problem instance (F(V ′, K), K), and, by Lemma 3,
V ′ is K-colorable if and only if F(V ′, K) is K-colorable. �

3 From SSA-Circular Graphs to Post-SSA Programs

We now present a reduction from coloring of SSA-circular graphs to the core
register allocation problem for simple post-SSA programs. In this section we
use a representation of circular graphs which is different from the one used in
Section 2. We represent a circular graph by a finite list of elements of the set
I = { def(j), use(j), copy(j,j′), | j, j′ ∈ N }. Each j represents a temporary
name in a program. We use � to range over finite lists over I. If � is a finite list
over I and the d-th element of � is either def(j) or copy(j,j′), then we say that

88 F.M.Q. Pereira and J. Palsberg

j is defined at index d of �. Similarly, if the u’th element of � is either use(j′) or
copy(j,j′), then we say that j′ is used at index u of �. We define X as follows:

X = { � | for every j mentioned in �, j is defined exactly once and used
exactly once ∧ for every copy(j,j′) in �, we have j �= j′ }

We will use X to range over X . The sets X and V are isomorphic; the function
α is an isomorphism which maps X to V :

α : X → V
α(X) = { (d, u) | ∃j ∈ N : j is defined at index d of X and j is used

at index u of X }
We define Y = α−1(W), and we use Y to range over Y. The graph W shown

in Figure 5 (b) is shown again in Figure 7 (a) in the new representation:

Y = 〈use(t), use(e), def(b), use(a), def(c), use(b), def(d), use(c), def(e),
use(d), def(a), def(t2), copy(t, t2), copy(e, e2), copy(a, a2)〉.

Figure 8 presents a mapping H from Y-representations of SSA-circular graphs
to simple post-SSA programs. Given an interval (d, u) represented by def(j) and

def(a)

def(b)

def(c)

def(d)

def(e)

copy(t,t2)

copy(e,e2)

copy(a,a2)

def(t2)
use(t)

use(e)

use(a)

use(b)

use(c)

use(d)

a

b c d

e

t

t2a2

e2

int m(int p1, int p2, int p3, int p4) {
int i1 = p4;
int a1 = p1;
int e1 = p2;
int t1 = p3;
int a = a1;
int e = e1;
int t = t1;
int i = i1;
while(i > 10) {

int i2 = i + 1;
if(t > 9) break;
if(e > 10) break;
int b = i2 + 11;
if (a > 11) break;
int c = i2 + 12;
if(b > 12) break;
int d = i2 + 13;
if(c > 13) break;
int e2 = i2 + 14;
if(d > 14) break;
int a2 = i2 + 15;
int t2 = i2 + 16;
i = i2;
a = a2;
t = t2;
e = e2;

}
return a;

}
(a) (b)

Fig. 7. (a) Y = F(C5, 3) represented as a sequence of instructions and as a graph. (b)
P = H(Y, 3).

Register Allocation After Classical SSA Elimination is NP-Complete 89

gen(def(j)) = int vj = i2 + C;
gen(use(j)) = if (vj > C) break;

gen(copy(j,j′)) = vj = vj′ ;
H : Y × N → simple post-SSA program

H(Y, K) = int m(int p1, . . . , int pK+1) {
int v11 = p1; . . . ; int v1K = pK ;
int i1 = pK+1;
int v1 = v11; . . . ; int vK = v1K ;
int i = i1;
while (i< C) {

int i2 = i+1;
map(Y , gen)
i = i2;

}
return v1;

}

Fig. 8. The mapping of circular graphs to simple post-SSA programs

use(j), we map the initial point d to a variable definition vj = i2 + C, where i2
is the variable that controls the loop. We assume that all the constants are
chosen to be different. The final point u is mapped to a variable use, which we
implement by means of the conditional statement if (vj > C) break. We opted
for mapping uses to conditional commands because they do not change the live
ranges inside the loop, and their compilation do not add extra registers to the
final code. An element of the form copy(j, j′), which is mapped to the assignment
j = j′, is used to simulate the copy of one of the parameters of a φ-function,
after classical SSA elimination. Figure 7 (b) shows the program P = H(Y, 3),
where Y = F(C5, 3).

Lemma 5. We can color an SSA-circular graph Y with K colors if and only if
we can solve the core register allocation problem for H(Y, K) and K+1 registers.

Proof. First, assume Y has a K-coloring. The intervals in Y match the live
ranges in the loop of H(Y, K), except for the control variables i, and i2, which
have nonoverlapping live ranges. Therefore, the interference graph for the loop
can be colored with K+1 colors. The live ranges of the variables declared outside
the loop form an interval graph of width K+1. We can extend the K+1-coloring
of that interval graph to a K + 1-coloring of the entire graph in linear time.

Now, assume that there is a solution of the core register allocation problem for
H(Y, K) that uses K + 1 registers. The intervals in Y represent the live ranges
of the variables in the loop. The control variables i and i2 demand one register,
which cannot be used in the allocation of the other live ranges inside the loop.
Therefore, the coloring ofH(Y, K) can be mapped trivially to the nodes of Y . �

Theorem 1. The core register allocation problem for simple post-SSA programs
is NP-complete.

Proof. Combine Lemmas 4 and 5. �

90 F.M.Q. Pereira and J. Palsberg

As an illustrative example, to color C5 with three colors is equivalent to deter-
mining a 3-coloring to the graph Y in Figure 7 (a). Such colorings can be found
if and only if the core register allocation problem for P = H(Y, 3) can be solved
with 4 registers. In this example, a solution exists. One assignment of registers
would be {a, a1, a2, c, p1} → R1, {b, d, t1, t2, t, p3} → R2, {e, e1, e2, p2} → R3,
and {i, i1, i2, p4} → R4. This corresponds to coloring the arcs a and c with the
first color, arcs b and d with the second, and e with the third.

4 Related Work

The first NP-completeness proof of a register allocation related problem was
published by Sethi [22]. Sethi showed that, given a program represented as a set
of instructions in a directed acyclic graph and an integer K, it is an NP-complete
problem to determine if there is a computation of the DAG that uses at most K
registers. Essentially, Sethi proved that the placement of loads and stores during
the generation of code for a straight line program is an NP-complete problem if
the order in which instructions appear in the target code is not fixed.

Much of the literature concerning complexity results for register allocation
deals with two basic questions. The first is the core register allocation problem,
which we defined in Section 1. The second is the core spilling problem which
generalizes the core register allocation problem:

Core spilling problem:
Instance: a program P , number K of available registers, and a number
M of temporaries.
Problem: can at least M of the temporaries of P be mapped to one of
the K registers such that temporary variables with interfering live ranges
are assigned to different registers?

Farach and Liberatore [11] proved that the core spilling problem is NP-complete
even for straight line code and even if rescheduling of instructions is not allowed.
Their proof uses a reduction from set covering.

For a straight line program, the core register allocation problem is linear in
the size of the interference graph. However, if the straight line program contains
pre-colored registers that can appear more than once, then the core register
allocation problem is NP-complete. In this case, register allocation is equivalent
to pre-coloring extensions of interval graphs, which is NP-complete [2].

In the core register allocation problem, the number of registers K is not fixed.
Indeed, the problem used in our reduction, namely the coloring of circular graphs,
has a polynomial-time solution if the number of colors is fixed. Given n circular
arcs determining a graph G, and a fixed number K of colors, Garey et al. [12]
have given an O(n ·K! ·K · log K) time algorithm for coloring G if such a coloring
exists. Regarding general graphs, the coloring problem is NP-complete for every
fixed value of K > 2 [13].

Bodlaender et al. [3] presented a linear-time algorithm for the core register
allocation problem with a fixed number of registers for structured programs.

Register Allocation After Classical SSA Elimination is NP-Complete 91

Their result holds even if rescheduling of instructions is allowed. If registers of
different types are allowed, such as integer registers and floating point registers,
for example, then the problem is no longer linear, although it is still polynomial.

Researchers have proposed different algorithms for inserting copy instructions,
particularly for reducing the number of copy instructions [7, 5, 10, 18]. Rastello
et al. [10] have proved that the optimum replacement of φ-functions by copy
instructions is NP-complete. Their proof uses a reduction from the maximum
independent set problem.

5 Conclusion

We have proved that the core register allocation problem is NP-complete for
post-SSA programs generated by the classical approach to SSA-elimination that
replaces φ-functions with copy instructions. In contrast, Hack et al.’s recent
approach to SSA-elimination [17] generates programs for which the core regis-
ter allocation problem is in polynomial time. We conclude that the choice of
SSA-elimination algorithm matters.

We claim that compiler optimizations such as copy propagation and constant
propagation cannot improve the complexity of the core register allocation prob-
lem for simple post-SSA programs. Inspecting the code in Figure 8 we perceive
that the number of loop iterations cannot be easily predicted by a local analysis
because all the control variables are given as function parameters. In the state-
ment int vj = i+C; the variable i limits the effect of constant propagation and
the use of different constants C limits the effect of copy propagation. Because
all the K + 1 variables alive at the end of the loop have different values, live
ranges cannot be merged at that point. In contrast, rescheduling of instructions
might improve the complexity of the core register allocation problem for simple
post-SSA programs. However, rescheduling combined with register allocation is
an NP-complete problem even for straight line programs [22].

Theorem 1 continues to hold independent on the ordering in which copy in-
structions are inserted, because the function G, defined in Section 2, can be
modified to accommodate any ordering of the copy points. In more detail, let
W = F(V, K) be a SSA-circular graph, let n ∈ [0 · · ·max(W)], and let ovl(n) be
the number of intervals that overlap at point n.

∀n ∈]max(V) · · ·max(W)] : ovl(n) = K (7)

Any ordering that ensures property 7 suffices for the proof of Lemma 2.
Figure 6 shows the region around the point 0 of a SSA-circular graph. Given
W = F(V, K), exactly K copy points are inserted in the interval between max(V)
and max(W).

Our proof is based on a reduction from the coloring of circular graphs. We
proved our result for programs with a loop because the core of the interference
graph of such programs is a circular graph. The existence of a back edge in the
control flow graph is not a requirement for Theorem 1 to be true. For example,
SSA-circular graphs can be obtained from a language with a single if-statement.

92 F.M.Q. Pereira and J. Palsberg

use(t)
def(t2)

use(b)

def(b)

use(a)

def(a)

use(c)

t=t2

c=c2

def(c)

c = c1

t = t1

use(t);

def(a);

use(c);

def(b);

use(a);

def(c2);

use(b);

def(t2);

if

use(t);

use(c);

c1, t1

c = c2

t = t2

a

a

b

b

t

c=c1

c=c2

t1

t2

t=t1

c1

c

c2

t=t2

c

t

(a) (b) (c)

Fig. 9. (a) SSA graph W that represents F(C3, K). (b) A program P that represents
W with a single if-statement. (c) Schematic view of the live ranges of P .

Figure 9 (a) shows a SSA-circular graph that represents C3, when K = 2,
and Figure 9 (b) shows a program whose live ranges represent such graph. The
live ranges are outlined in Figure 9 (c).

Acknowledgments. We thank Fabrice Rastello, Christian Grothoff and the anony-
mous referees for helpful comments on a draft of the paper. Fernando Pereira is
sponsored by the Brazilian Ministry of Education under grant number 218603-9.
Jens Palsberg is supported by the National Science Foundation award number
0401691.

References

1. Andrew W. Appel and Jens Palsberg. Modern Compiler Implementation in Java.
Cambridge University Press, 2nd edition, 2002.

2. M. Biró, M. Hujter, and Zs. Tuza. Precoloring extension. I: interval graphs. In
Discrete Mathematics, pages 267–279. ACM Press, 1992. Special volume (part 1)
to mark the centennial of Julius Petersen’s “Die theorie der regularen graphs”.

3. Hans Bodlaender, Jens Gustedt, and Jan Arne Telle. Linear-time register allocation
for a fixed number of registers. In SIAM Symposium on Discrete Algorithms, pages
574–583, 1998.

4. Florent Bouchez. Allocation de registres et vidage en mémoire. Master’s thesis,
ENS Lyon, 2005.

5. Preston Briggs, Keith D. Cooper, Timothy J. Harvey, and L. Taylor Simpson. Prac-
tical improvements to the construction and destruction of static single assignment
form. Software Practice and Experience, 28(8):859–881, 1998.

6. Philip Brisk, Foad Dabiri, Jamie Macbeth, and Majid Sarrafzadeh. Polynomial-
time graph coloring register allocation. In 14th International Workshop on Logic
and Synthesis. ACM Press, 2005.

7. Zoran Budimlic, Keith D. Cooper, Timothy J. Harvey, Ken Kennedy, Timothy S.
Oberg, and Steven W. Reeves. Fast copy coalescing and live-range identification. In
International Conference on Programming Languages Design and Implementation,
pages 25–32. ACM Press, 2002.

Register Allocation After Classical SSA Elimination is NP-Complete 93

8. Gregory J. Chaitin, Mark A. Auslander, Ashok K. Chandra, John Cocke, Martin E.
Hopkins, and Peter W. Markstein. Register allocation via coloring. Computer
Languages, 6:47–57, 1981.

9. Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-
neth Zadeck. Efficiently computing static single assignment form and the control
dependence graph. ACM Transactions on Programming Languages and Systems,
13(4):451–490, 1991.

10. François de Ferriére, Christophe Guillon, and Fabrice Rastello. Optimizing the
translation out-of-SSA with renaming constraints. ST Journal of Research Proces-
sor Architecture and Compilation for Embedded Systems, 1(2):81–96, 2004.

11. Martin Farach and Vincenzo Liberatore. On local register allocation. In 9th ACM-
SIAM symposium on Discrete Algorithms, pages 564 – 573. ACM Press, 1998.

12. M. R. Garey, D. S. Johnson, G. L. Miller, and C. H. Papadimitriou. The complexity
of coloring circular arcs and chords. SIAM J. Algebraic Discrete Methods, 1(2):
216–227, 1980.

13. M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete
problems. Theoretical Computer Science, 1(3):193–267, 1976.

14. Fanica Gavril. Algorithms for minimum coloring, maximum clique, minimum cov-
ering by cliques, and maximum independent set of a chordal graph. SICOMP,
1(2):180–187, 1972.

15. Fanica Gavril. The intersection graphs of subtrees of a tree are exactly the chordal
graphs. Journal of Combinatoric, B(16):46–56, 1974.

16. Sebastian Hack. Interference graphs of programs in SSA-form. Technical Report
ISSN 1432-7864, Universitat Karlsruhe, 2005.

17. Sebastian Hack, Daniel Grund, and Gerhard Goos. Register allocation for pro-
grams in SSA-form. In 15th International Conference on Compiler Construction.
Springer-Verlag, 2006.

18. Allen Leung and Lal George. Static single assignment form for machine code. In
Conference on Programming Language Design and Implementation, pages 204–214.
ACM Press, 1999.

19. Daniel Marx. A short proof of the NP-completeness of circular arc coloring, 2003.
20. Fernando Magno Quintão Pereira and Jens Palsberg. Register allocation via col-

oring of chordal graphs. In Proceedings of APLAS’05, Asian Symposium on Pro-
gramming Languages and Systems, pages 315–329, 2005.

21. B. K. Rosen, F. K. Zadeck, and M. N. Wegman. Global value numbers and re-
dundant computations. In ACM SIGPLAN-SIGACT symposium on Principles of
Programming languages, pages 12–27. ACM Press, 1988.

22. Ravi Sethi. Complete register allocation problems. In 5th annual ACM symposium
on Theory of computing, pages 182–195. ACM Press, 1973.

A Logic of Reachable Patterns
in Linked Data-Structures

Greta Yorsh1,
, Alexander Rabinovich1, Mooly Sagiv1,
Antoine Meyer2, and Ahmed Bouajjani2

1 Tel Aviv Univ., Israel
{gretay, rabinoa, msagiv}@post.tau.ac.il

2 Liafa, Univ. of Paris 7, France
{ameyer, abou}@liafa.jussieu.fr

Abstract. We define a new decidable logic for expressing and checking invari-
ants of programs that manipulate dynamically-allocated objects via pointers and
destructive pointer updates. The main feature of this logic is the ability to limit the
neighborhood of a node that is reachable via a regular expression from a designated
node. The logic is closed under boolean operations (entailment, negation) and has
a finite model property. The key technical result is the proof of decidability.

We show how to express precondition, postconditions, and loop invariants
for some interesting programs. It is also possible to express properties such as
disjointness of data-structures, and low-level heap mutations. Moreover, our logic
can express properties of arbitrary data-structures and of an arbitrary number
of pointer fields. The latter provides a way to naturally specify postconditions
that relate the fields on entry to a procedure to the fields on exit. Therefore, it is
possible to use the logic to automatically prove partial correctness of programs
performing low-level heap mutations.

1 Introduction

The automatic verification of programs with dynamic memory allocation and pointer
manipulation is a challenging problem. In fact, due to dynamic memory allocation and
destructive updates of pointer-valued fields, the program memory can be of arbitrary
size and structure. This requires the ability to reason about a potentially infinite number
of memory (graph) structures, even for programming languages that have good capabil-
ities for data abstraction. Usually abstract-datatype operations are implemented using
loops, procedure calls, and sequences of low-level pointer manipulations; consequently,
it is hard to prove that a data-structure invariant is reestablished once a sequence of op-
erations is finished [19].

To tackle the verification problem of such complex programs, several approaches
emerged in the last few years with different expressive powers and levels of automa-
tion, including works based on abstract interpretation [27, 34, 31], logic-based reasoning
[23, 32], and automata-based techniques [24, 28, 5]. An important issue is the definition
of a formalism that (1) allows us to express relevant properties (invariants) of various
kinds of linked data-structures, and (2) has the closure and decidability features needed

� This research was supported by THE ISRAEL SCIENCE FOUNDATION (grant No 304/03).

L. Aceto and A. Ingólfsdóttir (Eds.): FOSSACS 2006, LNCS 3921, pp. 94–110, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Logic of Reachable Patterns in Linked Data-Structures 95

for automated verification. The aim of this paper is to study such a formalism based
on logics over arbitrary graph structures, and to find a balance between expressiveness,
decidability and complexity.

Reachability is a crucial notion for reasoning about linked data-structures. For in-
stance, to establish that a memory configuration contains no garbage elements, we must
show that every element is reachable from some program variable. Other examples of
properties that involve reachability are (1) the acyclicity of data-structure fragments,
i.e., every element reachable from node u cannot reach u, (2) the property that a data-
structure traversal terminates, e.g., there is a path from a node to a sink-node of the
data-structure, (3) the property that, for programs with procedure calls when references
are passed as arguments, elements that are not reachable from a formal parameter are
not modified.

A natural formalism to specify properties involving reachability is the first-order
logic over graph structures with transitive closure. Unfortunately, even simple decid-
able fragments of first-order logic become undecidable when transitive closure is added
[13, 21].

In this paper, we propose a logic that can be seen as a fragment of the first-order
logic with transitive closure. Our logic is (1) simple and natural to use, (2) expressive
enough to cover important properties of a wide class of arbitrary linked data-structures,
and (3) allows for algorithmic modular verification using programmer’s specified loop-
invariants and procedure’s specifications.

Alternatively, our logic can be seen as a propositional logic with atomic proposition
modelling reachability between heap objects pointed-to by program variables and other
heap objects with certain properties. The properties are specified using patterns that
limit the neighborhood of an object. For example, in a doubly linked list, a pattern says
that if an object v has an an emanating forward pointer that leads to an object w, then
w has a backward pointer into v.

The contributions of this paper can be summarized as follows:

– We define the Logic of Reachable Patterns (LRP) where reachability constraints
such as those mentioned above can be used. Patterns in such constraints are defined
by quantifier-free first-order formulas over graph structures and sets of access paths
are defined by regular expressions.

– We show that LRP has a finite-model property, i.e., every satisfiable formula has a
finite model. Therefore, invalid formulas are always falsified by a finite store.

– We prove that the logic LRP is, unfortunately, undecidable.
– We define a suitable restriction on the patterns leading to a fragment of LRP called

LRP2.
– We prove that the satisfiability (and validity) problem is decidable. The fragment

LRP2 is the main technical result of the paper and the decidability proof is non-
trivial. The main idea is to show that every satisfiable LRP2 formula is also satisfied
by a tree-like graph. Thus, even though LRP2 expresses properties of arbitrary data-
structures, because the logic is limited enough, a formula that is satisfied on an
arbitrary graph is also satisfied on a tree-like graph. Therefore, it is possible to
answer satisfiability (and validity) queries for LRP2 using a decision procedure for
monadic second-order logic (MSO) on trees.

96 G. Yorsh et al.

– We show that despite the restriction on patterns we introduce, the logic LRP2 is
still expressive enough for use in program verification: various important data-
structures, and loop invariants concerning their manipulation, are in fact definable
in LRP2.

The new logic LRP2 forms a basis of the verification framework for programs with
pointer manipulation [37], which has important advantages w.r.t. existing ones. For
instance, in contrast to decidable logics that restrict the graphs of interest (such as
monadic second-order logic on trees), our logic allows arbitrary graphs with an arbi-
trary number of fields. We show that this is very useful even for verifying programs
that manipulate singly-linked lists in order to express postcondition and loop invariants
that relate the input and the output state. Moreover, our logic strictly generalizes the
decidable logic in [3], which inspired our work. Therefore, it can be shown that certain
heap abstractions including [16, 33] can be expressed using LRP2 formulas.

The rest of the paper is organized as follows: Section 2 defines the syntax and the
semantics of LRP, and shows that it has a finite model property, and that LRP is unde-
cidable; Section 3 defines the fragment LRP2, and demonstrates the expressiveness of
LRP2 on several examples; Section 4 describes the main ideas of the decidability proof
for LRP2; Section 5 discusses the limitations and the extensions of the new logics; fi-
nally, Section 6 discusses the related work. The full version of the paper [36] contains
the formal definition of the semantics of LRP and proofs.

2 The LRP Logic

In this section, we define the syntax and the semantics of our logic. For simplicity,
we explain the material in terms of expressing properties of heaps. However, our logic
can actually model properties of arbitrary directed graphs. Still, the logic is powerful
enough to express the property that a graph denotes a heap.

2.1 Syntax of LRP

LRP is a propositional logic over reachability constraints. That is, an LRP formula is a
boolean combination of closed formulas in first-order logic with transitive closure that
satisfy certain syntactic restrictions.

Let τ = 〈C, U, F 〉 denote a vocabulary, where (i) C is a finite set of constant symbols
usually denoting designated objects in the heap, pointed to by program variables; (ii) U
is a set of unary relation symbols denoting properties, e.g., color of a node in a Red-
Black tree; (ii) F is a finite set of binary relation symbols (edges) usually denoting
pointer fields.1

A term t is either a variable or a constant c ∈ C. An atomic formula is an equality

t = t′, a unary relation u(t), or an edge formula t
f→ t′, where f ∈ F , and t, t′ are

terms. A quantifier-free formula ψ(v0, . . . , vn) over τ and variables v0, . . . , vn is an
arbitrary boolean combination of atomic formulas. Let FV (ψ) denote the free variables
of the formula ψ.

1 We can also allow auxiliary constants and fields including abstract fields [8].

A Logic of Reachable Patterns in Linked Data-Structures 97

Definition 1. Let ψ be a conjunction of edge formulas of the form vi
f→ vj , where

f ∈ F and 0 ≤ i, j ≤ n. The Gaifman graph of ψ, denoted by Bψ, is an undirected
graph with a vertex for each free variable of ψ. There is an arc between the vertices

corresponding to vi and vj in Bψ if and only if (vi
f→ vj) appears in ψ, for some f ∈ F .

The distance between logical variables vi and vj in the formula ψ is the minimal edge
distance between the corresponding vertices vi and vj in Bψ .

For example, for the formula ψ = (v0
f→ v1) ∧ (v0

f→ v2) the distance between v1 and
v2 in ψ is 2, and its underlying graph Bψ looks like this: v1 — v0 — v2.

Definition 2. (Syntax of LRP) A neighborhood formula: N(v0, . . . , vn) is a conjunc-

tion of edge formulas of the form vi
f→ vj , where f ∈ F and 0 ≤ i, j ≤ n.

A routing expression is an extended regular expression, defined as follows:

R ::= ∅ empty set
| ε empty path

| f→ f ∈ F forward along edge

| f← f ∈ F backward along edge
| u u ∈ U test if u holds
| ¬u u ∈ U test if u does not hold
| c c ∈ C test if c holds
| ¬c c ∈ C test if c does not hold
| R1.R2 concatenation
| R1|R2 union
| R∗ Kleene star

A routing expression can require that a path traverse some edges backwards. A routing
expression has the ability to test presence and absence of certain unary relations and
constants along the path.

A reachability constraint is a closed formula of the form:

∀v0, . . . , vn.R(c, v0)⇒ (N(v0, . . . , vn)⇒ ψ(v0, . . . , vn))

where c ∈ C is a constant, R is a routing expression, N is a neighborhood formula,
and ψ is an arbitrary quantifier-free formula, such that FV (N) ⊆ {v0, . . . , vn} and
FV (ψ) ⊆ FV (N) ∪ {v0}. In particular, if the neighborhood formula N is true (the
empty conjunction), then ψ is a formula with a single free variable v0.

An LRP formula is a boolean combination of reachability constraints.

The subformula N(v0, . . . , vn) ⇒ ψ(v0, . . . , vn) defines a pattern, denoted by p(v0).
Here, the designated variable v0 denotes a “central” node of the “neighborhood” reach-
able from c by following an R-path. Intuitively, neighborhood formula N binds the
variables v0, . . . , vn to nodes that form a subgraph, and ψ defines more constraints on
those nodes. 2

2 In all our examples, a neighborhood formula N used in a pattern is such that BN (the Gaifman
graph of N) is connected.

98 G. Yorsh et al.

We use let expressions to specify the scope in which the pattern is declared:

let p1(v0)
def= N1(v0, v1, . . . , vn)⇒ ψ1(v0, . . . , vn) in ϕ

This allows us to write more concise formulas via sharing of patterns.

Shorthands. We use c[R]p to denote a reachability constraint. Intuitively, the reachabil-
ity constraint requires that every node that is reachable from c by following an R-path
satisfy the pattern p.

We use c1[R]¬c2 to denote let p(v0)
def= (true ⇒ ¬(v0 = c2)) in c1[R]p. In this

simple case, the neighborhood is only the node assigned to v0. Intuitively, c1[R]¬c2
means that the node labelled by constant c2 is not reachable along an R-path from
the node labelled by c1. We use c1〈R〉c2 as a shorthand for ¬(c1[R]¬c2). Intuitively,
c1〈R〉c2 means that there exists an R-path from c1 to c2. We use c1 = c2 to denote
c1〈ε〉c2, and c1 �= c2 to denote ¬(c1 = c2). We use c[R](p1 ∧ p2) to denote (c[R]p1) ∧
(c[R]p2), when p1 and p2 agree on the central node variable. When two patterns are
often used together, we introduce a name for their conjunction (instead of naming each
one separately): let p(v0)

def= (N1 ⇒ ψ1) ∧ (N2 ⇒ ψ2) in ϕ.

In routing expressions, we use Σ to denote (
f1→ | f2→ | . . . | fm→), the union of all the

fields in F . For example, c1[Σ∗]¬c2 means that c2 is not reachable from c1 by any path.
Finally, we sometimes omit the concatenation operator “.” in routing expressions.

Semantics. An interpretation for an LRP formula over τ = 〈C, U, F 〉 is a labelled
directed graph G = 〈V G, EG, CG, UG〉 where: (i) V G is a set of nodes modelling the
heap objects, (ii) EG : F → P(V G × V G) are labelled edges, (iii) CG : C → V G

provides interpretation of constants as unique labels on the nodes of the graph, and
(iv) UG : U → P(V G) maps unary relation symbols to the set of nodes in which they
hold.

We say that node v ∈ G is labelled with σ if σ ∈ C and v = CG(σ) or σ ∈ U and
v ∈ UG(σ). In the rest of the paper, graph denotes a directed labelled graph, in which
nodes are labelled by constant and unary relation symbols, and edges are labelled by
binary relation symbols, as defined above.

We define a satisfaction relation |= between a graph G and LRP formula (G |= ϕ)
similarly to the usual semantics the first-order logic with transitive closure over graphs
(see [36]).

2.2 Properties of LRP

LRP with arbitrary patterns has a finite model property. If formula ϕ ∈ LRP has an
infinite model, each reachability constraint in ϕ that is satisfied by this model has a
finite witness.

Theorem 1. (Finite Model Property): Every satisfiable LRP formula is satisfiable by
a finite graph.

Sketch of Proof: We show that LRP can be translated into a fragment of an infinitary
logic that has a finite model property. Observe that c[R]p is equivalent to an infinite

A Logic of Reachable Patterns in Linked Data-Structures 99

conjunction of universal first-order sentences. Therefore, if G is a model of c[R]p then
every substructure of G is also its model. Dually, ¬c[R]p is equivalent to an infinite
disjunction of existential first-order sentences. Therefore, if G is a model of ¬c[R]p,
then G has a finite substructure G′ such that every substructure of G that contains G′ is
a model of ¬c[R]p. It follows that every satisfiable boolean combination of formulas of
the form c[R]p has a finite model. Thus, LRP has a finite model property.

The logic LRP is undecidable. The proof uses a reduction from the halting problem of
a Turing machine.

Theorem 2. (Undecidability): The satisfiability problem of LRP formulas is
undecidable.

Sketch of Proof: Given a Turing machine M , we construct a formula ϕM such that ϕM

is satisfiable if and only if the execution of M eventually halts.
The idea is that each node in the graph that satisfies ϕM describes a cell of a tape

in some configuration, with unary relation symbols encoding the symbol in each cell,
the location of the head and the current state. The n-edges describe the sequence of
cells in a configuration and a sequence of configurations. The b-edges describe how the
cell is changed from one configuration to the next. The constant c1 marks the node that
describes the first cell of the tape in the first configuration, the constant c2 marks the
node that describes the first cell in the second configuration, and the constant c3 marks
the node that describes the last cell in the last configuration (see sketch in Fig. 1).

Fig. 1. Sketch of a model

The most interesting part of the formula ϕM ensures that all graphs that satisfy ϕM

have a grid-like form. It states that for every node v that is n-reachable from c1, if
there is a b-edge from v to u, then there is a b-edge from the n-successor of v to the
n-successor of u:

let p(v) def= (v b→ u) ∧ (v n→ v1) ∧ (u n→ u1)⇒ (v1
b→ u1) in c1[(

n→)∗]p (1)

Remark. The reduction uses only two binary relation symbols and a fixed number of
unary relation symbols. It can be modified to show that the logic with three binary
relation symbols (and no unary relations) is undecidable.

3 The LRP2 Fragment and Its Usefulness

In this section we define the LRP2 fragment of LRP, by syntactically restricting the
patterns. The main idea is to limit the distance between the nodes in the pattern in
certain situations.

100 G. Yorsh et al.

Definition 3. A formula is in LRP2 if in every reachability constraint c[R]p, with
a pattern p(v0)

def= N(v0, . . . , vn) ⇒ ψ(v0, . . . , vn), ψ has one of the following
forms:

– (equality pattern) ψ is a an equality between variables vi = vj , where 0 ≤ i, j ≤
n, and the distance between vi and vj in N is at most 2 (distance is defined in
Def. 1),

– (edge pattern) ψ is of the form vi
f→ vj where f ∈ F and 0 ≤ i, j ≤ n, and the

distance between vi and vj in N is at most 1.
– (negative pattern) atomic formulas appear only negatively in ψ.

Remark. Note that formula (1), which is used in the proof of undecidability in
Theorem 2, is not in LRP2, because p is an edge pattern with distance 3 between v1
and u1, while LRP2 allows edge patterns with distance at most 1.

3.1 Describing Linked Data-Structures

In this section, we show that LRP2 can express properties of data-structures. Table 1
lists some useful patterns and their meanings. For example, the first pattern detf means
that there is at most one outgoing f -edge from a node. Another important pattern unsf

means that a node has at most one incoming f -edge. We use the subscript f to empha-
size that this definition is parametric in f .

Well-formed Heaps. We assume that C (the set of constant symbols) contains a constant
for each pointer variable in the program (denoted by x, y in our examples). Also, C
contains a designated constant null that represents NULL values. Throughout the rest
of the paper we assume that all the graphs denote well-formed heaps, i.e., the fields of
all objects reachable from constants are deterministic, and dereferencing NULL yields
null. In LRP2 this is expressed by the formula:

(
∧
c∈C

∧
f∈F

c[Σ∗]detf) ∧ (
∧

f∈F

null〈 f→〉null) (2)

Table 1. Useful pattern definitions (f, b, g ∈ F are edge labels)

Pattern Name Pattern Definition Meaning

detf (v0) (v0
f
→ v1) ∧ (v0

f
→ v2) ⇒ (v1 = v2) f -edge from v0 is deterministic

unsf (v0) (v1
f
→ v0) ∧ (v2

f
→ v0) ⇒ (v1 = v2) v0 is not heap-shared by f -edges

unsf,g(v0) (v1
f
→ v0) ∧ (v2

g
→ v0) ⇒ false v0 is not heap-shared by f -edge and g-edge

invf,b(v0)
(v0

f
→ v1 ⇒ v1

b
→ v0)

∧ (v0
b
→ v1 ⇒ v1

f
→ v0)

edges f and b form a doubly-linked
list between v0 and v1

samef,g(v0)
(v0

f
→ v1 ⇒ v0

g
→ v1)

∧ (v0
g
→ v1 ⇒ v0

f
→ v1)

edges f and g emanating from v0 are
parallel

A Logic of Reachable Patterns in Linked Data-Structures 101

Using the patterns in Table 1, Table 2 defines some interesting properties of data-
structures using LRP2. The formula reachx,f,y means that the object pointed-to by
the program variable y is reachable from the object pointed-to by the program vari-
able x by following an access path of f field pointers. We can also use it with null
in the place of y. For example, the formula reachx,f,null describes a (possibly empty)
linked-list pointed-to by x. Note that it implies that the list is acyclic, because null is
always a “sink” node in a well-formed heap. We can also express that there are no in-
coming f -edges into the list pointed to by x, by conjoining the previous formula with
unsharedx,f . Alternatively, we can specify that x is located on a cycle of f -edges:
cyclicx,f . Disjointness can be expressed by the formula disjointx,f,y,g that uses both
forward and backward traversal of edges in the routing expression. For example, we
can express that the linked list pointed to by x is disjoint from the linked-list pointed to
by y, using the formula disjointx,f,y,f . Disjointness of data-structures is important for
parallelization (e.g., see [17]).

Table 2. Properties of data-structures expressed in LRP2

Name Formula

reachx,f,y x〈(
f
→)∗〉y

the heap object pointed-to by y is reachable from the heap object pointed-to by x.

cyclicx,f x〈(
f
→)+〉x

cyclicity: the heap object pointed-to by x is located on a cycle.

unsharedx,f x[(
f
→)∗]unsf

every heap object reachable from x by an f -path has at most one incoming f -edge.

disjointx,f,y,g x[(
f
→)∗(

g
←)∗]¬y

disjointness: there is no heap object that is reachable from x by an f -path
and also reachable from y by a g-path.

samex,f,g x[(
f
→ |

g
→)∗]samef,g

the f -path and the g-path from x are parallel, and traverse same objects.

inversex,f,b,y reachx,f,y ∧ x[(
f
→ .¬y)∗]invf,b

doubly-linked lists between two variables x and y

with f and b as forward and backward edges.

treeroot,r,l root[(l
→ |

r
→)∗](unsl,r ∧ unsl ∧ unsr) ∧ ¬(root〈(l

→ |
r
→)∗〉root)

tree rooted at root.

The last two examples in Table 2 specify data-structures with multiple fields. The
formula inversex,f,b,y describes a doubly-linked with variables x and y pointing to the
head and the tail of the list, respectively. First, it guarantees the existence of an f -path.
Next, it uses the pattern invf,b to express that if there is an f -edge from one node to
another, then there is a b-edge in the opposite direction. This pattern is applied to all
nodes on the f -path that starts from x and that does not visit y, expressed using the test
“¬y” in the routing expression. The formula treeroot,r,l describes a binary tree. The
first part requires that the nodes reachable from the root (by following any path of l and
r fields) be not heap-shared. The second part prevents edges from pointing back to the
root of the tree by forbidding the root to participate in a cycle.

102 G. Yorsh et al.

3.2 Expressing Verification Conditions

The reverse procedure shown in Fig. 2 performs in-place reversal of a singly-linked
list. This procedure is interesting because it destructively updates the list and requires
two fields to express partial correctness. Moreover, it manipulates linked lists in which
each list node can be pointed-to from the outside. In this section, we show that
the verification conditions for the procedure reverse can be expressed in LRP2. If
the verification conditions are valid, then the program is partially correct with respect
to the specification. The validity of the verification conditions can be checked automati-
cally because the logic LRP2 is decidable, as shown in the next section. In [37], we show
how to automatically generate verification conditions in LRP2 for arbitrary procedures
that are annotated with preconditions, postconditions, and loop invariants in LRP2.

Node reverse(Node x){
L0: Node y = NULL;
L1: while (x != NULL){
L2: Node t = x->n;
L3: x->n = y;
L4: y = x;
L5: x = t;
L6: }
L7: return y;

}

Fig. 2. Reverse

Notice that in this section we assume that all graphs denote valid stores, i.e., sat-
isfy (2). The precondition requires that x point to an acyclic list, on entry to the pro-
cedure. We use the symbols x0 and n0 to record the values of the variable x and the
n-field on entry to the procedure.

pre
def= x0〈(n0→)∗〉null0

The postcondition ensures that the result is an acyclic list pointed-to by y. Most
importantly, it ensures that each edge of the original list is reversed in the returned list,
which is expressed in a similar way to a doubly-linked list, using inverse formula. We
use the relation symbols y7 and n7 to refer to the values on exit.

post
def= y7〈(n7→)∗〉null7 ∧ inversex0,n0,n7,y7

The loop invariant ϕ shown below relates the heap on entry to the procedure to the
heap at the beginning of each loop iteration (label L1). First, we require that the part
of the list reachable from x be the same as it was on entry to reverse. Second, the
list reachable from y is reversed from its initial state. Finally, the only original edge
outgoing of y is to x.

ϕ
def= samex1,n0,n1 ∧ inversex0,n0,n1,y1 ∧ x0〈n0

→〉y1

A Logic of Reachable Patterns in Linked Data-Structures 103

Note that the postcondition uses two binary relations, n0 and n7, and also the loop
invariant uses two binary relations, n0 and n1. This illustrates that reasoning about
singly-linked lists requires more than one binary relation.

The verification condition of reverse consists of two parts, V Cloop and V C,
explained below.

The formula V Cloop expresses the fact that ϕ is indeed a loop invariant. To express
it in our logic, we use several copies of the vocabulary, one for each program point.
Different copies of the relation symbol n in the graph model values of the field n at
different program points. Similarly, for constants. For example, Fig. 3 shows a graph
that satisfies the formula V Cloop below. It models the heap at the end of some loop
iteration of reverse. The superscripts of the symbol names denote the corresponding
program points.

x0 y1 x1, y6 x6

◦ n0
�� ◦ n0

��
n1��

n6

�� ◦ n0
��

n1��

n6

�� ◦ n0
��

n1 ��

n6

		 ◦ n0
��

n1

n6

��◦

Fig. 3. An example graph that satisfies the V Cloop formula for reverse

To show that the loop invariant ϕ is maintained after executing the loop body, we
assume that the loop condition and the loop invariant hold at the beginning of the itera-
tion, and show that the loop body was executed without performing a null-dereference,
and the loop invariant holds at the end of the loop body:

V Cloop
def= (x �= null) loop is entered
∧ϕ loop invariant holds on loop head
∧(y6 = x1) ∧ x1〈n1〉x6 ∧ x1〈n6〉y1 loop body
∧samey1,n1,n6 ∧ samex1,n1,n6 rest of the heap remains unchanged

⇒ (x1 �= null) no null-derefernce in the body
∧ϕ6 loop invariant after executing loop body

Here, ϕ6 denotes the loop-invariant formula ϕ after executing the loop body (label L6),
i.e., replacing all occurrences of x1, y1 and n1 in ϕ by x6, y6 and n6, respectively. The
formula V Cloop defines a relation between three states: on entry to the procedure, at the
beginning of a loop iteration and at the end of a loop iteration.

The formula V C expresses the fact that if the precondition holds and the execution
reaches procedure’s exit (i.e., the loop is not entered because the loop condition does
not hold), the postcondition holds on exit: V C

def= pre ∧ (x1 = null) ⇒ post.

4 Decidability of LRP2

In this section, we show that LRP2 is decidable for validity and satisfiability. Since LRP2
is closed under negation, it is sufficient to show that it is decidable for satisfiability.

104 G. Yorsh et al.

The satisfiability problem for LRP2 is decidable. The proof proceeds as follows:

1. Every formula ϕ ∈ LRP2 can be translated into an equi-satisfiable normal-form
formula that is a disjunction of formulas in CLRP2 (Def. 4 and Theorem 3). It is
sufficient to show that the satisfiability of CLRP2 is decidable.

2. Define a class of simple graphs Ak, for which the Gaifman graph is a tree with at
most k additional edges (Def. 5).

3. Show that if formula ϕ ∈ CLRP2 has a model, ϕ has a model in Ak, where k is
linear in the size of the formula ϕ (Theorem 4). This is the main part of the proof.

4. Translate formula ϕ ∈ CLRP2 into an equivalent MSO formula.
5. Show that the satisfiability of MSO logic over Ak is decidable, by reduction to

MSO on trees [30]. We could have also shown decidability using the fact that the
tree width of all graphs in Ak is bounded by k, and that MSO over graphs with
bounded tree width is decidable [11, 1, 35].

Definition 4. (Normal-Form Formulas): A formula in CLRP2 is a conjunction of
reachability constraints of the form c1〈R〉c2 and c[R]p, where p is one of the patterns
allowed in LRP2 (Def. 3). A normal-form formula is a disjunction of CLRP2 formulas.

Theorem 3. There is a computable translation from LRP2 to a disjunction of formulas
in CLRP2 that preserves satisfiability.

Ayah Graphs. We define a notion of a simple tree-like directed graph, called Ayah
graph.

Let G(S) denote the Gaifman graph of the graph S, i.e., an undirected graph obtained
from S by removing node labels, edge labels, and edge directions (and parallel edges).
The distance between nodes v1 and v2 in S is the number of edges on the shortest path
between v1 and v2 in G(S). An undirected graph B is in T k if removing self loops and
at most k additional edges from B results in an acyclic graph.

Definition 5. For k ≥ 0, an Ayah graph of k is a graph S for which the Gaifman graph
is in T k: Ak = {S|G(S) ∈ T k}.

Let ϕ ∈ CLRP2 be of the form ϕ� ∧ ϕ� ∧ ϕ= ∧ ϕ→, where ϕ� is a conjunction of
constraints of the form c1〈R〉c2, ϕ� is a conjunction of reachability constraints with
negative patterns, ϕ= is a conjunction of reachability constraints with equality patterns,
and ϕ→ is a conjunction of reachability constraints with edge patterns.

Theorem 4. If ϕ ∈ CLRP2 is satisfiable, then ϕ is satisfiable by a graph in Ak, where
k = 2 × n × |C| × m, m is the number of constraints in ϕ�, |C| is the number of
constants in the vocabulary, and for every regular expression that appears in ϕ� there
is an equivalent automaton with at most n states.

Sketch of Proof: Let S be a model of ϕ : S |= ϕ. We construct a graph S′ from S and
show that S′ |= ϕ and S′ ∈ Ak. The construction uses the following operations on
graphs.

A Logic of Reachable Patterns in Linked Data-Structures 105

Witness Splitting. A witness W for a formula c1〈R〉c2 in CLRP2 in a graph S is a
path in S, labelled with a word w ∈ L(R), from the node labelled with c1 to the node
labelled with c2. Note that the nodes and edges on a witness path for R need not be
distinct. Using W , we construct a graph W ′ that consists of a path, labelled with w,
that starts at the node labelled by c1 and ends at the node labelled by c2. Intuitively, we
duplicate a node of W each time the witness path for R traverses it, unless the node is
marked with a constant. As a result, all shared nodes in W ′ are labelled with constants.
Also, every cycle contains a node labelled with a constant. By construction, we get that
W ′ |= c1〈R〉c2. We say that W ′ is the result of splitting the witness W .

Finally, we say that W is the shortest witness for c1〈R〉c2 if any other witness path
for c1〈R〉c2 is at least as long as W . The result of splitting the shortest witness is a
graph in Ak, where k = 2 × n × |C|: to break all cycles it is sufficient to remove all
the edges adjacent to nodes labelled with constants, and a node labelled with a constant
is visited at most n times. (If a node is visited more than once in the same state of the
automaton, the path can be shortened.)

Merge Operation. Merging two nodes in a graph is defined in the usual way by gluing
these nodes. Let p(v0)

def= N(v0, v1, v2) ⇒ (v1 = v2) be an equality pattern. If a graph
violates a reachability constraint c[R]p, we can assign nodes n0, n1, and n2 to v0, v1,
and v2, respectively, such that there is a R-path from c to v0, N(n0, n1, n2) holds, and
n1 and n2 are distinct nodes. In this case, we say that merge operation of n1 and n2
is enabled (by c[R]p). The nodes n1 and n2 can be merge to discharge this assignment
(other merge operations might still be enabled after merging n1 and n2).

Edge-Addition Operation. Let p(v0)
def= N(v0, v1, v2) ⇒ v1

f→ v2 be an edge pattern.
If a graph violates a reachability constraint c[R]p, we can assign nodes n0, n1, and n2
to v0, v1, and v2, respectively, such that there is a R-path from c to v0, N(n0, n1, n2)
holds, and there is no f -edge from n1 to n2. In this case, we say that edge-operation
operation is enabled (by c[R]p). We can add an f -edge from n1 and n2 to discharge
this assignment.

The following lemma is the key observation of this proof.

Lemma 1. The class of Ak graphs is closed under merge operations of nodes in dis-
tance at most two and edge-addition operations at distance one.

Sketch of Proof: If an edge is added in parallel to an existing one (distance one), it does
not affect the Gaifman graph, thus Ak is closed under edge-addition. The proof that Ak

is closed under merge operations is more subtle [36].

In particular, the class Ak is closed under the merge and edge-addition operations forced
by LRP2 formulas. This is the only place in our proof where we use the distance restric-
tion of LRP2 patterns.

Given a graph S that satisfies ϕ, we construct the graph S′ as follows:

1. For each constraint i in ϕ�, identify the shortest witness Wi in S. Let W ′
i be the

result of splitting the witness Wi.
2. The graph S0 is a union of all W ′

i ’s, in which the nodes labelled with the (syntacti-
cally) same constants are merged.

106 G. Yorsh et al.

3. Apply all enabled merge operations and all enabled edge-addition operations in
any order, producing a sequence of distinct graphs S0, S1, . . . , Sr, until Sm has no
enabled operations.

4. The result S′ = Sr.

The process described above terminates after a finite number of steps, because in each
step either the number of nodes in the graph is decreased (by merge operations) or the
number of edges is increased (by edge-addition operations).

The proof proceeds by induction on the process described above. Initially, S0 is in
Ak. By Lemma 1, all Si created in the third step of the construction above are in Ak;
in particular, S′ ∈ Ak.

By construction of S0, it contains a witness for each constraint in ϕ�, and merge
and edge-addition operations preserve the witnesses, thus S′ satisfies ϕ�. Moreover,
S0 satisfies all constraints in ϕ�. We show that merge and edge-addition operations
applied in the construction preserve ϕ� constraints, thus S′ satisfies ϕ�. The process
above terminates when no merge and edge-addition operations are enabled, that is, S′

satisfies ϕ= ∧ ϕ→. Thus, S′ satisfies ϕ.
The full proof is available at [36].

4.1 Complexity

We proved decidability by reduction to MSO on trees, which allows us to decide LRP2
formulas using MONA decision procedure [18]. Alternatively, a decision procedure for
LRP2 can directly construct a tree automaton from a normal-form formula, and can
then check emptiness of the automaton. The worst case complexity of the satisfiability
problem of LRP2 formulas is at least doubly-exponential, but it remains elementary (in
contrast to MSO on trees, which is non-elementary); we are investigating tighter upper
and lower bounds. The complexity depends on the bound k of Ak models, according
to Theorem 4. If the routing expressions do not contain constant symbols, then the
bound k does not depend on the routing expressions: it depends only on the number
of reachability constraints of the form c1〈R〉c2. The LRP2 formulas that come up in
practice are well-structured, and we hope to achieve a reasonable performance.

5 Limitations and Further Extensions

Despite the fact that LRP2 is useful, there are interesting program properties that cannot
be expressed. For example, transitivity of a binary relation, that can be used, e.g., to ex-
press partial orders, is naturally expressible in LRP, but not in LRP2. Also, the property
that a general graph is a tree in which each node has a pointer back to the root is ex-
pressible in LRP, but not in LRP2. Notice that the property is non-trivial because we are
operating on general graphs, and not just trees. Operating on general graphs allows us
to verify that the data-structure invariant is reestablished after a sequence of low-level
mutations that temporarily violate the invariant data-structure.

There are of course interesting properties that are beyond LRP, such as the property
that a general graph is a tree in which every leaf has a pointer to the root of a tree.

A Logic of Reachable Patterns in Linked Data-Structures 107

In the future, we plan to generalize LRP2 while maintaining decidability, perhaps
beyond LRP. We are encouraged by the fact that the proof of decidability in Section 4
holds “as is” for many useful extensions. For example, we can generalize the patterns
to allow neighborhood formulas with disjunctions and negations of unary relations. In
fact, more complex patterns can be used, as long as they do not violate the Ak prop-
erty. For example, we can define trees rooted at x with parent pointer b from every tree

node to its parent by treex,r,l,b ∧ let p(v0)
def= ((v1

l→ v0) ∨ (v1
r→ v0)) ⇒ (v0

b→
v1)in x[(l→ | r→)∗](detb ∧ p). The extended logic remains decidable, because the pat-
tern p adds edges only in parallel to the existing ones.

Currently, reachability constraints describe paths that start from nodes labelled by
constants. We can show that the logic remains decidable when reachability constraints
are generalized to describe paths that start from any node that satisfies a quantifier-
free positive formula θ: ∀v, w0, . . . , wm, v0, . . . , vn.R(v, v0) ∧ θ(v, w0, . . . , wm) ⇒
(N(v0, . . . , vn) ⇒ ψ(v0, . . . , vn)).

6 Related Work

There are several works on logic-based frameworks for reasoning about graph/heap
structures. We mention here the ones which are, as far as we know, the closest to ours.

The logic LRP can be seen as a fragment of the first-order logic over graph structures
with transitive closure (TC logic [20]). It is well known that TC is undecidable, and that
this fact holds even when transitive closure is added to simple fragments of FO such as
the decidable fragment L2 of formulas with two variables [29, 15, 13].

It can be seen that our logics LRP and LRP2 are both uncomparable with L2 + TC.
Indeed, in LRP no alternation between universal and existential quantification is al-
lowed. On the other hand, LRP2 allows us to express patterns (e.g., heap sharing) that
require more than two variables (see Table 1, Section 3).

In [3], decidable logic Lr (which can also be seen as a fragment of TC) is introduced.
The logics LRP and LRP2 generalize Lr, which is in fact the fragment of these logics
where only two fixed patterns are allowed: equality to a program variable and heap
sharing.

In [21, 2, 26, 4] other decidable logics are defined, but their expressive power is rather
limited w.r.t. LRP2 since they allow at most one binary relation symbol (modelling
linked data-structures with 1-selector). For instance, the logic of [21] does not allow us
to express the reversal of a list. Concerning the class of 1-selector linked data-structures,
[6] provides a decision procedure for a logic with reachability constraints and arithmeti-
cal constraints on lengths of segments in the structure. It is not clear how the proposed
techniques can be generalized to larger classes of graphs. Other decidable logics [7, 25]
are restricted in the sharing patterns and the reachability they can describe.

Other works in the literature consider extensions of the first-order logic with fixpoint
operators. Such an extension is again undecidable in general but the introduction of
the notion of (loosely) guarded quantification allows one to obtain decidable fragments
such as μGF (or μLGF) (Guarded Fragment with least and greater fixpoint opera-
tors) [14, 12]. Similarly to our logics, the logic μGF (and also μLGF) has the tree
model property: every satisfiable formula has a model of bounded tree width. However,

108 G. Yorsh et al.

guarded fixpoint logics are incomparable with LRP and LRP2. For instance, the LRP2
pattern detf that requires determinism of f -field, is not a (loosely) guarded formula.

The PALE system [28] uses an extension of the monadic second order logic on trees
as a specification language. The considered linked data structures are those that can
be defined as graph types [24]. Basically, they are graphs that can be defined as trees
augmented by a set of edges defined using routing expressions (regular expressions)
defining paths in the (undirected structure of the) tree. LRP2 allows us to reason natu-
rally about arbitrary graphs without limitation to tree-like structures. Moreover, as we
show in Section 3, our logical framework allows us to express postconditions and loop
invariants that relate the input and the output state. For instance, even in the case of
singly-linked lists, our framework allows us to express properties that cannot be ex-
pressed in the PALE framework: in the list reversal example of Section 3, we show that
the output list is precisely the reversed input list, whereas in the PALE approach, one
can only establish that the output is a list that is the permutation of the input list.

In [22], we tried to employ a decision procedure for MSO on trees to reason about
reachability. However, this places a heavy burden on the specifier to prove that the data-
structures in the program can be simulated using trees. The current paper eliminated
this burden by defining syntactic restrictions on the formulas and showing a general
reduction theorem.

Other approaches in the literature use undecidable formalisms such as [17], which
provides a natural and expressive language, but does not allow for automatic property
checking.

Separation logic has been introduced recently as a formalism for reasoning about
heap structures [32]. The general logic is undecidable [10] but there are few works
showing decidable fragments [10, 4]. One of the fragments is propositional separation
logic where quantification is forbidden [10, 9] and therefore seems to be incomparable
with our logic. The fragment defined in [4] allows one to reason only about singly-
linked lists with explicit sharing. In fact, the fragment considered in [4] can be translated
to LRP2, and therefore, entailment problems as stated in [4] can be solved as implication
problems in LRP2.

7 Conclusions

Defining decidable fragments of first order logic with transitive closure that are useful
for program verification is a difficult task (e.g., [21]). In this paper, we demonstrated
that this is possible by combining three principles: (i) allowing arbitrary boolean com-
binations of the reachability constraints, which are closed formulas without quantifier
alternations, (ii) defining reachability using regular expressions denoting pointer access
paths (not) reaching a certain pattern, and (iii) syntactically limiting the way patterns
are formed. Extensions of the patterns that allow larger distances between nodes in the
pattern either break our proof of decidability or are directly undecidable.

The decidability result presented in this paper improves the state-of-the-art signifi-
cantly. In contrast to [21, 2, 26, 4], LRP allows several binary relations. This provides a
natural way to (i) specify invariants for data-structures with multiple fields (e.g., trees,
doubly-linked lists), (ii) specify post-condition for procedures that mutate pointer fields

A Logic of Reachable Patterns in Linked Data-Structures 109

of data-structures, by expressing the relationships between fields before and after the
procedure (e.g., list reversal, which is beyond the scope of PALE), (iii) express verifi-
cation conditions using a copy of the vocabulary for each program location.

We are encouraged by the expressiveness of this simple logic and plan to explore its
usage for program verification and abstract interpretation.

References

1. S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-decomposable graphs. J.
Algorithms, 12(2):308–340, 1991.

2. I. Balaban, A. Pnueli, and L. D. Zuck. Shape analysis by predicate abstraction. In VMCAI,
pages 164–180, 2005.

3. M. Benedikt, T. Reps, and M. Sagiv. A decidable logic for describing linked data structures.
In European Symp. On Programming, pages 2–19, March 1999.

4. J. Berdine, C. Calcagno, and P. O’Hearn. A Decidable Fragment of Separation Logic. In
FSTTCS’04. LNCS 3328, 2004.

5. A. Bouajjani, P. Habermehl, P.Moro, and T. Vojnar. Verifying Programs with Dynamic
1-Selector-Linked Structures in Regular Model Checking. In Proc. of TACAS ’05, volume
3440 of LNCS. Springer, 2005.

6. M. Bozga and R. Iosif. Quantitative Verification of Programs with Lists. In VISSAS intern.
workshop. IOS Press, 2005.

7. M. Bozga, R. Iosif, and Y. Lakhnech. On logics of aliasing. In Static Analysis Symp., pages
344–360, 2004.

8. L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. T. Leavens, K. R. M. Leino, and E. Poll.
An overview of jml tools and applications. Int. J. on Software Tools for Technology Transfer,
7(3):212–232, 2005.

9. C. Calcagno, P. Gardner, and M. Hague. From Separation Logic to First-Order Logic. In
FOSSACS’05. LNCS 3441, 2005.

10. C. Calcagno, H. Yang, and P. O’Hearn. Computability and Complexity Results for a Spatial
Assertion Language for Data Structures. In FSTTCS’01. LNCS 2245, 2001.

11. B. Courcelle. The monadic second-order logic of graphs, ii: Infinite graphs of bounded width.
Mathematical Systems Theory, 21(4):187–221, 1989.

12. E. Grädel. Guarded fixed point logic and the monadic theory of trees. Theoretical Computer
Science, 288:129–152, 2002.

13. E. Grädel, M.Otto, and E.Rosen. Undecidability results on two-variable logics. Archive of
Math. Logic, 38:313–354, 1999.

14. E. Grädel and I. Walukiewicz. Guarded Fixed Point Logic. In LICS’99. IEEE, 1999.
15. E. Graedel, P. Kolaitis, and M. Vardi. On the decision problem for two variable logic. Bulletin

of Symbolic Logic, 1997.
16. L. Hendren. Parallelizing Programs with Recursive Data Structures. PhD thesis, Cornell

Univ., Ithaca, NY, Jan 1990.
17. L. Hendren, J. Hummel, and A. Nicolau. Abstractions for recursive pointer data structures:

Improving the analysis and the transformation of imperative programs. In SIGPLAN Conf.
on Prog. Lang. Design and Impl., pages 249–260, New York, NY, June 1992. ACM Press.

18. J.G. Henriksen, J. Jensen, M. Jørgensen, N. Klarlund, B. Paige, T. Rauhe, and A. Sandholm.
Mona: Monadic second-order logic in practice. In TACAS, 1995.

19. C.A.R. Hoare. Recursive data structures. Int. J. of Comp. and Inf. Sci., 4(2):105–132, 1975.
20. N. Immerman. Languages that capture complexity classes. SIAM Journal of Computing,

16:760–778, 1987.

110 G. Yorsh et al.

21. N. Immerman, A. Rabinovich, T. Reps, M. Sagiv, and G. Yorsh. The boundery between
decidability and undecidability of transitive closure logics. In CSL, 2004.

22. N. Immerman, A. Rabinovich, T. Reps, M. Sagiv, and G. Yorsh. Verification via structure
simulation. In CAV, 2004.

23. S. S. Ishtiaq and P. W. O’Hearn. Bi as an assertion language for mutable data structures. In
POPL, pages 14–26, 2001.

24. N. Klarlund and M. I. Schwartzbach. Graph Types. In POPL’93. ACM, 1993.
25. V. Kuncak and M. Rinard. Generalized records and spatial conjunction in role logic. In Static

Analysis Symp., Verona, Italy, August 26–28 2004.
26. S. K. Lahiri and S. Qadeer. Verifying properties of well-founded linked lists. In Symp. on

Princ. of Prog. Lang., 2006. To appear.
27. T. Lev-Ami and M. Sagiv. TVLA: A system for implementing static analyses. In Static

Analysis Symp., pages 280–301, 2000.
28. A. Møller and M.I. Schwartzbach. The pointer assertion logic engine. In SIGPLAN Conf. on

Prog. Lang. Design and Impl., pages 221–231, 2001.
29. M. Mortimer. On languages with two variables. Zeitschrift für Mathematische Logik und

Grundlagen der Mathematik, 21:135–140, 1975.
30. M. Rabin. Decidability of second-order theories and automata on infinite trees. Trans. Amer.

Math. Soc., 141:1–35, 1969.
31. T. Reps, M. Sagiv, and R. Wilhelm. Static program analysis via 3-valued logic. In CAV,

pages 15–30, 2004.
32. J. C. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. In LICS’02.

IEEE, 2002.
33. M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages with

destructive updating. ACM Transactions on Programming Languages and Systems, 20(1):
1–50, January 1998.

34. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic. ACM
Transactions on Programming Languages and Systems, 2002.

35. D. Seese. Interpretability and tree automata: A simple way to solve algorithmic problems on
graphs closely related to trees. In Tree Automata and Languages, pages 83–114. 1992.

36. G. Yorsh, M. Sagiv, A. Rabinovich, A. Bouajjani, and A. Meyer. A logic of reachable pat-
terns in linked data-structures. Technical report, Tel Aviv University, 2005. Available at
“www.cs.tau.ac.il/∼gretay”.

37. G. Yorsh, M. Sagiv, A. Rabinovich, A. Bouajjani, and A. Meyer. Verification framework
based on the logic of reachable patterns. In preparation, 2005.

Dynamic Policy Discovery with Remote Attestation
(Extended Abstract)

Corin Pitcher� and James Riely��

CTI, DePaul University
{cpitcher, jriely}@cs.depaul.edu

Abstract. Remote attestation allows programs running on trusted hardware to
prove their identity (and that of their environment) to programs on other hosts.
Remote attestation can be used to address security concerns if programs agree on
the meaning of data in attestations. This paper studies the enforcement of code-
identity based access control policies in a hostile distributed environment, using
a combination of remote attestation, dynamic types, and typechecking. This en-
sures that programs agree on the meaning of data and cannot violate the access
control policy, even in the presence of opponent processes. The formal setting
is a π-calculus with secure channels, process identity, and remote attestation.
Our approach allows executables to be typechecked and deployed independently,
without the need for secure initial key and policy distribution beyond the trusted
hardware itself.

Keywords: remote attestation, code-identity based access control, policy estab-
lishment, key establishment, π-calculus, Next Generation Secure Computing
Base.

1 Introduction

Processes in a distributed system often rely upon the trustworthiness of processes run-
ning on other hosts. The remote attestation mechanism in Microsoft’s Next Generation
Secure Computing Base (NGSCB) [39], in conjunction with trusted hardware specified
by the Trusted Computing Group [50, 42], allows processes running on trusted hard-
ware to attach evidence of their identity (and the identity of their environment) to data.
Other processes can examine this evidence to assess the degree of trust to place in the
process that attested to the data.

Enforcement of access control policies in hostile distributed environments has been
a driving concern in the development of trusted hardware and remote attestation. We
formalize these notions in a variant of the π-calculus [40], dubbed π-rat, and develop a
type system that enforces access control policies in the presence of arbitrary opponents.
The type system allows programs to be certified independently and deployed without
shared keys or policies beyond those in the trusted hardware.

Organization. In the remainder of this introduction, we set out our goals and assump-
tions. Section 2 demonstrates the use of π-rat through an extended example. Section 3

� Supported by the DePaul University Research Council.
�� Supported by the National Science Foundation under Grant No. 0347542.

L. Aceto and A. Ingólfsdóttir (Eds.): FOSSACS 2006, LNCS 3921, pp. 111–125, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

112 C. Pitcher and J. Riely

presents the dynamics of the language and formally defines runtime errors and robust
safety. Section 4 develops a type system that ensures safety in the presence of arbitrary
attackers, and sketches the proof of robust safety. We conclude with a discussion of
related and future work.

Identity and Attestation. We assume that processes can be given identities in a uniform
manner. We write h[P] for a process running with identity h. Initial processes have the
form #P[P], where # is a globally agreed hashing function on process terms. While
a process may evolve, its identity cannot. Further, identities cannot be forged. Thus a
process Q running with identity #P, must be a residual of P. Our treatment of identities
is deliberately abstract; our formal results do not use hash functions. Nonetheless, we
write #P in examples to indicate the identity of a named process. We leave higher-order
extensions to our language, internalizing # as an operator, to future work.

In this paper, we do not deal with other forms of identity. For example, there is no
notion of code running on behalf of a principal [8], nor is there a notion of explicit
distribution [28]. We assume that all resources are globally accessible, for example in a
shared heap. Opponents are modeled as processes with access to these globally known
resources. As a result, we make no distinction between the many instances of a program;
thus h[P] | h[Q] is indistinguishable from h[P | Q].

At first approximation, an attestation to data M is a signature (with message recovery)
upon the pair (h,M), where h is the hash of the process that requested the attestation.
The signature is created by trusted hardware using its own private key. The hardware
manufacturer issues a certificate for the trusted hardware’s public key at the time of
manufacture and stores it in the trusted hardware. Upon receipt of an attestation, and
the certificate, the relying party verifies the certificate using the manufacturer’s well-
known public key, and then verifies the signature using the trusted hardware’s public
key. If successful, the relying party concludes that a process with hash h did request an
attestation for M from the trusted hardware. To deduce further properties about M, the
relying party must know more about the conditions under which the process with hash
h is willing to attest to data.

Policies and Certification. We are interested in the distinction between processes that
have been certified to obey a certain policy and those that have not been so certified.
Realistically, one would like to model multiple kinds of policies and multiple methods
of certification; however, here we limit attention to a single, extra-lingual certification,
defined as a typing system. We encode policies in types, T , and allow for communica-
tion of policy between processes. The particular policies in this paper are access control
policies based on code identity. For example, our system allows expression of policies
such as “only the ACME media player may display this data”.

Opponent processes are those which are not certified. Opponents cannot persuade
trusted hardware to create false attestations, but otherwise their behavior is entirely
unconstrained. We assume that a conservative approximation of the set of certified
processes is available at runtime. That is, a process may inquire, at runtime, whether
the process corresponding to a certain identity has been certified. To keep the lan-
guage simple, we do not deal explicitly with distribution of certifications. In
addition, our policies are stated directly in terms of program identities, rather than

Dynamic Policy Discovery with Remote Attestation 113

allowing additional levels of indirection. Both limitations may be alleviated by incor-
porating a trust management framework, the investigation of which we leave to future
work.

Unlike previous analyses of cryptographic protocols [9, 3, 22, 23, 25] remote attesta-
tion is intended to be used to establish secure channels starting from insecure channels
that are accessible to opponents. In order to allow the communication of policy informa-
tion during secure-channel establishment, we employ a form of dynamic typing [4, 33].
Our interpretation of at(h,M) is that h vouches for the policy encoded in M. In par-
ticular, if M is {N:T} with asserted type T , then h vouches that N can safely be used
with policy T .

The policy information in attestations from uncertified processes cannot be trusted.
While the payload of such an attestation may be stored and communicated, it cannot
safely be used in any other way.

Channels and Access Control. As usual in π, we encode data using channels. Thus
access policies regulate the readers and writers of channels. Our policies do not limit
possession of channels, only their use; although in the case of an opponent, possession
and use are indistinguishable since opponents are not constrained to obey any policy.
The policy for a channel is defined when the channel is created and may be communi-
cated over insecure channels via attestations.

In keeping with our high-level interpretation of attestations, we avoid explicit crypto-
graphic primitives [9]. In their place we adopt a polarized variant of the π-calculus [41]
which allows transmission of read and write capabilities individually. This simplifica-
tion is justified by Abadi, Fournet and Gonthier’s work on implementing secure channel
abstractions [8, 7].

Contributions. In terms of security policies, our aims are modest relative to other re-
cent work on types in process languages. For example, we do not attempt to establish
freshness [23, 25] or information flow [30] properties. Nonetheless, we achieve a con-
cise statement of secrecy properties (cf. [1, 3, 17]). For example, if a value is created
with type Data(h), then our typing system ensures that only the program with identity
h can display it. Unusually for systems allowing arbitrary opponents [1, 3, 17, 23, 25],
our typing system also ensures memory safety for certified processes; our approach to
opponent typability is reminiscent of [43].

A distinctive aspect of our approach, in keeping with proposed applications of re-
mote attestation, is to minimize reliance upon an authority to distribute keys and poli-
cies. For example, in media distribution systems, the executables share nothing but
data that is both public (can be intercepted by the opponent) and tainted (may have
come from the opponent). In contrast, spi processes typically require further agreement.
Consider trustworthy spi processes P and Q deployed by a mutually-trusted authority
that initializes the system “new kp;(P | Q).” The authority may, for example, create
the keypair kp and distribute the public key to P and the private key to Q. A com-
mon type environment ensures that P and Q agree on the meaning of data encrypted
by kp.

114 C. Pitcher and J. Riely

2 Example

A prototypical use of remote attestation is to establish a channel for sending secrets
to an instance of a trusted executable, such as a media player that enforces a favored
access control policy. A process player on trusted hardware creates a fresh keypair,
attests to the public key, then transmits the result to a server. The server verifies the
attestation, concluding that the public key belongs to an instance of the player ex-
ecutable running on trusted hardware. Since the server trusts the player, it encrypts
the data, perhaps a movie, and sends the ciphertext back to player. The player is re-
lied upon to enforce a policy, such as not making the data available to other pro-
cesses, or limiting the number of viewings. The trusted hardware hosting player is relied
upon to prevent anyone, including the host’s administrator, from violating the player’s
environment.

MEDIA PLAYER EXAMPLE

�= Wr〈any,# 〉(Tnt)
�=

() new :Ch〈any,# 〉(Tnt);
() wr()!at(# ,{wr(): });
() rd()? ;
() let at(,)= ;
() iscert ;
() typecase { : }= ;
() display

�= Data(#)
�=

() repeat rd()? ;
() let at(,)= ;

() iscert ;
() typecase { : }= ;
() new : ;
() !at(# ,{ : })

We formalize this example at the top of the page. Initially, the player and server agree
only on the name of an untrusted (available to the opponent) channel , which has
type Ch〈any,any〉(Un); the angled brackets contain the channel’s policy, the paren-
theses contain the type of values communicated. The type of indicates that anyone
(including opponents) may send or receive messages on the channel and that the values
communicated are untrusted. The player and server must also have compatible policies
for the write capability (representing one key from a keypair) and data, with names
and respectively. The policies mention the hash of the player program, and thus
the two.

The player () creates a channel of type Ch〈any,# 〉(Tnt) (representing a
keypair), and () communicates the write capability (one of the keys) of type to
the server by writing on . The access control policy associated with the channel

is 〈any,# 〉. The first component any indicates that any executable, certi-
fied (typed) or not, may write to the channel; thus the received value is tainted. Us-
ing the more restrictive # as the first component of the policy, meaning that
only the server may write to the channel, could be violated after the write capabil-
ity is communicated on the insecure channel . The second component of the pol-
icy # means that only an instance of the player executable can read from the
channel.

A more lenient access control policy 〈any,cert〉 for would allow any well-typed
executable, denoted cert, to read from the channel. These two policies illustrate the

Dynamic Policy Discovery with Remote Attestation 115

difference between possession and use in π-rat, because any well-typed executable can
possess the read capability for —regardless of whether the access control policy is
〈any,# 〉 or 〈any,cert〉. Both cases are safe because well-typed executables will
only use the read capability when they are certain that it is permitted by the access
control policy specified by the channel’s creator.

The media server () repeatedly reads . Upon receipt of a message, the server ()
unpacks the attestation in the message, discovering the hash of the attesting process,
() checks that the hash is certified (the hash of a well-typed executable), then ()
unpacks the payload of the message (the write capability) which involves checking that
the stated policy complies with the expected policy. The server then () creates a data
object and () sends it to the player via the write capability. In a similar fashion, ()-
() the player receives the data and verifies its origin and policy, then () displays the
data.

Lines () and () include attestations. Remote attestation does not allow a remote
process to force trusted hardware to identify an uncooperative process. However, pro-
cesses that are unwilling to identify themselves using attestation may find other pro-
cesses unwilling to interact with them.

From an implementation perspective, using a hash other than the hash of the en-
closing process as the first component of the attestation primitive is unimplementable
because trusted hardware will only create attestations with the hash of the request-
ing process. Due to inherent circularity, it is impossible for an executable to con-
tain its own hash, so we assume that a process is able to query the trusted hardware
to find its own hash at runtime: in which case a typechecker implementation would
need to verify that the code to perform the query is correct. A more interesting chal-
lenge for distributed systems using remote attestation is that two executables cannot
contain each other’s hashes—one executable may contain the hash of the other exe-
cutable, as illustrated by the media server code which can only be written after the
hash of the player executable is known. Of course, two processes may learn one an-
other’s hashes, and incorporate those hashes into policies, during the course of
execution.

The media server generates the data with a policy stating that it is only usable by the
player. The data stored in is sent to the player using the write capability wr(),
so no-one but the player can receive the message. The data is sent inside an attestation,
because the player has no reason to trust data that it receives on . The type inside the
attestation is checked by the player to ensure that it treats the data in accordance with the
system’s access control policy. When the player receives the hash, it must dynamically
check that the hash is that of a well-typed executable. This is necessary to ensure that
the type in the attestation is reliable.

The threat considered here is that a process will read or write to a channel in vi-
olation of the policy of a well-typed executable that created the channel. For exam-
ple, we would like to prevent an executable other than from displaying data .
Our main theorem states that access control violations cannot occur in well-typed con-
figurations, even if the well-typed configuration is placed in parallel with an untyped
opponent.

116 C. Pitcher and J. Riely

3 Dynamics

We give the syntax and dynamic semantics of π-rat. We describe runtime errors and
define safety. We describe types, T, in the next section.

Syntax and Evaluation. The language has syntactic categories for names, terms, pro-
cesses and configurations. Evaluation is defined in terms of configurations. Assuming
a non-colliding hash function (#) on programs — such that if #P = #Q then P = Q —
initial configurations have the following form.

(#P1)[P1] | · · · | (#Pm)[Pm]

The configuration represents m concurrent processes, each identified by its hash. This
form is not preserved by reduction, since a process may evolve, but its hash does not.
(In practice, remote attestation uses the hash of the executable, and the remaining state
of the process is ignored.) We thus choose to treat hashes abstractly as names.

Names (a-z) serve several purposes. To aid the reader, we use x,y,z to stand for vari-
ables, h,g, f to stand for hashes or hash-typed variables, and a,b,c to stand for channels.

TERMS AND PATTERNS

M,N,L ::= n | rd(M) | wr(M) | (M,N) | at(M,N) | {M:T}

X ::= (x,y) | at(x,y)

Terms include names as well as read and write capabilities, rd(M) and wr(M), which
may be passed individually as in Odersky’s polarized π [41]. The term at(M,N) is an
attested message originating from hash M with payload N. The constructors for pairs
and attestations each have a corresponding nonblocking destructor in the pattern lan-
guage. The term {M:T} carries a term M with asserted type T (cf. the dynamic types
of [4]). As illustrated in section 2, terms of the form {M:T} are used to convey type,
and hence policy, information between processes that have no pre-established knowl-
edge of one another’s behavior or requirements, but the information can only be trusted
when {M:T} originates from a certified process. Attestation is used to ensure that such
terms do originate from a certified process before secure channels are established.

PROCESSES AND CONFIGURATIONS

P,Q,R ::= iscert M; P | typecase {x:T}=M; P | let X=M; P | scope M is σ
| M?x; P | M!N | new a:T; P | P | Q | repeat P | stop

C,D,A,B ::= h[P] | newh a:T; C | C | D | stop

The test iscert M succeeds if M is a certified hash, otherwise it blocks. The typecase
typecase {x:T}=M succeeds if M is a term with an asserted type that is a subtype
of T, otherwise it blocks. The expectation scope M is σ asserts that the scope of M is
limited by the hash formula σ; we discuss hash formulas with runtime errors below. The
primitives for reading, writing, new names, concurrency, repetition and inactivity have
the standard meanings from the asynchronous π calculus [11, 29]. The constructs for
configurations are standard for located π-calculi [28]; note that the construct for new
names records the identity of the process that created the name.

Dynamic Policy Discovery with Remote Attestation 117

NOTATION. We identify syntax up to renaming of bound names. For any syntactic
category with typical element e, we write fn(e) for the set of free names occurring
in e. We write M{N/x} for the capture-avoiding substitution of N for x in M. For any
syntactic category with typical element e, we write sequences as�e and sets as ē. We
occasionally extend this convention across binary constructs, for example writing�n:�T
for the sequence of bindings n1:T1, . . . ,nm:Tm. We sometimes write “_” for a syntactic
element that is not of interest. �

The evaluation semantics is given in the chemical style [16] using a structural equiva-
lence and small-step evaluation relation. (We write multistep evaluation as ḡ�C→∗D.)
We elide the definition of the structural equivalence, which is standard for located
π-calculi [28]; for example, the rule for allowing new to escape from a process is
“h[new a:T; P]≡ newh a:T; h[P]”.

EVALUATION (ḡ�C → D)

ḡ� f a M h a x P → h P{M/x} ḡ�h f P → h P
f ∈ ḡ

if h ∈ ḡ then ḡ
 T S
ḡ�h x S M T P → h P{M/x}

X{�N/�y} = M

ḡ�h X M P → h P{�N/�y}
ḡ�C → D
ḡ�C B → D B

ḡ�C → D
ḡ� h a C → h a D

ḡ�C → D
ḡ�C ′ → D′

C ≡ C ′
D ≡ D′

The first rule allows communication between processes, in the standard way. The rule
for iscert allows a process to verify that a hash is certified; in the residual, f is known
to be a certified hash. The rule for typecase allows retrieval of data from a term with
an asserted type. A dynamic subtype check enforces agreement between the asserted
type T and the expected type S; subtyping is defined in section 4. The let rule is used to
decompose attestations and pairs. The structural rules are standard.

Note that ḡ is only required by typecase to allow opponents processes to avoid
dynamic checks. The other uses of ḡ (in iscert and typecase) can be removed, as is
shown in the full version of the paper.

Runtime Error and Robust Safety. Our primary interest in typing is to enforce access
control policies. Policies are specified in terms of hash formulas.

LATTICE OF HASH FORMULAS (ρ ≤ σ)

ρ,σ ::= any | cert | h1, . . . ,hn
ρ ≤ any h̄ ≤ cert cert ≤ cert

h̄ ⊆ ḡ

h̄ ≤ ḡ

Hash formulas are interpreted using an open world assumption; we allow that not all
programs nor typed programs are known. The special symbol cert is interpreted as a
conservative approximation of the set of well-typed programs.

Access control policies are specified in scope expectations [21, 24]. We develop a
notion of runtime error to capture access control and memory safety violations.

118 C. Pitcher and J. Riely

RUNTIME ERROR (ḡ�C
error−→)

h ∈ ḡ f �≤ σ{ḡ/cert}
ḡ�h[scope M is σ] | f[M?x; P]

error−→
h ∈ ḡ M �= rd(_)

ḡ�h[M?x; P]
error−→

ḡ�C
error−→

ḡ�C | D
error−→

h ∈ ḡ f �≤ σ{ḡ/cert}
ḡ�h[scope M is σ] | f[M!N]

error−→
h ∈ ḡ M �= wr(_)

ḡ�h[M!N]
error−→

ḡ�C
error−→

ḡ�newh a; C
error−→

h ∈ ḡ M �= {_:_}

ḡ�h[typecase {_:_}=M; P]
error−→

h ∈ ḡ M �= (_,_)

ḡ�h[let (_,_)=M; P]
error−→

ḡ�C
error−→

ḡ�C ′ error−→ C ≡ C ′

A runtime error occurs on certain shape errors and whenever a term is used outside of
its allowed scope. For example, the following term is in error, since the certified process
h is writing on a term of the wrong shape.

{h,g} � h[rd(a)!n]
error−→

The following term is also in error, since the certified process h expects the scope of
wr(a) to include only certified processes, yet the uncertified process f is attempting to
write on a.

{h,g} � h[scope wr(a) is cert] | f[wr(a)!n]
error−→

ROBUST SAFETY

A process is h-initial if every attested term has the form “at(h,M).”
A configuration h1[P1] | · · · | h�[P�] is an initial ḡ-attacker if {h1, . . . ,h�} is disjoint

from ḡ and every Pi is hi-initial.
A configuration C is ḡ-safe if ḡ�C→∗D implies ¬(ḡ�D

error−→).
A configuration C is robustly ḡ-safe if C | A is ḡ-safe for every initial ḡ-attacker A.

The statement of robust safety ensures that certified processes are error-free, even when
combined with arbitrary attackers. The restriction that initial attacker h[P] be h-initial
requires only that attackers not forge attestations.

4 Statics

We describe a type system that ensures robust safety, i.e., runtime errors cannot occur
even in the presence of attackers. Types also convey policy information—access-control
policies specified in terms of hash formulas in this paper—that can be transmitted and
tested at runtime. Kinds are assigned to types to restrict the use of unsafe types. In this
section, we present parts of the type system and state the robust-safety theorem. The de-
velopment is heavily influenced by Gordon and Jeffrey [23] and Haack and Jeffrey [25].

Policies, Types and Kinds. We assign to every channel type a policy regulating access to

the channel. For channel types with policy 〈ρ,σ〉, ρ (respectively σ) controls the source
(respectively destination) of the data communicated by the channel: thus ρ indicates the
set of writers; σ indicates the set of readers. A kind is a policy 〈ρ,σ〉 in which ρ and σ
are either cert or any.

Dynamic Policy Discovery with Remote Attestation 119

POLICIES AND KINDS

ρ, σ ::= cert | any | h̄ Hash Formulas (Repeated)
α, β ::= cert | any Kind Formulas
Φ,Ψ ::= 〈ρ,σ〉 Policies
K ,J ::= 〈α,β〉 Kinds

TNT �= 〈any,cert〉 Tainted Secret Kind
PRV �= 〈cert,cert〉 Untainted Secret Kind
UN �= 〈any,any〉 Tainted Publishable Kind
PUB �= 〈cert,any〉 Untainted Publishable Kind

ρ ≤ ρ′ and σ′ ≤ σ
〈ρ,σ〉 ≤ 〈ρ′,σ′〉 Subpolicy Relation

The subpolicy relation, Φ ≤ Ψ, indicates that Ψ is more restrictive than Φ. In more
restrictive policies, it is always safe to overestimate the origin of a value and to un-
derestimate its scope. That is, in 〈ρ,σ〉, ρ is an upper bound on origin, and σ is an
lower bound on scope. When specialized to kinds, the subpolicy relation reduces to the
subkinding relation from [25].

〈any,cert〉= TNT

〈cert,cert〉= PRVUN =〈any,any〉

〈cert,any〉= PUB

�������
�������

�������
�������

We write K � J for the join operator over this lattice. For example UN�PRV = TNT.

TYPES AND TYPING ENVIRONMENTS

T,S,U,R ::= Hash | Cert | TopK | Dyn(h)K | (x:T,S)
| ChΦ(T) | RdΦ(T) | WrΦ(T)

Un �= TopUN Top of Kind UN
Tnt �= TopTNT Top of Kind TNT
E ::= n1:T1, . . . ,nm:Tm Typing Environments
dom(�n:�T) �=�n Domain of an Environment

Type Hash can be given to any hash, whereas Cert can be given only to certified hashes.
TopK is the type given to attestations containing data of kind K . Dyn(h)K is the type
of dynamically-typed data that was attested by h. In the dependent pair type “(x:T,S)”
x is bound with scope S; if x �∈ fn(S) we write simply (T,S). The channel types indicate
the policy Φ associated with the channel.

EXAMPLE. Although we allow creation of names at top types, these do not allow a full
expression of access control policies. We provide an encoding of data, where Data(σ)
is the type of data visible to σ.

120 C. Pitcher and J. Riely

Data(σ) �= Wr〈σ,any〉(Un) display M
�= new n:Un; M!n

A simple use of data is: new n:Data(cert); display n. �

Judgments. The following judgments are used in the typing system. Due to space limi-
tations, we discuss only the most important rules.

JUDGMENTS

E �
 Well-Formed Typing Environments
E � Φ :: K Well-Formed Policies
E � T :: K Well-Formed Types of Kind K
E � T <: S Subtyping
E � M : T Well-Formed Terms of Type T
E �h P Well-Formed Process at h

The rules for environments require that every type in the environment be well-
formed. A policy is well-formed with respect to a typing environment if every hash
in the policy has type Cert in the environment.

E � Φ :: 〈cert,α〉
E � T :: 〈_,β〉 α ≤ β
E � RdΦ(T) :: 〈cert,α〉

E � Φ :: 〈any,α〉
T = Top〈any,β〉 α ≤ β
E � RdΦ(T) :: 〈any,α〉

The rules for well-formed types require that read capabilities of kind UN receive values
(at a type of) of kind UN; those of kind PUB receive values of kind UN or PUB; those
of kind TNT receive values of kind UN or TNT; and those of kind PRV receive val-
ues of any kind. Write capabilities are similar for UN and PRV, but differ at the other
kinds. Write capabilities of kind PUB send values of kind UN or TNT; those of kind
TNT send values of kind UN or PUB. In the analogous rules for write capabilities, the
kind is inverted with respect to the policy. As a consequence, if a channel communi-
cates untainted data then the write capability is given at most trusted scope; if a write
capability is publishable, then the data it communicates is tainted.

Subtyping. Subtyping is reflexive and transitive, with top types at each kind. Read and
write capability types must have related policies in order to be related by subtyping.

Φ ≤ Ψ E � T <: S E � S :: kind(Ψ)
E � RdΦ(T) <: RdΨ(S)

Ψ ≤ Φ E � S <: T E � S :: kind(Ψ)
E � WrΦ(T) <:WrΨ(S)

In the read rule, the requirement that S be well-formed is necessary since Ψ may be
tainted even if Φ is not. Likewise in the write rule, Ψ may be publishable even if Φ
is not.

Typing and Robust Safety. The typing rules are designed to ensure robust safety whilst
allowing typechecked processes to have limited interaction with processes that are not
known to be typechecked. The interesting rules for terms are those for dynamic types
and attestations.

Dynamic Policy Discovery with Remote Attestation 121

E � M : T E � h : Cert E � T :: K
E � {M:T} : Dyn(h)K

E � M : Cert E � N : Dyn(M)K
E � at(M,N) : TopK

The rule for dynamic types constrains each type assertion to be associated with the hash
of a typechecked process, and that hash is recorded in the (dependent) dynamic type.
The rule for attestations constrains the hash in an attestation to be the same as the one
used in the inner type assertion.

Turning to processes, consider the following three rules.

E � M : TopK
E,x:Hash,y:Dyn(x)K �h P

E �h let at(x,y)=M; P

T ∈ {Hash,Cert}
E,x:Cert,E′ �h P

E,x:T,E′ �h iscert x; P

E � M : Dyn(f)K
E � f : Cert
E,x:S �h P

E �h typecase {x:S}=M; P

The pattern-matching rule for attestations is used to decompose an attestation into a
hash and a dynamic type associated with that hash. However, the term of dynamic type
cannot be unpacked (using the rule for typecase) until the hash is known to correspond
to a well-typed process. This is established using iscert, leading to the pattern seen in
the example of section 2 of an attestation decomposition, followed by a hash check, and
finally a typecase.

E �
 E � M : Ch〈ρ,σ〉(T)

E �h scope rd(M) is σ
E � M : Rd〈_,σ〉(T) E,x:T �h P h ≤ σ
E �h M?x; P

The type rule for read scoping expectations forces the process making the expectation to
know the channel type, and not just the read capability type. This is necessary because
policies are invariant on channel types but covariant on read channel types, so a process
that only knows the read capability type may have a poor approximation of the actual
policy that is used elsewhere in a configuration. To avoid access control violations, the
rule for reading processes requires that the process has authorization to read from a read
capability. Although a static authorization check may initially appear restrictive, note
that the static authorization check may follow a dynamic subtyping check for a read
capability received from another process.

The robust safety theorem states that processes can safely be typechecked and de-
ployed independently without any shared untainted or secret data (such as public or
secret keys), even in the presence of attackers.

THEOREM (ROBUST SAFETY). Let E be an environment in which every type is gener-
ative and can be given kind UN. Let gi and Pi be defined such that (1 ≤ i ≤ n):

Pi is gi-initial and E, h̄:Cert, f̄:Hash �gi
Pi for some h̄ ⊆ {g1, . . . ,gn} and f̄.

Then g1[P1] | · · · | gn[Pn] is robustly {g1, . . . ,gn}-safe.

Proof sketch. The proof requires an invariant that is implied by initial typing and
preserved by reduction. We formalize the invariant as a more liberal typing system
recording the sets of certified and opponent hashes. The central lemmas are Certified ty-
pability: All certified processes are well typed. Opponent typability: All opponent pro-
cesses are well typed. Preservation: Well typing is preserved by evaluation. Progress:
Well typed terms cannot give rise to runtime errors. �

122 C. Pitcher and J. Riely

5 Related Work

Remote Attestation. NGSCB and the TCG have provoked considerable controversy. For
example, see [12, 14].

Abadi [2] outlines a broad range of trusted hardware applications that use remote
attestation to convey trust assertions from one process to another. Our work can be seen
as a detailed formal study of a specific kind of trust assertion, namely information about
the type and access control policy for communicated data.

The NGSCB [37, 38, 39] remote attestation mechanism, and the TCG [50, 42, 15]
hardware that underpins it, are more complex than the π-rat remote attestation mecha-
nism. We have omitted much of the complexity in order to focus on the core policy is-
sues. For a logical description of NGSCB’s mechanism see [10]. For a concrete account
of implementing NGSCB-like remote attestation on top of TCG hardware see [45].

Haldar, Chandra, and Franz [26, 27] use a virtual machine to build a more flexible
remote attestation mechanism on top of the primitive remote attestation mechanism that
uses hashes of executables. In their system, a process requesting an attestation from a
second process can send test code to execute on the second process’s virtual machine
and ask for the results to be reported in attestations. Sadeghi and Stüble [44] observe
that systems using remote attestation may be fragile, and discuss a range of options for
implementing more flexible remote attestation mechanisms based upon system proper-
ties (left unspecified as the focus is upon implementation strategies). Sandhu and Zhang
[46] consider the use of remote attestation to protect disseminated information.

Process Calculi. As discussed in the introduction, π-rat builds upon existing work
[9, 3, 22, 23, 25] with symmetric-key and asymmetric-key cryptographic primitives in
pi-calculi. Notably, the kinding system is heavily influenced by the pattern-matching
spi-calculus [25]. Our setting is quite different, however. In particular, processes estab-
lish their own secure channels and corresponding policies, as opposed to relying upon a
mutually-trusted authority to distribute initial keys and policies. In addition, the access
control policies used here are not immediately expressible in spi, since processes do not
have associated identity. The techniques used to verify authenticity and other properties
as in [22, 21] should be applicable to π-rat, though we make no attempt to address au-
thenticity or replay attacks here. Finally, our primitive for checking attestation includes
an implicit notion of authorization which is made explicit in [25]. Scaling up to explicit
authorizations would allow the possibility of enforcing policies that require multiple
authorizations for certain actions.

There is some similarity between our work and that on the distributed π calculus [28].
In Dπ, locations are primarily collections of resources. Here, instead, we view “loca-
tions” as principals whose identity is determined by the actual code running. This is a
different view of locality, determined less by where the code happens to be running and
more on the identity of the code itself.

Because of the close relation between process terms and their hashes, attestation does
not appear to fit neatly into existing abstract frameworks for π-calculi, such as applied
π [5].

Dynamic Policy Discovery with Remote Attestation 123

Code Identity. Code identity is also used in stack inspection [51] and other history-
based access control policies [6]. Remote attestation can be used to implement similar
policies in a distributed environment, but we leave this for future work.

Separate Compilation and Typechecking. The π-rat type system allows executables to be
typechecked independently and subsequently linked together. Separate compilation and
linkability is not a new idea in programming languages, see, e.g., [20], but is uncommon
in spi-like calculi because there is usually a need to reliably distribute some shared
secret or untainted data between separate processes in accordance with a type (policy).
Recently Bugliesi, Focardi, and Maffei [18, 19] have considered separate typechecking
in the context of a spi-like calculus.

Trusted Hardware. We have assumed that trusted hardware is trustworthy. Amongst
other things, the trusted hardware must correctly protect the memory of processes from
attackers, attackers must not be able to access the trusted hardware key, and processor
manufacturers must not issue fake certificates and keypairs to anyone (such as law en-
forcement, intelligence agencies, or data recovery firms). For accounts of the difficulties
involved in creating such trusted hardware see [13, 31] for an attacker’s perspective and
[15, 48] for a defender’s perspective. Irvine and Levin [32] provide a warning about
placing too much trust in the integrity of COTS.

Other research efforts on implementations of trusted hardware, such as [35, 36, 47],
are orthogonal to the work presented here.

6 Conclusion

This paper is an early contribution to the study of remote attestation in programming
languages. We have defined an extension of the π-calculus with a remote attestation
primitive and access control assertions for channels. Executables may be typechecked
and deployed individually, which is a significant advantage for the intended applications
of trusted hardware. The resulting typechecked configurations discover and obey access
control policies even with the addition of opponents. To the best of our knowledge, this
is the first paper to provide static analysis principles for building systems that use the
remote attestation mechanism.

By incorporating higher-order communication, one could reason about runtime
certification of executables and the distribution of knowledge of the certification. The
presence of hashes identifying processes also makes it possible to imagine recovering
traditional memory safety without sacrificing opponent typability.

It would be useful to extend π-rat with access control policies using linked
namespaces that denote sets of trusted hashes as opposed to sets of public keys in the
RT framework [34]. With development tools that also run on trusted hardware, there are
some interesting new possibilities. For example, we might use a compiler (not necessar-
ily modeled as a well-typed π-rat executable) that issues an attestation associating the
hash of the source code and the hash of the resulting executable. An access control pol-
icy might state that a well-typed executable must have been derived from source code
signed by a trusted developer’s private key, where that developer is expected to follow
certain procedures to provide a degree of assurance. The use of development tools that
attest to their output would help to mitigate the threat of Trojan horses in tools, see [49].

124 C. Pitcher and J. Riely

Acknowledgment. We would like to thank Christian Haack, Radha Jagadeesan, Alan

Jeffrey, Will Marrero, William Pollock, Daniel Sweeney, and the anonymous referees
for their comments.

References

1. M. Abadi. Secrecy by typing in security protocols. J. ACM, 46(5), 1999.
2. M. Abadi. Trusted computing, trusted third parties, and verified communications. In

SEC2004: 19th IFIP International Information Security Conference, 2004.
3. M. Abadi and B. Blanchet. Secrecy types for asymmetric communication. Theoretical Com-

puter Science, 298(3), 2003.
4. M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic typing in a statically typed lan-

guage. ACM Trans. Program. Lang. Syst., 13(2), 1991.
5. M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In POPL

’01, 2001.
6. M. Abadi and C. Fournet. Access control based on execution history. In Proceedings of the

10th Annual Network and Distributed System Security Symposium, 2003.
7. M. Abadi, C. Fournet, and G. Gonthier. Authentication primitives and their compilation. In

POPL ’00, 2000.
8. M. Abadi, C. Fournet, and G. Gonthier. Secure implementation of channel abstractions. Inf.

Comput., 174(1), 2002.
9. M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi calculus.

Information and Computation, 148(1), 1999.
10. M. Abadi and T. Wobber. A logical account of NGSCB. In FORTE ’04, 2004.
11. R. M. Amadio, I. Castellani, and D. Sangiorgi. On bisimulations of the asynchronous

π-calculus. Theor. Comput. Sci., 195(2), 1998.
12. R. Anderson. ‘Trusted Computing’ Frequently Asked Questions.

http://www.cl.cam.ac.uk/~rja14/tcpa-faq.html, 2003. Version 1.1.
13. R. Anderson and M. Kuhn. Tamper resistance - a cautionary note. In Second USENIX

Workshop on Electronic Commerce Proceedings, 1996.
14. W. A. Arbaugh. Improving the TCPA specification. IEEE Computer, 2002.
15. W. A. Arbaugh, D. J. Farber, and J. M. Smith. A secure and reliable bootstrap architecture.

In IEEE Symposium on Security and Privacy, 1997.
16. G. Berry and G. Boudol. The chemical abstract machine. In POPL ’90, 1990.
17. M. Bugliesi, S. Crafa, A. Prelic, and V. Sassone. Secrecy in untrusted networks. In ICALP

’03, 2003.
18. M. Bugliesi, R. Focardi, and M. Maffei. Compositional analysis of authentication protocols.

In ESOP, 2004.
19. M. Bugliesi, R. Focardi, and M. Maffei. Analysis of typed analyses of authentication proto-

cols. In CSFW, 2005.
20. L. Cardelli. Program fragments, linking, and modularization. In POPL ’97, 1997.
21. C. Fournet, A. Gordon, and S. Maffeis. A type discipline for authorization policies. In ESOP

’05, 2005.
22. A. D. Gordon and A. S. A. Jeffrey. Authenticity by typing for security protocols. J. Computer

Security, 11(4), 2003.
23. A. D. Gordon and A. S. A. Jeffrey. Types and effects for asymmetric cryptographic protocols.

J. Computer Security, 12(3/4), 2004.
24. A. D. Gordon and A. S. A. Jeffrey. Secrecy despite compromise: Types, cryptography, and

the pi-calculus. In CONCUR, 2005.

Dynamic Policy Discovery with Remote Attestation 125

25. C. Haack and A. S. A. Jeffrey. Pattern-matching spi-calculus. In Proc. IFIP WG 1.7 Work-
shop on Formal Aspects in Security and Trust, 2004.

26. V. Haldar, D. Chandra, and M. Franz. Semantic remote attestation: A virtual machine di-
rected approach to trusted computing. In USENIX VM, 2004.

27. V. Haldar and M. Franz. Symmetric behavior-based trust: A new paradigm for internet com-
puting. In New Security Paradigms Workshop, 2004.

28. M. Hennessy and J. Riely. Resource access control in systems of mobile agents. Information
and Computation, 173, 2002.

29. K. Honda and M. Tokoro. On asynchronous communication semantics. In ECOOP ’91:
Proceedings of the Workshop on Object-Based Concurrent Computing, 1992.

30. K. Honda, V. T. Vasconcelos, and N. Yoshida. Secure information flow as typed process
behaviour. In ESOP ’00, 2000.

31. A. Huang. Hacking the Xbox. Xenatera Press, 2003.
32. C. Irvine and T. Levin. A cautionary note regarding the data integrity capacity of certain

secure systems. In Integrity, Internal Control and Security in Information Systems, 2002.
33. X. Leroy and M. Mauny. Dynamics in ML. In FPCA, 1991.
34. N. Li and J. Mitchell. RT: A role-based trust-management framework. In DARPA Information

Survivability Conference and Exposition (DISCEX III), 2003.
35. D. Lie, C. Thekkath, P. Lincoln, M. Mitchell, D. Boneh, J. Mitchell, and M. Horowitz. Ar-

chitectural support for copy and tamper resistant software. In ASPLOS-IX, 2000.
36. D. Lie, C. A. Thekkath, and M. Horowitz. Implementing an untrusted operating system on

trusted hardware. In 19th ACM Symposium on Operating Systems Principles, 2003.
37. Microsoft. Longhorn developer preview documentation. Distributed at Microsoft’s Profes-

sional Developers Conference in Los Angeles, 2003.
38. Microsoft. NGSCB: TCB and software authentication, 2003.
39. Microsoft. Security model for the Next-Generation Secure Computing Base, 2003.
40. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I. Inf. Comput., 100(1),

1992.
41. M. Odersky. Polarized name passing. In FST-TCS ’95, 1995.
42. S. Pearson, editor. Trusted Computing Platforms: TCPA Technology in Context. Prentice

Hall, 2002.
43. J. Riely and M. Hennessy. Trust and partial typing in open systems of mobile agents. J.

Automated Reasoning, 31(3–4), 2003.
44. A.-R. Sadeghi and C. Stüble. Property-based attestation for computing platforms: Caring

about properties, not mechanisms. In New Security Paradigms Workshop, 2004.
45. R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and implementation of a TCG-based

integrity measurement architecture. In 13th USENIX Security Symposium, 2004.
46. R. Sandhu and X. Zhang. Peer-to-peer access control architecture using trusted computing

technology. In SACMAT, 2005.
47. A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla. SWATT: SoftWare-based ATTestation

for embedded devices. In IEEE Symposium on Security and Privacy, 2004.
48. S. Smith and S. Weingart. Building a high-performance, programmable secure coprocessor.

Computer Networks, 31, 1999. Special Issue on Computer Network Security.
49. K. Thompson. Reflections on trusting trust. CACM, 27(8), 1984.
50. Trusted Computing Group. Trusted Computing Platform Alliance: Main specification, ver-

sion 1.1b. http://www.trustedcomputinggroup.org, 2003.
51. D. S. Wallach, A. W. Appel, and E. W. Felten. SAFKASI: a security mechanism for language-

based systems. ACM Trans. Softw. Eng. Methodol., 9(4), 2000.

Distributed Unfolding of Petri Nets�

Paolo Baldan1, Stefan Haar2, and Barbara König3

1 Dipartimento di Informatica, Università Ca’ Foscari di Venezia, Italy
2 INRIA Rennes, Distribcom team, France

3 Institut für Formale Methoden der Informatik, Universität Stuttgart, Germany

Abstract. Some recent Petri net-based approaches to fault diagnosis of
distributed systems suggest to factor the problem into local diagnoses
based on the unfoldings of local views of the system, which are then
correlated with diagnoses from neighbouring supervisors. In this paper
we propose a notion of system factorisation expressed in terms of pullback
decomposition. To ensure coherence of the local views and completeness
of the diagnosis, data exchange among the unfolders needs to be specified
with care. We introduce interleaving structures as a format for data
exchange between unfolders and we propose a distributed algorithm for
computing local views of the unfolding for each system component. The
theory of interleaving structures is developed to prove correctness of the
distributed unfolding algorithm.

1 Introduction

Partial order semantics are often instrumental in providing a compact represen-
tation of the behaviour of concurrent systems: modelling concurrency of events
in an explicit way rather than considering all the possible interleavings of such
events helps in tackling the so-called state explosion problem. In recent years
there has been a growing interest in the use of unfolding-based approaches.
Originally introduced in the setting of Petri nets, the unfolding semantics [14]
is a branching partial order semantics which represents in a single structure all
the possible events in computations, and their causal dependencies and conflicts
(branching points). Each branch represents a concurrent execution of the net,
in the form of an acyclic conflict-free net. The unfolding provides an “efficient”
representation of the state space of the system, not only taking advantage of a
partial order representation of concurrency, but also keeping together different
computations in its branching structure until a conflict is reached.

When analysing a complex system it happens frequently that we want to con-
sider only a small part of such a system: either because the system is inherently
distributed and each observer has access only to a local component of it, or be-
cause the system is too big to be analysed or monitored as a whole. In this paper,
we take Petri nets as systems models and their unfolding semantics as reference
� Partially supported by EC RTN 2-2001-00346 SegraVis, MIUR project PRIN

2005015824 ART, European NoE ARTIST (IST-2001-34820), French RNRT project
SWAN (No. 03 S 481), DFG project SANDS, SFB 627 (NEXUS).

L. Aceto and A. Ingólfsdóttir (Eds.): FOSSACS 2006, LNCS 3921, pp. 126–141, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Distributed Unfolding of Petri Nets 127

semantics, and we view systems as made up of smaller components. Then we
show how the projection of the semantics of the whole system over each single
local component can be computed locally via a distributed unfolding algorithm,
requiring only a minimal interaction among components.

The original motivation of this work is not verification, but distributed di-
agnosis of asynchronous systems. The general principle of diagnosis for discrete
event systems (DES) can be stated as follows: not all transitions of a system
are observable; in particular, faults are invisible and have to be deduced from
the observations. This deduction of behaviour from the observations is the topic
of diagnosis; efforts to force the system into a desired behaviour are studied in
the domain of control. Although it has an important intersection with diagnosis,
control is a clearly distinct problem, not addressed by the present article. Diag-
nosis can be approached via the construction of finite automata, the diagnosers,
detailed in [19]; the input of a diagnosis procedure is the language of observed
sequences and its output is the language of behaviours that explain the obser-
vations. Communication among diagnosers allows for a decentralised diagnosis,
in which different diagnoses are proposed by various local diagnosers and then
merged to filter out incompatible local views (see, e.g., [6, 16, 5]). Some authors
consider timed extensions [17] or use Petri nets as system models [10].

The diagnosis approach in [3, 4, 9], which the present work builds upon, differs
from all of the above in the fact that the asynchronous behaviour is captured by
partial order semantics, thus abstracting away time aspects and interleavings of
concurrent events in order to fight state space explosion. The system behaviour
is given in the form of a Petri net model, where only a subset of transitions
is observable. Then a sequence (or partially ordered scenario) of observations,
called alarm pattern, is explainable by several net computations. These explana-
tions are obtained by unfolding the synchronous product of the model net with
the alarm pattern, and extracting the maximal configurations compatible with
the alarm pattern (see [3]). This approach suffers, for large systems, from the
explosion of the size of the global unfolding. Moreover, the practice in diagnosis
for large networks justifies the use of several supervisors having only a partial
view of the network.

This leads to the idea of distributed diagnosis via unfoldings: each supervi-
sor computes a local diagnosis and an exchange of messages with neighbouring
supervisors allows to eliminate branches that do not appear as local traces of
admissible global configurations. Being able to construct the local views of the
global unfolding (of prohibitive size in general) without computing it is the heart
of the problem. We remark that we are interested in the projections over the
local components of the unfolding of the whole system rather than in the un-
foldings of the components themselves. This will become clearer in the technical
treatment, but intuitively the reason is that the “autonomous” unfolding of each
single component would include “spurious” runs which, although consistent with
the structure of the local component itself, have no counterpart in the behaviour
of the whole system, due to component interactions. In [4, 9] Petri net compo-
nents were fused on places, and the fusion of views was done through products

128 P. Baldan, S. Haar, and B. König

of event structures obtained by using a projection operation with an exchange
of messages relating transition actions. Another fusion approach using so-called
augmented processes is developed in [7, 8].

At a technical level, we will introduce a decomposition/composition mecha-
nism based on pullbacks which allows to view a given Petri net N3 as built as
the join of two components N1 and N2 (or more) along a common interface net
N0. The categorical approach allows to exploit a compositionality result which
plays a basic role in the design of the distributed unfolding algorithm: the un-
folding construction can be expressed as a right adjoint functor between suitable
categories of nets and thus it preserves pullbacks. Hence the unfolding of a net
N3, arising as the the pullback of N1 and N2 along N0, can be obtained as the
pullback of the unfoldings of the single components.

In order to compute the projections of the full unfolding over the various
net components, we propose a distributed algorithm requiring an exchange of
information among such components. The components communicate through the
interface net, whose unfolding is used to store information about dependencies
on events induced by both components. This information is conceptually stored
in so-called interleaving structures, whose theory provides a solid theoretical
basis for proving the correctness of the distributed unfolding procedure. More
specifically, factorisation results from category theory will be used to show that
the information stored in the interface suffices in order to obtain the desired
result.

The paper is organised as follows. In §2 we lay some general technical ground
for the categorical techniques involved. In §3 we focus on Petri net decomposi-
tion, while in §4 we introduce Petri net unfoldings. In §5 we develop the theory
of interleaving structures, which play a basic role in the distributed unfolding
algorithm presented in §6. Finally, in §7 we draw some conclusions.

2 Notation and Categorical Background

Given a (possibly partial) function f : A

� B and a ∈ A we will write f(a) ↓
whenever f is defined on a and f(a) ↑, otherwise.

Let A be a set. The powerset of A is denoted by 2A. A multiset of A is
a total function M :A → N. It is called finite if the underlying set {a ∈ A |
M(a) > 0} is finite. A finite multiset is sometimes denoted as a formal sum
M =

⊕
a∈A M(a) ·a. The set of finite multisets of A is denoted by μA. A subset

X ⊆ A will be often treated as the multiset
⊕

a∈X 1 · a.
A (finitary) multirelation f : A ↔ B is a multiset of A×B such that for all a ∈

A the set {b ∈ B | f(a, b) > 0} is finite. Any multirelation f : A ↔ B induces a
function μf : μA → μB defined by μf(

⊕
a∈A na ·a) =

⊕
b∈B(

∑
a∈A na f(a, b))·b.

We say that a multirelation f : A ↔ B is total if for any a ∈ A there exists
b ∈ B such that f(a, b) > 0, injective if for any b ∈ B we have

∑
a∈A f(a, b) ≤ 1,

surjective if for any b ∈ B we have
∑

a∈A f(a, b) ≥ 1.
We will refer to some categorical concepts (see also [1]), and in particular we

will make extensive use of pullbacks and factorisation structures.

Distributed Unfolding of Petri Nets 129

Definition 1 (pullback). Let C be a category and f1 : B → D, f2 : C → D be
arrows in C. The pullback of f1 and f2 is an object A (pullback object) and a
pair of arrows π1 : A → B, π2 : A → C such that (i) f1 ◦π1 = f2 ◦π2 and (ii) for
any object A′ with arrows α1 : A′ → B, α2 : A′ → C such that f1 ◦ α1 = f2 ◦ α2
there exists a unique arrow γ : A′ → A such that πi ◦ γ = αi (i ∈ {1, 2}).

A′
γ ��

α2
��

α1

��

A
π1 ��

π2
��

B
f1

��

C
f2

�� D

For instance, for a fixed a set Λ of labels, consider the category LSet∗ of
Λ-labelled sets and partial functions. Objects are pairs (A, λ), where A is a set
and λ:A → Λ is a total labelling function, while arrows are label-preserving par-
tial functions. Given two arrows f1: (B, λB) → (D,λD), f2: (C, λC) → (D,λD)
the pullback object is (A, λA) with

A = {(b, c) | b ∈ B, c ∈ C, f1(b) = f2(c)}
∪ {(b, ∗) | b ∈ B, f1(b) ↑} ∪ {(∗, c) | c ∈ C, f2(c) ↑}
∪ {(b, c) | b ∈ B, c ∈ C, f1(b), f2(c) ↑ and λB(b) = λC(c)}

and λA, π1 and π2 defined in the obvious way.

Definition 2 (factorisation structures). Let C be a category and let E, M
be classes of morphisms in C, closed under composition with isomorphisms. The
pair (E,M) is called a factorisation structure for morphisms in C and C is
called (E,M)-structured whenever

– C has (E,M)-factorisations of morphisms, i.e., each morphism f of C has
a factorisation f = m ◦ e with e ∈ E and m ∈ M .

– C has the unique (E,M)-diagonalisation property, i.e., for each commuta-
tive square as shown on the left-hand side below with e ∈ E and m ∈ M
there exists a unique diagonal, i.e., a morphism d such that the diagram on
the right-hand side commutes (i.e., such that d ◦ e = f and m ◦ d = g).

A
e �� ��

f
��

B
g

��

C �� m �� D

A
e �� ��

f
��

B
g

��

d

		
C �� m �� D

The classical example of (E,M)-factorisation in Set is the factorisation of a
function f into a surjective and an injective part. In the following, morphisms
from E are drawn using double-headed arrows of the form A � B, whereas
morphisms from M are drawn using arrows of the form A
 B.

In any (E,M)-structured category (E,M)-factorisations of morphisms are
unique up to isomorphism, the sets E and M are both closed under composition
and all arrows in M are stable under pullback.

130 P. Baldan, S. Haar, and B. König

3 Composing Petri Nets

In this section we introduce the basics of Petri nets and the corresponding cate-
gory. Then we present a technique for decomposing Petri nets into smaller com-
ponents (or equivalently to compose Petri nets) along a given interface, showing
how the operation can be interpreted, in categorical terms, as a pullback.

We will consider labelled Petri nets, with morphisms as introduced in [20]. In
the rest of the paper Λ denotes a fixed label set for all considered Petri nets.

Definition 3 (Petri net). A Petri net is a tuple N = (S, T, λ, •(), ()•,m) where
S is the set of places, T is the set of transitions, λ:T → Λ is a labelling func-
tion, •(), ()•:T → 2S associate to each transition t ∈ T its pre-set and post-set,
respectively, and m ∈ 2S is the initial marking.

A (Petri net) morphism τ = (η, β):N → N ′ is a pair consisting of a par-
tial function η:T

� T ′ and a finitary multirelation β:S ↔ S′ such that (i)
μβ(m) = m′, and (ii) for any t ∈ T , μβ(•t) = •η(t) and μβ(t•) = η(t)•, where
conventionally •η(t) = η(t)• = ∅ when η(t) ↑. The category of Petri nets and
their morphisms is denoted by PN.

In the sequel we will assume that in any considered Petri net, all transitions have
a non-empty pre-set, a typical property required in unfolding-based approaches.
Moreover we will denote the components of a Petri net N as S, T , λ, •(), ()•

and m. Superscripts will carry over to the component names.

Example: Examples of Petri nets can be found in Fig. 1. Initially marked places
are drawn with thick lines. Both nets consist of a loop involving four transitions,
labelled over the set Λ = {α, β, γ, δ}.
For defining formally the local projections of the full unfolding we need some
special classes of morphisms.

Definition 4 (projection and embedding). A Petri net morphism τ =
(η, β) : N → N ′ is called a projection whenever η and β are surjective. It is
called an embedding if both η and β are total and injective.

δα

β

2

3

γ

4

1

(a) N ′
3

5

3

γ

4

δ

1

6

α

2

β

(b) N3

Fig. 1. Two examples of Petri nets

Distributed Unfolding of Petri Nets 131

It can be shown that PN is (projection,embedding)-structured (pe-structured, for
short). Given a PN morphism τ = (η, β) : N → N ′, let τ(N) denote the subnet
of N ′ including only transitions in η(T). Then the projection τ : N → τ(N) and
the inclusion of τ(N) into N ′ provide a pe-factorisation of τ .

In the following we define how to restrict a Petri net to a subset S0 of its places.
Specifically, a transition t will appear in the new net only if it is connected to
at least one place in S0.

Definition 5 (restricting a net). Let N be a net and let S0 ⊆ S be a subset of
places. Then the restriction of N to S0, denoted [N]S0 = (S0, T0, λ0,

•(), ()•,m0),
is defined as follows: T0 = {(t, 0) | t ∈ T ∧ (•t ∩ S0 �= ∅ ∨ t• ∩ S0 �= ∅)},
λ0((t, 0)) = λ(t), •(t, 0) = •t ∩ S0, (t, 0)• = t• ∩ S0 and m0 = m ∩ S0.

This induces a morphism τN,S = (η, β):N → [N]S with η(t) = (t, 0), whenever
(t, 0) ∈ T0, and η(t) ↑ otherwise. Furthermore β(s, s′) = 1, whenever s = s′ ∈ S0,
and β(s, s′) = 0 otherwise.

The next proposition provides a recipe for decomposing Petri nets along some
chosen places, which play the role of interface between the subcomponents.

Proposition 6 (decomposition of Petri nets). Let N3 be a Petri net and
let S3 = S1 ∪ S2. Let S0 = S1 ∩ S2 and construct nets N0, N1, N2 as follows:
N1 = [N3]S1 , N2 = [N3]S2 , N0 = [N1]S0 = [N2]S0 . Say that transitions in
Ti−T0 are local to Ni for i ∈ {1, 2} and assume that transitions local to different
nets have distinct labels. Then the nets Ni with i ∈ {0, 1, 2, 3} together with the
morphisms τN3,S1 , τN3,S2 , τN1,S0 , τN2,S0 form a pullback diagram.

Note that, in order to exploit the results about unfolding, also the component
nets must not contain transitions with empty pre-sets. Henceforth, all decom-
positions are supposed to have this property. For safe nets this can be achieved
by introducing extra complement places. Also, decomposition will have to be
done in such a way that local transitions in different components have different
labels.

Example: Consider the Petri net N ′
3 in Fig. 1(a). We intend to split the loop

along the places 1 and 3, i.e., we plan to decompose as described in Propo-
sition 6 with S1 = {1, 2, 3} and S2 = {1, 3, 4}. However, this would result in
subcomponents N0, N1 and N2 including transitions with empty pre-set. In or-
der to avoid this problem, we can complement the interface places 1, 3 by adding
two more places 5, 6, thus obtaining the net N3 in Fig. 1(b). Call place p̄ the
complement of place p if p• = •p̄, p̄• = •p, and p ∈ m ⇔ p̄ �∈ m. Then 5, 6 are
complements for 1, 3. The new net is equivalent to N ′

3 (in a sense which can
be formalised [15]) and can be safely decomposed using S1 = {1, 2, 3, 5, 6} and
S2 = {1, 3, 4, 5, 6}.

We split N3 into two subnets N1, N2 with interface N0 (according to Propo-
sition 6), thus obtaining the pullback in category PN shown in Fig. 2.

132 P. Baldan, S. Haar, and B. König

α

3

4

δ

5

γ

1

6

β

5

3

γβ

2 4

α δ

1

6

5

3

γβ

α

1

6

δ

β

3

5

γ

δ

1

6

α

2

N0

N3

N2N1

Fig. 2. Decomposing a loop as a pullback of nets

4 Unfolding Petri Nets

Recall that given a Petri net N the dependencies between transitions are cap-
tured by two basic relations, causality and conflict. Causality is the least tran-
sitive relation <N over S ∪ T such that if s ∈ •t then s <N t and if s ∈ t• then
t <N s. We denote by ≤N the reflexive closure of <N and for any x ∈ S ∪ T ,
�x� = {y ∈ S ∪ T : y ≤N x}. Conflict is the least symmetric relation #N over
S ∪ T such that (i) if •t ∩ •t′ �= ∅ and t �= t′ then t#N t′ and (ii) if t#N t′ and
t <N t′′ then t′′#N t′.

Occurrence nets are basically acyclic nets where each place is generated by at
most one transition. They are used to unfold Petri nets as described below.

Definition 7 (occurrence net). An occurrence net is a net N satisfying:

1. if t• ∩ t′• �= ∅ then t = t′;
2. ≤N is a partial order and �t� is finite for any t ∈ T ;
3. the initial marking m is the set of ≤N -minimal places;
4. #N is irreflexive.

With ON we denote the full subcategory of PN having occurrence nets as objects.

A configuration of an occurrence net N , formalising the intuitive idea of “con-
current run”, is a subset C ⊆ T such that C is left-closed w.r.t. ≤N and free of

Distributed Unfolding of Petri Nets 133

conflicts. A set of places X ⊆ S is called concurrent, written conc(X), if �X� is
a configuration and ¬(s <N s′) for all s, s′ ∈ X .

We are now ready to define the unfolding of a Petri net. The unfolding con-
struction unwinds a given net N into an occurrence net, starting from the initial
marking, firing transitions in all possible ways and recording the corresponding
occurrences. For the sake of presentation we give an equational definition.

Definition 8 (unfolding). Let N be a Petri net. Its unfolding U(N) and the
folding morphism τN = (η, β) : U(N) → N are the occurrence net and net
morphism determined by the following recursive equations, where the components
of the unfolding are primed:

m′ = {〈∅, s〉 | s ∈ m}
S′ = m′ ∪ {〈{t′}, s〉 | t′ = 〈X, t〉 ∈ T ′ ∧ s ∈ t•}
T ′ = {〈X, t〉 | X ⊆ S′ ∧ conc(X) ∧ t ∈ T ∧ μβ(X) = •t}

For t′ = 〈X, t〉 ∈ T ′ : •t′ = X and t′• = {〈{t′}, s〉 | s ∈ t•}
η(t′) = t iff t′ = 〈X, t〉
β(s′, s) = 1 iff s′ = 〈x, s〉 (x ∈ 2T ′

)

Observe that items in the unfolding are enriched with their causal histories. Place
s′ = 〈x, s〉 records its generator x (x is empty when the place is in the initial
state, otherwise x is a singleton) and the place s in the original net; transition
t′ = 〈X, t〉 represents a firing of t that consumes the resources in X .

Proposition 9 (right adjoint [20, 13]). The construction U extends to a
functor U : PN → ON, right adjoint to the inclusion of ON into PN.

Right adjoints preserve limits (see [12, 1]) and hence also pullbacks, which are
special limits. As a consequence the unfolding of a pullback in PN is the pullback
(in ON) of the unfoldings of the component nets. More precisely, given a pullback
τ ′i :N3 → Ni, τi:Ni → N0 (i ∈ {1, 2}) in PN, we have that U(τ ′i):U(N3) →
U(Ni), U(τi):U(Ni) → U(N0) (i ∈ {1, 2}) is a pullback in ON. This result will
play a central role in the rest of this paper.

Example: Unfolding the nets N0, N1, N2 and N3 of Fig. 2 we obtain the occur-
rence nets O0, O1, O2 and O3 in Fig. 3 (ignore the shaded places and transitions
for the moment). Transitions in the occurrence nets are named by using their
label, with an additional index. The morphisms to the original nets are the obvi-
ous ones suggested by the labelling. By the considerations above, the occurrence
net O3 arising as unfolding of N3 is the pullback of O1 and O2 along O0.

The aim of this paper is to compute—in a distributed way—the projection
of U(N3) to U(Ni), i.e., the local view of component Ni, when taking into ac-
count the behaviour of the other component. The intuitive idea of local view is
formalised by using factorisations.

It can be shown that, taking projections and embeddings as in Definition 4, the
category ON is pe-structured. The only delicate point is to show that given an

134 P. Baldan, S. Haar, and B. König

...

...

... ...

5

O2 = U(N2)O1 = U(N1)

O3 = U(N3)

O0 = U(N0)

3

51

1 1

3

β1

α1 γ1

6 4 5

δ1 β2

1

α2 γ2

6 4 5

δ2δ′
1

... ...

...

1 5

α1

6 2

β1

3

γ1

4 5

δ1

1

α2

6 2

β2

3

γ2

4 5

δ2

1

1 5

α1 β1

6 3

δ1 γ1

1

α2 β2

6 3

1 5

α1

6 2

δ1 β1

1 3

α2 γ1

6 2 5

δ2 β′
1

β2

1 3 3

γ′
1

5
...

... ...

Fig. 3. Composition of unfoldings as pullback of occurrence nets

occurrence net morphism τ : O1 → O2, the net τ(O1) as defined in Section 3 is
a well-defined occurrence net, but this follows from the fact that occurrence net
morphisms reflect causal chains (see [20], Lemma 3.3.6).

Definition 10 (projection of occurrence nets). Let τ = (η, β):O1 → O2 be
an ON morphism, and let τp:O1 → O1

2, τe:O1
2 → O2 be the pe-factorisation of

τ . Then the occurrence net O1
2 is called the projection of O1 onto O2.

Example: Consider the unfoldings of our running example in Fig. 3. The shaded
places and transitions in O0, O1 and O2 identify the projections O3

0 , O3
1 , O3

2 .

Distributed Unfolding of Petri Nets 135

Transitions in O1 and O2 which disappear in the projection intuitively represent
events that are infeasible if the net components interact. For instance, consider
transition β′

1 in O1. From the point of view of N1, transition δ1 is a cause for
β′

1. However, through the interface, transition β′
1 in N1 corresponds to β1 in N2,

and in this latter net β1 is a cause for δ1. Hence β′
1 turns out to be not firable.

5 Interleaving Structures and Their Properties

In order to be able to compute the local projection of the unfolding, intuitively,
each net component needs to know the behavioural constraints on the events
of the interface net imposed by the other component. Unfortunately, the idea
of simply representing dependencies between events, i.e., causality and conflict,
with prime event structures, and projecting to the interface the additional de-
pendencies derived in each net component does not work. Consider, for instance,
the occurrence nets in Fig. 4, where morphisms ϕi map any transition in Ni

to the only transition in the interface net with the same label. Since the two
γ-labelled transitions in N1 are fused in N0, the projection of causalities in N1
to N0 would result in an or-causality between {t0, t1} and t2, a phenomenon that
is not expressible in a prime event structure. Still, from N2 we obtain the infor-
mation that t2 must be fired before t1. By combining this knowledge we discover
that t0 < t1 < t2 is the only possible order in which the transitions of N0 can
be executed. It can be shown that similar problems arise when considering more
general partial order models including Winskel’s general event structures [20].

α

γ

β

N2

t0

t2

t1

ϕ2
��

α

γ γ

β

t0

t′
2

t′′
2

t1

N1

ϕ1 ��

γ

βα

N0

t0

t2

t1

Fig. 4. Projecting dependency relations over the interface

The search for structures suitable to express possible orderings of events and
forming a category with nice factorisation properties leads us to so-called in-
terleaving structures. As their name suggests, these structures do not rely on
partial orders, but, as discussed in [2], for practical purposes an efficient partial
order representation based on occurrence nets can be devised.

136 P. Baldan, S. Haar, and B. König

Interleavings. For a set A, denote by A∗ the set of finite sequences of elements
of A and by A� the subset of sequences in A∗ in which each element occurs at
most once. A (partial) function f : A

� B induces a function f : A∗ → B∗ (still
denoted by f), where for r ∈ A∗ its image f(r) is defined pointwise, removing
from the sequence the elements on which f is undefined.

Definition 11 (interleaving structures). An interleaving structure is a tuple
I = (E,R, λ) where E is a set of events, λ:E → Λ is a labelling of events and
R ⊆ E� is the set of runs, satisfying: (i) R is prefix-closed, (ii) R contains the
empty run ε, and (iii) every event e ∈ E occurs in at least one run.

The components of an interleaving structure I will be denoted by EI , RI , λI ,
whereas the components of Ii will also be denoted by Ei, Ri, λi.

Definition 12 (interleaving morphisms). Let Ii = (Ei, Ri, λi) with i ∈
{1, 2} be interleaving structures. An interleaving morphism from I1 to I2 is
a partial function θ:E1

� E2 on events such that (i) λ2(θ(e)) = λ1(e) when-
ever θ(e) ↓, and (ii) for every r ∈ R1 it holds that θ(r) ∈ R2. We denote the
category of interleaving structures and interleaving morphisms by Ilv.

By Condition (2) above, θ must be injective on the events occurring in any single
run. Pullbacks can be constructed in a quite straightforward way in Ilv.

Proposition 13 (pullbacks in Ilv). Let θi: Ii → I0, i ∈ {1, 2} be two inter-
leaving morphisms. Their pullback in Ilv, denoted by πi: I3 → Ii, i ∈ {1, 2} can
be constructed as follows:

– Define E′
3 as the pullback in the category of labelled sets and partial functions,

and let π′
i:E3 → Ei be the standard partial projections.

– Define R3 = {r ∈ (E′
3)

� | π1(r) ∈ R1 ∧ π2(r) ∈ R2}.
– Let E3 ⊆ E′

3 be the subset of events in E′
3 that occur in at least one run in

R3. Furthermore let πi = π′
i|E3 :E3 → Ei be the projections restricted to E3.

– Finally set λ3((e1, e2))=λ1(e1) = λ2(e2), λ3((e1, ∗))=λ1(e1) and λ3((∗, e2))
= λ2(e2) for all events in E3.

Then I3 = (E3, R3, λ3) is the pullback object.

Factorisation Structures. We next show how to obtain a factorisation struc-
ture for Ilv. This is needed in order to project information about possible inter-
leavings of events from each component down to the interface, where it can be
read by the other component.

Definition 14 (projection, embedding). An interleaving morphism θ: I1 →
I2 is called projection if the induced function on runs θ:R1 → R2 is surjective.
Morphism θ is called embedding if the mapping on events is a total injection.

Observe that by definition any projection θ is surjective on the set of events.
Given any morphism θ: I1 → I2 in Ilv, a projection-embedding factorisation

I1 θp→ I1
2

θe→ I2 can be obtained by taking as the runs of I1
2 all runs in I2 having

a preimage under θ, and defining the set of events of I1
2 and θp, θe appropriately.

The interleaving structure I1
2 is also called projection of I1 to I2 via θ.

Distributed Unfolding of Petri Nets 137

Proposition 15 (Ilv (E,M)-structured). The category Ilv is (E,M)-struc-
tured where E is the set of projections and M is the set of embeddings.

It can be shown that, not only the embeddings, but also the projections are
stable under pullbacks in Ilv. Note that an analogous proposition does not hold
in ON. This is one of the reasons for resorting to interleaving structures.

Projections of Interleaving Structures and Occurrence Nets. Every
occurrence net O can be associated with an interleaving structure Ilv(O) whose
set of events coincides with the set of transitions of the net.

Definition 16. Let O = (S, T, λ, •(), ()•,m) be an occurrence net. Its interleav-
ing structure is Ilv(O) = (T,R, λ), where R consists of all runs r ∈ T� such
that for every prefix r′ of r the events occurring in r′ form a configuration of O.

In the following an element r ∈ RIlv(O) will be called a run of O.
The mapping Ilv can be extended to a functor Ilv : ON→ Ilv. It can be seen

that Ilv does not preserve pullbacks, but still a useful relation can be established
between pullbacks in ON and in Ilv.

Lemma 17. Consider a pullback diagram in ON as shown in the left-hand side
below and take its image through the Ilv functor, thus obtaining the outer square
in the right-hand diagram below. Furthermore let I ′3 be the pullback in Ilv of θ1
and θ2. Then the mediating morphism δ: Ilv(O3)→ I ′3 is a projection.

O3
χ1 ��

χ2

��

O1

ξ1

��

O2
ξ2

�� O0

Ilv(O3)
δ1 ��

δ2

��

δ

I1
θ1

��

I ′3π2

����������

π1
��������

I2
θ2

�� I0

Summing up, we obtain a procedure for determining the projection of a pullback
object in ON without actually constructing the pullback.

Proposition 18. Let τi:Oi → O0, i ∈ {1, 2} be two occurrence net morphisms
and let ξi:O3 → Oi, i ∈ {1, 2} be their pullback. Then the projection O3

1 and the
morphism O3

1 → O1 can be determined (without computing O3) as follows:

– Determine the interleaving structures I0, I1, I2 corresponding to O0, O1, O2,
i.e., Ii = Ilv(Oi), including their morphisms θi = Ilv(τi): I0 → Ii, i ∈ {1, 2}.

– Compute the projection-embedding factorisation I2 θp
2→ I2

0
θe
2→ I0 of θ2.

– Take the pullback of θ1 and θe
2 and obtain the morphism δe

1: I3
1 → I1.

– Now take the subnet of O1 that contains the transitions in the image of δe
1.

This gives the projection O3
1 of O3 to O1 with morphism ξe

1 : O3
1 → O1.

138 P. Baldan, S. Haar, and B. König

Ilv(O3) ��

����

I2
θp
2����

θ2

I3
1

��
��

δe
1

��

I2
0��
θe
2

��

I1
θ1

�� I0
PB

O3 ��

ξp
1 ����

O2

τ2

��

O3
1��

ξe
1

��

O1 τ1
�� O0

6 An Algorithm for Distributed Unfolding

We can now present a distributed unfolding algorithm based on interleaving
structures. The algorithm takes as input a pair of net morphisms τi:Ni → N0,
i ∈ {1, 2} obtained by decomposing a Petri net N3 as in Proposition 6. Then it
builds, in a stepwise fashion, the remaining morphisms of the commuting diagram
in Fig. 5, where Oj

i is the projection of U(Nj) over U(Ni). When ξi = (ηi, βi),
we will sometimes write ξi(t) instead of ηi(t).

O3
2

δ2

��

ξ2

�� ��������

O3
1

ξ1 �� ��

δ1

��

O3
0

δ0

��

N2
τ2

��������

N1
τ1 �� N0

Fig. 5. Nets and morphisms involved in Algorithm 19

Algorithm 19 (distributed unfolding). Denote intermediate states of the
occurrence nets and morphisms by Ō0, Ō1, Ō2, ξ̄i, δ̄j . Start with occurrence nets
corresponding to the initial places of N0, N1, N2 and the appropriate correspond-
ing morphisms. At any step transform the morphisms ξ̄i, δ̄i as follows: let j ∈ {1, 2}
(1) Look for a concurrent subset of places X in Ōj such that δ̄j(X) is the pre-set

of a transition t in Nj and furthermore1

(*) there exists a run r of Ōj that contains all causes of X and no
consequences of X with ξ̄j(r) ∈ ξ̄3−j(RIlv(Ō3−j)).

(2) Add t′ = 〈X, t〉 with postset {〈{t′}, s〉 | s ∈ t•} to Ōj ;
Update δ̄j by adding t′ �→ t and 〈{t′}, s〉 �→ s.

(3) If τj(t) = t0 is defined,
add a new transition t′0 = 〈ξ̄j(X), t0〉 with post-set {〈{t′0}, s0〉 | s0 ∈ t0

•}
to Ō0, unless it is already present;

Update δ̄0 by adding t′0 �→ t0 and 〈{t′0}, s0〉 �→ s0;
Update ξ̄j by adding t′ �→ t′0 and 〈{t′}, s〉 �→ 〈{t′0}, τj(s)〉.

1 Condition (*) basically states that transition t can be fired after a run r of Oj and
this run r is consistent with the behaviour of the other component. That is, there is
a way to synchronise r and some run of O3−j .

Distributed Unfolding of Petri Nets 139

Assuming that there are two unfolders and a third process which manages
the interface information (i.e., which records the projections of the runs of both
components) then the checking of Condition (*) and step (3) are performed by
unfolder j together with the interface manager, whereas the remaining steps can
be performed by unfolder j on its own. Hence communication between unfolders 1
and 2 is restricted to communication via the interface manager.

A transition t in the occurrence net Ō0 is called valid if it appears in one of
the runs of R = ξ̄1(RIlv(Ō1))∩ ξ̄2(RIlv(Ō2)). A transition t′ of Ōj for j ∈ {1, 2} is
valid if ξ̄j(t′) ↑ or there is a run rt′ in Ōj such that ξ̄j(rt′) ∈ R. Note that the
algorithm will never generate a transition having a non-valid cause. Furthermore
transitions of Ō0 might at some point not be valid but become valid at a later
stage when corresponding pre-images have been generated by both unfolders.

Example: The above algorithm, applied to our running example, produces the
shaded subparts of the nets in Fig. 3. For instance transition β′

1 will never be
added to Ō1. This transition may follow the run α1δ1α2, but there is no run r
in O2 for which we have ξ2(r) = α1δ1α2 = ξ1(α1δ1α2).

In order to ensure that every enabled transition will eventually be chosen, the
algorithm unfolds breadth-first: the sets X computed in step (1) of one round
have to be worked out completely before those from the next round.

Proposition 20 (correctness of distributed unfolding). Let Ō0, Ō1 and
Ō2 denote the (infinite) unions of the sequences of nets produced by the algorithm
above. By restricting Ō0, Ō1, Ō2 to the valid transitions (and their pre- and post-
sets plus the initial places), one obtains exactly the occurrence nets O3

0, O3
1, O3

2,
where Oj

i is the projection of U(Nj) over U(Ni).

7 Conclusion

We have presented a distributed algorithm for Petri net unfoldings based on pull-
back decompositions, whose use allows to factor the global unfolding into local
views. In fact, computation of the—potentially large—global unfolding of a dis-
tributed system is avoided; local supervisors develop their local views, guided by
message exchange with their peers through an interface net. As a data structure
for this communication, event structures would appear as a natural choice, but
for all considered branches of event structures (e.g., prime, bundle, stable, general
event structures) important properties concerning factorisations and projections
were lacking. This difficulty has been overcome by introducing the category of
interleaving structures, which has been shown to enjoy the needed properties.
The investigation of partially ordered models and related categories for the corre-
lation of local views is a theme for future investigation. Some results concerning
partial order representations for interleaving structures can be found in [2].

We gave a distributed unfolding algorithm in the case of two peers interact-
ing through an interface. This calls for a generalisation to an arbitrary number
of peers and unfolders. If all components share the same interface, this gen-
eralisation is straightforward: we only have to replace pullbacks by so-called

140 P. Baldan, S. Haar, and B. König

wide pullbacks of diagrams with several arrows having a common target object.
The case where, for instance, the system consists of three components, and the
interface between components 1 and 2 is different from the interface between
components 1 and 3 is not straightforward and represents a matter of future
investigation.

The task we addressed is closely related to that of [4, 9], so the differences de-
serve to be pointed out. A first one resides in the notion of system factorisation:
[4, 9] use a composition operation between Petri nets based on place fusion, so
transition occurrences have to be communicated between components and a so-
phisticated label coding is used to determine the local effect of a transition. Our
approach essentially relies on a composition operation along an explicit interface,
formalised as a pullback in a suitable category of nets; in the pullback decompo-
sition, transitions acting on shared places are necessarily shared themselves. This
contributed to making the algorithm simpler and easier to understand. More-
over, moving from the (computationally hard) products of event structures used
in [4, 9] to the pullback of interleaving structures (possibly computed through
their partial order representation) can lead to a gain in efficiency for the algo-
rithm. More generally, the fact that our approach is developed in a categorical
setting suggests a way for adapting it to different computational models, e.g.,
variations of Petri nets or more expressive models, like graph transformation sys-
tems [18]. This will only require to verify that the needed properties are satisfied
by the category of models at hand.

Finally, distributed unfolding is orthogonal to the parallelisation of Petri net
unfoldings in [11]: that work parallelises the computation of the global unfolding
to gain efficiency, while we strive to avoid that computation altogether.

Acknowledgements. We are grateful to Andrea Corradini and Eric Fabre for
fruitful discussions on preliminary versions of this work.

References

1. J. Adamek, H. Herrlich, and G.E. Strecker. Abstract and Concrete Categories -
The Joy of Cats. Wiley, 1990.

2. P. Baldan, S. Haar, and B. König. Distributed unfolding of petri nets. Technical
Report CS-2006-1, Department of Computer Science, University Ca’ Foscari of
Venice, 2006.

3. A. Benveniste, E. Fabre, Claude Jard, and S. Haar. Diagnosis of asynchronous
discrete event systems, a net unfolding approach. IEEE Trans. on Automatic
Control, 48(5):714–727, 2003.

4. A. Benveniste, S. Haar, E. Fabre, and C. Jard. Distributed monitoring of concurrent
and asynchronous systems. In Proc. of CONCUR’03, volume 2761 of LNCS, pages
1–26. Springer, 2003.

5. R. Boel and J. van Schuppen. Decentralized failure diagnosis for discrete event
systems with costly communication between diagnosers. In Proc. 6th Int. Workshop
on Discrete event Systems (WODES), pages 175–181, 2002.

6. C. Cassandras and S. Lafortune. Introduction to Discrete Event Systems. Kluwer
Academic, 1999.

Distributed Unfolding of Petri Nets 141

7. E. Fabre. Factorization of unfoldings for distributed tile systems, part 1: Reduced
interaction case. Technical Report 4829, INRIA, May 2003.

8. E. Fabre. Factorization of unfoldings for distributed tile systems, part 2: General
case. Technical Report 5186, INRIA, May 2004.

9. E. Fabre, A. Benveniste, S. Haar, and C. Jard. Distributed monitoring of con-
current and asynchronous systems. Discrete Event Dynamic Systems: theory and
application, 15(1):33–84, 2005.

10. S. Genc and S. Lafortune. Distributed Diagnosis of discrete-event systems using
Petri net unfoldings. In W.M.P. van der Aalst and E. Best, editors, Proc. of
ICATPN 2003, volume 2679 of LNCS, pages 316–336. Springer, 2003.

11. K. Heljanko, V. Khomenko, and M. Koutny. Parallelisation of the petri net un-
folding algorithm. In Proc. of TACAS’02, volume 2280 of LNCS, pages 371–385.
Springer, 2002.

12. S. Mac Lane. Categories for the working mathematician. Springer, 1971.
13. J. Meseguer, U. Montanari, and V. Sassone. Process versus unfolding semantics

for Place/Transition Petri nets. Theoret. Comp. Sci., 153(1-2):171–210, 1996.
14. M. Nielsen, G. Plotkin, and G. Winskel. Petri Nets, Event Structures and Domains,

Part 1. Theoret. Comp. Sci., 13:85–108, 1981.
15. W. Reisig. Petri Nets. An Introduction. Number 4 in EATCS Monographs on

Theoretical Computer Science. Springer Verlag, 1982.
16. S. L. Ricker and J. van Schuppen. Decentralized failure diagnosis with asyn-

chronous communication between diagnosers,. In Proc. of the European Control
Conference, 2001.

17. S.L. Ricker and K. Rudie. Distributed knowledge for communication in decen-
tralized discrete-event systems. In Proc. of the IEEE Conference on Decision and
Control (CDC), 2001.

18. G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph
Transformation, Vol.1: Foundations, volume 1. World Scientific, 1997.

19. M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis.
Diagnosability of discrete-event systems. IEEE Trans. on Automatic Control,
40(9):1555–1575, 1995.

20. G. Winskel. Event structures. In Petri Nets: Applications and Relationships to
Other Models of Concurrency, volume 255 of LNCS, pages 325–392. Springer, 1987.

On the μ-Calculus Augmented with Sabotage

Philipp Rohde

RWTH Aachen, Informatik VII
rohde@informatik.rwth-aachen.de

Abstract. We study logics and games over dynamically changing struc-
tures. Van Benthem’s sabotage modal logic consists of modal logic with
a cross-model modality referring to submodels from which a transition
has been removed. We add constructors for forming least and greatest
monadic fixed-points to that logic and obtain the sabotage μ-calculus.
We introduce backup parity games as an extension of standard parity
games where in addition, both players are able to delete edges of the
arena and to store, resp., restore the current appearance of the arena
by use of a fixed number of registers. We show that these games serve
as model checking games for the sabotage μ-calculus, even if the access
to registers follows a stack discipline. The problem of solving the games
with restricted register access turns out to be PSPACE-complete while
the more general games without a limited access become EXPTIME-
complete (for at least three registers).

1 Introduction

In the classical framework of logics and corresponding model checking games,
one considers changes of system states or movements of agents within a system,
but the underlying structure is assumed to be static. This motivates the study
of more general specification formalisms where we can directly address temporal
changes of structures. In this contribution, we focus on the deletion of objects.
Applications are, for example, (1) computer networks where connections may
break down; (2) car navigation systems that cope with roadworks and traffic
jams; (3) representations of knowledge where an increase in knowledge corre-
sponds to a removal of uncertainty relations; and (4) Euler’s famous problem
of Seven Bridges of Königsberg (edges are removed after they were traversed
for the first time). An algorithmic task for these systems is, for example, the
reachability of designated states.

Van Benthem [2] proposed a modal logic with a transition-deleting modality,
called sabotage modal logic SML. The main limitation of modal logics is the lack
of a mechanism for unbounded iteration or recursion. To overcome this, we aug-
ment SML with constructors for forming least and greatest monadic fixed-points,
which yields the sabotage μ-calculus SLμ. This logic is capable of expressing it-
erative properties like reachability or recurrence as well as basic changes of the
underlying structure, namely, the deletion of transitions.

In Section 2, we define the sabotage μ-calculus SLμ and repeat some known
results about the modal fragment SML. In Section 3, we introduce backup parity

L. Aceto and A. Ingólfsdóttir (Eds.): FOSSACS 2006, LNCS 3921, pp. 142–156, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

On the μ-Calculus Augmented with Sabotage 143

games as token-moving games between two players. Depending on the type of
the current vertex, the owner can decide on the further direction, or he can delete
edges, or the current appearance of the arena is stored, resp., restored by use of a
fixed number of registers. As winning condition for infinite plays, we use the well-
known parity condition. In order to keep the complexity of solving these games
low, we additionally require that registers can only be accessed by following a
stack discipline: New values stored in a higher register also overwrite the values
of all lower registers and the restoring of edges out of a higher register also erases
all values of lower registers. The restriction on the register access guarantees that
these games can be solved in polynomial space with respect to the size of the
arena (when the number of registers is fixed). We also show that the problem
of solving the games without this limited access becomes EXPTIME-complete,
even for games with three registers.

In Section 4, we show that the model checking problem for SLμ can be re-
duced to the problem of solving a backup parity game with limited access (by
a polynomial time reduction). In fact, the maximum number of nested fixed-
points of the given formula gives the number of registers in the game, and the
dependency order of inductive fixed-point constructions corresponds to the stack
discipline of register access. We conclude with Section 5 by giving a summary of
the presented results and stating some open questions.

Due to lack of space, proofs are omitted or only sketched. Full proofs can be
found in [10–Chaps. 5–6].

2 Sabotage μ-Calculus

Recall that the μ-calculus Lμ is obtained by adding constructors for forming
least and greatest monadic fixed-points to propositional modal logic [7]. We ex-
tend this logic to the sabotage μ-calculus SLμ by adding a cross-model modality
referring to submodels from which a transition has been removed. For conve-
nience, we define the syntax of SLμ in negation normal form. All results easily
extend to the general case (with the restriction that bounded variables only
occur positively).

In what follows, let Σ be a finite alphabet, Prop a finite set of unary predicate
symbols, and Var = {X,Y, . . .} a set of propositional variables.

Definition 1. A Kripke structure K over Prop is a tuple (S,Σ,R,L), where S
is an (at most countable) set of states, R ⊆ S ×Σ × S is a transition relation,
and L : S → 2Prop is a labeling function assigning sets of predicates to states. Its
size is defined by |K| := |S| + |R|. For a set E ⊆ R, we define the substructure
K \ E := (S,Σ,R \ E,L).

Definition 2. Formulae of the sabotage μ-calculus SLμ are inductively defined
by the following grammar. For p ∈ Prop, a ∈ Σ, and X ∈ Var, let

ϕ ::= � | ⊥ | p | ¬p | X | ϕ ∨ ϕ | ϕ ∧ ϕ | �aϕ | �aϕ | �aϕ | �aϕ | μX.ϕ | νX.ϕ .

144 P. Rohde

The fragment of formulae without fixed-point operators is called sabotage modal
logic SML. Let Cl(ϕ) be the set of subformulae, Var(ϕ) the set of variables and
Bd(ϕ) the set of bounded variables of ϕ. Without loss of generality, we only deal
with well-named formulae where every variable is bounded at most once and free
variables are distinct from bounded variables. For each X ∈ Bd(ϕ), there is a
unique binding definition Dfϕ(X) ∈ Cl(ϕ) equal to μX.ψ or νX.ψ.

Let K = (S,Σ,R,L) be a Kripke structure and ϕ an SLμ-formula. A valuation
of ϕ in K is a function V : Var(ϕ)→ 2S. The semantics of SLμ is defined as the
set ‖ϕ‖KV of states in which ϕ is true:

‖�‖KV := S, ‖p‖KV := {s ∈ S | p ∈ L(s)},
‖X‖KV := V(X), ‖ϕ1 ∨ ϕ2‖KV := ‖ϕ1‖KV ∪ ‖ϕ2‖KV ,

‖�aϕ‖KV := {s ∈ S | ∃s′ ∈ S : (s, a, s′) ∈ R ∧ s′ ∈ ‖ϕ‖KV },
‖�aϕ‖KV := {s ∈ S | ∃t, t′ ∈ S : (t, a, t′) ∈ R ∧ s ∈ ‖ϕ‖K\{(t,a,t′)}

V }, and

‖μX.ϕ‖KV :=
⋂
{A ⊆ S | ‖ϕ‖KV[X:=A] ⊆ A}.

The semantics for the other operators is defined dually. For convenience, we set
(K, s,V) |= ϕ iff s ∈ ‖ϕ‖KV .

We need to justify the definition of fixed-point formulae. Let ϕ be an SLμ-
formula. Then the function A �→ ‖ϕ‖KV[X:=A] is monotone and thus, it has a

unique least fixed-points by Knaster-Tarski, which is equal to ‖μX.ϕ‖KV .

Remark 1. There is a fundamental difference between �a and �a with respect
to fixed-points. When least and greatest fixed-points are constructed inductively,
then movements are passed to the next stage, while the deletion of transitions is
‘encapsulated’ within a stage: The deletion is always restored when we proceed
to the next step. This is due to the fact that, if we have determined Fi =
‖ψ‖KV[X:=Fi−1] for some formula ψ with deletion modalities and proceed to Fi+1,

then we calculate ‖ψ‖KV[X:=Fi] over K and not over the substructure that results
from the deletion of transitions.

Before we turn to the investigation of SLμ, we repeat some results about the
fragment SML. We start with an example:

Example 1. Consider the SML-formula ϕ := �a�a� ∧ �a�a⊥. It is easy to see
that every model of ϕ has exactly one a-transition and that it is a loop at the
origin. In particular, SML is not bisimulation-invariant.

In [8, 9], it was shown that the sabotage modality already strengthens modal
logic in such a way that all nice model-theoretic properties and algorithmic
complexities get lost. In fact, from the viewpoint of complexities, SML much
more resembles first-order logic than modal logic (with the exception that the
formula complexity remains in PTIME):

On the μ-Calculus Augmented with Sabotage 145

Theorem 1 ([8, 9]). For every SML-formula ϕ, there is an effectively con-
structible equivalent FO-formula with a size polynomial in |ϕ|. The model check-
ing problem for SML is PSPACE-complete. Further, SML lacks the finite model
property and the satisfiability problem becomes undecidable. ��
We proceed with two examples dealing with fixed-points and sabotage.

Example 2. For a given Kripke structure K = (S,Σ,R,L) and state s ∈ S let
K̂s be the unraveling of K at s. For convenience, we assume a unary alphabet Σ.
We say that K̂s contains a perfect subtree if there is a non-empty subtree of K̂s

such that each path of this subtree contains infinitely many splitting points. Let
ϕ := νX.μY.(��X ∨ �Y) and suppose that R �= ∅. We claim that (K, s) |= ϕ
iff K̂s contains a perfect subtree. The Lμ-formula μY.(ψ ∨ �Y) expresses that
there is a finite path to a state where ψ holds. The subformula ��X guarantees
that there are at least two successors of the current state that belong to (the
interpretation of) X . Let G ⊆ S be the outer, greatest fixed-point according to
X . If s ∈ G, then G is a perfect subtree of K̂s. Conversely, if P ⊆ S witnesses a
perfect subtree of K̂s, then P ⊆ G by construction. Since P is prefix-closed, it
follows that s ∈ P and hence also s ∈ G.

The next example shows that we can ensure an infinite ‘depth’ of models:

Example 3. Let ψ := �b�∧�b(�b⊥∧νY.(�a(�b�∧Y))) and ϕ := νX.(�aX∧ψ).
Let K = (S,Σ,R,L) be a Kripke structure. Suppose that (K, t) |= ψ for some
t ∈ S. Then t has exactly one outgoing b-transition and if this b-transition is
removed, then every state that is reachable from t by a non-empty path along
a-transitions still has a b-successor (due to the greatest fixed-point according to
Y). In particular, every state that is reachable from t by a non-empty a-path is
distinct from t. Suppose now that (K, s) |= ϕ. Due to the greatest fixed-point
according to X , there is an infinite path π = s0

a−→ s1
a−→ s2

a−→ . . . with s0 = s
and (K, si) |= ψ for every i ∈ N. It follows that si �= sj for every i < j and thus,
π consists of infinitely many pairwise distinct elements.

The complexity of model checking SLμ can be readily determined.

Lemma 1. The model checking problem for SLμ is PSPACE-complete. The
model checking problem for SLμ with a fixed formula is PTIME-complete (pro-
gram complexity).

Proof. The hardness of combined model checking follows from the fact that SML
is a fragment of SLμ. Further, we can extend the embedding of SML into FO (cf.
Theorem 1) to an embedding of SLμ into LFPmon, the first-order logic with least
fixed-points over monadic relations. The model checking problem of the latter
logic is known to be PSPACE-complete [13].

Further, the program complexity of Lμ is PTIME-complete [3] and Lμ is a
fragment of SLμ. Again, we can embed SLμ into (full) LFP as above and we
obtain equivalent LFP-formulae that are polynomial with respect to the sizes of
the SLμ-formulae. Since the program complexity of LFP is known to be PTIME-
complete [12], the statement follows. ��

146 P. Rohde

3 Backup Parity Games

Recall that parity games are closely related to Lμ: They serve as model checking
games for Lμ [5] and conversely, the winning condition of a parity game can
be expressed by an Lμ-formula [14]. Despite the aforementioned solution of the
model checking problem for SLμ via LFP, we want to define a model checking
game for SLμ in the style of parity games. The games are defined as token-
moving games between two players (called 0 and 1). Depending on the type of
the current vertex, the owner of the vertex can decide on the further direction,
or he can delete edges, or the current arena is stored, resp., restored. We use
the parity condition as winning condition for infinite plays. To obtain a lower
complexity, we require that the storing and restoring operations follow a stack
discipline: New values stored in a higher register also overwrite the values of all
lower registers and the restoring of edges out of a higher register erases all values
of lower registers.

Definition 3. Let (V,E) be a graph. For v ∈ V , let vE be the set of E-successors
of v. If vE is a singleton set, then scc(v) denotes its unique element. For a set
A ⊆ V , let AE :=

⋃
v∈A vE be the set of E-successors of elements in A. Finally,

let Out(A) := {(v, v′) ∈ E | v ∈ A, v′ ∈ V } be the set of edges with sources in
A. A backup parity game of index n with m registers, (n,m)-backup game for
short, is given by G = (A, vin), where A is an arena and vin is an initial vertex
of A. An arena is a labeled graph A = (V,E,Δ,Ω) where V is a non-empty,
finite set of vertices that can be partitioned into the following sets: (1) movement
vertices Mi of player i; (2) deletion vertices Di of player i; (3) storing vertices
Sj for j ∈ [1,m]; and (4) restoring vertices Rj for j ∈ [1,m]. In this case, we
write V = (Mi, Di, Sj , Rj). Let M := M0 ∪M1 be the set of movement vertices
and D := D0 ∪D1 the set of deletion vertices. For the edge relation E ⊆ V ×V ,
we require that |vE| = 1 for each v ∈ V \M . Finally, Δ ⊆ D × 2Out(M) is a
deletion relation and Ω : V → {0 . . . n} is a priority function.

A position of the game is an element of V × (2E)m+1. The initial position
is (vin, E . . .E). Let (v, Y,X1 . . . Xm) be the current position. Depending on v, a
legal successor position is defined as follows. Assume that v ∈Mi for i ∈ {0, 1}. If
vY = ∅, then Player i has lost the play. Otherwise, Player i chooses v′ ∈ vY and
the new position becomes (v′, Y,X1 . . . Xm). Assume that v ∈ Di for i ∈ {0, 1}.
If there is no Ξ with (v,Ξ) ∈ Δ and ∅ �= Ξ ⊆ Y , then Player i has lost
the play. Otherwise, Player i chooses such a set Ξ and the new position becomes
(scc(v), Y \Ξ,X1 . . .Xm). If v ∈ Sj for j ∈ [1,m], then the new position becomes
(scc(v), Y, Y . . . Y,Xj+1 . . .Xm). Finally, if v ∈ Rj for j ∈ [1,m], then the new
position becomes (scc(v), Xj , Xj . . .Xj , Xj+1 . . .Xm).

If the game goes on infinitely and the greatest number appearing infinitely
often in the sequence Ω(v0)Ω(v1)Ω(v2) . . . is even, then Player 0 wins the play;
otherwise Player 1 wins. Finally, the size of a game is defined as |A| := |V | +
|E|+∑v∈D

∑
Ξ:(v,Ξ)∈Δ |Ξ|.

Remark 2. By definition, a player gets stuck if either the current vertex is a
moving vertex, but it has no successors with respect to the current set of edges.

On the μ-Calculus Augmented with Sabotage 147

Or it is a deletion vertex, but an appropriate deletion is not possible. Further,
one has Y ⊆ X1 ⊆ . . . ⊆ Xm ⊆ E for any position (v, Y,X1 . . . Xm) that is
reachable from the initial position.

We say that a game is in normal form, if Δ is a function Δ : D → Out(M) (in
which case we also write δ) and Ω(v) = 0 for each v ∈ V \M . It is straightforward
to show that for every (n,m)-backup game there is an equivalent (n,m)-backup
game in normal form with a size linear in the size of the original game. For
backup games in normal form, player-based choices are only made at movement
vertices while for all other vertices, the successor position is uniquely determined
(provided that the play does not end). Note that it suffices to consider only n
and m that are bounded by some term in O(|V |).

There is a straightforward transformation of backup parity games into stan-
dard parity games, but at the cost of an exponential blow-up of the arena. To
this end, the current appearance of the arena and the content of registers are
encoded within the vertices of the new game.

Lemma 2. For any (n,m)-backup game G = (A, vin), there is an equivalent
parity game G′ = (A′, v′in) of same index such that |A′| ∈ O(|A| · 2(m+1)|E|),
where E is the set of edges in A. ��
In fact, due to the restricted access to registers, the size of an equivalent parity
game can be improved to O(|A| · (m+2)|E|). Since parity games are determined
[4], we immediately obtain that for any (n,m)-backup game over the arena
(V,E,Δ,Ω), the set of positions V ×(2E)m+1 can be partitioned into the winning
regions W0 and W1 such that Player τ has a positional winning strategy on Wτ .
Note that positional strategies for backup games can be easily transformed into
automaton strategies over the arena using deterministic Mealy automata.

We turn to the algorithmic complexity of the problem of solving backup
games, that is, the problem of deciding whether Player 0 can win the game
G = (A, vin) starting from the initial position (vin, E . . .E), no matter how Player
1 moves (E is the set of edges in A).

Theorem 2. For a fixed number of registers, the problem of solving backup
games is PSPACE-complete.

Proof (Sketch). In [8], it was shown that the so-called sabotage game, where one
player moves along edges of a finite graph and the other player removes an arbi-
trary edge in each round, is PSPACE-hard when the reachability of designated
vertices is considered as game objective. Since the sabotage game is a special
backup game, it follows that the problem of solving backup games is PSPACE-
hard, even when restricted to games without priorities and without registers.

Let G = (A, vin) be an (n,m)-backup game with A = (V,E, δ,Ω) and V =
(Mi, Di, Sj, Rj). Without loss of generality, we assume that G is in normal form.
In what follows, we show that it can be decided whether Player 0 wins the game
from (vin, E . . .E) in a space polynomial with respect to |A|. To this end, we
sketch a recursive alternating procedure with a running time polynomial in |A|

148 P. Rohde

(for m fixed). By APTIME = PSPACE (cf. [1]), it follows that for a fixed number
of registers, the problem of solving the games belongs to PSPACE.

The algorithm is called with the current position (v, Y,X1 . . .Xm) as parame-
ter (among some other data that is explained below). If v is a movement vertex,
but a sink, or v is a deletion vertex, but the demanded edge is not present, then
the algorithm immediately stops. In this case, it accepts or rejects subject to the
player to which vertex v belongs. In all other cases, a successor vertex v′ is cho-
sen and the procedure is recursively called with parameter (v′, Y ′, X ′

1 . . . X ′
m) de-

pending on the type of v. If v ∈M0, then the successor v′ is non-deterministically
guessed. If v ∈ M1, then v′ is chosen universally. If v is a deletion, storing, or
restoring vertex, then its successor v′ is uniquely determined. The parameters
Y ′, X ′

1 . . .X ′
m are then chosen according to the update rules of positions.

Beside the current position, the algorithm remembers for each vertex from
V \D whether it was already visited and if so, which was the highest priority
since then. This information is partly reset whensoever vertices are visited that
alter the set of edges or the value of registers. The memory is realized by the
functions τ : M → [−1, n] as well as σj : Sj → [−1, n] and ρj : Rj → [−1, n]
for j ∈ [1,m]. A function value of −1 means that this vertex was not seen yet
or that this information was reset in the meantime. A function value greater or
equal 0 gives the highest priority since the last visit of the respective vertex. The
functions are updated depending on the type of the current vertex v:

– v ∈ M : If τ(v) ≥ 0, then the algorithm terminates. Otherwise, τ(v) is set
to be 0. The value of τ(w) for each w in the domain of τ is updated to
Ω(v) if 0 ≤ τ(w) < Ω(v). The functions σ1 . . . σm and ρ1 . . . ρm are updated
analogously.

– v ∈ D: The entire function τ is reset.
– v ∈ Sj for j ∈ [1,m]: If Y = Xj and σj(v) ≥ 0, then the algorithm termi-

nates. Otherwise, the entire functions τ , σ1 . . . σj−1 and ρ1 . . . ρj−1 are reset.
Additionally, if Y � Xj, then the functions σj and ρj are also reset. Finally,
the value σj(v) is set to be 0.

– v ∈ Rj for j ∈ [1,m]: If ρj(v) ≥ 0, then the algorithm terminates. Otherwise,
the entire functions τ , σ1 . . . σj and ρ1 . . . ρj−1 are reset and the value ρj(v)
is set to be 0.

For the correctness of the algorithm, one shows that the following statements
hold. First, each computation branch corresponds to an admissible prefix of a
play. In fact, by the choice of parameters for recursive calls, the computation
tree forms a complete prefix of a game tree according to a strategy of Player
0. Second, if the algorithm terminates, then one of two cases have occurred:
Either the current position is a sink (with respect to movement or deletion)
or the corresponding prefix of a play can be extended to a loop, where the
highest priority of this loop is known to the algorithm. Note that in this case, by
the update of the functions τ , σ1 . . . σm and ρ1 . . . ρm, exactly the same position
from V ×(2E)m+1 is repeated. Hence, the algorithm can decide the winner of the
play that is constituted by infinitely many repetitions of the loop. By positional
determinacy, a player wins the game iff he wins by moving always identical

On the μ-Calculus Augmented with Sabotage 149

at same positions. Therefore, the validation of loops suffices to determine the
winner.

We use a binary encoding of the parameters. Then each call of the procedure
takes a time polynomial in A. Regarding the running time, one shows that
each computation branch of the alternating algorithm terminates after at most
O(|V |4m+2) calls. There are four properties of backup games that are responsible
for termination and that play a key role for estimating the running time. (1)
Without deletion, storing, or restoring, a position is repeated after at most |V |
steps. (2) The deletion of edges is a one-way process: Without restoring, deletion
vertices may occur at most |D| times. If some deletion vertex is visited for the
second time, then the related edge is no longer available and the corresponding
player loses. (3) The storing of data by overwriting a register value with a properly
smaller set is also bounded: Without storing or restoring by accessing higher
registers, proper storing cannot be carried out more often than the number of
edges. (4) Due to the dependency order, the algorithm is allowed to forget all
information regarding lower registers when data is stored or restored. It follows
that the alternating algorithm accepts its initial input iff Player 0 has a winning
strategy in the game starting from (vin, E . . .E). This concludes the proof. ��
Next, we settle the complexity of backup parity games when we skip the restric-
tion that storing and restoring has to a follow stack discipline.

Definition 4. An (n,m)-RAM game is defined analogously to an (n,m)-backup
game, but the update of game positions for storing and restoring vertices is mod-
ified as follows. Let (v, Y,X1 . . . Xm) be the current position in the game. If
v ∈ Sj for j ∈ [1,m], then the new position becomes (scc(v), Y,X ′

1 . . . X ′
m),

where X ′
i := Y if i = j and X ′

i := Xi otherwise. If v ∈ Rj for j ∈ [1,m],
then the new position becomes (scc(v), Xj , X1 . . . Xm). Thus, registers are ac-
cessed independently of each other. The updates for the other vertices remain
unchanged.

Theorem 3. For n ≥ 1 and m ≥ 3, the problem of solving (n,m)-RAM games
is EXPTIME-complete.

Proof (Sketch). Let G = (A, vin) be an (n,m)-RAM game. We can use the same
transformation of Lemma 2 to obtain an equivalent parity game G′ = (A′, v′in) of
index n such that |A′| ∈ O(|A| · 2(m+1)|E|), where E is the set of edges in A. By
a result of Jurdziński [6], parity games can be solved in a time polynomial with
respect to the size of the arena and exponential with respect to the index of the
game. It follows that G can be solved in time exponential with respect to the size
of the arena, the index of the game, and the number of registers. Since we can
assume that n,m ∈ O(|A|), it follows that the problem of solving (n,m)-RAM
games belongs to EXPTIME.

To establish the EXPTIME-hardness, we give a reduction from a two-player
game introduced by Stockmeyer and Chandra [11], which is called block game
and which is known to be EXPTIME-hard. It consists of an undirected graph
A, where each edge is labeled by a, b, or c, together with two sets F0 and

150 P. Rohde

F1 of winning vertices. The players move alternatingly. A position is a tuple
(τ,N0, N1) where τ ∈ {0, 1} signifies whose turn it is, and N0, N1 are disjoint
sets of markers (i.e., sets of vertices) that belong to Player 0 and Player 1. Assume
that (0, N0, N1) is the current position. Player 0 chooses one of his markers from
N0 and an edge label x ∈ {a, b, c}. Then he moves the chosen marker to a new
vertex along a finite, non-empty path subject to the following conditions: (1) all
traversed edges are labeled by x, and (2) no passed vertex (including the last
one) carries a marker of either player. Player 0 immediately wins if he places his
chosen marker on a vertex in F0. The moves of Player 1 are defined analogously.
The players are not permitted to pass. In order to cover plays where never any
marker of Player τ is placed on a vertex in Fτ , we agree that Player 1 wins every
infinite play.

We present an equivalent (1, 3)-RAM game G′ = (A′, vin) for a given block
game G = (A, pin) with initial position pin that can be computed in polynomial
time with respect to |A|. Let V be the set of vertices of A. The arena A′ consists
of several copies of A and special components in between. The first register of
G′ always contains the edge set of the original arena A′ and is used to guarantee
a ‘clean board’ at the beginning of each round. Positions of G are encoded in
the second register of G′ (see below). The arena A′ contains an initial part that
encodes the position pin. It follows a loop that simulates two successive moves in
G. Let p be the encoded position of G at the beginning of the loop. Without loss
of generality, we assume that a turn of Player 0 is simulated first. By deletion
of edges, Player 0 chooses a candidate p′ for a successor position of p and its
encoding is stored into the third register. Then it is verified whether p′ is indeed
a legal successor of p by alternatingly restoring the second and the third register
and checking all conditions separately. Note that for RAM games, the restoring
does not affect the value of the other registers. If the check was successful and p′

is a winning position for Player 0 in the block game, then Player 0 also wins the
RAM game. If p′ is not winning, then the value of the third register is shifted
to the second register (by restoring out of the third register and immediately
storing into the second register). Afterwards, the same procedure is repeated,
but now Player 1 is the one who chooses the candidate for a successor position.
At the end of the loop, the second register contains the encoding of a position
and it is again Player 0’s turn.

Markers are simulated by sets of edges. Assume that the current position of
G is p = (0, N0, N1). Player 0’s choice of a successor position p′ is simulated
as follows. First, the original set of edges is restored out of the first register.
Second, both players propose the sets N ′

0 and N ′
1 by deleting |V | − |Ni| edge

sets each of which corresponds to a marker. The result is stored into register 3.
Third, it is checked whether N ′

1 = N1: If they differ, then Player 0 can choose
some edge that is present in register 2, but not in register 3 and lead the play
towards a sink of Player 1. And last, if N ′

1 = N1, then it is verified that exactly
one marker in N0 was moved according to the rules of the block game. This
is done by the following steps: (1) By entering a special component, Player 0
asserts that a marker at vertex v ∈ V was moved; (2) it is checked whether v

On the μ-Calculus Augmented with Sabotage 151

carried a marker in N0, but not in N ′
0; (3) by entering a special component,

Player 0 asserts that the marker at v was moved along a x-labeled path for some
x ∈ {a, b, c}; (4) it is checked whether there is a non-empty x-labeled path from
v to a vertex w ∈ V such that no intermediate vertex carries a marker of either
player: Player 0 chooses the edges that are traversed; if there is a marker from
N0 ∪ N1 at intermediate vertices, then Player 1 can lead the play to a sink of
Player 0; (5) finally, it is checked whether no other marker than the one at v was
moved (otherwise, Player 1 can lead the play to a sink of Player 0).

The priorities 0 and 1 are used to ensure that players do not move ad infinitum
when they simulate the movement of markers. If the game does not end, then
Player 1 wins, because priority 1 is visited infinitely often. ��
Note that a RAM game with only one register necessarily follows a stack dis-
cipline and thus, it is already a backup game that can be solved in polynomial
space. It remains open whether this is true for RAM games with two registers.

4 A Model Checking Game for SLμ

In this section, we show that the model checking problem for SLμ can be reduced
to the problem of solving a backup game. We present a backup game GK,ϕ,V for
a finite Kripke structure K, an SLμ-formula ϕ, and a valuation V such that for
every state s: Player 0 wins the game from some designated vertex iff (K, s,V) |=
ϕ. The construction is an adaptation of the one for Lμ, which is based on a
transformation of the model checking problem for Lμ into the emptiness problem
for parity tree automata [5].

In what follows, we fix a finite Kripke structure K = (S,Σ,R,L) and an SLμ-
formula ϕ over Σ, both over the set Prop of predicates symbols. Further, we
assume that λ �∈ Σ. Let V : Var(ϕ)→ 2S be a valuation for ϕ.

The structure Kϕ = (Sϕ, Σ ∪ {λ}, Rϕ, ∅) is induced by the structure of ϕ:
First, there is a state for each subformula in Cl(ϕ). For simplicity, we name the
states after subformulae. Second, there are two additional states sX and rX for
each X ∈ Bd(ϕ). Third, we add an extra state qa for each a ∈ Σ. The latter
states are needed for deletion purposes and are independent of the structure of
ϕ. Let init : Cl(ϕ)→ Sϕ be defined by init(ψ) := rX if ψ = X and X ∈ Bd(ϕ),
init(ψ) := sX if ψ = μX.ψ′ or ψ = νX.ψ′, and init(ψ) := ψ otherwise.

We define Rϕ by giving a list of transitions for each type of subformula. Let
ψ ∈ Cl(ϕ). (1) The states �, ⊥, p, ¬p, and X for X ∈ Var(ϕ) \Bd(ϕ) are sinks;
(2) if ψ = ψ1 ∨ ψ2 or ψ = ψ1 ∧ ψ2, then there are the transitions ψ

λ−→ init(ψ1)
and ψ

λ−→ init(ψ2); (3) if ψ = �aψ
′ or ψ = �aψ

′ for a ∈ Σ, then there is the
transition ψ

a−→ init(ψ′); (4) if ψ = �aψ
′ or ψ = �aψ

′ for a ∈ Σ, then there
is the transition ψ

λ−→ init(ψ′); (5) if ψ = μX.ψ′ or ψ = νX.ψ′, then there are
the transitions sX

λ−→ ψ, ψ
λ−→ init(ψ′), rX

λ−→ X , and X
λ−→ ψ; (6) there is a

transition qa
a−→ qa for every a ∈ Σ.

Let K ⊗ Kϕ be the synchronized product of K and Kϕ where predicates are
ignored: for a ∈ Σ, we have (s, t) a−→ (s′, t′) iff s

a−→ s′ in K and t
a−→ t′ in Kϕ as

152 P. Rohde

well as (s, t) λ−→ (s′, t′) iff t
λ−→ t′ in Kϕ. Let G = (V,E) be the transition graph

of K ⊗ Kϕ without transition labels. Let m be the fixed-point depth of ϕ. The
game GK,ϕ,V has then m registers. We start with the declaration of the vertices
in V as movement, deletion, storing, or restoring vertices. Each (s, qa) for s ∈ S
and a ∈ Σ belongs to M0. Let s ∈ S, ψ ∈ Cl(ϕ), and a ∈ Σ. Then (s, ψ) ∈M0 if
(1) ψ = ⊥, ψ = ψ1 ∨ψ2, ψ = �aψ

′, or ψ = νX.ψ′, or (2) ψ = p and p �∈ L(s), or
ψ = ¬p and p ∈ L(s), or (3) ψ = X and s �∈ V(X). The movement vertices M1
of Player 1 are defined dually. We set (s, ψ) ∈ D0 if ψ = �aψ

′ and (s, ψ) ∈ D1
if ψ = �aψ

′. Finally, let fhϕ(X) to be the maximum number of nested fixed-
point operators in Dfϕ(X) for X ∈ Bd(ϕ). Then we set (s, sX) ∈ Sfhϕ(X) and
(s, rX) ∈ Rfhϕ(X) for X ∈ Bd(ϕ).

Next, we define the deletion relation Δ. For t, t′ ∈ S and a ∈ Σ, let Ξϕ
t,a,t′ be

the following set:

{((t, ψ), (t′, init(ψ′))) | ψ ∈ Cl(ϕ) ∧ (ψ = �aψ
′ or �aψ

′)} ∪ {((t, qa), (t′, qa))}.
Note that, if (t, a, t′) ∈ R, then we have Ξϕ

t,a,t′ ⊆ Out(M). By the synchronized
product, we have ((t, qa), (t′, qa)) ∈ E iff (t, a, t′) ∈ R. Thus, Ξϕ

t,a,t′ is non-empty
for (t, a, t′) ∈ R, regardless of the structure of ϕ. For a ∈ Σ and ψ ∈ Cl(ϕ)
with ψ = �aψ

′ or ψ = �aψ
′, we set for every s ∈ S: ((s, ψ), Ξϕ

t,a,t′) ∈ Δ iff
t, t′ ∈ S ∧ (t, a, t′) ∈ R.

We conclude the definition of the arena AK,ϕ,V by specifying the priority
function Ω : V → N. We first define a function Ω′ for Kϕ and then we extend
Ω′ to V . For X ∈ Bd(ϕ), let Bϕ(X) := Bd(Dfϕ(X)) \ {X} ⊆ Var(ϕ). Then
we define Ω′ : Sϕ → N by Ω′(s) := 0 for every s ∈ Sϕ \ Bd(ϕ), and Ω′(X) :=
min{c ∈ N | c odd ∧ c > max{0, {Ω′(Y) | Y ∈ Bϕ(X)}}} if X is a μ-variable of
ϕ, and Ω′(X) := min{c ∈ N | c even ∧ c > max{0, {Ω′(Y) | Y ∈ Bϕ(X)}}} if X
is a ν-variable of ϕ.

We set Ω((s, ψ)) = Ω′(ψ) for every s ∈ S and ψ ∈ Sϕ. Finally, let n :=
max{Ω′(X) | X ∈ Bd(ϕ)}. This concludes the definition of the arena AK,ϕ,V
= (V,E,Δ,Ω) and the (n,m)-backup game GK,ϕ,V . Note that n and m depend
on ϕ only. Regarding the size of the game, it is straightforward to check that
|AK,ϕ,V | is quadratic with respect to |K| · |ϕ|.

Before we show that GK,ϕ,V indeed serves as a model checking game for SLμ,
we observe that the initial content of registers has no effect on plays starting ‘at
the top’ of the game.

Lemma 3. With the same notation as before, one has for each state s ∈ S and
for each X1 . . .Xm ∈ 2E that Player τ wins GK,ϕ,V from position ((s, init(ϕ)), E,
X1 . . .Xm) iff he wins GK,ϕ,V from position ((s, init(ϕ)), E,E . . . E). ��
We need two auxiliary results concerning backup games. The first one deals
with winning regions of subgames. The second one provides an unfolding of the
parity condition, which we need for the fixed-point operators. The unfolding is
a classical construction based on Knaster-Tarski.

Lemma 4. Let A = (V,E,Δ,Ω) be the arena of an (n,m)-backup game G with
V = (Mτ , Dτ , Sj, Rj). Suppose that V ′ ⊆ V such that V ′E ⊆ V ′ and that

On the μ-Calculus Augmented with Sabotage 153

for each v ∈ V ′, if (v,Ξ) ∈ Δ and Ξ �= ∅, then Ξ ∩ (V ′ × V ′) �= ∅. Let
u ∈ V ′ and X0 . . . Xm ⊆ E be fixed. We define V ′ = (Mτ ∩ V ′, Dτ ∩ V ′, Sj ∩
V ′, Rj ∩ V ′), E′ := E ∩ (V ′ × V ′), X ′

i := Xi ∩ E′ for each i ∈ [0,m], and
Δ′ := {(v,Ξ ∩E′) | v ∈ V ′ ∧ (v,Ξ) ∈ Δ}. Let G′ be the (n,m)-backup game with
arena A′ = (V ′, E′, Δ′, Ω|V ′). Then Player τ wins G from (u,X0 . . . Xm) iff he
wins G′ from (u,X ′

0 . . . X ′
m). ��

We turn to the unfolding of the parity condition. Let A = (V,E,Δ,Ω) be the
arena of an (n,m)-backup game G with V = (Mτ , Dτ , Sj , Rj). Let Ωmax :=
maxv∈V Ω(v), T := Ω−1(Ωmax), U := TE and κ := |T | + 1. We make the
following assumptions: (1) Ωmax is even; (2) T ⊆ M ; (3) every v ∈ T has a
unique successor scc(v); (4) for every u ∈ U and every play π that starts from
(u,E . . . E), if πi = (v,X0 . . .Xm) for some v ∈ T , then Xj = E for every
j ∈ [0,m]; (5) if (v,Ξ) ∈ Δ for some v ∈ V , then Ξ ∩ (T × U) = ∅.

Under this assumptions, the unfolding of G is a sequence of (n,m)-backup
games Gi for i ∈ [0, κ]. Let E− := E \ (T × U) and A− := (V,E−, Δ,Ω). Note
that the vertices in T become terminal in A−. The arena of Gi coincides with A−

up to the winning condition for T . For every i ∈ [0, κ], we define a decomposition
T = T i

0 ∪ T i
1 and declare Player τ to be the winner of the game Gi when a play

reaches v ∈ T i
τ . Let W i

τ ⊆ V × (2E−
)m+1 be the winning region of Player τ

in the game Gi. Clearly, W i
τ depends on the decomposition T = T i

0 ∪ T i
1. In

turn, the decomposition of T for i + 1 depends on W i
τ : We define T 0

0 := T and
T i+1

0 := {v ∈ T | (scc(v), E− . . . E−) ∈ W i
0}.

It is easy to check that T 0
1 ⊆ T 1

1 ⊆ . . . ⊆ T κ
1 and W 0

1 ⊆ W 1
1 ⊆ . . . ⊆ Wκ

1 . By
determinacy, we also have T 0

0 ⊇ T 1
0 ⊇ . . . ⊇ T κ

0 and W 0
0 ⊇ W 1

0 ⊇ . . . ⊇ Wκ
0 .

Since κ = |T | + 1 and T i
1 ⊆ T for each i ∈ [0, κ], there exists α < κ such that

Tα
1 = Tα+1

1 (and then also Tα
0 = Tα+1

0 , Wα
τ = Wα+1

τ). We claim that we can
determine the winner of a play in the original game G that starts from a vertex
u ∈ U by considering this fixed-point of winning regions for the unfolding of G:
Lemma 5. Let G, U , and κ be as before and let G0 . . .Gκ be the unfolding of
G. Then for every u ∈ U , Player τ wins G from (u,E . . . E) iff he wins Gκ from
(u,E− . . . E−). ��
If G is as before, but Ωmax is odd, then we can proceed to the dual game where
the roles of the players are swapped and the priority function is increased by
one. We are now prepared to prove the main result of this section:

Theorem 4. Suppose that K = (S,Σ,R,L) is a finite Kripke structure with
state s ∈ S, ϕ is an SLμ-formula over Σ, and V : Var(ϕ) → 2S is a valuation.
Then (K, s,V) |= ϕ iff Player 0 wins GK,ϕ,V from ((s, init(ϕ)), E . . . E), where E
is the edge relation of the arena of GK,ϕ,V .

Proof (Sketch). The proof is by induction on the structure of ϕ. We only present
some interesting cases. Case ϕ = �aψ. Let A = (V,E,Δ,Ω) be the arena of
G := GK,ϕ,V and A′ = (V ′, E′, Δ′, Ω′) be the arena of G′ := GK,ψ,V . It is easy
to see that G′ is a subgame of G that meets the requirements of Lemma 4. It
follows that for each t ∈ S, Player 0 wins G from ((t, init(ψ)), E . . . E) iff he

154 P. Rohde

wins G′ from ((t, init(ψ)), E′ . . . E′). We have init(ϕ) = ϕ and (s, ϕ) ∈ M0. By
definition of A, there is an edge from (s, ϕ) to (t, init(ψ)) iff (s, a, t) ∈ R. Thus

Player 0 wins G from ((s, ϕ), E . . .E)
⇐⇒ ∃t ∈ S : (s, a, t) ∈ R and Player 0 wins G from ((t, init(ψ)), E . . .E)
⇐⇒ ∃t ∈ S : (s, a, t) ∈ R and Player 0 wins G′ from ((t, init(ψ)), E′ . . . E′)
⇐⇒ ∃t ∈ S : (s, a, t) ∈ R and (K, t,V) |= ψ [by induction]
⇐⇒ (K, s,V) |= ϕ.

Case ϕ = �aψ. Let A = (V,E,Δ,Ω) be the arena of G := GK,ϕ,V . We have
init(ϕ) = ϕ, (s, ϕ) ∈ D0, and (s, ϕ) has the unique E-successor (s, init(ψ)).
By definition, there is ((s, ϕ), Ξ) ∈ Δ with ∅ �= Ξ ⊆ E iff there are t, t′ ∈ S
with (t, a, t′) ∈ R and Ξ = Ξϕ

t,a,t′ . Thus, it follows that Player 0 wins G from
((s, ϕ), E . . .E) iff there are t, t′ ∈ S with (t, a, t′) ∈ R such that Player 0 wins
G from ((s, init(ψ)), E \ Ξϕ

t,a,t′ , E . . .E). Let E− := E \ Ξϕ
t,a,t′ . By Lemma 3,

we have that Player 0 wins G from ((s, init(ψ)), E−, E . . . E) iff he wins G from
((s, init(ψ)), E−, E− . . . E−).

The arena (V,E−, Δ,Ω) is identical with the arena A′ := (V ′, E′, Δ′, Ω′) of
the game G′ := GK\{(t,a,t′)},ϕ,V up to the deletion relation Δ′. In particular,
we have E− = E′. But for any play in G starting at ((s, init(ψ)), E− . . . E−),
neither player can choose Ξϕ

t,a,t′ at deletion vertices without losing immedi-
ately. It follows that Player 0 wins G from ((s, init(ψ)), E− . . . E−) iff he wins
G′ from ((s, init(ψ)), E′ . . . E′). Finally, let G′′ := GK\{(t,a,t′)},ψ,V with arena
A′′ = (V ′′, E′′, Δ′′, Ω′′). Again, G′′ is a subgame of G′ that contains the state
(s, init(ψ)) and that meets the requirements of Lemma 4. It follows that Player 0
wins G′ from ((s, init(ψ)), E′ . . . E′) iff he wins G′′ from ((s, init(ψ)), E′′ . . . E′′).
By induction, this is equivalent to (K\{(t, a, t′)}, s,V) |= ψ. Together, we get that
Player 0 wins G from ((s, ϕ), E . . .E) iff there exists t, t′ ∈ S with (t, a, t′) ∈ R
and (K \ {(t, a, t′)}, s,V) |= ψ. The latter is equivalent to (K, s,V) |= ϕ.

Case ϕ = νX.ψ. Let A = (V,E,Δ,Ω) be the arena of the game G := GK,ϕ,V
with V = (Mτ , Dτ , Sj , Rj). By definition, we have that Ωmax = Ω′(X) is even.
Let T := Ω−1(Ωmax). By definition of A, we have T = {(t,X) | t ∈ S} ⊆ M ,
|(t,X)E| = 1 for each t ∈ S, and U := TE = {(t, ϕ) | t ∈ S}. Let κ := |T |+ 1 =
|S| + 1. We have fhϕ(X) = m and thus, register fhϕ(X) is the highest register
of G. Further, we have Sm = {(t, init(ϕ)) | t ∈ S} and each of these vertices
has a single E-successor, namely (t, ϕ), and no incoming E-edge. In particular,
Player 0 wins G from ((s, init(ϕ)), E . . . E) iff he wins G from ((s, ϕ), E . . .E).
Every vertex (t,X) occurs in combination with the restoring vertex (t, rX). Let
t, t′ ∈ S and π be a play that starts from ((t, ϕ), E . . .E) and that reaches
some πi = ((t′, X), X0 . . . Xm). Note that no storing vertex from Sm can occur
in π. Thus, we have Xm = E and πi−1 visits vertex (t′, rX). Be definition of
the restoring process, it follows that Xj = E for every j ∈ [0,m]. Finally, the
edges (t,X) → (t, ϕ) for t ∈ S do not occur in Δ. It follows that G meets the
requirements of Lemma 5.

On the μ-Calculus Augmented with Sabotage 155

Before we proceed, we fix some notation. LetW : Var(ϕ)→ 2S be a valuation
of ϕ. Note that the definitions of the edge relation, the deletion relation, and
the priority function of a game GK,χ,W do not depend on the valuation W . Let
AW = (VW , E,Δ,Ω) be the arena of GW := GK,ϕ,W . The game GW is identical
to G up to the assignment of vertices (t, Y) for t ∈ S, Y ∈ Var(ϕ) to one of the
players. Let E− := E \ (T ×U) and G−W be the game with arena (VW , E−, Δ,Ω).
Finally, we define the game G∗W := GK,ψ,W with arena A∗

W = (V ∗
W , E∗, Δ∗, Ω∗).

The variable X occurs free in ψ. Thus, the vertices (t,X) for t ∈ S have no
outgoing edges in A∗

W .
The game G∗W is a subgame of G−W that contains the vertices (t, init(ψ)) for

every t ∈ S and that meets the requirements of Lemma 4. In A−
W , each ver-

tex (t, ϕ) for t ∈ S has the unique successor (t, init(ψ)). Together with the
induction hypothesis, it follows for every t ∈ S that Player 0 wins G−W from
((t, ϕ), E− . . . E−) iff he wins G−W from ((t, init(ψ)), E− . . . E−) iff he wins G∗W
from ((t, init(ψ)), E∗ . . . E∗) iff (K, t,W) |= ψ.

For i ∈ [0, κ + 1], let F0 := S and Fi+1 := ‖ψ‖KV[X:=Fi]. Since κ = |S| + 1,

it follows by Knaster-Tarski that ‖ϕ‖KV = Fκ+1. In particular, (K, s,V) |= ϕ iff
(K, s,V [X := Fκ]) |= ψ. Let G0 . . .Gκ be the unfolding of G. It is straightforward
to check by induction on i that Gi is identical to G−V[X:=Fi]

for each i ∈ [0, κ].
By Lemma 5, we therefore obtain that Player 0 wins G from ((s, ϕ), E . . .E)
iff he wins Gκ from ((s, ϕ), E− . . . E−). We can now conclude the case of great-
est fixed-points: Player 0 wins G from ((s, init(ϕ)), E . . . E) iff he wins G from
((s, ϕ), E . . .E) iff he wins Gκ from ((s, ϕ), E− . . . E−) iff he wins G−V[X:=Fκ] from
((s, ϕ), E− . . . E−) iff (K, s,V [X := Fκ]) |= ψ iff (K, s,V) |= ϕ.

Note that the cases ϕ = ϕ1 ∧ϕ2, ϕ = �aψ, ϕ = �aψ, and ϕ = μX.ψ are dual
to the cases ϕ = ϕ1 ∨ ϕ2, ϕ = �aψ, ϕ = �aψ, and ϕ = νX.ψ. ��

5 Conclusion

We augmented the μ-calculus with a transition-deleting modality, which yields
the fixed-point logic SLμ over dynamically changing structures. We have seen
that model checking is not algorithmically harder than model checking the sabo-
tage modal logic without fixed-points. We introduced backup games as extended
parity games with the feature of edge deletion and of storing and restoring the
current arena in a fixed number of registers. Even when the access to regis-
ters has to follow a stack discipline, these games serve as model checking games
for SLμ. The problem of solving these games is PSPACE-complete. The games
without limited access become EXPTIME-complete.

Model checking for SLμ via backup games is not optimal yet: We could only
show that the problem of solving backup games belongs to PSPACE for a fixed
number of registers. But the number of registers of the game GK,ϕ,V is equal to
the fixed-point depth of ϕ. Our result yields, so far, only a PSPACE-procedure
for formulae with bounded fixed-point depth. Note that we already know that
the model checking with a fixed formula can be done in polynomial time with
respect to the size of the structure, cf. Lemma 1. It remains an open question

156 P. Rohde

whether backup games can be solved in polynomial space, regardless of the
number of registers. If we can answer this question positively, then we would
obtain an optimal model checking procedure for SLμ. Otherwise, there may be a
subclass of games that serve as model checking games, but which can be solved
in polynomial space regardless of the number of registers. Finally, it remains
open whether we can express the winning condition for backup games as SLμ-
formulae. Recall that this is the case for standard parity games and Lμ [14]. If
such a translation yields SLμ-formulae with a size polynomial in the size of the
arena, then this would also give a positive answer to the above question.

Note that SLμ does not provide a way to express, for example, a general
reachability while transitions are deleted (due to the restoration in inductive
fixed-point constructions). It is worth to study logics that allow such an overlap
of fixed-points and deletion. Finally, sabotage logics that allow to address the
deletion of objects are only a first step towards a general theory of logics over
dynamically changing structures.

References

1. Balcázar, J.L., Dı́az, J., Gabarró, J.: Structural Complexity II. Springer 1990
2. van Benthem, J.: An essay on sabotage and obstruction. In: Mechanizing Mathe-

matical Reasoning. LNAI 2605 (2005), 268–276
3. Bernholtz, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to

branching-time model checking. In: CAV ’94. LNCS 818 (1994), 142–155
4. Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy. In:

FOCS ’91 (1991), 368–377
5. Emerson, E.A., Jutla, C.S., Sistla, A.P.: On model-checking for fragments of

μ-calculus. In: CAV ’93. LNCS 697 (1993), 385–396
6. Jurdziński, M.: Small progress measures for solving parity games. In: STACS ’00.

LNCS 1770 (2000), 290–301
7. Kozen, D.: Results on the propositional μ-calculus. TCS 27 (1983), 333–354
8. Löding, Ch., Rohde, Ph.: Solving the sabotage game is PSPACE-hard. In: MFCS

’03. LNCS 2747 (2003), 531–540
9. Löding, Ch., Rohde, Ph.: Model checking and satisfiability for sabotage modal

logic. In: FSTTCS ’03. LNCS 2914 (2003), 302–313
10. Rohde, Ph.: On Games and Logics over Dynamically Changing Structures. Tech-

nical report submitted as dissertation thesis at RWTH Aachen (2005). Available
under www-i7.informatik.rwth-aachen.de/∼rohde/thesis.pdf

11. Stockmeyer, L.J., Chandra, A.K.: Provably difficult combinatorial games. SIAM
Journal on Computing 8 (1979), 151–174

12. Vardi, M.Y.: The complexity of relational query languages. In: STOC ’83 (1982),
137–146

13. Vardi, M.Y.: On the complexity of bounded-variable queries. In: PODS ’95 (1995),
266–276

14. Walukiewicz, I.: Monadic second-order logic on tree-like structures. TCS 275
(2002), 311–346

A Finite Model Construction for
Coalgebraic Modal Logic

Lutz Schröder

Department of Computer Science, University of Bremen

Abstract. In recent years, a tight connection has emerged between
modal logic on the one hand and coalgebras, understood as generic tran-
sition systems, on the other hand. Here, we prove that (finitary) coal-
gebraic modal logic has the finite model property. This fact not only
reproves known completeness results for coalgebraic modal logic, which
we push further by establishing that every coalgebraic modal logic ad-
mits a complete axiomatization of rank 1; it also enables us to establish
a generic decidability result and a first complexity bound. Examples cov-
ered by these general results include, besides standard Hennessy-Milner
logic, graded modal logic and probabilistic modal logic.

1 Introduction

Coalgebra has recently had increasing success as a generic theory of reactive
systems, providing a unifying perspective on a wide variety of system types [21].
Many concepts of concurrency theory can be cast in the coalgebraic framework;
this includes general notions of bisimulation, coinduction, and corecursion, as
well as a generic modal logic [10, 19, 12, 15, 17]. The role of this coalgebraic
modal logic is twofold: on the one hand, one obtains a suitable generic reac-
tive specification language, which respects encapsulation of the state space, i.e.
relates well to behavioral equivalence of states [17, 23], and is sufficiently intu-
itive for use in actual software specification languages, including object-oriented
specification [20, 12, 14]. On the other hand, coalgebraic modal logics frequently
correspond to known modal logics such as graded modal logic or probabilistic
modal logic, and thus provide these logics with a coalgebraic semantics.

In [16] and subsequent work [5, 11], a (necessarily weak) completeness re-
sult for coalgebraic modal logic has been established stating that a deductive
system consisting of propositional entailment, a congruence rule, and a given
set of axioms of rank 1 is weakly complete, provided that the axioms are in a
precise sense sufficiently strong; the latter property is referred to as reflexivity.
Here, we exhibit a finite model construction which relies on reflexivity. We thus
reprove the mentioned weak completeness result. Moreover, we show that every
coalgebraic modal logic admits a reflexive axiomatization, which then implies
that coalgebraic modal logic has the finite model property, i.e. every satisfiable
formula is satisfiable in a finite model. We further exploit the finite model con-
struction to obtain a generic decision procedure which reduces the satisfiability

L. Aceto and A. Ingólfsdóttir (Eds.): FOSSACS 2006, LNCS 3921, pp. 157–171, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

158 L. Schröder

problem for a coalgebraic modal logic to the much simpler one-step satisfiability
problem. This yields not only decidability of a large number of modal logics,
including the above-mentioned graded and probabilistic modal logics, but also,
under mild conditions, a first complexity bound.

The material is organized as follows. Section 2 gives an introduction to coalge-
bra and coalgebraic modal logic, including a number of examples. In Section 3,
we recall the deduction system of coalgebraic modal logic [16, 5, 11] and the
above-mentioned notion of reflexivity, and prove that reflexive axiomatizations
always exist. We then prove the finite model property in Section 4, from which
we obtain the generic decision procedure and the arising complexity bound in
Section 5.

2 Coalgebraic Modal Logic

We briefly recapitulate the basics of the coalgebraic modelling of reactive systems
and of the specification of such systems by means of coalgebraic modal logic.

Definition 1. Let T : Set→ Set be a functor (in this work, all functors will im-
plicitly be set functors), referred to as the signature functor. A T -coalgebra A =
(X, ξ) consists of a set X of states and an evolution map ξ : X → TX . A
morphism (X1, ξ1) → (X2, ξ2) of T -coalgebras is a map f : X1 → X2 such
that ξ2 ◦ f = Tf ◦ ξ1. A T -coalgebra C is called final if there exists, for each
T -coalgebra A, a unique morphism A→ C.

Intuitively, the evolution map describes the successor states of a state, organized
in a data structure given by T . These data encode the observable behavior of a
system, and morphisms of coalgebras preserve this behavior.

We shall occasionally require a technical condition on the signature functor:

Definition 2. A functor T is called κ-accessible, where κ is a regular cardinal,
if T preserves κ-directed colimits.

Intuitively, this amounts to a restriction on the branching degree, stating that
every state in a T -coalgebra has less than κ successors. Many of the examples
given below are ω-accessible; however, the central results presented here hold for
arbitrary functors.

We explicitly fix some logical terminology:

Definition 3. Let T be a functor. A language for T -coalgebras is a set L of
formulae, equipped with a family of satisfaction relations �C (or just �) between
states of T -coalgebras C = (X, ξ) and formulae φ ∈ L; we define [[φ]]C (or
just [[φ]]) as the set {x ∈ X | x �C φ}. The coalgebra C satisfies a formula φ if
x � φ for all x ∈ X ; in this case, we write C � φ. We say that C satisfies a set Φ
of formulae, and write C � Φ, if C � φ for each φ ∈ Φ.

A formula ψ ∈ L is a global consequence of a set Φ ⊂ L if, for every
T -coalgebra C, C � ψ whenever C � Φ. In this case, we write Φ �g ψ. We
say that ψ is valid if ∅ �g ψ. Moreover, ψ is a local consequence of Φ if, for every

A Finite Model Construction for Coalgebraic Modal Logic 159

state x in every T -coalgebra, x � ψ whenever x � Φ. A set Φ of formulae is
locally satisfiable if it is satisfied in some state in some T -coalgebra; Φ is globally
satisfiable if Φ �g ⊥ (i.e. if Φ is satisfied by some non-empty T -coalgebra).

Every local consequence is also a global consequence, and every globally satisfi-
able formula is locally satisfiable. A formula φ is valid iff ¬φ is locally unsatisfi-
able.

As a specification logic for coalgebraically modelled reactive systems, coalge-
braic modal logic in the form considered here has been introduced in [17], gener-
alizing previous results [10, 19, 12, 15]. The semantics is based on the following
central notion.

Definition 4. A predicate lifting for a functor T is a natural transformation

λ : 2 → 2T ,

where 2 denotes the contravariant powerset functor Setop → Set, with 2f(A) =
f−1[A].

A predicate lifting λ induces a transposite λ� : T → 2(2), given by λ�
X(t)

= {A ⊂ X | t ∈ λX(A)}. A set Λ of predicate liftings for T is called separating
if for each set X , the source of maps (λ�

X : T → 2(2))λ∈Λ is jointly injective.

In the terminology introduced above, a coalgebraic modal logic is a language
Lκ(Λ) for T -coalgebras, determined by a set Λ of predicate liftings for T and a
regular cardinal κ which serves as a bound for conjunctions. Since we are aiming
at finite model results here, we restrict the exposition to the finite case κ = ω,
and we write L(Λ) in place of Lω(Λ). Formulae φ, ψ ∈ L(Λ) are defined by the
grammar

φ ::= ⊥ | φ ∧ ψ | ¬φ | [λ]φ,

where λ ranges over Λ. Disjunctions φ∨ψ, truth �, and other boolean operations
are then defined as usual. In the definition of satisfaction, the clauses for boolean
operators are as expected; the clause for the modal operator [λ] is

x �(X,ξ) [λ]φ ⇐⇒ ξ(x) ∈ λX [[φ]](X,ξ).

The size |φ| of a formula φ is the number of subformulae of φ.

Remark 5. It is shown in [17, 23] that if Λ is separating and T is ω-accessible,
then L(Λ) is adequate and expressive: states x and y in T -coalgebras A and B,
respectively, satisfy the same L(Λ)-formulae iff they are behaviorally equivalent in
the sense that there exists a coalgebra C and morphisms f : A→ C, g : B → C
such that f(x) = g(y). This is one reason why modal logic is regarded as a
suitable means of expression for coalgebraic specification — it automatically
ensures encapsulation of the state space, allowing judgements precisely about
the observable behavior of states.

Remark 6. By the results of [23], obtaining an expressive logic for a given ω-
accessible functor may require the use of polyadic modal operators obtained from

160 L. Schröder

polyadic predicate liftings. The results of this paper extend straightforwardly to
polyadic modal logic; we restrict the exposition to the unary case purely in the
interest of readibility.

Example 7. [17, 5, 23]

1. Let P be the covariant powerset functor. Then P-coalgebras are graphs,
thought of as transition systems or indeed Kripke frames. A separating set
of predicate liftings is formed by the single predicate lifting λ∀ defined by

λ∀
X(A) = {B ⊂ X | B ⊂ A}.

This lifting gives rise to the standard box modality � = [λ∀]. All this is
easily adapted to transition systems with branching degree limited by a
regular cardinal κ, described as coalgebras for the κ-accessible functor Pκ

defined by Pκ(X) = {A ⊂ X | |A| < κ}.
2. It is straightforward to extend a given coalgebraic modal logic for T with a

set V of propositional symbols. This amounts to considering the functor T ×
P(V), where P(V) stands for the corresponding constant functor. Separation
is then ensured by adding predicate liftings λa, a ∈ V , defined by

λa
X(A) = {(t, B) ∈ TX × P(V) | a ∈ B}.

Since λa is independent of its argument, the induced modal ‘operator’ can
be written as just the propositional symbol a, with the expected meaning.

3. The finite multiset (or bag) functor BN is given as follows. The set BN(X)
consists of the maps B : X → N with finite support; we say that B contains
x ∈ X with multiplicity B(x). We write multisets additively, denoting by∑

nixi the multiset that contains x with multiplicity
∑

xj=x nj . For f :
X → Y , BN(f)(

∑
nixi) =

∑
nif(xi). Coalgebras for BN are directed graphs

with N-weighted edges, often referred to as multigraphs [6].
A separating set of predicate liftings λk, k ∈ N, is defined by

λk
X(A) = {∑nixi ∈ BNX |

∑
xi∈A ni > k}.

The arising modal operators are exactly the modalities ♦k of graded modal
logic (cf. e.g. [6]), i.e. x � ♦kφ iff φ holds for more than k successor states
of x, taking into account multiplicities. Note that �k, defined as ¬♦k¬,
is monotone, but fails to be normal unless k = 0. (Recall that a modal
operator � is called monotone if it satisfies �(p∧ q)→ �p, and normal if it
satisfies �(p→ q)→ �p→ �q).

4. A similar functor, denoted BZ, is given by a slight modification of the multiset
functor where we allow elements to have also negative multiplicities, i.e. BZX
consists of finite maps X → Z, called generalized multisets (this set is also
familiar as the free abelian group over X).

A separating set of predicate liftings λk, k ∈ Z, with induced modal opera-
tors ♦k is defined analogously as for multisets. Note that �k fails to be mono-
tone even for k = 0. One may imagine an interpretation of BZ-coalgebras

A Finite Model Construction for Coalgebraic Modal Logic 161

as transition systems that allow some form of trading — formulae may be
violated in ‘positive’ successor states, as long as this is counterbalanced by
violations in ‘negative’ successor states.

5. The finite distribution functor Dω maps a set X to the set of proba-
bility distributions on X with finite support. Coalgebras for the functor
T = Dω × P(V), where V �= ∅ is a set of propositional symbols, are proba-
bilistic transition systems (also called probabilistic type spaces [8]) with finite
branching degree. (The example is easily extended to countable branching by
considering instead the functor Dω1 of probability distributions with count-
able support, while higher branching degrees require a more elaborate mea-
sure theoretic treatment [27].)

A separating set for T is obtained by combining the propositional symbols
(cf. Example 2) with the predicate liftings λp, p ∈ [0, 1] ∩Q, defined by

λp(A) = {P ∈ DωX | PA ≥ p}.
These induce the modal operators 〈p〉 = [λp] of probabilistic modal logic
(PML) [13, 8], where 〈p〉φ reads ‘φ holds in the next step with probability
at least p’. Note that [p], defined as ¬〈p〉¬, is monotone, but not normal.

6. For a field k, the linear space functor k · takes a set X to the free k-vector
space k ·X , i.e. the set of formal k-linear combinations, over X . A coalgebra
for k · is a linear automaton [3, 26] (where one would in general also assume
linear output in a vector space V , corresponding to the functor (k ·)× V).
In the case k = R, a separating set of predicate liftings can be constructed
in the same way as for Dω, giving rise to modal operators 〈p〉 for p ∈ Q.
Here, 〈p〉φ holds if the sum of the coefficients of successor states satisfying φ
is at least p.

7. The above examples may be extended by adding inputs from an alpha-
bet I, i.e. by passing from T to one of the functors S and R given by
SX = I → TX and RX = T (I × X), respectively. When I is finite, these
functors are isomorphic for T ∈ {Pω,BN,BZ} but not for T = Dω. In the lat-
ter case, S-coalgebras are reactive probabilistic automata, and R-coalgebras
are generative probabilistic automata [1] (more precisely, one allows for
terminal states by additionally introducing the constant functor 1 as a
summand).

An expressive set of modal operators is then obtained by indexing modal
operators over a ∈ I in the form []a. In the case T = Pω, this leads to
the usual operators �a of Hennessy-Milner Logic [9]. In the probabilistic
case, the meaning of 〈p〉a φ in reactive probabilistic automata is that on
input a, φ holds in the next step with probability at least p, and in generative
probabilistic automata that with probability at least p, the input is a and φ
holds in the next step.

Remark 8. Graded modal logic is more standardly interpreted over Kripke
models by just counting successor states (as e.g. in [25]), rather than in multi-
graphs as in the above example and e.g. in [6]. One can regard Kripke models as
multigraph models by just regarding sets as multisets where all elements have

162 L. Schröder

multiplicity 1; conversely, one can unroll a state in a multigraph model into a
tree-like Kripke model by making copies of elements according to their multiplic-
ity. Both constructions preserve satisfaction of graded modal formulae, so that
the two semantics induce the same local consequence relations.

3 Proof Systems for Coalgebraic Modal Logic

We now discuss completeness of derivation for coalgebraic modal logic, partly
following [16, 5, 11]. Since an otherwise unstructured signature functor T con-
tains information only about the one-step evolution of the system (as opposed
to a comonad, which may contain information also about further steps), it is
natural to expect that for the axiomatization of a coalgebraic modal logic for T
it is enough to consider modal axioms of rank 1. The approach taken in [16, 5, 11]
is based on this expectation; we shall prove below that it is indeed formally the
case that axioms of rank 1 are sufficient. This fact will be crucial for our finite
model result to be proved in Section 4.

To begin, we note that both the global and the local consequence relation
(Definition 3) of a coalgebraic modal logic in general fail to be compact:

Example 9. In the case of Hennessy-Milner logic over finitely branching sys-
tems [9] with two inputs a, b, the set

Φ = {♦a (�b n+1⊥ ∧ ♦b n�) | n ∈ N},

where �b n stands for n consecutive boxes, is locally (and hence globally) unsat-
isfiable, since it requires, for each n, the existence of an a-successor from which
exactly n b-steps are possible. However, every finite subset of Φ is globally (and
hence locally) satisfiable. For an example of the same kind, but of bounded rank,
consider the set

{♦k� | k ∈ N}
of graded modal formulae over BN. Non-compactness of PML is observed in [8];
in this case, non-compactness does not have to do with bounded branching.

Thus, in general neither the local nor the global consequence relations of a coal-
gebraic modal logic admit a finitary complete proof system. Instead, one is lead
to study weak completeness, where a proof system is called weakly complete if it
proves all valid formulae. This notion is equivalent to completeness in the sense
used in [5, 11, 16], where only local consequence with singleton sets of premises
is considered (ψ is a local consequence of {φ} iff φ→ ψ is valid).

For the remainder of the paper, we assume given a functor T and a set Λ of
predicate liftings for T . We recall a few basic notions from propositional logic,
as well as notation for coalgebraic modal logic introduced in [16, 5]:

Definition 10. Let V be a set. We denote the set of propositional formulae
over V by Prop(V). Here, we regard ¬ and ∧ as the basic connectives, with
all other connectives defined in the standard way. A literal over V is either an

A Finite Model Construction for Coalgebraic Modal Logic 163

element of V or the negation of such an element. A (conjunctive) clause is a
finite, possibly empty, disjunction (conjunction) of literals. Moreover, we denote
by Up(V) the set {[λ]a | λ ∈ Λ, a ∈ V }.

If the elements of V are, or have an interpretation as, subsets of a given
set X , then φ ∈ Prop(V) can be interpreted as a subset [[φ]]X of X ; we say
that φ holds in X and write �X φ if [[φ]]X = X , and we say that φ is satisfiable
in X if [[φ]]X �= ∅. Similarly, if a ∈ V is interpreted as a subset A of X , then we
interpret [λ]a ∈ Up(V) as the subset [[[λ]a]] = λX(A) of TX . (This can of course
be iterated, leading to interpretations [[φ]] ⊂ TX of φ ∈ Up(Prop(V)) etc.)

In case the elements of V are formulae in L(Λ), we also regard propositional
formulae over V as formulae in L(Λ). We sometimes explicitly designate V as
consisting of propositional variables ; propositional variables retain their sta-
tus across further applications of Up and Prop (e.g. if V is a set of proposi-
tional variables, then V and not Prop(V) is the set of propositional variables
for Up(Prop(V))). Given a set L, an L-substitution is a substitution σ of the
propositional variables by elements of L. Then, φσ is called an instance of φ
over L. If L ⊂ P(X) for some X , then we also refer to σ as an L-valuation or a
P(X)-valuation.

The format we impose on axioms is essentially equivalent to the formal notion
of axiom used in [16, 11]:

Definition 11. A rank-1-clause over a set V of propositional variables is a
clause over Up(Prop(V)). Such a clause is valid if all its instances over L(Λ) are
valid.

Proposition 12. Let φ be a rank-1-clause. If φσ holds in TX for every set X
and every P(X)-valuation σ, then φ is valid. The converse holds if T is
ω-accessible, Λ is separating, and the final T -coalgebra is infinite.

(The condition on φ in the above proposition has been called admissibility in [16],
where also the first implication is proved.)

A given set Ax of valid rank-1-clauses, called axioms, induces a proof system
for L(Λ) as follows [11].

Definition 13. The set of formulae derivable from Ax is the smallest set con-
taining all instances of axioms over L(Λ) and closed under propositional entail-
ment and the congruence rule

φ↔ ψ

[λ]φ↔ [λ]ψ
.

It is easy to see that this proof system is sound. The completeness results in [16,
5, 11] require the presence of ‘enough’ axioms in the following sense.

Definition 14. The set Ax is reflexive if, for each set X and each A ⊂ P(X),
every clause φ over Up(A) that holds in TX is derivable, i.e. propositionally
entailed by instances of axioms over A and by formulae of the form [λ]φ↔ [λ]ψ,
where φ, ψ ∈ Prop(A) and φ↔ ψ holds in X .

164 L. Schröder

Of course, we can restrict ourselves to finite A. The definition originally used
in [16] to establish weak completeness is stronger than the notion above in that
derivations of clauses over L are restricted to use only the subset relation on
A rather than propositional formulae that hold in X . By the results of [5], the
weaker definition above, which is essentially equivalent to one given in [11],
suffices to establish weak completeness. Examples of reflexive axiomatizations
are given in [16, 5].

The weak completeness theorem, stating that reflexive sets induce weakly
complete proof systems [16, 5], will appear as a corollary to our finite model
result in Section 4. We now proceed to establish that every functor indeed admits
a reflexive set, i.e. that the set of all valid rank-1-clauses is reflexive.

As a preparation, we note that rank-1-clauses are equivalent to rules of a
restricted format.

Definition 15. An (extended) one-step rule R over a set V of propositional
variables is a rule φ/ψ, where φ ∈ Prop(V), and ψ is a clause over Up(V)
(over Up(Prop(V))). The rule R is valid if, whenever φσ is valid for an L(Λ)-
substitution σ, then ψσ is valid. As part of a proof system, R allows deriving
ψσ from φσ for each L(Λ)-substitution σ.

Thanks to the congruence rule, one-step rules can replace extended one-step rules
(just introduce premises abbreviating propositional formulae as propositional
variables). In particular, every rank-1-clause can be replaced by a one-step rule.
Conversely, we have

Proposition 16. For each one-step rule R over V , there exists a rank-1-clause
χ over V such that χ and R are derivable from each other by propositional
reasoning and the congruence rule.

The proof needs the following fact from propositional logic.

Lemma 17. Let φ ∈ Prop(V) be satisfiable. Then there exists a Prop(V)-
substitution σ such that

φ→ (a↔ σ(a)) (for each a ∈ V) and
φσ

are tautologies.

Proof (Proposition 16). We can assume that the the premise φ of R = φ/ψ is
satisfiable. Thus, fix σ as in the above lemma for φ. Then R and the rank-1-
clause ψσ are mutually interderivable as claimed. ��
We are now ready to prove the announced axiomatizability result:

Theorem 18. The set of all valid rank-1-clauses is reflexive.

Proof. (Sketch) Let X be a set, let A ⊂ P(X) be finite, and let the clause ψ
over Up(A) hold in TX . Let the formula φ be the ‘propositional theory’ of A,
i.e. the (finite) conjunction of all clauses over A that hold in X . Then one can

A Finite Model Construction for Coalgebraic Modal Logic 165

show that the one-step rule R ≡ φ/ψ over A, abused as a set of propositional
variables, is valid. By Proposition 16, it follows that R is derivable from the set
of all valid rank-1-clauses; combined with the fact that φ holds in X , this yields
a derivation of ψ over TX in the sense of Definition 14. ��

4 The Finite Model Construction

The non-compactness of coalgebraic modal logic (cf. Example 9) means that
canonical models, based on the set of all maximally consistent sets w.r.t. a fini-
tary deduction system, do not in general exist. An alternative is to use filtration
methods (cf. e.g. [4, 2]), in the variant that uses consistent subsets of closed
sublanguages.

We recall a few basic definitions:

Definition 19. Given a set Ax of axioms, a finite set {φ1, . . . , φn} of formulae
is called consistent (w.r.t Ax) if ¬(φ1 ∧ . . . ∧ φn) is not derivable according to
Definition 13. A set Σ of formulae is called closed if it is closed under subformulae
and under normalized negation ∼, where ∼φ is defined to be ψ in case φ is of
the form ¬ψ, and ¬φ otherwise. A subset A of Σ is called a Σ-Hintikka set if
⊥ /∈ A and, for φ, ψ ∈ Σ, φ, ψ ∈ A iff φ ∧ ψ ∈ A, and, for ¬φ ∈ Σ, ¬φ ∈ A iff
φ /∈ A. Moreover, A is called a Σ-atom if A is maximal among the consistent
subsets of Σ.

Thus, a Σ-atom is just a consistent Σ-Hintikka set.

Lemma 20 (Lindenbaum Lemma). Every consistent subset of Σ is con-
tained in a Σ-atom.

Given a closed set Σ, the carrier of the model to be constructed will be the set S
of Σ-atoms; the main problem is then to define the coalgebra structure on S.
The following lemma is crucial for this purpose.

Lemma 21. Let V be a set of propositional variables, let φ ∈ Prop(V), and let σ
be a Σ-substitution. Then φσ is derivable iff φτ holds in the set S of Σ-atoms,
where τ is the P(S)-valuation given by τ(a) = {A ∈ S | σ(a) ∈ A}.
Expecting that the extension of a formula φ ∈ Σ in the coalgebra (S, ξ) to be
constructed will be the set {A ∈ S | φ ∈ A}, we will need to require that

ξ(A) ∈ λS{B ∈ S | φ ∈ B} ⇐⇒ [λ]φ ∈ A (∗)
for all A ∈ S and all formulae [λ]φ in Σ. This is where reflexivity comes in:

Lemma 22 (Existence Lemma). If Ax is reflexive and Σ is finite, then ξ(A)
satisfying (∗) exists for each A ∈ S.

Proof. Assume that ξ(A) does not exist. Let V be the set {aφ | φ ∈ Σ} of propo-
sitional variables. Let ψ be the clause over Up(V) containing, for each [λ]φ ∈ Σ,
the literal ¬[λ]aφ if [λ]φ ∈ A, and the literal [λ]aφ otherwise. Let τ be the P(S)-
valuation taking aφ to {B | φ ∈ B}. Then ψτ holds in TS by assumption. By

166 L. Schröder

reflexivity, ψτ is derivable in the sense of Definition 14 from the propositional
formulae of the form χτ that hold in S. This derivation can be copied to ob-
tain a derivation of ψσ from those χσ for which χτ holds in S, where σ is the
Σ-substitution taking aφ to φ. These χσ are derivable by Lemma 21. Thus, ψσ
is derivable, in contradiction to the consistency of A. ��
It remains to prove the truth lemma, which we state in a slightly more general
form than needed in this section for reuse in Section 5:

Lemma 23 (Truth Lemma). Let Σ be a closed set, let S be a set of Σ-
Hintikka sets, and let ξ : S → TS satisfy condition (∗) above. Then for all
φ ∈ Σ and all A ∈ Σ,

A �(S,ξ) φ ⇐⇒ φ ∈ A.

Proof. Straightforward induction over φ. ��
This is all we need in order to establish

Theorem 24. Let Ax be reflexive. Then every formula φ that is consistent w.r.t.
Ax is locally satisfiable in a finite T -coalgebra of size at most 2|φ|.

The proof is just an application of the lemmas above to the (finite) smallest
closed set Σ(φ) containing a given consistent formula φ.

As announced, the above result implies weak completeness [16, 5]; explicitly:

Corollary 25 (Weak completeness). The proof system induced by a reflexive
set of axioms is weakly complete.

Combining Theorems 18 and 24, we obtain independently of deduction:

Corollary 26 (Finite model property). Every locally satisfiable formula φ
is locally satisfiable in a finite T -coalgebra of size at most 2|φ|.

Remark 27. The finite model property does not generalize to the case where
global axioms are present, i.e. it may be the case that φ is locally satisfiable in
some model globally satisfying a formula ψ, but not in any finite such model.
Examples are found already in standard modal logic [18].

5 Decidability

Unlike in the classical case, the finite model construction of the preceding sec-
tion does not immediately imply decidability, even though it gives a computable
bound on the size of the model, since there may in general be infinitely many T -
coalgebras on a given finite set. (In fact, this is the interesting case; for functors
T that preserve finite sets, a finite model construction is given already in [16].)
If T takes finite sets to recursively enumerable sets — as is the case e.g.
for BN, BZ, and Z[], but not for Dω — then the finite model property implies
that the set of satisfiable formulae is r.e.. We then obtain decidability provided
that the set of valid formulae is also r.e., which by the weak completeness theo-
rem and Theorem 18 is the case if the set of all valid rank-1-clauses is r.e.

A Finite Model Construction for Coalgebraic Modal Logic 167

We can however improve on this by exploiting the details of the finite model
construction, as follows. We have no direct access to the set of all Σ(φ)-atoms,
since this would already require a decision procedure for consistency. We can
however easily decide the set H of Σ(φ)-Hintikka sets. We are then faced with
the following decision problem:

Definition 28. The one-step satisfiability problem is to decide, given a finite
set X and a conjunctive clause φ over Up(P(X)), whether φ is satisfiable in TX .

Remark 29. For purposes of determining the input size for the above problem,
we assume that subsets of X can be represented in |X | bits. Moreover, we as-
sume that Λ is countable, with a reasonable size measure for the representation
of modal operators supposed as given (e.g., size log k for the graded modal oper-
ator [k], and size logn + logm for the probabilistic modal operator [n/m], with
n,m ∈ N relatively prime). The same applies to the size of a formula φ as input
for the satisfiability problem, which is thus larger than the size |φ| as defined in
Section 2.

A decision procedure for one-step satisfiability leads to the following algorithm
for satisfiability of φ.

Algorithm 1. For all subsets S of H , perform the following steps.

1. Check whether φ ∈ A for some A ∈ S; if not, continue with the next S.
2. Decide whether for all A ∈ S, the conjunctive clause∧

[λ]ψ∈A

[λ]{B ∈ S | ψ ∈ B} ∧
∧

¬[λ]ψ∈A

¬[λ]{B ∈ S | ψ ∈ B}

is satisfiable in TS. If yes, terminate with output ‘yes’; otherwise, continue
in Step 1 with the next S.

If all S have been checked unsuccessfully, terminate with output ‘no’.

The correctness of the algorithm is guaranteed by the Truth Lemma. Thus,

Theorem 30. If one-step satisfiability is decidable, then satisfiability of L(Λ)-
formulae is decidable.

A non-deterministic variant of Algorithm 1 will also be useful:

Algorithm 2. Nondeterministically choose S ⊂ H ; then proceed as in Algo-
rithm 1, but fail (i.e. loop infinitely) rather than continue with the next S if one
of the checks in Steps 1 or 2 fails.

In this algorithm, we can also employ a semi-decision procedure for one-step
satisfiability. Since acceptance sets of non-deterministic algorithms are r.e., we
thus have

Theorem 31. If one-step satisfiability is semi-decidable, then satisfiability of
L(Λ)-formulae is semi-decidable.

168 L. Schröder

(Note that semi-decidability of one-step satisfiability is weaker than the above-
mentioned condition that T takes finite sets to r.e. sets. E.g., the one-step satis-
fiability problem will turn out to be decidable for Λ as in Example 7.5, although
Dω(X) is uncountable for |X | ≥ 2.)

Algorithm 2 yields the not overly tight complexity bound to be expected for
filtration-based algorithms:

Theorem 32. If the one-step satisfiability problem is in NP, then satisfiability
of L(Λ)-formulae is in NEXPTIME.

Remark 33. In [5], logics for coalgebras are constructed in a modular fash-
ion, following the structure of the signature functor; this raises the question of
whether the above decidability and complexity results behave well w.r.t. these
constructions. It is easy to see that decision procedures for one-step satisfiability
can be combined along products and sums of functors and their logics, while this
is not so clear for the case of functor composition S ◦T : here, one has to do with
conjunctive clauses over Up(S(TX)), where the application of T may produce
an exponential blowup or lead to infinite sets.

Besides the examples whose decidability is already captured by the finite model
result of [16], i.e. functors preserving finite sets, such as P , our results cover the
following cases.

Example 34. 1. Let Λ be the set of predicate liftings λk for the multiset func-
tor of Example 7.3. Then the one-step satisfiability problem amounts to de-
ciding the solvability of systems of linear inequations over the naturals; this
problem is in NP [22]. By Theorem 32, we obtain that the satisfiability prob-
lem for graded modal logic is in NEXPTIME. (In fact, this problem is in
PSPACE [25].)

2. By the same line of reasoning, the satisfiability problem for generalized
graded modal logic over coalgebras for the generalized multiset functor (Ex-
ample 7.4) is in NEXPTIME .

3. Let Λ be the set of predicate liftings for PML as in Example 7.5. Then
the one-step satisfiability problem amounts to the solvability of systems of
rational linear inequations over the reals, which is decidable in polynomial
time by standard linear programming methods (using Motzkin’s transposi-
tion theorem to treat also strict inequalities) [22]. By Theorem 30, it follows
that probabilistic modal logic is in NEXPTIME .

4. By the same reasoning, the modal logic for linear automata of Example 7.6
is decidable in NEXPTIME

5. It is straightforward to extend the above results to include proposition sym-
bols, where not already present, or inputs (cf. Examples 7.2 and 7.7).

Remark 35. A decision algorithm for PML is announced in [7], but not explic-
itly contained in the full version [8]. The latter proves the finite model property
for PML, from which decidability does follow by the argument sketched at the
beginning of this section, with some additional work required to reduce to models

A Finite Model Construction for Coalgebraic Modal Logic 169

with rational probabilities in order to ensure recursive enumerability of the set
of finite models. Our algorithm improves this result by giving an upper bound
on the complexity, albeit a rather generous one (see below).

Remark 36. It is, of course, desirable to obtain better general complexity
bounds; this is the subject of ongoing research. The best general bound we
can hope for is PSPACE , since the decision problem for K, i.e. the modal logic
of P , is known to be PSPACE -complete [2]. The following further results are
forthcoming [24]:

(i) One can show by means of elimination of Hintikka sets (in the same manner
as in known algorithms for PDL [2]) that satisfiability of L(Λ)-formulae is
in EXPTIME if one-step satisfiability is in P .

(ii) Given a tractable axiomatization of L(Λ), one can show that satisfiability of
L(Λ)-formulae is in PSPACE by means of a shallow model construction.

(Neither of these results makes Theorem 32 obsolete, since both rely on stronger
assumptions.) By (i), one immediately improves the bound for PML as well
as for the modal logic of linear automata from NEXPTIME (Example 34) to
EXPTIME . The method of (ii) reproduces the known PSPACE bounds for K
and for graded modal logic, and very likely leads to novel PSPACE bounds for
all other logics mentioned in Example 34, including PML. An open problem that
remains is whether there is a semantic criterion (not involving deduction) that
guarantees a PSPACE bound.

We conclude this section with a few remarks on axiomatizability.

Definition 37. The one-step validity problem is to decide, given a finite set X
and a (disjunctive) clause φ over Up(P(X)), whether φ holds in TX .

Of course, one-step validity and one-step satisfiability are, via negation, reducible
to each other’s complements.

Proposition 38. Let T be ω-accessible, let Λ be separating, and let the final
T -coalgebra be infinite. Then a rank-1-clause φ over a set V of propositional
variables is valid iff φσ holds in T (P(V)), where σ is the P(P(V))-valuation
taking a ∈ V to the set

{B ∈ P(V) | a ∈ B}.

Corollary 39. Let T be ω-accessible, let Λ be separating, and let the final
T -coalgebra be infinite. Then the validity of rank-1-clauses is decidable (semi-
decidable) if the one-step validity problem is decidable (semi-decidable).

We have seen in Example 34 that the one-step validity problem is decidable
in many important cases. Thus, Theorem 18 does frequently supply a feasible
axiomatization of L(Λ), although one will, of course, in general strive for a more
compact, preferably finite axiomatization.

170 L. Schröder

6 Conclusion

Coalgebraic modal logic in general fails to be compact, so that completeness re-
sults are necessarily restricted to weak completeness and moreover cannot rely on
constructing full canonical models. Above, we have described a finite model con-
struction for coalgebraic modal logic, using the ‘small canonical model’ method
known from standard modal logic; weak completeness is a corollary to this result.
Here, the notion of reflexive axiom sets, which has appeared as a prerequisite
for existing weak completeness results for coalgebraic modal logic [16, 5, 11], has
played a crucial role. In particular, we have proved that every coalgebraic modal
logic admits a reflexive axiomatization by axioms of rank 1; this not only means
that the mentioned completeness results are, in principle, always applicable, but
also implies a finite model property which states that all satisfiable formulae can
be satisfied in a finite model whose size is exponentially bounded by the size of
the formula.

We have then described a generic decision procedure for satisfiability in coal-
gebraic modal logic, assuming a decision procedure for the rather simpler one-
step satisfiability problem. We have thus proved decidability for a wide range
of modal logics, including graded and probabilistic modal logic. This goes sig-
nificantly beyond the decidability result of [16], which applies only to signature
functors that preserve finite sets, such as the powerset functor (whose coalge-
bras are standard Kripke frames). Moreover, assuming a mild complexity bound
(NP) for one-step satisfiability, we have established a first general complexity
bound for coalgebraic modal logic (NEXPTIME). This result applies to both
graded and probabilistic modal logic; while for graded modal logic, a better
bound (PSPACE) is known, no complexity bound at all has, to our knowledge,
so far been given for probabilistic modal logic. Forthcoming work [24] will estab-
lish, under additional assumptions, tighter generic bounds which in particular
push the bound for PML at least to EXPTIME and likely to PSPACE .

Acknowledgements

The author wishes to thank Till Mossakowski, Markus Roggenbach, and Horst
Reichel for collaboration on CoCasl, Erwin R. Catesbeiana for favoring empty
coalgebras, and Dirk Pattinson for useful discussions.

References

[1] F. Bartels, A. Sokolova, and E. de Vink. A hierarchy of probabilistic system types.
In Coalgebraic Methods in Computer Science, volume 82 of ENTCS. Elsevier, 2003.

[2] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge, 2001.
[3] J. W. Carlyle and A. Paz. Realizations by stochastic finite automata. J. Comput.

System Sci., 5:26–40, 1971.
[4] B. Chellas. Modal Logic. Cambridge, 1980.
[5] C. Ĉırstea and D. Pattinson. Modular construction of modal logics. In Concur-

rency Theory, volume 3170 of LNCS, pages 258–275. Springer, 2004.

A Finite Model Construction for Coalgebraic Modal Logic 171

[6] G. D’Agostino and A. Visser. Finality regained: A coalgebraic study of Scott-sets
and multisets. Arch. Math. Logic, 41:267–298, 2002.

[7] A. Heifeitz and P. Mongin. The modal logic of probability. In Theoretical Aspects
of Rationality and Knowledge, pages 175–186. Morgan Kaufmann, 1998.

[8] A. Heifetz and P. Mongin. Probabilistic logic for type spaces. Games and Eco-
nomic Behavior, 35:31–53, 2001.

[9] M. Hennessy and R. Milner. Algebraic laws for non-determinism and concurrency.
J. ACM, 32:137–161, 1985.

[10] B. Jacobs. Towards a duality result in the modal logic of coalgebras. In Coalgebraic
Methods in Computer Science, volume 33 of ENTCS. Elsevier, 2000.

[11] C. Kupke, A. Kurz, and D. Pattinson. Algebraic semantics for coalgebraic log-
ics. In Coalgebraic Methods in Computer Science, volume 106 of ENTCS, pages
219–241. Elsevier, 2004.

[12] A. Kurz. Specifying coalgebras with modal logic. Theoret. Comput. Sci., 260:
119–138, 2001.

[13] K. Larsen and A. Skou. Bisimulation through probabilistic testing. Inform. Com-
put., 94:1–28, 1991.

[14] T. Mossakowski, L. Schröder, M. Roggenbach, and H. Reichel. Algebraic-co-
algebraic specification in CoCasl. J. Logic Algebraic Programming. To appear.

[15] D. Pattinson. Semantical principles in the modal logic of coalgebras. In Sympo-
sium on Theoretical Aspects of Computer Science, volume 2010 of LNCS, pages
514–526. Springer, 2001.

[16] D. Pattinson. Coalgebraic modal logic: Soundness, completeness and decidability
of local consequence. Theoret. Comput. Sci., 309:177–193, 2003.

[17] D. Pattinson. Expressive logics for coalgebras via terminal sequence induction.
Notre Dame J. Formal Logic, 45:19–33, 2004.

[18] S. Popkorn. First Steps in Modal Logic. Cambridge, 1994.
[19] M. Rößiger. Coalgebras and modal logic. In Coalgebraic Methods in Computer

Science, volume 33 of ENTCS. Elsevier, 2000.
[20] J. Rothe, H. Tews, and B. Jacobs. The Coalgebraic Class Specification Language

CCSL. J. Universal Comput. Sci., 7:175–193, 2001.
[21] J. Rutten. Universal coalgebra: A theory of systems. Theoret. Comput. Sci.,

249:3–80, 2000.
[22] A. Schrijver. Theory of linear and integer programming. Wiley Interscience, 1986.
[23] L. Schröder. Expressivity of coalgebraic modal logic: the limits and beyond. In

Foundations of Software Science And Computation Structures, volume 3441 of
LNCS, pages 440–454. Springer, 2005.

[24] L. Schröder and D. Pattinson. PSPACE reasoning for coalgebraic modal logic. In
preparation.

[25] S. Tobies. PSPACE reasoning for graded modal logics. J. Logic Computation,
11:85–106, 2001.

[26] P. Turakainen. On the minimization of linear space automata. Ann. Acad. Sci.
Fenn. Ser. A I, 506, 1972. 15 pp.

[27] I. Viglizzo. Final sequences and final coalgebras for measurable spaces. In Alge-
bra and Coalgebra in Computer Science, volume 3629 of LNCS, pages 395–407.
Springer, 2005.

Presenting Functors by Operations and Equations

Marcello M. Bonsangue1,� and Alexander Kurz2,��

1 LIACS, Leiden University, The Netherlands
2 Department of Computer Science, University of Leicester, UK

Abstract. We take the point of view that, if transition systems are coalgebras
for a functor T, then an adequate logic for these transition systems should arise
from the ‘Stone dual’ L of T. We show that such a functor always gives rise to an
‘abstract’ adequate logic for T-coalgebras and investigate under which circum-
stances it gives rise to a ‘concrete’ such logic, that is, a logic with an inductively
defined syntax and proof system. We obtain a result that allows us to prove ade-
quateness of logics uniformly for a large number of different types of transition
systems and give some examples of its usefulness.

1 Introduction

The question we are concerned with in this paper is how to associate to a given type
of transition systems an adequate (modal) logic. Here adequate means that the logic is
sound and complete and that two states are bisimilar iff they are logically equivalent
(ie, iff they have the same theory). For the latter property, we also say that the logic is
expressive or that the semantics is fully abstract.

Our starting point is the theory of coalgebras as in Rutten [29]. That is, the type of
a category of transition systems is given by a functor T on a category X and transition
systems of type T are T -coalgebras, ie arrows X → TX in X . The basic idea of our
approach is that an adequate logic for T -coalgebras is given by the dual functor L of T
on the Stone dualA of X as explained below.

XT
�� P

 A

S

�� L
��

(1)

A is a category of algebras such as Boolean algebras or distributive lattices representing
a propositional logic such as classical or positive propositional logic. P and S are the
contravariant1 functors that provide the dual equivalence between X andA. Intuitively,
P maps a state space X to the logic of propositions on X and S maps an algebra
to its ‘canonical model’. That L and T are dual means that there is an isomorphism
LP → PT .

The main contribution (Section 2) of the paper is the notion of a functor having
a presentation by operations and equations. Theorem 15 shows that the category of

� Supported by a fellowship of the Royal Netherlands Academy of Arts and Sciences.
�� Partially supported by the Nuffield Foundation Grant NUF-NAL04.

1 Given categories C, C′, we use the notation C → C′ for (covariant) functors such as T and L
as well as for contravariant functors such as P and S.

L. Aceto and A. Ingólfsdóttir (Eds.): FOSSACS 2006, LNCS 3921, pp. 172–186, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Presenting Functors by Operations and Equations 173

algebras for such a functor is an equationally definable class of algebras (over Set). We
then go on to show (Section 4) that, although the dual L of T gives rise to an adequate
logic for T -coalgebras, the resulting logic is too abstract to be useful. In particular,
inductively defined formulae, a logical calculus and a notion of (inter)derivability are
still missing. But these are provided (Section 5) by a presentation of L by operations
and equations. Theorem 27 shows how the operations give rise to modal operators, the
equations to axioms and how the modal calculus is inherited from equational logic.

The notion of a functor being presentable by operations and equations is modelled
on the notion of an algebra being presentable by generators and relations (reviewed in
Section 2.1). This will be discussed in more detail now.

Comparison with Work in Domain Theory. The prototypical transition systems,
called Kripke frames in modal logic, consist of just a set X and a relation R on X .
WritingP for the operation that maps a set to its powerset, (X,R) can also be described
by its ‘successor map’, or P-coalgebra, X → PX . P is a functor on the category Set
of sets and functions and has analogues on many categories of topological spaces, in-
cluding important categories of domains. P is then called powerspace, hyperspace or
powerdomain.

It is well-known in domain theory that the dual of the powerspace on the correspond-
ing category of algebras can be described using modalities � and �. This goes back to
Johnstone [12, 13] where a dual of the powerspace, called Vietoris locale, is described.
In case of distributive lattices [13, Section 1.8] anticipates the axiomatisation of positive
modal logic by Dunn [10]. Winskel [32] used modalities to describe the powerdomain
and Robinson [25] established the connection between the work in domain theory and
that of Johnstone. Abramsky [1] extended these ideas to give logical descriptions of
domains for a large number of other type constructors.

To position our contribution it will be useful to briefly summarise the work men-
tioned in the previous paragraph using our notation from Diagram (1). To describe a
powerspace T on a domain—or more generally on a topological space—X ∈ X , one
has to describe the effect of T on the topology of X . This can be done without refer-
ence to X , using only the algebraic properties of the topology of X : the topology of
TX is given (up to canonical iso) by the algebra L(PX) which is freely generated by
symbols �a, �a, a ∈ PX satisfying some ‘relations’ as eg �(a ∧ a′) = �a ∧�a′. To
summarise, a logic for T -coalgebras is obtained by describing the dual LPX of TX
using the technique of generators and relations: The modal operators arise from the
generators and the axioms from the relations.

Our paper formalises the move from generators and relations to the modal logic. Let
us explain what needs to be done. Going back to the example of the powerspace, we
observe that �a is a formal symbol as a generator of LPX , but � is a unary operator in
the modal logic. Similarly, as a ‘relation’ �(a∧a′) = �a∧�a′ is a pair of terms, but as
a logical axiom it is an equation where a, a′ are variables. Moreover, but related, a logic
is obtained from a presentation of LPX only if the presentation does not depend on X ,
that is LPX is given by the ‘same’ generators and relations for all X . The necessary
step is to generalise the notion of an algebra being presented to the notion of a functor
being presented. As a consequence we obtain Theorems 15 and 27, which uniformly
account for a large number of categories X and functors T .

174 M.M. Bonsangue and A. Kurz

Comparison with Work on Coalgebras. Work on modal logic and coalgebras started
with Moss [21] whose proposal works essentially for any functor T (on the category
of sets), but does not provide the linguistic means to decompose the structure of T
which is needed to allow for a flexible specification language. To address this issue,
subsequent work as eg [19, 28, 11] restricted attention to particular classes of functors.
Pattinson [23] showed that these languages arise from modal operators given by certain
natural transformations, called predicate liftings. [16] showed that, furthermore, these
languages correspond to functors L on the category BA of Boolean algebras. Here we
address the opposite question of how to associate a logic to a functor L.

This paper can also be seen as a sequel to [7], where we proposed a general frame-
work for logics of coalgebras based on Stone duality. A general adequateness result was
proved for what we call here abstract logics and then, studying the case of the compact
powerspace Pc, it was shown how to systematically obtain logics for coalgebras over
different base categories by presenting the dual of Pc by generators and relations. But
a formal description of the step from generators and relations to modal operators and
axioms was left open.

2 Presenting Functors by Operation and Equations

This section defines what it means for a functor L on an algebraic categoryA to have a
presentation by operations and equations. It is shown that, if L has such a presentation,
the category Alg(L) of L-algebras is isomorphic to a category Alg(Σ,E) of algebras for
a signature and equations and, moreover, Σ and E are obtained from the presentations
ofA and L in a modular way. Let us emphasise that this is known for the caseA = Set,
the novelty here coming from the need to consider other base categories than Set.

2.1 A Brief Review of Algebras and Presentations

Algebras. Given a functor L on a categoryA, an L-algebra (notation: (A,α) or just α)
is an arrow α : LA → A. A morphism f : α → α′ is an arrow f : A → A′ such that
f ◦ α = α′ ◦ Lf .

The category of algebras for a signature Σ and equations E is defined as usual2 and
denoted by Alg(Σ,E). We say that a category A, equipped with a forgetful functor
U : A → Set, has a presentation (over Set) if there exists a signature Σ and equations
E such that A is concretely3 isomorphic to Alg(Σ,E). A (or more precisely U : A →
Set) is monadic iff A has such a presentation and U : A → Set has a left adjoint
(ie free algebras exist). The left adjoint of U is denoted by F throughout (FX is the
free algebra over X and UFX is the set of terms over X quotiented by the equations).
Examples: The category of complete Boolean algebras has a presentation but is not
monadic, whereas the category of complete atomic Boolean algebras is monadic (and
dually equivalent to Set); see [12].

2 Carriers are sets and arities may be arbitrary cardinals; we allow a set of operations for each
arity and a set of equations for each set of variables.

3 Concretely means that the isomorphism preserves the underlying sets.

Presenting Functors by Operations and Equations 175

Presenting Algebras by Generators and Relations. The following is tailored towards
Section 2.2, for more see Vickers [31]. Suppose we have a monadic functor U : A →
Set with left-adjoint F . Then the counit

εA : FUA→ A

gives us a canonical (albeit not economical) presentation of A, namely generated by the
elements of UA and quotiented by the kernel {(t, s) | εA(t) = εA(s)} of εA. These
presentations are useful to describe operations on algebras. Unfortunately we have only
space for one example.

Example 1 (modal algebras). A modal algebra, or Boolean algebra with operator
(BAO), is the algebraic structure required to interpret (classical) modal logic which
consists of propositional logic plus a unary modal operator � preserving finite conjunc-
tions. Modal algebras are therefore algebras for the functor V : BA → BA, where VA
is defined by generators �a, a ∈ A, and relations �� = �, �(a ∧ a′) = �a ∧ �a′.

Note that in the example above, the symbol � appears in two roles. First we said that �

is a unary operator. But when we considered �a as a generator, ‘�a’ was just a formal
symbol. This observation will lead to Definition 6.

Remark 2. The fact that, in the example above, V is on BA (and not on Set) takes
care of the propositional part of modal logic. The definition of VA can be phrased
more abstractly by saying that the insertion of generators UA → UVA, a �→ �a is a
universal finite-meet preserving function, that is,

UA

f ���������
�� UVA

Uf�

��
UB

for all B ∈ BA and all finite-meet preserving functions f : UA→ UB there is a unique
Boolean algebra morphism f � : VA → B with Uf �(�a) = f(a). From this observa-
tion it is straightforward to show that Alg(V) is indeed isomorphic to the category of
modal algebras as usually defined (see eg [15, Definition 2.2.2], [4, Definition 5.19]).

Definition 3 (presentation by generators and relations). Let U : A → Set be
monadic (see p.174) with left adjoint F . A presentation 〈G,R〉 consists of a set of
‘generators’ G and a set of ‘relations’ R ⊆ UFG× UFG.

Definition 4 (presented algebra). Continuing from the previous definition, a mor-
phism f : FG → B in A satisfies the relations R if (t, s) ∈ R ⇒ Uf(t) = Uf(s).
An algebra A is presented by 〈G,R〉 if

FG
q ��

f ��	
		

		
		

A

f+

��
B

176 M.M. Bonsangue and A. Kurz

– A comes with an insertion of generators q : G→ UA (or, equivalently, q : FG→
A) satisfying the relations R,

– for all B ∈ A and all f : FG → B satisfying the relations R there is a unique
f+ : A→ B with f+ ◦ q = f .

Proposition 5. Every presentation presents an algebra.

Proof. The proof relies on the fact that, as a category monadic over Set, A has co-
equalisers. The object presented by 〈G,R〉 is given by the coequaliser

FR
π�
2

��
π�
1 ��

FG
q �� A.

where π�
1, π

�
2 come from the projections π1, π2 : R→ UFG. More concretely, q is the

quotient wrt the smallest congruence containing R.

2.2 Presenting Functors by Operations and Equations

Example 1 above shows how the functor V : BA → BA is described using generators
and relations. In order to obtain a modal logic from that description, one has to upgrade
the set of formal symbols �a to a unary operator � and, similarly, the relations �(a ∧
a′) = �a∧�a′ to equations in variables a, a′ (Definition 6). Moreover, the presentation
of VA is the ‘same’ for all A. This will be crucial for the move from a presentation to a
logic: The modal operators (ie the generators) and the axioms (ie the relations) should
depend only on the functor and not on specific algebras (Definition 7).

Definition 6 (presentation by operations and equations). Let U : A → Set be
monadic with left adjoint F . A presentation of a functor L : A → A by operations
and equations consists of

1. a set Σ of operations σ ∈ Σ with arities nσ which gives rise to a functor GΣ :
Set→ Set, X �→∐σ∈Σ Xnσ ,

2. a class C of sets (of variables) and a collection E = (EV)V ∈C of equations EV ⊆
(UFGΣUFV)2.

A presentation is called finite if Σ only contains operations of finite arity and C contains
only finite sets.

Definition 7 (presented functor). Continuing from the previous definition, a mor-
phism f : FGΣUA→ B satisfies the equations E if for all V ∈ C and all v : FV → A
it holds (t, s) ∈ EV ⇒ (f ◦FGΣUv)(t) = (f ◦FGΣUv)(s). A natural transformation
f : FGΣU → L satisfies the equations if fA satisfies the equations for all A ∈ A.

A functor L is presented by 〈Σ,E〉 if

FGΣUFV
FGΣUv�� FGΣUA

qA ��

f ��

 LA

f+

��
B

Presenting Functors by Operations and Equations 177

– L comes with a natural transformation, called insertion of generators, q : GΣU →
UL (or, equivalently, q : FGΣU → L) satisfying the equations E,

– for any B ∈ A and morphism f : FGΣUA → B satisfying the equations E there
is a unique morphism f+ : LA→ B such that f+ ◦ qA = f .

Remark 8. 1. Roughly speaking, if A represents a finitary logic, we will need C to
only contain finite sets of variables. But for infinitary logics, a typical requirement
for an operator � in Σ would be to preserve all meets, which is expressed by
equations

∧
v∈V �v = �

∧
v∈V v where V runs through all cardinals.

2. Here we explain the format of the equations EV ⊆ (UFGΣUFV)2.

– EV ⊆ (UFGΣUFV)2 means that the terms appearing in equations may freely
use the operations for A but do not contain nested occurrences of operations
from Σ.

– Intuitively, this format arises from our interests in logics that describe coalge-
bras for a functor T . In contrast to coalgebras for a comonad, the coalgebra map
ξ : X → TX encodes what the transition system (X, ξ) can perform in one
step. From this point of view, the format EV ⊆ (UFGΣUFV)2 of the axioms
E is not a restriction, but formalises that we do not need nested modalities to
describe a single transition (nested modalities describe sequences of transition
steps).

– Technically, equations of the form EV ⊆ (UFGΣUFV)2 suffice since the
terms to be quotiented are all in UFGΣUA. The reason to exclude more gen-
eral equations is Theorem 15.

3. Using the approach of Linton [20] and Rosický [26], one can show that Alg(L)
can always be described by operations and equations over A. But in that approach
the arities describing Alg(L) are objects in A and not cardinalities in Set. In other
words, what our approach adds here is that under Definition 7 one does obtain a
presentation not only of Alg(L) over A but also of Alg(L) over Set (Theorem 15).
The latter is essential to get logics as in Section 5.

4. A presentation of Alg(L) over Set cannot be expected to exist in general, because
monadic functors are not closed under composition: Even if Alg(L) → A and
A → Set are monadic, the composition Alg(L) → Set need not be so. This is
discussed in detail in Kelly and Power [14]. For our purposes, our approach has the
advantage that we obtain a presentation of Alg(L) modularly from presentations of
A and L (Theorem 15). Moreover, we do not insist on Alg(L) having free algebras.

5. Example 1 seems to suggest that one could express the interplay of the modal and
Boolean operators by a distributive law between the functor L describing the modal
operators and the monad UF describing the Boolean operators. This approach does
not work as L is not even defined on underlying sets but only on algebras.

6. An approach based on monads would not be appropriate because we do not want
to insist that Alg(L) has free algebras. (For an example where Alg(L) doesn’t have
free algebras althoughA has, takeA to be the category of complete atomic Boolean
algebras and L the dual of the powerset.)

Definition 7 will allows us to present Alg(L) by composing a presentation of A with
a presentation of L, see Theorem 15. Logically, this corresponds to extending a basic

178 M.M. Bonsangue and A. Kurz

propositional logic (which presentsA) with modal operators and modal axioms (which
present L). This is also the idea underlying the following examples.

Example 9. 1. As mentioned already in the introduction, to define a functor L by
describing LA by generators and relations is a common technique. In all of the cited
[12, 13, 25, 31] the given presentations are in fact presentations of L by operations
and equations. The reason to make this notion explicit here is to have a uniform
translation from presentations to logics that works for functors L in general (see
Theorems 15 and 27).

2. The functor V of Example 1 is presented by a signature containing one unary oper-
ation �, that is, GΣX = X . Further, V = {v0, v1}, C = {V }, and, writing ‘· = ·’
instead of ‘(·, ·)’, EV = {�� = �,�(v0 ∧ v1) = �v0 ∧�v1}.

3. The functor V above is the dual of the powerspace on Stone. Other type construc-
tors on Stone are studied in [18] (called Vietoris polynomial functors) and their
duals on BA are all presentable by operations and equations.

4. The Kripke polynomial functors on Set (including powerset) of [11] have duals
on complete atomic Boolean algebras, which have a presentation. The description
of the dual of the finite (or compact) powerspace on posets and sets in [7] also
provides examples of presentations of functors.

Proposition 10. Each presentation presents a functor.

Proof. Given a presentation 〈Σ,E〉 we define the functor L on objects A as

FEV

π�
1 ��

π�
2

�� FGΣUFV
FGΣUv�� FGΣUA

qA �� LA (2)

where qA is the joint coequaliser of all pairs (FGΣUv ◦ π�
1, FGΣUv ◦ π�

2) where v
ranges over arrows FV → A. The universal property of LA gives the action of L on
morphisms and the naturality of qA.

Proposition 11. The functors that have a presentation are closed under composition.

Proof (Sketch). Consider L1 and L2 with presentations (Σ1, E1), (Σ2, E2). Then L1L2
is presented by (

∑
i∈n ni)-ary operations σ((ti)i∈n) where σ ∈ Σ1 is n-ary and the ti

are ni-ary Σ2-terms in UFGΣ2V . The equations s((ti)i∈n) = s′((t′i)i∈n) are all those
that can be obtained from the equations s = s′ derivable from E1 and then substituting
terms ti = t′i (with identities derivable from E2).

Remark 12. The proposition shows that we can build up presentations modularly. The
construction in the proof has the disadvantage though, that (many) new operations and
equations have to be introduced. In practice, therefore, one would rather introduce an
additional sort with the benefit of using exactly the operations and equations of the two
original presentations. This is as in, eg, [1, 27, 11, 9, 30] and will be detailed elsewhere.

Although we are not interested in the case A = Set as such, the following shows that
Definition 6 is natural: Up to a size restriction, any functor on Set has a presentation. In
particular.

Presenting Functors by Operations and Equations 179

Proposition 13. A functor on Set has a finite presentation if and only if it is finitary.

Proof. If an endofunctor L on Set is given as in Diagram (2), then it is not difficult
to show that it preserves filtered colimits, given that F , U , and G do so and the sets
V are finite. Conversely, given a finitary L, we obtain Σ and E as follows [24, 1.5].
For Σ we let each element in Ln be an n-ary operation,4 that is, GΣX =

∐
n<ω Ln×

Xn. Further, V = {vi | i < ω}, C = {V } and EV = {(Lf(σ))(v0, . . . vm−1) =
σ(vf(0), . . . vf(n−1)) | n < ω, σ ∈ Ln, f : n → m}. The natural transformation
qA : GΣUA→ LA then maps n < ω, σ ∈ Ln, f : n→ A to Lf(σ) ∈ LA.

If we do not insist on A = Set, the two notions become different as the second part of
the proof does not generalise. A general characterisation of the functors having a finite
presentation will be given elsewhere.

We still have to show how functors that are presentable by operations and equations
give rise to logics. Since A is monadic over Set, we can assume that we a have a
presentation of A as a category of algebras Alg(ΣA, EA) given by a signature ΣA and
equations EA.

Definition 14 (ΣA + ΣL, EA + EL). Let A ∼= Alg(ΣA, EA) and L : A → A be
presented by 〈ΣL, EL〉. Denote by ΣA+ΣL the disjoint union of the signatures and by
EA+EL the disjoint union where equations in EA and EL are understood as equations
over ΣA + ΣL.5

EA + EL is a sound and complete (equational) logic for L-algebras:

Theorem 15. Let A ∼= Alg(ΣA, EA) be monadic and 〈ΣL, EL〉 a presentation of L :
A → A. Then Alg(ΣA + ΣL, EA + EL) is isomorphic to Alg(L).

Proof (Sketch). Write Σ = ΣA + ΣL, E = EA + EL. Consider α : LA → A. The
corresponding Σ-algebra A has carrier UA and the interpretation σA of operations σ ∈
ΣL is given by (UA)nσ → UFGΣLUA

UqA→ ULA
Uα→ UA. A satisfies the equations

EA because A does. A satisfies the equations EL because qA does (Definition 7) and
because of the format (EL)V ⊆ (UFGΣLUFV)2.

Conversely, every (Σ,E)-algebra A is also an algebra in A. We then obtain, from
the operations in ΣL, a function GΣLUA → UA, ie a morphism f : FGΣLUA → A.
Since A satisfies the equations EL we obtain by the universal property of Definition 7
a morphism α = f+ : LA→ A.

Remark 16. 1. Without requiring (EL)V ⊆ (UFGΣLUFV)2 in Definition 7,
L-algebras would not need to satisfy the equations EL.

2. We do not insist that Alg(L)→ Set be monadic (Remark 8.6).

4 Writing Ln we assume that n is the set {0, . . . n − 1}.
5 Strictly speaking, EL was defined on equivalence classes of ΣA-terms. Formally, one obtains

the new EL, denoted E′
L, as follows. Let TΣAV be the set of ΣA-terms over V . Consider a

half-inverse m of the quotient TΣAGΣLTΣAV → UFGΣLUFV (m chooses a representative
for each equivalence class). Then E′

L = {(m(t), m(s)) | (t, s) ∈ EL}.

180 M.M. Bonsangue and A. Kurz

3. Assume that A = Set and that L has a finitary presentation. Then Theorem 15 and
Proposition 13 specialise to the well-known result that Alg(L) is a variety that can
be described by equations without nesting of operation symbols, see [3, Section
III.3.2, III.4.3]. Let us remark that [3] does not have the notion of a presentation of
a functor. We need it here to generalise from Set to other monadic categoriesA.

3 A Brief Review of Coalgebras and Stone Duality

Coalgebras. Given a functor T on a category X , a T -coalgebra (notation: (X, ξ) or
just ξ) is an arrow ξ : X → TX in X . A morphism f : ξ → ξ′ is an arrow f : X → X ′

such that Tf ◦ ξ = ξ′ ◦ f .
Throughout the paper it will be the case that X is the category Set of sets and func-

tions or some category of topological spaces or domains. It makes therefore sense to
speak of the elements, or states, of some X ∈ X . We say that two states x, x′ of
ξ : X → TX and ξ′ : X ′ → TX ′ are behaviourally equivalent or bisimilar if there are
coalgebra morphisms f, f ′ with f(x) = f(x′). This notion of bisimilarity agrees with
the standard one in all cases we are aware of.

Stone Duality. We sketch some background on Stone duality. It may be skipped and
consulted later. A topological space (X,O) is a set X together with a collection O
of subsets of X closed under finite intersections and arbitrary unions. Elements a ∈
O are called open sets. A function (X,O) → (X ′,O′) is continuous if f−1 pre-
serves opens, that is, restricts to a map O′ → O. Topological spaces and continuous
maps form the category Top. Note that f−1 preserves finite intersections and arbitrary
unions.

Abstracting from the set of points X and axiomatising the algebraic properties of
a topology O, one arrives at the following notion. A frame6 A is a distributive lattice
(with bottom ⊥ and top �) with infinite joins satisfying the infinite distributive law
a ∧ ∨C =

∨{a ∧ c | c ∈ C} for all a ∈ A and all subsets C ⊆ A. Frames
with functions preserving arbitrary joins and finite meets form the category Frm. Frm
has free algebras, in other words, the forgetful functor from Frm to Set mapping each
frame to its underlying set is monadic.

There are contravariant functors

Top
P ��

Frm
S

��

P (X,O) = O, P (f) = f−1 (‘P ’ since P associates to a space X the algebra of
predicates over X). If (X,O) is a discrete topological space, then P is the contravariant
powerset functor. S(A) = Frm(A,), where is the two element frame (consisting of
⊥,�). S(A) carries the topology generated by the sets, for each a ∈ A, {s ∈ S(A) |
s(a) = �}. S(f) = λs ∈ S(A) . s◦f . For example, if A is a Boolean algebra, then SA
is the space of ultrafilters over A (ultrafilters represent maximal consistent theories).

6 The notions ‘frame’ and ‘Kripke frame’ come from different areas are not related.

Presenting Functors by Operations and Equations 181

Fact 17. P, S are adjoint on the right, that is, there is a bijection, natural in X and A,

Top(X,SA) ∼= Frm(A,PX).

The adjunction restricts to a dual equivalence on the subcategories of spaces X and
frames A for which the units X → SPX and A → PSA are isomorphisms. These
spaces and frames are called sober and spatial, respectively. We will need later that a
frame A is spatial iff

∀a, a′ ∈ A.(a �≤ a′ ⇒ ∃s ∈ SA.(s(a) = � & s(a′) = ⊥)). (3)

The dual equivalence of sober spaces and spatial frames can be restricted to ob-
tain a large number of interesting examples. We mention here only the duality of the
categories Stone of Stone spaces and BA of Boolean algebras and the duality of the
categories Spec of spectral spaces and DL of distributive lattices. For details and more
examples see [12, 31, 2].

The adjunction can also be ‘upgraded’ to an adjunction between Top and OFrm,
the category of observation frames [5]. It restricts to a dual equivalence for all T0-
spaces. We can then include the category of posets into the list of possible topological
spaces and treat propositional logics without negation but with infinitary meets [6]. This
approach was also used in [7].

4 Abstract Logics for Coalgebras

It is shown that adequate logics for T -coalgebras are given by the functor L that is dual
to T . This section is independent of Section 2.

Definition 18 (dual functor). Let P : X → A and S : A → X be a dual equivalence
and T a functor on X . (L, δ), or simply L, is called a (or the) dual of T onA if there is
a natural isomorphism δ : LP → PT .

All duals of T are naturally isomorphic and the canonical one is PTS (but more inter-
esting are those duals L that have a purely algebraic description (Definition 7) which
does not go via X). δ allows us to consider the collection of predicates on a coalgebra
as an L-algebra. That is, we can lift the functors P and S to an equivalence of algebras
and coalgebras. Explicitly, on objects, the lifted P̃ and S̃ are given as

P̃ (X, ξ) = LPX
δX−→ PTX

Pξ−→ PX

S̃(A,α) = SA
Sα−→ SLA ∼= SLPSA

(SδS)A−→ SPTSA ∼= TSA

In order to interpret the dual equivalence connecting A and X as a duality between
a logical calculus and its semantics, we need to more specific. For the remainder of the
paper we will be working in the situation described by the following diagram

182 M.M. Bonsangue and A. Kurz

Coalg(T)
P̃ ��

��

Alg(L)
S̃

��

��
XT

�� P
��

��

A
S

�� L
��

U

��
Set Set

F

��

(4)

where we assume that

– the dual equivalence between X and A arises from the adjunction of Top and Frm
(or Top and OFrm) by restricting to subcategories (see Section 3),

– L is dual to T (see Definition 18),
– A is monadic (see p.174),
– Alg(L)→ A has a left adjoint (ie Alg(L) has free algebras).

Let us emphasise that the last requirement is not essential [7]. But it simplifies the pre-
sentation considerably, as we can now take the initial algebra in Alg(L) as a canonical
set of propositions. We consider this algebra of propositions as an abstract logic for
T -coalgebras, see Definition 21.

Definition 19 (Prop(Var)). Denote by Prop(Var) the (carrier of the) free L-algebra
over Var and call the elements of Prop(Var) propositions over variables in Var .

The algebraic semantics is defined in the usual way. Recall that there is a bijection
between functions Var → UA and morphisms Prop(Var)→ A.

Definition 20 (algebraic semantics). The algebraic semantics ϕA,h of ϕ ∈ Prop(Var)
wrt an algebra A ∈ Alg(L) and a valuation of variables h : Var → UA is ϕA,h =
h#(ϕ) where h# : Prop(Var) → A is the unique extension of h. Alg(L) |= (ϕ ≤ ψ)
if ϕA,h ≤ ψA,h for all algebras A and all h : V ar→ UA.

To each coalgebra (X, ξ) we can associate via P̃ the algebra of propositions over X .
This gives the coalgebraic semantics.

Definition 21 (coalgebraic semantics). The semantics [[ϕ]](X,ξ,h) of a formula ϕ ∈
Prop(Var) wrt a coalgebra (X, ξ) ∈ Coalg(T) and a valuation h : Var → PX is given
by [[ϕ]](X,ξ,h) = ϕP̃ (X,ξ),h. We write Coalg(T) |= (ϕ $ ψ) if [[ϕ]](X,ξ,h) ⊆ [[ψ]](X,ξ,h)
for all coalgebras and all valuations.

The following proposition can be extended to account for propositions with variables if
the notion of bisimulation is appropriately adapted. But we will restrict ourselves to

Proposition 22. Propositions in Prop∅ are invariant under bisimilarity.

Proof. We have to show that, given a coalgebra morphism f : (X, ξ) → (X ′, ξ′) and
x ∈ X , that x ∈ [[ϕ]](X,ξ) ⇔ f(x) ∈ [[ϕ]](X′,ξ′). This follows directly from the
universal property of the initial algebra Prop∅.

Presenting Functors by Operations and Equations 183

The essence of completeness wrt to the coalgebraic semantics is:

Proposition 23. Alg(L) |= (ϕ ≤ ψ) ⇔ Coalg(T) |= (ϕ $ ψ).

Proof. ‘ ⇒ ’ (soundness) is immediate. For ‘ ⇐ ’ (completeness) assume /|=Alg(L)
ϕ ≤ ψ, ie ϕ �≤ ψ in Prop(Var). Since Prop(Var) is spatial (see (3)), there is x in
S̃(Prop(Var)) such that x ∈ [[ϕ]]Prop(Var) and x /∈ [[ψ]]Prop(Var).

Proposition 24. Prop∅ is expressive. That is, if two elements x, x′ of two coalgebras
(X, ξ), (X ′, ξ′) are not bisimilar, then there is ϕ ∈ Prop∅ such that x |= ϕ ⇔ x′ /|= ϕ.

Proof. Without loss of generality, let us assume that x, x′ are two different elements of
the final coalgebra (Z, ζ). The two points can be distinguished by a proposition since
Prop∅ → P̃ (Z, ζ) is surjective and PZ is a T0-space.

To summarise the section, we have seen how to obtain an adequate logic for
T -coalgebras (where T is an arbitrary functor on a categoryX satisfying the conditions
summarised under Diagram (4)): Just consider as formulae the elements of the initial
L-algebra where L is the dual of T . We called this logic abstract as these formulae do
not have much structure. For example, modal operators, an explicit inductive construc-
tion of the set of formulae and a logical calculus are still missing.

5 Concrete Logics for Coalgebras

We can now combine the abstract logics from Section 4 with the presentations of func-
tors of Section 2. Assuming that L has a presentation, Theorem 15 gives us an equa-
tional calculus for Alg(L). Via the coalgebraic semantics of Definition 21 this yields
an equational logic for T -coalgebras, which is adequate by Propositions 22 to 24 and
concrete in the sense that we have the equational calculus for reasoning about the coal-
gebras.

In this section, we translate the equational logic of Theorem 15 to a modal logic. In
the case of A = BA (which corresponds to adding a modal logic to classical propo-
sitional logic) this is particularly simple: An equation t = s corresponds to the modal
formula t↔ s. As we are interested also inA = DL (and various subcategories), we do
not assume here that the logics have implication. We therefore use in the modal logics
the notation ϕ $ ψ to represent the algebraic ϕ ≤ ψ. As it is clear from Definition 21,
$ corresponds to local consequence in the terminology of modal logic.

Definition 25 (modal logic for T -coalgebras). LetX andA be categories as described
in Diagram (4) and T a functor on X . Assume that the dual L of T has a presenta-
tion 〈ΣL, EL〉 (Definition 7) and let A ∼= Alg(ΣA, EA). Operations in ΣA are called
propositional connectives and operations in ΣL are called modal operators. Following
established notation, we write modal operators σ ∈ ΣL as [σ]. We define

Formulae. The set of formulae over a set Var of propositional variables is the smallest
set containing Var and closed under operations in ΣA and ΣL.

Sequents. A sequent ϕ $ ψ consists of two formulae ϕ, ψ.

184 M.M. Bonsangue and A. Kurz

Axiom Schemes. Each equation ϕ = ψ in EA or EL gives rise to axiom schemes
ϕ $ ψ and ψ $ ϕ. An axiom is obtained from an axiom scheme by replacing the
variables7 with formulae.

Calculus. We use ϕ&$ψ as an abbreviation for ϕ $ ψ and ψ $ ϕ. The rules have
to guarantee that &$ is an equivalence relation. Moreover, for each n-ary operator
σ ∈ ΣA + ΣL, we have the congruence rule

ϕi&$ψi 0 ≤ i < n

σ(ϕi)&$σ(ψi)

Semantics. Given a coalgebra (X, ξ) and a valuation h : Var → PX , the semantics
[[ϕ]](X,ξ,h) of a formula is defined inductively on the structure of formulae. For an
n-ary modal operator σ ∈ ΣL its semantics is given by (for δ see Definition 18)

(UPX)n �� GΣLUPX
qP X �� ULPX

UδX �� UPTX
UPξ �� UPX

mapping ([[ϕi]](X,ξ,h))0≤i<n to [[[σ](ϕi)]].

Remark 26 (other approaches to modal logics for coalgebras). Apart from Moss
[21], all subsequent work we are aware of (as eg [28, 11, 18, 22]) can be casted in terms
of so-called predicate liftings as in Pattinson [23]. Predicate liftings give semantics to
modal operators for T -coalgebras. They appear here as (UPX)n → GΣLUPX

qP X→
ULPX

UδX→ UPTX . It was shown in [16] that any logic given by predicate liftings
can be described by a functor L on BA that has a presentation. Our approach therefore
subsumes existing ones. But we have also vastly generalised the previous work by mov-
ing from set to other topological categories and from BA to other algebraic categories.
Moreover, we established a criterion for functors L to give rise to an adequate logic.

Theorem 27. Let L be a logic for T -coalgebras as described in Definition 25. The
formulae ofL are invariant under bisimilarity andL is sound, complete and expressive.

Proof (Sketch). First show that equational deduction is equivalent to deduction in L. It
then follows from Theorem 15 that Prop(Var) is a quotient of the set ofL-formulae wrt
to the interderivability &$ (the so-called Lindenbaum-Tarski algebra of L). Moreover,
the coalgebraic semantics (Definition 21) of L is equivalent to the one from Defini-
tion 25. Now, having established the relationship between equational and modal logic,
soundness and completeness is Proposition 23. Invariance under behavioural equiva-
lence and expressiveness are Propositions 22 and 24, respectively.

Remark 28. To keep the presentation in Section 4 simple, we assumed there that
Alg(L) has free algebras. But, as shown in [7], this assumption is not necessary (nei-
ther always desirable: if T is the powerset functor, then Coalg(T) does not have a final
coalgebra and Alg(L) does not have an initial algebra). Theorem 27 then still holds
(assuming, as in [7], that T weakly preserves limits of chains).

7 These are the variables from V , see Definition 7, which are different from the propositional
variables from Var .

Presenting Functors by Operations and Equations 185

Example 29. 1. In the case of A = BA one can use→ instead of $. For example, the
equational logic for the functor V (Example 9.2) translates to a modal logic that adds
to classical propositional logic the two axiom schemes �� ↔ � and �(v0 ∧ v1) =
�v0 ∧�v1. This is easily seen to be equivalent to the standard calculus of modal logic.

2. The logics of [18] can be understood as presentations of the respective functors.

3. The presentations of the duals of the Kripke polynomial functors of [11] give rise to
the infinitary versions of the logics studied there.

Example 30. In [7], we derived in a uniform way the logic for finitely branching tran-
sition systems on different topological spaces. The idea was to describe the dual L of
the finite (= compact) powerspace, similarly to Example 1, by generators and relations.
The completeness proof of the corresponding logics proceeded by, what we call here,
the abstract logic (Section 4) of L. But the step from the presentation by generators and
relations to the logic was not worked out, being routine and tedious. This gap can now
be filled by simply appealing to Theorem 27.

6 Conclusion and Further Work

This paper introduced the notion of a functor having a presentation by operations and
equations. It explains how generators and relations give rise to modal operators and
axioms and leads to Theorems 15 and 27 which give automatic adequateness proofs
once a presentation is given. From a mathematical point of view, the work contributes
to the question when a category Alg(L) has a presentation by operations and equations.

Further Work. 1. The completeness result relates dual categories as eg BA and Stone
or DL and Spec. How completeness wrt Set-coalgebras can be derived from these results
is investigated in [17].

2. Remark 12 indicated how to compose presentations of functors. A detailed exposi-
tion of this important topic is future work.

3. Proposition 13 showed that the functors on Set with a finite presentation are precisely
the finitary functors. A generalisation of this result to other monadic categories than Set
will be given elsewhere.

4. An important extension will introduce presentations by operations and implications.
These would be necessary to account for some of the functors in, for example, [1].

5. In [8] we apply the notion of a functor having a presentation to the extension of dis-
tributive lattices with operators. We show that presentations over posets (which amounts
to moving from algebras to ordered algebras) are useful to handle monotone operators.

6. Another important extension will be to replace Set with a presheaf category SetC

(which amounts essentially to moving from one-sorted to many-sorted algebras). This
will allow us to treat logics with quantifiers or logics for name-passing calculi.

Acknowledgements. We would like to thank the referees for valuable suggestions.
The second author profited from discussions with Neil Ghani, Clemens Kupke and Jiřı́
Rosický.

186 M.M. Bonsangue and A. Kurz

References

1. S. Abramsky. Domain theory in logical form. Annals of Pure and Applied Logic, 51, 1991.
2. S. Abramsky and A. Jung. Domain theory. In Handbook of Logic in Computer Science. OUP,

1994.
3. J. Adámek and V. Trnková. Automata and Algebras in Categories. Kluwer, 1990.
4. P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. CUP, 2001.
5. M. Bonsangue, B. Jacobs, and J. N. Kok. Duality beyond sober spaces: Topological spaces

and observation frames. Theoret. Comput. Sci., 151, 1995.
6. M. Bonsangue and J. Kok. Towards and infinitary logic of domains: Abramsky logic for

transition systems. Inform. and Comput., 155, 1995.
7. M. Bonsangue and A. Kurz. Duality for logics of transition systems. In V. Sassone, editor,

FoSSaCS’05, volume 3441 of LNCS, 2005.
8. M. Bonsangue, A. Kurz, and I. Rewitzky. Coalgebraic representations of distributive lattices

with operators. To appear in Topology and its Applications.
9. C. Cı̂rstea and D. Pattinson. Modular construction of modal logics. In CONCUR’04, LNCS

3170, 2004.
10. J. M. Dunn. Positive modal logic. Studia Logica, 55(2), 1995.
11. B. Jacobs. Many-sorted coalgebraic modal logic: a model-theoretic study. Theor. Inform.

Appl., 35, 2001.
12. P. Johnstone. Stone Spaces. Cambridge University Press, 1982.
13. P. Johnstone. Vietoris locales and localic semilattices. In Continuous Lattices and their Ap-

plications, volume 101 of Lecture Notes in Pure and Applied Mathematics. Marcel Dekker,
1985.

14. G. Kelly and J. Power. Adjunctions whose counits are coequalizers and presentations of
enriched monads. J.Pure Appl. Algebra, 89, 1993.

15. M. Kracht. Tools and Techniques in Modal Logic. Elsevier, 1999.
16. C. Kupke, A. Kurz, and D. Pattinson. Algebraic semantics for coalgebraic logics. In

CMCS’04, ENTCS, 2004.
17. C. Kupke, A. Kurz, and D. Pattinson. Ultrafilter extensions of coalgebras. In CALCO 2005,

LNCS 3629, 2005.
18. C. Kupke, A. Kurz, and Y. Venema. Stone coalgebras. Theoret. Comput. Sci., 327, 2004.
19. A. Kurz. Specifying coalgebras with modal logic. Theoret. Comput. Sci., 260, 2001.
20. F. Linton. An outline of functorial semantics. In Seminar on triples and categorical homology

theory, LNM 80. 1969.
21. L. Moss. Coalgebraic logic. Annals of Pure and Applied Logic, 96, 1999.
22. L. Moss and I. Viglizzo. Harsanyi type spaces and final coalgebras constructed from satisfied

theories. In CMCS’04, ENTCS, 2004.
23. D. Pattinson. Coalgebraic modal logic: Soundness, completeness and decidability of local

consequence. Theoret. Comput. Sci., 309, 2003.
24. J. Reiterman. Algebraic theories and varieties of functor algebras. Fund. Math., 118, 1983.
25. E. Robinson. Powerdomains, modalities and the Vietoris monad. Technical report, Computer

Laboratory Technical Report 98, University of Cambridge, 1986.
26. J. Rosický. On algebraic categories. In Universal Algebra (Proc. Coll. Esztergom 1977),

volume 29 of Colloq. Math. Soc. J. Bolyai, 1981.
27. M. Rößiger. Coalgebras and modal logic. In CMCS’00, volume 33 of ENTCS, 2000.
28. M. Rößiger. From modal logic to terminal coalgebras. Theoret. Comput. Sci., 260, 2001.
29. J. Rutten. Universal coalgebra: A theory of systems. Theoret. Comput. Sci., 249, 2000.
30. L. Schroeder. Expressivity of Coalgebraic Modal Logic: The Limits and Beyond. In V. Sas-

sone, editor, FoSSaCS’05, volume 3441 of LNCS, 2005.
31. S. J. Vickers. Topology Via Logic. CUP, 1989.
32. G. Winskel. Note on powerdomains and modality. Theoret. Comp. Sci., 36, 1985.

Bigraphical Models of Context-Aware Systems

L. Birkedal, S. Debois, E. Elsborg, T. Hildebrandt, and H. Niss

IT University of Copenhagen (ITU)
{birkedal, debois, elsborg, hilde, hniss}@itu.dk

Abstract. As part of ongoing work on evaluating Milner’s bigraphi-
cal reactive systems, we investigate bigraphical models of context-aware
systems, a facet of ubiquitous computing. We find that naively encod-
ing such systems in bigraphs is somewhat awkward; and we propose a
more sophisticated modeling technique, introducing Plato-graphical mod-
els, alleviating this awkwardness. We argue that such models are useful
for simulation and point out that for reasoning about such bigraphical
models, the bisimilarity inherent to bigraphical reactive systems is not
enough in itself; an equivalence between the bigraphical reactive systems
themselves is also needed.

1 Introduction

The theory of bigraphical reactive systems, due to Milner and co-workers, is based
on a graphical model of mobile computation that emphasizes both locality and
connectivity [15, 19, 21]. A bigraph comprises a place graph, representing loca-
tions of computational nodes, and a link graph, representing interconnection
of these nodes. We give dynamics to bigraphs by defining reaction rules that
rewrite bigraphs to bigraphs; roughly, a bigraphical reactive system (BRS) is
a set of such rules. Based on methods of the seminal [16], any BRS has a la-
belled transition system, the behavioural equivalence (bisimilarity) of which is a
congruence.

There are two principal aims for the theory of bigraphical reactive systems:
(1) to model ubiquitous systems [28], capturing mobile locality in the place
graph and mobile connectivity in the link graph; and (2) to be a meta-theory
encompassing existing calculi for concurrency and mobility. To date, the theory
has been evaluated only wrt. the second aim: We have bigraphical understand-
ing of Petri nets [18], π-calculus [13, 15, 14], CCS [21], mobile ambients [13],
HOMER [5], and λ-calculus [19, 20].

The present paper initiates the evaluation of the first aim. We investigate mod-
eling of context-aware systems, a vital aspect of ubiquitous systems. A context-
aware application is an application that adapts its behaviour depending on the
context at hand [26], interpreting “context” to mean the situation in which the
computation takes place [10]. The canonical example of such a situation is the
location of the device performing the computation; systems sensitive to location
are called location-aware. As an example, a location-aware printing system could

L. Aceto and A. Ingólfsdóttir (Eds.): FOSSACS 2006, LNCS 3921, pp. 187–201, 2006.
Springer-Verlag Berlin Heidelberg 2006

188 L. Birkedal et al.

send a user’s print job to a printer close by. (For notions of context different from
location, refer to [27]; for large-scale practical examples, see [1].)

To observe changes in the context, context-aware systems typically include
a separate context sensing component that maintains a model of the current
context. Such models are known as context models [12] or, more specifically,
location models [2]. The above-mentioned location-aware printing system would
need to maintain a model of the context that supports finding the printer closest
to a given device. Such models are informal. There are only very few formal
models of context-aware computing (refer to [11] for an overview). We point out
Context Unity [25]; in spirit, our proposal is somewhat closer to process calculi
than Context Unity is. However, bigraphs differ from traditional process calculi
in that we get to write our own reaction rules.

In overall terms, our contribution is two-fold.

– We find, perhaps surprisingly, that naively modeling context-aware systems
as BRSs is somewhat awkward; and

– we propose a more sophisticated modeling technique, in which the perceived
and actual context are both explicitly represented as distinct but overlapping
BRSs. We call such models Plato-graphical.

The remainder of this paper is organized as follows. In Section 2, we intro-
duce bigraphs and bigraphical reactive systems. In Section 3, we discuss naive
bigraphical models of location-aware systems. In Section 4, we introduce our
Plato-graphical models of context-aware systems. In Section 5, we present two
example models. In Section 6, we discuss. Finally, in Section 7, we conclude and
note future work.

2 Bigraphs and Bigraphical Reactive Systems

We introduce bigraphs by example (the reader can find the relevant formal defi-
nitions of [15, 21] in Appendix A of [3]). Readers acquainted with bigraphs may
skip this section.

Here is a bigraph, A:

server
secret

office

pc pda pda

It has nodes (vertices), indicated by solid boxes. Each node has a control, written
in sans serif. Each control has a number of ports ; ports can be linked by edges,
indicated by lines. Here, the controls secret and office have no ports, all other
controls have one port. Nodes can be nested, indicated by containment. The two
outermost dashed boxes indicate roots. Roots have no controls; they serve solely
to separate different nesting hierarchies.

Bigraphical Models of Context-Aware Systems 189

The bigraph A ostensibly models two physically separate locations (because
of the two roots). The first contains a server, which in turn contains secret data;
the second contains an office, which in turn contains a PC and two PDAs. The
server and the PC are connected, as are the PDAs.

Here is another bigraph, B:

server

0

z

office

pc pda
1

B resembles A, except that the content of server has been replaced with a site −0,
one of the pdas has been replaced by a site −1, and there is an inner name z con-
nected to the remaining pda. Using sites and names, we can define composition
of bigraphs. For that, here is yet another bigraph C:

secret

z

pda

C has an outer name z. The bigraphs B and C compose to form A, i.e., A = B◦C.
Composition proceeds by plugging the roots of C into the sites of B (in order),
and fusing together the connections pda→ z (in C) and z → pda (in B) removing
the name z in the process.

One cannot compose arbitrary bigraphs. For U ◦ V to be defined, U must
have exactly as many sites as V has roots, and the inner names of U must be
precisely the outer names of V . The sites and inner names are collectively called
the inner face; similarly, the roots and outer names are called the outer face. A
has inner face 〈0, ∅〉 (no holes, no inner names) and outer face 〈2, ∅〉 (two roots,
no outer names). We write A : 〈0, ∅〉 → 〈2, ∅〉. Similarly, B : 〈2, {z}〉 → 〈2, ∅〉
and C : 〈0, ∅〉 → 〈2, {z}〉.

The graphical representation used above is handy for modeling, but unwieldy
for reasoning. Fortunately, bigraphs have an associated term language [7, 17],
which we use (albeit in a sugared form) in what follows. The language is summa-
rized in Table 1. Here are, in order of increasing complexity, term representations
of the bigraphs A, B and C.

C = secret ‖ pdaz

A = /x./y.serverx(secret) ‖ office(pcx | pday | pday)
B = /x./y.serverx(−0) ‖ office(pcx | pday | −1) | y/z

Notice how, in B, edges are specified by first linking nodes to the same name,
then converting that name to an edge using the closure ‘/’.

190 L. Birkedal et al.

Table 1. Sugared term language for bigraphs

Term Meaning
U ‖ V Concatenation (juxtaposition) of roots.
U | V Concatenation (juxtaposition) of children. (collect

the children of U and V under one root.)
U ◦ V Composition.
U(V) Nesting. U contains V .
K�x(U) Ion. Node with control K of arity |
x|, ports con-

nected to the outer names of vector
x. The node
contains U .

1 The barren (empty) root.
−i Site numbered i.

/x.U U with outer name x replaced by an edge.
x/y Connection from inner name y to outer name x.

We give dynamics to bigraphs by defining reaction rules. Example:

server

0

z

office

pc pda
1 �

server

0

z

office

pc pda

0 1

/x.serverx(−0) ‖ office(pcx | pdaz | −1)
−→ /x.serverx(−0) ‖ office(pcx | pdaz(−0) | −1)

This rule might model that if a PC in some office is linked to a server, a PDA
in the same office may use the PC as a gateway to copy data from the server.
The rule matches the bigraph A above, taking secret to the site −0 and pday to
the site −1, rewriting A to

A′ = /x./y.serverx(secret) ‖ office(pcx | pday(secret) | pday)

(We omit details on what it means to match connections; refer to one of [15, 21].)
It is occasionally convenient to limit the contexts in which a reaction rule

applies [4], i.e., we might want to limit the above example reaction rule to apply
only in the left wing of the building. To this end, bigraphs can be equipped

Bigraphical Models of Context-Aware Systems 191

with a sorting [13, 21, 18]. A sorting consists of a set of sorts (or types); all
inner and outer faces are then enriched with such a sort. Further, a sorting
must stipulate some condition on bigraphs, we then restrict our attention to the
bigraphs that satisfy that condition, thus outlawing some contexts. Obviously,
removing contexts may ruin the congruence property of the induced bisimilarity;
[13] and [21] give different sufficient conditions for a sorting to preserve that
congruence property.

This concludes our informal overview of bigraphs. Now on to the models.

3 Naive Models of Location-Aware Systems

In this section, we attempt to model location-aware systems naively in bigraphs.
We will find the naive approach to be somewhat awkward. Due to space con-
straints we do not discuss other forms of context.

We use the place and link graphs for describing locations and interconnections
directly, and we use reaction rules to implement both reconfiguration of the con-
text and queries on the context. The former is simply a non-deterministic change
in the context; the latter is a computation on the context that does not change
the context, except for producing an answer to some question. In a location-
aware system, a device moving would be a reconfiguration, whereas computing
the answer to the question “what devices are currently at the location l” is a
query.

We discuss the implementation of this query. (An implementation of the query
can be found in Appendix B in [3].) Incidentally, a query such as “find nearest
neighbor”, which conceptually is only slightly harder, is significantly harder to
implement. (Other examples plagued by essentially the same difficulties can be
found in [9].)

Consider the following bigraph representing devices (e.g., PDAs) located at
locations (e.g., offices, meeting rooms) within a building.

l = /w./x./y./z.loc (loc (loc (loc (devw) | loc (devx | devy))) | loc() | loc (devz))

Off-hand, finding all devices, say, beneath the root, looks straightforward: We
should simply recursively traverse the nesting tree. Unfortunately, such traversal
is quite complicated for the following reasons.

– The bigraphical reaction rules do not support recursion directly, so we must
encode a runtime stack by means of additional controls.

– Bigraphical reaction rules can be applied in any context, but when imple-
menting an operation such as the query we consider now, we need more
refined control over when rules can be applied; one may achieve this more
refined control by again using additional nodes and controls, essentially im-
plementing what corresponds to a program counter. This still leaves great
difficulty in handling concurrent operations, though.

– As a special case of the previous item, it is particularly difficult to express
that a reaction rule is intended to apply only in case something is not present
in the context.

192 L. Birkedal et al.

Summing up, the bigraphical rules that model physical action do not in general
provide the power to compute directly with a model of that action (because of
a lack of control structures). The slogan is “reconfiguring is easy, querying is
hard”.

In earlier work on evaluating bigraphs as a meta-theory (aim (2) mentioned in
the Introduction), reaction rules were used to encode the operational semantics
of a calculus or programming language. However, above we attempt to implement
a query directly as reaction rules. This seemingly innocuous difference will turn
out to have major implications for reasoning methods; more on this in Section 6.

We imagine that adding more flexibility to the reaction rules might make it
easier to program directly with bigraphs. One possible attempt is to use spatial
logics for bigraphs [6] in combination with sorting, to get control of the contexts
in which a particular reaction rule applies.

In the following sections, we propose another way to model context-aware
systems in bigraphs, where the reaction rules are not used to program directly
with but instead they are used (1) to represent transitions happening in the real
world and (2) to encode operational semantics of programming languages, within
which one can then implement queries on representations of the real world.

4 Plato-Graphical Models of Context-Aware Systems

The naive model of the previous section shares an important characteristic with
recent proposals of formal models for context-aware computation [4, 8, 25] that
comprise agents and contexts only: These models take the agent’s ability to de-
termine what is the present context as given. We contend that for some systems,
it is natural to model not only the actual context but also the agent’s represen-
tation of the actual context. We shall see that pursuing this idea will partially
alleviate the awkwardness seen in the previous Section.

We shall need some notation and definitions.

Notation 1. We write B = (K,R) to indicate that B is a bigraphical reactive
system with controls K and rulesR, and write f ∈ B to mean that f is a bigraph
of B.

Definition 1 (Independence). Let B = (K,R) and B′ = (K′,R′) be bigraph-
ical reactive systems. Say that B and B′ are independent and write B ⊥ B′ iff K
and K′ are disjoint.

Definition 2 (Composite bigraphical reactive systems). Let B = (K,R)
and B′ = (K′,R′) be bigraphical reactive systems. Define the union B ∪ B′

point-wise, i.e., B ∪B′ = (K ∪ K′,R∪R′), when K and K′ agree on the arities
of the controls in K ∩ K′.

Be aware that there are two ways of taking the union of two sets of parametrized
reaction rules: (1) merge the rules and then ground them, or (2) first ground the
rules and then merge them. In general, the resulting rule set of (1) is a superset
of the rule set of (2). We use approach (1).

Bigraphical Models of Context-Aware Systems 193

We propose a model of context-aware computing that comprises three bi-
graphical reactive systems: the context C; its representation or proxy P; and
the computational agents A. Drawing on classical work [23], specifically The
Allegory of the Cave, we call such a model Plato-graphical.

Definition 3 (Plato-graphical model). A Plato-graphical model is a triple
(C,P,A) of bigraphical reactive systems, such that M = C ∪ P ∪A is itself a
bigraphical reactive system and C ⊥ A. A state of the model is a bigraph ofM
on the form /�x.(C ‖ P ‖ A), where C ∈ C, P ∈ P, A ∈ A, and �x is some vector
of names.

We emphasize the intended difference between C and P: Whereas an element
of C models a possible context, an element of P models a model of a possible
context. The independence condition ensures that agents can only directly ob-
serve or manipulate the proxy; not the context itself. (In the parlance of [25],
the independence condition ensures separability.) To query or alter the context,
agents must use the proxy as a sensor and actuator.

Using bigraphs as our basic formalism gives us two things. First, we can write
our own reaction rules. We claim that because of this ability, models become
remarkably straightforward and intuitive; hopefully, the reader will agree after
seeing our example models in the next section. Second, we automatically get
a bisimilarity that is a congruence. Thus, bisimilarity of agents is a very fine
equivalence: No state of the context and proxy can distinguish bisimilar agents.

Proposition 1. Let ∼ denote the bisimilarity inM, and let A,A′ ∈ A with A ∼
A′. For any C ∈ C, P ∈ P, and �x, we have /�x.(C ‖ P ‖ A) ∼ /�x.(C ‖ P ‖ A′).

To get a less discriminating equivalence we can consider agents under a particular
state of the context, or a particular state of the system.

Definition 4. Let ∼ denote the bisimilarity in M, and let A,A′ ∈ A, C ∈ C
and P ∈ P. We say A and A′ are equivalent w.r.t. P iff P ‖ A ∼ P ‖ A′, and we
say A and A′ are equivalent w.r.t. C,P iff C ‖ P ‖ A ∼ C ‖ P ‖ A′.

We conjecture that the above forms of derived equivalences will prove useful for
reasoning about a given Plato-graphical system.

Working within the Plato-graphical model, we are free to emphasize any of
its three components, perhaps modeling P in great detail, but keeping C and A
abstract.

Definition 3 above does not impose any restriction on composition of states.
For example, assume that we have a Plato-graphical model M = (C,P,A),
that c, p and a are controls of C, P and A, respectively, and that p is not a
control of C. Then the bigraphs

F = c(−0 | −1) ‖ p ‖ a(−2) and G = c ‖ p ‖ a

are both states of M, but their composite F ◦ G = c(c | p) ‖ p ‖ a(a) is not a
state ofM. This example implies that bisimilarity of states of a Plato-graphical
system may be too fine a relation: Conceivably, when comparing two states s

194 L. Birkedal et al.

and s′, we may wish to take into account only contexts C such that C◦s and C◦s′
are themselves states, i.e., we might want to outlaw F as a possible context for G.
We can achieve this finer control using place-sorting. So, we define a place-sorted
Plato-graphical model. The intuition behind our sorting is that we want to keep
controls of C, P and A separate when composing contexts of form C ‖ P ‖ A.

Notation 2. Denote by Si≤m a vector m0, . . . ,mn−1 of sorts. We will write
Si≤m for a sorted interface 〈m,X, Si≤m〉 when we do not care about names.

Definition 5 (Sorted Plato-graphical model). Let M = C ∪ P ∪A be a
Plato-graphical model with C = (KC,RC), P = (KP,RP) and A = (KA,RA).
Define a sorting discipline on M by taking sorts Θ = {KC,KP,KA} and, for
primes, sorting condition Φ(f : Si≤n → S) = ctrl(f) ⊆ S ∧ ∀i ≤ n. Si = S,
lifting to an arbitrary bigraph f ′ by decomposing f into primes f ′ = f0 . . . fn−1
and declaring f ′ well-sorted iff all the fi are. Let φ be an assignment of Θ-sorts
to the rules of RC, RP, and RA, such that every rule is well-sorted under Φ.
Define M′ to be M sorted by (Θ,Φ) (using φ to lift the reaction rules). In this
case, we call M′ a sorted Plato-graphical model, and define the states of M′ to
be the well-sorted bigraphs with outer face KC,KP,KA.

The condition Φ essentially requires that (1) the controls of a prime (bigraph) are
elements of the sort of its outer face, and (2) the sort of the outer face is exactly
the sort of each of the sites. Under this sorting discipline and new definition of
state, if G is assigned a sort such that it is a state, then F cannot be assigned a
sort that makes it composible with G.

Is the bisimilarity in the sorted system M′ a congruence? The sorting dis-
cipline of M′ is in general not homomorphic in the sense of Milner [21, Def-
inition 10.4]: we cannot give a sort to controls in KC ∩ KP. (If C, P and A
are pairwise independent, the sorting is homomorphic; however, such a model
is pathologic.) Neither is the sorting safe in the sense of Jensen [13, Definition
4.30]; condition (4) cannot be met. Counterexample: Suppose f : KC → KC is
well-sorted; take g = f ⊗ 1 : KC → KC,KA (recall that 1 : ε → 〈1, ∅〉 denotes
the barren root). Clearly, U(f) = (−0 | −1) ◦ U(f ⊗ 1). However, if KC �= KA

then (−0 | −1) : KC,KA → KC is not well-sorted.
Nevertheless, the sorting of Definition 5 does give rise to a bisimilarity that

is a congruence; we prove so in Appendix C in [3].

5 Examples

5.1 A Simple Context-Aware Printing System

We model the simple context-aware printing system of [4]. An office-building con-
tains both modern PCL-5e compatible printers and old-fashioned raw-printers.
Occasionally, the IT-staff at the building removes or replaces either type of
printers. Each printer can process only one job; queueing is done by a central
print server. The print server dispatches jobs to raw-printers only if it knows
no PCL-printers; if there are PCL-printers, but they are all busy, the job will

Bigraphical Models of Context-Aware Systems 195

simply have to wait. This system is context-aware: The type and number of
printers physically available determine the meaning of the action “to print”. We
give a model B of this system in Figure 1. Looking at the controls of B, it is
straightforward to verify that B is Plato-graphical.

Proposition 2. The model B of Figure 1 is Plato-graphical.

We take a detailed look at the model. A state of the context C consists of
nested physical locations loc, within which printers prt are placed. We distinguish
between PCL- and raw-printers by putting a token pcl and raw within them,
respectively. Each printer has a single port, intended to link the printer to the
proxy. Here is a state of the context with a PCL-printer and a raw-printer at
adjacent locations; the PCL-printer is idle whereas the raw-printer is busy.

C = loc(loc(prtx(raw | datz)) | loc(/y.prty(pcl)))

Setting C in parallel with some proxy P will allow P access to the raw printer
through the shared link x, but not to the PCL-printer, because it is in a closed
link. The dynamics of C allow printers to appear (1, 2), disappear (3), and finish
printing (4).

A state of the proxy P consists of a pool of pending jobs jobs and two tables
of printers prts; one contains a token raw, the other a token pcl, indicating what
type of printer the table lists. The prts is a table in the sense that its only port
is linked to all the printers in the context that the table knows about. Here is an
example state of the proxy which knows one raw-printer, knows no PCL-printers
and has two pending jobs.

P = prtsx(raw) | /y.prtsy(pcl) | jobs(/z.docz | /z′.docz′)

Setting C and P above in parallel by ‖, and closing the link x, we get a sys-
tem /x.C ‖ P , where the table prtsx(raw) and the physical printer prtx(raw | dat)
are linked. The dynamics of P state that if there is a job and a known, idle PCL-
printer, the proxy may activate this printer (5); that if there is a job, no known
PCL-printer, and an idle raw-printer, the context may activate that printer (6);
and finally, that the proxy may discover a previously unknown printer (7, 8).

The dynamics of A allow the agents to spontaneously spool documents (9).
Notice how the two printing rules (5) and (6) do not observe the context

directly. Instead, the proxy observes the context (rules (7) and (8)) and records
its observations in the tables prtsx(raw) and prtsy(pcl); the printing rules (5)
and (6) then consults the tables. It is straightforward to determine whether
there are no known PCL-printers: simply check if the table of PCL-printers has
the form /y.prtsy(pcl).

As observed in Section 3 and [4], it is generally very difficult, if not impossi-
ble, to observe the absence of something in the context directly. An interesting
but rather natural consequence of the indirect observation is that it becomes
asynchronous, i.e., it is possible that a PCL-printer exists but has not yet been
observed.

196 L. Birkedal et al.

Context C.

Control Activity Arity Comment
loc active 0 Nested location
prt passive 1 Physical printer
pcl atomic 0 Printer-type token
raw atomic 0 Printer-type token
dat atomic 1 Binary data for printer

loc(−0) −→ loc(−0 | /x.prtx(raw)) (1)

loc(−0) −→ loc(−0 | /x.prtx(pcl)) (2)

loc(−0 | prtx(−1)) −→ loc(−0) | x/ (3)

prtx(datz | −0) −→ prtx(−0) | z/ (4)

Proxy P.

Control Activity Arity Comment
prt passive 1 Physical printer
pcl atomic 0 Printer-type token
raw atomic 0 Printer-type token
dat atomic 1 Binary data for printer
prts passive 1 Known devices
jobs passive 0 Pending documents
doc atomic 1 Document

jobs(docz | −0) ‖ prtsy(pcl) ‖ prty(pcl) −→
jobs(−0) ‖ prtsy(pcl) ‖ prty(pcl | datz)

(5)

jobs(docz | −0) ‖ /x.prtsx(pcl) | prtsy(raw) ‖ prty(raw) −→
jobs(−0) ‖ /x.prtsx(pcl) | prtsy(raw) ‖ prty(raw | datz)

(6)

/x.prtx(pcl) ‖ prtsy(pcl) −→ prty(pcl) ‖ prtsy(pcl) (7)

/x.prtx(raw) ‖ prtsy(raw) −→ prty(raw) ‖ prtsy(raw) (8)

Agents A.
Control Activity Arity Comment
jobs passive 0 Pending documents
doc atomic 1 Document

jobs(−0) −→ jobs(−0 | /z.docz) (9)

Fig. 1. Example Plato-graphical model B

Context C Proxy P Agent A
(1) : KC (5) : KA, KP, KC (9) : KA

(2) : KC (6) : KA, KP, KC

(3) : KC (7) : KP, KC

(4) : KC (8) : KP, KC

Fig. 2. Sorts for the rules of C, P, and A

Bigraphical Models of Context-Aware Systems 197

This model B can be lifted to a sorted one by adding the sorts given in
Figure 2; the figure assigns sorts to the outer face of both the redexes and
reactums of the indicated rules. It is straightforward to verify that all of the
rules are well-sorted.

Proposition 3. The model B with the sorting assignment of Figure 2 is a sorted
Plato-graphical model.

5.2 A Location-Aware Printing System

Suppose we extend the printing system with location-awareness, by stipulating
that a print job is not printed until the printer and the device submitting the
job are co-located. To model this extended system, we introduce a new control
dev for devices (PCs or PDAs) with one port and change doc to include an extra
port so we can link submitted jobs to the devices submitting them. The linking
is reflected in the following modified rule (9) for spooling print jobs:

loc(devx | −0) ‖ jobs(−1) −→ loc(devx | −0) ‖ jobs(−1 | /z.docz,x) (9′)

We must also modify rules (5) and (6) to insist that the device and printer are
co-located. Rule (5) becomes

jobs(docz,x | −0) ‖ prtsy(pcl) ‖ loc(devx | prty(pcl)) −→
jobs(−0) ‖ prtsy(pcl) ‖ loc(devx | prty(pcl | datz)).

(5′)

(We suppress the new Rule (6’).)
Modifying the system once again, instead of insisting that device and printer

have to be actually co-located, we just require the print job to end at a printer
close to the device. The print server will need to query the proxy for the printer
nearest a given device. We saw in Section 3 that implementing such queries is
awkward, so we will need to use the proxy. In the preceding Section, we did so
directly in bigraphs; this time around, we transfer the expressive convenience of a
general-purpose programming language to bigraphs for ease of implementation.
We use bigraphs directly for modeling the actual context C, whereas we will
exploit bigraphs as a meta-calculus for modeling the proxy P.

In detail, the whole model is B = C ∪ P ∪ A, with P = S ∪ L. Here C is
intended to be a bigraphical model of the “real world”, the proxy P is comprised
of a location sensor S and a location model L and A is the location-based
application (the “computational agent”).

A state C of C could look like this:

C = loc(loc(loc(loc(devw) | loc(devx | devy))) | loc | loc(devz))

Changes in the real world are modeled by reaction rules that reconfigure such
states. If we want to model, say, that a devices may move from one location to
another, we include the reaction rule

loc(devx | −0) ‖ loc(−1) −→ loc(−0) ‖ loc(devx | −1). (10)

198 L. Birkedal et al.

To implement the proxy, encode as a BRS a programming language L with
data structures, communication primitives, and concurrency, e.g., Pict [22] or
CML [24]. (We return to this assumption below.) That is, define a translation
from terms of L to bigraphs, and add reaction rules encoding the operational
semantics of L. Then implement the location model, the sensor, and the agents
in L and use the encoding to transfer that model to bigraphs. In particular, a
state of the location model L will have a data structure representing the current
state of C. If L is an even half-way decent programming language, it should be
straightforward to implement queries such as one of Section 3 or the “find closest
printer” we need above.

The sensor informs the location model about changes in C. We extend the
above rule (10) moving a device to

(loc(devx | −0) ‖ loc(−1)) | S | L −→ (loc(−0) ‖ loc(devx | −1)) | S′ | L, (10′)

where S′ is an L-encoding of “send a notification to L that device x has moved”.
Upon receiving the notification, L updates its representation of the world. Agents
of A can in turn query L when they need location information.

6 Discussion

We consider the following questions.

1. What languages L can we encode?
2. How close are Plato-graphical models to real systems?
3. What challenges have we found for bigraphical models?
4. What uses do we envision for Plato-graphical models?
5. How do we reason about Plato-graphical models?

Ad. 1. As mentioned, there exist bigraphical encodings of various π-calculi
[13, 15, 14] and of the λ-calculus [19, 20]. Using ideas of the latter encodings, we
have encoded Mini-ML (call-by-value λ-calculus with pairs and lists) in local
bigraphs [19]. Based on our experiences with this encoding, we find it palatable
to encode CML or Pict1.

Ad. 2. The model closely reflects how some actual location-aware systems
work, for instance the one running at the ITU. Here, a sensor system (made by
Ekahau) computes every two seconds the physical location of every device on the
WLAN. The sensor system informs a location model about updates to locations;
location-aware services then interact with the location model. In our sketched
Plato-graphical model, the location model L may lag behind the actual C, if L’s
representation of C does not reflect some recent reconfiguration of C. But that
also happens in the real system at the ITU – when a location-aware service asks
the location model for the whereabouts of a device, it obtains not the position
1 We are presently working on implementing an interpreter for bigraphical reactive

systems; such an interpreter will make it easier to experiment with these and other
encodings.

Bigraphical Models of Context-Aware Systems 199

of the device, but the position of the device the last time the sensor checked. In
the mean time, the device may have moved.

Ad. 3. When modeling the physical world, we have made use of both the place
and link graphs, the place graph modeling the location hierarchy of a building.
As argued in [2], DAGs or graphs are more natural models of location. Thus,
systems such as the ones we have considered here suggest generalizing the place
graphs part of bigraphs, or consider ways to encode DAGs or general graphs
naturally as place graphs.

Ad. 4. Given an implementation of bigraphical reactive systems, one could
simulate the behaviour of a location-aware system, and thus allow for experi-
mentation with different designs of location-aware and context-aware systems.
Likewise, one could experiment with different choices for the L language of Sec-
tion 5.2. Such simulation suggests further extensions of the bigraphical model: In
actual context-aware systems, one is generally interested in timing aspects (e.g.,
the sensor samples only every two seconds), continuous space (e.g., the sensor
really produces continuous data), and probabilistic models (e.g., to accurately
simulate sensors and sensor failure).

Ad. 5. What about using Plato-graphical models for formal reasoning about
context-aware systems? One use of formal models is to prove an abstract speci-
fication model equivalent to a concrete implementation model. In π-calculus, we
come with π-terms i, s, one for the implementation and one for the specifica-
tion. The terms i and s are themselves the models; we take (π-) bisimilarity as
equivalence, so to prove i and s equivalent, we merely prove them bisimilar. We
can play the same game within any BRS: Simply come up with a bigraph I (the
implementation model) and a bigraph S (the specification model), and prove
them bisimilar within the labelled transition system of the BRS. Because that
bisimulation is a congruence, such reasoning should be tractable, e.g. with the
bisimulation in Definition 4.

Unfortunately, bisimulation within a single BRS is not always enough wrt.
Plato-graphical models. Suppose we want a specification model M with an ab-
stract view of the context, and an implementation model M′ with a detailed
view of the context. We express this by having M and M′ differ only in their
context sub-BRSs, that is,

M = C ∪P ∪A M′ = C′ ∪P ∪A.

The trouble is that because C and C′ may have different controls and reaction
rules, bisimulation between their respective labelled transition systems is mean-
ingless! What we need is a notion of equivalence of BRSs, not just equivalence
of bigraphs of a single BRS. At the time of writing, we know of no such equiva-
lence2. Thus, our investigation of bigraphical models for context-aware systems
2 The reader may suggest that we just define a common language for modeling both the

abstract and detailed view, and define a translation from this language into a single
BRS. However, in this case we are no longer modeling a ubiquitous system directly
in bigraphs (aim 1 of the Introduction), but using bigraphs as a meta-calculus (aim 2
of the Introduction).

200 L. Birkedal et al.

suggests that equivalence of BRSs is a key notion currently missing. One pos-
sible direction would be to try recover from the notion of WRS-functor [16] —
functors that preserve reaction rules — a notion of a BRS implementing another
BRS.

7 Conclusion and Future Work

We have initiated an evaluation of the use of bigraphical reactive systems for
models of context-aware computing in ubiquitous systems. We found that BRSs,
in their current form, are not suitable for directly modeling context queries, but
on the other hand suitable for modeling reconfigurations of the actual context.

In response, we proposed Plato-graphical models, where both state and dy-
namics are logically divided in three parts: the actual context, the observed
context (or proxy), and the computational agents, respectively. The computa-
tional agents and the actual context are separated, and interact only through the
proxy. This separation into different BRSs makes it possible to encode different
parts of the system using domain-specific languages. Moreover, we have shown
how the context-aware printing system of [4] can be modeled straightforwardly
in the Plato-graphical model.

Further, we have argued that Plato-graphical models are useful for simulating
context-aware systems, and we are currently working on an implementation of
BRSs at ITU to allow such experimentation. Only through such experimentation
will it be clear how useful Plato-graphical models really are. For simulation
purposes it will be important to extend bigraphs with timing aspects, continuous
space, and probabilities.

Finally, we have pointed out that establishing a notion of equivalence between
BRSs, as opposed to bisimilarity within a BRS, is important future work.

Acknowledgments

We gratefully acknowledge discussions with the other members of the BPL group
at ITU, in particular Arne Glenstrup, Troels Damgaard and Mikkel Bundgaard;
and with Robin Milner. This work was funded in part by the Danish Research
Agency (grant no.: 2059-03-0031) and the IT University of Copenhagen (the
LaCoMoCo project).

References

1. M. Addlesee, R. Curwen, S. Hodges, J. Newman, P. Steggles, A. Ward, and A.
Hopper. Implementing a sentient computing system. IEEE Computer, 2001.

2. C. Becker and F. Dürr. On location models for ubiquitous computing. Personal
and Ubiquitous Computing, 9:20–31, 2005. Springer.

3. L. Birkedal, S. Debois, E. Elsborg, T. Hildebrandt, and H. Niss. Bigraphical Models
of Context-aware Systems. Technical Report 74, IT Univ. of Copenhagen, 2005.

Bigraphical Models of Context-Aware Systems 201

4. P. Braione and G. P. Picco. On calculi for context-aware coordination. In Proc. of
COORDINATION’04, vol. 2949 of LNCS, pages 38–54. 2004.

5. M. Bundgaard and T. Hildebrandt. Bigraphical semantics of higher-order mobile
embedded resources with local names. In Proc. of GT-VC’05, 2005.

6. G. Conforti, D. Macedonio, and V. Sassone. Spatial Logics for Bigraphs. In Proc.
of ICALP’05, vol. 3580 of LNCS, pages 766–778. 2005.

7. T. C. Damgaard and L. Birkedal. Axiomatizing binding bigraphs (revised). Tech-
nical Report TR-2005-71, IT University of Copenhagen, 2005.

8. R. De Nicola, D. Gorla, and R. Pugliese. Basic observables for a calculus for
global computing. In Proc. of ICALP’05, volume 3580 of LNCS, pages 1226–1238.
Springer, 2005.

9. S. Debois and T. C. Damgaard. Bigraphs by Example. Technical Report TR-2005-
61, IT University of Copenhagen, March 2005.

10. A. K. Dey and G. D. Abowd. Towards a better understanding of context and
context-awareness. In Workshop on The What, Who, Where, When, and How of
Context-Awareness, 2000.

11. M. Hennessy. Context-awareness: Models and analysis. Talk at 2nd UK-UbiNet
Workshop, 2004.

12. K. Henricksen, J. Indulska, and A. Rakotonirainy. Modeling context information
in pervasive computing systems. In Proc. of Pervasive’02, vol. 2414 of LNCS, 2002.

13. O. H Jensen. Mobile Processes in Bigraphs. PhD thesis, 2005. Forthcoming.
14. O. H. Jensen and R. Milner. Bigraphs and Transitions. In Proc. of POPL’03, 2003.
15. O. H. Jensen and R. Milner. Bigraphs and mobile processes (revised). Technical

Report UCAM-CL-TR-580, University of Cambridge, 2004.
16. J. J. Leifer and R. Milner. Deriving bisimulation congruences for reactive systems.

In Proc. of CONCUR’00, 2000.
17. R. Milner. Axioms for bigraphical structure. Technical Report UCAM-CL-TR-581,

University of Cambridge, 2004.
18. R. Milner. Bigraphs for Petri Nets. In Lectures on Concurrency and Petri Nets:

Advances in Petri Nets, vol. 3098 of LNCS, 2004.
19. R. Milner. Bigraphs whose names have multiple locality. Technical Report UCAM-

CL-TR-603, 2004.
20. R. Milner. Bigraphs: A tutorial. Slides, April 2005. Available at http://

www.cl.cam.ac.uk/users/rm135/bigraphs-tutorial.pdf .
21. Robin Milner. Pure bigraphs: Structure and dynamics. To appear in Information

and Computation, 2005.
22. B. C. Pierce and D. N. Turner. Pict: A prog. lang. based on the pi-calculus. In

Proof, Language and Interaction: Essays in Honour of R. Milner, MIT, 2000.
23. Plato. The republic, book vii, 360 B.C. Translation by Benjamin Jowett.
24. J H. Reppy. Concurrent Programming in ML. Cambridge University Press, 1999.
25. G.-C. Roman, C. Julien, and J. Payton. A formal treatment of context-awareness.

In Proc. of FASE’04, vol. 2984 of LNCS, 2004.
26. B. Schilit, N. Adams, and R. Want. Context-aware computing applications. In

Proc. of IEEE Workshop on Mobile Computing Systems and Applications, 1994.
27. A. Schmidt, M. Beigl, and H.-W. Gellersen. There is more to context than location.

Computers & Graphics Journal, 1999.
28. M. Weiser. Hot topics – ubiquitous computing. IEEE Computer, 1993.

Processes for Adhesive Rewriting Systems�

Paolo Baldan1, Andrea Corradini2, Tobias Heindel3,
Barbara König3, and Pawe�l Sobociński4

1 Dipartimento di Informatica, Università Ca’ Foscari di Venezia, Italy
2 Dipartimento di Informatica, Università di Pisa, Italy

3 Institut für Formale Methoden der Informatik, Universität Stuttgart, Germany
4 Computer Laboratory, University of Cambridge, United Kingdom

Abstract. Rewriting systems over adhesive categories have been re-
cently introduced as a general framework which encompasses several
rewriting-based computational formalisms, including various modelling
frameworks for concurrent and distributed systems. Here we begin the
development of a truly concurrent semantics for adhesive rewriting sys-
tems by defining the fundamental notion of process, well-known from
Petri nets and graph grammars. The main result of the paper shows
that processes capture the notion of true concurrency—there is a one-to-
one correspondence between concurrent derivations, where the sequential
order of independent steps is immaterial, and (isomorphism classes of)
processes. We see this contribution as a step towards a general theory of
true concurrency which specialises to the various concrete constructions
found in the literature.

1 Introduction

Many rewriting theories have been developed in order to describe rule-based
transformations over specific classes of objects: words (formal languages), terms,
multi-sets (Petri nets) and graphs (graph rewriting). The recently introduced
categorical foundation for double-pushout (dpo) rewriting theory based on ad-
hesive categories [13] encompasses rewriting on words, multi-sets and (typed)
graphs. Indeed, adhesive categories satisfy practically all the High-Level Replace-
ment conditions [8], which ensure the validity of several standard theorems.

As a consequence of the relatively simple axioms and closure properties of
adhesive categories, it is not difficult to show that a wide range of structures
form the objects of an adhesive category. For instance, the categories of graphs
with second-order edges or graphs with scopes are adhesive. Because of their
generality, adhesivity and related concepts have begun to be exploited in the
area of graph transformation (see e.g., [9]).

The view of adhesive rewriting systems as a general, unifying setting into
which several models of concurrent and distributed systems can be embedded,
calls for a generalization of the concurrency theory already developed for specific
� Partially supported by EPSRC grant GR/T22049/01, DFG project SANDS, EC

RTN 2-2001-00346 SegraVis, MIUR project PRIN 2005015824 ART and EU IST-
2004-16004 SEnSOria.

L. Aceto and A. Ingólfsdóttir (Eds.): FOSSACS 2006, LNCS 3921, pp. 202–216, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Processes for Adhesive Rewriting Systems 203

formalisms like Petri nets and graph rewriting to this framework. The first steps
in this direction were already taken in [13] where the notions of sequential and
parallel independence of two rewriting steps, i.e. conditions under which they
can be switched or applied concurrently, were studied.

In this paper we continue the development of a truly concurrent semantics for
adhesive rewriting systems by generalizing the fundamental notion of process,
well-known from the theory of Petri nets [11]. A process describes a possible
computation of a given rule-based system taking into account the dependencies
between the rewriting steps. The fact that two events are concurrent is modeled
by the absence of dependencies between them. Intuitively, a process provides a
canonical representation of a class of derivations (sequences of rewriting steps)
which differ only in the order of independent rewriting steps.

The theory of processes and their correspondence with suitable equivalence
classes of derivations has been generalized from nets to graph transformation sys-
tems in [6, 4, 1]. These approaches rely on the set-theoretical concept of items—
tokens in the case of Petri nets, nodes and edges in the case of graph rewriting.
For example, a transition t is said to be a cause of another transition t′ if it
produces a token in the pre-set of t′, while in dpo-graph rewriting a rule cannot
be applied to a graph if it deletes a node without deleting all edges incident to
it (the so-called dangling condition).

In the abstract setting of adhesive categories, a concept related to the notion
of item is that of subobject of an object X . A subobject is an isomorphism class
of monomorphisms into X . For example, in the category of sets and functions,
the subobjects of a set are (in 1-1-correspondence with) its subsets, while in the
category of graphs and homomorphisms, a subobject of a graph is a subgraph.
When working with subobjects of an object X in adhesive categories, we benefit
from the fact that they form a distributive lattice [13]. However, we have no
notion of “atoms” that can be consumed or produced. As a consequence, the
techniques involved in the development of our theory are significantly different
from those used in the setting of nets or graph rewriting and an original ap-
proach is needed in order to deal with the relevant concepts such as causality,
concurrency, and negative application conditions for rules.

From a theoretical perspective, the central merit of our development lies in
readdressing in the abstract setting of adhesive categories the concept of pro-
cess that has so far been defined only in concrete cases. This is in contrast to
related notions such as parallel and sequential-independence which are tradition-
ally defined at the abstract level. The advantages of understanding processes at
a general level are clear: we are able to prove theorems without resorting to the
use of low-level structure.

The theory in this paper provides the foundations for the development of
partial order verification methods that are applicable to rewriting systems over
general “graph-like” structures, including, for instance, uml models, bigraphs
and dynamic heap-allocated pointer structures.

Structure of the paper. We recall the definition of adhesive categories as well as
some of their properties in §2. Adhesive grammars and derivations are introduced

204 P. Baldan et al.

in §3 followed by a study of the possible relations among the rules and their
connections with concurrency. The notion of occurrence grammars (on which the
notion of process is based) is developed in §4. Finally, in §5 we define processes
and show that processes and switch-equivalence classes of typed derivations are
in 1-1-correspondence.

2 Adhesive Categories

Adhesive categories were introduced in [13]. Roughly, they may be described as
categories where pushouts along monomorphisms are “well behaved”. Here we
only give a minimal introduction, concentrating on the algebra of subobjects of
a given object T .

Definition 1 (Adhesive category). A category C is said to be adhesive if

1. C has pushouts along monomorphisms; C′
����������

����
�

��

A′

��

��

 B′

��

����������

D′

��

Cm
����

������ ��

A
��

 B

�����������

D

2. C has pullbacks;
3. Given a cube diagram as shown to the right

with: (i) m : C → A mono, (ii) the bottom
face a pushout and (iii) the back faces pull-
backs, we have that the top face is a pushout
iff the front faces are pullbacks.

The archetypal adhesive category is the category Set of sets and functions.
Adhesive categories enjoy useful closure properties, for example if C is adhesive
then so is any functor category CX, any slice category C ↓ C and any co-slice
category C ↓C. Therefore, since the category of graphs and graph morphisms is
a functor category Graph ∼= Set•⇔•, it is adhesive, and given a type graph T ,
the category of typed graphs Graph ↓ T is adhesive.

A subobject of a given object T is an isomorphism class of monomorphisms
to T . Binary intersections of subobjects exist in any category with pullbacks.
Adhesive categories enjoy also the existence of binary subobject unions which are
calculated in an intuitive way by pushing out along their intersection. Moreover,
the lattice of subobjects is distributive.

Theorem 2 ([13], Theorem 17 and Corollary 18). For an object T of an
adhesive category C, the poset Sub(T) of subobjects of T has joins: the join
of two subobjects is (the isomorphism class of) their pushout in C over their
intersection. Furthermore the lattice Sub(T) is distributive.

3 Adhesive Grammars

We start by introducing rules and grammars. Rules consist of three objects: a left-
hand side, a right-hand side and a common “read-only” part that is preserved,
called the interface, which is a subobject of both the left- and the right-hand
side.

Processes for Adhesive Rewriting Systems 205

Definition 3 (Rules and grammars). Let C be an adhesive category that we
assume to be fixed for the rest of the paper. A rule is a span of monomorphisms
L

α�−� K
β�−� R in C. It is called consuming if α is not an isomorphism.

A grammar is a triple G = 〈S, P, π〉, where P is a set of rule names, π is a
function which maps any q ∈ P to a rule Lq

αq�−−� Kq
βq�−� Rq and S ∈ ob(C) is

the start object. The grammar G is called consuming if all its rules are consuming.

A direct derivation is a diagram representing a single application of a rewriting
rule. Applying several rules in sequence gives us a path through the state space
of the grammar. The diagram consisting of the corresponding sequence of direct
derivations can be reconstructed from a given path, and together they form a
derivation.

Definition 4 (Direct derivations and paths). Let G = 〈S, P, π〉 be a gram-
mar, let q ∈ P , A,B ∈ ob(C), and f : Lq �−� A be a monomorphism. Then q

rewrites A to B at f in G, written A
〈q,f〉===⇒G B, if there exists a diagram (1)

consisting of two pushouts. If it exists, we shall refer to such a diagram as a
direct derivation along 〈q, f〉, to D as pushout complement of αq and f , and to
f as a (q-)match.

Lq

f
��

Kq
αq��

g
��

βq �� Rq

h
��

A

��
Dγ

��
δ

�� B

�� (1)

A G-path is a sequence τ = 〈qi, fi〉i∈[n], so that A0 = S and Ai
〈qi,fi〉
====⇒G Ai+1

for i ∈ [n].1 Given a G-path τ , let dτ be the diagram which results from including
the direct derivations of all of τ ’s individual steps:

L0

f0

��

K0
α0��

g0

��

β0 ��R0

h0

���
��

��
� L1

f1

��

K1
α1��

g1

��

β1 ��R1

h1

���
��

��
� · · ·

· · ·
Ln−1

fn−1

����
��
��

Kn−1
αn−1��

gn−1

��

βn−1��Rn−1

hn−1

���
��

��
�

S = A0

��
D0︸ ︷︷ ︸
dτ

0

γ0
��

δ0

��A1

�� ��
D1︸ ︷︷ ︸
dτ

1

γ1
��

δ1

��A2

��
· · · An−1

��
Dn−1︸ ︷︷ ︸
dτ

n−1

γn−1
��

δn−1

��An

��

Then dτ is said to be a diagram of τ and a witness of A0
τ=⇒ An and the pair

〈τ,dτ 〉 is called a G-derivation. For each i ∈ [n] we write dτ
i for the sub-diagram

of dτ that witnesses Ai
〈qi,fi〉
====⇒ Ai+1, and dτ

[i] for the sub-diagram containing the
first i steps of the derivation diagram. Each sub-diagram Li

αi�−� Ki
βi�−� Ri is

said to be an occurrence of qi.

In the sequel we will consider typed grammars, as introduced in [6], which are
grammars where every component is endowed with a morphism into a fixed

1 For each n ∈ N, we denote by [n] the set {0, . . . , n − 1}.

206 P. Baldan et al.

object T ∈ ob(C). Roughly, the type object T is intended to provide the pattern
which any possible system state must conform to, and the existence of the typing
morphism a : A→ T ensures that the state A conforms to the type.

Formally, typed grammars can be seen as grammars in the slice category C↓T ,
which is adhesive when C is (see [13]). However having an explicit typing will be
useful when defining the process of a grammar G, which describes a concurrent
computation in G by representing the rules and the resources used in such a
computation. Explicitly working with this type object will enable us to view all
left-hand sides, right-hand sides and interfaces as subobjects and work in the
subobject lattice Sub(T).

To describe the typed setting formally it shall be convenient to consider an
“identity” rule for the start object of a grammar. Given S ∈ ob(C), we shall
adopt the convention of letting S denote the rule π(S) = S id←− S id−→ S.

Definition 5 (Typed grammars and typed derivations). A typed gram-
mar is a tuple G = 〈G′, T, t〉 where G′ = 〈S, P, π〉 is a grammar, T ∈ ob(C) is the
type object and t is the (rule) typing, which assigns to each rule name q ∈ P ·∪{S}
a cocone (span in C ↓ T) for π(q) to T as depicted in the commutative diagram
below.

Lqπ(q)
{

t(q)
{

lq ��

Kq
αq�� βq ��

kq��

Rq

rq� T

A rule q is called mono-typed if lq and rq are monos; G is called mono-typed if
all q ∈ P ·∪ {S} are mono-typed.

Let G = 〈G′, T, t〉 be a typed grammar, where G′ = 〈S, P, π〉; then a typed
G-derivation is a triple ρ = 〈τ,dτ , c〉 where 〈τ,dτ 〉 is a G′-derivation and c is a
cocone to T for dτ that coincides with t(q) on each rule occurrence of q in dτ

for each q ∈ P ·∪ {S}.

 !

Li

li

��

!"�
�

fi

����
��
��
��
��
��

Ki

ki

��

"#���

αi��

gi

��

βi �� Ri
ri

���

������

��������
hi

 !�
��

��
��

��
��

�

#$

· · · ...
��$� T

...%%�� · · ·

�� Ai

ai�����

&&�����

Di

di ��

�����

γi

��
δi

�� Ai+1

ai+1 ���������

������
��������

��

The grammar G is called safe if all objects reachable from the start object are
mono-typed.

Consider two rules qm−1, qm which can be applied in sequence and rewrite Am−1
to Am and then to Am+1, as shown in the next diagram. Furthermore assume
that the left-hand side of qm is already present in Dm−1 and the right-hand side
of qm−1 can still be found in Dm. This means that these rules do not interfere
with each other and their applications can hence be switched, leading to the
same result Am+1. Pairs of direct derivations of this kind are called sequential-
independent.

Processes for Adhesive Rewriting Systems 207

Definition 6 (Sequential independence [7]). Let 〈τ,dτ 〉 be a derivation.
Then, fixing m ∈ [|τ |], m > 0, the direct derivations dτ

m−1 and dτ
m are sequential-

independent if there are morphisms u : Lm → Dm−1 and w : Rm−1 → Dm such
that the diagram below commutes, i.e., δm−1 ◦ u = fm and γm ◦ w = hm−1.

· · ·
''

��

��

�� Rm−1

w

��hm−1 !"�
��

��
� Lm

u

((fm''��
��

�
��

��

��

))
· · ·

Am−1 Dm−1︸ ︷︷ ︸
dτ

m−1

��
δm−1

�� Am Dm︸ ︷︷ ︸
dτ

m

γm

�� �� Am+1

We shall now introduce certain relations between the rules of a mono-typed
grammar, and the resulting connections with sequential independence and the
classical Local Church-Rosser Theorem. In the following, the inclusion (or partial
order) (, union (or join) � and intersection (or meet) � are interpreted in the
subobject lattice Sub(T).

Definition 7 (Rule relations). Let G =
〈〈S, P, π〉, T, t

〉
be a mono-typed

grammar and let q, q′ ∈ P be rule names. We define four rule relations:

< : q directly causes q′, written q < q′, if Rq � Lq′ �(Kq

) : q can be disabled by q′, written q) q′, if Lq � Lq′ �(Kq′

<co : q directly co-causes q′, written q <co q′, if Rq � Lq′ �(Kq′

)co : q can be co-disabled by q′, written q)co q′, if Rq �Rq′ �(Kq.

The following proposition gives a partial account of the relationship between
sequential independence and rule relations.

Proposition 8. Let 〈τ,dτ , c〉 be a typed derivation such that dτ witnesses
A0

〈q0,f〉
====⇒ C

〈q1,g〉
===⇒ A2 and suppose that C is mono-typed. Then:

1. If q0 ≮ q1 and q0 �) q1 then dτ
0 and dτ

1 are sequential-independent;
2. If dτ

0 and dτ
1 are sequential-independent then q0 ≮ q1 and q0 �<co q1.

As mentioned above, sequential-independent direct derivations can be
switched, giving us the first part of the following result. Moreover, when working
with mono-typed grammars and derivations, we identify a sufficient condition
making it possible to construct the “middle-object” of the switched derivation
as a subobject of the type object.

Theorem 9 (Local Church-Rosser). Consider the typed derivation diagram
below:

L0
**���

f
**���

K0
α0��

��

β0 �� R0
h
!"�

��
L1g

++���
K1

α1��

��

β1 �� R1
k
,,�

��

A0

d

{
t
{

a0 --

D0

����������
γ0�� δ0 �� C

c��
D1γ1�� δ1 ��

����������
A2

a2..T

where t is a cocone for d to T and assume that the (untyped) direct derivations
are sequential-independent. Then the following hold:

208 P. Baldan et al.

1. There exist C′, g′, f ′ and a witness d′ for A0
〈q1,g′〉
====⇒ C′ 〈q0,f′〉

====⇒ A2 such that
d′

0 and d′
1 are sequential-independent.

2. If both rules are mono-typed, a0, c and a2 are mono, and also L0 � R1 (
D0 �D1 in Sub(T), then C′ = L0 � (D0 �D1) �R1.

Proof. For the the first part of the theorem see [12, 8, 13]. For the second half,
let w0 : R0 → D1 and u0 : L1 → D0 be such that h = γ1 ◦ w0 and g = δ0 ◦ u0.

We obtain the following four diagrams: square (1) by pullback, also yielding
pullbacks (2) and (3). Squares (4) and (5) by pushout, also yielding pushouts (6)
and (7). Finally, square (8) by pushout. Notice that all the morphisms in the
diagrams are mono.

L0
u1 ��

K0
(2)(4) ��

α0�� β0 �� R0
w0��

E0
γ′
1 ��

D0�D1
(1)(6) ��

�� �� D1
γ1��

A0 D0γ0
��

δ0

�� C

L1
u0 ��

K1
(3) (5)��

α1�� β1 �� R1
w1��

D0
δ0 ��

D0�D1
(7)(1)

�� ��

��

E1
δ′
0��

C D1γ1
��

δ1

�� A2

L1
u0 ��u0 ��

K1
(3) (5)

α1��

��

β1 �� R1
w1��

D0
γ0 ��

D0�D1
(8)(6)

��

��

�� E1
γ′
0��

A0 E0
γ′
1

��
δ′
1

�� C′

L0
u1 ��

K0
(4) (2)

α0��

��

β0 �� R0
w0��

E0
δ′
1 ��

D0�D1
(8) (7)

��

��

�� D1
δ1��

C′ E1
γ′
0

��
δ′
0

�� A2

Notice that E0 =
L0� (D0�D1) (because
a0 is mono) and E1 =
R1�(D0�D1) (since a2
is mono). It remains to
show that C′ = E0 �E1
for which it suffices to
show that E0 � E1 =
D0 � D1. But by as-
sumption E0 � E1 =
(L0 �R1)� (D0 �D1) =
D0 �D1. ��

From a true concurrency point of view, we do not want to distinguish among
derivations which differ only in the order of sequential-independent direct deriva-
tions. This is formalized by the relation introduced next.

Definition 10 (Derivation switching). Let 〈τ,dτ 〉 be a derivation and as-
sume that the direct derivations dτ

m−1 and dτ
m are sequential-independent. Let

τ ′ be the path obtained from τ by switching these two direct derivations accord-
ing to Theorem 9. Finally let dτ ′

be a diagram of τ ′. Then we say that the two
derivations are switchings of each other and write 〈τ,dτ 〉 sw

∼ 〈τ ′,dτ ′〉.

4 Occurrence Grammars

In this section we shall introduce the central notion of occurrence grammar which
will be used to describe the computation of a system modulo concurrency and
on which the notion of process—introduced in Definition 20—relies.

We begin by defining the asymmetric conflict relation. It arises in any com-
putational formalism where resources can be read without being consumed. The
notion of asymmetric conflict has been previously defined and used for similar
purposes in the concrete cases of Petri nets and graph transformation systems.
Note that in this paper we deal only with deterministic occurrence grammars.

Processes for Adhesive Rewriting Systems 209

In the general setting of adhesive grammars, asymmetric conflict can be de-
fined using the rule relations of Definition 7: rules p, q are in asymmetric conflict
(written p ↗ q) whenever either p is a (possibly indirect) cause of q or p is
disabled by q. In an occurrence grammar every rule occurs exactly once; thus p
must be executed before q.

Definition 11 (Asymmetric conflict, (co-)causes). Let G =
〈〈S, P, π〉, T, t

〉
be a mono-typed grammar. Then↗ = <+ ∪ () \ idP), where idP is the identity
relation on P , is called asymmetric conflict. For a subobject A ∈ Sub(T) we define

�A� = {q ∈ P | Rq �A �(Kq} and �A	 = {q ∈ P | Lq �A �(Kq}

as the sets of (direct) causes and (direct) co-causes of A respectively.

We are now ready to define the notion of occurrence grammars. Technically an
occurrence grammar is a grammar with special properties which generalizes the
notions of deterministic occurrence nets [11] and grammars [4] defined in the
setting of Petri nets and graph grammars, respectively.

Definition 12 (Occurrence grammars). A grammar O =
〈〈S, P, π〉, T, t

〉
is

a pre-occurrence grammar if it is mono-typed,

1. P is finite and the relation ↗ is acyclic,
2. the start object S has no causes, i.e. �S� = ∅,
3. there are neither forward nor backward conflicts, i.e., for all q �= q′ ∈ P

(Lq′ � Lq) (Kq′ �Kq and (Rq′ �Rq) (Kq′ �Kq.

A pre-occurrence grammar O is said to be an occurrence grammar if also:

4. there is an end object F ∈ Sub(T) such that �F	 = ∅;
5. for all subobjects A ∈ Sub(T)

(a) A (
(
S �

⊔
q∈�A�

Rq

)
and (b) A (

(
F �

⊔
q∈�A�

Lq

)
.

The requirements of Definition 12 above can be motivated as follows: First, ↗
must be acyclic, since there is otherwise no valid execution order for all rules of
the occurrence grammar. Furthermore there are no forward conflicts, meaning
that the occurrence grammar is deterministic, and no backward conflicts which
roughly amounts to saying that “everything” is generated by at most one rule.
It can be shown that S and F are uniquely determined by the axiom 5 of
Definition 12.

Indeed, the axiom 5 is central for the following theory. It intuitively says that
“everything” is either in the start object or generated at some point and that
also the converse holds: “everything” is either in the end object or it is consumed
at some time. The first part is needed to show that when we put the rules of an
occurrence grammar into sequence according to asymmetric conflict and apply

210 P. Baldan et al.

an initial part of this sequence, we reach an object that contains the left-hand
side of the next rule. Then the second part is needed to prove that also the
pushout complement exists and thus the rule can actually be applied. (See also
the proof of Theorem 19.) Its role is further explained by the example below.

Example 13 (Pre-occurrence grammar that is not an occurrence grammar). Con-
sider the adhesive category of graphs and graph homomorphisms, Graph. Now
take a grammar with the empty graph ∅ as start object S, and two rule names
p, q with associated rules and type graph as shown below.

S : ∅ T : ©v
e

��
∅← ∅→©v︸ ︷︷ ︸

π(q)

©v
e

�� ← ©v
e

�� → ©v
e

��︸ ︷︷ ︸
π(p)

The typing is given by the obvious inclusions. This is clearly a pre-occurrence
grammar, but not an occurrence grammar since axiom 5(a) of Definition 12 is
violated. Indeed, �T� = {q} and thus T �(S �⊔q′∈�T� Rq′ = S �Rq = Rq. Note
that this corresponds to the fact that the graph obtained after applying q is too
small to contain the left-hand side of p.

Similarly, when we consider the reversed pre-occurrence grammar (view rules
from right to left) with T as the start object, axiom 5(b) of Definition 12 does not
hold. In order to see this observe that now the end object is the empty graph and
that only (the reversed) q is a co-cause for T , which leads to T �(F �⊔q′∈�A� Lq′ .
This is related to the fact that—after applying rule p (reversely) to T—q cannot
be applied since the pushout complement for ∅ �−� ◦ �−� �

◦ does not exist, due
to the presence of the edge.

In previous approaches, the subobject inclusions followed indirectly from axioms
about individual items. For instance [5] defines a deterministic occurrence gram-
mar O requiring that whenever a node v is deleted by a rule of O and an edge
e attached to v is created by O, then O must also delete e.

Example 14 (Graphs with scopes). In order to show that our theory applies to
a setting wider than standard graph rewriting, we consider graphs with scopes
where each node is contained in a set of scopes. These graphs can be viewed as
objects of the functor category Setfin

•←•→•⇔•, which is adhesive. Concretely,
every object consists of a set of nodes V , a set of edges E, a set of scopes S
and an auxiliary set X , used to relate nodes and scopes. We have functions
src, tgt : E → V , scS : X → S, scV : X → V . If there is an element x ∈ X with
scS (x) = s ∈ S and scV (x) = v ∈ V we say that v is contained in or within scope
s. A node may belong to several scopes and a scope may contain several nodes.
We draw the graph part of the objects in the usual way. Scopes are depicted by
labelled boxes around the nodes they contain (see below).

The following example grammar is inspired by scope extrusion in process
calculi. We want to model that a node is moved from one scope into another by
a reaction rule. The first rule (p1) can move the target of an edge within the
same scope, the second (p2) is a reaction where a node v is transferred from one

Processes for Adhesive Rewriting Systems 211

scope to another whenever there is a two-edge path from it to a node w within
the second scope, and the third (p3) models garbage collection of empty scopes.
Note that rule (p3) cannot be applied to non-empty scopes, since the pushout
complement of diagram (1) in Definition 4 would not exist, intuitively because
the removal of the scope would leave some dangling links.

S :

�� ��

�� �	
A ©u ©v

//
�� ��

�� �	
B

�� ��

�� �	
C

©x

�0

©z
T :

�� ��

�� �	
A ©u ©v

//
�� ��

�� �	
B

�� ��

�� �	
C

©x

�0 �0

©z

�� ��

�� �	
A ©u ©v

©x

�0
←

�� ��

�� �	
A ©u ©v

©x
→

�� ��

�� �	
A ©u ©v

©x

�0

︸ ︷︷ ︸
π(p1)

©v

//
�� ��

�� �	
B

�� ��

�� �	
C

©x

�0

©z
←

©v

�� ��

�� �	
B

�� ��

�� �	
C

©x ©z
→

©v

�� ��

�� �	
B

�� ��

�� �	
C

©x ©z︸ ︷︷ ︸
π(p2)

�� ��

�� �	
B

← ∅ → ∅︸ ︷︷ ︸
π(p3)

By taking S and T above as the start and type graph respectively, and the
obvious inclusions as rule typings we obtain an occurrence grammar where p1 is
a cause for p2 (p1 < p2) and p2 is in asymmetric conflict with p3 (p2 ↗ p3).

After these motivating examples, we will continue to develop the theory. First
we show that if every rule is applied at most once then the reached object is
mono-typed. A consequence of this is that any object reachable in a consuming
pre-occurrence grammar is mono-typed.

Proposition 15 (Quasi-safety and safety of consuming grammars).
Let O =

〈〈S, P, π〉, T, t
〉

be a pre-occurrence grammar. Then for each path
τ = 〈qi, fi〉i∈[n] and typed derivation ρ = 〈τ,dτ , c〉, with dτ witnessing S

τ=⇒ An,
if no rule occurs twice in τ then

1. An is mono-typed, i.e., cAn is a mono,
2. asymmetric conflict is respected, i.e. ∀i, j ∈ [n] . qi ↗ qj ⇒ i < j,
3. the inclusion cocone to S �⊔i∈[m] Ri for m ≤ n is a colimit of dτ

[m].

In particular, if O is consuming then any rule can be applied at most once in
each typed O-derivation and thus 1–3 above hold for any typed derivation.

Another fact that holds in the setting of pre-occurrence grammars is that all
typed derivations which apply the same rules, possibly in different order, are
equivalent when seen as truly concurrent computations. Formally, this involves
the notion of switch-equivalence for typed derivations.

Definition 16 (Switch equivalence). Let ρ = 〈τ,dτ , c〉 and ρ′ = 〈τ ′,dτ ′
, c′〉

be two typed G-derivations, with τ = 〈qi, fi〉i∈[n] and τ ′ = 〈q′i, f ′
i〉i∈[n]. Then

ρ and ρ′ are isomorphic, written ρ ∼= ρ′, if qi = q′i for each i ∈ [n] and there

212 P. Baldan et al.

is a diagram isomorphism ι : 〈dτ , c〉 ∼= 〈dτ ′
, c′〉 that relates the start object,

rule-occurrences and the type objects by identities.
Moreover ρ

sw
∼ ρ′ if 〈τ,dτ 〉 sw

∼ 〈τ ′,dτ ′〉 and finally switch-equivalence
sw
≈ is the

union of the transitive closure of sw
∼ and ∼=, in signs

sw
≈ = (sw∼)∗∪ ∼=.

Lemma 17 (Switch equivalence in pre-occurrence grammars). Let O
=
〈〈S, P, π〉, T, t

〉
be a pre-occurrence grammar, and let ρ = 〈τ,dτ , c〉 and ρ′ =

〈τ ′,dτ ′
, c′〉 be typed O-derivations where τ = 〈qi, fi〉i∈[n] and τ ′ = 〈q′i, f ′

i〉i∈[n] are
paths in which no rule occurs twice and

〈
qi

〉
i∈[n] is a permutation of

〈
q′i
〉

i∈[n].

Then the two typed derivations are switch-equivalent, i.e., ρ
sw
≈ ρ′.

The above facts about pre-occurrence grammars have a premise about the ex-
istence of some derivation. In the context of proper occurrence grammars we
can single out sufficient conditions for the existence of derivations, which can be
described in terms of asymmetric conflict ↗.

Definition 18 (Rule linearizations). Let O =
〈〈S, P, π〉, T, t

〉
be a pre-

process and let P ′ ⊆ P and n = |P ′|. Then a sequence q =
〈
qi

〉
i∈[n] ∈ (P ′)∗ is a

(rule) linearization of P ′ if P ′ = {qi | i ∈ [n]} and ∀i, j ∈ [n] . qi ↗ qj ⇒ i < j.
The set of all linearizations of P ′ is denoted by lin(P ′) and qi = qi by convention.

We write S
q=⇒ A if S

τ=⇒ A and τ = 〈qi, fi〉i∈[n] is a path for some sequence
of matches

〈
fi

〉
i∈[n].

The next theorem gives two central results. Firstly, if O is an occurrence gram-
mar, then there exists a typed derivation which rewrites the start object into the
end object, applying all the rules in any order that respects asymmetric conflict.
Secondly, if the type object is not too large and there exists a linearization of
all rules that leads to a typed derivation then a pre-occurrence grammar is an
occurrence grammar.

Theorem 19. Let O be a pre-occurrence grammar.

1. If O is an occurrence grammar, then ∀q ∈ lin(P). S q=⇒ F , where F is the
end object of O.

2. If ∃q ∈ lin(P). ∃F ∈ Sub(T). S q=⇒ F and T = S � ⊔q∈P Rq, then O is an
occurrence grammar.

Proof (idea). The crucial point is the proof of the first part, i.e., of the fact that
any linearization of P gives rise to a typed derivation. Let q = pqp′ ∈ lin(P) and
assume that S

p=⇒ A. Then we have to show that Lq (A and that the pushout
complement for A �−� Lq

α�−� Kq exists.
By using axiom 5(a) of Definition 12 we can prove that A is the greatest

object with causes in p and co-causes in p′. Then Lq (A follows immediately.
It remains to show that the pushout complement exists: the candidate is D̃ =
(S �⊔q∈p Rq) � (F �⊔q∈p′ Lq).

Processes for Adhesive Rewriting Systems 213

By using only facts about pre-occurrence grammars one can show that D̃ is
the greatest subobject of A which forms a pullback together with the arrows
A �−� Lq

α�−� Kq. Finally, using axiom 5(b) of Definition 12 and some elementary
category theory we can show that D̃ is actually a pushout complement. ��
An interesting point of the proof is that the question about the existence of
pushout complements can be answered in lattice-theoretic terms only.

5 From Derivations to Processes and Back

We now come to the one-to-one correspondence between switch-equivalence
classes of derivations and processes. After introducing the notion of process (for
a given grammar), we show that such a process can be seen as a representative of
a full class of switch-equivalent typed derivations, all of which are linearizations
of the process. Vice versa, given a derivation, a colimit-based construction allows
to derive a corresponding process. The result states that these two constructions
are (essentially) inverse to each other.

We shall now define the notion of process, i.e., a truly concurrent computation
of a specific grammar G represented by an occurrence grammar.

Definition 20 (Processes). Let G =
〈〈S, P, π〉, T, t

〉
be a grammar. Then a

G-process is a triple P = 〈O, v, fP 〉 where O =
〈〈S′, P ′, π′〉, T ′, t′

〉
is an occur-

rence grammar and

– v : T ′ → T is a morphism between the type objects, and
– fP : P ′ ·∪ {S′}→P ·∪ {S} is a function between rule names with fP (S′)=S

such that for all q′ ∈ P ′ ·∪ {S′}
1. π′(q′) = π(fP (q′))
2. and2 v � t′(q′) = t(fP (q′))

i.e. the diagram on the right commutes,
where π′(q′) = L

α�−� K
β�−� R = π(fP (q′)).

T ′

v

��

L

l′
q′

01

�� α

lfP (q′)
12

K

k′
q′

23

kfP (q′)

��

R

r′
q′

��

��β

rfP (q′)
��

T

Let P1 and P2 be two G-processes. An isomorphism 〈i, j〉 : P1 ∼= P2 from P1
to P2 is a pair 〈i, j〉 such that (i)

〈O1, i, j
〉

is an O2-process, (ii) i : T1 → T2 is
an isomorphism satisfying v2 ◦ i = v1, and (iii) j : P1 ·∪ {S1} → P2 ·∪ {S2} is a
bijection satisfying fP 1 = fP 2 ◦ j.
Intuitively, an occurrence grammar O only represents an “autonomous” concur-
rent computation, whereas the pair 〈v, fP 〉 provides a link back to a grammar.
The morphism v specifies how such a computation can be “typed” over the
type object of G, and fP specifies how the rule occurrences of O can be seen as
instances of rules in G.
2 For a cocone c to an object A and a morphism v : A → B we denote by v � c the

cocone to B obtained by composing every morphism in c with v.

214 P. Baldan et al.

Given a process P of a grammar G, we can obtain a corresponding typed
derivation in G by taking any linearization of the rules in O, applying each such
rule in the specified order (possible by Theorem 19) and retyping the generated
derivation over the type object of G.
Definition 21 (Drv—derivations of a process). Let P = 〈O, v, fP 〉 be a G-
process, where O =

〈〈S, P, π〉, T ′, t′
〉
. Let q ∈ lin(P) be a linearization of P and

let ρ = 〈τ,dτ , c〉 be a typed derivation witnessing S
q=⇒O F . Then 〈τ,dτ , v� c〉 is

called a typed P-derivation. The set of all such derivations is denoted by Drv(P).

The next proposition shows that all derivations of a given process are “equiva-
lent” from a true concurrency point of view. Hence Drv induces a mapping from
(isomorphism classes of) processes to switch-equivalence classes of derivations.

Proposition 22. Let P and P ′ be processes such that P ∼= P ′. Then for all
ρ ∈ Drv(P) and ρ′ ∈ Drv(P ′) it holds ρ

sw
≈ ρ′.

Vice versa, given any derivation in a grammar G, we can generate a corresponding
process as follows. The colimit of the (untyped part) of the derivation diagram is
the type object of the process, while the rule instances of the derivation become
the rules of the process. The morphism back to the type object of G is given
by the mediating morphism to the typed derivation cocone. The next definition
describes this procedure formally.

Definition 23 (Prc—processes of a derivation). Let τ = 〈qi, fi〉i∈[n] be a
path and ρ = 〈τ,dτ , c〉 be a typed derivation for a grammar G =

〈〈S, P, π〉, T, t
〉
.

Let c̄ be a colimit cocone for dτ to T ′, whose components are the dotted arrows
below.

L0

f0

��

K0
α0��

g0

��

β0 ��R0

h0

���
��

��
� L1

f1

��

K1
α1��

g1

��

β1 ��R1

h1

���
��

��
� ···

···

Ln−1

fn−1

����
��
��

Kn−1
αn−1��

gn−1

��

βn−1��Rn−1

hn−1

���
��

��
�

S = A0

��

a0 34

D0

d0 ��

γ0
��

δ0

��A1

�� ��

a1
��

D1

d1

45

γ1
��

δ1

��A2

��

a2

++

··· An−1

��

an−1

56

Dn−1

dn−1

67

γn−1
��

δn−1

��An

��

an

78T
′

Define O =
〈〈S′, P ′, π′〉, T ′, t′

〉
to be a grammar where:

– S′ = S;
– P ′ = {〈qi, i〉 | i ∈ [n] ∧ τi = 〈qi, fi〉} is a set that contains a rule occurrence

name for each rule occurrence of dτ, and
– π′ with π′(〈qi, i〉) = π(qi) assigns each rule occurrence name the rule of the

grammar G it originates from; and
– t′(〈qi, i〉) is a cocone for π(qi) to T ′, which gives the typing for each rule

occurrence 〈qi, i〉 ∈ P ′ as indicated below

Processes for Adhesive Rewriting Systems 215

Li
π′(〈qi, i〉)

{
t′(〈qi, i〉)

{
ai◦fi

��

Ki
αi�� βi ��

di◦gi��

Ri

ai+1◦hi
� T ′

and t′(S′) is the cocone obtained by taking three times morphism a0.

Finally let v : T ′ → T be the mediating morphism from the colimit c̄ to the
cocone c. Then

P = 〈O, v, fP : P ′ ·∪ {S′} → P ·∪ {S}〉
with fP (〈qi, i〉) = qi and fP (S′) = S is a ρ-process. The set of all ρ-processes—all
of them being isomorphic to each other—is denoted by Prc(ρ).

The next proposition shows that starting from switch-equivalent derivations, the
construction described in Definition 23 produces isomorphic processes. Hence
Prc can be seen as a function from switch-equivalence classes of derivations to
isomorphism classes of processes.

Proposition 24. Let ρ and ρ′ be typed G-derivations such that ρ
sw
≈ ρ′. Then

P ∼= P ′ holds for all P ∈ Prc(ρ) and P ′ ∈ Prc(ρ′).

We conclude with the main result of this section, stating that Prc and Drv can
be seen as functions between switch-equivalence classes of derivations and iso-
morphism classes of processes, and that they are inverse to each other.

Theorem 25. Let ρ be a typed G-derivation and P be a G-process. Then:

1. ρ′ ∈ Drv
(
Prc(ρ)

)
implies ρ′

sw
≈ ρ

2. P ′ ∈ Prc
(
Drv(P)

)
implies P ′ ∼= P

6 Conclusion

We have shown that the notion of process, originally introduced for Petri nets,
can be studied in the general setting of dpo rewriting systems over adhesive
categories. This is theoretically pleasing, since it allows one to study this fun-
damental concept at the same abstract level as, for instance, the notion of
sequential-independence.

While the fact that processes can be studied in an abstract framework may
not seem surprising, the generalization is non-trivial to obtain. The reason is that
the previous definitions of occurrence grammars and processes, e.g. of Petri nets
and graph grammars, used the inherently set-theoretical concept of items: atomic
units that are consumed and produced. The absence of an analogous concept for
adhesive categories has required the development of original techniques, mainly
relying on the algebra of the subobject lattice of the type object.

As a consequence of its generality, the theory developed in this paper is ap-
plicable to a wide range of rewriting systems. It enables us to handle various
graph-like structures which appear in the literature and are used in tools.

216 P. Baldan et al.

While starting the development of an encompassing theory of true concur-
rency, we have also laid the foundations for the use of partial order verification
techniques. Specifically, the generalization of methods developed for Petri nets
and graph transformation systems (see, e.g., [14, 10, 2, 3]) appears as a stimulat-
ing direction of research. In order to achieve this goal, future work will concern
unfoldings: non-deterministic (infinite) processes which fully describe the behav-
ior of a system.

References

1. P. Baldan. Modelling Concurrent Computations: from Contextual Petri Nets to
Graph Grammars. PhD thesis, Dipartimento di Informatica, Università di Pisa,
2000.

2. P. Baldan, A. Corradini, and B. König. A static analysis technique for graph
transformation systems. In Proc. of CONCUR ’01, volume 2154 of LNCS, pages
381–395. Springer Verlag, 2001.

3. P. Baldan, A. Corradini, and B. König. Verifying finite-state graph grammars:
an unfolding-based approach. In Proc. of CONCUR 2004, volume 3170 of LNCS,
pages 83–98. Springer Verlag, 2004.

4. P. Baldan, A. Corradini, and U. Montanari. Concatenable graph processes: relat-
ing processes and derivation traces. In Proc. ICALP’98, volume 1443 of LNCS.
Springer Verlag, 1998.

5. P. Baldan, A. Corradini, and U. Montanari. Unfolding and Event Structure Se-
mantics for Graph Grammars. In Proc. of FoSSaCS ’99, volume 1578 of LNCS,
pages 73–89. Springer Verlag, 1999.

6. A. Corradini, U. Montanari, and F. Rossi. Graph processes. Fundamenta Infor-
maticae, 26:241–265, 1996.

7. H. Ehrig. Introduction to the Algebraic Theory of Graph Grammars. In Proceedings
of the 1st International Workshop on Graph-Grammars and Their Application to
Computer Science and Biology, volume 73 of LNCS, pages 1–69. Springer Verlag,
1979.

8. H. Ehrig, A. Habel, H.-J. Kreowski, and F. Parisi-Presicce. Parallelism and con-
currency in high-level replacement systems. Mathematical Structures in Computer
Science, 1:361–404, 1991.

9. H. Ehrig, A. Habel, J. Padberg, and U. Prange. Adhesive high-level replacement
categories and systems. In Proc. of ICGT’04, volume 3256 of LNCS, pages 144–160.
Springer Verlag, 2004.

10. J. Esparza, S. Römer, and W. Vogler. An improvement of McMillan’s unfolding
algorithm. Formal Methods in System Design, 20(20):285–310, 2002.

11. U. Goltz and W. Reisig. The non-sequential behaviour of Petri nets. Information
and Control, 57:125–147, 1983.

12. A. Habel, J. Müller, and D. Plump. Double-pushout graph transformation revis-
ited. Mathematical Structures in Computer Science, 11(5):637–688, 2001.

13. S. Lack and P. Sobociński. Adhesive and quasiadhesive categories. Theoretical
Informatics and Applications, 39(2):511–546, 2005.

14. K.L. McMillan. Symbolic Model Checking. Kluwer, 1993.

On Metric Temporal Logic and
Faulty Turing Machines

Joël Ouaknine and James Worrell

Oxford University Computing Laboratory, UK
{joel, jbw}@comlab.ox.ac.uk

Abstract. Metric Temporal Logic (MTL) is a real-time extension of
Linear Temporal Logic that was proposed fifteen years ago and has since
been extensively studied. Since the early 1990s, it has been widely be-
lieved that some very small fragments of MTL are undecidable (i.e.,
have undecidable satisfiability and model-checking problems). We re-
cently showed that, on the contrary, some substantial and important
fragments of MTL are decidable [19, 20]. However, until now the ques-
tion of the decidability of full MTL over infinite timed words remained
open.

In this paper, we settle the question negatively. The proof of unde-
cidability relies on a surprisingly strong connection between MTL and
a particular class of faulty Turing machines, namely ‘insertion channel
machines with emptiness-testing’.

1 Introduction

The theory of automated verification in the untimed world has by now achieved
a respectable maturity: there is a plethora of modelling and specification for-
malisms, with well-understood associated algorithms—see, e.g., [22] for a com-
prehensive survey of the field. Over the past two decades, many researchers have
attempted to extend this methodology to the real-time world, in which quanti-
tative timing constraints are of interest. One of the earliest and most prominent
real-time specification formalisms to be proposed was Metric Temporal Logic
(MTL) [16, 6], which extends Linear Temporal Logic (LTL) in that the various
temporal operators are annotated with time intervals. For example, whereas the
LTL formula �(req =⇒ ♦grant) specifies that every req is always eventually
followed by a grant , the MTL formula �(req =⇒ ♦[3,5]grant)1 specifies in ad-
dition that the grants shall happen within 3 to 5 time units of the occurrence of
each req. This type of bounded-response property arises naturally when consid-
ering safety-critical systems such as a car’s braking system, or a power plant’s
shutdown mechanism.

MTL formulas are usually interpreted over dense time, which is typically
modelled using the non-negative real numbers R≥0.2 Furthermore, an important
1 The � operator is here implicitly annotated with the interval [0, ∞).
2 By contrast, in discrete-time settings the underlying model is typically the non-

negative integers, yielding more tractable theories that however correspond less
closely to physical reality [13, 3].

L. Aceto and A. Ingólfsdóttir (Eds.): FOSSACS 2006, LNCS 3921, pp. 217–230, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

218 J. Ouaknine and J. Worrell

distinction among real-time models is whether one assumes that the system
under consideration is observed at every instant in time, leading to an interval-
based semantics [4, 21, 14], or whether one only records a countable sequence
of snapshots of the system, leading to a point-based semantics [11, 6, 7, 12, 13,
24]. The interval-based semantics is somewhat more intuitive if one interprets
atomic MTL formulas as state propositions, whereas the point-based semantics
lends itself more naturally to the interpretation of atomic MTL formulas as
instantaneous events or actions. Our main (undecidability) result concerns the
point-based semantics, and accordingly that is the semantics we focus on in this
paper. As it turns out, the corresponding undecidability result in the interval-
based setting has been known for quite some time; see, e.g., [11, 5].

As is the case for LTL, it is possible to extend MTL with past temporal op-
erators, although this variant is seldom seen in the literature. MTL with past
operators, in turn, is subsumed by a certain monadic logic of timed state se-
quences introduced in [6]. The satisfiability problem for this logic is shown in
that paper to be undecidable. The idea is to encode the halting computations of a
given Turing machine as a set of timed words, which can themselves be captured
by a monadic formula: configurations of the machine can be encoded within a
single unit-duration time interval, since the density of time can accommodate
arbitrarily large tape contents. The formula need only specify that the configu-
rations are accurately propagated from one time interval to the next. As a result,
the formula is satisfiable iff the Turing machine has a halting computation.

This construction easily carries over to MTL with past operators, and in fact
the key ingredient required is merely punctuality: the ability to specify that
two events occur exactly one time unit apart from each other. Unfortunately,
a small oversight led to the claim, subsequently reproduced many times—see,
e.g., [5, 6, 12, 15], among others—that any logic strong enough to express for-
ward punctuality, i.e., formulas of the form �(p =⇒ ♦[1,1]q), is automatically
undecidable.

In [19] we showed this claim to be erroneous by proving that the satisfiability
problem for MTL over finite timed words is decidable. Recently, we also showed
that the safety fragment of MTL, in which all ‘eventuality’ operators are time-
bounded, is also decidable [20]. Another important decidability result appears
in [4, 21, 14], where the fragment of MTL that disallows singular intervals is
proved to be decidable. Yet another decidability result for a fragment of MTL
can be found in [13], exploiting digitization techniques.

In light of these developments, the question of the decidability of (standard)
MTL, incorrectly considered settled for many years, took on a new urgency.
This paper closes the gap by showing that the (infinite) satisfiability and model-
checking problems for MTL are undecidable. The proof proceeds by establish-
ing a strong connection between MTL formulas and a particular class of faulty
Turing machines, namely insertion channel machines with emptiness-testing, or
ICMET. Using this connection, satisfiability questions about MTL formulas can
be translated back and forth to ‘recurrent-state problems’ for ICMETs. We show
the latter to be undecidable in general from first principles.

On Metric Temporal Logic and Faulty Turing Machines 219

Our undecidability result also ties up a couple of loose ends. In [19], for in-
stance, we show that MTL formulas can be encoded into one-clock timed alter-
nating automata (see also [18]) with a weak parity acceptance condition. MTL
satisfiability then corresponds to the non-emptiness problem for these automata,
which this paper therefore shows to be undecidable. Our present results also im-
ply the undecidability of universality for one-clock Büchi timed automata [2, 17],
since these can easily capture (timed encodings of) the non-recurrent/invalid
computations of ICMETs, following an idea similar to that used in [3].

2 Faulty Turing Machines

A channel machine [1, 9, 23] consists of a finite-state automaton acting on a
finite number of unbounded fifo channels (queues, buffers). We are interested in
a particular type of channel machines, which we call insertion channel machines
with emptiness-testing, or ICMET . An ICMET is a tuple C = (S, init ,M,C,Δ),
where S is a finite set of control states, init ∈ S is the initial control state, M is
a finite set of messages, C is a finite set of channels, and Δ ⊆ S × L× S is the
transition relation over label set L = {c!m, c?m, c=∅ | c ∈ C ∧m ∈M}.

Intuitively, a c!m-transition corresponds to writing m to the tail of channel c,
a c?m-transition corresponds to reading m from the head of channel c, whereas
a c=∅-transition is only enabled if channel c is empty. The latter transitions,
which we call emptiness-testing, are useful in the presence of insertion errors, as
we explain shortly.

A global state of an ICMET C is a tuple (s, x), where s ∈ S is the control
state and x ∈ (M∗)C represents the contents of all the channels. We write xc to
denote the contents of a given channel c. The rules in Δ induce an L-labelled
transition relation on the set of global states as follows: (s, c!m, t) ∈ Δ yields a
transition (s, . . . , xc, . . .)

c!m−→(t, . . . , xc·m, . . .) that writes m ∈ M to the tail of
channel c, and leaves all other channels unchanged. Likewise, (s, c?m, t) ∈ Δ

yields a transition (s, . . . ,m·xc, . . .)
c?m−→(t, . . . , xc, . . .) that reads m ∈ M from

the head of channel c, and again leaves all other channels unchanged. Finally,
(s, c=∅, t) ∈ Δ yields a transition (s, x) c=∅−→(t, x), provided that channel c is
empty, i.e., xc = ε.

If the above transitions were the only ones allowed, then C would be an error-
free channel machine. An ICMET, however, may suffer from insertion errors,
which are represented by certain additional transitions.

Given x, y ∈ M∗, write x (y if x can be obtained from y by deleting any
number of letters. For example, HIGMAN (HIGHMOUNTAIN, as indicated by
the underlining. Extend this relation to (M∗)C by writing x (y if, for all c ∈ C,
xc (yc.

Insertion errors are then introduced by extending the transition relation on
global states with the following clause: if (s, x) α−→(t, y), x′ (x, and y (y′, then
(s, x′) α−→(t, y′).

220 J. Ouaknine and J. Worrell

A computation of C is a finite or infinite sequence of transitions between global
states (s0, x0)

α0−→(s1, x1)
α1−→(s2, x2)

α2−→· · · , with s0 = init .3

Note 1. Channel machines with insertion errors were first considered in [9], and
later used to obtain complexity lower bounds for real-time verification problems
in [19, 2]. Emptiness-testing is a well-known computational device (used, for ex-
ample, in counter machines), which however adds no intrinsic power to error-free
channel machines. In the presence of insertion errors, emptiness-testing provides
a restricted amount of error detection, yet this combination has, to the best of
our knowledge, never been studied before. As Theorem 2 indicates, the resulting
class ICMET has computational power strictly between that of channel machines
with insertion errors and that of perfect channel machines, and turns out to be
a useful tool to study Metric Temporal Logic.

We are interested in the following decision problems concerning ICMETs. Let
C = (S, init ,M,C,Δ) be an arbitrary ICMET, and let t ∈ S be a particular con-
trol state of C. The halting problem (also known as the control-state reachability
problem) asks whether there is a computation of C that reaches t (irrespective of
the contents of the channels). The recurrent-state problem, on the other hand,
asks whether C has an infinite computation that visits t infinitely often (again,
irrespective of channel contents).

Theorem 2. The halting problem for ICMETs is decidable, with non-primitive
recursive complexity. The recurrent-state problem for ICMETs is undecidable.

Note that both problems are undecidable for error-free channel machines, since
these are Turing-powerful. On the other hand, both problems are trivially de-
cidable (with polynomial-time complexity) for channel machines with insertion
errors (but without emptiness-testing), since insertion errors make the contents
of channels irrelevant (all read- and write-transitions of every control state are at
all times enabled)—see [9]. We conclude that emptiness-testing imparts a gen-
uine amount of computational power to channel machines with insertion errors,
which however falls short of that of perfect channel machines.

Proof. The proof of decidability relies on the theory of well-structured transition
systems [10], whereas the complexity lower bound is a corollary of Proposition 25
of [19], which itself makes use of a result of Schnoebelen [23]. Both proofs are
omitted here for reasons of space.

For the purposes of this paper the most important result is the undecidability
of the recurrent-state problem, and accordingly we now present the proof in
detail.

Let C = (S, init ,M,C,Δ) be an ICMET. Let m ∈M be a message and c ∈ C
be a channel. We would first like to define a ‘macro’ operation, called occurrence-
testing, that succeeds only if c does not comprise any occurrence of m.

3 One might in addition require that x0 = (ε, . . . , ε), but in the presence of insertion
errors this constraint is pointless.

On Metric Temporal Logic and Faulty Turing Machines 221

To this end, assume that C has an extra working channel, called temp. To
perform occurrence-testing for message m on channel c, do the following:

1. Repeatedly read off messages from c and copy them onto temp; if any of
these messages turn out to be m, halt.

2. At some point, nondeterministically do an emptiness test on c, i.e., proceed
if c is empty, otherwise halt. This guarantees that the whole of c has been
copied onto temp.

3. Copy back the contents of temp onto c, ascertaining success by doing an
emptiness test on temp.

Bearing in mind that insertion errors can occur at any time, the only con-
clusions that can be drawn from a successful ‘m/∈c’-occurrence-test are that
(i) immediately prior to performing occurrence-testing, m did not occur within
c, and (ii) upon completing occurrence-testing, c comprises at least all of its
original contents, in the right order.

In what follows, occurrence-testing will repeatedly be invoked as if it were a
bona fide atomic operation. In fact, we will also perform occurrence-testing for
sets of messages, to be understood as a sequence of occurrence-tests for each
element.

Let T be a deterministic one-tape Turing machine with tape alphabet Σ.
Assume that in any infinite computation of T the tape contents grows unbound-
edly. (If this is not outright the case, simply augment T with a counter that
periodically gets incremented.) For technical reasons, assume also that once the
tape head visits a particular cell, that cell is never blank afterwards (a blank
cell is represented by the symbol B ∈ Σ; the assumption is therefore that B
can only be read by the head, but not written). The (suitably defined) halting
problem for T , when starting on a blank tape, is well-known to be undecidable.

It is equally well-known that a Turing machine such as T can easily be
simulated by an error-free channel machine [8]. A single channel is required,
which is used to mimic the tape of T . The set M of channel messages includes
{a, â | a ∈ Σ}. The ‘hatted’ versions of the symbols are used to indicate the
current position of the head on the tape—accordingly, a channel should always
comprise exactly one hatted symbol, except perhaps during the simulation of a
head transition. M may contain other messages, to keep track, for example, of
the leftmost and rightmost tape letters, etc.

The channel machine simulates a head transition by cycling through the entire
channel once. Moving the head one cell to the right is straightforward, whereas
the easiest way to move the head one cell to the left is to use nondeterminism:
guess the new head position, and carry on with the simulation only if it is subse-
quently immediately confirmed that the chosen cell was the right one. All other
transitions of the Turing machine are equally straightforward to simulate.

Note that nothing precludes the above procedure from being carried out by
a channel machine that suffers from insertion errors; in that case, however, the
‘simulation’ is not guaranteed to accurately reflect the behaviour of T .

A space-bounded computation of T is one in which T uses no more than
some fixed, predetermined number of tape cells (say n). To simulate such a

222 J. Ouaknine and J. Worrell

computation, one initialises the channel with exactly n blanks, and afterwards
strictly alternates read-transitions with write-transitions. In other words, in the
absence of insertion errors the channel size remains essentially constant having
at all times either n or n−1 messages.4 The simulation proceeds until the chan-
nel machine, in attempting to access a blank, is unable to do so. Note that in
the presence of insertion errors, the absence of blanks can be ascertained by
occurrence-testing for B.

Given T as above, we construct an ICMET C = (S, init ,M,C,Δ) composed of
several components (cf. Figure 1). One of these components is a ‘space-bounded
simulator’ for T . The simulator has its own dedicated channel, which is at the
beginning initialised with a certain number of blanks. (One can ascertain that
only blanks are initially on the channel by occurrence-testing for every other
message in M .) The simulator then simulates T until either T halts, in which
case C also halts, or until all blanks are exhausted, in which case the simulator
subroutine returns.

This space-bounded simulator is embedded within a ‘decreasing device’. Once
all blanks are exhausted and the simulator returns, the decreasing device does the
following: it cycles through the whole channel of the simulator and re-initialises
every symbol to B (ascertaining success via occurrence-testing). It then deletes
one of the Bs and launches a fresh new simulation of T all over again.

The decreasing device only returns when, upon having re-initialised the sim-
ulator’s channel with blanks and deleted one, it finds the channel to be empty.
C also keeps a counter, encoded in unary (using the symbol B, say), which

starts at 1 and is subsequently periodically incremented. This counter is at all
times stored either on channel count or channel count ′. The role of the counter
is to indicate how many blanks are to be initially provided upon freshly entering
a decreasing-device cycle. This proceeds as follows. Assuming that the counter is
stored on channel count , for every B in count a B is written both onto the simula-
tor’s channel and onto count ′. This continues until count is empty, at which point
control is passed to the space-bounded simulator. (The next time around pro-
ceeds similarly except that the roles of count and count ′ are inverted, and so on.)

Once the decreasing device returns—upon finding the simulator’s channel
empty, as explained earlier—C visits a distinguished control state t ∈ S, incre-
ments the counter, and starts a new cycle.

The ICMET C is represented diagrammatically in Figure 1. Note that, while
T is a deterministic Turing machine, C is a nondeterministic channel machine.

We claim that C has an infinite computation that visits control state t in-
finitely often iff T does not halt when started on a blank tape. It immediately
follows that the recurrent-state problem for ICMETs is undecidable.

It remains to establish the claim. The right-to-left implication is immediate:
if T does not halt, then consider an error-free computation of C. Since by as-
sumption T ’s tape contents grows unboundedly with time, every space-bounded

4 Note that in the ‘unconstrained’ simulation of T described earlier, the channel may
grow unboundedly (even without insertion errors) as the channel machine periodi-
cally adds blanks to it as needed to accurately mimic T ’s unbounded tape.

On Metric Temporal Logic and Faulty Turing Machines 223

space−bounded
simulator

initialise simulator channel
with counter number of blanks

increment counterto 1set counter

init change every symbol to blank
and then delete one blank

simulator

empty
channel

all blanks exhausted

t

Fig. 1. A schematic representation of the ICMET C. The starting state is init , and
we are interested in computations that visit state t infinitely often. Note that C is a
nondeterministic machine; the two transitions emerging from ‘change every symbol to
blank and then delete one blank’, for instance, are not mutually exclusive.

simulation of T eventually exhausts all blanks (recall that T never writes a fresh
blank). As the starting number of blanks in successive space-bounded simula-
tions always decreases by one, the channel always eventually becomes empty and
C therefore always eventually reaches t.

Assume now that C has an infinite computation that visits t infinitely often,
and suppose on the contrary that T halts. Let n be the total number of tape cells
visited by T in the course of its halting computation. Since C always increments
its counter after visiting t, and since insertion errors can only increase, but not
decrease, the value of the counter, eventually the counter reaches some value
greater than or equal to n.

At that point, C initiates a space-bounded simulation of T starting with p1
blanks, where p1 ≥ n. The simulation continues until no blanks remain on the
tape, at which point all symbols are converted to blanks and one blank is deleted.
Let us say there are then p2 blanks on the channel. Note that, although C never
‘knowingly’ inserts any extra symbol (blank or otherwise) on the simulator’s
channel during a space-bounded simulation, insertion errors can occur, so that
p2 could be larger than p1. In fact, it is clear that p2 = p1 − 1 iff no insertion
error occurred throughout the entire space-bounded simulation (including the
channel re-initialisation step).

Continuing in this way, we get a sequence of numbers p1, p2, p3, . . . , pk which
denote the number of blanks on the channel at the beginning of every space-
bounded simulation. Since by assumption the computation of C we are consid-
ering always eventually visits t, and since t can only be reached if the simulator
channel is empty, we have pk = 0. Since p1 ≥ n, and since the number of blanks
decreases by at most 1 in going from any pi to pi+1, we conclude that there is
some j such that pj = n and pj+1 = n−1. In other words, the j-th space-bounded
simulation was an error-free simulation of T that started on a channel with n
blanks. Since T is deterministic, this simulation should have led to T halting,
which in turn should have halted C as well, contradicting our initial hypothesis.

This concludes the proof of Theorem 2. ��

224 J. Ouaknine and J. Worrell

3 Metric Temporal Logic

We now formally present Metric Temporal Logic (MTL). Given the leisurely
background review offered in the Introduction, the present treatment is rather
succinct. For a more detailed and comprehensive account of MTL we refer the
reader to [6].

A time sequence τ = τ0τ1 . . . is a finite or infinite sequence of time values
τi ∈ R≥0 with τi ≤ τi+1 for all i < |τ | − 1. Here |τ | denotes the length of τ . If τ
is infinite, we require that {τi | i ∈ N} be unbounded (non-Zenoness).

A timed word over finite alphabet Σ is a pair ρ = (σ, τ), where σ = σ0σ1 . . . is
a word over Σ and τ is a time sequence of the same length. We also occasionally
refer to a pair (σi, τi) as a timed event, having τi as a timestamp. Finally, we
write TΣ∗ for the set of finite timed words over alphabet Σ, and TΣω for the
set of infinite timed words over Σ.5

Given a finite alphabet Σ of atomic events, the formulas of MTL are built
up from Σ by Boolean connectives and time-constrained versions of the tem-
poral operators next (©), eventually (♦), always (�), and until (U), as
follows:

ϕ ::= � | ϕ1 ∧ ϕ2 | ¬ϕ | a | ©Iϕ | ♦Iϕ | �Iϕ | ϕ1 UI ϕ2

where a ∈ Σ, and I ⊆ R≥0 is an open, closed, or half-open interval with
endpoints in N ∪ {∞}. If I = [0,∞), then we omit the annotation I in the
corresponding temporal operator. We also use pseudo-arithmetic expressions to
denote intervals. For example, the expression ‘≥1’ denotes [1,∞) and ‘=1’ de-
notes the singleton {1}.

Given a (finite or infinite) timed word ρ = (σ, τ) and an MTL formula ϕ,
the satisfaction relation (ρ, i) |= ϕ (read ρ satisfies ϕ at position i) is defined
inductively as follows:

– (ρ, i) |= �
– (ρ, i) |= ϕ1 ∧ ϕ2 iff (ρ, i) |= ϕ1 and (ρ, i) |= ϕ2

– (ρ, i) |= ¬ϕ iff (ρ, i) �|= ϕ
– (ρ, i) |= a iff i < |ρ| and σi = a
– (ρ, i) |=©Iϕ iff i + 1 < |ρ|, (ρ, i + 1) |= ϕ, and τi+1 − τi ∈ I
– (ρ, i) |= ♦Iϕ iff there exists j such that i ≤ j < |ρ|, (ρ, j) |= ϕ, and τj−τi ∈ I
– (ρ, i) |= �Iϕ iff for all j such that i ≤ j < |ρ|, if τj − τi ∈ I then (ρ, j) |= ϕ
– (ρ, i) |= ϕ1 UI ϕ2 iff there exists j such that i ≤ j < |ρ|, (ρ, j) |= ϕ2,

τj − τi ∈ I, and (ρ, k) |= ϕ1 for all k with i ≤ k < j.

We say that ρ satisfies ϕ, denoted ρ |= ϕ, if (ρ, 0) |= ϕ. Additional Boolean
and temporal operators can be defined via the usual conventions. Note that
the expected relationships among the constrained temporal operators hold, viz.

5 Note that we are adopting a weakly monotonic view of time, in that several events
are allowed to share the same timestamp. The results presented here however carry
over verbatim under a strongly monotonic interpretation of time.

On Metric Temporal Logic and Faulty Turing Machines 225

♦Iϕ ≡ � UI ϕ and �Iϕ ≡ ¬♦I¬ϕ. We have nonetheless defined ♦I and
�I separately because our main undecidability result does not require the UI

operators.
Büchi timed automata [3] are real-time extensions of Büchi automata that

accept infinite timed words. It is not necessary for our purposes to say anything
more about these, other than to state that there exists a (rather trivial) Büchi
timed automaton that accepts TΣω, the set of all infinite timed words.

Given an MTL formula ϕ, the finite-satisfiability problem asks if there exists
a finite timed word that satisfies ϕ; this problem was shown to be decidable,
with non-primitive recursive complexity, in [19]. The infinite-satisfiability prob-
lem asks if there is an infinite timed word that satisfies ϕ. Finally, the infinite
model-checking problem asks, given a Büchi timed automaton A, whether all
infinite timed words accepted by A satisfy ϕ. The main result of this paper is
the following:

Theorem 3. The infinite-satisfiability and infinite model-checking problems for
MTL are undecidable. In fact, these problems are already undecidable for the
fragment of MTL that excludes all constrained ‘until’ operators UI .

Proof. The infinite-satisfiability part follows immediately from Theorem 4.3 (in
the next section) and Theorem 2.

For the infinite model-checking statement, consider a universal Büchi timed
automaton (i.e., one that accepts every timed word). Model checking this au-
tomaton against an MTL formula is equivalent to asking whether the formula is
valid, i.e., whether its negation is unsatisfiable. ��

4 Two-Way Reductions

We exhibit a correspondence between the faulty Turing machines studied in
Section 2 and Metric Temporal Logic formulas. More precisely, we show how
to effectively translate finite (respectively infinite) MTL satisfiability questions
into halting (respectively recurrent-state) problems for ICMETs, and vice-versa.

The advantage of this correspondence is that many questions about MTL,
whose dense-time semantics is sometimes considered somewhat awkward and
counter-intuitive [15], can be translated into the purely discrete framework of
ICMETs.

Theorem 4. The following reductions between ICMETs and MTL formulas are
all effective:

1. Let (C, t) be an instance of the halting problem for ICMETs. Then there
exists an MTL formula ϕ such that C reaches t iff ϕ is satisfiable by some
finite word.

2. Let ϕ be an MTL formula. Then there exists an ICMET C together with a
distinguished control state t of C such that ϕ is satisfiable by some finite word
iff C reaches t.

226 J. Ouaknine and J. Worrell

3. Let (C, t) be an instance of the recurrent-state problem for ICMETs. Then
there exists an MTL formula ϕ such that C has a t-recurrent computation iff
ϕ is satisfiable by some infinite word.

4. Let ϕ be an MTL formula. Then there exists an ICMET C together with a
distinguished control state t of C such that ϕ is satisfiable by some infinite
word iff C has a t-recurrent computation.

Moreover, for statements 1 and 3 the fragment of MTL that excludes all con-
strained ‘until’ operators UI suffices.

Proof. For the purposes of this paper the most important statement is 3, and
accordingly we give full details of that proof and briefly comment on the other
cases afterwards.

Let C = (S, init ,M,C,Δ) be an ICMET, with t ∈ S the distinguished control
state. The idea is to encode valid t-recurrent computations of C as timed words,
that are in turn captured by an MTL formula ϕ.

To this end, assume that C has k channels, say C = {c1, . . . , ck}. Define an
alphabet Σ = S ∪M ∪Δ∪ {Bi, Ei | 1 ≤ i ≤ k}. A global state (s, x1, . . . , xk) of
C is encoded as a finite timed word of total duration 2k, as follows:

– s occurs at time 0.
– The contents xi of channel ci is encoded in the open interval (2i− 1, 2i) as

a matching sequence of timed events. The latest event corresponds to the
message at the head of the channel, and so on.

– The event Bi occurs at time 2i−1, and the event Ei occurs at time 2i. These
two events therefore delineate the contents of channel ci.

Moreover, the timed word is strongly monotonic (no two timed events share the
same timestamp), and contains no timed events other than the ones listed above.
In particular, the open time intervals (2i, 2i + 1) are empty.

Note that the density of time allows such timed words to accommodate ar-
bitrarily large channel contents. Note also that any such timed word can be
uniquely converted into a global state of C.

A computation (s0, x0)
α0−→(s1, x1)

α1−→(s2, x2)
α2−→· · · of C can then be encoded

as an infinite timed word, by time-shifting and concatenating the timed words
corresponding to each global state and interspersing the transitions αj , as follow:

– If s0 occurs at time τ0, then sj occurs at time (2k+2)j + τ0, followed by the
encoding of the remainder of the j-th global state, as detailed above.

– αj occurs at time (2k + 2)(j + 1) − 1 + τ0, i.e., exactly one time unit after
the end of the encoding of the j-th global state, and exactly one time unit
before event sj+1.

– If message m in channel ci, in global state j, is not read off while performing
the transition αj , then the difference between the timestamps of the two
occurrences of m in the encodings of the (j+1)-th and j-th global states is
exactly 2k + 2.

On Metric Temporal Logic and Faulty Turing Machines 227

The last clause ensures that channel contents are preserved between transitions;
nothing prevents, however, insertion errors from occurring, in the form of timed
events with no matching events 2k + 2 time units earlier.

Observe that any infinite computation of C can immediately be recovered
from its encoding as an infinite timed word.

It remains to exhibit an MTL formula ϕ that captures precisely the timed
words corresponding to the t-recurrent infinite computations of C. We first build
various useful components, as follows:

We first want to restrict ourselves to strongly monotonic timed words:

ϕsm = �©>0�.

The first event is the control state init , and afterwards control states are
forever spaced exactly 2k + 2 time units apart:

ϕS = init ∧�
(∨

S =⇒
(
♦=2k+2

∨
S ∧�<2k+2¬

∨
S
))

.

The structure of global-state encodings is captured by the following formulas,
for 1 ≤ i ≤ k:

ϕBi = �
(∨

S =⇒ (
♦=2i−1Bi ∧�[0,2i−1)∪(2i−1,2k+2)¬Bi

))
ϕEi = �

(∨
S =⇒ (

♦=2iEi ∧�[0,2i)∪(2i,2k+2)¬Ei

))
ϕci = �

(∨
S =⇒

(
�(2i−1,2i)

∨
M ∧�(2i,2i+1)⊥

))
.

Interspersing transitions:

ϕΔ = �
(∨

S =⇒
(
♦=2k+1

∨
Δ ∧�<2k+1¬

∨
Δ ∧�(2k+1,2k+2)⊥

))
.

We now define components that ensure the validity of the encoded computa-
tion.

Consecutive control states should match the source and target of the inter-
vening transitions; to this end, for any pair of control states s, s′, let Δs,s′ =
{(s,−, s′) ∈ Δ}.

ϕΔS =
∧

s,s′∈S

�
(
(s ∧ ♦=2k+2s

′) =⇒ ♦=2k+1

∨
Δs,s′

)
.

To handle channel integrity, first define:

ϕcopy = �(0,1)

∧
m∈M

(m =⇒ ♦=2k+2m) .

228 J. Ouaknine and J. Worrell

Then, for 1 ≤ i ≤ k and m ∈M , let:

ϕci=∅ =
∨

S ∧
∧

1≤j≤k

♦=2j−1ϕcopy ∧�(2i−1,2i)⊥

ϕci!m =
∨

S ∧
∧

1≤j≤k

♦=2j−1ϕcopy ∧ ♦[2i−1,2i) (©Ei ∧ ♦=2k+2©m)

ϕci?m =
∨

S ∧
∧

1≤j≤k

j �=i

♦=2j−1ϕcopy ∧ ♦=2i−1© (m ∧ ϕcopy) .

Channel contents should vary according to the relevant transitions. Recall
that L = {c!m, c?m, c=∅ | c ∈ C ∧m ∈M}. For l ∈ L, let Δl = {(−, l,−) ∈ Δ}.

ϕΔC = �
(∨

S =⇒
∧
l∈L

(
♦=2k+1

∨
Δl =⇒ ϕl

))
,

where the formulas ϕl are defined above.
We are interested in t-recurrent computations of C, which are captured by

requiring:
ϕrec = �♦t.

Finally, let:

ϕ = ϕsm ∧ ϕS ∧
∧

1≤i≤k

(ϕBi ∧ ϕEi ∧ ϕci) ∧ ϕΔ ∧ ϕΔS ∧ ϕΔC ∧ ϕrec.

By construction, infinite timed words that satisfy ϕ can be translated into valid
t-recurrent computations of C, and vice-versa. It is also clear that ϕ does not
use any UI operator, concluding the proof of Statement 3.

Note that a proof of Statement 1 can easily be engineered along the same
lines as the above.

For Statement 4, one first reduces infinite satisfiability for MTL to a non-
emptiness problem for one-clock timed alternating automata with a weak parity
acceptance condition, by extending the construction presented in [19]. Next, one
translates this non-emptiness problem into the existence of a Büchi path in a
certain well-structured transition system, which can itself be described using a
perfect channel machine, again following a construction of [19]. One then argues
that insertion errors can only cause valid Büchi paths to be rejected, thereby
preserving correctness.

Finally, Statement 2 can be handled by following a simplified version of the
above procedure. ��

5 Summary

The main result of this paper is that the satisfiability and model checking
problems for Metric Temporal Logic, interpreted over infinite timed words, are

On Metric Temporal Logic and Faulty Turing Machines 229

MTL ICMET Complexity
Finite satisfiability Halting problem Non-primitive recursive
Infinite satisfiability Recurrent-state problem Undecidable

Fig. 2. A summary of the two-way reductions between Metric Temporal Logic and
faulty Turing machine problems

undecidable. As such, this closes a gap between a host of decidability and un-
decidability results for various variants of MTL. The crux of our approach is
to establish a strong correspondence between problems about Metric Temporal
Logic and problems about ICMETs, a particular brand of faulty Turing ma-
chines, as depicted in Figure 2.

An interesting question is whether this correspondence can be leveraged, in
one direction or the other, to obtain additional results or insights about the two
entities MTL and ICMET.

References

[1] P. Abdulla and B. Jonsson. Undecidable verification problems with unreliable
channels. Inf. Comput., 130:71–90, 1996.

[2] P. A. Abdulla, J. Deneux, J. Ouaknine, and J. Worrell. Decidability and complex-
ity results for timed automata via channel machines. In Proc. ICALP, volume
3580 of Springer LNCS, 2005.

[3] R. Alur and D. Dill. A theory of timed automata. Theor. Comput. Sci., 126:
183–235, 1994.

[4] R. Alur, T. Feder, and T. A. Henzinger. The benefits of relaxing punctuality. J.
ACM, 43:116–146, 1996.

[5] R. Alur and T. A. Henzinger. Logics and models of real time: A survey. In Proc.
RTTP, volume 600 of Springer LNCS, 1992.

[6] R. Alur and T. A. Henzinger. Real-time logics: Complexity and expressiveness.
Inf. Comput., 104:35–77, 1993.

[7] R. Alur and T. A. Henzinger. A really temporal logic. J. ACM, 41:181–204, 1994.
[8] D. Brand and P. Zafiropulo. On communicating finite-state machines. J. ACM,

30(2):323–342, 1983.
[9] G. Cécé, A. Finkel, and S. P. Iyer. Unreliable channels are easier to verify than

perfect channels. Inf. Comput., 124:20–31, 1996.
[10] A. Finkel and P. Schnoebelen. Well-structured transition systems everywhere!

Theor. Comput. Sci., 256(1-2):63–92, 2001.
[11] T. A. Henzinger. The Temporal Specification and Verification of Real-Time Sys-

tems. PhD thesis, Stanford University, 1991. Tech. rep. STAN-CS-91-1380.
[12] T. A. Henzinger. It’s about time: Real-time logics reviewed. In Proc. CONCUR,

volume 1466 of Springer LNCS, 1998.
[13] T. A. Henzinger, Z. Manna, and A. Pnueli. What good are digital clocks? In

Proc. ICALP, volume 623 of Springer LNCS, 1992.
[14] T. A. Henzinger, J.-F. Raskin, and P.-Y. Schobbens. The regular real-time lan-

guages. In Proc. ICALP, volume 1443 of Springer LNCS, 1998.
[15] Y. Hirshfeld and A. Rabinovich. Logics for real time: Decidability and complexity.

Fundam. Inform., 62(1):1–28, 2004.

230 J. Ouaknine and J. Worrell

[16] R. Koymans. Specifying real-time properties with metric temporal logic. Real-time
Systems, 2(4):255–299, 1990.

[17] S. Lasota and I. Walukiewicz. Personal communication, 2005.
[18] S. Lasota and I. Walukiewicz. Alternating timed automata. In Proc. FOSSACS,

volume 3441 of Springer LNCS, 2005.
[19] J. Ouaknine and J. Worrell. On the decidability of metric temporal logic. In Proc.

LICS. IEEE Press, 2005.
[20] J. Ouaknine and J. Worrell. Safety metric temporal logic is fully decidable. Sub-

mitted, 2005.
[21] J.-F. Raskin and P.-Y. Schobbens. State-clock logic: A decidable real-time logic.

In Proc. HART, volume 1201 of Springer LNCS, 1997.
[22] K. Schneider. Verification of Reactive Systems. Springer, 1997.
[23] P. Schnoebelen. Verifying lossy channel systems has nonprimitive recursive com-

plexity. Inf. Process. Lett., 83(5):251–261, 2002.
[24] T. Wilke. Specifying timed state sequences in powerful decidable logics and timed

automata. In Proc. FTRTFTS, volume 863 of Springer LNCS, 1994.

Denotational Semantics of Hybrid Automata�

Abbas Edalat1 and Dirk Pattinson2

1 Department of Computing, Imperial College London, UK
2 Department of Computer Science, University of Leicester, UK

Abstract. We introduce a denotational semantics for non-linear hybrid au-
tomata, and relate it to the operational semantics given in terms of hybrid trajec-
tories. The semantics is defined as least fixpoint of an operator on the continuous
domain of functions of time that take values in the lattice of compact subsets of
n-dimensional Euclidean space. The semantic function assigns to every point in
time the set of states the automaton can visit at that time, starting from one of its
initial states. Our main results are the correctness and computational adequacy of
the denotational semantics with respect to the operational semantics and the fact
that the denotational semantics is computable.

1 Introduction

A hybrid automaton [12, 2] is a digital, real-time system that interacts with an analogue
environment. Hybrid automata are ubiquitous in all areas of modern engineering and
technology. For example, the (digital) height control of an automobile chassis depends
on and influences the (continuous) driving conditions of the vehicle [18]. Hybrid au-
tomata typically operate in safety critical areas, such as the highway control systems
[17] and air traffic control [20]. They combine a finite set of control states with contin-
uous dynamics. In every control state, the continuous variables evolve according to an
ordinary differential equation and the system changes control states if the continuous
variables reach certain thresholds.

One of the key concerns in the theory of hybrid automata is the algorithmic verifica-
tion of safety critical properties. This problem is well understood for linear systems [3]
and implemented in the model checker HyTech [13]. The situation for non-linear sys-
tems is, not surprisingly, much less satisfactory. While the approximation of non-linear
hybrid automata by linear systems is asymptotically complete [14], it results in a huge
blow-up in the number of discrete control states and associated state transitions, which
limits the possibilities of algorithmic analysis.

This paper presents an alternative approach. Conceptually, we regard a hybrid au-
tomaton as the integration of two different types of systems: the evolution of a family
of continuous systems, governed by differential equations, and the dynamics of a dis-
crete system given by a generalised iterated function system (IFS), see [16]. We syn-
thesise the domain-theoretic approach to solving differential equations [7, 10] and the
domain-theoretic approach to obtain the attractor of an iterated function system [6] to
develop a domain-theoretic semantics for general hybrid automata. The denotational
semantics assigns to every time point t the set �H	(t) of states that the automaton H

� This work has been partially supported by DFG (Germany) and the European Union.

L. Aceto and A. Ingólfsdóttir (Eds.): FOSSACS 2006, LNCS 3921, pp. 231–245, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

232 A. Edalat and D. Pattinson

can enter at time t. The semantic function �H	 is obtained as the least fixpoint in the
(continuous) domain of compact-set valued functions of a real variable. Our first main
results are correctness and computational adequacy of this denotational semantics w.r.t.
the operational semantics, given in terms of a labelled transition system. Moreover,
standard techniques of domain theory allow us to actually compute this function. The
implications are twofold: we obtain new results on the computability of trajectories in
the domain theoretic model, and our analysis gives rise to a directly implementable al-
gorithm that computes approximations to the semantic function �H	 up to an arbitrary
degree of accuracy. As the algorithm works on proper data types, defined e.g. over the
dyadic numbers, this property is moreover guaranteed for implementations.

The paper is divided in two parts. In the first part, we focus on flow automata, where
the behaviour of the continuous variables in every discrete control state is governed by
flow functions, which behave like the solutions of ordinary differential equations. We
impose two conditions on the automata under scrutiny: first, we require that the ingredi-
ents of the automaton give rise to Scott continuous functions on the respective domains.
In order to show that the least fixpoint precisely captures the reachable states, we as-
sume that the automaton is separated, i.e. has no transient states which the automaton
can leave immediately (after 0 time units) after entering. We discuss these restrictions
by means of examples, and show that the semantic function associated with a flow au-
tomaton cannot be computable in absence of these properties.

In the second part of the paper, we transfer the results obtained to hybrid automata,
where the trajectories of the continuous variables are given by a vector field. By instan-
tiating earlier results on domain theoretic solutions of initial value problems, we reduce
the problem of computing the semantic function of a hybrid automaton to that of a
flow automaton. Taken together, the domain theoretic approach provides a new com-
putational model for the analysis of hybrid systems, and gives rise to both new com-
putability results, and directly implementable data types and algorithms for the analysis
of non-linear systems.

Related Work. We have already mentioned symbolic techniques for the analysis of lin-
ear hybrid automata [3] and their implementation in the HyTech model checker [13].
The domain theoretic approach of this paper is related to the interval analysis approach
of [15], where interval numerical methods are used to compute over-approximations of
the set of reachable states. In contrast to loc.cit., where outward rounding is required
if the result of an arithmetic operation is not machine representable, the domain theo-
retic model of computation actually allows to compute the semantic function up to an
arbitrary degree of accuracy.

2 Preliminaries and Notation

We use basic domain theoretic notions, see e.g. [1, 11]. In particular, our analy-
sis employs the following domains defined over the real numbers: the domain of
n-dimensional compact rectangles extended with a least element

IRn = {a ⊆ Rn | a nonempty compact rectangle} ∪ {Rn},
ordered by reverse inclusion, and the extended upper space

Denotational Semantics of Hybrid Automata 233

U�Rn = {c ⊆ Rn | c compact} ∪ {Rn}
of compact subsets of Rn, also ordered by reverse inclusion. Note that the extended
upper space arises by extending the upper space [5] with the top element � = ∅. A
closed semi rectangle in Rn is of the form a1 × · · · × an, where the ai are closed (not
necessarily bounded) intervals in R. If A is a semi-rectangle, we write IA = {A∩r | r ∈
IRn} and U�A = {A ∩ c | c ∈ U�Rn} for the sub-domain of all elements above A. In
particular, we will consider the domain I[0,∞), whose bottom element is ⊥= [0,∞).
For a semi rectangle A, IA is a continuous Scott domain and U�A is a continuous lattice.
We often consider IA ⊆ U�A as a sub-domain without making this explicit; similarly,
we identify x ∈ Rn with the degenerate hyper-rectangle {x} ∈ IRn ⊆ U�Rn. We
write ⊥ = A for the least element of both IA and U�A, and � = ∅ for the top element
of U�A. Note that the way-below relation, both in IA and U�A, is given by a) b iff
b ⊆ ao, where ao is the interior of a.

If (Ci)i∈I is a family of compact subsets Ci ⊆ Rni , we identify (xi)i∈I ∈∏
i∈I U�Ci with the set {(i, y) | i ∈ I, y ∈ xi} for convenience of notation. Note that

this induces a membership predicate and subset relation, which are explicitely given by

(j, z) ∈ (xi)i∈I ⇐⇒ z ∈ xj and (xi)i∈I ⊆ (yi)i∈I ⇐⇒ ∀i ∈ I.xi ⊆ yi

where (xi)i∈I and (yi)i∈I ∈
∏

i∈I U�Ci, j ∈ I and z ∈ Cj . Moreover, we obtain two
continuous maps

⋂
,
⋃

, whose explicit definition reads

� : (
∏
i∈I

U�Ci)2 →
∏
i∈I

U�Ck, ((xi)i∈I , (yi)i∈I) �→ (xi�yi)i∈I

where � ∈ {⋂,
⋃}. Note that, domain theoretically,

⋂
is the least upper bound and⋃

gives us the greatest lower bound of two elements of
∏

i∈I U�Ci. We always con-
sider sub-domains of the upper space or the interval domain as equipped with the Scott
topology.

The symbol ⇒ is used for the continuous function space. In particular, for semi
rectangles A,B, we consider the set (A ⇒ U�B) of functions f : A → U�B which
are continuous with respect to the Euclidean topology on A and the Scott topology on
U�B. Similarly, (U�A ⇒ U�B) denotes the set of functions that are continuous w.r.t.
the Scott topology on U�A and U�B; the same applies to the interval domain.

We extend the ordinary arithmetical operations to the upper space without further
mention. In particular, we write a�b = {x�y | x ∈ a, y ∈ b}, where � ∈ {+,−, ∗, /}
and a, b ∈ U�Rn. (We adopt the standard convention that a/b =⊥ if 0 ∈ b.)

It is a straightforward exercise to see that Scott continuous functions of type A →
U�B are precisely the semi continuous functions of set-valued analysis [4]. More con-
cretely, we have that f : A→ U�B is Scott continuous, iff

∀x ∈ A∀ε > 0∃δ > 0∀x′ ∈ Bε(x).f(x′) ⊆ f(x) + Bδ

where Bε(x) = {x′ ∈ A | ‖x− x′‖ < ε} and Bδ = Bδ(0). Note that we have the Scott
continuous extension mapping

E : (A⇒ U�B)→ (U�A⇒ U�B), f �→ λx.

y∈x

f(y),

234 A. Edalat and D. Pattinson

and it is an easy exercise to show that this greatest lower bound is actually given by
direct image, i.e. E(f)(x) =

⋃{f(y) | y ∈ x}.

3 Flows and Flow Automata

We begin our study of hybrid automata by first discussing flow automata, where the
continuous evolution in every control state is an explicitly given flow function. This
will subsequently be shown to be equivalent to the case that the continuous evolution is
specified by a vector field in Section 6. For flow automata, every discrete control state
comes with a flow function that behaves like the solution of an initial value problem,
and governs the evolution of the continuous variables in that state.

Definition 1. A flow is a continuous function f : Rn × [0,∞)→ Rn, which is contin-
uously differentiable w.r.t. its last argument, such that f(x, 0) = x and f(x, s + t) =
f(f(x, s), t) for all x ∈ Rn and s, t ∈ [0,∞).

That is, a flow f : Rn × [0,∞) → Rn behaves like the solution of an initial value
problem ḟ(t) = v(f(t)), f(0) = x, where v is defined on the whole of Euclidean space
Rn. Note that flows typically arise as solutions of initial value problems:

Lemma 1. Suppose v : Rn → Rn is a Lipschitz vector field. If f(x, ·) denotes the
(unique) solution of the initial value problem f(x, t) = v(f(x, t)), f(x, 0) = x, then f
is a flow. We say that f is the flow induced by v.

We now introduce continuous flow automata.

Definition 2. A flow automaton in Rn is a tuple F = (Q, inv, flow, res, init) where

– Q is a finite set of discrete control states
– inv = (inv(q))q∈Q is a family of state invariants with inv(q) ⊆ Rn

– flow = (flow(q))q∈Q is a family of flow functions flow(q) : Rn × [0,∞)→ Rn

– res = (res(p, q))p,q∈Q is a family of reset relations with res(p, q) : inv(p) →
P(inv(q))

– init = (init(q))q∈Q is a family of initial states with init(q) ⊆ inv(q).

We call a flow automaton compact, if inv(q), init(q) ∈ U�Rn are compact for all
q ∈ Q and res(p, q)(x) ∈ U�inv(q) is a compact subset of inv(q) for all p, q ∈ Q
and all x ∈ inv(q). A state of a flow automaton is a tuple (q, x) with q ∈ Q and
x ∈ inv(q). We write SF = {(q, x) | q ∈ Q, x ∈ inv(q)} for the state space of F and
iF = {(q, x) ∈ S | x ∈ init(q)} for the set of initial states.

Although our interest in the flow function will be restricted to values flow(q)(x, t),
where x ∈ inv(q), the flow function is defined on the whole of Euclidean space for
convenience.

The above definition of flow automata, while slightly different, is equivalent to the
standard definition given e.g. in [3]. While our control states are in one-to-one corre-
spondence to the control locations of loc.cit., the transitions between control states are

Denotational Semantics of Hybrid Automata 235

modelled in terms of a finite multiset V ⊆ Q × Q of transitions, and an action predi-
cate act(v) ⊆ Rn × Rn is assigned to every transition v ∈ V . In this terminology, the
automaton can change its state, say from state (q, x) to state (q′, x′) iff there exists a
transition (q, q′) ∈ V with (x, x′) ∈ act(v). In our terminology, this can be modelled
by the reset relation res(q, q′) = λx.{y ∈ inv(q) | ∃(q, q′) ∈ V.(x, y) ∈ act(q, q′)}.

For the remainder of the paper, we assume that all flow automata are compact. Our
main interest lies in the comparison of the denotational semantics and the operational
semantics of a flow automaton. The latter is given in terms of a labelled transition
system, where a label is either a non-negative real numbers, that signifies time, or τ ,
indicating that the automaton is changing its discrete control state.

Definition 3. Suppose F = (Q, inv, flow, res, init) is a flow automaton and let Σ =
[0,∞) ∪ {τ}. The associated transition system TF is the tuple (SF ,→), where SF is
the state space of F and→⊆ S ×Σ × S is defined by the following two clauses:

flow transitions (q, x)→t (q′, x′) iff q = q′, flow(q)(x, t0) ∈ inv(q) for all t0 ∈ [0, t]
and flow(q)(x, t) = x′

jump transitions (q, x)→τ (q′, x′) iff x′ ∈ res(q, q′)(x)

For states s, s′ ∈ S, we write s →t
∗ s′ if there is a finite sequence of states s1, . . . , sk

with s →δ1 s1 →δ2 · · · →δk sk = s′ with δ1, . . . , δk ∈ Σ and
∑

δk∈[0,∞) δk = t. We
write init→t

∗ s iff there exists i ∈ iF with i→t
∗ s.

An F -trajectory is a finite or infinite sequence (ti, qi, fi)i<N where N ∈ N ∪ {∞}
such that (ti)i<N is non-decreasing in [0,∞), (qi)i<N is a sequence in Q and fi :
[ti−1, ti] → Rn is a function (we use the convention that t−1 = 0) that, for all i < N ,
satisfies

– f0(t−1) ∈ init(q0) and (qi, fi(ti−1))→t (qi, fi(ti−1 + t)) for all t ∈ [ti−1, ti]
– (qi, fi(ti))→τ (qi+1, fi+1(ti)).

We denote the set of possible states of the automaton F at time t by RF (t) and the set
of all states the automaton can visit up to time t by VF (t), formally defined by

RF (t) = {s ∈ SF | init→t
∗ s} and VF (t) =

⋃
{RF (s) | s ≤ t}

where t ∈ [0,∞).

Note that by assumption, flow(qi)(fi(ti−1), t) = fi(ti−1 + t). Compared with the defi-
nition of trajectories in [2], it is straightforward to verify that, under the correspondence
outlined after Definition 2, our definition of trajectories gives rise to the same semantics.

We now turn to the main issue of the present paper and describe the necessary
ingredients needed to perform domain theoretic analysis of a flow automaton F .
Our main goal is to define a domain theoretic semantic function �F 	 : [0,∞) →∏

q∈Q U�inv(q). The function �F 	 associated to every time point t ∈ [0,∞) an ele-
ment of

∏
q∈Q U�inv(q). That is, to every point in time t we associate a family (sq)q∈Q,

with sq ⊆ inv(q), of compact sets such that {(q, x) | x ∈ sq} = RF (t). Having com-
puted RF , it is easy to derive a mechanism for computing the possibly visited states
VF (t) at time t by unfolding the definition of VF . We demonstrate later, that it is also
possible to obtain VF directly as a fixed point.

236 A. Edalat and D. Pattinson

The goal of the construction is to give a continuous semantics of flow automata: if
the automaton is effectively given, i.e. both flow and res arise as limits of sequences of
finitary approximations with flow =

⊔
k∈N

fk and res =
⊔

k∈N
rk , then we can effec-

tively obtain σk : [0,∞) → ∏
q∈Q inv(q) such that �F 	 =

⊔
k∈N

σk . This provides us
with three important properties:

1. Every σk is a conservative approximation of the semantics of F , for k ≥ 0.
2. The semantics of F can be computed up to an arbitrary degree of accuracy.
3. The algorithm for computing σk can be implemented on a digital computer without

loss of precision.

Clearly, continuity of the semantics mapping �·	 can only be achieved if we restrict
attention to flow automata, whose components are continuous. This motivates the next
definition.

Definition 4. A flow automaton F = (Q, inv, flow, res, inv) is continuous, if res(p, q) :
inv(p)→ U�inv(q) is Scott continuous for all p, q ∈ Q. We say that F is separated, if

– x ∈ res(p, q)(y) implies that res(q, r)(x) = ∅ for all p, q, r ∈ Q and y ∈ inv(p)
– x ∈ init(q) implies that res(q, r)(x) = ∅ for all q, r ∈ Q

While the continuity condition on res is clearly enforced by our goal to be able to ap-
proximate the semantics of flow automata, the separation condition tells us that there are
no transient states, i.e. the automaton cannot perform state changes from q0 to q1, and
subsequently from q1 to q2 without remaining in state q1 for a non-zero amount of time.

We will see later that separation and continuity imply that the automaton under
scrutiny is non-zeno. While we believe that all of our results can be established even
for non-separated automata under the additional assumption that the automata are non-
zeno, the main benefit of the separation property is that it is very easy to verify.

For a continuous flow automaton, the family res(p, q)p,q∈Q induces a generalised
IFS on the extended upper spaces of inv(p), for p ∈ Q, as we will see in Definition 5
later on. The following example discusses the requirements introduced in Definition 4.

Example 1. We consider the following variant F of a thermostat automaton, see e.g.
[14]. Let Q = {on, off} with inv(q) = [1, 3] for q = on, off. The flow functions are
given by the differential equations flow(on)(x0, ·) = the unique solution of ẋ = −x +
5, x(0) = x0, and similarly, flow(off)(x0, ·) = the unique solution of ẋ = −x, x(0) =
x0, with initial state (on, 2). We fix two subsets φ, ψ ⊆ [1, 3] and let res(on, off)(x)
= {x} ∩ ψ. The function res(off, on) is given by x �→ ψ, if x ∈ [0, 1], and x �→ ∅
otherwise. Graphically, the automaton can be displayed as follows, where x′ denotes
the value of x after the change of control states.

x=2
���������	(on)

ẋ = −x + 5
x ∈ [1, 3]

x ∈ φ

x′ = x
���������	(off)

ẋ = −x

x ∈ [1, 3]
x ∈ [0, 1]

x′ ∈ ψ
��

We now discuss several alternatives for the sets φ and ψ, and relate them to continuity
of the induced automaton.

Denotational Semantics of Hybrid Automata 237

1. Suppose ψ = (1, 2). Then res(off, on) does not take values in U�[1, 3], as (1, 2)
is not compact, hence res(off, on) is not a well defined function of type [1, 3] →
U�[1, 3].

2. Suppose φ = (2, 3]. Then the F is not continuous, as for x = 2 and ε > 0, we fail
to find δ s.t. for all x′ ∈ Bδ(x) we have res(on, off)(x′) ∈ res(on, off)(x) + Bε.

3. If both φ and ψ are compact, then F is continuous.
4. We have that F is separated, iff φ ∩ [0, 1] = φ ∩ ψ = ∅ and φ ∩ {2} = ∅.

To verify continuity of the reset functions in practice, note that Scott continuity is pre-
served by function composition, hence all combinations of Scott continuous functions
will be Scott continuous. In particular, we note that the following functions are Scott
continuous, and thus can be used as building blocks for reset functions.

Proposition 2. Suppose A, B ∈ U�Rn.

1. All step functions
a ↘ b : A → U�B, x �→

{
b x ∈ ao

⊥ otherwise

are continuous for a ∈ U�A, b ∈ U�B, where ao denotes the interior of a.
2. All co-step functions

a ↖ b : A → U�B, x �→
{

b x ∈ a

 otherwise

are continuous for a ∈ U�A, b ∈ U�B.
3. All functions

�� b : A → U�B, x �→ {x} ∩ b

are continuous for b ∈ U�B
4. If f1, f2 : A → U�B are continuous, then so is f1 ∪ f2 : A → U�B, x �→

f1(x) ∪ f2(x).
5. If (fi)i∈I is directed (w.r.t. the pointwise ordering), then

⊔
i∈I fi : A → U�B, x �→⊔

i∈I fi(x) is continuous.

The previous proposition gives some general construction principles for continuous
hybrid automata, and can be applied to show that a large class of flow automata are
actually continuous. We now turn to the separation property. The following example,
which is a variation of the bouncing ball automaton [19] shows, that the separation
property is vital for the computability of the semantic function associated with a flow
automaton.

Example 2. Consider the automaton F = (Q, init, flow, res, inv) with

– Q = {q}
– inv(q) = [0, 1]
– flow(r, t) = r + a · t
– res(x) = {2x,−2x} ∩ [0, 1]
– init(q) = {0}

x=0
��
��
����q

ẋ = a

x ∈ [0, 1] ������ x′
∈{2x,−2x}∩[0,1]

����

238 A. Edalat and D. Pattinson

where a ∈ R is a computable real number, as depicted on the right above. Suppose
we can effectively find a sequence of functions Rk : [0, 1] → U�[0, 1] such that⊔

k∈N
Rk = RF . Then clearly R(1) = {0} iff a = 0, and R(1) ∩ [1/2, 1] �= ∅ iff

a > 0. As R(1) =
⋂

k∈N
Rk(1), this implies that we can semi-decide whether a = 0.

Together with a semi decision procedure for a �= 0, we arrive at a decision procedure
for a = 0, which is impossible, see e.g. [21].

Recall that a flow automaton is zeno, if it admits a trajectory (ti, qi, fi)i<∞ with
supi<∞ ti < ∞. The key consequence of separation, which makes it possible to com-
pute the semantic function associated with a flow automaton, is that separated automata
are non-zeno. This is the content of the next proposition.

Proposition 3. Suppose F is separated and continuous. Then F is non zeno.

Note that, while the fact that an automaton is separated is sufficient for it being non-
zeno, the separation property is not necessary. Consider for example the automaton

�������	(up)
ẋ = 1

x ∈ [−1, 1]

x = 1
���������	(trans)

ẋ = 1
x ∈ [−1, 1]

x = 1
���������	(down)

ẋ = −1
x ∈ [−1, 1]

x = −1

��

with reset relations res(up, trans) = res(trans, down) = λx.{x} ∩ {1} and
res(down, up) = λx.{x} ∩ {−1} and initial state (up, 0). Then clearly F is non-
zeno, but F is not separated. This suggests that the separation property can be relaxed,
and one just needs to require that there is no finite loop (q0, x0), (q1, x1), . . . , (ql, xl)
with xi+1 ∈ resqi,qi+1(xi) and x0 ∈ resql,q0(xl), but we refrain from doing so, as the
technical complications would obscure the techniques at the heart of our analysis.

4 Denotational Semantics of Continuous and Separated Automata

We now turn to the main objective of the present paper and describe a computa-
tional method for obtaining RF for a continuous and separated flow automaton F .
Our technique will compute the function RF as least fixpoint of a functional of type
([0, ∞) ⇒ U) → ([0, ∞) ⇒ U), where U =

∏
q∈Q U�inv(q). We first introduce some

terminology to make the notation more readable.

Definition 5. Suppose F = (Q, inv, flow, res, init) is a flow automaton. The function

fF : U × I[0, ∞) → U ,

((xq)q∈Q, α) �→ ({flow(q)(yq, t) | yq ∈ xq, t ∈ α, ∀s ≤ t.flow(q)(yq, s) ∈ inv(q)})q∈Q

is called the extended flow function, and

rF : U → U , (xq)q∈Q �→ (
⋃

p∈Q

E(res(p, q))(xp))q∈Q

is the extended reset function. If the automaton F is clear from the context, we omit the
corresponding subscript.

Denotational Semantics of Hybrid Automata 239

While the extended reset function collects all the functions res(p, q) in a single map, the
rationale behind the definition of the extended flow function is moreover that we need
to cut out those portions of the flows that leave or re-enter a state invariant. Pictorially,
this leaves us with the shaded region displayed in Figure 1. It is easy to see that both

inv(q)α

flow(q)

ttt −1 0 1

f

t 2

 0 1

f2

f

Fig. 1. The functions fF (α, ·) (left) and ρ	 (right)

the extended flow function, and the extended reset function are Scott continuous.

Lemma 4. If F is continuous, then both fF and rF are Scott continuous.

With this notation, we are now ready to introduce the key concept of the present paper:
the forward action associated with a flow automaton. As we will see later, the least
fixpoint of this operator captures the set of of states the automaton can engage in at
time t and, moreover, can be effectively computed.

Definition 6. Suppose F is a flow automaton. The operator

ΦF : ([0,∞)⇒ U)→ ([0,∞)⇒ U), ρ �→ λt.fF (iF , t) ∪
⋃
s≤t

fF (rF (ρ(s), t− s))

is called the forward action associated with F .

The forward action combines the discrete action and the continuous flow, and can be
seen as a generalisation of the fixpoint operator associated with an IFS [6]. Our goal is
to show that the least fixpoint of the forward action is precisely the function RF that
computes reachable states. In order to compute this fixpoint effectively, we first have
to ensure that ΦF is compatible with approximations, i.e. ΦF is well-defined and Scott
continuous.

Lemma 5. Both ΦF (ρ), for ρ ∈ ([0,∞)⇒ U), and ΦF are Scott continuous.

Continuity of ΦF now guarantees the existence of a least fixpoint of ΦF , which we
denote by �F 	 throughout. We now examine this fixpoint and show that it precisely
captures the set of all F -trajectories.

In order to show soundness, it is convenient to formulate trajectories as maps into the
upper space. In order to turn the trajectories into Scott continuous functions, we let the
induced function take a non-singleton set as value whenever the discrete control state
changes. Below, sgn(x) ∈ {−1, 0,+1} is the sign of x ∈ R.

240 A. Edalat and D. Pattinson

Lemma 6. Suppose f−1 : [−1, 0] → R and f+1 : [0, 1] → R are continuous. Then
the function f ⊕ g : [−1, 1] → U�R, defined by t �→ {fsgn(t)(t)}, if t 	= 0, and
t �→ {f(0), g(0)} otherwise, is Scott continuous.

For F -trajectories, we have the following corollary. Note that the condition on trajecto-
ries is automatic for continuous and separated automata.

Corollary 7. Suppose F is a flow automaton ρ = (ti, qi, fi)i<N is a F -trajectory with
supi ti =∞ in case N =∞. Then

ρ� : [0,∞)→ U , t �→ {(qi, fi(t)) | t ∈ [ti−1, ti]}
where q ∈ Q, is Scott-continuous. Moreover, RF (t) =

⋃{ρ�(t) | ρ is an F −
trajectory}, if F is a flow automaton.

The function ρ� is visualised on the right hand side of Figure 1. The next statement is a
stepping stone for proving the soundness of our approach. We show, that applying ΦF ,
we do not lose any trajectories; hence starting the fixpoint iteration from the everywhere
undefined function, the least fixpoint is guaranteed to cover all trajectories.

Lemma 8. Suppose F is separated and continuous, ρ is an F -trajectory and σ ∈
([0,∞)⇒ U) with σ
 ρ�. Then ΦF (σ)
 ρ�.

Note that the proof of the previous theorem relies on separatedness. Using the above
result, correctness of the fixpoint construction is very easy to show.

Corollary 9 (Correctness). Suppose F is continuous and separated. Then s ∈ �F 	(t)
if init→t

∗ s for all s ∈ SF and all t ∈ [0,∞).

While the previous result asserts soundness, we now turn to computational adequacy of
the construction, i.e. we show that RF = �F 	, where �F 	 is the least fixpoint of ΦF .

Theorem 10 (Computational Adequacy). Suppose F is separated and continuous.
Then s ∈ �F 	(t) iff init→t∗ s for all s ∈ SF and all t ≥ 0.

The proof of the theorem in fact demonstrates, that any function ρ ∈ ([0,∞)⇒ U) with
ρ
 �F 	, that does not arise as an F -trajectory, necessarily leads to a violation of the
separatedness property. Unfolding the definition of VF , we also obtain computational
means to obtain the states of a flow automaton F that can be visited up to time t, in
terms of the least fixpoint �F 	 of the forward action associated with F . This then gives
VF (t) =

⋃
s≤tRF (s). However, we can also obtain VF as a fixpoint of an operator in

its own right.

Definition 7. The operator

ΨF : ([0,∞)⇒ U)→ ([0,∞)⇒ U), ρ �→ fF (iF , [0, t])∪
⋃
s≤t

fF (rF (ρ(s), [0, t− s]))

is the visited states operator associated with F .

The properties of ΨF are similar to those of ΦF , in particular, ΨF is Scott continuous,
and the least fixpoint captures the set of visited states. More formally:

Denotational Semantics of Hybrid Automata 241

Theorem 11. Suppose ρ : [0,∞)→ U is the least fixpoint of ΨF . Then ρ = VF .

While Theorem 10 and Theorem 11 are important on their own, as they allow us to
obtain the semantics of hybrid automata as a least fixpoint in a suitable function space,
they also allow us to derive new results about the function RF that yields the states
reachable at time t for continuous and separated automata:

Corollary 12. 1. RF (t) and VF (t) are compact for every t ∈ [0,∞).
2. RF and VF are Scott continuous.

5 Approximation of Flow Automata

We have seen that the semantics �F 	 : [0,∞) → U of a flow automaton F can be
computed as the least fixpoint of a functional on ([0,∞) ⇒ U). While this gives a
mathematical means of understanding the semantics, we now show, that this also in-
duces a method to compute the semantics up to an arbitrary degree of accuracy.

To do this, we restrict attention to countable bases of the involved domains, that is,
to finitely representable objects, that generate all of the involved domains by means
of directed suprema. We show, that we can effectively compute the least fixpoint of
the functional up to an arbitrary degree of accuracy, if we approximate all continuous
ingredients of the automaton. We begin by introducing the bases of the domains we are
interested in. For the remainder of the section, we fix a countable dense ordered subring
D = {d0, d1, . . . } with decidable equality and order, and computable ring operations.
We putDk = {d0, . . . , dk}. We only treat the case of computingRF as a least fixpoint;
the setup can be easily adapted to accommodate also VF .

Definition 8. We let, for an arbitrary set S ⊆ R, IRn
S = {[a1, b1] × · · · × [an, bn] ∈

IRn | a1, . . . , an, b1, . . . , bn ∈ S} ∪ {R} denote the set of rectangles with endpoints
in S, augmented with the least element R. If A ⊆ Rn is a semi rectangle, then IAS =
{A ∩ b | b ∈ IRn

S} denotes the set of rectangles R ∈ IRn that are contained in A
and have corners in S, again with a bottom element. We distinguish two kinds of step
functions:

a↘i b : A→ B, x �→
{
b x ∈ ao

⊥ otherwise,
and a↘ b : A→ B, x �→

{
b a� x

⊥ otherwise

where B is a dcpo with b ∈ B in both cases; A ⊆ Rn is a semi rectangle with a ∈ IA in
the case of a↘i b, and A is a dcpo with a ∈ A for a↘ b. We use the following bases:

1. If A ⊆ Rn is a semi-rectangle with corners in D ∪ {±∞}, then the set IAD of
rectangles contained in A and corners in D is called the standard base of IRn.

2. If A ∈ IRn
D, then the set U�AD = {∪1≤i≤kDi | i ∈ N, Di ∈ IAD} of finite unions

of rectangles with corners in D is the rectangular base of U�A.
3. If (Ai)D is a base of the dcpoAi, then (A1× · · ·×An)D = (A1)D× · · ·× (Ak)D

is the base of A1 × · · · ×Ak induced by the components.
4. If AD and BD are bases of the dcpos A and B, respectively, then (A ⇒ B)D =
{⊔i≤i≤k ai ↘ bi ∈ (A ⇒ B) | a1, . . . , ak ∈ AD, b1, . . . bk ∈ BD} is the rectan-
gular base of (A⇒ B).

242 A. Edalat and D. Pattinson

5. Finally, if A ⊆ Rn is a semi rectangle with corners in D∪{±∞} and BD is a base
of the dcpo B, then (A ⇒ B)D = {⊔1≤i≤k ai ↘i bi ∈ (A ⇒ B) | a1, . . . , ak ∈
IAD, b1, . . . , bk ∈ BD is the induced base of of (A⇒ B)

where we indicate by
⊔

1≤i≤k ai ↘ bi ∈ (A ⇒ B) that we consider only consider
consistent step functions [8, Section 2], similarly for

⊔
1≤i≤k ai ↘i bi.

In words, if A,B ⊆ Rn are semi-rectangles, IAD is the set of rectangles contained in A
with corners in D and U�AD is the set of finite unions of rectangles with corners in D.
For the function space, (A ⇒ U�B)D is the induced base of the space of functions of
one or more real variables; (U�A⇒ U�B)D is the induced base of the function space
of a compact set valued variable.

It is easy to see that the sets introduced above are indeed bases of the corresponding
domain. We now use these bases to show, that the fixpoint operator ΦF associated to a
flow automaton can be effectively computed, given approximations of the components
of the automaton. In order to make assertions about the computability of functions in
the domain theoretic model of computation, we have to fix an enumeration of the base
of the involved domains. We do not do this explicitely here, but instead assume that
the bases (·)D above come with an effective enumeration ι : N → (·)D , which is fix
throughout. In particular, the enumeration gives rise to a notion of effective sequence:
If A is a dcpo whose base is enumerated via ι : N → AD , then a sequence (ak)k∈N in
AD is effective, if ak = ι(f(k)) for some total recursive function f .

First, note that composition of base functions yields a base function, and that the
extension function is effectively computable.

Lemma 13. Suppose f ∈ (A⇒ U�B)D and g ∈ (U�B⇒ U�C)D . Then

1. g ◦ f ∈ (A⇒ U�C)D and g ◦ f is effectively computable.
2. E(f) ∈ (U�A⇒ U�B)D and E(f) is effectively computable.

The next lemma gives a basis representation of subtraction, which is needed in the
definition of the fixpoint functional ΦF associated with F , see Definition 6.

Lemma 14. The functions Mk : [0,∞)2 → I[0,∞), defined by Mk =
⊔{a × b ↘

b − a | a, b ∈ I[0,∞)Dk
} satisfy Mk ∈ ([0,∞)2 ⇒ I[0,∞))D for all k ∈ N, and⊔

k∈N
Mk = λ(x, y).y − x.

Building on these basic facts, we can now show, that the least fixpoint of the operator
ΦF associated with a flow automaton is effectively computable. This of course hinges
on the fact that the automaton is effectively given:

Definition 9. Suppose F = (Q, init, flow, res, inv) is a flow automaton. We say that F
is effectively given if it comes with

– an effective sequence (iqk)k∈N in (U�inv(q))D with
⊔

k∈N
iqk = init(q)

– an effective sequence (f q
k)k∈N in (Rn× [0,∞)⇒ IRn)D with

⊔
k∈N

f q
k = flow(q)

– an effective sequence (rp,q
k)k∈N in (inv(p) ⇒ U�inv(q))D with

⊔
k r

p,q
k =

res(p, q)

Denotational Semantics of Hybrid Automata 243

for all q ∈ Q, resp. all (p, q) ∈ Q2 and inv(q) ∈ U�Rn
D for all q ∈ Q. The family

of sequences (f q
k)k∈N, (iqk)k∈N (where q ∈ Q) and (rp,q

k)k∈N (where (p, q) ∈ Q2) are
called an effective presentation of F .

That is to say that, for an effectively given flow automaton, the initial states, the flow
functions and the reset functions are computable. It is easy to see that every effectively
given flow automaton induces a computable extended flow function, and a computable
extended reset function. Spelling this out, Lemma 13 and Lemma 14, together with the
Scott continuity of ΦF , allow us to prove our second main theorem:

Theorem 15. Suppose F is an effectively given flow automaton. Then we can effec-
tively obtain a sequence (σk) with

⊔
k∈N

σk = �F 	.

6 Hybrid Automata

In this section, we transfer our results on flow automata to hybrid systems, where the
continuous behaviour of the system in every given control state is described directly
by a vector field. This is achieved by associating the equivalent flow automaton to the
hybrid automaton under consideration. If the hybrid automaton is effectively given,
we show, that the same also holds for the induced flow automaton. We thus obtain an
effective framework for the analysis of hybrid automata. The following is a variant of
the standard definition of a hybrid automaton [12, 2].

Definition 10. A hybrid automaton is a tuple H = (Q, inv, vect, res, init) where
Q, inv, res, init are as in Definition 2, and vect = (vectq)q∈Q is a family of vector
fields vect(q) : Rn → Rn where all vect(q) are assumed to be globally Lipschitz, i.e.
‖vect(q)(x) − vect(q)(y)‖ ≤ L‖x− y‖, for all q ∈ Q, x, y ∈ Rn and some L ∈ R.

In contrast to the standard definition, the trajectories of the real variables are described
by a differential equation rather than differential inclusion. We require this restriction
in view of the domain theoretic treatment of differential equations [9], which in general
gives a strict over-approximation to the solution of differential inclusion.

We recall from Lemma 1, that every Lipschitz vector field v : Rn → Rn induces
a flow function f : Rn × [0,∞) → Rn. The main reason for restricting attention to
vector fields that are globally Lipschitz is that the induced flows are globally defined;
we believe that similar results can be obtained for vector fields whose associated flows
don’t diverge. Replacing the vector field by the induced flow function, every hybrid
automatonH induces a flow automaton F ; in this case, we write �H	 for �F 	.

Definition 11. Suppose H = (Q, inv, vect, res, init) is a hybrid automaton and
flow(q) is the flow induced by vect(q). The automaton F = (Q, inv, flow, res, init)
is called the flow automaton induced by H . We say that H is continuous (resp. sepa-
rated), if the induced flow automaton is continuous (resp. separated). We say that H is
effectively given if it comes with

– an effective sequence (iqk)k∈N in (U�inv(q))D with
⊔

k∈N
iqk = init(q)

– an effective sequence (vq
k)k∈N in (IRn ⇒ IRn)D with

⊔
k∈N

vq
k = vect(q)

244 A. Edalat and D. Pattinson

– an effective sequence (rp,q
k)k∈N in (inv(p) ⇒ U�inv(q))D with

⊔
k r

p,q
k =

res(p, q)

for all q ∈ Q, resp. all (p, q) ∈ Q2 and inv(q) ∈ U�Rn
D for all q ∈ Q. The family

of sequences (iqk)k∈N, (vq
k)k∈N (where q ∈ Q) and (rp,q

k)k∈N (where (p, q) ∈ Q2) are
called an effective presentation of H .

We have seen in Theorem 15, that the function �F 	 associated with a flow automaton,
which captures the states reachable by F at time t ∈ [0,∞), is effectively computable,
if F is effectively given. In order to associate an effectively given flow automaton to
an effectively given hybrid automaton, we therefore have to produce approximations
fk ∈ (

∏
q∈Q inv(q)×[0,∞)⇒ U) of the flow function induced by a hybrid automaton.

In other words, we have to solve the initial value problems defined by the vector field
that defines the hybrid automation. This is achieved by instantiating results from [9, 10],
where it is shown how to solve initial value problems in a domain theoretic framework.

Theorem 16. Suppose H is an effectively given hybrid automaton. Then so is the in-
duced flow automaton F . Moreover, we can construct an effective presentation of F
from an effective presentation of H .

Together with Theorem 15, we have now shown, that the semantic function �H	, asso-
ciated with an effectively given hybrid automaton, is computable:

Theorem 17. SupposeH is effectively given, continuous and separated. Then the func-
tion �H	 : [0,∞)→ U is effectively computable.

Moreover, as all our constructions are based on bases of the domains involved, the
algorithms underlying Theorems 17 and 15 are based on proper data types, and can be
directly implemented on a digital computer: we choose the dyadic (or rational) numbers
for D, and then define data types that directly represent the bases [0,∞)D and UD,
as well as the bases of the function space ([0,∞) ⇒ U)D . Computing with dyadic
(or rational) numbers then allows us to manipulate elements of the data types without
any loss of arithmetical precision. Moreover, we have shown that the fixpoint operator,
that gives rise to the semantic function �H	 of a hybrid automaton, can be effectively
computed on the described data types.

Conclusions and Future Work. Of course, much remains to be done. While the pre-
sentation in this paper is geared towards demonstrating that a domain theory has all the
necessary tools to facilitate the algorithmic analysis of hybrid automata, we anticipate
that major improvements will be made on the efficiency of the involved algorithms. In
particular, we are working towards rigorous estimates of the convergence speed and
the complexity of the described fixpoint algorithms in terms of the Hausdorff distance
in U , which will also allow us to make concrete assertions about the computational
complexity of our method. For now, we have concentrated on computing the seman-
tic function �H	 associated with a hybrid automaton. Future work will bring a frame-
work for computing the set of reachable states of a hybrid automaton, and a real time
logic with associated model checking procedure for the automated verification of hybrid
automata.

Denotational Semantics of Hybrid Automata 245

References

1. S. Abramsky and A. Jung. Domain Theory. In S. Abramsky, D. Gabbay, and T. S. E.
Maibaum, editors, Handbook of Logic in Computer Science, volume 3. Clarendon Press,
1994.

2. R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero,
J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems. Theoret. Comp. Sci,
138(1):3–34, 1995.

3. R. Alur, T. Henzinger, and P.-H. Ho. Automatic symbolic verification of embedded systems.
IEEE Transactions on Software Engineering, 22(3):181–201, 1996.

4. J.-P. Aubin. Viability Theory. Birkhäuser, 1991.
5. A. Edalat. Dynamical systems, measures and fractals via domain theory. Information and

Computation, 120(1):32–48, 1995.
6. A. Edalat. Power domains and iterated function systems. Information and Computation,

124:182–197, 1996.
7. A. Edalat, M Krznarić, and A. Lieutier. Domain-theoretic solution of differential equations

(scalar fields). In Proceedings of MFPS XIX, volume 83 of Elect. Notes in Theoret. Comput.
Sci., 2004.

8. A. Edalat and A. Lieutier. Domain theory and differential calculus (functions of one variable.
Math. Struct. Comp. Sci., 14, 2004.

9. A. Edalat and D. Pattinson. A domain theoretic account of picard’s theorem. In Proc. ICALP
2004, number 3142 in Lect. Notes in Comp. Sci., pages 494–505, 2004.

10. A. Edalat and D. Pattinson. Domain theoretic solutions of initial value problems for un-
bounded vector fields. In M. Escardó, editor, Proc. MFPS XXI, Electr. Notes in Theoret.
Comp. Sci., 2005. to appear.

11. G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. Scott. Continuous
Lattices and Domains. Cambridge University Press, 2003.

12. T. Henzinger. The theory of hybrid automata. In M. Inan and R. Kurshan, editors, Verification
of Digital and Hybrid Systems, volume 170 of NATO ASI Series F: Computer and Systems
Sciences, pages 265–292. Springer Verlag, 2000.

13. T. Henzinger, P.-H. Ho, and H. Wong-Toi. HYTECH: A model checker for hybrid systems.
International Journal on Software Tools for Technology Transfer, 1(1–2):110–122, 1997.

14. T. Henzinger, P.-H. Ho, and H. Wong-Toi. Algorithmic analysis of nonlinear hybrid systems.
IEEE Transactions on Automatic Control, 43:540–554, 1998.

15. T. Henzinger, B. Horowitz, R. Majumdar, and H. Wong-Toi. Beyond HYTECH: Hybrid
systems analysis using interval numerical methods. In Proc. HSCC 2000, volume 1790 of
Lect. Notes in Comp. Sci., pages 130–144. Springer, 2000.

16. J. E. Hutchinson. Fractals and self-similarity. Indiana University Mathematics Journal,
30:713–747, 1981.

17. J. Lygeros, D. Godbole, and S. Sastry. Verified hybrid controllers for automated vehicles.
IEEE Transactions on Automatic Control, 43(4):522–539, 1998.

18. O. Müller and T. Stauner. Modelling and verification using linear hybrid automata – a case
study. Mathematical and Computer Modelling of Dynamical Systems, 6(1):71–89, 2000.

19. S. Simic, K. Johansson, S. Sastry, and J. Lygeros. Towards a geometric theory of hybrid
systems. In N. Lynch and B. Krogh, editors, Proc. HSCC 2000, volume 1790 of Lect. Notes
in Comp. Sci., pages 421–436, 2000.

20. C. Tomlin, G. Pappas, and S. Sastry. Conflict resolution for air traffic management : A study
in muti-agent hybrid systems. IEEE Transactions on Automatic Control, 43(4):509–521,
1998.

21. K. Weihrauch. Computable Analysis. Springer, 2000.

Reversing Algebraic Process Calculi

Iain Phillips1 and Irek Ulidowski2

1 Department of Computing, Imperial College London, England
iccp@doc.ic.ac.uk

2 Department of Computer Science, University of Leicester, England
iu3@mcs.le.ac.uk

Abstract. Reversible computation has a growing number of promising
application areas such as the modelling of biochemical systems, program
debugging and testing, and even programming languages for quantum
computing. We formulate a procedure for converting operators of stan-
dard algebraic process calculi such as CCS, ACP and CSP into reversible
operators, while preserving their operational semantics.

1 Introduction

Reversible computation has a growing number of promising application areas
such as the modelling of biochemical systems [8], program debugging and
testing [20], and even programming languages for quantum computing [2]. Lan-
dauer [15] showed how irreversible computation generates heat; the efficient op-
eration of future miniaturised computing devices could depend on exploiting
reversibility [7]. We have been inspired to look at this area by the work of Danos
and Krivine on reversible CCS [8, 9, 10] and Abramsky on mapping functional
programs into reversible automata [1].

We wish to investigate reversibility for algebraic process calculi in the style
of CCS [16], with Structural Operational Semantics (SOS) [19] rules. Given
a forward labelled transition relation (ltr) → we are interested in obtaining a
reverse ltr � which is the inverse of →. This can always be done, but if we
just reverse a standard process language we end up with too many possibilities,
since processes do not “remember” their past states. Danos and Krivine solve
this problem by storing “memories” of past behaviour which are carried along
with processes. Memories also keep track of which thread or threads performed
an action. This has the effect that backtracking does not have to follow the exact
order of forward computation in reverse. To take a simple example, suppose that
the process a.b | c performs a followed by b and then c (here “.” and “|” are the
prefixing and the parallel composition of CCS, respectively). The process can
backtrack by reversing b, then a and finally c. However, a cannot be reversed
before b has been reversed.

We wish to produce reversible process calculi without relying on external de-
vices such as memories. Our starting point is that irreversibility in a language
such as CCS comes from the consumption of guards and alternative choices.

L. Aceto and A. Ingólfsdóttir (Eds.): FOSSACS 2006, LNCS 3921, pp. 246–260, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Reversing Algebraic Process Calculi 247

We therefore decide to leave these in place, so that process structure remains
fixed throughout a computation. Returning to the example of a.b | c, we might
let the state after a, b and c have been performed be denoted by a.b | c, where
the underlined actions are past actions. There is plainly just the right amount
of information here to reverse the process, while allowing c to be reversed in-
dependently of b and a. This approach allows us also to keep track of unused
alternatives discarded during computation. Consider a.b+ c, where “+” is the
choice operator of CCS. After the initial a, the alternative c is discarded and we
can only proceed with b. This state is represented as a.b + c; it is clear which
alternative was taken and what will happen next.

Reversibility can help to some extent to distinguish concurrency from cau-
sation. In the reversible world, Milner’s expansion law does not hold: we have

a | b 	= a.b+ b.a since a | b a→ b→ a | b a� but a.b+ b.a
a→ b→ a.b+ b.a

a

	� .
When we come to consider autoconcurrency and communication we find that

the simple method just outlined arguably discards too much information. For
instance, the processes a | a and a.a cannot be distinguished by the above argu-
ment, as we are not able to tell apart the two occurrences of a. Moreover, the
process a | a can evolve by a communication between a and the complementary
action a to yield a | a. This state could also have been reached by performing
the two actions separately, and there is nothing in the notation to stop us from
undoing the two actions separately. But if the communication represents a bind-
ing between two (biological) entities, then such separate backtracking of a and
a is not reasonable.

Our solution is to use a more expressive form of past actions, where each
occurrence of action a is “marked” by a fresh identifier m and written as a[m].
Also, we insist that the two parties to a communication between action a and a
agree on this identifier or communication key which is unique to that communi-
cation. This means that a and a are now locked together and can only be undone
together. Now, we can deal with the autoconcurrency example. Process a | a can
perform the a actions with keysm and n to produce a[m] | a[n], and then reverse
these actions in any order. However, a.a cannot match this behaviour: after the
a actions with keys m and n, the process a[m].a[n] cannot reverse on a[m].

We propose a method for reversing process operators that are definable by
SOS rules in a general format. As far as we are aware, this is the first time
this has been done for algebraic process calculi. As we have described informally
above, we rely on reformulating operators of standard process calculi into new
operators that can be easily reversed, while preserving their operational meaning.
In this paper we attempt to balance the generality of the format on one hand and
the technical simplicity of the proposed method on the other hand. The chosen
format is general enough for the definitions of the majority of useful process
operators, and the method presented is intuitive and easy to apply.

Our format is a subformat of the path format [3] and consists of dynamic rules,
where the operator is destroyed by a transition, and static rules, where the oper-
ator remains present after the transition. Reversing static rules is easier because
they preserve the context during execution. Dynamic rules, however, consume

248 I. Phillips and I. Ulidowski

the context, removing the unused alternatives. The kernel of our method is to
transform dynamic rules into static-like rules. Auxiliary operators and predicates
are used to keep the structure of terms unchanged and to enforce correct use
of subterms in the reformulated contexts. Once SOS rules for operators are re-
formulated as above, the reverse SOS rules are obtained simply as symmetric
versions of the forward rules.

As an illustration of the method we consider the CCS choice operator +. We
reformulate it as a static operator and use predicate std, meaning that the argu-
ment is a standard term that uses no past actions (and no keys), to control when
arguments can fire in rules. The reverse rules (on the right) for the converted +
are then obtained by symmetry:

X
a→ X ′ std(Y)

X + Y
a→ X ′ + Y

Y
a→ Y ′ std(X)

X + Y
a→ X + Y ′

X
a� X ′ std(Y)

X + Y
a� X ′ + Y

Y
a� Y ′ std(X)

X + Y
a� X + Y ′

We prove a number of results to show that our method yields well-behaved
transition relations. We show that the new forward ltr is conservative over the
standard ltr (Theorem 5.8). Also the new forward and reverse ltrs satisfy cer-
tain confluence properties (Propositions 5.4 and 5.5). The processes which are
reachable from standard processes by forward-only transitions are closed under
reverse transitions, meaning that a process can never reverse into an “incon-
sistent” past (Proposition 5.6). We also formulate a notion of forward-reverse
bisimulation, which is a congruence (Theorem 6.7).

The rest of the paper is structured as follows. In Section 2 we define the
simple process calculi which we shall be making reversible, and in Section 3 we
describe our procedure for generating the new reversible calculi. In Section 4
we illustrate our method by applying it to CCS. We also discuss related work,
and in particular RCCS [9]. In Section 5 we prove various results about the new
reversible transition relations, and in Section 6 we define an appropriate notion
of bisimulation. Section 7 indicates how to adapt the method to a more general
format that contains constants and predicates. We end with some conclusions.

The proofs of the presented results, further results, examples and discussion
are available in the full version of this paper [18].

2 Process Calculi

In this section we describe the process calculi to which we shall apply our pro-
cedure for generating reversible calculi.

A signature is a set Σ of operator symbols, each with a particular arity. The
set of terms over Σ is denoted by T (Σ). We shall tend to refer to terms as
processes. We let P,Q, . . . range over processes.

A process calculus L = (Σ,A,R), is given by a signature Σ, a set of actions A
and a set R of SOS rules. We shall apply our procedure to a “standard” calculus
LS = (ΣS,Act, RS). Its terms are called standard terms and are denoted by
Std. We shall assume that the only operator of arity zero (i.e. constant) is the
deadlocked process 0. We let f, . . . range over ΣS; a, b, c, . . . range over Act.

We next describe the rules R and their operational semantics.

Reversing Algebraic Process Calculi 249

The SOS theory gives us the flexibility and the benefits of working with whole
classes of process calculi rather than with individual process calculi that are
limited to a small number of operators. Typically, a class of operators is defined
by a format of SOS rules that can be used to define them operationally. In this
paper we shall consider simple path rules without copying [3]. More specifically,
our rules will be mostly of the simpler pxyft and pxyf forms, where terms in the
premises are variables and the source of the conclusion is a term constructed
with a single operator.

Definition 2.1. Simple path (forward) rules are expressions of the form

{ Xi
ai→ X ′

i }i∈I { pj(Xj) }j∈J

f(X1, . . . , Xn) a→ t(X ′
1, . . . , X

′
n)

and
{ pj(Xj) }j∈J

p(f(X1, . . . , Xn))

where all variables Xi (Xj) and X ′
i are distinct, and variables X ′

i are such that
X ′

i = Xi when i /∈ I. Moreover, I, J ⊆ {1, . . . , n}.
The sets of transitions and predicate expressions above the horizontal bars in

the rules above are called premises. Let r be the first rule above. Operator f is
the operator of r. The transition below the bar in r is the conclusion of r. Action
a in the conclusion is the action of r and f(X1, . . . , Xn) and t(X ′

1, . . . , X
′
n) are

the source and target of r, respectively. The i-th argument is active in r if r
has a transition for Xi in the premises. The i-th argument of f is active if it is
active in some rule for f . In the second rule, p is the predicate of the rule and
the predicate expression below the bar is the conclusion.

With any calculus L = (Σ,A,R), all of whose rules are in simple path format,
we associate an ltr → with labels A, together with a set of predicates, in the
standard way; for details see [3]. Our standard calculus LS will have all its rules
RS in simple path format. It will have no predicates in its rules. We shall write
its ltr as →S, and use this in writing down its rules for clarity.

We now define the precise form of SOS rules that operators of LS can have.
Consider an n-ary operator f ∈ ΣS (n ≥ 1). The set of arguments of f is
Nf = {1, . . . , n}. Operator f can have three kinds of rules: static rules, choice
rules and choice axioms. We describe each in turn.

Definition 2.2. Static rules of f are of the following form, where I 	= ∅:

(I)
{Xi

ai→S X
′
i}i∈I

f(
−→
X) a→S f(

−→
X ′)

We require that if two static rules for f have the same premises then they have
the same conclusion (i.e. the action of the conclusion is unique). Let Sf ⊆ Nf

be the set of all arguments occurring in the premises of static rules of f , and let
Ef = Nf \ Sf . Arguments in Sf are called static arguments.

The arguments of the CCS and CSP [14] parallel composition operators are
static, as are those of the CCS restriction and relabelling operators and the CSP
hiding operator.

Next we describe the choice rules.

250 I. Phillips and I. Ulidowski

Definition 2.3. A choice rule of f is a rule of the following form:

(II)
Xd

a→S X
′
d

f(
−→
X) a→S X ′

d

We require that d ∈ Ef . Let Df be the set of all arguments d occurring in the
premises of choice rules of f . Arguments in Df are called dynamic arguments.
Each dynamic argument d is required to be permissive, meaning that for each
a ∈ Act there is a rule of type (II).

Note that Df ⊆ Ef , so that a dynamic argument cannot be static.
The choice operator of CCS has two dynamic arguments, both of which are

permissive. The external choice operator of CSP also has two dynamic argu-
ments, but they are not permissive: although they have choice rules for all
a ∈ Act \ {τ}, they have no such rules for the τ—the rules for τ are static
(see Section 7).

We also wish to encompass operators that have choice rules with empty
premises such as, for example, CCS prefixing and CSP internal choice. This
leads us to the third and final type of rule:

Definition 2.4. A choice axiom of f is a rule r of the following form:

(III) r
f(
−→
X)

act(r)→ S Xta(r)

Here ta(r) is the target argument. We require ta(r) ∈ Ef .

Next, we define the class of simple process calculi that we shall reverse.

Definition 2.5. A process operator f is simple if either f is the deadlocked
process 0, or f has a nonzero arity and all its rules are as in Definitions 2.2, 2.3
and 2.4. A process calculus is simple if all its operators are simple.

In what follows we omit the subscripts of the three sets of arguments where no
confusion can arise.

We shall require that LS is simple. Note that we leave out rules with predicates
at this stage. This allows us to keep the presentation side of the work manageable.
As a result, the main application of this work is to reformulate and reverse
Milner’s CCS, and many other operators from the process calculi ACP [4] and
CSP [14] and their descendants.

3 The Procedure for Generating a Reversible Calculus

We shall transform LS into an operationally equivalent calculus which is easily
reversible. For this we shall need to augment the processes and reformulate the
rules of LS.

Let K be an infinite set of communication keys (or just keys for short), ranged
over by m,n, The set of past actions, or actions marked with keys, is denoted

Reversing Algebraic Process Calculi 251

by ActK = Act×K. We write the ordered pair (a,m) as a[m]. We let μ, . . . range
over ActK, and s, t, . . . range over ActK∗.

We introduce the signature ΣA of auxiliary operators fr[m], where r is a rule
of type (III) for an operator f of RS, and m ∈ K. We let ΣSA = ΣS ∪ ΣA, and
let Proc = T (ΣSA). Clearly, Std ⊆ Proc.

Our reformulation and reversing method relies on auxiliary unary predicates
on Proc, namely std(P) and fsh[m](P) (all m ∈ K). Informally, std(P) holds
if P ∈ Std and fsh[m](P) holds if key m is fresh (i.e. not used) in P . The
predicates are defined below, where the last four rules are rule schemas for all
relevant operators and keys, and m 	= n in the last rule schema.

std(0)
{std(Xi)}i∈N

std(f(
−→
X)) fsh[m](0)

{fsh[m](Xi)}i∈N

fsh[m](f(
−→
X))

{fsh[m](Xi)}i∈N

fsh[m](fr[n](
−→
X))

Note that if std(P) then fsh[m](P) for every m ∈ K. Let RP be the set of rules
for the predicates std and fsh[m] for all m ∈ K.

We define how to transform rules of type (I), (II) and (III) into rules in simple
path format that can be easily reversed.

Definition 3.1. For every operator f in ΣS, every static rule of type (I) for f
is converted into

(1)
{Xi

ai[m]→ X ′
i}i∈I {std(Xe)}e∈E {fsh[m](Xi)}i∈S\I

f(
−→
X)

a[m]→ f(
−→
X ′)

where X ′
i = Xi for all i /∈ I. The reverse version is

(1R)
{Xi

ai[m]� X ′
i}i∈I {std(Xe)}e∈E {fsh[m](Xi)}i∈S\I

f(
−→
X)

a[m]� f(
−→
X ′)

Note that (1) and (1R) are rule schemas for keys m. Also, I ∩ E = ∅, and
so predicates only apply to inactive arguments. This contributes to making our

rules easily reversible. Finally note that we shall be able to prove that if P
a[m]→ P ′

then fsh[m](P) (Lemma 5.2).

Definition 3.2. For every operator f in ΣS, every choice rule of type (II) for
f is converted into

(2)
Xd

a[m]→ X ′
d {std(Xe)}e∈E\{d} {fsh[m](Xi)}i∈S

f(
−→
X)

a[m]→ f(
−→
X ′)

where X ′
i = Xi for all i 	= d. The reverse version of (2) is

(2R)
Xd

a[m]� X ′
d {std(Xe)}e∈E\{d} {fsh[m](Xi)}i∈S

f(
−→
X)

a[m]� f(
−→
X ′)

252 I. Phillips and I. Ulidowski

Again (2) and (2R) are rule schemas for keys m, and again predicates are only
applied to inactive arguments, since d /∈ S.

In order to make operators f with rules of type (III) static we shall use
auxiliary operators. These operators have their own rules (type (3′) below)
which propagate the actions of a single argument leaving other arguments un-
changed.

Definition 3.3. For every operator f in ΣS, every rule r of type (III) for f is
converted into the rule schemas below for all b ∈ Act and keys m,n:

(3)
{std(Xe)}e∈E {fsh[m](Xi)}i∈S

f(
−→
X)

act(r)[m]→ fr[m](
−→
X)

(3 ′)
Xta(r)

b[m]→ X ′
ta(r) {std(Xe)}e∈E\{ta(r)} {fsh[m](Xi)}i∈S

fr[n](
−→
X)

b[m]→ fr[n](
−→
X ′)

m 	= n

The reverse versions of rule schemas of type (3) and (3 ′) are

(3R)
{std(Xe)}e∈E {fsh[m](Xi)}i∈S

fr[m](
−→
X)

act(r)[m]� f(
−→
X)

(3 ′R)
Xta(r)

b[m]� X ′
ta(r) {std(Xe)}e∈E\{ta(r)} {fsh[m](Xi)}i∈S

fr[n](
−→
X)

b[m]� fr[n](
−→
X ′)

m 	= n

Again predicates are only applied to inactive arguments.
Now we are ready to define our procedure that reformulates standard op-

erators and produces automatically their new forward and reverse rules. Note
that all rules mentioned in Definitions 3.1, 3.2 and 3.3 are in the simple path
format.

Definition 3.4 (Conversion Procedure). A simple process calculus LS =
(ΣS,Act, RS) generates a reversible process calculus with communication keys
L = (ΣSA,ActK, RF, RR) as follows:

1. ΣSA
df= ΣS ∪ΣA. The operators in ΣSA are called reversible operators.

2. The forward rule set RF is the least set such that
(a) RP ⊆ RF, where RP is the set of rules for predicates defined above;
(b) for every rule r ∈ RS for f of type (I) or (II) the set RF contains the

converted rules r′ of the corresponding type (1) or (2) as required by
Definitions 3.1 and 3.2;

(c) for every rule r ∈ RS for f of type (III) the set RF contains the converted
rule r′ of type (3), and all the rules of type (3 ′) for the auxiliary operators
fr[m] as required by Definition 3.3.

3. The reverse rule set RR is defined like RF, except that we use the reverse
forms of the rules as in Definitions 3.1, 3.2 and 3.3.

Reversing Algebraic Process Calculi 253

Once L is generated by the procedure in Definition 3.4, we associate with L,
in the standard way [3], the forward and reverse ltrs → and � over Proc with
labels drawn from ActK, together with the set of predicates Pred that interpret
std and fsh[m] (for m ∈ K) over Proc.

We illustrate the application of the conversion procedure on two operators
that use the three allowed types of rules. Firstly, we consider the internal choice
“�” of CSP, which may be defined by two choice axioms (τ ∈ Act):

X � Y τ→S X X � Y τ→S Y

Arguments X and Y both belong to E. Definition 3.3 requires two families of
auxiliary operators “�1[m]” and “�2[m]” for all m ∈ K. To save space, we only
give the converted rules and the reverse rules for the first argument X :

std(X) std(Y)

X � Y τ [m]→ X �1 [m]Y

X
a[n]→ X ′ std(Y)

X �1 [m]Y
a[n]→ X ′ �1 [m]Y

m 	= n

std(X) std(Y)

X �1 [m]Y
τ [m]� X � Y

X
a[n]� X ′ std(Y)

X �1 [m]Y
a[n]� X ′ �1 [m]Y

m 	= n

Next, we convert Milner’s interrupt operator “ˆ” [16] defined by the first two
rule schemas below (all a, b ∈ Act). We have S = I = {X},D = {Y }, E = D and
Y is permissive. Definitions 3.1 and 3.2 give us the last two forward rule schemas
below, and the reverse rules are simply symmetric versions of the forward rules.

X
a→S X

′

X ˆY a→S X ′ˆY

Y
b→S Y

′

X ˆY b→S Y ′
X

a[m]→ X ′ std(Y)

X ˆY
a[m]→ X ′ˆY

Y
b[n]→ Y ′ fsh[n](X)

X ˆY
b[n]→ X ˆY ′

4 CCS with Communication Keys

In this section we convert CCS to a reversible process calculus, which we call
CCSK (CCS with communication Keys), following Definition 3.4. Let τ ∈ Act.
We assume the following standard signature of finite CCS:

ΣS = {0} ∪ {a. | a ∈ Act} ∪ { \A, [f] | A ⊆ Act \ {τ}, f : Act→ Act} ∪ {+, |}

The single argument of prefixing is neither dynamic nor static, and prefixing
has a choice axiom rule (type (III)). By Definition 3.3 CCSK contains a family
of auxiliary operators a[m]. (past action prefixing) for all a ∈ Act and m ∈ K.
Both arguments of + are dynamic and permissive, and obviously non-static.
Parallel composition, restriction and relabelling are operators with static rules.
The well-known SOS rules for CCS, which can be found in [16], are converted
into the rules in Figure 1. The rules for the reverse ltr for CCSK are got by
simply changing → into � throughout. As is usual, we omit trailing 0s.

254 I. Phillips and I. Ulidowski

std(X)

a.X
a[m]→ a[m].X

X
b[n]→ X ′

a[m].X
b[n]→ a[m].X ′

m
= n

X
a[m]→ X ′ std(Y)

X + Y
a[m]→ X ′ + Y

Y
a[m]→ Y ′ std(X)

X + Y
a[m]→ X + Y ′

X
a[m]→ X ′ fsh[m](Y)

X | Y
a[m]→ X ′ | Y

Y
a[m]→ Y ′ fsh[m](X)

X | Y
a[m]→ X | Y ′

X
a[m]→ X ′ Y

a[m]→ Y ′

X | Y
τ [m]→ X ′ | Y ′

X
a[m]→ X ′

X\A
a[m]→ X ′\A

a /∈ A
X

a[m]→ X ′

X[f]
f(a)[m]→ X ′[f]

Fig. 1. Forward SOS rules for CCSK

As an extension, we could add recursion recX.P to CCSK by introducing
the structural congruence ≡ generated by the law recX.P ≡ P{recX.P/X}.
We would then add a Structural Congruence Rule schema as in [17] to the
rules in Figure 1. The schema links structural congruence with deriving transi-

tions of terms: X
a[m]→ X ′ can be derived if X ≡ Y , Y

a[m]→ Y ′ and Y ′ ≡ X ′

for all labels a[m]. To incorporate this extension into our format from Sec-
tions 2 and 3, we would need to work with formats with structural congruence
(cf. [17]).

Example 4.1. In CCSK we keep track of the identities of actions that com-
municate so that when we reverse we undo the correct past actions. Consider
P = (a.b | a.c | a.d | a.e)\a. Here the restriction of a prevents a and a being
performed except as part of a communication. Suppose that a.b communicates
with a.d and then a.c with a.e. In CCSK we write this as follows:

P
τ [m]→ (a[m].b | a.c | a[m].d | a.e)\a τ [n]→ (a[m].b | a[n].c | a[m].d | a[n].e)\a

Note that the process a[m].b | a.c | a[m].d | a.e cannot regress by reversing a[m]
alone because key m is not fresh in a.c | a[m].d | a.e. The fact that m appears
in a.c | a[m].d | a.e which is in parallel with a[m].b proves that the processes
communicated a and a.

Our notation does not allow us to backtrack by undoing a different pair of
actions, but clearly we can change the order of reversing actions τ [m] and τ [n]:

(a[m].b | a[n].c | a[m].d | a[n].e)\a τ [m]� (a.b | a[n].c | a.d | a[n].e)\a τ [n]� P.

4.1 Related Calculi

The present work is mainly to be compared with Danos and Krivine’s RCCS [9],
but also in some sense to an earlier approach by Boudol and Castellani [6].

Reversing Algebraic Process Calculi 255

To aid comparison we give a simple example: the processes (a | a.b)\a and
τ.b. We might reasonably expect them to be equivalent, and indeed they are

FR-bisimilar as stated in Section 6. We have (a | a.b)\a τ [m]→ (a[m] | a[m].b)\a
and τ.b

τ [m]→ τ [m].b. In RCCS since 〈 〉
 νa (a | a.b) ≡ νa (〈1〉
 a | 〈2〉
 a.b) we
write these transitions as

νa (〈1〉
 a | 〈2〉
 a.b) 〈1〉,〈2〉:τ→ νa (〈〈2〉, a,0〉 · 〈1〉
 0 | 〈〈1〉, a,0〉 · 〈2〉
 b)

and 〈 〉
 τ.b 〈 〉:τ→ 〈∗, τ,0〉
 b, respectively. In RCCS transition labels contain extra
information concerning which threads contribute. As a result it is harder to show
that the processes are equivalent. Presumably one would have to abstract away
from the thread information.

We might therefore say that, on the spectrum from intensionality to exten-
sionality, the present work is more extensional than RCCS, though we see from
the examples in Section 6 that CCSK definitely has a “true concurrency” flavour
in terms of which processes it equates.

In [6] Boudol and Castellani developed event systems. Similarly to our ap-
proach, they keep track of the whole past of a transition by recording past
actions and choices that have been made. These are recorded in the syntax of
terms and, unlike in our approach, in the transition labels themselves. For ex-

ample, where we write (a | a.b)\a τ [m]→ (a[m] | a[m].b)\a, in event systems this is

(a | a.b)\a \a(a,a)−→ (a | a.b)\a and one needs to use additional rules to work out
that the action label of the transition is a τ .

5 Properties of the Transition Relations

In this section we establish various properties of the forward and reverse transi-
tion relations defined earlier. In particular we show that the forward-reachable
processes are closed under reverse transitions (Proposition 5.6); also that the new
forward transition relation is in a sense conservative over the standard transition
relation (Theorem 5.8).

We start by noting that the reverse transition relation inverts the forward
transition relation:

Proposition 5.1. Let P, P ′ ∈ Proc and μ ∈ ActK. Then P
μ→ P ′ iff P ′ μ� P .

Each process has a set of keys. The set keys(P) of keys occurring in a process
P ∈ Proc is defined as follows: keys(0) df= ∅, keys(f(

−→
P)) df=

⋃
i∈N keys(Pi) and

keys(fr[m](
−→
P)) df= {m} ∪ ⋃i∈N keys(Pi). Clearly P ∈ Std iff keys(P) = ∅. Also

fsh[m](P) iff m /∈ keys(P).
Any forward transition uses a fresh key:

Lemma 5.2. Let P, P ′ ∈ Proc. If P
a[m]→ P ′ then m /∈ keys(P) and keys(P ′) =

keys(P) ∪ {m}.

256 I. Phillips and I. Ulidowski

Let P → Q iff P
μ→ Q for some μ. Let →∗ denote the reflexive and transitive

closure of →.

Definition 5.3. A process P ∈ Proc is reachable if it can be reached by a finite
sequence of forward transitions from a process in Std, i.e. there is Q ∈ Std such
that Q→∗ P . Let Rch denote the set of reachable processes.

It is easy to check that if P ∈ Rch and P ′ is a subterm of P then also P ′ ∈ Rch.
It follows from Lemma 5.2 that if P ∈ Rch then every →-computation from a
process Q ∈ Std to P must have length |keys(P)|.

Of course, not every process is reachable. In CCSK, a.b[m] is not reachable. A
more interesting example is a[m].b[n] | b[n].a[m]. Here the names and keys match
up, but there is a causal inconsistency.

A “diamond” confluence property holds for reverse transitions:

Proposition 5.4 (Reverse Diamond Property). Let P,Q,R ∈ Proc.

1. If P
a[m]� Q and P

b[m]� R then a = b and Q = R.

2. If P
a[m]� Q and P

b[n]� R with m 	= n, then there is S such that Q
b[n]� S and

R
a[m]� S.

Proposition 5.4 implies that the reverse transition relation is finitely branching,
since the number of reverse transitions of P ∈ Proc is bounded by |keys(P)|.

The analogue of Proposition 5.4 does not hold for forward transitions, since

two forward transitions P
a[m]→ Q and P

b[n]→ R may conflict. However we can
complete the diamond if the forward transitions are compatible, in the sense
that Q and R can reach a common process S by forward moves:

Proposition 5.5 (Forward Diamond Property). Let P,Q,R, T ∈ Proc.3

1. If P
a[m]→ Q

s→ T and P
b[m]→ R

t→ T then a = b and Q = R.

2. If P
a[m]→ Q

s→ T and P
b[n]→ R

t→ T with m 	= n, then there is S such that

Q
b[n]→ S, R

a[m]→ S and S
s\b[n]→ T , S

t\a[m]→ T .

(Here for any s ∈ ActK∗ and μ ∈ ActK, s\μ is s with all instances of μ removed.)
The reachable terms are closed under reverse transitions, meaning that a

process can never reverse into an “inconsistent” past:

Proposition 5.6. If P ∈ Rch, μ ∈ ActK and P
μ� P ′ then P ′ ∈ Rch.

We now turn to showing that the new forward transition relation → is essen-
tially conservative over the standard transition relation →S. We have to take
into account the fact that we have introduced auxiliary operators and keys. A
nonstandard process can be converted to a corresponding standard process by
“pruning” the auxiliary operators (cf. the forgetful map of [9]):

Reversing Algebraic Process Calculi 257

Definition 5.7. The pruning map π : Proc→ Std is defined as follows:

π(0) df= 0

π(f(
−→
P)) df=

⎧⎨⎩
π(Pd) if d ∈ Df ∧ ¬std(Pd) ∧ ∀e ∈ Ef \ {d}. std(Pe)
f(
−−−→
π(P)) if ∀e ∈ Ef . std(Pe)

0 otherwiseS

π(fr[m](
−→
P)) df=

{
π(Pta(r)) if ∀e ∈ Ef \ {ta(r)}. std(Pe)
0 otherwise

for any choice axiom r for f , and where
−−−→
π(P) is the vector π(P1), . . . , π(Pn).

Clearly, if P ∈ Std then π(P) = P . It can easily be shown that the third case for
π(f(
−→
P)) and the second case for π(fr(

−→
P)) will not arise with reachable terms.

Theorem 5.8 (Conservation). Suppose P ∈ Proc.

1. If P
a[m]→ P ′ then π(P) a→S π(P ′).

2. If π(P) a→S P
′ then for any m ∈ K\keys(P) there is P ′′ such that P

a[m]→ P ′′

and π(P ′′) = P ′.

6 Forward-Reverse Bisimulation

We can show that the reversible transition relation → induces essentially the
same bisimulation equivalence on processes as the standard transition relation
→S. We first recall standard strong bisimulation on the standard terms:

Definition 6.1. A symmetric relation S on Std is an S-bisimulation if whenever
S(P,Q) then if P a→S P

′ then there is Q′ such that Q a→S Q
′ and S(P ′, Q′). We

define P ∼S Q iff there is an S-bisimulation S such that S(P,Q).

The corresponding notion for forward transitions on Proc and predicates Pred is
Definition 6.2. A symmetric relation S on Proc is an F-bisimulation if S(P,Q)
implies

– p(P)⇔ p(Q) for all p ∈ Pred;
– if P

μ→ P ′ then there is Q′ such that Q
μ→ Q′ and S(P ′, Q′).

We define P ∼F Q iff there is an F-bisimulation S such that S(P,Q).

Note that the first item in Definition 6.2 could be written as keys(P) = keys(Q),
since fsh[m](P)⇔ m /∈ keys(P) and std(P)⇔ keys(P) = ∅.

F-bisimulation is conservative over S-bisimulation by the following result:

Proposition 6.3. Let P,Q ∈ Proc. Then P ∼F Q iff π(P) ∼S π(Q) and p(P)⇔
p(Q) for all p ∈ Pred.

Proposition 6.4. The relation ∼F is a congruence with respect to all the oper-
ators of Proc.

258 I. Phillips and I. Ulidowski

We now define bisimulation for both forward and reverse transitions:

Definition 6.5. A symmetric relation S on Proc is a forward-reverse (FR)
bisimulation if whenever S(P,Q) then

– p(P)⇔ p(Q) for all p ∈ Pred;
– if P

μ→ P ′ then there is Q′ such that Q
μ→ Q′ and S(P ′, Q′);

– if P
μ� P ′ then there is Q′ such that Q

μ� Q′ and S(P ′, Q′).

We define P ∼FR Q iff there is an FR bisimulation S such that S(P,Q).

Proposition 6.6. Let P,Q ∈ Proc. If P ∼FR Q then P ∼F Q.

The converse does not hold. For instance we have a | a ∼F a.a, but a | a 	∼FR a.a.

This is because a | a a[m]→ a[n]→ a[m] | a[n]
a[m]� a | a[n] and m 	= n. This sequence of

transitions cannot be matched by a.a: we have a.a
a[m]→ a[n]→ a[m].a[n]

a[m]
	� . Similarly

a | b ∼F a.b+ b.a, but a | b 	∼FR a.b+ b.a.
On the positive side, we can show that for any P ∈ Std, P + P ∼FR P . We

can also show that for any P ∈ Std, (a | a.P)\a ∼FR τ.(P \a).
Theorem 6.7. The relation ∼FR is a congruence with respect to all the operators
of Proc.

Several notions of bisimulation taking into account backward as well as forward
moves have been discussed in the literature. The back and forth bisimulation
of [11] is constrained to only go back along the path that brought a process to its
current state. Back and forth bisimulation where any reverse path can be followed
is discussed in [5] both for transition systems and event structures. Essentially
the same notion, but called backward-forward bisimulation, is defined in [13] for
occurrence transition systems. The non-interleaving semantics community has
proposed several bisimulation-like equivalences [12] and we intend to investigate
how FR bisimulation compares with them.

7 Extensions

Our conversion procedure can be extended in several directions so that it
applies to a wider class of operators. Naturally, this would result in extend-
ing the forms of SOS rules in Definitions 3.1–3.3. However, the extensions we
now briefly describe mostly do not go beyond the simple path format as in
Definition 2.1.

ACP action constants can be defined analogously to prefixing of CCS. We
have the constant ε (successful termination) and constants a for each a ∈ Act.

The defining rules a a→S ε are converted to a
a[m]→ a[m], where a[m] are auxiliary

constants for all m ∈ K. There are no forward SOS rules for the auxiliary
constants and no transition rules for ε.

The next extension is to allow predicates in SOS rules. An example is the suc-
cessful termination predicate trm in the rules for ACP’s sequential composition

Reversing Algebraic Process Calculi 259

“·” below [4]. Care needs to be taken when adding predicates to premises in
order to avoid lookahead in the reverse rules.

X
a→S X

′

X ·Y a→S X ′ ·Y
Y

b→S Y
′ trm(X)

X ·Y b→S Y ′

With some simplifications, the converted and reverse rules are

X
a→ X ′ std(Y)

X ·Y a→ X ′ ·Y
Y

b→ Y ′ trm(X)

X ·Y b→ X ·Y ′
X

a� X ′ std(Y)

X ·Y a� X ′ ·Y
Y

b� Y ′ trm(X)

X ·Y b� X ·Y ′

(Here we extend trm to cover nonstandard processes.)
Finally, to allow the external choice operator of CSP we need to relax the

condition that static arguments cannot be dynamic. The defining rules for “�”
are given below, where the last two rules are rule schemas for all a ∈ Act \ {τ}.

X
τ→S X

′

X � Y
τ→S X ′ � Y

Y
τ→S Y

′

X � Y
τ→S X � Y ′

X
a→S X

′

X � Y
a→S X ′

Y
a→S Y

′

X � Y
a→S Y ′

By introducing an auxiliary predicate before(P), which holds if P ∈ Std or P is
a derivative from a standard term via a sequence of silent actions, we obtain the
following converted rules:

before(Y) X
μ→ X ′

X � Y
μ→ X ′ � Y

before(X) Y
μ→ Y ′

X � Y
μ→ X � Y ′

.

8 Conclusions

There has been much recent interest in reversible computing, including the pi-
oneering work of Danos and Krivine on reversible CCS. We have introduced a
method for converting standard irreversible operators of algebraic process calculi
such as CCS into reversible operators. As far as we are aware, this is the first
time that such a method has been proposed in the context of general process
calculi. Our method works on operators with rules of a simple form. We arrive
at new rules which preserve the structure of the terms. An important feature of
our method is the introduction of keys to bind synchronised actions together.
We have also obtained an appropriate notion of bisimulation on terms. Our work
demonstrates that it is possible to make many standard operators reversible in
a manner which is both algebraic and tractable.

Acknowledgements

We wish to thank Philippa Gardner, Daniele Varacca, Nobuko Yoshida, Shoji
Yuen and the referees for helpful discussions and comments. The second author
would like to thank the University of Leicester for granting study leave, and
acknowledge gratefully support from Nagoya University during a research visit.

260 I. Phillips and I. Ulidowski

References

[1] S. Abramsky. A structural approach to reversible computation. Theoretical Com-
puter Science, 347(3):441–464, 2005.

[2] T. Altenkirch and J. Grattage. A functional quantum programming language. In
Proceedings of the 20th Annual IEEE Symposium on Logic in Computer Science,
LICS 2005, pages 249–258. IEEE Computer Society Press, 2005.

[3] J.C.M. Baeten and C. Verhoef. A congruence theorem for structured operational
semantics with predicates. In Proceedings of 4th International Conference on Con-
currency Theory, CONCUR ’93, volume 715 of LNCS, pages 477–492. Springer-
Verlag, 1993.

[4] J.C.M. Baeten and W.P. Weijland. Process Algebra, volume 18 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1990.

[5] M.A. Bednarczyk. Hereditary history preserving bisimulations or what is the
power of the future perfect in program logics. Technical report, Institute of Com-
puter Science, Polish Academy of Sciences, Gdańsk, 1991.

[6] G. Boudol and I. Castellani. Flow models of distributed computations: three
equivalent semantics for CCS. Information and Computation, 114:247–314, 1994.

[7] H. Buhrman, J. Tromp, and P. Vitányi. Time and space bounds for reversible
simulation. In Proceedings of 28th International Colloquium on Automata, Lan-
guages and Programming, ICALP 2001, volume 2076 of LNCS, pages 1017–1027.
Springer-Verlag, 2001.

[8] V. Danos and J. Krivine. Formal molecular biology done in CCS-R. In Proceedings
of BioConcur, Marseille, 2003.

[9] V. Danos and J. Krivine. Reversible communicating systems. In Proceedings of the
15th International Conference on Concurrency Theory, CONCUR 2004, volume
3170 of LNCS, pages 292–307. Springer-Verlag, 2004.

[10] V. Danos and J. Krivine. Transactions in RCCS. In Proceedings of the 16th
International Conference on Concurrency Theory, CONCUR 2005, volume 3653
of LNCS, pages 398–412. Springer-Verlag, 2005.

[11] R. De Nicola, U. Montanari, and F. Vaandrager. Back and forth bisimulations.
In Proceedings of CONCUR ’90, Theories of Concurrency: Unification and Ex-
tension, volume 458 of LNCS, pages 152–165. Springer-Verlag, 1990.

[12] R.J. van Glabbeek and U. Goltz. Refinement of actions and equivalence notions
for concurrent systems. Acta Informatica, 37:229–327, 2001.

[13] U. Goltz, R. Kuiper, and W. Penczek. Propositional temporal logics and equiv-
alences. In Proceedings of 3rd International Conference on Concurrency Theory,
CONCUR ’92, volume 630 of LNCS, pages 222–235. Springer-Verlag, 1992.

[14] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
[15] R. Landauer. Irreversibility and heat generated in the computing process. IBM

Journal of Research and Development, 5:183–191, 1961.
[16] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
[17] M.R. Mousavi and M.A. Reniers. Congruence for structural congruences. In Pro-

ceedings of the 8th International Conference on Foundations of Software Science
and Computation Structures, FOSSACS 2005, volume 3441 of LNCS, pages 47–62.
Springer-Verlag, 2005.

[18] I.C.C. Phillips and I. Ulidowski. Reversing algebraic process calculi. Technical
Report CS-06-01, Department of Computer Science, Leicester University, 2006.

[19] G.D. Plotkin. A structural approach to operational semantics. Journal of Logic
and Algebraic Programming, 60-61:17–139, 2004.

[20] Virtutech. Simics Hindsight. http://www.virtutech.com, 2005.

Conjunction on Processes: Full–Abstraction
Via Ready–Tree Semantics

Gerald Lüttgen1,� and Walter Vogler2

1 Department of Computer Science, University of York,
York YO10 5DD, UK

luettgen@cs.york.ac.uk
2 Institut für Informatik, Universität Augsburg,

D–86135 Augsburg, Germany
vogler@informatik.uni-augsburg.de

Abstract. A key problem in mixing operational (e.g., process–algebraic)
and declarative (e.g., logical) styles of specification is how to deal with in-
consistencies arising when composing processes under conjunction. This
paper introduces a conjunction operator on labelled transition systems
capturing the basic intuition of “a and b = false”, and considers a naive
preorder that demands that an inconsistent specification can only be
refined by an inconsistent implementation.

The main body of the paper is concerned with characterising the
largest precongruence contained in the naive preorder. This character-
isation will be based on a novel semantics called ready–tree seman-
tics, which refines ready traces but is coarser than ready simulation.
It is proved that the induced ready–tree preorder is compositional and
fully–abstract, and that the conjunction operator indeed reflects con-
junction.

The paper’s results provide a foundation for, and an important step
towards a unified framework that allows one to freely mix operators from
process algebras and temporal logics.

1 Introduction

Process algebra [2] and temporal logic [14] are two popular approaches to for-
mally specifying and reasoning about reactive systems. The process–algebraic
paradigm is founded on notions of refinement, where one typically formulates
a system specification and its implementation in the same notation and then
proves using compositional reasoning that the latter refines the former. The
underlying semantics is often given operationally, and refinement relations are
formalised as precongruences. In contrast, the temporal–logic paradigm is based
on the use of temporal logics to formulate specifications abstractly, with imple-
mentations being denoted in an operational notation. One then verifies a system
by establishing that it is a model of its specification.

� Research support was partially provided by the NSF under grant CCR–9988489.

L. Aceto and A. Ingólfsdóttir (Eds.): FOSSACS 2006, LNCS 3921, pp. 261–276, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

262 G. Lüttgen and W. Vogler

Recently, two papers have been published aimed at marrying process algebras
and temporal logics [5, 6]. While the first paper introduces a semantic frame-
work based on Büchi automata, the second paper considers labelled transition
systems augmented with an “unimplementability predicate”. This predicate cap-
tures inconsistencies arising when composing processes conjunctively; e.g., the
composition a∧b is contradictory since a run of a process cannot begin with both
actions a and b. Moreover, the frameworks in [5, 6] are equipped with a refine-
ment preorder based on De Nicola and Hennessy’s must–testing preorder [12].
However, the obtained results are unsatisfactory: the refinement preorder in [5] is
not a precongruence, while the ∧–operator in [6] is not conjunction with respect
to the studied precongruence.

This paper solves the deficiencies of [5, 6] within a simple setting of labelled
transition systems in which a state represents either external (non–deterministic)
or internal (disjunctive) choice. Moreover, states that are vacuously true or false
are tagged accordingly. The tagging of false states, or inconsistent states, is given
by an inductive inconsistency predicate that is defined very similar but subtly
different to the unimplementability predicate of [6]. We then equip our setting
with two operators: the conjunction operator ∧ is in essence a synchronous com-
position on observable actions and an interleaving product on the unobservable
action τ , but additionally captures inconsistencies; the disjunction operator ∨
simply resembles the process–algebraic operator of internal choice.

Our variant of labelled transition systems gives rise to a naive refinement
preorder
F requiring that an inconsistent specification cannot be refined except
by an inconsistent implementation. We characterise the consistency preorder, i.e.
the largest precongruence contained in
F when conjunctively closing under all
contexts. To do so, we define a novel semantics, called ready–tree semantics which
is — at least when disallowing divergent behaviour — finer than both must–
testing semantics [12] and ready–trace semantics [7], but coarser than ready
simulation [3]. The resulting ready–tree preorder
∼ is not only compositional
for ∧ and ∨ and fully–abstract with respect to
F , but also possesses several
other desired properties. In particular, we prove that ∧ (∨) is indeed conjunction
(disjunction) relative to
∼ , and that ∧ and ∨ satisfy the expected boolean laws,
such as the distributivity laws.

Our results are a significant first step towards the goal of developing a uni-
form calculus in which one can freely mix process–algebraic and temporal–logic
operators. This will give engineers powerful tools to model system components
at different levels of abstraction and to impose logical constraints on the exe-
cution behaviour of components. The proposed ready–tree preorder will allow
engineers to step–wise and component–wise refine systems by trading off logical
content for operational content.

Organisation. The next section presents our setting of labelled transition sys-
tems augmented with true and false predicates, together with a conjunction and
a disjunction operator. Sec. 3 defines the novel ready–tree semantics, addresses
expressiveness issues of several ready–tree variants and introduces the ready–tree
preorder. Our compositionality and full–abstraction results are stated in Sec. 4.

Conjunction on Processes: Full–Abstraction Via Ready–Tree Semantics 263

All proofs can be found in a technical report [11]. Finally, Sec. 5 discusses our
results in light of related work, while Sec. 6 presents our conclusions and suggests
directions for future research.

2 Labelled Transition Systems and Conjunction

This section first introduces our process–algebraic setting and particularly con-
junctive composition informally, discusses semantic choices and their implica-
tions, and finally gives a formal account of our framework.

Motivation. Our setting models processes as labelled transition systems, which
may be composed conjunctively and disjunctively. As usual in process alge-
bra, transition labels are actions taken from some alphabet A = {a, b, . . .}.
When an action a is offered by the environment and the process under con-
sideration is in a state having one or more outgoing a–transitions, the process
must choose and perform one of them. If there is no outgoing a–transition, then
the process stays in its state, at least in classical process–algebraic frameworks
where the composition between a process and its environment is modelled us-
ing some parallel operator. However, in a conjunctive setting we wish to mark
the composed state between process and environment as inconsistent, if the
environment offers an action that the process cannot perform, or vice versa.
Hence, taking ordinary synchronous composition as operator for conjunction is
insufficient.

We illustrate this intuition behind our conjunction operator ∧ and its impli-
cations by the example labelled transition systems of Fig. 1. First, consider the
processes p, q and r. Process p and q specify that exactly action a and respec-
tively action b is offered initially. Similarly, process r specifies that a and b are
offered initially. From this perspective, p ∧ q as well as p ∧ r are inconsistent
and should be tagged as such. Formally, our labelled transition systems will be
augmented by an inconsistency predicate F , so that p ∧ q, p ∧ r ∈ F in our
example. We also refer to inconsistent states as false–states.

Now consider the conjunction p′ ∧ q′ shown on the right in Fig. 1. Since both
conjuncts require action a to be performed, p′ ∧ q′ should have an a–transition.
From the preceding discussion, this transition should lead to a false–state. No
sensible process can meet these requirements of being able to perform a and
being inconsistent afterwards. Thus, our inconsistency predicate will propagate
backwards to the conjunction itself, as indicated in Fig. 1.

∧ ba =
F

a b

qp
q'p'

r

∧a

p

=
c

∧
a

b

a

= a

F

(F)

Fig. 1. Basic intuition behind conjunctive composition

264 G. Lüttgen and W. Vogler

F

a b

(F)

F

a ba

τ

b

τ

F

Fig. 2. Backward propagation of inconsistencies

Fig. 2 shows more intricate examples of backward propagation. The inconsis-
tency of the target state of the a–transition of the process on the left propagates
backwards to its source state. This is the case although the source state is able
to offer a transition leading to a consistent state. However, that transition can
only be taken if the environment offers action b. The process is forced into the
inconsistency when the environment offers action a.

The situation is different for the process in the middle, which has an addi-
tional a–transition leading to a consistent state. Here, the process is consistent,
as it can choose to execute this new a–transition and thus avoid to enter a
false–state. In fact, this choice can be viewed as a disjunction between the two
a–branches. As an aside, note that in [6] the design decision was to consider a
process already as inconsistent if some a–derivative is. While there might be an
intuitive justification for that, it led to a setting where the implied conjunction
operator does not reflect conjunction for the studied refinement preorder, i.e.,
where Thm. 20(1) does not hold.

Disjunction can be made explicit by using the classical internal–choice oper-
ator. This operator may as usual be expressed by employing the special, unob-
servable action τ /∈ A as shown on the right in Fig. 2. Hence, we may identify the
internal–choice operator with the disjunction operator ∨ desired in our setting.
Moreover, a disjunction p ∨ q is inconsistent if both p and q are false–states.
In particular, the process on the right in Fig. 2 will represent false ∨ q in our
approach, with q from Fig. 1, which clearly should be consistent.

Formalisation. For notational convenience we denote A ∪ {τ} by Aτ and
use α, β, . . . as representatives of Aτ . We start off be defining our notion of
labelled transition systems (LTS). The LTSs considered here are augmented
with a false–predicate F on states, as discussed above, and dually with a true–
predicate T . A state in F represents inconsistent, empty behaviour, while a state
in T represents completely underspecified, arbitrary behaviour.

Formally, an LTS is a quadruple 〈P,−→, T, F 〉, where P is the set of processes
(states), −→⊆ P × Aτ × P is the transition relation, and T ⊆ P and F ⊆ P

is the true–predicate and the false–predicate, respectively. We write p α−→ p′

instead of 〈p, α, p′〉 ∈−→, p α−→ instead of ∃p′ ∈ P. p α−→ p′, and p −→ instead
of ∃p′ ∈ P, α ∈ Aτ . p

α−→ p′. When p α−→ p′, we say that process p can perform
an α–step to p′, and we call p′ an α–derivative. We also require an LTS to satisfy
the following τ–purity condition: p τ−→ implies 	 ∃a ∈ A. p a−→, for all p ∈ P .
Hence, each process represents either an external or internal (disjunctive) choice
between its outgoing transitions. This restriction turns out to be technically

Conjunction on Processes: Full–Abstraction Via Ready–Tree Semantics 265

convenient, and we leave exploring the consequences of lifting it for future work.
The LTSs of interest to us need to satisfy four further properties, as stated in
the following formal definition:

Definition 1 (Logical LTS). An LTS 〈P,−→, T, F 〉 is a logical LTS if it sat-
isfies the following conditions:
1. T ∩ F = ∅
2. T ⊆ {p | p 	−→}
3. F ⊆ P such that p ∈ F whenever ∃α ∈ I(p)∀p′ ∈ P. p α−→ p′ =⇒ p′ ∈ F
4. p cannot stabilise =⇒ p ∈ F .

Naturally, we require that a process cannot be tagged true and false at the
same time. As a true–process specifies arbitrary, full behaviour, any behaviour
made explicit by outgoing transitions is already included implicitly; hence, any
outgoing transitions may simply be cut off. The third condition formalises the
backwards propagation of inconsistencies as discussed in the motivation section
above; here, I(p) stands for the set {α ∈ Aτ | p α−→} of initial actions of process p,
to which we also refer as ready set.

The fourth condition relates to divergence, i.e., infinite sequences of
τ–transitions. In many semantic frameworks, e.g. [12, 7], divergence is consid-
ered catastrophic, while in our setting catastrophic behaviour is inconsistent
behaviour. We view divergence only as catastrophic if a process cannot stabilise,
i.e., if it cannot get out of an infinite, internal computation. While this is intu-
itive, there is also a technical reason to which we will come back shortly.

To formalise our notion of stabilisation, we first introduce a weak transition
relation =⇒⊆ P × (Aτ ∪{ε})×P which is defined by (1) p ε=⇒ p′ if p ≡ p′ /∈ F ,
where ≡ denotes syntactic equality, or if p /∈ F and p τ−→ p′′ ε=⇒ p′ for some p′′,
and (2) p a=⇒ p′ if p /∈ F and p

a−→ p′′ ε=⇒ p′ for some p′′. Our definition
of a weak transition is slightly unusual: a weak transition cannot pass through
false–states since these cannot occur in computations, and it does not abstract
from τ–transitions preceding a visible transition. However, we only will use weak
visible transitions from stable states, i.e., states with no outgoing τ–transition.
Finally, we can now formalise stabilisation: a process p can stabilise if p ε=⇒ p′

for some stable p′.
Note that both Conds. (3) and (4) are inductively defined conditions. We refer

to them as fixed point conditions of F for LTS . For convenience, we will often
write LTS instead of logical LTS in the sequel. Moreover, whenever we mention
a process p without stating a respective LTS explicitly, we assume implicitly
that such an LTS 〈P,−→, T, F 〉 is given. We let tt (ff) stand for the true (false)
process, which is the only process of an LTS with tt ∈ T (ff ∈ F).

Operators. Our conjunction operator is essentially a synchronous composition
for visible transitions and an asynchronous composition for τ–transitions. How-
ever, we need to take care of the T – and F–predicates.

Definition 2 (Conjunction Operator). The conjunction of two logical LTSs
〈P,−→P , TP , FP 〉, 〈Q,−→Q, TQ, FQ〉 is the LTS 〈P ∧Q,−→P∧Q, TP∧Q, FP∧Q〉
defined by:

266 G. Lüttgen and W. Vogler

– P ∧Q =df {p ∧ q | p ∈ P, q ∈ Q}
– −→P∧Q is determined by the following operational rules:

p
τ−→P p′ =⇒ p ∧ q τ−→P∧Q p′ ∧ q

q
τ−→Q q′ =⇒ p ∧ q τ−→P∧Q p ∧ q′

p
a−→P p′, q a−→Q q′ =⇒ p ∧ q a−→P∧Q p′ ∧ q′
q ∈ TQ, p

a−→P p′ =⇒ p ∧ q a−→P∧Q p′ ∧ q
p ∈ TP , q

a−→Q q′ =⇒ p ∧ q a−→P∧Q p ∧ q′

– p ∧ q ∈ TP∧Q if and only if p ∈ TP and q ∈ TQ

– p ∧ q ∈ FP∧Q if at least one of the following conditions holds:
1. p ∈ FP or q ∈ FQ

2. p /∈ TP and q /∈ TQ and p ∧ q 	 τ−→P∧Q and I(P) 	= I(Q)
3. ∃α ∈ I(p ∧ q)∀p′ ∧ q′. p ∧ q α−→P∧Q p′ ∧ q′ =⇒ p′ ∧ q′ ∈ FP∧Q

4. p ∧ q cannot stabilise

Note that the treatment of true–processes when defining −→P∧Q and TP∧Q re-
flects our intuition that these processes allow arbitrary behaviour. We are left
with explaining Conds. (1)–(4). Firstly, a conjunction is inconsistent if any con-
junct is. Conds. (2) and (3) reflect our intuition of inconsistency and, respectively,
backward propagation stated in the motivation section above. Cond. (4) is added
to enforce Def. 1(4). We refer to Conds. (3) and (4) as fixed point conditions of F
for ∧.

It is easy to check that conjunction is well–defined, i.e., that the conjunc-
tive composition of two logical LTSs satisfies the four conditions of Def. 1. For
Def. 1(1) in particular, note that p ∧ q ∈ TP∧Q does not satisfy any of the four
conditions for FP∧Q.

c
∧

a

b

∧
aa

τ

Fig. 3. Counter–example

We may now demonstrate why we have
treated non–escapable divergence as catas-
trophic in our setting. This is because, otherwise,
our conjunction operator would not be associa-
tive as demonstrated by the example depicted in
Fig. 3. If the conjunction is computed from the
left, the result is the first conjunct. Computed
from the right, the result is the same but with
both processes being in F . Hence, in the first
case, the divergence hides the inconsistency. Since this is not really plausible
and associativity of conjunction is clearly desirable, we need some restriction for
divergence; it turns out that restricting divergence to escapable divergence, i.e.,
potential stabilisation, is sufficient for our purposes.

Definition 3 (Disjunction Operator). The disjunction of two logical LTSs
〈P,−→P , TP , FP 〉 and 〈Q,−→Q, TQ, FQ〉 satisfying (w.l.o.g.) P ∩ Q = ∅, is the
logical LTS 〈P ∨Q,−→P∨Q, TP∨Q, FP∨Q〉 defined by:

Conjunction on Processes: Full–Abstraction Via Ready–Tree Semantics 267

– P ∨Q =df {p ∨ q | p ∈ P, q ∈ Q} ∪ P ∪Q
– −→P∨Q is determined by the following operational rules:

always =⇒ p ∨ q τ−→P∨Q p

always =⇒ p ∨ q τ−→P∨Q q

p
α−→P p′ =⇒ p

α−→P∨Q p′

q
α−→Q q′ =⇒ q

α−→P∨Q q′

– p ∨ q /∈ TP∨Q always
– p ∨ q ∈ FP∨Q if and only if p ∈ FP and q ∈ FQ

The definition of disjunction, which reflects internal choice, is quite straightfor-
ward and well–defined. Only the definition of TP∨Q for p ∨ q is unusual, as one
would expect to simply have p ∨ q ∈ T whenever p or q is in T . However, then
Cond. (2) of Def. 1 would be violated. Our alternative definition respects this
condition and is semantically equivalent. In the sequel we leave out indices of
relations and predicates whenever the context is clear.

Refinement Preorder. As the basis for our semantical considerations we now
define a naive refinement preorder stating that an inconsistent specification can-
not be implemented except by an inconsistent implementation.

Definition 4 (Naive Consistency Preorder). The naive consistency pre-
order
F on processes is defined by p
F q if p ∈ F =⇒ q ∈ F .

One main objective of this paper is to identify the corresponding fully–abstract
preorder with respect to conjunction and disjunction, which is contained in
F .
Our approach follow the testing idea of De Nicola and Hennessy [12], for which we
define a testing relation
 as usual. Note that a process and an observer need
to be composed not simply synchronously but conjunctively. This is because
we want the observer to be sensitive to inconsistencies, so that p
 q if each
“conjunctive observer” that sees an inconsistency in p also sees one in q.

Definition 5 (Consistency Testing Preorder). The consistency testing pre-
order
 on processes is defined as the conjunctive closure of the naive consistency
preorder under all processes (observers), i.e., p
 q if ∀o. p ∧ o
F q ∧ o.
To characterise the full–abstract precongruence contained in
F we will intro-
duce a new semantics, called ready–tree semantics, and an associated preorder,
the ready–tree preorder, which is compositional for conjunction and disjunction
and which coincides with
.

Example. As an illustration for our approach, consider process spec in Fig. 4.
For A = {a, b, c}, spec specifies that action c can only occur after action a. In
the light of the above discussions, an implementation should offer initially either
just a, or a and b, or just b, so that spec is an internal choice between three states.
Moreover, after an action a, nothing more is specified; after an action b, the same

268 G. Lüttgen and W. Vogler

τ

b τ

Ta c

a

bspec
τ

impl

a

b

c

b

aτ

τ

τ
F

F

Fig. 4. Example processes

is required as initially. While our specification of this simple behaviour may look
quite complex, we may imagine that process spec is generated automatically
from a temporal–logic formula. Fig. 4 also shows process impl which repeats
sequence abc, and spec ∧ impl. It will turn out that spec
 impl (cf. Sec. 4).

3 Ready–Tree Semantics

A first guess for achieving a compositional semantics reflecting consistency test-
ing is to use a kind of ready–trace semantics [7]. Such a semantics would refine
trace semantics by checking the initial action set of every stable state along
each trace. However, this is not sufficient when dealing with inconsistencies,
since inconsistencies propagate backwards along traces as explained in Sec. 2. It
turns out that a set of tree–like observations is needed, which leads to a novel
denotational–style semantics which we call ready–tree semantics.

Observation trees & ready trees. A tree–like observation can itself be seen
as a deterministic LTS with empty F–predicate, reflecting that observers are
internally consistent.

Definition 6 (Observation Tree). An observation tree is a LTS 〈V,→, T, ∅〉
satisfying the following properties:

1. 〈V,−→〉 is a tree whose root is referred to as v0
2. ∀v ∈ V. v stable
3. ∀v ∈ V, a ∈ I(v) ∃1v′ ∈ V. v a−→ v′

We often denote such an observation tree by its root v0. Next we define the
observations of a process p, called ready trees. Note that p can only be observed
at its stable states.

Definition 7 (Ready Tree). An observation tree v0 is a ready tree of p if there
is a labelling h : V −→ P satisfying the following conditions:

1. ∀v ∈ V. h(v) stable and h(v) /∈ F
2. p ε=⇒ h(v0)
3. ∀v ∈ V, a ∈ A. v a−→ v′ implies (a) h(v′) = h(v) ∈ T or (b) h(v) a=⇒ h(v′)
4. ∀v ∈ V. (v /∈ T and h(v) /∈ T) implies I(v) = I(h(v))

Conjunction on Processes: Full–Abstraction Via Ready–Tree Semantics 269

Intuitively, nodes v in a ready tree represent stable states h(v) of p (cf. Cond. (1),
first part) and transitions represent computations containing exactly one observ-
able action (cf. Cond. (3)(b)). Since computations do not contain false–states, no
represented state is in F (cf. Cond. (1), second part). Since pmight not be stable,
the root v0 of a ready tree represents a stable state reachable from p by some
internal computation (cf. Cond. (2)). If the state h(v) represented by node v
is in T , the subtree of v is arbitrary since h(v) is considered to be completely
underspecified (cf. Conds. (3)(a) and (4)). In case h(v) /∈ T , one distinguishes
two cases: (i) if v /∈ T , then v and h(v) must have the same initial actions, i.e.,
the same ready set ; (ii) if v ∈ T , the observation stops at this node and nothing
is required in Conds. (3) and (4).

In the following, we write RT(p) for the set of all ready trees of p, fRT(p) for
the set of all ready trees of p that have finite depth (finite–depth ready trees),
and cRT(p) for the set of ready trees 〈V,−→, T, ∅〉 where T = ∅ (complete ready
trees). Note that a complete ready tree is called complete as it never stops its task
of observing; hence, complete ready trees are often infinite in practice. Moreover,
false–states may be characterised as follows:

Lemma 8. RT(p) = ∅ if and only if p ∈ F .

c

a
a

b
bb

a
T

a
b

T

T

a
c

b
a

b
T

a

Fig. 5. Some ready trees of spec

We illustrate our concept of ready trees by returning to our example of Fig. 4.
Some of the ready trees of process spec are shown in Fig. 5. In the first ready
tree, the observation stops after the third b. In the second tree, we see that we
can observe an arbitrary tree after a, since the respective state of spec is in T .
An arbitrary tree can also consist of just the root, as shown for the right–most
a in the third tree; this tree is also complete. Process impl in Fig. 4 has only
one complete ready tree which is an infinite path repeating sequence abc; this is
also a ready tree of spec.

Ready–tree preorder & expressiveness. Our ready–tree semantics suggests
the following refinement preorder:

Definition 9 (Ready–Tree Preorder). The ready–tree preorder
∼ on
processes is defined as reverse ready–tree inclusion, i.e., p
∼ q if RT(q) ⊆ RT(p).

This preorder will turn out to be the desired fully–abstract preorder contained
in the naive consistency preorder. We first show that
∼ could just as well
be formulated on the basis of complete ready trees and, for finitely branch-
ing LTS, of finite–depth ready trees. A crucial notion for our results is the
following:

270 G. Lüttgen and W. Vogler

Definition 10 (Ready–Tree Prefix). Ready tree v0 is prefix of ready tree w0,
in signs v0 ≤ w0, if there exists an injective mapping ρ : V ↪→ W such that:

1. ρ(v0) = w0

2. v a−→ v′ =⇒ ρ(v) a−→ ρ(v′)
3. ρ(v) a−→ w′ =⇒ v ∈ T or (∃v′. v a−→ v′ and ρ(v′) = w′)
4. ρ(v) ∈ T =⇒ v ∈ T

Intuitively, one observation is a prefix of another if it stops observing earlier.
Recall that a true–node indicates that observation stops (cf. Cond. (3)). In-
tuitively, we obtain a prefix of w0 by cutting all transitions from some nodes
(and adding them to T), while cutting just some transitions of a node is not
allowed.

Lemma 11. {v0 | ∃w0 ∈ cRT(p). v0 ≤ w0 } = RT(p).

As a consequence, we obtain the following corollary:

Corollary 12

1. RT(p) is uniquely determined by cRT(p), and vice versa.
2. RT(p) ⊆ RT(q) ⇐⇒ cRT(p) ⊆ cRT(q)
3. fRT(p) = {v0 of finite depth | ∃w0 ∈ cRT(p). v0 ≤ w0}

Before stating the next lemma we introduce the following definitions that allow
us to approximate ready trees:

Definition 13 (k–Ready Tree). A k–tree 〈V,−→, T, ∅〉, where k ∈ N0, is an
observation tree where all nodes have depth at most k, and T is the set of all
nodes of depth k. A k–ready tree of p is a ready tree of p that is also a k–tree.
Moreover, k–RT(p) =df {v0 ∈ RT(p) | v0 is a k–tree }.
Intuitively, k–trees represent observations of k steps.

Definition 14 (Limit). Let v be an infinite sequence (vk)k∈N where vk ∈
k–RT(p) and vk ≤ vk+1, with the identity as injection, for all k ∈ N. Then,
limv is the component–wise union of all vk with T set to empty; lim v is called
a limit of p.

Observe that a node of some vk in such a sequence is not in Tk+1, whence nodes
in T are successively pushed out. In the limit, we may thus set T to empty.
Moreover, if vk = vk+1 = vk+2 = . . . for some k, then the limit is vk; this
happens exactly when vk is complete. According to the following definition, we
base the notion of finite branching on the weak transition relation α=⇒.

Definition 15 (Finite Branching). A process p is finite branching if, for ev-
ery p′ reachable from p, there are only finitely many 〈α, p′′〉 with p′ α=⇒ p′′.
For finite–branching processes p, cRT(p) is characterised by the limits of p.

Lemma 16. If p is finite branching, cRT(p) equals the set of all limits of p.

Note that the premise “p is finite branching” is only needed for direction “⊇” in
the above lemma. We may now obtain the following corollary of Cor. 12(3) and

Conjunction on Processes: Full–Abstraction Via Ready–Tree Semantics 271

of Lemma 16, which is key to proving compositionality and full abstraction of
our ready–tree preorder in the next section.

Corollary 17

1. cRT(p) ⊆ cRT(q) =⇒ fRT(p) ⊆ fRT(q), always.
2. cRT(p) ⊆ cRT(q) ⇐= fRT(p) ⊆ fRT(q), if p is finite branching.

4 Compositionality and Full Abstraction

This section establishes our full–abstraction result of the ready–tree preorder
∼
with respect to the consistency testing preorder
, and proves that ∧ and ∨
are indeed conjunction and, respectively, disjunction for
∼ . To do so, we first
show that ∧ and ∨ correspond to intersection and union on the semantic level,
respectively. While the correspondence for ∨ holds for ready trees in general, the
correspondence for ∧ only holds for complete ready trees.

Theorem 18 (Set–Theoretic Interpretation of ∧ and ∨)
1. cRT(p ∧ q) = cRT(p) ∩ cRT(q) 2. RT(p ∨ q) = RT(p) ∪ RT(q)

ba ca a
T

Fig. 6. Necessity of considering complete ready trees for conjunction

Fig. 6 illustrates that Thm. 18(1) is invalid when considering all ready trees
instead of complete ready trees. The two processes displayed on the left and in
the middle have the ready tree displayed on the right in common. However, the
conjunction of the two processes is false and has no ready trees. Intuitively, the
shown common ready tree formalises an observation that finished too early to
encounter the inconsistency. Compositionality of our conjunction and disjunction
operators for
∼ is now an immediate consequence of Thm. 18:

Theorem 19 (Compositionality)
1. p
∼ q =⇒ p ∧ r
∼ q ∧ r 2. p
∼ q =⇒ p ∨ r
∼ q ∨ r
Thm. 18 also allows us to prove that ∧ and ∨ really behave as conjunction and
disjunction with respect to our refinement relation.

Theorem 20 (∧ is And & ∨ is Or)
1. p ∧ q
∼ r ⇐⇒ p
∼ r and q
∼ r 2. r
∼ p ∨ q ⇐⇒ r
∼ p and r
∼ q
In order to see that ready trees are indeed fully–abstract with respect to
our naive consistency preorder, it now suffices to prove that
∼ coincides with
our consistency testing preorder. This means that
∼ is the adequate preorder
in our setting of logical LTSs with conjunction and disjunction.

272 G. Lüttgen and W. Vogler

Theorem 21 (Full Abstraction)
 =
∼
The following proposition states the validity of several boolean properties desired
of conjunction and disjunction operators. Here, = denotes the kernel of our
consistency testing preorder (ready–tree preorder).

Proposition 22 (Properties of ∧ and ∨)
Commutativity: p ∧ q = q ∧ p p ∨ q = q ∨ p
Associativity: (p ∧ q) ∧ r = p ∧ (q ∧ r) (p ∨ q) ∨ r = p ∨ (q ∨ r)
Idempotence: p ∧ p = p p ∨ p = p

False: p ∧ ff = ff p ∨ ff = p
True: p ∧ tt = p p ∨ tt = tt
Distributivity: p ∧ (q ∨ r) = (p ∧ q) ∨ (p ∧ r) p ∨ (q ∧ r) = (p ∨ q) ∧ (p ∨ r)

These properties follow directly from Thm. 18 and Cor. 12(2), as do the following:

Proposition 23 (Relating ∧, ∨ to
)
1. p ∧ q = q ⇐⇒ p
 q 2. p ∨ q = p ⇐⇒ p
 q
We conclude this section by briefly returning to the illustrative processes spec and
impl of Fig. 4. We have already remarked that the only complete ready tree of the
latter is also one of the former. Hence, by Thm. 21, impl is indeed a refinement of
spec according to our ready–tree preorder. Considering the conjunction of these
processes, also shown in Fig. 4, it might be easier to see this using Prop. 23(1).

5 Related Work

Traditionally, process–algebraic and temporal–logic formalisms are not mixed
but co–exist side by side. Indeed, the process–algebra school often uses syn-
chronous composition and internal choice to model conjunction and disjunction,
respectively. The compositionality of classic process–algebraic refinement pre-
orders, such as failures semantics [4] and must–testing [12], enables component–
based reasoning. However, inconsistencies in specifications are not captured so
that, e.g., the conjunctive composition of a and b is identified with deadlock
rather than ff. In contrast, the temporal–logic school distinguishes between dead-
lock and ff, but does not support component–based refinement.

Much research on mixing operational and logical styles of specification avoids
dealing with inconsistencies by translating one style into the other. On the one
hand, operational content may be translated into logic formulas, as is implicitly
done in Lamport’s TLA [10] or in the work of Graf and Sifakis [8]. In these
approaches, logical implication serves as refinement relation. On the other hand,
logical content may be translated into operational content. This is the case in
automata–theoretic work, such as Kurshan’s work on ω–automata [9], which
includes synchronous and asynchronous composition operators and uses maximal
trace inclusion as refinement relation. However, both logical implication and
trace inclusion are insensitive to deadlock.

Conjunction on Processes: Full–Abstraction Via Ready–Tree Semantics 273

A seminal approach to compositional refinement relations in a mixed set-
ting was proposed by Olderog in [13], where process–algebraic constructs are
combined with trace formulas expressed in a predicate logic. In this approach,
trace formulas can serve as processes, but not vice versa. Thus, freely mixing
operational and logical styles is not supported and, in particular, conjunction
cannot be applied to processes. For his setting, Olderog develops a denotational
semantics that is a slight variation of standard failures semantics. Remarkably,
an inconsistent formula is given a semantics that is not an element of the appro-
priate domain, as is stated on pp. 172–173 of [13].

Recently, a more general approach to combining process–algebraic and tem-
poral–logic approaches was proposed in two papers by Cleaveland and Lüttgen
[5, 6], which adopt a variant of De Nicola and Hennessy’s must–testing pre-
order [12] as refinement preorder. However, Cleaveland and Lüttgen have not
successfully solved the challenge of defining a semantics that is both deadlock–
sensitive and compositional, and in which the conjunction operator and the
refinement relation are compatible in the sense of Prop. 23(1). Our work solves
this problem in the basic setting of logical LTS. Key for the solution is our new
understanding of inconsistency, which is reflected by the fact that we consider
processes a and a + b as inconsistent, whereas they were treated as consistent
in [6]. Observe that also in failure semantics and must–testing, a and a+ b are
inconsistent in the sense that they do not have a common implementation.

a

c

a

c cFb
∧

a a a

=

Fig. 7. Backward propagation of inconsistency

In addition, our backward propagation of inconsistency, as formalised in
Def. 1(3), is in line with traditional semantics, as is illustrated in Fig. 7. The first
conjunct would be a specification of the second conjunct with respect to failures
semantics and must–testing, whence their conjunction should be consistent. In
fact, the conjunction equals the second process in our ready–tree semantics.

Comparing Ready–Tree Semantics to Other Semantics

To the best of our knowledge, ready–tree semantics is novel and has not been
studied in the literature before. We thus briefly compare it to three popular
semantics, namely ready–trace semantics, failures semantics and ready simula-
tion [7]. Since our treatment of divergence is different from the one of failures
semantics, we restrict our discussion to τ–free processes.

A ready trace [1] of a process is a sequence of actions that it can perform and
where, at the beginning of the trace, between any two actions and at the end,
the ready set of the process reached at the respective stage is inserted. Such a

274 G. Lüttgen and W. Vogler

a a

c b

d

cb

d

a a

c b

d

cb

d

a

b

d

c

Fig. 8. Ready–tree semantics is strictly finer than ready–trace semantics

ready trace can be understood as a particular type of ready tree that consists
only of a single path and includes additional transitions representing the ready
sets. These additional transitions ensure that each state on the path has, for
each action in its ready set, exactly one transition that either belongs to the
path or ends in a true–state. For example, the first ready tree in Fig. 5 in Sec. 3
represents the ready trace {a, b}b{b}b{a, b}. Consequently, the ready traces of
a process can be read off from its ready trees, and ready–tree inclusion implies
ready–trace inclusion. The reverse implication does not hold: the two left–most
processes in Fig. 8 possess the same ready traces; however, the observation tree
on the right–hand side is a ready tree of the first, but not of the second process.

The failures semantics of a process is the set of its refusal pairs. Such a pair
consists of a trace followed by a refusal set, i.e., a set of actions that the process
reached by the trace cannot perform. Such a refusal pair can be read off from
the respective ready trace by deleting all its ready sets and adding a set of
actions having an empty intersection with the last ready set on the trace. Thus,
ready–tree semantics is finer than failures semantics.

c

a

b

a

c

a

b

dd

bb

Fig. 9. The ready–tree preorder is strictly
coarser than ready simulation

A process q ready–simulates some
process p if there exists a simulation
relation from p to q such that related
states have identical ready sets. When
tracing a ready tree of p, it is easy
to see that such a simulation trans-
lates this ready tree to the same ready
tree for q. Thus, the ready–tree pre-
order is coarser than ready simulation.
Fig. 9 shows that it is indeed strictly
coarser. Both processes displayed have
the same ready trees; all of these trees
are paths. However, the second process cannot even simulate the first process.

6 Conclusions and Future Work

This paper introduced a new semantics, the ready–tree semantics, that lies be-
tween ready–trace semantics and ready simulation. Our framework was one of
τ–pure LTSs, with distinguished true– and false–states, and is equipped with

Conjunction on Processes: Full–Abstraction Via Ready–Tree Semantics 275

conjunction and disjunction operators. Key for defining the conjunction opera-
tor was the careful, inductive formalisation of an inconsistency predicate. The
implied ready–tree preorder proved to be compositional and fully–abstract with
respect to a naive preorder that allows inconsistent specifications to be refined
only by inconsistent implementations. Standard laws of boolean algebra hold as
expected, due to the fact that conjunction and disjunction on LTSs correspond
to intersection and union on ready trees, respectively.

Consequently, this paper solves the problems of defining conjunction which
are reported in closely related work [5, 6], albeit in a simpler setting that does
not consider process–algebraic operators but only conjunction and disjunction.
However, it is the simplicity of our setting that brought the subtleties of defining
a fully–abstract semantics in the presence of conjunction to light, and which
offered a way forward in addressing the challenge of defining “logical” process
calculi, i.e., process calculi that allow one to freely mix process–algebraic and
temporal–logic operators [6].

Future work shall extend our results to richer frameworks. Firstly, we plan to
lift our requirement of τ–purity on LTS and extend our framework by standard
process–algebraic operators such as parallel composition, hiding and recursion.
In particular hiding is likely to prove challenging due to its transformation of
observable infinite behaviour into divergent behaviour. Secondly, our framework
shall be semantically extended from LTS to Büchi LTS [5] so that one may ex-
press liveness and fairness properties, and syntactically to linear–time temporal–
logic formulas [6]. Last, but not least, we wish to explore tool support.

Acknowledgements. We thank Rance Cleaveland for many fruitful discussions
and particularly for suggesting the use of an inconsistency predicate.

References

[1] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Ready-trace semantics for concrete
process algebra with the priority operator. Computer J., 30(6):498–506, 1987.

[2] J.A. Bergstra, A. Ponse, and S.A. Smolka. Handbook of Process Algebra. Elsevier
Science, 2001.

[3] B. Bloom, S. Istrail, and A.R. Meyer. Bisimulation can’t be traced. J. ACM,
42(1):232–268, 1995.

[4] S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A theory of communicating se-
quential processes. J. ACM, 31(3):560–599, 1984.

[5] R. Cleaveland and G. Lüttgen. A semantic theory for heterogeneous system de-
sign. In FSTTCS 2000, vol. 1974 of LNCS, pp. 312–324. Springer-Verlag, 2000.

[6] R. Cleaveland and G. Lüttgen. A logical process calculus. In EXPRESS 2002,
vol. 68,2 of ENTCS. Elsevier Science, 2002.

[7] R. van Glabbeek. The linear time – branching time spectrum II. In CONCUR ’93,
vol. 715 of LNCS, pp. 66–81. Springer-Verlag, 1993.

[8] S. Graf and J. Sifakis. A logic for the description of non-deterministic programs
and their properties. Information and Control, 68(1–3):254–270, 1986.

[9] R.P. Kurshan. Computer-Aided Verification of Coordinating Processes: The
Automata-Theoretic Approach. Princeton Univ. Press, 1994.

276 G. Lüttgen and W. Vogler

[10] L. Lamport. The temporal logic of actions. TOPLAS, 16(3):872–923, 1994.
[11] G. Lüttgen and W. Vogler. Conjunction on processes: Full-abstraction via ready-

tree semantics. Tech. Rep. YCS-2005-396, Dept. of Comp. Sci., Univ. of York,
UK, 2005.

[12] R. De Nicola and M.C.B. Hennessy. Testing equivalences for processes. TCS,
34:83–133, 1983.

[13] E.R. Olderog. Nets, Terms and Formulas. Cambridge Tracts in Theoretical Com-
puter Science 23. Cambridge Univ. Press, 1991.

[14] A. Pnueli. The temporal logic of programs. In FOCS ’77, pp. 46–57. IEEE
Computer Society Press, 1977.

Undecidability Results for Bisimilarity
on Prefix Rewrite Systems

Petr Jančar1,� and Jǐŕı Srba2,��

1 Center of Applied Cybernetics, Department of Computer Science,
Technical University of Ostrava, Czech Republic
2 BRICS��� Department of Computer Science,

Aalborg University, Denmark

Abstract. We answer an open question related to bisimilarity check-
ing on labelled transition systems generated by prefix rewrite rules on
words. Stirling (1996, 1998) proved the decidability of bisimilarity for
normed pushdown processes. This result was substantially extended by
Sénizergues (1998, 2005) who showed the decidability for regular (or
equational) graphs of finite out-degree (which include unnormed push-
down processes). The question of decidability of bisimilarity for a more
general class of so called Type -1 systems (generated by prefix rewrite
rules of the form R

a−→ w where R is a regular language) was left open;
this was repeatedly indicated by both Stirling and Sénizergues. Here we
answer the question negatively, i.e., we show undecidability of bisimilar-
ity on Type -1 systems, even in the normed case. We complete the pic-
ture by considering classes of systems that use rewrite rules of the form
w

a−→ R and R1
a−→ R2 and show when they yield low undecidability

(Π0
1 -completeness) and when high undecidability (Σ1

1 -completeness), all
with and without the assumption of normedness.

1 Introduction

Bisimilarity [17], or bisimulation equivalence, has been recognized as a funda-
mental notion in concurrency theory, in verification of behaviour of (reactive)
systems, and in other areas. This has initiated several research directions, one of
them exploring the decidability and complexity questions for bisimilarity. The
obtained results differ from those known in the case of classical language equiv-
alence; we can refer to surveys like [3, 25].

Bisimilarity is defined on labelled transition systems which can be viewed
as (possibly infinite) edge-labelled directed graphs. Particular classes of graphs
which have been in the focus of researchers are defined by prefix rewrite systems.
We refer to a hierarchy defined by Stirling [27], which is interconnected with the
work of Caucal [7, 5, 9]. We focus on (subclasses of) so called Type -2 systems;

� The author is supported by the Czech Ministry of Education, Grant No. 1M0567.
�� The author is supported in part by the research center ITI, project No. 1M0545.

��� Basic Research in Computer Science, Centre of the Danish National Research
Foundation.

L. Aceto and A. Ingólfsdóttir (Eds.): FOSSACS 2006, LNCS 3921, pp. 277–291, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

278 P. Jančar and J. Srba

such a system is given by a finite set of rewrite rules of the form R1
a−→ R2

where a is an action name (i.e. edge-label) and R1, R2 are regular languages
over a finite alphabet. Processes (or states in the respective labelled transition
system) are finite sequences of alphabet symbols. A rule R1

a−→ R2 stands for a
potentially infinite set of rules {w a−→ w′ | w ∈ R1, w

′ ∈ R2}, where w a−→ w′

can be applied to a process v iff w is a prefix of v (which is then replaced by
w′). A process v is called normed iff each (finite) path from v can be prolonged
to reach the empty process (word) ε.

Important subclasses of Type -2 graphs are called Type -1 and Type 0, where
rules are of the form R

a−→ w and w a−→ w′, respectively. The class of Type 0
systems is isomorphic to the class of pushdown graphs [7], also called Type 1 1

2 by
Stirling. By imposing further restrictions we get Type 2 graphs which correspond
to BPA (Basic Process Algebra) and Type 3 graphs which coincide with finite-
state transition systems.

Several nontrivial results achieved for pushdown (Type 0) processes turned
out to be extendable to a superclass of Type -2 systems, namely the class of
prefix-recognizable graphs, also called RECRAT in [9]. This includes e.g. decid-
ability of monadic second order logic [9] and the existence of uniform winning
strategies for parity games [6]. The decidability questions for bisimilarity are,
however, more intricate.

In 1995 Caucal [8] formulated three open questions about decidability of
bisimilarity for (1) pushdown graphs, (2) regular graphs of finite out-degree,
and (3) regular graphs. A bit later, Stirling showed the decidability of bisim-
ilarity for restricted, namely normed, pushdown processes [27]. He stated the
following two questions:

– Is bisimilarity decidable for Type -1 systems?
– Is bisimilarity decidable for Type -2 systems?

The initial hope was that the technique for normed pushdown processes might be
extendable to these classes, in the normed case at least. Caucal’s problem (1) was
answered positively (in the full, i.e., unrestricted case) by Sénizergues [19] (who
extended the technique used in his famous result for deterministic pushdown
automata [20]). Stirling later presented a shorter proof in [29]. The result of
Sénizergues also gives a positive answer to Caucal’s problem (2); a complete
journal version appeared recently in [21]. Due to a terminology mismatch, it
was incorrectly indicated in [19] that the positive decidability result applies to
Type -1 systems as well; this was later corrected in [21] by noting that it is valid
(just) for a significant subclass of Type -1 graphs. More precisely, in [21] it was
shown that regular graphs of finite out-degree (for which the decidability result
was obtained) coincide up to isomorphism with collapsed graphs of pushdown
automata with deterministic and popping only ε-transitions, and this is not the
full class of Type -1 systems (where nondeterministic popping is allowed).

Remark. In the full paper (available as a BRICS technical report) we show that
the class of regular graphs of finite out-degree can be characterized by Type -1
rules R a−→ w with the restriction that R is a prefix-free (regular) language.

Undecidability Results for Bisimilarity on Prefix Rewrite Systems 279

Thus Stirling’s question about decidability of bisimilarity for Type -1 systems,
also in the normed case, remained open (as several times explicitly indicated in
the literature, most recently in [21]).

Our contribution. The main contribution of the present paper is the result show-
ing the undecidability of bisimilarity on Type -1 systems, even in the normed
case. Hence we have answered negatively the two open problems formulated by
Stirling. Besides this, we have performed a more detailed analysis of the unde-
cidability on related process classes.

We have also slightly extended the considered hierarchy. We view Stirling’s
Type -1 rules R a−→ w as Type -1a, and we introduce a complementary class
called Type -1b to denote rules of the type w a−→ R. Such a comparative study
provides a deeper insight into prefix rewriting systems by classifying the respec-
tive undecidability degrees.

Remark. In the full paper we show that the classes -1a and -1b are incomparable
w.r.t. bisimilarity and strictly above Type 0 and below Type -2 systems.

Let us recall a general experience that the ‘natural’ undecidable problems we
encounter in computer science are either ‘lowly’ undecidable, i.e., at the first
levels of arithmetical hierarchy — typically equivalent to the halting problem
or its complement (Σ0

1 -complete or Π0
1 -complete), or ‘highly’ undecidable —

typically complete for the first levels of analytical hierarchy (Σ1
1 -complete or

Π1
1 -complete).
We demonstrate that bisimilarity is undecidable for normed Type -1a and

Type -1b processes. More precisely, we establish Π0
1 -completeness of bisimilarity,

both in the normed case and the unrestricted case, for Type -1a systems and
in the normed case also for Type -1b systems. High undecidability, in fact Σ1

1 -
completeness, is shown in the unrestricted case for Type -1b systems, and in the
normed case and the unrestricted case for Type -2 systems. These results are
completed by an observation that normedness of a given (Type -2) process is
decidable.

Last but not least, our results are achieved in a uniform way, using reductions
from two variants of Post’s Correspondence Problem (oneΠ0

1 -complete, the other
Σ1

1 -complete). An important technical ingredient of our reductions is the so
called Defender’s Choice technique (related to bisimulation games), which we
most recently used in [14].

Remark. The techniques from the undecidability proofs of weak bisimilar-
ity for pushdown automata [23, 24] can be used to prove undecidability
(Σ1

1 -completeness) of strong bisimilarity also for Type -2 systems (no conflict
between visible and ε-transitions means that ε-collapsed PDA graphs coincide
with Type -2 graphs [29]; even though the pushdown rules in [23, 24] do not
avoid the mentioned conflict, they can be modified to suppress clashes between
visible and ε-moves). Nevertheless, the constructions from [23, 24] use pushdown
processes the collapsed graphs of which have infinite out-degree and it is not
straightforward to adapt the reductions to work also for Type -1a systems.

280 P. Jančar and J. Srba

2 Preliminaries

A labelled transition system (LTS) is a triple (S,Act,−→) where S is a set of
states (or processes), Act is a set of labels (or actions), and −→⊆ S ×Act × S
is a transition relation; for each a ∈ Act, we view a−→ as a binary relation on
S where α a−→ β iff (α, a, β) ∈−→. The notation can be naturally extended to
α

s−→ β for finite sequences of actions s; and by α −→∗ β we mean that there is
s such that α s−→ β.

Given (S,Act,−→), a binary relation R ⊆ S × S is a simulation iff for each
(α, β) ∈ R, a ∈ Act, and α′ such that α a−→ α′ there is β′ such that β a−→ β′

and (α′, β′) ∈ R. A bisimulation is a simulation which is symmetric. Processes α
and β are bisimilar, denoted α ∼ β, if there is a bisimulation containing (α, β).
We note that bisimilarity is an equivalence relation.

We shall use a standard game-theoretic characterization of bisimilar-
ity [31, 26]. A bisimulation game on a pair of processes (α1, α2) is a two-player
game between Attacker and Defender. The game is played in rounds. In each
round (consisting of two moves) the players change the current pair of states
(β1, β2) (initially β1 = α1 and β2 = α2) according to the following rule:

1. Attacker chooses i ∈ {1, 2}, a ∈ Act and β′
i ∈ S such that βi

a−→ β′
i .

He thus creates an intermediate pair which is (β′
1, β2) in the case

i = 1, and (β1, β
′
2) in the case i = 2.

2. Defender responds by choosing β′
3−i ∈ S such that β3−i

a−→ β′
3−i.

3. The pair (β′
1, β

′
2) becomes the (new) current pair of states.

Any play (of the bisimulation game) thus corresponds to a sequence of pairs of
states such that Attacker is making a move from every odd position and Defender
from every even one (under the same action as in the previous Attacker’s move).

A play (and the corresponding sequence) is finite iff one of the players gets
stuck (cannot make a move); the player who got stuck lost the play and the other
player is the winner. (A play finishing in an intermediate pair on an even position
is winning for Attacker and a play finishing on an odd position is winning for
Defender.) If the play is infinite then Defender is the winner. We use the following
standard fact.

Proposition 1. It holds that α1 ∼ α2 iff Defender has a winning strategy in
the bisimulation game starting with the pair (α1, α2), and α1 	∼ α2 iff Attacker
has a winning strategy.

We shall now demonstrate a simple idea to establish semidecidability of non-
bisimilarity for a particular class of LTSs; the idea slightly extends the standard
argument used for image-finite systems [12]. (For example, for normed systems
of Type -1b considered in the proof of Theorem 2, we are able to argue about the
semidecidability of nonbisimilarity even though the systems are not necessarily
image-finite.)

We say that a labelled transition system (S,Act,−→) is effective iff both S
and Act are decidable subsets of the set of all finite strings in a given finite
alphabet and the relation −→ is decidable.

Undecidability Results for Bisimilarity on Prefix Rewrite Systems 281

An LTS (S,Act,−→) is called finitely over-approximable (w.r.t. bisimilarity)
iff for any α, β ∈ S, a ∈ Act, a finite set E(α,β,a) ⊆ S can be effectively con-
structed such that whenever β a−→ β′ and β′ ∼ α then β′ ∈ E(α,β,a). Thus
the (finite) set E(α,β,a) over-approximates the set of a-successors of β which are
bisimilar with α.

Proposition 2. The problem of nonbisimilarity on effective and finitely over-
approximable labelled transition systems is semidecidable, i.e., the bisimilarity
problem is in Π0

1 .

Proof. (Sketch) It is sufficient to provide a procedure which halts, for a given
pair (α1, α2) of a given effective and finitely over-approximable system, iff there
is a winning strategy for Attacker. Such a strategy can be naturally viewed as
a tree where each vertex is labelled by a pair of processes and each edge, la-
belled by an action, corresponds to a move (of Attacker or Defender). While
each vertex on an odd level has just one outgoing edge (Attacker’s moves are
fixed by the strategy), the vertices on even levels (corresponding to the ‘inter-
mediate’ pairs) can have more successors (corresponding to Defender’s choices).
Each branch of the tree corresponds to a possible play when Attacker plays ac-
cording to the assumed winning strategy; each branch is thus finite (finishing
by Defender’s getting stuck). Due to the assumed finite over-approximability,
it is always sufficient to consider only finitely many possibilities for Defender’s
moves; the respective strategy-tree is then finitely branching and thus finite. So
it is sufficient to systematically generate all finite trees and check for each of
them if it happens to represent a winning strategy of Attacker; the checking can
be done algorithmically due to our effectiveness assumptions. �"

2.1 A Hierarchy of Regular Prefix Rewriting

We are interested in special labelled transition systems, namely those generated
by systems of prefix rewrite rules. We now provide the relevant definitions.

The most general systems we consider are Type -2 systems. Such a system
S can be viewed as a triple S = (Γ,Act, Δ) where Γ is a finite set of process
symbols, Act is a finite set of actions, and Δ is a finite set of rewrite rules. Each
rewrite rule is of the form R1

a−→ R2 where a ∈ Act and R1 and R2 are regular
languages over Γ such that ε 	∈ R1; for concreteness, we can assume that R1, R2
are given by regular expressions.

We view the system S as generating a certain LTS (Γ ∗,Act,−→). A process
(or a state in the respective LTS) is any finite sequence of process symbols, i.e.,
any element of Γ ∗; we shall use u, v, w, . . . for denoting elements of Γ ∗, and ε
for denoting the empty sequence. The transition relation −→ (i.e., the collection
of relations a−→) is defined by the following derivation rule:

(R1
a−→ R2) ∈ Δ, w ∈ R1, w′ ∈ R2, u ∈ Γ ∗

wu
a−→ w′u

282 P. Jančar and J. Srba

Thus any rule (R1
a−→ R2) ∈ Δ represents possibly infinitely many rewrite rules

w
a−→ w′ where w ∈ R1 and w′ ∈ R2.

We shall also need the notion of normedness. We say that a process w ∈ Γ ∗ is
normed if for any w′ such that w −→∗ w′ we have w′ −→∗ ε. In other words, a
process w is normed iff any path from w in the respective LTS can be prolonged
to finish in ε. A norm of a normed process w, denoted by norm(w), is the length
of the shortest action sequence s such that w s−→ ε.

Proposition 3. If two normed processes are bisimilar then they have the same
norm.

Proof. Assume normed u, v with norm(u) < norm(v). For the shortest sequence
s such that u s−→ ε we have: if v s−→ v′ then v′ is normed and v′ 	= ε (thus v′

can perform an action). This implies that u and v are not bisimilar. �"

Proposition 4. There is an algorithm which given a Type -2 process v decides
whether v is normed, and computes its norm in the positive case.

Proof. (Sketch) We can base the algorithm on the well-known fact regarding
(classical) pushdown automata: given a pushdown automaton and an initial
state× stack configuration, the set of all state× stack configurations reachable
from the initial one is regular, and its representation can be effectively con-
structed [2, 10].

We observe (see also [29]) that applying a rule R1
a−→ R2 to v, i.e., replacing

a prefix w ∈ R1 of v by w′ ∈ R2, can be implemented by a series of ε-moves of a
pushdown automaton (whose control unit includes finite automata for R1, R2).

In this way we can easily derive that, given a Type -2 system and a process v,
the set post∗(v) — consisting of all processes reachable from v — is an effectively
constructible regular set. Similarly, the set pre∗(ε) — consisting of all processes
from which ε is reachable — is an effectively constructible regular set. Checking
normedness of v now amounts to verifying whether post∗(v) ⊆ pre∗(ε).

Computing norm(v) for a normed v can be accomplished by stepwise con-
structing pre(ε), pre(pre(ε)), pre(pre(pre(ε))), . . . until v is included; here
pre(R) denotes the set of processes from which some u ∈ R is reachable in one
step. Such a computation can be again easily reduced to computing the sets of
reachable configurations of pushdown automata. �"

The other systems we consider arise from the above defined Type -2 systems
by restricting the form of rewrite rules. We use the terminology introduced by
Stirling (see, e.g., [30]). In the following table, R1, R2 and R stand for regular
sets over Γ ; w, w′ stand for elements of Γ ∗ (the respective regular languages are
thus singletons); and X,Y, p, q stand for elements of Γ . We have added Type -1b
to Stirling’s table; his Type -1 coincides with our Type -1a. In the full paper it
is shown that Type -1a and -1b classes are incomparable w.r.t. bisimilarity and
strictly above Type 0 and below Type -2 systems.

Undecidability Results for Bisimilarity on Prefix Rewrite Systems 283

Type Form of Rewrite Rules
Type -2 R1

a−→ R2

Type -1a/-1b R
a−→ w / w a−→ R

Type 0 w
a−→ w′

Type 1 1
2 pX

a−→ qw

Type 2 X
a−→ w

Type 3 X
a−→ Y, X

a−→ ε

Type -2

��
�� ��

��

Type -1a
���

� Type -1b
���

�

Type 0 = Type 1 1
2

Type 2

Type 3

We can note that Type 1 1
2 rules are classical pushdown rules (p, q are ‘high-

lighted’ as finite control states and are disjoint with the stack alphabet); this
class was shown to coincide up to isomorphism with Type 0 systems [7]. Type 2
systems are also called BPA (Basic Process Algebra) systems, and Type 3 sys-
tems correspond to finite labelled transition systems.

2.2 Versions of Post’s Correspondence Problem

Here we recall the versions of Post’s Correspondence Problem (PCP) which will
be used in the later reductions.

A PCP-instance is a nonempty sequence (u1, v1), (u2, v2), . . . , (un, vn) of pairs
of nonempty words in the alphabet {A,B} such that |ui| ≤ |vi| for all i, 1 ≤ i ≤ n
(where |u| denotes the length of u).

An infinite initial solution of the given instance is an infinite sequence of
indices i1, i2, i3, . . . from the set {1, 2, . . . , n} such that i1=1 and the infinite
words ui1ui2ui3 · · · and vi1vi2vi3 · · · are equal. An infinite recurrent solution is
an infinite initial solution in which the index 1 appears infinitely often.

By inf-PCP we denote the problem to decide whether a given PCP instance
has an infinite initial solution; rec-PCP denotes the problem to decide whether
a given PCP instance has an infinite recurrent solution.

Proposition 5. Problems inf-PCP and rec-PCP are Π0
1 -complete and Σ1

1 -
complete, respectively.

These facts can be easily established from well-known results but we can refer,
e.g., to [18] for the (low) undecidability and to [11] for the high undecidability.
Our (additional) requirement |ui| ≤ |vi| is non-standard but it can be easily
checked to be harmless; we use it for its technical convenience. (The harmlessness
of the extra requirement follows directly from the standard textbook reduction
from Turing machines to PCP. The reduction produces an instance of PCP
which satisfies our requirement, except for the last category of pairs of strings
that are used to equalize the lengths of the two generated words in case that an
accepting configuration is reached. As our question is about the existence of an
infinite computation, we can safely omit the pairs from the last category.)

It is also useful to note the following obvious fact.

284 P. Jančar and J. Srba

Proposition 6. Given a PCP-instance (u1, v1), (u2, v2), . . . , (un, vn) and a se-
quence i1, i2, i3, . . . of indices where i1 = 1, the following three conditions are
equivalent:

– i1, i2, i3, . . . is an infinite initial solution,
– for each � = 1, 2, 3, . . . , the word ui1ui2 . . . ui

is a prefix of vi1vi2 . . . vi

,

– for infinitely many � ≥ 1, the word ui1ui2 . . . ui

is a prefix of vi1vi2 . . . vi

.

3 Proof Strategy

A crucial point in proving completeness results for bisimilarity on prefix rewriting
systems are the hardness reductions, from inf-PCP or rec-PCP to the respective
bisimilarity problems. Here we describe the general idea of these reductions,
which will be implemented later by suitable sets of rewrite rules.

In each particular case studied in this paper, we assume a fixed PCP-instance
(u1, v1), (u2, v2), . . . , (un, vn) (over the alphabet {A,B}) and show how to con-
struct an appropriate rewrite system (Γ,Act, Δ). The set of process symbols
Γ will always contain the alphabet symbols A,B, ‘index-symbols’ I1, I2, . . . , In,
and auxiliary symbols X,X ′,⊥ and others.

Our constructions will guarantee that XI1⊥ ∼ X ′I1⊥ (and hence that De-
fender has a winning strategy from the pair (XI1⊥ , X ′I1⊥)) if and only if there
is an infinite initial solution or an infinite recurrent solution — depending on
the source problem (inf-PCP or rec-PCP).

Our intention is that each play starting from (XI1⊥ , X ′I1⊥) will begin with
a generating phase: this phase produces pairs (of current states) of the form

(XIi

Ii
−1 . . . Ii1⊥ , X ′Ii

Ii
−1 . . . Ii1⊥) (where i1=1) (1)

where the players are stepwise building longer and longer prefixes of an infinite
sequence i1, i2, i3, . . . ; this means that the pair (1) can only be ‘prolonged’, i.e.,
followed by the pair

(XIimIim−1 . . . Ii
+1Ii

Ii
−1 . . . Ii1⊥ , X ′IimIim−1 . . . Ii
+1Ii

Ii
−1 . . . Ii1⊥)

for m > �. Moreover, in the case of rec-PCP we will guarantee that im = 1,
which ensures that the first index has to be repeatedly inserted into the states.

Remark. Due to the nature of prefix rewrite rules, we represent generating of a
sequence Ii1 , Ii2 , Ii3 , . . . by using the ‘right-to-left’ direction.

A subtle point is that the elements of the sequence i1, i2, i3, . . . arising during
the generating phase must be freely chosen by Defender. We implement this by
a variant of so-called Defender’s Choice technique (which we used, e.g., in [14]).

The generating phase can go on arbitrarily long, maybe forever (in which case
Defender wins). Attacker will always have the possibility to finish this phase by
switching to a verification phase; our rules will guarantee that Attacker can thus
force his win from the current pair (1) if and only if ui1ui2 . . . ui

is not a prefix
of vi1vi2 . . . vi

.
The correctness of the described general strategy follows from Proposition 6.

Undecidability Results for Bisimilarity on Prefix Rewrite Systems 285

4 (Low) Undecidability Results

In this section we show that bisimilarity is Π0
1 -complete for both normed and

unrestricted Type -1a systems, and for normed Type -1b systems; this in par-
ticular entails the undecidability for (normed) Type -1a systems (i.e., Stirling’s
Type -1 systems).

As explained in Section 3, in what follows we assume a fixed PCP-instance
(u1, v1), (u2, v2), . . . , (un, vn) (over the alphabet {A,B}); the instance is now
viewed as an input of inf-PCP.

4.1 Π0
1 -Completeness of Normed and Unrestricted Type -1a Systems

We first provide the rules and then explain how they implement the above de-
scribed strategy. For the generating phase we add auxiliary process symbols Y
and Y1, Y2, . . . , Yn, actions 1, 2, . . . , n and c, and

(G1) rules: X
c−→ Y

X
c−→ Yi X ′ c−→ Yi for all i ∈ {1, 2, . . . , n}

Y
i−→ XIi Yi

i−→ X ′Ii for all i ∈ {1, 2, . . . , n}
Yi

j−→ XIj for all i, j ∈ {1, 2, . . . , n}, i 	= j.

For switching we add the symbols C,C′, an action d, and

(S1) rules: X
d−→ C

X(I∗)Ii
d−→ C′w X ′(I∗)Ii

d−→ C′w for all i ∈ {1, 2, . . . , n}
and all suffixes w of vR

i .

Notation. I∗ stands for the regular expression (I1 + I2 + · · ·+ In)∗; this uses the
possibility allowed by Type -1a rules. For a word u, by uR we denote the reverse
image of u.

For the verification phase we add actions a, b, e, and the following rules in
which we use a further piece of notation.
Notation. By head(w) we denote the first symbol of w; tail (w) is the rest of w.
By h(w) (head-action) we mean a when head(w) = A, and b when head(w) = B.

(V1) rules: CA
a−→ C C′A a−→ C′

CB
b−→ C C′B b−→ C′

C⊥ e−→ ε C′⊥ e−→ ε

CIi
h(uR

i)−→ C tail(uR
i) C′Ii

h(vR
i)−→ C′ tail(vR

i)
for all i ∈ {1, 2, . . . , n}

Let us now consider the system with the rules (G1), (S1), (V1), and the pair
(XI1⊥ , X ′I1⊥). Attacker can decide to perform a step of the generating phase
by choosing the action c. He then has to use the rule X c−→ Y ; any other c-move
could be followed by Defender’s response reaching syntactically equal processes

286 P. Jančar and J. Srba

(YiI1⊥ , YiI1⊥) (which are trivially bisimilar). So it is Defender who (after
Attacker’s move X c−→ Y) chooses some i ∈ {1, 2, . . . , n} by performing the
rule X ′ c−→ Yi. We thus get (Y I1⊥ , YiI1⊥). The next action will be some
j ∈ {1, 2, . . . , n}. If Attacker chooses j 	= i then Defender installs syntactic
equality (XIjI1⊥ , XIjI1⊥); so Attacker is forced to use the action i which
means that the current round finishes in (XIiI1⊥ , X ′IiI1⊥).

Attacker can decide to prolong the generating phase arbitrarily long but he
always has the possibility to switch, by choosing the action d. In such case, from
a current pair (XIi

Ii
−1 . . . Ii1⊥ , X ′Ii

Ii
−1 . . . Ii1⊥) he is forced to perform

X
d−→ C to avoid syntactic equality. So the ‘left-hand side’ process becomes

CIi

Ii
−1 . . . Ii1⊥ , and Defender installs some C′wIimIim−1 . . . Ii1⊥ on the ‘right-

hand side’, where m < � and w is a suffix of vR
im+1

.
One can easily check that the rules (V1) guarantee

CIi

Ii
−1 . . . Ii1⊥ ∼ C′wIimIim−1 . . . Ii1⊥ iff ui1 . . . ui

= vi1 . . . vimw
R

and that Defender has the possibility to install such a bisimilar pair (by using
the rule X ′(I∗)Ii

d−→ C′w) iff ui1 . . . ui

is a prefix of vi1 . . . vi

.
We also observe that XI1⊥ and X ′I1⊥ are normed; we have thus proved the

following lemma.

Lemma 1. Problem inf-PCP is reducible to bisimilarity on normed Type -1a
systems.

Theorem 1. Bisimilarity on Type -1a systems is Π0
1 -complete in both the

normed case and the unrestricted case.

Proof. Lemma 1 shows that bisimilarity is Π0
1 -hard already for normed Type

-1a systems. Since (unrestricted) Type -1a systems are effectively image-finite,
i.e., for each process w and every action a the set of a-successors of w is fi-
nite and effectively constructible, semidecidability of nonbisimilarity follows from
Proposition 2. �"

4.2 Π0
1 -Completeness of Normed Type -1b Systems

Normed Type -1b systems are handled very similarly as Type -1a, we only use
different switching rules.

(S2) rules: X ′ d−→ C′

X
d−→ C(A +B)∗ X ′ d−→ C(A+B)∗

When now, i.e., in the system (G1), (S2), (V1), Attacker decides to switch to
the verification phase, in a current pair (XIi

Ii
−1 . . . Ii1⊥ , X ′Ii

Ii
−1 . . . Ii1⊥),

he is forced to use X ′ d−→ C′ (on the right-hand side); Defender responds by ex-
tending the left-hand side. It is clear that there is an extension which guarantees
Defender’s win if and only if ui1ui2 . . . ui

is a prefix of vi1vi2 . . . vi

.

Since XI1⊥ and X ′I1⊥ are normed also in the system (G1), (S2), (V1), we
have shown the following lemma.

Undecidability Results for Bisimilarity on Prefix Rewrite Systems 287

Lemma 2. Problem inf-PCP is reducible to bisimilarity on normed Type -1b
systems.

Theorem 2. Bisimilarity on normed Type -1b systems is Π0
1 -complete.

Proof. Π0
1 -hardness follows from Lemma 2. Type -1b systems are obviously

effective, and for semidecidability of nonbisimilarity it is thus sufficient to show
that normed Type -1b systems are finitely over-approximable and then use
Proposition 2. (Note that Type -1b systems are in general not image-finite and
hence the standard argument about semidecidability of the negative case does
not directly apply.)

We recall that normed bisimilar processes must have equal norms (Proposi-
tion 3), and we note that norm(u) ≥ |u|/k where k is the length of the longest
left-hand side in the rules w a−→ R of the respective Type -1b system. Since
norm(u) is computable by Proposition 4, the required (finite) set E(u,v,a) for
given processes u, v and an action a can be defined as { v′ | |v′| ≤ k · norm(u) }.

�"

5 High Undecidability Results

We first note that (unrestricted) Type -2 systems represent a class of LTSs which
satisfies the (straightforward) general criteria guaranteeing that the bisimilarity
problem is in Σ1

1 (see, e.g., [14]). (Processes u and v are bisimilar iff there ex-
ists a set of pairs which contains (u, v) and satisfies the conditions required by
the definition of bisimulation.) So the main point in the following completeness
results is to show Σ1

1-hardness.
We again assume a fixed PCP-instance (u1, v1), (u2, v2), . . . , (un, vn) (over the

alphabet {A,B}); the instance is now viewed as an input of rec-PCP.

5.1 Σ1
1-Completeness of (Unrestricted) Type -1b Systems

We modify the previously defined (normed) Type -1b system (G1), (S2), (V1).
We first replace the (generating) rules (G1) with the following variant (G2),
which repeatedly forces Defender to include the index 1 into the generated se-
quence. As before, I∗ denotes (I1 + I2 + · · ·+ In)∗.

(G2) rules: X
c−→ Y

X
c−→ Y ′I1I∗ X ′ c−→ Y ′I1I∗

Y ′ c−→ X ′

Y
c−→ XI∗⊥ Y ′ c−→ XI∗⊥

Given a pair (XIi

Ii
−1 . . . Ii1⊥ , X ′Ii

Ii
−1 . . . Ii1⊥) (with i1=i�=1), if At-
tacker decides to continue the generating phase (i.e., chooses the action c)
then he is forced to perform X

c−→ Y (on the left-hand side), otherwise
he loses. Defender responds by the rule X ′ c−→ Y ′I1I∗ (on the right-hand
side), i.e., he prolongs the right-hand side sequence by an arbitrarily chosen

288 P. Jančar and J. Srba

finite segment finishing with I1 (viewed from right to left). So we get the pair
(Y Ii

Ii
−1 . . . Ii1⊥ , Y ′IimIim−1 . . . Ii
+1Ii

Ii
−1 . . . Ii1⊥) wherem > � and im=1.

Now unnormedness comes ‘into play’. Our rules maintain the property that
the suffix after (the leftmost) ⊥ does not matter. So Attacker is forced to perform
Y ′ c−→ X ′ (on the right-hand side). Defender responds by ‘killing’ the left-hand
side sequence (using a new occurrence of ⊥) and creating a completely new one;
important is that he has the possibility to install the pair

(XIimIim−1 . . . Ii1⊥w , X ′IimIim−1 . . . Ii1⊥)

where w is unimportant and can be deemed omitted (which leaves the process
in the same bisimilarity class).

However, we are not done yet. Unlike (G1), the new rules (G2) allow Defender
to install an index sequence on the left-hand side which differs from the sequence
he previously installed on the right-hand side. To prevent Defender from such
‘cheating’, we add some further switching and verification rules to (S2) and (V1).
For this purpose we add new process symbols Z,Z ′ and an action f .

(S2’) rules: (S2) and X
f−→ Z X ′ f−→ Z ′

(V1’) rules: (V1) and ZIi
i−→ Z Z ′Ii

i−→ Z ′ for all i ∈ {1, 2, . . . , n}
Z⊥ e−→ ε Z ′⊥ e−→ ε

We remind the reader of the fact that even though the last two rules above
remove the symbol ⊥ from the sequence of process symbols, whatever remains
after ⊥ can only start with some process symbol from the set {I1, . . . , In} and
hence the remaining process is stuck (no left-hand side of any rule in our system
begins with any Ii). Type -1b system (G2), (S2’), (V1’) thus proves the next
lemma, from which the following theorem is derived.

Lemma 3. Problem rec-PCP is reducible to bisimilarity on (unrestricted)
Type -1b systems.

Theorem 3. Bisimilarity on (unrestricted) Type -1b systems is Σ1
1 -complete.

5.2 Σ1
1-Completeness of Normed and Unrestricted Type -2 Systems

Σ1
1 -completeness for (unrestricted) Type -2 systems follows immediately from

the previous results (Type -1b is a subclass of Type -2). So we just have to show
that normedness does not make the problem easier in this case.

We recall the unnormed Type -1b system (G2), (S2’), (V1’). It is sufficient to
replace the last two rules of (G2) (resp. their left-hand sides); we thus get

(G3) rules: X
c−→ Y

X
c−→ Y ′I1I∗ X ′ c−→ Y ′I1I∗

Y ′ c−→ X ′

Y I∗⊥ c−→ XI∗⊥ Y ′I∗⊥ c−→ XI∗⊥ .

Undecidability Results for Bisimilarity on Prefix Rewrite Systems 289

The processes XI1⊥ and X ′I1⊥ in the resulting Type -2 system (G3), (S2’),
(V1’) are obviously normed (in any reachable process, ⊥ can only occur as the
last element in the sequence), and the correctness arguments remain the same.
We have thus shown the following theorem.

Theorem 4. Bisimilarity on Type -2 systems is Σ1
1 -complete in both the normed

case and the unrestricted case.

6 Conclusion and Final Remarks

We have answered negatively the open problem stated in 1996 by Stirling [27]:
“Is strong bisimilarity decidable for Type -1 and Type -2 transition graphs?”. A
precise borderline between decidability and undecidability has been found: for
Type -1a systems with rules of the form R

a−→ w where R is a prefix-free regular
language bisimilarity is decidable [21], while it is undecidable for the same class
without the prefix-freeness restriction. We have also given a full characterization
of the undecidability degrees of the studied problems. A summary of the re-
sults for bisimilarity checking is provided in the following table. Results without
references were obtained in this paper.

Normed Processes Unnormed Processes
Type -2 Σ1

1 -complete Σ1
1 -complete

Type -1b Π0
1 -complete Σ1

1 -complete
Type -1a Π0

1 -complete Π0
1 -complete

Type 0, and decidable [28] decidable [19, 21]
Type 1 1

2 EXPTIME-hard [16] EXPTIME-hard [16]
Type 2 ∈ P [13] ∈ 2-EXPTIME [4]

P-hard [1] PSPACE-hard [22]
Type 3 P-complete [15, 1] P-complete [15, 1]

We note that the results for Type -1b systems illustrate a significant differ-
ence between normed and unnormed processes. An open problem is the precise
complexity for PDA and BPA, and decidability of bisimilarity for unrestricted
regular (equational) graphs. As a side result, our paper provides an alterna-
tive and easily understandable proof of undecidability of weak bisimilarity for
normed pushdown processes since the class of ε-collapsed pushdown graphs is
a superclass of Type -2 systems [29] and hence (high) undecidability of strong
bisimilarity for normed Type -2 graphs implies (high) undecidability of weak
bisimilarity for normed pushdown processes.

Acknowledgments. The authors thank to Géraud Sénizergues for a motivat-
ing discussion (at University of Stuttgart), to the anonymous referees for their
useful remarks, and acknowledge a support from the Alexander von Humboldt
Foundation.

290 P. Jančar and J. Srba

References

1. J. Balcazar, J. Gabarro, and M. Santha. Deciding bisimilarity is P-complete. For-
mal Aspects of Computing, 4(6A):638–648, 1992.

2. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown au-
tomata: Application to model-checking. In Proc. of the 8th International Confer-
ence on Concurrency Theory (CONCUR’97), vol. 1243 of LNCS, pages 135–150.
Springer-Verlag, 1997.

3. O. Burkart, D. Caucal, F. Moller, and B. Steffen. Verification on infinite structures.
In J. Bergstra, A. Ponse, and S. Smolka, editors, Handbook of Process Algebra,
chapter 9, pages 545–623. Elsevier Science, 2001.

4. O. Burkart, D. Caucal, and B. Steffen. An elementary decision procedure for
arbitrary context-free processes. In Proc. of the 20th International Symposium on
Mathematical Foundations of Computer Science (MFCS’95), vol. 969 of LNCS,
pages 423–433. Springer-Verlag, 1995.

5. O. Burkart, D. Caucal, and B. Steffen. Bisimulation collapse and the process
taxonomy. In Proc. of the 7th International Conference on Concurrency Theory
(CONCUR’96), vol. 1119 of LNCS, pages 247–262. Springer-Verlag, 1996.

6. T. Cachat. Uniform solution of parity games on prefix-recognizable graphs. Elec-
tronic Notes in Theoretical Computer Science, 68(6), 2002.

7. D. Caucal. On the regular structure of prefix rewriting. Theoretical Computer
Science, 106(1):61–86, 1992.

8. D. Caucal. Bisimulation of context-free grammars and of pushdown automata. In
Modal Logic and Process Algebra, vol. 53 of CSLI Lectures Notes, pages 85–106.
University of Chicago Press, 1995.

9. D. Caucal. On infinite transition graphs having a decidable monadic theory. In
Proc. of the 23th International Colloquium on Automata, Languages and Program-
ming (ICALP’96), vol. 1099, pages 194–205. Springer-Verlag, 1996.

10. J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms for
model checking pushdown systems. In Proc. of the 12th International Conference
on Computer Aided Verification (CAV’00), vol. 1855 of LNCS, pages 232–247.
Springer-Verlag, 2000.

11. D. Harel. Effective transformations on infinite trees, with applications to high
undecidability, dominoes, and fairness. Journal of the ACM (JACM), 33(1):
224–248, 1986.

12. M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency.
Journal of the Association for Computing Machinery, 32(1):137–161, 1985.

13. Y. Hirshfeld, M. Jerrum, and F. Moller. A polynomial algorithm for deciding
bisimilarity of normed context-free processes. Theoretical Computer Science, 158
(1–2):143–159, 1996.

14. P. Jančar and J. Srba. Highly undecidable questions for process algebras. In
Proc. of the 3rd IFIP International Conference on Theoretical Computer Science
(TCS’04), Exploring New Frontiers of Theoretical Informatics, pages 507–520.
Kluwer Academic Publishers, 2004.

15. P.C. Kanellakis and S.A. Smolka. CCS expressions, finite state processes, and three
problems of equivalence. Information and Computation, 86(1):43–68, 1990.

16. A. Kučera and R. Mayr. On the complexity of semantic equivalences for pushdown
automata and BPA. In Proc. of the 27th International Symposium on Mathematical
Foundations of Computer Science (MFCS’02), vol. 2420 of LNCS, pages 433–445.
Springer-Verlag, 2002.

Undecidability Results for Bisimilarity on Prefix Rewrite Systems 291

17. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
18. K. Ruohonen. Reversible machines and post’s correspondence problem for biprefix

morphisms. Elektronische Informationsverarbeitung und Kybernetik, 21(12):579–
595, 1985.

19. G. Sénizergues. Decidability of bisimulation equivalence for equational graphs
of finite out-degree. In Proc. of the 39th Annual Symposium on Foundations of
Computer Science(FOCS’98), pages 120–129. IEEE Computer Society, 1998.

20. G. Sénizergues. L(A)=L(B)? Decidability results from complete formal systems.
Theoretical Computer Science, 251(1–2):1–166, 2001.

21. G. Senizergues. The bisimulation problem for equational graphs of finite out-degree.
SIAM Journal on Computing, 34(5):1025–1106, 2005.

22. J. Srba. Strong bisimilarity and regularity of basic process algebra is PSPACE-
hard. In Proc. of the 29th International Colloquium on Automata, Languages and
Programming (ICALP’02), vol. 2380 of LNCS, pages 716–727. Springer-Verlag,
2002.

23. J. Srba. Undecidability of weak bisimilarity for pushdown processes. In Proc. of the
13th International Conference on Concurrency Theory (CONCUR’02), vol. 2421
of LNCS, pages 579–593. Springer-Verlag, 2002.

24. J. Srba. Completeness results for undecidable bisimilarity problems. In Proc. of
the 5th International Workshop on Verification of Infinite-State Systems (INFIN-
ITY’03), vol. 98 of ENTCS, pages 5–19. Elsevier Science Publishers, 2004.

25. J. Srba. Roadmap of Infinite results, vol. 2: Formal Models and Semantics. World
Scientific Publishing Co., 2004. Updated version can be downloaded from the
author’s home-page.

26. C. Stirling. Local model checking games. In Proc. of the 6th International Con-
ference on Concurrency Theory (CONCUR’95), vol. 962 of LNCS, pages 1–11.
Springer-Verlag, 1995.

27. C. Stirling. Decidability of bisimulation equivalence for normed pushdown pro-
cesses. In Proc. of the 7th International Conference on Concurrency Theory (CON-
CUR’96), vol. 1119 of LNCS, pages 217–232. Springer-Verlag, 1996.

28. C. Stirling. Decidability of bisimulation equivalence for normed pushdown pro-
cesses. Theoretical Computer Science, 195(2):113–131, 1998.

29. C. Stirling. Decidability of bisimulation equivalence for pushdown processes. Re-
search Report EDI-INF-RR-0005, School of Informatics, Edinburgh University,
January 2000. The latest version is downloadable from the author’s home-page.

30. C. Stirling. Bisimulation and language equivalence. In Logic for Concurrency
and Synchronisation, vol. 18 of Trends in Logic, pages 269–284. Kluwer Academic
Publishers, 2003.

31. W. Thomas. On the Ehrenfeucht-Fräıssé game in theoretical computer science (ex-
tended abstract). In Proc. of the 4th International Joint Conference CAAP/FASE,
Theory and Practice of Software Development (TAPSOFT’93), vol. 668 of LNCS,
pages 559–568. Springer-Verlag, 1993.

Propositional Dynamic Logic with
Recursive Programs

Christof Löding1 and Olivier Serre2,�

1 RWTH Aachen, Germany
2 LIAFA, Université Paris VII & CNRS, France

Abstract. We extend the propositional dynamic logic PDL of Fischer
and Ladner with a restricted kind of recursive programs using the formal-
ism of visibly pushdown automata (Alur, Madhusudan 2004). We show
that the satisfiability problem for this extension remains decidable, gen-
eralising known decidability results for extensions of PDL by non-regular
programs.

1 Introduction

Propositional Dynamic Logic (PDL) is a modal logic that was introduced by
Fischer and Ladner in [5] to capture the behaviour of programs. The models
for PDL formulas are transition systems whose edges are labelled with atomic
programs and whose states are labelled with atomic propositions. Formulas and
programs are inductively (and mutually) defined from atomic propositions and
programs. Formulas are closed by the standard Boolean operations, and for each
program α and each formula ϕ, 〈α〉ϕ is a formula meaning that there is an
execution of program α that ends in a state where ϕ holds. A program is a
regular language (represented by a regular expression of a finite automaton)
over the set of atomic programs and tests (where tests correspond to formulas).
As shown in [5], satisfiability is decidable for PDL. Proofs for this result usually
rely on model-theoretic properties of PDL, e.g., the small model property and
the tree model property.

In order to capture more complex programs, several extensions of PDL have
been considered. One can allow new programs operators as, e.g., converse [14],
or consider an intersection operator on programs to express concurrency prop-
erties. Recently, Lutz has shown that PDL with both intersection and converse
is decidable [11], extending a difficult result from Danecki [4]. One of the main
difficulties when considering such extensions is that they do no longer have the
tree model property.

Other extensions use non-regular programs to capture recursive behaviours
[8, 9, 6]. Consider the following recursive program [7]:

proc V { if p then {a; call V; b} else return }

� Supported by the European Community Research Training Network “Games and
Automata for Synthesis and Validation” (Games). Most of this work was done when
the second author was a postdoctoral researcher at RWTH Aachen.

L. Aceto and A. Ingólfsdóttir (Eds.): FOSSACS 2006, LNCS 3921, pp. 292–306, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Propositional Dynamic Logic with Recursive Programs 293

The set of executions of this program can be described by the set {(p?a)i(¬p)?bi |
i ≥ 0}, which is not regular and hence cannot be captured by standard PDL.
To overcome this weakness various extensions of PDL by sets of non-regular
programs have been considered.

For a class C of languages over the set of atomic programs as letters, one
can distinguish the weak and the strong extension ([6]) of PDL by programs
in C. The weak extension allows formulas 〈α〉ϕ where α is (a placeholder for)
some language from C, whereas in the strong extension the set of atomic pro-
grams is augmented by symbols for the languages from C (which can then be
used in the regular expressions). For the weak extension of PDL by the class of
context-free languages satisfiability is easily seen to be undecidable. Neverthe-
less, several strong extensions by single context-free languages are known to be
decidable, e.g., the one by {aibi | i ≥ 0}, even if they no longer have the finite
model property. Surprisingly, the weak extension of PDL with {aibai | i ≥ 0}
leads to undecidability. In order to establish the borderline between decidable
and undecidable extensions of PDL by non-regular languages, restrictions on
pushdown automata (and hence subclasses of context-free languages) have been
considered: the largest class of languages, for which the strong extension of PDL
is decidable, is the one of deterministic semi simple-minded languages consid-
ered in [6]. A pushdown automaton is semi simple-minded if the input letter
determines whether to execute a pop, no stack operation, or a push according to
a fixed partition of the input alphabet. In case of a push also the stack symbol
to be pushed is fixed by the input letter.

A related but stronger subclass of context-free languages that has recently
been defined in [3] is the class of visibly pushdown languages. The definition of
visibly pushdown automata (Vpas) is the same as for semi simple-minded push-
down automata except that the stack symbol that is pushed may also depend
on the current control state and not only on the input letter. It is not difficult
to see that this additional freedom indeed allows to define more languages.

We define recursive PDL by replacing regular expressions as the formalism to
define programs in PDL by Vpas. This extension of PDL with Vpas is more gen-
eral in two senses than the strong extension of PDL with (semi) simple-minded
pushdown automata as considered in [8] and [6]: the model of Vpa is more expres-
sive than the model of (semi) simple-minded pushdown automaton, and we do
not just augment the set of atomic programs by placeholders for Vpa languages
(as in the strong extension) but use Vpas as formalism for defining programs.
This second property allows not just to use Vpas over atomic programs but also
to use tests inside the Vpas.

Our main result is that satisfiability for recursive PDL is decidable in doubly
exponential time. To our knowledge, this captures all previous known results
concerning decidable extensions of PDL using context-free languages. Futher-
more, our proofs are simpler and less technical than the ones in [8, 6] because
we can use general resutls and constructions from the theory of Vpas.

The remainder of the paper is organised as follows. In Section 2 we give the
basic definitions and results concerning PDL and Vpas, and we define recursive

294 C. Löding and O. Serre

PDL. In Section 3 we prove the decidability of the satisfiability problem for
recursive PDL, and in Section 4 we extend the results to infinite computations.

2 Definitions

In this section, we first define propositional dynamic logic (PDL) using regu-
lar programs. Then we introduce visibly pushdown automata and use them to
extend PDL with more powerful programs.

Formulas of propositional dynamic logic [5] are interpreted over transition
systems whose edges are labelled with atomic programs or actions and whose
states are labelled with atomic propositions. Hence, we fix a set P of atomic
propositions and a set Π of atomic programs. The set of formulas and the set of
programs are defined inductively as follows:

(1) # is a formula.
(2) Every atomic proposition is a formula.
(3) If ϕ1 and ϕ2 are formulas, then so are ¬ϕ1 and ϕ1 ∧ ϕ2.
(4) If ϕ is a formula, then ϕ? is a test. The set of tests is denoted by Test.
(5) If α is a program and ϕ is a formula, then 〈α〉ϕ is a formula. Such a formula

will be called a diamond formula. The negation of a diamond formula will
be called a box formula.

(6) A regular expression over Π ∪ Test is a program.

In this definition, we refer to standard regular expressions α built from single
letters using concatenation, union, and Kleene-star. By L(α) we denote the set
of words defined by the regular expression α.

PDL formulas are interpreted over structures M = (S,R, ν) where S is a set
of states, R : Π → 2S×S is a transition relation, and ν : S → 2P assigns truth
values to each atomic proposition in P for each state in S. In the following, we
extend the relation R to all programs and tests, and in parallel define when
a formula ϕ is satisfied in a state s of the structure M , denoted as usual by
M, s |= ϕ:

– R(ϕ?) = {(s, s) |M, s |= ϕ} for a test ϕ?.
– R(α) for a program α contains the pairs (s, s′) for which there are
• a word w = w1 · · ·wm ∈ L(α) (with wi ∈ Π ∪Test), and
• states s0, . . . , sm ∈ S with s = s0, s′ = sm, and (si−1, si) ∈ R(wi) for all

1 ≤ i ≤ m.
– M, s |= ϕ1 ∧ ϕ2 if M, s |= ϕ1 and M, s |= ϕ2.
– M, s |= ¬ϕ if M, s |= ϕ does not hold.
– M, s |= 〈α〉ϕ if there exists a state s′ such that (s, s′) ∈ R(α) and M, s′ |= ϕ.

A formula ϕ is satisfiable if there is a structure M and a state s such that
M, s |= ϕ. The satisfiability problem is to determine, given a formula ϕ, whether
it is satisfiable.

To show decidability of the satisfiability problem we use tree structures as de-
fined in the following. Let Π = {a0, . . . , an−1} be a finite set of atomic programs.
A tree structure for Π is a structure M = (S,R, ν) such that for some k ∈ N

Propositional Dynamic Logic with Recursive Programs 295

– S ⊆ [k]∗ is a non-empty, prefix closed set (with [k] = {0, . . . , k − 1}), and
– R(a�) = {(x, xd) ∈ S × S | x ∈ [k]∗ and � = d mod n}.

For x ∈ [k]∗ and d ∈ [k] we call xd the d-successor of x. The second item in
the above definition simply states that the relations for the atomic programs are
obtained by taking the number of the successor modulo n.

In the following, we introduce a subclass of pushdown automata and consider
the logic obtained when replacing regular expressions by this kind of automata
for defining programs in PDL.

A pushdown automaton is called visibly pushdown automaton [3], if the type
of operation that is performed on the stack, i.e. push, skip, or pop, only depends
on the input symbol. For such an automaton one can partition the input alpha-
bet into three sets, consisting of the symbols that induce a push, a skip, or a
pop, respectively. In [2] these automata are used to solve verification problems
for recursive state machines. In this setting pushes correspond to calls of proce-
dures, skips correspond to internal actions, and pops correspond to returns from
procedures. This is where the notation used in the following arises from.

A pushdown alphabet is a tuple Ã = 〈Ac, Ar, Aint〉 consisting of three disjoint
finite alphabets that can be interpreted as a finite set of calls (Ac), a finite set
of returns (Ar), and a finite set of internal actions (Aint). For any such Ã, let
A = Ac ∪Ar ∪Aint.

A visibly pushdown automaton (Vpa) over 〈Ac, Ar, Aint〉 is a tuple A =
(Q,Γ,Qin, δ, F) where Q is a finite set of states, Qin ⊆ Q is a set of initial
states, F ⊆ Q is a set of final states, Γ is a finite stack alphabet that contains
a special bottom-of-stack symbol ⊥ and δ ⊆ (Q × Ac ×Q × (Γ \ {⊥})) ∪ (Q×
Ar × Γ ×Q) ∪ (Q×Aint ×Q) is the transition relation.

A configuration of A is a pair (q, σ) ∈ Q × (Γ \ {⊥})∗⊥ of a state q and a
stack content σ. Note that the symbol ⊥ may only appear at the bottom of the
stack. We denote the set of all configurations of A by Cf(A).

For a letter a ∈ A, a configuration (q′, σ′) is an a-successor of (q, σ), denoted
by (q, σ) a−→ (q′, σ′), if one of the following holds:

– For a ∈ Ac, σ′ = γσ and there is a transition (q, a, q′, γ) ∈ δ.
– For a ∈ Aint, σ′ = σ and there is a transition (q, a, q′) ∈ δ.
– For a ∈ Ar, either σ = γσ′ and there is a transition (q, a, γ, q′) ∈ δ, or
σ = σ′ = ⊥ and there is a transition (q, a,⊥, q′) ∈ δ.

For a finite word u = a0a1 · · ·an in A∗, a run of A on u is a sequence ρ =
(q0, σ0)(q1, σ1) · · · (qn+1, σn+1) of configurations with q0 ∈ Qin, σ0 = ⊥, and
(qi, σi)

ai−→ (qi+1, σi+1) for every i ∈ {1, . . . , n}. In this situation we also write
(q0, σ0)

u−→ (qn+1, σn+1).
A word u ∈ A∗ is accepted by A if there is a run of A on u that ends in a

configuration (q, σ) with q ∈ F . The language L(A) of a Vpa A is the set of
words accepted by A.

As usual, we call a Vpa complete if for each configuration (q, σ) and each
input symbol a there is at least one a-successor of (q, σ). A Vpa is deterministic
if it has a unique initial state qin , and for each input letter and configuration

296 C. Löding and O. Serre

there is at most one successor configuration. For deterministic Vpas we write
δ(q, a) = (q′, γ) instead of (q, a, q′, γ) ∈ δ if a ∈ Ac, δ(q, a, γ) = q′ instead of
(q, a, γ, q′) ∈ δ if a ∈ Ar, and δ(q, a) = q′ instead of (q, a, q′) ∈ δ if a ∈ Aint.

One can easily show that visibly pushdown languages are closed under union
and intersection using ordinary product constructions. The closure under com-
plement follows from a more complicated construction for determinisation.

Theorem 1 ([3]). For each Vpa there is an equivalent deterministic Vpa of
exponential size.

We need two extensions of Vpas: to infinite words and to infinite trees. For
nondeterministic automata, the extension to infinite words is straightforward
([3]). A run on an infinite input word is a sequence of configurations that satisfies
the conditions as given in the definition of runs on finite words. The set F of
final states is now interpreted as a set of Büchi states, i.e., an infinite run is
accepting if it infinitely often visits a configuration with a state from F . We call
such automata nondeterministic Büchi Vpas. If we do not want to explicitly
specify the acceptance condition of a Vpa on infinite words, then we call it an
ω-Vpa.

For deterministic automata, the situation is a bit different. In [3] it is shown
that the standard acceptance conditions do not suffice to obtain a deterministic
model that is as expressive as nondeterministic Büchi Vpas. We can avoid this
problem if we evaluate the acceptance condition on a certain subsequence of the
run [10]. This leads to the model of stair parity Vpas.

A stair parity Vpa over Ã is of the form A = (Q,Γ,Qin, δ, Ω) where Q, Γ , Qin
and δ are as in Vpas and Ω : Q→ N is a priority function. To define acceptance
for stair parity Vpas we first have to filter out the relevant positions in a run.
Let ρ = (q0, σ0)(q1, σ1) · · · be an infinite run of A. For i ∈ N we call (qi, σi) a
step of ρ if in all successive positions the height of stack does not go below the
height of σi, i.e., |σj | ≥ |σi| for all j ≥ i.

Note that, since the height of the stack at each position solely depends on the
input, the set of positions of the steps is the same for different runs on the same
input word.

The run ρ = (q0, σ0)(q1, σ1) · · · is accepting if the maximal priority that occurs
infinitely often on a step is even, i.e., if

max{Ω(q) | q = qi for infinitely many steps (qi, σi) of ρ}
is even. The definition of deterministic stair parity Vpa is directly adapted from
the definition of deterministic Vpa.

Theorem 2 ([10]). For each nondeterministic Büchi Vpa there exists a deter-
ministic stair parity Vpa recognising the same language.

We also need two very simple acceptance conditions for Vpas on infinite words:
reachability and safety. Both conditions are specified by a set F of states. A
run of a reachability Vpa is accepting if some state from F occurs in this run.
Dually, a run of a safety Vpa is accepting if no state from F occurs in the run.

Propositional Dynamic Logic with Recursive Programs 297

Obviously, a deterministic safety Vpa accepts the complement of the language
accepted by the same automaton viewed as a reachability Vpa.

If a reachability Vpa A is complete, then the accepted language is of the form
L ·Aω for the language L accepted by A viewed as a Vpa on finite words. Hence,
we obtain the following corollary to Theorem 1.

Corollary 1. For each complete nondeterministic reachability Vpa there exists
an equivalent deterministic reachability Vpa of exponential size.

To define visibly pushdown tree automata we consider infinite k-ary Σ-labelled
trees, i.e., mappings t : [k]∗ → Σ. By Tk,Σ we denote the set of all infinite k-ary
Σ-labelled trees.

The setting on trees that we need is slightly different from the word case: the
stack operation performed in a transition of a tree automaton is not determined
by the node label but by the direction in the tree. Hence, we assume that A = [k].

A visibly pushdown tree automaton (Vpta) over Ã (with A = [k]) is of the
form A = (Q,Σ, Γ,Qin, δ, Acc) where Q, Γ , Qin are as for Vpas on words, Σ
is a node label alphabet, Acc is the acceptance component, and δ is the set of
transitions. A transition is of the form (q, b, γ, τ) with q ∈ Q, b ∈ Σ, γ ∈ Γ , and
τ : [k] → Q ∪ (Q× Γ) such that τ(d) ∈ Q if d ∈ Aint ∪ Ar and τ(d) ∈ Q× Γ if
d ∈ Ac. A configuration of A is defined as before.

For a tree t : [k]∗ → Σ, a run of A on t is a mapping ρ : [k]∗ → Cf(A) such
that ρ(ε) ∈ Qin × {⊥} is an initial configuration, and for each x ∈ [k]∗ with
ρ(x) = (q, γσ) there is a transition (q, t(x), γ, τ) ∈ δ such that for all d ∈ A:

ρ(xd) =

⎧⎪⎪⎨⎪⎪⎩
(q′, γσ) if d ∈ Aint and τ(d) = q′,
(q′, σ) if d ∈ Ar, τ(d) = q′, and γ ∈ Γ \ {⊥},
(q′,⊥) if d ∈ Ar, τ(d) = q′, σ = ε, and γ = ⊥,
(q′, γ′γσ) if d ∈ Ac and τ(d) = (q′, γ′).

Intuitively, if the automaton is at a certain node of the input tree, it reads the
label of the node and then sends copies of itself to all the successors of the
node. Depending on the type of the successor (call, return, or internal action)
the automaton performs a push, a pop, or leaves the stack unchanged.

As for Vpas, we can consider different types of acceptance for Vptas, e.g.,
Büchi, parity, or stair parity conditions with the corresponding component sub-
stituted for Acc. Then A accepts an input tree t if there is a run of A on t such
that each path through this run (which is an infinite sequence of configurations)
satisfies the acceptance condition. The set of all trees accepted by A is denoted
by T (A).

Similar to the case of finite automata on infinite trees (cf. [15]), the emptiness
test for a Vpta is polynomial time equivalent to the problem of determining the
winner in a visibly pushdown game ([10]) with a winning condition corresponding
to the acceptance condition of the Vpta. Since solving such games is complete
for exponential time (for all the winning conditions considered here), we obtain
the following theorem (and also corresponding lower bounds).

298 C. Löding and O. Serre

Theorem 3. For a given Vpta A one can decide in exponential time whether
T (A) is empty.

For later use, we need to relate Vpas on words and on trees. For this purpose,
we code paths through k-ary Σ-labelled trees by words that can be processed
by a Vpa.

An infinite path can be uniquely identified with an infinite sequence d0d1d2 · · ·
with di ∈ [k]. Given such a path π and a tree t : [k]∗ → Σ, we define the infinite
word wt

π ∈ (Σ × [k])ω as wt
π = (t(ε), d0)(t(d0), d1)(t(d0d1), d2) · · · .

The partition of the alphabet Σ × [k] into calls, returns, and internal actions
is inherited from the partition of [k].

For a language L ⊆ (Σ × [k])ω we define the corresponding language of trees
that contains exactly those trees for which all codings of paths are in L:

Trees(L) = {t ∈ Tk,Σ | wt
π ∈ L for all paths π}.

If L is accepted by some deterministic ω-Vpa A, then one can easily define a
Vpta accepting Trees(L) by simulating A on each path.

Remark 1. For each deterministic ω-Vpa A over Σ × [k] there exists a Vpta
with an acceptance condition of the same type accepting Trees(L(A)).

The formalism of recursive PDL is obtained by replacing regular expressions (as
the formalism to define programs) by Vpas. For this purpose we assume that
the set of atomic programs is given as a pushdown alphabet Π̃ = 〈Πc, Πint, Πr〉
of calls Πc, internal actions Πint, and returns Πr as required for Vpas. The set
of formulas of recursive PDL is defined in the same way as for PDL. To define
the set of programs we replace (6) from the syntax definition of PDL by

(6′) A Vpa A over 〈Πc, Πint ∪ Test, Πr〉 is a program.

So we replace regular expressions or finite automata by Vpas, where tests are
treated as internal actions. Note that an atomic program a may be seen as a
singleton {a} and thus as a visibly pushdown language. Therefore, we will always
assume that all diamond formulas are of the form 〈A〉ϕ for some Vpa A.

The definition of the semantics does not change. The only difference is that in
the extension of the relation R to programs we now refer to the language defined
by Vpas instead of regular expressions.

Example 1. Consider the set of atomic programs given by Π̃ = 〈{c0, c1}, ∅,
{r0, r1}〉 and the set P = {p0, p1} of atomic propositions. Let

– ψ = 〈B〉p0 where B accepts the language {ck1rk
1 | k > 0}, and

– ϕ = 〈A〉p1 where A accepts the language {((ψ?)c0)krk
0 | k > 0}.

For the structure M , as depicted in Figure 1 with p1 ∈ ν(s1) and p0 ∈ ν(s′1), we
have (s, s′1) ∈ R(B) and (s′, s′1) ∈ R(B). Since p0 ∈ ν(s′1), we obtain M, s |= ψ
and M, s′ |= ψ. Thus, (s, s), (s′, s′) ∈ R(ψ?) and therefore (s, s1) ∈ R(A). Since
p1 ∈ ν(s1) we finally obtain that M, s |= ϕ.

Propositional Dynamic Logic with Recursive Programs 299

s s′ s1s′
1

c0 c0 r0 r0

c1r1

c1

r1

Fig. 1. A model (with s as initial state) for the formula from Example 1

Note that this extension of PDL with Vpas is more general in two senses
than the extension of PDL with (semi) simple-minded pushdown automata con-
sidered in [8] and [6]. First, Vpas are more expressive than semi simple-minded
pushdown automata as, for example, witnessed by the language containing the
words of the form cncmrm

1 c
�r�

2r
n
1 (for c being a call and r1, r2 being returns).

The proof of this is straightforward because a semi simple-minded pushdown
automaton with only one call symbol can only use a single stack symbol.

Second, Vpas can be nested in recursive PDL by using tests as in Example 1.
If we view Vpas as descriptions of recursive procedures, then this nesting allows,
for example, not only to test properties on entering and exiting a procedure but
also to relate these properties to tests that are “launched” inside the execution
of the procedure. A simple example for such a formula is 〈p1?; cn; p2?; rn; p3〉ϕ,
where the numbers of calls before, and returns after the test p2? have to be the
same. This is not possible in the extensions of PDL considered in [8, 6], where
the non-regular languages that are used as programs are languages over atomic
programs only.

3 Satisfiability for Recursive PDL

In this section, we show that the satisfiability problem for recursive PDL is
decidable. The idea for the satisfiability test is the same as in [16] and [8]. One
first shows that each recursive PDL formula ϕ has a tree model. In these tree
models one labels each node s with all subformulas of ϕ that are true in s.
Such trees are called Hintikka trees. Then one constructs a tree automaton that
accepts the Hintikka trees of ϕ and checks this automaton for emptiness. When
starting with a PDL formula one obtains a Büchi tree automaton. Since we use
Vpas for the definition of programs we will end up with a visibly pushdown tree
automaton.

The following definitions and propositions concerning Hintikka trees are sim-
ple adaptions from [8], we just recall them here for completeness.

From now on, we identify a formula ϕ with the formula ¬¬ϕ. For each formula
ϕ in recursive PDL, we define its closure cl(ϕ) as the minimal set satisfying the
following:

– ϕ ∈ cl(ϕ).
– If ϕ1 ∧ ϕ2 ∈ cl(ϕ), then ϕ1, ϕ2 ∈ cl(ϕ).
– If ψ ∈ cl(ϕ), then ¬ψ ∈ cl(ϕ).
– If 〈A〉ψ ∈ cl(ϕ), then ψ ∈ cl(ϕ). Additionally, if ψ′? is an internal action in
A, then ψ′ ∈ cl(ϕ).

Note that the size of cl(ϕ) is linear in the size of ϕ. By cl
(ϕ) we denote the set
of all diamond formulas from cl(ϕ).

300 C. Löding and O. Serre

We now fix a formula ϕ of recursive PDL containing n atomic programs
a0, . . . , an−1. Furthermore, we assume w.l.o.g. that all atomic propositions from
P are used in ϕ.

A tree structure M = (S,R, ν) is a tree model for ϕ if M, ε |= ϕ. As for PDL
formulas, one can show that if a recursive PDL formula has a model then it has
a tree model.

Proposition 1. A formula of recursive PDL is satisfiable if and only if it has
a tree model.

We now define the notion of Hintikka tree. For this purpose we define the al-
phabet Σϕ = 2cl(ϕ) ∪ {⊥}, where ⊥ is some symbol used to label nodes that do
not have to be considered. Note that this use of ⊥ is not at all related to the
bottom-of-stack symbol used for Vpas.

Definition 1. A Hintikka tree for a formula ϕ of recursive PDL with atomic
programs a0, . . . , an−1 is a k-ary tree t : [k]∗ → Σϕ with k ≥ n such that ϕ ∈ t(ε),
and for all elements x ∈ [k]∗:

1. If t(x) 	= ⊥, then ψ ∈ t(x) if and only if ¬ψ /∈ t(x) for all ψ ∈ cl(ϕ).
2. If ψ1 ∧ ψ2 ∈ cl(ϕ), then ψ1 ∧ ψ2 ∈ t(x) if and only if ψ1, ψ2 ∈ t(x).
3. (Diamond property) 〈A〉ψ ∈ t(x) if and only if there exists an A-path (to be

defined below) from x to y in t for some y ∈ [k]∗ such that ψ ∈ t(y).
4. (Box property) ¬〈A〉ψ ∈ t(x) if and only if ψ /∈ t(y) for all y ∈ [k]∗ for

which there is an A-path from x to y.

An A-path from a node x to a node y is a sequence x0, . . . , xm of nodes with
x0 = x and xm = y such that there is a word w = w1 · · ·wm ∈ L(A) and the
following holds for all i = 1, . . . ,m:

– If wi = ψ′? for some formula ψ′, then xi = xi−1 and ψ′ ∈ t(xi−1).
– If wi = a� for some atomic program a�, then xi = xi−1d for some d with
� = d mod n.

The A-path required in 3 of the previous definition is also called a witnessing
path for 〈A〉ψ.

It is not difficult to see that Hintikka trees for ϕ are obtained from tree models
of ϕ by annotating each node with the set of formulas that are satisfied in this
node.

Proposition 2. Let ϕ be a formula of recursive PDL. There is a Hintikka tree
for ϕ if and only if ϕ has a tree model.

Our goal is to build a tree automaton that accepts Hintikka trees for ϕ. Such
an automaton has to verify for each node x with a diamond formula 〈A〉ψ in
t(x) that there is an A-path starting from x to some node y. Such paths may
overlap and the tree automaton would have to keep track of which Vpas to
simulate in order to check the diamond property for several nodes. To simplify
this task we show that it is always possible to find a Hintikka tree where the

Propositional Dynamic Logic with Recursive Programs 301

paths witnessing the diamond properties are (edge) disjoint. Such Hintikka trees
are called unique diamond path Hintikka trees in [8]. In the definition from [8]
it is possible that for a diamond formula 〈A〉ψ that is in t(x) the witnessing
path contains a node y such that 〈A〉ψ is also in t(y). Then the witnessing path
for this second occurrence of the diamond formula might overlap the witnessing
path for the first occurrence. In our definition we also avoid this problem.

Definition 2. A unique diamond path Hintikka tree for ϕ is a Hintikka tree
t for ϕ that satisfies the following additional condition: there exists a mapping
ρ : [k]∗ → (cl
(ϕ)×[k]∗)∪{⊥}, such that for all x ∈ [k]∗: If 〈A〉ψ ∈ t(x) then, for
some witnessing A-path x0, . . . , xm (starting in x), we have ρ(xi) = (〈A〉ψ, x)
for all 1 ≤ i ≤ m.

Any Hintikka tree can be transformed into a unique diamond path Hintikka
tree by increasing the number of descendants of each node such that there is a
separate branch for each formula when needed. The branching degree resulting
from this increase of descendants can be bounded as stated in the following
proposition, where r denotes the number of diamond formulas in cl(ϕ) and n
the number of atomic programs.

Proposition 3. Let ϕ be a formula of recursive PDL. There is a Hintikka tree
for ϕ if and only if there is a k-ary unique diamond path Hintikka tree for ϕ
with k = 2|cl(ϕ)| · n · 2r.
We now show how to build a Büchi Vpta accepting exactly the k-ary unique
diamond path Hintikka trees for ϕ. Together with Theorem 3 one obtains decid-
ability of the satisfiability problem for recursive PDL formulas.

So from now on we are interested in trees from Tk,Σϕ . Further, note that each
d ∈ [k] is associated in a natural way to an atomic program in the definition of
A-path, namely to a� if � = d mod n. This directly induces a partition of [k]
into calls, returns, and internal actions.

The construction of the Vpta follows the same lines as in [8]. We first build
three visibly pushdown tree automata. The first automaton is called the local
automaton and accepts all trees satisfying the first two items of Definition 1.
The second automaton called box automaton accepts all trees satisfying the box
property (see Definition 1). The third automaton called diamond automaton
accepts all trees satisfying the diamond property (see Definition 1) and the
condition of Definition 2.

The intersection of the languages accepted by these three automata defines
exactly the set of k-ary unique diamond path Hintikka trees for ϕ. As visibly
pushdown tree languages are closed under intersection, a nondeterministic visibly
pushdown tree automaton recognising the desired language can be constructed.

Local automaton. The local automaton is easily constructed as a two-state fi-
nite tree automaton equipped with a safety condition. The automaton checks
for all nodes x in the tree whether t(x) satisfies the first two conditions of
Definition 1. If in some node one of these two conditions is violated, the au-
tomaton goes to its rejecting state, otherwise it stays in the initial state.

302 C. Löding and O. Serre

Lemma 1. There is a finite tree automaton with a safety acceptance condi-
tion and two states that accepts the trees that satisfy the first two properties of
Definition 1.

Box automaton. We now construct a Vpta accepting those trees from Tk,Σϕ

that satisfy the box property from Definition 1. First note that the box property
is a condition on the paths through the tree. This means we can define a language
Lbox ⊆ (Σϕ × [k])ω such that Tbox = Trees(Lbox), where Tbox denotes the set of
all trees satisfying the box property. We now define Lbox and then show that it
can be accepted by a deterministic safety Vpa.

For each word w ∈ (Σϕ× [k])ω there exists a tree t ∈ Tk,Σϕ and a path π such
that w = wt

π. Then w is in Lbox if this t satisfies the box property on π: for all
x ∈ π, ¬〈A〉ψ ∈ t(x) if and only if ψ /∈ t(y) for all y ∈ π for which there is an
A-path from x to y.

It is not difficult to see that t ∈ Tk,Σϕ indeed satisfies the box property if and
only if all its paths are in Lbox. Hence, by Remark 1, to construct a Vpta for
Tbox it is sufficient to construct a deterministic Vpa for Lbox.

Lemma 2. There is a deterministic safety Vpa of size exponential in the size
of ϕ that accepts Lbox.

Proof. Let ψ1, . . . , ψm be an enumeration of all box formulas ψi = ¬〈Ai〉ϕi ∈
cl(ϕ). We show how to construct a visibly pushdown automaton for the comple-
ment Lbox of Lbox, and we conclude using closure of visibly pushdown languages
under complementation.

First note that Lbox =
⋃m

i=1 Li, where Li is the set of all words describing a
path that violates the box condition for ψi. For every i, Li is accepted by a Vpa
Bi equipped with a reachability condition as follows.

For an input word w = (C0, d0)(C1, d1) · · · with Cj ∈ Σϕ and dj ∈ [k] the
Vpa Bi guesses a segment (Cj , dj) · · · (Cj′ , dj′) with ψi ∈ Cj and ϕi ∈ Cj′ , and
verifies that it corresponds to an Ai-path. This is realised as follows:

– Before guessing the initial position j of the segment, Bi stores a special
symbol � on the stack. On guessing j it enters a state indicating that the
simulation of Ai starts.

– In the simulation phase, on reading a letter (C, d), Bi can simulate a sequence
of transitions of Ai consisting of tests and ending with the atomic program
a� corresponding to d, i.e., with � = d mod n. So, a change of configuration
in Ai on reading a word of the form χ1? · · ·χr?a� is performed in Bi in a
single transition on (C, d) if χ1, . . . , χr are in C 	= ⊥. This is possible since
tests are handled as internal actions in Ai and thus only induce a change of
the control state.

In this simulation, whenever Bi sees � as top stack symbol, it treats it as
the bottom-of-stack symbol ⊥ is handled in Ai.

– Finally, if Bi reads (C, d) with ϕi ∈ C, and there is a (possibly empty)
sequence χ1? · · ·χr? of tests leading to an accepting state in Ai where χ1,
. . . , χr are in C, then Bi can move to its accepting state on reading (C, d).
Once Bi has reached its accepting state it remains there forever.

Propositional Dynamic Logic with Recursive Programs 303

Note that the size of Bi is linear in the size of Ai. Furthermore, Bi can be
constructed such that it is complete because every run that reaches an accepting
state never stops.

Taking the union of these Vpas one obtains a reachability Vpa B for Lbox.
Determinising and then complementing B (see Corollary 1) yields a safety Vpa
for Lbox that is of size exponential in B and thus also exponential in the
size of ϕ. �"
Applying Remark 1 we directly get the following result.

Lemma 3. There is a safety Vpta of size exponential in the size of ϕ that
accepts Tbox.

Diamond automaton. We give an informal description of the diamond au-
tomaton. This automaton is designed to accept trees that satisfy both the dia-
mond condition and the one of Definition 2.

The control state of the diamond automaton stores the following informations:
– A diamond formula 〈A〉ψ currently checked or ⊥ if nothing is checked.
– If some diamond formula 〈A〉ψ is being checked, a control state of A is stored

(and stack information from A will be encoded in the stack of the diamond
automaton).

At the beginning no formula is checked. The diamond automaton reads the
labelling t(x) of the current node x. If it contains some diamond formula, it will
go for each of these formulas in a different branch of the tree where it checks this
formula. If the automaton was already checking for a diamond formula, it keeps
looking for its validation by choosing yet another branch. As the tree should
satisfy the unique diamond path property, a validation of the diamond formulas
can be found in this way.

When checking for a diamond formula 〈A〉ψ, the automaton performs a sim-
ulation of A on the path it guesses. A sequence of tests read by A followed by
some atomic program is simulated in a single transition of the Vpta. For this it
stores in its control state the current state q of A in the simulation and uses its
stack to mimic the one of A. Assume that in A a sequence of the following form
is possible: (q, γ)

χ1?−−→ (q1, γ)
χ2?−−→ · · · χm?−−−→ (qm, γ)

a
−→ (q′, σ), where γ denotes
the top stack symbol and σ is the new top of the stack, depending on the type
of a�, i.e., σ = ε for a return, σ = γ for an internal action, and σ = γ′γ for a
call and some γ′ from the stack alphabet of A. Then the Vpta on reading a
node label t(x) that contains χ1, . . . , χm can update the state q of A to q′ when
proceeding to a d-successor with � = d mod k.

To keep track of the level of the stack where the simulation of A started, the
first symbol pushed onto the stack after starting the simulation ofA is marked by
�. If this symbol is popped later, then it is recorded in the state of the Vpta that
the simulation is at the bottom of the stack, i.e., A-transitions are simulated as if
⊥ would be the top stack symbol. If a symbol is pushed, it is again marked by �.

The simulation ends if the current node label t(x) contains ψ and from the
current state q of the A-simulation a final state of A is reachable by a (possi-
bly empty) sequence of tests such that the corresponding formulas are included

304 C. Löding and O. Serre

in t(x). In this case the Vpta signals this successful simulation in the next
transition by setting a special flag in all successor states. This flag also defines
the acceptance condition. If the flag is set infinitely often on each path, then
the input is accepted. For this to work we also set the flag if no simulation is
performed. This acceptance condition is of Büchi type and hence we have the
following result.

Lemma 4. There is a Büchi Vpta of size O(|ϕ|) that accepts those trees from
Tk,Σϕ that satisfy the diamond property and the condition of Definition 2.

Now, consider the automaton obtained by taking the product of the local au-
tomaton, the box automaton, and the diamond automaton. The combination of
two safety conditions and one Büchi condition can easily be transformed into a
single Büchi condition.

Lemma 5. There is a Büchi Vpta of size exponential in the size of ϕ that
accepts the k-ary unique diamond path Hintikka trees for ϕ.

Using Theorem 3 we deduce the decidability of the satisfiability problem for
recursive PDL formulas.

Theorem 4. Given a recursive PDL formula, one can decide in doubly expo-
nential time whether it is satisfiable.

We leave open the question whether this complexity is optimal. A singly expo-
nential lower bound directly follows from the one for standard PDL [5].

4 Extension to Infinite Computations

In [14] an extension of PDL with a construct Δα for building formulas from
programs α is considered. The meaning of such a formula is that the program
α can be repeated infinitely often. The resulting logic is called Δ-PDL. In this
section we extend recursive PDL by a similar construct ΔA for Büchi Vpas A
over atomic programs and tests. The meaning of such a formula is that there
exists a path that is accepted by A.

For the formal definition we introduce the notion of ω-program and add to
the syntax rules of recursive PDL the following clauses:

– A Büchi Vpa A over 〈Πc, Πint ∪ Test, Πr〉 is an ω-program.
– If A is an ω-program, then ΔA is a formula.

This extension is called recursiveΔ-PDL. For the semantics we only give the def-
initions for the new constructs. Each ω-program defines a unary relation Rω and
the correspondingΔ-formulas hold at those states of the structure that are in Rω:

– s ∈ Rω(A) if and only if there is an infinite word w = w0w1w2 · · · ∈ L(A)
(with wi ∈ Π ∪ Test) and a sequence s0, s1, s2, . . . of states of the structure
such that s = s0 and (si, si+1) ∈ R(wi) for all i ≥ 0.

– M, s |= ΔA if and only if s ∈ Rω(A).

Propositional Dynamic Logic with Recursive Programs 305

The definition of Hintikka tree extends in a straightforward way by adding the
natural properties for formulas ΔA and ¬ΔA. In the following, we call these
properties Δ-property and ¬Δ-property. The notion of unique diamond path
Hintikka tree has to be extended by also requiring unique Δ-paths. One easily
shows that (adapted versions of) Propositions 1, 2, and 3 still hold.

Then one can construct a Vpta that accepts all trees that have theΔ-property
and unique Δ-paths. This construction is similar to the one of the diamond
automaton and results in a Büchi Vpta of size linear in the size of the given
formula ϕ.

For the ¬Δ-property one can proceed in a similar way as for the box property.
One defines the word language L¬Δ corresponding to Lbox and shows that this
language can be accepted by a deterministic Vpa. The main difference here is that
instead of obtaining a reachability Vpa for the complement of L¬Δ we obtain a
nondeterministic Büchi Vpa. Hence, to get a deterministic Vpa for L¬Δ we have
to use a stair parity condition (Theorem 2). All this results in the following lemma.

Lemma 6. For every recursive Δ-PDL formula ϕ there is a stair parity Vpta
of size exponential in the size of ϕ accepting the unique diamond path and unique
Δ-path Hintikka trees of ϕ.

Finally, one has to check emptiness for a stair parity Vpta, which can be done
in exponential time (Theorem 3).

Theorem 5. Given a recursive Δ-PDL formula, one can decide in doubly ex-
ponential time whether it is satisfiable.

Again, we leave open the question whether this complexity is optimal.

5 Conclusion

Using visibly pushdown automata we have defined recursive PDL as an extension
of regular PDL that allows to capture the behaviour of recursive programs. The
result on the satisfiability of this logic subsumes all known decidable extensions of
PDL with context-free programs. Comparisons of recursive PDL with μ-calculus
using relational fixed points and with visibly pushdown μ-calculus would be
interesting. The first one [13] allows to capture the example from the introduction
using the formula μR.((p?; a;R; b) ∪ (¬p)?) (for a binary relation symbol R),
while the second one [1] embeds in the modal μ-calculus the formalism of visibly
pushdown automata. Another possible direction for future research is to combine
visibly pushdown automata with the game logic of Parikh [12].

References

1. R. Alur, S. Chaudhuri, and P. Madhusudan. A fixpoint calculus for local and global
program flows. In Proceedings of POPL’06. To appear.

2. R. Alur, K. Etessami, and P. Madhusudan. A temporal logic of nested calls and
returns. In Proceedings of TACAS’04, volume 2988 of LNCS, pages 467–481.
Springer, 2004.

306 C. Löding and O. Serre

3. R. Alur and P. Madhusudan. Visibly pushdown languages. In Proceedings of
STOC’04, pages 202–211. ACM, 2004.

4. R. Danecki. Nondeterministic propositional dynamic logic with intersection is
decidable. In Proceedings of the 5th Symposium on Computation Theory, volume
208 of LNCS, pages 34–53. Springer, 1984.

5. M.J. Fischer and R.E. Ladner. Propositional dyncamic logic of regular programs.
Journal of Computer and System Sciences, 18(2):194–211, 1979.

6. D. Harel and M. Kaminsky. Strengthened results on nonregular PDL. Technical
Report MCS99-13, Weizmann Institute of Science, 1999.

7. D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. Foundations of Computing.
MIT Press, 2000.

8. D. Harel and D. Raz. Deciding properties of nonregular programs. SIAM Journal
on Computing, 22(4):857–874, 1993.

9. D. Harel and E. Singerman. More on nonregular PDL: Expressive power, finite
models, fibonacci programs. In ISTCS: 3rd Israeli Symposium on the Theory of
Computing and Systems, 1995.

10. C. Löding, P. Madhusudan, and O. Serre. Visibly pushdown games. In Proceedings
of FST&TCS’04, volume 3328 of LNCS, pages 408–420. Springer, 2004.

11. C. Lutz. PDL with intersection and converse is decidable. In Proceedings of CSL’05,
volume 3634 of LNCS, pages 413–427. Springer, 2005.

12. R. Parikh. The logic of games an its applications. Annals of discrete mathematics,
24:111–140, 1985.

13. D. Park. Finiteness is μ-ineffable. Theoretical Computer Science, 3:173–181, 1976.
14. R. Streett. Propositional dynamic logic of looping and converse is elementary

decidable. Information and Control, 54:121–141, 1982.
15. W. Thomas. Languages, automata, and logic. In Handbook of Formal Language

Theory, volume III, pages 389–455. Springer, 1997.
16. M. Vardi and P. Wolper. Automata-theoretic techniques for modal logic of pro-

grams. Journal of Computer and System Sciences, 32:183–221, 1986.

A Semantic Approach to Interpolation�

Andrei Popescu��, Traian Florin Şerbănuţă���, and Grigore Roşu

Department of Computer Science,
University of Illinois at Urbana-Champaign

{popescu2, tserban2, grosu}@cs.uiuc.edu

Abstract. Interpolation results are investigated for various types of for-
mulae. By shifting the focus from syntactic to semantic interpolation, we
generate, prove and classify a series of interpolation results for first-order
logic. A few of these results non-trivially generalize known interpolation
results. All the others are new.

1 Introduction

Craig interpolation is a landmark result in first-order logic [7]. In its original
formulation, it says that given sentences Γ1 and Γ2 such that Γ1 $ Γ2, there is
some sentence Γ whose non-logical symbols occur in both Γ1 and Γ2, called an
interpolant, such that Γ1 $ Γ and Γ $ Γ2. This well-known result can also be
rephrased as follows: given first-order signatures Σ1 and Σ2, a Σ1-sentence Γ1
and a Σ2-sentence Γ2 such that Γ1 |=Σ1∪Σ2 Γ2, there is some (Σ1∩Σ2)-sentence
Γ such that Γ1 |=Σ1 Γ and Γ |=Σ2 Γ2.

One naturally looks for this property in logical systems other than first-order
logic. The conclusion of studying various extensions of first-order logic was that
“interpolation is indeed [a] rare [property in logical systems]” ([2], page 68).
We are going to show in this paper that the situation is totally different when
one looks in the opposite direction, at restrictions of first-order logic. There are
simple logics, such as equational logic, where the interpolation result does not
hold for sentences, but it holds for sets of sentences [27]. For this reason, as well
as for reasons coming from theoretical software engineering, in particular from
specification theory and modularization [3, 13, 14, 9], it is quite common today
to state interpolation more generally, in terms of sets of sentences Γ1, Γ2, and
Γ . This is also the approach that we follow in this paper.

We call our approach to interpolation “semantic” because we shift the prob-
lem of finding syntactic interpolants Γ to a problem of finding appropriate classes

� Supported by NSF grants CCF-0234524, CCF-044851, CNS-0509321.
�� Also: Institute of Mathematics “Simion Stoilow” of the Romanian Academy,

Bucharest; and Fundamentals of Computer Science, Faculty of Mathematics,
University of Bucharest.

��� Also: Fundamentals of Computer Science, Faculty of Mathematics, University of
Bucharest.

L. Aceto and A. Ingólfsdóttir (Eds.): FOSSACS 2006, LNCS 3921, pp. 307–321, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

308 A. Popescu, T.F. Şerbănuţă, and G. Roşu

of models, which we call semantic interpolants. We present a precise character-
ization for all the semantic interpolants of a given instance Γ1 |=Σ1∪Σ2 Γ2, as
well as a general theorem ensuring the existence of semantic interpolants closed
under generic closure operators. Not all semantic interpolants correspond to sets
of sentences. However, when semantic interpolants are closed under certain oper-
ators, they become axiomatizable, thus corresponding to some sets of sentences.
Following the nice idea of using Birkhoff-like axiomatizability to prove the Craig
interpolation for equational logics in [27], a similar semantic approach was in-
vestigated in [25], but it was only applied there to obtain Craig interpolation
results for categorical generalizations of equational logics. A similar idea is ex-
ploited in [9], where interpolation results are presented in an institutional [17]
setting. While the institution-independent interpolation results in [9] can poten-
tially be applied to various particular logics, their instances still refer to just one
type of sentence: the one the particular logic comes with.

The conceptual novelty of our semantic approach to interpolation in this
paper is to keep the restrictions on Γ1, Γ2, and Γ , or more precisely the ones
on their corresponding classes of models, independent. This way, surprising and
interesting results can be obtained with respect to the three types of sentences
involved. By considering several combinations of closure operators allowed by
our parametric semantic interpolation theorem, we provide many interpolation
results;1 some of them generalize known results, but most of them are new. For
example, we show that if the sentences in Γ1 are first-order while the ones in Γ2
are universally quantified Horn clauses (UHC’s), then those in the interpolant
Γ can be chosen to be UHC’s too. Surprisingly, sometimes the interpolant is
strictly simpler than Γ1 and Γ2. For example, we show that the following choices
of the type of sentences in the interpolant Γ are possible (see also the table on
page 316, lines 6, 13 and 20):

– Γ1-universal and Γ2-positive (i.e., contains only formulae without negations)
imply that Γ consists only of universally quantified disjunction of atoms;

– Γ1-UHC’s and Γ2-positive imply that Γ has only universally quantified
atoms;

– Γ1- finitary formulae and Γ2- infinitary universally quantified disjunctions of
atoms imply Γ - (finitary) universally quantified disjunctions of atoms.

Some Motivation. Craig interpolation has applications in various areas of com-
puter science. Such an area is formal specification theory (see [19, 14]). For struc-
tured specifications [3, 29], interpolation ensures a good, compositional, behavior
of their semantics [3, 5, 25]. In choosing a logical framework for specifications, one
has to find the right balance between expressive power and amenable computa-
tional aspects. Therefore, an intermediate choice between the “extremes”, full
first-order logic and equational logic, might be desirable. We enable (at least par-
tially) such intermediate logics (e.g., the positive- or (∀∨)- logic) as specification
frameworks, by showing that they have the interpolation property. Moreover, the
1 Other results obtained with this technique, including some for second-order and

higher-order logic, can be found in the technical report [24].

A Semantic Approach to Interpolation 309

very general nature of our results w.r.t. signature morphisms sometimes allows
one to enrich the class of morphisms used for renaming usually up to arbitrary
morphisms, freeing specifications from unnatural constraints, like injectivity of
renaming/translation. Some technical details about the applications of our re-
sults to formal specifications can be found in Section 5.

Automatic reasoning is another area where interpolation is important and
where our results contribute. There, putting theories together while still tak-
ing advantage, inside their union language, of their available decision proce-
dures [21, 23], relies on interpolation in a crucial way. Moreover, interpolation
provides a heuristic to “divide and conquer” a proving task: in order to show
Γ1 |=Σ1∪Σ2 Γ2, find some Γ over the syntax Σ1 ∩ Σ2 and prove the two “sim-
pler” tasks Γ1 |=Σ1 Γ and Γ |=Σ2 Γ2. For some simpler sub-logics of first-order
logic, such as propositional calculus, where there is a finite set of semantically
different sentences over any given signature, one can use interpolation also as a
disproof technique: if for each (Σ1 ∩Σ2)-sentence Γ (there is only a finite num-
ber of them) at least one of Γ1 |=Σ1 Γ or Γ |=Σ2 Γ2 fails, then Γ1 |=Σ1∪Σ2 Γ2
fails. The results of the present paper, although not effectively constructing in-
terpolants, provide information about the existence of interpolants of a certain
type, helping reducing the space of search. For instance, according to one of the
cases of our main result, Theorem 2, the existence of a positive interpolant Γ is
ensured by the fact that either one of Γ1 or Γ2 is positive (lines 2, 3 of table on
page 316).

Technical Preliminaries. For simplifying the exposition, set-theoretical foun-
dational issues are ignored in this paper.2 Given a class D, let P(D) denote the
collection of all subclasses of D. For any C ∈ P(D), let C denote D \ C, that is,
the class of all elements in D which are not in C. Also, given C1, C2 ∈ P(D) let
[C1, C2] denote all classes C which include C1 and are included in C2.

An operator on D is a mapping F : P(D) → P(D). Let IdD denote the
identity operator. For any operator F on D, let Fixed(F) denote the collection
of all fixed points of F , that is, C ∈ Fixed(F) iff F (C) = C. An operator F on
D is a closure operator iff it is extensive (C ⊆ F (C)), monotone (if C1 ⊆ C2 then
F (C1) ⊆ F (C2)) and idempotent (F (F (C)) = F (C)).

Given a relation R on D, let R also denote the operator on D associated
with R, assigning to each C ∈ P(D) the class of all elements from D in rela-
tion with elements in C, that is, R(C) = {c′ ∈ D | (∃c ∈ C) c R c′}. Notice
that the operator associated to a reflexive and transitive relation is a closure
operator.

Given two classes C and D and a mapping U : C → D, we let U also denote
the mapping U : P(C) → P(D) defined by U(C′) = {U(c) | c ∈ C′} for any
C′ ∈ P(C). Also, we let U−1 : P(D) → P(C) denote the mapping defined by
U−1(D′) = {c ∈ C | U(c) ∈ D′} for any D′ ∈ P(D). Given two mappings
U, V : P(C) → P(D), we say that U is included in V , written U
 V , iff
U(C′) ⊆ V (C′) for any C′ ∈ P(C).
2 Yet, it is easy to see that references to collections of classes could be easily avoided.

310 A. Popescu, T.F. Şerbănuţă, and G. Roşu

We write the composition of mappings in “diagrammatic order”: if f : A→ B
and g : B → C then f ; g denotes their composition, regardless of whether f and
g are mappings between sets, classes, or collections of classes.

A��U
��

� �� V���
�

B ��

V′
��

� C��
U ′��
�

A′

Definition 1. We say mappings (between classes) U , V, U ′, V ′

(see diagram) form a commutative square iff V ′ ;U = U ′ ;V.
A commutative square is a weak amalgamation square iff
for any b ∈ B and c ∈ C such that U(b) = V(c), there exists
some a′ ∈ A′ such that V ′(a′) = b and U ′(a′) = c.

We call this amalgamation square “weak” because a′ is not required to be unique.

2 First-Order Logic and Classical Interpolation Revisited

First-Order Logic. A (many-sorted) first-order signature is a triple (S, F, P)
consisting of a set S of sort symbols, a set F of function symbols, and a set
P of relation symbols. Each function or relation symbol comes with a string
of argument sorts, called arity, and for function symbols, a result sort. Fw→s

denotes the set of function symbols with arity w and result sort s, and Pw the
set of relation symbols with arity w. Given a signature Σ, the class of Σ-models,
Mod(Σ) consists of all first-order structures A interpreting each sort symbol s
as a non-empty3 set As, each function symbol σ as a function Aσ from the
product of the interpretations of the argument sorts to the interpretation of the
result sort, and each relation symbol π as a subset Aπ of the product of the
interpretations of the argument sorts.

The set of Σ-sentences, Sen(Σ), consists of the usual first-order sentences
built from equational and relational atoms by iterative application of logical
connectives and quantifiers. The satisfaction of sentences by models (A |= γ)
is the usual Tarskian satisfaction defined inductively on the structure of the
sentences. The satisfaction relation can be extended to a relation |= between
classes of models M ⊆ Mod(Σ) and sets of sentences Γ ⊆ Sen(Σ): M |= Γ
iff A |= γ for all A ∈ M and γ ∈ Γ . This further induces two operators ∗ :
P(Sen(Σ)) → P(Mod(Σ)) and ∗ : P(Mod(Σ)) → P(Sen(Σ)), defined by Γ ∗ =
{A | {A} |= Γ} and M∗ = {γ | M |= {γ}} for each Γ ⊆ Sen(Σ) and M ⊆
Mod(Σ). The two operators ∗ form a Galois connection between (P(Sen(Σ)),⊆)
and (P(Mod(Σ)),⊆). The two composition operators ∗ ; ∗ are denoted • and
are called deduction closure (the one on sets of sentences) and axiomatizable
hull (the one on classes of models). We call elementary classes the classes of
models closed under • and theories the sets of sentences closed under •. If Γ, Γ ′

⊆ Sen(Σ), we say that Γ semantically deduces Γ ′, written Γ |= Γ ′, iff Γ ∗ ⊆ Γ ′∗.
Given two signatures Σ = (S, F, P) and Σ′ = (S′, F ′, P ′), a signature mor-

phism φ : Σ → Σ′ is a triple (φst, φop, φrl) mapping the three components
in a compatible way. (When there is no danger of confusion, we denote each

3 Birkhoff-style axiomatizability, which will be used intensively in this paper, depends
on the non-emptiness of carriers [27].

A Semantic Approach to Interpolation 311

of the mappings φst, φop, φrl by φ.) Sentence translations rename the sorts,
function-, and relation- symbols. For each signature morphism φ : Σ → Σ′,
the reduct A′�φ of a Σ′-model A′ is the Σ-model defined by (A′�φ)α = A′

φ(α)
for each sort, function, or relation symbol α in the domain signature of φ. Let
Mod(φ) : Mod(Σ′)→ Mod(Σ) denote the mapping A′ �→ A′�φ. Satisfaction rela-
tion has the important property that it is “invariant under change of notation”
[17], i.e., for each γ ∈ Sen(Σ) and A′ ∈ Mod(Σ′), A′ |= φ(γ) iff A′�φ |= γ.

Interpolation. The original formulation of interpolation [7] is in terms of sig-
nature intersections and unions, that is, w.r.t. squares which are pushouts of
signature inclusions. However, subsequent advances in modularization theory
[3, 13, 14, 9, 4] showed the need of arbitrary pushout squares or even weak amalga-
mation squares. A general formulation of interpolation is the following:

Σφ1
����

� φ2
���

��

Σ1

φ′
2

���
��

Σ2

φ′
1

�����

Σ′

Definition 2. Assume a commutative square of signature
morphisms (see diagram) and two sets of sentences Γ1 ⊆
Sen(Σ1), Γ2 ⊆ Sen(Σ2) such that φ′2(Γ1) |=Σ′ φ′1(Γ2) (i.e.,
Γ1 implies Γ2 on the “union language” Σ′). An interpolant
for Γ1 and Γ2 is a set Γ ⊆ Sen(Σ) such that Γ1 |=Σ1 φ1(Γ)
and φ2(Γ) |=Σ2 Γ2.

The following two examples show that, without further restrictions on signature
morphisms, an interpolant Γ may not be found with the same type of sentences
as Γ1 and Γ2, but with more general ones. In other words, there are sub-first-
order logics which do not admit Craig Interpolation within themselves but in
a larger (sub-)logic. The first example below shows a square in unconditional
equational logic which does not admit unconditional interpolants, but admits a
conditional one:

Example 1. Consider the following pushout of algebraic signatures, as in [25]:
Σ = ({s}, {d1, d2 : s → s}), Σ1 = ({s}, {d1, d2, c : s → s}), Σ2 = ({s}, {d : s →
s}), Σ′ = ({s}, {d, c : s → s}), all morphisms mapping the sort s into itself, φ1
and φ2 mapping d1 and d2 into themselves and into d, respectively, φ′2 mapping
d1 and d2 into d and c into itself, and φ′1 mapping d into itself.

Take Γ1 = {(∀x)d2(x) = c(d1(x)), (∀x)d1(d2(x)) = c(d2(x))} and Γ2 =
{(∀x)d(d(x)) = d(x)} to be sets of Σ1-equations and of Σ2-equations, respec-
tively. It is easy to see that Γ1 implies Γ2 in the “union language”, i.e., φ′2(Γ1) |=
φ′1(Γ2). But Γ1 and Γ2 have no equational Σ-interpolant, because the only equa-
tional Σ-consequences of Γ1 are the trivial ones, of the form (∀X)t = t with
t a Σ-term (since all the nontrivial Σ1-consequences of Γ1 contain the symbol
c). Yet, Γ1 and Γ2 have a conditional-equational interpolant, e.g., {(∀x)d1(x) =
d2(x)⇒ d1(x) = d1(d1(x))}.
The following example shows a situation in which the interpolant cannot even
be conditional-equational; it can be a first-order, though:

Example 2. Consider the same pushout of signatures as in previous example
and take Γ1 = {(∀x)d2(x) = d1(c(x)), (∀x)d1(d2(x)) = d2(c(x))} and

312 A. Popescu, T.F. Şerbănuţă, and G. Roşu

Γ2 = {(∀x)d(d(x)) = d(x)}. Again, φ′2(Γ1) |= φ′1(Γ2). But now Γ1 and Γ2 have
no conditional-equationalΣ-interpolant either, because all nontrivial conditional
equations we can infer from Γ1 contain c (to see this, think in terms of the de-
duction system for conditional equational logic). Nevertheless, Γ1 and Γ2 have
a first-order interpolant, e.g., {(∀x)d1(x) = d2(x)⇒ (∀y)d1(y) = d1(d1(y))}.
An obstacle to interpolation inside the desired type of sentences in the examples
above is the lack of injectivity of φ2 on operation symbols; injectivity on both sorts
and operation symbols implies conditional equational interpolation [26].

A counterexample given in [4] shows that not even first-order logic admits
interpolation without making additional requirements on the square morphisms.
We shall shortly prove that for a pushout square to have first-order interpolation,
it is sufficient that it has one of the morphisms injective on sorts. This is, up to
our knowledge, the most general known effective criterion for a pushout to have
first-order interpolation.

3 Semantic Interpolation

The interpolation problem, despite its syntactic nature, can be regarded se-
mantically, on classes of models. Indeed, by the sentence-model duality and the
satisfaction condition, we have that:

- φ′2(Γ1) |= φ′1(Γ2) iff φ′2(Γ1)∗ ⊆ φ′1(Γ2)∗ iff Mod(φ′2)−1(Γ ∗
1) ⊆ Mod(φ′1)−1(Γ ∗

2);
- Γ1 |= φ1(Γ) iff Γ ∗

1 ⊆ φ1(Γ)∗ iff Γ ∗
1 ⊆ Mod(φ1)−1(Γ ∗);

- φ2(Γ) |= Γ2 iff φ2(Γ)∗ ⊆ Γ ∗
2 iff Mod(φ2)−1(Γ ∗) ⊆ Γ ∗

2 .

Therefore, the interpolation property can be restated only in terms of inclusions
between classes of models. If Γ is an interpolant of Γ1 and Γ2, we will call Γ ∗ a
semantic interpolant of Γ ∗

1 and Γ ∗
2 . These suggest defining the following broader

notion of “semantic interpolation”:
A��U

		
	 		 V

B 		

V′
��

� C��
U ′��
�

D

Definition 3. Consider the commutative diagram on the right,
together with some M ∈ P(B) and N ∈ P(C) such that
V ′−1(M) ⊆ U ′−1(N). We say that K ∈ P(A) is a semantic
interpolant of M and N iff M⊆ U−1(K) and V−1(K) ⊆ N .

If we take A, B, C, D to be Mod(Σ), Mod(Σ1), Mod(Σ2), Mod(Σ′) and U , V ,
U ′, V ′ to be Mod(φ1), Mod(φ2), Mod(φ′1), Mod(φ′2), respectively, we obtain the
concrete first-order case. The connection between semantic interpolation and
classical logical interpolation holds only when one considers classes which are
elementary, i.e., specified by sets of sentences, and the interpolant is also ele-
mentary. Rephrasing the interpolation problem semantically allows us to adopt
the following “divide and conquer” approach, already sketched in [25]:

1. Find as many semantic interpolants as possible without caring whether they
are axiomatizable or not (note that “axiomatizable” will mean “elementary”
only within first-order logic, but we shall consider other logics as well);

2. Then, by imposing diverse axiomatizability closures on the two starting
classes of models, try to obtain a closed interpolant.

A Semantic Approach to Interpolation 313

Let I(M,N) denote the collection of all semantic interpolants ofM and N .
The following gives a precise characterization of semantic interpolants together
with a general condition under which they exist.

Proposition 1. Under the hypothesis of Definition 3:

1. I(M,N) = [U(M),V(N)];
2. If the square is a weak amalgamation square then I(M,N) 	= ∅.

Definition 4. Given two classes C and D, a mapping U : C → D and a pair
of operators F = (FC , FD), we say that U preserves fixed points of F if
U(Fixed(FC)) ⊆ Fixed(FD), that is, for any fixed point of FC we obtain through
U a fixed point of FD; also we say that U lifts F if FD ;U−1
 U−1 ;FC, that
is, for any D′ ∈ P(D) and any c ∈ C, if U(c) ∈ FD(D′) then c ∈ FC(U−1(D′)).

The intuition for the word “lifts” used above comes from the case of the operators
FC and FD being given by binary relations.

The following theorem is at the heart of all our subsequent results. It gives
general criteria under which a weak amalgamation square admits semantic in-
terpolants closed under certain generic operators.

Theorem 1. Consider a weak amalgamation square as in diagram and pairs of
operators F = (FB, FA) and G = (GC , GA) such that: A��U

		
	 		 V

B 		

V′
��

� C��
U ′��
�

D

1. FA ;GA ;FA = FA ;GA;
2. GC and GA are closure operators;
3. U preserves fixed points of F ;
4. V lifts G.

Then for each M ∈ Fixed(FB) and N ∈ Fixed(GC) such that V ′−1(M) ⊆
U ′−1(N),M and N have a semantic interpolant K in Fixed(FA)∩Fixed(GA).

The operators above will be conveniently chosen in the next section to be clo-
sure operators characterizing axiomatizable classes of models. The two types
of axiomatizability that we consider as attached to F and G need not be the
same, i.e., the classesM and N need not be axiomatizable by the same type of
first-order sentences. And in the most fortunate cases, as we shall see below, the
interpolant is able to capture and even strengthen the properties of both classes.

4 New Interpolation Results

We next give a series of interpolation results for various types of first-order
sentences.4 Our semantic approach exploits axiomatizability results; since these
results use model (homo)morphisms, we first briefly recall some definitions.

Given two Σ-models A and B, a morphism h : A→ B is an S-sorted function
(hs : As → Bs)s∈S that commutes with operations and preserves relations.

4 See the technical report [24] for more interpolation results.

314 A. Popescu, T.F. Şerbănuţă, and G. Roşu

Models and model morphisms form a category denoted Mod(Σ) too (just like
the class of models), with composition defined as sort-wise function composition.
For each signature morphism φ, the mapping Mod(φ) can be naturally extended
to a functor. A surjective (injective) morphism is a morphism which is surjective
(injective) on each sort. Because of the weak form of commutation imposed
on morphisms w.r.t. the relational part of models, relations and functions do
not behave similarly along arbitrary morphisms, but only along closed ones:
a morphism h : A → B is called closed if the relation preservation condition
holds in the “iff” form, that is, for each predicate symbol π, (a1, . . . , an) ∈ Aπ

iff (hs1(a1), . . . , hsn(an)) ∈ Bπ. A morphism h : A → B is called strong if
the target relations are covered through h by the source relation, that is, for
each predicate symbol π and (b1, . . . , bn) ∈ Bπ, there exists (a1, . . . , an) ∈ Aπ

such that (hs1(a1), . . . , hsn(an)) = (b1, . . . , bn). Closed injective morphisms and
strong surjective morphisms naturally capture the notions of embedding and
homomorphic image respectively.

We next define some types of first-order sentences.

– FO: first-order sentences;
– Pos: positive sentences, that is, constructed inductively from atomic formulae

by means of any first-order constructs, except negation;
– ∀: sentences (∀x1, x2, . . . , xk)e, where e is a quantifier free formula;
– ∃: sentences (∃x1, x2, . . . , xk)e, where e is a quantifier free formula;
– UH, universal Horn clauses, that is, (∀x1, x2, . . . , xk)(e1 ∧ e2 . . . ∧ ep) ⇒ e,

with ei, e atomic formulae;
– UA, universal atoms, that is, (∀x1, x2, . . . xk)e, where e is an atomic formula;
– ∀∨, universally quantified disjunctions of atoms, i.e., (∀x1, x2, . . . , xk)(e1 ∨
e2 . . . ∨ ep) where ei are atomic formulae;

– FO∞, UH∞, ∀∨∞, the infinitary extensions of FO, UH, ∀∨, respectively; in
the former case, infinite conjunction and disjunction is allowed; in the latter
two cases, e1 ∧ e2 . . . ∧ ep and e1 ∨ e2 . . . ∨ ep are replaced by any possibly
infinite sentence- conjunction and disjunction respectively.

We assume the reader familiar with some basic model theoretic notions,
such as submodels, products, filtered products, ultraproducts, ultrapowers and
ultraradicals (see, e.g., [6, 20]). Recall though that, given a family (Ai)i∈I of
models and a filter F on I (i.e., a Boolean filter F ⊆ 2I), the filtered prod-
uct of (Ai)i∈I over F , denoted

∏
F Ai, has the carrier B =

∏
i∈I Ai/≡, where

≡ is given by (ai)i∈I ≡ (bi)i∈I iff {i ∈ I | ai = bi} ∈ F . Operations are
defined by Bσ((a1

i)i∈I/≡, . . . , (an
i)i∈I/≡) = (Bσ(a1

i , . . . , a
n
i))i∈I/≡ and Bπ =

{((a1
i)i∈I/≡ , . . . , (an

i)i∈I/≡) | {i ∈ I | (a1
i , . . . , a

n
i) ∈ Aiπ} ∈ F}. If F is an ul-

trafilter, then
∏

F Ai is said to be an ultraproduct; moreover, if all Ai’s are equal
to some model A, then

∏
F Ai is written AI/F and said to be the ultrapower of

A over F ; in this latter case, A is said to be an ultraradical of AI/F .
Consider the following binary relations on Σ-models:

– A S B iff B is isomorphic to a submodel of A;
– A Ext B iff B is isomorphic to an extension of A, i.e., to a model C such

that A is a submodel of C;

A Semantic Approach to Interpolation 315

– A H B iff there exists a surjective morphism between A and B;
– A Hs B iff there exists a strong surjective morphism between A and B;
– A Ur B iff B is an ultraradical of a model isomorphic to A, i.e., if A is

isomorphic to an ultrapower of B

Recall that any binary relation, in particular the ones onMod(Σ) above, has
an associated operator bearing the same name. Besides these operators, we shall
also consider the operators P, Fp, and Up on Mod(Σ) defined below:

– P(M) =M∪ {all products of models in M};
– Fp(M) =M∪ {all filtered products of models in M};
– Up(M) =M∪ {all ultraproducts of models in M};

All these constructions are considered up to isomorphism; for instance, the oper-
ator Up “grabs” into the class not only the ultraproducts standardly constructed
as quotients of direct products, but all models isomorphic to them.

The next proposition collects some known axiomatizability results. For de-
tails, the reader is referred to [6] (Section 5.2), [20] (Sections 25 and 26), [1], [22],
and [9]. Below, e.g., the pair (UA, {S,H,P}) corresponds to the famous Birkhoff
Theorem (a class of algebras is equationally axiomatizable iff it is closed under
subalgebras, homomorphic images, and products) and the pair (FO, {Up,Ur})
corresponds to the Keisler-Shelah Theorem (a class of first-order models is ele-
mentary iff it is closed under ultrapowers and ultraradicals).

Proposition 2. If the pair (T,Ops), consisting of a type T of Σ-sentences and
a set Ops of operators on Mod(Σ), is one of (FO, {Up,Ur}), (Pos, {Up,Ur,H}),
(∀, {S,Up}), (∃, {Ext,Up,Ur}), (UH, {S,Fp}), (UA, {S,H,P}), (∀∨, {Hs,S,
Up}), (UH∞, {S,P}), (∀∨∞, {Hs,S}), thenM⊆ Sen(Σ) is of the form Γ ∗ with
Γ ⊆ T iff M is a fixed point of all the operators in Ops.

Consider the following “syntactic” properties for a morphism φ : Σ → Σ′, where
Σ = (S, F, P) and Σ′ = (S′, F ′, P ′):

(IS) φ is injective on sorts;

(IR) φ is injective on relation symbols;

(I) φ is injective on sorts, operation- and relation- symbols

(RS) there are no operation symbols in F ′ \ φ(F), having the result sort in
φ(S).

Proposition 3. For each signature morphism φ : Σ → Σ′,

1. Mod(φ) preserves fixed points of P, Fp, Up;
2. (I) ⇒ Mod(φ) lifts S, H, Hs and preserves fixed points of Ext [9].
3. (IS) and (RS) ⇒ Mod(φ) preserves fixed points of S, Hs, and lifts Ext;
4. (IS), (IR) and (RS) ⇒ Mod(φ) preserves fixed points of H;
5. (IS) ⇒ Mod(φ) lifts Ur;

316 A. Popescu, T.F. Şerbănuţă, and G. Roşu

The table below states interpolation results for diverse types of sentences. It
should be read as: given a weak amalgamation square of signatures as in
Definition 2 and Γ1 ⊆ Mod(Σ1), Γ2 ⊆ Mod(Σ2), if Γ1 and Γ2 are sentences of
the indicated types such that φ′2(Γ1) |= φ′1(Γ2), then there exists an interpolant
Γ of the indicated type; the semantic conditions under which this situation holds
are given in the Mod(φ1)- and Mod(φ2)- columns of the table, with the meaning
that Mod(φ1) preserves fixed points of the indicated operator and Mod(φ2) lifts
the indicated operator. (Id is the identity operator.) These semantic conditions
are implied by the syntactic conditions listed in the φ1- and φ2- columns; “any”
means that no restriction is posed on the signature morphism.

Γ1 Γ2 Γ Mod(φ1) Mod(φ2) φ1 φ2
Type Type Type preserves lifts

1 FO FO FO Up Ur any (IS)
2 FO Pos Pos Up H ;Ur any (I)
3 Pos FO Pos Up ;H Ur (IS), (IR), (RS) (IS)
4 FO ∀ ∀ Up S any (I)
5 ∀ FO ∀ Up ;S Id (IS), (RS) any
6 ∀ Pos ∀∨ Up ;S Hs (IS), (RS) (I)
7 FO ∃ ∃ Up Ext;Ur any (IS), (RS)
8 ∃ FO ∃ Up ;Ext Ur (I) (IS)
9 FO UH UH Fp S any (I)
10 UH FO UH Fp ;S Id (IS), (RS) any
11 UH UA UA P S ;H any (I)
12 UA FO UA P ;S ;H Id (IS), (IR), (RS) any
13 UH Pos UA P ;S H (IS),(RS) (I)
14 FO ∀∨ ∀∨ Up S ;Hs any (I)
15 ∀∨ FO ∀∨ Up ;S ;Hs Id (IS), (RS) any
16 UH∞ UA UA P S ;H any (I)
17 UH∞ FO∞ UH∞ P ;S Id (IS), (RS) any
18 FO∞ ∀∨∞ ∀∨∞ Id S ;Hs any (I)
19 ∀∨∞ FO∞ ∀∨∞ S ;Hs Id (IS), (RS) any
20 FO ∀∨∞ ∀∨ Up S ;Hs any (I)

Theorem 2. The results stated in this table hold, i.e., in each of the 20 cases,
if φ1 and φ2 satisfy the indicated properties, Γ1 and Γ2 have the indicated types
and φ′2(Γ1) |= φ′1(Γ2), then there exists an interpolant Γ of the indicated type.

Let us discuss the results listed in the table above. The syntactic conditions on
signature morphisms are in many cases weaker than, or equal to, injectivity (I). In
fact, if we consider only relational languages, i.e., without operation symbols, all
the conditions are so (because (RS) becomes vacuous). As for operation symbols,
it is interesting to note that (RS) comprises the principle of data encapsulation
expressed in algebraic terms [16]. As also suggested by the examples in Section 2,
it seems that the degree of generality that one can allow on signature morphism

A Semantic Approach to Interpolation 317

increases with the expressive power of a logic. For instance, line 1 says that first-
order interpolation holds whenever the righthand morphism is injective on sorts
(and, in fact, since in full first-order logic Craig interpolation is equivalent to
the symmetrical property of Robinson consistency,5 either one of the morphisms
being injective on sorts would do). On the other hand, universal Horn clauses
(lines 9 and 10), and then universal atoms (lines 11, 12, 13) require stronger and
stronger assumptions on the signature morphisms. Our results say more than
interpolation within a certain type T of sentences: the interpolant has type T
provided one of the starting sets has type T . Particularly interesting results are
listed in lines 6, 13, and 20, where the interpolant strictly “improves” the type
of both sides. Regarding finiteness of Γ , as noted in [9], it is easy to see that if
Γ2 is finite, by compactness of first-order logic, Γ can be chosen to be also finite
in our cases of finitary sub-first-order logics. On the other hand, the finiteness
of Γ1 does not necessarily imply the finite axiomatizability of Γ ∗ (this follows
by a famous theorem due to Kleene).

5 Applications to Formal Specification

Craig interpolation is a an important/desired property in many areas. Next we
consider some applications of our interpolation results to formal specification
and module algebra.

In formalisms for modularization [3, 13, 29], modules are built by compos-
ing other modules via specific operations. One typically starts with flat (or
basic) modules, which are pairs (Σ,Γ) comprising a signature Σ and a set of
Σ-sentences Γ . According to [3], one of the most natural semantics of modules,
also called flat semantics, is given by their corresponding theories; for example
the semantics of a basic module (Σ,Γ) is the theory (Σ,Γ •). Diverse operations
are used to build up structured theories, among which the export (or information
hiding) and combination (or sum) operators [3] (or [13]), � and +. � restricts the
interface of the theory (Σ,Γ) to common symbols of Σ′ and Σ, while + just puts
together two theories in their union signature. Formally, for each signature Σ′

and theory (Σ,Γ), let Σ′�(Σ,Γ) be (Σ′∩Σ, ι−1(Γ)), where ι : Σ′∩Σ ↪→ Σ; and
for theories (Σ1, Γ1) and (Σ2, Γ2), let (Σ1, Γ1)+(Σ2, Γ2) be (Σ1∪Σ2, (Γ1∪Γ2)•).
A very desirable property of specification frameworks is the following restricted
distributivity law:

Σ′�((Σ1, Γ1) + (Σ2, ∅•)) = (Σ′�(Σ1, Γ1)) + (Σ′�(Σ2, ∅•))

As discussed in [3, 13], full distributivity does not typically hold. It is shown
in [3] that, in first-order logic, restricted distributivity is implied by interpo-
lation. Their proof is rather logic-independent, so it works for any logic that
has first-order signatures and satisfies interpolation. In particular, it works for
all the sublogics of (finitary or infinitary) first-order logic appearing in the table
that precedes Theorem 2. Thus our interpolation results show that the restricted
5 This is not true however for our examples of sub-first-order logics.

318 A. Popescu, T.F. Şerbănuţă, and G. Roşu

distributivity law holds in module algebra developed within many logical frame-
works intermediate between full first-order logic and equational logic.

Another application to formal specifications relies on the fact that interpola-
tion entails a compositional behavior of the semantics of structured specifications,
by ensuring that the two alternative semantics, the flat and the structured ones,
coincide. There are good reasons to not always consider the flat semantics of
module expressions, but rather to keep the structure of modules [29, 5, 18]. In the
case of hiding, Σ′�(Σ,Γ) provides more information than (Σ′, Γ • ∩ Sen(Σ′)):
(1) Γ might be finite, showing that Γ •, maybe unlike Γ • ∩ Sen(Σ′), is finitely
presented; (2) while the theory of all Σ′-reducts of (Σ,Γ) (i.e., all visible parts
of the possible implementations of the theory) is indeed Γ • ∩ Sen(Σ′), usually
not any model of Γ • ∩ Sen(Σ′) is a Σ-reduct of a model of (Σ,Γ); hence the
theory does not describe precisely the intended semantics on classes of models.

To understand the role played by interpolation, consider the situation when
a module Σ′�(Σ,Γ) is imported and its interface (Σ′) renamed via a signature
morphism j : Σ′ → Σ′′ in the importing context. The flat semantics of the
renamed module is (Σ′′, j(Γ • ∩ Sen(Σ′))•). On the other hand, the renamed
module itself might be regarded construcively as an information hiding mod-
ule whose interface is Σ′′ and whose base module is a consistent renaming of
(Σ,Γ). This is achieved by taking the pushout (Σ′′ ↪→ Σ0, j0 : Σ → Σ0) of
(Σ′ ↪→ Σ, j : Σ′ → Σ′′), yielding the new module Σ′′�(Σ0, j0(Γ)). One can
show using interpolation that the modular and the flat semantics are equiva-
lent, that is, j(Γ • ∩ Sen(Σ′))• = j0(Γ)• ∩ Sen(Σ′′). This desirable semantical
equivalence is shown by our results to hold for several first-order sublogics. More
precisely, lines 3,5,15 in the table preceding Theorem 2 show that the framework
may be restricted to positive-, universal-, or [universal quantification of atom
disjunction]- logics. Moreover, line 19 shows the same thing for the [universal
quantification of possibly infinite atom disjunction]-logic. According to these re-
sults, the renaming morphism j can be allowed to be injective on sorts in the
case of positive logic and any morphism in the other three cases. Note that lines
2,4,14,18 list results complementary to the above, and generalize those in [9].
These latter results relax the requirements not on the renaming morphism, but
on the hiding morphism (allowing one to replace the inclusion Σ′ ↪→ Σ with an
arbitrary signature morphism).

Within a specification framework, one should not commit herself to a particu-
lar kind of first-order sub-logic, but rather use the available power of expression
on a by-need basis, keeping flexible the border between expressive power and
effective/efficient decision or computation. The issue of coexistence of different
logical systems brings up a third application of our results. The various logi-
cal systems that one would like to use should not be simply “swallowed” by
a richer universal logic that encompasses them all, but rather integrated using
logic translations. This methodology, which is the meta-logical counterpart of
keeping structured (i.e., unflattened) the specifications themselves, is followed
for instance in CafeOBJ [11, 12]. The underlying logical structure of this system
can be formalized as a Grothendieck institution [8], which provides a means of

A Semantic Approach to Interpolation 319

building specifications inside the minimal needed logical system. The frame-
work is initially presented as an indexed institution, i.e., a family of logical sys-
tems with translations between them, and then flattened by a Grothendieck
construction.

Lifting interpolation from the component institutions to the Grothendieck
institution was studied in [10]; a criterion is given there for lifting interpola-
tion, consisting mainly of three conditions: (1) that the component institutions
have interpolation (for some designated pushouts of signatures); (2) that the
involved institution comorphisms have interpolation; (3) that each pullback in
the index category yields an interpolating square of comorphisms. We give just
one example showing that, via the above conditions, some of our interpolation
results can be used for putting together in a consistent way two very interest-
ing logical systems: (finitary) first-order logic (FO) and the logic of universally
quantified possibly infinite disjunctions of atoms (∀∨∞). While the former is a
well-established logic, the latter has the ability of expressing some important
properties, not expressible in the former, such as accessibility of models, e.g.,
(∀x)(x = 0∨x = s(0)∨x = s(s(0))∨. . .) for natural numbers. If one combines the
expressive power of these two logics, initiality conditions are also available, e.g.,
the above accessibility condition (“no junk”) can be complemented with the “no
confusion” statement ¬∨i,j∈N,i<j s

i(0) = sj(0). Since the two logical systems
have the same signatures, condition (2) above is trivially satisfied. Moreover,
our results stated in lines 1 and 19 of the table preceding Theorem 2 ensure
condition (1) for some very wide class of signature pushouts. Finally, condition
(3) is fulfilled by the result in line 20, which states that formulae from the two
logics have interpolants in their intersection logic, that of universally quantified
(finite) conjunctions of atoms.

6 Related Work and Concluding Remarks

The idea of using axiomatizability properties for proving Craig interpolation first
appeared, up to our knowledge, in [27] in the case of many-sorted equational
logic. Then [25] generalized this to an arbitrary pullback of categories, by con-
sidering some Birkhoff-like operators on those categories, with results applicable
to different versions of equational logic. An institution-independent relationship
between Birkhoff-like axiomatizability and Craig interpolation was depicted in
[9], using a concept of Birkhoff institution. If we disregard combination of logics
and flatten to the least logic, the results in lines 2,4,14,18 of the table preceding
Theorem 2 can be also found in [9]. Our Theorem 1 generalizes the previous
“semantic” results, bringing the technique of semantic interpolation, we might
say, up to its limit. The merit of Theorem 1 is that it provides general conditions
under which a semantic interpolant has a syntactic counterpart (i.e., it is axiom-
atizable). This theorem solves only half of the interpolation problem; concrete
lifting and preserving conditions, as well as certain inclusions between operators,
still have to be proved. Thus, in this paper, we provide a general methodology for
proving interpolation results. We have also followed this methodology working

320 A. Popescu, T.F. Şerbănuţă, and G. Roşu

out many concrete examples. The list of sub-first-order-logics that fit our frame-
work is of course open for other suitably axiomatizable logics; and so are the
possible combinations between these logics, which might guarantee interpolants
even simpler than the types of formulae of both logics, as shown by some of our
results. Regarding our combined interpolation results, it is worth pointing out
that they are not overlapped with, but rather complementary to, the ones in [10]
for Grothendieck institutions. There, some combined interpolation properties are
previously assumed, in order to ensure interpolation in the resulted larger logical
system.

An interesting fact to investigate would be to which extent can syntactically-
obtained interpolation results “compete” with our semantic results. While it
is true that the syntactic proofs are usually constructive, they do not seem to
provide information on the type of the interpolant comparable to what we gave
here. In particular, since the diverse Gentzen systems for first-order logic with
equality have only partial cut elimination [15], an appeal to the non-equality
version of the language, by adding appropriate axioms for equality in the theory,
is needed; moreover, dealing with function symbols requires a further appeal to
an encoding of functions as relations, again with the cost of adding some axioms.
All these transformations make even some presumably very careful syntactic
proofs rather indirect and obliterating, and sometimes place the interpolant way
outside the given subtheory - this is the reason why an interpolation theorem
for equational logic was not known until a separate, specific proof was given in
[28]. Yet, comparing and paralleling (present or future) semantic and syntactic
proofs seems fruitful for deepening our understanding of Craig interpolation,
this extremely complex and resourceful, purely syntactic and yet surprisingly
semantic, property of logical systems.

References

1. H. Andréka and I. Németi. A general axiomatizability theorem formulated in terms
of cone-injective subcategories. In Universal Algebra, volume 29, pages 13–35. 1982.

2. J. Barwise and J. Feferman. Model-Theoretic Logics. Springer, 1985.
3. J. Bergstra, J. Heering, and P. Klint. Module algebra. Journal of the Association

for Computing Machinery, 37(2):335–372, 1990.
4. T. Borzyszkowski. Generalized interpolation in CASL. Inf. Process. Lett., 76(1-

2):19–24, 2000.
5. T. Borzyszkowski. Logical systems for structured specifications. Theoretical Com-

puter Science, 286(2):197–245, 2002.
6. C. C. Chang and H. J. Keisler. Model Theory. North Holland, Amsterdam, 1973.
7. W. Craig. Linear reasoning. A new form of the Herbrand-Gentzen Theorem. Jour-

nal of Symbolic Logic, 22:250–268, 1957.
8. R. Diaconescu. Grothendieck institutions. Appl. Categorical Struct., 10(4):383–402,

2002.
9. R. Diaconescu. An institution-independent proof of Craig interpolation theorem.

Studia Logica, 77(1):59–79, 2004.
10. R. Diaconescu. Interpolation in Grothendieck institutions. Theoretical Computer

Science, 311:439–461, 2004.

A Semantic Approach to Interpolation 321

11. R. Diaconescu and K. Futatsugi. CafeOBJ Report. World Scientific, 1998. AMAST
Series in Computing, volume 6.

12. R. Diaconescu and K. Futatsugi. Logical foundations of CafeOBJ. Theoretical
Computer Science, 285:289–318, 2002.

13. R. Diaconescu, J. Goguen, and P. Stefaneas. Logical support for modularization. In
G. Huet and G. Plotkin, editors, Logical Environments, pages 83–130. Cambridge,
1993.

14. T. Dimitrakos and T. Maibaum. On a generalized modularization theorem. Infor-
mation Processing Letters, 74(1–2):65–71, 2000.

15. J. H. Gallier. Logic for computer science. Foundations of automatic theorem prov-
ing. Harper & Row, 1986.

16. J. Goguen. Types as theories. In Topology and Category Theory in Computer
Science, pages 357–390. Oxford, 1991.

17. J. Goguen and R. Burstall. Institutions: Abstract model theory for specification
and programming. Journal of the ACM, 39(1):95–146, January 1992.

18. J. Goguen and G. Roşu. Composing hidden information modules over inclusive
institutions. In From Object Orientation to Formal Methods: Dedicated to the
memory of Ole-Johan Dahl, volume 2635 of LNCS, pages 96–123. Springer, 2004.

19. D. G. J. Bicarregui, T. Dimitrakos and T. Maibaum. Interpolation in practical
formal development. Logic Journal of the IGPL, 9(1):231–243, 2001.

20. J. D. Monk. Mathematical Logic. Springer-Verlag, 1976.
21. G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures.

ACM Trans. Program. Lang. Syst., 1(2):245–257, 1979.
22. I. Németi and I. Sain. Cone-implicational subcategories and some Birkhoff-type

theorems. In Universal Algebra, volume 29, pages 535–578. 1982.
23. D. C. Oppen. Complexity, convexity and combinations of theories. Theoretical

Computer Science, 12:291–302, 1980.
24. A. Popescu, T. Şerbănuţă, and G. Roşu. A semantic approach to interpola-

tion. Technical Report UIUCDCS-R-2005-2643, University of Illinois at Urbana-
Champaign.

25. G. Roşu and J. Goguen. On equational Craig interpolation. Journal of Universal
Computer Science, 6:194–200, 2000.

26. P. H. Rodenburg. Interpolation in conditional equational logic. Fundam. Inform.,
15(1):80–85, 1991.

27. P. H. Rodenburg. A simple algebraic proof of the equational interpolation theorem.
Algebra Universalis, 28:48–51, 1991.

28. P. H. Rodenburg and R. van Glabbeek. An interpolation theorem in equational
logic. Technical Report CS-R8838, CWI, 1988.

29. D. Sannella and A. Tarlecki. Specifications in an arbitrary institution. Information
and Control, 76:165–210, 1988.

First-Order and Counting Theories
of ω-Automatic Structures

Dietrich Kuske1 and Markus Lohrey2

1 Institut für Informatik, Universität Leipzig, Germany
2 Universität Stuttgart, FMI, Germany

kuske@informatik.uni-leipzig.de, lohrey@informatik.uni-stuttgart.de

Abstract. The logic L(Qu) extends first-order logic by a generalized
form of counting quantifiers (“the number of elements satisfying ... be-
longs to the set C”). This logic is investigated for structures with an
injective ω-automatic presentation. If first-order logic is extended by an
infinity-quantifier, the resulting theory of any such structure is known
to be decidable [4]. It is shown that, as in the case of automatic struc-
tures [13], also modulo-counting quantifiers as well as infinite cardinality
quantifiers (“there are κ many elements satisfying ...”) lead to decidable
theories. For a structure of bounded degree with injective ω-automatic
presentation, the fragment of L(Qu) that contains only effective quan-
tifiers is shown to be decidable and an elementary algorithm for this
decision is presented. Both assumptions (ω-automaticity and bounded
degree) are necessary for this result to hold.

1 Introduction

Automatic structures were introduced in [8, 11]. The idea goes back to the con-
cept of automatic groups [6]. Roughly speaking, a structure is called automatic
if the elements of the universe are represented (not necessarily uniquely) as
words from a regular language and every relation (including the identity) of the
structure can be recognized by a finite state automaton with several heads that
proceed synchronously. Automatic structures received increasing interest during
the last years [1, 4, 9, 12, 14, 16]. Recently, automatic structures were generalized
to ω-automatic structures by the use of Büchi-automata instead of automata
on finite words [4]. One of the main motivations for investigating (ω-)automatic
structures is the fact that every (ω-)automatic structure has a decidable first-
order theory [4, 11]. For automatic structures, this result has been extended to
first-order logic with modulo quantifiers [13] and the quantifier “there exist in-
finitely many” (infinity quantifier) [4]. The infinity quantifier was also shown
to lead to decidable theories in the realm of ω-automatic structures [3, 4] with
injective presentations (i.e., if the elements of the structure are represented by
unique ω-words).1 While there exist automatic structures with a non-elementary
1 The decidability proof of [4, Thm. 2.1] assumes an injective ω-automatic presen-

tation. [4, Prop. 5.2] states that any ω-automatic structure has such an injective
presentation, but the proof is spurious (cf. Remark 2.1). So we safely use the decid-
ability for injective presentations, only.

L. Aceto and A. Ingólfsdóttir (Eds.): FOSSACS 2006, LNCS 3921, pp. 322–336, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

First-Order and Counting Theories of ω-Automatic Structures 323

first-order theory [4], the first-order theory of any automatic structure of
bounded degree is elementarily decidable; more precisely, an upper bound of
triply exponential alternating time with a linear number of alternations was
shown in [16].

The overall theme of this paper is to extend these results from automatic
structures to ω-automatic structures and to consider more involved logics. In a
first step, we extend first-order logic by modulo-counting quantifiers as in [13]
and exact counting quantifiers for infinite cardinals. We show that any injectively
ω-automatic structure has a decidable theory in this logic (Theorem 2.8). This
extends [13, Theorem 3.2] from automatic to injectively ω-automatic structures
and [4, Theorem 2.1] from first-order logic with an infinity quantifier to a further
extension of this logic. The proof is based on automata-theoretic constructions,
in particular an analysis of successful runs in Muller automata.

In a second step, we consider an even more powerful logic that we call L(Qu),
which is a finitary fragment of the logic L∞,ω(Qu)ω from [10]. In this logic L(Qu)
one may use generalized quantifiers of the formQCy : (ψ1(y), . . . , ψn(y)), where y
is a first-order variable and C is an n-ary relation on cardinals. To determine the
truth of this formula in a model A, one first determines the cardinalities of the
sets defined by the formulas ψi(y) (1 ≤ i ≤ n). If the tuple of these cardinalities
belongs to the relation C, then the formula is true. All quantifiers mentioned
so far are special instances of these generalized quantifiers. But, e.g., also the
Härtig quantifier (“there are as many . . . as . . . ”) falls into this category.

For every fragment L of L(Qu) that contains only countably many generalized
quantifiers, and every injectively ω-automatic structure A of bounded degree, we
prove that the L-theory of A can be decided by a Turing-machine with oracle
access to the relations C that are allowed in the fragment L. Moreover, this
Turing-machine works in triply exponential space (Theorem 3.7). This extends
[16, Theorem 3] since it applies to (1) injectively ω-automatic structures as op-
posed to automatic structures and (2) to first-order logic extended by generalized
quantifiers. This second main result rests on [10] where Hanf-locality is shown
for the logic L(Qu). Our algorithm therefore has to determine how often a given
neighborhood is realized (up to isomorphism) in the structure. Differently, in the
proof of [16, Theorem 3] a similar locality principle is used to effectively bound
the search space of quantifiers to short words.

From Theorem 3.7 we deduce that every L-definable relation over an injec-
tively ω-automatic structure of bounded degree is effectively first-order definable
and therefore effectively regular (Corollary 3.9). If effectiveness is not demanded,
first-order definability can be easily deduced also for non-ω-automatic structures
of bounded degree from [10].

Note that our results require a structure to be ω-automatic and of bounded
degree. We finish the technical part of the paper by showing that both these
assumptions are necessary, namely that our results do not hold for recursive
structures of bounded degree, nor for locally finite automatic (and hence locally
finite injectively ω-automatic) structures.

Proofs that are omitted due to space restrictions can be found in the technical
report [15].

324 D. Kuske and M. Lohrey

2 ω-Automatic Structures, Infinity and Modulo
Quantifiers

2.1 Definitions and Known Results

This section introduces automata on finite and on infinite words, (ω-)automatic
structures, and logics, and recalls some basic results concerning these concepts.
For more details, see [17, 18] for automata theoretic issues, [4, 11, 13] for
ω-automatic structures, and [7] as far as logics are concerned.

Büchi-automata. Let Γ be a finite alphabet. With Γ ∗ we denote the set of
all finite words over the alphabet Γ . The set of all nonempty finite words is Γ+.
An ω-word over Γ is an infinite ω-sequence w = a0a1a2 · · · with ai ∈ Γ , we
set w(i) = ai for i ∈ N. A (nondeterministic) Büchi-automaton M is a tuple
M = (Q,Γ, δ, ι, F), where Q is a finite set of states, ι ∈ Q is the initial state,
F ⊆ Q is the set of final states, and δ ⊆ Q × Γ × Q is the transition relation.
If Γ = Σn for some alphabet Σ, then we speak of an n-dimensional Büchi-
automaton over Σ. A run of M on an ω-word w = a0a1a2 · · · is an ω-word
r = p0p1p2 · · · over the set of states Q such that (pi, ai, pi+1) ∈ δ for all i ≥ 0.
The run r is successful if p0 = ι and there exists a final state from F that occurs
infinitely often in r. The language Lω(M) ⊆ Γω defined by M is the set of all
ω-words for which there exists a successful run. An ω-language L ⊆ Γω is regular
if there exists a Büchi-automaton M with Lω(M) = L. The class of all regular
ω-languages is closed under boolean operations and projections [17]. For two
Büchi-automata M1 and M2 with n1 and n2 many states, resp., there exists a
Büchi-automaton with 3 · n1 · n2 many states accepting the language Lω(M1) ∩
Lω(M2). The proof is based on a product construction for Büchi-automata, see
e.g. [18]. For ω-words w1, . . . , wn ∈ Γω, the convolution w1 ⊗ w2 ⊗ · · · ⊗ wn ∈
(Γn)ω is

w1 ⊗ · · · ⊗ wn = (w1(1), . . . , wn(1)) (w1(2), . . . , wn(2)) (w1(3), . . . , wn(3)) · · ·

An n-ary relationR ⊆ (Γω)n is called ω-automatic if the language {w1⊗· · ·⊗wn |
(w1, . . . , wn) ∈ R} is a regular ω-language, i.e., accepted by some n-dimensional
Büchi-automaton.

ω-Automatic structures. A signature is a finite set τ of relational symbols,
where each relational symbol R ∈ τ has an associated arity nR. A (relational)
structure over the signature τ , briefly a τ-structure, is a tuple A = (A, (RA)R∈τ),
where A is a set (the universe of A) and RA is a relation of arity nR over the
set A, which interprets the relational symbol R. We will assume that every
signature contains the equality symbol = and that =A is the identity relation
on the set A. Usually, we denote the relation RA also with R. We will also write
a ∈ A for a ∈ A. For a subset B ⊆ A we denote with A�B the restriction
(B, (RA ∩BnR)R∈τ).

Let A be an arbitrary τ -structure with universe A. An injectively ω-automatic
presentation for A is a tuple (Γ,L, h) such that

First-Order and Counting Theories of ω-Automatic Structures 325

– Γ is a finite alphabet,
– L ⊆ Γω is a regular ω-language,
– h : L→ A is a bijection, and
– the relation {(u1, . . . , unR) ∈ LnR | (h(u1), . . . , h(unR)) ∈ R} is ω-automatic

for every R ∈ τ .
The structure A is injectively ω-automatic if there is an injectively ω-automatic
presentation for A. A typical example of an injectively ω-automatic structure is
(R,+).

Remark 2.1. The original definition of an ω-automatic presentation requires h to
be only surjective and the relation {(u, v) ∈ L2 | h(u) = h(v)} to be ω-automatic
[4]. In [4, Proposition 5.2] it is claimed that every ω-automatic structure (ac-
cording to this original definition) has an injectively ω-automatic presentation.
The following example shows that the proof of [4, Proposition 5.2] does not
work: Let two sets A and B of natural numbers be equivalent (A ≈ B) if
and only if the symmetric difference A'B is finite. Then the quotient B of
the power-set of N wrt. ≈ is a Boolean algebra. It has an ω-automatic presen-
tation in the more general sense of [4] with underlying set L = {0, 1}ω and
h(w) = [{i ∈ N | w(i) = 1}]≈. But there is no ω-regular subset K ⊆ L such that,
for any u ∈ L, there is precisely one v ∈ K with h(u) = h(v), as was claimed
in [4]. It is therefore open, whether every ω-automatic structure (in the original
sense) has an injectively ω-automatic presentation. Since this paper deals with
injectively ω-automatic structures exclusively, we will always assume an injec-
tively ω-automatic presentation (Γ,L, h), where L is the universe of the structure
and h is the identity function. Furthermore, we use the more concise notation “ω-
automatic presentation” (resp. “ω-automatic structure”) instead of “injectively
ω-automatic presentation” (resp. “injectively ω-automatic structure”).

Automatic structures are defined in the same way as ω-automatic structures,
except that finite automata over finite words instead of Büchi-automata are used
(the convolution of finite words requires an additional letter ⊥ that is appended
to the arguments in order to make them the same length). By [3, Theorem 5.32],
a countable structure is automatic if and only if it is ω-automatic.

Logic. In addition to the usual first-order quantifier ∃, this section is concerned
with quantifiers ∃∞, ∃κ for a cardinal κ, and ∃(t,k) for 0 ≤ t < k > 1 two natural
numbers. The semantics of these quantifiers are defined as follows:

– A |= ∃∞xψ if and only if there are infinitely many a ∈ A with A |= ψ(a).
– A |= ∃κxψ if and only if the set {a ∈ A | A |= ψ(a)} has cardinality κ.
– A |= ∃(t,k)xψ if and only if the set {a ∈ A | A |= ψ(a)} is finite and
t = |{a ∈ A | A |= ψ(a)}| mod k.

We will denote by FO the set of first-order formulas. For a class of cardinals C,
FO(∃∞, (∃κ)κ∈C , (∃(t,k))0≤t<k>1) is the set of formulas using ∃ and the quanti-
fiers listed. For any set L of formulas, the L-theory of a structure A is the set
of sentences (i.e., formulas without free variables) from L that hold in A. The
following result can be shown by induction on the structure of the formula ϕ.

326 D. Kuske and M. Lohrey

Proposition 2.2 (cf. [4, 11, 13]). Let (Γ,L, h) be an automatic presentation
for the structure A and let ϕ(x1, . . . , xn) be a formula of FO(∃∞, (∃(t,k))0≤t<k≥2)
over the signature of A. Then the relation

{(u1, . . . , un) ∈ Ln | A |= ϕ(h(u1), . . . , h(un))}
is effectively automatic. It is effectively ω-automatic if (Γ,L, h) is an ω-automatic
presentation for the structure A and ϕ belongs to FO(∃∞).

This theorem implies the following result, which is one of the main motivations
for investigating (ω-)automatic structures.

Theorem 2.3 ([4, 13]). If A is an ω-automatic structure, then its FO(∃∞)-
theory is decidable. If A is automatic, then even its FO(∃∞, (∃(t,k))0≤t<k≥2)-
theory is decidable.

Note that any automatic structure A is at most countably infinite. Hence the
quantifiers ∃∞ and ∃ℵ0 are equivalent in this setting. Furthermore, no formula
∃κxψ with κ > ℵ0 holds in A. Hence, for any countable set of cardinals C,
the FO(∃∞, (∃κ)κ∈C , (∃(t,k))0≤t<k>1)-theory of an automatic structure is decid-
able.2 In the rest of Section 2 we extend this result to ω-automatic structures.

To the knowledge of the authors, the modulo quantifiers ∃(t,k) have not yet
been considered for ω-automatic structures. Since an ω-automatic structure can
have up to 2ℵ0 many elements, it makes sense to consider quantifiers of the form
∃κ with ℵ0 ≤ κ ≤ 2ℵ0 .

2.2 Cardinality and Modulo Quantifiers for ω-Automatic Structures

It is the aim of this section to extend the realm of Proposition 2.2 and therefore
of Theorem 2.3 to ω-automatic structures. To this aim, we fix an ω-automatic
structure A with presentation (Γ,L, id).

Two infinite words v and w are ultimately equal, briefly v ∼ w, if there exists
i ∈ N such that v(j) = w(j) for j ≥ i. Since the relation ∼ is ω-automatic,
we can assume it to be among the relations of the ω-automatic structure A.
The following lemma is our main combinatorial tool for analyzing ω-automatic
structures.

Lemma 2.4. Let M be a Büchi-automaton with n states over Σ × Γ , u ∈ Σω,
and V = {v ∈ Γω | u ⊗ v ∈ Lω(M)}. Then |V | = 2ℵ0 if and only if |V/∼| >
n. Moreover, |V | ∈ N ∪ {ℵ0, 2ℵ0} and the exact number can be computed in
polynomial space.

This lemma allows to handle the quantifiers ∃ℵ0 and ∃2ℵ0 :

Proposition 2.5. Let the relation R ⊆ (Γω)n+1 be ω-automatic. Then the re-
lation Rκ = {(u1, . . . , un) | A |= ∃κxn+1 : R(u1, . . . , un, xn+1)} is effectively
ω-automatic for κ ∈ {ℵ0, 2ℵ0}.
2 C has to be countable for otherwise the set of formulas would become uncountable

rendering the decidability question nonsense.

First-Order and Counting Theories of ω-Automatic Structures 327

Proof. Let the convolution of R be accepted by an (n + 1)-dimensional Büchi-
automaton with m states. Then the formula ∃2ℵ0

xn+1 : R(u1, . . . , un, xn+1) is,
by Lemma 2.4, equivalent with

A |= ∃x0 · · · ∃xm

⎧⎨⎩ ∧
0≤i<j≤m

xi 	∼ xj ∧
∧

0≤i≤m

R(u1, . . . , un, xi)

⎫⎬⎭ .
Lemma 2.4 also ensures that the quantifier ∃ℵ0 is equivalent with saying “there
are infinitely, but not 2ℵ0 many”. Hence, by Proposition 2.2, Rκ is ω-regular. �"
We now want to prove the corresponding result for modulo quantifiers. As above,
let R ⊆ (Γω)n+1 be ω-automatic and let 0 ≤ t < k ≥ 2. Because of Proposi-
tion 2.5, we can assume that for all u1, . . . , un ∈ Γω, there are only finitely many
v ∈ Γω with (u1, . . . , un, v) ∈ R.

For the following, it is convenient to write Σ = Γn and consider R as an
ω-automatic subset of Σω × Γω. Since the convolution of R is ω-regular, it can
be accepted by some deterministic Muller-automaton M = (Q,Σ × Γ, δ, ι,F)
(see e.g. [18] for details concerning Muller automata). Now consider the alphabet
Δ = Σ×Γ×{0, . . . , k−1}Q×{0, 1}Q. Then one can construct a Büchi-automaton
M ′ over Δ that accepts an ω-word (ai, bi, fi, gi)i≥0 ∈ Δω if and only if we have
for all i ≥ 0 and all p ∈ Q:

(1) fi(p) = |{w ∈ Γ ∗ | |w| = i, δ(ι, a0a1 · · ·ai−1 ⊗ w) = p}| mod k (i.e., f(p)
is the number of possible partners modulo k that allow a0 · · · ai−1 to move
from the initial state of M into p)

(2) gi(p) = 1 if and only if the ω-word aiai+1 · · · ⊗ bibi+1 · · · has an accepting
run in M from the state p.

To ensure condition (1), one actually constructs an automaton that counts the
number of runs from ι to p whose label is of the form a0a1 · · · ai−1 ⊗w for some
word w. Since the automatonM is deterministic, this number equals the number
of partners as desired.

Note that for any u ∈ Σω and v ∈ Γω, there is precisely one ω-word x ∈ L(M ′)
whose projection π(x) onto (Σ × Γ)ω equals u⊗ v.
Lemma 2.6. Let u ∈ Σω and v ∈ Γω, and let x = (ai, bi, fi, gi)i∈ω ∈ Δω be the
unique ω-word with π(x) = u⊗ v. There is i ∈ N such that for all j ≥ i, we have∑

{fj(p) | p ∈ Q, gj(p) = 1} ≡ |{w ∈ Γω | w ∼ v, (u,w) ∈ R}| mod k. (1)

Note that by our assumption on R, the set {w ∈ Γω | w ∼ v, (u,w) ∈ R} is
always finite, hence the expression makes sense. The lemma thus says that the
sum on the left is eventually fix and gives the number of possible parters w of u
that are ultimately equal to v. From the Büchi-automaton M ′, we can build
a new Büchi-automaton M ′

s (for 0 ≤ s < k) over Δ that checks whether the
sum on the left in (1) is eventually fix and equal s. Let Ms be the projection

328 D. Kuske and M. Lohrey

of the automaton M ′
s to the alphabet Σ × Γ . Then Ms accepts u ⊗ v if and

only if, modulo k, there are s many ω-words w ultimately equal to v such that
(u,w) ∈ R.

Since R is ω-automatic, there is a Büchi-automaton with, say,m states accept-
ing the convolution of R. Let u = (u1, . . . , un) ∈ Σω. Since, by our assumption
on R, the set {v ∈ Γω | (u, v) ∈ R} is finite, there are r ≤ m many ω-words
v1, . . . , vr in this set that are mutually not ultimately equal (Lemma 2.4). Thus,
we have ∃(t,k)xn+1 : R(u1, . . . , un, xn+1) if and only if there exist r ≤ m, mu-
tually not ultimately equal words v1, . . . , vr ∈ Σω, and integers 0 ≤ ti < k for
1 ≤ i ≤ r such that

1. R(u1, . . . , un, vi) for 1 ≤ i ≤ r,
2. for any v ∈ Σω with R(u1, . . . , un, v), there exists i with v ∼ vi,
3. t =

∑r
i=1 ti mod k and u1 ⊗ · · · ⊗ un ⊗ vi ∈ Lω(Mti) for 1 ≤ i ≤ r.

Since m is a constant depending on R, only, these conditions can be expressed in
first-order logic. Hence Proposition 2.2 implies that {(u1, . . . , un) | ∃(t,k)xn+1 :
R(u1, . . . , un, xn+1)} is ω-automatic. Thus, we showed:

Proposition 2.7. Let the relation R ⊆ (Γω)n+1 be ω-automatic and let 0 ≤ t <
k ≥ 2. Then the relation {(u1, . . . , un) | A |= ∃(t,k)xn+1 : R(u1, . . . , un, xn+1)}
is effectively ω-automatic.

Together with Propositions 2.2 and 2.5, we obtain:

Theorem 2.8. Let A be an ω-automatic structure and let C be an at most
countably infinite set of cardinals. Then the FO(∃∞, (∃κ)κ∈C , (∃(t,k))0≤t<k>1)-
theory of A is decidable.

Proof. Lemma 2.4 implies that a formula of the form ∃κxψ with ℵ0 < κ <
2ℵ0 can never be true in A. Hence, the theory in question can be reduced to
the FO(∃∞, ∃ℵ0 , ∃2ℵ0

, (∃(t,k))0≤t<k>1)-theory of A. Since emptiness of Büchi-
automata is decidable, the result follows from Propositions 2.2, 2.5, and 2.7. �"

3 ω-Automatic Structures of Bounded Degree and
Complexity of Theories

As first observed in [4], there are automatic structures with a non-elementary
first-order theory. Our aim in this section is to single out a class of ω-automatic
structures such that the FO(∃∞, ∃ℵ0 , ∃2ℵ0

, (∃(t,k))0≤t<k>1)-theory is elementar-
ily decidable. In doing so, we will find that even more general quantifiers give rise
to elementarily decidable theories provided we constrain ourselves to structures
of bounded degree.

3.1 Definitions and Known Results

Structures of bounded degree. Let A be a τ -structure with universe A. The
Gaifman-graph GA of the structure A is the following undirected graph:

GA = (A, {(a, b) ∈ A×A | ∃R ∈ τ ∃(c1, . . . , cnR) ∈ R ∃j, k : cj = a 	= b = ck}).

First-Order and Counting Theories of ω-Automatic Structures 329

Thus, the set of nodes is the universe of A and there is an edge between two
elements, if and only if they are contained in some tuple belonging to one of the
relations of A. The structure A is locally finite, if every node of the Gaifman-
graphGA has only finitely many neighbors. It has bounded degree, if its Gaifman-
graph GA has bounded degree, i.e., there exists a constant d such that every
a ∈ A is adjacent to at most d other nodes in GA.

In contrast to the general case, if the degree of the automatic structure A is
bounded, an elementary upper bound for the first-order theory of A is due to
the second author (we define exp(1, n) = 2n and exp(k + 1, n) = 2exp(k,n)):

Theorem 3.1 ([16]). If A is an automatic structure of bounded degree, then
the FO-theory of A can be decided in SPACE(exp(3, O(n))) and there is such a
structure for which SPACE(exp(2, O(n))) is a lower bound.

This result was not known to apply to more general quantifiers nor to ω-automatic
structures. An important tool in the proof of Theorem 3.1 as well as in our ex-
tension, is the concept of a sphere that we introduce next.

With dA(a, b), where a, b ∈ A, we denote the distance between a and b in GA,
i.e., it is the length of a shortest path connecting a and b in GA. For a ∈ A
and r ≥ 0 we denote with SA(r, a) = {b ∈ A | dA(a, b) ≤ r} the r-sphere
around a. If ā = (a1, . . . , an) ∈ An is a tuple, then SA(r, ā) =

⋃n
i=1 SA(r, ai).

The neighborhood NA(r, ā) = A�SA(r, ā) of radius r around ā is the substructure
of A induced by SA(r, ā).

Generalized quantifiers and locality. Let us fix a relational signature τ .
In this section, we will consider the logic L(Qu). Formulas of the logic L(Qu)
are built from atomic formulas of the form R(x1, . . . , xnR), where R ∈ τ is a
relational symbol and x1, . . . , xnR are first-order variables ranging over the uni-
verse of the underlying structure, using boolean connectives and quantifications
of the form QCy : (ψ1(x̄, y), . . . , ψn(x̄, y)). Here, ψi(x̄, y) is already a formula
of L(Qu), x̄ is a sequence of variables, and C is an n-ary relation over cardi-
nals, i.e., C = {(κi,1, . . . ,κi,n) | i ∈ J,κi,j is a cardinal} for some index set J .
To define the semantics of the QC-quantifier, let A be a τ -structure with uni-
verse A and let ū be a tuple of values from A of the same length as x̄. Then
A |= QCy : (ψ1(ū, y), . . . , ψn(ū, y)) if and only if (κ1, . . . ,κn) ∈ C, where κi is
the cardinality of the set {a ∈ A | A |= ψi(ū, a)}. In the above situation, we
call the quantifier QC also an n-dimensional counting quantifier. The quantifier
rank qfr(ϕ) of a formula ϕ is the maximal number of nested quantifiers of ϕ. The
logic L(Qu) is a finitary fragment of the logic L∞,ω(Qu)ω from [10], which allows
infinite conjunctions and disjunctions but restricts to finite quantifier rank.

Let us consider some examples for generalized quantifiers. The ordinary ex-
istential quantifier ∃y : ϕ(x̄, y) is equivalent to QC y : ϕ(x̄, y), where C is the
class of all non-zero cardinals. Similarly, we can obtain the counting quanti-
fier CK y : ϕ(x̄, y) for K some class of cardinals (“the number of y satisfying
ϕ(x̄, y) belongs to K”). Well-known special cases of the latter quantifier are the
quantifiers ∃∞, ∃κ , and ∃(t,q) from the Section 2. All these counting quantifiers
are one-dimensional. A well-known two-dimensional counting quantifier is the

330 D. Kuske and M. Lohrey

Härtig quantifier I y : (ψ1(x̄, y), ψ2(x̄, y)) (“the number of y satisfying ψ1(x̄, y)
equals the number of y satisfying ψ2(x̄, y)”). For this we have to choose for C
the identity relation on cardinals.

For a class C, where every C ∈ C is a relation on cardinals, FO(C) denotes
those formulas of L(Qu) that only use quantifiers of the form QC with C ∈ C
along with the existential quantifier ∃. For a singleton class C = {C} we also
write FO(C) instead of FO(C).

We will make use of the following locality principle for the logic L(Qu):

Theorem 3.2 ([10]). Let A be a locally finite structure, let ϕ(x1, . . . , xk) be an
L(Qu)-formula of quantifier rank at most d, and let ā, b̄ ∈ Ak be k-tuples with
(NA(2d, ā), ā) ∼= (NA(2d, b̄), b̄).3 Then A |= ϕ(ā) if and only if A |= ϕ(b̄).

Proof. Keisler and Lotfallah [10] proved this statement for locally finite count-
able structures. As an intermediate step, they considered an infinitary logic with
counting quantifiers CA with A = {0, 1, 2, . . . , n} for some n ∈ N. Considering,
instead, counting quantifiers CA with A = {λ | λ ≤ κ} for κ a cardinal, one
obtains the above general theorem (which does not restrict to countable struc-
tures) without any further modifications of [10]. �"

3.2 Complexity of the L(Qu)-Theory

In Section 3.4 we will show that there exists a locally finite automatic structureA
and a recursive set K ⊆ N such that the FO(CK)-theory of A is undecidable. To
obtain a decidability result, we therefore consider an ω-automatic structure A
of bounded degree. We will consider the FO(C)-theory of A, where every C ∈ C
is a relation over cardinals. Furthermore, we make the following assumptions:

(1) (Γ,L, id) is an ω-automatic presentation for A, i.e., in particular L is the
universe of A.

(2) δ ∈ N is a bound for the degrees of the nodes in the Gaifman graph GA.
(3) For every 0 ≤ n ≤ δ the signature τ contains a unary predicate degn with
A |= degn(u) if and only if the degree of u in the Gaifman-graph GA is
exactly n.

(4) C is a countable set of relations on N ∪ {ℵ0, 2ℵ0}.
Clearly, neither (1) nor (2) imposes restrictions on (the isomorphism type of) A.
Since the set of nodes w of degree n is first-order definable, it is ω-regular.
Hence we can assume it to be among the relations of A. Thus, (3) is no essential
restriction. Finally, consider (4). If C allows more than countably many relations,
then it does not make sense to ask for the decidability of the FO(C)-theory of A
since it is uncountable. Furthermore, one can show that even without restricting
to relations over N ∪ {ℵ0, 2ℵ0}, the size of any definable set belongs to N ∪
{ℵ0, 2ℵ0}. Hence we can safely assume (4).

We will prove that under the above four restrictions, the FO(C)-theory of A
can be reduced in triply exponential space to the relations in C. For this, we need
3 This means that there exists an isomorphism f : NA(2d, ā) → NA(2d, b̄) mapping

for every 1 ≤ i ≤ k the i-th entry of ā to the i-th entry of b̄.

First-Order and Counting Theories of ω-Automatic Structures 331

the following concept: A pair (B, b̄) is a potential (D, k)-sphere (for D, k ∈ N) if
the following holds:

– B is a finite τ -structure whose Gaifman-graph has degree at most δ,
– b̄ is a k-tuple of elements from B,
– NB(2D, b̄) = B, i.e., every element of B has distance at most 2D from some

entry of the tuple b̄,
– for any y ∈ SB(2D− 1, b̄), we have B |= degn(y) if and only if n is the degree

of y in the Gaifman-graph of B, and
– for any y ∈ B \ SB(2D − 1, b̄) there is a unique 0 ≤ n ≤ δ such that B |=

degn(y) and the degree of y in the Gaifman-graph of B is at most n.

Thus, a potential (D, k)-sphere is a candidate for a 2D-sphere around some k-
tuple in the structure A.

Let {b1, b2, . . . , bn} be the universe of B with b̄ = (b1, . . . , bk) (k ≤ n). Since b̄
is not necessarily repetition-free, we may have bi = bj for i 	= j in case i, j ≤ k,
but we may assume that bk+1, . . . , bn are pairwise different and different from
b1, . . . , bk. We define ϕ(B,b̄)(x1, . . . , xk) = ∃xk+1 · · · ∃xn : ψ(x1, . . . , xn), where
ψ(x1, . . . , xn) is the conjunction of the following formulas:

– xi = xj if bi = bj and xi 	= xj if bi 	= bj
– R(xi1 , xi2 , . . . , xim) if (bi1 , bi2 , . . . , bim) ∈ R for R ∈ τ with m = nR and
i1, . . . , im ∈ {1, . . . , n}

– ¬R(xi1 , xi2 , . . . , xim) if (bi1 , bi2 , . . . , bim) /∈ R for R ∈ τ with m = nR and
i1, . . . , im ∈ {1, . . . , n}.

Lemma 3.3. There exists a constant c ∈ N such that for any potential (D, k)-
sphere (B, b̄), the existential FO-formula ϕ(B,b̄) has size at most exp(2, c(D+k)).
For any k-tuple ū ∈ Lk, we have: A |= ϕ(B,b̄)(ū) ⇔ (NA(2D, ū), ū) ∼= (B, b̄).
Lemma 3.4. There are functions # : N2 → N and Φ : N3 → FO such that

1. #(D, k) is computable in space exp(2, O(D + k)) and Φ(D, k, i) in space
exp(2, O(D + k)) + log(i)

2. for any D, k ∈ N, #(D, k) is the number of potential (D, k)-spheres,
3. for any D, k, i ∈ N, there exists a potential (D, k)-sphere B(D, k, i) with
ϕB(D,k,i) = Φ(D, k, i), and

4. for any D, k ∈ N and any potential (D, k)-sphere (B, b̄), there exists 1 ≤ i ≤
#(D, k) with ϕ(B,b̄) = Φ(D, k, i).

Note that B(D, k, 1), . . . ,B(D, k,#(D, k)) enumerates the isomorphism types of
potential (D, k)-spheres for any D, k ∈ N.

In the following we identify a tuple ū = (u1, . . . , uk) with its convolution
u1 ⊗ u2 ⊗ · · · ⊗ uk. We write k = |ū| for the length of the tuple ū.

Lemma 3.5. The following can be computed in space exp(3, O(D+k))+ log(i):
INPUT: D, k, i ∈ N
QUTPUT: a k-dimensional Büchi-automaton M of size exp(3, O(D + k)) with

Lω(M) = {ū | (NA(2D, ū), ū) ∼= B(D, k, i)}.

332 D. Kuske and M. Lohrey

Let us fix a function s(D + k) ∈ exp(3, O(D + k)) bounding the space in
Lemma 3.5. For a word u ∈ Σω, its norm λ(u) is λ(u) = inf{|vw| | u = vwω},
with λ(u) = ∞ if u is not ultimately periodic, i.e., not of the form vwω for
some v, w ∈ Σ∗. Let UP denote the class of all ultimately periodic ω-words over
some alphabet. In the algorithms below, we will often handle ω-words u ∈ UP
that can be given as a pair (v, w) with u = vwω and |vw| = λ(w). Note that
if M is a Büchi-automaton with n states and Lω(M) 	= ∅, then we find an
ω-word u ∈ Lω(M) such that λ(u) ≤ 2n. Note that for ū = (u1, . . . , uk) we
have λ(ū) = λ(u1 ⊗ u2 · · · ⊗ uk) ≤ ∏1≤i≤k λ(ui). Since we can build a (k + 1)-
dimensional Büchi-automaton with λ(ū) many states that accepts the language
ū⊗Σω, the product construction for Büchi-automata and Lemma 3.5 gives:

Lemma 3.6. The following can be computed in space 3·s(D+k+1)·λ(ū)+log(i)
if k = |ū| > 0 and in space s(D + 1) + log(i) if k = |ū| = 0:

INPUT: D, k, i ∈ N and ū ∈ Lk ∩UP
OUTPUT: a (k + 1)-dimensional Büchi-automaton M with Lω(M) = {ūw ∈

Lk+1 | (NA(2D, ūw), ūw) ∼= B(D, k + 1, i)}.
Moreover, if Lω(M) 	= ∅, then we can compute within the same space bound a
word w ∈ L ∩UP with ūw ∈ Lω(M) and

λ(w) ≤
{

6 · s(D + k + 1) · λ(ū) if k > 0
2 · s(D + 1) if k = 0. (∗)

Now consider the following two algorithms size and check. The algorithm size
shall return the number of words v ∈ Σω with A |= ϕ(ūv). The algorithm check
shall check whether A |= ϕ(ū).

1 check(ϕ(x̄), ū) : {0, 1}
2 (ϕ(x̄) formula with |ū| = |x̄| many free variables,
3 ū tuple of ultimately periodic words from L)
4 case ϕ = R(x̄)
5 if ū ∈ R then return(1) else return(0) endif
6 case ϕ = ϕ1 ∧ ϕ2
7 return(check(ϕ1, ū) ∧ check(ϕ2, ū))
8 case ϕ = ¬ϕ1
9 return(¬check(ϕ1, ū))
10 case ϕ = QCy : (ψ1(x̄, y), . . . , ψn(x̄, y))
11 for i = 1 to n do
12 κi := size(ψi, ū)
13 endfor
14 if (κ1, . . . ,κn) ∈ C then return(1) else return(0) endif

1 size(ϕ, ū) : N ∪ {ℵ0, 2ℵ0}
2 (ϕ formula with |ū|+ 1 many free variables,
3 ū tuple of ultimately periodic words from L)
4 D := qfr(ϕ); κ := 0;

First-Order and Counting Theories of ω-Automatic Structures 333

5 for i := 1 to #(D, |ū|+ 1) do
6 calculate an |ū|+ 1-dimensional Büchi-automaton M with

Lω(M) = {ūw ∈ L|ū|+1 | (NA(2D, ūw), ūw) ∼= B(D, |ū|+ 1, i)}
7 if Lω(M) 	= ∅ then
8 choose w ∈ Σω with ūw ∈ Lω(M) and λ(w) ≤ 2 · s(D + 1)
9 if |ū| = 0 and λ(w) ≤ 6 · s(D + |ū|+ 1) · λ(ū) otherwise
10 if check(ϕ, ūw) then
11 κ := κ + |Lω(M)|
12 endif
13 endif
14 endfor
15 return(κ)

Let us first verify the correctness of these algorithms. If size behaves as
intended, the correctness of check is rather obvious. We now discuss size. By
Lemma 3.4, line 5 iterates over all potential (D, |ū| + 1)-spheres. Since D =
qfr(ϕ), there exists a tuple ūw ∈ Lω(M) with A |= ϕ(ūw) if and only if A |=
ϕ(ūv) for all ūv ∈ Lω(M) by Theorem 3.2, where M is the Büchi-automaton
calculated in line 6. Therefore, we select in line 8,9 a “short” tuple ūw ∈ Lω(M)
and check in line 10 whether A |= ϕ(ūw) using algorithm check. If this is true,
then we add to the current κ the size of the language Lω(M), which can be
calculated by Lemma 2.4 in polynomial space wrt. the size of M .

Next we discuss the space complexity of a call check(ψ, ε) (where ε is the
empty tuple) for a sentence ψ of quantifier rank D0. Note that when we call
size with parameters ϕ and ū, then qfr(ϕ) + |ū| + 1 ≤ D0. Thus, the Büchi-
automaton M in line 6 can be calculated in space 3 · s(D + |ū| + 1) · λ(ū) ≤
3·s(D0)·λ(ū) by Lemma 3.6 (since i ≤ #(D, |ū|+1) ∈ exp(3, O(D0)), we can for-
get the summand log(i)) and also the bound 2·s(D+1) ≤ 2·s(D0) (resp. 6·s(D+
|ū|+1)·λ(ū) ≤ 6·s(D0)·λ(ū)) in line 8,9 for the ω-wordw follows from Lemma 3.6.
Assume that (u1, u2, . . . , uD0) is the tuple of ultimately periodic ω-words calcu-
lated by the algorithm. If we set ūk = (u1, u2, . . . , uk), then we obtain:

λ(ū1) ≤ 2 · s(D0) (by (∗) in Lemma 3.6)
λ(ūk+1) ≤ λ(ūk) · λ(uk+1) ≤ 6 · s(D0) · λ(ūk)2

From this, we obtain by induction λ(ūk) ≤ 22k ·62k−1 ·s(D0)2
k−1. Since s(D0) ∈

exp(3, O(D0)) and k ≤ D0, it follows λ(ūk) ∈ exp(3, O(D0)). Hence, each of
the Büchi-automata M in line 6 can be constructed in triply-exponential space.
Since the recursion depth of the overall algorithm is bounded by the size of the
input formula and for each recursive call only a triply exponential amount of in-
formation has to be stored, the whole algorithm can be executed in space triply
exponential in the size of the input formula. Thus, we proved:

Theorem 3.7. Let C = {Ci | i ∈ N} be a countable set of relations on N ∪
{ℵ0, 2ℵ0}. Let A be an ω-automatic structure of bounded degree. Then the FO(C)-
theory of A can be decided in triply exponential space by a Turing machine with
oracle {(i, c̄) | i ∈ N, c̄ ∈ Ci}.

334 D. Kuske and M. Lohrey

3.3 Expressiveness of the Logic L(Qu)

Let A be some structure of bounded degree and let ϕ(x̄) be an L(Qu)-formula
with k free variables of quantifier depth d. We want to show that there exists an
equivalent first-order formula ψ(x̄). For this, we can first extend the signature
of A by the first-order definable relations degn in order to ensure assumptions
(2) and (3) from page 330. Now let # and Φ be the functions from Lemma 3.4
and set

I = {i | 1 ≤ i ≤ #(d, k),A |= ∀x̄ : (Φ(d, k, i)→ ϕ)}
and ψ =

∨
i∈I Φ(d, k, i). Then Lemmas 3.3 and 3.4 together with Theorem 3.2

imply A |= ∀x̄(ϕ↔ ψ). This proves:

Corollary 3.8. Let A be a τ-structure of bounded degree, and let ϕ(x̄) ∈ L(Qu).
There exists a formula ψ(x̄) ∈ FO such that A |= ∀x̄(ϕ↔ ψ).

The above proof is not effective since it does not give a way to compute the
set I effectively. For ω-automatic structures A of bounded degree, the situa-
tion changes since it can be decided in elementary space as to whether αi =
∀x̄(Φ(d, k, i)→ ϕ) holds in A:

Corollary 3.9. Let C = {Ci | i ∈ N} be a countable set of relations on N ∪
{ℵ0, 2ℵ0}. Let A be an ω-automatic structure of bounded degree. For any ϕ(x̄) ∈
FO(C), one can construct in elementary space (modulo C) a formula ψ(x̄) ∈ FO
and a |x̄|-dimensional Büchi-automaton M such that for any ū ∈ L|x̄|:

A |= ϕ(ū) ⇐⇒ A |= ψ(ū) ⇐⇒ ū ∈ Lω(M) .

Recall that by Propositions 2.2, 2.5, and 2.7, any relation definable in FO extended
by modulo- and cardinality-quantifiers is effectively ω-automatic. A similar state-
ment can be found in Corollary 3.9. Also Theorems 2.8 and 3.7 are similar in as
far as they state the decidability of some theories. But the proof strategies are
different: while Theorem 2.8 was derived from Propositions 2.2, 2.5, and 2.7, the
corresponding statement Theorem 3.7 was used to prove Corollary 3.9.

3.4 Optimality

The main results concerning the powerful logic L(Qu) deal with structures sat-
isfying two assumptions: they are ω-automatic and of bounded degree. In this
section, we show that the two assumptions we made cannot be relaxed. First, it
is shown that relaxing “ω-automatic” to “recursive” makes the results fail:

Theorem 3.10. There exists a recursive structureA of bounded degree such that
the FO-theory of A is decidable and the FO(∃∞)-theory of A is undecidable.

Proof. Let L ⊆ {0, 1}∗ be a recursively enumerable, but not recursive set and
let M be a Turing machine that, on input of w ∈ {0, 1}∗, eventually stops if
and only if w ∈ L. Let f(w) ∈ N ∪ {ω} denote the number of steps M performs
on input w. The structure A consists of f(w) many copies of the word
w� for

First-Order and Counting Theories of ω-Automatic Structures 335

any w ∈ {0, 1}∗ (seen as labeled finite successor structures), i.e., A is a labeled
directed graph whose degree is bounded by 2. Then in FO(∃∞), we can express
that M does not stop on input w, hence this theory is undecidable. Gaifman’s
theorem, on the other hand, yields that the FO-theory is decidable. �"
By choosing a more complicated but still recursive counting quantifier, we can
show that Theorem 3.7 even fails for locally finite automatic structures.

Theorem 3.11. There is a recursive set K ⊆ N and a locally finite automatic
structure A such that the FO(CK)-theory of A is undecidable.

Proof. We start with the structure (N,+1) and attach, to any element n ∈ N,
additional n nodes via a relation t. The resulting structure A is automatic.
Let a1, a2, a3, . . . be a recursive enumeration of the non-recursive set A ⊆ N
and let K denote the recursive set {a1 + · · · + ai | i ≥ 1}. Let ϕK(x) be the
formula CKy : t(x, y). Then m ∈ A if and only if there exists y satisfying
ϕK(y) ∧ ϕK(y +m) ∧∧1≤k<m ¬ϕK(y + k). �"

4 An Open Problem

In view of Theorems 2.8 and 3.11 it might be an interesting problem to char-
acterize those subsets K ⊆ N such that for every (ω-)automatic structure (not
necessarily of bounded degree), the FO(CK)-theory of A is decidable. Note that
by Theorem 2.8, this is true for every semi-linear setK. Since (N,≤) is automatic
and since x ∈ K can be expressed as CKy : y < x, the set K has to be decid-
able. As observed by an of the referees, even the monadic second order theory
of (N,≤,K) has to be decidable since it can be reduced to the FO(CK)-theory
of the ω-automatic structure ({0, 1}∞,≤). Furthermore, K cannot be the range
of any non-linear polynomial over N [5] nor can it be k-recognizable (for some
k) but not semi-linear [2].

References

1. M. Benedikt, L. Libkin, T. Schwentick, and L. Segoufin. A model-theoretic ap-
proach to regular string relations. In Proceedings of the 16th Annual IEEE Sympo-
sium on Logic in Computer Science (LICS’2001), pages 431–440. IEEE Computer
Society Press, 2001.

2. A. Bès. Undecidable extensions of Büchi arithmetic and Cobham-Semenov theorem
Journal of Symbolic Logic, 62(4):1280–1296, 1997.

3. A. Blumensath. Automatic structures. Diploma thesis, RWTH Aachen, 1999.
4. A. Blumensath and E. Grädel. Finite presentations of infinite structures: Automata

and interpretations. Theory of Computing Systems, 37(6):641–674, 2004.
5. R. Büchi. Weak second-order arithmetic and finite automata. Zeitschrift für Math-

ematische Logik und Grundlagen der Mathematik, 6:66–92, 1960.
6. D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Paterson, and

W. P. Thurston. Word processing in groups. Jones and Bartlett, Boston, 1992.
7. W. Hodges. Model Theory. Cambridge University Press, 1993.

336 D. Kuske and M. Lohrey

8. B. R. Hodgson. On direct products of automaton decidable theories. Theoretical
Computer Science, 19:331–335, 1982.

9. H. Ishihara, B. Khoussainov, and S. Rubin. Some results on automatic structures.
In Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science
(LICS’2002), pages 235–244. IEEE Computer Society Press, 2002.

10. H. J. Keisler and W. B. Lotfallah. A local normal form theorem for infinitary logic
with unary quantifiers. Mathematical Logic Quarterly, 51(2):137–144, 2005.

11. B. Khoussainov and A. Nerode. Automatic presentations of structures. In LCC:
International Workshop on Logic and Computational Complexity, number 960 in
Lecture Notes in Computer Science, pages 367–392, 1994.

12. B. Khoussainov, S. Rubin, and F. Stephan. Automatic partial orders. Proceedings
of the 18th Annual IEEE Symposium on Logic in Computer Science (LICS’2003),
pages 168-177. IEEE Computer Society Press, 2003.

13. B. Khoussainov, S. Rubin, and F. Stephan. Definability and regularity in auto-
matic structures. In V. Diekert and M. Habib, editors, Proceedings of the 21th
Annual Symposium on Theoretical Aspects of Computer Science (STACS 2004),
Montpellier (France), number 2996 in Lecture Notes in Computer Science, pages
440–451. Springer, 2004.

14. D. Kuske. Is Cantor’s theorem automatic. In Proceedings of the 10th Interna-
tional Conference on Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR 2003), Almaty (Kazakhstan), number 2850 in Lecture Notes in Artificial
Intelligence, pages 332–345, 2003.

15. D. Kuske and M. Lohrey. First-order and counting theories of ω-automatic
structures. Technical Report 2005-07, Universität Stuttgart, 2005. available at
ftp://ftp.informatik.uni-stuttgart.de/pub/library/ncstrl.ustuttgart fi/TR-2005-07

16. M. Lohrey. Automatic structures of bounded degree. In Proceedings of the 10th
International Conference on Logic for Programming, Artificial Intelligence, and
Reasoning (LPAR 2003), Almaty (Kazakhstan), number 2850 in Lecture Notes in
Artificial Intelligence, pages 346–360, 2003.

17. D. Perrin and J.-E. Pin. Infinite Words. Pure and Applied Mathematics vol. 141.
Elsevier, 2004.

18. W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Hand-
book of Theoretical Computer Science, chapter 4, pages 133–191. Elsevier Science
Publishers B. V., 1990.

Parity Games Played on Transition Graphs
of One-Counter Processes�

Olivier Serre

LIAFA, Université Paris VII & CNRS

Abstract. We consider parity games played on special pushdown
graphs, namely those generated by one-counter processes. For parity
games on pushdown graphs, it is known from [23] that deciding the win-
ner is an ExpTime-complete problem. An important corollary of this
result is that the μ-calculus model checking problem for pushdown pro-
cesses is ExpTime-complete. As one-counter processes are special cases
of pushdown processes, it follows that deciding the winner in a parity
game played on the transition graph of a one-counter process can be
achieved in ExpTime. Nevertheless the proof for the ExpTime-hardness
lower bound of [23] cannot be adapted to that case. Therefore, a natural
question is whether the ExpTime upper bound can be improved in this
special case. In this paper, we adapt techniques from [11, 4] and provide
a PSpace upper bound and a DP-hard lower bound for this problem.
We also give two important consequences of this result. First, we improve
the best upper bound known for model-checking one-counter processes
against μ-calculus. Second, we show how these games can be used to
solve pushdown games with winning conditions that are Boolean com-
binations of a parity condition on the control states with conditions on
the stack height.

1 Introduction

Infinite two-player games with perfect information allow us to encode several
challenging problems from formal verification, and this is one of the reasons why
they are so intensively studied for several years. Several model-checking prob-
lems can be expressed as decision problems for games: the most famous example
is that the μ-calculus model-checking problem is polynomially equivalent to the
solution of a parity game. This correspondence was first proved for finite graphs
[6] and later extended to various classes of infinite graphs, e.g. pushdown graphs
[23, 24]. Two-player games also offer a very convenient framework to represent
interaction of a program with some (possibly hostile) environment. In this ap-
proach, the first player represents the program while the second player simulates
the environment. A winning strategy expresses a property that must hold what-
ever the environment does. Hence, finding a winning strategy for the first player
� This research has been partially supported by the European Community Research

Training Network “Games and Automata for Synthesis and Validation” (GAMES),
(contract HPRN-CT-2002-00283), see www.games.rwth-aachen.de.

L. Aceto and A. Ingólfsdóttir (Eds.): FOSSACS 2006, LNCS 3921, pp. 337–351, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

338 O. Serre

allows to synthesize a controller that restricts the program and ensures that the
property expressed by the winning condition always holds [2].

The most standard setting of verification and synthesis only considers finite
games. Nevertheless infinite models arise when recursive programs or programs
with variable on infinite domains are considered. Therefore, solving games on
such infinite objects is a natural question. The special case of pushdown pro-
cesses, have been intensively studied from the games point of view (see e.g.
[23, 11, 5, 3, 7, 19]) and the most important consequence for model-checking is
that for pushdown processes, the μ-calculus model-checking problem is Exp-
Time-complete [23].

In this paper, we consider a natural subclass of pushdown processes, namely
one-counter processes with zero test. Verification problems for one-counter
processes have intensively been studied (see e.g. [9, 8]) but, for model-checking
problems, most of the complexity results concern lower bounds whereas upper
bounds generally follow from known results for pushdown processes. Hence, this
frequently yields complexity gaps, as for μ-calculus model-checking where the
lower bound is DP-hard [8] whereas the upper bound is ExpTime [23].

We consider parity games played on one-counter graphs and provide a
PSpace algorithm to decide the winner in such games. Our procedure relies
on a tricky adaptation and a precise analysis of the techniques from [11, 4] that
were originally developed for pushdown games. Our result improves the Exp-
Time upper bound inherited from pushdown games [23]. As a by-product, it
improves the best known upper bound for the μ-calculus model-checking for
one-counter processes from ExpTime to PSpace.

Another consequence of our main result concerns pushdown games equipped
with winning conditions that combine both regular conditions and conditions on
how the stack height evolves during a play (e.g. unboundedness). Special cases
of these games have been studied and shown to be decidable [5, 3, 7]. Here, we
capture a larger class of games and we provide a more intuitive construction
which generalizes those for parity games [23] and for strict unboundedness [19].
Moreover, our construction is very general, and one does not need to provide a
specific construction/proof for each possible kind of winning condition neither
to prove preliminary results on the existence of memoryless strategy.

The paper is organized as follows. In Section 2, we give the main definitions.
Section 3 provides a PSpace algorithm to solve one-counter parity games and
a DP lower-bound is presented for one-counter reachability games. The conse-
quences of these results are presented in the two last sections: Section 4 consid-
ers the μ-calculus model-checking problem while Section 5 focuses on pushdown
games. Due to the page limit, missing proofs and extra details can be found
in [20].

2 Definitions

An alphabet A is a finite set of letters. A∗ denotes the set of finite words on A
and Aω the set of infinite words on A. The empty word is denoted by ε.

Parity Games Played on Transition Graphs of One-Counter Processes 339

Infinite two-player games. Let G = (V,E) denote a (possibly infinite) graph
with vertices V and edges E ⊆ V ×V . Let VE ∪ VA be a partition of V between
two players Eve and Adam. A game graph is such a tuple G = (VE, VA, E). An
infinite two-player game on a game graph G is a pair G = (G, Ω), where Ω ⊆ V ω

is a winning condition.
The players, Eve and Adam, play in G by moving a token between vertices.

A play from some vertex v0 proceeds as follows: the player owning v0 chooses
a successor v1 such that (v0, v1) ∈ E. Then the player owning v1 chooses a
successor v2 and so on, forever. If at some point one of the players cannot move,
she/he looses the play. Otherwise, the play is an infinite word Λ ∈ V ω and is
won by Eve if and only if Λ ∈ Ω. As one can always add loops on dead-end
vertices, and slightly modify the winning condition to make looping plays on
some dead-end vertex loosing for the player that controls it, we will assume in
the sequel that all plays are infinite. A partial play is any prefix of a play.

A strategy for Eve is a function assigning, to any partial play ending in some
vertex v ∈ VE, a vertex v′ such that (v, v′) ∈ E. Eve respects a strategy Φ
during some play Λ = v0v1v2 · · · if vi+1 = Φ(v0 · · · vi), for all i ≥ 0 such that
vi ∈ VE. Finally a strategy for Eve is winning from some position v ∈ V , if any
play starting from v, where Eve respects Φ, is won by her. A vertex v ∈ V is
winning for Eve if she has a winning strategy from v. Symmetrically, one defines
strategies and winning positions for Adam.

A game G is determined if, from any position, either Eve or Adam has a
winning strategy. For all games considered in this article one can use Martin’s
Theorem [15] and conclude that they are determined.

For more details and basic results on games, we refer to [21, 26].

Pushdown games. Pushdown processes provide a natural model for programs
with recursive procedures. They are like nondeterministic pushdown automata
except that they have no input (and therefore no initial state neither final state).

More formally, a pushdown process is a tuple P = 〈Q,Γ,⊥, Δ〉 where Q is a
finite set of states, Γ is a finite stack alphabet that contains a special bottom-
of-stack symbol ⊥ and Δ : Q×Γ → 2({skip(q),pop(q),push(q,γ)|q∈Q,γ∈Γ\{⊥}}) is the
transition relation. We additionally require that, for all q ∈ Q, Δ(q,⊥) does not
contain any element of the form pop(q′).

A stack is any word in St = (Γ \{⊥})∗ ·⊥. A configuration of P is a pair (q, σ)
with q ∈ Q and σ ∈ St. Note that the top stack symbol in some configuration
(q, σ) is the leftmost symbol of σ.

Any pushdown process P induces an infinite graph, called pushdown graph,
denoted G = (V,E), whose vertices are the configurations of P , and edges are
defined by the transition relation Δ, i.e., from a vertex (p, γσ) one has edges to:

– (q, γσ) whenever skip(q) ∈ Δ(p, γ).
– (q, σ) whenever pop(q) ∈ Δ(p, γ).
– (q, γ′γσ) whenever push(q, γ′) ∈ Δ(p, γ).

Consider a partition QE ∪ QA of Q between Eve and Adam. It induces a
natural partition VE∪VA of V by setting VE = QE×St and VA = QA×St. The

340 O. Serre

resulting game graph G = (VE, VA, E) is called a pushdown game graph. Finally,
a pushdown game is a game played on such a game graph.

The regular winning conditions on pushdown games are inherited from the
standard acceptance condition for automata on infinite words. The simplest one
is the reachability condition. Let F ⊆ Q be a set of final states, and let VF be
the set of configuration which control state is in F . The reachability condition is
the winning condition defined by Ωreach(F) = {v0v1 · · · | ∃vi ∈ VF }. Using the
notion of final states one can define the Büchi condition and its dual winning con-
dition the co-Büchi conditions: ΩBuc(F) = {v0v1 · · · | ∀i ≥ 0 ∃j ≥ i s.t. vi ∈ VF }
and Ωco−Buc(F) = V ω \ΩBuc(F).

Let col be a coloring function from Q into a finite set of colors C ⊂ N. This
function is easily extended into a function from V into C by setting col((q, σ)) =
col(q). The parity condition is the winning condition defined by:

Ωpar = {v0v1 · · · | lim inf((col(vi))i≥0) is even} .
For a parity game played on a pushdown graph, the main question is to decide

which player has a winning strategy from some given configuration. It is easily
seen that this last question can be reduced to decide the winner for configurations
with empty stack. For the general case of parity games played on pushdown
graph, this last problem has been fully characterized by Walukiewicz [23].

Theorem 1. [23] Deciding the winner from some configuration of empty stack
in a pushdown parity game is an ExpTime problem. Moreover, this problem is
ExpTime-hard even if the winning condition is a reachability one.

One-counter games. A one-counter process is a special case of a pushdown
process P = 〈Q,Γ,⊥, Δ〉 where Γ = {1,⊥} consists of a single stack symbol 1
together with the bottom-of-stack symbol. It therefore corresponds to a finite
state machine equipped with a counter that can be test to zero. The notions
of one-counter graphs, one-counter game graphs and one-counter games are in-
duced by the one for pushdown processes.

Remark 1. Note that our model of one-counter processes can test whether the
stack (equivalently the counter value) is empty (equivalently equals 0). This
follows from the fact that in the definition of pushdown processes the bottom-
of-stack belongs to the stack alphabet, and hence can be checked as top stack
symbol when performing an action.

Theorem 1 implies an ExpTime upper bound to decide the winner in a one-
counter parity game. The ExpTime-hard lower bound of Theorem 1 is estab-
lished by coding the computation of an alternating Turing machine using linear
space into a reachability pushdown game. The main idea of the reduction is
that the pushdown process is built so that its stack is a description of the prefix
of a computation of the Turing machine. Therefore this construction strongly
relies on the fact that the stack alphabet is large enough to describe configura-
tions of the Turing machine. Hence this proof cannot be adapted to the case of
one-counter game.

Parity Games Played on Transition Graphs of One-Counter Processes 341

A natural question is thus to check whether it is possible, in the special case of
one-counter games, to improve the ExpTime upper bound. We positively answer
this question in Theorem 2 by providing a PSpace algorithm.

3 Deciding the Winner in a One-Counter Parity Game

3.1 Upper Bound

Intuition. In [11], Kupferman and Vardi have proposed a new approach, based
on automata, to solve model-checking problem for pushdown graphs. The main
idea was to reduce a model-checking problem to an emptiness problem for a
class of tree automata, namely alternating two-way parity tree automata. This
technique can then be adapted to solve parity pushdown games [4].

Let us first informally recall the construction of [4], and explain how to sim-
plify it in the special case of one-counter parity games. It is rather standard to
consider that the complete infinite tree of arity k is a representation of the set of
all finite words on an alphabet of cardinality k. Each node in this tree is labeled
by the last letter of the word it represents: hence the word associated to some
node is obtained by considering the sequence of labels of the nodes on the path
from the root to the current one. Using this fact, a play in a pushdown game can
be considered as an (infinite) path in such a tree in which a node encodes the
stack content while an extra information describes the control state. As there are
finitely many control states, and as the possible moves only depend on the con-
trol state and on the top stack symbol (that is the label of the current node), this
representation of a play can be seen as a path in the run of some tree automaton
on the complete infinite tree of arity k, where k is the size of the pushdown
stack alphabet without the bottom-of-stack symbol. This tree automaton can
go in both directions in the tree: it goes down to simulate a rule that pushes
some new symbol, it goes up to simulate a popping rule and it stay in the same
node to simulates a skip rule. For each possible move, the control state has to
be updated in accordance with the pushdown transition rules. As we aim to
simulate a game, the tree automaton needs to be alternating: existential states
are those associated to Eve’s states while universal states are those associated to
Adam’s states. Finally, the acceptance condition is inherited from the winning
condition, and is therefore a parity condition. The complete infinite tree of arity
k is accepted if and only if Eve has a winning strategy in the pushdown game.

The previous tree automaton works on the complete infinite tree and the
arity of this tree is the cardinality of the stack alphabet without the bottom-of-
stack symbol. Hence, if we restrict ourselves to one-counter processes instead of
general pushdown processes, the arity is equal to 1 and instead of a tree we have
to consider a simpler model, namely the infinite word ⊥1ω. Therefore, it follows
that to decide the winner in a one-counter parity game it is sufficient to check
emptiness for an alternating two-way parity word automaton. In Proposition 2
we will show that emptiness for these word automata can be checked in PSpace
and hence it will yield a PSpace procedure to decide the winner in a one-counter
parity game (Theorem 2).

342 O. Serre

Definitions. Given a set S of variables, we denote by B+(S) the set of positive
boolean formulas over S with true and false. A subset S′ ⊆ S satisfies a formula
in B+(S) if this formula is satisfied by the valuation assigning true to every
variable in S′ and false to every variable in S \ S′.

An alternating two-way parity word automaton A is a tuple 〈Q,A, qin, δ, col〉,
where Q is a finite set of control states, A is a finite input alphabet, qin ∈ Q is
an initial state, δ is a mapping from Q× A to B+(Q × {−1, 0, 1}), and col is a
mapping from Q to a finite set of colors C ⊂ N. An alternating one-way parity
word automaton corresponds to the special case where δ : Q×A→ B+(Q×{1}).

A run of A on an infinite word u = a0a1 · · · ∈ Aω is an infinite (Q×N)-labeled
tree such that its root is labeled by (qin, 0), and for every vertex x labeled by some
(q, n) with sons labeled by (q1, n1), . . . , (qk, nk), the set {(q1, n1−n), . . . , (qk, nk−
n)} ⊂ Q×{−1, 0, 1} satisfies δ(q, an). A run is accepting if and only if for every
infinite branch, the smallest infinitely repeated color is even, where the color of
a node labeled by some (q, n) is col(q). Finally, an infinite word is accepted if
there exists an accepting run on it, and we denote by L(A) the set of all words
accepted by A.

The construction. Let C = 〈Q, {1,⊥},⊥, Δ〉 be a one-counter process eq-
uipped with a partition QE ∪ QA of its control states, and with a coloring
function col : Q → C. Let G be the one-counter parity game induced by the
preceding partition and the coloring function col. Let qin be some state in Q.
We are interesting in deciding whether (qin,⊥) is winning for Eve in G.

To solve this problem, instead of using the techniques from [23], that would
lead to an ExpTime procedure, we adapt the techniques developed in [11, 4],
and note that it reduces our problem to the emptiness problem for alternating
two-way parity word automaton.

Let us consider the alternating two-way parity word automaton A = 〈Q,
{1,⊥}, qin, δ, col} where the transition function δ is defined by:

– for every q ∈ QE and for every a ∈ {1,⊥}, δ(q, a) equals
[
∨

push(q′,1)∈Δ(q,a)(q
′, 1)] ∨ [

∨
skip(q′)∈Δ(q,a)(q

′, 0)] ∨ [
∨

pop(q′)∈Δ(q,a)(q
′,−1)].

– for every q ∈ QA and for every a ∈ {1,⊥}, δ(q, a) equals
[
∧

push(q′,1)∈Δ(q,a)(q
′, 1)] ∧ [

∧
skip(q′)∈Δ(q,a)(q

′, 0)] ∧ [
∧

pop(q′)∈Δ(q,a)(q
′,−1)].

We have the following straightforward proposition.

Proposition 1. [11, 4] The configuration (qin,⊥) is winning for Eve in G if and
only if A accepts the infinite word ⊥1ω.

Checking whether A accepts the word ⊥1ω is closely related to checking empti-
ness for a language accepted by an alternating two-way parity word automaton.
This problem was studied by Vardi in [22] in the more general setting of two-way
alternating parity tree automata, and then this construction was adapted for al-
ternating two-way Büchi word automata in [17, 10]. In the case of tree automata,
checking emptiness is in ExpTime, while in the case of Büchi word automata
the problem is in PSpace. The following proposition, extends this last result to
the case of parity acceptance condition.

Parity Games Played on Transition Graphs of One-Counter Processes 343

Proposition 2. Deciding emptiness for a language accepted by an alternating
two-way parity word automaton can be achieved in PSpace.

Proof. We only give the main ideas and explain how the construction of [17, 10]
is extended to our setting.

Let A be an alternating two-way parity word automaton. The first step is to
build an alternating one-way parity automaton B such that L(B) 	= ∅ if and only
if L(A) 	= ∅. Moreover the number of control states of B is polynomial in the
number of control states of A. However the size of its alphabet is exponential
but note that it is not important for the complexity of emptiness checking.The
construction of B directly follows from the ones in [22, 17, 10]. A precise analysis
of the structure of B is given by the following lemma.

Lemma 1. Let A = 〈Q,A, qin, δ, col〉 be an alternating two-way parity word au-
tomaton, let n = |Q| and let d be the number of colors involved in the parity
condition. Then there exists an alternating one-way parity word automaton B
such that L(B) 	= ∅ if and only if L(A) 	= ∅. Moreover, L(B) = L(B1) ∩ L(B2),
where B1 is an alternating one-way automaton without acceptance condition (ev-
ery run, when exists, is accepting) and has O(nd) states, and B2 is a purely uni-
versal (its transition function takes value into the boolean formulas made only of
conjunctions) one-way parity automaton (with d colors) and has O(nd) states.

Let n1 and n2 be the respective sizes of the set of control states of B1 and B2.
As B2 is purely universal, its dual automaton B2 is a non deterministic parity
automaton using d colors and having O(n2) states. It is then standard to build
a nondeterministic Büchi automaton B′

2 that recognizes the same language than
B2 (that is the complement of L(B2)) and having O(n2d) states (see [13] for
instance). Dualizing B′

2 yields a purely universal co-Büchi automaton B′
2 with

O(n2d) states and such that L(B′
2) = L(B2).

Now, the intersection of B1 and B′
2 provides an alternating co-Büchi au-

tomaton B′ with O(n2d + n1) = O(n2d) states that recognizes the language
L(B1) ∩ L(B′

2) = L(B1) ∩ L(B2) = L(B). As checking emptiness for an alternat-
ing co-Büchi automaton can be achieved in PSpace (see [12] for instance), we
conclude that one can check whether L(A) is empty in PSpace. �∪
Propositions 1 and 2 directly imply the following theorem.

Theorem 2. Deciding the winner in a one-counter parity game can be done in
PSpace.

3.2 Lower Bound

In this section, we give a lower bound for the problem of deciding the winner
in a one-counter reachability game. Due to the symmetry of the problem, the
lower bound should be robust under complementation: we provide such a lower
bound, namely DP-hardness. Note that DP-hardness is a rather standard lower

344 O. Serre

bound for problems related to one-counter process, e.g. the EF model-checking
problem for one-counter processes [8].

A language L is in the complexity class DP if and only if there are two
languages L1 ∈ NP and L2 ∈ co-NP such that L = L1 ∩ L2.

The sat-unsat problem is the following one: given two Boolean formulas ψ1
and ψ2, both in conjunctive normal form with three literals per clause, decide
whether ϕ1 is satisfiable and ϕ2 is not. It is rather immediate to prove that
sat-unsat is DP-complete [16].

Let us first explain how to polynomially reduce 3-sat to decide the winner
in a one-counter reachability game. Let X = {x1, . . . , xk} be a set of variables
and let ψ be some Boolean formula in conjunctive normal form with 3 literals
per clause. Let denote ψ = C1 ∧C2 ∧ · · · ∧Ch, where Ci = li,1 ∨ li,2 ∨ li,3 for all
i = 1, . . . , h with li,j ∈ {x, x | x ∈ X}, for j = 1, 2, 3.

For every i ≥ 1, let ρi denote the i-th prime number. A valuation of X is a
mapping from X into {0, 1}, that is a tuple in {0, 1}k. Let τ : N → {0, 1}k be
the function defined by τ(n) = (b1, b2, . . . , bk) where bj = 0 if n = 0 mod ρj and
bj = 1 otherwise. The Chinese remainder lemma implies that τ is surjective.

Consider now the following informal game. Eve chooses some integer n en-
coding a valuation that she claims to satisfy ψ. Then Adam picks a clause Ci

that he claims not to be satisfied by the preceding valuation. Eve contests by
giving a literal of Ci that she claims to be evaluated to true by the preceding
valuation. Finally Adam checks whether this literal is evaluated to true: if it is
the case, then Eve wins, otherwise Adam does. It is then easily seen that Eve
has a winning strategy if and only if ψ is satisfiable.

This game can be encoded into a one-counter reachability game. For the
first step, Eve increments the counter until it equals n. For the second step,
Adam indicates the clause by changing the control state. In the third step, Eve
indicates the literal by changing the control state. Finally, Adam check whether
the literal evaluates to true by decrementing the counter while performing a
modulo ρk counting, where the literal was xk or xk.

Now, if one wants to reduce sat-unsat, it suffices to add a preliminary step
to the previous game. Let (ψ1, ψ2) be the instance of sat-unsat. First Adam
picks ψ1 or ψ2. In the first case Eve and Adam play the previous game. In the
second case, they play the dual game where Adam is now the one that has to
provide a valuation for ψ2, and where Eve wins if and only if ψ2 is not satisfiable.
Eve wins the main game if and only if she can win both sub-games, that is if
and only if ψ1 is satisfiable while ψ2 is not. Hence, we have the following result.

Theorem 3. Deciding the winner in a one-counter reachability game is a DP-
hard problem.

Remark 2. An alternative proof for this result is the following one: consider the
EF model-checking problem for one-counter automata. In [8] this problem is
shown to be DP-hard. One can then easily reduce it to decide the winner in a
one-counter reachability game. Nevertheless, we think that the proof we gave for
Theorem 3 is more intuitive and better here as it is self-contained.

Parity Games Played on Transition Graphs of One-Counter Processes 345

4 Model-Checking Propositional μ-Calculus Against
One-Counter Trees

In this section we rephrase Theorem 3 in the framework of propositional μ-
calculus model-checking problem for one-counter trees. An important conse-
quence is that it improves from ExpTime to PSpace the best complexity bound
known for this problem.

Propositional μ-calculus is a very powerful fix point logic that allows to specify
a large class of properties of (non-terminating) systems. Moreover, many impor-
tant temporal logic were shown to be fragments of μ-calculus. For definitions
and results on μ-calculus, we refer to [1].

Models of μ-calculus formulas are transitions systems, that is graphs equipped
with functions that assign to any propositional constant the set of vertices where
it holds. The μ-calculus model-checking problem is to decide, for a given model
M, a state s of M, and a μ-calculus formula ϕ, whether ϕ holds in s. In the
sequel we are interested in the special case where M is the unfolding of a one-
counter graph, called a one-counter tree.

A standard technique to solve a μ-calculus model-checking problem is to con-
struct a parity game in which Eve has a winning strategy if and only if the
model satisfies the formula. The game graph is obtained by considering the syn-
chronized product of a finite game graph, representing the formula ϕ, with the
model M. This idea was first used in [6] for finite transition systems, and was
then adapted in [23] for pushdown trees (see also [25] for a general presentation
of the technique). In the case of pushdown trees, an important point to note is
that in the synchronized product, the stack alphabet remains unchanged (the
product is done in the control states). Hence, using the same construction for one-
counter trees reduces the μ-calculus model-checking problem for a one-counter
tree to solve a one-counter parity game. Conversely, it follows from [23] that
solving a one-counter parity game reduces to a μ-calculus model checking prob-
lem. As both reductions are polynomial, we obtain the following consequence of
Theorem 2.

Theorem 4. The propositional μ-calculus model-checking problem for one-
counter trees can be solved in PSpace and is DP-hard.

Remark 3. Note that the DP-hardness was already known, as it is a consequence
of the DP-hardness of the model-checking problem for the branching-time tem-
poral logic EF [8] which is a fragment of the propositional μ-calculus.

5 Application to Pushdown Games

In section 2 we have defined the regular winning conditions. Nevertheless, when
considering pushdown games, non-regular winning conditions arise naturally. In
particular, one can require conditions on how the stack height evolves during the
play. For some configuration v = (q, σ⊥) in a pushdown graph, let sh(v) = |σ|
denote the stack height in v. The unboundedness condition requires that the

346 O. Serre

stack height is not bounded. Its dual condition is the boundedness condition.
Both conditions are formally defined as follows:

– ΩUbd = {v0v1 · · · | lim sup((sh(vi)i≥0) = ω}.
– ΩBd = {v0v1 · · · | ∃B ≥ 0 s.t. sh(vi) < B ∀i ≥ 0}.
If we replace the lim sup by a lim in the definition of the unboundedness

condition then we obtain the strict unboundedness condition which enforces the
stack height to converge to infinity. Its dual version, the repeating condition
requires that some stack height (equivalently, some vertex) is infinitely often
visited. Both conditions are formally defined as follows:

– ΩStUbd = {v0v1 · · · | lim((sh(vi))i≥0) = ω}.
– ΩRep = {v0v1 · · · | ∃B ≥ 0 s.t. ∀j ≥ 0 ∃i ≥ j s.t. sh(vi) = B}.
These four winning conditions will be designated as stack conditions. Push-

down games with stack conditions are known to be decidable in ExpTime
[5, 19, 3, 7, 18]. In the sequel we consider winning conditions that are a Boolean
combination of stack conditions with a parity condition. For instance the win-
ning condition Ωpar ∩ ΩUbd ∩ ΩRep requires that the smallest infinitely visited
color has to be even and that arbitrary large stack height occurs while some level
is infinitely repeated. Note that the winning condition ΩUbd ∩ΩRep was already
mentioned in [5] and can be rephrased as: there exists infinitely many vertices
that are infinitely often visited during the play. Decidability of pushdown games
with this winning condition was open and is a consequence of the main result of
this section.

Games equipped with winning conditions that are a Boolean combination of
a parity condition and of an unboundedness condition have been shown to be
decidable in [3] when restricting to Büchi conditions and in [7] for the general
case. For all these games an ExpTime-complete complexity bound has been
provided.

The main result of this section is to provide an ExpSpace procedure to solve
these games and more generally to solve the ones equipped with a Boolean com-
bination of a parity condition and of stack conditions. Even if the complexity
bound may not be optimal here, the results are more general and the presenta-
tion and proof techniques are much simpler and unified. Indeed, the construction
is a generalization of the one for parity condition, and it separates all conditions
involved in the Boolean combination, which allows to reason independently on
these conditions and leads to a very flexible construction. Moreover, no prelim-
inary result on memoryless strategy is needed, while it was the case in [7].

From now on, we fix a pushdown process P = 〈Q,Γ,⊥, Δ〉, a partition QE ∪
QA of its control states and a coloring function col : Q → {0, . . . , d}. Let G
be the corresponding game graph, and let Ωpar be the parity condition induced
by col.

For an infinite play Λ = v0v1 · · · , let StepsΛ be the set of indices of positions
where no configuration of strictly smaller stack height is visited later in the play.
More formally, StepsΛ = {i ∈ N | ∀j ≥ i sh(vj) ≥ sh(vi)}. Note that StepsΛ is
always infinite and hence induces a factorization of the play Λ into finite pieces.

Parity Games Played on Transition Graphs of One-Counter Processes 347

For all pair (i, j) ∈ StepsΛ, with i 	= j and such that there is no k ∈ StepsΛ

such that i < k < j, we define mcol(i, j) = min{col(vk) | i ≤ k ≤ j} and

kind(i, j) =

{
S if sh(vj) = sh(vi) + 1
(B, h) if sh(vj) = sh(vi) andh=max{sh(vk)− sh(vi) | i≤ k ≤ j}

In the factorization induced by StepsΛ, a factor vi · · · vj will be called a bump
of height h if kind(i, j) = (B, h), and will be called a Stair if kind(i, j) = S.

For any play Λ with StepsΛ = {n0 < n1 < · · · }, one can define two sequences
(mcolΛi)i≥0 ∈ NN and (kindΛ

i)i≥0 ∈ ({S} ∪ ({B} × N))N defined by mcolΛi =
mcol(ni, ni+1) and kindΛ

i = kind(ni, ni+1).
These sequences fully characterize the parity conditions and the stack

conditions.

Proposition 3. For a play Λ the following equivalences hold

1. Λ ∈ Ωpar iff lim inf((mcolΛi)i≥0) is even.
2. Λ ∈ ΩUbd iff either {kindΛ

i | i ≥ 0} contains (B, h) for any h ≥ 0, or S
appears infinitely often in (kindΛ

i)i≥0.
3. Λ ∈ ΩStUbd iff S appears infinitely often in (kindΛ

i)i≥0.

By dualization, one obtains similar characterizations for ΩBd and ΩRep.

The main idea used in [23] to solve parity pushdown game is to build a par-
ity game played on an exponentially larger finite graph with the same number
of colors. This new game simulates the pushdown game, in the sense that the
sequences of visited colors during a correct simulation play are exactly the se-
quences (mcolΛi)i≥0 for plays Λ in the original pushdown game. Moreover, a play
in which a player does not correctly simulate the pushdown game is loosing for
that player. From this construction follows the ExpTime upper bound.

Let us explain how to extend this technique to handle stack conditions. When
considering the strict unboundedness condition, it is sufficient to detect in the
simulation game of [23] whether the currently simulated factor is a stair or a
bump. Therefore, this construction can be easily adapted to reduce a pushdown
games with a strict unboundedness winning condition to a Büchi game played on
a finite game graph (the Büchi condition enforcing to simulate an infinite number
of stairs) [19, 18]. Nevertheless, for bumps, one cannot express any property on
their height.

Consider the unboundedness condition. A play satisfies it either if it satisfies
the strict unboundedness condition (which can be encoded by a Büchi condition)
or if some stack height is infinitely often repeated and arbitrarily high bumps
appear. For this last case, it would be sufficient to detect whether a bump is the
highest one since the play is on the current stack level: indeed in a non strictly
unbounded game, this happens infinitely often if and only if arbitrarily high
bumps occur during the play. In order to detect this phenomena, we enrich the
finite game graph of [23] with a counter that is incremented whenever a bump
higher than the counter value is simulated, and that is decremented (mainly for

348 O. Serre

technical reasons) when a stair is simulated: if finitely many stair are simulated,
the counter is incremented infinitely often if and only if arbitrarily high bumps
occur on some fixed level (the one reached after the last stair). Therefore the
unboundedness condition is simulated in this new one-counter game by requiring
that either one simulates infinitely many stairs or the counter is infinitely often
incremented.

Hence, when considering as winning condition a Boolean combination of a
parity condition and of stack conditions, one gets a reduction to a one-counter
game equipped with a simple combination of parity, Büchi and co-Büchi condi-
tion that can easily be expressed as a parity condition by slightly modifying the
underlying one-counter process.

Before providing a description of the one-counter game graph G̃, let us consider
the following informal description of this simulation game. We aim at simulating
a play in the pushdown game from some initial vertex (pin,⊥). In G̃ we keep track
of only the control state and the top stack symbol of the simulated configuration,
and we maintain a counter κ. The interesting case is when it is in a control
state p with top stack symbol α, and the player owning p wants to push a
letter β onto the stack and change control state to q. For every strategy of
Eve, there is a certain set of possible (finite) continuations of the play that
will end with popping β from the stack. We require Eve to declare a vector−→
S = ((S−

0 , S
+
0), . . . , (S−

d , S
+
d)) of (d+ 1) pairs in (2Q)2, where S−

i (resp. S+
i) is

the set of all states the game can be in after popping of β along these plays where
in addition the stack height in the induced bump is strictly smaller (resp. equal
or larger) than κ and the smallest visited color while β was on the stack is i.

Adam has two main choices. He can continue the game by pushing β onto
the stack and update the state (we call this a pursue move). Otherwise, he can
pick a set S�

i (for " = − or +) and a state s ∈ S�
i , and continue the simulation

from that state s (we call this a jump move). If he does a pursue move, then
he remembers the vector

−→
S claimed by Eve and the counter κ is decreased; if

later on a pop transition is simulated, the play stops and Eve wins if and only
if the resulting state is in S�

θ where θ is the smallest color seen in the current
level (this information is encoded in the control state, reset after each pursue
move and updated after each jump move) and " = + if κ = 0 and " = −
otherwise. If Adam does a jump move to a state s in S�

i , the currently stored
value for θ is updated to min(θ, i, col(s)), which is the smallest color seen since
the current stack level was reached, and if " = +, the currently stored vector−→
R = ((R−

0 , R
+
0), . . . , (R−

d , R
+
d)) is changed to

−→
R+ = ((R+

0 , R
+
0), . . . , (R+

d , R
+
d))

and κ is incremented.
Therefore the main vertices of the one-counter game graph are configurations

of the form [(p, α,
−→
R, θ), κ] and they are controlled by the player that control p.

Intermediate configurations are used to handle the previously described inter-
mediate steps. The local structure is given in Figure 1 (circle vertex are those
controlled by Eve). Two special control states tt and ff are used to simulate pop
moves. This game graph is equipped with a coloring function on the vertices and
on the edges: vertices of the form [(p, α,

−→
R, θ), κ] have color col(p), edges leaving

Parity Games Played on Transition Graphs of One-Counter Processes 349

[(q, α,
−→
R, min(θ, col(q))), κ]

tt, κ ff, κ[(p, α,
−→
R, θ), κ]

[(p, α,
−→
R, θ, q, β), κ]

[(p, α,
−→
R, θ, q, β,

−→
S), κ]

[(q, β,
−→
S , col(q)), κ − 1] [(s, α,

−→
R, min(θ, i, col(s))), κ] [(s, α,

−→
R+, min(θ, i, col(s))), κ + 1]

S
b, i

B, i

If ∃ pop(r) ∈ Δ(p, α)
s.t. r ∈ R−

θ if κ > 0
and r ∈ R+

θ if κ = 0

If ∃ pop(r) ∈ Δ(p,α)
s.t. r /∈ R−

θ if κ > 0
and r /∈ R−

θ if κ = 0

∀ skip(q) ∈ Δ(p,α)

∀ push(q, β) ∈ Δ(p, α)

∀−→
S ∈ P(Q)2d+2

∀ s ∈ S−
i ∀ s ∈ S+

i

Fig. 1. Local structure of G

from a vertex [(p, α,
−→
R, θ, q, β,

−→
S), κ] have two colors, one in {S, b, B} (the color

is S if the edge simulates a stair, b if it simulates a bump smaller than κ and
B otherwise) and one in {0, . . . , d} if it simulates a bump (the color is θ is the
bump has color θ). It is easily seen that intermediate control states can be used
to have only colors on vertices.

The winning condition for the game played on G̃ depends on the winning
condition considered in the pushdown graph. If the winning condition is of the
form ψ(Ω1, . . . , Ωk) for a Boolean formula ψ, the winning condition on G̃ will be
ψ(Ω̃1, . . . , Ω̃k), where

Ω̃ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ωpar if Ω = Ωpar

ΩBuc({S,B}) if Ω = ΩUbd

Ωco−Buc({S,B}) if Ω = ΩBd

ΩBuc({S}) if Ω = ΩStUbd

Ωco−Buc({S}) if Ω = ΩRep

Our main result is the following.

Theorem 5. A configuration (pin,⊥) is winning for Eve in G = (G, ψ(Ω1, . . . ,
Ωk)) if and only if [(pin,⊥, ((∅, ∅), . . . , (∅, ∅), col(pin)), 0] is winning for Eve in
G̃ = (G̃, ψ(Ω̃1, . . . , Ω̃k)). Hence, deciding the winner in such a pushdown game
can be done in ExpSpace.

350 O. Serre

6 Conclusion

Refining the techniques from [11, 4], we have obtained a PSpace algorithm to
decide the winner in a one-counter parity game. As this problem was shown to be
DP-hard, a remaining question is whether the complexity gap can be reduced.

As a corollary of our main result, we have improved the best known upper
bound for the μ-calculus model-checking problem against one-counter processes.

We have shown how to use one-counter parity games to solve pushdown
games equipped with winning conditions requiring both regular properties and
stack height properties. We briefly mention here an extension of our result. In
[14] pushdown games equipped with visibly pushdown winning conditions were
considered. Such winning conditions capture all regular properties and several
natural non-regular properties. In this setting, one can express the strict un-
boundedness condition but not the unboundedness one. The technique to solve
these games is similar to the one for parity pushdown games: it uses a reduction
to a parity game played on a finite game graph. One can easily show that the
techniques of Section 5 can be adapted to solve pushdown games equipped with
a winning condition combining a visibly pushdown condition with an unbound-
edness condition.

Acknowledgments. I would like to acknowledge the anonymous referees for
their helpful suggestions and remarks.

References

1. A. Arnold and D. Niwiński. Rudiments of mu-calculus, volume 146 of Studies in
Logic and the Foundations of Mathematics. Elsevier, 2001.

2. A. Arnold, A. Vincent, and I. Walukiewicz. Games for synthesis of controlers with
partial observation. Theoretical Computer Science, 303(1):7–34, 2003.

3. A. Bouquet, O. Serre, and I. Walukiewicz. Pushdown games with the unbound-
edness and regular conditions. In Proceedings of FST&TCS’03, volume 2914 of
LNCS, pages 88–99. Springer, 2003.

4. T. Cachat. Two-way tree automata solving pushdown games. In E. Grädel,
W. Thomas, and T. Wilke, editors, Automata, Logics, and Infinite Games, vol-
ume 2500 of LNCS, pages 303–317. Springer, 2002.

5. T. Cachat, J. Duparc, and W. Thomas. Solving pushdown games with a Σ3-
winning condition. In Proceedings of CSL’02, volume 2471 of LNCS, pages 322–336.
Springer, 2002.

6. E. A. Emerson, C. Jutla, and A. Sistla. On model-checking for fragments of mu-
calculus. In Proceedings of CAV’93, volume 697 of LNCS, pages 385–396. Springer,
1993.

7. H. Gimbert. Parity and exploration games on infinite graphs. In Springer, editor,
Proceedings of CSL’04, volume 3210 of LNCS, pages 56–70, 2004.

8. P. Jančar, A. Kučera, F. Moller, and Zdeněk Sawa. DP lower bounds for
equivalence-checking and model-checking of one-counter automata. Information
and Computation, 188:1–19, 2004.

Parity Games Played on Transition Graphs of One-Counter Processes 351

9. A. Kucera. Efficient verification algorithms for one-counter processes. In Springer,
editor, Proceedings of ICALP’00, volume 1853 of LNCS, pages 317–328, 2000.

10. O. Kupferman, N. Piterman, and M. Vardi. Extended temporal logic revisited. In
Springer, editor, Proceedings of Concur’01, volume 2154 of LNCS, pages 519–535,
2001.

11. O. Kupferman and M. Vardi. An automata-theoretic approach to reasoning about
infinite-state systems. In Proceedings of CAV’00, volume 1855 of LNCS, pages
36–52. Springer, 2000.

12. O. Kupferman and M. Vardi. Weak alternating automata are not that weak. ACM
Transactions on Computational Logic, 2(3):408–429, 2001.

13. C. Löding. Methods for the transformation of ω-automata: Complexity and con-
nection to second order logic. Diplomata thesis, Christian-Albrechts-University of
Kiel, 1998.

14. C. Löding, P. Madhusudan, and O. Serre. Visibly pushdown games. In Proceedings
of FST&TCS’04, volume 3328 of LNCS, pages 408–420. Springer, 2004.

15. D. A. Martin. Borel determinacy. Annals of Mathematics, 102(363–371), 1975.
16. C. Papadimitriou. Complexity Theory. Addison Wesley, 1994.
17. N. Piterman. Extending temporal logic with ω-automata. Master’s thesis, The

Weizmann Institute of Science, 2000.
18. O. Serre. Contribution à l’étude des jeux sur des graphe de processus à pile. PhD

thesis, Université Paris VII, November 2004.
19. O. Serre. Games with winning conditions of high Borel complexity. In Proceedings

of ICALP’04, volume 3142 of LNCS, pages 1150–1162. Springer, 2004.
20. O. Serre. Parity games played on transition graphs of one-counter processes: full

version with complete proofs. http://www.liafa.jussieu.fr/∼serre
21. W. Thomas. On the synthesis of strategies in infinite games. In Proceedings of

STACS 1995, volume 900 of LNCS, pages 1–13. Springer, 1995.
22. M. Vardi. Reasoning about the past with two-way automata. In Proceedings of

ICALP 1998, volume 1443 of LNCS, pages 628–641. Springer, 1998.
23. I. Walukiewicz. Pushdown processes: games and model checking. In Proceedings

of CAV’96, volume 1102 of LNCS, pages 62–74. Springer, 1996.
24. I. Walukiewicz. Pushdown processes: games and model checking. Information and

Computation, 157:234–263, 2000.
25. I. Walukiewicz. A landscape with games in the background. In Proceeding of

LICS’04, pages 356–366. IEEE Computer Society, 2004.
26. W. Zielonka. Infinite games on finitely coloured graphs with applications to au-

tomata on infinite trees. Theoretical Computer Science, 200(1-2):135–183, 1998.

Bidomains and Full Abstraction for Countable
Nondeterminism

James Laird�

Dept. of Informatics, University of Sussex, UK
jiml@sussex.ac.uk

Abstract. We describe a denotational semantics for a sequential func-
tional language with random number generation over a countably infinite
set (the natural numbers), and prove that it is fully abstract with respect
to may-and-must testing.

Our model is based on biordered sets similar to Berry’s bidomains, and
stable, monotone functions. However, (as in prior models of unbounded
non-determinism) these functions may not be continuous. Working in
a biordered setting allows us to exploit the different properties of both
extensional and stable orders to construct a Cartesian closed category
of sequential, discontinuous functions, with least and greatest fixpoints
having strong enough properties to prove computational adequacy.

We establish full abstraction of the semantics by showing that it
contains a simple, first-order “universal type-object” within which all
types may be embedded using functions defined by (countable) ordinal
induction.

1 Introduction

Non-determinism is an abstract property with which we may represent the inher-
ent uncertainty of a computational system, whether ocurring by accident or by
design. When describing a non-deterministic system, we are typically interested
in the possibility of failure, whether by divergence or premature termination.
However, it is well known that capturing these behaviours in systems exhibit-
ing unbounded non-determinism — i.e. programs which may choose between
an infinite set of possible steps without diverging — presents a challenge for
denotational semantics, because semantic functions characterizing their diver-
gent behaviours are not, in general, continuous (see e.g. [1]). The object of this
paper is to describe a domain-theoretic setting in which we may successfully
capture the observable properties of functional programs with countable non-
determinism via a semantics which is fully abstract with respect to may and
must testing.

The basis for our model is a category of biordered sets and order-preserving
functions based on Berry’s bidomains [2]. In previous work by the author [8, 7]
these have been used to give fully abstract models of sequential languages such as
unary PCF (which may itself be considered as a λ-calculus with a binary choice

� Supported by UK EPSRC grant GR/S72181.

L. Aceto and A. Ingólfsdóttir (Eds.): FOSSACS 2006, LNCS 3921, pp. 352–366, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Bidomains and Full Abstraction for Countable Nondeterminism 353

operator). However, as well as capturing sequentiality, using two orders allows
us to resolve some of the continuity problems associated with unbounded non-
determinism. Essentially, they give separate extensional and intensional charac-
terizations of programs, each having different completeness properties, which we
exploit in proving (e.g.) computational adequacy.

Another feature of previous biorder-based semantics which is developed here
is the focus on observably sequentiality, in which failure by divergence, and failure
by premature termination (error) are distinguished. As observed by Cartwright
and Felleisen [3], this simplifies the full abstraction problem for sequential func-
tional languages, by making evaluation-order extensionally observable. In a non-
deterministic setting, separating the two forms of failure makes a certain duality
between “may” and “must” testing evident in both operational and denotational
semantics: we give separate models of these in the same category of biorders,
by interpreting error as a least element and recursion as a greatest fixed point
with respect to may-testing, and interpreting error as a greatest element and
recursion as a least fixed point with respect to must-testing.

We establish full abstraction for both may and must-testing semantics by
developing a methodology used for proving definability results for observably
sequential languages in particular (e.g. [11, 8]). We show that each type-object
is a retract of a first-order “universal” type-object, and that these retractions
are definable as terms in the language. This sheds some light on the process of
computing interaction between functions with unbounded non-determinism, via
countable sequences of unfoldings, in addition to sidestepping reliance of typical
proofs of full abstraction on continuity and algebraicity.

1.1 Related Work

Apt and Plotkin [1] study a fully abstract denotational model of a simple impera-
tive language with random assignment in a setting which brings together much of
the preceding work on the semantics of countable non-determinism, and clarifies
the role of non-continuity in particular. Lassen and Pitcher [9] study bisimulation
equivalences based on may and must testing for a functional language similar
to that modelled here. Game semantics has been used to describe denotational
models of non-deterministic langages: Harmer and McCusker [6] have described
a fully abstract may-and-must games model of Idealized Algol with bounded
choice, whilst Levy [10] has described a game semantics of a language with un-
bounded non-determinism which captures an infinite trace equivalence. However,
the biorder model described here appears to be the first fully abstract may-and-
must testing semantics for a functional language with unbounded choice.

2 Syntax and Operational Semantics

We illustrate our approach by describing may and must semantics for a small
functional language with countable non-determinism (which could be regarded
as a target-language for CPS translation): a simply-typed λ-calculus with arith-
metic, recursion and a random-number generator. Types are generated from two

354 J. Laird

ground types: a data type of natural number values and a program (or “re-
sponse”) type o containing no values, but a single “error” term. Programs of
function type may take either data or programs as arguments, but must return
a program — i.e. nat may not occur on the right of an arrow. Thus the types of
our language are:

T ::= nat | o | T ⇒ P

where P 	= nat (we refer to non-nat types as pointed).
Terms are obtained by extending the simply-typed λ-calculus with a set of

basic arithmetic constants and (primitive recursive) operations on nat, including:

– zero (0), successor and predecessor (succ(), pred())
– equality testing, =
– “injective pairing” (∗) and projection fst and snd .

and the following constants:

Error e : o,
Zero test If0 : nat⇒ P ⇒ P ⇒ P .
Fixpoints Y : (P ⇒ P)⇒ P .
Random number generation rnd : (nat⇒ o)⇒ o

We write Eq for λwxyz.((If0 (w=x)) y) z : nat ⇒ nat ⇒ P ⇒ P ⇒ P , and Ω
for the divergent term Y λx.x at each pointed type.

2.1 Operational Semantics

Note that any closed term t : nat is an arithmetic expression derived from the
total operations in the language. We assume an operation | | evaluating such
expressions to numerals, which thus has the properties:

– |s = t| = 0 if |s| = |t| and |s = t| = 1, otherwise.
– |fst(s ∗ t)| = |s| and |snd(s ∗ t)| = |t|.
We define two evaluation relations ⇓may and ⇓must between closed terms of

pointed type and “canonical forms” (λ-abstractions, If0, rnd and e) by com-
bining the following, standard, “deterministic” fragment:

e⇓e rnd⇓rnd λx.M⇓λx.M

If0⇓If0 If0 t⇓λxy.x |t| = 0 If0 t⇓λxy.y |t| 	= 0

Y⇓λf.f (Y f)
M⇓λx.M ′ M ′[N/x]⇓C

M N⇓C
with one of the following rules for evaluating rnd by erratically generating a
numeral and passing it to its argument:

∃n∈N.M n⇓maye
rndM⇓maye May

∀n∈N.M n⇓muste
rndM⇓muste Must

Bidomains and Full Abstraction for Countable Nondeterminism 355

We define notions of approximation and equivalence with respect to may and
must testing. Given M,N : T :

– M �may N if for all compatible program contexts C[·] : o, C[N]⇓maye
implies C[M]⇓maye. M ,may N if M �may N and N �may M .

– M �must N if for all compatible program contexts C[·] : o, C[M]⇓muste
implies C[N]⇓muste. M ,must N if M �must N and N �must M .

Note the direction of the implication in the definition of may-approximation:
M �may N if testing N leads to fewer errors than testing M .

As expected, there are functions which not continuous with respect to �must

(considered as a partial order on ,must equivalence-classes of terms) — in par-
ticular, the operator rnd itself. For example, let M0 : nat ⇒ o = λx.Ω and
Mi+1 = λx.((If0 x) e) (Mi pred(x)) — i.e. Mi terminates if and only if its argu-
ment is less than i. So rndMi 	⇓must for all i, but the �must least upper bound of
the chain M0 �must M1 �must . . . is λx.e, and rnd λx.e⇓must. We study further
examples of continuity and noncontinuity in Section 4.1.

The expressiveness of the language may be exploited by using it as the
basis for CPS interpretation of more elaborate functional languages with un-
bounded nondeterminism. For example, we may translate PCF with random
number generation simply by representing the type of natural number com-
putations, nat�⊥, as (nat ⇒ o) ⇒ o, giving rnd : nat�⊥. (The corresponding
bidomain model will contain additional elements corresponding to simple con-
trol operators and errors, yielding a fully abstract semantics of Cartwright and
Felleisen’s SPCF [3] with random number generation). Similarly, we may CPS
translate Lassen and Pitcher’s [9] version of Moggi’s metalanguage extended with
countable choice by representing the nondeterminism monad constructor P as
the continuations monad (⇒ o) ⇒ o. (Again, the translation and associated
model will be fully abstract if first-class continuations are included in the source
language.)

By distinguishing the two notions of failure, and taking them as the basis
for our notions of observation in our model, we can also reason about a variety
of behaviours of programs in such languages. For instance we may capture the
requirement that M : nat�⊥ may converge to some (non-error) value as the
conjunction of M λx.e⇓may and M λx.Ω 	⇓must, and the requirement that M
must converge to a value as M λx.e⇓must and M λx.Ω 	⇓may.

3 Complete Meet Biorders

Berry’s biorders [2, 4] are based on a binary greatest lower bound operator (i.e.
a meet semi-lattice) which may be used to interpret binary choice [8]. Thus to
give a semantics of unbounded choice, we develop a notion of biorder based on
complete lattices (i.e. having a greatest lower bound operator for arbitrary sets).

Definition 1. A complete (meet) biorder is a triple 〈D,
,≤〉 consisting of a
set D with two partial orders
,≤⊆ D ×D such that:

356 J. Laird

– (D,
) (the extensional order) is a complete lattice: every subset X has a
greatest lower bound

�
X.

– (D,≤) (the stable order) is included in
 (≤⊆
), has a least element, ⊥ =�
D and for any X,Y ⊆ D such that X ≤ Y in the Egli-Milner order (i.e.
∀x ∈ X∃y ∈ Y.x ≤ y ∧ ∀y ∈ Y.∃x ∈ X.x ≤ Y) we have

�
X ≤ �

Y .

We shall write ↑X if X ⊆ D is non-empty1 and bounded above in (D,≤),
observing that (D,≤) is bounded co-complete in the following sense:

Lemma 1. If ↑X then
�
X is a greatest lower bound for X in (D,≤).

Proof. Suppose X is bounded above by y in ≤. Then for any x ∈ X , X ≤ {x, y}
and so

�
X ≤ x � y = x, and if z is a ≤-lower bound for X , then {z} ≤ X and

so z ≤ �
X .

Products of complete meet biorders are defined by taking the pointwise order-
ings on the product of the underlying sets. Particular examples include the
one-element biorder 1 (the unit for the product), the “Sierpinski” biorder Σ
containing two elements, ordered stably and extensionally.

Definition 2. A function f from (D,
,≤) to (D′,
′,≤′) is monotone if it
preserves both orders, and (completely) stable if for every stably bounded set X,
f(

�
X) =

�
f(X).

Proposition 1. The category of complete meet biorders and completely stable
and monotone functions is Cartesian closed.

Proof. For complete biorders (D,
D,≤D) and (E,
E,≤E) the function-space
D ⇒ E is the biorder over the set of monotone and stable functions from D to
E in which the extensional order is defined:

f
D⇒E g if f(x)
E g(x) for all x ∈ D.

and the stable order is defined:

f ≤D⇒E g if for all x ≤D y, f(x) ≤E g(y) and f(x) = f(y) � g(x).
This satisfies the axioms for a complete biorder, with the greatest lower bound
of a bounded set of functions F defined pointwise: (

�
F)(x) =

�{f(x) | f ∈ F}.

Thus we have the basis for the semantics of functional languages with un-
bounded choice (a CCC with a greatest lower bound operator). To interpret
the Y combinator we require least and greatest fixed points of each endomor-
phism f : D → D. As in [1], we may compute these as the suprema/infima of
chains of approximants obtained by iterating f countably many times.

Proposition 2. Every endomorphism f : A → A has a
-least fixed point
f † : 1→ A and a
-greatest fixed point f ‡ : 1→ A.

1 In particular, � =
⊔

∅ is not in general a ≤-greatest element.

Bidomains and Full Abstraction for Countable Nondeterminism 357

Proof. We obtain f † as a stationary point of the
-chain defined fλ =f(
⊔

κ<λ f
κ)

for each ordinal λ. Then λ ≤ κ implies fλ
 fκ, and if fλ < fλ+1 then fκ � fμ

for all κ < μ ≤ λ. So if κ has cardinality strictly greater than A, then we must
have f(fκ) = fκ. Moreover fκ is a least (pre)fixed point, since if f(a)
 a then
fλ
 a for all λ.

We construct the greatest fixed point f ‡ similarly, as a stationary point in
the descending
-chain defined fλ = f(

�
κ<λ f

κ).

However, since least upper bounds in complete meet biorders are defined indi-
rectly, the mere existence of the least fixed point f † is not sufficient to prove that
it yields an interpretation of Y which is computationally adequate. It transpires
that the continuity property required to prove adequacy is that for f : (A ⇒
B) → (A ⇒ B), (

⊔
κ<λ f

κ)(e) =
⊔

κ<λ f(e). In general, the least upper bound
of a
-directed set of functions cannot be determined in this way (i.e. it is not
the case that (

⊔
F)(x) =

⊔{f(x) | f ∈ F})— we give an example in the next
section. However, we shall now show that we may define a full (Cartesian closed)
subcategory of biorders in which the stable order is a cpo in which least upper
bounds of directed sets of functions is determined pointwise.

Definition 3. A complete meet biorder D is a complete meet bidomain2 if it
satisfies the following conditions:

Stable Completeness. Every set X ⊆ D which is stably directed (i.e. up-
wards directed with respect to ≤) has a least upper bound

∨
X with respect

to the stable order, such that
∨
X =

⊔
X, and satisfying the following dis-

tributivity property:
for any y with y ↑ ∨X, y �∨X =

∨{x � y | x ∈ X}.
Algebraicity. An element c ∈ D is weakly compact (c ∈ K(D)) if for every

stably directed set X such that c
 ∨X there exists x ∈ X such that c
 x.
D is (weakly) algebraic if every element in d ∈ D is the (
) least upper bound
of its set of weakly compact approximants — d =

⊔{c ∈ K(D) | c
 d}.

Lemma 2. If D,E are stably complete and algebraic, then D ⇒ E is stably
complete.

Proof. Given a stably directed set of functions F , the set {f(x) | f ∈ F} is stably
directed, so we may define the stable supremum of F pointwise: (

∨
F)(x) =∨{f(x) | f ∈ F}.

This is monotone — if x ≤ y then for all f , f(x) ≤ f(y) ≤ (
∨
F)(y) and so

(
∨
F)(x) ≤ (

∨
F)(y) — and binary-stable: if x↑y, then (

∨
F)(x) � (

∨
F)(y) =∨{f(x) �∨F (y) | f ∈ F} =

∨{f(x) � g(y) | f, g ∈ F}
 ∨F (x � y).
To show that

∨
F is stable with respect to infima of stably bounded infinite

sets, it is sufficient to show that it preserves infima of (downwards) stably di-
rected sets. So suppose we have a downwards stably-directed set X . We need to
show that

�
(
∨
F)(X)
 ∨F (

�
X).

2 Note that a complete meet bidomain need not be a bidomain in the sense of Berry.

358 J. Laird

Suppose c is a compact element such that c
 �
(
∨
F)(X). Choosing x ∈ X ,

we have c
 (
∨
F)(x) and so by compactness of c, there exists f ∈ F such that

c
 f(x). Then for any y ∈ X , there exists z ∈ X such that z ≤ x, y, and so
we may find g ∈ F such that c
 g(z), and h ∈ F such that f, g ≤ h. Thus
f(z) = f(x) � h(z), and so c
 f(z)
 f(y). So c
 �

f(X), and c
 ∨F (
�
X)

as required.
Moreover

∨
F is a ≤-least upper bound for F (as well as being a
 least

upper bound): if f ∈ F then for all x, f(x) ≤ (
∨
F)(x) and if x ≤ y then

f(y) � (
∨
F)(x) =

∨{f(y) � g(x) | g ∈ F � f ≤ g} = f(x). If f ≤ g for all
f ∈ F , then for all x, (

∨
F)(x) ≤ g(x), and if x ≤ y then (

∨
F)(y) � g(x) =∨{f(y) � g(x) | f ∈ F} = (

∨
F)(x).

Since �,∨ are both determined pointwise, the distributivity condition is
straightforward to verify.

Lemma 3. The complete meet bidomains and completely stable and monotone
functions form a CCC.

Proof. By Lemma 2, if D,E are complete meet bidomains then D ⇒ E is stably
complete, so it remains to show weak algebraicity. Given f ∈ D ⇒ E, d ∈ D,
and weakly compact c ∈ E such that c
 f(d), we define fd

c ∈ D ⇒ E such that
fd

c (x) = c if d
 x and fd
c (x) = ⊥ otherwise.

Then f c
d is monotone and completely stable: if x
 y, then if d
 x, fd

c (x) =
fd

c (y) = c, otherwise fd
c (x) = ⊥ ≤ fd

c (y). Given a stably bounded set X , if d
�
X then d
 x for all x ∈ X , and so fd

c (
�
X) = c =

�
fd

c (X). If d 	 sqleq�
X

then there exists x ∈ X such that d 	
 x, and so fd
c (x) = ⊥ = fd

c (
�
X).

It is straightforward to check that f c
d is weakly compact (if fd

c

∨
F then

fd
c (d) = c
 (

∨
F)(d) and so c
 f(d) for some f ∈ F , and so fd

c
 f) and
f =

⊔{fd
c | d ∈ D ∧ c ∈ K(E) ∧ c
 f(d)}.

To interpret unpointed types (in the current setting, just the type nat of natural
number values), we define a notion of “pre-bidomain”.

Definition 4. A (complete meet) pre-bidomain (D,
,≤) is a set D with partial
orders ≤⊆
 such that for each x ∈ D, Dx = {y ∈ D | ∃z ∈ D.z
 x, y} is a
co-complete bidomain.

The co-product of pre-bidomains (formed pointwise) is a pre-bidomain, and gives
the following characterization result.

Lemma 4. For a pre-bidomain D, let .D/ be the set of
-minimal elements of
D. Then D ∼=∐x∈�D�Dx.

Proof. Let⊥(x) =
�{y ∈ D | y
 x}. Then for each x, ⊥(x) is a minimal element

of D, and it is straightforward to show that the map sending x to in⊥(x)(x) is
an order-isomorphism.

Proposition 3. The category of pre-bidomains and monotone and stable func-
tions is bicartesian closed.

Bidomains and Full Abstraction for Countable Nondeterminism 359

Proof. We define the cartesian closed structure as for the category of complete
bidomains and monotone and stable functions: thus the principal point to check
is that the function-space yields a well-defined pre-bidomain, for which we use
the decomposition into co-products (Lemma 4). We show that:

– for any complete meet bidomain A, and pre-bidomain D,
∐

x∈�D�(A ⇒
Dx) ∼= A⇒∐x∈�D�Dx

∼= A⇒ D, and hence A⇒ D is a pre-bidomain.
– for any pre-bidomains D,E: Πx∈�D�(Dx ⇒ E) ∼= (

∐
x∈�D�Dx)⇒ E ∼= D ⇒

E, and so D ⇒ E is a pre-bidomain. (So if E is a complete bidomain then
so is D ⇒ E.)

4 Denotational Semantics

We now give the may and must testing semantics of the functional language
defined in Section 2. We interpret nat as the pre-bidomain N∗ =

∐
i∈N

1, and
the remaining (pointed) types as the corresponding bidomains: i.e. [[o]] = Σ and
[[S ⇒ T]] = [[S]]⇒ [[T]].

We interpret terms-in-context x1 : S1, . . . , xn : Sn $ M : T as monotone and
completely stable functions from [[S1]] × . . . [[Sn]] to [[T]], giving two denotations
[[M]]may, [[M]]must for each term. We use the Cartesian closed structure to in-
terpret λ-abstraction and application in standard fashion, and the associated
operations on N to interpret the arithmetic constants and operations. Random
assignment rnd is interpreted as the function which takes every argument except
to ⊥:

[[rnd]]may(f) = [[rnd]]must(f) =
�{f(n) | n ∈ N∗}

Thus every program with neither recursion nor explicit errors has the same
denotation in the may and must semantics.

In the may-testing semantics, we interpret the error as the least element ⊥,
and the fixpoint combinator Y : (P ⇒ P)⇒ P as the greatest fixed point of the
endomorphism F : (P ⇒ P) ⇒ P → (P ⇒ P) ⇒ P sending f to λg.g(f g). In
the must-testing semantics we interpret the error as the greatest element #, and
Y : (P ⇒ P)⇒ P as the least fixed point of F .

4.1 Examples

We give some examples of the continuity and noncontinuity properties of our
model.

Noncontinuity. We have shown that the random number generator rnd is not
continuous wiith respect to must-approximation. The same example suffices
to show that its denotation (which we shall write as rnd) is not continuous
with respect to extensional order nor the stable order. If we define fi : N⇒ Σ
by fi(n) = # if n < i (so [[Mi]] = fi) then fi ≤ fi+1 for all i. rnd(fi) = ⊥ for
all i ∈ ω, but rnd(

∨{fi | i ∈ ω}) = rnd(#) = #.

360 J. Laird

Stable continuity of function application. We now give an example of a
least upper bound of a stably-directed set of functions, defined pointwise.
Let gi : ((N ⇒ Σ) ⇒ Σ) ⇒ Σ be defined: gi(h) = h(fi). Then gi ≤ gi+1
for all i ∈ ω (since fi ≤ fi+1), and so we may define the least upper bound
G =

∨{gi | i ∈ ω}: G(h) = # if there exists i such that h(fi) = #. Note
that G is distinct from the function G′(h) = h(

⊔{fi | i ∈ ω}) = h(#), since
G(rnd) = ⊥ and G′(rnd) = #.

Moreover, G is definable in our language — it is the denotation of
λh.(Y λf.λx.h (λy.If0 (y < x) then # else (f y))) 0.

Extensional noncontinuity of function application. By contrast, we may
observe that the least upper bound of a
-chain of functions may not be
determined pointwise. Define hi : (N ⇒ Σ) ⇒ Σ by hi(f) =

�
n∈ω f(n + i)

(i.e. hi is the denotation of the term λf.rnd λx.f (x+n). Then hi
 hi+1 for
each i (but hi 	≤ hi+1). The least upper bound of {hi | i ∈ ω} is #. (To show
this, define ki : N⇒ Σ by ki(n) = ⊥ if i < n and ki(n) = #, otherwise. Then
hi(ki) = #, and so if H is an upper bound for {hi | i ∈ ω}, H(ki) = # for
all i. So by stability, H(⊥) = H(

�{ki | i ∈ ω}) =
�{H(ki) | i ∈ ω} = #.)

So (
⊔{hi | i ∈ ω})(⊥) = #, but

⊔{hi(⊥) | i ∈ ω} = ⊥.

4.2 Inequational Soundness

Proposition 4. M⇓mayC implies [[M]]may=[[C]] andM⇓mustC implies [[M]]must

= [[C]].

Proof. Both cases are proved by induction on the derivation of M ⇓ C: in the
case of must-testing we decorate the judgement ⇓ with an ordinal (upper) bound
on the depth of its derivation, following the schema:

M⇓λC
M⇓λλx.M ′ M ′[N/x]⇓κC

M N⇓κC κ < λ
∀n∈N.M n⇓κe
rndM⇓λe κ < λ

Then if M ⇓ C, M ⇓λ C for some λ, and we may prove by ordinal induction
that if M ⇓λ C then [[M]]must = [[C]].

Proposition 5 (Adequacy). [[M]]may = ⊥ implies M⇓maye and [[M]]must = #
implies M⇓muste.

Proof. The proofs for both models are essentially the same: we sketch the case
for must-testing. This uses “approximation relations” in the style of Plotkin [12]:
first we define a relation �T between elements of [[T]] and closed terms of type
T for each T :

– n�nat M if |M | = n.
– e�o M if e = # implies M⇓muste.
– f �S⇒T M if e�S N implies f(e) �T M N .

We then define f : [[Γ]] → [[T]] �Γ,T Γ $ M : T if Γ = x1 : S1, . . . , xn : Sn and
for all e1 �S1 N1, . . . , en �Sn Nn implies f(e1, . . . , en) �T M [N1/x1, . . . , Nn/xn].

Bidomains and Full Abstraction for Countable Nondeterminism 361

We prove that if Γ $ M : T then [[M]]s �Γ,T M by a standard structural
induction. The only potentially problematic case is the fixpoint combinator Y,
for which we use the following observations:

For any (closed) M : T , the set {e ∈ T | e �T M} is (stably) chain complete,
since the least upper bound of a stable chain of functions is determined pointwise.
Note also that e�P M (YM) implies e�P YM .

To prove [[Y]]�(P⇒P)⇒P Y, we show that Fλ�(P⇒P)⇒P Y for all λ by induction
on λ. For the induction case, assume Fκ �(P⇒P)⇒P Y for all κ < λ, and hence∨

κ<λ F
κ �(P⇒P)⇒P Y by stable chain completeness. Suppose f �P⇒P M . Then

Fλ(f) = f((
∨

κ<λ F
κ)(f)) �P M (YM), and so Fλ(f) �P YM as required.

Corollary 1 (Inequational Soundness). [[M]]may
 [[N]]may implies M �may

N . [[M]]must
 [[N]]must implies M �must N .

Proof. Suppose e.g. [[M]]must
 [[N]]must. Then for any compatible context C[],
C[M] ⇓ implies [[C[M]]]must = # implies [[C[N]]]must = # implies C[N] ⇓ as
required.

5 Full Abstraction

It remains to prove (inequational) completeness: we shall say that completeness
holds at type T if for all closed M,N : T , if M �may N then [[M]]may
 [[N]]may

and if M �must N then [[M]]must
 [[N]]must.
So, for instance, completeness holds at nat, since e.g. if M �may N then

(((EqM) n) e)Ω⇓may implies (((EqN) n) e)Ω⇓may, and hence [[M]]may =[[N]]may.

Lemma 5. Completeness holds at the type nat⇒ o⇒ o.

Proof. Suppose e.g. M �must N . Then by soundness and adequacy, for any
d ∈ N and e ∈ {#,⊥} we have ([[M]]must d) e = # implies ([[N]]must d) e = #,
and so [[M]]must
 [[N]]must.

We reduce completeness at all pointed types to completeness at nat ⇒ o ⇒ o
using the notion of definable retraction.

Definition 5. Given types S, T , we write [[S]] � [[T]] (with respect to an inter-
pretation M) if there is a retraction from [[S]] to [[T]] definable in M: i.e. a pair
of (closed) terms (in : S ⇒ T, out : T ⇒ S) such that [[x : S $ out (in x) :
S]]M = id[[S]].

Henceforth, unless noted otherwise, we will take [[S]] � [[T]] to mean that there is
a retraction definable in both may and must interpretations.

For example, we have N∗ ⇒ N∗ ⇒ [[P]] � N∗ ⇒ [[P]] for any [[P]] via the
definable retraction (λf.λx.((f fst(x)) snd(x)), λg.λy.λz.g (y ∗ z)). Note that if
(in1, out1) and (in2, out2) are definable retractions from [[S1]] to [[S2]] and from
[[T1]] to [[T2]], then (λf.λx.in2(f (out1 x)), λf.λx.out2(f (in1 x))) is a definable
retraction from [[S1 ⇒ T1]] to [[S2 ⇒ T2]].

362 J. Laird

Let U = N∗ ⇒ Σ ⇒ Σ — i.e. U = [[nat ⇒ o ⇒ o]]. We will show that U
is universal amongst the pointed type-objects — i.e. [[P]] � U for all pointed
types P . This is sufficient to prove completeness at all types.

Lemma 6. If [[S]] � U in M then M is complete at type S.

Proof. If M �M N then inM �M inN and so [[inM]]M
 [[inN]]M and so
[[M]]M = out[[inM]]M
 out[[inN]]M = [[N]]M as required.

We will use the fact that we may regard elements of N∗ ⇒ Σ as infinite lists
of elements of Σ: for M : o, N : nat ⇒ o, we define M :: N : nat ⇒ o =
λx.((If0 x)M) (N pred(x)), hd : (nat ⇒ o) ⇒ o = λf.f 0 and tl : (nat ⇒
o) ⇒ nat ⇒ o = λf.λx.f succ(x). Then [[hd (M :: N) = M]] and [[tl (M ::
N)]] = [[N]].

Lemma 7. Σ ⇒ (N∗ ⇒ Σ)⇒ Σ � (N∗ ⇒ Σ)⇒ Σ.

Proof. The retraction is definable via the terms in = λf.λg.(f (hd g)) (tl g) and
out = λh.λx.λk.h (x :: k).

Definition 6. Given e ∈ N∗ ⇒ A, n ∈ N∗ and d ∈ A let e[d]n ∈ N∗ ⇒ A (the
“n-insertion” of d into e) be defined:

– e[d]n(m) = d if n = m,
– e[d]n(m) = e(m), otherwise.

For terms M : nat ⇒ T , N : T and t : nat, we define the coresponding term
M [N]t : nat ⇒ T = λx.(((Eq t) x) (N)) (M x). We use insertion to define an-
other key retraction.

Lemma 8. (N∗ ⇒ Σ)⇒ Σ � N∗ ⇒ Σ ⇒ Σ.

Proof. (Must testing case). Let in = λf.λx.λy.f λz.(((Eq x) z) y) e and out =
λf.λg.rnd λx.(f x) (g x).

For any g : N∗ → Σ, the set {#[g(n)]n | n ∈ N∗} is stably bounded above by
the constantly # function, and g =

�{#[g(n)]n | n ∈ N∗}. Thus (out in(f))(g) =�{f(#[g(n)]n) | n ∈ N∗} = f(
�{#[g(n)]n | n ∈ N∗} = f(g) by stability.

We will now show that U ⇒ Σ � N∗ ⇒ N∗ ⇒ (N∗ ⇒ Σ) ⇒ Σ, and hence by
Lemma 8, U ⇒ Σ � U . The key to defining this retraction is the sequentiality
of the function-space U ⇒ Σ.

Definition 7. Given f ∈ (N∗ ⇒ A)⇒ Σ, where A is a complete bidomain, we
say that f is i-strict if for all g ∈ N∗ ⇒ A, g(i) = ⊥ implies f(g) = ⊥. We write
strict(f) for the set of i ∈ N such that f is i-strict.

Lemma 9 (Sequentiality). For any complete bidomain A, every f ∈ (N∗ ⇒
A)⇒ Σ is constant or i-strict for some i.

Proof. Note that the set {#[⊥]i | i ∈ N} ⊆ N∗ ⇒ A is stably bounded above
by #. Suppose f 	= #. Then f(⊥) = f(

�{#[⊥]i | i ∈ N∗}) = ⊥. So by stability�{f(#[⊥]i) | i ∈ N∗} = ⊥. Hence f(#[⊥]i) = ⊥ for some i, and g(i) = ⊥ implies
g
 #[⊥]i and so f(g) = ⊥ — i.e. f is i-strict as required.

Let I ∈ Σ ⇒ Σ be the identity function (note that I
 #, but I 	≤ #).

Bidomains and Full Abstraction for Countable Nondeterminism 363

Definition 8. Given f ∈ U ⇒ Σ and n ∈ N∗, let fn = λx.((x n) (f x[I]n)) �
(f x[#]n).

Lemma 10. If f is n-strict then f = fn.

Proof. Consider e ∈ N∗ ⇒ Σ ⇒ Σ.
If e(n) = ⊥, then by n-strictness of f , f(e) = ⊥, and fn(e) = (⊥ f(e[I]n) �

f(e[#]n) = ⊥.
If e(n) = I, then e = e[I]n, and fn(e) = (I f(e[I]n) � f(e[#]n) = f(e) �

f(e[#]n) = f(e) by monotonicity of f .
If e(n) = #, then e = e[#]n, and fn(e) = (# f(e[I]n)� f(e[#]n) = #� f(e) =

f(e).

Thus we can represent any (non-constant) f ∈ U ⇒ Σ as a strictness index n,
together with the two functions λx.f x[I]n and λx.f x[#]n which (as we shall
show) may be computed using a strictly smaller part of their argument.

Lemma 11. Suppose e(n)(#) = e(n)(⊥) for all n ∈ N∗. Then for any f ∈ U ⇒
Σ, f(e) =

�{e(n)(⊥) | n ∈ strict(f)}.

Proof. If e(n)(⊥)=⊥ for some n ∈ strict(f), then f(e)=fn(e)=(e(n)(f(e[I]n)))�
f(e[#]n) = ⊥ � f(e[#]n) = ⊥. So suppose e(n)(⊥) = # for all n ∈ strict(f).
Then e 0 �{#[⊥]n | n 	∈ strict(f)} and so f(e) 0 f(

�{#[⊥]n | n 	∈ strict(f)}) =�{f(#[⊥]n) | n 	∈ strict(f)} = # by stability.

We also require an “injective pairing” operation on N∗ ⇒ A⇒ Σ, derived from
the fact that that N∗ ⇒ A⇒ Σ ∼= (A⇒ Σ)ω ∼= (A⇒ Σ)ω × (A⇒ Σ)ω.

Definition 9. Given M,N : nat ⇒ T ⇒ o, let 〈M,N〉 : nat ⇒ T ⇒ o =
λx.λy.((If0 fst(x)) ((M snd(x)) y)) ((N snd(x)) y) and πi : (nat ⇒ T ⇒ o) ⇒
nat⇒ T ⇒ o = λf.λx.λy.(f (i ∗ x)) y. Then πi 〈M0,M1〉 = Mi for i ∈ {0, 1}.
We finally note that � is definable as erratic binary choice: given M,N : o:
M orN : o = rnd λx.((If0 x)M)N . So [[M orN]] = [[M]] � [[N]].

We now define the retraction from U ⇒ Σ to N∗ ⇒ N∗ ⇒ (N∗ ⇒ Σ)⇒ Σ.

Definition 10. in : ((nat⇒ o⇒ o)⇒ o)⇒ nat⇒ nat⇒ (nat⇒ o)⇒ o =

YλF.λf.λx.((λg.f λu.λv.(g u)) :: 〈(F λz.f z[λw.w]x), F λz.f z[λw.e]x〉)

and out : (nat⇒ nat⇒ (nat⇒ o)⇒ o)⇒ (nat⇒ o⇒ o)⇒ o =

YλG.λh.λk.(hd (h 0)) λa.(((k a) (G (π0 (tl (h a)))) k)or(G (π1 (tl (h a))))) k)

We prove that these terms do indeed define a retraction by an ordinal induction
on the unfolding of the fixpoints. For this we require a measure on f ∈ U ⇒ Σ
of the number of unfoldings required to compute in(f).

364 J. Laird

Definition 11. For each ordinal λ we define the set of λ-dependent elements
of U ⇒ Σ inductively, as follows:

f is λ-dependent if for all n such that f is n-strict there exists κ < λ such that
λx.f x[λw.w]n and λx.f x[λw.#]n are κ-dependent.

Proposition 6. If f is λ-dependent then out(in(f)) = f .

Proof. By induction on λ. Unfolding the definition of out, we have out(in(f))(d) =
(hd (in(f) 0)) λa.(((d a) (out(π0 (tl (in(f) a)))(d))) � (out(π1 (tl (in(f) a)))(d))).

Unfolding the recursive definition of in, we have: in(f) = λx.((λg.f λu.λv.
(g u)) :: 〈in(λz.f z[λw.w]x), in(λz.f z[λw.#]x〉)).

So π0(tl (in(f) n)) = in(λz.f z[I]n) and π1(tl (in(f) n)) = in(λz.f z[#]n), and
(hd (in(f) 0))(e) = f λu.λv.(e u). Since (λu.λv.(e u))(n)(⊥) = (λu.λv.(e u))(n)(#)
for all n, by Lemma 11 (hd (in(f) 0))(e) = f λu.λv.(e u) =

�{e(n) | n ∈ strict(f)}.
Substituting these into the expansion of out(in(f))(d), we have: out(in(f))(d)

=
�{(d(n) out(in(λz.f z[I]n))(d)) � out(in(λf z[#]n))(d) | n ∈ strict(f)}.
If n ∈ strict(f), then since f is λ-dependent, λz.f z[I]n and λz.f z[#]n are κ-

dependent for some κ < λ and so by induction hypothesis, out(in(λz.f z[I]n) =
λz.f z[I]n and out(in(λz.f z[#]n)) = λz.f z[#]n.

So, as required, out(in(f))(d) =
�{(d(n) f(d[I]n)�f(d[#]n) | n ∈ strict(f)} =�{fn(d) | n ∈ strict(f)} = f(d) by Lemma 10.

Proposition 7. Every function f ∈ U ⇒ Σ is λ-dependent for some λ.

Proof. Say that f is n-constant if f(e[⊥]n) = f(e[#]n) for all e. We show by
induction on λ that for each f ∈ U ⇒ Σ which is not λ-dependent, we can
construct a sequence of distinct values 〈nκ(f) | κ ≤ λ〉 such that f is not nκ(f)-
constant for each κ ≤ λ. Since the cardinality of such a sequence must be count-
able, f must be λ-dependent for some countable λ.

For the induction case, suppose f is not λ-dependent. Then for some m ∈
N∗ such that f is m-strict, and for some C ∈ {I,#}, λx.f x[C]m is not κ-
dependent for all κ < λ. Then m 	= nκ(λx.f x[C]m) for κ < λ, as λx.f x[C]m
is m-constant by definition. If f is n-constant, then so is λx.f x[C]m, and so f
is not nκ(λx.f x[C]m)-constant for any κ < λ. Hence we may define nλ(f) = m
and nκ(f) = nκ(λx.f x[C]m) for κ < λ.

Combining Propositions 6 and 7, we have shown:

Proposition 8. U ⇒ Σ � N∗ ⇒ N∗ ⇒ (N∗ ⇒ Σ)⇒ Σ

By composing definable retractions we may now show that U is a (definably)
“reflexive object” (i.e. U ⇒ U is a definable retract of U).

Proposition 9. U ⇒ U � U .

Proof. We have U ⇒ U ∼= N∗ ⇒ Σ ⇒ (U ⇒ Σ)
� N∗ ⇒ Σ ⇒ (N∗ ⇒ N∗ ⇒ (N∗ ⇒ Σ)⇒ Σ) (by Proposition 8)
∼= N∗ ⇒ N∗ ⇒ N∗ ⇒ (Σ ⇒ (N∗ ⇒ Σ)⇒ Σ)
� N∗ ⇒ N∗ ⇒ N∗ ⇒ ((N∗ ⇒ Σ)⇒ Σ) (by Lemma 7)
�N∗ ⇒ N∗ ⇒ N∗ ⇒ U by (Lemma 8)
�U .

Bidomains and Full Abstraction for Countable Nondeterminism 365

Corollary 2. For every pointed type-object P , P � U .

Proof. By structural induction on P . Clearly Σ � U : if P = N∗ ⇒ Q then
P � N∗ ⇒ U � U , and if P = Q1 ⇒ Q2 then P � U ⇒ U � U .

Thus we have extended inequational completeness to all types and proved full
abstraction.

Theorem 1. For all terms M,N , M �may N if and only if [[M]]may
 [[N]]may

and M �must N if and only if [[M]]must
 [[N]]must.

6 Conclusions and Further Directions

For the purposes of exposition we have restricted our attention to a very simple
functional language, but bidomains have the potential to model a range of pro-
gramming languages with non-deterministic features. As we have observed, one
possible route to describing more expressive languages is via CPS interpretation.
Alternatively, we may interpret lifted types such as call-by-value functions and
lifted sums via the powerdomain monad: for a pre-bidomain (D,
,≤), we define
a complete bidomain P(D) as follows:

– elements are up-closed subsets of D, together with a least element ⊥,
–
 is the Smyth ordering — i.e. reverse inclusion, with ⊥
 X for all X ,
– ≤ is the intersection of the Smyth and Egli-Milner orders: X ≤ Y if X = ⊥

or Y ⊆ X and for all x ∈ X there exists y ∈ Y such that x ≤ y.
In general, using powerdomains to interpret lifting leads to models with “first-
order” control operators (jumps) rather than all first-class continuations (we
note that P(N∗) ∼= (N∗ ⇒ Σ) ⇒ Σ). It should also be possible to develop a
semantics of recursive types in complete bidomains, based on limits of countable
chains of approximants, as investigated in [5].

We have shown that the elements of our model are sequential functions: it
would be interesting to relate them to strategies in game semantics, in which fully
abstract models of functional-imperative languages with bounded non-
determinism have been described [6]. Comparison with our extensional model
may yield an approach to unbounded choice. (As we have suggested, we may
interpret bounded choice using Berry’s original notion of bidomain (which does
require
-continuity). As shown in [4], (Berry’s) bidomains have a decomposi-
tion into a bistructure model of classical linear logic, yielding possible connections
between models of concurrency and our semantics of bounded and unbounded
non-determinism.

Acknowledgement

The author would like to thank Soren Lassen for comments on a previous version
of this article.

366 J. Laird

References

1. K. R. Apt and G. D. Plotkin. Countable nondeterminism and random assignment.
Journal of the ACM, 33(4):724–767, 1986.

2. G. Berry. Stable models of typed λ-calculi. In Proceedings of the 5th International
Colloquium on Automata, Languages and Programming, number 62 in LNCS, pages
72–89. Springer, 1978.

3. R. Cartwright and M. Felleisen. Observable sequentiality and full abstraction. In
Proceedings of POPL ’92, 1992.

4. P.-L. Curien, G. Winskel, and G. Plotkin. Bistructures, bidomains and linear logic.
In Milner Festschrift. MIT Press, 1997.

5. P. Di Gianantonio, F. Honsell, and G. Plotkin. Uncountable limits and the lambda
calculus. Nordic Journal of Computing, 2(2):126 – 145, 1995.

6. R. Harmer and G. McCusker. A fully abstract games semantics for finite non-
determinism. In Proceedings of the Fourteenth Annual Symposium on Logic in
Computer Science, LICS ’99. IEEE Computer Society Press, 1998.

7. J. Laird. Bistability: an extensional characterization of sequentiality. In Proceedings
of CSL ’03, number 2803 in LNCS. Springer, 2003.

8. J. Laird. Sequentiality in bounded bidomains. Fundamenta Informaticae, 65:173
– 191, 2005.

9. S. B. Lassen and C. Pitcher. Similarity and bisimilarity for countable non-
determinism and higher-order functions. Electronic Notes in Theoretical Computer
Science, 10, 1997.

10. P. B. Levy. Infinite trace equivalence. In Games for Logic and Programming
Languages, pages 195 – 209, 2005.

11. J. Longley. Universal types and what they are good for. In Domain Theory, Logic
and Computation: Proceedings of the 2nd International Symposium on Domain
Theory. Kluwer, 2004.

12. G. Plotkin. Lectures on predomains and partial functions, 1985. Notes for a course
given at the Center for the study of Language and Information, Stanford.

An Operational Characterization
of Strong Normalization�

Luca Paolini1, Elaine Pimentel2, and Simona Ronchi Della Rocca1

1 Dipartimento di Informatica, Università di Torino (Italy)
2 Departamento de Matemática, Universidade Federal de Minas Gerais (Brazil)

Abstract. This paper introduces the Φ-calculus, a new call-by-value
version of the λ-calculus, following the spirit of Plotkin’s λβv-calculus.
The Φ-calculus satisfies some interesting properties, in particular that
its set of solvable terms coincides with the set of β-strongly normalizing
terms in the classical λ-calculus.

1 Introduction

The standard λ-calculus equipped with the β-reduction is the paradigmatic lan-
guage for the call-by-name functional computation. Its call-by-value version,
historically called λβv-calculus, has been introduced by Plotkin in 1975 [11].
The λβv-calculus is based on a restriction of the β-rule, firing it only when the
argument belongs to a particular subset of terms, called values. In [10, 13] two
co-authors of this paper, in order to treat these two different calculi in a uni-
form way, introduced the λΔ-calculus, parametric with respect to a subset Δ of
terms, called input values, which generalizes the idea of Plotkin’s values. Some
conditions on Δ have been stated assuring some good properties for the cal-
culus, in particular confluence and standardization. These conditions are very
natural: the set of input values must contain the set of variables and it must be
closed under substitution and Δ-reduction (a further condition is necessary for
having standardization). Note that, in this setting, the standard λ-calculus now
can be seen as a degenerated case of a λΔ-calculus, where all terms are input
values (that is, the set of input values is Λ). Plotkin’s calculus coincides with
the λΓ -calculus, where Γ = Var ∪ {λx.M |M ∈ Λ}.

The formalization of the λΔ-calculus, where both call-by-name and call-by-
value calculus can be uniformly representable, is an useful tool for studying
the relationship between these two notions of computations. Some interesting
properties relating λΛ and λΓ -calculus have been already proved. For example,
it turns out that, in the λΓ -calculus, the notion of normal form is meaningless
since there are different Γ -normal forms that can be consistently equated (see
[13]). But the notion of β-normal form has an important meaning also in this
calculus: in [7] it was proved that two different βη-normal forms can be separated
in the λΓ -calculus, and hence they cannot be consistently equated in any model.

In [8] we further explored the relationship between β-normal forms and Γ -
evaluation. In that paper, it was proved that the set of strongly β-normalizing
� Paper partially supported by MIUR-PRIN’04 FOLLIA Project and by CNPq.

L. Aceto and A. Ingólfsdóttir (Eds.): FOSSACS 2006, LNCS 3921, pp. 367–381, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

368 L. Paolini, E. Pimentel, and S. Ronchi Della Rocca

terms, with respect to a lazy reduction1, coincides with the set of potentially
Γ -valuable terms. A term is potentially Δ-valuable (where Δ is any set of input
values) if and only if there is a substitution, replacing variables by closed input
values, such that the substituted term reduces to an input value. Being input
values the only terms that can be manipulated by the Δ-calculus (and that can
be argument of a function) this class of terms is particularly interesting. For
example, in Plotkin’s operational semantics for the λΓ -calculus [11] based on
the SECD machine [6], a potentially Γ -valuable term is always different from a
non potentially Γ -valuable term. Moreover, all the non potentially Γ -valuable
terms are equated [13].

A first natural question that arises is if this analogy between a call-by-name
strong normalization and a call-by-value evaluation can be further developed.
In particular, we are interested to know if there is a set of input values Φ such
that the set of potentially Φ-valuable terms coincides with the set of strongly
β-normalizing terms.

The set of lazy strong β-normalizing terms and the set Γ of input values have
an interesting structural analogy: in order to find a lazy β-normal form of a
λ-term it is not necessary to reduce under a λ-abstraction. The same happens
when checking if a λ-term is a Γ -input value: it is not necessary to look under a
λ-abstraction since all λ-abstractions are in Γ . We will call weak any set of input
values containing all λ-abstractions. It turns out that “to be weak” has some
consequences. Extending the notion of solvability to a generic Δ-calculus in the
natural way, a term M is called Δ-solvable if and only if there is a sequence
P1, ..., Pn of Δ-input values such that (λ%x.M)P1...Pn =Δ λx.x (where λ%x.M is
the term obtained fromM by abstracting it with respect to all its free variables).
In the λΓ -calculus, the set of solvable terms is a proper subset of the set of
potentially valuable terms. This is a consequence of the fact that Γ is weak: if
U is a closed Γ -unsolvable term then λx.U ∈ Γ is a potentially valuable, but
unsolvable term.

This yields to a second question: is there a λΔ-calculus such that the set of
Δ-potentially valuable terms coincides with the set of Δ-solvable terms?

Certainly, such a Δ could not be weak. In fact, in order to check if a term is
solvable, it is necessary to perform the evaluation under the λ-abstraction.

In this paper, we give an answer to the two questions posted above, presenting
the λΦ-calculus, where Φ is a set of input values which is the minimal solution
of a recursive equation. Φ is not weak, since it is a proper subset of the set of
Φ-normal forms. It turns out that the λΦ-calculus enjoys, besides confluence, the
standardization property. Moreover, Φ is a proper subset of the set of strongly
β-normalizing terms, and we prove that Φ is minimal between all sets of terms
answering the first question. Hence our result can be rephrased as: the whole set

1 Following [13], lazy β-reduction is defined as the closure of the β-rule under appli-
cation, but not under abstraction. This corresponds operationally to do not perform
reduction under the λ-abstraction. In the field of real functional languages, “lazy”
is used with a different meaning.

An Operational Characterization of Strong Normalization 369

of strongly β-normalizing terms can be operationally described through a proper
subset of it.

A further comment is in order. Plotkin’s motivation on designing the λΓ -
calculus was to propose a paradigmatic language for the call-by-value evaluation
in real programming languages and, from this point of view, the choice of a
weak set of input values is natural for modeling the notion of closure in the
sense of Landin [6]. On the other hand, our motivation is purely theoretical,
and the λΦ-calculus presented here is not an alternative proposal for designing
new call-by-value languages. In any case, implementing the Φ-calculus would be
difficult, being the set Φ just semi-decidable. But we believe that this study is
interesting by itself. In fact, Plotkin in [11], posed the question of an existence of
call-by-value λ-language alternative to λΓ . He said that the natural proposal was
to choose the set of the β-normal forms as an alternative to Γ . Unfortunately,
the set of β-normal forms induces a calculus lacking the confluence property, in
fact β-normal forms are not input values in our sense. Hence the λΦ-calculus,
enjoying both confluence and standardization, gives an answer to this further
question as well.

The rest of the paper is organized as follows: Section 2 contains basic notions
of the parametric λΔ-calculus; in Section 3 the λΦ-calculus is introduced and
finally, in Section 4 the main theorem is stated and proved.

2 The Parametric λ-Calculus

A calculus is a language equipped with some reduction rules. We will consider
here calculi sharing the same language, the language of λ-calculus, while they
differ from each other in their reduction rules. In order to treat them in a uniform
way we will use the notion of parametric calculus, the λΔ-calculus, that gives
rise to different calculi by different instantiations of the parameter Δ. The λΔ-
calculus has been studied in [10, 13]. We use the terminology of [2, 13].

Definition 1 (The language Λ). Let Var be a countable set of variables.
The set Λ of λ-terms is defined by the following grammar:

M ::= x |MM | λx.M

λ-terms will be ranged over by Latin capital letters. Sets of λ-terms will be de-
noted by Greek capital letters. If Θ denotes a set of terms (Θ)0 is the set of
closed terms belonging to Θ.

Sometimes, we will refer to λ-terms simply as terms. As usual, terms will be
considered modulo α-conversion, i.e., modulo names of bound variables. The
symbol ≡ will denote syntactical identity of terms, up to α-equivalence.

We will use the following abbreviations, in order to avoid an excessive num-
ber of parentheses, thereby λx1...xn.M will stand for (λx1(...(λxn.M)...)) and
MN1N2...Nn will stand for (...((MN1)N2)...Nn). Moreover %M will denote a se-
quence of terms M1,. . .,Mn, for some n ≥ 0, and λ%x.M and %M %N , will denote

370 L. Paolini, E. Pimentel, and S. Ronchi Della Rocca

respectively λx1. . .xn.M and M1. . .MmN1. . .Nn, for some n,m ≥ 0. The length
of the sequence %N is denoted by ‖ %N‖.

The λΔ-calculus consists of the language Λ equipped with a set Δ ⊆ Λ of in-
put values, satisfying some closure conditions. Informally, input values represent
already evaluated terms, that can be passed as arguments. The set Δ of input
values and the reduction →Δ, induced by it, are defined below.

Definition 2. Let Δ ⊆ Λ.

(i) The Δ-reduction (→Δ) is the contextual closure of the following rule:

(λx.M)N →M [N/x] if and only if N ∈ Δ.

(λx.M)N is a Δ-redex (or simply redex).
(ii) →+

Δ,→∗
Δ and =Δ are respectively the transitive closure of→Δ, the reflexive

and transitive closure of →Δ and the symmetric, reflexive and transitive
closure of →Δ.

(iii) A set Δ ⊆ Λ is a set of input values, when the following conditions are
satisfied:

• Var ⊆ Δ (Var-closure);
• P,Q ∈ Δ implies P [Q/x] ∈ Δ, for each x ∈ Var (substitution closure);
• M ∈ Δ and M →Δ N imply N ∈ Δ (reduction closure).

The closure conditions on the set of input values assure us that the λΔ-calculus
enjoys the confluence property for every Δ , i.e., the following theorem holds.

Theorem 3 (Confluence). [10, 13] Let M →∗
Δ N1 and M →∗

Δ N2.
There is Q such that both N1 →∗

Δ Q and N2 →∗
Δ Q.

Two particular instantiations of Δ give rise to the call-by-name and the call-
by-value λ-calculus. The call-by-name λ-calculus (i.e., the standard λ-calculus
equipped with the β-reduction) coincides with the λΛ-calculus. The call-by-value
λ-calculus (defined by Plotkin in [11]) coincides with the λΓ -calculus, where
Γ = Var ∪ {λx.M |M ∈ Λ}.

Let Δ be a set of input values. A term of the λΔ-calculus is in Δ-normal form
if and only if it does no contain occurrences of Δ-redexes. A term M is strongly
Δ-normalizing if both M has a Δ-normal form and every reduction sequence
starting from M eventually stops.

The set Δ-NF of Δ-normal forms can be defined in the following recursive
way:

Δ-NF = Var ∪ {xM1...Mn |Mk ∈ Δ-NF (1 ≤ k ≤ n)}
∪ {λ%x.M |M ∈ Δ-NF}
∪ {(λx.P)QM1...Mn | P,Q,Mk ∈ Δ-NF, Q 	∈ Δ (1 ≤ k ≤ n)}.

Note that for the λΛ-calculus, being Λ its set of input values, the last case
cannot happen, i.e., there are no normal forms of the shape (λx.P)QM1...Mn,
so Λ-NF⊆ Δ-NF, for all Δ.

An Operational Characterization of Strong Normalization 371

In the λΓ -calculus, the notion of normal form is meaningless. In fact, there
are different Γ -normal forms that can be consistently equated. The key notion,
in a call by value setting, is the one of (potential) valuability, given in the next
definition (see [9],[13]).

Definition 4. (i) A term M is Δ-valuable if and only if there is N ∈ Δ such
that M →∗

Δ N .
(ii) A term M is potentially Δ-valuable if and only if there is a substitution

s, replacing variables by closed terms belonging to Δ, such that s(M) is Δ-
valuable.

It is immediate to verify that a closed term is potentially Δ-valuable if and
only if it is Δ-valuable. Note that the notion of Δ-normal form and that one of
potentially Δ-valuable are orthogonal. As an example, consider the λΓ -calculus,
and the term M ≡ (λz.D)(yI)D, where I ≡ λx.x and D ≡ (λz.zz). M is
in Γ -normal form, but it is neither an input value nor potentially Γ -valuable.
In fact, consider M [Q/y], for some Q ∈ (Γ)0. If QI reduces to an element in
Γ then M [Q/y] ≡ (λz.D)(QI)D reduces to DD, which is not an input value.
Otherwise M [Q/y] →∗

Γ (λz.D)Q′D, for every Q′ such that QI →∗
Γ Q′, which

is not an input value. Thus (λz.D)(QI)D is not Γ -valuable. We call Δ-liar-
normal forms terms which are in Δ-normal form but that are not potentially
Δ-valuable.

In the λΛ-calculus, the notion of solvability plays an important role, since in
some sense the solvable terms represent the meaningful computations [2]. In [9],
Γ -solvable and potentially Γ -valuable terms has been characterized. This notion
has been extended to the parametric λΔ-calculus in [13].

Definition 5. (i) A context C[.] is Δ-valuable if and only if C[.] ≡ (λ%x.[.])%P
where each P ∈ %P is such that P ∈ Δ.

(ii) A term M is Δ-solvable if and only if there is a Δ-valuable context C[.] such
that:

C[M] =Δ I.

(iii) A term is Δ-unsolvable if and only if it is not Δ-solvable.

Note that (λ%x.M) %N =Δ I means (λ%x.M) %N →∗
Δ I, since I is in Δ-NF, for

every Δ.

3 The λΦ-Calculus

As observed in the introduction, we are interested to know if there is a set of
input values Φ such that the set of potentially Φ-valuable terms coincides with
the set of strongly β-normalizing terms. Such a set cannot be weak i.e., it cannot
contain all λ-abstractions. Since input values represent already evaluated terms,
the natural choice would be to take Δ such that Δ coincides with its set of
normal forms (i.e. Δ = Δ-NF). From the recursive definition of Δ-normal form

372 L. Paolini, E. Pimentel, and S. Ronchi Della Rocca

restricted to the case where Δ is a set of input values, the following equations
would be obtained:

(1.1) Δ = Var ∪ {xM1...Mn |Mk ∈ Δ (1 ≤ k ≤ n)} ∪ {λ%x.M |M ∈ Δ} ∪
{(λx.P)QM1...Mn | P,Q,Mk ∈ Δ (1 ≤ k ≤ n), Q 	∈ Δ};

(1.2) M,P ∈ Δ implies M [P/x] ∈ Δ.

Note that the reduction closure for Δ is trivially satisfied, since we asked that
terms in Δ are Δ-normal forms.

The only solution to the equation (1.1) is Δ = Λ-NF . In fact, the set
{(λx.P)QM1...Mn | P,Q,Mk ∈ Δ (1 ≤ k ≤ n), Q 	∈ Δ} is empty, due to
the contradictory condition on Q. Unfortunately, Δ = Λ-NF does not satisfy
the equation (1.2).

On the other hand, the simpler way of forcing Δ to satisfy equation (1.2)
would be to restrict Δ so that it contains, besides variables, only closed terms.
That is, to choose Δ† = (Λ-NF)0 ∪ V ar. But Δ† does not solve our problem.
In fact, the term I(λx.I(xx)) is a strongly Λ-normalizing term, but it is not
Δ†-solvable. Indeed I(λx.I(xx)) is a Δ†-NF which cannot be reduced (in the
λΔ†-calculus), since λx.I(xx) 	∈ Δ†.

The discussion above suggests that we should look for a set Δ which is a
proper subset of the Δ-normal forms, and a proper superset of (Λ-NF)0 ∪ V ar.
Let us maintain the choice that Δ contains, besides variables, only closed terms.
The previous pair of equations now become:

(2.1) Θ = Var ∪ {xM1...Mn |Mk ∈ Θ (1 ≤ k ≤ n)} ∪ {λ%x.M |M ∈ Θ} ∪
{(λx.P)QM1...Mn | P,Q,M1...Mn ∈ Θ Q 	∈ Δ};

(2.2) Δ = V ar ∪ (Θ)0.

Note that Θ = Δ-NF and Δ is a set of input values.
But the last condition on equation (2.1) is too weak again, since now the set

Θ may contain some Δ-liar-normal forms. As an example, M ≡ (λz.D)(yI)D,
where D ≡ (λz.zz), is a Δ-liar-normal form satisfying both the previous equa-
tions. Since Δ-liar-normal forms are Δ-unsolvable, such a set cannot supply an
answer to our second question, i.e., cannot be such that the set of Δ-solvable
terms coincide with the set of Δ-potentially valuable terms.

The following easy to prove property will help us on excluding such dangerous
terms.

Property 6. If there is a substitution s such that s(P [Q/x] %M) →∗
Δ R ∈ Δ and

s(Q)→∗
Δ Q′ ∈ Δ then s((λx.P)Q %M)→∗

Δ R.

Taking into account the previous property, the pair of equations now becomes:

(3.1) Θ = Var ∪ {xM1...Mn | Mk ∈ Θ (1 ≤ k ≤ n)} ∪ {λ%x.M | M ∈ Θ} ∪
{(λx.P)QM1...Mn | Q,M1, ...,Mn ∈ Θ,Q 	∈ Δ,P [Q/x]M1...Mn →∗

ΔR ∈
Θ};

(3.2) Δ = V ar ∪ (Θ)0.

The minimal solution of this pair of recursive equations is defined next.

An Operational Characterization of Strong Normalization 373

Definition 7. The sets of λ-terms Υi, Φi (i ∈ N) are defined by mutual induc-
tion, as follows

Υ0 = Var
Φi = Var ∪ (Υi)0

Υi+1 = Var ∪ {xM1...Mn |Mk ∈ Υi(1 ≤ k ≤ n)} ∪ {λ%x.M |M ∈ Υi}⋃ {
(λx.P)QM1...Mn

∣∣∣∣ Q ∈ Υi − (Λ0 ∪Var), M1, ...,Mn ∈ Υi,
P [Q/x]M1 . . .Mn →∗

Φi
R ∈ Υi

}
Moreover, we define Υ = ∪iΥi and Φ = Var ∪ (Υ)0.

For example, Φ0 = Var, Υ1 = Var∪ {xy1...yn | yi ∈ V ar} ∪ {λ%x.y | y ∈ Var} and
Φ1 = Var ∪ {λx1...xm.xj | 1 ≤ j ≤ m}.

The following result holds trivially:

Lemma 8. (i) For all i ∈ N, Φi is a set of input value.
(ii) Φ = ∪iΦi.
(iii) Φ is a set of input values.
(iv) For all i ∈ N, Υ and Υi are not sets of input values.

Also, it is easy to check that the following properties hold.

Property 9. (i) Υi ⊂ Υi+1, Φi ⊂ Φi+1 and →Φi⊆→Φi+1, for all i ∈ N;
(ii) Υi ⊂ Υ , Φi ⊂ Φ and →Φi⊆→Φ, for all i ∈ N;
(iii) Υ 0 = Φ0;
(iv) M ∈ Φ0 implies M ≡ λz.P , for some z ∈ Var and P ∈ Υ (note that Φ ⊆ Γ);
(v) Φ ⊆ Υ and Υ ⊆ Φ-NF;
(vi) Φ-NF 	⊆ Υ and Φ-NF 	⊆ Φ.

Proof. (vi) Let M ≡ λz.(λx.D)(zI)D. M ∈ Φ-NF since zI 	∈ Φ. But M 	∈ Υ and
M 	∈ Φ. �"
Lemma 8.(iii) implies that the λΦ-calculus enjoys the confluence property. More-
over it is possible to check that it also satisfies the additional necessary condition
for standardization, stated in [10, 13].

4 The Main Result

The λΦ-calculus, besides confluence and standardization, has some further in-
teresting properties. The most important one is that the set of potentially Φ-
valuable terms coincides with the set of strongly Λ-normalizing terms. Other
properties characterize completely the operational behavior of the λΦ-calculus.
In particular, a term is Φ-solvable if and only if it is potentially Φ-valuable if
and only if it Φ-reduces to a term in Υ .

Theorem 10 (Main Theorem). The following statements are equivalent:

(i) M is strongly Λ-normalizing;
(ii) M is Φ-solvable;
(iii) M is potentially Φ-valuable;
(iv) M →∗

Φ R ∈ Υ ;

374 L. Paolini, E. Pimentel, and S. Ronchi Della Rocca

Proof. (i) implies (ii) by Theorem 26.
(ii) implies (iii) by Theorem 16.(ii).
(iii) implies (iv) by Theorem 16.(i).
(iv) implies (i) by Theorem 20.
where theorems 16, 20 and 26 will be proved later in this Section. �"
Notice that Φ is a proper subset of the set of strongly Λ-normalizing terms. In
fact, a strongly Λ-normalizing term of the shape M1...M2 where Mi is closed
(1 ≤ i ≤ n) does not belong to Φ. Moreover Φ is minimal between all sets of
input values which answer our first question.

Property 11. Let Δ� be a set of input values.
If the set of potentially Δ�-valuable terms coincides with the set of the strongly
Λ-normalizing terms and Δ� ⊂ Φ then Δ� = Φ.

Proof. ClearlyΔ� = Φ if and only if (Δ�)0 = Φ0, sinceΔ� ⊂ Φ and Φ = Var∪Φ0.
Thus suppose M ∈ Φ0. Note that M is Φ-valuable, potentially Φ-valuable and
also in Φ-normal form. Moreover M is a closed strongly Λ-normalizing term,
by the Main Theorem. Thus, M is potentially Δ�-valuable by hypothesis and
M ∈ Λ0 implies that M is Δ�-valuable. But Δ� ⊂ Φ implies Φ-NF ⊂ Δ�-NF,
hence M ∈ Δ�-NF. Then M ∈ Δ� and the proof is done. �"
Finally, it is worthy to say that, although Φ is minimal, it is not the minimum
set supplying an answer to questions stated in the introduction. In fact, the
minimum solution to the following equations:
Θ = {λx0...xn.y | y 	= xi (0 ≤ i ≤ n) } ∪

{xM1...Mn |Mk ∈ Θ (1 ≤ k ≤ n)} ∪ {λ%x.M |M ∈ Θ}∪
{(λx.P)QM1...Mn |Q,M1,...,Mn ∈ Θ, Q 	∈ Δ, P [Q/x]M1...Mn →∗

ΔR ∈Θ}
Δ = {λx0...xn.y | y 	= xi (0 ≤ i ≤ n) } ∪ (Θ)0

also answers our questions and it is not comparable with Φ.
The rest of the paper is devoted to the proof of the Main Theorem.

4.1 Potential Φ-Valuability and Φ-Solvability

First of all, we will introduce the weight of a terms, as measure for carrying out
some inductive proofs. The weight of a term M is an upper bound to the number
of symbols of M , to the length of its leftmost Λ-reduction sequence and to the
length of its Φ-reduction sequence according to the standard strategy [10].

Definition 12. The weight 〈 〉 : Λ −→ N is the partial function defined as
follows:

– 〈λx.M ′〉 = 1 + 〈M ′〉.
– 〈xM1...Mm〉 = 1 + 〈M1〉++ 〈Mm〉.
– 〈(λx.M0)M1. . .Mm〉 = 1 + 〈M1〉+ 〈M0[M1/x]M2. . .Mm〉.

As examples 〈x〉 = 1, 〈xx〉 = 2, 〈λx.xx〉 = 3. It is easy to check that M →Φ N
implies M [P/z]→Φ N [P/z], if P ∈ Φ.

An Operational Characterization of Strong Normalization 375

Lemma 13. (i) If M ∈ Υ then 〈M〉 ∈ N.
(ii) If M →+

Φ N and 〈N〉 ∈ N then, both 〈M〉 ∈ N and 〈N〉 < 〈M〉.
(iii) If M →+

Φ N and 〈M〉 ∈ N then, both 〈N〉 ∈ N and 〈N〉 < 〈M〉.
Proof. (i) The proof can be done by induction on the Υ stratification.
(ii) The proof is given by induction on 〈N〉.

– If M ≡ λx.P →+
Φ λx.P ′ ≡ N then 〈P ′〉 ∈ N implies 〈P ′〉 < 〈P 〉 ∈ N by

induction, hence 〈N〉 < 1 + 〈P 〉 = 〈M〉.
– Let M ≡ xM1...Mm →+

Φ xN1...Nm ≡ N (m ≥ 1) where either Mk →+
Φ

Nk or Mk ≡ Nk (1 ≤ k ≤ m). Note that there is at least one h ∈ N
such that Mh →+

Φ Nh and 〈Nh〉 < 〈Mh〉 (1 ≤ h, k ≤ m). Thus the proof
follows easily by induction.

– Let M ≡ (λz.M0)M1...Mm →+
Φ N for some m ≥ 1.

Either M →∗
Φ (λx.N0)N1...Nm →Φ N0[N1/x]N1...Nm →∗

Φ N or M →+
Φ

(λx.N0)N1...Nm ≡ N , where Mk →+
Φ Nk or Mk ≡ Nk (1 ≤ k ≤ m). In

all cases, the proof follows by induction.
(iii) The proof is given by induction on 〈M〉.

– If M ≡ λx.M0 →+
Φ λx.N0 ≡ N then 〈M0〉 ∈ N. Hence 〈N0〉 < 〈M0〉 by

induction, thus 〈N〉 = 1 + 〈N0〉 < 1 + 〈M0〉 = 〈M〉.
– Let M ≡ xM1...Mm →+

Φ xN1...Nm ≡ N (m ≥ 1), where either Mk →+
Φ

Nk or Mk ≡ Nk (1 ≤ k ≤ m). Note that there is h ∈ N such that
Mh →+

Φ Nh and 〈Nh〉 < 〈Mh〉. Thus the proof follows easily by induction.
– Let M ≡ (λz.M0)M1...Mm →+

Φ N (m ≥ 1).
Either M →∗

Φ (λx.N0)N1...Nm →Φ N0[N1/x]N1...Nm →∗
Φ N or M →+

Φ

(λx.N0)N1...Nm ≡ N , where Mk →+
Φ Nk or Mk ≡ Nk (1 ≤ k ≤ m).

If M1 →+
Φ N1 then 〈N1〉 < 〈M1〉 and the proof follows by induction.

OtherwiseM1 ≡ N1 andM0[M1/x]M2. . .Mm →+
Φ N0[M1/x]N2. . .Nm,

hence 〈M0[M1/x]M2. . .Mm〉 < 〈N0[M1/x]N2. . .Nm〉 and the proof fol-
lows immediately, in all cases. �"

It is possible to characterize the terms for which the weight is defined.

Corollary 14. 〈M〉 is defined if and only if M →∗
Φ R, for some R ∈ Υ .

Proof. ⇐ The proof follows by Lemma 13.(i) and Lemma 13.(ii).
⇒ The proof is given by induction on 〈M〉.

If M ≡ λx.M0 or M ≡ xM1...Mm (m ∈ N) then the proof follows by
induction. Let M ≡ (λz.M0)M1...Mm (m ≥ 1), so 〈M1〉 < 〈M〉 and by
induction M1 →∗

Φ S ∈ Υ .
– If M ∈ Φ-NF then M1 ∈ Υ , but M1 	∈ Φ = Υ 0 ∪ Var. Furthermore
〈M0[M1/x]M2. . .Mm〉 < 1+〈M1〉+〈M0[M1/x]M2. . .Mm〉 = 〈M〉 implies
that M0[M1/x]M2. . .Mm →∗

Φ R
′, for some R′ ∈ Υ . The proof follows by

definition of Υ .
– Otherwise M →+

Φ N , so the proof follows by Lemma 13.(iii) and by
induction. �"

If the weight of a term is defined, then the weight of all its subterms is also
defined. The next lemma proves this statement in some particular cases.

376 L. Paolini, E. Pimentel, and S. Ronchi Della Rocca

Lemma 15. (i) If M [N/z]→∗
Φ R ∈ Υ then M →∗

Φ S ∈ Υ .
(ii) If MN →∗

Φ R ∈ Υ then M →∗
Φ S ∈ Υ .

Proof. (i) We will prove that 〈M [N/z]〉 ∈ N implies 〈M〉 ∈ N by induction on
h = 〈M [N/z]〉, thus the proof follows by Corollary 14.

Let M ≡ λx.M0. 〈M0[N/z]〉 ∈ N implies 〈M0〉 < h by induction and the
proof follows. If M ≡ xM1...Mm (m ≥ 1) then, in all cases, 〈Mi[N/z]〉 < h
(1 ≤ i ≤ m) and the proof follows by induction. If M ≡ (λx.M0)M1...Mm

(m ≥ 1) then 〈M [N/z]〉 = 1 + 〈M1[N/z]〉 + 〈(M0[M1/x]M2...Mm)[N/z]〉.
Thus 〈M1〉 and 〈M0[M1/x]M2...Mm〉 are defined by induction and the proof
follows.

(ii) We will prove that 〈MN〉 ∈ N implies 〈M〉 ∈ N by induction on 〈MN〉, thus
the proof follows by Corollary 14.

If M ≡ λx.M0 then 〈MN〉 = 1+ 〈N〉+ 〈M0[N/z]〉, so 〈M0[N/z]〉 ∈ N and
the proof follows by the previous point of this Theorem and the definition
of weight. The other cases are easier. �"

Theorem 16. (i) M is potentially Φ-valuable implies that M →∗
Φ R ∈ Υ , for

some R ∈ Υ .
(ii) M is Φ-solvable implies that M is potentially Φ-valuable.

Proof. (i) M is potentially Φ-valuable means that there is a substitution s,
replacing variables by closed terms belonging to Φ, such that s(M)→∗

Φ N ∈
Φ. Since Φ ⊆ Υ , the proof follows by Lemma 15(i).

(ii) M is Φ-solvable means that there is a Φ-valuable context C[.] ≡ (λ%x.[.]) %N
such that C[M] →∗

Φ I. Since C[M] →∗
Φ I implies C[M]I...I →∗

Φ I, we can
assume ‖%x‖ ≤ ‖ %N‖ without loss of generality. Moreover C[M]→∗

Φ I implies
C[M][N/z] →∗

Φ I ≡ I[N/z] for all N ∈ Φ0, so we can also assume that
C[M] ∈ Λ0.

If %N ≡ %N0 %N1 and ‖%x‖ = ‖ %N0‖ then C[M] →∗
Φ M [%N0/%x] %N1 →∗

Φ I ∈ Φ,
thus M [%N0/%x] →∗

Φ S′ ∈ Υ 0, by Lemma 15.(ii). The proof is done, since
Υ 0 = Φ0. �"

4.2 Strong Λ-Normalization and Φ-Reduction

In order to prove both that the terms strongly Λ-normalizing are also Φ-solvable
and that terms which Φ-reduce to an element of Υ are strongly Λ-normalizing,
we will use an intersection type assignment system [1, 4] that types all and only
the strongly Λ-normalizing terms [5, 12].

Definition 17. (i) Let C be a countable set of type-constants (ranging over
α, β, ..). The set T (C) of types, ranging over by σ, τ, π, ρ, .. is inductively
defined as follows:

σ ∈ C ⇒ σ ∈ T (C)
σ, τ ∈ T (C) ⇒ (σ → τ) ∈ T (C)
σ, τ ∈ T (C) ⇒ (σ ∧ τ) ∈ T (C).

We use the convention that the constructor ∧ take precedence over →.

An Operational Characterization of Strong Normalization 377

(ii) A basis is a partial function from Var to T (C) having a finite domain of
definition. If B is a basis then B[σ/x] denotes the basis such that

B[σ/x](y) =

{
σ if y ≡ x,
B(y) otherwise.

Furthermore, the basis B such that dom(B) = {x1, ..., xn} and B(xi) = σi,
for 1 ≤ i ≤ n will be often denoted by [σ1/x1, ..., σn/xn].

(iii) The type assignment system $ is a formal system proving typing judgments
of the shape:

B $M : σ

where M is a term, σ ∈ T (C) and B is a basis.

The type assignment system $ consists of the following rules:

(var)
B[σ/x] $ x : σ

B[σ/x] $M : τ
(→I)

B $ λx.M : σ → τ

B $M : σ → τ B $ N : σ
(→E)

B $MN : τ

B $M : σ B $M : τ
(∧I)

B $M : σ ∧ τ
B $M : σ ∧ τ

(∧El)
B $M : σ

B $M : σ ∧ τ
(∧Er)

B $M : τ

If B,B′ are bases then B ∩B′ is the basis defined as follows:

(B ∩B′)(y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
B(y) ∧B′(y) if both B(y) and B′(y) are defined,
B(y) if B(y) is defined and B′(y) is undefined,
B′(y) if B′(y) is defined and B(y) is undefined,
undefined otherwise.

The type systems $ enjoys the subject-reduction property and a restricted
form of subject-expansion.

Property 18 (Subject-Reduction and Typed Subject-Expansion).

(i) If B $M : σ and M →Λ N then B $ N : σ.
(ii) Let C[.] be a context. Then B $ C[P [Q/x]] : σ and B′ $ Q : τ imply

B ∩B′ $ C[(λx.P)Q] : σ.

Proof. See [4]. �"

378 L. Paolini, E. Pimentel, and S. Ronchi Della Rocca

Lemma 19. If M ∈ Υ then B $M : σ, for some basis B and σ ∈ T (C).

Proof. The proof is given by induction on the stratification of Υ . The case M ∈
Υ0 is trivial. If M ∈ Υi+1, the cases M ≡ xM1...Mm and M ≡ λx.P follow
easily from the inductive hypothesis, using the rules of the system. If M ≡
(λx.P)QM0...Mm then both Q ∈ Υi − (Λ0 ∪ Var) and P [Q/x]M1 . . .Mm →∗

Φi

R ∈ Υi. Therefore B $ R : σ, by induction. Since the→∗
Φi

reduction reduces only
in case the argument belongs to Φi this can be typed by induction, and hence
B $ P [Q/x]M1 . . .Mm : σ by Property 18.(ii). Since B′ $ Q : τ by induction,
the proof follows by Property 18.(ii) . �"
Theorem 20. M →∗

Φ R ∈ Υ implies M is Λ-strongly normalizing.

Proof. By Lemma 19, B $ R : σ for some basis B and σ ∈ T (C). Thus B $
M : σ by Property 18.(ii). Then the proof follows from the fact that the system
characterizes the strongly Λ-normalizing terms [5, 12]. �"

4.3 Strong Λ-Normalization and Φ-Solvability

In order to prove that Λ-strong normalization implies Φ-solvability, we will use
a computability argument, which is an adaptation to intersection types of the
reducibility candidates method [3].

Let M be a term, let FV(M) ⊆ {x1, ..., xm} for some m ≥ 0 and let Oi be
λx0...xi.xi for all i ∈ N.

The meaning of P(M) will be: “there is r ∈ N such that, for all h, k ≥ r,
M [Oh/x1, ..., O

h/xm]Oh.....Oh︸ ︷︷ ︸
k

→∗
Φ O

s for some s ∈ N.”

Property 21. (i) P(M) implies M is Φ-solvable.
(ii) P(x−→M) and P(N) imply P(x−→MN).

Proof. (i) M [Oh/x1, ..., O
h/xm]Oh.....Oh︸ ︷︷ ︸

k

→∗
Φ O

s implies that

M [Oh/x1, ..., O
h/xm]Oh.....Oh︸ ︷︷ ︸

k

I.....I︸ ︷︷ ︸
s

→∗
Φ I.

(ii) Let −→M ≡M1...Mn (n ∈ N) and let FV(x−→MN) ⊆ {x1, ..., xm} (m ∈ N).

∃r0 ∈ N, ∀h0, k0 ≥ r0, ∃s0 ∈ N, x
−→
M [Oh0/x1, ..., O

h0/xm]Oh0Oh0︸ ︷︷ ︸
k0

→∗
Φ O

s0 ,

∃r1 ∈ N, ∀h1, k1 ≥ r1, ∃s1 ∈ N, N [Oh1/x1, ..., O
h1/xm]Oh1Oh1︸ ︷︷ ︸

k1

→∗
Φ O

s1 ,

by hypothesis. So the proof follows by putting r = max{r0, r1, n+ 1}. �"
The predicate P is used to define the computability predicate.

An Operational Characterization of Strong Normalization 379

Definition 22. The predicate Comp is defined by induction on types as follows:

– Comp(B,α,M) if and only if P(M), α ∈ C and B is a basis;
– Comp(B, σ → τ,M) if and only if, for all N ∈ Λ, Comp(B′, σ,N) implies
Comp(B ∩B′, τ,MN);

– Comp(B, σ ∧ τ,M) if and only if Comp(B, σ,M) and Comp(B, τ,M).

We prove that B $ M : σ implies Comp(B, σ,M), which in its turn implies
P(M). It is easy to check that Comp(B, σ,M) does not imply B $M : σ.

Lemma 23. (i) P(x−→M) implies Comp(B, σ, x−→M), for all B and σ ∈ T (C).
(ii) Comp(B, σ,M) implies P(M), for all B and σ ∈ T (C).

Proof. The proof is by mutual induction on σ. The only case which is not obvious
is when σ = τ → ρ.

(i) We will prove that Comp(B′, τ,N) implies Comp(B ∩ B′, ρ, x−→MN), thus
Comp(B, τ → ρ, x

−→
M) follows by definition. Comp(B′, τ,N) implies P(N),

by induction. But P(x−→M) by hypothesis, thus P(x−→MN) by Property 21.(ii).
(ii) P(z) holds so, in particular, Comp(B′, τ, z) holds by induction on (i). Thus

Comp(B ∩ B′, ρ,Mz) by definition of Comp and this implies P(Mz) by
induction. That is, there is r ∈ N such that, for all h, k ≥ r,

Mz[Oh/z,Oh/x1, ..., O
h/xm]Oh.....Oh︸ ︷︷ ︸

k

→∗
Φ O

s

where s ∈ N, Oh ≡ λx0...xh.xh and FV(Mz) ⊆ {z, x1, ..., xm} (m ≥ 0). So,
if r′ = r + 1, for all h, k ≥ r′, M [Oh/x1, ..., O

h/xm]Oh.....Oh︸ ︷︷ ︸
k

→∗
Φ Os, for

some s. Hence P(M) holds. �"
Property 24. Let Q be such that P(Q).

If Comp(B, σ, P [Q/x]−→Q) then Comp(B, σ, (λx.P)Q−→Q).

Proof. The proof is by induction on the structure of types.
Assume σ ∈ C. Note that P(Q) and Lemma 15.(i) imply

∃r0 ∈ N, ∀h0, k0 ≥ r0, Q[Oh0/x1, ..., O
h0/xm]→∗

Φ M ∈ Υ 0 = Φ0.

Moreover, Comp(B, σ, P [Q/x]−→Q) implies P(P [Q/x]−→Q) by definition, thus

∃r1, ∀h1, k1 ≥ r1, ∃s1, (P [Q/x]−→Q)[Oh1/x1, ..., O
h1/xm]Oh1Oh1︸ ︷︷ ︸

k1

→∗
Φ O

s1 .

Let r = max{r0, r1}. Then, ∀h,k ≥ r, ((λx.P)Q−→Q)[Oh/x1, ..., O
h/xm]Oh.....Oh︸ ︷︷ ︸

k

=Φ (P [Q/x]−→Q)[Oh/x1, ..., O
h/xm]Oh.....Oh︸ ︷︷ ︸

k

→∗
Φ O

s, for some s ∈ N.

Hence P(Q) and σ ∈ C imply Comp(B, σ, (λx.P)Q−→Q).

380 L. Paolini, E. Pimentel, and S. Ronchi Della Rocca

Let σ = τ → ρ. Thus Comp(B, τ → ρ, P [Q/x]−→Q) implies that ∀N such that
Comp(B′, τ,N), Comp(B ∩ B′, ρ, P [Q/x]−→QN) holds. Therefore by induction,
Comp(B ∩B′, ρ, (λx.P)Q−→QN) and hence Comp(B ∩B′, τ → ρ, (λx.P)Q−→Q) by
definition of Comp. The case σ = τ ∧ ρ is trivial. �"
Lemma 25. Let FV(M) ⊆ {x1, ..., xn} and B(xi) = σi (1 ≤ i ≤ n).
If Comp(Bi, σi, Ni) (1 ≤ i ≤ n) and B $M : τ , then

Comp(B1 ∩ ... ∩Bn, τ,M [N1/x1, ..., Nn/xn]).

Proof. By induction on the derivation d of B $M : τ . The most interesting case
is when the last rule applied on d is (→ I). Let M ≡ λx.M ′, τ = μ→ ρ and

B[μ/x] $M ′ : ρ
(→I)

B $ λx.M ′ : μ→ ρ

Suppose that Comp(B′, μ,N) holds. Then P(N) holds by Lemma 23.(ii). Thus,
by induction

Comp(B′ ∩B1 ∩ ... ∩Bn, ρ,M
′[N1/x1, ..., Nn/xn, N/x])

and Comp(B′ ∩ B1 ∩ ... ∩ Bn, ρ, (λx.M ′[N1/x1, ..., Nn/xn])N) by Property 24.
Hence, Comp(B1 ∩ ...∩Bn, μ→ ρ,M [N1/x1, ..., Nn/xn]) by definition of Comp.
All other cases follow directly from the inductive hypothesis. �"
Theorem 26. M is Λ-strongly normalizing implies that M is Φ-solvable.

Proof. In [12, 5] it is proved that the system $ characterizes the strongly Λ-
normalizing terms. So, let B $ M : σ, FV(M) ⊆ {x1, ..., xn} and B(xi) = σi.
Since Comp(B, σi, xi) (1 ≤ i ≤ n) by Lemma 23.(i), then Comp(B, σ,M) by
Lemma 25. Thus P(M) by Lemma 23.(ii). The proof follows by Property 21.(i).

�"

References

1. van Bakel S., Intersection type assignment systems, Theoretical Computer Science,
38(2):246-269, Elsevier, 1997.

2. Barendregt H.P., The Lambda Calculus: its syntax and semantics, N.103 in Studies
in Logic and the Foundations of Mathematics (revised edition), North-Holland,
Amsterdam, 1994.

3. Coppo M., Dezani-Ciancaglini M., Zacchi M., Type Theories, Normal Forms and
D∞ Lambda Models, Information and Control, 72, 2, 1987, pp.85-116.

4. Coppo M., Dezani-Ciancaglini M., An Extension of the Basic Functionality The-
ory for the λ-Calculus Notre-Dame Journal of Formal Logic, 21(4), pp. 685-693,
October 1980.

5. Krivine J.L., Lambda-Calculus, Types and Models, Ellis Horwood Series in Com-
puters and Their Applications. 1993.

An Operational Characterization of Strong Normalization 381

6. Landin P.J., The mechanical evaluation of expressions, Computer Journal, 1964.
7. Paolini L.,Call-by-value separability and computability, ICTCS’01, Restivo, Ronchi

Della Rocca, and Roversi, eds, LNCS 2202, Springer-Verlag, 74-89.
8. Paolini L., Pimentel E., Ronchi Della Rocca S. Lazy strong normalization, ITRS’04,

ENTCS vol. 136, pp. 103–116, 2005.
9. Paolini L., Ronchi Della Rocca S., Call-by-value Solvability, Theoretical Informatics

and Applications, 33(6), 507-534, 1999.
10. Paolini L., Ronchi Della Rocca S., The Parametric Parameter Passing λ-calculus,

Information and Computation, 189(1):87-106, 2004.
11. Plotkin G.D., Call-by-name, call-by-value and the λ-calculus, Theoretical Com-

puter Science (1) 125-159, 1975.
12. Pottinger G., A type assignment for the strongly normalizable λ-terms, in To H.B.

Curry: essays on combinatory logic, lambda calculus and formalism, pp.561-577,
Academic Press, London, 1980.

13. Ronchi Della Rocca S., Paolini L., The Parametric λ-calculus. A meta-model for
computation, Texts in Theoretical Computer Science: an EATCS Series, Springer-
Verlag, Berlin, 2004.

On the Confluence of λ-Calculus
with Conditional Rewriting

Frédéric Blanqui1, Claude Kirchner1, and Colin Riba2

1 INRIA & LORIA�

2 INPL & LORIA

Abstract. The confluence of untyped λ-calculus with unconditional re-
writing has already been studied in various directions. In this paper, we
investigate the confluence of λ-calculus with conditional rewriting and
provide general results in two directions. First, when conditional rules are
algebraic. This extends results of Müller and Dougherty for unconditional
rewriting. Two cases are considered, whether beta-reduction is allowed
or not in the evaluation of conditions. Moreover, Dougherty’s result is
improved from the assumption of strongly normalizing β-reduction to
weakly normalizing β-reduction. We also provide examples showing that
outside these conditions, modularity of confluence is difficult to achieve.
Second, we go beyond the algebraic framework and get new confluence
results using a restricted notion of orthogonality that takes advantage of
the conditional part of rewrite rules.

1 Introduction

Rewriting [10] and λ-calculus [3] are two universal computation models which
are both used, with their own advantages, in programming language design and
implementation, as well as for the foundation of logical frameworks and proof
assistants. Among other things, λ-calculus allows to manipulate abstractions and
higher-order variables, while rewriting is traditionally well suited for defining
functions over data-types and for dealing with equality.

Starting from Klop’s work on higher-order rewriting and because of their
complementarity, many frameworks have been designed with a view to integrate
these two formalisms. This integration has been handled either by enriching first-
order rewriting with higher-order capabilities, by adding to λ-calculus algebraic
features or, more recently, by a uniform integration of both paradigms. In the
first case, we find the works on combinatory reduction systems [17] and other
higher-order rewriting systems [20] each of them subsumed by van Oostrom and
van Raamsdonk’s axiomatization of HORS [23]. The second case concerns the
more atomic combination of λ-calculus with term rewriting [15, 5] and the last
category the rewriting calculus [9, 4].

Despite this strong interest in the combination of both concepts, few
works have considered conditional higher-order rewriting in λ-calculus. This is of
� UMR 7503 CNRS-INPL-INRIA-Nancy2-UHP, Campus Scientifique, BP 239, 54506

Vandoeuvre-lès-Nancy Cedex, France.

L. Aceto and A. Ingólfsdóttir (Eds.): FOSSACS 2006, LNCS 3921, pp. 382–397, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

On the Confluence of λ-Calculus with Conditional Rewriting 383

particular interest for both computation and deduction. Indeed, conditional
rewriting appears to be very convenient when programming with rewrite rules
and its combination with higher-order features provides a quite agile background
for the combination of algebraic and functional programming. This is also of
main use in proof assistants based on the de Bruijn-Curry-Howard isomorphism
where, as emphasized in deduction modulo [13, 5], rewriting capabilities for defin-
ing functions and proving equalities automatically is clearly of great interest
when making large proof developments. Furthermore, while many confluence
proofs often rely on termination and local confluence, in some cases, conflu-
ence may be necessary for proving termination (e.g. with type-level rewriting
or strong elimination [5]). It is therefore of crucial interest to have also crite-
ria for the preservation of confluence when combining conditional rewriting and
β-reduction without assuming the termination of the combined relation. In par-
ticular, assuming the termination of just one of the two relations is already of
interest.

The earliest work on preservation of confluence when combining typed λ-
calculus and first-order rewriting concerns the simple type discipline [7] and the
result has been extended to polymorphic λ-calculus in [8]. Concerning untyped
λ-calculus, the result was shown in [19] for left-linear rewriting. It is extended
as a modularity result for higher order rewriting in [23]. In [12], it is shown that
left-linearity is not necessary provided that terms considered are strongly β-
normalizable and are well-formed with respect to the declared arity of symbols,
a property that we call here arity-compliance. Higher-order conditional rewriting
is studied in [1] and the confluence result relies on joinability of critical pairs,
hence on termination of the combined rewrite relation. Another form of higher-
order conditional rewriting is considered in [22]. It concerns confluence results
for a very general form of orthogonal systems. These systems are related to those
presented in Sect. 5. If modularity properties have been investigated in the pure
first-order conditional case (e.g. [18, 14]), to the best of our knowledge, there
was up to now no result on preservation of confluence when β-reduction is added
to conditional rewriting.

In this paper, we study the confluence property of the combination of β-
reduction with a confluent conditional rewrite system. This of course should
rely on a clear understanding of the conditional rewrite relation under use and,
as usual, the ways the matching is performed and instantiated conditions are
decided are crucial.

So, we start from λ-terms with curried constants and among them we dis-
tinguish applicative terms that contain no abstraction and algebraic terms that
furthermore have no active variables, i.e. variables occurring in the left-hand
side of an application. In this paper, we always consider algebraic left-hand
sides. So, rewriting does not use higher-order pattern-matching but just syntac-
tic matching. Furthermore, we consider two rewrite relations induced by a set
of conditional rules.→A is the conditional rewrite relation where the conditions
are checked without considering β-reduction and →B is the conditional rewrite
relation where β-reduction is allowed when evaluating the conditions. Then,

384 F. Blanqui, C. Kirchner, and C. Riba

we study the confluence of the relations →β∪A and →β∪B, the respective
combinations of →A and →B with β-reduction. This is made precise in Sect. 2
and accompanied of relevant examples.

We know that adding β-reduction to a confluent non left-linear algebraic
rewriting system results in a non confluent relation. Of course, with conditional
rewriting, non-linearity can be simulated by linear systems. Extending the re-
sult of Müller [19], we prove in Sect. 3 that confluence of →β∪A follows from
confluence of →A when conditional rules are applicative, left-linear and do not
allow their condition to test for equality of open terms. Such rules are called
semi-closed. We also adapt to conditional rewriting the method of Dougherty
[12] and extend it to show that for a large set of weakly β-normalizing terms, the
left-linearity and semi-closed hypotheses can be dropped provided the rules are
algebraic and terms are arity-compliant.

We then turn in Sect. 4 to the confluence modularity of →β∪B for rules
with algebraic right-hand side. In this case, we show that arity-compliance is
a sufficient condition to deduce confluence of →β∪B from confluence of →β∪A
(hence of→A). This is done first for left-linear semi-closed systems, a restriction
that we also show to be superfluous when considering only weakly β-normalizing
terms.

The case of non-algebraic rules is handled in Sect. 5. Such rules can contain
active variables and abstractions in right-hand sides or in conditions (but still
not in left-hand sides). In this case, the confluence of →β∪B no more follows
from the confluence of →A nor of →β∪A. We show that the confluence of →β∪B
holds under a syntactic condition, called orthonormality ensuring that if two
rules overlap at a non-variable position, then their conditions cannot be both
satisfied. An orthonormal system is therefore orthogonal, and the confluence of
→B∪β follows using usual proof methods.

We assume some familiarity with λ-calculus [3] and conditional rewriting
[11, 21] but we recall the main notations in the next section. By lack of place,
the main proofs are only sketched here. They are detailed in [6].

2 General Definitions

This section introduces the main notions of the paper. We use λ-terms with
curried constants.

Definition 1 (Terms). We assume given a set F of function symbols and an
infinite set X of variables. The set T of terms is inductively defined as follows:

t, u ∈ T ::= f ∈ F | x ∈ X | tu | λx.t
A term is applicative if it contains no abstraction and algebraic (“not variable-
applying” in [19]) if it furthermore contains no subterm of the form xt with
x ∈ X . We use t to denote a sequence of terms t1, . . . , tn of length |t| = n.

As usual, terms are considered modulo α-conversion. Let FV(t) be the set of
variables free in t. We denote by tσ the capture-avoiding application of the

On the Confluence of λ-Calculus with Conditional Rewriting 385

substitution σ to the term t. By {x �→ t}, we denote the substitution σ such
that xiσ = ti. As usual, positions in a term are strings over {1, 2}. The subterm
of t at position p is denoted by t|p. If t is applicative, the replacement of t|p
by some term u is denoted by t[u]p. A context is a term with exactly one free
occurrence of a distinguished variable []. If C is an applicative context then C[t]
stands for C[t]p, where p is the position of [] in C.

A rewrite relation is a binary relation on terms → which is closed by term
formation rules : if s → t then λx.s → λx.t, su → tu and us → ut ; and by
substitution : s → t implies sσ → tσ. Its inverse is denoted by ←; its reflexive
closure by →=; its reflexive and transitive closure by →∗; and its reflexive,
symmetric and transitive closure by ↔∗. The joinability relation is ↓ =→∗←∗.
The β-reduction relation is the smallest rewrite relation→β such that (λx.s)t →β

s{x �→ t}. A term t →-rewrites (or →-reduces) to u if t→∗ u (we omit → when
clear from the context). We write →R∪S for the union of the relations →R and
→S . We call parallel rewrite relation any reflexive rewrite relation � closed by
parallel application : [s� s′ & t� t′]⇒ st� s′t′.

We now introduce conditional rewriting. Let us emphasize that we consider
first-order syntactical matching.

Definition 2 (Conditional rewriting). A conditional rewrite system R is a
set of conditional rewrite rules1:

d1 = c1 ∧ · · · ∧ dn = cn ⊃ l → r

where l is a non-variable algebraic term, di, ci and r are arbitrary terms and
FV(di, ci, r) ⊆ FV(l). A system is right-applicative (resp. right-algebraic) if
all its right-hand sides are applicative (resp. algebraic). A system is applica-
tive (resp. algebraic) if all its rules are made of applicative (resp. algebraic)
terms.

The join rewrite relation induced by R is usually defined as →A=
⋃

i≥0 →Ai

[21] where →A0= ∅ and for all i ≥ 0, →Ai+1 is the smallest rewrite relation such
that for all rule d = c ⊃ l → r ∈ R, for all substitution σ, if dσ ↓Ai cσ then
lσ →Ai+1 rσ. This relation is sometimes called the standard conditional rewrite
relation.

We define the β-standard rewrite relation induced by R as →B=
⋃

i≥0 →Bi

where →B0= ∅ and for all i ≥ 0, →Bi+1 is the smallest rewrite relation such that
for all rule d = c ⊃ l→ r ∈ R, for all σ, if dσ ↓Bi∪β cσ then lσ →Bi+1 rσ.

If →Ai is confluent for all i ≥ 0, we say that →A is level confluent. It is
shallow confluent when →∗

Ai
and →∗

Aj
commute for all i, j ≥ 0.

Other forms of conditional rewriting appear in the literature [11]. Natural rewrit-
ing is obtained by taking ↔∗

A instead of ↓A in the evaluation of conditions. Ori-
ented rewriting is obtained by taking →∗

A. A particular case of both standard
and oriented rewriting is normal rewriting, in which the terms c are closed and
in →A-normal form.
1 The symbol = does not need to be interpreted by a symmetric relation.

386 F. Blanqui, C. Kirchner, and C. Riba

Examples. We begin by some basic functions on lists.

car (x :: l) → x
car [] → err

cdr (x :: l) → l
cdr [] → err

get l 0 → car l
get l (s n) → get (cdr l) n

len [] → 0
len (x :: l) → s (len l)

filter p [] → []
p x = tt ⊃ filter p (x :: l)→ x :: (filter p l)
p x = ff ⊃ filter p (x :: l)→ filter p l

Define > with > (sx) 0 → tt, > 0 y → ff and > (sx) (s y) → > x y. We
can now define app such that app f n l applies f to the nth element of l. It uses
ap as an auxiliary function:

> (len l) n = tt ⊃ app f n l → ap f n l
> (len l) n = ff ⊃ app f n l → err

ap f 0 l → f (car l) :: cdr l
ap f (s n) l → car l :: ap f n (cdr l)

We represent first-order terms as trees with nodes nd y l where y is intended to
be a label and l the list of sons.

Positions are lists of integers and occ u t tests if u is an occurrence of t. We
define it with occ [] t → tt and

> (len l) x = ff ⊃ occ (x :: o) (nd y l) → ff
> (len l) x = tt ⊃ occ (x :: o) (nd y l) → occ o (get l x)

To finish, rep t o s replaces by s the subterm of t at occurrence o. Its rules are
occ u t = tt ⊃ rep t o s → re t o s and occ u t = ff ⊃ rep t o s → err. The rules
re s [] t → s and re (nd y l) (x :: o) s → nd y (app (λz.re z o s) x l) define the
function re.

The system Tree that consists of rules defining car cdr, get, len and occ is
algebraic. Rules of app and ap are right-applicatives and those for filter contain
in their conditions the variable p in active position. This definition of re involves a
λ-abstraction in a right hand side. In Sect. 5, we prove confluence of the relation
→β∪B induced by the whole system.

3 Confluence of →β with Conditional Rewriting

In this section, we study the confluence of →β∪A. The simplest result is the
preservation of confluence when R can not check arbitrary equalities (Sect. 3.1).
In Sect. 3.2, we consider more general systems and prove that the confluence of
→β∪A follows from the confluence of →A on terms having a β-normal form of a
peculiar kind.

In [19], Müller shows that the union of β-reduction and the rewrite relation
→A induced by a left-linear non-conditional applicative system is confluent as
soon as →A is. This result is generalized as modularity result for higher-order
rewriting in [23].

The importance of left-linearity is known since Klop [16]. We exemplify it with
Breazu-Tannen’s counter-example [7]. The rules− x x → 0 and−(s x) x → s 0

On the Confluence of λ-Calculus with Conditional Rewriting 387

are optimization rules for minus. Together with usual rules defining this function,
they induce a confluent rewrite relation. With the fixpoint combinators of the
λ-calculus, we can build a term Y →∗

β s Y . This term makes the application of
the two rules above possible on β-reducts of − Y Y , leading to an unjoinable
peak : 0←A − Y Y →∗

β − (s Y) Y →A s 0.
With conditional rewriting, we do not need non-linear matching to distinguish

− (s x) x from − x x, since this can be done within the conditions. The previous
system can be encoded into a left-linear conditional system with the rules x =
y ⊃ − x y → 0 and sx = y ⊃ − x y → s 0. Of course, the relation →A is still
confluent. However, the same unjoinable peak starting from − Y Y makes fail
the confluence of →β∪A.

There are two ways to overcome the problem: limiting the power of rewriting
or limiting the power of β-reduction. The first way is treated in Sect. 3.1, in which
we limit the comparison power of conditional rewriting by restricting ourselves
to left-linear and semi-closed systems. This can also be seen as a way, from
the point of view of rewriting, to isolate the effect of fixpoints: since two distinct
occurrences of Y can not be compared, they can be unfolded independently from
each other.

Then, in Sect. 3.2, we limit the power of →β by restricting ourselves to sets
of terms having a special kind of β-normal-form. This amounts to only consider
terms in which fixpoints do not have the ability to modify the result of →β∪A.
In fact, it is sufficient that they do not modify the result of →β alone. More
precisely, fixpoints are allowed when they are eliminated by head β-reductions.

3.1 Confluence of Left-Linear Semi-closed Systems

We now introduce semi-closed systems.

Definition 3 (Semi-closed systems). A system is semi-closed if in every rule
d = c ⊃ l→ r, each ci is algebraic and closed.

The system Tree of Sect. 2 is left-linear and semi-closed. Given a semi-closed
left-linear system, we show that confluence of →β∪A follows from confluence of
→A. This follows from a weak commutation of →A and Tait and Martin-Löf
β-parallel reduction relation �β, defined as the smallest parallel rewrite relation
(Sect. 2) closed by the rule (beta) [3]:

(beta)
s�β s

′ t�β t
′

(λx.s)t �β s′{x �→ t′}
We will use some well known properties of �β . If σ �β σ

′ then sσ �β sσ
′; this

is the one-step reduction of parallel redexes. We can also simulate β-reduction:
→β⊆ �β ⊆→∗

β. And third, �β has the diamond property: �β�β ⊆ �β�β . This
corresponds to the fact that any complete development of →β can be done in
one �β-step.

Müller [19] uses a weaker parallelization of →β : its relation is defined w.r.t.
the applicative structure of terms only and does not reduces in one step nested

388 F. Blanqui, C. Kirchner, and C. Riba

β-redexes. Consequently, it does not enjoy the diamond property on which we
rely in Sect. 4. Nested parallelizations (corresponding to complete developments)
are already used in [23] for their confluence proof of HORS. However, our method
inherits more from [19] than [23], as we use complete developments of →β only,
whereas complete developments of →β and of →A are used for the modularity
result of [23].

Proposition 4. Let R be a semi-closed, left-linear and right-applicative system
and assume that →∗

Ai−1
commutes with →∗

β. For any rule d = c ⊃ l → r ∈ R
and substitution σ, if u�β lσ →Ai rσ, then there exists σ′ such that u = lσ′ →Ai

rσ′ �β rσ.

Proof Sketch. Since l is algebraic and linear, there is a substitution σ′ such that
σ �β σ

′ and u = lσ′. It follows that rσ �β rσ
′ and it remains to show that

dσ′ ↓Ai−1 cσ′. Since lσ →Ai rσ, there is v such that dσ →∗
Ai−1

v ←∗
Ai−1

cσ.
Thus, dσ �∗

β dσ′ and, by assumption, there is v′ such that dσ′ →∗
Ai−1

v′ �∗
β v.

Since c is algebraic and closed, we have cσ = c and v in β-normal form. Hence,
v′ = v and dσ′ ↓Ai−1 c. �

Lemma 5 (Commutation of →A and �β). If R is a semi-closed left-linear
right-applicative system, then �∗

β →∗
A ⊆ →∗

A �∗
β.

Proof Sketch. The result follows from the commutation of →∗
Ai

and �∗
β for all

i ≥ 0. The case i = 0 is trivial. For i > 0, there are three steps. First, we show by
induction on the definition of the parallel rewrite relation �β that if u�βs→Ai t
then there exists v such that u →∗

Ai
v �β t. If u is s this is obvious. If s is an

abstraction, the result follows from induction hypothesis (IH) and the context
closure of →Ai (CC). If s = s1s2, there are two cases: if t = t1t2 with sk →=

Ai
tk

then we conclude by (IH) and (CC). Otherwise, we use Prop. 4.
Second, use induction on the number of Ai-steps to show that �β →∗

Ai
⊆

→∗
Ai

�β. Finally, to conclude that �∗
β →∗

Ai
⊆ →∗

Ai
�∗

β, use an induction on the
number of �β-steps. �
A direct application of Hindley-Rosen’s Lemma offers then the preservation of
confluence.

Theorem 6 (Confluence of →β∪A). Let R be a semi-closed left-linear right-
applicative system. If →A is confluent then so is →β∪A.

For the system Tree of Sect. 2, the relation →A is confluent. As the rules are
left-linear and semi-closed, Theorem 6 applies and →β∪A is confluent.

3.2 Confluence on Weakly β-Normalizing Terms

We now turn to the problem of dropping the left-linearity and semi-closure
conditions.

As seen above, fixpoint combinators make the commutation of→∗
β and→∗

A fail
when rewriting involves equality tests between open terms. When using weakly

On the Confluence of λ-Calculus with Conditional Rewriting 389

β-normalizing terms, we can project rewriting on β-normal forms (βnf), thus
eliminating fixpoints as soon as they are not significant for the reduction.

Hence, we seek to obtain βnf(s)→∗
A βnf(t) whenever s→∗

β∪A t. This requires
three important properties.

First, β-normal forms should be stable by rewriting. Hence, we assume that
right-hand sides are algebraic. Moreover, we re-introduce some information from
the algebraic framework, giving maximal arities to function symbols in F .

Second, we need normalizing β-derivations to commute with rewriting. This
follows from using the leftmost-outermost strategy of λ-calculus [3].

Finally, we need rule conditions to be algebraic. Indeed, consider the rule
x b = y ⊃ f x y → a that contains an non-algebraic condition. The relation →A
is confluent but a←∗

β∪A f (λx.x) ((λz.z)(λx.x) b) →∗
β f (λx.x) b is an unjoinable

critical peak.

Definition 7 (Arity-compliance). We assume that every symbol f ∈ F is
equipped with an arity αf ≥ 0. A term is arity-compliant if it contains no sub-
term of the form ft with f ∈ F and |t| > αf . A rule d = c ⊃ l → r is
almost arity-compliant if l and r are arity-compliant and l is of the form f l with
|l| = αf . A rule is arity-compliant if, furthermore, d and c are arity-compliant.
Let U be the set of terms having an arity-compliant β-normal form.

Remark that a higher-order rule (with active variables and abstractions) can be
arity-compliant.

Arity-compliance is useful because it prevents collapsing rules from creating
β-redexes. For example, the rule id x → x forces the arity of id to be 1. Hence
the term id (λx.x) y is not arity-compliant. Moreover it is a β-normal form that
→A-reduces to the β-redex (λx.x)y. It is then easy to build an arity-uncompliant
term that makes the preservation of confluence to fail. Let Y = ωsωs with ωs =
λx.sxx. The term − (idωsωs) (idωsωs) is an arity-uncompliant β-normal form.
Reducing the id’s leads to −Y Y which is the head of an unjoinable critical peak.

However, we do not assume that every term at hand is arity-compliant. Indeed,
a term that has an arity-compliant β-normal form does not need to be arity-
compliant itself. More precisely, for a weakly β-normalizing term, the leftmost-
outermost strategy (for→β) never evaluates subterms that are not β-normalizing
and it follows that such subterms may be arity-uncompliant without disturbing
the projection on β-normal forms.

The point is the well-foundedness of the leftmost-outermost strategy for →β

on weakly β-normalizing terms [3]. This strategy can be described by means of
head β-reductions, that are easily shown to commute with (parallel) conditional
rewriting. Any λ-term can be written λx.v a0 a1 . . . an where either v ∈ X ∪F (a)
or v is a λ-abstraction (b). We denote by →h the head β-step λx.(λy.b)a0a→h

λx.b{y �→ a0}a. Let s 4 t iff either s is of the form (b) and s →h t, or s is of
the form (a) with n ≥ 1 and t = ai for some i ≥ 0. In the latter case, the free
variables of t can be bound in s. Hence, t can be a subterm of a term α-equivalent
to s ; for instance λx.fx 4 y for all y ∈ X .

390 F. Blanqui, C. Kirchner, and C. Riba

Lemma 8. Let WN be the set of weakly β-normalizing terms ; (i) if s ∈ WN
and s 4 t then t ∈ WN , (ii) 4 is well-founded on WN .

It follows that we can reason by well-founded induction on 4. For all i ≥ 0,
we use a nested parallelization of →Ai . It corresponds to the one used in [23],
that can be seen as a generalization of Tait and Martin-Löf parallel relation.
As for �β and →β , in the orthogonal case, a complete development of →Ai can
be simulated by one step �Ai -reduction. This relation is also an adaptation to
conditional rewriting of the parallelization used in [12].

Definition 9 (Conditional nested parallel relations). For all i ≥ 0, let
�Ai be the smallest parallel rewrite relation closed by:

(rule)
d = c ⊃ l → r ∈ R lσ →Ai rσ σ �Ai θ

lσ �Ai rθ

Recall that lσ →Ai rσ is ensured by dσ ↓Ai−1 cσ. These relations enjoy some
nice properties: (1) →Ai ⊆ �Ai ⊆ →∗

Ai
, (2) s�Ai t ⇒ u{x �→ s}�Ai u{x �→ t}

and (3) [s�Ai t & u�Ai v] ⇒ u{x �→ s}�Ai v{x �→ t}. The last one implies
commutation of �Ai and →h. Commutation of rewriting with head β-reduction
has already been coined in [2]. We now turn to the main lemma.

Lemma 10. Let R be an arity-compliant algebraic system. If s ∈ U and s→∗
β∪A

t, then t ∈ U and βnf(s)→∗
A βnf(t).

Proof Sketch. We show by induction on i the property for →∗
β∪Ai

. We denote
by (I) the corresponding induction hypothesis. The case i = 0 is trivial. Assume
that i > 0. An induction on the number of →β∪Ai-steps leads us to prove that
βnf(s)�Ai βnf(t) whenever s�Ai t and s has an arity-compliant β-normal form.
We reason by induction on 4.

First (1), assume that s is of the form (a). If no rule is reduced at its head, the
result follows from induction hypothesis on 4. Otherwise, there is a rule d = c ⊃
l→ r such that s = λx.lσa and t = λx.rθb with lσ�Airθ and dσ ↓Ai−1 cσ. Since
l is algebraic, βnf(s) is of the form λx.lσ′a′ where σ′ = βnf(σ) and a′ = βnf(a).
Since βnf(s) is arity-compliant, a′ = ∅, hence a = ∅ and s = λx.lσ. Therefore,
because lσ �Ai rθ, we have b = ∅ and t = λx.rθ. It remains to show that t has
an arity-compliant normal form and that βnf(s) = λx.lσ′ �Ai βnf(t). Because l
is algebraic, its variables are ≺+ l. We can then apply induction hypothesis on
σ �Ai θ. It follows that θ has an arity-compliant normal form θ′ with σ′ �Ai θ

′.
Since r is algebraic, λx.rθ′ is the (arity-compliant) β-normal form of t. Hence
it remains to show that lσ′ �Ai rθ

′. Because σ′ �Ai θ
′, it suffices to prove that

lσ′ →Ai rσ
′. Thus, we are done if we show that dσ′ ↓Ai−1 cσ′. Since d and c

are algebraic, βnf(dσ) = dσ′ and βnf(cσ) = cσ′. Now, since d is algebraic and
arity-compliant and σ′ is arity compliant, dσ′ is arity-compliant. The same holds
for cσ′. Hence we conclude by applying induction hypothesis (I) on dσ ↓Ai−1 cσ.

Second (2), when s is of the form (b) we head β-normalize it and obtain a term
s′ of the form (a) having an arity-compliant β-normal form. Using commutation

On the Confluence of λ-Calculus with Conditional Rewriting 391

of �Ai and →h, we obtain a term t′ such that s′ �Ai t
′. Since s 4+ s′, we can

reason as in case (1). �

The preservation of confluence is a direct consequence of the projection on β-
normal forms.

Theorem 11. Let R be an arity-compliant algebraic system such that →A is
confluent. Then, →β∪A is confluent on U .

Comparison with Dougherty’s work. This section is an extension of [12]. We give
a further exploration of the idea that preservation of confluence, when using
hypothesis on →β , should be independent from any typing discipline for the
λ-calculus.

Moreover, we extend its result in three ways. First, we adapt it to conditional
rewriting. Second, we allow nested symbols in lhs to be applied to less argu-
ments than their arity. And third, we use weakly β-normalizing terms whose
normal forms are arity-compliant ; whereas Dougherty uses the set of strongly
normalizing arity-compliant terms which is closed by reduction.

4 Using →β in the Evaluation of Conditions

The goal of this section is to give conditions on R to deduce confluence of
→β∪B from confluence of→A. We achieve this by exhibiting two different criteria
ensuring that

→∗
β∪B ⊆ →∗

β→∗
A←∗

β . (")

The first case concerns left-linear and semi-closed systems. This holds only
on some sets of terms that, after Dougherty [12], we call R-stable, although
our definition of stability does not require strong β-normalization (see Sect. 3.2
and Def. 12). This is an extra hypothesis compared to the result of Sect. 3.1.
The second case is a direct extension of Lemma 10 to →β∪B. In both cases, we
assume the rules to be algebraic and arity-compliant. We are then able to obtain
confluence of →β∪B since, in each case, our assumptions ensure that the results
of Sect. 3 applies, hence that →β∪A is confluent whenever →A is.

It is important to underline the meaning of ("). Given an arity-compliant
algebraic rule d = c ⊃ l → r, every β-redex occurring in dσ or cσ also occurs
in lσ. Then, (") means that there is a β-reduction starting from lσ that reduces
these redexes and produce a substitution σ′ such that lσ →∗

β lσ
′ →A rσ′ ←∗

β rσ.
In other words, if the conditions are satisfied with σ and→β∪B (i.e. dσ ↓β∪B cσ),
then they are satisfied with σ′ and →A (i.e. dσ′ ↓A cσ′).

We now give some examples of non arity-compliant or non algebraic rules in
which, at the same time, (") fails and →β∪B is not confluent whereas →β∪A for
(1), (3), (4) and at least →A for (2) is.

(1) gx→ xc gx = d ⊃ fx→ a fx→ b
(2) xc = d ⊃ fx→ a fx→ b
(3) hx→ x hxc = d ⊃ fx→ a fx→ b
(4) hxy → gxy gx→ x hxc = d ⊃ fx→ a fx→ b

392 F. Blanqui, C. Kirchner, and C. Riba

The first and second examples respectively contain a rule with a non algebraic
right-hand side and a rule with a non algebraic condition. Examples (3) and (4)
use non arity-compliant terms, in the conditional part and in the right-hand side
of a rule respectively. For these four examples, the step f(λx.d) →B a is not in
→∗

β→∗
A←∗

β and a←B f(λx.d)→B b is an unjoinable peak.
However, (") is by no means a necessary condition ensuring that →β∪B is

confluent when →β∪A so is. In the above examples, confluence of →β∪B can be
recovered when adding appropriate rules, yet not restoring (").

As we are interested in deducing the confluence of →β∪B from the confluence
of →A, it is more convenient to take in Def. 2 →B=

⋃
i≥0 →Bi with →B0=→A

instead of →B0= ∅ (this does not change →B since →A⊆→B).

4.1 Confluence of Left-Linear Systems

In this paragraph, we prove (") provided that rules are arity-compliant, algebraic,
left-linear and semi-closed. This inclusion is shown on R-stable sets of terms.

Definition 12 (R-stable sets). Let R be a set of rules. A set S is almost
R-stable if it contains only arity-compliant terms, is stable by subterm and β-
reduction, and C[rσ] ∈ S whenever C[lσ] ∈ S and d = c ⊃ l → r ∈ R.
An almost R-stable set S is R-stable if dσ, cσ ∈ S whenever C[lσ] ∈ S and
d = c ⊃ l→ r ∈ R.

This includes the set of strongly →β∪A-normalizable arity-compliant terms and
any of its subset closed by subterm and reduction, by using a simple type disci-
pline for instance.

The inclusion (") is proved by induction on the stratification of →B with
→B0=→A. The base case corresponds to →∗

β∪A ⊆ →∗
β→∗

A←∗
β , which does not

require rule conditions to be algebraic nor arity-compliant.
The previous examples show however that this may fail in presence of arity-

uncompliant or non-algebraic right-hand sides. Note that the result is proved
only on almost R-stable sets of terms. Note also that a set containing a term
reducible by the first rule of example (4) above is obviously not stable. Finally,
note that the β-expansion steps are needed because rules can be duplicating.

Lemma 13. Let R be a semi-closed left-linear right-algebraic system. On any
almost R-stable set of terms, →∗

β∪A ⊆ →∗
β→∗

A←∗
β.

Proof Sketch. The proof is in four steps. We begin (1) to show that →A �β ⊆
�β →∗

A �β , reasoning by cases on the step �β. This inclusion relies on an
important fact of algebraic terms: if s is algebraic and sσ �β v then v �β sσ

′

with σ �∗
β σ

′. From (1), it follows that (2) →∗
A �β ⊆ �β →∗

A �∗
β, by induction

on the number of→A-steps. Then (3), we obtain→∗
A �∗

β ⊆ �∗
β →∗

A �∗
β using an

induction on the number of �β-steps and the diamond property of �β . Finally
(4), we deduce that (�β∪ →A)∗ ⊆ �∗

β →∗
A �∗

β by induction on the length of
(�β∪ →A)∗. �
We now turn to the main result of this subsection. As seen in the previous
examples, rules have to be algebraic and arity-compliant.

On the Confluence of λ-Calculus with Conditional Rewriting 393

Lemma 14. Let R be a semi-closed left-linear algebraic system. On any R-
stable set of terms, →∗

β∪B ⊆ →∗
β→∗

A←∗
β.

Proof Sketch. The first point is to see that (1) →∗
B1
⊆→∗

β→∗
A←∗

β. This is done
by induction on the number of B1-steps, using Lemma 13. We then deduce (2)
→∗

β∪B1
⊆→∗

β→∗
A←∗

β , by induction on the number of →β∪B1-steps. The result
follows from an induction on i showing that →Bi⊆→B1 . �

Theorem 15. Assume that R is a semi-closed left-linear algebraic system. If
→A is confluent, then →β∪B is confluent on any R-stable set of terms.

Recall that in this case→β∪A-confluence follows from→A-confluence by Thm. 6.

4.2 Confluence on Weakly β-Normalizing Terms

This subsection concerns the straightforward extension to →B of the results of
Sect. 3.2. The definition of �Bi follows the same scheme as the one of �Ai ; the
only difference is that Bi is used everywhere in place of Ai. It follows that given
a rule d = c ⊃ l→ r, to have lσ�Bi rθ, we must have σ�Bi θ and dσ ↓β∪Bi−1 cσ.
The relations �Bi enjoy the same nice properties as the �Ai ’s.

Lemma 16. Let R be an arity-compliant algebraic system. If s ∈ U and s→∗
β∪B

t, then t ∈ U and βnf(s)→∗
A βnf(t).

The only difference in the proof is that the case i = 0 is now ensured by Lemma
10 (since →B0=→A). The theorem follows easily:

Theorem 17. Let R be an arity-compliant algebraic system such that →A is
confluent. Then, →β∪B is confluent on U .

5 Orthonormal Systems

In this section, we give a criterion ensuring confluence of→β∪B when conditions
and right-hand sides possibly contain abstractions and active variables.

This criterion comes from peculiarities of orthogonality with conditional
rewriting. In non-conditional rewriting, a system is orthogonal when it is left-
linear and has no critical pair. A critical pair comes from the superposition of
two different rule left-hand sides at non-variable positions. The general defini-
tion of orthogonal conditional systems is the same. But, in conditional rewriting,
there can be superpositions of two different rules left-hand sides whose condi-
tions cannot be satisfied with the same substitution. Such critical pairs are said
infeasible and it could be profitable to consider systems whose critical pairs are
all infeasible.

In [21], it is remarked that results on the confluence of natural and normal
orthogonal conditional systems should be extended to systems that have no
feasible critical pair. But the results obtained this way are not directly applicable
since proving unfeasibility of critical pairs may require confluence. In Takahashi’s

394 F. Blanqui, C. Kirchner, and C. Riba

work [22], conditions can be any predicate P on terms. Confluence is proved with
the assumption that they are stable by reduction: if Pσ holds and σ → θ, then Pθ
holds. For the systems studied in this section, stability of conditions by reduction
precisely follows from confluence. Hence the results of [22] do not directly apply.

The purpose of this section is to give a syntactic condition on rules that imply
unfeasibility of critical pairs, hence confluence.

Definition 18 (Conditional critical pairs). Given two rules d = c ⊃ l → r
and d′ = c′ ⊃ l′ → r′, if p is a non-variable position in l and σ is a most general
unifier of l|p and l′, then

dσ = cσ ∧ d′σ = c′σ ⊃ (l[r′]pσ, rσ)

is a conditional critical pair. A critical pair d = c ⊃ (s, t) is feasible for →A
(resp. →B) if there is a substitution σ such that dσ ↓A cσ (resp. dσ ↓β∪B cσ).

As an example, consider the rules used to define occ in Sect. 2. There is a
superposition between the left-hand sides of the last two rules giving the critical
peak ff ← occ (x :: o) (nd y l)→ occ o (get l x). But a peak of this form can occur
only if there are two terms s, t such that tt ←∗ ≥ (len s) t →∗ ff. Using the
stratification of→A, the confluence of→Ai implies that this pair is not feasible.
Hence the above peak cannot occur with →Ai+1 and this relation is confluent.

This method can be used on systems with higher-order terms in right-hand
sides and conditions, as for example the rules defining app and filter. Hence, it is
useful for proving the confluence of →β∪B for systems where this relation does
not need to be included in ↔∗

β∪A. In this section, we generalize the method and
apply it on a class of systems called orthonormal. As in the previous section, we
use stratification of →B, but now with →B0= ∅. A symbol f ∈ F is defined if it
is the head of a rule left-hand side.

Definition 19 (Orthonormal systems). A system is orthonormal if (1) it
is left-linear; (2) in every rule d = c ⊃ l → r, the terms in c are closed
β-normal forms not containing defined symbols; and (3) for every critical pair
d = c ⊃ (s, t), there exists i 	= j such that di = dj and ci 	= cj.

Note that an orthonormal system is left-linear and semi-closed, but does not need
to be arity-compliant or algebraic. Note also that the form of the conditions leads
to a normal conditional rewrite relation. The reader can check that the whole
system given in Sect. 2 is orthonormal.

We now prove that →β∪B is shallow confluent (i.e. →∗
β∪Bi

and →∗
β∪Bj

com-
mute for all i, j ≥ 0) when R is orthonormal. The first point is that confluence
of →β∪Bi implies commutation of →∗

β and →∗
Bi+1

. The proof is as in Sect. 3.1,
except that in a rule d = c ⊃ l → r, c are closed →β∪B-normal forms. The
main Lemma concerns commutation of parallel relations of �Bi and �Bj for all
i, j ≥ 0. But here, we use a weak form of parallelization: �Bi is simply the par-
allel closure of→Bi . The name of the Lemma is usual for this kind of result with
rewriting (see [21]). Write <mul for the multiset extension of the usual ordering
on naturals numbers.

On the Confluence of λ-Calculus with Conditional Rewriting 395

Lemma 20 (Parallel Moves). Let R be an orthonormal system. If {n,m}
<mul {i, j} implies commutation of →∗

β∪Bn
and →∗

β∪Bm
, then �Bi and �Bj

commute.

Proof Sketch. The key point is the commutation of →∗
β∪Bn

and →∗
β∪Bm

for
{n,m} <mul {i, j}. It implies that two rules whose respectives conditions are
satisfied with →∗

β∪Bi
and→∗

β∪Bj
are not superposable at non-variable positions.

The rest of the proof follows usual schemes (see Sect. 7.4 in [21]). �
Now, an induction on <mul provides the commutation of→β∪Bi and→β∪Bj for
all i, j ≥ 0. Shallow confluence immediately follows.

Theorem 21. If R is an orthonormal system, then →β∪B is shallow confluent.

Hence, the relation →β∪B induced by the system of Sect. 2 is confluent.

6 Conclusion

Our results are summarized in the following table.

§ Terms Lhs Rhs Conditions Result

3.1 T Linear Applicative Semi-Closed
→A Confluent ⇒
→A∪β Confluent

3.2 U Arity-Compliant
& Algebraic

Arity-Compliant
& Algebraic idem

4.1 R-stable Linear Algebraic
Semi-Closed
& Algebraic

→A Confluent ⇒
→B∪β Confluent

4.2 U Arity-Compliant
& Algebraic

Arity-Compliant
& Algebraic idem

5 T Linear Orthonormal
→B∪β

Shallow Confluent

We provide detailed conditions to ensure modularity of confluence when com-
bining β-reduction and conditional rewriting, either when the evaluation of con-
ditions uses β-reduction or when it does not. This has useful applications on
the high-level specification side and for enriching the conversion used in logical
frameworks or proof assistants, while still preserving the confluence property.

These results lead us to the following remarks and further research points. The
results obtained in Sect. 3 and 4 for the standard conditional rewrite systems
extend to the case of oriented systems (hence to normal systems) and to the
case of level-confluent natural systems. For natural systems, the proofs follow
the same scheme, provided that level-confluence of →A is assumed. However, it
would be interesting to know if this restriction can be dropped.

Problems arising from non left-linear rewriting are directly transposed to left-
linear conditional rewriting. The semi-closure condition is sufficient to avoid this,

396 F. Blanqui, C. Kirchner, and C. Riba

and it provides the counter part of left-linearity for unconditional rewriting. As
a matter of a fact, it is well known that orthogonal standard conditional rewrite
systems are not confluent, but confluence of orthogonal semi-closed standard
systems holds. However, two remarks have to be made about this restriction.
First, it would be interesting to know if it is a necessary condition and besides,
to characterize a class of non semi-closed systems that can be translated into
equivalent semi-closed ones. Second, semi-closed terminating standard systems
behave like normal systems. But normal systems can be easily translated in
equivalent non-conditional systems. Moreover such a translation preserves good
properties such as left-linearity and non-ambiguity. As many of practical uses of
rewriting rely on terminating systems, semi-closed standard systems may be in
practice essentially an intuitive way to design rewrite systems that can be then
efficiently implemented by non-conditional rewriting.

An interesting extension of this work consists in adapting to conditional
rewriting the axiomatization and the results of [23]. This should leads to a gen-
eralization of the higher-order conditional systems of [1].

Acknowledgments. We are quite grateful to the anonymous referees for their
constructive and accurate comments and suggestions.

References

[1] J. Avenhaus and C. Loŕıa-Sáenz. Higher order conditional rewriting and narrow-
ing. In Proceedings of the 1st International Conference on Constraints in Com-
putational Logics, volume 845 of LNCS, pages 269–284. Springer Verlag, 1994.

[2] F. Barbanera, M. Fernández, and H. Geuvers. Modularity of Strong Normalisation
and Confluence in the Algebraic λ-Cube. Journal of Functional Programming,
7(6):613–660, November 1997.

[3] H.P. Barendregt. The Lambda-Calculus, its syntax and semantics. Studies in
Logic and the Foundation of Mathematics. North Holland, 1984. Second edition.

[4] G. Barthe, H. Cirstea, C. Kirchner, and L. Liquori. Pure Patterns Type Systems.
In Principles of Programming Languages, New Orleans, USA. ACM, 2003.

[5] F. Blanqui. Definitions by rewriting in the calculus of constructions. Mathematical
Structures In Computer Science, 15(1):37–92, 2005.

[6] F. Blanqui, C. Kirchner, and C. Riba. On the confluence of lambda-calculus with
conditional rewriting. HAL technical report, Oct 2005.

[7] V. Breazu-Tannen. Combining algebra and higher-order types. In 3rd IEEE
Symposium on Logic in Computer Science Edinburg (UK), july 1988.

[8] V. Breazu-Tannen and J. Gallier. Polymorphic rewriting conserves algebraic con-
fluence. Information and Computation, 114(1):1–29, October 1994.

[9] H. Cirstea and C. Kirchner. The rewriting calculus — Part I and II. Logic Journal
of the Interest Group in Pure and Applied Logics, 9(3):427–498, May 2001.

[10] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, ed-
itor, Handbook of Theoretical Computer Science, Volume B: Formal Models and
Sematics (B), pages 243–320. North-Holland, 1990.

[11] N. Dershowitz and M. Okada. A rationale for conditional equational programming.
Theoretical Computer Science, 75:111–138, 1990.

On the Confluence of λ-Calculus with Conditional Rewriting 397

[12] D.J. Dougherty. Adding algebraic rewriting to the untyped lambda calculus.
Information and Computation, 101(2):251–267, December 1992.

[13] G. Dowek, T. Hardin, and C. Kirchner. Theorem proving modulo. Journal of
Automated Reasoning, 31(1):33–72, Nov 2003.

[14] Bernhard Gramlich. On termination and confluence properties of disjoint and
constructor-sharing conditional rewrite systems. Theoretical Computer Science,
165(1):97–131, September 1996.

[15] J.-P. Jouannaud and M. Okada. Executable higher-order algebraic specification
languages. In Proceedings of LICS’91.

[16] J.W. Klop. Combinatory Reduction Systems, volume 127 of Mathematical Center
Tracts. CWI, 1980. PhD Thesis.

[17] J.W. Klop, V. van Oostrom, and F. van Raamsdonk. Combinatory reduction
systems: introduction and survey. TCS, 121:279–308, 1993.

[18] A. Middeldorp. Completeness of Combinations of Conditional Constructor Sys-
tems. Journal of Symbolic Computation, 17(1):3–21, January 1994.

[19] F. Müller. Confluence of the lambda calculus with left linear algebraic rewriting.
Information Processing Letters, 41:293–299, 1992.

[20] T. Nipkow. Higher-order critical pairs. In Proceedings of LICS’91.
[21] E. Ohlebusch. Advanced Topics in Term Rewriting. Springer, April 2002.
[22] M. Takahashi. Lambda-calculi with conditional rules. In TLCA’93, LNCS, pages

406–417. Springer-Verlag, 1993.
[23] V. van Oostrom and F. van Raamsdonk. Weak orthogonality implies confluence:

the higher-order case. In LFCS’94, volume 813 of LNCS, 1994.

Guessing Attacks and the Computational
Soundness of Static Equivalence

Mart́ın Abadi1, Mathieu Baudet2, and Bogdan Warinschi3

1 University of California, Santa Cruz
2 LSV, CNRS & INRIA Futurs projet SECSI & ENS Cachan, France

3 Loria, INRIA, Nancy, France

Abstract. The indistinguishability of two pieces of data (or two lists
of pieces of data) can be represented formally in terms of a relation
called static equivalence. Static equivalence depends on an underlying
equational theory. The choice of an inappropriate equational theory can
lead to overly pessimistic or overly optimistic notions of indistinguisha-
bility, and in turn to security criteria that require protection against
impossible attacks or—worse yet—that ignore feasible ones. In this pa-
per, we define and justify an equational theory for standard, fundamental
cryptographic operations. This equational theory yields a notion of static
equivalence that implies computational indistinguishability. Static equiv-
alence remains liberal enough for use in applications. In particular, we
develop and analyze a principled formal account of guessing attacks in
terms of static equivalence.

1 Introduction

In the study of security, it is frequent to reason about whether two pieces of
data can be distinguished by an observer. For example, the pieces of data might
be two encrypted messages, and the observer an attacker that attempts to learn
something about the underlying cleartexts by analyzing the encrypted messages.
The two encrypted messages are indistinguishable if, no matter how the attacker
operates on them, it cannot discern any meaningful difference. The encrypted
messages may however be different—for instance, they may look like different
random numbers.

Formally, indistinguishability can be represented in terms of a relation called
static equivalence [4]. Roughly, two terms (and, more generally, two lists of terms)
are statically equivalent when they satisfy all the same equations. This relation
is essentially a special case of the observational equivalence relation of process
calculi. It is simpler than observational equivalence in that it does not allow
for continued interaction between a system and an observer: the observer gets
data once and then conducts experiments on its own. Nevertheless, observational
equivalence can be reduced to a combination of static equivalence and usual
bisimulation requirements [4, 5, 15].

Static equivalence depends on an underlying equational theory. The choice of
an inappropriate equational theory can lead to overly pessimistic or optimistic

L. Aceto and A. Ingólfsdóttir (Eds.): FOSSACS 2006, LNCS 3921, pp. 398–412, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Guessing Attacks and the Computational Soundness of Static Equivalence 399

notions of indistinguishability, and in turn to security criteria that require pro-
tection against impossible attacks or—worse yet—that ignore feasible ones.

In this paper, we define an equational theory for standard, fundamental cryp-
tographic operations, and we justify and apply the resulting concept of static
equivalence. These operations include various flavors of encryption and decryp-
tion. Static equivalence in this theory implies computational indistinguishability.
In other words, if the formal notion of static equivalence indicates that two pieces
of data are indistinguishable, then no computationally feasible experiment can
tell those two pieces of data apart. (This property is a soundness theorem. Al-
though it is less important, we have also explored completeness, but we omit
its discussion here; see however [28, 9].) Our notion of computational feasibility
is based on the sorts of assumptions typically employed in complexity-theoretic
cryptography. It includes certain assumptions on the security properties of the
cryptographic operations; those assumptions appear reasonable and fairly stan-
dard, but so do others, and picking satisfactory ones is somewhat delicate.

While static equivalence is conservative enough to exclude feasible attacks,
it also remains liberal enough for use in applications. In particular, we develop
a formal account of guessing attacks (e.g., [23, 24, 13, 32, 31]) in terms of static
equivalence. Since guessing attacks constitute a significant threat against pro-
tocols that rely on passwords and other weak secrets, the recent literature con-
tains several studies of guessing attacks, with both formal and computational
approaches (e.g., [27, 19, 18, 17, 10, 12, 16, 22, 25, 21]). Formal approaches are at-
tractive because of their relative simplicity, which often enables automation. On
the other hand, formal approaches are rather varied and sometimes ad hoc. For-
tunately, it has been suggested that a formulation of guessing attacks could be
based on static equivalence [17, 20]. We believe that this idea has a number of
virtues. It leads to a crisp definition, it is fairly independent of specific choices
of cryptographic operations, and it extends nicely to general process calculi.
To date, however, this idea has not been worked out fully, in the setting of an
appropriate equational theory. We aim to address this gap.

A related, frequent shortcoming of formal analyses is the lack of computational
justifications. This lack allows the possibility that a protocol is safe against at-
tacks formally, but that a feasible attack exists nonetheless. An active line of
recent work aims to address such shortcomings, by defining and proving com-
putational soundness results for formal methods (e.g., [6, 8, 29, 26]). That line
of research includes a computational study of static equivalence [11]; the the-
ories considered there do not include the one that we define in this paper (in
part because those theories do not model probabilistic encryption functions, nor
encryption under weak keys) and have not provided a satisfactory account of
guessing attacks, but they are an important piece of the context of this work.
That line of research also includes a study of guessing attacks, with an ad hoc
formal definition of those attacks [7]. In this paper we build on that previous
work, and go beyond it.

The next section, Section 2, presents a formal model: it defines sorted
terms, an equational theory for them, and the corresponding notion of static

400 M. Abadi, M. Baudet, and B. Warinschi

equivalence. Section 3 interprets the syntax of the formal model in a computa-
tional universe; it includes cryptographic assumptions. Section 4 establishes the
computational soundness of static equivalence for the equational theory. Sec-
tion 5 applies our results to the study of guessing attacks. Section 6 concludes.
Because of space constraints, we omit cryptographic constructions, a decision
procedure for static equivalence, proofs, and additional details; these are in-
cluded in an extended version of this paper [1].

2 Abstract Model

In order to represent cryptographic messages in an abstract way, we use terms
over a many-sorted signature, equipped with an equational theory.

2.1 Sorts and Terms

The set of sorts (or types) that we consider is defined by the following grammar:

τ ::=
| SKey symmetric keys
| EKey (public) encryption keys
| DKey (private) decryption keys
| Data passwords and other data
| Coins coins for encryption
| Pair [τ1, τ2] pairs of messages
| SCipher [τ] symmetric encryptions of messages of type τ
| ACipher [τ] asymmetric encryptions of messages of type τ

The set of (well-sorted) terms, written S, T , U , V , . . . , is built from an infinite
number of variables x, y, . . . and names a, b, n, r, k, sk, pk, . . . for each sort,
with the following function symbols:

encτ : τ ×Data → τ encryption under data
decτ : τ ×Data → τ decryption with data

pencτ : τ × EKey × Coins → ACipher [τ] public-key encryption
pdecτ : ACipher [τ]×DKey → τ private-key decryption

pub : DKey → EKey public-key extraction
pdec successτ : ACipher [τ]×DKey → Data domain predicate for

private-key decryption
sencτ : τ × SKey × Coins → SCipher [τ] symmetric encryption
sdecτ : SCipher [τ]× SKey → τ symmetric decryption

sdec successτ : SCipher [τ]× SKey → Data domain predicate for
symmetric decryption

pairτ1,τ2
: τ1 × τ2 → Pair [τ1, τ2] pairing

fstτ1,τ2 : Pair [τ1, τ2]→ τ1 first projection
sndτ1,τ2 : Pair [τ1, τ2]→ τ2 second projection

0, 1 : Data boolean constants
w, c0, c1 . . . : Data additional data constants

Guessing Attacks and the Computational Soundness of Static Equivalence 401

Encryption and decryption symbols may not be available for all sorts τ . We let
Tpenc be the set of types τ for which the symbols pencτ , pdecτ , and pdec successτ

are available, and define Tsenc and Tenc analogously. We assume that pairs are
not encrypted under data values, that is, Tenc∩{Pair [τ1, τ2]}τ1,τ2 = ∅; pairs may
however be encrypted with enc component by component.

Our function symbols represent encryption and decryption functions and aux-
iliary operations. The first two functions (encτ and decτ) are to be used with data
values as keys; the data values may be the constant symbols of the grammar,
which may represent the passwords in a dictionary. (In contrast, fresh names may
represent strong keys; the scoping rules justify the respective uses of constant
symbols and names.) The fact that encτ does not take a parameter of type Coins
relates to the difficulties with probabilistic password-based encryption [7]. More-
over, the language provides no direct way for the attacker to check that a value
results from applying encτ with a particular key. Such properties are essential for
thwarting guessing attacks in practice (for example, in the EKE protocol [13]).
The remaining functions are fairly standard; they include functions for public-
key and symmetric encryption (pencτ and sencτ), which are probabilistic in the
sense that they take a parameter of type Coins .

We often omit type annotations on function symbols. For instance, provided
that S, T , and U have type Data, we may write pair(enc(S, T), U) instead of
pairData,Data (encData(S, T), U). In addition, we sometimes use the abbreviations
{S}T for enc(S, T), {S}rpub(sk) for penc(S, pub(sk), r), and {S}rk for senc(S, k, r).

We write var(T) and names(T) for the sets of variables and names that occur
in a term T . We extend the notation to tuples and sets of terms. A term T
is ground or closed when var(T) = ∅. We write σ = {x1 �→ T1, . . . , xn �→ Tn}
for a substitution, and let dom(σ) = {x1, . . . , xn}, var(σ) = var(T1, . . . , Tn),
and names(σ) = names(T1, . . . , Tn). A substitution σ is ground or closed when
var(σ) = ∅. We consider only well-sorted substitutions (that is, for each i, Ti =
xiσ has the same sort as xi).

2.2 Equational Theory

We model the semantics of the cryptographic primitives by equipping terms with
an equational theory, that is, a reflexive, symmetric, transitive relation, stable
by (well-sorted) substitutions of terms for variables and (in this case) for names,
and stable by application of contexts. Specifically, we consider the equational
theory =E generated by the following equations:

decτ (encτ (x, y), y) = x encτ (decτ (x, y), y) = x
pdecτ (pencτ (x, pub(y), z), y) = x pdec successτ (pencτ (x, pub(y), z), y) = 1

sdecτ (sencτ (x, y, z), y) = x sdec successτ (sencτ (x, y, z), y) = 1
fstτ1,τ2(pairτ1,τ2

(x, y)) = x sndτ1,τ2(pairτ1,τ2
(x, y)) = y

pairτ1,τ2
(fstτ1,τ2(x), sndτ1,τ2(x)) = x

where the symbols x, y, and z represent variables of the appropriate sorts. Most
of the equations are fairly standard. The only surprise may be the inclusion of
encτ (decτ (x, y), y) = x, without which an attacker that sees x and guesses y

402 M. Abadi, M. Baudet, and B. Warinschi

might confirm whether x is a ciphertext encrypted under y by decrypting x
with y, reencrypting with y, and comparing the result to x; the equation implies
that the comparison always succeeds, whether the guess was correct or not. So,
for instance, encτ (n, c0) and encτ (n, c1) are indistinguishable when n is a fresh
name of sort τ . Such consequences of the equation are important for the security
of protocols that rely on weak secrets. Moreover, the equation holds in many
reasonable implementations, in particular those based on keyed permutations.

When oriented from left to right, the equations above form a convergent
rewriting system that we call R.

2.3 Frames and Static Equivalence

Frames represent sets of messages available to an observer (for example, because
they were sent over a public network) [4]. More precisely, a frame is an expression
ϕ = νñ.{x1 = T1, . . . , xn = Tn} where ñ is a set of restricted names, and each Ti

is a closed term of the same sort as xi. For simplicity, we require (without loss of
generality) that every name in use be restricted, that is, ñ = names(T1, . . . , Tn).
A name k may still be disclosed explicitly, for instance by a dedicated mapping
xi = k. Therefore, we tend to omit the binders νñ, and identify a frame ϕ with
its underlying substitution {x1 �→ T1, . . . , xn �→ Tn}.

A closed term T is deducible from a frame ϕ if there exists a term M with
var(M) ⊆ dom(ϕ) and names(M) ∩ names(ϕ) = ∅ such that Mϕ =E T [2, 3].

Two frames ϕ1 and ϕ2 such that dom(ϕ1) = dom(ϕ2) are statically equivalent
(written ϕ1 ≈E ϕ2) if, for every pair of terms (M,N) such that var(M,N) ⊆
dom(ϕ1) and names(M,N) ∩ names(ϕ1, ϕ2) = ∅, it holds that Mϕ1 =E Nϕ2 if
and only if Mϕ2 =E Nϕ2. Proving static equivalence may not be easy. Fortu-
nately, efficient methods exist in many cases (e.g., [2, 14]). In particular, static
equivalence is decidable in polynomial time for unsorted convergent subterm
theories [2]; we expect that this result carries over to sorted convergent subterm
theories such as =E . We have an alternative decision procedure for the static
equivalences that are the subject of our main theorem (see Section 4).

We close this section with a few examples of equivalences and inequivalences
under the theory E:

{x = {0}rk} ≈E {x = {1}rk} (1)

{x = {0}rk, y = {0}r′
k } ≈E {x = {1}rk, y = {0}r′

k′} (2)
{x = {n}w, y = {m}w} ≈E {x = a1, y = a2} (3)

{x = {{n}w}w, y = {m}w} ≈E {x = a1, y = a2} (4)
{x = {{0}r1

pub(sk)}w, y = {0}r2
pub(sk)} ≈E {x = a1, y = a2} (5)

{x = {{0}r1
pub(sk)}w, y = {0}r1

pub(sk)} ≈E {x = {a1}w, y = a1} (6)

{x = {{n}r1
k }w, y = k} 	≈E {x = a1, y = k} (7)

Examples (1) and (2) are simple examples about symmetric encryptions under
strong keys, illustrating that those encryptions hide plaintexts and also equalities
of plaintexts or keys across encryptions. Examples (3) and (4) illustrate that

Guessing Attacks and the Computational Soundness of Static Equivalence 403

encryptions of fresh names under a constant w (intuitively, under a weak secret)
can look like fresh names. The values of x and y are two such encryptions—
and the former is in fact a double encryption in example (4)—with unrelated
underlying names. Example (5) resembles example (4); it illustrates that an
encryption of a public-key ciphertext {0}r1

pub(sk) under w can look like a fresh
name. In examples (3)–(5), the plaintexts being encrypted are not otherwise
available to the observer, though somewhat related plaintexts may be (as the
values of the variable y). Example (6) treats a case in which the observer also
obtains the plaintext being encrypted, through y; in that case, the observer can
see a relation between the value of x and the value of y, namely that the former
is an encryption of the latter under w. Example (7) indicates that the observer
that is given k can distinguish {{n}r1

k }w from a fresh name; intuitively, after
decrypting with w, the adversary can tell if what it sees is a ciphertext under k
or not, since the success of shared-key decryption is detectable.

3 Implementation

In this section we interpret the syntax of the formal model in a computational
universe. We also discuss cryptographic assumptions on which the implementa-
tion relies.

3.1 Interpreting the Syntax

Next we detail the mapping from terms to distribution ensembles over bit-strings.

Encryption schemes. The mapping uses a public-key encryption schemeΠp =
(Kp, Ep,Dp) and a symmetric encryption scheme Πs = (Ks, Es,Ds). It also uses
a symmetric, deterministic, type-preserving encryption scheme Π = (K, E ,D).
(The definition of type preserving is given below.) In each of these triples,
the first component is a key-generation function, the second an encryption
function, and the third a decryption function. We write η for a security pa-
rameter. For each η, we write k R←− Kη and k R←− Ks

η for the process of gener-
ating an encryption key k for Π and Πs, respectively, and similarly we write
(pk, sk) R←− Kp

η for the process of generating a pair (pk, sk) of encryption and
decryption keys forΠp. As usual, the encryption functions Ep and Es are random-
ized; we write Ep(m, k, r) and Es(m, k, r) for public-key and symmetric encryp-
tions, respectively, of message m under encryption key k with random coins r.
We write c R←− Ep(m, k) and c

R←− Es(m, k) for the corresponding encryption
processes, using fresh random coins. We assume that the set of keys for Π is of
the form {0, 1}α1(η), and that the set of coins for Πs and Πp is {0, 1}α2(η), where
the functions α1(η) and α2(η) are polynomially bounded and at least linearly
increasing.

We say that Π is type-preserving when, for every τ ∈ Tenc, encryption and
decryption by Π map [[τ]]η—the set of bit-strings that corresponding to the type
τ—to itself.

404 M. Abadi, M. Baudet, and B. Warinschi

Sorts, functions, and random drawings. For each value of the security
parameter η, the concrete meaning of sorts and terms is characterized (much as
in [11]) by:

– for each sort τ , a carrier set [[τ]]η ;
– for each function symbol f : τ1× . . .× τn → τ , a function [[f]]η : [[τ1]]η× . . .×

[[τn]]η → [[τ]]η;
– for each sort τ , a procedure written e R←− [[τ]]η for drawing a random element

e from [[τ]]η, according to a distribution written (R←− [[τ]]η).

We require that no element in [[τ]]η has probability 0 according to (R←− [[τ]]η), that

the probability of collision for (R←− [[τ]]η) is negligible (that is, asymptotically
smaller than any inverse polynomial), and that all the operations mentioned
are computable in probabilistic polynomial time (PPTIME) in the complexity
parameter. These conditions are ensured by the construction below and the
properties of secure encryption schemes (defined in the next subsection).

The carrier set [[τ]]η of a type τ is defined inductively:

[[SKey]]η = “SKey” ‖ {symmetric keys for Πs(η)}
[[EKey]]η = “EKey” ‖ {public keys for Πp(η)}
[[DKey]]η = “DKey” ‖ {private keys for Πp(η)}
[[Data]]η = “Data” ‖ {0, 1}α1(η)

[[Coins]]η = “Coins” ‖ {0, 1}α2(η)

[[Pair [τ1, τ2]]]η = “Pair” ‖ [[τ1]]η ‖ [[τ2]]η
[[SCipher [τ]]]η = “SCipher” ‖ τ ‖ {ciphertexts of Πs(η)}
[[ACipher [τ]]]η = “ACipher” ‖ τ ‖ {ciphertexts of Πp(η)}

where ‖ denotes the concatenation of bit-strings (applied by extension on sets of
bit-strings), and we assume an encoding of identifiers for types τ into bit-strings.

The meaning of function symbols is as follows:

– Symbols pairτ1,τ2
, fstτ1,τ2 , and sndτ1,τ2 are implemented on bit-strings by

tagged concatenation and projections, as one might expect.
– Constants w, c0, c1, . . . are mapped to arbitrary PPTIME-computable se-

quences of bit-strings of length α1(η), prefixed with the tag “Data”; 0 and
1 are mapped respectively to “Data” ‖ 0α1(η) and “Data” ‖ 1α1(η).

– For every τ ∈ Tpenc, the implementations of pencτ , pdecτ , and pdec successτ

are defined by:

[[pencτ]]η(m, “EKey”||pk, “Coins”||r) = “ACipher”‖τ‖Ep
τ (m, pk, r)

[[pdecτ]]η(m, “DKey”||sk) =

⎧⎪⎨⎪⎩
Dp(c, sk) if m = “ACipher”‖τ‖c and the

decryption Dp(c, sk) succeeds
〈any value〉 otherwise

[[pdec successτ]]η(m, “DKey”||sk) = “Data” ‖{
1α1(η) if m = “ACipher”‖τ‖c and the decryption Dp(c, sk) succeeds
0α1(η) otherwise

Guessing Attacks and the Computational Soundness of Static Equivalence 405

The implementations of sencτ , sdecτ , and sdec successτ , for τ ∈ Tsenc, are
defined similarly.

– For every τ ∈ Tenc, the implementations of encτ and decτ are defined by:

[[encτ]]η(m, “Data”‖k) = E(m, k)
[[decτ]]η(c, “Data”‖k) = D(c, k)

We assume that E(·, k) and D(·, k) are inverse bijections from [[τ]]η to itself.
In particular, tags are left unchanged by these functions.

The drawing of random values of type τ (e R←− [[τ]]η) is defined by induction
on τ (with, in addition, the appropriate tags in each case):

– When τ is one of SKey , EKey , and DKey, use the dedicated key generation
algorithm, respectively Ks, fst(Kp), and snd(Kp).

– When τ is Data or Coins , use the uniform distribution over [[τ]]η.
– When τ = Pair [τ1, τ2], recursively draw random elements in [[τ1]]η and [[τ2]]η,

then tag and concatenate them.
– When τ is SCipher [τ] or ACipher [τ], encrypt a random element in [[τ]]η with

a fresh random key of the appropriate kind.

Interpreting terms and frames. Given η, we associate with each frame ϕ =
νñ.{x1 = T1, . . . , xn = Tn} a distribution [[ϕ]]η defined by the following procedure

for computing a sample φ R←− [[ϕ]]η:

1. for each name of sort τ that occurs in ϕ, draw a value â R←− [[τ]]η;
2. compute the value T̂i of each closed term Ti, recursively:

for every function symbol f, ̂f(S1, . . . , Sn) = [[f]]η(Ŝ1, . . . , Ŝ1)

3. let the resulting concrete frame be φ = {x1 = T̂1, . . . , xn = T̂n}.
We define the notation [[]]η for closed terms and tuples of closed terms similarly.
We may write [[ϕ]]η, a1 �→e1, ..., an �→en so as to specify the values for names, and
[[ϕ]]η, c1 �→e1, ..., cn �→en so as to specify the values of the constants c1, . . . , cn. We
write [[ϕ]] for the ensemble (family of distributions) ([[ϕ]]η)η. We identify a single-
valued (Dirac) distribution with its unique value.

Indistinguishability. Two ensembles D1 = (D1
η)η and D2 = (D2

η)η are in-
distinguishable, written D1 ≈ D2, when, for every PPTIME adversary A, the
function

AdvA(η) = P
[
e

R←− D1
η : A(e) = 1

]
− P

[
e

R←− D2
η : A(e) = 1

]
is negligible.

3.2 Cryptographic Assumptions

We use symmetric and asymmetric encryption schemes that satisfy a notion of
security related to type-0 and type-1 security [6]. Essentially, we require that
for each type τ , the encryption function restricted to elements of [[τ]] reveal no

406 M. Abadi, M. Baudet, and B. Warinschi

information about the key used for encryption and hide all partial information
about underlying plaintexts—except for their belonging to the carrier set [[τ]].

Definition 1. Let Πs = (Ks, Es,Ds) be a symmetric encryption scheme. For
each security parameter η and type τ ∈ Tsenc, we consider the following experi-
ment, with a two-stage PPTIME adversary A = (A1, A2):

– a key k is generated via k R←− Ks(η);
– A1 is provided access to an oracle Es(·, k), that is, A1 may submit messages
m to the oracle and receives in return corresponding encryptions Es(m, k);

– then A1 outputs a challenge message m∗ ∈ [[τ]]η together with some state
information st;

– a bit b R←− {0, 1} is selected at random; if b = 0, we let c be a (tagged)
encryption of m∗ under k, that is, c R←− “SCipher”‖τ‖Es(m∗, k); otherwise,
we let c be a (tagged) encryption of a random element of τ under a random
key, that is, c R←− [[SCipher [τ]]]η ;

– A2 is given c and st, and outputs a bit b′.

The adversary A is successful if b′ = b. The advantage of A is defined by
Advτ

Πs,A(η) = Pr[A is successful] − 1
2 . We say that Πs is Tsenc-secure if for all

PPTIME adversaries A and all τ ∈ Tsenc, the function Advτ
Πs,A(·) is negligible.

Definition 2. Let Πp = (Kp, Ep,Dp) be an asymmetric encryption scheme.
For each security parameter η and type τ ∈ Tpenc, we consider the following
experiment, with a two-stage PPTIME adversary A = (A1, A2):

– a pair of encryption/decryption keys (pk, sk) is generated via (pk, sk) R←−
Kp(η), and A1 is given pk;

– A1 outputs a challenge message m∗ ∈ [[τ]]η together with some state infor-
mation st;

– a bit b R←− {0, 1} is selected at random; if b = 0, we let c be a (tagged) en-
cryption of m∗ under pk, that is, c R←− “ACipher”‖τ‖Ep(m∗, pk); otherwise,
we let c be a (tagged) encryption of a random element of τ under a random
public key, that is, c R←− [[ACipher [τ]]]η;

– A2 is given c and st, and outputs a bit b′.

The adversary A = (A1, A2) is successful if b′ = b. The advantage of A is defined
by Advτ

Πp,A(η) = Pr[A is successful]− 1
2 . We say that Πp is Tpenc-secure if for all

PPTIME adversaries A and all τ ∈ Tpenc, the function Advτ
Πp,A(·) is negligible.

Our notion of security for encryption schemes that use data values (such as
passwords) as keys is less standard—and there is not yet a standard notion in
the area:

Definition 3. Let Π = (K, E ,D) be a symmetric, deterministic, type-preserving
encryption scheme such that the set of keys is {0, 1}α1(η) for each η.

Guessing Attacks and the Computational Soundness of Static Equivalence 407

1. Real-or-Random security (Tenc-RoR): For each security parameter η
and type τ ∈ Tenc, we consider the following experiment, with a two-stage
PPTIME adversary A = (A1, A2):

– a key k is generated via k R←− K(η);
– A1 is provided access to an oracle E(·, k), that is, A1 may submit (tagged)

messages m to the oracle and receives in return corresponding (tagged)
encryptions E(m, k);

– then A1 submits a challenge message m∗ ∈ [[τ]]η and some state infor-
mation st;

– a bit b R←− {0, 1} is selected at random; if b = 0, we let c be the (tagged)
encryption of m∗ under k, that is, c = E(m∗, k); otherwise, we let c R←−
[[τ]]η be a random element from [[τ]]η;

– A2 is given c and st, and outputs a bit b′.

The adversary A is successful if b′ = b and the challenge message m∗ is
different from all the messages m submitted by A to the encryption oracle.
The advantage of A is Advτ

RoR,Π,A(η) = Pr[A is successful]− 1
2 . We say that

Π is Tenc-RoR secure if for all PPTIME adversaries A and all τ ∈ Tenc, the
function Advτ

RoR,Π,A(·) is negligible.

2. Encryption under passwords or other data values (Tenc-Pwd): For
each security parameter η and type τ ∈ Tenc, we consider the following ex-
periment, with a two-stage PPTIME adversary A = (A1, A2):

– A1 outputs a key k ∈ {0, 1}α1(η) and some state information st;

– a bit b R←− {0, 1} is selected at random; if b = 0, we let c be the (tagged)
encryption of some random element under k, that is, m R←− [[τ]]η and

c = E(m, k); otherwise, we let c R←− [[τ]]η be a random element from [[τ]]η;
– A2 is given c and st, and outputs a bit b′.

The adversary A is successful if b′ = b. The advantage of A is defined by
Advτ

Pwd,Π,A(η) = Pr[A is successful]− 1
2 . We say that Π is a Tenc-Pwd secure

if for all PPTIME adversaries A and all τ ∈ Tenc, the function Advτ
Pwd,Π,A(·)

is negligible.

Finally, Π is Tenc-secure if it is both Tenc-RoR and Tenc-Pwd secure.

Condition 1 (Tenc-RoR security) is a variant of IND-P1-C0 security [30, 11]. We
require it because we allow enc to be used as a first-class encryption algorithm, that
is, with strong keys (not just passwords). Without this condition, our main result
remains true on frames which use only constants as keys for enc (much as in [7]).

Condition 2 (Tenc-Pwd security) addresses the security of passwords (or other
data) when used as keys. Intuitively, it states that the encryption of a random
value must be distributed like the value. A related previous condition [7] allows
a possibly different distribution for the encryptions of random values and the
values themselves. This difference is mostly due to the fact that we authorize
multiple layers of encryptions with passwords (see example (4)).

408 M. Abadi, M. Baudet, and B. Warinschi

Finally, an implementation with (Πs, Πp, Π) is (Tsenc, Tpenc, Tenc)-secure (or
simply secure) if the three schemes Πs, Πp, and Π are, respectively, Tsenc-secure,
Tpenc-secure, and Tenc-secure.

A possible secure implementation, using standard cryptographic tools, is out-
lined in the extended version of this paper [1].

4 Soundness of Static Equivalence

In this section we present our main soundness result. As usual (following [6]),
this result requires a hypothesis that excludes encryption cycles, and also some
other well-formedness conditions.

A key position in an expression is a position that corresponds to the argument
U of a subterm of the form pub(U), or to the second argument V of a subterm
encτ (U, V), pencτ (U, V,W), or sencτ (U, V,W). An encryption cycle of a frame ϕ
is a sequence of names k0, k1, . . . , kn of sort Data, DKey, and SKey such that
kn = k0 and

for each 0 ≤ i ≤ n−1, there exists a subterm of ϕ of the form encτ (U, V),
pencτ (U, V,W), or sencτ (U, V,W) such that ki is a subterm of U not in
key position and ki+1 is a subterm of V .

For instance, the frame ϕ1 = {x = {sk1}r1
k2
, y = {k2}r2

pub(sk1)} has an encryption
cycle, while ϕ2 = {x = {pub(sk1)}r1

k2
, y = {k2}r2

pub(sk1)} does not.
A frame ϕ is well-formed if it satisfies the following conditions:

(i) ϕ is R-reduced, that is, in normal form with respect to the rewriting sys-
tem R;

(ii) ϕ does not contain the symbols dec, pdec, sdec, pdec success, sdec success,
fst, and snd;

(iii) terms in key position in ϕ are of the following forms, depending on their
sort:
– sorts DKey and SKey: names,
– sort EKey : names and terms of the form pub(a),
– sort Data: names and constants;

(iv) terms of type Coins may only be names, and appear as the third argument
of an encryption; moreover, if such a name appears twice in ϕ then the
encryption terms in which it appears are identical;

(v) ϕ has no encryption cycles;
(vi) for every subterm of ϕ of the form enc(T, k) where k is a name, T contains

none of the constants w, c0, c1, . . . , and T has no subterm of the form
enc(S, 0) or enc(S, 1).

Condition (ii) indicates that we focus on the indistinguishability of expressions
built from constructors; it does not preclude using other functions in the obser-
vations that may distinguish frames. Condition (iii) says that keys are atomic
terms for symmetric encryptions, and terms of the form pub(a) for public-key
encryptions. Similarly, condition (iv) says that coins are names and are used

Guessing Attacks and the Computational Soundness of Static Equivalence 409

only for encryptions, with different coins in each encryption. Condition (v) is
the acyclicity requirement. Finally, condition (vi) restricts the occurrences of
constants within plaintexts for deterministic encryption under strong keys (rep-
resented by names). For instance, this condition excludes the frame νk.{x1 =
enc(c1, k), x2 = enc(c2, k)}, which is equivalent to νa1, a2.{x1 = a1, x2 = a2}
formally but not computationally if c1 and c2 happen to have the same bit-
string implementations. More generally, when T1 and T2 are two terms such
that T1 	=E T2, the encryptions enc(T1, k) and enc(T2, k) may behave like dis-
tinct fresh names formally but not computationally, unless the bit-string values
of T1 and T2 collide with negligible probability.

We obtain:

Theorem 1 (≈E-soundness). Let ϕ1 and ϕ2 be two well-formed frames such
that ϕ1 ≈E ϕ2. In any secure implementation, [[ϕ1]] ≈ [[ϕ2]].

The proof of this theorem (in the extended version of this paper [1]) relies on
a detailed formal analysis of static equivalence, and in particular on a decision
procedure for the static equivalences under consideration. The theorem follows
from a step-by-step complexity-theoretic validation of the decision procedure.

5 Application to Security Against Guessing Attacks

Weak secrets such as PINs and passwords sometimes serve as encryption keys.
Their safe use is challenging because of the possibility of guessing attacks, in
which data that depends on a weak secret allows an attacker to check guesses
of the values of the weak secret. For example, if a message contains a fixed
cleartext Hello, and it is encrypted under a password pwd drawn from a small
dictionary, then an attacker that sees the message can try to decrypt it with
all values in the dictionary until one yields the cleartext Hello, thus discovering
a probable value for the password. The attacker may mount this attack off-
line, avoiding detection. The attack is made possible by the fact that, given
the data available to the attacker, pwd can be distinguished from another value
pwd’: encstring(Hello, pwd)	≈Eencstring(Hello, pwd’). Conversely, immunity to such
guessing attacks can be formulated as a static equivalence between two frames,
one that corresponds to what is actually available to the attacker and the other
to a variant in which the weak secrets are replaced with fresh keys or with
arbitrary other keys [17, 20].

We believe that, as suggested in the introduction, the treatment of guessing
attacks in terms of static equivalence is attractive in several respects. This section
shows that this treatment can be computationally sound. In comparison with the
only previous computational justification for a formal criterion against guessing
attacks [7], the present results have several strengths. First, they apply to a cri-
terion formulated in terms of standard notions, rather than an ad hoc criterion.
Consequently, they fit into a standard analysis method which can also deal with
other properties and other kinds of attacks. In addition, they are more general, in
that they immediately apply to scenarios with multiple weak secrets. Finally, it is
satisfying that these results follow from theorems of somewhat broader interest.

410 M. Abadi, M. Baudet, and B. Warinschi

In our formalism, modeling a password as a constant w of sort Data, we may
say that the password is not revealed by a frame ϕ if ϕ{w �→ c0} ≈E ϕ{w �→ c1}.
The substitutions {w �→ c0} and {w �→ c1} correspond to instantiations of the
password with distinct actual values; each of the frames represents what an
attacker may obtain in the course of a protocol execution and then analyze
off-line. The soundness of this formal notion is a corollary of Theorem 1, as
is a generalization to multiple passwords. The formal notion can be applied to
some examples from the literature (such as the EKE protocol [13, 7]), and the
corollaries then yield computational guarantees for those examples.

Corollary 1 (Single password). Assume a secure implementation. Let ϕ be
a well-formed frame, let w be a constant of sort Data, and let c0, c1 be two
fresh, distinct constants of sort Data. If ϕ{w �→ c0} ≈E ϕ{w �→ c1} then w
is computationally hidden in ϕ: for all PPTIME-computable sequences of bit-
strings κ0, κ1 with κi(η) ∈ {0, 1}α1(η),

[[ϕ]]η,w �→κ0(η) ≈ [[ϕ]]η,w �→κ1(η)

Corollary 2 (Multiple passwords). Assume a secure implementation. Let ϕ
be a well-formed frame, let w1, . . . , wn be n constants of sort Data, and let c0,
c1, . . . , cn be n+1 fresh, distinct constants of sort Data. If ϕ{w1 �→ c1, . . . ,wn �→
cn} ≈E ϕ{w1 �→ c0, . . . ,wn �→ c0} then w1, . . . , wn are computationally hidden
in ϕ: for all (not necessarily pairwise distinct) PPTIME-computable sequences
of bit-strings κ1 . . . κn, κ′1 . . . κ

′
n with κi(η), κ′i(η) ∈ {0, 1}α1(η),

[[ϕ]]η,w1 �→κ1(η),...,wn �→κn(η) ≈ [[ϕ]]η,w1 �→κ′
1(η),...,wn �→κ′

n(η)

6 Conclusion

In this paper we investigate the computational foundations of a formal notion
of data indistinguishability, static equivalence. We define a particular equational
theory for which we can obtain a computational soundness result. Although
they are largely based on ideas common in previous work, neither the equational
theory nor our computational assumptions are straightforward. The main diffi-
culties that we address relate to encryption under data values. Correspondingly,
we obtain a soundness result for a formal criterion of protection against guessing
attacks on those data values.

A direction for further work is the generalization of our results to other cryp-
tographic primitives. For instance, certain password-based protocols make a so-
phisticated use of exponentiation, which we do not include in our equational
theory. Yet other primitives, such as digital signatures, are important for trace
properties and for process equivalences (more so than for static equivalences).
We hope that, perhaps with these extensions, the present work may serve as a
component of an eventual computational justification of process equivalences.

Acknowledgments. We thank Steve Kremer and the anonymous referees for help-
ful comments. This research was partly carried out while Mathieu Baudet was
visiting the University of California at Santa Cruz and Bogdan Warinschi was at

Guessing Attacks and the Computational Soundness of Static Equivalence 411

Stanford University. It was partly supported by the National Science Foundation
under Grants CCR-0204162, CCR-0208800, CCF-0524078, and ITR-0430594,
and by the ARA SSIA Formacrypt and ACI Jeunes Chercheurs JC9005.

References

1. M. Abadi, M. Baudet, and B. Warinschi. Guessing attack and the computational
soundness of static equivalence (extended version). Manuscript, 2006.

2. M. Abadi and V. Cortier. Deciding knowledge in security protocols under equa-
tional theories. In Proc. 31st International Colloquium on Automata, Languages
and Programming (ICALP’04), volume 3142 of LNCS, pages 46–58. Springer, 2004.

3. M. Abadi and V. Cortier. Deciding knowledge in security protocols under (many
more) equational theories. In Proc. 18th IEEE Computer Security Foundations
Workshop (CSFW’05), pages 62–76, 2005.

4. M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In
Proc. 28th ACM Symposium on Principles of Programming Languages (POPL’01),
pages 104–115, 2001.

5. M. Abadi and A. D. Gordon. A bisimulation method for cryptographic protocols.
Nordic Journal of Computing, 5(4):267–303, 1998.

6. M. Abadi and P. Rogaway. Reconciling two views of cryptography (The compu-
tational soundness of formal encryption). Journal of Cryptology, 15(2):103–127,
2002.

7. M. Abadi and B. Warinschi. Password-based encryption analyzed. In Proc. 32nd
International Colloquium on Automata, Languages and Programming (ICALP’05),
volume 3580 of LNCS, pages 664–676. Springer, 2005.

8. M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library
with nested operations. In Proc. 10th ACM Conference on Computer and Com-
munications Security (CCS’03), pages 220–330, 2003.

9. G. Bana. Soundness and completeness of formal logics of symmetric encryption.
PhD thesis, University of Pensilvania, 2004.

10. M. Baudet. Deciding security of protocols against off-line guessing attacks. In Proc.
12th ACM Conference on Computer and Communications Security (CCS’05),
pages 16–25, Alexandria, Virginia, USA, Nov. 2005.

11. M. Baudet, V. Cortier, and S. Kremer. Computationally sound implementations
of equational theories against passive adversaries. In Proc. 32nd International
Colloquium on Automata, Languages and Programming (ICALP’05), volume 3580
of LNCS, pages 652–663. Springer, 2005.

12. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure
against dictionary attacks. In Advances in Cryptology – EUROCRYPT’00, volume
1807 of LNCS, pages 139–155. Springer, 2000.

13. S. M. Bellovin and M. Merritt. Encrypted key exchange: Password-based protocols
secure against dictionary attacks. In Proc. 1992 IEEE Symposium on Security and
Privacy (SSP’92), pages 72–84, 1992.

14. B. Blanchet, M. Abadi, and C. Fournet. Automated verification of selected equiva-
lences for security protocols. In Proc. 20th IEEE Symposium on Logic in Computer
Science (LICS’05), pages 331–340, 2005.

15. M. Boreale, R. De Nicola, and R. Pugliese. Proof techniques for cryptographic pro-
cesses. In Proc. 14th IEEE Symposium on Logic in Computer Science (LICS’99),
pages 157–166, 1999.

412 M. Abadi, M. Baudet, and B. Warinschi

16. V. Boyko, P. MacKenzie, and S. Patel. Provably secure password-authenticated
key exchange using Diffie-Hellman. In Advances in Cryptology – EUROCRYPT’00,
volume 1807 of LNCS, pages 156–171. Springer, 2000.

17. R. Corin, J. M. Doumen, and S. Etalle. Analysing password protocol security
against off-line dictionary attacks. Technical report TR-CTIT-03-52, Centre for
Telematics and Information Technology, Univ. of Twente, The Netherlands, 2003.

18. R. Corin, S. Malladi, J. Alves-Foss, and S. Etalle. Guess what? Here is a new tool
that finds some new guessing attacks (extended abstract). In IFIP WG 1.7 and
ACM SIGPLAN Workshop on Issues in the Theory of Security (WITS’03), pages
62–71, 2003.

19. S. Delaune and F. Jacquemard. A theory of dictionary attacks and its complexity.
In Proc. 17th IEEE Computer Security Foundations Workshop (CSFW’04), pages
2–15, 2004.

20. C. Fournet. Private communication, 2002.
21. R. Gennaro and Y. Lindell. A framework for password-based authenticated key

exchange. In Advances in Cryptology – EUROCRYPT’03, volume 2656 of LNCS,
pages 524–543. Springer, 2003.

22. O. Goldreich and Y. Lindell. Session key generation using human passwords only.
In Advances in Cryptology – CRYPTO’01, volume 2139 of LNCS, pages 403–432.
Springer, 2001.

23. L. Gong. Verifiable-text attacks in cryptographic protocols. In Proc. 9th IEEE
Conference on Computer Communications (INFOCOM’90), pages 686–693, 1990.

24. L. Gong, T. M. A. Lomas, R. M. Needham, and J. H. Saltzer. Protecting poorly
chosen secrets from guessing attacks. IEEE Journal on Selected Areas in Commu-
nications, 11(5):648–656, 1993.

25. J. Katz, R. Ostrovsky, and M. Yung. Practical password-authenticated key ex-
change provably secure under standard assumptions. In Advances in Cryptology –
EUROCRYPT’01, volume 2045 of LNCS, pages 475–494. Springer, 2001.

26. P. Laud. Symmetric encryption in automatic analyses for confidentiality against ac-
tive adversaries. In Proc. 2004 IEEE Symposium on Security and Privacy (SSP’04),
pages 71–85, 2004.

27. G. Lowe. Analysing protocols subject to guessing attacks. Journal of Computer
Security, 12(1):83–98, 2004.

28. D. Micciancio and B. Warinschi. Completeness theorems for the Abadi-Rogaway
logic of encrypted expressions. Journal of Computer Security, 12(1):99–129, 2004.

29. D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence of
active adversaries. In Proc. Theory of Cryptography Conference (TCC’04), volume
2951 of LNCS, pages 133–151. Springer, 2004.

30. D. H. Phan and D. Pointcheval. About the security of ciphers (semantic secu-
rity and pseudo-random permutations). In Proc. Selected Areas in Cryptography
(SAC’04), volume 3357 of LNCS, pages 185–200. Springer, 2004.

31. M. Steiner, G. Tsudik, and M. Waidner. Refinement and extension of encrypted
key exchange. ACM SIGOPS Oper. Syst. Rev., 29(3):22–30, 1995.

32. G. Tsudik and E. V. Herreweghen. Some remarks on protecting weak secrets
and poorly-chosen keys from guessing attacks. In Proc. 12th IEEE Symposium on
Reliable Distributed Systems (SRDS’93), 1993.

Handling exp, × (and Timestamps)
in Protocol Analysis�

Roberto Zunino and Pierpaolo Degano

Dipartimento di Informatica, Università di Pisa, Italy
{zunino, degano}@di.unipi.it

Abstract. We present a static analysis technique for the verification
of cryptographic protocols, specified in a process calculus. Rather than
assuming a specific, fixed set of cryptographic primitives, we only re-
quire them to be specified through a term rewriting system, with no
restrictions. Examples are provided to support our analysis. First, we
tackle forward secrecy for a Diffie-Hellman-based protocol involving ex-
ponentiation, multiplication and inversion. Then, a simplified version of
Kerberos is analyzed, showing that its use of timestamps succeeds in
preventing replay attacks.

1 Introduction

Process calculi [16] have been extensively used for cryptographic protocol speci-
fication and verification, exploiting formal methods. Several of these calculi (e.g.
Spi [2]), however, use a specific set of cryptographic primitives, which is often
entwined with the definition of the process syntax and semantics, e.g. by intro-
ducing pattern matching on encrypted messages. On the one hand, this simplifies
the presentation of the calculus; also the verification tools only need to consider
a given set of primitives. On the other hand, protocols using different primitives
cannot be specified in the calculus as it is: one has to suitably extend it and to
adapt existing tools to cope with the extensions. Of course, the new tools also
needs new, adapted soundness proofs.

The applied pi calculus [1] instead does not fix the set of primitives. Its pro-
cesses can exchange arbitrary terms, that are considered up to some equivalence
relation. This relation can be defined by the user through an equational theory.
In this scenario, adding primitives is done by adding the relevant equations to
the theory, without changing the syntax of the processes. In other words, the
applied pi effectively separates the semantics of the processes, which is fixed, from
the semantics of the terms, which is user-defined.

In this paper, we present a technique for the static analysis of protocols spec-
ified in a (slight) variant of the applied pi. In our calculus, term equivalence is
instead specified through an arbitrary rewriting system R. Indeed, we do not
put any restrictions on R: it needs neither to be confluent nor terminating.
� Partly supported by the EU within the FETPI Global Computing, project IST-2005-

16004 SENSORIA (Software Engineering for Service-Oriented Overlay Computers).

L. Aceto and A. Ingólfsdóttir (Eds.): FOSSACS 2006, LNCS 3921, pp. 413–427, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

414 R. Zunino and P. Degano

Our technique borrows from the control flow analysis (CFA) approach [19, 5]
and from the algorithms for non-deterministic finite tree automata (NFTA)
[10, 21]. As in the CFA, we extract a number of constraints from a protocol spec-
ification, expressed as a process. Then, we solve the constraints using the com-
pletion algorithm in [23], which turns out to be very similar to the one in [10, 21].
The result is a NFTA F describing a language which is an over-approximation of
the set of terms exchanged by the protocol, in all their possible equivalent forms
according to R. Finally, the automaton F can be inspected to check a number
of security properties of the protocol. Essentially, ours is a reachability analysis.

Exploiting this technique, we analyzed protocols using both standard crypto-
graphic primitives, such as encryptions and signatures, as well as more “prob-
lematic” primitives such as exponentials and XOR. Exponentials are hard to
deal with because their equational theory has many equations, and therefore
equivalent terms may assume very different shapes. As a consequence, it is hard
to find an accurate over-approximation for them. The literature often reports
on studies carried out assuming only a few equations. For instance, from the
web page of the AVISPA project [3] one sees examples with three equations for
exp and inversion (•)−1 over finite-fields, analyzed through the tool in [6]. In
the example of Sect. 4.1, we consider exp, ×, 1, and (•)−1, axiomatizing their
interactions with twelve equations. Yet, our implementation of the presented
analysis was able to prove the forward secrecy property for a protocol based on
the Diffie-Hellman key exchange [8].

Our technique also offers a limited treatment of time. Here we report on the
success of our tool for the verification of a simplified version of the Kerberos
protocol [20, 18], involving timestamps. In our specification, we allow the disclo-
sure of an old session key, mimicking a secret leak. The tool was able to prove
the secrecy of messages exchanged in newer sessions, confirming the protocol is
resilient of replay attacks with the compromised old key.

Finally, our technique allows for some composition of results. Albeit with some
limitations, it is possible to analyze the components of a system independently,
and then merge the results later to derive a sound analysis for the whole system.

A related approach to ours is in [4]. However, they only consider certain
equational theories, e.g. without associativity, and define a semi-algorithm to
obtain rewriting rules with “partial normal forms.” They then use ProVerif to
check processes equivalent, thus establishing security properties. Also, some de-
cidability results for (a significant fragment of) the exponential theory are in [15].
Other applications of NFTA to security can be found in [12, 11]. There, protocols
are specified through rewriting, rather than process calculi. Another interesting
work is by Goubault [13], dealing with exponentials through rewriting. There,
however, only exponentials with a fixed base are considered. Monniaux in [17]
also uses NTFA for verifying protocols, when crypto primitives can be expressed
through left-linear rewritings. Finally, there is an earlier analysis for the applied
pi calculus in [22]. However, it only applies to free terms, subject to no rewriting.

Summary. In Sect. 2 we introduce background and notation. We present our
calculus in Sect. 3, defining its dynamic semantics in Sect. 4. The same section

Handling exp, × (and Timestamps) in Protocol Analysis 415

has the Diffie-Hellman example. Sect. 5 describes the static analysis and its ap-
plication to Diffie-Hellman and Kerberos. In Sect. 6 we discuss compositionality.

2 Background and Notation

A non-deterministic finite tree automaton (NFTA) A is determined by its finite
set of states Q = {@a, @b, . . .} and its set of transitions. Transitions have the
form @q→ T , where T is a generic term built using function symbols and states
in Q. For example, we consider the following A:

@a→ 0 @a→ 1 @a→ 2
@b→ nil @b→ cons(@a, @b) @c→ fst(@b)

In the above the function symbols are 0, 1, 2, nil (nullary), fst (unary) and cons
(binary). States Q are {@a, @b, @c}. Each state @q has an associated language
[@q]A, given by the set of the state-free terms reachable through transitions.
For example, we have @b → cons(@a, @b) → cons(@a, cons(@a, @b)) → cons(0,
cons(@a, @b)) → cons(0, cons(1, @b)) → cons(0, cons(1, nil)) = T , and therefore
T ∈ [@b]A.

A term rewriting system R is a set of rewriting rules, having the form L⇒ R,
where L,R are terms built using function symbols and variables. For example,
the usual rewriting rules for pairs are:

fst(cons(X,Y))⇒ X snd(cons(X,Y))⇒ Y

In [23] an algorithm is described for computing the R-completion of an automa-
ton A. The result is another automaton F such that its languages 1) include
those of A, and 2) are closed under rewriting. Formally, F is such that whenever
@q→∗

A→∗
R T also @q→∗

F T for any @q, T . For instance, completing the A above,
we obtain an F such that @c →∗

F 1. A very similar algorithm was presented in
[10]. Once such an F is computed, it is possible to verify properties about the
languages of A up-to rewriting by inspecting their over-approximations in F .

For our purposes, we also want F to satisfy a set of intersection constraints I,
provided as an input to the algorithm. These constraints have the form @a∩@b ⊆
@c, meaning that the intersection of the languages [@a]F and [@b]F must be
included in [@c]F . The algorithm in [23] was adapted to handle I and is the
basis for our analysis tool.

The time complexity of the completion algorithm is polynomial (assuming
that the depth of each left hand side in any rewriting rule is constant).

3 Syntax

Our process calculus is a simplified version of the applied pi calculus [1], in
that processes exchange values using a global public network channel. Values
are simply represented as terms, up to the equivalence specified by a rewriting
system R. We write T for the set of terms. We also use X as a set of variables.
The syntax of our calculus is rather standard.

416 R. Zunino and P. Degano

π ::= in x | out M | [x = y] | let x = M | new x | repl | chk
P ::= nil | π . P | (P |P)

We now briefly describe our calculus: its semantics will be given in Sect. 4.
Intuitively, nil is a process that performs no actions; π.P executes the prefix
π and then behaves as P ; P1|P2 runs concurrently the processes P1 and P2.
Prefixes perform the following actions: in x reads a term from the network and
binds x to it; out M sends a term to the network; [x = y] compares the term
bound to x and y and stops the process if they differ; let x = M simply locally
binds x to the value of M ; new x generates a fresh value and binds x to it;
repl spawns an unlimited number of copies of the running process, which will
run independently; chk is a special action that we use to model certain kinds of
attacks, which we will address in Sect. 4.

Note that match [x = y] is only allowed between variables. This is actually
not a restriction, since matching between arbitrary terms, e.g. [M = N].P can
be expressed by let x = M .let y = N .[x = y].P .

As usual, the bound variables in a process are those under a let,new, or in
prefix; the others are free. A process with no free variables is closed.

Given a process, we use addresses θ ∈ {n, l, r}∗ to point to its subprocesses.
Intuitively, n chooses the continuation P for a process π.P , while l and r choose
the left and right branch of a parallel P1|P2, respectively. An address θ is a
concatenation of these selectors, singling out the subprocess P@θ as defined
below. We write ε for the empty string.

P@ε = P (P1|P2)@θl = P1@θ
π.P@θn = P@θ (P1|P2)@θr = P2@θ

4 Dynamic Semantics

Given a closed process P , we define its semantics through a multiset rewriting
system [14, 7]. A state is a multiset σ of parallel threads. Each thread is formed
by an environment ρ ∈ X → T and a continuation address θ singling out a
subprocess of P . We write such a thread as 〈ρ, θ〉. Intuitively, 〈ρ, θ〉 runs the
process P@θ under the bindings in ρ. The initial state is 〈∅, ε〉.

We extend ρ homomorphically to terms: ρ(M) replaces variables in M with
the value they are bound to in ρ. Also, as a handy convention, if P@θ = P1|P2,
we write 〈ρ, θ〉 for the multiset {〈ρ, lθ〉, 〈ρ, rθ〉}, or its further expansion, so that
threads in the state never have continuation addresses θ′ such that P@θ′ has
the form P1|P2.

Our semantics is given by the rules in Fig. 1. Local rules only care about one or
two elements of the current state: these elements are rewritten independently of
the rest of the state, which does not change. All the rules fire a prefix, advancing
the current continuation address θ to nθ, except for rule Rew.

Rule Comm performs communication between threads. Rule Out outputs a
term to the external environment. Since out M may be handled by either Comm
or Out, there is no guarantee that outputs have a corresponding input; instead,

Handling exp, × (and Timestamps) in Protocol Analysis 417

Local Rules

Comm
P@θ1 = in x .P ′ P@θ2 = out M .P ′′ ρ′

1 = ρ1[x �→ ρ2(M)]

〈ρ1, θ1〉, 〈ρ2, θ2〉
comm θ1,θ2,ρ2(M)−−−−−−−−−−−→〈ρ′

1, nθ1〉, 〈ρ2, nθ2〉

Out
P@θ = out M .P ′

〈ρ, θ〉 out θ,ρ(M)−−−−−−−→〈ρ,nθ〉

Match
P@θ = [x = y].P ′ ρ(x) = ρ(y)

〈ρ, θ〉 τ−→〈ρ, nθ〉 Let
P@θ = let x = M .P ′

〈ρ, θ〉 τ−→〈ρ[x �→ ρ(M)], nθ〉

Repl
P@θ = repl.P ′

〈ρ, θ〉 τ−→〈ρ, θ〉, 〈ρ,nθ〉 Rew
ρ(x) →R M

〈ρ, θ〉 τ−→〈ρ[x �→ M], θ〉

Global Rules

New
P@θ = new x .P ′ x̂ = genFresh()

σ, 〈ρ, θ〉 τ−→σ, 〈ρ[x �→ x̂], nθ〉 Chk
P@θ = chk.P ′

σ, 〈ρ, θ〉 chk−−→〈ρ, nθ〉

Fig. 1. Multiset Rewriting Rules

they may simply cause a barb, i.e. an action observed only by the external envi-
ronment. Note that there is no rule for input, and therefore processes can never
receive a value from the environment – for studying security issues our processes
will explicitly contain an adversary.

Rule Match, allows a process to continue only if x and y are bound to the
same term. Rule Let simply updates ρ with the new binding. Rule Repl allows
for spawning a new copy of P ′. In Rew, the thread rewrites the term bound by
x, thus performing an internal computation step; note that these internal steps
may lead a matching to succeed.

Global rules instead look at the whole state. Rule New is not completely
standard, and it generates a fresh value x̂ for the variable x. Here we postulate
that 1) a constant (nullary function) symbol x̄ exists for each variable bound by
new in P , and 2) two function symbols val, next exist, subject to no rewriting
in R. Note that we only need a finite number of such x̄, since there are only
finitely many variables in P and we have no α-conversion. When rule New is
applied, the x̂ is generated by a genFresh() primitive, which we assume to choose
among val(x̄), val(next(x̄)), val(next(next(x̄))), To make it possible to track
new-generated values to their new prefix in P , we require that all new-bound
variables are distinct, and therefore so are their related constants x̄. Note that
this representation prevents an adversary Adv to deduce any instance of x̂ from
other instances he knows, even if Adv can use val and next.

Rule Chk is peculiar: when a chk prefix is fired all the other threads are
aborted, and the thread continues its execution alone. For simplicity, we admit
only one firing of chk. We use this special prefix to model some kind of attacks.
For instance, suppose we want to study the case in which the adversary learns
some secret term S, maybe by corrupting some participant to the protocol. A
straightforward way to model this attack would be simply adding out S to the

418 R. Zunino and P. Degano

protocol, disclosing S. While this would work, in many cases giving this kind of
power to the adversary might allow for trivial attacks. Instead, to keep the game
fair, we could restrict the interaction between the adversary and the participants
after the disclosure of S. For example, we could imagine that it would take a
long time for the adversary to obtain S, and meanwhile the participants have
terminated the protocol run, either normally or because of a time-out.

A possible usage of chk is the following. The adversary, after having learnt
S, is only allowed to run alone, and possibly use this new knowledge to decrypt
messages it learnt in the past. In our calculus, we model this scenario as

(Proto|Adv)|in know .chk.(out know .out S .nil|Adv)
Usually, the process Adv is chosen independently of the protocol, modeling the
capabilities of any adversary, as we shall do in our examples.

Note that we include the adversary process twice. First, the adversary can
interact with the protocol. Later, when chk is fired, the adversary can learn S
and go on with its computation, without being able to communicate with the
protocol participants. Since we want to allow the adversary to keep its knowledge
across the chk firing, we simply save it in the variable know before the chk, and
make it again available to the adversary later on. Note that, while know is only
a single term, it can be a cons-list of all the terms known by the adversary.
Therefore know actually can bring all the old adversary knowledge into the new
world, provided we have a primitive for pairing. In the next section, we show
such a use of chk.

Another interesting use of chk we found is for modeling timestamps, as we
will show in Sect. 5.3.

4.1 Diffie-Hellman Example

We consider the following key-exchange protocol, based on Diffie–Hellman [8].

1. A→ all : g 4. A→ B : {m}gab

2. A→ B : {ga}k1 5. . . .
3. B → A : {gb}k2 6. A→ all : k1, k2

Initially, the principals A and B share two long term secret keys k1, k2, and agree
on a public finite field GF[p] (where p is a large prime), and public generator g
of GF[p]∗. In the second step, principal A generates a nonce a and sends B the
result of ga(mod p), encrypted with the key k1. In the third step, B does the
same, with its own nonce b and key k2. Since both principals know the long
term keys, they can compute (gb)a = gab = (ga)b (mod p) and use this value as
a session key to exchange the message m in the fourth step.

We study the robustness of this protocol against the active Dolev–Yao [9] ad-
versary (such an adversary has full control over the public network, can reroute,
discard or forge messages; further, he can apply any algebraic operation to terms
learnt before). The adversary we use runs all the available operations in a non-
deterministic way. Doing this, its behaviour encompasses that of any arbitrary
Dolev-Yao adversary.

Handling exp, × (and Timestamps) in Protocol Analysis 419

More in detail, we are interested in the forward secrecy of the message m.
That is, we want m to be kept secret even though later on the long term keys
k1, k2 are disclosed (last step).

We define the algebra by adapting the rewriting rules for encryption, multi-
plication, exponentiation, and inversion from [15]:

R =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dec(enc(X,K),K)⇒ X
fst(cons(X,Y))⇒ X snd(cons(X,Y))⇒ Y
×(1, X)⇒ X exp(inv(X), Y)⇒ inv(exp(X,Y))
×(X,Y)⇒ ×(Y,X) ×(X,×(Y, Z))⇒ ×(×(X,Y), Z)
exp(X, 1)⇒ X exp(1, X)⇒ 1
inv(inv(X))⇒ X exp(exp(X,Y), Z)⇒ exp(X,×(Y, Z))
inv(1)⇒ 1 exp(×(Y, Z), X)⇒ ×(exp(Y,X), exp(Z,X))
×(X, inv(X))⇒ 1 inv(×(X,Y))⇒ ×(inv(X), inv(Y))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Note that the algebra A defined by the above rewriting rules is not the same
algebra of GF[p]∗. In fact, A satisfies more equations than the ones that hold
in GF[p]∗. For instance, operations in A do not specify which modulus is being
used; e.g., inversion modulo n is simply written as inv(X) rather than inv(X,n).
Therefore, we have (a) ×(X, inv(X)) = 1 and (b) exp(Y,×(X, inv(X))) = Y .
However, (a) holds in GF[p]∗ only if inv(X) is performed modulo p, while (b)
holds only if inv(X) is performed modulo ϕ(p) = p − 1 (where ϕ is the Euler
function). In spite of A being not equal to the GF[p]∗ algebra, the equations that
hold in GF[p]∗ do hold in A.

We use the following process:

P =new g .(DY |new k1 .new k2 .(Proto|Chk))
Chk =in know .chk.(out know .out k1 .out k2 .nil|DY))
Proto =A|B

A =repl.new a .out enc(exp(g, a), k1) .in x .
let k = exp(dec(x, k2), a) .out enc(m, k) .nil

B =repl.new b .in x .out enc(exp(g, b), k2) .
let k = exp(dec(x, k1), b) .in n .out hash(dec(n, k)) .nil

DY =repl.((new nonce .out nonce .nil|out g .out 1 .nil)|
in x .in y .out enc(x, y) .out dec(x, y) .out exp(x, y) .
out ×(x, y) .out inv(x) .out cons(x, y) .out fst(x) .out snd(x) .
out hash(x) .out val(x) .out next(x) .nil)

The specification P combines the protocol participants with the DY adversary.
The principal B outputs the hash of the exchanged message, just as a witness.
We also add a Chk process for the explicit disclosure of the secret keys: of course,
this only happens after the chk prefix is fired.

We expect P to ensure the secrecy of the message m. Further, we expect this
secrecy property to still hold even after the chk fires and thus the long term keys
k1, k2 are disclosed. This is the forward secrecy property.

420 R. Zunino and P. Degano

5 Static Semantics

Our analysis over-approximates the values that processes exchange at run-time.
These sets of values result from solving a set of constraints generated from a
given process P .

We decided to represent these sets of values as the languages associates with
the states of a finite tree automaton. Some of the constraints extracted from P
can be expressed as transitions (e.g. {f(g(x), y)|x ∈ X ∧ y ∈ Y } ⊆ Z becomes
@z → f(g(@x), @y)), forming an automaton A. The others are intersection con-
straints, and form a set I, with typical element @a∩ @b ⊆ @c. Of course, we also
require our sets of values be closed under rewritings in R.

Our tool, supplied with A, I,R, computes an automaton F such that its
languages include those of A, satisfy I, and are closed under R. Once done that,
we can check a number of properties about P by simply inspecting F .

We first give some intuition behind the construction of A and I. Roughly,
we follow the data-flow between processes depicted in Fig. 2. In the figure, the
arrows towards/from processes represent inputs and outputs, respectively, while
bullets represent the data-flow points which we focus on in our analysis. For each
bullet, we compute an approximation for the set of values that flow through it.

More in detail, we generate a dedicated state of A for each bullet, and add
transitions between states following the arrows in the figure. Formally, the states
of A are:

– @in, @out, @chk-in, @chk-out;
– @in-bθ and @out-bθ, for each θ such that P@θ = P1|P2, and b ∈ {l, r};
– @in-nθ and @out-nθ, for each θ such that P@θ = repl.P ′;
– @inters-θ, for each θ such that P@θ = [x = y].P ′;
– @x and @x-val, for each new x occurring in P ;
– @x, for each let x = M and in x occurring in P .

We generate the transitions of the automaton A and the intersection constraints
I using the gen function, recursively defined in Fig. 3. The expression gen

inin

out

nil

P | Q

in

out

repl . P

in

out out

[x=y] . P
in

out

in
in x . P

in

out

chk . P

chk−out

chk−in

val(x), val(next(x)), ...

in

out

new x . P

out

out M . P
in

let x = M . P

out

Fig. 2. Data Flow

Handling exp, × (and Timestamps) in Protocol Analysis 421

gen(θ,nil, ζ, in, out) = ∅
gen(θ, in x .P, ζ, in, out) = (@x → in), gen(nθ,P, ζ[x �→ @x], in, out)

gen(θ, out M .P, ζ, in, out) = (out → ζ(M)), gen(nθ,P, ζ, in, out)

gen(θ, (P |Q), ζ, in, out) = (out → @out-lθ), (out → @out-rθ),

(@in-lθ → in), (@in-lθ → @out-rθ), (@in-rθ → in), (@in-rθ → @out-lθ),

gen(lθ, P, ζ, @in-lθ, @out-lθ), gen(rθ, Q, ζ, @in-rθ, @out-rθ)

gen(θ, repl.P, ζ, in, out) = (out → @out-nθ), (@in-nθ → in),

(@in-nθ → @out-nθ), gen(nθ,P, ζ, @in-nθ, @out-nθ)

gen(θ, let x = M .P, ζ, in, out) = (@x → ζ(M)), gen(nθ,P, ζ[x �→ @x], in, out)

gen(θ,new x .P, ζ, in, out) = (@x → val(@x-val)),

(@x-val → x̄), (@x-val → next(@x-val)), gen(nθ,P, ζ[x �→ @x], in, out)

gen(θ, [x = y].P, ζ, in, out) = (ζ(x) ∩ ζ(y) ⊆ @inters-θ),

gen(nθ,P, ζ[x, y �→ @inters-θ], in, out)

gen(θ, chk.P, ζ, in, out) = gen(nθ,P, ζ, @chk-in, @chk-out)

Fig. 3. Extraction of A, I from a process

(θ, P ′, ζ, in, out) generates the transitions and intersection constraints for P ′ =
P@θ, a subprocess of P 1. The static environment ζ ∈ X → Q keeps track of
which state of A is used to approximate the sets of values that can be dynam-
ically bound to each variable in scope. The in and out parameters define the
states for the approximation of the values that can be received and sent by P ′,
respectively. Initially, gen is called as gen(ε, P, ∅, @in, @out) to generate A, I for
the whole process P .

No productions are generated for nil. For in x .P ′, we generate a new state
@x, and a transition from it to in to include inputs in its language. Then, we
update ζ (the dotted line in Fig. 2) by binding x to @x, and proceed recursively
with the continuation P ′. Outputs as out M .P ′ generate a transition from the
out state to ζ(M), the term obtained by replacing all the variables in M with
their corresponding states; we then proceed recursively for P ′. For example, the
generated transitions for P = in x .out f(x) .out g(x) .nil are @x→ @in, @out→
f(@x), @out→ g(@x). Note that each output contributes to the language of @out
by adding transitions to those already generated. This is depicted in Fig. 2 by
the out arrow going straight from left to the right and collecting possible outputs
from below. As seen in the figure, this happens for all processes, except for chk.

Parallel processes such as P |Q are handled by creating four dedicated states
for input and output of the left and right branch, then adding transitions to
cross-connect inputs and outputs as in Fig. 2. Replication repl.P is done in a
similar fashion, with a loopback transition.

For let bindings, we simply create a new state for the approximation of the
bound value, and update ζ accordingly. A new x .P ′ causes the generation of

1 The parameter P ′ of gen is actually redundant since it is determined by θ, but its
presence allows for a simple definition.

422 R. Zunino and P. Degano

transitions for the language val(x̄), val(next(x̄)), val(next(next(x̄))), . . . using the
two states @x and @x-val; then, we update ζ to bind x to this language.

A match [x = y].P ′ creates a new state @inters-θ for the (approximation
of the) intersection of values hold by x and y, together with the associated
intersection constraint; in the analysis of P ′ we use this new state for both ζ(x)
and ζ(y).

When a chk is fired, the continuation runs in an isolated world, therefore
in the analysis we simply reset in, out to new independent states and proceed
recursively. Note that ζ is not changed, and that bound variables bring their
values into the new world (e.g. in x .chk.out x .nil).

Note that our analysis generates no transitions for states @in and @chk-in:
their language is therefore empty. In fact, top-level processes receive no value
from their environment; this reflects the absence of an input rule.

Matching and Precision. Consider the following process:

P1 =out cons(0, 0) .out cons(1, 1) .nil |
in x .let f = fst(x) .let z = 0 .[f = z].out snd(x) .nil

At run-time, the last out snd(x) can output 0, only. However, our analysis of
the match [f = z] does only refine the approximation of f and z, and not that
of x. Therefore, in the analysis, a single state is used for the values of x before
and after the match. The result of the analysis is that the last out may output
either 0 or 1.

A more precise result can be obtained by using instead the following pattern:

P2 =out cons(0, 0) .out cons(1, 1) .nil |
in x .let y = cons(0, snd(x)) .[x = y].out snd(x) .nil

Here the analysis of the match refines the approximation of x itself, and therefore
deduces that the last output can only be 0. We will use this style of matching
in our examples.

5.1 Subject Reduction

Here, we establish the soundness for our analysis.
First, we define an address compatibility relation ∼ over addresses. Roughly

speaking, θ1 ∼ θ2 means that at run-time a thread running P@θ1 could commu-
nicate with a thread running P@θ2. The actual ∼ over-approximates run-time
communication, and simply checks if the two addresses point to processes either
at different branches of the same parallel, or under the same replication. We also
take into account the presence of the chk prefix, since its continuation cannot
interact with previously spawned threads.

More in detail, we say that chk occurs between θ and θ′θ iff for some θa, θb we
have θ′ = θaθb and P@θbθ = chk.P ′. Then, the address compatibility relation ∼
is the minimum relation such that

Handling exp, × (and Timestamps) in Protocol Analysis 423

– if chk does neither occur between lθ and θllθ, nor between rθ and θrrθ, then
θllθ ∼ θrrθ

– if P@θ = repl.P ′ and chk does neither occur between θ and θ1θ, nor between
θ and θ2θ, then θ1θ ∼ θ2θ

The following lemma ensures that the relation ∼ actually encompasses all run-
time communications. Its proof can be done by induction on the number of
computation steps.

Lemma 1. If P−→∗ comm θ1,θ2,M−−−−−−−−−→, then θ1 ∼ θ2.
Input and output states related to compatible addresses satisfy the following
inclusion property. The proof of this lemma is by structural induction on P .

Lemma 2. If θ1 ∼ θ2, then we have [@out-θ1]F ⊆ [@in-θ2]F , provided these
states exist.

The following theorem ensures that our analysis is sound, relating the dynamic
semantics to the static one.

Theorem 1 (Subject Reduction). Given P , let F be the automata resulting
from the analysis. Assume 〈∅, ε〉−→∗ α−→σ, 〈ρ, θ〉.
1. ∀x ∈ dom(ρ). ρ(x) ∈ [@x]F
2. if α = (out θ ,M) and chk was not fired before α, then M ∈ [@out]F
3. if α = (out θ ,M) and chk was fired before α, then M ∈ [@chk-out]F

Proof (Sketch). By induction on the number of computation steps. First, we
consider property (1): for this, we only need to check the rules that update the
environment ρ.

When the Comm rule is applied, yielding to comm θ1, θ2, ρ2(M), by Lemma 1
we have θ1 ∼ θ2. We look for the transitions for in x and out M generated
by gen(). These transitions have the form @x → in and out → ζ(M), where
in = @in-θi and out = @out-θo. The addresses θi, θo, in general, are not the
same as θ1, θ2, but they are strictly related so that we have also θi ∼ θo. By
Lemma 2, ρ′1(x) = ρ2(M) ∈ [@out-θo]F ⊆ [@in-θi]F ⊆ [@x]F , provided that
ζ(M) is a correct approximation of ρ2(M). For this last proof obligation, we note
that when there is no match involving variables in M , we have ζ(x) = @x, so
inductive hypothesis and structural induction on M suffices. Otherwise, if there
is a match, we have ζ(x) = @inters-θm for some x occurring in M . Here we
first proceed by structural induction on P , obtaining ρ2(x) ∈ [@inters-θm]F ,
and then continue as for the no-match case. This shows that property (1) is
preserved by Comm.

We now tackle property (1) for the other rules. The Let case is straightforward:
we generated the transition @x → ζ(M), so we have ρ(M) ∈ [@x]F . Rule New
also poses no problem, because the fresh term returned by genFresh() is chosen
among the terms in the language of @x. Finally, environment updates by rule
Rew are harmless, the languages of F being closed under rewritings.

424 R. Zunino and P. Degano

For properties (2,3), only rule Out may cause out θ,M . Here, structural in-
duction on P is sufficient to show that M ∈ [@out-θ′]F , where P@θ′ ranges from
P@θ to i) the enclosing chk.P ′, if any, or otherwise to ii) the top level P . From
this, we deduce M ∈ [@out]F or M ∈ [@chk-out]F , depending on whether ii) or
i) applies, respectively. �"

5.2 Diffie-Hellman Example (Continued)

We ran the above analysis on the protocol specified in Sect. 4.1, computing the
result F . Our tool generated an F having 47 states and 865 transitions. Our
analysis was able to establish forward secrecy, as m 	∈ [@out-chk]F .

5.3 Kerberos

We now study a protocol involving timestamps. We chose a simplified version of
Kerberos [20, 18].

In this protocol, a key exchange is performed by an authentication server
AS, a client C and a server S. Initially, the authentication server shares long
term keys with the client (kc) and with the server (ks). Upon request from the
client, AS generates a fresh key kcs and sends it to the client encrypted with kc.
Further, AS also provides a certificate for the freshness of kcs, made of the kcs
key itself and the current time, both encrypted by ks. The server S can decrypt
the certificate and ensure that kcs is indeed fresh by checking the timestamp.
After that, C and S use kcs to exchange a session key ksess, and then proceed
exchanging messages encrypted with ksess.

We study the rôle of timestamps in the protocol. To that purpose, we intro-
duce a vulnerability in the server S. In our implementation, we let the server to
disclose kcs, potentially mining the security of the protocol. However, to keep
the game fair, disclosure may only happen after a long time since the times-
tamp for kcs has been generated. We model this through the occurrence of a
chk. Hopefully, if timestamps are properly checked, disclosing a old kcs will not
disrupt new sessions of the protocol.

In our specification, we abstract the actual timestamps values with two con-
stants before and after. Initially, the protocol uses only before: any other times-
tamp value is considered not valid, being in the far past or far future. After chk,
the before timestamp has expired, and the protocol has moved to newer times-
tamps, represented by after. Similarly, we use msg1 and msg2 for the messages
exchanged by C and S before and after the chk, respectively.

We expect this faulty protocol implementation not to disclose msg1 until a
chk occurs. After chk, we do expect msg1 to be disclosed, but we hope any new
msg2 messages to be kept secret.

We specify the above as follows: (we omit parentheses in P1| · · · |Pn for read-
ability)

P =DY |new kc .new ks .(AS|C|S)
AS =repl.new kcs .in nonce .out enc(cons(nonce, kcs), kc) .

out enc(cons(kcs, before), ks) .nil

Handling exp, × (and Timestamps) in Protocol Analysis 425

C =repl.new nonce .out nonce .in ticket .in cert .

let ticketCorrect = enc(cons(nonce, snd(dec(ticket, kc))), kc) .
[ticket = ticketCorrect].let kcs = snd(dec(ticket, kc)) .
new ksess .out enc(ksess, kcs) .out cert .out enc(msg1, ksess) .nil

S =repl.in tsess .in cert .let sess = dec(cert, ks) .
let sessCorrect = cons(fst(sess), before) .[sess = sessCorrect].
let ksess = dec(tsess, fst(sess)) .in m .out hash(dec(m, ksess)) .Chk

Chk =in know .chk.(out know .out sess .nil|AS′|C′|S′|DY)
DY =repl.out before .out after .new nonceDY .out nonceDY .nil|

repl.in x .in y .out cons(x, y) .out fst(x) .out snd(x) .
out dec(x, y) .out enc(x, y) .out hash(x) .out val(x) .out next(x) .nil

where AS′, C′, S′ are the same as AS,C, S except that before is replaced with
after, msg1 is replaced with msg2, and Chk is replaced with nil. As in the Diffie-
Hellman example, our specification, once exchanged a message msg1 or msg2,
output its hash.

Using our tool, we generated F (77 states, 1424 transitions) and verified that
msg1 	∈ [@out]F and msg2 	∈ [@out-chk], thus establishing the wanted properties.
On a side note, we also have msg1 ∈ [@out-chk], as it should be, since msg1 is
actually disclosed and our analysis is sound.

6 A Bit of Compositionality

Real-world systems often run many different protocols in a concurrent fashion.
However, one usually studies the security properties of each protocol indepen-
dently. This may not be enough to ensure the integrity of a system, since two
otherwise safe protocols may have unwanted interactions, especially if the pro-
tocols share secrets. One would rather be able to derive properties about P1|P2
from the studies of P1 and P2.

Our analysis offers some opportunities for composing security results. Assume
P1 and P2 were analyzed beforehand, yielding the automata F1 and F2. We can
build an F for P1|P2 by merging the transitions of F1 and F2 and adding

@in1 → @in @in1 → @out2
@in2 → @in @in2 → @out1
@out→ @out1 @out→ @out2

just as it happens for the analysis of the parallel. Such an F is sound, provided
that [@out1]F1 ⊆ [@in2]F2 and [@out2]F2 ⊆ [@in1]F1 . This last proof obligations
might be checked by static analysis. If the obligations do not hold (or cannot
be proved), the completion algorithm can be restarted from the above F to
compute a sound approximation. This could be less expensive than rebuilding
the approximation from scratch, since parts of the work have been already done
when computing F1 and F2.

426 R. Zunino and P. Degano

7 Conclusion

We presented a simple model for the specification of cryptographic protocols,
based on process calculi and term rewriting. We stress that we allow any rewrit-
ing system for defining the cryptographic primitives. Further, the model deals
with some basic temporal aspects, and therefore it is suitable to express certain
security properties involving time, such as forward secrecy.

We defined a static analysis for the verification of protocols so that it is closed
under rewritings. The analysis focuses on foreseeing the protocol behaviour be-
fore and after a selected point in time, represented by the firing of chk. Also, we
explored some opportunities for composing results of our analysis.

We implemented the analysis, and used our tool to check some significant
protocols. The tool confirmed that we can handle complex rewriting rules, such
that those of exponentials, and protocols involving timestamps.

References

1. M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In
Proceedings of the 28th ACM Symposium on Principles of Programming Languages
(POPL’01), pages 104-115., 2001.

2. M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The Spi
calculus. Journal of Information and Computation, 148(1):1–70, 1999.

3. AVISPA project home page. http://www.avispa-project.org.
4. B. Blanchet, M. Abadi, and C. Fournet. Automated verification of selected equiv-

alences for security protocols. In 20th IEEE Symposium on Logic in Computer
Science (LICS 2005), 2005.

5. C. Bodei, P. Degano, F. Nielson, and H. Riis Nielson. Static analysis for the π-
calculus with application to security. Journal of Information and Computation,
168(1):68–92, 2001.

6. Y. Boichut. Tree automata for security protocols (TA4SP) tool. http://
lifc.univ-fcomte.fr/ boichut/TA4SP/TA4SP.html.

7. I. Cervesato, N. A. Durgin, J. C. Mitchell, P. D. Lincoln, and A. Scedrov. Relat-
ing strands and multiset rewriting for security protocol analysis. In 13-th IEEE
Computer Security Foundations Workshop, pages 35–51, 2000.

8. W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22(6):644–654, 1976.

9. D. Dolev and A.C. Yao. On the security of public key protocols. IEEE Transactions
on Information Theory, IT-29(12):198–208, 1983.

10. G. Feuillade, T. Genet, and V. Viet Triem Tong. Reachability analysis over term
rewriting systems. Journal of Automated Reasoning, 2004.

11. T. Genet, Y. T. Tang-Talpin, and V. V. T. Tong. Verification of copy-protection
cryptographic protocol using approximations of term rewriting systems. In Proc.
of Workshop on Issues in the Theory of Security, 2003.

12. Thomas Genet and Francis Klay. Rewriting for cryptographic protocol verification.
In Proceeding of CADE, pages 271–290, 2000.

13. Jean Goubault-Larrecq, Muriel Roger, and Kumar N. Verma. Abstraction and
resolution modulo AC: How to verify Diffie-Hellman-like protocols automatically.
Journal of Logic and Algebraic Programming, 64(2):219–251, August 2005.

Handling exp, × (and Timestamps) in Protocol Analysis 427

14. José Meseguer. Conditional rewriting logic as a unified model of concurrency.
Theoretical Computer Science, 96(1):73–155, 1992.

15. J. K. Millen and V. Shmatikov. Symbolic protocol analysis with products and
Diffie-Hellman exponentiation. In Computer Security Foundations Workshop, 2003.

16. R. Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge Uni-
versity Press, 1999.

17. David Monniaux. Abstracting cryptographic protocols with tree automata. Science
of Computer Programming, 47(2–3):177–202, 2003.

18. B. C. Neuman and T. Ts’o. Kerberos: An authentication service for computer
networks. IEEE Communications Magazine, 32:33–38, 1994.

19. F. Nielson, H. Riis Nielson, and H. Seidl. Cryptographic analysis in cubic time.
Electronic Notes in Theoretical Computer Science, 62, 2002.

20. J. G. Steiner, B. C. Neuman, and J. I. Shiller. Kerberos: An authentication service
for open network systems. In Proc. of the Winter 1988 Usenix Conference, pages
191–201, 1988.

21. Timbuk tree automata tool. http://www.irisa.fr/lande/genet/timbuk.
22. R. Zunino. Control flow analysis for the applied π–calculus. In Proceedings of the

MEFISTO Project 2003, volume ENTCS 99, pages 87–110, 2004.
23. R. Zunino and P. Degano. Finite approximations of terms up to rewriting.

http://www.di.unipi.it/ zunino/papers/completion.html.

Symbolic and Cryptographic Analysis of the
Secure WS-ReliableMessaging Scenario�

Michael Backes1, Sebastian Mödersheim2,
Birgit Pfitzmann1, and Luca Viganò2

1 IBM Zurich Research Lab, Switzerland
2 Information Security Group, ETH Zurich, Switzerland

Abstract. Web services are an important series of industry standards
for adding semantics to web-based and XML-based communication, in
particular among enterprises. Like the entire series, the security stan-
dards and proposals are highly modular. Combinations of several stan-
dards are put together for testing as interoperability scenarios, and these
scenarios are likely to evolve into industry best practices. In the terminol-
ogy of security research, the interoperability scenarios correspond to se-
curity protocols. Hence, it is desirable to analyze them for security. In this
paper, we analyze the security of the new Secure WS-ReliableMessaging
Scenario, the first scenario to combine security elements with elements
of another quality-of-service standard. We do this both symbolically and
cryptographically. The results of both analyses are positive. The dis-
cussion of actual cryptographic primitives of web services security is a
novelty of independent interest in this paper.

1 Introduction

Web services are a series of standards that add higher-layer semantics and qual-
ity of service to web-based communication. They use XML as the basic format
for all exchanged content and SOAP as the basis for message exchanges [19]. In
principle, web services are independent of the underlying transport protocol; in
practice, as the name suggests, typical web protocols are commonly used. An
important principle of web services is modularity (see [27]). This principle was
in particular applied to the design of quality-of-service features like security
and message ordering. Thus, these features are addressed by a set of standards
and pre-standard proposals that can, at least syntactically, be combined in a
highly flexible way. It is well-known, however, that combinations of security
elements have to be treated with care as many combinations may not yield
the properties that one might expect. The equivalent of the classic notion
of security protocols in the web-services space is interoperability profiles or
scenarios. While primarily defined for interoperability testing, they are not
unlikely to evolve into industry best practices for common cases. At the same
� This work was partially supported by the Zurich Information Security Center. It

represents the views of the authors.

L. Aceto and A. Ingólfsdóttir (Eds.): FOSSACS 2006, LNCS 3921, pp. 428–445, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Analysis of the Secure WS-ReliableMessaging Scenario 429

time, they are at the level of concreteness where an analysis for well-known
protocol security properties is possible.

In this paper, we present the first such analysis for an interoperability profile
that combines features from the standards and proposals for security and another
quality-of-service area, reliable messaging. It is the Secure WS-ReliableMessaging
Scenario [24], which recently arose from the WS-ReliableMessaging and
WS-SecureConversation Composability Interop Workshop held in April 2005.1

It is based on the WS-Security standard [36] and the recent standard proposals
WS-ReliableMessaging [28] and WS-SecureConversation [32] with a few addi-
tional references to WS-Trust [33] and WS-Addressing [18]. We present two types
of analysis:

1. an automated analysis based on a number of symbolic protocol analysis
techniques under the assumption of perfect cryptography, and

2. an analysis closer to real cryptography based on explicit cryptographic as-
sumptions on the underlying cryptographic algorithms used.

Both analyses refer to the properties that are already informally stated in
WS-ReliableMessaging [28], where they are pointed out as desirable security
properties in the context of reliable sending of messages. WS-ReliableMessaging
does not address how these properties can be achieved but refers to a suitable
combination with the techniques offered by the security-specific web services
standards. The Secure WS-ReliableMessaging Scenario provides such a combi-
nation, and our analysis exemplifies that the properties can indeed be achieved
by the techniques offered by existing web services standards.

Our first, symbolic analysis has been carried out by employing the AVISPA
Tool [2, 43], which is a push-button tool for the analysis of security-sensitive
protocols and applications, under the assumption of perfect cryptography. The
AVISPA Tool relies on a modular and expressive formal language for specifying
protocols and their security properties, and integrates different back-ends that
implement a variety of state-of-the-art automatic analysis techniques. For our
analysis, we have employed OFMC [8] and CL-AtSe [42], which are the two more
mature back-ends of the tool and which both perform protocol falsification and
bounded verification by employing a number of symbolic techniques.

The Secure WS-ReliableMessaging Scenario has a structure that is far more
complex than standard security protocols. Hence, an important part of modeling
the protocol in a way feasible for automated analysis has been the search for a
way to restrict the number of permissible interleavings of sending and receiv-
ing events without excluding attacks, i.e., every attack on the original protocol
should be possible also on the simplified version. Below, we will first explain
how we have built such a specification, and then illustrate the goals that we
have checked in our analysis. Roughly speaking, we have shown that a client
and a service mutually authenticate each other on certain messages that they
exchange when executing the protocol, and that these messages remain secret.
1 The title of [24] contains “scenarios” in the plural, but for our purposes the document

defines one protocol and we thus use the singular.

430 M. Backes et al.

These problems give rise to an infinite search space, so that automated tools
need to make restrictions on some aspects of the problem in order to analyze
it. We have considered different settings by imposing bounds on the number of
possible parallel protocol sessions, on the number of message sequences that can
be considered in each session, and on the number of payloads per message se-
quence. Neither OFMC nor CL-AtSe have reported any attacks for the settings
we considered, and they have thus verified the Secure WS-ReliableMessaging
Scenario with respect to the modeled security properties for these settings.

Our second analysis is manual (and thus more time-consuming, less flexible
to protocol additions, and more prone to human error), but more realistic with
respect to the cryptographic primitives. For instance, we show that we can treat
the occurring key derivation via hash functions in the standard model of cryptog-
raphy as pseudo-random functions if applied to certain pairs of arguments. For
the other primitives, symmetric and asymmetric encryption as well as symmetric
authentication and signatures, we can use standard definitions. We also discuss
how close existing theorems on justifying symbolic analyses such as our first one
come to replacing a from-scratch cryptographic analysis such as our second one.
Note, however, that the Secure WS-ReliableMessaging Scenario, like all other
current communication security standards, does not prescribe that provably se-
cure primitives in the cryptographic sense are used, in particular for the sym-
metric primitives. Thus, we cannot claim that we proved exactly the standard
implementations under what became known as standard cryptographic assump-
tions such as the hardness of factoring. Our cryptographic analysis is modular,
and some results can immediately be reused for other profiles, e.g., the analy-
sis of the initial key exchange based mainly on WS-Trust and that of the key
derivation using elements of WS-SecureConversation.

Both our analyses have positive results, i.e., they demonstrate that at the
abstraction level of each analysis, the protocol is error-free. Note that our two
analyses are complementary (in particular, neither of them is derived from the
other), but we consider it interesting future work to investigate how to link the
two kinds of analysis for web services in the style of previous proofs of soundness
of Dolev-Yao models, e.g., see [1, 5, 6, 7, 20, 40].

Outline of the Paper. We start by describing the Secure WS-ReliableMessaging
Scenario and the corresponding security properties in Section 2. Sections 3 and 4
contain the symbolic and the cryptographic analysis of the scenario, respectively.
After reviewing further related work in Section 5, we give concluding remarks
and discuss possible future extensions of this work in Section 6.

Due to lack of space, discussions, examples, and proofs have been shortened
or omitted; details can be found in the extended version of this paper [3].

2 The Secure WS-ReliableMessaging Scenario

The Secure WS-ReliableMessaging Scenario is a two-party protocol initiated by
a client C and run together with a service S. It consists of three phases starting

Analysis of the Secure WS-ReliableMessaging Scenario 431

Long-term keys:

pkeX , skeX Public and secret encryption key of X ∈ {C, S}.

pksX , sksX Public and secret signature key of X ∈ {C, S}.

pksCA Public signature key of a certification authority CA.

CertX Public key certificate of X ∈ {C, S}. We have CertX = X, pkeX , pksX ,
SigCA(X, pkeX , pksX), where SigCA(·) denotes a signature computed by the
certification authority CA, valid with respect to pksCA.

Cryptographic primitives:

EncX(·) A public-key encryption scheme, denoting encryptions computed with public
key pkeX for X ∈ {C, S}.

SigX(·) A digital signature scheme, denoting signatures computed with secret key
sksX for X ∈ {C, S}.

SymEnck (·) A symmetric encryption scheme, denoting encryptions computed with secret
key k .

Mack (·) A message authentication code, denoting MACs computed with secret key k .

Hash(·) A hash function, e.g., SHA-256.

Fig. 1. Keys and cryptographic algorithms used in the Secure WS-ReliableMessaging
Scenario

Quantities occurring in the protocols:

ID1, . . . , ID9 Message IDs of the individual protocol messages.
IDsk ID of the symmetric master key sk that is established in the initial key

exchange phase.
IDSeq Sequence ID denoting the sequence of exchanged messages.
N, N∗ Nonces used to compute the master key sk .
N1, N2 Nonces used to compute the authentication and encryption session keys

sk1 and sk2.
m Payload that should be reliably sent from C to S.
n Natural number denoting an acknowledged message.
k , k ′ Symmetric keys used within a hybrid encryption in the initial key exchange

phase.
sk Symmetric master key shared between C and S after the initial key ex-

change phase. Derived from N and N∗ as sk = Hash(N, N∗).
sk1, sk2 Symmetric session keys for authentication and encryption shared between

C and S after the start of the message sending. Derived from sk , N1, and
N2 as sk i = Hash(Ni, sk).

Fig. 2. Quantities used in the Secure WS-ReliableMessaging Scenario

with a key-exchange phase, followed by the message-sending phase which uses
this key, and finished by a termination phase which cancels the validity of the
exchanged keys.

432 M. Backes et al.

We will use a straight font to denote cryptographic algorithms (Enc, Sig, etc.),
a straight font with capital letters to denote protocol-specific constants (RST,
RSTR, etc.), and an italic font to denote keys, identities, etc.

The key-exchange phase is based on public-key cryptography and hence re-
quires a mechanism to authenticate the respective public keys. The profile as-
sumes a certification authority CA, which has a secret key sksCA. Its public
counterpart, pksCA, is known to both C and S. The certification authority cer-
tifies the public keys of party X ∈ {C, S} by signing the triple (X, pkeX , pksX)
with its key sksCA, where pkeX and pksX denote X ’s public encryption key and
X ’s signature verification key, respectively. Note that pksCA must have been
conveyed in an authenticated manner to both C and S, and that pksCA must
not give certificates with the name X of an honest party to any other party.

Figures 1 and 2 summarize the notation for the keys held by both parties,
the cryptographic primitives we will be using, and the quantities involved in the
protocol. For interoperability, the scenario uses specific cryptographic algorithms
to implement the respective primitives — RSA-1.5 for public-key encryption,
RSA-SHA1 for digital signatures, AES128-CBC for symmetric encryption, and
HMAC-SHA1 for message authentication codes. In the cryptographic analysis
that we carry out in Section 4, we do not fix specific algorithms but require
that the used algorithms satisfy the respective security definitions under active
attacks, e.g., indistinguishability under adaptive chosen-ciphertext attacks in
the case of public-key encryption. Efficient schemes that satisfy these definitions
exist under reasonable assumptions.

2.1 Description of the Protocol

Before the protocol begins, each partyX ∈ {C, S} has some starting information.
Besides its own encryption and signature keys, the client starts with the signature
verification key pksCA of the certification authority CA, a certificate CertC of
its own public keys, and a certificate CertS of the public keys of the service. The
service starts only with the signature verification key pksCA and with its own
encryption and signature keys.

The protocol consists of nine steps, which we now briefly describe; an illustra-
tive prose description of the individual steps based on Figures 3-5 is given in [3].
The first two steps constitute the key-exchange phase of the protocol between
the client and the service and essentially rely on the functionalities offered by
WS-SecureConversation; they are depicted in Figure 3. Similarly, the last two
steps cancel the validity of this key as depicted in Figure 5. Steps three to seven
are depicted in Figure 4 and constitute the message-sending phase, which con-
sists of the creation of a message sequence, the secure sending of a message
m, and the closing of the sequence; each of these steps essentially relies on the
functionalities offered by WS-ReliableMessaging.

The protocol is not simply a ping-pong protocol: after the key-exchange phase
has been completed, the client is allowed to start multiple sessions of the message-
sending phase in parallel and there are non-deterministic choices on the order of
messages.

Analysis of the Secure WS-ReliableMessaging Scenario 433

Composite Fields for Initial Key Exchange (Step 1-2):

body1 SymEnck(RST, S, N)
SigConf SigC(ID1, S, RST, C, body1,CertC)
header1 EncS(k), SymEnck(SigConf)
body2 SymEnck′(RSTR, IDsk , S, N∗)
header2 EncC(k′), SymEnck′(SigConf),

SymEnck′(SigS(ID2, C, RSTR, ID1,SigConf , body2))

Protocol Flows (Step 1-2, from WS-SecureConversation):

1. RequestSecurityToken: C −−
ID1, S, RST, C,CertC , header1, body1−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ S

2. RequestSecurityTokenResponse: C ←−
ID2, C, RSTR, ID1,CertC , header2, body2−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− S

Fig. 3. The Key-exchange Phase, implemented via WS-SecureConversation

Composite Fields for Message Sending (Step 3-7):

Session (IDsk , N2), (IDsk , N1)

body3 CS, C, IDsk

header3 SymEncsk2
(Macsk1(ID3, S, CS, C, body3))

body4 CSR, IDSeq

header4 SymEncsk2
(SigConf), SymEncsk2

(Macsk1(ID4, C, CSR, ID3, body4))

body5 SymEncsk2
(PM, m)

header5 SymEncsk2
(Macsk1(ID5, S, PM, (IDSeq ,n), body5))

body6 ()

header6 SymEncsk2
(Macsk1(ID6, C, SA, (IDSeq ,n), body6))

body7 TS, IDSeq

header7 SymEncsk2
(Macsk1(ID7, S, TS, (TS, IDSeq), body7))

Message Sending (Step 3-7, from WS-ReliableMessaging):

3. CreateSequence: C −−−−−
ID3, S, CS,Session, header3, body3−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ S

4. CreateSequenceResponse: C ←−−−−
ID4, C, CSR,Session, header4, body4−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− S

5. PayloadMessage: C −−−−−−−
ID5,S,PM,(IDSeq ,n),IDsk ,Session,

header5,body5−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ S

6. SequenceAcknowledgment: C ←−
ID6, C, SA, (IDSeq ,n),Session, header6, body6−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− S

7. TerminateSequence: C −−−
ID7, S, TS, IDsk ,Session, header7, body7−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ S

Fig. 4. The Message-sending Phase, implemented via WS-ReliableMessaging

434 M. Backes et al.

Composite Fields for Session Closure (Step 8-9):

Session (IDsk , N2), (IDsk , N1)

body8 CST, IDsk

header8 SymEncsk2
(Macsk1(ID8, S, CST, C, body8)

body9 CSTR

header9 SymEncsk2
(SigConf),

SymEncsk2
(Macsk1(ID9, C, CSTR, (IDsk , N1), body9)

Protocol Flows (Step 8-9, from WS-SecureConversation):

8. CancelSecurityToken: C −
ID8, S, CST, C, IDsk ,Session, header8, body8−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ S

9. CancelSecurityTokenResp: C ←−−−
ID9, C, CSTR,Session, header9, body9−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− S

Fig. 5. The Termination Phase, implemented via WS-SecureConversation

The necessary tests on the received messages follow the usual convention as
described in [35], e.g., an honest receiver of a message checks that the decrypted
plaintexts are of the correct format, that respective parts of the plaintext match
corresponding parts sent unencrypted in the same message, and that the sender
and receiver fields contain the expected values. We do not always mention this
explicitly in the following.

Possible Protocol Extensions. We moreover sketch a possible extension of
the interoperability scenario to reflect additional capabilities of the client
and the service offered by the WS-ReliableMessaging standard. The standard

Composite Fields for Protocol Extension:

ID5.1, ID5.1∗ Message IDs of the additional protocol messages.
body5.1 ()
header5.1 SymEncsk2

(Macsk1(ID5.1, C, NAck, (IDSeq ,n), body5.1))
body5.1∗ ()
header5.1∗ SymEncsk2

(Macsk1(ID5.1∗ , C, AR, (IDSeq ,n), body5.1∗))

Resend and Ack Inquiries (Between Step 5 and 6, from WS-
ReliableMessaging):

5.1. NotAcknowledged: C ←−
ID5.1, C, NAck, (IDSeq ,n),Session, header5.1, body5.1−−− S

5.1∗. AckRequested: C −
ID5.1∗ , C, AR, (IDSeq ,n),Session, header5.1∗ , body5.1∗
−−→ S

Fig. 6. Extension of the Secure WS-ReliableMessaging Scenario with Resend Inquiries

Analysis of the Secure WS-ReliableMessaging Scenario 435

additionally allows a client to request an unreceived acknowledgment of a previ-
ously sent message, and it allows a service to ask the client to re-send a message if
it has not been received yet. This yields two additional steps which are depicted
in Figure 6.

2.2 Security Properties

We consider a range of reasonable security requirements for the parties involved;
some of the requirements are explicitly mandated by the standards, others are
optional and hold only under stronger assumptions on the underlying crypto-
graphic primitives. The following security properties are explicitly pointed out
in WS-ReliableMessaging:

– No Message Alteration: Payloads contained in the 5. PayloadMessage in a
session between an honest client and an honest service cannot be altered by
an adversary.

– No Message Disclosure: Payloads contained in the 5. PayloadMessage in a
session between an honest client and an honest service remain secret from
the adversary.

– Key Integrity and Confidentiality: If an honest client and an honest ser-
vice established a shared key sk after the first two steps of the protocol,
both parties obtained the same key. Moreover, this key is secret from the
adversary.

– Authentication: If an honest service accepts a payload m presumably from
an honest client, then this honest client indeed sent this payload in the same
session.

Accountability is also mentioned in WS-ReliableMessaging as one of the proper-
ties desirable in certain scenarios. As this scenario uses symmetric cryptography
for the message authentication, accountability in the sense of non-repudiation
is clearly not a goal of this scenario. The potential real-life accountability of
this scenario is formally captured on the protocol level by the message integrity
property and otherwise given by non-protocol factors. We refer to [3] for ad-
ditional useful properties that are not explicitly required by the standard as
well as for a refinement of the aforementioned properties tailored to the Secure
WS-ReliableMessaging Scenario.

3 Symbolic Security Analysis

The AVISPA Tool. We have carried out a symbolic analysis of the Secure
WS-ReliableMessaging Scenario by employing the AVISPA Tool [2, 43], which
is a push-button tool for the automated validation, under the assumption of
perfect cryptography and Dolev-Yao adversary [25], of industrial-scale Internet
security-sensitive protocols and applications. A user interacts with the AVISPA
Tool by specifying a security problem (a protocol paired with a security property
that it is expected to achieve) in the High-Level Protocol Specification Language

436 M. Backes et al.

HLPSL [21], which is an expressive, modular, role-based, formal language that
allows for the specification of control-flow patterns, data structures, alternative
adversary models, complex security properties, as well as different cryptographic
operators and their algebraic properties. The AVISPA Tool automatically trans-
lates a user-defined security problem into an equivalent description of an infinite-
state transition system that is then input to the back-ends of the AVISPA Tool.
The back-ends search the transition system for states that represent attacks on
the intended properties of the protocol.

The current version [2, 43] of the tool integrates four back-ends that implement
a variety of state-of-the-art automatic analysis techniques, ranging from protocol
falsification (by finding an attack on the input protocol) to abstraction-based
verification methods for infinite numbers of sessions. The back-ends are: the
On-the-fly Model-Checker OFMC, the Constraint-Logic-based Attack Searcher
CL-AtSe, the SAT-based Model-Checker SATMC, and the TA4SP verifier, which
analyzes protocols by implementing tree automata based on automatic approx-
imations. All the back-ends of the tool analyze protocols by considering the
standard Dolev-Yao model of an active adversary that controls the network but
cannot break cryptography; in particular, the adversary can intercept messages
and analyze them if it possesses the respective keys for decryption, and it can
generate messages from his knowledge and send them under any party’s name.
Upon termination, the AVISPA Tool outputs that the protocol was verified with
respect to the specified security problem, that an attack was found, or that the
available resources were exhausted.

For our analysis of the Secure WS-ReliableMessaging Scenario, we have em-
ployed OFMC [8] and CL-AtSe [42], which are the two more mature back-ends
of the tool, with better scope and performance. OFMC and CL-AtSe both per-
form protocol falsification and bounded verification by employing a number
of symbolic techniques. Some of these techniques are back-end specific, while
other ones are common to the two back-ends, such as the lazy intruder tech-
nique to symbolically represent all the possible messages that the Dolev-Yao
adversary can generate. These techniques enable both OFMC and CL-AtSe to
handle protocols with complex message terms and in particular to model the
Secure WS-ReliableMessaging Scenario in its full complexity, without having to
simplify the messages that are exchanged.2

The Model. The back-ends of the AVISPA Tool have successfully validated
(or found a number of new attacks on) security protocols such as those in
the Clark/Jacob library [22], as well as Kerberos, IKE, SET, and other pro-
tocols proposed by standardization organizations such as the IETF, ITU, W3C,
Oasis, IEEE, 3GPP, and OMA. Similar analyses have been carried out by other
(semi-)automated tools such as [9, 16, 17, 26, 41].

2 The complexity of the Scenario prevents the usage of the current versions of SATMC
and TA4SP. We hope to soon be able to report on the analysis with these back-ends
as well; in particular, if analysis with TA4SP succeeded, then that would prove that
the protocol is safe for secrecy goals for any number of sessions.

Analysis of the Secure WS-ReliableMessaging Scenario 437

The Secure WS-ReliableMessaging Scenario has a structure that is far more
complex than that of standard security protocols. Nonetheless, thanks to its ex-
pressiveness, HLPSL allows us to completely model the protocol, i.e., to provide
a formal specification of the complex interactions between the two honest parties,
which we can model as two separate client and service programs that commu-
nicate over an insecure network controlled by a Dolev-Yao adversary. However,
such a model is too complex for automated analysis as even for a limited number
of sessions, the set of permissible interleavings of sending and receiving events
is enormous. For instance, the messages sent by the client may arrive in any
order at the service. Additionally, both the client and the service can send “ad-
ministrative” messages, i.e., acknowledge messages, request the retransmission
of messages, or request the acknowledgment of messages. An important part of
modeling the protocol in a way feasible for automated analysis has thus been
the search for a way to restrict the number of interleavings without excluding
attacks, i.e., such that any attack on the original protocol is possible also on the
simplified version.

We have performed a step-by-step simplification of the client and service
programs, whereby we have showed that these simplifications do not exclude
any attacks.3 As we lack space to give the HLPSL specification here due to its
complexity and the amount of explanation that would be necessary, we only
sketch the main ideas behind our HLPSL specification. In particular, we briefly
illustrate the simplifications we have carried out for the client program; the ones
for the service program are similar, and more details can be found in [3], together
with a formal justification of the fact that these simplifications of the HLPSL
specification do not exclude any attacks.

In order to simplify the client, note, firstly, that it is not a restriction if the
client sends in one transition all the messages that it wishes to transmit via the
5. PayloadMessage step as soon as it has received the 4. CreateSequenceResponse
message. Secondly, the client canneglect any requests of step 5.1.NotAcknowledged
from the service to retransmit messages, since the Dolev-Yao adversary has
seen all messages and can thus replay them to the service if this is necessary
for an attack. Hence, we can consider a simplified client program that, hav-
ing sent all its payload messages, simply waits for acknowledgment messages
(6. SequenceAcknowledgment) or, after timing out, requests acknowledgment from
the service (5.1∗. AckRequested). Thirdly, since the Dolev-Yao adversary can inter-
cept all responses from the service, it might deliberately make the client produce
acknowledge request messages. Hence we can assume that the adversary can ob-
tain acknowledge request messages of step 5.1∗. AckRequested for every payload
message. No attacks are therefore excluded if the client program sends with every
5. PayloadMessage also an 5.1∗. AckRequested message.
3 The simplified (restricted) version of the protocol that we obtain in this way is only

useful for the formal analysis, not for the practical deployment of the protocol: for
instance, since a Dolev-Yao adversary can replay old messages arbitrarily if this is
necessary to mount an attack, we can restrict the model to client programs that
never retransmit old messages.

438 M. Backes et al.

These simplifications yield a client program that behaves as follows in every
message sending phase: it sends all payload messages together with the corre-
sponding requests for acknowledgment in one step, then waits until all messages
are acknowledged, and finally sends a 7. TerminateSequence message.

Goals. Let us define the security-relevant messages of the Secure WS-
ReliableMessaging Scenario to be the key-material (sk, sk1, and sk2) and all
payloads transmitted with a 5. PayloadMessage. For our symbolic analysis, we
have specified a number of secrecy and authentication goals (giving rise to dif-
ferent HLPSL security problems for the Scenario):

– secrecy of all security-relevant messages, and
– mutual authentication between client and service on all security-relevant

messages.

We model these goals by labeling several transitions in the HLPSL specification
with special events that express the meaning of the transition with respect to
the goals of the protocol. First, whenever a client c that believes to talk with
service s creates a security-relevant message m, then it generates a secret event
secret(m,{c,s}) expressing that m must remain secret between the parties in
the specified set, in this case c and s. This allows us to define a violation of
secrecy by a state of the transition system in which the adversary knows a mes-
sage m for which a secrecy event has occurred with a set of parties to which the
adversary does not belong. Second, we define violations of authentication by la-
beling the transitions with witness and request events. Whenever a party a that
believes to talk with another party b first “handles” some security-relevant mes-
sage m (i.e., either creates it or receives it for the first time), then it generates an
event witness(a,b,id,m)where id is an identifier that uniquely determines the
purpose of the message in the protocol. This witness event expresses that a uses
message m for communication with b and for purpose id. The service s generates
an event request(s,c,id,m) when it receives a payload m (supposedly) from
the client c with index id. Similarly, if the client c receives the acknowledgement
for the id-th payload (supposedly) from the service s, and if c has previously
sent m as the id-th payload, then c generates the event request(c,s,id,m).
Similar request events are generated for the authentication on the key-material.
(Intuitively, request events express that a party begins to rely on the agreement
with another party on the specified value.)

A violation of authentication is then defined as any of the two follow-
ing situations. First, weak authentication is violated whenever there is a
request(b,a,id,m) but no matching witness event witness(a,b,id,m), i.e.,
a party b believes a message m to come from a, but a has never sent m, at least
not for this purpose. Second, strong authentication is violated whenever weak
authentication is, or whenever a request event occurs more frequently than the
corresponding witness event (i.e., by a kind of replay, the adversary made party
b accept a message more often than it was actually said by a). Note that these
goals are equivalent to Lowe’s [39] notions of non-injective and injective agree-
ment, respectively.

Analysis of the Secure WS-ReliableMessaging Scenario 439

The security problems that we obtain by modeling these goals cover the
main security properties stated for the Secure WS-ReliableMessaging Scenario in
Section 2.2 as follows:

– secrecy of all security-relevant messages covers no message disclosure and
key confidentiality,

– mutual authentication between client and service on all security-relevant
messages covers no message alteration, key integrity, and authentication.

Bounds of the Analysis. The security problems associated with the Secure
WS-ReliableMessaging Scenario give rise to an infinite search space, so that,
in order to analyze this space, automated tools need to make some restrictions,
i.e., to impose some bounds to consider relevant protocol execution and analysis
settings. In the following, we will describe the restrictions that we imposed in
our analysis with OFMC and CL-AtSe.

In general, there is no bound on the number of parties and sessions of the
protocol that can be executed in parallel. While one can bound the number of
parties, by the argumentations of [23] or by the symbolic sessions technique of
OFMC [8], the problem of an unbounded number of sessions cannot be solved
in general since it gives rise to undecidability. Moreover, there are two similar
problems of unboundedness in the protocol: there is no bound on the number of
payload messages to be exchanged or on the number of new message sequences
that can be started, i.e., the protocol contains unbounded loops. All these prob-
lems give rise to an unbounded number of steps of honest parties, while both
OFMC and CL-AtSe currently require analysis settings with bounded numbers
of steps of honest parties.

In general, there is also no bound on the complexity of messages that the ad-
versary can generate. However, as we remarked above, both OFMC and CL-AtSe
implement the lazy intruder technique, which uses a symbolic representation to
avoid explicitly enumerating the possible messages that the Dolev-Yao adversary
can generate, and which allows for an analysis without restricting this parameter
of the problem.

We have therefore analyzed the protocol with OFMC and CL-AtSe under the
following execution/analysis settings: there are at most three parallel protocol
sessions, the client can start at most two message-sending sequences per protocol
session, and there are at most three payload messages per message sequence.
Neither OFMC nor CL-AtSe have reported any attacks on the protocol for these
analysis settings. In particular, for three parallel sessions, both OFMC and CL-
AtSe verified the protocol within three hours (while the verification of smaller
settings required between few seconds to a minute).

4 Cryptographic Security Analysis

In this section, we complement the symbolic analysis of the security properties
of the WS-ReliableMessaging Scenario from Section 3 by a cryptographic analy-
sis. Thus we now analyze the security of the scenario in a cryptographic setting

440 M. Backes et al.

where the cryptographic primitives and the perfect cryptography assumption
are replaced with actual cryptographic algorithms and the corresponding se-
curity notions that reason about probabilistic polynomial-time attackers. It is
known that, even if the symbolic analysis is careful in distinguishing primitives
like symmetric encryption and authentication, as both the analyzed scenario and
the analysis in Section 3 do, and even if one assumes that an implementation
is made with primitives secure according to the strictest usual cryptographic
definitions, the results of such a symbolic analysis may not carry over to the
real implementation. The most prominent example is that it cannot be avoided
in general that the length of encrypted payload data, such as the values m in
the PayloadMessage, leaks. Other problems that may occur in general scenarios
are due to the probabilism of secure public-key encryption, key-stealing attacks,
and manipulations of symmetric encryptions unless authenticated encryption
[11, 10] is used in the implementation [5, 4]. Consequently, in a Dolev-Yao-style
cryptographic library designed to be implemented based on arbitrary crypto-
graphically secure primitives and to be usable in a secure way within arbitrary
protocols with arbitrary security properties, both the abstraction and the real-
ization must have certain idiosyncrasies. Hence, while it might be interesting to
augment a tool like the AVISPA Tool by the idiosyncrasies of the Dolev-Yao
style model of [5, 6, 4], and while implementing the primitives of WS-Security
with the extended realizations from those papers (e.g., some additional tagging
and randomization) might realize the goal of web service security to offer com-
pletely composable primitives also in a semantic sense, neither has been done yet.
Other work on bridging the gap between symbolic and cryptographic security
concentrated more on keeping very close to standard symbolic and real versions
at the cost of generality. However, at present none of them covers the protocol
class of Secure WS-ReliableMessaging, nor the security properties required. The
seminal work [1] treats passive attacks only. Active attacks have been considered
in this context in [40, 38, 20]. First, however, each of these papers treats only one
cryptographic primitive, asymmetric encryption in [40, 20] and symmetric en-
cryption in [38]. Secondly, [40] only treats integrity properties, while [38] only
treats the secrecy of fixed, protocol-internal messages and [20] only treats the
secrecy of nonces, i.e., random values chosen within the protocol and not usable
for operations (such as encrypting) in that protocol. It may be interesting future
work to extend such results on restricted usage of cryptographic libraries to the
typical usage in WS-Security protocols. Our following considerations can be seen
as a step in this direction.

Given these shortcomings of the current methods for deducing the security
in the cryptographic setting from a symbolic proof, we do not try to do that,
but base our proof directly on existing cryptographic work that explored the
security of encryption, signatures, and MACs when combined in specific ways.
In the following, we assume that the public-key encryption system Enc be secure
against adaptive-chosen ciphertext attacks (short IND-CCA2-secure), that the
symmetric encryption scheme be secure under adaptive chosen-plaintext attacks
(short IND-CPA-secure), and that the signature scheme Sig and the message

Analysis of the Secure WS-ReliableMessaging Scenario 441

authentication scheme Mac be secure against adaptive chosen-message attacks
(short IND-CMA-secure). These are the commonly accepted security definitions
of these primitives under active attacks so that we omit their rigorous definition.
Primitives secure in this sense exist under reasonable assumptions.

Furthermore, we have to require that the hash function Hash used to compute
the secret key sk based on two secret nonces does not degenerate the randomness
induced by the nonces. This would be clear if we worked in the random oracle
model; however, the specific setting of the scenario allows us to work in the
standard model with a sufficient condition being that Hash, when applied to
pairs, is a pseudo-random function in its first argument.

We obtain the following theorem (proven in [3]), in which we assume that the
Secure WS-ReliableMessaging Scenario is run as a stand-alone protocol. This is
not necessarily realistic for a web-services implementation; then our approach
may have to take policies into account as in [14].

Theorem 1. (Cryptographic Security of Secure WS-Reliable Messaging Sce-
nario) If Enc is IND-CCA2-secure, if Sig is IND-CMA-secure, if SymEnc is IND-
CPA-secure, and if Hash, when applied to pairs, is a pseudo-random function
in its first argument, then key integrity and key confidentiality are cryptograph-
ically fulfilled for the scenario, i.e., if the protocol is run with a probabilistic
polynomial-time adversary, the keys are authentic with overwhelming probabil-
ity, and the keys are indistinguishable from fresh random keys given the view of
the adversary. If additionally Mac is IND-CMA-secure, then message integrity
and no message disclosure are cryptographically fulfilled. �

5 Further Related Literature

Work is currently underway on scaling-up formal analysis methods and tools to
web services security protocols, e.g., [12, 13, 14, 15, 29], although none of these
works performs a cryptographic analysis of the protocols. In particular, the
TulaFale tool [15] compiles descriptions of XML/SOAP-based security proto-
cols and properties into the applied pi calculus and then employs the ProVerif
tool [16]. We considered employing also TulaFale for the automatic symbolic
analysis of Secure WS-ReliableMessaging, but its input language would first
need to be extended to express all the constructs of the profile, and we thus
leave this analysis and the comparison with our own symbolic analysis as future
work. Recent work has also considered the automated analysis of XML-based
web services: [37] presents a formal analysis of an encoding of the original XML
messages into standard security protocol notation, showing that this encoding
is without loss of attacks. Based on this encoding, the Casper/FDR tool can
then check security properties for an unbounded number of sessions thanks to
the employed data independence technique (which is similar to the abstraction
techniques in TA4SP). The considered protocol, however, is simpler than the
Secure WS-ReliableMessaging Scenario (e.g., no open-ended exchange of pay-
load messages) and its analysis with Casper/FDR required simplifications of the

442 M. Backes et al.

message terms. It is thus not clear if the method of [37] could also work on
complex protocols such as the one considered in this paper.

Another type of analysis of a web services security protocol is that of an
interoperability profile of WS-Federation in [31]. The analyzed profile [34] is a
passive requestor profile, i.e., the user is represented only by a browser. The
emphasis therefore lies on treating a browser in a protocol security proof. The
analysis is by hand, and as only signatures and secure channels occur as cryp-
tographic primitives, there is not much discussion of detailed properties of the
cryptographic primitives in web services.

6 Conclusion and Outlook

We have given a symbolic and a cryptographic analysis of the security of the new
Secure WS-ReliableMessaging Scenario, which constitutes the first web services
scenario to combine security elements with elements of another quality-of-service
standard. The results of both analyses are positive, i.e., they are proofs as far
as the techniques faithfully represent the standards; these restrictions concern
the cryptographic primitives and, in the symbolic case, the analysis settings.
Our symbolic analysis is a further step in the use of formal proof tools for the
validation of security protocols and web services under the perfect cryptogra-
phy assumption. Our cryptographic analysis constitutes an important first step
to reason about the security of web services in the more realistic setting where
the perfect cryptography assumption is replaced by the complexity-theoretic
definitions of cryptography. Some of the cryptographic results are of more gen-
eral applicability in web services security than for the specific settings analyzed
here.

As future work on the symbolic side, we have begun considering additional
symbolic analysis settings, as well as employing abstraction techniques for carry-
ing out unbounded verification. To this end, it would be particularly interesting
not only to employ AVISPA’s TA4SP, but also to investigate the relationships
and possible complementarity of our analysis with an analysis carried out by
TulaFale/ProVerif, especially since the model checkers that we used implement
different techniques than those of ProVerif (which combines symbolic represen-
tations based on first-order logic and abstractions). Moreover, it would be of
great help to be able to exploit the automatic compilation provided by TulaFale
and we will thus investigate how to do so for the AVISPA Tool. We believe that
the work of [30] will be helpful here, as it provides a preliminary translation
procedure from protocol descriptions in HLPSL to descriptions in the applied
pi calculus, which thus allows one to apply the ProVerif tool to some existing
HLPSL protocol specifications.

On the cryptographic side, it would be interesting to see in which respect one
can weaken the security requirements imposed on the cryptographic primitives
without invalidating the security properties. Furthermore, we intend to apply our
techniques to other profiles and scenarios and possibly even to a policy-based
analysis similar to [14] on the symbolic side.

Analysis of the Secure WS-ReliableMessaging Scenario 443

References

1. M. Abadi and P. Rogaway. Reconciling two views of cryptography: The com-
putational soundness of formal encryption. In Proc. 1st IFIP TCS, LNCS 1872,
pp. 3–22. Springer, 2000.

2. A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar, P. Han-
kes Drielsma, P.-C. Heám, O. Kouchnarenko, J. Mantovani, S. Mödersheim, D. von
Oheimb, M. Rusinowitch, J. Santiago, M. Turuani, L. Viganò, and L. Vigneron.
The AVISPA Tool for the Automated Validation of Internet Security Protocols and
Applications. In Proc. CAV’2005, LNCS 3576, pp. 281–285. Springer, 2005.

3. M. Backes, S. Mödersheim, B. Pfitzmann, and L. Viganò. Symbolic and Cryp-
tographic Analysis of the Secure WS-ReliableMessaging Scenario (Extended Ver-
sion). Technical Report 502, Department of Computer Science, ETH Zurich, 2006.
Available at www.infsec.ethz.ch.

4. M. Backes and B. Pfitzmann. Symmetric encryption in a simulatable Dolev-Yao
style cryptographic library. In Proc. 17th IEEE CSFW, 2004.

5. M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library
with nested operations (extended abstract). In Proc. 10th ACM CCS, pp. 220–
230, 2003. Full version in IACR Cryptology ePrint Archive 2003/015, Jan. 2003,
http://eprint.iacr.org/.

6. M. Backes, B. Pfitzmann, and M. Waidner. Symmetric authentication within a
simulatable cryptographic library. In Proc. 8th ESORICS, LNCS 2808, pp. 271–
290. Springer, 2003.

7. M. Backes, B. Pfitzmann, and M. Waidner. A general composition theorem for
secure reactive systems. In Proc. 1st TCC, LNCS 2951, pp. 336–354. Springer,
2004.

8. D. Basin, S. Mödersheim, and L. Viganò. OFMC: A Symbolic Model-Checker for
Security Protocols. International Journal of Information Security, 4(3):181–208,
2005.

9. G. Bella, F. Massacci, and L. C. Paulson. Verifying the SET Purchase Protocols.
Journal of Automated Reasoning, to appear.

10. M. Bellare and C. Namprempre. Authenticated encryption: Relations among no-
tions and analysis of the generic composition paradigm. In Proc. ASIACRYPT
2000, LNCS 1976, pp. 531–545. Springer, 2000.

11. M. Bellare and P. Rogaway. Encode-then-encipher encryption: How to exploit
nonces or redundancy in plaintexts for efficient constructions. In Proc. ASIA-
CRYPT 2000, LNCS 1976, pp. 317–330. Springer, 2000.

12. K. Bhargavan, R. Corin, C. Fournet, and A. Gordon. Secure sessions for web
services. In Proc. ACM Workshop on Secure Web Services (SWS), 2004.

13. K. Bhargavan, C. Fournet, and A. Gordon. A semantics for web service authenti-
cation. In Proc. 31st POPL, pp. 198–209. ACM Press, 2004.

14. K. Bhargavan, C. Fournet, and A. Gordon. Verifying policy-based security for web
services. In Proc. 11th ACM CCS, pp. 268–277, 2004.

15. K. Bhargavan, C. Fournet, A. Gordon, and R. Pucella. TulaFale: A security tool
for web servics. In Proc. 2nd FMCO, LNCS 3188, pp. 197–222. Springer, 2004.

16. B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. In
Proc. 14th IEEE CSFW, pp. 82–96, 2001.

17. C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H. Riis Nielson. Static vali-
dation of security protocols. Journal of Computer Security, 13(3):347–390, 2005.

18. D. Box, F. Curbera et al. Web Services Addressing (WS-Addressing), Aug. 2004.

444 M. Backes et al.

19. D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F. Nielsen,
S. Thatte, and D. Winer. Simple object access protocol (SOAP) 1.1, May 2000.

20. R. Canetti and J. Herzog. Universally composable symbolic analysis of crypto-
graphic protocols (the case of encryption-based mutual authentication and key
exchange). Cryptology ePrint Archive, Report 2004/334, 2004.

21. Y. Chevalier, L. Compagna, J. Cuellar, P. Hankes Drielsma, J. Mantovani,
S. Mödersheim, and L. Vigneron. A High Level Protocol Specification Language
for Industrial Security-Sensitive Protocols. In Proc. Workshop on Specification and
Automated Processing of Security Requirements (SAPS’04), pp. 193–205. Austrian
Computer Society, 2004.

22. J. Clark and J. Jacob. A Survey of Authentication Protocol Literature: Version
1.0, 17. Nov. 1997.

23. H. Comon-Lundh and V. Cortier. Security properties: two agents are sufficient. In
Proc. 12th ESOP, LNCS 2618, pp. 99–113. Springer, 2003.

24. D. Davis, C. Ferris, V. Gajjala, K. Gavrylyuk, M. Gudgin, C. Kaler, D. Lang-
worthy, M. Moroney, A. Nadalin, J. Roots, T. Storey, T. Vishwanath, and
D. Walter. Secure WS-ReliableMessaging scenarios, Apr. 2005. ftp://www6.
software.ibm.com/software/developer/library/ws-rmseconscenario.doc.

25. D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Transactions
on Information Theory, 29(2):198–208, 1983.

26. B. Donovan, P. Norris, and G. Lowe. Analyzing a library of security protocols using
Casper and FDR. In Proc. Workshop on Formal Methods and Security Protocols
(FMSP’99), 1999.

27. D. F. Ferguson, T. Storey, B. Lovering, and J. Shewchuk. Secure, reli-
able, transacted Web Services – architecture and composition, Oct. 2003.
Available at http://www-106.ibm.com/developerworks/webservices/library/
ws-securtrans/.

28. C. Ferris, D. Langworthy et al. Web Services Reliable Messaging Protocol (WS-
ReliableMessaging), Feb. 2005.

29. A. Gordon and R. Pucella. Validating a web service security abstraction by typing.
In Proc. 1st ACM Workshop on XML Security, pp. 18–29, 2002.

30. A. Gotsman, F. Massacci, and M. Pistore. Towards an Independent Semantics and
Verification Technology for the HLPSL Specification Language. Electronic Notes
in Theoretical Computer Science 135(1):59–77, 2005.

31. T. Groß, B. Pfitzmann, and A.-R. Sadeghi. Proving a WS-Federation Passive
Requestor Profile with a Browser Model. In Proc. ACM Workshop on Secure Web
Services (SWS), pp. 54–64. ACM Press, 2005.

32. M. Gudgin, A. Nadalin et al. Web Services Secure Conversation Language (WS-
SecureConversation), Feb. 2005.

33. M. Gudgin, A. Nadalin et al. Web Services Trust Language (WS-Trust), Feb. 2005.
34. M. Hur, R. D. Johnson, A. Medvinsky, Y. Rouskov, J. Spellman, S. Weeden, and

A. Nadalin. Passive Requestor Federation Interop Scenario, Version 0.4, Feb. 2004.
ftp://www6.software.ibm.com/software/developer/library/ws-fpscenario2.
doc.

35. F. Jacquemard, M. Rusinowitch, and L. Vigneron. Compiling and verifying security
protocols. In Proc. LPAR 2000, LNCS 1955, pp. 131–160. Springer, 2000.

36. C. Kaler et al. Web Services Security (WS-Security), version 1.0, Apr. 2002.
37. E. Kleiner and A. Roscoe. On the relationship of traditional and Web Services Se-

curity protocols. In Proceedings of the XXI Mathematical Foundations of Program-
ming Semantics (MFPS’05). Electronic Notes in Theoretical Computer Science, to
appear.

Analysis of the Secure WS-ReliableMessaging Scenario 445

38. P. Laud. Symmetric encryption in automatic analyses for confidentiality against
active adversaries. In Proc. 25th IEEE Symposium on Security & Privacy,
pp. 71–85, 2004.

39. G. Lowe. A hierarchy of authentication specifications. In Proc. 10th IEEE CSFW,
pp. 31–43, 1997.

40. D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence
of active adversaries. In Proc. 1st TCC, LNCS 2951, pp. 133–151. Springer, 2004.

41. D. Song, S. Berezin, and A. Perrig. Athena: a novel approach to efficient automatic
security protocol analysis. Journal of Computer Security, 9:47–74, 2001.

42. M. Turuani. Sécurité des Protocoles Cryptographiques: Décidabilité et Complexité.
Phd, Université Henri Poincaré, Nancy, December 2003.

43. L. Viganò. Automated Security Protocol Analysis with the AVISPA Tool. In
Proceedings of the XXI Mathematical Foundations of Programming Semantics
(MFPS’05). Electronic Notes in Theoretical Computer Science, to appear.

Author Index

Abadi, Mart́ın 398

Backes, Michael 428
Baldan, Paolo 126, 202
Baudet, Mathieu 398
Birkedal, L. 187
Blanqui, Frédéric 382
Bonsangue, Marcello M. 172
Bouajjani, Ahmed 94

Cao, Zining 63
Chen, Taolue 1
Corradini, Andrea 202
Şerbănuţă, Traian Florin 307

Debois, S. 187
Degano, Pierpaolo 413

Edalat, Abbas 231
Elsborg, E. 187

Fokkink, Wan 1
Francalanza, Adrian 16

Gorla, Daniele 47

Haar, Stefan 126
Heindel, Tobias 202
Hennessy, Matthew 16
Hildebrandt, T. 187

Jančar, Petr 277

Kirchner, Claude 382
König, Barbara 126, 202
Kurz, Alexander 172
Kuske, Dietrich 322

Laird, James 352
Laneve, Cosimo 32
Löding, Christof 292
Lohrey, Markus 322
Lüttgen, Gerald 261

Meyer, Antoine 94
Mödersheim, Sebastian 428

Nain, Sumit 1
Niss, H. 187

Ouaknine, Joël 217

Padovani, Luca 32
Palsberg, Jens 79
Paolini, Luca 367
Pattinson, Dirk 231
Pereira, Fernando Magno Quintão 79
Pfitzmann, Birgit 428
Phillips, Iain 246
Pimentel, Elaine 367
Pitcher, Corin 111
Popescu, Andrei 307

Rabinovich, Alexander 94
Riba, Colin 382
Riely, James 111
Rocca, Simona Ronchi Della 367
Roşu, Grigore 307
Rohde, Philipp 142

Sagiv, Mooly 94
Schröder, Lutz 157
Serre, Olivier 292, 337
Sobociński, Pawe�l 202
Srba, Jǐŕı 277

Ulidowski, Irek 246

Viganò, Luca 428
Vogler, Walter 261

Warinschi, Bogdan 398
Worrell, James 217

Yorsh, Greta 94

Zunino, Roberto 413

	Frontmatter
	Invited Talk
	On Finite Alphabets and Infinite Bases II: Completed and Ready Simulation

	Mobile Processes
	A Theory for Observational Fault Tolerance
	Smooth Orchestrators
	On the Relative Expressive Power of Asynchronous Communication Primitives
	More on Bisimulations for Higher Order π-Calculus

	Software Science
	Register Allocation After Classical SSA Elimination is NP-Complete
	A Logic of Reachable Patterns in Linked Data-Structures

	Distributed Computation
	Dynamic Policy Discovery with Remote Attestation
	Distributed Unfolding of Petri Nets
	On the μ-Calculus Augmented with Sabotage

	Categorical Models
	A Finite Model Construction for Coalgebraic Modal Logic
	Presenting Functors by Operations and Equations
	Bigraphical Models of Context-Aware Systems
	Processes for Adhesive Rewriting Systems

	Real Time and Hybrid Systems
	On Metric Temporal Logic and Faulty Turing Machines
	Denotational Semantics of Hybrid Automata

	Process Calculi
	Reversing Algebraic Process Calculi
	Conjunction on Processes: Full--Abstraction Via Ready--Tree Semantics
	Undecidability Results for Bisimilarity on Prefix Rewrite Systems

	Automata and Logic
	Propositional Dynamic Logic with Recursive Programs
	A Semantic Approach to Interpolation
	First-Order and Counting Theories of ω-Automatic Structures
	Parity Games Played on Transition Graphs of One-Counter Processes

	Domains, Lambda Calculus, Types
	Bidomains and Full Abstraction for Countable Nondeterminism
	An Operational Characterization of Strong Normalization
	On the Confluence of λ-Calculus with Conditional Rewriting

	Security
	Guessing Attacks and the Computational Soundness of Static Equivalence
	Handling {\sf exp},{\texttimes} (and Timestamps) in Protocol Analysis
	Symbolic and Cryptographic Analysis of the Secure WS-ReliableMessaging Scenario

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

