


Lecture Notes in Computer Science 3923
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Alan Mycroft Andreas Zeller (Eds.)

Compiler
Construction

15th International Conference, CC 2006
Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2006
Vienna, Austria, March 30-31, 2006
Proceedings

13



Volume Editors

Alan Mycroft
Cambridge University
Cambridge, UK
E-mail: am@cl.cam.ac.uk

Andreas Zeller
Saarland University
Saarbrücken, Germany
E-mail: zeller@cs.uni-sb.de

Library of Congress Control Number: 2006922081

CR Subject Classification (1998): D.3.4, D.3.1, F.4.2, D.2.6, F.3, I.2.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-33050-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-33050-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11688839 06/3142 5 4 3 2 1 0



Foreword

ETAPS 2006 was the ninth instance of the European Joint Conferences on Theory and
Practice of Software. ETAPS is an annual federated conference that was established in
1998 by combining a number of existing and new conferences. This year it comprised
five conferences (CC, ESOP, FASE, FOSSACS, TACAS), 18 satellite workshops (AC-
CAT, AVIS, CMCS, COCV, DCC, EAAI, FESCA, FRCSS, GT-VMT, LDTA, MBT,
QAPL, SC, SLAP, SPIN, TERMGRAPH, WITS and WRLA), two tutorials, and seven
invited lectures (not including those that were specific to the satellite events). We re-
ceived over 550 submissions to the five conferences this year, giving an overall accep-
tance rate of 23%, with acceptance rates below 30% for each conference. Congratula-
tions to all the authors who made it to the final programme! I hope that most of the
other authors still found a way of participating in this exciting event and I hope you will
continue submitting.

The events that comprise ETAPS address various aspects of the system develop-
ment process, including specification, design, implementation, analysis and improve-
ment. The languages, methodologies and tools which support these activities are all
well within its scope. Different blends of theory and practice are represented, with an
inclination towards theory with a practical motivation on the one hand and soundly
based practice on the other. Many of the issues involved in software design apply to
systems in general, including hardware systems, and the emphasis on software is not
intended to be exclusive.

ETAPS is a loose confederation in which each event retains its own identity, with
a separate Program Committee and proceedings. Its format is open-ended, allowing
it to grow and evolve as time goes by. Contributed talks and system demonstrations
are in synchronized parallel sessions, with invited lectures in plenary sessions. Two of
the invited lectures are reserved for “unifying” talks on topics of interest to the whole
range of ETAPS attendees. The aim of cramming all this activity into a single one-week
meeting is to create a strong magnet for academic and industrial researchers working on
topics within its scope, giving them the opportunity to learn about research in related
areas, and thereby to foster new and existing links between work in areas that were
formerly addressed in separate meetings.

ETAPS 2006 was organized by the Vienna University of Technology, in cooperation
with:

- European Association for Theoretical Computer Science (EATCS);
- European Association for Programming Languages and Systems (EAPLS);
- European Association of Software Science and Technology (EASST);
- Institute for Computer Languages, Vienna;
- Austrian Computing Society;
- The Bürgermeister der Bundeshauptstadt Wien;
- Vienna Convention Bureau;
- Intel.



VI Foreword

The organizing team comprised:

Chair: Jens Knoop
Local Arrangements: Anton Ertl
Publicity: Joost-Pieter Katoen
Satellite Events: Andreas Krall
Industrial Liaison: Eva Kühn
Liaison with City of Vienna: Ulrich Neumerkel
Tutorials Chair, Website: Franz Puntigam
Website: Fabian Schmied
Local Organization, Workshops Proceedings: Markus Schordan

Overall planning for ETAPS conferences is the responsibility of its Steering Com-
mittee, whose current membership is:

Perdita Stevens (Edinburgh, Chair), Luca Aceto (Aalborg and Reykjavı́k), Rastislav
Bodı́k (Berkeley), Maura Cerioli (Genova), Matt Dwyer (Nebraska), Hartmut Ehrig
(Berlin), José Fiadeiro (Leicester), Marie-Claude Gaudel (Paris), Roberto Gorrieri
(Bologna), Reiko Heckel (Leicester), Michael Huth (London), Joost-Pieter Katoen
(Aachen), Paul Klint (Amsterdam), Jens Knoop (Vienna), Shriram Krishnamurthi
(Brown), Kim Larsen (Aalborg), Tiziana Margaria (Göttingen), Ugo Montanari (Pisa),
Rocco de Nicola (Florence), Hanne Riis Nielson (Copenhagen), Jens Palsberg (UCLA),
Mooly Sagiv (Tel-Aviv), João Saraiva (Minho), Don Sannella (Edinburgh), Vladimiro
Sassone (Southampton), Helmut Seidl (Munich), Peter Sestoft (Copenhagen), Andreas
Zeller (Saarbrücken).

I would like to express my sincere gratitude to all of these people and organizations,
the Program Committee chairs and PC members of the ETAPS conferences, the orga-
nizers of the satellite events, the speakers themselves, the many reviewers, and Springer
for agreeing to publish the ETAPS proceedings. Finally, I would like to thank the Or-
ganizing Chair of ETAPS 2006, Jens Knoop, for arranging for us to have ETAPS in the
beautiful city of Vienna.

Edinburgh Perdita Stevens
January 2006 ETAPS Steering Committee Chair



Preface

The Program Committee is pleased to present the proceedings of the 15th In-
ternational Conference on Compiler Construction (CC 2006) which was held on
March 30 and 31 in Vienna, Austria, as part of the Joint European Conference
on Theory and Practice of Software (ETAPS 2006).

Traditionally, CC had been a forum for research on compiler construction.
Starting last year, CC has expanded its remit to include a broader spectrum
of programming tools, from analysis tools to compilers to virtual machines to
debuggers. The submissions we received again reflected the new scope of the
conference.

The Program Committee received 71 submissions. From these, 17 research
papers and 3 tool demonstrations were selected, giving an overall acceptance
rate of 28%.

The Program Committee included 16 members representing 9 countries on 3
continents. Each member reviewed roughly 16 papers and each paper received
at least three reviews. In all, 45 external reviewers participated in the review
process. Committee members were allowed to submit papers; these would be
screened by four reviewers. The Program Committee met on December 5 in
London for a one-day meeting. All but three of the members attended the
meeting.

Many people contributed to the success of this conference. First of all, we
would like to thank the authors for all the care they put into their submis-
sions. Our gratitude also goes to the Program Committee members and external
reviewers for their substantive and insightful reviews. Intel generously funded
parts of the Program Committee meeting. Special thanks go to Jay McCarthy
for maintaining the Continue Conference Server.

CC 2006 was made possible by the ETAPS Steering Committee, in particular
by the hard work of Jens Knoop in the role of ETAPS 2006 Organizing Commit-
tee Chair, and by that of Anton Ertl in taking care of the local arrangements. We
would also like to thank Reinhard Wilhelm and Ras Bodik, recent CC chairs, for
on-going helpful discussions about CC’s future direction. Finally, we are grateful
to George Necula for accepting the invitation to give a keynote talk.

January 2006 Alan Mycroft and Andreas Zeller
CC 2006 Program Chairs
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Using Dependent Types to Port Type Systems
to Low-Level Languages

George Necula

University of California, Berkeley, USA

A major difficulty when trying to apply high-level type systems to low-level lan-
guages is that we must reason about relationships between values. For example,
in a low-level implementation of object-oriented dynamic dispatch we must en-
sure that the “self” argument passed to the method is the same object from
whose virtual table we fetched the pointer to the method. Similarly, in low-level
code using arrays we must relate the array address with the variables that store
the bounds. We show for several examples that the high-level type system must
be extended with dependent types in order to reason about low-level code. The
novel feature in this use of dependent types is that they can be used in presence
of pointers and mutation.

We discuss three case studies. First, we show a variant of bytecode verification
that operates on the assembly language output of a native code compiler. Second,
we show how to express and check at the assembly level the invariants enforced by
CCured, a source-level instrumentation tool that guarantees type safety in legacy
C programs. Finally, we show that dependent types are a natural specification
mechanism for enforcing common safe programming practices in C programs.
We have used this mechanism to efficiently enforce memory safety for several
Linux device drivers.

A. Mycroft and A. Zeller (Eds.): CC 2006, LNCS 3923, p. 1, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Interprocedural Dataflow Analysis in the
Presence of Large Libraries

Atanas Rountev1, Scott Kagan1, and Thomas Marlowe2

1 Ohio State University, Columbus, OH, USA
2 Seton Hall University, South Orange, NJ, USA

Abstract. Interprocedural dataflow analysis has a large number of uses
for software optimization, maintenance, testing, and verification. For
software built with reusable components, the traditional approaches for
whole-program analysis cannot be used directly. This paper considers
component-level analysis of a main component which is built on top of a
pre-existing library component. We propose an approach for computing
summary information for the library and for using it to analyze the main
component. The approach defines a general theoretical framework for
dataflow analysis of programs built with large extensible library compo-
nents, using pre-computed summary functions for library-local execution
paths. Our experimental results indicate that the cost of component-level
analysis could be substantially lower than the cost of the correspond-
ing whole-program analysis, without any loss of precision. These results
present a promising step towards practical analysis techniques for large-
scale software systems built with reusable components.

1 Introduction

Interprocedural dataflow analysis is a widely-used form of static program anal-
ysis. Dataflow analysis techniques play an important role in tools for perfor-
mance optimization, program understanding and maintenance, software testing,
and verification of program properties. Unfortunately, the use of interprocedural
dataflow analysis in real-world software tools is hindered by several serious chal-
lenges. One of the central problems is the underlying analysis model implicit in
most of the work in this area. The key feature of this model is the assumption
of a whole-program analysis for a homogeneous program. Interprocedural whole-
program analysis takes as input an entire program and produces information
about the behavior of that program. This classical dataflow analysis model [28]
assumes that the source code for the whole program is available for analysis.

Modern software presents serious challenges for this traditional model. For
example, systems often contain reusable components. Whole-program analysis
assumes that it is appropriate to analyze the source code of the entire program
as a single unit. However, for software built with reusable components,

– Some program components may be available only in binary form, without
source code, which makes whole-program analysis impossible.

A. Mycroft and A. Zeller (Eds.): CC 2006, LNCS 3923, pp. 2–16, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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– It is necessary to re-analyze a component every time this component is used
as part of a new system. For example, a library may be used in many appli-
cations, and whole-program analysis requires re-analysis of this library from
scratch in the context of each such application.

– Code changes in one component typically require complete re-analysis of the
entire application.

– The cost of whole-program analysis is often dominated by the analysis of
the underlying large library components (e.g., standard libraries, middle-
ware, frameworks, etc.). To achieve practical cost, analysis designers are
often forced to use semantic approximations that reduce the precision and
usefulness of the analysis solution.

These issues limit the usefulness of many existing analyses. In some cases the
analyses cannot be used at all. Even if they are possible, the analyses have to
be relatively approximate in order to scale for large-scale software with hun-
dreds of thousands (or even millions) lines of code. Such approximations lead to
under-optimized code in optimizing compilers, spurious dependencies in program
understanding tools, false warnings in verification tools, and infeasible coverage
requirements in testing tools.

Component-Level Dataflow Analysis. In this paper we consider a model of in-
terprocedural dataflow analysis which we refer to as component-level analysis
(CLA). A component-level analysis processes the source code of a single program
component, given some information about the environment of this component.
The general CLA model is discussed in [20] (without any formalisms, proofs,
or experiments.) Here, we focus on one particular scenario for CLA: analysis of
a main component Main which is built on top of a library component Lib. In
this scenario, the source code of Lib is pre-analyzed independently of any library
clients. This pre-analysis produces summary information for Lib. This informa-
tion is used subsequently for component-level analysis of the source code of any
main component built on top of Lib.

This form of CLA has significant real-world relevance. In particular, there are
large standard libraries that are associated with languages such as C++, Java,
and C#. A library could be considered as component Lib, while a program writ-
ten on top of it is component Main. CLA allows (1) analysis of Main without
the source code of Lib, by using the summary information, (2) reduction in the
cost of analyzing Main, because the source code of Lib has already been ana-
lyzed, (3) reuse of the summary information across multiple main components,
in order to avoid repeated re-analysis of Lib, and (4) reduced work to handle
code changes, since changes in Main do not require re-analysis of Lib.

Contributions. The main goal of our work is to define general theoretical ma-
chinery for designing component-level analyses of Main. We achieve this goal by
generalizing the “functional approach” to whole-program analysis due to Sharir
and Pnueli [28]. The key technical issue that this generalization needs to address
is the lack of complete call graph information when performing pre-analysis of a
library. An example of this problem is the presence of callbacks from the library
to the main component. The contributions of our work are:
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– General theoretical framework: This paper defines a general approach
for component-level analysis in the absence of complete information about
calling relationships within Lib and from Lib to Main. The approach is
defined for the most general category of monotone dataflow problems. As a
result, it becomes possible to define CLA versions for many important and
widely-used whole-program analyses.

– Framework instantiation: Our long-term goal is to design CLA versions
of existing whole-program analyses, based on the framework from above.
In this paper, we show how to instantiate the general approach to a par-
ticular form of the interprocedural reaching definitions analysis, which is a
classical dataflow problem. This analysis exemplifies the category of flow-
and context-sensitive dataflow analyses, which present the most challenging
targets for our theoretical approach.

– Experimental comparison: We present an experimental study which com-
pares CLA with its whole-program counterpart. The experiments indicate
that the CLA approach can produce significant reduction in analysis cost,
while at the same time achieving exactly the same precision.

2 Whole-Program Analysis

This section describes, at a high level, the classical formulation of whole-program
interprocedural dataflow analysis [28]. The input to the analysis is the source
code for a complete program. One of the procedures1 is designated as the main
procedure main. In the traditional model presented below, each call site invokes
only one procedure. A call that could invoke many procedures (e.g., due to virtual
dispatch or function pointers) can be modeled as a case statement where each
case corresponds to one unique target procedure. Given a complete program, a
whole-program analysis constructs a tuple 〈G,L, F,M, η〉 where

– G = (N,E) is an interprocedural control-flow graph (ICFG).
– L is a meet semi-lattice, with partial order ≤, meet operation ∧, and greatest

element �. To simplify the discussion, we assume that L has finite height.
– F ⊆ {f | f : L → L} is a monotone2 function space that is closed under

functional composition and functional meet.
– M : E → F is an assignment of dataflow functions to graph edges. Function

fe = M(e) encodes the effects of e’s execution.
– η ∈ L is the solution at the start node of main.

Graph G contains the control-flow graphs (CFGs) for the individual proce-
dures. Nodes n ∈ N correspond to statements, and intraprocedural edges e ∈ E
represent flow of control within the same procedure. The CFG for a procedure p
has an artificial start node startp and an artificial exit node exitp. Each single-
target call is represented by two nodes: a call-site node and a return-site node.

1 We will use “procedure” to refer to both procedures and methods.
2 That is, x ≤ y implies f(x) ≤ f(y) for any f ∈ F and x, y ∈ L.
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There is an interprocedural edge e ∈ E from a call-site node to the start node
of the invoked procedure p; there is also a corresponding edge e ∈ E from exitp

to the return-site node. Dataflow functions are associated with these edges to
represent the effects of parameter passing and return values.

A path in G is a sequence of edges q = (e1, . . . , ek) such that the target of
ei is the same as the source of ei+1. The dataflow function associated with q is
the composition of the edge functions: fq = fek

◦ . . . ◦ fe1 . Not all ICFG paths
represent possible executions. A valid path has interprocedural edges that are
properly matched: each (exit,return-site) edge is matched correctly with the last
unmatched (call-site,start) edge on the path.

The meet-over-all-valid-paths solution MVPn for an ICFG node n describes
the program properties immediately before the execution of n. This solution is
MVPn =

∧
q∈VP(n) fq(η) where VP(n) is the set of all valid paths q leading

from the start node of main to n (paths q do not include n itself). An analysis
algorithm computes a solution Sn ∈ L at each node n; this solution is safe (i.e.,
correct) if Sn ≤ MVPn. There are well-known general algorithms for computing
safe solutions for dataflow problems; one such algorithm is outlined in Section 2.2.

2.1 Running Example

We will use the example in Figure 1 throughout the rest of the paper; the figure
also shows the corresponding ICFG. The example uses a C-style language to
illustrate a whole program built with two components: a library component and
a main component. We consider the classical reaching definitions problem. The
definitions k=0, k=2, k=3, k=7, and k=9 will be denoted by d0, d2, d3, d7, and

Fig. 1. Whole program, ICFG, and dataflow functions
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d9 respectively. The set of all definitions of k will be denoted by Dk. Similar
notation will be used for the remaining variables. The lattice for the problem
is the powerset of D = {d0, . . . , d9}, with partial order ⊇, meet operation ∪,
top element � = ∅, and bottom element ⊥ = D. The non-identity dataflow
functions are shown next to the corresponding edges in Figure 1. For example,
the function for k=3 is f3(x) = (x − Dk) ∪ {d3}, where x ⊆ D.

2.2 The Functional Approach of Sharir and Pnueli

One of the classical techniques for solving whole-program dataflow problems is
the “functional approach” by Sharir and Pnueli [28]. The essence of this approach
is the creation and use of summary functions. A summary function φn : L → L
for a node n represents the solution at n as a function of the solution at the
start node of the procedure containing n. For example, in Figure 1, φ27 = f7,
φ28 = f8 ◦ f7, and φ11 = f2 ∧ f3. (As usual, for any g, h : L → L, the functional
meet k = g ∧ h is such that k(x) = g(x) ∧ h(x) for any x.) In the case when n
is the exit node of a procedure p, φn can be used as a summary function fp for
the entire procedure.

Phase I of Sharir-Pnueli’s analysis computes summary functions for all ICFG
nodes. This fixed-point computation uses the summary functions for p’s callees
to compute the summary function for nodes inside p. For example, in Figure 1,
fp3 = f8 ◦ f7 and fext = f9. Inside p2, these functions can be used to compute,
for example, φ19 = fext and φ21 = (f4 ◦ fext) ∧ (f5 ◦ fext) ∧ (fp3 ◦ f6). In the
output of the first phase, we have fp3 = φ28 = f8◦f7, fext = φ31 = f9, fp2 = φ21,
fp1 = φ13 = (fp2 ◦ f2) ∧ (fp2 ◦ f3), and fmain = φ6 = fp1 ◦ f1 ◦ f0.

Phase II of the analysis propagates lattice elements using the summary func-
tions. In Figure 1, the value η = ∅ at the start node 1 of main is propagated to
call-site node 4, as φ4(η) = (f1 ◦f0)(∅) = {d0, d1}. This value is then propagated
to the start node of p1, and from there to call-site node 11 as φ11(φ4(η)). In
turn, the value at 11 is propagated to the start node of p2, and to call-site nodes
16 and 22 as φ16(φ11(φ4(η))) and φ22(φ11(φ4(η))), respectively. In general, the
propagation occurs only among start nodes and call-site nodes, and stabilizes
when the solutions at start nodes are fully computed. Phase III of the analysis
can be performed on demand. Whenever the solution at a node n is needed, it
can be computed as φn(Sstart), where Sstart is the solution computed by phase II
for the start node of n’s procedure.

2.3 Using the Functional Approach for Component-Level Analysis

In Sharir-Pnueli’s approach the bulk of the computation is performed during
phase I when all ICFG nodes need to be visited, possibly multiple times. Phase II
involves only start nodes and call-site nodes. Phase III is performed on demand,
and its cost is proportional to the number of distinct queries made by an analysis
client. In this paper we focus our efforts on reducing the cost of phase I by using
pre-analysis of Lib.

In the simplest case, the pre-analysis of Lib and the subsequent component-
level analysis of Main are trivial. Suppose each call site in Lib is monomorphic
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and its target does not depend on the code in the main component. For exam-
ple, this is true for C programs that do not use function pointers, and for Java
programs that do not make virtual calls. Clearly, the phase I computation for
all library procedures can be performed independently of any main component.
The summary functions fp for all exported library procedures p can be stored
as the library summary. Later, when CLA of some main component is performed,
the phase I computation for that Main will compute φn for all nodes n in this
main component, using the pre-computed summary functions for library proce-
dures. Phase II can be restricted only to the portion of the call graph that is in
Main, and phase III can answer on-demand questions about the node solutions
in Main.

Unfortunately, this approach is possible only in the absence of callbacks from
Lib to Main. However, callbacks are common in real-world software. For exam-
ple, in C code, one of the parameters of a library function p could be a function
pointer g to a callback function defined in Main. A call (*g)(..) inside p in-
vokes the callback function. Clearly, the complete behavior of p is not known at
summary-generation time, and it is not possible to create a summary function
fp. This is a realistic problem, because callbacks through function pointers occur
often in C libraries [17]. Callbacks also occur often in object-oriented software.
Consider a library method m(A *a) in C++ or m(A a) in Java, where A is a
library class. Suppose some Main creates a subclass B of A that overrides some
of A’s methods. If Main calls m with an actual parameter that is a pointer to an
instance of B, a virtual call through a inside m may invoke a method defined in
B. Of course, this situation is common for extensible object-oriented libraries.

Even in the absence of callbacks, in many cases it is still not possible to create
a precise summary function for a library procedure. Consider the following Java
example: the library contains a procedure p with a virtual call a.m(), where the
static type of a is library class A. Suppose the library contains classes B and
C that are subclasses of A, and method A.m is overridden by B.m and C.m. A
conservative pre-analysis of the library has to assume that a.m() could invoke
any of these three methods, and as a result the summary function for p will
depend on all three callees. But if some Main instantiates and uses only C, for
example, the pre-computed summary function for p will be overly conservative.
Since the calling relationships at virtual calls in Lib depend on the execution
context created by Main, any library procedure that contains polymorphic calls
presents a problem for the functional approach.

3 Summary Computation for Component-Level Analysis

Consider again the program in Figure 1. Suppose the library component Lib were
built as a reusable component, independent of the particular main component
in the figure. Furthermore, for the sake of the example, assume that p1 were
made visible to (and callable by) future main components, while the remain-
ing library procedures were hidden from such components using some language
mechanism.
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Suppose we wanted to compute summary information for Lib in order to
use it later when performing component-level analysis of any main component
Main (including the main component from Figure 1). The summary will be
main-component-independent, and the only information used for computing this
summary will be the source code of Lib. Our goal is to construct a library
summary with the following property: the subsequent summary-based CLA of
Main must produce for each ICFG node n in the main component the same
solution as the solution that would have been computed for n by a whole-program
analysis of the source code of Main ∪ Lib.

One possible summary information contains the ICFG of the library together
with some encoding of the dataflow functions at the ICFG edges. However, such
a summary contains redundant details that are irrelevant for the CLA of Main.
As a result, phase I of CLA will have the same cost as phase I of a whole-program
analysis would have had. Furthermore, due to the redundant information, the
summary would be unnecessarily large, making it expensive to store and read.

We propose a general approach that can be used to create a more concise
library summary. The approach will be illustrated for the example in Figure 2,
but this technique is conceptually applicable to any interprocedural dataflow
analysis. (In [22] we show how to handle flow- and context-insensitive analyses.)
The basic idea is to compute summary functions that capture the effects of all
relevant library-local ICFG paths. The functions are then included in the library
summary together with information about the program points that could be
affected by future main components. Figure 2 shows the summary information
computed for Lib by our approach. Combining this summary with the ICFG for
any main component Main allows component-level analysis of Main.

Fig. 2. (a) ICFG for Lib (b) condensed ICFG and summary functions for Lib
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3.1 Library Pre-analysis for Summary Generation

Fixed calls. The pre-analysis of the source code of Lib constructs the ICFG for the
library and identifies the calls at which the target procedures may depend on the
main component. If a call site in Lib always invokes the same library procedure,
regardless of the code in any main component, we will refer to it as a fixed call.
In C code, any call that is not through a function pointer is a fixed call. In Java,
we can use the following simple criterion for fixed calls: (1) any call that does not
correspond to the bytecode instructions virtualinvoke or interfaceinvoke is
a fixed call, and (2) a virtualinvoke call is fixed if the static type of the receiver
is a final class, or the compile-time target method is a final or private method.
Note that it may be possible to employ conservative analyses (e.g., [23, 13]) to
identify additional fixed calls that do not satisfy these rather restrictive criteria;
such analyses can be performed with worst-case assumptions about the behavior
of the unknown main components.

Fixed procedures. We will recursively define a library procedure p to be fixed if (1)
p contains no calls, or (2) p contains only fixed calls and they invoke only fixed
procedures. All transitive callees of p are known at library pre-analysis time,
and the Sharir-Pnueli approach can be used to compute a summary function
fp. The library pre-analysis identifies all fixed procedures p and computes the
corresponding summary functions. In Figure 2 the only fixed procedure is p3
and the analysis computes fp3 = f8 ◦ f7.

Non-fixed procedures. After processing the fixed procedures, the library pre-
analysis considers all non-fixed procedures. The analysis computes a set of sum-
mary functions ψk

n : L → L for each ICFG node n in each such procedure. Here
k is an ICFG node that belongs to the same procedure as n, and is one of the
following: (1) the start node of the procedure, (2) the return-site node for a non-
fixed call, or (3) the return-site node for a fixed call to a non-fixed procedure.
Intuitively, k represents a program point which depends on unknown main com-
ponents. For example, for node 21 in Figure 2, the approach would construct
two functions ψ14

21 and ψ17
21 . During phase I of the subsequent component-level

analysis of a main component, these functions allow us to express the summary
function at 21 as φ21 = ψ14

21 ∧(ψ17
21 ◦fcallback ◦ψ14

16), where fcallback is the summary
function for the callback procedure from the main component.

Computation of summary functions. Figure 3 defines a worklist-based algorithm
for computing the summary functions. The algorithm first initializes functions
ψk

k to the identity function λx.x. For all other n, ψk
n is initialized to a function

that maps every lattice element to �; as usual, � represents the lack of any infor-
mation. In our running example, the identity function is associated with nodes
7, 12, 14, and 17. After initialization, functions ψk

n are computed incrementally
using functional composition and functional meet. A function ψk

n captures the
semantic effects of certain ICFG paths from k to n. For example, there are two
paths from node 7 to node 11 in Figure 1. Function f2 is propagated to 11 along
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procedure Summary Computation For Nonfixed Procedures
for each non-fixed procedure p do

initialize ψ
startp
startp

:= λx.x and put (startp, startp) on the worklist
for each return-site r for a non-fixed call, or for a fixed call to a non-fixed procedure do

initialize ψr
r := λx.x and put (r, r) on the worklist

for each other node n and each applicable k do initialize ψk
n := λx.�

while the worklist is not empty do
remove pair (k, n) from the worklist
case 1: if n is not a call-site node or a method exit do

for each ICFG successor node n′ of n do propagate(k, n′, f(n,n′) ◦ ψk
n)

case 2: if n is a fixed call-site, with return-site r, calling fixed procedure p do
propagate(k, r, f(exitp,r) ◦ fp ◦ f(n,startp) ◦ ψk

n)
case 3: in all other cases, do nothing

procedure propagate(k, n, f)
ψk

n := ψk
n ∧ f

if ψk
n has changed, put (k, n) on the worklist

Fig. 3. Computation of summary functions for non-fixed library procedures

one path, and function f3 is propagated along the other path. Thus, the summary
analysis will compute ψ7

11 = f2∧f3 = λx.(x−Dk)∪{d2, d3}. As another example,
at return-site 24 we have ψ14

24 = fp3 ◦ ψ14
23 = f8 ◦ f7 ◦ f6.

The computed summary functions are then used to construct the library
summary. First, for every fixed procedure p that is visible to future
main components, the summary includes the summary function fp. For every
non-fixed p, the summary contains the set Ψp of all functions ψk

n such that n
is (1) the exit node of p, (2) the call-site node for a non-fixed call in p, or
(3) the call-site node for a fixed call in p to a non-fixed procedure. For exam-
ple, for p1 in Figure 2, Ψp1 = {ψ7

11, ψ
12
13} because 11 is a call-site node for a

fixed call to the non-fixed procedure p2. Similarly, for p2, the summary contains
Ψp2 = {ψ14

21 , ψ14
16 , ψ17

21}.
The functions in Ψp implicitly define a “condensed” CFG for p. The nodes in

this condensed graph are all k and n such that ψk
n ∈ Ψp. For every ψk

n ∈ Ψp that
is different from λx.�, there is an edge from k to n in the condensed CFG, with
edge dataflow function ψk

n. These edges represent sets of paths from the original
CFG. Figure 2(b) shows the condensed graphs for non-fixed procedures p1 and
p2. The condensed CFG for p3 (not shown in the figure) has only a start node,
an exit node, and a single edge with edge dataflow function fp3.

Note that the summary functions are being constructed without any knowl-
edge about the future main components and about the lattice elements that
correspond to these main components. For the running example, the summary
analysis has no information about the definitions that are generated by main
components. For example, in ψ7

11 = λx.(x − Dk) ∪ {d2, d3}, the set Dk of def-
initions of k is not known completely. However, complete knowledge of Dk is
not necessary to encode this function. It is enough to represent the fact that
all definitions of k are killed—both the known ones from the library and the
unknown ones created by future main clients.
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3.2 Analysis of a Main Component

The summary functions and the condensed CFGs defined by them can be used
to perform component-level analysis of any main component that is built on top
of Lib. Such an analysis is straightforward. First, the condensed CFGs for the
library procedures are added to the ICFG for the main component, together
with the appropriate interprocedural edges. The resulting condensed ICFG is
used as input to phase I of Sharir-Pnueli’s whole-program analysis. For any
node n in the condensed ICFG, the summary function φ′

n computed by this
phase I is a safe approximation of the summary function φn that would have
been computed for n by phase I of the standard whole-program analysis of the
“normal” non-condensed ICFG—in other words, we have φ′

n(x) ≤ φn(x) for
any x ∈ L. In the case when all dataflow functions are distributive—that is,
f(x ∧ y) = f(x) ∧ f(y)—there is no loss of precision, and φ′

n = φn.
Phases II and III on the condensed ICFG are similar to phases II and III on

the original ICFG. For any node n, the solution S′
n computed by phase III of

the analysis on the condensed graph is a safe approximation of the solution Sn

computed by phase III of the analysis of the original ICFG—that is, S′
n ≤ Sn. If

the dataflow functions are distributive, we have S′
n = Sn, and the component-

level analysis achieves the same precision as the whole-program analysis.

3.3 Analysis Implementation

The approach described above provides the conceptual foundations for design-
ing CLA versions of whole-program analyses. In order to implement an actual
analysis, an analysis builder has to address two important issues.

First, the library summary should contain enough information so that the
CLA of Main can compute a whole-program call graph, in order to construct
the interprocedural edges in the condensed ICFG. As a simple example, for
Figure 2, the summary could record the fact that the call at node 16 is through
a function pointer, and that no function addresses are taken in the library. The
CLA of Main can resolve the call at 16 to any procedure whose address is
taken in Lib or in Main; for the particular main component in Figure 1, the
only possible target is ext. As another simple example, for a Java library, the
summary can store the static receiver type and static target method for each
non-fixed call site. When the code of Main becomes available, the whole-program
class hierarchy can be constructed and used to determine the potential target
methods at non-fixed library calls. Of course, more sophisticated approaches
for call graph construction are possible. The adaptation of these techniques to
component-level analysis is beyond the scope of this paper; some existing work
already solves certain instances of this problem (e.g., [24]).

A second key issue for component-level analysis is the representation, compo-
sition, and meet of dataflow functions. The function space should allow compact
representation of functions. For a large number of important dataflow problems,
such compact representations have already been defined. In particular, inter-
procedural finite distributive subset (IFDS) problems [18] and interprocedural



12 A. Rountev, S. Kagan, and T. Marlowe

distributive environment (IDE) problems [27] have compact function representa-
tions and efficient functional composition and functional meet [19, 18, 27]. These
two categories of problems are significant because they cover a large number of
widely used interprocedural analyses [19] such as reaching definitions, available
expressions, live variables, truly-live variables, possibly-uninitialized variables,
several forms of constant propagation, flow-sensitive side-effects, some forms of
may-alias and must-alias analysis, interprocedural slicing, 0-CFA type analysis
for Java [9], field-based points-to analysis for Java [15], and object naming anal-
ysis [21]. The general theoretical approach described earlier can be instantiated
to IFDS/IDE problems by using graph-based analysis algorithms similar to the
whole-program algorithms from [19, 18, 27]. Using these techniques, it becomes
possible to design CLA versions of many important and widely-used analyses.

In the particular case of the reaching definitions analysis, a function f can be
represented by a pair (K,G) where K is the set of definitions killed by f , and G
is the set of definitions generated by f . The functional meet of f1 = (K1, G1) and
f2 = (K2, G2) is represented by (K1 ∩K2, G1 ∪G2). The functional composition
f2 ◦ f1 corresponds to (K1 ∪ K2, (G1 − K2) ∪ G2).

4 Experimental Study

This section presents an experimental study which evaluates the effectiveness
of the proposed approach for CLA. The study was performed on the 19 Java
programs shown in Table 1. Each program was processed using the Soot frame-

Table 1. Analyzed programs

Program User Methods All Methods User CFG Nodes All CFG Nodes
jb-6.1 149 7130 2888 117781
socksproxy 113 7178 2449 118969
jlex-1.2.6 133 7113 7210 122095
RabbIT2 184 7368 3455 122755
javacup-0.10j 332 7312 9066 124000
sablecc-2.18.2 1744 8755 24149 139498
db 96 17755 2397 303193
compress 100 17760 2399 303201
fractal 184 17919 3526 305731
raytrace 219 17878 5179 305973
socksecho 176 17966 3562 306658
jack 349 18008 11541 312333
jtar-1.21 224 18152 6145 312562
jess 641 18323 12365 313375
mpegaudio 307 17967 14304 315094
jflex-1.4.1 509 18217 14826 315936
mindterm-1.1.5 598 18385 17792 321948
muffin-0.9.3a 933 18820 18383 323560
javac 1185 18868 25496 326524
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work [30] version 2.2.2, on top of the J2SE 1.4.2 libraries. The experiments were
performed on a 2.8GHz Pentium4 PC with 2GB of RAM running Sun’s HotSpot
Client VM version 1.4.2 using a maximum heap size of 1.5GB (JVM option Xmx).

For each of the data programs, we utilized Soot’s call graph construction
algorithm based on class hierarchy analysis. Column User Methods shows the
number of reachable methods which are declared in the program code (i.e., all
reachable non-library methods). The total number of reachable methods is listed
in column All Methods. As Table 1 shows, the vast majority (80.1% to 99.5%) of
reachable methods were contained in the libraries. These measurements clearly
indicate that the cost of whole-program analysis will be dominated by the cost
to analyze the relevant library code. This observation provides a very strong
motivation for using summary-based component-level analysis of Main.

For each of the data programs, we constructed the whole-program ICFG.
Columns User CFG Nodes and All CFG Nodes of Table 1 describe the number
of ICFG nodes. Again, the large majority of nodes (between 82.7% and 99.2%)
were in the Java libraries. Using the techniques described in Section 3.1, we con-
structed the “condensed” version of the ICFG. The reduction of the number of
nodes (shown in Table 2) was substantial, with the condensed ICFGs contain-
ing 59.2% to 71.4% fewer nodes than the original ICFGs. Our experiments also
showed that the reduction in the number of ICFG edges was equally significant;
for brevity, we do not present these results. Since the cost of dataflow analyses
typically depends on ICFG size, these results clearly show that a summary-based
approach can achieve considerable cost reduction.

To measure the savings achieved by our technique, we implemented Sharir-
Pnueli’s Phase I for a variation of the reaching definitions problem for Java.
Java has three types of memory locations: local variables, instance fields, and
static fields. For local variables, the reaching definitions problem is purely intra-
procedural. For instance fields, an alias analysis must be used to resolve indirect
accesses through object references. Since such resolution is typically done with
a may-alias analysis, field definitions cannot be killed safely; as a result, the
dataflow functions are different from the ones in the classical reaching definitions

Table 2. Reduction in the number of ICFG nodes

Condensed Condensed
Program Nodes Reduction Program Nodes Reduction
jb 35556 69.8% socksecho 88453 71.2%
socksproxy 35604 70.1% jack 95926 69.3%
jlex 39876 67.3% jtar 91722 70.7%
RabbIT2 37155 69.7% jess 96817 69.1%
javacup 41733 66.3% mpegaudio 98689 68.7%
sablecc 56954 59.2% jflex 99376 68.6%
db 86783 71.4% mindterm 102769 68.1%
compress 86789 71.4% muffin 103864 67.9%
fractal 88195 71.2% javac 109965 66.3%
raytrace 89563 70.7%
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Table 3. Running time of the analysis (in seconds) and % time reduction

Program WPA CLA Program WPA CLA
jb 97.3 19.2 (80.2%) socksecho 658.5 328.6 (50.1%)
socksproxy 96.1 20.5 (78.6%) jack 665.2 322.6 (51.5%)
jlex 101.2 17.5 (82.8%) jtar 682.3 349.6 (48.8%)
RabbIT2 101.1 22.1 (78.2%) jess 665.1 334.6 (49.7%)
javacup 116.6 24.0 (79.4%) mpegaudio 585.9 240.1 (59.0%)
sablecc 139.3 34.5 (75.2%) jflex 686.0 454.1 (33.8%)
db 656.1 392.5 (40.2%) mindterm 648.6 342.0 (47.3%)
compress 597.5 300.4 (49.7%) muffin 658.1 366.1 (44.4%)
fractal 676.0 261.5 (61.3%) javac 656.1 346.7 (47.2%)
raytrace 651.3 417.1 (36.0%)

problem. Thus, we implemented a reaching definitions analysis for static fields
only, where the dataflow functions are of the form described in Section 2.

Table 3 shows the analysis running time (in seconds) using both whole-
program analysis (column WPA) and component-level analysis (column CLA).
The reduction in running time ranged from 33.8% to 82.8%, with an average
of 57.5%. Even though Table 3 only shows results for one particular dataflow
analysis, we believe that due to the ICFG reduction, such dramatic savings will
not be limited to the reaching definitions problem. Studying the effects of CLA
on other dataflow analyses remains open for future investigations.

5 Related Work

Many techniques have been introduced for efficient dataflow analysis, with var-
ious representations of the flow of control and data. Examples include the elim-
ination algorithms from [26] and the flow graph summarization of Callahan [1].
Our condensed ICFG is conceptually similar to the program summary graph
from [1]. Efficient data flow representation is typically in terms of groups of
problems, beginning with the slot-wise problems (e.g., [7]), eventually leading to
the formulation of the IFDS and IDE frameworks [18, 27].

Various whole-program dataflow analyses construct summary information
about a procedure, and then use this information when analyzing the callers of
that procedure. An early example are the jump functions used for interprocedural
constant propagation [10]. As another example, several analyses [2, 4, 31, 3, 25]
perform a bottom-up traversal of the program call graph and compute a sum-
mary function for each visited procedure. This summary function is then used
when analyzing the callers of that procedure and when constructing their sum-
mary functions. Summary functions can also be created in top-down manner,
by introducing all possible contexts at the entry of the analyzed procedure [11].
Some approaches compute summary information for a software component inde-
pendently of the callers and callees of that component. One particular technique
is to compute partial analysis results for each component, to combine the results
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for all components in the program, and then to perform the rest of the anal-
ysis work (e.g., [5, 8, 6, 12, 24]). Sometimes conservative assumptions are used
instead of pre-computed summaries (e.g., [29]). Finally, there is related work on
incremental and parallel dataflow analysis (e.g., [16, 14]) in which the idea of
a representative problem is introduced, and in which intensive local analysis is
followed by a quick postpass to recover the actual solutions.

6 Conclusions and Future Work

The use of library summaries is essential for interprocedural dataflow analysis
of modern software systems that are built with large library components. We
propose a general theoretical framework for summary-based analysis, and present
initial results that strongly indicate the potential of this technique to reduce
analysis cost. In future work, we will (1) instantiate the framework to a range
of popular dataflow analyses, starting with IFDS and IDE analyses, and (2)
implement and evaluate these analyses, in order to gather experimental evidence
of the benefits of the proposed approach. We will also consider systems built with
multiple library components (e.g., libraries that use other libraries).

Acknowledgment. We would like to thank the CC reviewers for their helpful
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Abstract. This paper presents a new worklist algorithm that significantly speeds
up a large class of flow-sensitive data-flow analyses, including typestate error
checking and pointer analysis. Our algorithm works particularly well for inter-
procedural analyses. By contrast, traditional algorithms work well for individual
procedures but do not scale well to interprocedural analysis because they spend
too much time unnecessarily re-analyzing large parts of the program. Our algo-
rithm solves this problem by exploiting the sparse nature of many analyses. The
key to our approach is the use of interprocedural def-use chains, which allows
our algorithm to re-analyze only those parts of the program that are affected by
changes in the flow values. Unlike other techniques for sparse analysis, our algo-
rithm does not rely on precomputed def-use chains, since this computation can
itself require costly analysis, particularly in the presence of pointers. Instead, we
compute def-use chains on the fly during the analysis, along with precise pointer
information. When applied to large programs such as nn, our techniques im-
prove analysis time by up to 90%—from 1974s to 190s—over a state of the art
algorithm.

1 Introduction

Flow-sensitive analysis is important for problems such as program slicing [22] and er-
ror checking [6, 7]. While recent work with BDD’s has produced efficient algorithms
for solving a variety of flow-insensitive analyses [24, 25], these techniques have not
translated to flow-sensitive problems. Other techniques, such as demand interprocedu-
ral analysis [11], do not apply to pointer analysis. Thus, the most general technique for
solving flow-sensitive problems continues to be iterative data-flow analysis. Existing
iterative data-flow analysis algorithms work well within a single procedure, but they
scale poorly to interprocedural analysis because they spend too much time unnecessar-
ily re-analyzing parts of the program.

At issue is the manner in which worklists are managed, which can greatly affect the
amount of work performed during each iteration. The most basic algorithm maintains
a worklist of basic blocks for each procedure. Basic blocks are repeatedly removed
from the worklist and applied with the flow functions. If any changes to the flow values
occur, all reachable blocks are added to the worklist. This basic algorithm becomes
extremely inefficient when used for interprocedural analysis: when re-analyzing a block
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that contains procedure calls, the algorithm may revisit all of the called procedures, even
though many of them may not require re-analysis. Extensions to this basic algorithm,
such as Hind and Pioli’s priority queue approach [10], which considers the structure of
the control flow, also suffer from this problem of useless work. For example, when the
Hind and Pioli algorithm is applied to the nn program (about 36K lines of C), we find
that only 3% of the basic block visits are useful—the others do not update any flow
values.

p = &x;
while (cond) {
y = x;

*p = 7;
p = &z;

}
y = z;

Fig. 1. A loop example

In this paper we present a new algorithm for interproce-
dural iterative data-flow analysis that is significantly more ef-
ficient than previous algorithms. The algorithm exploits data
dependences to reduce the number of times that blocks are
revisited. The algorithm builds on an insight from previous
work on intraprocedural algorithms: def-use chains can be
used to directly identify those blocks that are affected by flow
value updates [23]. This goal, however, is complicated by the
fact that the computation of def-use chains is itself an expen-
sive flow-sensitive computation, particularly in the presence
of pointers. The example in Fig.1 shows why: the first time through the loop “*p” refers
to x and therefore implies a def-use chain to the statement above it. The second time
through the loop, however, “*p” refers to z, which implies a def-use chain to the block
following the loop.

Our algorithm solves this problem by computing data dependences on the fly, along
with precise pointer information, while solving the client data-flow analysis problem.
The key to our approach is that as the pointer analysis computes the uses and defs of
variables, it builds a network of use-def and def-use chains: the use-def chains enable
fast lookup of flow values, while the def-use chains are used to narrow the scope of
re-analysis when flow values change. Initially, the framework visits all basic blocks in a
procedure to compute a first approximation of (1) the pointer information, (2) the data
dependences, and (3) the client data-flow information. Subsequent changes in the flow
values at a particular def only cause the corresponding uses to be re-analyzed. More
importantly, our system incorporates new dependences into the analysis as the pointer
analysis discovers them: changes in the points-to sets cause reevaluation of pointer ex-
pressions, which in turn may introduce new uses and defs and force reevaluation of the
appropriate parts of the client analysis problem. Occasionally, we find pairs of basic
blocks that are connected by large numbers of def-use chains. For these cases we have
explored a technique called bundling which groups these def-use chains so that they can
be efficiently treated as a single unit.

This paper makes the following contributions. First, we present a metric that al-
lows us to compare the relative efficiency of different worklist algorithms. Second, we
present a new worklist management algorithm, which significantly improves efficiency
as measured by our metric. Third, we evaluate our algorithm by using it as the data-flow
engine for an automated error checking tool [7]. We compare our algorithm against a
state-of-the-art algorithm [10] on a large suite of open source programs. We show that
improved efficiency translates into significant improvements in analysis time. For our
set of 19 open source benchmarks, our algorithm improves efficiency by an average
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of 500% and improves analysis time by an average of 55.8% when compared with the
Hind and Pioli algorithm. The benefits of our algorithm increase with larger and more
complex benchmarks. For example, the nn benchmark sees an order of magnitude im-
provement in efficiency, which translates to a 90% improvement in analysis time.

This paper is organized as follows. We review related work in Section 2. Section 3
briefly describes the analysis framework. Section 4 presents our worklist algorithm,
DU that enables sparse analysis, and a variant, DUloop that exploits loop structures.
Section 5 presents our empirical setup and results. We conclude in Section 6.

2 Related Work

There are two families of data-flow algorithms: elimination methods [21] and iterative
algorithms. Elimination methods, such as interval analysis, solve systems of equations
and do not work well in the presence of pointers. The class of iterative algorithms
include worklists, round robin, and node listing algorithms [13, 1]. Both the round-robin
and node listing approaches are dense analyses in the sense that blocks are re-analyzed
needlessly.

Previous work on comparing worklist algorithms includes Atkinson and Griswold’s
work [2], which shows that the performance difference between a round-robin algo-
rithm and a worklist algorithm can be huge. They propose a hybrid algorithm that com-
bines the benefits of the two. In separate work, Hind and Pioli [10] exploit loop structure
by using a priority queue. We find that Atkinson and Griswold’s hybrid algorithm can
sometimes be better and sometimes worse than Hind and Pioli’s algorithm. To provide
a basis for comparison with our new algorithm, we use as our baseline a version of the
priority-queue approach that does not use the identity transfer function or IN/OUT sets.

Wegman and Zadeck pioneered the notion of sparse analysis in their sparse con-
stant propagation algorithm [23]. We extend their approach to handle pointers, and we
address the need to discover def-use chains on the fly as the analysis progresses.

Another possible method of exploiting sparsity is to use a sparse evaluation graph
(SEG) or its variants [4, 17], which are refinements of CFGs that eliminate irrelevant
statements. Hind and Pioli report improvement with pointer analysis when SEG is
used [10], but because their use of IN/OUT sets does not fully exploit sparsity. It is
unclear how much our sparse analysis can benefit from an SEG, and we leave this study
as future work.

For some classes of data-flow analysis problems, there exist techniques for efficient
analysis. For example, demand interprocedural data-flow analysis [11] can produce pre-
cise results in polynomial time for interprocedural, finite, distributive, subset problems
(IFDS). Unfortunately, this class excludes pointer analysis, and a separate pointer anal-
ysis phase may be required.

In the context of pointer analysis itself, previous work on flow-sensitive pointer anal-
ysis algorithms that makes use of worklists [18, 3] do not attempt to tune the worklist,
so our worklist algorithm can be applied to such work to improve their performance.
Other pointer analysis algorithms sometimes tradeoff precision for scalability [9]. Our
algorithm improves the efficiency of the worklist component that drives the analysis,
without affecting the precision of the analysis.
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Worklist algorithms have also been studied from other perspectives. For example,
Cobleigh et at. [5] study the effects of worklist algorithms in model checking. They
identify a few dimensions along which an algorithm can be varied. Their main result
is that different algorithms perform best during different phases of analysis. We do not
attempt to partition an analysis into phases. Similarly we do not address the issue of
partitioning the problem into subproblems [20], nor do we divide a large program into
manageable modules [19, 15].

3 Analysis Framework

This section provides background about our data-flow analysis framework, including
details about how we efficiently compute reaching definitions using dominance
information.

We assume an iterative-based whole-program flow-sensitive pointer analysis that
uses a worklist for each procedure, where each worklist maintains a list of unique
CFG blocks. An alternative is a single worklist of nodes from a supergraph [16], elim-
inating procedure boundaries, but we believe that such a large worklist would be too
expensive.

Our algorithm requires accurate def-use chains. Since definitions are created on the
fly during pointer analysis, we need to update chains whenever a new definition is dis-
covered. To perform such updates efficiently, we assume SSA form for all variables,
including heap objects. SSA has well-understood properties: every use u has a unique
reaching definition d, and d must dominate u if u is not a phi-use. These properties,
together with dominance relations (described below), allow us to quickly determine if
a newly-discovered definition invalidates any existing def-use pairs. Finally, to merge
flow values at different call sites, the system uses interprocedural φ-functions at proce-
dure entries.

1

2

3 4

7

65

8

Fig. 2. Node numbering
on an expanded domi-
nator tree

Our system does not use IN/OUT sets to propagate flow val-
ues [3] because their use would mandate a dense analysis: any
update on a node would force all of its successors to be re-
visited. Our sparse analysis instead uses dominance informa-
tion to efficiently retrieve flow values across use-def chains.
To obtain the nearest reaching definition for a given use, we
build from the CFG an expanded dominator tree where each
node represents a statement. We assign to each node n a pre-
order number and a postorder number, denoted min(n) and
max(n), respectively, so that given two distinct statements m
and n, m dominates n, denoted by DOM(m, n), if and only if
min(m) < min(n) ∧ max(m) > max(n). These numbers are assigned by perform-
ing a depth-first traversal and incrementing a counter each time we move either up or
down the tree. Fig.2 shows the numbers assigned to an example expanded dominator
tree. The number to the left of each node is its min number and the number to the right
of each node is its max number.

To use this expanded dominator tree, each definition of a variable is associated with
a unique statement, and we store all definitions of a variable in a list that satisfies the
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following invariant: let di be the ith definition in the list, and let ni be the statement
associated with di, then the min of the statements are stored in decreasing order:

∀i < j : min(ni) > min(nj)
⇒ ∀i < j : ¬DOM(ni, nj) (1)

To find the nearest reaching definition that strictly dominates a statement m, we
(1) perform a binary search to obtain the minimum i such that di in the list satisfies
min(ni) < min(m); and (2) perform a linear scan from i to the end of the list to
find the first di such that max(ni) > max(m). For the resulting di, DOM(ni, m).
Without the binary search, a linear search alone (starting from i = 1) can still find the
correct result if the DOM(ni, m) test is used, because by Invariant (1) the first ni that
dominates m must also be the nearest.

4 DU : Worklist Management

Fig. 3. An example CFG

Our algorithm is based on a well-known idea: use def-use
chains to identify those blocks that may be affected by
the most recent updates, thereby exploiting the sparsity of
the analysis. To compute def-use chains in the presence of
pointers, we present DU , a worklist algorithm that is cou-
pled with pointer analysis. This algorithm can exploit both
intra- and inter-procedural def-use chains.

To simplify our presentation, we start off with a naive,
inefficient version and gradually add details to build our full
version at the end of this section. We will use Fig.3 as a
running example.

Structure of a Worklist Algorithm
The left box of Fig.4 gives a high-level description of a
generic worklist algorithm. It maintains a queue of CFG
blocks, initially set to include all blocks in reverse post-order. The pointer analysis re-
trieves and analyzes one block from the worklist. The pointer analysis then identifies
the set of changes, which is the set of variables whose flow values have been updated.
The algorithm then uses a function R to compute and add to the worklist the blocks that
will be revisited. The worklist may then be reordered, as we discuss in Section 4.1. The
entire process is repeated until the worklist becomes empty. Different implementations
differ in the computation of R and in the worklist reordering.

Naive Worklist Algorithms
The behavior of the function R is crucial to the worklist efficiency. If we do not know
which blocks are affected by the changes in the last block visit, then we must conser-
vatively return all the reachable blocks of the given block n. We refer to this version as
Rreach, shown in the right box of Fig. 4. Considering the example in Fig.3, suppose we



22 T.B. Tok, S.Z. Guyer, and C. Lin

have just revisited the loop header (block 1), where a new φ-function for variable x is
created. Rreach will return blocks 2–9, a total of 8 blocks.

Worklist Algorithm Using Intraprocedural Def-Use Chains
Rreach is easy and cheap to compute, but it adds too many blocks. We introduce RDU ,
shown in the right of Fig.4. This function iterates over the set of variable changes,
retrieves their last definitions in the block, and obtains their use sites in the procedure.
The blocks containing these use sites are returned and added to the worklist. For now,
assume that only intraprocedural def-use chains are used. In the example of Fig.3, only
two blocks (7 and 8) are returned by RDU , so RDU is more efficient than Rreach.

Initially:
WL = reverse_post_order(CFG)

Main loop:
while WL �= ∅ do

block n = remove_front(WL);
var changes = visit_block(n);
if var changes �= ∅ then

more = R(n, var changes);
merge(more,WL);

Rreach(n, var changes) {
return reachable_blocks(n);

}
RDU (n, var changes) {

for v ∈ var changes do
d = last_def_of(v,n);
for u ∈ uses(d) do

add(block_of(u), result);
return result;

}

Fig. 4. Initial version of algorithm DU . The function R computes what blocks need to be added
to the worklist. The first version, Rreach, simply returns reachable blocks from block n. RDU

uses def-use chains to compute the blocks affected by the latest variable updates during the last
block visit.

Dynamic Def-Use Computation
Def-use chains are computed on the fly as new pointer information is discovered, so the
worklist algorithm needs to be aware that some defs may temporarily have no uses. As
we shall see, the solution requires a new form of communication between the pointer
analysis and the worklist algorithm.

New definitions are created at indirect assignments, function calls, and φ-functions.
There are three cases to consider: (i) a new def leads to a new φ-function; (ii) a new
def resides between an existing def-use pair; (iii) a new def temporarily has no reaching
definition.

Consider case (i). SSA form requires that whenever a new definition d is created, a
φ-function is also created at dominance frontiers. Because pointer information is not
yet available, many φ-functions cannot be computed in advance.1 Therefore after d
is created, the algorithm must make sure that the dominance frontiers are eventually
revisited, so that the φ-functions can be created.

Cases (ii) and (iii) are similar because any existing use below the new def d may
need to update its reaching definition. Such situations often occur in the presence of
loops when a use is visited before its reaching definition is created. In the example of
Fig.3, if a new φ-function for p is created at the loop header, we need to make sure that
block 7 is revisited, even if the new def has no known use yet.

1 Short of exhaustive up-front creation.
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There are two possible solutions. The first method identifies those uses that need to
be revisited by simply searching through existing def-use chains and through existing
uses without defs. (It only needs to inspect those chains whose def is the nearest defi-
nition above d.) The second solution handles (iii) as follows: whenever a use u without
a reaching definition is discovered, statements above u are marked if they are merge
points or if they contain indirect assignments or function calls. Later when d is discov-
ered at one of these statements, u is revisited.

benchmarks (not labeled)
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Fig. 5. Maximum and average ratio r =
C/(B + 1), in log scale. The set of bench-
marks is explained in Section 5. The high ra-
tios indicate potential for high overhead due
to def-use chains.

The first method can be quite expensive,
while the second method does not handle
case (ii). We have found that combining
the two is cost effective. We use the sec-
ond method on case (iii) by marking only
loop headers, and we use the first method
otherwise. This combination works well in
practice, most likely because uses that ini-
tially have no reaching definition typically
occur in loops, so marking and inspecting
loop headers is sufficient. Because in prac-
tice there is usually a small, fixed number of
loop headers in any procedure, the overhead
due to the markings is small.

Bundles
One problem with RDU is that it can be expensive to follow du-chains if there are many
du-chains that connect the same two basic blocks. We can measure the extent of this
problem as follows. Define C to be the number of variables whose flow values change
after analyzing a given basic block. Define B to be the number of unique basic blocks
that contain uses of these C variables. If the ratio r = C/(B + 1) is large, then there
is a large amount of redundancy in the dependence information represented by the du-
chains. (The +1 term prevents division by zero.) Fig.5 shows the maximum and average
values of this ratio for the benchmarks that we use in our later experiments. We omit
the minimums, which are all close to zero. We see that the average ratios hover between
two and ten, while the maximums are two orders of magnitude larger. One reason for
the large maximums is the large number of global and heap variables defined at merge
points near the end of procedures, which leads to large values of C with no further uses
in the procedure (B = 0).

Rbundle(n, changes) {
bundles = set of bundles {〈n, ∗〉};
for b ∈ bundles do
if b contains var∈ changes then

let b = 〈n, u〉;
add u to result;

return result;
}

Fig. 6. Efficient Rbundle that uses bundles

To handle the cases where the
value of r is large, we define a bun-
dle 〈D, U〉 to be the set of all def-
use chains whose definitions and
uses share the blocks D and U , re-
spectively. A bundle is used as fol-
lows (see Fig.6). After analyzing a
block n, all bundles of the form
〈n, u〉 are retrieved. Rbundle then
iterates through these bundles: for
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each bundle that contains a variable in the changes set, the u stored in the bundle
is added to the worklist. When there is no bundle (B = 0), no overhead will be incurred
even if there is a large number of changes.

Our experimental results with an earlier implementation of our DU algorithm shows
that bundles are quite effective for reducing analysis time. Our results also show that
bundles can consume considerable space. Given the space overhead of bundles and the
bi-modal distribution of r values, we use a simple heuristic to apply bundles selectively.
This heuristic compares C to a threshold that is defined as some factor of the size of the
basic block in question (as defined by the number of statements in the block).

Because we have not yet tuned the selective use of bundles for the current imple-
mentation of our worklist algorithms, the results shown later in this paper do not use
bundles. We expect to see improved results once this tuning has been completed.

Handling Interprocedural Def-Use Chains
Our system allows def-use chains to cross procedure boundaries, which typically occurs
when a procedure accesses global variables or accesses variables indirectly through
pointers. The framework treats these variables as if they were inputs or outputs to the
procedure but not explicitly mentioned in the formal parameters. During interprocedural
analysis, these def-use chains can be used to further improve worklist efficiency.

A procedure input is a variable that has a use inside a procedure and a reaching
definition inside a caller. When re-analyzing a procedure due to changes to procedure
inputs, we revisit only the affected use sites—which are often a subset of the procedure’s
blocks—because we know which inputs’ flow values have changed. To identify these
changed flow values, we use interprocedural φ-functions, which merge flow values at
procedure entries. As before, these φ-functions are created on the fly.

A procedure output has a definition inside the procedure with some use inside a
caller. The output can export a new variable, for example, a heap allocated object, or it
can export a side effect on an input. We use information about the procedure output to
help manage the worklists of the callers: if there is change in flow value in an output
variable, the worklist of each caller marks the sites that need to be revisited. For this
idea to work, we require a departure from the usual way worklists are used.

In many existing algorithms, analysis is performed one procedure at a time: analy-
sis of a procedure P is started by placing all of its blocks on its worklist. To exploit
interprocedural def-use chains, we no longer initialize the worklist to all blocks, except
when the procedure is analyzed for the first time. Instead, a procedure P ’s blocks are
marked to identify callers of P that change P ’s inputs and to identify callers of P that
are affected by P ’s outputs.

In conjunction with a call graph worklist, this strategy allows us to exploit sparsity
at the granularity of the procedure level. Thus, a procedure need not appear in the call
graph worklist if its corresponding worklist is empty.

Full Version of Algorithm DU
Fig.7 presents our full algorithm. It first computes the reverse post-order, rpo, of the
procedure, which is used as the worklist if the procedure is analyzed for the first time.
Otherwise, the inputs are processed, searching for those with new flow values, so that
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Initially:
if analyze proc for 1st time then

rpo = reverse_post_order(CFG);
WL = rpo;
marked = ∅;

else
WL = process_proc_inputs();
merge(marked ,WL);
sort WL according to rpo;

Main loop:
while WL �= ∅ do

n = remove_front(WL);
changes = visit_block(n);
if changes �= ∅ then

more = Rbundle(n, changes);
merge(more,WL);

Finally:
// worklist done; export variables.
outputs = vars to export;
if outputs �= ∅ then

add(exit_block(), outputs);

Addition interface:
add(e, changes) {

bundles = set of {〈e, ∗〉};
for b ∈ bundles do
if b contains var∈
changes then

let b=〈e, u〉;
p=proc_of(u);
p marked=marked_set(p);
add u to p marked;

}

Fig. 7. Full version of algorithm DU , when it considers both intra- and interprocedural def-use
chains. Note that we also use bundles to export variables.

their use sites are put in the worklist. Those blocks marked for re-analysis are placed on
the worklist, which is then sorted according to rpo.

The main loop is the same as that of Fig.4. After the loop, all outputs with changed
flow values are gathered, and the callers’ callsites are processed. During this final stage,
bundles can again be used in the add routine to avoid looping through all the variables
in changes. We assume that there is a definition for each output variable at the callee’s
exit block e. Each bundle of the form 〈e, u〉 therefore has a use site in a caller. We can
then mark this use site in the caller’s marked set, enabling the caller to re-analyze it later.

4.1 Exploiting Loop Structure

By always adding blocks to the rear of the worklist, our DU algorithm ignores loop
structure, which would seem to be a mistake because CFG structure seems to be closely

(a) (b) (c)

Fig. 8. Three loop examples: s simple
loop, a nested loop, and a loop with multi-
ple back-edges

related to convergence. For example, Kam and
Ullman [14] show that for certain types of
data-flow analyses, convergence requires at
most d + 3 iterations, where d is the largest
number of back edges found in any cycle-free
path of the CFG. Thus, it seems desirable to
exploit knowledge of CFG structure when or-
dering the worklist, which is precisely what
Hind and Pioli’s algorithm does [10], although
their algorithm does not distinguish different
types of loops.

To understand the complexities that arise
from handling different types of loops, con-
sider two types of loops. First, in a nested loop
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(Fig.8(a)), which loop should we converge first? Second, in a loop with multiple back-
edges (Fig.8(b)), which back edge should get priority, ie, after visiting V2 in the figure,
should V1 be revisited before or after V3? After exploring many different heuristics,
we evaluate a minor variant of our DU algorithm that ignores inner loops and uses a
round-robin schedule for each loop. This algorithm, DUloop does not try to converge
an inner loop because the loop will be revisited when trying to converge the outer loop.
The round-robin schedule ensures that all blocks in a loop are visited before any block
is revisited.

In general, we believe that exploiting loop structure alone is not enough to yield sig-
nificant improvement—we need to also account for data dependences in loops. Unfor-
tunately, these dependences can be indirect. For example, in Fig.8(c) we have implicitly
assumed that there is only a forward dependence from block T2 to T3. However, a back-
ward, indirect dependence from block T3 to T2 can exist via a sequence of interprocedu-
ral def-use chains, so that a change in T3 could force T2 to be revisited. This phenomenon
reduces the effectiveness of any techniques that try to exploit loop structures.

5 Experiments

5.1 Benchmarks and Metrics

Our experiments use 19 open source C programs (see Table 1), which—except for
sendmail—were used in previous work [7]. In addition to measuring analysis time,
we define metrics to evaluate the efficiency of worklist algorithms.

Table 1. Properties of the benchmarks. Lines of code (LOC) are given before preprocessing.

Program Description LOC Procs Stmts CFG nodes Call sites
stunnel 3.8 Secure TCP wrapper 2K 42 2,067 511 417
pfingerd 0.7.8 Finger daemon 5K 47 3,593 899 545
muh 2.05c IRC proxy 5K 84 4,711 1,173 666
muh 2.05d IRC proxy 5K 84 4,921 1,245 669
pure-ftpd 1.0.15 FTP server 13K 116 10,772 2,537 1,180
crond (fcron-2.9.3) cron daemon 9K 100 11,252 2,426 1,249
apache 1.3.12 (core only) Web server 30K 313 16,717 3,933 1,727
make 3.75 make 21K 167 18,787 4,629 1,855
BlackHole 1.0.9 E-mail filter 12K 71 20,227 4,910 2,850
openssh client 3.5p1 Secure shell client 38K 441 21,601 5,084 4,504
wu-ftpd 2.6.0 FTP server 21K 183 22,185 5,377 2,869
wu-ftpd 2.6.2 FTP server 22K 205 23,130 5,629 2,946
named (BIND 4.9.4) DNS server 26K 210 23,405 5,741 2,194
privoxy 3.0.0 Web server proxy 27K 223 23,615 5,765 3,364
openssh daemon 3.5p1 Secure shell server 50K 601 28,877 6,993 5,415
cfengine 1.5.4 System admin tool 34K 421 38,232 10,201 6,235
sqlite 2.7.6 SQL database 36K 386 43,489 10,529 3,787
nn 6.5.6 News reader 36K 493 47,058 11,739 4,104
sendmail 8.11.6 Mail server 69K 416 67,773 15,153 7,573
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1. Basic block visitation, or BB-visit, is the number of times blocks are retrieved from
the worklists and analyzed.

2. Basic block changes, or BB-change, is the number of basic block visitations that
update some data-flow information. BB-change is a measure of useful work.

3. Efficiency, E , is the percentage of basic block visitations that are useful, i.e. the
ratio BB-change/BB-visit.

5.2 Setup

We implement our worklist algorithms using the Broadway compiler system [8], which
employs an interprocedural pointer analysis that computes points-to sets for all vari-
ables. The system supports flexible precision policies, such as fixed-modes context sen-
sitive (CS) and insensitive modes (CI), and Client Driven (CD) mode [7]. CD allows a
subset of procedures to be analyzed context sensitively, according to the needs of the
client analysis. To handle context sensitivity correctly, the DU algorithm is modified to
mark a block for re-analysis under specific contexts. Broadway also supports flexible
heap models; in this paper we use one abstract heap object per allocation site in CI
mode, and one object per allocation context in CS mode.

To evaluate our worklist algorithm, we need to choose a pointer analysis algorithm.
Because the characteristics of the pointer analysis will affect the performance of our
worklist algorithm, we present results for pointer analysis algorithms that represent two
extreme points, CI and CS.

All experiments are performed on a 1.7GHz Pentium 4 with 2GB of main memory,
running Linux 2.4.29. We compare our algorithms against a priority-queue worklist.
This algorithm assigns a unique priority to each block in a CFG, and uses Rreach.
Procedure exits always have lowest priority, so loops are always converged first. This
algorithm is similar to that used by Hind and Pioli [10], except we don’t use IN/OUT
sets. When we tried using IN/OUT sets, the compiler ran out of memory for many of
the larger benchmarks.

5.3 Empirical Lower Bound Analysis

To see how much room there is for further improvement, we empirically estimate a
lower bound as follows. First, we execute DU to produce a trace of block visitations
where data-flow information is updated, so the length of the trace is BB-change. We then
re-execute the analysis, visiting blocks using the trace. In theory, this second execution
should yield 100% efficiency. In practice we do not get 100% efficiency because, due
to implementation details, the compiler has to visit additional blocks to ensure state
consistency between useful visits. We measure this second execution to approximate a
lower bound,2 which on subsequent graphs is labeled as ‘bound’.

5.4 Results

We first consider the behavior of our worklist algorithms in conjunction with CI pointer
analysis. Each graph in Fig.9 shows the performance of DU , DUloop and our

2 Note that a better ordering of the visits in the first execution may lead to an even lower bound.
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Fig. 9. Performance results of DU and its variant, on CI pointer analysis



Efficient Flow-Sensitive Interprocedural Data-Flow Analysis 29

empirical lower bound normalized against our baseline, which uses Hind and Pioli’s
priority queue. The benchmarks are listed in order of increasing size, so we see that DU
significantly reduces analysis time, with an average reduction of 56%, and that larger
benchmarks tend to benefit the most. For example, DU analyzes sendmail 74% faster
than the baseline. We also see that DUloop only improves upon DU by a few percent-
age points and that the main source of improvement is the increased efficiency. For
example, for the large benchmarks, the efficiency of the baseline is just a few percent,
but for DU it is in the 30-60% range. The cost of this reduced analysis time is a mod-
est increase in memory usage. Finally, we see that there theoretically is still room for
increased efficiency.

Fig.10 shows similar results for context sensitive pointer analysis. Results are only
shown for benchmarks that complete under the baseline. The benefit of DU is larger
for CS mode than CI mode because the number of large number of contexts exacer-
bates any inefficiencies in the worklist. For example, DU improves the analysis time
of wu-ftpd-2.6.2 by about 80%, while in CI mode its improvement is only about
53%. These results are encouraging, and currently we are extending our algorithm to
Client Driven mode. We also see that the memory overhead of our algorithms increases
under CS mode.

We have repeated our experiments with five different error-checking clients [7].
These are interprocedural analyses that generally yield better precision with
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flow-sensitivity. We run each client concurrently with the pointer analysis, and the re-
sults generally follow the same pattern as those in Figures 10 and 9, so we omit these
to conserve space.

6 Conclusion

The ability to accurately analyze large programs is becoming increasingly important,
particularly for software engineering problems such as error checking and program un-
derstanding, which often require high precision interprocedural analysis. This paper
shows that by tuning the worklist, data-flow analysis can be made much more efficient
without sacrificing precision.

We have implemented and evaluated a worklist algorithm that utilizes def-use chains.
When compared with previous work, our DU algorithm shows substantial improve-
ment, reducing analysis time for large programs by up to 90% for a context-insensitive
analysis and by up to 80% for a context-sensitive analysis. The DU algorithm works
well because it avoids a huge amount of unnecessary work, eliminating 65% to 90%
of basic block visitations. We have also explored methods of exploiting CFG structure,
and we have found that exploiting loop structure provides a small benefit for most of
our benchmarks.

An empirical lower bound analysis reveals that there is room for further improve-
ment. More study is required to determine whether some technique that considers
both CFG structure and its interaction with data dependences can lead to further
improvement.
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Abstract. Profiling can effectively analyze program behavior and provide criti-
cal information for feedback-directed or dynamic optimizations. Based on mem-
ory profiling, reuse distance analysis has shown much promise in predicting data
locality for a program using inputs other than the profiled ones. Both whole-
program and instruction-based locality can be accurately predicted by reuse dis-
tance analysis.

Reuse distance analysis abstracts a cluster of memory references for a partic-
ular instruction having similar reuse distance values into a locality pattern. Prior
work has shown that a significant number of memory instructions have multi-
ple locality patterns, a property not desirable for many instruction-based memory
optimizations. This paper investigates the relationship between locality patterns
and execution paths by analyzing reuse distance distribution along each dynamic
path to an instruction. Here a path is defined as the program execution trace from
the previous access of a memory location to the current access. By differentiat-
ing locality patterns with the context of execution paths, the proposed analysis
can expose optimization opportunities tailored only to a specific subset of paths
leading to an instruction.

In this paper, we present an effective method for path-based reuse distance
profiling and analysis. We have observed that a significant percentage of the mul-
tiple locality patterns for an instruction can be uniquely related to a particular
execution path in the program. In addition, we have also investigated the influ-
ence of inputs on reuse distance distribution for each path/instruction pair. The
experimental results show that the path-based reuse distance is highly predictable,
as a function of the data size, for a set of SPEC CPU2000 programs.

1 Introduction

The ever-increasing disparity between memory and CPU speed has made effective op-
eration of the memory hierarchy the single most critical element in the performance
of many applications. To address this issue, compilers attempt to manipulate the spa-
tial and temporal reuse in programs to make effective use of the cache. While static
compiler analysis has achieved some success in improving memory performance, lim-
ited compile-time knowledge of run-time behavior decreases the effectiveness of static
analysis. Profile analysis of a single run can yield more accurate information, however,
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the use of a single run does not catch memory issues that are sensitive to program input
size.

To address the lack of sensitivity to data size in profile analysis, Ding et al. [1, 2]
have developed techniques to predict reuse distance – the number of unique memory
locations accessed between two references to the same memory location. Given the
reuse distances of memory locations for two training runs, they apply curve fitting to
determine the reuse distance for a third input using the data size of the third input. Ding
et al. show that reuse distance is highly predictable given the data size of an input set.

Our previous work [3, 4] maps the reuse distance of memory locations to the instruc-
tions that reference those locations and shows that the reuse distance of memory instruc-
tions is also highly predictable. Our analysis abstracts a cluster of memory references
for a particular instruction having similar reuse distance values into a locality pattern.
The results of the analysis show that many memory operations exhibit more than one lo-
cality pattern, often with widely disparate reuse distances. Unfortunately, optimization
based upon reuse distance often favors reuse distances to be consistently either large or
small, but not both, in order to improve memory-hierarchy performance effectively.

In this paper, we extend our previous work to use execution-path history to disam-
biguate the reuse distances of memory instructions. Specifically, we relate branch his-
tory to particular locality patterns in order to determine exactly when a particular reuse
distance will be exhibited by a memory operation. Our experiments show that given
sufficient branch history, multiple locality patterns for a single instruction can be dis-
ambiguated via branch history for most instructions that exhibit such locality patterns.

Being able to determine when a particular locality pattern will occur for a mem-
ory instruction allows the compiler and architecture to cooperate in targeting when to
apply memory optimizations. For example, the compiler could insert prefetches only
for certain paths to a memory instruction where reuse distances are predicted to be
large. In this case, the compiler would avoid issuing useless prefetches for short reuse
distance paths.

We begin the rest of this paper with a review of work related to reuse-distance anal-
ysis and path profiling. Next, we describe our analysis techniques and algorithms for
measuring instruction-based reuse distance with path information. Then, we present
our experiments examining the effectiveness of path-based reuse-distance analysis and
finish with our conclusions and a discussion of future work.

2 Related Work

Currently, compilers use either static analysis or simple profiling to detect data lo-
cality. Both approaches have limitations. Dependence analysis can help to detect data
reuse [5, 6]. McKinley et al. design a model to group reuses and estimate cache miss
costs for loop transformations based upon dependence analysis [7]. Wolf and Lam use
an approach based upon uniformly generated sets to analyze locality. Their technique
produces similar results to that of McKinley, but does not require the storage of input
dependences [8]. These analytical models can capture high-level reuse patterns but may
miss reuse opportunities due to a lack of run-time information and limited scope. Beyls
and D’Hollander advance the static technique to encode conditions to accommodate
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dynamic reuse distances for the class of programs that fit the polyhedral model [9]. Un-
fortunately, the model currently cannot handle spatial reuse and only works for a subset
of numerical programs.

To address the limits of static analysis, much work has been done in developing
feedback-directed schemes to analyze the memory behavior of programs using reuse
distance. Mattson et al. [10] introduce reuse distance (or LRU stack distance) for stack
processing algorithms for virtual memory management. Others have developed effi-
cient reuse distance analysis tools to estimate cache misses [11, 12, 13, 14] and to eval-
uate the effect of program transformations [11, 15, 16]. Ding et al. [1] have developed
a set of tools to predict reuse distance across all program inputs accurately, making
reuse distance analysis a promising approach for locality based program analysis and
optimizations. They apply reuse distance prediction to estimate whole program miss
rates [2], to perform data transformations [17] and to predict the locality phases of a
program [18]. Beyls and D’Hollander collect reuse distance distribution for memory in-
structions through one profiling run to generate cache replacement hints for an Itanium
processor [19]. Beyls, D’Hollander and Vandeputte present a reuse distance visualiza-
tion tool called RDVIS that suggests memory-hierarchy optimization [20]. Marin and
Mellor-Crummey [21] incorporate reuse distance analysis in their performance models
to calculate cache misses.

In our previous work, we propose a framework for instruction-based reuse distance
analysis [3, 4]. We use locality patterns to represent the reuse distance distribution of an
instruction, where a locality pattern is defined as a set of nearby related reuse distances
of an instruction. Our work first builds the relationship between instruction-based lo-
cality patterns and the data size of program inputs, and extends the analysis to predict
cache misses for each instruction, and identify critical instructions, those which pro-
duce most of the L2 cache misses. We find that a significant number of instructions,
especially critical instructions, have multiple locality patterns. In this paper, we investi-
gate the relationship between branch history and the occurrence of multiple locality pat-
terns. To this end, we extend our reuse-distance analysis framework to path/instruction
pairs to predict the path-based reuse distances across program inputs.

Previous research in path profiling usually aims at collecting accurate dynamic paths
and execution frequencies for helping optimizing frequent paths [22, 23, 24]. Ammons
and Larus use path profiles to identify hot paths and improve data flow analysis [22].
Ball and Larus present a fast path profiling algorithm that identifies each path with a
unique number. Larus represents a stream of whole program paths as a context-free
grammar which describes a program’s entire control flow including loop iteration and
interprocedural paths [24]. All of the aforementioned work takes basic block paths. We
instead track only branch history since many modern superscalar processors already
record branch history for branch prediction, allowing us to use the reuse-distance anal-
ysis in a dynamic optimization framework in the future.

With the intention of applying latency tolerating techniques to the specific set of
dynamic load instructions that suffer cache misses, Mowry and Luk [25] propose a
profiling approach to correlate cache misses to paths. While correlation profiling moti-
vates our work, we focus on path-based reuse distance analysis. Reuse distance analysis
exposes not only the results of hits or misses of cache accessing, but also the relevant
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reasons. Further, our analysis can predict locality change on paths across program in-
puts, which is not mentioned in Mowry and Luk’s paper [25].

3 Analysis

In this section we first describe previous work on whole-program and instruction-based
reuse distance analysis. We then relate branch history to locality patterns at the in-
struction level. We further discuss locality pattern prediction with respect to the branch
history of each instruction.

3.1 Reuse Distance Analysis

Reuse distance is defined as the number of distinct memory references between two
accesses to the same memory location. In terms of memory locations, reuse distance
has different levels of granularity, e.g. per memory address or per cache line. With
the intention of analyzing data locality, this work focuses on cache-line based reuse
distance. According to the access order of a reuse pair, reuse distance has two forms:
backward reuse distance and forward reuse distance. Backward reuse distance is the
reuse distance from the current access to the previous one addressing the same memory
location. Similarly, forward reuse distance measures the distance from the current to the
next access of the same memory location. In this paper, we report only backward reuse
distances. The results for forward reuse distance are similar.

Ding et al. [1] show that the reuse distance distribution of each memory location
accessed in a whole program is predictable with respect to the program input size. They
define the data size of an input as the largest reuse distance and use a histogram de-
scribing reuse distance distribution. Each bar in the histogram consists of the portion
of memory references whose reuse distance falls into the same range. Given two his-
tograms with different data sizes, they predict the histogram of a third data size and find
that those histograms are predictable in a selected set of benchmarks. Typically, one can
use this method to predict reuse distance for a large data input of a program based on
training runs of a pair of small inputs.

Previously, we have extended Ding et al.’s work to predict reuse distance for each
instruction rather than memory location. We map the reuse distances for a memory loca-
tion to the instructions that cause the accesses and show that the reuse distances of each
memory instruction are also predictable across program inputs for both floating-point
and integer programs [3, 4]. In our approach, the reuse distances for each instruction
are collected and distributed in logarithmic scaled bins for distances less than 1K and
in 1K-sized bins for distances greater than 1K. The minimum, maximum, and mean
reuse distances together with the access frequency are recorded for each bin. We scan
the original bins from the smallest distance to the largest distance and iteratively merge
any pair of adjacent bins i and i+ 1 if

mini+1 − maxi ≤ maxi − mini.

This inequality is true if the difference between the minimum distance in bin i + 1
and the maximum distance in bin i is no greater than the length of bin i. The merging
process stops when it reaches a minimum frequency and starts a new pattern for the
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next bin. We call the merged bins locality patterns, which accurately and efficiently
represent the reuse distance distribution on a per instruction basis. Furthermore, we
have shown that locality patterns can be predicted accurately for a third input using two
small training inputs and curve fitting, and can be used to predict cache misses for fully
and set associative caches. These results show that locality patterns are an effective
abstraction for data locality analysis.

3.2 Using Paths to Disambiguate Reuse Patterns

Although previous results show that over half of the instructions in SPEC CPU2000
contain only one pattern, a significant number of instructions exhibit two or more lo-
cality patterns. For the purposes of memory-hierarchy optimization, the compiler may
need to know when each locality pattern occurs in order to tailor optimization to the
pattern exhibiting little cache reuse.

Typically two backward reuse distance locality patterns of a load come either from
different sources which meet at the current load through different paths (otherwise,
one access will override the other) as shown in Figure 1(a), or a single source that
reaches the current load through distinct paths as shown in Figure 1(b). This suggests
that a dynamic basic block history plus the source block can uniquely identify each
reuse. However, it is expensive to track a basic block trace at run time and apply it to
memory optimizations. Branch history is a close approximation to basic block history
and available on most modern superscalar architectures.

... X ...

... X ... ... X ...

(a)

...

... X ...

... X ...

...

(b)

Fig. 1. Path-related reuses, (a) from two separate sources, (b) from a single source

In this work, we use a stack to keep track of the branch history during profiling and
collect reuse distances for each distinct branch history of an instruction. During a load,
our reuse distance collection tool calculates reuse distance and records the distance with
respect to the current branch history. If an instruction has multiple locality patterns and
the reuse distances for each branch history form at most one pattern, the branch history
can differentiate the multiple patterns and make it possible to determine when each pat-
tern will occur.

Due to the existence of loops in a program, the history stack tends to be quickly
saturated, making it difficult to track the reuses from outside the loops. To solve this
problem, we detect loop back-edges during profiling and keep the branch history for up
to l iterations of a loop, where l is the number of data elements that fit in one cache-line.
Note that we choose l based on the cache-line size to differentiate between spatial (ref-
erences within the same cache line) and temporal reuse patterns (references to the same



Path-Based Reuse Distance Analysis 37

memory location). After l iterations or at the exit of a loop, the branch history in the
loop is squashed with all corresponding history bits cleared from the stack. In this way,
we efficiently use a small number of history bits to represent long paths. Furthermore,
by squashing loops, the branch histories to an instruction tend to be consistent across
program inputs, making it feasible to predict reuse distances along execution paths.

if (...)
for (i = 0; i < n; i++) // loop 1
...A[i]...

else
for(i = 0; i < n; i++) // loop 2
...A[i]...

for(i = 0; i < n; i++) // loop 3
...A[i]...

Fig. 2. Multiple reuses

As an example, consider the program shown in Figure 2. A[i] in the third loop has
spatial reuse from within the loop l − 1 out of every l iterations. Additionally, A[i]
has temporal reuse once every l iterations from either loop 1 or loop 2, depending on
the condition of the if-statement. For this case, a history of l + 1 bits are enough to
differentiate all reuse patterns – l bits for reuse from within the loop and one bit for
reuse from outside the loop.

After the reuse distances for all paths of each instruction are collected, the patterns
are formulated following the merging process discussed in Section 3.1. We then exam-
ine whether the path history can help to uniquely identify a pattern and whether the
path-based patterns can be predicted for a third input.

3.3 Path-Based Reuse Distance Prediction

Previous work has shown that reuse distances are likely to change across program in-
puts. To make the above analysis useful for optimizations, it is essential to predict reuse
distances along execution paths. Our path-based reuse distance prediction is very simi-
lar to that for whole programs [1] and instructions [3, 4], except that we form patterns
for each path in the two training runs and predict the patterns for the path in the valida-
tion run.

In the two training runs, the reuse patterns of each instruction are created for each
profiled path. If a path does not occur in both of the two training runs, the reuse pat-
terns for that path are not predictable. Our prediction also assumes a path has an equal
number of patterns in the two training runs. We define the coverage of the prediction as
the percentage of dynamic paths whose reuse distances are predictable based upon the
above assumptions.

Given the reuse patterns of the same path in two runs, the predicted patterns for
the path in the validation run can be predicted using curve fitting as proposed by Ding
et al. [1]. The prediction accuracy is computed by comparing the predicted patterns with
the observed ones in the validation run. Here accuracy is defined as the percentage of
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the covered paths whose reuse distances are correctly predicted. A path’s reuse distance
distribution is said to be correctly predicted if and only if all of its patterns are correctly
predicted. The prediction of a reuse pattern is said to be correct if the predicted pattern
and the observed pattern fall into the same set of bins, or they overlap by at least 90%.
Given two patterns A and B such that B.min < A.max ≤ B.max, we say that A and B
overlap by at least 90% if

A.max − max(A.min,B.min)
max(B.max − B.min,A.max − A.min)

≥ 0.9.

4 Experiment

In this section, we report the results of our experimental evaluation of the relationship
between locality patterns and execution paths. We begin with a discussion of our exper-
imental methodology and then, we discuss the effectiveness of using path information
in differentiating multiple locality patterns of an instruction. Finally, we report the pre-
dictability of the reuse distance distribution along execution paths.

4.1 Methodology

In this work, we execute our benchmark suite on the SimpleScalar Alpha simulator [26].
We modify sim-cache to generate the branch history and collect the data addresses and
reuse distances of all memory instructions. Ding and Zhong’s reuse-distance collection
tool [1, 2] is used to calculate the reuse distance for each memory access. During profil-
ing, our analysis records a 32-byte cache-line-based backward reuse distance for each
individual memory instruction with the current branch history of varying lengths. Given
the 32-byte cache-line size, we squash the branch history for loops every 4 iterations to
help differentiate spatial and temporal reuse.

Our benchmark suite consists of 10 of the 14 floating-point programs and 11 of the
12 integer programs from SPEC CPU2000, as shown in Figure 3. The remaining five
benchmarks (178.galgel, 187.facerec, 191.fma3d, 200.sixtrack and 252.eon) in SPEC
CPU2000 are not included because we could not get them to compile correctly with
version 5.5 of the Alpha compiler using optimization level -O3. For all benchmarks
we use the test and train input sets for the training runs. For floating-point programs,
we use the reference input sets for verification. However, for integer programs, we use
the MinneSpec workload [27] in order to save profiling time due to the large memory
requirements of the reference input set. We collect the reuse distance distribution by
running all programs to completion.

4.2 Differentiating Multiple Locality Patterns

In this section, we experimentally analyze the ability of using branch history to dif-
ferentiate between multiple locality patterns for a single instruction on our benchmark
suite. We examine branch histories of length 1, 2, 4, 8, 16 and 32 bits using the history
collection described in Section 3.2.
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Fig. 3. % instructions having multiple reuse patterns

Figure 3 presents the percentage of instructions that have multiple locality patterns in
a program. On average, 39.1% of the instructions in floating-point programs and 30.2%
of the instructions in integer programs have more than one locality pattern. Floating-
point programs, especially 168.wupwise, 171.swim, 172.mgrid and 301.apsi, tend to
have diverse locality patterns. Many instructions in these programs have both temporal
reuse from outside the loop that corresponds to large reuse distances, and spatial reuse
from within the loop that normally has short reuse distances. In integer programs, a
high number of conditional branches tends to cause multiple locality patterns. This
phenomenon occurs often in 164.gzip, 186.crafty, 254.gap and 300.twolf.
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Figures 4 and 5 show the percentage of multiple locality patterns that can be dif-
ferentiated using branch histories with various lengths. The bars labeled ”pathn” show
the differentiation results for a path with n bits of history. We see from these two fig-
ures that, for both floating-point and integer programs, using execution path context
can differentiate a significant percentage of multiple patterns for an instruction. This
percentage increases with the increase in the number of history bits used. On average,
paths with an 8-bit history can disambiguate over 50% of the multiple patterns. Whereas
paths with 32 bits of history can disambiguate over 70% of the multiple patterns.

There are still some multiple patterns that cannot be differentiated by our approach
even though a 32-bit history is used. Several factors have been observed to be respon-
sible for this non-differentiability. The first is branch history aliasing, where different
execution paths have the same branch history. Branch history aliasing occurs when ex-
ecutions from different block traces share the last several bits of the branch history, as
shown in Figure 6. In this case, when using a 2-bit history both paths have the history
of 01. However, a 3-bit history will solve the problem.

To examine the effect of branch history aliasing on our scheme, we report the per-
centage of multiple patterns that cannot be differentiated because of history aliasing, as
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Fig. 6. Branch history aliasing
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Table 1. % multiple patterns that are non-differentiable because of history aliasing for CFP2000

Benchmark path1 path2 path4 path8 path16
168.wupwise 62.6 53.7 42.9 23.4 5.4
171.swim 70.3 69.8 68.7 36.0 5.4
172.mgrid 51.1 50.9 46.9 31.7 9.6
173.applu 52.3 48.7 29.5 21.4 2.4
177.mesa 76.4 67.1 54.9 35.3 18.6
179.art 40.8 38.0 30.9 24.9 24.1
183.equake 74.9 64.0 50.1 29.8 16.2
188.ammp 51.4 42.7 30.1 9.2 6.7
189.lucas 51.9 47.8 37.4 28.0 20.1
301.apsi 60.0 48.3 36.2 27.5 21.4
average 59.2 53.1 42.7 26.7 13.0

Table 2. % multiple patterns that are non-differentiable because of history aliasing for CINT2000

Benchmark path1 path2 path4 path8 path16
164.gzip 74.0 64.6 52.6 37.7 23.4
175.vpr 81.3 71.8 48.2 24.0 12.0
176.gcc 65.0 58.7 48.5 37.9 21.7
181.mcf 91.8 83.0 56.5 44.3 33.3
186.crafty 87.6 75.9 52.7 27.3 13.9
197.parser 82.8 74.0 59.0 46.7 32.8
253.perlbmk 89.1 74.8 61.6 34.4 8.0
254.gap 73.6 66.2 53.5 40.1 28.6
255.vortex 70.1 66.5 58.1 51.4 42.4
256.bzip2 59.6 52.9 44.5 43.2 40.2
300.twolf 74.9 63.0 50.3 28.2 17.4
average 77.3 68.3 53.2 37.7 24.9

listed in Tables 1 and 2. We identify whether or not a particular history is an aliased one
by tracking the block trace associated with this history. We experimentally collect the
data for path16. For pathn where n < 16, the non-differentiable multiple patterns due to
aliasing are those for path16 plus all patterns that can be differentiated by a 16-bit history
but not the n-bit history. We see from Tables 1 and 2 that the branch history aliasing prob-
lem is more severe in integer programs than in floating-point programs, and increasing
the number of history bits can greatly reduce the number of non-differentiable patterns.

We have observed that, branch history aliasing most commonly occurs when all lo-
cality patterns represent short reuse distances. This is not a severe problem for
determining cache misses. There are two ways to reduce the influence of the branch
history aliasing problem. We can use more history bits and focus only on those critical
instructions which produce most of the cache misses. Or, for those applications consid-
ering only short reuse distances, a block trace can be used instead of branch history for
path representation. If only short reuse distances are involved, the memory requirement
needed for basic block traces will not be excessive.
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In addition to branch history aliasing, cache-line alignment causes some multiple
patterns to be not differentiable using our scheme. The following code occurs in the
function fullGtu(Int32 i1, Int32 i2) in program 256.bzip2.

1. c1=block[i1];
2. c2=block[i2];
3. if(c1!=c2) return(c1>c2);
4. i1++;i2++;

5. c1=block[i1];
6. c2=block[i2];
7. if(c1!=c2) return(c1>c2);
8. i1++;i2++;

Depending on the value of i1, block[i1] at line 5 may reuse the data touched at line
1 having a short reuse distance, or data from beyond the function having a long reuse
distance. The change in the value of i1 may cause the load at line 5 to be in a different
cache line from the load at line 1. In this case, our scheme cannot differentiate between
the two patterns. Notice that this piece of code is similar to an unrolled loop, which sug-
gests that compile-time loop unrolling may also influence our scheme. Indeed, we have
found cases of loop unrolling that cause some multiple patterns to be not differentiable
by paths in floating-point programs such as 168.wupwise and 173.applu.

For cache-related optimization, it is important to differentiate multiple patterns of an
instruction having both short and long reuse distances. This would allow the compiler to
optimize the long reuse distance that is likely a cache miss and ignore the path where the
reuse distance is short and a cache hit is likely. Table 3 lists the percentage of multiple
patterns that cannot be differentiated and have both short and long patterns. Here we
use a threshold of 1K, which corresponds to the size of a 32K-byte L1 cache, to classify
reuse distances as short or long. We can see that non-differentiable multiple patterns

Table 3. % multiple patterns that cannot be differentiated and have both short and long distances

CFP2000 path4 path8 path16 CINT2000 path4 path8 path16
168.wupwise 28.5 24.3 17.5 164.gzip 36.5 28.7 21.9
171.swim 37.1 21.5 7.2 175.vpr 0.3 0.2 0.2
172.mgrid 10.4 8.2 6.1 176.gcc 0.3 0.3 0.2
173.applu 11.5 10.8 6.6 181.mcf 16.8 16.7 13.9
177.mesa 4.8 4.6 4.6 186.crafty 0.0 0.0 0.0
179.art 18.3 12.1 11.5 197.parser 0.1 0.1 0.0
183.equake 4.6 4.2 4.1 253.perlbmk 1.4 0.0 0.8
188.ammp 0.4 0.3 0.2 254.gap 1.5 1.2 1.1
189.lucas 42.6 37.1 30.2 255.vortex 0.4 0.3 0.3
301.apsi 5.2 4.6 3.8 256.bzip2 14.0 14.0 11.2

300.twolf 6.8 5.0 4.2
average 16.3 12.8 9.2 average 7.0 6.1 4.9
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with both short and long reuse distances only account for a small portion of the total
number of the multiple patterns in a program, and on average, integer programs have a
lower percentage than floating-point programs.

4.3 Path Based Reuse Distance Prediction

Tables 4 and 5 list the path-based reuse distance prediction coverage and accuracy
for floating-point and integer programs, respectively. For comparison, we also list the
instruction-based reuse distance prediction results in the columns labeled ”inst”. Due to
the excessive memory requirements of simulation via SimpleScalar and profile collec-
tion, we cannot generate the prediction results for the path32 for integer programs.

Table 4. CFP2000 path-based reuse-distance prediction

coverage (%) accuracy(%)
Benchmark inst path inst path

1 2 4 8 16 32 1 2 4 8 16 32
168.wupwise 92.9 94.2 93.7 94.9 96.6 97.5 98.5 98.1 99.0 99.1 99.4 99.4 99.5 99.7
171.swim 95.5 98.6 98.7 98.9 99.2 99.7 99.8 89.0 93.6 93.5 93.6 95.9 95.7 95.7
172.mgrid 96.6 97.9 97.3 97.7 96.6 97.1 94.1 91.9 94.8 95.0 95.8 96.4 96.5 96.2
173.applu 96.4 94.0 92.2 92.3 91.9 87.8 77.0 96.0 97.0 96.2 96.2 96.1 96.3 97.1
177.mesa 96.9 97.0 97.1 99.2 99.2 99.9 99.8 98.6 98.6 99.3 99.3 99.3 98.9 98.9
179.art 94.6 96.2 96.2 97.3 99.5 99.5 99.5 96.5 95.6 95.6 95.7 94.6 94.6 94.7
183.equake 99.2 99.6 99.6 99.6 99.2 98.9 98.0 98.3 98.6 98.6 98.8 98.6 99.0 98.9
188.ammp 99.9 99.9 99.9 99.9 99.9 99.8 99.4 89.6 92.8 92.8 93.9 94.0 94.1 94.3
189.lucas 71.7 66.5 65.3 63.3 62.4 60.1 59.3 94.1 97.5 98.6 98.6 98.3 98.8 98.8
301.apsi 96.6 96.6 96.8 97.1 96.1 91.4 85.9 93.0 96.5 97.0 97.2 96.9 97.2 97.7
average 94.0 94.1 93.7 94.0 94.1 93.17 91.1 94.5 96.4 96.6 96.9 97.0 97.1 97.2

Table 5. CINT2000 path-based reuse-distance prediction

coverage (%) accuracy(%)
Benchmark inst path inst path

1 2 4 8 16 1 2 4 8 16
164.gzip 99.2 99.2 99.2 99.0 99.2 98.8 95.1 95.5 95.8 97.2 97.0 97.5
175.vpr 97.7 99.2 98.9 98.3 95.8 90.0 93.9 93.7 93.9 93.4 94.2 95.6
176.gcc 95.6 96.7 96.8 96.4 93.6 90.2 93.3 95.2 95.2 94.9 95.3 94.8
181.mcf 94.5 95.0 95.0 95.0 94.6 92.7 88.9 89.9 90.6 89.3 90.0 90.6
186.crafty 97.7 98.5 99.0 99.2 99.1 97.9 93.2 93.3 94.4 93.8 94.4 94.6
197.parser 83.3 85.5 87.1 84.8 79.1 66.4 84.9 84.4 85.2 88.5 91.6 97.0
253.perlbmk 99.8 99.8 99.8 99.8 99.8 99.2 97.2 97.2 97.2 97.2 98.0 97.9
254.gap 86.8 86.6 86.9 85.2 82.1 77.5 91.5 92.6 92.7 94.7 97.0 99.6
255.vortex 99.7 99.7 99.8 99.8 99.8 99.7 97.3 97.3 97.3 97.4 97.2 96.4
256.bzip2 99.9 99.9 99.9 99.9 99.9 99.9 98.0 97.8 97.8 97.8 98.1 97.9
300.twolf 95.6 96.2 96.1 95.4 94.1 90.1 93.3 93.3 93.4 94.0 94.0 95.0
average 95.4 96.0 96.2 95.7 94.3 91.1 93.3 93.7 94.0 94.4 95.2 96.1
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For floating-point programs, on average, our mechanism can predict reuse distances
for over 91% of the paths with accuracies all above 96%, with the number of history
bits ranging from 1 up to 32. With less than or equal to 8 bits of branch history, the path-
based prediction coverage compares well with using no branch history. When more than
8 bits are used, the prediction coverage decreases slightly. The rightmost part of Table 4
shows that using branch history improves the accuracy of reuse-distance prediction.

Integer programs exhibit similar coverage and accuracy results, as listed in Table 5.
On average, we can predict reuse distances for over 91% of the paths with accuracies
above 93.5%. While the coverage decreases with the increase in the number of bits used,
the path-based reuse distance prediction coverage is higher than the instruction-based
one when less than 8 bits are used. With a single-bit history, the average prediction
accuracy is 93.7%, while the accuracy for a 16-bit history improves to 96.1% of the
covered paths.

We have observed two major factors that influence the prediction coverage. First,
our prediction assumes all paths appear in both training runs. However, some paths
may only occur when using the reference input set (we call these paths missing paths).
For example, a conditional branch may be taken when the reference input is used but
not when the test input is used. Long execution paths will experience this phenomenon
more often than short paths. Another factor determining the predictability is pattern
matching. For a path or instruction, if the number of locality patterns is not equal in
the two training runs, we cannot accurately match the corresponding patterns and thus
cannot predict the reuse distances. For this case, relating reuse distances to paths has an
advantage because most paths tend to have a single locality pattern.

For 168.wupwise, 171.swim and 179.art, the pattern matching problem dominates
the cases where we do not predict reuse correctly. Thus, the coverage monotonically
increases with the increase in the number of history bits used. When missing paths
are the major factor, the prediction coverage decreases with the path length, as is the
case for 173.applu and 189.lucas. For 173.applu, 22.8% of the paths are missing in the
training runs for the 32-bit history, leading to a low coverage. For 189.lucas, 197.parser
and 254.gap, there is a significant number of instructions that do not appear in the two
training runs. Thus, the corresponding paths do not occur in both training runs, resulting
in a low coverage for all evaluation cases.

5 Conclusions and Future Work

In this paper, we have proposed a novel approach for path-based reuse-distance anal-
ysis. We use execution-path history to disambiguate the reuse distances of memory
instructions. Specifically, we relate branch history to particular locality patterns in or-
der to determine exactly when a particular reuse distance will be exhibited by a memory
operation.

Our experiments show that given sufficient branch history, multiple locality patterns
for a single instruction can be disambiguated via branch history for most instructions
that exhibit such locality patterns. On average, over 70% of the multiple patterns for
static instructions can be differentiated by execution paths with a 32-bit branch history,
for both floating-point and integer programs. In addition, we also show that the path



Path-Based Reuse Distance Analysis 45

based reuse distances can be more accurately predicted than the instruction based reuse
distances across program inputs, without a significant decrease in prediction coverage.

Being able to determine when a particular locality pattern will occur for a memory
instruction allows the compiler and architecture to cooperate in targeting when to apply
memory optimizations. Our next step is to apply the analysis for optimizations like
prefetching. Specifically, we are developing software/hardware cooperative approaches
to invoke prefetches only when certain paths with large reuse distances are executed.
These approaches aim to avoid useless prefetches while achieving high performance.
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Abstract. We present the results of an empirical study evaluating the precision
of subset-based points-to analysis with several variations of context sensitivity on
Java benchmarks of significant size. We compare the use of call site strings as the
context abstraction, object sensitivity, and the BDD-based context-sensitive algo-
rithm proposed by Zhu and Calman, and by Whaley and Lam. Our study includes
analyses that context-sensitively specialize only pointer variables, as well as ones
that also specialize the heap abstraction. We measure both characteristics of the
points-to sets themselves, as well as effects on the precision of client analyses. To
guide development of efficient analysis implementations, we measure the number
of contexts, the number of distinct contexts, and the number of distinct points-to
sets that arise with each context sensitivity variation. To evaluate precision, we
measure the size of the call graph in terms of methods and edges, the number of
devirtualizable call sites, and the number of casts statically provable to be safe.

The results of our study indicate that object-sensitive analysis implementa-
tions are likely to scale better and more predictably than the other approaches;
that object-sensitive analyses are more precise than comparable variations of the
other approaches; that specializing the heap abstraction improves precision more
than extending the length of context strings; and that the profusion of cycles in
Java call graphs severely reduces precision of analyses that forsake context sen-
sitivity in cyclic regions.

1 Introduction

Does context sensitivity significantly improve precision of interprocedural analysis of
object-oriented programs? It is often suggested that it could, but lack of scalable imple-
mentations has hindered thorough empirical verification of this intuition.

Of the many context sensitive points-to analyses that have been proposed (e.g. [1, 4,
8, 11, 17–19, 25, 28–31]), which improve precision the most? Which are most effec-
tive for specific client analyses, and for specific code patterns? For which variations are
we likely to find scalable implementations? Before devoting resources to finding effi-
cient implementations of specific analyses, we should have empirical answers to these
questions.

This study aims to provide these answers. Recent advances in the use of Binary De-
cision Diagrams (BDDs) in program analysis [3, 12, 29, 31] have made context sensitive
analysis efficient enough to perform an empirical study on benchmarks of significant

� This work was supported, in part, by NSERC and an IBM Ph.D. Fellowship.

A. Mycroft and A. Zeller (Eds.): CC 2006, LNCS 3923, pp. 47–64, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



48 O. Lhoták and L. Hendren

size. Using the JEDD system [14], we have implemented three different families of
context-sensitive points-to analysis, and we have measured their precision in terms of
several client analyses. Specifically, we compared the use of call-site strings as the con-
text abstraction, object sensitivity [17,18], and the algorithm proposed by Zhu and Cal-
man [31] and Whaley and Lam [29] (hereafter abbreviated ZCWL). Within each family,
we evaluated the effect of different lengths of context strings, and of context-sensitively
specializing the heap abstraction. In our study, we compared the relative precision of
analyses both quantitatively, by computing summary statistics about the analysis re-
sults, and qualitatively, by examining specific code patterns for which a given analysis
variation produces better results than other variations.

Context-sensitive analyses have been associated with very large numbers of con-
texts. We wanted to also determine how many contexts each variation of context sen-
sitivity actually generates, how the number of contexts relates to the precision of the
analysis results, and how likely it is that scalable context-sensitive representations are
feasible. These measurements can be done directly on the BDD representation.

Our results show that although the effect on precision depends on the client analysis,
the benefits of context sensitivity are very significant for some analyses, particularly cast
safety analysis. We also show that object-sensitivity consistently improves precision
most compared to the other variations studied, and that modelling heap objects with
context does significantly improve precision.

The remainder of this paper is organized as follows. In Section 2, we provide back-
ground about the variations of context sensitivity that we have studied. In Section 3, we
list the benchmarks included in our study. We discuss the number of contexts and its
implications on precision and scalability in Section 4. In Section 5, we examine the ef-
fects of context sensitivity on the precision of the call graph. We evaluate opportunities
for static resolution of virtual calls in Section 6. In Section 7, we measure the effect of
context sensitivity on cast safety analysis. We briefly survey related work in Section 8.
Finally, we draw conclusions from our experimental results in Section 9.

2 Background

Like any static analysis, a points-to analysis models the possible run-time features of
the program using some chosen static abstraction. A context-sensitive points-to analysis
requires an abstraction of pointer targets, pointers, and method invocations. We will
denote these three abstractions O, P , and I, respectively. Whenever it is possible for a
run-time pointer p to point to the run-time target o, the may-point-to relation computed
by the analysis must contain the fact O(o) ∈ pt(P(p)). The specific choice of static
abstraction is a key determining factor of the precision of the analysis, and this paper
compares several different abstractions.

Pointer Target Abstraction: In Java, the target of a pointer is always a dynamically
allocated object. A popular abstraction for a pointer target is the program statement at
which the object was allocated. We will write this abstraction as Oas.

Pointer Abstraction: Each run-time pointer corresponds to either some local variable
or some object field in the program. Pointers corresponding to local variables are often
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statically abstracted by the local variable; we will write this abstraction as Pvar. For
pointers corresponding to fields, we will consider only the field-sensitive abstraction in
this paper, because it is more precise than other alternatives (described, for example,
in [13, 23]). The field-sensitive abstraction Pfs(o.f) of the field f of run-time object
o is the pair [O(o), f ], where O(o) is our chosen static abstraction of the run-time
object o.

Method Invocation (Context) Abstraction: Because different invocations of a
method may have different behaviours, it may be useful to distinguish some of them.
A context is a static abstraction of a method invocation; an analysis distinguishes invo-
cations if their abstract contexts are different. In this paper, we compare two families of
invocation abstraction (also called context abstraction), call sites [24, 25] and receiver
objects [17, 18]. In call-site context sensitivity, the context Ics(i) of an invocation i
is the program statement (call site) from which the method was invoked. In receiver-
object context sensitivity, the context of an invocation i is the static abstraction of
the object on which the method is invoked. That is, Iro(i) = O(o), where o is the
run-time object on which the method was invoked.

In either case, the context abstraction can be made even finer by using a string of con-
texts corresponding to the invocation frames on the run-time invocation stack [18, 24].
That is, having chosen a base abstraction Ibase, we can define Istring(i) to be [Ibase(i),
Ibase(i2), Ibase(i3), . . .], where ij is the j’th top-most invocation on the stack during
the invocation i (so i = i1). Since the maximum height of the stack is unbounded, the
analysis must somehow ensure that the static abstraction is finite. A simple, popular
technique is to limit the length of each context string to at most a fixed number k. A
different technique is used by the ZCWL algorithm. It does not limit the length of a
context string, but it excludes from the context string all contexts corresponding to call
edges that are part of a cycle in the context-insensitive call graph. Thus, the number of
contexts is bounded by the number of acyclic paths in the call graph, which is finite.

Orthogonal to the choice of context abstraction is the choice of which pointers and
objects to model context-sensitively. That is, having chosen a basic context-insensitive
pointer abstraction Pci and a context abstraction I, we can model a run-time pointer
p context-sensitively by defining P(p) to be [I(ip), Pci(p)], where ip is the method
invocation in which p occurs, or context-insensitively by defining P(p) to be Pci(p).
Similarly, if we have chosen the allocation site abstraction Oas as the basic abstraction
for objects, we can model each object o context-sensitively by defining O(o) to be
[I(io), Oas(o)], where io is the method invocation during which o was allocated, or
context-insensitively by defining O(o) to be Oas(o).

In the tables in the rest of this paper, we report results for the following variations
of points-to analyses. In tables reporting call graph information, the “CHA” column
reports baseline numbers obtained using Class Hierarchy Analysis [6]. The “insens.”
column of each table is a context-insensitive points-to analysis that does not distinguish
different invocations of any method. The “object-sensitive” columns are analyses using
receiver objects as the context abstraction, while the “call site” columns are analyses
using call sites as the context abstraction. Within each of these two sections, in the 1,
2, and 3 columns, pointers are modelled with context strings of maximum length 1, 2,
and 3, but pointer targets are modelled context-insensitively. In the 1H columns, both
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pointers and pointer targets are modelled with context strings of receiver objects or call
sites of maximum length 1. The “ZCWL” column is the ZCWL algorithm, which uses
call sites as the context abstraction, and allows context strings of arbitrary length. The
ZCWL algorithm models pointers with context but pointer targets without context.

In an analysis of an object-oriented language such as Java, there is a cyclic de-
pendency between call graph construction and points-to analysis. In all variations ex-
cept the ZCWL algorithm, we constructed the call graph on-the-fly during the points-to
analysis, since this maintains maximum precision. The ZCWL algorithm requires a
context-insensitive call graph to be constructed before it starts, which it then makes
context-sensitive, and uses to perform the points-to analysis. For this purpose, we used
the call graph constructed by the context-insensitive analysis in the “insens.” column.

Interested readers can find additional information about the analysis variations, as
well as a detailed presentation of the analysis implementation, in [12, Chapter 4].

3 Benchmarks

We performed our study on programs from the SpecJVM 98 benchmark suite [26], the
DaCapo benchmark suite, version beta050224 [5], and the Ashes benchmark suite [27],
as well as on the Polyglot extensible Java front-end [20], as listed in Table 1. Most of
these benchmarks have been used in earlier evaluations of interprocedural analyses for
Java. The middle section of the table shows the total number of classes and methods
comprising each benchmark. These numbers exclude the Java standard library (which
is required to run the benchmark), but include all other libraries that must accompany
the benchmark for it to run successfully. All of the measurements in this paper were

Table 1. Benchmarks

Total number of Executed methods
Benchmark classes methods app. +lib.
compress 41 476 56 463
db 32 440 51 483
jack 86 812 291 739
javac 209 2499 778 1283
jess 180 1482 395 846
mpegaudio 88 872 222 637
mtrt 55 574 182 616
soot-c 731 3962 1055 1549
sablecc-j 342 2309 1034 1856
polyglot 502 5785 2037 3093
antlr 203 3154 1099 1783
bloat 434 6125 138 1010
chart 1077 14966 854 2790
jython 270 4915 1004 1858
pmd 1546 14086 1817 2581
ps 202 1147 285 945
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done with version 1.3.1 01 of the Sun standard library.1 The right-most section of the
table shows the number of distinct methods that are executed in a run of the bench-
mark (measured using the *J tool [7]), both excluding and including methods of the
Java standard library, in the columns labelled “app.” and “+lib.”, respectively. About
400 methods of the standard library are executed even for the smallest benchmarks for
purposes such as class loading; some of the larger benchmarks make heavier use of the
library.

4 Number of Contexts

Context-sensitive analysis is often considered intractable mainly because, if contexts
are propagated from every call site to every called method, the number of resulting
context strings grows exponentially in the length of the call chains. The purpose of this
section is to shed some light on two issues. First, of the large numbers of contexts,
how many are actually useful in improving analysis results? Second, why can BDDs
represent such seemingly large numbers of contexts, and how much hope is there that
they can be represented with more traditional techniques?

4.1 Total Number of Contexts

We begin by comparing the number of contexts that appear in the context-sensitive
points-to relation when the analysis is performed with the different context abstractions.
For this measurement, we treat the method invoked as part of the context. For example,
suppose we are using abstract receiver objects as the context abstraction; if two different
methods are called on the same receiver, we count them as two separate contexts, since
they correspond to two necessarily distinct invocations. In other words, we are counting
method-context pairs, rather than just contexts.

The measurements of the total numbers of contexts are shown in Table 2. Each col-
umn lists the number of contexts produced by one of the variations of context-sensitive
analysis described in Section 2. The column labelled “insens.” shows the absolute num-
ber of contexts (which is also the number of methods, since in a context-insensitive
analysis, every method has exactly one context). All the other columns, rather than
showing the absolute number of contexts, which would be very large, instead show
the number of contexts as a multiple of the “insens.” column (i.e. they show the av-
erage number of contexts per method). For example, for the compress benchmark, the
total number of 1-object-sensitive contexts is 2596×13.7 = 3.56×104. The empty spots
in the table (and other tables throughout this paper) indicate configurations in which the
analysis did not complete in the available memory, despite being implemented using
BDDs. We allowed the BDD library to allocate a maximum of 41 million BDD nodes
(820 million bytes).

The large numbers of contexts explain why an analysis that represents each
context explicitly cannot scale to the programs that we analyze here. While a

1 Studying other standard library versions requires models of their native methods. We aim to
write such models for a more recent version as future work.
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Table 2. Total number of abstract contexts

object-sensitive call site
Benchmark insens. 1 2 3 1H 1 2 1H ZCWL (max. k)
compress 2596 13.7 113 1517 13.4 6.5 237 6.5 2.9 × 104 (21)
db 2613 13.7 115 1555 13.4 6.5 236 6.5 7.9 × 104 (22)
jack 2869 13.8 156 1872 13.2 6.8 220 6.8 2.7 × 107 (45)
javac 3780 15.8 297 13289 15.6 8.4 244 8.4 (41)
jess 3216 19.0 305 5394 18.6 6.7 207 6.7 6.1 × 106 (24)
mpegaudio 2793 13.0 107 1419 12.7 6.3 221 6.3 4.4 × 105 (31)
mtrt 2738 13.3 108 1447 13.1 6.6 226 6.6 1.2 × 105 (26)
soot-c 4837 11.1 168 4010 10.9 8.2 198 8.2 (39)
sablecc-j 5608 10.8 116 1792 10.5 5.5 126 5.5 (55)
polyglot 5616 11.7 149 2011 11.2 7.1 144 7.1 10130 (22)
antlr 3897 15.0 309 8110 14.7 9.6 191 9.6 4.8 × 109 (39)
bloat 5237 14.3 291 14.0 8.9 159 8.9 3.0 × 108 (26)
chart 7069 22.3 500 21.9 7.0 335 (69)
jython 4401 18.8 384 18.3 6.7 162 6.7 2.1 × 1015 (72)
pmd 7219 13.4 283 5607 12.9 6.6 239 6.6 (55)
ps 3874 13.3 271 24967 13.1 9.0 224 9.0 2.0 × 108 (29)

Note: columns after the second column show multiples of the context-insensitive number.

1-call-site-sensitive analysis must store and process 6 to 9 times more data than a
context-insensitive analysis, the ratio grows to 1500 or more times for a 3-object-
sensitive analysis.

The ZCWL algorithm essentially performs a k-CFA analysis in which k is the maxi-
mum call depth in the original call graph after merging strongly connected components
(shown in parentheses in the ZCWL column). Because k is different for each bench-
mark, the number of contexts is much more variable than in the other variations of
context sensitivity. On the javac, soot-c, sablecc-j, chart, and pmd benchmarks, the al-
gorithm failed to complete in the available memory.

4.2 Equivalent Contexts

Next, we consider that many of the large numbers of abstract contexts are equivalent
in the sense that the points-to relations computed in many of the abstract contexts are
the same. More precisely, we define two method-context pairs, (m1, c1) and (m2, c2)
to be equivalent if m1 = m2, and for every local pointer variable p in the method, the
points-to set of p is the same in both contexts c1 and c2.

When two contexts are equivalent, there is no point in distinguishing them, because
the resulting points-to relation is independent of the context. In this sense, the number of
equivalence classes of method-context pairs reflects how worthwhile context sensitivity
is in improving the precision of points-to sets.

The measurements of the number of equivalence classes of contexts are shown in
Table 3. Again, the “insens.” column shows the actual number of equivalence classes
of contexts, while the other columns give a multiple of the “insens.” number (i.e. the
average number of equivalence classes per method).
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Table 3. Number of equivalence classes of abstract contexts

object-sensitive call site
Benchmark insens. 1 2 3 1H 1 2 1H ZCWL
compress 2597 8.4 9.9 11.3 12.1 2.4 3.9 4.9 3.3
db 2614 8.5 9.9 11.4 12.1 2.4 3.9 5.0 3.3
jack 2870 8.6 10.2 11.6 11.9 2.4 3.9 5.0 3.4
javac 3781 10.4 17.7 33.8 14.3 2.7 5.3 5.4
jess 3217 8.9 10.6 12.0 13.9 2.6 4.2 5.0 3.9
mpegaudio 2794 8.1 9.4 10.8 11.5 2.4 3.8 4.8 3.3
mtrt 2739 8.3 9.7 11.1 11.8 2.5 4.0 4.9 3.4
soot-c 4838 7.1 13.7 18.4 9.8 2.6 4.2 4.8
sablecc-j 5609 6.9 8.4 9.6 9.5 2.3 3.6 3.9
polyglot 5617 7.9 9.4 10.8 10.2 2.4 3.7 4.7 3.3
antlr 3898 9.4 12.1 13.8 13.2 2.5 4.1 5.2 4.3
bloat 5238 10.2 44.6 12.9 2.8 4.9 5.2 6.7
chart 7070 10.0 17.4 18.2 2.7 4.8
jython 4402 9.9 55.9 15.6 2.5 4.3 4.6 4.0
pmd 7220 7.6 14.6 17.0 11.0 2.4 4.2 4.2
ps 3875 8.7 9.9 11.0 12.0 2.6 4.0 5.2 4.4

Note: columns after the second column show multiples of the context-insensitive number.

The relatively small size of these numbers compared to the total numbers of con-
texts in Table 2 explains why a BDD can effectively represent the analysis information,
since it automatically merges the representation of equal points-to relations, so each
distinct relation is only represented once. If we had some idea before designing an
analysis which abstract contexts are likely to be equivalent, we could define a new con-
text abstraction in which these equivalent contexts are merged. Each equivalence class
of old abstract contexts would be represented by a single new abstract context. With
such a context abstraction, the context-sensitive analysis could be implemented without
requiring BDDs.

It is interesting that in the 1-, 2-, and 1H-object-sensitive analysis, the number of
equivalence classes of contexts is generally about 3 times as high as in the correspond-
ing 1-, 2-, and 1H-call-site-string analysis. This indicates that receiver objects better
partition the space of concrete calling contexts that give rise to distinct points-to rela-
tions. That is, if at run time, the run-time points-to relation is different in two concrete
calls to a method, it is more likely that the two calls will correspond to distinct abstract
contexts if receiver objects rather than call sites are used as the context abstraction. This
observation leads us to hypothesize that object-sensitive analysis should be more pre-
cise than call-site-string analysis; we will see more direct measurements of precision in
upcoming sections.

In both object-sensitive and call-site-string analyses, making the context string
longer increases the number of equivalence classes of contexts by only a small amount,
while it increases the absolute number of contexts much more significantly. Therefore,
increasing the length of the context string is unlikely to result in a large improvement
in precision, but will significantly increase analysis cost.
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It was initially rather surprising that in the analysis using the ZCWL algorithm,
the number of equivalence classes of abstract contexts is so small, often even smaller
than in the 2-call-site-sensitive analysis. The algorithm essentially performs a k-CFA
analysis, where k is the maximum call depth in the original call graph; k is always
much higher than 2. The number of equivalence classes of contexts when using the
ZCWL algorithm is small because the algorithm merges strongly connected compo-
nents (SCCs) in the call graph, and models all call edges in each such component
in a context-insensitive way. In contrast, the 2-call-site-sensitive analysis models all
call edges context-sensitively, including those in SCCs. Indeed, a very large number of
methods are part of some SCC. The initial call graph for each of our benchmarks con-
tains a large SCC of 1386 to 2926 methods, representing 36% to 53% of all methods in
the call graph. In particular, this SCC always includes many methods for which context-
sensitive analysis would be particularly useful, such as the methods of the String class
and the standard collections classes. These methods are used extensively within the Java
standard library, and contain many calls to each other. We examined this large SCC and
found many distinct cycles; there was no single method that, if removed, would break
the component. In summary, the reason for the surprisingly small number of equiva-
lence classes of abstract contexts when using the ZCWL algorithm is that it models a
large part of the call graph context-insensitively.

4.3 Distinct Points-to Sets

Finally, we measure the number of distinct points-to sets that appear in the points-to
analysis result. This number is an indication of how difficult it would be to efficiently
represent the context-sensitive points-to sets in a non-BDD-based analysis implemen-
tation, assuming there was already a way to represent the contexts themselves. An in-
crease in the number of distinct points-to sets also suggests an increase in precision, but
the connection is very indirect [10, Section 3.2]. We therefore present the number of
distinct points-to sets primarily as a measure of analysis cost, and provide more direct
measurements of the precision of clients of the analysis later in this paper. In traditional,
context-insensitive, subset-based points-to analyses, the representation of the points-to
sets often makes up most of the memory requirements of the analysis. If the traditional
analysis stores points-to sets using shared bit-vectors as suggested by Heintze [9], each
distinct points-to set need only be stored once. Therefore, the number of distinct points-
to sets approximates the space requirements of such a traditional representation.

The measurements of the number of distinct points-to sets arising with each context
abstraction are shown in Table 4. In this table, all numbers are the absolute count of
distinct points-to sets, not multiples of the “insens.” column.

The numbers of distinct points-to sets are fairly constant in most of the analysis
variations, including object-sensitive analyses, call-site-string analyses, and the analy-
sis using the ZCWL algorithm. Therefore, in a traditional points-to analysis imple-
mented using shared bit-vectors, representing the individual points-to sets should not
be a source of major difficulty even in a context-sensitive analysis. Future research in
traditional implementations of context-sensitive analyses should therefore be directed
more at the problem of efficiently representing the contexts, rather than representing the
points-to sets.
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Table 4. Total number of distinct points-to sets in points-to analysis results

object-sensitive call site
Benchmark insens. 1 2 3 1H 1 2 1H ZCWL
compress 3178 3150 3240 3261 34355 3227 3125 38242 3139
db 3197 3170 3261 3283 34637 3239 3133 38375 3173
jack 3441 3411 3507 3527 37432 3497 3377 40955 3541
javac 4346 4367 4579 4712 55196 4424 4303 54866
jess 3834 4433 4498 4514 51452 4589 4426 42614 4644
mpegaudio 4228 4179 4272 4293 36563 4264 4157 67565 4175
mtrt 3349 3287 3377 3396 35154 3387 3263 38758 3282
soot-c 4683 4565 4670 4657 45974 4722 4550 52937
sablecc-j 5753 5777 5895 5907 52993 5875 5694 59748
polyglot 5591 5556 5829 5925 50587 5682 5516 59837 5575
antlr 4520 5259 5388 5448 54942 4624 4535 54176 4901
bloat 5337 5480 5815 55309 5452 5342 49230 6658
chart 9608 9914 10168 233723 9755 9520
jython 4669 5111 5720 74297 4968 4857 46280 8587
pmd 7368 7679 7832 7930 94403 7671 7502 103990
ps 4610 4504 4639 4672 47244 4656 4521 58513 4802

However, when abstract heap objects are modelled context-sensitively, the elements
of each points-to set are pairs of abstract object and context, rather than simply abstract
objects, and the number of distinct points-to sets increases about 11-fold. In addition,
it is likely that the points-to sets themselves are significantly larger. Therefore, in order
to implement such an analysis without using BDDs, it would be worthwhile to look for
an efficient way to represent points-to sets of abstract objects with context.

5 Call Graph

We now turn our attention to the effect of context sensitivity on call graph construc-
tion. For the purposes of comparison, we have constructed context-sensitive call graphs,
projected away their contexts, and measured differences in their context-insensitive pro-
jections. We adopted this methodology because context-sensitive call graphs
using different context abstractions are not directly comparable. Each node in the graph
represents a pair of method and abstract context, but the set of possible abstract contexts
is different in each context variation. In the context-insensitive projection, each node is
simply a method, so the projections are directly comparable. The context-insensitive
projection preserves the set of methods reachable from the program entry points, as
well as the set of possible targets of each call site in the program; it is these sets that
we measure. The set of reachable methods is particularly important because any con-
servative interprocedural analysis must analyze all of these methods, so a small set of
reachable methods reduces the cost of other interprocedural analyses.

We have not included the ZCWL algorithm in our study of call graph construc-
tion, because the context-insensitive projection of the context-sensitive call graph that
it produces is the same as the context-insensitive call graph that we originally give it as
input.
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5.1 Reachable Methods

Table 5 shows the number of methods reachable from the program entry points when
constructing the call graph using different variations of context sensitivity, excluding
methods from the standard Java library. In Table 5 and all subsequent tables in this pa-
per, the most precise entry for each benchmark has been highlighted in bold. In the case
of a tie, the most precise entry that is least expensive to compute has been highlighted.

Table 5. Number of reachable benchmark (non-library) methods in call graph

object-sensitive call site actually
Benchmark CHA insens. 1 2 3 1H 1 2 1H executed
compress 90 59 59 59 59 59 59 59 59 56
db 95 65 64 64 64 64 65 64 65 51
jack 348 317 313 313 313 313 316 313 316 291
javac 1185 1154 1147 1147 1147 1147 1147 1147 1147 778
jess 683 630 629 629 629 623 629 629 629 395
mpegaudio 306 255 251 251 251 251 251 251 251 222
mtrt 217 189 186 186 186 186 187 187 187 182
soot-c 2395 2273 2264 2264 2264 2264 2266 2264 2266 1055
sablecc-j 1904 1744 1744 1744 1744 1731 1744 1744 1744 1034
polyglot 2540 2421 2419 2419 2419 2416 2419 2419 2419 2037
antlr 1374 1323 1323 1323 1323 1323 1323 1323 1323 1099
bloat 2879 2464 2451 2451 2451 2451 2451 2451 138
chart 3227 2081 2080 2080 2031 2080 2080 854
jython 2007 1695 1693 1693 1683 1694 1693 1694 1004
pmd 4997 4528 4521 4521 4521 4509 4521 4521 4521 1817
ps 840 835 835 835 835 834 835 835 835 285

For the simple benchmarks like compress and db, the context-insensitive call graph
is already quite precise (compared to the dynamic behaviour), and any further improve-
ments due to context sensitivity are relatively small. For the more significant bench-
marks, call graph construction benefits slightly from 1-object sensitivity. The largest
difference is 13 methods, in the bloat benchmark. All of these methods are visit meth-
ods in an implementation of the visitor design pattern, in the class AscendVisitor. This
class traverses a parse tree from a starting node upwards toward the root of the tree,
visiting each node along the way. Some kinds of nodes have no descendants that are
ever the starting node of a traversal, so the visit methods of these nodes can never be
called. However, in order to prove this, an analysis must analyze the visitor dispatch
method context-sensitively in order to keep track of the kind of node from which it was
called. Therefore, a context-insensitive analysis fails to show that these visit methods
are unreachable.

In jess, sablecc-j, polyglot, chart, jython, pmd, and ps, modelling abstract heap ob-
jects object-sensitively further improves the precision of the call graph. In the sablecc-j
benchmark, 13 additional methods are proved unreachable. The benchmark includes an
implementation of maps similar to those in the standard library. The maps are instan-
tiated in a number of places, and different kinds of objects are placed in the different
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maps. Methods such as toString() and equals() are called on some maps but not others.
Calling one of the methods on a map causes it to be called on all elements of the map.
Therefore, these methods are called on some kinds of map elements, but not others.
However, the map elements are kept in generic map entry objects, which are allocated
at a single point in the map code. When abstract heap objects are modelled without
context, all map entries are modelled by a single abstract object, and the contents of all
maps are conflated. When abstract heap objects are modelled with context, the map en-
tries are treated as separate objects depending on which map they were created for. Note
that distinguishing the map entries requires receiver objects to be used as context, rather
than call-site strings. The code that allocates a new entry is in a method that is always
called from the same call site, in another method of the map class. In general, although
modelling abstract heap objects with context improved the call graph for some bench-
marks in an object-sensitive analysis, it never made any difference in analyses using
call-site strings as the context abstraction (i.e. the 1-call-site and 1H-call-site columns
are the same).

Overall, object-sensitive analysis results in slightly smaller call graphs than call-
site-string analysis. The 1-object-sensitive call graph is never larger than the 1-call-site-
sensitive call graph, and it is smaller on db, jack, mtrt, soot-c, and jython. On the db, jack,
and jython benchmarks, the call-site-sensitive call graph can be made as small as the 1-
object-sensitive call graph, but it requires 2-call-site rather than 1-call-site analysis.

Even the most precise context-sensitive analyses produce a much bigger call graph
than the dynamic one, shown in the rightmost column of the table. This difference
is largely due to unused but complicated features of the Java Runtime Environment
(such as network class loading and Jar File signing) which are controlled by external
configuration parameters unknown to the analysis.

5.2 Call Edges

Table 6 shows the size of the call graph in terms of call edges rather than reach-
able methods. Only call edges originating from a benchmark (non-library) method are
counted.

In general, context sensitivity makes little difference to the size of the call graph
when measured this way, with one major exception. In the sablecc-j benchmark, the
number of call edges is 17925 in a context-insensitive analysis, but only 5175 in a
1-object-sensitive analysis. This could make a significant difference to the cost of a
client analysis whose complexity depends on the number of edges in the call graph. The
large difference is caused by the following pattern of code. The sablecc-j benchmark
contains code to represent a parse tree, with many different kinds of nodes. Each kind
of node implements a method called removeChild(). The code contains a large number
of calls of the form this.getParent().removeChild(this). In a context-insensitive analysis,
getParent() is found to possibly return any of hundreds of possible kinds of nodes.
Therefore, each of these many calls to removeChild(this) results in hundreds of call
graph edges. However, in a context-sensitive analysis, getParent() is analyzed in the
context of the this pointer. For each kind of node, there is a relatively small number of
kinds of nodes that can be its parent. Therefore, in a given context, getParent() is found
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Table 6. Number of call edges in call graph originating from a benchmark (non-library) method

object-sensitive call site actually
Benchmark CHA insens. 1 2 3 1H 1 2 1H executed
compress 456 270 270 270 270 270 270 270 270 118
db 940 434 427 427 427 427 434 427 434 184
jack 1936 1283 1251 1251 1251 1250 1276 1251 1276 833
javac 13146 10360 10296 10296 10296 10296 10318 10301 10318 2928
jess 4700 3626 3618 3618 3618 3571 3618 3618 3618 919
mpegaudio 1182 858 812 812 812 812 812 812 812 400
mtrt 925 761 739 739 739 739 746 746 746 484
soot-c 20079 14611 14112 14112 14112 13868 14185 14112 14185 2860
sablecc-j 24283 17925 5175 5140 5140 5072 5182 5140 5182 2326
polyglot 19898 11768 11564 11564 11564 11374 11566 11566 11566 5440
antlr 10769 9553 9553 9553 9553 9553 9553 9553 9553 4196
bloat 36863 18586 18143 18143 17722 18166 18143 18166 477
chart 24978 9526 9443 9443 9178 9443 9443 2166
jython 13679 9382 9367 9367 9307 9367 9365 9367 2898
pmd 29401 18785 18582 18582 18580 18263 18601 18599 18601 3879
ps 13610 11338 11292 11292 11292 10451 11298 11292 11298 705

to return only a small number of kinds of parent node, so each call site of removeChild()
adds only a small number of edges to the call graph.

6 Virtual Call Resolution

Table 7 shows the number of virtual call sites for which the call graph contains more
than one potential target method. Call sites with at most one potential target method can
be converted to cheaper static instead of virtual calls, and they can be inlined, possibly
enabling many other optimizations. Therefore, an analysis that proves that call sites are
not polymorphic can be used to significantly improve run-time performance.

In the benchmarks written in an object-oriented style, notably javac, soot-c,
sablecc-j, polyglot, bloat, and pmd, many more call sites can be devirtualized using
object-sensitive analysis than context-insensitive analysis. In some cases, call-site-
string analysis gives the same improvement, but never any more, and in soot-c and
sablecc-j, the improvement from 1-object-sensitive analysis is much greater than from
1-call-site string analysis.

In sablecc-j, there are three sets of call sites that can be devirtualized using context-
sensitive analysis. Any context-sensitive analysis is sufficient to devirtualize the first set
of call sites. Devirtualization of the second set of call sites requires an object-sensitive
analysis; an analysis using call sites as the context abstraction cannot prove them to
be monomorphic. Devirtualization of the third set of call sites not only requires an
object-sensitive analysis, but it also requires that abstract heap objects be modelled
with context.

The first set of call sites are the calls to the removeChild() method mentioned in
Section 5.2. Object sensitivity reduces the number of potential target methods at each
of these call sites. At many of them, it reduces the number down to one, so the calls
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Table 7. Total number of potentially polymorphic call sites in benchmark (non-library) code

object-sensitive call site
Benchmark CHA insens. 1 2 3 1H 1 2 1H
compress 16 3 3 3 3 3 3 3 3
db 36 5 4 4 4 4 5 4 5
jack 474 25 23 23 23 22 24 23 24
javac 908 737 720 720 720 720 720 720 720
jess 121 45 45 45 45 45 45 45 45
mpegaudio 40 27 24 24 24 24 24 24 24
mtrt 20 9 7 7 7 7 8 8 8
soot-c 1748 983 913 913 913 913 938 913 938
sablecc-j 722 450 325 325 325 301 380 325 380
polyglot 1332 744 592 592 592 585 592 592 592
antlr 1086 843 843 843 843 843 843 843 843
bloat 2503 1079 962 962 961 962 962 962
chart 2782 254 235 235 214 235 235
jython 646 347 347 347 346 347 347 347
pmd 2868 1224 1193 1193 1193 1163 1205 1205 1205
ps 321 304 303 303 303 300 303 303 303

can be devirtualized. The same improvement is obtained with call-site-string context
sensitivity.

The second set of call sites are calls to methods of iterators over lists. The sablecc-
j benchmark contains several implementations of lists similar to those in the standard
Java library. A call to iterator() on any of these lists invokes iterator() on the AbstractList
superclass, which in turn invokes the listIterator() method specific to each list. The ac-
tual kind of iterator that is returned depends on which listIterator() was invoked, which
in turn depends on the receiver object of the call to iterator(); it is independent of the
call site of listIterator(), which is always the same site in iterator(). Therefore, calls to
hasNext() and next() on the returned iterator can be devirtualized only with an object-
sensitive analysis.

The third set of call sites are calls to methods such as toString() and equals() on
objects stored in maps. As we explained in Section 5.1, object-sensitive modelling of
abstract heap objects is required to distinguish the internal map entry objects in each
separate use of the map implementation. The map entry objects must be distinguished
in order to distinguish the objects that are stored in the maps. Therefore, devirtualization
of these calls to methods of objects stored in maps requires an object-sensitive analysis
that models abstract heap objects with context.

7 Cast Safety

We have used the points-to analysis results in a client analysis that proves that some
casts cannot fail. A given cast cannot fail if the pointer that it is casting can only point
to objects whose type is a subtype of the type of the cast. Table 8 shows the num-
ber of casts in each benchmark that cannot be statically proven safe by the cast safety
analysis.
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Table 8. Number of casts potentially failing at run time

object-sensitive call site
Benchmark insens. 1 2 3 1H 1 2 1H ZCWL
compress 18 18 18 18 18 18 18 18 18
db 27 27 27 27 21 27 27 27 27
jack 146 145 145 145 104 146 145 146 146
javac 405 370 370 370 363 391 370 391
jess 130 130 130 130 86 130 130 130 130
mpegaudio 42 38 38 38 38 40 40 40 42
mtrt 31 27 27 27 27 27 27 27 29
soot-c 955 932 932 932 878 932 932 932
sablecc-j 375 369 369 369 331 370 370 370
polyglot 3539 3307 3306 3306 1017 3526 3443 3526 3318
antlr 295 275 275 275 237 276 275 276 276
bloat 1241 1207 1207 1160 1233 1207 1233 1234
chart 1097 1086 1085 934 1070 1070
jython 501 499 499 471 499 499 499 499
pmd 1427 1376 1375 1375 1300 1393 1391 1393
ps 641 612 612 612 421 612 612 612 612

Context sensitivity improves precision of cast safety analysis in jack, javac, mpe-
gaudio, mtrt, soot-c, sablecc-j, polyglot, antlr, bloat, chart, jython, pmd, and ps. Object
sensitive cast safety analysis is never less precise and often significantly more precise
than the call-site-string context sensitive variations. The improvements due to context
sensitivity are most significant in the polyglot and javac benchmarks. In db, jack, javac,
jess, soot-c, sablecc-j, polyglot, antlr, bloat, chart, jython, pmd, and ps, modelling ab-
stract heap objects with receiver object context further improves precision of cast safety
analysis.

The improvement is most dramatic in the polyglot benchmark, which contains a
hierarchy of classes representing different kinds of nodes in an abstract syntax tree. At
the root of this hierarchy is the Node c class. This class implements a method called
copy() which, like the clone() method of Object, returns a copy of the node on which
it is called. In fact, the copy() method first uses clone() to create the copy of the node,
and then performs some additional processing on it. The static return type of copy() is
Object, but at most sites calling it, the returned value is immediately cast to the static
type of the node on which it is called. In our analysis, the clone() native method is
modelled as returning its receiver; that is, the original object and the cloned version are
represented by the same abstract object. Therefore, given a program that calls clone()
directly, the cast safety analysis correctly determines that the run-time type of the clone
is the same as that of the original. However, in polyglot, the call to clone() is wrapped
inside copy(), and the casts appear at sites calling copy(). When copy() is analyzed in a
context-insensitive way, it is deemed to possibly return any of the objects on which it is
called throughout the program, so the casts cannot be proven to succeed. In an object-
sensitive analysis, however, copy() is analyzed separately in the context of each receiver
object on which it is called, and in each such context, it returns only an object of the
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same type as that receiver object. Therefore, the cast safety analysis proves statically
that the casts of the return value of copy() cannot fail.

The number of potentially failing casts in the polyglot benchmark decreases even
more dramatically between the 1-object-sensitive and 1H-object-sensitive columns of
Table 8, from 3307 to 1017. The majority of these casts are in the parser generated by
JavaCUP. The parser uses a Stack as the LR parse stack. Each object popped from the
stack is cast to a Symbol. The generated polyglot parser contains about 2000 of these
casts. The Stack class extends Vector, which uses an internal elementData array to store
the objects that have been pushed onto the stack. In order to prove the safety of the
casts, the analysis must distinguish the array implementing the parse stack from the
arrays of other uses of Vector in the program. Since the array is allocated in one place,
inside the Vector class, the different array instances can only be distinguished if abstract
heap objects are modelled with context. Therefore, modelling abstract heap objects with
object sensitivity is necessary to prove that these 2000 casts cannot fail.

8 Related Work

The most closely related work is the evaluation of object-sensitive analysis by Mi-
lanova, Rountev, and Ryder [17, 18]. They implemented a limited form of object sen-
sitivity within their points-to analysis framework based on annotated constraints [21]
and built on top of the BANE toolkit [2]. In particular, they selected a subset of pointer
variables (method parameters, the this pointer, and the method return value) which they
modelled context-sensitively using the receiver object as the context abstraction. All
other pointer variables and all abstract heap objects were modelled without context.
The precision of the analysis was evaluated on benchmarks using version 1.1.8 of the
Java standard library, and compared to a context-insensitive and to a call-site context-
sensitive analysis, using call graph construction, virtual call resolution, and mod-ref
analysis as client analyses. Our BDD-based implementation has made it feasible to eval-
uate object-sensitive analysis on benchmarks using the much larger version 1.3.1 01
of the Java standard library. Thanks to the better scalability of the BDD-based im-
plementation, we have performed a much broader empirical exploration of the design
space of object-sensitive analyses. In particular, we have modelled all pointer variables
context-sensitively, rather than only a subset, we have used receiver object strings of
length up to three, rather than only one, and we have modelled abstract heap objects
context-sensitively.

Whaley and Lam [29] suggest several client analyses of the ZCWL algorithm, but
state that “in-depth analysis of the accuracy of the analyses . . . is beyond the scope
of this paper.” They do, however, provide some preliminary data about thread escape
analysis and a “type refinement analysis” for finding variables whose declared type
could be made more specific. In this paper, we have compared the precision of the
ZCWL algorithm against object-sensitive and call-site-string context-sensitive analyses
using several client analyses, namely call graph construction, virtual call resolution, and
cast safety analysis.

Liang, Pennings and Harrold [16] evaluated the effect of context sensitivity on the
size of pointed-to-by sets (the inverse of points-to sets), normalized using dynamic
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counts. Instead of using BDDs to allow their analyses to scale to benchmarks using
the large Java standard library, they simulated the library with a hand-crafted model.
Their results agree with our findings that context sensitivity improves precision for
some benchmarks, and that a context-sensitive heap abstraction is important for pre-
cision. However, they found that call sites are sometimes more precise than receiver
objects. This difference could be caused by several factors, including their different
choice of benchmarks, their very different precision metric (pointed-to-by sets), or their
simulation of the standard library.

Several context-sensitive points-to analyses other than the subset-based analyses
studied in this paper have been proposed. Wilson and Lam [30] computed summary
functions summarizing the effects of functions, which they then inlined into summaries
of their callers. Liang and Harrold [15] proposed an equality-based context-sensitive
analysis; its precision relative to subset-based context-sensitive analysis remains to be
studied. Ruf [22] compared context-insensitive analysis to using “assumption sets” as
the context abstraction, and concluded that on C benchmarks, context sensitivity had
little effect on the points-to sets of pointers that are actually dereferenced. Like object
sensitivity, the Cartesian Product Algorithm [1, 28] uses abstract objects as the context
abstraction, but includes all method parameters as context, rather than only the receiver
parameter. In the future, it would be interesting to empirically compare these additional
variations of context-sensitive analysis with those studied in this paper.

9 Conclusions

We have performed an in-depth empirical study of the effects of variations of context
sensitivity on the precision of Java points-to analysis. In particular, we studied object-
sensitive analysis, context-sensitive analysis using call sites as the context abstraction,
and the ZCWL algorithm. We evaluated the effects of these variations on the number
of contexts generated, the number of distinct points-to sets constructed, and on the
precision of call graph construction, virtual call resolution, and cast safety analysis.

Overall, we found that context sensitivity improved call graph precision by a small
amount, improved the precision of virtual call resolution by a more significant amount,
and enabled a major precision improvement in cast safety analysis.

Object-sensitive analysis was clearly better than the other variations of context sen-
sitivity that we studied, both in terms of analysis precision and potential scalability.
Client analyses based on object-sensitive analyses were never less precise than those
based on call-site-string context-sensitive analyses or on the ZCWL algorithm, and in
many cases, they were significantly more precise. As we increased the length of con-
text strings, the number of abstract contexts produced with object-sensitive analysis
grew much more slowly than with the other variations of context sensitivity, so object-
sensitive analysis is likely to scale better. However, the number of equivalence classes
of contexts was greater with object sensitivity than with the other variations, which in-
dicates that object sensitivity better distinguishes contexts that give rise to differences
in points-to sets.

Of the object-sensitive variations, extending the length of context strings caused
very few additional improvements in analysis precision compared to 1-object-sensitive
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analysis. However, modelling abstract heap objects with context did improve precision
significantly in many cases. Therefore, we conclude that 1-object-sensitive and 1H-
object-sensitive analyses provide the best tradeoffs between precision and analysis effi-
ciency. Our measurements of the numbers of abstract contexts and distinct points-to sets
suggest that it should be feasible to implement an efficient non-BDD-based 1-object-
sensitive analysis using current implementation techniques such as shared bit vectors.
Efficiently implementing a 1H-object-sensitive analysis without BDDs will require new
improvements in the data structures and algorithms used to implement points-to analy-
ses, and we expect that our results will motivate and help guide this future research.

Although the ZCWL algorithm constructs call-site strings of arbitrary length, client
analyses based on it were never more precise than those based on object-sensitive analy-
sis. In many cases, analyses based on the ZCWL algorithm were even less precise than
those based on 1-call-site-sensitive analysis. The key cause of the disappointing results
of this algorithm was its context-insensitive treatment of calls within SCCs of the initial
call graph — a large proportion of call edges were indeed within SCCs.
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Abstract. Alias analysis, traditionally performed statically, is unsuited for a dy-
namic binary translator (DBT) due to incomplete control-flow information and
the high complexity of an accurate analysis. Whole- program profiling, however,
shows that most memory references do not alias. The current technique used in
DBTs to disambiguate memory references, instruction inspection, is too simple
and can only disambiguate one-third of potential aliases. To achieve effective
memory disambiguation while keeping a tight bound on analysis overhead, we
propose an efficient heuristic algorithm that strategically selects key memory de-
pendences to disambiguate with runtime checks. These checks have little runtime
overhead and, in the common case where aliasing does not occur, enable aggres-
sive optimizations, particularly scheduling. We demonstrate that a small number
of checks, inserted with a low-overhead analysis, can approach optimal schedul-
ing, where all false memory dependences are removed. Simulation shows that
better scheduling alone improves overall performance by 5%.

1 Introduction

Dynamic Binary Translators (DBTs) are used to provide binary compatibility across
platforms. For efficient execution, the translated binary must be re-optimized for the tar-
get microarchitecture. This paper focuses on techniques that allow memory disambigua-
tion to be performed in a DBT, enabling advanced optimizations, such as load/store
reordering and redundant memory operation elimination, that rely on aliasing informa-
tion. However, traditional static pointer/alais analysis [1, 2], is expensive both in time
and memory, making it unsuitable for DBTs where contention for runtime resources
with the program execution itself needs to be kept to a minimum. Additionally, for cor-
rectness, the analysis must know all control flows or it becomes overly conservative.
Since control flows in DBTs are discovered on the fly as each new branch target is be-
ing translated, accurate pointer analysis would require recomputation, taking yet more
time that is not available 3-5.

Given the difficulties of performing a full-fledged pointer analysis at runtime, most
DBTs, such as Dynamo [3], Transmeta [4], and Daisy [5], do not perform pointer
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alias analysis except in the form of instruction inspection, a simple dependence test
that disambiguates two memory references if they access either different memory re-
gions or their addresses have the same base register and different offsets. While our
whole-program profile of the SPECINT2000 benchmarks indicates that 97% of mem-
ory reference pairs do not alias, instruction inspection can only disambiguate one-third
of them. Without a more sophisticated disambiguation mechanism, the optimizer has to
conservatively assume dependences between the other memory references. These false
dependences 1 greatly constrain the aggressiveness of various code transformations.

To provide better memory disambiguation for runtime optimizations while keeping
a tight control over runtime analysis costs we only attempt to disambiguate specific
memory references that actually hide optimization opportunities. This is in contrast to
performing pointer analysis on all memory references. In particular, we design a sim-
ple heuristic algorithm that precisely selects memory dependences whose removal may
result in shortened instruction schedules. It does so without having to recompute the de-
pendence graph and compare the before-and-after schedules. Correctness is guaranteed
by inserting runtime checks that dynamically compare the effective addresses of the
memory references involved. To maximize the benefit of each runtime check, we per-
form a light-weight but effective pointer analysis to identify all memory dependences
that can be safely removed either directly or indirectly by a single check. For this to
work correctly, the runtime check must take into account different offsets of each mem-
ory reference, using dynamic address profiles to reduce misspeculation.

We evaluated our technique and experimental results show that only a small num-
ber of checks need to be inserted to yield performance gain. Specifically, our technique
can remove more than twice as many false memory dependences as does instruction in-
spection and generate schedules close to the optimal schedules, where all false memory
dependences are removed. Finally, this is done with very low analysis overhead.

In summary, the main contributions of this work are:

– An efficient heurisitic algorithm that precisely identifies memory dependences
whose removal can benefit scheduling to the greatest extent.

– A light-weight pointer analysis that allows as many dependences as possible to be
safely removed by a single runtime check.

– An evaluation of our technique that compares with baseline, instruction inspection
and optimial scheduling.

We discuss related work in Section 2. Sections 3 and 4 present the heuristic de-
pendence selection algorithm and the light-weight pointer analysis. Section 5 describes
how the test condition for each runtime check is determined. Evaluation methodology
and experimental results are discussed in Section 6. Finally, we conclude in Section 7.

2 Related Work

The idea of speculatively disambiguating memory references and relying on runtime
tests to guard against misspeculation is not new. The work closest to ours is Nicolau’s

1 In this paper, ”false dependence” refers to a dependence that does not occur at runtime, not
anti-dependence or output dependence in the traditional data dependence terminology.
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... = M[r2]

M[r1] = ...

if r1 != r2

y n
M[r1] = ...

... = M[r2]

M[r1] = ...... = M[r2]
RAW

Fig. 1. Example of Runtime Memory Disambiguation

run-time disambiguation [6], where the compiler inserts branches that test for aliasing
conditions. It relies on trace scheduling to schedule the on-trace path aggressively, as-
suming that the aliasing conditions are not met, and to insert compensation code in the
off-trace path for correctness. This is illustrated by Figure 1. The original code on the
left contains a read-after-write (RAW) memory dependence. However, if a check com-
paring the two addresses is inserted, then in the common case where the addresses are
not equal, the load instruction can be moved above the store. Huang et al. [7] describe a
similar technique targeting architectures that support conditional execution. Instead of
explicit branches, it uses predication to guard the execution of the two paths. Fernandez
et al. propose speculative alias analysis [8], which is more precise along the hot paths
but may not be correct with respect to the whole control flow graph. Any optimization
enabled by this analysis requires similar check-and-recovery mechanism.

In order to control the code growth resulting from the introduction of extra execu-
tion paths, it is important to narrow the set of runtime tests to those that are essential
to performance gains. Fernandez et al. [8] does not provide any mechanism to do so.
Nicolau [6] skips memory references that can be disambiguated statically with tradi-
tional alias analysis and memory references between whom there exist other types of
dependences that cannot be removed by runtime disambiguation. Huang et al. [7] uses
an iterative heuristic that, after each memory dependence is selected for runtime dis-
ambiguation, recomputes the critical path and the estimated execution time before and
after removing a dependence for each of the remaining memory dependences. Unlike
these two works, both of which are compiler techniques and therefore can afford the
cost of a traditional alias analysis or an iterative heuristic, our technique has to meet
the much tighter analysis budget in a runtime environment. Not only is our heuristic for
selecting critical memory dependence more streamlined and efficient, but also we use
light-weight pointer analysis to maximize the coverage of each runtime test.

Data speculation that moves loads above potentially aliasing stores also exists in
other DBTs, but relies on special hardware in the target architecture for detecting and
recovering from misspeculation. DAISY [5] has a special load-verify instruction. Placed
at the original position of the speculative load, it reloads the value to compare with the
speculatively loaded value and traps to the virtual machine manager if the two val-
ues differ. The drawback is that the extra loads executed consume memory bandwidth
and energy. Transmeta [4] has a small cache called alias buffer, which records the ad-
dresses and sizes of speculative loads to compare with later stores for aliases. In this
approach, the number of speculative loads is limited by hardware size and false pos-
itives may arise as the result of aliasing with unreachable stores. Our approach does
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not assume any hardware support and does not suffer from these problems. Neither
of these two works performs analysis like ours to select the most beneficial loads for
speculation.

3 Critical Memory Dependence Selection

3.1 Preliminary Selection

Before applying the heuristic algorithm to identify memory dependences critical to
scheduling, several preliminary steps are taken to prepare a group of candidates.

1. Trace selection: We only want to disambiguate memory references in frequently
executed code. Hot code identification often comes for free in DBTs as most of
them are organized into two phases. The first phase translates blocks of code with-
out optimization and inserts instrumentation to collect execution frequency infor-
mation. The second phase forms hot regions from frequently executed blocks and
applies optimizations to them. Unlike the profiling done in the compilers, which
may suffer from the problem of unrepresentative input sets, the profile information
collected by DBTs in the first phase is highly relevant to the optimizations done in
the second phase. In most DBTs, the hot regions are single entry and multiple exit
traces. In our evaluation, the average finishing rate, the probability the trace finishes
execution in the last of its constituent blocks, is 88%.

2. Instruction inspection: Instruction inspection is performed on each trace to filter
out memory reference pairs that definitely do not alias. We then build the depen-
dence graphs of the traces and label each dependence edge with its latency.

3. Alias profiling: For those memory references in the traces that cannot be deter-
mined to be independent by instruction inspection, instrumentation is inserted to
record the effective addresses accessed. The heuristic algorithm will not consider
memory reference pairs that actually alias. We find that the aliasing behavior is
highly stable throughout the lifetime of a program. That is, a very short inital pro-
filing period yields essentially the same prediction of alias/non-alias as does whole-
program profiling. For example, the length of the alias profiling period can be set to
end after a trace finishes execution in its last block 50 times. The profiling overhead
thus incurred is negligible.

For the SPECINT2000 benchmarks, true aliases that can be filtered out this way
are at most 3%. For other workloads, alias profiling might turn out to be more
useful. In addition, the effective addresses collected by alias profiling are also useful
later when guiding the determination of appropriate test conditions for the runtime
checks. This is discussed in Section 5.

3.2 The Heuristic Algorithm

The goal of the heuristic algorithm is to narrow the number of runtime checks inserted
per trace to just 1 or 2 and no more than 3 for the occasional large traces. Our experi-
mental results indicate that this is sufficient to improve scheduling to close-to optimal.
Given the small number of memory dependences that are to be removed, the kind of
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iterative algorithm proposed in [7], which involves recomputation of critical paths and
estimated execution time, is not necessary. After removing only a couple of dependence
arcs, we do not expect the memory dependences remaining on the new critial path to be
drastically different from what has been there on the original critical path. In addition,
we can simply use the latency of each dependence edge to approximate the difference
between the execution time of the trace before and after the edge is removed. Based
on these reasonings, the basic idea of our heuristic algorithm is to simply pick memory
dependences that are responsibile for the largest latency on the original critical paths.

Selecting Critical Base Address Pairs. We start by grouping memory instructions ac-
cording to their base addresses. This is done through simple syntactic inspection of the
memory operands of each instruction. In the x86 ISA, memory addresses are specified
by the expressions base reg + index reg ∗ scale + offset, where scale and offset are
constants. By base address, we refer to the part of the expression that involves registers,
ignoring the constant offset. Memory instructions accessing constant addresses (i.e. no
base addresses) are gathered in the same group.

The intuition behind this is the observation that a trace often contains multiple mem-
ory references with the same base address but different offsets. If the registers involved
in the base address are not redefined in between these references or if it can be proven
that the redefinitions always write the same values into those registers, then a single run-
time check examining the runtime value of the base address can allow multiple memory
dependences to be removed. For example, both the registers EBP (frame pointer) and
ESP (stack pointer) are used as the base register and combined with various displace-
ments to access stack locations. In compiler-generated code, stack references with either
EBP or ESP as the base register almost never alias. Using a single runtime check that
compares the positions pointed to by EBP and ESP and the proper test condition that
takes into account all relevant displacements, we can often remove numerous depen-
dences from a trace that cannot otherwise be disambiguated by instruction inspection
because the base registers are different. Section 4 describes the analysis needed for
proving runtime equality of two occurrences of a base address expression. Section 5.1
discusses how to handles multiple displacements from a base address.

In the next step, the algorithm traverses the dependence graph computed based on
instruction inspection to do two things: 1) to identify critical paths, 2) for each pair of
base addresses, to sum the latencies of all memory dependence arcs that are false de-
pendences according to the alias profiling and whose source and destination instructions
fall into the two groups of base addresses respectively. We use Total Latencies to de-
note this value. Next, the algorithm computes another value similar to Total Latencies,
the only difference being that only memory dependences on the critical paths are con-
sidered. We call this value Critical Latencies. Figure 2 (a) contains a small trace whose
dependence graph is shown in Figure 2 (b). The dependence arcs are marked with
latencies computed based on the machine model. Arcs with latencies in brackets are
memory dependences, the rest are register dependences. Among the four memory in-
structions, there are three distinct base addresses: EDI, EDX*2, and EBX.
In the dependence graph, memory instructions having the same base address are rep-
resented with the same symbol. Figure 2 (c) shows the values of Total Latencies and
Critical Latencies for each base address pair.
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B: mov [edx*2+411460h], eax

C: mov ebx, [edi]

D: add ebx, ebx

E: mov [ebx+411468h], ecx

A: mov edx, [edi]

(a) Trace (c) Base Addr Pairs(b) Dependence Graph

[ ]       Mem dependence

Critical path

A

B

C

D

E

6

6
6

[4]

[9]

[2]

[2]

3

(edx*2, ebx)                             4                                 0
[2]

(edi,     ebx)                              4                                 0

(edi,     edx*2)                         11                                9    

Critical_LatenciesTotal_Latencies

Fig. 2. Example of Target Memory Dependence Selection

The algorithm then selects for runtime disambiguation the pair of base addresses
that has the largest non-zero Critical Latencies. Ties are broken using Total Latencies.
The pair of base addresses with the next largest non-zero Critical Latencies is also
selected. At this point, for most traces, there are no more base address pairs responsible
for latencies on the critical paths. For some very large traces, we allow a third pair to be
selected. Beyond three pairs, our experience is that the extra number of runtime checks
do not yield substantial performance gains. We refer to the selected base address pairs
as critical base addresses. In the example shown in Figure 2, there is only one base
address pair (EDI, EDX*2) responsible for latencies on the critical path and therefore
it will be selected by the algorithm for runtime disambiguation.

Generating Inputs to Pointer Analysis. Because the registers involved in a base ad-
dress may be redefined within a trace, we need to analyze the trace to determine whether
a single runtime check is sufficient to validate assumptions about multiple occurrences
of the base address. If not, priority is given to the earliest occurrences in the program or-
der because oftentimes removing one memory dependence gives pointer analysis more
accurate information about memory content and thereby helps unravel other memory
dependences (details are given in Section 4). The earlier a memory dependence is re-
moved, the more chances there are for it to help eliminate other dependences. For each
selected critical base address pair, the heuristic algorithm identifies the earliest pair of
memory instructions on the critical path with the corresponding base addresses. These
are the inputs to the pointer analysis, which automatically considers the specified mem-
ory instruction pairs to be independent.

As an optimization, if there is an even earlier pair, though not on the critical path, it
may be returned instead by the algorithm, but only if the registers involved in the address
expressions are not redefined between this pair and the earliest pair on the critical path.
This way we guarantee that the latter is always disambiguated, hence the critical path
shortened. In Figure 2, the earliest memory dependence corresponding to the selected
base address pair (EDI, EDX*2) is the edge A → B, which is not on the critical path.

4 Light-Weight Pointer Analysis

Given the critical base address pairs returned by the heuristic algorithm, the goal of the
pointer analysis is to identify two kinds of memory dependences:
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Directly covered dependences. Memory references whose base addresses (which syn-
tactically may or may not look the same as the critical base addresses) are guaran-
teed to evaluate to the same runtime value as the critical base addresses.

Indirectly covered dependences. Memory references that, though not accessing
memory locations pointed to by the critical base addresses, may still be disam-
biguated as a result of more accurate pointer information when some false memory
dependences have been removed.

The analysis achieves this by computing symbolically the set of possible values for
each register and each memory location touched within a trace. Amme et al. design a
intra-procedural data dependence analysis for assembly code by symbolic evaluation
[9]. However, their algorithm does not keep track of memory contents and therefore
loses crucial information and accuracy.

The key to the success of our analysis is not just to prove non-aliases, but to infer
must-aliases such that information about the content of a memory location can be prop-
agated from one memory reference to another. The fact that the traces are single-entry
greatly increases the rate at which must-aliases can be proven since every use has ex-
actly one reaching definition for both registers and memory locations. In addition, this
control-flow property also keeps the analysis extremely light-weight because the size of
any symbolic value set is always exactly 1 due to the absence of merge points.

Notice that this analysis only needs to be performed on traces for which the heuristic
algorithm returns at least some memory dependences to recommend for runtime dis-
ambiguation. Also notice that we could have used this more sophisticated analysis in
place of instruction inspection in the preliminary dependence selection phase to filter
out more non-aliases. However, without some dependences assumed to be removed by
runtime checks, the analysis is too constrained by inaccurate information about memory
contents to offer significant benefit over instruction inspection. On top of that, the anal-
ysis will have to be run on all traces. Therefore we use instruction inspection instead,
which is simpler and cheaper.

The remainder of this section first walks through a small example to show how the
analysis works and then gives the formal definition of the analysis.

4.1 Walking Through an Example

In the trace shown in Figure 2, there are five pairs of ambiguous memory references:
A → B, A → E, B → C, B → E, and C → E. We show that all of them can be
removed by inserting one runtime check.

The pointer analysis receives from the memory dependence selection algorithm the
input instruction pair (A, B), which can be assumed to be independent since a runtime
check will be inserted to compare the values of EDI and EDX*2. The same check also
directly removes the dependence between B and C because EDI remains unchanged
between A and C. Although syntactically the address referenced by instruction E has
nothing to do with EDI or EDX, interestingly the remaining three dependences involv-
ing it can still be eliminated in the presence of the check. Since A and B do not alias, we
know that the content of the location pointed to by EDI is not overwritten by B, there-
fore the values loaded by A and C must be the same, that is, EBX == EDX right after
C. After symbolically executing instruction D, EBX == EDX*2, hence the symbolic
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//r1 = base1 + index1 * scale1 + offset1
//r2 = base2 + index2 * scale2 + offset2
//result = base + index * scale + offset

base := r1
index := r2
scale := a
offset := b

if (base2 == NULL && index2 == NULL)
index := NULL
offset += offset2 * a

else if (index2 == NULL)
index := base2
offset += offset2 * a

else if (base2 == NULL)
index := index2
scale *= scale2
offset += offset2 * a

if (index1 == index || index1 == NULL || index == NULL)
base := base1
scale += scale1
offset += offset1

if (base == index)
base := NULL
scale++

Fig. 3. Pseudo-code for Computing r1 + r2 ∗ a + b

address referenced by E is EDX*2 + 411468h with EDX*2 as base. This means that
B and E definitely do not alias since they access the same base address with different
offsets. The dependence between A → E and C → E are removed because their base
addresses can be compared by the runtime check.

4.2 Symbolic Pointer Values

We use the same expression, base reg + index reg ∗ scale + offset, to represent all
symbolic values, pointers or non-pointers. Each register value in the expression is a pair
(reg name, def site), where def site is the id of the instruction that writes the value
into the register. Either base reg or index reg can be omitted (we say that their value is
NULL). The rule for arithmetics on the symbolic values is described by the pseudo-code
in Figure 3, which computes r1 + r2 ∗ a + b where r1 and r2 are themselves symbolic
expressions. It merges the two symbolic expressions if it can, otherwise it gives up and
returns r1 + r2 ∗ a + b.

4.3 Analysis Algorithm

The algorithm finishes in one pass over the instructions in the trace starting from the
entry. At each memory instruction, it compares the symbolic address with those of all
previous memory instructions to see whether aliases exist. Therefore the worst case
complexity of the algorithm is quadratic in the number of instructions.

The algorithm maintains the following data structures.

1. Reg Values – Maps each register to a symbolic expression describing the current
value held in that register.
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//Instruction t is a memory reference
addr_t := Inst_Addrs(t)

for each memory instruction s before t
addr_s := Inst_Adds(s)
if (may_alias(addr_s, addr_t))

record dependence s->t
if (is_store(t))

Mem_Values(addr_s) := NULL

if (is_load(t))
r := dest_reg(t)
content_t := Mem_Values(addr_t)
if (content_t != NULL)

Reg_Values(r) := content_t
else

Reg_Values(r) := (r, t)
Mem_Values(addr_t) := Reg_Values(r)

Fig. 4. Pseudo-code for Analyzing Memory Instructions

2. Mem Values – Maps each symbolic memory address to a symbolic expression de-
scribing the current value stored at that address. If the analysis cannot infer any
information about the content of that memory location, it will map the symbolic
address to the value NULL.

3. Inst Addrs – Maps each memory instruction to the symbolic address it references.

Figure 4 contains the pseudo-code for actions taken at memory instructions. At other
instructions, the analysis simply does symbolic evaluation based on the semantics of the
instruction.

The symbolic address of each memory instruction is compared with those of all
memory instructions that come before it in the trace. Non-alias is determined if the base
address parts of the two symbolic addresses are the same and the offsets are different.
Must-alias is determined if both the base addresses and the offsets are the same. If the
memory instruction is a store, the analysis removes the contents of all aliasing sym-
bolic addresses recorded in the table Mem Values and changes them to NULL. This is
because the store might write to any of these aliasing locations, destroying the values
held in there. If the memory instruction is a load, the analysis looks up the symbolic
address up in Mem Values. If it is mapped to a non-NULL value, this means that there
is a previous must-alias instruction for which the analysis has recorded what value is
in the memory location right after the instruction and this information has not been
destroyed by any subsequent aliasing store. In this case, the destination register of the
load can assume the value recorded in Mem Values. Otherwise, the analysis can say
nothing about the value loaded into the destination register, either because the value has
been destroyed by aliasing stores or because the value is a live-in through memory. In
this case, the analysis simply records in Mem Values that the content of the memory
location is whatever value that is currently in the destination register.

5 Inserting Runtime Checks

Runtime checks are inserted in the trace and scheduled together with other instruc-
tions. Instructions that do not depend on the checks can be scheduled past them, no
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compensation code is needed on the off-trace path. Instructions dependent on the checks
but with no side-effects, i.e. loads and their uses, can also be scheduled past the checks.
We rely on the trace scheduling algorithm [10] to insert proper compensation code at
the split points.

5.1 Determining Test Conditions

Each memory reference is characterized by an address and a reference size, which to-
gether specify a range of memory addresses [address, address+size). A runtime check
needs to test for the disjoint-ness of two memory ranges. Let range1 = [a, b) and
range2 = [c, d), either range1 is below range2, which is captured by the condition
b <= c, or range1 is above range2, which is captured by the condition d <= a. For
each pair of critical base addresses (basea, baseb),

We separate the memory dependences directly covered by it into two groups to dif-
ferentiate between these two situations. It turns out that just like the aliasing behavior,
the relative positions of any two memory references are also highly stable throughout
the lifetime of the program. This is not surprising as the two memory references may
access different data structures whose locations in memory are fixed. As such, profiling
can provide good guidance on deciding which group a memory dependence should go
to. Indeed, we use the actual addresses recorded in the initial alias profiling phase for
this purpose. Let a → b be a dependence directly covered by (basea, baseb) and sup-
pose that instruction a’s base address is basea and instruction b’s base address is baseb.
If the actual address range of a is below the actual address range of b according to the
profile, then we put a → b in group I, otherwise we put it in group II.

Two checks are then generated, one for each group. Within each group, the check
needs to be able to accommodate all the different offsets from a single base address.
To do this, we introduce the concept of an extended range, which contains all ranges
relevant to a base address within either group. Suppose that there are n dependences
in group I (or group II) and that the n instructions with base a as base address are
described by the (symbolic address, size) pairs (basea+offset1, size1), ..., and (basea+
offsetn, sizen). Then the extended range corresponding to basea in this group is [basea
+ min(offset1, ..., offsetn), basea + max(offset1 + size1, ..., offsetn + sizen)). The
extended range for base b can be computed in the same fashion.

For example, in Figure 5, there are three memory dependences covered by same crit-
ical base address pair: no base address (instruction A, B, and D) and edx (instruction
C). All memory references have a size of 4 bytes. The dependences A → C and B → C
belong to group I as the effective address range of A and B are below that of C, and the
dependence C → D belongs to group II. The extended range covering both A and B
is [301280h, 411464h + 4] and the extended range covering C is [edx,edx+ 8 + 4].

A: 411464h

B: 301280h

C: edx + 8  (profiled addr: 560890h)

D: 62013Ch

Fig. 5. Determining Test Conditions
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Therefore the test condition we generate for group I is 411464h+4 <= edx. Similarly
the test condition for group II is edx+ 8 + 4 <= 62013Ch.

6 Evaluation

6.1 Experimental Framework

We implemented selective runtime disambiguation algorithm in the Star Dynamic
Binary Translator (StarDBT), a DBT framework currently being developed inside
Intel for 32-bit x86. We evaluated our technique on an in-order VLIW simula-
tor with stall-on-load semantics. The simulator models a 6-issue processor with 2
memory read ports, 2 memory write ports, 4 integer units, 1 floating point unit, and
1 branch unit. The configuration of the memory hierarchy is given in Table 1. The
memory behavior of StarDBT itself is not simulated since the execution time spent
in StarDBT code is a small fraction of the execution time of the entire program.
Execution time is computed by summing of the static cycle counts generated from
the instruction schedules and the miss penalties reported by a cache simulator.

The simulation is done online while StarDBT is translating and executing the pro-
gram. StarDBT inserts instrumentation before each memory instruction to record the ac-
tual addresses in a data structure. Whenever the data structure is filled up, StarDBT jumps

Table 1. Memory Hierarchy

Level Write Policy Allocation Policy Floating Point Bypass Associativity Size Latency

L1 Write through Read-only alloc Yes 4-way 16KB 1 cycle hit
L2 Write back Write alloc No 8-way 128KB 3 cycle hit
L3 Write back Write alloc No 12-way 3MB 10 cycle hit / 100 cycles miss

Alias Profiling schedule I
Simulate using

Simulate using schedule II

Trace selection

Selective runtime disambiguation Schedule II

Instruction inspection Schedule I

Fig. 6. Flow Chart of Simulation in StarDBT
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out of the execution of the program and transfers control to the cache simulator, which
then simulates the memory accesses in the order specified by the instruction schedules.
Figure 6 contains the flow chart of the simulation process within StarDBT. After a trace is
formed, the first schedule is computed based on dependence information generated from
instruction inspection. Next, alias profiling is conducted, during which period the mem-
ory accesses of the trace are simulated based on the first schedule. At the end of alias
profiling, our heuristic algorithm and light-weight pointer analysis are performed and a
second schedule is generated if any runtime check is to be inserted. From that point on
till the end of the program execution, memory accesses are simulated using the second
schedule. The benchmarks we used is the SPECINT2000 benchmarks with ref input.

6.2 Precision Evaluation

Precision in this context is how finely our technique controls where to apply selective
disambiguation and where to spend analysis effort. We also look at the misspeculation
rate of the runtime checks to see whether the test conditions accurately capture the
frequent cases.

In Table 2, the column “#Selected Traces” refers to traces for which the heuris-
tic algorithm reports beneficial critical dependences, the column “#Optimized Traces”
refers to traces that, with runtime checks inserted, indeed have schedules shorter than
their original schedules. There are two interesting points. First, on average the selected
traces are only 26% of the total traces. The rest simply do not have memory depen-
dences on the critical path. This could happen if the memory dependence is not the only
type of dependence between two instructions and there exists a chain of other depen-
dences whose total latency is larger than the latency of the memory dependence. From
this point, the heuristic algorithm is precise in that no check is ever inserted where
it cannot possibly improve scheduling. Second, out of the selected traces, almost all
(97%) have improved schedules with runtime checks inserted. The reason why some
traces may fail to have shorter schedules is that not enough dependences are removed
by the runtime checks. For example, there may be two critical paths of equal lengths
in the original dependence graph and the checks can only remove dependences on one
path, or too few dependences are removed to make up for the overhead of the runtime
checks themselves. From this point, the heuristic algorithm is also precise because the
critical base addresses it selects are such that the runtime checks for these addresses

Table 2. Precision Evaluation

Benchmark #Traces #Selected Traces #Optimized Traces #Checks Misspeculation

164.gzip 1558 364 362 636 - %
175.vpr 1220 366 349 552 0.01%
176.gcc 14924 2251 2164 3124 - %
181.mcf 174 50 50 76 0.01%
186.crafty 1431 175 173 263 1.51%
197.parser 2566 376 347 645 1.55%
252.eon 739 215 211 390 5.75%
253.perlbmk 9299 3093 2913 5217 0.36%
254.gap 1691 287 281 444 0.38%
255.vortex 3956 1734 1713 3990 - %
256.bzip2 963 247 241 359 0.85%
300.twolf 931 311 302 548 0.48%
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almost always cover enough dependences to yield actual performance gains, hence no
work subsequently done in the pointer analysis and rescheduling is wasted.

For the traces that do have improved schedules, we go ahead and insert the runtime
checks and recovery code. On average, only about 1.7 checks are inserted per optimized
trace. If averaged over all traces that make up the program, about 0.4 checks are inserted
per trace. Assuming pessimistically that with each check inserted the entire trace has
to be duplicated, this translates to a rough estimation of a 40% code growth over the
original translated binary. In reality, however, the code growth should be much smaller
because checks are often inserted not at the entry of the trace but in the middle, therefore
only the tail of the trace needs to be duplicated.

Misspeculation happens when a runtime check fails either because the initial alias pro-
filing did not accurately predict the aliasing behavior of the whole program or because the
test conditions fail to characterize all cases of disjoint-ness in their attempt to cover multi-
ple displacements from base addresses. The misspeculation rate is measured in StarDBT
by prolonging the initial alias profiling phase to span the entire execution of the program
and evaluating the test conditions on the effective addresses collected by profiling. The
last column in Table 2 gives the misspeculation rate as the percentage of the number of
misspeculations over the total number of runtime checks performed dynamically.

6.3 Impact on Scheduling

To evaluate the impact of removed memory dependences on the quality of the instruc-
tion schedules, we compare the schedules generated with no disambiguation at all, with
instruction inspection, and with our technique respectively to the optimal schedules,
where all false memory dependences are removed. The quality of the schedules is mea-
sured as slowdown from the optimal schedules in static cycle counts. As we can see
from Figure 7, without any memory disambiguation, the schedules generated assuming
all memory references alias are really bad, with a geometric mean slowdown of 24.5%.
With instruction inspection, the slowdown is reduced to 7.7%. And finally, our tech-
nique can almost close the gap and match the optimal scheduling (1.3% slowdown) just
by inserting a small number of runtime checks.

6.4 Speedup from Improved Scheduling

We compare the actual performance gains, obtained respectively from instruction in-
spection only and from our technique, over baseline where no memory disambiguation
is performed at all. The same online cache simulation mechanism is used to compute
the execution time of baseline and instruction inspection. As shown in Table 3, our
technique can disambiguate more than twice as many dependences as does instruction
inspection, which amounts to 73% of all false memory dependences. This translates
to a 5% increase in performance gains over baseline as the result of improved instruc-
tion scheduling alone. If combined with other optimizations such as redundant memory
operation elimination and register promotion, we expect even bigger improvement.

6.5 Analysis Overhead

We measured the time spent in our analysis, which corresponds to the shaded boxes in
Figure 6. It is a function of the number of traces and the size of the traces on which the
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Table 3. Performance Gains over Baseline

Benchmark Instruction Inspection Selection Disambiguation
Deps Removed Speedup Deps Removed Speedup

164.gzip 42% 7.7% 78% 10.3%
175.vpr 30% 16.9% 80% 23.3%
176.gcc 35% 16.8% 69% 21.9%
181.mcf 34% 5.6% 79% 9.9%
186.crafty 31% 14.2% 47% 18.9%
197.parser 40% 12.4% 80% 15.5%
252.eon 34% 33.3% 69% 42.0%
253.perlbmk 32% 15.8% 76% 20.0%
254.gap 17% 6.9% 57% 16.6%
255.vortex 34% 10.4% 87% 14.2%
256.bzip2 47% 13.2% 75% 17.2%
300.twolf 40% 16.9% 84% 23.5%

Average 35% 14.2% 73% 19.3%

Table 4. Analysis Time

Benchmark Execution Time (sec) Analysis Time (sec)

164.gzip 125 0
175.vpr 129 1
176.gcc 122 3
181.mcf 104 0
186.crafty 112 0
197.parser 144 1
252.eon 92 5
253.perlbmk 166 5
254.gap 70 1
255.vortex 105 9
256.bzip2 129 0
300.twolf 191 1

light-weight pointer analysis and rescheduling are performed. Table 4 shows the anal-
ysis time together with the execution time of the benchmarks in StarDBT without our
technique on a 3.2GHz Xeon with 2.5MB of cache and 2G of memory.1 The analysis

1 StarDBT does not yet run on in-order machines that we want to evaluate our technique on, hence
the speedup through our technique could not be measured in the same way.
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overhead is extremely low compared to the program execution time, so the performance
gained through our technique will not be offset by the overhead of the technique itself.

7 Conclusion and Future Work

In this paper, we present a technique designed to provide sophisticated memory disam-
biguation in a dynamic binary translator at low cost. It precisely selects memory depen-
dences whose removal by runtime disambiguation can result in shortened schedules.
Simple analysis is applied to allow as many dependences to be removed by one runtime
check as possible. We also use profile guidance to trim the actual test conditions of the
runtime checks. Our experiments demonstrate that selective runtime memory disam-
biguation almost doubles the number of memory dependences removed by instruction
inspection and improves the overall performance by 5% just from scheduling. In the
future, we will investigate other optimizations such as redundant memory operation
elimination and register promotion, which can make use of the disambiguation offered
by our technique for further improvements.

References

1. B.-C. Cheng and W. W. Hwu, “Modular interprocedural pointer analysis using access paths:
design, implementation, and evaluation,” in ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 57–69, 2000.

2. W. Landi and B. G. Ryder, “A safe approximate algorithm for interprocedural pointer alias-
ing,” in Proceedings of the ACM SIGPLAN ’92 Conference on Programming Language De-
sign and Implementation, pp. 235–248, June 1992.

3. V. Bala, E. Deusterwald, and S. Banerjia, “Transparent dynamic optimization,” Tech. Rep.
HPL-1999-77, Hewlett Packard Labs, June 1999.

4. J. C. Dehnert, B. K. Grant, and J. P. Banning, “The transmeta code morphing software: using
speculation, recovery and adaptive retranslation to address real-life challenges,” in Proceed-
ings of the 1st International Symposium on Code Generation and Optimization, pp. 15–24,
March 2003.

5. K. Ebcioglu and E. R. Altman, “DAISY: Dynamic compilation for 100% architectural com-
patibility,” in Proceedings of the 24th International Symposium on Computer Architecture,
June 1997.

6. A. Nicolau, “Run-time disambiguation: Coping with statically unpredictable dependences,”
IEEE Transactions on Computers, vol. 38, pp. 663–678, May 1989.

7. A. S. Huang, G. Slavengurg, and J. P. Shen, “Speculative disambiguation: A compilation
technique for dynamic memory disambiguation,” ACM SIGARCH Computer Architecture
News Archive, vol. 22, pp. 200–210, April 1994.

8. M. Fernandez and R. Espasa, “Speculative alias analysis for executable code,” in Proceedings
of the 2002 International Conference on Parallel Architectures and Compilation Techniques,
pp. 222–231, September 2002.

9. W. Amme, P. Braun, and E. Zehendner, “Data dependence analysis of assembly code,” Tech.
Rep. 3764, INRIA, Rocquencourt, France, September 1999.

10. J. A. Fisher, “Trace scheduling: A technique for global microcode compaction,” IEEE Trans-
actions on Computers, vol. C-30, pp. 478–490, July 1981.



Accurately Choosing Execution Runs for
Software Fault Localization

Liang Guo, Abhik Roychoudhury, and Tao Wang

School of Computing, National University of Singapore, Singapore 117543
{guol, abhik, wangtao}@comp.nus.edu.sg

Abstract. Software fault localization involves locating the exact cause
of error for a “failing” execution run – a run which exhibits an unexpected
behavior. Given such a failing run, fault localization often proceeds by
comparing the failing run with a “successful” run, that is, a run which
does not exhibit the unexpected behavior. One important issue here is
the choice of the successful run for such a comparison. In this paper,
we propose a control flow based difference metric for this purpose. The
difference metric takes into account the sequence of statement instances
(and not just the set of these instances) executed in the two runs, by
locating branch instances with similar contexts but different outcomes
in the failing and the successful runs. Given a failing run πf and a pool of
successful runs S, we choose the successful run πs from S whose execu-
tion trace is closest to πf in terms of the difference metric. A bug report
is then generated by returning the difference between πf and πs. We
conduct detailed experiments to compare our approach with previously
proposed difference metrics. In particular, we evaluate our approach in
terms of (a) effectiveness of bug report for locating the bug, (b) size of
bug report and (c) size of successful run pool required to make a decent
choice of successful run.

Keywords: Programming tools, Debugging.

1 Introduction

Debugging is an important program development activity. In the past few years,
substantial research has been conducted to improve debugging tools by identi-
fying the error cause of an observable error with higher degree of automation
[3, 7, 11, 12, 13, 18]. These fault localization approaches compare the failing exe-
cution run, which exhibits the observable error, with one that does not. Most
of the research in this topic has focused on how to compare the successful and
failing execution runs. In this paper, we present a control flow based difference
metric to choose a successful run from a pool for such a comparison; the pool
of successful program runs could be constructed by picking successful runs from
a test-suite of program inputs. Our difference metric measures “similarity” be-
tween execution runs of a program. Given a failing run πf and a pool of successful
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1. while (lin[i] != ENDSTR) {
2. m=...
3. if (m >= 0) {
4. ...

5. lastm = m;

6. }
7. if ((m == -1) || (m == i)) {
8. ...

9. i = i + 1;

10. }
11. else

12. i = m;

13. }
14. ...

Fig. 1. An example program fragment

runs S, we select the most similar successful run πs ∈ S in terms of the differ-
ence metric, and generate a bug report by returning the difference between πf

and πs.
Our difference metric considers branch instances with similar contexts but

different outcomes in two execution runs, because these branch instances may
be related to the cause of error. When these branch instances are evaluated
differently from the failing run, certain faulty statements may not be executed —
leading to disappearance of the observable error in the successful run. Consider
the program fragment (from a faulty version of replace program in the Siemens
benchmark Suite [6, 14] — simplified here for illustration) in Figure 1, where the
bug fix lies in strengthening the condition in line 3 to if ((m >= 0) && (lastm
!= m)). This piece of code changes all substrings s1 in string lin matching a
pattern to another substring s2, where variable i represents the index to the
first un-processed character in string lin, variable m represents the index to the
end of a matched substring s1 in string lin, and variable lastm records variable
m in last loop iterations. At the ith iteration, if variable m is not changed at
line 2, line 3 is wrongly evaluated to true, and substring s2 is wrongly returned
as output, deemed by programmer as an observable “error”. The execution of
the ith iteration of this failing run πf could follow path 〈1, 2, 3, 4, 5, 7, 8, 9〉. In
this case, a successful run πs whose ith iteration follows path 〈1, 2, 3, 7, 8, 9〉 can
be useful for error localization. By comparing πf with πs, we see that only the
branch at line 3 is evaluated differently. Indeed this is the erroneous statement
in this example, and was pinpointed by our method in the experiment. For
programs whose erroneous statement is not a branch, our method will try to
report the nearest branch for locating the error.

Summary of Results. The main results of this paper are as follows. We propose a
control-flow based difference metric to compare execution runs (i.e. data flow in
the runs is not taken into account). We take the view that the difference between
two runs can be summarized by the sequence of comparable branch statement
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instances which are evaluated differently in the two runs. This difference metric
is used to choose a successful run from a pool of successful runs for automated
debugging. We return as bug report the branch statements whose instances (1)
have similar contexts, and (2) are evaluated differently in the failing run and
the selected successful run. We experimentally evaluate the quality of our bug
report, the volume of our bug report, and the impact of successful run pool size
on the quality of our bug report. We also share some experience in using our
method for debugging real-life programs.

2 Related Work

In this section, we discuss work on localizing software errors. There have been a
lot of techniques [1, 3, 7, 10, 11, 12, 13, 18] proposed for automatic program error
localization by comparing successful and failing runs of the buggy program.
These techniques compare different characteristics of execution runs, e.g. acyclic
paths [13], potential invariants [11], executed statements [1, 7, 15], basic block
profiling [12], program states [3, 18], predicates [10] or return value of methods
[9]. Unlike our method, most of these works focus on how to compare successful
and failing execution runs to generate accurate bug reports.

The focus of our method is to choose a successful run from a given pool of
successful runs, provided we have access to the failing run. In other words, we
do not (semi)-automatically generate the successful run. Generating a successful
run (and a corresponding input) close to a given failing run has been studied in
various papers [2, 5, 19], including our past work [17].

Our difference metric bears similarities to the notion of proximity between
runs proposed by Zeller et al. in [3, 18]. Their approach compares program states
with similar contexts for fault localization at some control locations. Through
a series of binary search over the program state and re-executing (part of) the
program from “mixed” states, a set of variables which may be responsible for the
bug are mined and reported. However, these “mixed” states may be infeasible.
Furthermore, it may be quite costly to compare program states and to re-execute
the program several times.

The work of Renieris and Reiss [12] is related to ours. They have demon-
strated through empirical evidence that the successful run which is “closest” to
the failing run can be more helpful for error localization than a randomly selected
successful run. However, [12] measures the proximity of two runs by comparing
the set of basic blocks1 executed in each run. Thus, they cannot distinguish
between runs which execute exactly the same statements but in different or-
der — consider the program for (....){ if (...) S1 else S2 } and the two
execution runs 〈S1, S2〉, 〈S2, S1〉. We consider the sequence of statements exe-
cuted in each run for determining proximity between two runs. Detailed
experiments comparing our method with [12] are reported in Section 5.

1 Actually a sorted sequence of the basic blocks based on execution counts is used;
this is different from the execution sequence of the basic blocks in the failing run.
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3 Measuring Difference Between Execution Runs

We elaborate on the difference metric used for comparing execution runs in
this section. We consider each execution run of a program to be a sequence of
events 〈e0, e1, ..., en−1〉 where ei refers to the ith event during execution. Each
event ei represents an execution instance of a line number in the program; the
program statement corresponding to this line number is denoted as stmt(ei). To
distinguish events from different execution runs, we denote the ith event in an
execution run π as eπ

i , that is, the execution run appears as a superscript. We
will drop the superscript when it is obvious from the context.

Our difference metric measures the difference between two execution runs π
and π′ of a program, by comparing behaviors of “corresponding” branch state-
ment instances from π and π′. The branch statement instances with differing
outcomes in π, π′ are captured in diff(π, π′) – the difference between execu-
tion run π and execution run π′. In order to find out “corresponding” branch
instances, we have defined a notion of alignment to relate statement instances
of two execution runs. Our alignment is based on dynamic control dependence.
Given an execution run π of a program, an event eπ

i is dynamically control depen-
dent on another event eπ

j if eπ
j is the last event before eπ

i in π where stmt(eπ
i ) is

statically control dependent [4] on stmt(eπ
j ). Note that any method entry event

is dynamically control dependent on the corresponding method invocation event.
We use the notation dep(eπ

i , π) to denote the event on which eπ
i is dynamically

control dependent in run π. We now present our definition of event alignment.

Definition 1 (Alignment). For any pair of event e in run π and event e′ in
run π′, we define align(e, e′) = true (e and e′ are aligned) iff.

1. stmt(e) = stmt(e′), and
2. either e, e′ are the first events appearing in π, π′ or

align(dep(e, π), dep(e′, π′)) = true.

When a branch event eπ
i cannot be aligned with any event from the execution

π′, this should only affect alignments of events in π which are transitively dy-
namically control dependent on eπ

i . In addition, the ith iteration of a loop in
the execution π will be aligned with the ith iteration of the same loop in the
execution π′, in order to properly compare events from different loop iterations.

A simple illustration of alignment appears in Figure 2; here π, π′ and π′′

represent three execution runs of the program segment in Figure 1 (page 81). In
Figure 2, events along the same horizontal line are aligned. From this example,
we can see that events in the ith loop iteration in run π are aligned with events
in the ith loop iteration in run π′.

According to the notion of alignment presented in Definition 1, for any event
e in π there exists at most one event e′ in π′ such that align(e, e′) = true.
The difference between π and π′ (denoted diff(π, π′)) captures all branch event
occurrences in π which (i) can be aligned to an event in π′ and (ii) have different
outcomes in π and π′. Formally, the difference between two execution runs can
be defined as follows.
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Fig. 2. Example to illustrate alignments and difference metrics. The first three columns
show the event sequences of three execution runs π, π′ and π′′ of the program fragment
in Figure 1 (page 81). Next two columns show alignments of (π, π′) and (π, π′′), where
solid lines indicate aligned statement instances and dashed lines indicate unaligned
statement instances. The last two columns show the difference between execution runs.

Definition 2 (Difference Metric). Consider two execution runs π, π′ of a
program. The difference between π, π′, denoted diff(π, π′), is defined as:

diff(π, π′) = 〈eπ
i1 , . . . , e

π
ik

〉

such that

1. each event e in diff(π, π′) is a branch event occurrence drawn from run π.
2. the events in diff(π, π′) appear in the same order as in π, that is, for all

1 ≤ j < k, ij < ij+1 (event eπ
ij

appears before event eπ
ij+1

in π).
3. for each e in diff(π, π′), there exists another branch occurrence e′ in run π′

such that align(e, e′)=true (i.e. e and e′ can be aligned). Furthermore, the
outcome of e in π is different from the outcome of e′ in π′2.

4. all events in π satisfying criteria (1) and (2) are included in diff(π, π′).

As a special case, if execution runs π and π′ have the same control flow, then
we define diff(π, π′) = 〈eπ

0 〉.

Clearly we can see that in general diff(π, π′) �= diff(π′, π). The reason for
making a special case for π and π′ having the same control flow will be explained
later in the section when we discuss comparison of differences.

Consider the example in Figure 2. The difference between execution runs
π and π′ is: diff(π, π′) = 〈33, 714〉, as indicated in Figure 2. This is because
2 Since e, e′ can be aligned, they denote occurrences of the same branch statement.
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branch instances 33, 714 are aligned in runs π and π′ and their outcomes are
different in π, π′. If the branches at lines 33, 714 are evaluated differently, we
get π′ from π. Similarly, the difference between execution runs π and π′′ is:
diff(π, π′′) = 〈76, 714〉.

Why do we capture branch event occurrences of π which evaluate differently
in π′ in the difference diff(π, π′) ? Recall that we want to choose a success-
ful run for purposes of fault localization. If π is the failing run and π′ is a
successful run, then diff(π, π′) tells us which branches in the failing run π
need to be evaluated differently to produce the successful run π′. Clearly, if
we have a choice of successful runs we would like to make minimal changes to
the failing run to produce a successful run. Thus, given a failing run π and
two successful runs π′, π′′, we choose π′ over π′′ if diff(π, π′) < diff(π, π′′).
This requires us to compare differences. How we do so is elaborated in the
following.

Definition 3 (Comparison of Differences). Let π, π′, π′′ be three execution
runs of a program. Let

diff(π, π′) = 〈eπ
i1 , e

π
i2 , . . . , e

π
in

〉 and diff(π, π′′) = 〈eπ
j1 , e

π
j2 , . . . , e

π
jm

〉

We define diff(π, π′) < diff(π, π′′) iff there exists an integer K ≥ 0 s.t.

1. K ≤ m and K ≤ n
2. the last K events in diff(π, π′) and diff(π, π′′) are the same, that is,

∀0 ≤ x < K in−x = jm−x.
3. one of the following two conditions holds

– either diff(π, π′) is a suffix of diff(π, π′′), that is, K = n < m
– or the (K + 1)th event from the end in diff(π, π′) appears later in π as

compared to the (K + 1)th event from the end in diff(π, π′′), that is,
in−K > jm−K .

Thus, given a failing run π and two successful runs π′, π′′ we say that diff(π, π′)
< diff(π, π′′) based on a combination of the following criteria.

– Fewer branches of π need to be evaluated differently to get π′ as compared
to the number of branches of π that need to be evaluated differently to get
π′′. This is reflected in the condition K = n < m of Definition 3.

– The branches of π that need to be evaluated differently to get π′ appear closer
to the end of π (where the error is observed), as compared to the branches
of π that need to be evaluated differently to get π′′ . This is reflected in the
condition in−K > jm−K of Definition 3.

To illustrate our comparison of differences, consider the example in Figure 2.
Recall that diff(π, π′) = 〈33, 714〉, and diff(π, π′′) = 〈76, 714〉, as illustrated by
the “•” in the last two columns of Figure 2. Comparing 〈33, 714〉 with 〈76, 714〉, we
see that 〈76, 714〉 < 〈33, 714〉 since statement instance 76 occurs after statement
instance 33 in execution run π.
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According to the comparison of differences in Definition 3, we favor last dif-
fering branch instances instead of early ones. This is because the early branch
instances (where the two runs are different) are often not related to the error.
For example, many programs check whether the input is legal in the beginning.
If we favor early branch instances, we may get failing and successful runs which
only differ in whether the input is legal for such programs. Comparing such runs
is unlikely to produce a useful bug report.

Comparing Runs with Identical Control Flow. Using Definitions 2 and 3 we can
see that if π is the failing run, π1 is a successful run with same control flow as
that of π (i.e. same sequence of statements executed by a different input) and π2
is a successful run with control flow different from π we will have diff(π, π2) <
diff(π, π1). As a result, our method for choosing a successful run will avoid
successful runs with same control flow as that of the failing run. This choice is
deliberate; we want to find a successful run with minimal difference in control
flow from the failing run, but not with zero difference. Recall here that we
construct bug report by comparing the control-flow of the selected successful
run with the failing run. If the two runs have the same control flow, the bug
report is null and hence useless to the programmer. In our experiments, we
encountered few cases where there were some successful runs with same control
flow as the failing run; these were not chosen due to our method of comparing
differences between runs.

4 Experimental Setup

In order to experimentally validate our method for fault localization, we devel-
oped a prototype implementation and conducted detailed experiments. We have
also implemented the Nearest Neighbor method with permutations spectrum,
which performs best in [12], for a comparison with our method. We employed
our prototype on the Siemens benchmark suite [6, 14] and used the evaluation
framework in [12] to quantitatively measure the quality of bug reports gener-
ated by both methods. The Siemens suite has been used by other recent works
on fault localization [3, 12]. In this section, we introduce the subject programs
(Section 4.1) and the evaluation framework (Section 4.2).

4.1 Subject Programs

Table 1 shows the subject programs from the Siemens suite [6, 14] which we
used for our experimentation. There are 132 buggy C programs in the Siemens
suite, each of which is created from one of seven programs, by manually inject-
ing defects. The seven programs range in size from 170 to 560 lines, including
comments. The third column in Table 1 shows the number of buggy programs
created from each of the seven programs. Various kinds of defects have been
injected, including code omissions, relaxing or tightening conditions of branch
statements, and wrong values for assignment statements.

In the experiments, we found that there was no input whose execution run
observed the error, for two out of the 132 programs. Code inspection showed
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Table 1. Description of the Siemens suite

Subject Pgm. Description # Buggy versions
schedule priority scheduler 9
schedule2 priority scheduler 10
replace pattern replacement 32

print tokens lexical analyzer 7
print tokens2 lexical analyzer 10

tot info information measure 23
tcas altitude separation 41

that, these two programs are syntactically different from, but semantically the
same as correct programs. Actually, these two programs are not buggy programs,
so we ruled out them from our experiments. We slightly changed some subject
programs in our experiments. In particular, we rewrote all conditional expres-
sions into if statements. This is because our prototype collects execution traces
at the statement level, and cannot detect branches inside conditional expressions
which are evaluated differently.

4.2 Evaluation Framework

In order to evaluate the effectiveness of a defect localizer, an evaluation frame-
work has been proposed by Renieris and Reiss [12]. This framework assigns a
score to each bug report to show the quality, defined as follows:

score = 1 − |DS∗|
|PDG| (1)

where PDG refers to the program dependence graph of the buggy program. Let
DS(n) be the set of nodes that can reach or be reached from nodes in the bug
report by traversing at most n directed edges in the PDG. Then DS∗ is the
DS(n) with the smallest n which contains the observable error statement (or at
least one error statement if there are more than one observable errors).

The score measures the percentage of code that can be ignored for debugging.
Clearly, higher score indicates bug report with higher quality. Note that the
score only measures the utility of the bug report for debugging, it does not
necessarily correlate a good quality bug report with a lean bug report. To address
this weakness, we conducted separate experiments to measure bug report size.

5 Experimental Results

We employed the prototype implementation of both our method and the Near-
est Neighbor method with permutations spectrum (NN method) [12]3 to 130
3 We used the accurate permutations spectrum for NN method and considered all

failing runs which had some successful run with a different spectrum. So, we can
study all the 130 programs compared to the 109 programs studied in [12] where
certain programs were ruled out based on a coarser spectrum (coverage).
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buggy programs from the Siemens suite. The NN method compares code cov-
erage between a failing run and the “nearest” successful run from a pool of
successful runs. Through the experiments, we validate our method by answering
the following three questions.

– Is our method effective for fault localization?
– Is the size of generated bug report voluminous and overwhelming?
– How many successful runs are required available to make a decent choice of

successful run?

In this section, we present experimental results for these questions.

5.1 Locating the Bug

In the Siemens benchmark suite, each buggy program P comes with a large pool
of inputs, some of which result in successful runs, and others result in failing
runs. For each failing run πf , there is a set of successful runs Closest(πf ) which
are closest to πf , in terms of our difference metric or that of the NN method. The
score for a failing run πf averages scores of comparing πf against each successful
run πs in Closest(πf ), i.e.

score(πf ) =

∑
πs∈Closest(πf ) score(πf , πs)

|Closest(πf )|

where the quantity score(πf , πs)) is defined in Equation (1) in Section 4.2. The
score for a buggy program P averages scores of all failing run πf of P , i.e.

pgm score(P ) =

∑
πf∈Failing(P ) score(πf )

|Failing(P )|

where Failing(P ) refers to the set of failing runs of program P . Our method
differs from the NN method in which successful runs are selected for comparison,
and (hence) which statements are reported in bug report.

Table 2(a) shows the distribution of pgm score for two methods. Our method
is shown as CF, an abbreviation for Control Flow based difference metric. As we
can see, our method performs a little better than the NN method on the Siemens
suite. Bug reports returned by our method achieved a score of 0.8 or better for
more than 37% of all the buggy programs, while the NN method achieved a
score of 0.8 or more for about 31% of the programs. Note that a bug report with
score of 0.8 or more indicates that programmer needs to inspect at most 20% of
a buggy program for fault localization using this bug report.

In the above experiments, we computed the score of program P by averaging
scores w.r.t. all πs and πf . However, the programmer will often choose one closest
successful run πs and one failing run πf for comparison. Is our method sensitive
to the choice of πs and πf? First, our method is not sensitive to the choice of
closest successful run πs since any πs ∈ Closest(πf ) returns the same bug report,
that is, score(πf , πs) is the same for all πs ∈ Closest(πf ). Secondly, our method
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Table 2. (a) Distribution of scores, and (b) Locating different kinds of errors, where
each category has 77, 38 and 18 programs, respectively. Note that the sum of programs
in each category is more than 130. This is because 3 programs have two bugs of different
kinds, and are counted in two categories.

Score CF NN
0.9 - 1 23.1 10.8

0.8 - 0.89 13.8 20.0
0.7 - 0.79 8.5 20.8
0.6 - 0.69 10.8 13.8
0.5 - 0.59 14.6 10.8
0.4 - 0.49 9.2 10.0
0.3 - 0.39 6.2 2.3
0.2 - 0.29 9.2 3.1
0.1 - 0.19 2.3 0.8

0 - 0.09 2.3 7.7
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is less sensitive to the choice of failing run πf than the NN method. We validated
this by computing variances w.r.t. choice of failing run for each fault program
in our experiments. Given a set of failing runs Failing(P ) of a faulty program
P , the variance of P is defined as:

variance(P ) =

∑
πf∈Failing(P )(score(πf ) − pgm score(P ))2

|Failing(P )|

where score(πf ) and pgm score(P ) are defined in the preceding. Using our
method, we found that the score’s variance was small (less than 0.01) for 56.6%
of all 130 faulty programs. On the other hand, using the NN method, only 42.3%
of 130 faulty programs had small variances (less than 0.01) in their scores.

Next we study the effectiveness of our technique in locating different kinds of
errors. We classified all the errors in the faulty programs into three categories: As-
signment Faults, Branch Faults and Missing Code, where Assignment Faults re-
fer to errors in assignment and return statements, Branch Faults refer to errors in
conditional branch statements and Missing Code refers to errors due to missing
program statements. Table 2(b) shows percentage of faulty programs in each cat-
egory where the bug reports got a score of 0.8 or better. We see that our method
was more effective in locating branch faults. For almost half of the programs with
branch faults, our method got a score of at least 0.8; this is not surprising since the
difference metric returned by our method contains only branch statements with
different outcomes in failing and successful runs. For the same reason, our method
did not fare as well in locating faulty assignments. Since we report only branches in
the bug report, the programmer has to follow dependencies from these branches to
the faulty assignment – thereby reducing the score of our bug report. In presence of
“missing code” errors, our method may report branch statements on which missed
code would have been (transitively) control dependent.
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5.2 Size of Bug Report

In the above experiments, we used scores to measure the quality of bug report
according to the evaluation framework in Section 4.2. The reader should note
that there is a fundamental difference between the bug report statements and
the statements that a programmer should inspect for debugging according to the
evaluation framework. Clearly, measuring the amount of code to be inspected
for debugging (captured by the bug report score) is important. However, we
feel that measuring the bug report size is also important. If the programmer is
overwhelmed with a voluminous bug report (e.g. 50 statements for a 500 line
program), he/she may not even get to the stage of identifying which code to
inspect using the bug report.
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Fig. 3. (a) Size of bug report and (b) Impact of successful run pool-size

Figure 3(a) shows sizes of bug reports produced by our method and NN
method. We can see the bug reports produced by our method are relatively small.
For example, more than 80% (40%) of bug reports in all the 130 faulty programs
contained less than 15 statements using our method (NN method). Considering
that programs in the Siemens suite are relatively small, reports with more than
15 statements may be too voluminous. The choice of the cutoff number 15 is not
crucial as can be seen in Figure 3(a); similar trends are observed for any small
cut-off number on the bug report size.

Recall from Table 2(a) that our method and NN method produced roughly
the same scores – 37 % (31 %) of all the 130 programs produced a score of 0.8 or
more with our (NN) method. However, if we study these buggy programs which
produced a high score (of 0.8 or more) with the two methods — we see that bug
report in 83% of them had less than 15 statements for our method, compared
to only 28% for the NN method.

5.3 Size of Successful Run Pool

In the Siemens suite, each faulty program has a large set of test inputs (1000
– 5000). The successful run pool is constructed out of these inputs. How many
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successful runs are required for the programmer to make a decent choice of
successful run? We study this in the following.

Given a program P , we selected the failing run πf whose score score(πf )
(using both our method and NN method) is closest to the score of the program
pgm score(P )) (again using both our and NN methods). The selected failing run
πf was used to study both our method and the NN method. We did not conduct
experiments w.r.t. all failing runs because it was too expensive.

Next, for every successful run πs in the available pool of the Siemens suite,
we computed the difference between πf and πs, generated a bug report by com-
paring πf and πs, and computed score(πf , πs) (refer Equation (1)). After all
successful runs were processed, their differences were sorted in ascending or-
der. Let πi be the successful run with ith smallest difference w.r.t. πf . The
parameterized mean score of a faulty program P for a successful run pool-size of
k is:

par score(P, k) =
n∑

i=1

score(πf , πi) · p(i, k) p(i, k) =
n−iCk−1

nCk

where πf is the failing run chosen in P as mentioned above, n is the number of
available successful runs in Siemens suite, and p(i, k) is defined above. Here nCk

denotes a well-known quantity — the number of ways of choosing k items from n
distinguishable items. Clearly, p(i, k) denotes the probability that the ith-closest
successful run of the failing run is chosen as the nearest successful run of a failing
run from a pool of k different successful runs. Hence par score(P, k) captures
the statistical expectation of the score obtained for failing run πf using any pool
of k successful runs. Calculating the parameterized mean score par score(P, k)
allows us to avoid exhaustively enumerating the score of P for different successful
run pools of size k.

Figure 3(b) presents the parameterized mean scores for different values of k,
the successful run pool size. We see that both our method and NN method made
a decent choice of successful run from a pool of 5 runs and thereby achieved a
score of at least 0.8 in 25% of the 130 faulty programs. However, as the pool size
increases to 40, our method achieved a score of 0.8 or more for larger number of
faulty programs (for 35% of faulty programs). This is not the case for the NN
method, which in fact needed even larger pool sizes.

5.4 Threats to Validity

In our experiments, we used the evaluation framework of Section 4.2 to mea-
sure the quality of bug report. However, the score computed by the framework
of Section 4.2 may not accurately capture the human efforts for fault localiza-
tion in practice. First, the framework assumes that the programmer can find
the error when he/she reads the erroneous statements. This assumption may
not hold for non-trivial bugs, where the programmer has to analyze program
states. Secondly, the evaluation framework requires the programmer to perform
pure breadth-first search for fault localization starting from statements in the
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bug report. However, the programmer usually has some understanding of the
buggy program, and he/she can prune some irrelevant statements from bug
report.

There are also threats to the validity of the study on successful run pool size.
In this experiment, we chose one failing run for each faulty program, instead of
studying all failing runs. Thus, if we chose some other failing run, the parame-
terized mean score for a pool of k successful runs may change. We expect that
such changes will not be significant (though it is possible), because the variances
w.r.t. all failing runs were small for most faulty programs.

6 Experience and Discussion

In this paper, we present a control flow based difference metric to compare
execution runs. This difference metric can be used to choose a successful run
from a pool of program inputs, and compare the given failing run with the
chosen successful run for fault localization. Our experiments with the Siemens
suite indicate that our difference metric produces bug reports which are small
in size and effective in fault localization.

One important issue in a method like ours is the choice of the successful run
pool. In the last section, we reported experiments to measure the required size of
the successful run pool. However, even for a given pool-size many choices of the
pool are possible. So, how do we construct the pool? There are two solutions to
this problem. One possibility is to have a pre-defined large set of program inputs
Inp; this set of test-cases might have been generated using some notion of cov-
erage. Now given a failing run, we find out which of the inputs in Inp produces
a successful run — thereby getting a pool of successful runs. In our experiments
with the Siemens suite, we followed this approach by using the pre-defined pool
of inputs provided with each benchmark. Another way of constructing the suc-
cessful run pool is to use the input for the given failing run. We can slightly
perturb this failing input to generate a set of program inputs; we then classify
which of these perturbed inputs produce a successful run — thereby getting a
pool of successful runs. The main drawback of this approach is that it relies too
much on the programmer’s intuition in deciding what to perturb in the failing
input. Although automatic techniques such as Delta Debugging [19] exist, they
cannot be used for arbitrary programs. This is because these approaches con-
struct an input by removing part of the erroneous input. This is indeed suitable
for debugging programs like compilers, web-browsers — where the program input
is a large file. However, for other programs (e.g. programs with integer inputs)
this approach may be problematic.

We now conclude the paper by sharing some experience in this regard that we
gained bydebugging awidelyusedUnixutility – the grepprogram. The correct ver-
sion of grep has 13,286 lines, without header files. The grep program searches text
files for a pattern and prints all lines that contain that pattern. Faulty versions
of the grep program and test cases are provided at [16]. For the sake of illustrat-
ing our point about the successful run pool, here we only report our experience in
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1. char ch[2];
2. ch[0] = c;
3. ch[1] = ’\0’;
4. if (strcoll (ch, lo) <= 0 && strcoll (hi, ch) <= 0)
5. { ...

Fig. 4. Fragment of a faulty version of the grep program

debugging a particular failing run of a particular buggy version. Figure 4 presents
a faulty version of grep, where the branch in line 4 should be if (strcoll (lo,
ch) <= 0 && strcoll (ch, hi) <= 0). We consider the failing run corresponding
to the input grep -G ’[1-5\]’ grep1.dat. This failing run contains 800,738 state-
ment instances. This run did not return all lines which contain numbers between
1 and 5 in the grep1.dat file — an observable error.

When we ran our debugging method against 35 selected successful runs from
the given test inputs of grep (provided in [16]) we got a bug report containing
11 statements. A line very close to the faulty branch statement in Figure 4 was
included in the report; the score of the bug report is 0.977. This means that
programmer needs inspecting about 100 lines in the worst case, considering that
the grep program has many blank lines. In practice, some statements contained
in the bug report may be pruned, depending on programmer’s understanding of
the program. This will lead to ever fewer statements for inspection.

On the other hand, if we perturb the failing input to get various sub-intervals
of [1-5] as the first argument of grep, only the following five are encountered
as successful inputs.

grep − G ′[i − i\]′ grep1.dat i ∈ {1, 2, 3, 4, 5}

When we applied our debugging method to this pool of five successful runs we
observed the following. (1) Depending on the choice of the successful run, there
was substantial variation in the bug reports and their scores (the score varied
from 0.288 – 0.998). Thus choosing a successful run seems to be important even
if the successful run pool is manually generated using programmer’s intuition.
(2) The difference corresponding to the chosen successful run produced a bug
report of 15 statements, which included the buggy statement (thereby obtaining
a nearly perfect score 0.998).

Thus, the score was slightly better than the score produced using the test
input pool provided with the grep program. However, significant intuition was
needed to manually construct the successful input pool for a specific failing run.
In practice, we feel that the choice of successful run will always benefit from the
programmer’s intuition. However fault localization methods — such as the one
described in this paper — can substantially increase the degree of automation
in this debugging task.

Future Work. In terms of future work, we note that our prototype implemen-
tation currently has limitations w.r.t. tracing overheads. Since our difference
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metric uses more information (traces of the failing and successful runs) than
the NN method (which uses sets of statements in the two runs), therefore the
issue of tracing overheads becomes important. Indeed, it was costly to collect
and store execution traces using our prototype. To make our method scalable
to large programs, sophisticated instrumentation techniques (e.g. [8]) need to be
employed. We are currently working in this direction.
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Abstract. TuningFork is an online, scriptable data visualization and
analysis tool that supports the development and continuous monitor-
ing of real-time systems. While TuningFork was originally designed and
tested for use with a particular real-time Java Virtual Machine, the ar-
chitecture has been designed from the ground up for extensibility by
leveraging the Eclipse plug-in architecture. This allows different client
programs to design custom data formats, new visualization and analy-
sis components, and new export formats. The TuningFork views allow
the visualization of data from time scales of microseconds to minutes,
enabling rapid understanding and analysis of system behavior.

1 Introduction

When designing and developing system software of significant complexity, meet-
ing performance goals is as important and challenging as correctness. In the case
of a real-time system, coarse-grained performance characteristics such as overall
throughput alone are not enough to verify responsiveness or determine the causes
of failure. The ability to measure and visualize fine-grained events is necessary
for determining correctness and analyzing why the system misbehaved.

The large volume of data often generated by these systems is hard to un-
derstand without visualization. In production systems where downtime is unac-
ceptable, online monitoring and analysis can be useful for problem determination
and resolution. During development, a real-time system must be tested for per-
formance regression automatically and a useful analysis tool must also support
scripting commands.

In the accompanying presentation we will demonstrate TuningFork, an on-
line, scriptable, and re-configurable data visualization and analysis tool for the
development and continuous monitoring of real-time systems. TuningFork is an
Eclipse plug-in using the Rich Client Platform (described at www.eclipse.org),
and itself exports a plug-in architecture that allows user-defined data stream for-
mats, stream filters, and visualizations. Because TuningFork is still under rapid
development, it is not yet available for download.

TuningFork is a combination of known and novel techniques and visualiza-
tions, but it is the whole that is greater than the sum of the parts. TuningFork’s
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features include a real-time centered design that adapts to data loss and event
reordering due to resource constraints in the traced system, the ability to handle
very large volumes of data online with a running system, an adaptive data sum-
marization framework allowing even more past data to be viewed, the ability to
play the data in forward and reverse, plugin-based extensibility of trace formats
and views, a composable data stream abstraction that allows creation of new
synthetic events, and the ability to run the same system in batch mode with a
scripting language.

Novel views include the “oscilloscope” view that presents interval data in a
sequence of “time strips”. With a large LCD display, this allows 2-3 seconds
of data to be visualized at 10μs resolution, or 20-30 seconds of data at 10ms
resolution, with user-selectable continuously variable time scales. When play
mode is off, data can be viewed down to the nanosecond scale. Furthermore, a
statistical superimposition facility allows the overall behavior of huge amounts of
periodic high-resolution data to be visualized (hence the oscilloscope analogy).

The demonstration will show how TuningFork is used to diagnose run-time
anomalies in real-time behavior in Metronome, our real-time garbage collector
for Java implemented in the IBM J9 virtual machine product. The various views
allow the identification of a failure to meet a high-level response-time specifica-
tion using a time-strip animation, followed by identification of the cause using
a histogram which categorizes different atomic sections of the garbage collector,
and culminating in the identification of the precise point of failure in the ex-
ecution of the program using the oscilloscope view. We will also show how to
evaluate memory policy using a spatial view that shows the physical or logical
state of the heap.

2 Architecture

At the high level, TuningFork’s architecture consists of a thin client-side layer
which transmits application or JVM events and the server-side TuningFork vi-
sualization application which we simply call TuningFork. The client is instru-
mented at various points to collect special information and send the data in an
application-specific feed to TuningFork via a socket or to a file for post-mortem
analysis. Although our primary client of TuningFork is a JVM, any system that
emits trace files in the specified format is a suitable target for TuningFork.

At the high-level, the feed is broken into chunks which are the units of network
transmission to TuningFork. Certain initial chunks describe overall properties
as well as the format of the rest of the feed. The event chunks are the most
interesting and constitute the bulk of the feed. Each event chunk includes a
chunk identifier so that TuningFork can obtain the appropriate interpreter plug-
in for that application. Since the client application may be multi-threaded, the
data feed is broken into feedlets and each event chunk contains data only from
one feedlet.

Because TuningFork is fundamentally a time-based tool, all events have a
time stamp, typically the value of a cycle counter which on current architectures
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provides nanosecond-scale resolution. In order to present a globally time-ordered
view of events to the rest of TuningFork, data from different feeds are merged
into a single global feed by making data at a certain time visible only after all
feeds have reached that point in time.

Because TuningFork is built on top of the Eclipse Rich Client Platform, it is
simple for the application developer to export application-specific portions such
as an event chunk interpreter to TuningFork via the plug-in architecture. The ap-
plication also can export filters which convert events to non-application-specific
streams. These streams can then be composed into figures for visualization.

Fig. 1. TuningFork Architecture

2.1 Streams

In a real-time system, many quantities of interest are time-series data. Because
TuningFork can be used to monitor an online system or large post-mortem trace
files, the volume of data will generally exceed the memory capacities of Tuning-
Fork. The traditional method of implementing a ring buffer is simple but has
the disadvantage of losing data that is older than the size of the buffer, making
diagnosis of certain problems difficult and understanding of long-term trends
impossible. In addition, computation and display of data streams is complicated
by requiring a constant awareness of this possibiliy.

This problem is greatly reduced by continuing to use a stream abstraction so
that a stream appears to be a function whose domain is an ever-increasing time
range and whose range is dependent on the particular stream. For example,
a stream representing memory usage would map time values to bytes while a
stream representing interrupt handler execution would map to time intervals.
However, depending on memory pressure, the precision of older data may be
continuously degraded by aggregated data into a collection of statistics.

The functional aspect of streams simplifies the computational model by allow-
ing standard mathematical functions like addition, differentiation, and smooth-
ing via convolution. Streams are initially created by applying filters to the events
that enter the system. For example, a “used memory” filter would generate pairs
of values (t, m) which are used to create the used memory stream which logically
consists of the function memory(t) and the range [tstart, tend]. A new stream,
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allocation rate, can be created by applying the differentiation filter to the “used
memory” stream.

Certain operators will take operand streams of different types. For example,
one can take a value stream (e.g. used memory) and a time interval stream (e.g.
time intervals when the garbage collector is off) and create a value stream which
shows only used memory when the garbage collector is off.

Other base types include categories which is useful for understanding the
relationship of a set of quantities. For example, we might have a categry-value
stream which would show the duration of each GC pause and the type of activity
the colletor was performing in that time interval. A histogram of such a stream
would then show not only the average and maximum pause time but also what
the collector was doing during those pauses.

2.2 Figures

At the heart of TuningFork are the visualization components, called figures. Fig-
ures are responsible for taking streams of data and displaying them to the user.
The figure architecture has been designed for extensibility, device-independent
rendering, and high performance to allow the display of live data feeds with high
data rates.

Visualizations are typically composed of several common reused subcompo-
nents. Histograms, axes, legends, and time series plots may occur many times
within different visualizations, albeit with minor differences in display charac-
teristics. This approach is important because of our goal of allowing the user to
extend the system by plugging in custom views.

In order to facilitate the rapid development of new visualization components,
TuningFork introduces two key design features: a high-level drawing interface
tailored to on-line visualization, and painters. The high level interface allows
device-independent drawing; we currently have both an SWT implementation
for the user interface, and a PDF implementation for printing functionality. The
programming interface includes simple painting functionality for basic shapes.
Painters build on top of this simple interface to provide more complex, data-
dependent visualization components such as axes, histograms, and time series
plots.

Within this design framework, the role of a figure becomes to divide the visu-
alization display into different areas, determine the precise data that needs to be
drawn, and delegate drawing to various painter implementations. Additionally,
the figure contains all state regarding the display settings for the visualization
component. This can be accessed both through a host eclipse view, and via the
programmatic conductor interface.

2.3 Conductor

The interactive visualization and analysis of TuningFork is very powerful. How-
ever, there is also a need for automated analysis, in particular for such tasks as
regression testing where the results of the analysis must be fed into automated
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tools that report performance anomalies and automatically create work items in
the product development database.

Such text-based analyses are typically written as entirely separate tools. How-
ever, the modular stream processing, filtering, and transformation facilities in
TuningFork are extremely useful for building such analyses. In order to minimize
code duplication, facilitate the creation of automated analyses, and to provide a
more productive environment for power users, TuningFork includes the conduc-
tor – a lightweight scripting environment.

It is possible to perform nearly all visualization operations from within the
conductor, such as connecting to traces, opening figures, performing analysis, and
exporting PDF files. Additionally, due to the pluggable nature of the application,
it is possible to run the conductor outside of the graphical user interface, an
important capability for automated testing. This allows the creation of tools
produce purely textual results for use in larger programmatic systems, and for
the creation of visualizations of exceptional conditions that can be uploaded into
a web-based graphical database.

3 Comparisons and Conclusions

TuningFork has drawn on many sources of inspiration (space constraints un-
fortunately do not permit formal citations), particularly the work of Tufte on
visual display of quantitative information. It is perhaps most similar to the PV
Program Visualizer (Kimmelman et al), which can visualize very large event
traces without loading the complete trace into memory. It provides an animated
visualization of the information in a sliding window over the trace. PV supports
temporal vertical profiling, integrating information from hardware, operating
system, native libraries and native applications. It mainly focuses on visualiz-
ing events, states, and the corresponding source code, but can also visualize the
value of a metric over time.

Much prior visualization work has focused on parallel systems and their com-
plex behavior, including Paradyn (Miller et al), Jumpshot (Zaki et al), Pablo
(Reed et al), and others. Real-time behavior presents its own unique challenges,
but shared with such systems a need to coordinate the time scales of many
independent parts running on potentially distributed or unsynchronized clocks.

TuningFork is a comprehensive tool for visualization and analysis tool for
real-time systems. TuningFork allows visualization of real-time events as they
are happening, and provides views that allow data to be visualized across a very
wide range of time scales, while still providing a high degree of resolution. Our
experience has shown that the broad range of visualization capability promotes a
deep understanding of the detailed behavior of real-time systems at both macro
and micro time-scales.
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Abstract. This paper describes how the jABC, a generic framework for
library-based program development, and two of its plugins - the Model
Checker and a flow graph converter - form a framework for intrapro-
cedural data-flow analysis via model checking. Based on functionalities
provided by the Soot program analysis platform, the converter generates
graph structures from Java classes. Data flow analyses are then expressed
as formulas in the modal μ-calculus. Executing the analysis is carried out
by checking the validity of the formulas on the flow graph.

The tool demonstration will illustrate the interplay of the involved
components, which elegantly provides a fully integrated implementation
of Data-Flow Analysis as Model Checking in a software development
environment.

1 Introduction

Static program analysis [8, 3, 1] aims at reliably approximating information about
the actual run-time behavior of programs. It consists of two major steps: control-
flow analysis, mainly used to generate a control flow graph that is used for the
next step, and data-flow analysis (DFA), for collecting information about the
program that might be of use for optimization or validation. Classical data-flow
analyses use iterative algorithms, which compute a particular property for a
given program, and can be characterized as follows [11, 10]:

DFA-algorithm for a property :
programs → program points satisfying the property

Model checking [2, 6], a technique for the automatic identification of states in a
finite system that satisfy a specific modal or temporal formula, can be used for
DFA with appropriate input [11, 10]:

model checker:
modal formulas × model → states satisfying the argument formula

Thus, if we have a model checker at our disposal and want to check a new
program property, specifying a new DFA simply means writing a new formula.
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This is significantly different from traditional DFA specifications in terms of DFA
frameworks or equational systems, as it allows to directly describe the desired
outcome as temporal formula, rather than the way how it may be computed (in
terms of transfer functions and the like).

During the tool demonstration we will illustrate the interplay of the in-
volved components, which elegantly provides a fully integrated implementation
of Data-Flow Analysis as Model Checking (DFA-MC) in a software development
environment.

2 Data-Flow Analysis Via Model Checking

The connection between data-flow analysis and model checking described above
implies what is required for DFA-MC [10, 11]: instead of programs we need mod-
els of programs, and instead of different DFA-algorithms for different properties
we need a model checker and different modal formulas.

From Programs to Program Models. Slight variants of Kripke transition systems
[6] work well for modeling sequential imperative programs for data flow analysis
purposes, as they are able to concisely express the implied predicate transformer
scheme [10, 11, 9].

Two variants are available in our framework. The first is closely related to
the classical control flow graphs (CFGs), i.e. the nodes of the graph structure
represent the statements and the predicates, while the edges represent the control
flow (conditional or unconditional branching). The second, which we will use
during our demonstration, is that the statements are pushed from the nodes
into the outgoing edges. Thus, nodes express the predicates or results of the
considered analysis, and edges labelled with the statements express the nodes’
interdependencies. Pushing the statements downwards (i.e. into the outgoing
edges), like it is done here, results in a precondition model.

Formally, a precondition program model P is a quintuple (S, Act,→, B, λ),
where

1. S is a finite set of nodes or program states.
2. Act is a set of actions (i.e. the possible statements of the programming

language).
3. →⊆ S ×Act × S is a set of labeled transitions, which define the control flow

of P .
4. B is a set of atomic propositions.
5. λ is a function λ : S → 2B that labels states with subsets of B.

Due to the similarities between control flow graphs and these program models,
the latter can be generated analogously to the former. As we will see later, our
framework generates its models directly from control flow graphs.

How to write Modal Specifications. In contrast to traditional DFA specifications
in terms of DFA frameworks or equational systems, which specify how a certain
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information about the program is computed (how specifications), DFA speci-
fications via temporal formulas allow us to directly describe what we want to
compute (what specifications). E.g., one describes a dead variable analysis di-
rectly as an analysis, which checks for a variable whether it is guaranteed to be
redefined before any future use, rather than as a propagation of values keeping
track of usage information (see [10, 11, 9] for details). This does not only simply
the specification of new DFAs, but also simplifies the corresponding correctness
and completeness proofs. Formally, these DFA specifications can intuitively be
written in variations of CTL or in the modal mu calculus ([2]).

3 The jABC Framework

The Java-based jABC picks up the principles that have already been used in
the C++-based Agent Building Center (ABC) since 1993 [4] and combines them
with new ideas. The jABC is a commercial product as well as a student experi-
mentation platform [7].

The typcial feature of the jABC framework is the usage of a graphical, high-
level programming layer, where hierarchical directed graphs can be constructed
from special components, called SIBs (Service Independent Building Blocks),
that represent a unit of source code encoding a particular functionality. It is
possible to define what programs do and in what order just by building such
graphs from SIBs. Thus, an application designer does not necessarily have to
have knowledge about ”real” programming, provided some programming experts
have developed an appropriate set of SIBs before.

Several plugins and extensions are available. Three of them, that form the
main constituents of DFA-MC framework, are

– the Model Checker, which we will consider as a black box in the following,
just as typical users of our method do,

– the UnitGraph2SibGraph plugin, which allows us to generate SIB-Graphs
from Java-programs based on Soot functionality. Soot creates control flow
graphs from Java source code, which can then be enriched by fetching in-
formation from the nodes of the CFGs in order to generate SIBGraphs, the
input format for the Model Checker.

– the Formula Builder, which supports the convenient specification of tem-
poral formulas. In particular, it supports the high-level specification of tem-
poral properties, which are then translated into the mu-calculus.

Based on these ingredients, we were able to fully integrate the Data-Flow
Analysis as Model Checking framework in the jABC software development en-
vironment. In this application of the jABC, SIBs are used in a particularly
fine-granular form: we use a SIB per Jimple statement.

4 Conclusion

We illustrated our framework for the intraprocedural data-flow analysis of Java
programs by means of model checking. Characteristic for our approach was the
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underlying framework architecture of the jABC which allowed us to modularly
realize the required functionality.

Currently, each formula has to be checked separately (including the adap-
tion of the parameters by hand), making the analysis process quite arduous. We
are therefore planning to develop a bit-vector functionality for the model check-
ing plugin, and we are in the course of extending the model checker plugin to
capture pushdown systems, which would directly provide us with the power of
interprocedural analysis.

There are other plugins and extensions of the jABC which can be applied in
the context of our DFA-MC framework. One example is the jETI (Java Elec-
tronic Tool Integration Platform) System [5], which can enable the framework
to be executed remotely.

Acknowledgements. Many thanks to Marco Bakera, Clemens Renner and
Marc Njoku for programming and technical support.
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tion. In A. Cortesi and G. Filé, editors, SAS, volume 1694 of Lecture Notes in
Computer Science, pages 330–354. Springer, 1999.

7. R. Nagel. Java abc framework. http://jabc.cs.uni-dortmund.de, July 2005.
8. F. Nielson, H. Nielson, and C. Hankin. Principles of Program Analysis. Springer,

1999.
9. D. Schmidt and B. Steffen. Program analysis as model checking of abstract inter-

pretations. In G. Levi, editor, SAS, volume 1503 of Lecture Notes in Computer
Science, pages 351–380. Springer, 1998.

10. B. Steffen. Data flow analysis as model checking. In T. Ito and A. Meyer, editors,
TACS, volume 526 of Lecture Notes in Computer Science, pages 346–365. Springer,
1991.

11. B. Steffen. Generating data flow analysis algorithms from modal specifications.
Sci. Comput. Program., 21(2):115–139, 1993.



The CGiS Compiler—A Tool Demonstration

Philipp Lucas�, Nicolas Fritz�, and Reinhard Wilhelm

Compiler Design Lab, Saarland University, Saarbrücken, Germany
{phlucas, cage, wilhelm}@cs.uni-sb.de

Abstract. The CGiS programming language is designed to open up the
parallel performance possibilities of graphics processing units (GPUs) to
general purpose programmers. This tool demonstration paper sums up
the ideas behind CGiS and the compiler framework and shows its usage.

1 Introduction

Graphics processing units (GPUs), the processors used by standard graphics
hardware in PCs, underwent a fast and incessant development in the past few
years. Designed to execute small programs determining the pixel colours in an
image, they make use of parallel execution units. Such programs can also be used
for non-graphics related general purpose programming on GPUs (GPGPU ) [6].

Scientists have developed various parallel algorithms on GPUs and experi-
enced performance gains for several kinds of algorithms with high algebraic
density. But nearly all of such applications were implemented using the GPU’s
assembly language or languages with a very low level of hardware abstraction,
or the programmer had to interact with the graphics API to program the GPU.
Recently more general purpose programming languages for GPUs have emerged
(Brook for GPUs, Sh, CGiS [1, 8, 4]). In this tool demonstration paper we
introduce GPGPU and the compiler for our language, CGiS.

In Section 2, we briefly describe GPUs as targets for general purpose pro-
gramming. In Section 3, we describe the programming language and the usage
of CGiS. Section 4 gives an outlook into future development.

2 GPUs

We give a very short introduction without using the terminology of the graph-
ics world. For further information on features of current GPUs, the reader
should consult the documentation of APIs [9, 12] or homepages of vendors (ATI,
NVIDIA, 3Dlabs).

Because of their legacy, GPUs have a number of features distinguishing them
from usual CPUs. They are built around a pipeline model of graphics operations,
eventually transforming geometry data into screen pixels. The latter part of the
pipeline, which works on single pixels, is implemented with parallel execution
� Supported by DFG grant WI 576/10-3.

A. Mycroft and A. Zeller (Eds.): CC 2006, LNCS 3923, pp. 105–108, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



106 P. Lucas, N. Fritz, and R. Wilhelm

pipelines, which have become programmable in recent years. The processor pro-
vides the usual arithmetical instructions on single-precision floating-point four-
vectors and some special computer graphics instructions. It is this part with
programmable, relatively simple and slow but parallel processing units1 that is
used in general purpose programming. A wide variety of applications have been
ported to GPUs, from image synthesis [10] and linear algebra [7] to database
operations [5] and cryptography [2].2

The main restrictions of GPUs lie in the memory model and the support
for control flow. Sections of memory are used either for reading or for writing
during the execution of a program. This can be switched by the controlling
application after a GPU program (hereafter: kernel) has completed its execution,
or the data have to be copied from write-memory into read-memory. Thus, only
a streaming kind of execution is possible. Newer GPUs offer restricted dynamic
control flow, whereas only straight-line control flow was available before. The
restriction concerns the nesting level of conditionals and the maximal iteration
count of loops, which are bounded.3 In general, only naturally parallel algorithms
without complex control flow can benefit from GPUs; but those which can take
advantage of the massive raw floating point power can outperform current CPUs.

The restrictions of this memory model and the number of outputs pose the
main difficulties to a compiler writer. Only in the newest generation of NVIDIA’s
GPUs, each of the programs running in parallel can output more than one four-
vector (upto four such vectors). Functions have to be split at appropriate points,
such that only few values need to be passed between the different kernels [3, 11].
Also, the severe limits on the control flow (if supported it at all) pose a diffi-
culty to compilers. But it is exactly this combination of restricted features with
powerful capabilities which makes high-level GPU languages desirable.

3 CGiS

A CGiS program [4] describes the computation as a sequence of parallel ex-
ecutions of functions over streams of data, where each function operates on a
single element of each stream. Figure 1 gives an example of the general layout
of a CGiS program. More elaborate examples and a detailed explanation can be
found in [4].

The usage of CGiS is illustrated in Figure 2. The programmer writes the code
to be executed on the GPU in CGiS. The compiler generates the kernels and
directing C++ code for the platform independent graphics API OpenGL [12], as
well as all necessary code to switch between kernels, to realign the streams and
to transfer data. The user interfaces with the generated code by giving pointers
to input data, starting the computation and receiving the output data.
1 For example, the current NVIDIA chip GeForce 7800 features 24 lanes at about

400 MHz and a memory bandwidth of more than 38 GB/s to 256 MB RAM.
2 See [6] for pointers to other applications.
3 To enable the programer to write general loops in CGiS, the language allows to

annotate loops with a guaranteed maximal number of iterations.



The CGiS Compiler—A Tool Demonstration 107

PROGRAM vector_add;
INTERFACE // Declare streams.
extern inout float4 in_out_data<_>;
extern in float4 in_data<_>;
CODE // Declare element functions.
function add(in float4 a, in float4 b, out float4 c){

c = a + b;
}
CONTROL // Perform parallel computation on streams.
forall(float4 io in in_out_data; float4 i in in_data){

add(io,i,io);
}

Fig. 1. A small CGiS program, computing the sum of two vectors of unspecified length

CGiS source CGiS compiler

GPU code

C++ code CGiS runtimeapplication

Fig. 2. Basic usage pattern of CGiS. Dotted lines denote linkage, solid arrows denote
in- or output. The left rectangles denote user-provided sources, the other rectangles
are the output of the CGiS compiler. The ellipses stand for the CGiS base system
components. There is no direct connection between the application and the GPU.

The GPU is invisible to the programmer and to the end user. The programmer
interacts only with the CGiS runtime system. For the user, the use of the GPU
is invisible, because the program computes in off-screen memory space.

With each GPU generation, new features become available. The compiler
generates code using features of a desired generation. Thus, the GPU code needs
a GPU of the chosen kind or a newer model.4 Currently, the main focus of the
CGiS compiler is on the NV30 generation of GPUs. We have begun upgrading
our compiler to the newer, more powerful NV40 generation.

The generated C++ code is independent of operating system or windowing
system. All such differences are either abstracted away in the runtime library of
CGiS (such as the procedure of creating an invisible window and an OpenGL
context) or are part of OpenGL proper and thus in itself platform independent.
Thus, the generated code can be compiled and run on any system with the
runtime and an appropriately powerful GPU. Currently, the CGiS runtime is
available for Windows and Linux (i386), though we expect it to be adaptable
trivially to other systems with the Windows or X window model and OpenGL
support. The main prerequisite for porting is the availability of current OpenGL

4 The programmer may generate code for various GPU architectures, the best fitting
of which is to be used at run-time of the application.
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drivers. NVIDIA drivers are developed also for Solaris and FreeBSD on i386 and
for other processors with Windows, Linux or MacOS.

4 Future Work

When the adaption to the NV40 architecture is completed, we will focus on the
development of a general analysis and optimisation framework in the compiler.
At present very few optimisations are implemented. Then we will develop other
back-ends to support newer generations of GPUs. We also plan to create a general
library for linear algebra functions and a visualisation framework.
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Optimization of Java Bytecode
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Abstract. Loop optimizations such as loop unrolling, unfolding and in-
variant code motion have long been used in a wide variety of compilers
to improve the running time of applications. In this paper we present a
series of experimental results detailing the effect these techniques have
on the running time of Java applications following ahead of time opti-
mization.

We also detail the optimization tools and transformations developed
for this paper which extend the SOOT framework discussed in a number
of previous papers on the subject.

Our experimentation, conducted on the SciMark 2.0 benchmarking
suite, demonstrates that when optimized using the techniques mentioned,
Java applications can benefit from performance improvements of up
to 20%.

We finish with a discussion of the results obtained, including results on
how the optimizations affect JIT compilation and class size and proceed
to argue that ahead-of-time loop unrolling and unfolding optimization
may have a role to play in improving the performance of Java applica-
tions, particularly in scientific applications.

1 Introduction

Improving the running time of programs through the optimizing phase of a
compiler is a well established practice with a long history of well developed
techniques and tools.

The success of optimizing compilers depends heavily upon the architecture
that the final object code will be run on and architectures have changed since
initial work in the field. One aspect of this phenomenon is that hardware archi-
tecture has become more complex but another aspect, and the one of interest
here, is that in many cases the object code of a compiler is bytecode that is to
be run on virtual machines such as the Java Virtual Machine.

Optimizing compiler designers face a couple of new issues when the target
architecture is a virtual machine. Firstly, there is the question of whether the
interpretive layer will affect the effectiveness of the optimizations. Secondly, when
using a virtual machine we have the opportunity to compile and optimize at
run-time and indeed this is what modern just in time (JIT) compiling virtual
machines do.

The fact that compilation and optimization can happen at run time naturally
leads to new thinking in compiler design. Do we need to perform ahead of time
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optimizations at all? One could argue that all optimizations can be deferred to
run time and this would make the initial compiler design much simpler. One
added advantage of this approach is that we have more information around at
run time (e.g. profiling information) which can help us. However, it can also be
argued that the static analysis required for some optimizations is too expensive
to perform at run-time and should be performed beforehand. Another argument
is that the interpretive layer slows down the program so much that optimizing the
code is not worth it and that if one really wants speed then one should compile
down to native code anyway - so called “way ahead of time” compilation.

All these possibilities have led to a lack of interest in traditional optimization
of bytecode and despite much discussion about what the optimization archi-
tecture should be there is an underlying question to address. It is the authors’
opinion that the discussion would be better informed if the following question
was answered:

Do traditional ahead-of-time compiler optimizations applied to bytecode
cause significant performance increasing in running-time when executed
on current (optimizing) JVMs?

i.e. given the current state of the art in JITs, does optimizing the bytecode
still help? Is it still relevant? This is the question that this paper contributes
towards answering. It builds on earlier work (particularly that of the SOOT
optimization framework) and Section 4 details this earlier work that contribute
toward answering this question. This paper provides a fully detailed study into
a selection of traditional loop optimizations and the conclusion of the paper can
be summarized as:

– Traditional ahead of time loop optimizations (in particular, loop unfolding
and unrolling) applied to Java bytecode increase the run-time performance
of the tested benchmark programs by up to 20%, with an average increase
of approximately 4-5%

In the rest of this paper, Section 2 will give the methodology and decisions made
when performing our tests. The numerical results of the testing will be given in
Section 3 along with an analysis of these results. Finally, Sections 4 and 5 give
the background to and a summary of the paper respectively.

2 Optimizations, Methodology and Testing

The research presented here is an empirical study of optimization. It is essential
to such an endeavor that we identify the parameters of the experiments we carry
out. In this case we can identify four main factors that affect the results:

– The benchmark suite used for testing.
– The optimizations used.
– The underling hardware architecture.
– The Java Virtual Machine (JVM) that executes the bytecode.

Each of the following sub-sections will describe the approach we took when
considering each of these factors.
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2.1 The Benchmarks

For the purposes of experimentation we used two benchmarking suites. The first
was the command line version of the SciMark 2.0 benchmarking suite [19]. The
second was the SPECjvm98 suite of benchmarks [3].

Table 1. Benchmark Description

Benchmark Description
FFT Performs a one-dimensional forward transform of 4000

complex numbers.
SOR Performs Jacobi Successive Over-relaxation on a

100x100 grid
Monte Carlo Approximates the value of Pi through integration of a

quarter circle
Sparse Matrix Multiplication Performs a matrix multiplication of a 1000x1000

square matrix containing 5000 non-zero elements
LU Computes the LU Factorization of a dense 100x100

matrix using partial pivoting.
Compress Lempel-Ziv Compressor/Decompressor
Jess A Java Expert Shell
DB An in memory database
JavaC A JDK 1.0.2-complaint Java Compiler
MPEGAudio Performs MPEG-3 Audio Compression
MTRT A dual-threaded version ray tracing algorithm
Jack A Java Parser Generation which has since become the

JavaCC Project

Table 1 lists the benchmark suites optimized for this paper. We decided to choose
a range of benchmarks across two benchmarking suites to ensure that the op-
timizations tested during our research provided benefits to a number of appli-
cations rather than a niche set of code. The SciMark 2.0 suite provides code
mainly from scientific applications, these were chosen since they suited the type
of optimization we were testing.

To obtain a average performance indicator for our benchmarks we averaged
the benchmarks over 50 successive runs of the benchmarking suites.

Both benchmarks provide pre-compiled class files which have been compiled
using the Sun Microsystems JDK 1.2 compiler.

2.2 Optimizations

We implemented three optimizations as intra-procedural transformation exten-
sions to the SOOT Framework [21], a framework for analyzing and optimizing
Java bytecode. This framework has an established and widely used set of tools
for experimentation and research and as such was a natural choice.
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All of the optimizations developed as part of our experiments were imple-
mented as intra-procedural transformations in the Jimple intermediate repre-
sentation [23] provided by the SOOT framework.

The three main optimizations implemented for this paper were:

– Loop Unrolling
– Loop Unfolding
– Loop Invariant Code Motion

The rest of this sub-section is dedicated to explaining each of these optimization
techniques. Although brief descriptions are given, the techniques used are quite
generic and more in depth explanations can be found in a number of books on
the subject of compilation and optimization [1, 13, 16].

We choose to apply the loop invariant code motion transformation first as
this removed redundant invariant statements prior to unfolding and unrolling.
If invariant statements did exist they were hoisted before the unfolding and
unrolling transformations to reduce the total size of the unfolded and unrolled
copies of the loop.

Unfolding and unrolling are not commutative in that unfolding an unrolled
loop leads to more copies of the loop being made. Although the unfolding fac-
tor can be altered to take this into account, we chose to apply the unfolding
transformation before the unrolling process.

Loop Unrolling. Loop unrolling replaces the main body of a loop with several
copies, adjusting the loop control code such that new body executes the same
instructions as the original loop but with a smaller proportion of execution spent
on evaluating the control. Since, by completing the unrolling process, we have
changed the body of the loop to execute more than one original iteration on each
iteration of the new loop we introduce a epilogue to the loop to handle ’odd’
iterations which cannot be processed in the new unrolled loop [1]. The epilogue
is created by placing a copy of the original loop at the end of the unrolled loop
so that when execution is finished in the optimized code the epilogue can ’mop’
up the remaining iterations.

Unrolling has two main benefits, firstly the transformation usually results in
a smaller proportion of time being spent evaluating the control code of the loop
since each iteration in the ’new’ loop is executing the unrolling factor more itera-
tions of the original. Secondly, the unrolling transformation opens multiple iter-
ations to further optimization using techniques such as common sub-expression
elimination [17]. Although common sub-expression elimination is not conducted
by our optimization tool, the unrolled code may introduce opportunities for the
just-in-time compiler to further optimize the code at runtime.

The level of benefit that the unrolling transformation provides is determined
by the unrolling factor - i.e. the number of copies of the loop that replace the
original body. For very small loops with simple control code a high unrolling
factor can be used as the unrolled code is likely to fit into a cache line. For large
complex loops small unrolling factors, usually 2, should be used as the unrolled
loop can become too large to cache efficiently.
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Original:

for ( int i = 0 ; i < 10 ; i++) {
a = a ∗ 2 ;

}
Transformed:

for ( int i = 0 ; i < 10 ; i = i + 2) {
a = a ∗ 2 ;
a = a ∗ 2 ;

}

Fig. 1. Unrolling applied to a simple loop

Due to the increase in the code size of a loop following unrolling the opti-
mization can have detrimental effects on performance by making the code too
large to fit into cache lines in the processor. When this occurs cache blocks may
need to be transfered resulting in slower execution.

For our transformation we used a generic unrolling algorithm [16] to process
single-basic block loops with simple control code. The unrolling factor used in
our tool was set to 2 to limit the effect that larger loops would have on the
caching of our benchmark programs.

The transformation was also developed to use a relatively conservative ap-
proach to unrolling in that it would only unroll loops without branching state-
ments in their main body. This restriction was imposed because branching
within loop bodies results in jump statements being fed through to the pro-
cessor pipeline, as the unrolling process was meant to remove jump instruc-
tions by reducing the number of times the loop needed to jump to the start,
allowing branches to be unrolled would be unlikely to result in a performance
improvement.

We also chose a relatively simple approach to finding induction variables for
the unrolling process. The tool was designed to only unroll loops with locally de-
fined induction variables that are not compared to the result of a method return
within the loop guard. These restrictions were created because the dynamic-class
loading feature in Java allowed classes loaded at runtime to interfere with non
local variables in a manner that could not be determined at optimization time.
Since our transformation was intra-procedural we could not determine whether
the return value of a method at runtime was constant therefore, induction vari-
ables compared against method returns could have behaved in a manner that
would have meant the transformation resulting in different behaviour to the
input.

Loop Unfolding. Loop unfolding, or loop peeling, removes a number of the first
iterations of a loop and places them before the main body to form a prologue[18].
Extra control code is often introduced to ensure the overall number of iterations
executed does not differ from the original loop code.
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Original: Transformed:

for ( i = 0 ; i < 10 ; i++) {
a = a ∗ 2 ;

}

a = a ∗ 2 ;
a = a ∗ 2 ;
for ( i =2; i < 10 ; i = i++) {

a = a ∗ 2 ;
}

Fig. 2. Unfolding applied to a simple loop

Unfolding has two main benefits, firstly it allows the earlier iterations of the
loop to execute without requiring the processor to follow jump instructions back
to the beginning of the loop, improving the ability of the code to be pipelined and
secondly, opening the earlier iterations to further optimizations such as common
sub-expression elimination.

In a similar manner to unrolling, unfolding can increase the overall size of
the application code which can affect how the application will be cached. For
large loops unfolding will create a sizable epilogue which may make the method
difficult to cache. The impact of unfolding is usually determined by the unfolding
factor - i.e. the number of copies of the loop placed in the prologue. Large
unfolding factors can increase the size of the code considerably disrupting cache
behaviour and may, in the case of Java, prevent the JIT compilation process if
the JVM decides that the code is too large to compile on the fly.

We decided to use an unfolding factor of 8 to create a balance between un-
folding enough iterations for the optimization to be useful yet keeping the factor
small enough to prevent excessive increases in code size. Our unfolding transfor-
mation also used conservative approaches to deducing induction variables for the
same reasons outlined in the unrolling optimization description. We did however
allow the unfolding transformation to unfold loops with branches in the main
body. The purpose of this decision was to permit optimizations to be carried
out across the unfolded iterations with the possibility of reducing the number of
branches through optimization on the branch conditions.

Loop Invariant Code Motion. Loop invariant code motion is applied to code
within loops that does not change on each iteration of the loop [2], this is code
whose execution is independent of the loop induction variable.

The transformation works by finding expressions using only constants or vari-
ables that are defined from outside the loop. Given that these values will not
change on each iteration of the loop, any expression that uses only these values
will also be unchanged by each iteration or change in a pre-determined manner.
A generic algorithm is explained in [1].

When loop invariant code has been found it can be removed from the loop
by hoisting. The hoisting process takes invariant statements and places them
outside of the loop making adjustments to ensure the value assigned to any
variables resulting from the invariant expression will be the same. For instance,
if a variable increases by a value of 2 on each iteration of the loop then hoisting
will set this variable to have a value of 2 multiplied by the number of iterations
added immediately following the execution of the loop.
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Original: Transformed

int a = 0 ;
int b = 0 ;
int c = 10 ;

for ( i = 0 ; i < 10 ; i++) {
a = a + 2 ;
b = c ∗ 2 ;

}

int a = 0 ;
int b = 0 ;
int c = 10 ;

for ( i = 2 ; i < 10 ; i = i++) {
a = a + 2 ;

}
b = c ∗ 2 ;

Fig. 3. Loop invariant code motion applied to a simple loop

Loop invariant code motion usually results in faster execution of loops because
the redundant code is eliminated from being executed multiple times saving
processor resources.

Our transformation used a conservative approach to finding invariant code by
only searching for locally defined variables as potential candidates for invariance
since any method calls from inside the loop could have changed field level values
potentially resulting in an unsafe transformation.

2.3 The Hardware and Environment

We ran our benchmarks on two different architectures to check whether the
results obtained would show similar trends and whether the underlying archi-
tecture of the processor would change the benefit the optimizations could bring.

Our first machine was a Pentium 4 2.4Ghz machine configured with 1Gb of
RAM running Microsoft Windows XP Service Pack 2. The Pentium processor
used in this machine contains two 16kb L1 caches one allocated to data entries
and one to instruction entries.

Our second machine was an Apple G4 Powerbook equipped with a 1.5Ghz
G4 Processor and 512Mb of RAM running Apple OSX Tiger. The G4 processor
uses two 32kb L1 caches allocated to data and instruction.

2.4 The Java Virtual Machines

On the Windows XP Machine, we used the standard Sun Microsystems Java
Standard Edition (J2SE) Version 1.5.0 without any extra configuration. On the
Apple Powerbook machine we used the standard Apple 1.4.2 Virtual Machine.

Since we are interested in the relationship between the ahead of time op-
timizations and the optimizing compilation in the JVM, for the SciMark 2.0
Benchmarks we decided to experiment with both the Client and Server just in
time compiler included with the standard virtual machine. The Client compiler
is configured to carry out a smaller amount of class file analysis during startup
in an effort to reduce the loading time of Java applications. Since less analysis is
being carried out on the bytecode a smaller number of transformations can be
conducted during execution.
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The Server compiler takes an alternative strategy seeking to spend longer
conducting analysis during startup with the assumption that the application is
likely to execute for a longer period of time. As more analysis is carried out a
larger number of transformations are available during execution.

The exact details of the compilers provided with the Sun and Apple Virtual
Machines go far beyond the remit of this paper, we refer the reader to the
respective vendor websites for up-to-date information and features.

3 Results

In this section we present our results and offer an analysis on the figures shown.
Tables 2 and 3 show the performance change following our optimizations. The
figures shown represent speedup which is computed as a factor of the time taken
to compute the unoptimized code. A speedup for less than 1 indicates a perfor-
mance degradation, a speedup of greater than 1 represents an improvement.

The aim of our experiments was to examine whether, through the use of
traditional loop optimizations, the performance of Java applications could be
improved. As the reader can see in the results tables, the effect of these optimiza-
tions is somewhat varied depending on the type of application being optimized.

The application that gained the most through optimization was the LU Factor-
ization application included in the SciMark 2.0 suite. The results showed a 14%
improvement on the Intel system and 20% improvement on the Apple G4 Sys-
tem. If we examine the source code of the LU application we notice a reasonably
large number of loops which contain only a few instructions. Since the unrolling

Table 2. SciMark 2.0 Benchmark Result (Higher Result is Higher Performance)

Pentium 4 G4
SciMark 2.0 Benchmark Client JIT Server JIT Client JIT Server JIT
FFT 1.17x 1.12x 1.05x 1.04x
SOR 1.00x 1.03x 1.01x 1.01x
Monte Carlo 0.97x 0.99x 1.01x 1.02x
Sparse Matrix Multiplication 1.01x 1.09x 0.97x 0.97x
LU 1.14x 1.08x 1.20x 1.20x

Table 3. SPECjvm98 Benchmark Result (Higher Result is Higher Performance)

SPECjvm98 Benchmark Pentium 4 Apple G4
Compress 0.99x 1.04x
Jess 1.10x 1.08x
DB 1.02x 1.03x
JavaC 1.06x 1.03x
MPEGAudio 1.00x 1.02x
MTRT 0.93x 0.95x
Jack 1.14x 1.11x
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and unfolding of these loops produced a larger speedup than other benchmarks
this indicates that the optimization of Java loops, like fully compiled languages,
is best aimed at smaller, simple loops. Some of the benchmarks suffered from a
performance degradation due to the transformations. The most notable of these
was the MTRT ray-tracing benchmark from the SPECjvm98 benchmarks which
suffered a 7% performance degradation on the Pentium 4 architecture.

Overall, the impact of the optimizations on many of the benchmarks was
mixed but generally beneficial. Some benchmarks responded to optimization very
well producing more efficient code that executed faster across a range of hardware
platforms and virtual machines and other applications responded poorly. At
the time of writing we have no firm conclusions about the nature of code that
benefits or suffers from these transformations. However, the tool that applied
the transformations did so indiscriminately on all loops that it could (given the
innate conservative nature of the tool). A more guided transformation phase
taking into account, for example, the size of the loop may lead to better results.

3.1 Architectural Considerations

The purpose of selecting an Intel Pentium 4 processor based machine and an
Apple G4 processor based machine was to examine whether alternative virtual
machines and architectures would alter the performance benefits of the opti-
mizations presented.

As the reader can see from Table 2 the benefits vary slightly between the two
machines. However, the overall average performance increase for the Pentium 4
and G4 architecture are roughly the same at 4.9% and 4.4% respectively.

Due to the fact that we are optimizing loops whose performance is largely down
to efficient caching mechanisms we can attribute some of the variations in specific
benchmarks to the different cache layouts offered by the two architectures.

Of course, hardware factors may be reduced by the effect of the bytecode run-
ning on an interpreter in the JVM. Nevertheless, there are two reasons why hard-
ware factors may “show through”: Firstly, in the case of caching, the fetching of
bytecode instructions in a small loop will only take up a relatively small part of the
data-cache leaving the rest for the program data and, secondly, we expect most of
the critical code in these loops to be JIT compiled and therefore be run directly
on the hardware anyway.

Another potential source for differences in the results comes from the varying
number of registers available on the processors used for testing. The RISC based
G4 architecture contains more registers than the Pentium and therefore may be
able to hold more variables within the processor reducing the number of cache
transfers required. This facility may lessen the impact of the optimizations on
smaller loops as all the variables will be within registers thus reducing the speed
improvement offered by more efficient usage of cache following unrolling.

3.2 The Client Versus Server Just-In-Time Compiler

For the SciMark 2.0 Benchmarks presented in Table 2 we decided to experiment
with both the Client and Server just in time compiler included with the standard
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virtual machine. As one might expect, on both architectures the benchmarks ran
faster with the Server JIT than the Client JIT. Despite this there was little differ-
ence in the percentage speedups caused by the optimizations. On the G4 architec-
ture the speedups were identical and on the Pentium 4 architecture the average
were similar at 5.8% for the Client and 6.2% for the Server. These results indicate
that the difference in underlying optimization architecture for current JITs do not
affect the beneficial effects of the loop transformations.

3.3 Overhead of the SOOT Framework

The overhead of converting the Java bytecode input to the SOOT Jimple Interme-
diate Representation and back out to bytecode introduces some penalties due to
the complexities of creating the representation and re-generating the input from
this. In the original paper introducing SOOT [21] Vallee-Rai et al. claimed that
this overhead was between 1% and 2% of program execution time.

Table 4. Effect on performance after being parsed by SOOT Framework but no opti-
mizations applied

Benchmark Speedup
FFT 0.96x
SOR 0.98x
Monte Carlo 1.00x
Sparse Matrix 0.99x
LU 1.00x

Table 4 shows the potential impact on performance of the benchmarking appli-
cations being input to the SOOT framework and emitted without any optimiza-
tions being applied. The output of the framework is likely to be different to the
input bytecode due to the conversion of the input into an intermediate represen-
tation that does not have an exact one-to-one mapping between a virtual machine
bytecode and an element of the representation.

Experiments conducted on our benchmarks by reading the bytecode into the
optimization tool and emitting it without completing any transformation are
shown in Table 4. We believe that our results are broadly representative of the
data provided by Vallee-Rai et al.

3.4 Cost of Performing the Optimizations

The main aim of this paper is to evaluate the effectiveness of the optimizing trans-
formations under consideration. As such, the development of the analysis and
transformation tool was not undertaken with compilation performance in mind.
However, for the sake of completeness, Table 5 shows the time and memory re-
quired for the optimization tool to process the benchmark classes on the same
Pentium 4 machines that was used in to execute the benchmarks.
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Table 5. Time and memory requirements for optimization

Benchmark Memory Required (Mb) Time Required (Seconds)
FFT 22.236 9.01
SOR 23.688 11.08
Monte Carlo 17.160 3.36
Sparse Matrix 19.904 5.14
LU 18.102 4.24

The figures shown in Table 5 are unrepresentative of the resources that the anal-
ysis and transformation would need in a industry standard developed compiler.
As such, it is hard to judge whether the transformations could be performed at
runtime in a JIT compiler. However, given the analysis required for the transfor-
mations this seem unlikely.

Instead, we would claim that in situations such as this, where the optimization
process may be lengthy, ahead of time optimization, or possibly ahead of time
analysis, could provide a mechanism for communicating information to the just
in time compiler as a guide to which optimizations could be used in each section of
code. A recent study on the use of inter-procedural side effect analysis [14] demon-
strated that when code was analyzed ahead of time and the information communi-
cated to the just in time compiler a performance improvement of up to 20% could
be achieved.

3.5 Effect of Optimization on Bytecode Size

Due to the fact that unrolling and unfolding optimizations result in copies of the
loop body being replicated either before or into the loop the size of the code is
expected to increase. Table 6 shows the increase in code size of the SciMark 2.0
benchmarking suite when unrolling and unfolding optimizations are applied. Due
to the use of the SOOT framework a small increase in code size is attributable
to using the Jimple intermediate representation which does not provide an exact
mapping between input bytecodes and the bytecodes emitted.

The transformation tool will unfold a loop first by a factor of 8 and then unroll
with a factor of 2. Furthermore, the tool only acts conservatively and will not un-
roll loops nested within another. Given this, we can expect that every loop trans-
formed will have its size increased by a factor of 10.

Table 6. Size of bytecode before and after optimization

Benchmark No Optimizations Optimized Percent Increase
FFT 2718 bytes 3630 bytes 33.55%
SOR 580 bytes 1176 bytes 102.76%
Monte Carlo 547 bytes 622 bytes 13.71%
Sparse Matrix 510 bytes 668 bytes 30.98%
LU 2166 bytes 4482 bytes 106.92%
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3.6 The Relationship Between AOT Optimization and JIT
Compilation at Runtime

In this section we aim to investigate how the ahead of time optimization process
changes the JIT compilation that occurs at runtime. Our work for this section
centres on the SciMark 2.0 benchmarks. Table 7 shows that following optimization
the number of bytes compiled by the Just-In-Time compiler at runtime for the
Client JVM on the Pentium P4 architecture. It can be seen from the table that
every benchmark has a rise in the amount of code compiled. However, this is to be
expected due to the increase in bytecode size described in the previous section. It
seems a reasonable assumption that given a bigger class file the JVM will compile
more bytes of code.

The optimizations in this paper target loops in the program and these are the
parts of the program one expects to be JIT compiled. If after the optimization the
same loops are compiled then it may be reasonable to expect all the bytes added
to the class file by unrolling and unfolding to be JIT compiled as well. In this case,
we would expect the program size increase to be roughly the same as the increase
in the number of extra bytes compiled at run-time. Table 8 shows that this is not
the case. In fact there seems to be no correlation between the increase in code size
and the increase in amount of JIT compilation.

The FFT, Monte Carlo and LU factorization benchmarks show behaviour
where the JIT compilation increase is less than the increase in bytecode size. This
is perhaps due to the fact that not all the code added by the transformations is
processed by the JIT. Despite this, both FFT and LU factorization show large
increases in running time performance.

The SOR and Sparse Matrix transformations show an even more unusual phe-
nomenon where the JIT compiles more code after the transformation than the

Table 7. Number of Bytes Compiled by the Client Just-In-Time Compiler at Runtime

Bytes Compiled Percentage
Benchmark No optimization optimized Increase
FFT 614 bytes 963 bytes 56.84%
SOR 148 bytes 884 bytes 497%
Monte Carlo 66 bytes 76 bytes 15%
Sparse Matrix 96 bytes 362 bytes 277%
LU 542 bytes 982 bytes 81%

Table 8. Comparison between size increase and JIT compilation increase

Benchmark Program Size Increase Extra Bytes Compiled
FFT 912 bytes 349 bytes
SOR 596 bytes 736 bytes
Monte Carlo 75 bytes 10 bytes
Sparse Matrix 158 bytes 266 bytes
LU 2316 bytes 440 bytes
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transformation added. Somehow, the re-arrangement of code has caused the JIT
to fire more often.

These results give us no clear correlation between the transformations and the
effect they have on the amount of work the JIT will do at run time. It is possible
that the results may be clearer if more fine grained information was known about
the JIT (in particular, if it were known exactly which pieces of code were compiled
or optimized). However, the tools available for the JVMs used in this experiment
could not provide this information.

4 Background and Related Work

The work in this paper builds on other work that perform optimizations on Java
bytecode. The main systems the authors are aware of are Briki [5] (although this is
mainly a JIT compilation framework), Cream [6], Jax [20] and SOOT [21, 22]. The
tool developed for this paper was built on top of SOOT. With the exception of Jax
(whose main purpose was code compression) all of these systems report beneficial
effects on performance when transforming Java bytecode ahead of time. As far as
we are aware none of these systems include loop unrolling or unfolding in their
transformation sets. However, forms of loop invariant code motion are applied by
some tools (including the SOOT framework).

Other related systems are optimizing compilers that compile Java to native
code [9, 12] and bytecode manipulation tools [7, 15].

Descriptions of all three optimizations can be found in standard compiler texts
[1, 13, 16]. Loop unrolling and unfolding has been investigated on several architec-
tures (for example [2, 8, 10, 11]) but as far as we are aware has not been investi-
gated on platforms where a bytecode machine is used.

5 Conclusions and Future Work

The main contribution of this paper is the creation of a tool to perform certain op-
timizing transformations and a detailed investigation to determine whether tra-
ditional loop optimizations (in particular loop unrolling and unfolding) provide
performance benefits on current JVMs when applied to bytecode.

The results average out with the transformations causing a 4-5% perfomance
increase. Some benchmarks responded very well with up to a 20% increase and
the worst performance degradation was a 7% decrease in performance. Overall the
figures suggest that these AOT transformations are beneficial to the efficiency of
Java programs.

In addition to the main results about performance increases, we can observe
the following from the experiments:

– Although there are some variations in individual benchmarks, the trends of
performance increase are the same across the hardware architectures tested

– Although there are some variations in individual benchmarks, the trends of
performance increase are the same across the types of JIT tested
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– The overhead of the SOOT framework is in line with earlier reported work.
– The effect of the transformations on the amount of code that is JIT compiled

is unpredictable though increased performance can occur even with less than
expected JIT compilation.

These results together lend support to the argument that, in some sense, the AOT
optimization process is independent of the underlying run-time architecture in-
cluding the JVM. However, individual cases can vary and the relationship between
the transformations and JIT compilation is still not understood and could well
still be an important factor in the effectiveness of the transformations. Further
investigation into this relationship seems warranted.

As mentioned earlier in the paper, it may be possible for these transformations
to be integrated into JIT compilation though the program analysis required may
be too costly. A method of communicating ahead of time analysis to the JIT such
as suggested in [14] may work in this context.

The tool developed for the purposes of this paper is quite conservative in its
application of the transformations and also applies them uniformly without tak-
ing into account any context such as the size of the loop being transformed. It is
possible that a more aggressive or more guided tool would produce more reliably
beneficial results and this should be investigated further. Furthermore, the fac-
tors of unrolling and unfolding have been fixed for the reported experiments here,
taking values that have worked well on other platforms. The performance effect
of these parameters in Java is still to be fully investigated.

Often, the loop optimizations here are described as being successful due to their
exploitation of cache behavior. Given that these transformations can be beneficial
even when executed on a JVM, it may be the case that other loop transformations
that affect cache behavior (e.g. loop tiling, strip mining, loop fusion etc.) would
also benefit on Java code, particularly in scientific applications. A survey of these
types of transformation can be found in [2].
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Abstract. We introduce a new class of compiler heuristics: hybrid optimizations.
Hybrid optimizations choose dynamically at compile time which optimization al-
gorithm to apply from a set of different algorithms that implement the same opti-
mization. They use a heuristic to predict the most appropriate algorithm for each
piece of code being optimized. Specifically, we construct a hybrid register alloca-
tor that chooses between linear scan and graph coloring register allocation. Linear
scan is more efficient, but sometimes less effective; graph coloring is generally
more expensive, but sometimes more effective. Our setting is Java JIT compila-
tion, which makes optimization algorithm efficiency particularly important.

Our hybrid allocator decides, based on features of a method, which algo-
rithm to apply to that method. We used supervised learning to induce the decision
heuristic. We evalute our technique within Jikes RVM [1] and show on average it
outperforms graph coloring by 9% and linear scan by 3% for a typical compila-
tion scenario. To our knowledge, this is the first time anyone has used heuristics
induced by machine learning to select between different optimization algorithms.

1 Introduction

Compiler writers constantly invent new optimization algorithms to improve the state
of the art. They frequently arrive at significantly different algorithms for a particular
compiler optimization. Often, however, there is no clear winner among the different
algorithms. Each algorithm has situations in which it is preferable to the other algo-
rithms. For example, many different register allocation algorithms have been invented
that achieve either a good running time performance [8, 6, 10, 2], possibly at the expense
of increased allocation time, or a reduction in allocation time [13, 16] at the expense of
performance. Two register allocation algorithms that differ in these seemingly mutually
exclusive goals are graph coloring and linear scan.

Graph coloring is an aggressive technique for allocating registers, but is computa-
tionally expensive due to its use of the interference graph, which can have a worst-case
size that is quadratic in the number of live ranges. Linear scan (LS), on the other hand,
does not build an interference graph, but instead allocates registers to variables in a
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greedy fashion by scanning all the live ranges in a single pass. It is simple, efficient,
and produces a relative good packing of all the variables of a method into the available
physical registers. Graph coloring can sometimes lead to more effective packing of the
registers, but it can be much more expensive than linear scan.1

We invent a new class of optimization heuristics, hybrid optimizations. Hybrid op-
timizations assume that one has implemented two or more algorithms for the same
optimization. A hybrid optimization uses a heuristic to choose the best of these al-
gorithms to apply in a given situation. Here we construct a hybrid register allocator
that chooses between two different register allocation algorithms, graph coloring and
linear scan. The goal is to create an allocator that achieves a good balance between
two factors: trying to find a good packing of the variables to registers (and thereby
achieving good running time performance) and trying to reduce the overhead of the
allocator.

We discuss how we use supervised learning to construct a hybrid allocator. The in-
duced heuristic should be significantly cheaper to apply than register allocation itself;
thus we restrict ourselves to using properties (features) of a method that are cheap to
compute or have already been computed in a previous compilation phase.

The contributions of the paper are:

1. To our knowledge, this is the first time anyone has used properties of code to con-
struct automatically (using machine learning) a heuristic function that selects be-
tween different optimization algorithms.

2. We can construct an allocator that is as good as always using graph coloring with a
significant reduction in allocation/compilation time.

2 Motivation

We measured the time to run GC and LS for the case of 24 registers (12 volatile
(callee-save) registers and 12 non-volatile (caller-save) registers) on a PowerPC pro-
cessor. Figure 1 shows scatter plots of the running time versus method size (expressed
in number of instructions). Both graphs omit outliers that have very large running times.
LS’s running time is consistent and fairly linear. GC’s time is in the same general re-
gion, but is worse and does not have as clear a linear relationship with method size (this
is to be expected, given the overhead of constructing an interference graph in the GC
algorithm).

Table 1 gives statistics on the measured running times of GC and LS. The second col-
umn gives the average time to allocate registers in units of microseconds per (low-level
intermediate code) instruction. GC is nearly 7 times slower than LS on this measure.
However, if we exclude a small number of methods that took more than 1 second to
schedule (outliers), then the ratio is 1.7. This shows that a small percentage of methods
strongly bias GC’s average running time. A possible strategy to ameliorate this is to pre-
dict when applying GC will benefit a method over LS, and run GC only in those cases.
This is exactly the goal of a hybrid optimization. A hybrid optimization will reduce

1 Poletto et al. [13] show data where graph coloring can be as much as 1000 times more expen-
sive than linear scan as the size of the live variables grows.
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Fig. 1. Algorithm running time versus method size for GC and LS. Each point represents a
method, where x-axis is size of method and y-axis is time to allocate.

Table 1. Average running time to allocate with GC and LS in microseconds (μs) per instruction

(μs) / Inst
Algorithm (μs) / Inst Without Outliers

GC 1241 300
LS 183 176

compilation effort, using an efficient algorithm most of the time, but will use a more
effective, but expensive, optimization algorithm seldomly, when it deems the additional
benefit is worth the effort. This trade-off is especially interesting if compilation time is
important, such as in a JIT (just-in-time) compilation environment.

3 Problem and Approach

We want to construct a heuristic that with high effectiveness predicts which alloca-
tion algorithm is most beneficial to apply. We opted not to construct a hybrid allocator
by hand, but instead to try to induce a choice function automatically using supervised
learning techniques.

Developing and fine-tuning a hybrid allocator manually requires experimenting with
different features (i.e., combinations of features of the method). Fine-tuning heuristics
to achieve suitable performance is therefore a tedious and time-consuming process.
Machine learning, if it works, is thus a desirable alternative to manual tuning.

Our approach uses a technique called rule induction to induce a hybrid allocator that
is based on the features of the method. Rule induction heuristics are typically faster to
induce than using other machine learning techniques, 2 they are more understandable
than heuristics learned using other techniques (e.g., neural networks and decision trees),
and are easier to make work (than unsupervised learning).

The first step in applying supervised learning to this problem requires phrasing the
problem as a classification problem. For this task, this means that each method is rep-
resented by a training instance and each training instance is labeled with respect to

2 Our technique induces heuristics in seconds on one desktop computer. Stephenson et al. [15]
report taking days to induce heuristics on a cluster of 15 to 20 machines.
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whether graph coloring achieves enough additional benefit (fewer spills) over linear
scan to warrant applying it.

3.1 Features

What properties of a method might predict which allocation algorithm to use? One can
imagine that certain properties of a method’s interference graph might predict whether
or not to use graph coloring. However, building the interference graph often domi-
nates the overall running time of the graph coloring algorithm. Since we require cheap-
to-compute features, we specifically choose not to use properties of the interference
graph.

Instead, we use features that have previously been computed for other compilation
phases. For instance, we use features summarizing the control flow graph, CFG, such
as statistics pertaining to regular (non-exceptional) versus exceptional edges.3 We also
use features that describe liveness information, such as the number of variables that are
live in and out of a block. We also try other cheap-to-compute features that we thought
might be relevant. Computing these features requires a single pass over the method.

Table 2. Features of a method

Features Meaning

In/Out Edges Number of CFG In/Out Edges
Exception In/Out Number of CFG Exceptional In/Out Edges
Live on Entry/Exit Number of edges live on entry/exit
Intervals Number of live intervals
Virtual Registers Number of virtual registers
Insts per block Number of instructions per blocks
Insts per method Number of instructions in method
Blocks per method Number of blocks in method

The features can be grouped into three different categories. The first set of features
pertains to edges in the control flow graph. These features include regular CFG edges
and exceptional CFG edges. The second set of features pertains to the live intervals. We
provide features for statistics describing the number of intervals (roughly, “variables”)
that are live going in and out of the blocks. This set also includes features for the num-
ber of live intervals and virtual registers. 4 The third set of features describes statistics
about sizes of blocks and the total number of instructions and blocks in the method. See
Table 2 for a complete list of the features. These features were either pre-computed or
as cheap to compute as we can imagine while offering some useful information. These
features work well so we decided not to refine them further. Our domain knowledge al-
lowed us to develop a set of features that on our first attempt produced highly-predictive
heuristics.

3 Exceptional edges represent control flow if an exception is raised.
4 Virtual registers refers to user-defined variables and compiler generated temporaries that we

would like to allocate to machine registers.
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We present all of the features (except number of instructions and blocks) in several
forms, such as minimum, maximum, total, and mean. This allows the learning algorithm
to generalize over many different method sizes.

It might be possible that a smaller set of features would perform nearly as well. How-
ever, calculating features and evaluating the heuristic functions takes less than 0.1% of
compile time (a negligible fraction of compile time) in our experiments, so we did not
explore this possibility. In addition, rule induction automatically finds the set of most
significant features, so we did not need to eliminate features manually. One final ob-
servation is that these features are machine independent and should be useful across a
wide range of systems. For instance, we performed experiments varying the number of
available registers and found this set of features worked well across all configurations
we evaluated.5

3.2 Generating Training Instances

We have constructed a set of features and now take the next step, generating training
instances. Each training instance consists of a vector of feature values, plus a boolean
classification label, i.e., LS (Linear Scan) or GC (Graph Coloring), depending on which
algorithm is best for the method.

After the Java system compiles and optimizes each Java method, the last phase in-
volves presenting the method for register allocation. As we allocate the variables in the
method to registers we can compute the features in Table 2. We instrument both a graph
coloring allocator and a linear scan allocator to print into a trace file, for each method,
raw data for forming a training instance.

Each raw datum consists of the features of the method that make up the training
instance and statistics used to calculate the label for that instance. For the particular step
of computing the features of a method, we can use either algorithm since the features
are not algorithm specific. However, computing the final statistics used for labeling
requires allocating the method with both graph coloring and linear scan. These statistics
include the time to allocate the method with each allocation algorithm, and the number
of additional spills incurred by each algorithm. We discuss the use of these statistics for
labeling each training instance in Section 3.3.

We obtain the number of spills for a method by counting the number of loads and
stores added to each block after register allocation and multiplying this by the number
of times each basic block executes. We obtain basic block execution counts by profiling
the application. We emphasize that these steps take place in an instrumented compiler,
run over a benchmark suite, and all happen off-line. Only the heuristics produced by
supervised learning are part of the production compiler and these heuristics are fast.

3.3 Labeling Training Instances

We label an instance based on two different thresholds, a cost threshold and a benefit
threshold. The cost threshold pertains to the time it takes to allocate registers with each

5 The exact heuristic functions may vary. For rather larger registers (24 or more), graph coloring
only rarely beats linear scan, while for small sets (4 or 8) graph coloring is even more important
than the medium size case we consider here (12).
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algorithm. The benefit threshold pertains to the number of spill loads and stores incurred
by each allocation algorithm. We use spills as an indirect method to measure the benefit
of an allocation algorithm instead of using the direct metric of a method’s running
time. Measuring running time of an individual method is hard to do reliably, whereas
measuring dynamic spill count is easy to do and does not change between runs. Our
results show that this indirect metric works well.

For the experiments in this paper we use the following procedure to label the training
instances. We label an instance with “GC” (prefer graph coloring) if the number of spills
using linear scan minus the number of spills using graph coloring on the same method is
greater than some threshold (Spill Threshold). We label an instance with “LS” (prefer
linear scan) if there is no spill benefit by allocating the method with graph coloring. We
also label an instance with “LS” if the cost of using graph coloring is above a threshold
(Cost Threshold) more than the cost of applying linear scan. Those instances where
there is no clear benefit, in terms of spills or cost, in using graph coloring or linear scan
are discarded and not considered for learning. They do not provide useful guidance and
only push rule induction to try to make inconsquential fine distinctions. Figure 2 depicts
this algorithm for labeling.

if (LS Spill − GC Spill > Spill Threshold)
Label as GC;

else if (LS Spill - GC Spill <= 0)
Label as LS;

else if (LS Cost/GC Cost > Cost Threshold)
Label as LS;

else
{ // No Label (discard instance) }

Fig. 2. Procedure for labeling instances with GC and LS

We experimented with different threshold values for the spill benefit and cost thresh-
old. Varying these threshold values gave us a variety of different heuristic functions. We
report results for the best heuristic function found from 6 heuristic functions explored.

3.4 Learning Algorithm

An important rule in applying machine learning successfully is to try the simplest
learning methodology that might solve the problem. We chose the supervised learn-
ing technique called rule set induction, which has many advantages over other learning
methodologies. The specific tool we use is Ripper [9].

Ripper generates sets of if-then rules that are more expressive, more compact, and
more human readable (hence good for compiler writers) than the output of other learn-
ing techniques, such as neural networks and decision tree induction algorithms. We
analyze one of the induced if-then rule sets in Section 3.5.

3.5 A Sample Induced (Learned) Heuristic

As we mentioned, rule sets are easier to comprehend and are often compact. It is also
relatively easy to generate code from a rule set that can be used to build a hybrid allocator.
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Table 3 shows a rule set induced by our training data. If the right hand side condition
of any rule (except the last) is met, then we will apply GC on the method; otherwise
the hybrid allocator predicts that GC will not benefit the method and it applies LS. The
numbers in the first two columns give the number of training examples that are correctly
and incorrectly classified by the rule.

Table 3. Induced Heuristic Generated By Ripper

( 20/ 9) GC ← avgLiveOnExitBB >= 3.8 ∧ avgVirtualRegsBB >= 13
( 22/13) GC ← avgLiveOnEntryBB >= 4 ∧ avgCFGInEdgesBB >= 1.4 ∧ avgLiveOnExitBB >= 5.5 ∧

numberInsts <= 294
( 10/ 5) GC ← avgLiveOnExitBB >= 4.3 ∧ maxLiveOnEntry <= 13
( 12/ 2) GC ← avgLiveOnExitBB >= 3.7 ∧ maxLiveOnEntry >= 9 ∧ numVirtualRegs >= 895 ∧

maxLiveIntervals >= 38 ∧ maxLiveIntervals <= 69
(1815/78) LS ←

In this case we see that liveness information and the number of virtual registers
are the most important features, with the rest offering some fine tuning. For example,
the first if-then rule predicts that it is beneficial to use graph coloring on methods
consisting blocks with a high average number of live intervals exiting the block and
a high average number of virtual registers in the block. Note that for this training set
a large percentage of methods (1815+78= 1893 of 1986 = 95%) were predicted not
to benefit from graph coloring. As we see in Section 6.2, determining the feature
values and then evaluating rules like this sample one does not add very much to
compilation time, and takes much less time than actually allocating the methods.

3.6 Integration of the Induced Heuristic

After training, the next step is installing the heuristic function in the compiler and ap-
plying it online. When the optimizer invokes register allocation on a method, we first
compute our features for the method. We then call the heuristic function, passing the
features. If the heuristic functions says to use graph coloring, we do so, otherwise we
apply linear scan. If a method is re-optimized, as sometimes happens in adaptive com-
pilation, the heuristic will be applied again, to the new code, and may make a different
decision.

We include in our reported timings of allocation the cost of computing features and
invoking the heuristic function. These costs are quite small compared with running the
allocation algorithms.

4 Experimental Infrastructure

We implemented our register allocation algorithms in Jikes RVM, a Java virtual ma-
chine with JIT compilers, provided by IBM Research [1]. The system provides a linear
scan allocator in its optimizing compiler. In addition, we implemented a Briggs-style
graph coloring register allocator [5].

We experiment with Jikes RVM in an adaptive scenario, which is a typical scenario
for compiling Java programs. In this scenario, the compiler identifies and optimizes only
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frequently executed (hot) methods at progressively higher levels of optimization [3].
This is the typical compilation scenario of a Java JIT compiler. It achieves most of the
benefit of optimizing all methods, but with much lower compilation cost.

Our specific target architecture is the PowerPC. We ran our experiments on an Apple
Macintosh system with two 533 MHz G4 processors, model 7410. This is an aggressive
superscalar architecture whose microarchitecture is representative of the state of the
art in processor implementations. We motivated this work allocating 24 registers, the
number available on a PowerPC. We present results for allocating 12 registers (6 volatile
and 6 non-volatile), which corresponds to AMD, ARM, and many embedded processors
in wide-spread use.

4.1 Benchmarks

We examine 7 programs drawn from the SPECjvm98 suite [14] for the experiments in
this paper. We detail these benchmarks in Table 4. We ran these benchmarks with the
largest data set size (called 100).

Table 4. Characteristics of the SPECjvm98 benchmarks

Program Description
compress Java version of 129.compress from SPEC 95
jess Java expert system shell
db Builds and operates on an in-memory database
javac Java source to bytecode compiler in JDK 1.0.2
mpegaudio Decodes an MPEG-3 audio file
raytrace A raytracer working on a scene with a dinosaur
jack A Java parser generator with lexical analysis

5 Evaluation Methodology

As is customary in evaluating a machine learning technique, our learning methodology
was leave-one-out cross-validation: given a set of n benchmark programs, in training for
benchmark i we train (develop a heuristic) using the training set (the set of instances)
from the n − 1 other benchmarks, and we apply the heuristic to the test set (the set of
instances from benchmark i). This makes sense in our case for two reasons. First, we
envision developing and installing of the heuristic “at the factory”, and it will then be
applied to code it has not “seen” before. Second, while the end goal is to develop a sin-
gle heuristic, it is important that we test the overall procedure by developing heuristics
many times and seeing how well they work. The leave-one-out cross-validation proce-
dure is a commonly used way to do this. Another way is repeatedly to choose about half
the programs and use their data for training and the other half for testing. However, we
want our heuristics to be developed over a wide enough range of benchmarks that we
are likely to see all the “interesting” behaviors, so leave-one-out may be more realistic
in that sense.
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To evaluate a hybrid allocator on a benchmark, we consider three kinds of results:
spill loads, total running time, and benchmark running time.

Spill loads refers to the additional number of loads (read memory accesses) incurred
by the allocation algorithm. Spill loads give an indication of how well the allocator is
able to perform its task. Memory accesses are expensive, and although the latency of
some additional accesses can be hidden by overlapping with execution of other instruc-
tions, the number of spill loads is highly correlated with application running time. We
do not count spill stores because their latency can be mostly hidden with store buffers.
(A store buffer is an architectural feature that allows computation to continue while a
store executes. Store buffers are typical in modern architectures.)

Total time refers to the running time of the program including compile time. We
compare our hybrid allocator to always using linear scan and always using graph color-
ing. Since timings of our proposed system include the cost of computing features and
applying the heuristic function, this (at least indirectly) substantiates our claim that the
cost of applying the heuristic at run time is low. (We also supply measurements of those
costs in Section 6.2.)

Running time refers to the running time of the program without compilation time.
This measures the change in execution time of the allocated code, compared with al-
ways using linear scan and always using graph coloring. This validates not only the
heuristic function but also our instance labeling procedure, and by implication the spill
model we used to develop the labels.

The goal of the hybrid allocator is to achieve application running time close to al-
ways applying graph coloring, while reducing compilation time to substantally less than
applying graph coloring to every method. If these two objectives are met, a hybrid al-
locator should reduce total time compared to always applying either graph coloring or
linear scan.

6 Experimental Results

We aimed to answer the following questions: How effective is the hybrid allocator in
obtaining best application performance compared to graph coloring? How efficient is
our hybrid allocator compared to allocating all methods with linear scan? We ask these
questions on the SPECjvm98 benchmark suite. We then consider how much time it
takes to apply the hybrid heuristic in the compiler.

We answer the first question by comparing the running time of the application, with
compilation time removed. We address the second by comparing total time which in-
cludes time spent compiling including allocating. Since we are using adaptive optimiza-
tion in a JIT compiler, total time is the key measure of overall importance.

We requested that the Java benchmark iterate 26 times garbage collecting between
iterations. The first iteration will cause the program to be loaded, compiled, and al-
located according to the allocation algorithm. The remaining 25 iterations should in-
volve no compilation; we use the best of the 25 runs as our measure of application
performance.

Section 6.1 discusses the benefit of our allocators with respect to reducing spills.
Section 6.2 discusses the cost of using the hybrid heuristic. Finally, Section 6.3
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discusses the effect of using hybrid allocators in reducing program execution (running
and total) time.

6.1 Spill Loads

Before looking at execution times on an actual machine, we consider the quality of
the induced hybrid allocator (compared with always applying either graph coloring or
linear scan) in terms of the number of spill loads added by register allocation. Spill
loads predict whether a method will benefit from the additional effort of applying the
more expensive graph coloring allocator.

Spill loads are used in the labeling process, thus we hoped that our hybrid allocator
would perform well on the spill load metric. Comparing the allocators against spill loads
allows us to validate the learning methodology, independently of validating against the
actual performance on the target machine.

We calculate the dynamic number of spill loads added to each method by multiplying
the number of spill loads added to each block by the number of times that block is
executed (as reported by profiling information). Then we sum the number of dynamic
spill loads added to each block. We obtain the dynamic number of spills loads for the
entire program by summing the number of dynamic spill loads added to each method.
More precisely, the performance measure for program P is:

SPILLSπ(P) = ∑
M∈P

∑
b∈M

(# Executions of b) · (spill loads added to b under allocator π)

where M is a method, b is a basic block in that method, and π is hybrid, graph coloring,
or linear scan.

Table 5. Spill loads for hybrid and linear scan relative to graph coloring

Register mpeg- ray- com- geo.
Allocator jack db javac audio trace press jess Mean

HYBRID 1.07 1.00 1.04 1.49 1.05 2.01 1.33 1.25
LS 1.07 1.20 1.07 2.13 1.55 2.01 1.42 1.44

Table 5 shows the spill loads for each allocator as a ratio to spill loads produced
by our graph coloring algorithm. These numbers are given as geometric means over
the 7 SPECjvm98 benchmarks. We see improvements for the hybrid allocator over lin-
ear scan. These improvements do not correspond exactly to measured execution times,
which is not surprising given that the number of spill loads is not an exact measure of
performance on the architecture. What the numbers confirm is that the induced heuristic
indeed improves the metric on which we based its training instances. Thus, supervised
learning was able to solve this learning problem. Whether we get improvement on the
real machine is concerned with how predictive reducing spill loads (i.e., the spill model)
is to benchmark performance. The hybrid allocator was able to reduce the number of
spills obtained by linear scan by 19%. In Section 6.3, we see that reducing the number
of dynamic spill loads leads to an average reduction in running time of 5% for hybrid
allocation over linear scan for our set of benchmarks.
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6.2 The Cost of Evaluating a Hybrid Heuristic

Table 6 gives a breakdown of the compilation costs of our system, and statistics con-
cerning the percentage of methods and instructions allocated with each allocator. The
costs are given as geometric means over the 7 benchmarks.

Table 6. Cost breakdowns: GCM/GCI = GC allocated methods/instructions; LSM/LSI = LS
allocated methods/instructions; f = time to evaluate features and heuristic function; a = time
spent allocating methods; c = compile time excluding allocation time

Allocator GCM GCI LSM LSI f /a f /c a/c

GC 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 21.26%
HYBRID 2.42% 9.53% 97.58% 90.47% 1.20% 0.09% 7.31%
LS 0.00% 0.00% 100.00% 100.00% 0.00% 0.00% 3.41%

Here are some interesting facts revealed in the table. First, the fraction of methods
and of instructions allocated with GC drops significantly for our hybrid scheme. Sec-
ond, the fraction of instructions allocated with GC, which tracks the relative cost of
allocation fairly well, is about 4 times as big as the fraction of methods allocated with
GC, implying that the hybrid allocator tend to use GC for longer methods. This makes
sense in that longer methods probably tend to benefit more from graph coloring.

Third, the cost of calculating the heuristic, as a percentage of compilation time, is
less than 0.1%. Finally, we obtain a factor of 3 reduction in allocation time compared
with GC (applying graph coloring to every method).

6.3 Effectiveness and Efficiency

We now consider the quality of the hybrid heuristic induced for adaptive optimization.
Figure 3(a) shows the impact of the hybrid allocation and GC on application running
time, presented relative to LS. Here there is little variation between graph coloring and
hybrid allocation across the benchmarks, with GC doing well at 5% and the hybrid
allocator doing just as well. Given the lower cost of the hybrid allocator to run, it is
preferable to running GC all the time. The results are fairly consistent across the bench-
marks, though some benchmarks improve more than others.

As Figure 3(a) shows we can effectively select dynamically the methods where graph
coloring improves over linear scan with our hybrid heuristic. The hybrid allocator is
effective, but what happened to efficiency?

Figure 3(b) shows the total time of the hybrid allocator and GC (always performing
graph coloring), relative to LS (always performing linear scan). The average for the total
time graph shows an improvement using the hybrid allocator over either always using
linear scan or always using graph coloring. Using the hybrid allocator we can achieve
up to an 15% improvement over linear scan for compress with an average improve-
ment of 3%. Using graph coloring, we can also achieve a substantial improvement on
some benchmarks over linear scan, but we also incur a significant degradation on some
programs (up to 22% for mpegaudio) over linear scan. However, by selective applying
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(a) Running Time Using Hybrid versus Graph Coloring relative to Lin-
ear Scan

(b) Total Time Using Hybrid versus Graph Coloring relative to Linear
Scan

Fig. 3. Efficiency and Effectiveness Using Hybrid Allocator with Adaptive Compiler

GC only when it is beneficial we can reduce total time by 9% on average using hybrid
allocator over graph coloring. The improvement in total time of hybrid allocation over
graph coloring shows we were able to cut the compilation effort (and therefore total
time) significantly.
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7 Related Work

Lagoudakis et al. [11] describe an idea of using features to choose between algorithms
for two different problems, order statistics selection and sorting. The authors used re-
inforcement learning to choose between different algorithms for each problem. For the
order statistics selection problem, the authors choose between Deterministic Select and
Heap Select. For sorting, they choose between Quicksort and Insertion Sort. The hybrid
algorithms were able to outperform each individual algorithm.

Cavazos et al. [7] describe an idea of using supervised learning to control whether
or not to apply instruction scheduling. They induced heuristics that used features of a
basic block to predict whether scheduling would benefit that block. Using the induced
heuristic, they were able to reduce scheduling effort by as much as 75% while still
retaining about 92% of the effectiveness of scheduling all blocks.

Monsifrot et al. [12] use a classifier based on decision tree learning to determine
which loops to unroll. They looked at the performance of compiling Fortran programs
from the SPEC benchmark suite using g77 for two different architectures, an Ultra-
SPARC and an IA64, where their learned scheme showed modest improvement.

Stephenson et al. [15] used genetic programming to tune heuristic priority functions
for three compiler optimizations within the Trimaran IMPACT compiler. For two op-
timizations they achieved significant improvements. However, these two pre-existing
heuristics were not well implemented. For instance, turning off data prefetching com-
pletely is preferable and reduces many of their significant gains. For the third optimiza-
tion, register allocation, they were able to achieve on average only a 2% improvement
over the manually tuned heuristic.

Bernstein et al. [4] describe an idea of using three heuristics for choosing the next
variable to spill, and choosing the best heuristic with respect to a cost function. This is
similar to our idea of using a hybrid allocator to choose which algorithm is best based on
properties of the method being optimized. Their technique applies all the spill heuristics
and measures the resultant code with the cost function. Their technique results in about
a 10% reduction in spills and a 3% improvement in running time. Our technique, on
the other hand, does not try each option, but instead uses features of the code to make
a prediction. By making a prediction using simple properties of the code, our heuristics
are more efficient while still remaining effective. In fact, our technique could be used
as an alternative to the cost function used in their work.

8 Conclusions

Choosing which optimization algorithm to apply among different optimization algo-
rithms that differ in efficiency and effectiveness can avoid potentially costly compiler
optimizations. It is an important open problem. We consider here the particular case of
register allocation, with the possible choices being linear scan, graph coloring , and a
hybrid allocator that chooses between these two algorithms. Since many methods do
not gain additional benefit from applying graph coloring over linear scan, a hybrid al-
locator applies graph coloring only to a subset of the methods. We demonstrated that
for an aggressive optimizing compiler (in a typical adaptive scenario) it is possible to



Hybrid Optimizations: Which Optimization Algorithm to Use? 137

induce a function automatically that is competent at making this choice: we obtain the
effectiveness benefit of graph coloring and the efficiency benefit of linear scan.

Sometimes (only rarely) it is beneficial to perform graph coloring in a JIT, depending
on how long the program runs, etc. Since it is only rarely worthwhile, that emphasizes
the need for our heuristic to decide when to apply it. The general approach we took here
should apply in other optimization situations.

Supervised learning worked well for this learning task. In addition, the learning al-
gorithm we use produces understandable heuristics. As with any machine learning tech-
nique, devising the appropriate features is critical. Choosing which register allocation
algorithm to apply turns out to require only simple, cheap-to-compute features.

We conclude that machine learning shows promise for developing heuristics for
choosing between multiple algorithms for the same optimization task. A useful direc-
tion for future exploration is more expensive, rarely helpful, yet sometimes essential,
optimizations, such as redundant load and store elimination.
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Abstract. We show that classic PRE is also a maximum flow problem, thereby
revealing the missing link between classic and speculative PRE, and more impor-
tantly, establishing a common high-level conceptual basis for this important com-
piler optimisation. To demonstrate this, we formulate a new, simple unidirectional
bit-vector algorithm for classic PRE based only on the well-known concepts of
availability and anticipatability. Designed to find a unique minimum cut in a flow
network derived from a CFG, which is proved simply but rigorously, our algo-
rithm is simple and intuitive, and its optimality is self-evident. This conceptual
simplicity also translates into efficiency, as validated by experiments.

1 Introduction

Partial redundancy elimination (PRE) is a compiler optimisation that eliminates com-
putations that are redundant on some but not necessarily all paths in a program. As
a result, PRE encompasses both global common subexpression elimination and loop-
invariant code motion. Over the years, PRE has also been extended to perform other
optimisations at the same time, including strength reduction [8, 12, 16, 18], global value
numbering [3] and live-range determination [21]. For these reasons, PRE is regarded as
one of the most important optimisations in optimising compilers.

As a code transformation, PRE eliminates a partially redundant computation at a
point by inserting its copies on the paths that do not already compute it prior to the point,
thereby making the partially redundant computation fully redundant. PRE problems
come in two flavours: classic PRE and speculative PRE. Classic PRE, as described in
the seminal work [22], inserts a computation at a point only if the point is safe (or
down-safe) for the computation, i.e., only if the computation is fully anticipatable at the
point. On the other hand, speculative PRE may insert a computation at a point even if
the computation is partially but not necessarily fully anticipatable at the point. If the
computation cannot cause an exception and if the execution frequencies of the flow
edges in a CFG are available, speculative PRE may find transformations missed by
classic PRE, thereby removing more redundancies in dynamic terms than classic PRE.

In the case of classic PRE, Knoop, Rüthing and Steffen invented an optimal unidi-
rectional bit-vector formulation of the problem [17, 19]. This algorithm, known as Lazy
Code Motion (LCM), was later recasted to operate in static single assignment (SSA)
form [15]. Subsequently, a number of alternative formulations have been proposed
[7, 8, 9, 23]. While LCM and other earlier algorithms [8, 9] find code insertion points by
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modelling the optimisation as a code motion transformation, the latter ones [7, 23] avoid
this by identifying code insertion points directly. Apparently, a search for a conceptual
basis upon which an optimal formulation of classic PRE can be both developed and
understood more intuitively has been the driving force behind these research efforts.
Up to now, however, this conceptual basis has been elusive. All existing algorithms are
developed and reasoned about at the low level of individual program paths.

While classic PRE is profile-independent, speculative PRE is profile-guided. Given
a weighted CFG, where the weights of the flow edges represent their execution frequen-
cies, we have shown previously that speculative PRE is a maximum flow problem [26].
Finding an optimal transformation on a CFG amounts to finding a special minimum cut
in a flow network derived from the CFG. Furthermore, different optimal transformations
on a CFG may result if the weights of the flow edges in the CFG differ.

In this paper, we show for the first time that classic PRE is also a maximum flow
problem. This is the key to the main contribution of our paper: to provide a uniform
approach for classic and speculative PRE. The insight behind this finding lies in the fol-
lowing assumption made about classic PRE [17, 19]: all control flow edges are nonde-
terministic, or equivalently, have nonzero execution frequencies. We show that finding
the optimal transformation for a CFG amounts to finding a unique minimum cut in a
flow network derived from the CFG. Since all insertions in a CFG must be safe in clas-
sic PRE (as mentioned above), this unique minimum cut is invariant of the execution
frequencies of the flow edges in the CFG. This establishes the connection and highlights
the main difference between classic and speculative PRE. More importantly, our find-
ing provides a common high-level conceptual basis upon which an optimal formulation
of PRE can be more systematically and intuitively developed and proved. Every PRE
algorithm, if being optimal, must find the unique minimum cut on a flow network that
is derived from a CFG. As a result, tedious and non-intuitive reasoning that has been
practised at the lower level of control flow paths is dispensed with.

Based on this insight, we have developed a new, simple algorithm for classic PRE.
Our formulation, applicable to standard basic blocks, consists of solving four unidirec-
tional bit-vector data-flow problems based only on the well-known concepts of avail-
ability and anticipatability. Designed to find a unique minimum cut in a flow network
derived from a CFG, which is proved simply but rigorously, our data-flow equations
reason positively about the global properties computed without using logical negations.
Such a formulation is intuitive and its optimality self-evident. This conceptual simplic-
ity also translates into efficiency, as demonstrated by our experimental results.

The rest of this paper is organised as follows. Section 2 gives the background in-
formation. Section 3 shows that classic PRE is a maximum flow problem. We do so
constructively by giving an algorithm, MIN-PRE, that consists of solving three data-
flow problems and invoking a min-cut algorithm to find a unique minimum cut in a
flow network derived from a CFG. Section 4 compares and contrasts classic and specu-
lative PRE when both are viewed as maximum flow problems. In Section 5, we derive
from MIN-PRE a simple algorithm, called SIM-PRE, for classic PRE by solving four
data-flow problems only. Section 6 discusses some experimental results. Our simple al-
gorithm uses fewer bit-vector operations than three algorithms across 22 SPECcpu2000
benchmarks on two platforms. Section 7 reviews the related work and concludes.
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2 Background

A control flow graph (CFG), G = (N, E, W ), is a weighted directed graph, where N is
the set of basic blocks (or nodes), E the set of control flow edges and W : N ∪E �→ IN.
Given a node or edge x, W (x) represents its execution frequency (under an arbitrary
input). In addition, ENTRY ∈ N denotes its entry block and EXIT ∈ N its exit block,
which are both empty. Furthermore, every block is assumed to lie on some path from
ENTRY to EXIT. Let pred(G, n) be the set of all immediate predecessors of a block n
in G and succ(G, n) the set of all immediate successors of a block n in G.

Assumption 1. For every G = (N, E, W ), we have the following tautology:

∀ n ∈ N :
∑

m∈pred(G,n) W (m, n) =
∑

m∈succ(G,n) W (n, m)

As in [17, 19], we consider a non-SSA intermediate representation, where each state-
ment has the form v = e such that v is a variable and e a single-operator expression.
As is customary, we assume that local common subexpression elimination (LCSE) has
already been applied to all basic blocks. Given an expression e, the following three lo-
cal predicates associated with a block n are used in the normal manner. ANTLOCn is
true if e is locally anticipatable on entry to block n (i.e., block n contains an upwards
exposed computation of e). COMPn is true if e is locally available on exit from block
n (i.e., block n contains a downwards exposed computation of e). TRANSPn is true if
block n does not contain any modification to e. PRE is a global optimisation. So only
the upwards and downwards exposed computations of e, called the PRE candidates,
will be considered. A block can contain at most two PRE candidate computations. It is
important to be reminded that ANTLOCn and COMPn can both be true in block n, in
which case, either a common PRE candidate of e is locally available and anticipatable
simultaneously, implying that TRANSPn = true or two distinct PRE candidates of e
are locally available and anticipatable, respectively, implying that TRANSPn = false.

A PRE transformation for an expression is realised by replacing all redundant com-
putations of the expression by a new temporary that is initialised correctly at suitable
program points. We adopt the definition of PRE as used in LCM [19] except that we will
make use of edge insertions as in [7, 23, 26] rather than node insertions; these insertions
serve to make all the partially redundant computations fully redundant. Therefore, we
do not have to split critical edges, i.e., the edges leading from nodes with more than
one immediate successor to nodes with more than one immediate predecessor.

The fundamental assumption in classic PRE as stated clearly in LCM [17, 19] is that
all control flows in a CFG are nondeterministic. Equivalently, we have:

Assumption 2. Given G = (N, E, W ). In classic PRE, ∀ x ∈ (N ∪ E) : W (x) > 0.

A directed graph F = (V, A) is a flow network if it has two distinguished nodes, a
source s and a sink t, in V and a nonnegative capacity (or weight) for each edge in A.
Let S and T = V − S be a partition of V such that s ∈ S and t ∈ T . We denote by
(S, T ) the set of all (directed) edges with tail in S and head in T : (S, T ) = {(n, m) ∈
A | n ∈ S, m ∈ T }. A cut separating s from t is any edge set (C, C), where s ∈ C,
C = V − C is the complement of C and t ∈ C . The capacity of this cut is the sum
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of the capacities of all cut edges in the cut. A minimum cut is a cut separating s from t
with minimum capacity. The max-flow problem consists of finding a flow of maximum
value from the source s to the sink t. The max-flow min-cut theorem of [10] dictates
that such a flow exists and has a value equal to the capacity of a minimum cut.

3 Classic PRE as a Maximum Flow Problem

In classic PRE, only safe insertions are used as discussed previously. Based on this
safety constraint and Assumption 2, we show that classic PRE on a CFG is a maximum
flow problem and a special minimum cut on a flow network derived from the CFG leads
to the construction of the unique (lifetime) optimal transformation for the CFG — the
uniqueness was known earlier in [17, 19]. These results provide a common high-level
conceptual basis for developing, understanding and reasoning about PRE algorithms.

In Section 3.1, MIN-PRE is presented and illustrated by an example. In Section 3.2,
we give an intuitive explanation why classic PRE is a maximum flow problem. In Sec-
tion 3.3, we see that the optimality proof in this context is straightforward.

3.1 MIN-PRE

In classic PRE, a computation of an expression e is said to be redundant (partially
or fully) if it can be eliminated by using safe code insertions of the form te = e,
where te is a new temporary. A computation of e is said to generate some redundancies
if it can cause another computation of e (both may be identical, as in a loop) to be
redundant.

To shed the light on the nature of classic PRE on a CFG, we specify such a transfor-
mation for an expression e by using the following three sets (as in the GCC compiler):

DELETE gives the set of blocks where the upwards exposed computations of e are
redundant (partially or fully). Every such computation will be replaced by a new
temporary te. Note that a computation of e that is downwards but not also upwards
exposed cannot be redundant (i.e., removable using safe code insertions only).

COPY gives the set of all copy blocks where the downwards exposed computations
of e generate redundancies in the blocks given in DELETE but these computations
themselves (when they are also upwards exposed) are not redundant. Such a com-
putation will be replaced by te and preceded by a copy insertion of te = e. Note
that a computation of e that is upwards but not also downwards exposed cannot
generate any redundancies (i.e., cause other computations to be redundant).

INSERT gives the set of edges, called insertion edges, on which te = e will be in-
serted, thereby making all partially redundant computations of e fully redundant.

This definition distinguishes clearly the different roles that the three different code mod-
ifications play in a PRE transformation. As we shall see shortly, DELETE and INSERT
are so closely related that both can be built simultaneously. However, more information
about redundancy-generating computations is needed in order to build COPY.

A transformation is correct if every use of te is identified with a definition of te =
e in every execution path. The total number of computations of e eliminated by a
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Fig. 1. A running example

transformation in G = (N, E, W ) is given by
∑

b∈DELETE W (b) −
∑

e∈INSERT
W (e). A transformation is computationally optimal if this term is maximised and is
lifetime optimal (or optimal for short) if the live ranges of all definitions of te are also
minimised.

Our running example is given in Figure 1. An optimal PRE algorithm will take as
input the CFG shown in Figure 1(a) and produce as output the transformed CFG as
shown in Figure 1(f). The optimal transformation for the example is specified by:

DELETE = {6, 9, 11}
COPY = {5, 6}

INSERT = {(4, 6), (7, 9)}
(1)
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Figure 2 gives a mincut-based algorithm, MIN-PRE, for classic PRE by modelling it
as a maximum flow problem. The reader is invited to read the algorithm since it is made
to be self-contained. Below we explain its steps and illustrate them by our example.

We start with a weighted CFG, G = (N, E, W ), where the weights of its blocks
and flow edges are their execution frequencies. In the example given in Figure 1(a),
we do not actually show the weights. As we shall see later, the optimal transformation
in classic PRE is independent of the weights in a CFG. In Steps 1 and 2, we compute
the standard global properties, availability and anticipatability, on G. Based on this
information, in Step 3, we derive an important subgraph Geg from G. Geg contains
every essential edge (m, n) ∈ E such that ESS(m, n) = AVAILOUTm · ANTINn

holds and its two incident nodes m, n ∈ N . Figure 1(b) depicts this subgraph for the
running example. By definition, the following two properties about Geg are true.

Lemma 1. Let n be a node in G such that ANTLOCn = true. If the upwards exposed
computation in n is not fully redundant, then n is always included in Geg.

Note that n in the above lemma may also be contained in Geg even if n is fully redun-
dant, in which case, n must have at least one outgoing edge that is essential.

In Figures 1(a) and (b), we see that Geg contains block 2, 5, 6, 9 and 10 but not 11.

Lemma 2. For every computationally optimal transformation, its INSERT must be a
subset of the edge set Eeg of Geg.

Proof. By Assumption 2, a transformation whose INSERT contains (m, n)�∈Eeg such
that AVAILOUTm=true (ANTINn=false) cannot be computationally optimal (safe). ��

Thus, Geg is the fundamental subgraph of G where code insertions are to be made to
make all the partially redundant computations (i.e., those that are removable by using
safe code insertions only) in G fully redundant.

In Step 4, we obtain a multi-source, multi-sink flow network, Gmm, from Geg.
Figure 1(c) depicts this network for our example, where block 2 has been split (con-
ceptually). Note that N ss

eg = {2}. Intuitively, an insertion of t = a + b that makes
the upwards exposed computation a + b in block 6 fully redundant must be made
“below” block 2. Hence, the conceptual split. Note that the sources and sinks are:
Smm = {1, 2−, 3, 7, 8} and Tmm = {2+, 5, 6, 9, 10}. By construction, Smm ∩Tmm =
∅ holds. Finally, N (E) relates the nodes (edges) in Gmm to those in G. We have
N (2+) = N (2−) = 2 and N (n) = n for other nodes n. As a result, E(1, 2+) = (1, 2),
E(2−, 4) = (2, 4), E(2−, 5) = (2, 5) and E(m, n) = (m, n) for other edges.

By construction, the following two lemmas about the structure of Gmm are immedi-
ate. Lemma 3 says that every sink in Gmm contains an upwards exposed computation
(which cannot be fully redundant since at least one of its incoming edges is essential).
The correctness of this lemma can be verified in Figure 1(c). Lemma 4 gives the key
reason why classic PRE can be more efficiently solved by data-flow analysis only and
also reveals its difference with speculative PRE (Section 4).

Lemma 3. Let n be a node in Gmm. Then n ∈ Tmm iff ANTLOCN (n) = true.

Proof. Follows from the construction of Geg and the derivation of Gmm from Geg by
means of the conceptual split as conducted in Step 4 of MIN-PRE. ��
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(1) Compute global availability on G:

AVAILINn =
false if n = ENTRY

m∈pred(G,n)

AVAILOUTm otherwise

AVAILOUTn = COMPn + AVAILINn · TRANSPn

(2) Compute global anticipatability on G:

ANTOUTn =
false if n = EXIT

m∈succ(G,n)

ANTINm otherwise

ANTINn = ANTLOCn + ANTOUTn · TRANSPn

(3) Define Geg = (Neg, Eeg, Weg) as a subgraph of G:
Neg = {n ∈ N | ∃ m ∈ N : ESS(m, n) ∨ ∃ m ∈ N : ESS(n, m)}
Eeg = {(m, n) ∈ E | ESS(m, n)}
where ESS(m,n) = AVAILOUTm · ANTINn for all (m,n) ∈ E.

(4) Derive a multi-source, multi-sink network Gmm =(Nmm, Emm, Wmm) from Geg as
follows. A source (sink) is a node without predecessors (successors). Let N ss

eg={n∈Neg

| ANTLOCn ∧ TRANSPn ∧ pred(Geg, n) �= ∅ ∧ succ(Geg, n) �= ∅}. For every such a
source-sink node n ∈ N ss

eg, containing instructions I1, . . . , Ip, such that Ik is the first
modification to expression e, replace n by two new nodes n+ and n−, where n+ contains
I1, . . . , Ik−1 and n− contains Ik, . . . , Ip, such that the incoming (outgoing) edges of n
in Geg are now directed into (out of) n+ (n−) and no edges exist between n+ and n−.
(If Ik is of the form h = e such that e is upwards exposed, and also modified by h,
i.e., the LHS of Ik, then split conceptually h = e into h′ = e; h = h′ before splitting n.)
Let Smm ={n∈Nmm | pred(Gmm, m)=∅} and Tmm ={n∈Nmm | succ(Gmm, m)=∅}.
Let N : Nmm �→ N such that N (n+) = N (n−) = N (n) = n.
Let E : Emm �→ E such that E(m,n) = (N (m),N (n)).

(5) Derive a single-source, single-sink flow network Gss = (Nss, Ess, Wss) from Gmm as
follows. Introduce two new nodes, s and t, add an edge with weight ∞ from the source
s to every node in Smm and an edge with weight ∞ from every node in Tmm to the sink t.

(6) Find a unique minimum cut, E−1(CΛ) = (Λ, Λ), in Gss, as follows:

(a) Apply any min-cut algorithm to find a maximum flow f in Gss.
(b) Let Gf

ss=(Nss, E
f
ss, W

f
ss) be the residual network induced by f [5], where

Ef
ss = {(u, v) ∈ Ess | Wss(u, v) − f(u, v) > 0}

W f
ss = Ef

ss �→ IN, where W f
ss(u, v) = Wss(u, v) − f(u, v)

(c) Let Λ={n∈Nss | there is a path from n to sink t in Gf
ss} and Λ=Nss\Λ.

(d) Let CΛ =Cins
Λ ∪--- Ccopy

Λ , where Ccopy
Λ ={(m,n)∈CΛ | ∀ p∈pred(G, n) : (p, n)∈CΛ}.

(7) Solve the “live range analysis for te” in G:

LIVEOUTn =
false if n = EXIT

m∈succ(G,n)

(LIVEINm · ((n, m) �∈ CΛ)) otherwise

LIVEINn = ANTLOCn + LIVEOUTn · TRANSPn

(8) Define the optimal transformation as follows:
DELETE = {n ∈ N | ANTLOCn ∧ UE-REDUNDn}
COPY = {n ∈ N | COMPn ∧ LIVEOUTn ∧ (TRANSPn ∨ UE-REDUNDn)}
INSERT = Cins

Λ

where UE-REDUNDn = ({(m, n) ∈ E | m ∈ pred(G, n)} �⊆Ccopy
Λ ) for all n ∈ N .

Fig. 2. A mincut-based algorithm, MIN-PRE, for classic PRE on G = (N, E, W )
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Lemma 4. For every n ∈ Nmm \ (Smm ∪ Tmm), the following statement is true:∑
m∈pred(Gmm,n)

W (m, n) �
∑

m∈succ(Gmm,n)

W (n, m) (2)

Proof. For every n ∈ Nmm \ (Smm ∪ Tmm), we must have n ∈ Geg. It suffices to
show that all outgoing edges of n in G are included in Gmm, i.e., ∀ m ∈ succ(G, n) :
(n, m) ∈ Nmm. By Lemma 3, ANTLOCn = false. Since n �∈ Smm, then there
must exist an incoming edge (p, n) of n in Gmm such that ESS(p, n) = true, i.e.,
AVAILOUTp = false and ANTINn = true. When AVAILOUTp = false, we have
AVAILINn = false. Note that ANTLOCn ∧ ANTINn =⇒ TRANSPn. Furthermore,
ANTLOCn ∧ TRANSPn =⇒ COMPn. Thus, AVAILOUTn = false and ANTOUTn =
true. When ANTOUTn = true, by definition, we have ∀ m ∈ succ(G, n) : ANTINm =
true. Hence, ∀ m ∈ succ(G, n) : ESS(n, m) = AVAILOUTn ∧ ANTINm = true,
implying that ∀ m ∈ succ(G, n) : (n, m) ∈ Nmm. ��

In Step 5, we obtain a single-source, single sink flow network Gss from Gmm in the
normal manner. In Step 6, we find a unique minimum cut E−1(CΛ) on Gss by applying
the “Reverse” Labelling Procedure of [10], where Λ is the smallest possible (Lemma 8).
Figure 1(d) depicts Gss for our example, together with the following minimum cut:

CΛ = {(1, 2), (2, 5), (3, 5), (4, 6), (7, 9), (8, 10)}
Cins

Λ = {(4, 6), (7, 9)}
Ccopy

Λ = {(1, 2), (2, 5), (3, 5), (8, 10)}
(3)

Such a partition of CΛ into Cins
Λ and Ccopy

Λ is significant due to the fundamentally differ-
ent roles they play in defining DELETE, COPY and INSERT given in Step 8. Accord-
ing to their definitions in Step 6(d), Cins

Λ (Ccopy
Λ ) includes a cut edge (m, n) iff some but

not all (all) incoming edges of n in the original CFG, G, are cut edges.
In order to define DELETE, we need to know if a computation is redundant or not.

This is trivial for downwards but not also upwards exposed computations.

Lemma 5. Let n be a node in G such that COMPn = true. If TRANSPn = false, then
the downwards exposed computation in n is not redundant.

To check if an upwards exposed computation is redundant or not, we apply Lemma 6,
which makes use of the predicate UE-REDUNDn introduced at the end of Step 8.

Lemma 6. Let n be a node in Gmm, where n′ = N (n) is the corresponding node
in G. Then UE-REDUNDn′ = false iff the upwards exposed computation in n′ is not
redundant (i.e., not removable by using safe code insertions only).

Proof. To prove “=⇒”, we note that MIN-PRE finds the minimum cut (Λ, Λ) by ap-
plying the “Reverse” Labelling Procedure of [10] to Gss. Therefore, n must be a sink
in Gmm, which implies ANTLOCn′ = true by Lemma 3. Let X be the set of all nodes
in Gmm \ (Smm ∪ Tmm) lying on a path from a source in Gmm to n. By Lemma 4,
UE-REDUNDn′ = false, i.e., all incoming edges of n′ in G are included in Ccopy

Λ iff
∀ p ∈ X :

∑
m∈pred(Gmm,p) W (m, p) =

∑
m∈succ(Gmm,p) W (p, m). To prove “⇐=”,
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we know that n′ must be contained in Geg by Lemma 1. By Lemma 3, n is a sink node
in Gmm. By Lemma 4, the upwards exposed computation in n′ is not redundant iff
∀ p ∈ X :

∑
m∈pred(Gmm,p) W (m, p) =

∑
m∈succ(Gmm,p) W (p, m). A combination

of the results proved so far concludes the proof. ��

Looking at Step 8, we find that Ccopy
Λ is sufficient for defining DELETE (Lemmas 5

and 6) while Cins
Λ is sufficient for defining INSERT. However, Lemmas 5 and 6 do not

tell us if a computation that is not redundant generates any redundancies or not. This
means that some extra information is required in order to define COPY completely.

A naive solution is to copy at all blocks containing non-redundant computations:

COPYall ={n ∈ N | COMPn∧(TRANSPn ∨ UE-REDUNDn)} (4)

Then, COPYall, together with DELETE and INSERT given in Step 8, will yield a
computationally optimal transformation (as implied by the proof of Theorem 1). In
terms of LCM, this transformation corresponds to ALCM (Almost LCM) [17, 19].

For the running example, such a computationally optimal transformation is:

DELETE = {6, 9, 11}
COPYall = {5, 6, 10}
INSERT = {(4, 6), (7, 9)}

(5)

where DELETE and INSERT are the same as in (1). This results in the transformed
code in Figure 1(e). However, the definition of t in block 10 is only used in that block.
Such a copy operation should be avoided since the live range of t is unnecessarily in-
troduced. The downwards exposed computations of this kind are known to be isolated
[17, 19]. In Step 7, we solve a third data-flow problem so that COPY ⊆ COPYall is de-
fined in Step 8 with all these isolated blocks being excluded. Note that a copy is required
in a block n if it contains a downward exposed computation, which generates redundan-
cies and is not upwards exposed (i.e., COMPn ∧ LIVEOUTn ∧ TRANSPn (Lemma 5))
or if it contains an upward exposed computation, which generates redundancies and is
not redundant itself (i.e., COMPn ∧ LIVEOUTn ∧ UE-REDUNDn (Lemma 6)).

This problem can be understood as one of solving the live variable analysis for tem-
porary te on the transformed CFG realised by DELETE and INSERT and COPYall.
By comparing COPYall and COPY, we see that we include a block in COPY by also
requiring te to be live on exit from that block. This guarantees that the downwards
exposed computation of e in such a block must generate some redundancies.

Consider Figure 1(e), LIVEOUT5 = LIVEOUT6 = true but LIVEOUT10 = false.
Hence, COPY includes only blocks 5 and 6. The final transformation is given in (1),
which results in the optimally transformed code shown in Figure 1(f).

Remark. If we apply the (normal) Labelling Procedure of [10] in Step 6 of MIN-PRE,
(Λ, Λ) will be found such that Λ is the largest. The PRE transformation obtained using
such a cut will correspond to the Busy Code Motion (BCM) as described in [17, 19].

3.2 (Full) Availability as the Single Commodity

Consider classic PRE carried out optimally on a CFG G for an expression e. All (par-
tially or fully) redundant computations of e, which must be upwards exposed, as
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identified by DELETE, are consumers of the value of e. All downwards exposed com-
putations of e that generate redundancies and are not redundant themselves, as identified
by COPY, are producers of the value of e. Classic PRE can be modelled as a single-
commodity maximum flow problem. The value of e (i.e., the commodity) is to be routed
from the existing producers to the existing consumers under the condition that e must
be (fully) available at the consumers. To achieve this full availability, new producers, as
identified by INSERT, can be introduced in G, or precisely, Gss under the safe constraint
that only the existing consumers can receive the value of e. The cost of introducing these
new producers (i.e., the number of computations of e incurred) is equal to the maximum
flow on Gss. In order to be computationally optimal, their placements are the cut edges
of a minimum cut as implied in the proof of Theorem 1. In the optimal transformation,
new producers must be installed according to the unique minimum cut found by applying
essentially the “Reverse” Labelling Procedure of [10] to Gss.

3.3 Optimality

First of all, we recall Lemma 10 from [14] on the structure of all minimum cuts.

Lemma 7. If (A, A) and (B, B) are minimum cuts in an s-t flow network, then
(A ∩ B, A ∩ B) and (A ∪ B, A ∪ B) are also minimum cuts in the network.

This lemma implies immediately that a unique minimum cut (C, C) exists such that C
is the smallest, i.e., that C ⊂ C′ for every other minimum cut (C′, C′). Note that ⊂
is strict. In addition, this lemma is valid independently of any maximum flow that one
may use to enumerate all maximum cuts for the underlying network.

In fact, for the minimum cut (Λ, Λ) found by MIN-PRE, Λ is the smallest.

Lemma 8. Let Scut be the set of minimum cuts in Gss = (Nss, Ess, Wss). Consider
the minimum cut (Λ, Λ) in Gss found by MIN-PRE. Then:

Λ ⊆ C for all (C, C) ∈ Scut (6)

where the equality in ⊆ holds iff Λ = C.

Proof. By Assumption 2, Gss is an s-t flow network with positive edge capacities only.
In Step 6 of MIN-PRE, we find the minimum cut (Λ, Λ) by applying essentially the
“Reverse” Labelling Procedure of [10]. Its construction ensures that (6) holds with re-
spect to the maximum flow f used. Lemma 7 implies that this “smallest minimum cut”
is independent of the maximum flow f . Hence, (6) is established. ��

Theorem 1. The transformation found by MIN-PRE is (lifetime) optimal and unique.

Proof. Consider an expression e in G = (N, E, W ). Let LO denote the transformation
found by MIN-PRE, which is represented by DELETE, INSERT and COPY. Let a
lifetime optimal transformation be represented by DELETET , INSERTT and COPYT .
By Lemma 6, DELETE = DELETET . By also applying Lemma 6 and noting that n ∈
COPY iff it generates redundancies in DELETE, we must have COPY = COPYT .
Recall that E−1(CΛ) = (Λ, Λ) is the minimum cut found by MIN-PRE in its Step 6,



A Fresh Look at PRE as a Maximum Flow Problem 149

where CΛ = Cins
Λ ∪--- Ccopy

Λ . By Lemma 2, INSERTT must be drawn from the edges of
Geg. Clearly, E−1(Ccopy

Λ ∪--- INSERTT ) must be a cut since T cannot be valid other-
wise. Furthermore, E−1(Ccopy

Λ ∪--- INSERTT ) must be a minimum cut. Otherwise, LO
constructed using a minimum cut will cause fewer computations of e to be evaluated.
Let E−1(Ccopy

Λ ∪--- INSERTT ) = (Λ′, Λ′). By Lemma 8, Λ ⊆ Λ′. Thus, the equality in
Λ ⊆ Λ′ must hold. Otherwise, the live ranges of te = e in LO will be better than those
in T . Hence, LO = T is lifetime optimal, which is unique since (Λ, Λ) is. ��

4 Classic PRE vs. Speculative PRE

In [26], we formulated speculative PRE as a maximum flow problem. This work shows
that classic PRE is also a maximum flow problem. We recognise immediately that the
fundamental difference between the two optimisations lies only in Step 2 of MIN-PRE.
In the case of speculative PRE, we will compute partial anticipatability rather than full
anticipatability. As a result, two seemingly different PRE problems are unified.

We compare and contrast classic and speculative PRE by using Figures 1 and 3.
In Figure 3(a), our example CFG G is annotated with two different edge profiles.
Figures 3(b) and 3(c) depict (identically) the flow network Gspre

ss obtained by applying
MIN-PRE to G except that partial anticipatability is computed in its Step 2. Compared
to Gss in Figure 1(d) in classic PRE, Gspre

ss has two more edges: (3, 7) and (7, 8).

= a + b
a =

a =

= a + b

= a + b
a =

= a + b

= a + b

= a + b
= a + b

20
80

10 10

10 30

50

30
30

40

10

50
20

10
40

40
10

10

50
80

50
80

10

1

2

3

4
5

6

7

8

9

10
11

12

s

= a + b

a = a =

= a + b

= a + b
a =

= a + b

= a + b

= a + b

t

1

2+

2− 3

4 5

6

7

8

9

10

20

1010

10

50

30

50
10

10

s

= a + b

a = a =

= a + b

= a + b
a =

= a + b

= a + b

= a + b

t

1

2+

2− 3

4 5

6

7

8

9

10

20

1010

10

50

30

20
40

10

(a) G annotated with two
edge profiles W1 and W2

(b) Lifetime optimal solution
wrt edge profile W1 on Gspre

ss

(c) Lifetime optimal solution
wrt edge profile W2 on Gspre

ss

Fig. 3. Profile-sensitivity of speculative PRE. In (a), the CFG from Figure 1(a) is annotated with
two different edge profiles. If an edge is labelled by x, W1(e) = W2(e) = x. If an edge label is
x
y

, W1(e) = x and W2(e) = y. The optimal solutions for W1 and W2 are given in (b) and (c).
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The difference between classic and speculative PRE translates into the structural dif-
ference between Gmm and Gspre

mm, from which Gss and Gspre
ss are derived. Lemma 4 that

is valid for Gmm in classic PRE is not valid for Gspre
mm in speculative PRE. For example,

block 8 in Gspre
ss given in Figure 3(b) or 3(c) is one such a counterexample node. As

a result, Gspre
ss is generally an arbitrary flow network, implying that speculative PRE

needs to be solved optimally using a min-cut algorithm. In addition, speculative PRE is
profile-sensitive. Different execution profiles can result in different optimal transforma-
tions as illustrated in Figures 3(b) and 3(c). In both cases, only the execution frequencies
on edges (7, 8) and (7, 9) are different. Note that the solution shown in Figure 3(b) is
the same as the one found in classic PRE (Figure 1(d)). In speculative PRE, the ben-
efit of an optimal transformation depends on the accuracy of the profiling information
used. More computations may be evaluated if the profiling information used is com-
pletely inaccurate. On the other hand, classic PRE is profile-independent and thus con-
servative. Never will more computations be evaluated in the transformed code. Due to
Lemma 4, different profiles always result in the same optimal transformation, as implied
in Theorem 1. The reader can verify that MIN-PRE will return exactly the same mini-
mum cut in Figure 1(d) for the two execution profiles given in Figure 3(a).

5 SIM-PRE: A Simple Mincut-Motivated Algorithm

Due to the special structure of Gmm, and consequently, Gss, as identified in Lemma 4,
we can find the unique minimum cut E−1(CΛ) = Cins

Λ ∪--- Ccopy
Λ = (Λ, Λ) found in

Step 6 of MIN-PRE by solving one data-flow problem. Based on MIN-PRE, we have
developed a simple and efficient algorithm, called SIM-PRE and given in Figure 4, for

(1) Compute global availability on G:
(2) Compute global anticipatability on G:
(3) Compute global availability perceived to be done on the transformed CFG:

T G-AVAILINn =

false if n=ENTRY

AVAILINn + ANTINn ·

m∈pred(G,n)

T G-AVAILOUTm otherwise

T G-AVAILOUTn =COMPn + T G-AVAILINn · TRANSPn

(4) Compute a restricted form of partial anticipatability on the transformed CFG:

T G-PANTOUTn =
false if n = EXIT

T G-AVAILOUTn ·
m∈succ(G,n)

T G-PANTINm otherwise

T G-PANTINn = ANTLOCn + T G-PANTOUTn · TRANSPn

(5) Define the optimal transformation as follows:
DELETE = {n ∈ N | ANTLOCn ∧ T G-AVAILINn}

COPY = {n ∈ N | COMPn ∧ T G-PANTOUTn ∧ (TRANSPn ∨ T G-AVAILINn)}
INSERT = {(m, n) ∈ E | T G-AVAILOUTm ∧ T G-AVAILINn}

Fig. 4. A mincut-motivated algorithm, SIM-PRE, for classic PRE on G = (N, E, W )
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classic PRE by solving four data-flow problems. Steps 1 and 2 remain the same. In
Step 3, we solve a data-flow problem in G but the problem can be understood as one
of computing global availability on the optimally transformed graph, Gopt, of G. The
two global properties, T G-AVAILINn and T G-AVAILOUTn, are defined for the entry
and exit of every block n in Gopt. T G-AVAILOUTn is computed in the normal manner.
In the case of T G-AVAILINn, an expression e is available on entry to block n in Gopt
if it is already available in G. In addition, if e is available along some incoming edges
of block n but not along some others (m, n) in Gopt and if e is (fully) anticipatable on
entry to n in G, then (m, n) ∈ Cins

Λ must be an insertion edge. After te = e has been
made on all these insertion edges, T G-AVAILINn = true will hold. Hence, we have:

UE-REDUNDn = T G-AVAILINn (7)

which leads directly to:

Cins
Λ = {(m, n) ∈ E | T G-AVAILOUTm ∧ T G-AVAILINn}

Ccopy
Λ =

⋃
n∈N :ANTLOCn∧UE-REDUNDn

{(m, n) ∈ E | m ∈ pred(G, n)} (8)

To define COPY, we do not use the “live variable analysis” given in Step 7 of
MIN-PRE. Instead, we solve a different data-flow problem, which is simpler for two
reasons. First, we do not need to compute the predicate (m, n) ∈ CΛ on flow edges. Sec-
ond, the meet operator will use fewer bit-vector operations than before. This problem
can be understood as one of computing partial anticipatability for an expression e on the
transformed graph Gopt but only at the points where e is available in Gopt. (Note that
T G-PANTINn, which is not used, can be true on entry to block n if ANTLOCn = true.)

Theorem 2. The transformation found by SIM-PRE is lifetime optimal.

Proof. Let LO be the transformation found by MIN-PRE, which is represented by
DELETE, INSERT and COPY and SIM the transformation found by SIM-PRE, which
is represented by DELETESIM , INSERTSIM and COPYSIM . By Lemma 4, (7) and (8)
hold. By Lemmas 5 and 6, DELETE = DELETESIM and INSERT = INSERTSIM .
By definition, T G-PANTOUTn = true iff te is live on exit from n. So T G-PANTOUTn

= LIVEOUTn. Thus, COPY = COPYSIM . This means that LO=SIM. ��

6 Experimental Results

We evaluate the efficiencies of SIM-PRE and three other algorithms (denoted by LCM-
DS, LCM-DS+COPY and E-Path) in terms of the total number of bit-vector operations
performed on benchmark programs. All algorithms are implemented in GCC 3.4.3 and
invoked to operate at its RTL (Register Transfer Language). We have applied the four
algorithms to all 22 C/C++/FORTRAN SPECcpu2000 benchmarks compiled on two
different platforms: Intel Xeon and SUN UltraSPARC-III. Due to architectural differ-
ences, the RTL representations on two platforms are drastically different.

LCM-DS denotes the GCC’s implementation of a variant of LCM that was described
in [9]. This algorithm assumes that the result of an expression is always available in a
distinct temporary. Therefore, COPY is not computed. Since this assumption is not
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Fig. 5. A comparison of four algorithms on Xeon
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Fig. 6. A comparison of four algorithms on UltraSPARC-III

valid for RTL, GCC does a brute-force search on a CFG to compute COPY for each
expression separately. There is no way to translate these graph traversal operations into
equivalent bit-vector operations. Therefore, LCM-DS+COPY denotes the algorithm
formed by combining LCM-DS and the 4th data-flow analysis used in SIM-PRE for
computing COPY. E-Path is a recent new algorithm presented in [7].

SIM-PRE, LCM-DS+COPY and E-Path each solve four data-flow problems while
LCM-DS solves only three (as discussed above). The first two problems, availabil-
ity and anticipatability, are all the same. These algorithms differ only in how the re-
maining problem(s) are formulated. The efficiency of an algorithm is measured in
terms of the number of bit-vector operations performed by all data-flow problems in an
algorithm.

All algorithms are implemented using the bit-vector routines provided by GCC and
operate on the same set of PRE candidate expressions used by GCC. A PRE candidate
expression is always the RHS of an assignment, where the LHS is a virtual register. The
RHS expressions that are constants or virtual registers are excluded (since no computa-
tions are involved). So are any expressions such as call expressions with side effects.

Figure 5 gives the (normalised) bit-vector operations consumed by four algorithms
on Xeon. In LCM-DS (and LCM-DS+COPY), the data-flow equations for computing
EARLIEST and LATER are expensive due to the excessive use of logical negations and
somewhat complex equations employed. In E-Path, the equations used in the last two
data-flow problems are more complex than those in SIM-PRE. In particular, the meet
operators in Eps ini and SA outi are more expensive to evaluate. Figure 6 gives our ex-
perimental results on UltraSPARC-III. In both computer platforms, SIM-PRE requires
fewer bit-vector operations than each of the other three algorithms. The key reason for
SIM-PRE’s efficiency is that the equations in solving its last two data-flow problems
are simpler. Since these two problems are formulated to find a unique minimum cut



A Fresh Look at PRE as a Maximum Flow Problem 153

for a CFG, we reason positively about the two global properties without using logical
negations. So the number of bit-vector operations used are reduced.

7 Related Work and Conclusions

LCM [17, 19] and its extensions [8, 15] find code insertion points by modelling the op-
timisation as a code motion transformation as suggested in [6]. This approach is char-
acterised by a few concepts, such as earliest, latest and isolated, that are not inherent in
the PRE problem itself. Alternatively, some formulations of classic PRE [7, 23] avoid
these concepts by identifying code insertion points directly. The driving force behind
the development of these different formulations has probably been the insatiable desire
to find a good conceptual basis upon which an optimal formulation of classic PRE can
be easily developed, understood and reasoned about. However, in all existing formula-
tions of classic PRE, data-flow equations are still cleverly but ad hocly designed. Their
optimality is usually not obvious to their users and their proofs tedious and non-intuitive
since the proofs have always been conducted at the low level of individual paths. This
work provides a common high-level conceptual basis upon which an optimal formula-
tion of PRE can be developed and proved. All optimal algorithms must find one way or
another the unique minimum cut on a flow network Gss derived from a CFG.

Classic PRE has been extended to perform other important optimisations, including
strength reduction [8, 12, 16, 18], global value numbering [3], live-range determination
[21], code size reduction [24], redundant load/store elimination [21] and data specula-
tion [20]. Its scope has also been extended by means of code restructuring [2].

The earliest papers on speculative PRE can be found in [11, 13]. There are three
computationally optimal algorithms for speculative PRE [1, 4, 25]. Later we also devel-
oped a lifetime optimal algorithm [26]. This work shows that both seemingly different
problems are inherently related and can be unified under a common conceptual basis.

PRE is an important optimisation in optimising compilers and also serves as a classic
classroom example for iterative and worklist data-flow analysis. The results and insights
presented in this work are expected to be valuable in both settings.
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Abstract. Intel Extended Memory 64 Technology (EM64T) and AMD 64-bit 
architecture (AMD64) are emerging 64-bit x86 architectures that are fully x86 
compatible. Compared with the 32-bit x86 architecture, the 64-bit x86 architec-
tures cater some new features to applications. For instance, applications can 
address 64 bits of virtual memory space, perform operations on 64-bit-wide 
operands, get access to 16 general-purpose registers (GPRs) and 16 extended 
multi-media (XMM) registers, and use a register-based argument passing con-
vention. In this paper, we investigate the performance impacts of these new fea-
tures from compiler optimizations’ standpoint. Our research compiler is based 
on the Intel Fortran/C++ production compiler, and our experiments are con-
ducted on the SPEC2000 benchmark suite. Results show that for 64-bit-wide 
pointer and long data types, several SPEC2000 C benchmarks are slowed down 
by more than 20%, which is mainly due to the enlarged memory footprint. To 
evaluate the performance potential of 64-bit x86 architectures, we designed and 
implemented the LP32 code model such that the sizes of pointer and long are 
32 bits. Our experiments demonstrate that on average the LP32 code model 
speeds up the SPEC2000 C benchmarks by 13.4%. For the register-based argu-
ment passing convention, our experiments show that the performance gain is 
less than 1% because of the aggressive function inlining optimization. Finally, 
we observe that using 16 GPRs and 16 XMM registers significantly outper-
forms the scenario when only 8 GPRs and 8 XMM registers are used. However, 
our results also show that using 12 GPRs and 12 XMM registers can achieve as 
competitive performance as employing 16 GPRs and 16 XMM registers. 

1   Introduction 

In year 2003, AMD first introduced the AMD64 Opteron processor family that ex-
tends the existing 32-bit x86 architecture to 64-bit. In the following year, Intel an-
nounced that the Intel Extended Memory 64 Technology (EM64T) would be added to 
a series of IA-32 processors, which includes the Pentium 4 and Pentium M proces-
sors. Both AMD’s AMD64 architecture and Intel’s EM64T architecture allow appli-
cations to access up to one terabyte of memory address space. In addition, 64-bit 
Windows and Linux operating systems running on 64-bit x86 processors are sup-
ported by Microsoft, Red Hat and SuSE. Intel’s 64-bit extension technology software 
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developer’s guide [1] details the EM64T architecture and the programming model. 
With the advent of 64-bit x86-compatible processors, it is imperative to understand its 
performance potential and its capability. Although the experiments of this study are 
done on the EM64T machine, we believe many of the results and insights can be ap-
plied to  the AMD64 machine. (Note that EM64T and AMD64 are nearly binary 
compatible with each other, except for some of the instructions like AMD’s 3DNOW 
and Intel’s SSE3.) 

The 64-bit x86 architecture furnishes many advantages over the 32-bit x86 archi-
tecture. The main advantages include: (1) 64-bit pointers over 32-bit pointers. 64-bit 
pointer allows applications to get access to one terabyte address space directly; (2) 64-
bit-wide general purpose registers (GPRs) over 32-bit-wide GPRs. The 64-bit-wide 
GPR allows 64-bit integer operations to be executed natively; and (3) 16 GPRs and 16 
XMM registers over 8 GPRs and 8 XMM registers. With more registers, more values 
can be put into registers instead of in memory, and thus improve the performance. 
However, on the other side, we noticed that the 64-bit x86 architecture does not favor 
all the applications. For instance, within the 64-bit environment, some system vendors 
run 32-bit applications to report the peak performance, and a prior experiment [15] 
discusses several SPEC benchmarks whose 32-bit code can run substantially faster 
than their 64-bit counterparts can. 

In this paper, we evaluate how these new features provided by the 64-bit x86 archi-
tecture can affect applications’ performance from compiler optimizations’ perspec-
tive. The contributions of this paper are threefold. First, we implemented the LP32 
code model that supports 32-bit-wide long and pointer data types, and measured the 
performance impact of the LP32 code model. Secondly, we compared the perform-
ance difference using two different argument passing conventions. Lastly, we studied 
the sensitivities of applications’ performances with respect to the number of allocat-
able registers. 

The rest of the paper is organized as follows. In Section 2, we describe the infra-
structure of the experimental framework. In Section 3, we evaluate the performance 
impact of the LP32 code model. In Section 4, we compare the register-based argu-
ment passing convention with the stack-based argument passing convention. In 
Section 5, we evaluate how applications’ performances are improved with more allo-
catable registers. In Section 6, we briefly describe how the other 64-bit x86 features 
can improve application’s performance. Finally, we conclude our study in Section 7. 

2   Experimental Framework 

In this section, we first give an overview of the 64-bit x86 architecture, and then illus-
trate how we set up the experimental infrastructure, which include how we construct a 
research compiler and how we characterize the performance impact of the 64-bit x86 
architecture’s new features. 

2.1   Overview of the 64-bit x86 Architecture 

The 64-bit x86 architecture is an extension of the 32-bit x86 architecture: it increases 
the virtual linear address space from 32 bits to 64 bits, and supports physical address 
space to 40 bits. The 64-bit x86 architecture supports three operating modes: (1) 
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legacy mode, which enables 32-bit operating system to run 32-bit software, (2) com-
patibility mode, which enables 64-bit operating system to run 32-bit legacy software 
without any modification, and (3) 64-bit mode, which enables the 64-bit operating 
system to run 64-bit software that can get access to the 64-bit flat linear address 
space. Only software running on 64-bit mode can get access to the extended registers, 
and directly address up to one terabyte of memory space. 

Evolved from the IA-32 architecture, the 64-bit x86 architecture doubled the num-
ber of GPRs and XMM registers from 8 to 16, respectively. In addition, the width of 
GPRs is extended from 32 bits to 64 bits. Equipped with more registers, the argument 
passing convention is changed considerably: instead of passing arguments through 
stack, now six GPRs and six XMM registers are dedicated to pass arguments [8].  

In spite of rendering attractive new features, the 64-bit architecture comes at the 
cost of enlarging memory footprint. In both Linux and Windows operating systems, 
the size of pointer data type is widened from 32 bits to 64 bits, and in Linux operating 
system, the size of long data type is widened from 32 bits to 64 bits. Enlarged data 
types could degrade the performance of pointer intensive applications, because now 
they have bigger memory footprint that causes more cache misses. As another side ef-
fect of 64-bit address, occasionally sign extensions are required to perform address 
computations through 32-bit signed operands. In addition, the code size could in-
crease due to a set of prefixes are introduced when extended registers or 64-bit regis-
ter operands are referred. We will present additional details in the following related 
sections. In this paper, we conducted all the experiments on a Dell Precision Work-
station 370 MiniTower containing a 3.8 GHz Intel Pentium 4 processor. The system’s 
detail configuration is listed in Table 1. 

Table 1. Hardware system configuration 

Processor one 3.8 GHz Intel Pentium 4 Prescott 
L1 Trace cache 12K micro-ops, 8-way set associative 

6 micro-ops per line 
L1 Data cache 16KB, 4-way set associative 

64B line size, write-through 
L2 Unified cache 8-way, Sectored, 1MB unified L2 Cache 

64 byte line size 
Data TLB fully associative, 4K/2M/4M pages, 64 entries 
Instruction TLB 4-way associative, 4K pages, 64 entries 
System chipset Intel® E7520 Chipset 
System bus speed 800 MHz system bus 
Main memory 3GB, 400MHz, DDR2 NECC SDRAM memory 

2.2   Methodology on Performance Characterization 

We used a research compiler to generate different executables to reflect the interested 
64-bit x86 architectural features. Once the executables were generated, we applied a 
set of performance profiling tools to study the performance characteristics. The fol-
lowing sections described the tools and the operating system that we used in this 
study. 
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2.2.1   Overview  of the Intel Compiler  
Our research compiler is based on Intel’s 9.0 version Fortran and C++ production 
compiler that supports many Intel architectures. A high-level overview of the Intel 
compiler infrastructure is given in Figure 1. In this study, we used options “-O3 –xP –
ipo –prof_use” to compile all the benchmarks. Here option –xP specifies that the 
compilation is targeting for a Prescott family processor, option –ipo enables the use of 
inter-procedural optimization, and option –prof_use enables the use of profiling in-
formation during compilation. Since we started this study, a few new optimizations 
and enhancements have been implemented to the product Intel compiler. For this rea-
son, our research compiler may not demonstrate the best performance, and thus we 
only present relative performance numbers in the experimental result sections. 

 

Fig. 1. A high-level overview of the Intel compiler architecture 

Throughout this study, we conducted our experiments using the SPEC CPU2000 
benchmark suite, which consists of twelve integer benchmarks (CINT2000) and four-
teen floating-point benchmarks (CFP2000). In this paper, we refer all the SPEC2000 
benchmarks that are written in C as SPEC2000 C benchmarks. 

2.2.2   Profiling Tools 
Intel’s Pentium 4 processor provides a rich set of performance-monitoring counters 
that can be used for performance tuning [5][17]. In this study, we used emon, a low-
level and low overhead performance tool, to collect the L2 cache references from the 
performance-monitoring counters by monitoring event BSQ_cache_reference. This 
event counts the number of second level cache loads and read-for-ownership (RFO) 
as seen by the bus unit. RFO happens when memory writes that miss must read the 
rest of the cache line to merge with new data. 

Besides emon, we used pin [4] to collect the dynamic instruction distribution in-
formation. Pin is a dynamic instrumentation system developed at Intel Corporation. It 
provides a rich set of APIs so that users can write tools to analyze an application at 
the instruction level. Here we used a modified version of insmix, one of the pintools 
provided by pin, to the collect dynamic instruction information. 

Inter-Procedural Op-
timizations 

Parallelization and Vec-
torization 

 Loop Optimizations 

Scalar Optimizations 

Code Generation and 
Optimizations

Code Emitting 

C++/Fortran Front-End 
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2.2.3   Operating System 
We conducted all our experiments on the Enterprise Linux operating system with ker-
nel 2.6.9-5. We chose Linux operating system, because it provides us the flexibility to 
modify the kernel to support the LP32 code model. 

To support the LP32 code model in this study, we modified the operating system 
kernel by specifying the value of macro TASK_SIZE to 0x100000000UL within file 
asm-x86_64/processor.h. In this manner, user applications’ spaces are allocated 
within the lower 32-bit address space. (Note that modifying the value of TASK_SIZE 
to support the LP32 code model might not be the best approach. We adopted this ap-
proach to serve our evaluation purpose only.) 

3   Performance Characterization of the LP32 Code Model 

Under the 64-bit processor environment, the sizes of long and pointer data types by 
default are 64 bits on Linux operating system. In this study, we implemented the 
LP32 code model so that the sizes of long and pointer are 32 bits. To illustrate the dif-
ferences among different modes, Figure 2 depicts how the address of variable j is 
stored into the i-th element of array a, a[i] = &j, in 64-bit mode, compatibility mode, 
and the LP32 code model, respectively. 

 
Fig. 2. Different code sequences in different modes used to perform assignment “a[i] = &j”. 
(a) Instruction sequence generated in 64-bit mode. (b) Instruction sequence generated in com-
patibility mode. (c) Instruction sequence generated in the LP32 code model. 

As depicted in Figure 2(a) and Figure 2(b), the differences between compatibility 
mode and 64-bit mode are threefold: (1) application memory footprint is increased for 
larger pointer; (2) sign extension operation is required to compute the 64-bit address; 
and (3) code size is increased because of prefixes. In Figure 2(c), address-size prefix 
0x67 is required to specify that the effective address size is 32 bits. (In 64-bit mode, 
the default effective address size is 64 bits; in compatibility mode, the default effec-
tive address size is 32 bits.) In this section, we study how the aforementioned modes 
could affect the SPEC2000 C benchmarks’ performance. 

3.1   Implementation Challenges 

We encountered numerous challenges during the implementation of the LP32 code 
model. The first challenge was how to guarantee that the user stack are allocated in 

48 63 05 00 00 00 00 movslq i(%rip), %rax 
48 c7 04 c5 00 00 00 movq   $j, a(,%rax,8)  
   (a) 
 
a1 00 00 00 00  movl    i, %eax  
c7 04 85 00 00 00 00 movl   $j, a(,%eax,4) 

(b) 
 

8b 05 00 00 00 00 movl    i(%rip), %eax 
67 c7 04 85 00 00 00 movl   $j, a(,%eax,4) 
   (c) 
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the lower 32-bit address space. A quick work around is described in Section 2.2.3 by 
modifying the operating system kernel. Once that was resolved, we need to solve the 
compatibility issue: external functions do not understand the LP32 code model. 

One solution is to provide a group of LP32 compatible libraries. In this study, we 
implemented a set of wrappers for those external functions that will read/write the 
user-defined pointer- or long-type data directly or indirectly. Across all the 
SPEC2000 C benchmarks, we experienced few such kind of external functions; typi-
cal instances are time(), fstat(), and times(). Note that the performances of these func-
tions do not affect our characterization results. 

3.2   Experimental Results 

Figure 3 shows the normalized execution time (with respect to base compilation in 
64-bit mode) of the ILP32 code model, compatibility mode, and the LP32 code 
model. The ILP32 code model is the result of the auto ilp32 optimization, which will 
be elaborated in Section 3.3. On average, the LP32 speedups the performance across 
all the SPEC C benchmarks by 13.4%. Without otherwise stated, we use geometric 
mean to calculate the average values. 

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

1.2000

1.4000

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty

19
7.

pa
rs

er

25
4.

ga
p

25
5.

vo
rt
ex

25
6.

bz
ip

2

30
0.

tw
ol

f

17
7.

m
es

a

17
9.

ar
t

18
3.

eq
ua

ke

18
8.

am
m

p

25
3.

pe
rlb

m
k

ge
om

ea
n

SPEC 2000 C Benchmarks

N
o
rm

al
iz

ed
 E

xe
cu

ti
o
n
 T

im
e

ILP32 code model Compatability mode LP32 code model

 

Fig. 3. The normalized execution time in the ILP32 code model, compatibility mode, and the 
LP32 code model for the SPEC2000 C benchmarks 

Figure 4 gives the normalized L2 cache miss ratio for the SPEC2000 C bench-
marks in the LP32 code model. Since the out-of-order execution engine of the 64-bit 
x86 processor can effectively hide many of stalls incurred by cache misses, the pur-
pose of this figure is not to correlate with Figure 3 directly, but to provide us some in-
sights on how the LP32 code model can reduce the cache miss ratio. Notice that the 
L2 cache miss ratio of benchmark 183.equake is increased by more than 20%. This is 
because in the LP32 code model, the absolute numbers of L2 cache accesses and L2 
cache misses are reduced, yet the number of L2 cache accesses is reduced more. 

Across the SPEC2000 C benchmarks, 181.mcf gains the most speedup, by almost 
50%. This is understandable because 181.mcf is a memory-bound benchmark, and 
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Fig. 4. The normalized L2 cache miss ratio for the SPEC2000 C benchmarks in the LP32 code 
model 

many of the cache optimization techniques can improve its performance greatly. 
However, not all the performance loss in 64-bit mode is due to enlarged memory foot-
print. Benchmark 254.gap exemplifies our argument. Compiled in the LP32 code 
model, the 254.gap benchmark demonstrates a 20% speedup. We observed that the per-
formance of this benchmark is dominated by a garbage collection function named Col-
lectGarb(). This function will be invoked when the internal memory pool is exhausted. 
In compatibility mode, CollecGarb() is invoked 74 times, as opposed to 132 times in 
64-bit mode. This is because some objects allocated within 254.gap require more mem-
ory space in 64-bit mode than in compatibility mode, and thus the internal memory pool 
is used up more quickly. In fact, the execution time of 254.gap can be reduced by almost 
10% if we double the memory space allocated to its internal memory pool. 

3.3   Related Work 

For 32-bit applications, the LP32 code model is an effective approach to reduce the 
memory footprint, and leverage the new hardware features. However, in practice, it 
requires tremendous engineering effort to maintain a separate set of libraries and part 
of the kernel layer support. 

To reduce the enlarged memory footprint in 64-bit mode, gcc compiler and pathcc 
compiler can generate 32-bit executables if users specify –m32 compilation option, 
yet at the cost that these executables can only be executed in compatibility mode. To 
overcome this limitation, Intel compiler provides auto ilp32 optimization, which can 
represent the sizes of pointer and long data type values in 32 bits, and the applications 
can use all the new features of the 64-bit x86 architecture. However, the current opti-
mization scope of the auto ilp32 optimization is limited: it only considers pointers 
within objects allocated by malloc() function, and its effectiveness relies on the accu-
racy of the points-to analysis. The auto ilp32 optimization can be regarded as a trade-
off solution between the –m32 mode and the LP32 code model. 

Recently, Lattner and Adve use pointer compression technique to reduce the mem-
ory space consumed by 64-bit pointers for linked list data structure [9]. The idea is to 
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allocate dynamically created linked list objects in the contiguous memory space, and 
replace the original 64-bit pointers with 32-bit integer values that can be used as off-
sets. The original pointer value can be calculated through this offset and the starting 
address of the memory pool. This approach requires whole program analysis and in-
troduces run-time overhead for pointer compression and decompression. Similar ap-
proach is adopted by Intel’s open runtime platform [10] that compresses 64-bit-wide 
pointers in a similar way for applications written in Java language. 

4   Register Argument Passing Convention 

Argument passing convention specifies how arguments are passed from caller func-
tion to callee function. In compatibility mode, arguments are passed through stack. In 
64-bit mode, leveraged with doubled registers, six GPRs are dedicated to pass integer 
arguments, and six XMM registers are dedicated to pass floating-point arguments [8]. 
The major benefit of register argument passing convention is to reduce the stack ac-
cesses, and thus improve the performance, especially for call-intensive applications. 

In this section, we compare the performance difference between the stack-based 
argument passing convention and the register-based argument passing convention in 
64-bit mode. 

4.1   Implementation Challenges 

In this study, we implemented two argument passing schemes within the compiler: (1) 
arguments are passed through registers, which is the default convention in 64-bit 
mode; and (2) arguments are passed through stack, which is the default convention in 
compatibility mode. For the purpose of performance study, we implemented the later 
convention scheme for the compilation in 64-bit mode. 

To emulate the stack-based argument passing convention in the 64-bit environ-
ment, it is compiler’s responsibility to maintain the convention compatibility between 
caller and callee functions: if the callee function is an external function that is not 
processed by compiler (i.e., library functions), then the arguments should be passed 
through registers at the call site. Likewise, if the caller function is an external func-
tion, then the callee function should expect the arguments are passed through regis-
ters. Under other scenarios, arguments are passed through stack. To preserve the 
compatibility, we relied on the information provided by the inter-procedural optimiza-
tion (IPO), which will process all the user-defined functions before argument passing 
convention code is generated. 

Empirical study shows that only a handful of functions within the SPEC2000 need 
to use the default convention, and most of these functions are called by external func-
tion qsort(), which is a library function that  will call user-defined functions for data 
comparisons. Execution time profiling information shows that these functions do not 
have noticeable performance impact. 

4.2   Experimental Results 

Figure 5 shows the normalized execution time (with respect to the base compilation 
using register argument passing convention) when the stack-based argument passing 
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convention is applied for the SPEC2000. On average, the CINT2000 is slowed down 
by 0.86%, and almost no noticeable slowdown for the CFP2000. On the contrary, we 
can see that some of the benchmarks actually have better performance with stack-
based convention. For example, benchmark 300.twolf has an almost 4% speedup. 
However, 300.twolf is a volatile benchmark, and it is difficult to reproduce the result 
consistently. 

Curious by the marginal performance difference, we suspected that the advantages 
of using registers to pass arguments were mainly obscured by the aggressive function 
inlining optimization, which potentially eliminates many of the function calls. To con-
firm our hypothesis, we turned off function inlining and partial function inlining op-
timizations by specifying compilation option “–ip-noinlining –ip-no-pinlining”. The 
normalized execution time without functional inlining or partial inlining for the 
SPEC2000 is given in Figure 6. We can see a clear performance difference: 
the CINT2000 has a 7.4% performance slowdown and the CFP2000 has a 1.2% 
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Fig. 5. The normalized execution time when the stack-based argument passing convention for 
the SPEC2000 
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Fig. 6. The normalized execution time when the stack-based argument passing convention for 
the SPEC2000 with function inlining and partial inlining being turned off 
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performance slowdown. Among all the benchmarks, 252.eon and 255.vortex slow 
down the most, by 31% and by 23%, respectively. For 252.Eon benchmark, the num-
ber of dynamic function calls is increased by a factor of 86 if the function inlining op-
timization is turned off. 

4.3   Related Work 

To our best knowledge, there is no direct performance comparison between these two 
different argument passing conventions. Hubi ka [3] hypothesized that the register 
argument passing convention could improve the performance. However, our experi-
ment shows that the performance impact is very limited, given that most of function 
calls have been eliminated by a sophisticated function inlining optimization. 

5   Performance Improvement with More Registers 

Register allocation has long been considered as one of the most important optimiza-
tion techniques conducted by modern compilers. Alleviated with more registers, com-
piler can keep more values in registers without going through the memory system, 
and thus speed up application’s performance. The 64-bit x86 architecture provides 16 
GPRs (including the stack pointer register) and 16 XMM registers, which is twice as 
many registers that IA-32 architecture provides. 

However, introducing more registers also brings in new challenges. First, the code 
size could be enlarged. Whenever an extended register or a 64-bit operand is refered, 
the REX prefix is required as the first opcode byte of the instruction [16]. These extra 
REX prefixes increase instruction size, and thus code size. Second, more caller-saved 
registers could affect performance. In the IA-32 processor, there are total 11 caller-
saved registers (including 3 GPRs and 8 XMM registers). The number is more than 
doubled in the 64-bit x86 architecture, which has total 25 caller-saved registers (in-
cluding 9 GPRs and 16 XMM registers). Saving more caller- and callee-saved regis-
ters could degrade performance, and increase the code size. 

In this section, we study how the number of memory accesses is reduced with more 
registers, and how applications’ performances are affected by varying the number of 
allocable registers in 64-bit mode. Instead of experimenting with all the different 
combinations, here we focus on two set of register configurations: (1) REG_8, where 
8 GPRs and 8 XMM registers can be allocated by register allocator, and (2) REG_12, 
where 12 GPRs and 12 XMM registers can be allocated by register allocator. 

5.1   Implementation Challenges 

We conducted this study by adjusting the number of available registers can be allo-
cated by the register allocator within the compiler. The register allocation algorithm 
implemented by the research compiler is an extension of the Chaitin-Briggs style 
graph coloring algorithm [6][7]. 

It is a straightforward process to setup the number of available registers for the reg-
ister allocator. However, in 64-bit mode, register R8 and register R9 will be used to 
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pass the fifth and the sixth integer arguments, respectively. To comply with the argu-
ment passing convention, when the available GPRs do not include R8 and R9, we 
have to deploy R8 and R9 specifically for integer argument passing purpose only, if 
they are required. 

5.2   Experimental Results 

Figure 7 gives the normalized execution time (with respect to the base compilation us-
ing 16 GPRs and 16 XMM registers) with the REG_8 and REG_12 register configu-
rations for the SPEC2000 benchmarks. On average, with the REG_8 configuration, 
the CINT2000 exhibits a 4.4% slowdown, and the CFP2000 exhibits a 5.6% slow-
down; with the REG_12 configuration, the CINT2000 is slowed down by 0.9%, and 
the CFP2000 is slowed down by 0.3%. Clearly, these results show that REG_12 al-
ready works well for most of the SPEC2000 benchmarks. 
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Fig. 7. The normalized execution time for the SPEC2000 benchmarks with the REG_8 and 
REG_12 configurations 

Note that REG_8 slightly outperforms REG_12 on 176.gcc benchmark. In addi-
tion, for 181.mcf and 300.twolf benchmarks, the fewer the registers, the better the 
performances are. (We do not pursue the cause further, since the improvement with 
fewer registers is only within the 2% range.) 

In addition to performance, the normalized dynamic number of memory accesses 
(including stack accesses) for the CINT2000 and CFP2000 is shown in Fig. 8. On av-
erage, with the REG_8 configuration, the memory references are increased by 42% 
for the CINT2000 and by 78% for the CFP2000; with the REG_12 configuration, the 
memory references are increased by 14% for CINT2000 and by 29% for the 
CFP2000. 

Overall, for the SPEC2000 benchmark suite, we can see the trend that when the 
number of available registers is increased from 8 to 12, the memory accesses are re-
duced dramatically, and moderate performance improvement is achieved. However, 
with more than 12 registers, although the memory accesses are further reduced, the 
performance is barely improved. 
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Fig. 8. The normalized number of memory accesses for the SPEC2000 benchmarks with the 
REG_8 and REG_12 configurations 

Once the number of allocatable registers reaches a certain threshold, results show 
that the performance cannot be improved further even given more registers. We sus-
pected that this phenomenon is due to the powerful out-of-order execution engine of 
the x86 core. In addition, comprehensive compiler optimization techniques can reduce 
the register pressure by folding some of the memory load instructions into other in-
structions as operands. 

5.3   Related Work 

An abundant research has been conducted on register allocation. Optimal, or near-
optimal, register allocation algorithms [11][13][14] are also proposed for IA-32 archi-
tecture. Most of the prior works only demonstrate how the amount of spill code can 
be reduced and how efficient the solvers are (while compared with an exponential ap-
proach). However, not much work has been done on experimenting with the recent 
SPEC benchmark suite to demonstrate how the additional registers could improve the 
application’s performance. 

Luna et al. [2] experimented with different register allocators on AMD64 platform. 
Their studies show that with more registers, a fast linear scan based register allocation 
algorithm [18] could produce competitive performance code with graph coloring 
based algorithm. It is interesting for us to evaluate the performance of a linear scan 
approach with different number of registers on the SPEC2000. In addition, Luna et al. 
show that the code size could be increased by 17% due to REX prefixes. 

Experimented on an out-of-order MIPS processor, Govindarajan et al. [12] propose 
an instruction scheduling algorithm to reduce the spill code. Their experiment on 
SPEC95 floating-point benchmarks show that their technique could reduce the 
average number of spill code by 10.4% and 3.7%, respectively, and on average the 
performance is improved by 3.2%. Note that MIPS architecture has 32 GPRs, as com-
pared with 16 GPRs supported by the 64-bit x86 architecture. 
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6   Other 64-bit x86 Architecture Features 

One important feature of the 64-bit x86 architecture is that the width of GPR is in-
creased from 32 bits to 64 bits. In this study, we do not explicitly investigate the ef-
fectiveness of wider GPRs. From our experience, 197.crafty is the only benchmark 
that gains most of the benefit, a 20% speedup, from 64-bit-wide GPRs. This is be-
cause 197.crafty performs intensive arithmetic operations on long long type data. 
Without 64-bit GPRs, sequences of 32-bit operations will be expanded to perform 
simple 64-bit operations. The example depicted in Fig. 9 illustrates this point. 

 

 
Fig. 9. Example illustrating the code generations for assignment “k = i + j”, where k, i and j are 
long long data type variables. (a) Instructions generated in compatibility mode. (b) Instructions 
generated in 64-bit mode. 

In this example, it takes three 64-bit instructions to perform a 64-bit add operation 
“k = i + j” in 64-bit mode. However, it requires six 32-bit instructions to do the same 
task in compatibility mode: two load instructions are used to load the 64-bit value of 
variable i to two 32-bit registers, two add instructions are used to perform a 64-bit add 
operation using 32-bit operands, and two store instructions to store the 64-bit value to 
variable k. 

In addition, the 64-bit x86 architecture introduces a new instruction-pointer rela-
tive-addressing mode, which can reduce the number of load-time relocations for posi-
tion-independent code while accessing global data. A prior work [3] demonstrates that 
relative-addressing mode can reduce the performance loss significantly for position-
independent code from 20% down to 6%. 

7   Conclusions and Future Works 

With the emerging of the 64-bit x86 architecture, it is imperative to understand its ca-
pability and its limitation. In this study, we evaluate several interesting new features 
of the 64-bit x86 architecture using a production level research compiler and conduct-
ing our experiments on the SPEC2000 benchmark suite. 

The most noticeable change from 32-bit x86 to 64-bit x86 is that the size of pointer 
is increased from 32 bits to 64 bits. Experimenting on the SPEC2000 C benchmarks, 
we observe that the widened pointer and long data types could slow down an applica-
tion’s performance by as much as 50%. Prior studies on IA-32 processors [19][20] 
show that the number of data cache misses plays a critical role on modern database 
management systems (DBMS). The situation is even more severe in the 64-bit x86 
processors that inherit larger memory footprint. It is interesting to see how the LP32 

movl    i, %edx 
movl    4+i, %ecx               
addl    j, %edx  
adcl    4+j, %ecx                 
movl    %edx, k  
movl    %ecx, 4+k 
 (a) 

movq    i(%rip), %rdx  
addq    j(%rip), %rdx  
movq    %rdx, k(%rip) 
 
 
 
 (b) 
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code model can help here. Besides studying 64-bit pointer, we also evaluate how the 
register-based argument passing convention could improve performance. Experiments 
show that the performance gain is imperceptible if an aggressive function inlining op-
timization is performed. Finally, we evaluate how the double sized register file could 
improve the performance. Experimental results show that using 12 GPRs and 12 
XMM registers can achieve almost the same performance as using 16 GPRs and 16 
XMM registers can. 

The above observations point our future research to the following three areas: (1) 
investigate how to reduce memory footprint in the 64-bit x86 processors on DBMS; 
(2) investigate and improve the performance of linear scan register allocation [18]; 
and (3) study the interaction between register allocation and instruction scheduling in 
the 64-bit x86 processors. 
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Abstract. We propose a new language concept called “L-closures” for a
running program to legitimately inspect/modify the contents of its execu-
tion stack. L-closures are lightweight lexical closures created by evaluating
nested functiondefinitions.A lexical closure can access the lexically-scoped
variables in the creation-time environment and indirect calls to it provide
legitimate stack access. By using an intermediate language extended with
L-closures in high-level compilers, high-level services such as garbage col-
lection, check-pointing, multithreading and load balancing can be imple-
mented elegantly and efficiently. Each variable accessed by an L-closure
uses private and shared locations for giving the private location a chance
to get a register. Operations to keep coherency with shared locations as
well as operations to initialize L-closures are delayed until an L-closure is
actually invoked. Because most high-level services create L-closures very
frequently but call them infrequently (e.g., to scan roots in garbage col-
lection), the total overhead can be reduced significantly. Since the GNU
C compiler provides nested functions, we enhanced GCC at relatively low
implementation costs. The results of performance measurements exhibit
quite low costs of creating and maintaining L-closures.

1 Introduction

Implementing sophisticated machine code generators for a variety of platforms
is not easy work. Therefore, many compiler writers for high-level languages use
C as an almost portable and machine-independent intermediate language; that
is, they write only translators from high-level languages into C.

Most compiled C programs use execution stacks for efficiency. Upon a func-
tion call, a stack frame is allocated not only for parameters and local vari-
ables of the function but also for the return address, the previous frame pointer,
the callee-save registers and alloca-ed spaces. Efficient support for some high-
level run-time services (such as garbage collection, self-debugging, stack-tracing,
check-pointing, migration, continuations, multi-threading and/or load balanc-
ing) requires inspecting/modifying the contents of execution stacks. In C, how-
ever, once a function is called, the callee cannot efficiently access the caller’s local
variables. Some local variables may have the values in callee-save registers, and
pointer -based accesses interfere with many compiler optimization techniques. In
addition, the stack frame layout is machine-dependent and direct stack manipu-
lation by the running C program via forged pointers is illegal in essence, because

A. Mycroft and A. Zeller (Eds.): CC 2006, LNCS 3923, pp. 170–184, 2006.
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the data of stack frames are not application-level data (values) but meta-level
data for execution. Illegal access will also open security issues.

For example, to implement garbage collection (GC), the collector needs to be
able to find all roots, each of which holds a reference to an object in the garbage-
collected heap. In C, a caller’s pointer variable may hold an object reference, but
it may be sleeping in the execution stack. Even when using direct stack manip-
ulation, it is difficult for the collector to distinguish roots from other elements
in the stack. Stack maps may be used, but they are not inherent C data and
need special compiler support. For this reason, conservative collectors[1] are usu-
ally used with some limitations. When a copying collector is used to implement
GC, it needs to be able to accurately scan all roots since the objects are moved
between semi-spaces and all root pointers should refer to the new locations of
objects. Accurate copying collection can be performed by using translation tech-
niques based on “structure and pointer”[2, 3], but translating local variables into
structure fields invalidates many compiler optimization techniques.

This problem motivates researchers to develop new powerful and portable
intermediate languages, such as C--[4, 5]. C-- is a portable assembly language
(lower-level than C) but it has the ability to access the variables sleeping in the
execution stack by using the C-- runtime system to perform “stack walk”. Thus,
C-- can be used as an intermediate language to implement high-level services
such as garbage collection.

This paper proposes yet another intermediate language, which is an extended
C language with a new language concept called “L-closures” for a running pro-
gram to legitimately inspect/modify the contents of its execution stack (i.e.,
the values of data structures and variables). L-closures are lightweight lexical
closures created by evaluating nested function definitions. A lexical closure can
access the lexically-scoped variables in the creation-time environment and indi-
rect calls to it provide legitimate stack access. Compared to C--, our approach
more elegantly supports high-level services, and needs quite low implementation
costs by reusing the existing compiler modules and related tools such as linkers.

The rest of this paper is organized as follows: Section 2 presents our motivat-
ing example. In Sect. 3, we show the design of the proposed language features
(closures and L-closures), where we propose a semantical separation of nested
functions from ordinary top-level functions. Section 4 proposes our implementa-
tion model for L-closures. Section 5 presents our current implementation based
on GCC. The results of performance measurement are discussed in Sect. 6. The
results exhibit quite low costs of creating and maintaining L-closures. Section 7
discusses the costs and applications of L-closures together with the related work,
and shows that many high-level services can be implemented by translating into
the extended C language.

2 A Motivating Example

Let us consider a high-level program which recursively traverses binary tree
nodes and creates an associative list with the corresponding search data. Such a
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Alist *bin2list(Bintree *x, Alist *rest){
Alist *a = 0; KVpair *kv = 0;
if(x->right) rest = bin2list(x->right, rest);
kv = getmem(&KVpair_d); /* allocation */
kv->key = x->key; kv->val = x->val;
a = getmem(&Alist_d); /* allocation */
a->kv = kv; a->cdr = rest;
rest = a;
if(x->left) rest = bin2list(x->left, rest);
return rest;

}

Fig. 1. A motivating example: tree-to-list conversion

typedef void *(*move_f)(void *);

/* scan0 is an L-closure pointer. */
Alist *bin2list(lightweight void (*scan0)(move_f),

Bintree *x, Alist *rest){
Alist *a = 0; KVpair *kv = 0;
/* scan1 is an L-closure, and pass it on the following calls. */
lightweight void scan1(move_f mv){ /* nested function */
x = mv(x); rest = mv(rest); /* roots scans */
a = mv(a); kv = mv(kv); /* roots scans */
scan0(); /* for older roots */

}
if(x->right) rest = bin2list(scan1, x->right, rest);
kv = getmem(scan1, &KVpair_d); /* allocation */
kv->key = x->key; kv->val = x->val;
a = getmem(scan1, &Alist_d); /* allocation */
a->kv = kv; a->cdr = rest;
rest = a;
if(x->left) rest = bin2list(scan1, x->left, rest);
return rest;

}

Fig. 2. Scanning GC roots with L-closures (nested functions)

high-level program may be translated into a C program shown in Fig. 1. Here,
getmem allocates a new object in heap, and a copying collector needs to be able
to scan all root variables such as x, rest, a and kv even when bin2list is being
recursively called.

In the proposed intermediate language, a program with copying GC can be
elegantly expressed as in Fig. 2. Allocator getmem may invoke the copying col-
lector with L-closure scan1 created by evaluating the nested function definition.
The copying collector can indirectly call scan1 which performs the movement
(copy) of objects using roots (x, rest, a and kv) and indirectly calls L-closure
scan0 in a nested manner.1 The actual entity of scan0 may be another instance
of scan1 in the caller. By repeatedly invoking L-closures until the bottom of the
stack is reached, all roots in the entire execution stack can be scanned.

1 Alternatively, scan1 may return scan0 to eliminate tail calls.
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In Fig. 2, bin2list’s variables (x, rest, a and kv) should have chances to get
(callee-save) registers. However, if we employ the typical Pascal-style implemen-
tation for L-closures, bin2list must perform memory operations (much slower
than register operations) to access these variables because scan1 also accesses
the values of these variables in the stack memory usually via a static chain. Note
that the same problem arises in translation techniques for stack-walking based
on “structure and pointer”[2, 3].

Our goal is to reduce these costs of maintaining L-closures (i.e., to enable
register allocation) by using a new implementation policy for L-closures. The
policy also reduces the costs of creating L-closures but accepts higher invocation
costs. Because most high-level services create L-closures very frequently but call
them infrequently (e.g., to scan roots in garbage collection), the total overhead
can be reduced significantly.

3 Design

Pascal and many modern programming languages other than C (such as Lisp,
Smalltalk, and ML) permits a function defined within another (nested or top-
level) function. We employ Pascal-style nested functions for our extended C
language. It can access the lexically-scoped variables in the creation-time envi-
ronment and a pointer to it can be used as a function pointer to indirectly call
the lexical closure (that is, a pair of the nested function and its environment). A
lexical closure is (logically) created every time the control arrives at the nested
function definition in the same way as local variable definitions. Since a closure is
created on the stack, unlike garbage-collected languages, the pointer to a closure
cannot be used after the exit of the block where the nested function is defined.

We propose a semantical separation of nested functions from ordinary top-
level functions, which enables a significant performance improvement by using
different calling sequences for nested functions. For this purpose, we introduce a
language concept called closures, which have almost the same roles as ordinary
(top-level) functions but which are not regarded as ordinary functions. We ex-
tend the language syntax with a keyword closure in the same way as keyword
lightweight in Fig. 2. A program which passes a closure pointer as an ordinary
function pointer will produce a type error, and vice versa.2

We also introduce a new language concept called L-closures other than or-
dinary functions and other than closures. We extend the syntax with a keyword
lightweight as in Fig. 2. That is, there are two types of lexical closures, and
each type has the following goals and limitations:

Closures are intended to employ the Pascal-style implementation (i.e., static
chains). Closures do not keep interoperability with ordinary top-level func-
tions. The owner function of closures involves substantial costs of maintain-
ing closures. Closures have moderate creation/invocation costs. These costs
are the same as the corresponding costs for techniques based on “structure
and pointer.”

2 In practice, coercing function pointers into closure pointers may be permitted.
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L-closures are intended to employ the implementation policy for aggressively
minimizing costs of creating and maintaining L-closures by accepting higher
invocation costs. L-closures do not keep interoperability with ordinary top-
level functions (and closures). L-closures are callable only from within the
owner function and its descendants in the caller-callee relation. (e.g., not
callable from different threads)

We can choose an adequate type according to a situation. For example, L-closures
should be used to implement most of the high-level services discussed in Sect. 2
and Sect. 7, because those L-closures are rarely called and minimizing the cre-
ation/maintenance costs is desired.

4 Implementation Models

In this section, we propose recommended implementation models for closures
and L-closures.

We can implement a closure with a stack-allocated pair of pointers. The
pointer pair consists of the actual nested function and the environment (static
chain). The closure pointer can refer to the pair. When a caller indirectly calls a
closure, it already distinguish the closure pointer from ordinary function pointers
by compile-time looking at the type of the pointer, then it loads the static chain
(the second element of the pointer pair) into the static chain register and calls the
actual nested function (the first element of the pointer pair). Note that we can-
not use the pointer pair directly as a two-word closure pointer, since C permits
interoperability between the generic void * type and any other pointer type.

To minimize costs of creating L-closures, the initialization of an L-closure is
delayed until it is actually called. This means that the creation cost of L-closures
is virtually zero (similar to carefully-implemented exception handlers.)

To minimize costs of maintaining L-closures, if a function f has a nested
function g of L-closure type and g accesses f ’s local variable (or parameter) x, x
uses two locations, namely a private location and a shared location, for giving the
private location a chance to get a (callee-save) register by reducing interference
with the existing optimizers and register allocators. Note that x does not use a
private location if the address of x is taken, or if a nested function accessing x
is not of L-closure type. In addition, if g has a nested function g2, g2’s access to
f ’s variable is accounted to be g’s access regardless of g2’s type.

The similar technique (but incomplete in terms of lazy pre/post-processing)
can be expressed in extended C with nested functions as in Fig. 3 for the func-
tion bin2list in Fig. 2. The function bin2list, which owns a nested function
scan1, introduces private variables (such as p_x and p_a) and uses the private
ones except for the function calls. Upon a function call, bin2list saves the pri-
vate values into the shared variables (such as x and a) as pre-processing. When
the control is returned, it restores the private values from the shared variables
as post-processing. This technique gives the private variable a chance to get a
register. However, this technique cannot omit pre/post-processing even if scan1
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Alist *bin2list(void (*scan0)(move_f), Bintree *x, Alist *rest){
Alist *a = 0; KVpair *kv = 0;
/* scan1 is a lexical closure, and pass it on the following calls. */
void scan1(move_f mv){ /* nested function */
x = mv(x); rest = mv(rest); /* roots scans */
a = mv(a); kv = mv(kv); /* roots scans */
scan0(); /* for older roots */

}
/* private variables */
Bintree *p_x = x, Alist *p_rest = rest, *p_a = a; KVpair *p_kv = kv;
if(p_x->right){
x = p_x, rest = p_rest, a = p_a, kv = p_kv; /* pre-processing */
Alist *_r = bin2list(scan1, p_x->right, p_rest);
p_x = x, p_rest = rest, p_a = a, p_kv = kv, /* post-processing */
p_rest = _r;

}
{
x = p_x, rest = p_rest, a = p_a, kv = p_kv; /* pre-processing */
KVpair *_r = getmem(scan1, &KVpair_d); /* allocation */
p_x = x, p_rest = rest, p_a = a, p_kv = kv; /* post-processing */
p_kv = _r;

}
p_kv->key = p_x->key; p_kv->val = p_x->val;
{
x = p_x, rest = p_rest, a = p_a, kv = p_kv; /* pre-processing */
Alist *_r = getmem(scan1, &Alist_d); /* allocation */
p_x = x, p_rest = rest, p_a = a, p_kv = kv; /* post-processing */
p_a = _r;

}
p_a->kv = p_kv; p_a->cdr = p_rest;
p_rest = p_a;
if(p_x->left){
x = p_x, rest = p_rest, a = p_a, kv = p_kv; /* pre-processing */
Alist *_r = bin2list(scan1, p_x->left, p_rest);
p_x = x, p_rest = rest, p_a = a, p_kv = kv, /* post-processing */
p_rest = _r;

}
return p_rest;

}

Fig. 3. Adding private variables and pre-processing and post-processing in C. This is
not the real code but shown for explanation purpose only.

         bin2list
(owner of scan1)

gc

call L-call

returnreturnreturn

   scan1
(L-closure)

Pre-Processing

Post-Processing

getmem

call

return

Fig. 4. Usual pre-processing and post-processing
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          bin2list
(owner of scan1)

gc

call L-call

returnreturnreturn

   scan1
(L-closure)

Pre-Processing
(delayed)

Conditional
Post-Processing
(enabled by
 Pre-Processing)

getmem

call

return

Fig. 5. Delayed pre-processing and conditional post-processing performed only if the
L-closure is actually called

          bin2list
(owner of scan1)

gc

call L-call

   scan1
(L-closure)

Pre-Processing
(delayed)

Post-Processing
(enabled by
 Pre-Processing)

getmem

call

Quasi-Epilogue
(restoring
 callee-save
 registers)

Selector
(selecting
 branches)

Lc0,1

c1

Lc2,3

g3,
g4

g6,7,8

o3,4

o6,7,8,9,10

o11,12,13,14

Fig. 6. (Non-local) temporary return to the owner of the L-closure to be called for
correct pre-processing. Annotated numbers correspond to those in Fig 7.

is not actually called. The control flow on pre-processing and post-processing at
the time when scan1 is being called by gc can be depicted as in Fig. 4.

To overcome this problem, we propose delayed pre-processing and conditional
post-processing as in Fig. 5. The pre-processing is delayed until the call to the
L-closure, and the conditional post-processing is dynamically enabled by pre-
processing. Pre-processing (indicated by filled squares) consists of the following
steps: (1) initializing all L-closures (function-pointers and static chains), (2)
copying private values into shared locations, and (3) enabling post-processing
(by changing return addresses). Performing pre-processing more than once3 is
avoided (i.e., pre-processing is also conditional) by checking if the conditional
post-processing is already enabled. Post-processing (indicated by filled diamonds)
simply copies values from shared locations into private locations.

3 In the case of recursive calls of an L-closure.
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bin2list: // owner of scan1
o0 : ...
o1 : call getmem with selector o3.
o2 : ...
o3 : /* selector for o1 */
o4 : if (L-closure to be called is in this frame) jump to pre-processing o6.
o5 : else jump to quasi-epilogue o18.
o6 : /* pre-processing for o1 */
o7 : copy values from private locations to shared locations.
o8 : initialize all L-closures (function-pointers and static chains).
o9 : save and modify o1’s return address to enable post-processing o11.
o10 : continue the L-call according to on-stack info.
o11 : /* post-processing for o1 */
o12 : save the return value.
o13 : copy values from shared locations to private locations.
o14 : continue the actual return.
o15 : ...
o16 : /* selector for modified return addresses */
o17 : continue the L-call according to on-stack info.
o18 : /* quasi-epilogue */
o19 : restore callee-save registers.
o20 : temp-return to the selector for the previous frame.

gc: // caller of scan1 (= scan)
g0 : ...
g1 : L-call scan with selector g3.
g2 : ...
g3 : /* selector for g1 */
g4 : jump to quasi-epilogue g6.
g5 : ...
g6 : /* quasi-epilogue */
g7 : restore callee-save registers.
g8 : temp-return to the selector for the previous frame.

L-call f :
Lc0 : save f and registers.
Lc1 : temp-return to the selector for the previous frame.
Lc2 : restore f and registers.
Lc3 : setup static chain for f and jump to f .

Fig. 7. pseudo code and calling steps

Since we give each private location a chance to get a callee-save register,
restoring callee-save registers (including the frame pointer but excluding the
stack pointer) before pre-processing is required for correct pre-processing. Such
restore can be performed by quasi-epilogues during non-local temporary return
to the owner function as in Fig. 6.

The pseudo code for Fig. 6 is shown in Fig. 7. A call to L-closure scan1 (L-call
to scan1 at g1 in Fig. 7) starts a non-local temporary return to the owner function
(Lc0, Lc1); firstly, it temporarily returns to the selector for the previous frame (e.g.,
g3 for gc). Each selector (e.g., o3) selects a pre-processing branch (e.g., o4, o6) if
the current frame is the owner of the L-closure to be called; otherwise, a quasi-
epilogue branch (e.g., o18) is selected. Note that the quasi-epilogue branch is al-
ways taken for the functions without L-closures (e.g., g3, g4 and g6) to continue
the non-local temporary return after restoring callee-save registers (e.g., g7, g8).
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The pre-processing (o6,o7,o8,o9) can be performed using the current frame
with restored callee-save registers. After pre-processing, the control is actually
transfered to the L-closure (o10, Lc2, Lc3).

Each temporary return finds a selector for the previous frame based on the
return address for the frame; after enabling post-processing by modifying return
address, it finds a selector which continues the L-call without performing further
pre-processing (o16, o17).

The solid arrows for L-call to scan1 in Fig. 6 corresponds to the following
steps in Fig. 7: g1, L-call (Lc0, Lc1), g1, selector (g3, g4), quasi-epilogue (g6, g7,
g8), . . ., o1, selector (o3, o4), pre-processing (o6, o7, o8, o9, o10), L-call(Lc2,
Lc3), and scan1.

Fig. 6 also illustrates that the enabled post-processing intercepts the ordinary
return. The solid arrows for the return to bin2list corresponds to the steps:
getmem, post-processing (o11, o12, o13, o14), and o1.

This implementation policy for L-closures effectively decouples L-closures
from their owner function, and makes the owner function’s variable access faster.

5 Implementation Based on GCC

This section presents our implementation based on the GNU C compiler[6]. We
enhanced GCC-3.2 to implement closures and L-closures for IA-32 and SPARC.

GCC uses an intermediate representation in Register Transfer Language
(RTL) to represent the code being generated, in a form closer to assembly lan-
guage than to C. An RTL representation is generated from the abstract syntax
tree, transformed by various passes (such as data flow analysis, optimization and
register allocation) and then converted into assembly code.

GCC has its own nested functions as an extention to C. They keep interoper-
ability with ordinary top-level functions by using a technique called
“trampolines”[7]. Trampolines are code fragments generated on the stack at
runtime to indirectly enter the nested function with a necessary environment.
Therefore, GCC’s approach involves more creation costs than closures.

Closures are implemented as was mentioned in Sect. 4. We use the stack-
allocated pointer pairs instead of GCC’s trampolines. A pair is initialized to
hold the address of the actual nested function and the static chain. To call a
closure, the caller first loads the static chain (the second element of the pointer
pair) into the static chain register4 and calls the actual nested function (the first
element of the pointer pair). All of these are implemented by extending only the
RTL generation scheme.

On the other hand, L-closures are implemented by (1) extending the RTL
generation scheme, (2) extending the assembly code generation scheme, and
(3) adding short runtime assembly code. In the implementation of L-closures,
we accept loss of implementation simplicity to obtain reusability (portability)
and efficiency. For reusability, our implementation employs the existing RTL
without modification or extension. With this approach, most existing optimizers
4 In GCC, static chain rtx holds the RTL expression of the static chain register.
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Table 1. Implementation costs as patches to GCC

Closures L-Closures (+ Closures) (lines)
RTL RTL IA-32(i386) i386 asm SPARC(sparc) sparc asm

320 lines 973 212 105 181 148

do not need modification or extension. We also minimize the extension on the
assembly code generation scheme; we rather extend the RTL generation scheme
if possible.

Table 1 summarizes the number of patch lines to implement closures and/or
L-closures as patches to GCC. For example, the implementation of L-closure on
IA-32 requires 973 line patch for RTL generation, 212 line patch for supporting
selectors and quasi-epilogues, and 105 line assembly runtime code. The RTL
generation part is shared with SPARC.

Since details of our implementation heavily depend on GCC internals, we
only outline our implementation. We simply generate selector code and quasi-
epilogue code at assembly-level by modifying the existing epilogue generation
routines. Note that we assume the use of a register window for SPARC at this
implementation. The pre/post-processing code is first generated as RTL code
and transformed by usual optimization and register allocation phases. For the
correct optimization in RTL, we employ a “virtual” control-flow edge for control
transfer performed by assembly-level code such as between selector code and pre-
processing code or between post-processing code and the original return point.

Our real implementation combines all selectors for each function into a single
selector with all possible branches. It also employs intra-function code sharing
among pre/post-processing code fragments for different call points and exploits
the runtime code fragments for common tasks in pre/post-processing and quasi-
epilogues. These improvements on code size produce complex code.

We do not have serious errors to use the unchanged GNU debugger to debug
the generated code with L-closures; for example, the back-tracing works well.
However, some execution status cannot be obtained correctly.

6 Performance Measurements

Without having nested functions, the speed of C programs will not change with
our extended compiler. To measure costs of creating and maintaining lexical
closures, we employed the following programs with nested functions for several
high-level services and compared them with the corresponding plain C programs:

BinTree (copying GC) creates a binary search tree with 200,000 nodes, with
a copying-collected heap.

Bin2List (copying GC) converts a binary tree with 500,000 nodes into a lin-
ear list, with a copying-collected heap.

fib(36) (check-pointing) calculates the 36th Fibonacci number recursively,
with a capability of capturing stack state for check-pointing (see Fig. 8).
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int cpfib(lightweight void (*save0)(), int n)
{
int pc = 0; /* pseudo program counter */
int s = 0;
lightweight void save1(){ /* nested function */
save0(); /* saving caller’s state */
save_pc(pc); /* saving pc state */
save_int(n); /* saving variable state */
save_int(s); /* saving variable state */

}
if (n <= 2) return 1;
pc = 1; /* inc program counter before call */
s += cpfib(save1, n-1);
pc = 2; /* inc program counter before call */
s += cpfib(save1, n-2);
return s;

}

Fig. 8. Capturing state with L-closures

fib(36) (load balancing) calculates the 36th Fibonacci number, on a load-
balancing framework based on lazy partitioning of sequential programs[8].

Pentomino/nqueens(13) (load balancing) perform backtrack search for all
possible solutions to the Pentomino puzzle/the N-queens problem (N=13),
on the load-balancing framework.

Note that nested functions are never invoked in these measurements, that is,
garbage collection, check-pointing and task creation do not occur.

We measure the performance on 1.05GHz UltraSPARC-III and 3GHz Pen-
tium 4 using -O2 optimizers. Table 2 summarizes the results of performance
measurements, where “no closures” means the plain C program without the high-
level services (i.e., using no closures nor additional closure parameters for every
function call). “Trampolines” means the use of GCC’s conventional nested func-
tions. In some programs, especially those creating nested functions frequently,

Table 2. Performance Measurements

S:SPARC Elapsed time in seconds (relative time to “no closures”)
P:Pentium no closures Trampoline Closure L-closure
BinTree S 0.180 (1.00) 0.240 (1.33) 0.226 (1.26) 0.190 (1.06)

copying GC P 0.150 (1.00) 0.165 (1.10) 0.167 (1.11) 0.150 (1.00)
Bin2List S 0.289 (1.00) 0.322 (1.14) 0.292 (1.01) 0.290 (1.00)

copying GC P 0.139 (1.00) 0.141 (1.01) 0.139 (1.00) 0.139 (1.00)
fib(36) S 0.56 (1.00) 2.76 (4.93) 0.81 (1.45) 0.60 (1.07)

check pointing P 0.170 (1.00) 0.468 (2.75) 0.260 (1.52) 0.170 (1.00)
fib(36) S 0.57 (1.00) 2.46 (4.31) 0.91 (1.60) 0.68 (1.19)

load balancing P 0.168 (1.00) 0.400 (2.38) 0.346 (2.06) 0.283 (1.68)
Pentomino S 3.16 (1.00) 5.75 (1.82) 4.66 (1.47) 3.44 (1.09)

load balancing P 1.80 (1.00) 2.10 (1.17) 2.06 (1.14) 1.92 (1.07)
nqueens(13) S 0.470 (1.00) 1.022 (2.17) 0.806 (1.71) 0.592 (1.26)

load balancing P 0.316 (1.00) 0.426 (1.35) 0.423 (1.34) 0.464 (1.47)
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the speed of the conventional nested functions is less than half. In contrast,
L-closures exhibits good performance. The relative times to the plain C are con-
siderably closer to 1.00.

However, there are two exceptional results in Table 2: fib(36) and N-queens
(load balancing) on Pentium 4. In these results, unimportant variables are al-
located to registers. Since Pentium 4 has only a few callee-save registers and
performs explicit save/restore of callee-save registers, the penalty of wrong al-
location is serious. Our technique using private locations increases the number
of allocation candidates, and increases not only good allocation opportunities
but also wrong allocation opportunities. On the other hand, our technique is
quite effective on SPARC which has more callee-save registers and performs lazy
save/restore with the register window.

7 Discussion

7.1 Costs of L-Closures

Like translation techniques based on “structure and pointer”[2, 3], closures and
L-closures need more code space for additional infrequently-invoked procedures
than annotation-based implementations. Grouping infrequently-used procedures
(plus code fragments in the case of L-closures) into a different code segment will
improve locality for the instruction cache.

To scan the execution stack with n frames by the program in Fig. 2, additional
n frames are needed for nested invocation of L-closures. If this is a problem,
standard techniques for eliminating tail calls can solve the problem. For its time
complexity, the number of temporary returns is O(n2). If this is a problem, we
should employ another L-closure policy which always converts unconverted part
of the entire stack into the pre-processed stack each time an L-closure is invoked,
where only the first conversion involves O(n) temporary returns in this case.

The results of performance measurements does not indicated that the cost of
additional closure parameters is serious. If we can find L-closures by using tags
like exception handlers, this additional cost can be eliminated.

7.2 High-Level Services: Related Work

There are at least four schemes for implementing high-level services on top of
C compilers: (1) Using direct stack manipulation in C neglecting legitimacy
and portability[1], (2) Providing special service routines and using the routines
for the translators into C[9], (3) Using elaborate translation techniques in the
translators into C[2, 3, 10, 11, 12, 13], or (4) Extending C compilers and using the
extended features for the translators into the extended C[14, 15]. Our approach
employs the fourth implementation scheme.

Capturing/Restoring Stack State. By using nested functions, stack state
can be captured without returning to the callers.5 Figure 8 shows a C function
5 Restoring a previously-captured state is much easier and does not need nested func-

tions. For restoring, different versions of C functions can be used for efficiency.
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with a nested function for capturing the stack state. The program uses a pseudo
program counter to record the current program point and saves all parame-
ters/local variables. This technique can be applied to check pointing, migration
and first-class continuations.

Porch[10] is a translator that transforms C programs into C programs sup-
porting portable checkpoints. They introduce source-to-source compilation tech-
niques for generating code to save and recover from such portable checkpoints
automatically. To save the stack state, the program repeatedly returns and le-
gitimately saves the parameters/local variables until the bottom of the stack is
reached. During restoring, this process is reversed.

Multi-threads: Latency Hiding. We can implement high-level language
threads realized by a language system by using L-closures. To implement mul-
tiple threads, every function has its own nested function to continue its equiva-
lent computation and save the pointer to the nested function to be called later
to early execute the thread’s unprocessed computation (continuation). The ex-
plicit continuation is provided by the nested function ane explicitly passed like
a continuation-passing style.

Concert[11], OPA[12] use similar translation techniques to support suspen-
sion and resumption of multiple threads on a single processor with a single
execution stack (e.g., for latency hiding). They create a new child thread as an
ordinary function call and if the child thread completes its execution without
being blocked, the child thread simply returns the control to the parent thread.
But in case of the suspension of the child thread, the C functions for the child
thread legitimately saves its (live) parameters/local variables into heap-allocated
frames and simply returns the control to the parent thread. When a suspended
thread become runnable, it may legitimately restore necessary values from the
heap-allocated frames.

StackThreads/MP[14] allows the frame pointer to walk the execution stack
independently of the stack pointer. When the child thread is blocked, it can
transfer the control to an arbitrary ancestor thread without copying the stack
frames to heap. StackThreads/MP employs the unmodified GNU C compiler
and implements non-standard control flows by a combination of an assembly
language postprocessor and runtime libraries.

Load Balancing. To realize efficient dynamic load balancing by transferring
tasks among computing resources in fine-grained parallel computing such as
search problems, load balancing schemes which lazily create and extract a task
by splitting the present running task, such as Lazy Task Creation (LTC)[16], are
effective. In LTC, a newly created thread is directly and immediately executed
like a usual call while (the continuation of) the oldest thread in the computing
resource may be stolen by other idle computing resources. Usually, the idle com-
puting resource (thief ) randomly selects another computing resource (victim)
for stealing a task.

Compilers (translators) for multithreaded languages generate low-level code.
In the original LTC[16], assembly code is generated to directly manipulate the
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execution stack. Both translators for Cilk[13] and OPA[12] generate C code.
Since it is illegal and not portable for C code to directly access the execution
stack, the Cilk/OPA translators generate two versions (fast/slow) of code; the
fast version code saves values of live variables in a heap-allocated frame upon
call (in the case of Cilk) or return (in the case of OPA) so that the slow version
code can continue the rest of computation based on the heap-allocated saved
continuation.

A message passing implementation[17] of LTC employs a polling method
where the victim detects a task request sent from the thief and returns a new task
created by splitting the present running task. This techniques enables OPA[12],
StackThreads/MP[14] and Lazy Threads[15] to support load balancing.

We can generate an LTC-based load balancing program where callers’ vari-
ables are accessed by using L-closures[8]. We can also perform backtracking by
using L-closures. Here “backtracking” means not only to backtrack to a point
where a new choice for the search can be made but also to undo the side effect
of the previous examined choices as in a sequential backtrack search.

8 Conclusions

This paper has proposed a new language concept called “L-closures” for le-
gitimate execution stack access. L-closures can be used to implement a wide
variety of high-level services and can be implemented efficiently in terms of cre-
ation/maintenance costs by accepting higher invocation costs. We implemented
L-closures based on GCC while reusing the existing optimizers.

The results of performance measurements exhibit quite low costs of creating
and maintaining L-closures. Because most high-level services create L-closures
very frequently but call them infrequently (e.g., to scan roots in garbage collec-
tion), the total overhead can be reduced significantly.

L-closures have roles similar to exception handlers, but they are sometimes
more useful since they allow the control to return to the calling point.

Future work includes the implementation of various high-level languages by
using our extended C language with L-closures as an intermediate language. We
are also developing a transformation-based implementation of L-closures, which
will be useful for the system where GCC-based compilers cannot be used.
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Abstract. The polyhedral model is known to be a powerful framework
to reason about high level loop transformations. Recent developments
in optimizing compilers broke some generally accepted ideas about the
limitations of this model. First, thanks to advances in dependence analy-
sis for irregular access patterns, its applicability which was supposed to
be limited to very simple loop nests has been extended to wide code re-
gions. Then, new algorithms made it possible to compute the target code
for hundreds of statements while this code generation step was expected
not to be scalable. Such theoretical advances and new software tools al-
lowed actors from both academia and industry to study more complex
and realistic cases. Unfortunately, despite strong optimization potential
of a given transformation for e.g., parallelism or data locality, code gen-
eration may still be challenging or result in high control overhead. This
paper presents scalable code generation methods that make possible the
application of increasingly complex program transformations. By study-
ing the transformations themselves, we show how it is possible to ben-
efit from their properties to dramatically improve both code generation
quality and space/time complexity, with respect to the best state-of-the-
art code generation tool. In addition, we build on these improvements
to present a new algorithm improving generated code performance for
strided domains and reindexed schedules.

1 Introduction

Compiler performance has long been quantified through the number of processed
code lines per time unit. Compile time used to be (almost) linear in the code
length. In order to find the best possible optimizations, present day compilers
must rely on higher complexity methods. A striking example is the polyhedral
model. Many advances in program restructuring have been achieved through
this model which considers each instance of a statement as an integer point in
a convenient space [17]. Most of the underlying methods, as data dependence
analysis [9, 23], transformation computation [21, 12] or code generation [16, 25]
exhibit worst-case exponential complexity.

It is not easy to conclude about the scalability of such techniques. The lit-
erature is full of algorithms with high complexity which present a very good
practical behavior (the simplex algorithm is probably the most famous [7]). Poly-
hedral code generation has an intrinsic worst-case complexity of 3nρ polyhedral
operations (themselves associated with NP-complete problems), where n is the
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number of statements, and ρ the maximum loop depth. Nevertheless, input pro-
grams are not randomly generated. Most of the time, human-written codes show
simple control, loop nests with low depth and which enclose few statements.
Such properties make it possible to regenerate, through the whole source-to-
polyhedra-to-source framework, well known benchmark codes with hundreds of
statements per static control compute kernel (in the SPECfp2000 benchmarks)
in an acceptable amount of time [3].

Complex transformations may be automatically computed by a given opti-
mizing compiler [5, 21, 4, 12] or discovered by a programmer with the help of
an optimization environment [22, 6]. Their application diminishes the input pro-
gram regularity and lead to a challenging code generation problem. The challenge
may come either from the ability to compute any solution (because of a com-
plexity explosion) or from the ability to find a satisfactory solution (because of
a high resulting control overhead). To solve these problems in practice, a new
experiment-driven study was necessary, starting from the best state-of-the-art
code generation tool [3]. We analyzed in depth a complex optimizing transfor-
mation sequence of the SPECfp2000 benchmark Swim that has been found by an
optimization expert with the help of the URUK framework [6]. Our goal was to
find properties of the transformations themselves that may be exploited to defer
the complexity problem, and to improve the generated code quality.

To validate our approach, we studied and applied our methods to other com-
plex problems that have been submitted by various teams from both industry
and academia. Each of them uses its own strategy to compute transformations,
which encourage the search for common transformation properties. QR has been
provided by Reservoir Labs Inc. which develop the high level R-Stream compiler
[14]. Classen has been submitted by the FMI laboratory of the University of Pas-
sau which develop the high level parallelization tool LooPo [19, 12]. DreamupT3
has been supplied by the RNTL Project DREAM-UP between Thales Research,
Thomson R&D and École des Mines de Paris [13]. General properties of these
reference problems are shown in Figure 1. They proved to be quite different,
spanning all typical sources of complexity in polyhedral code generation: each
benchmark has its own reason to be challenging, e.g. high statement number for
Swim, deep loop nests for Classen, big values that need multi-precision arith-
metic to be to manipulated with DreamupT3.

The paper is organized as follows. Section 2 introduces the polyhedral rep-
resentation and transformation model, then presents the associated code gen-
eration problem. Section 3 positions our paper among related works. Section 4
investigates algorithmic scalability challenges and our solutions, driven by

Reference problems
Properties Swim QR Classen DreamupT3

Statement number 199 10 8 3
Maximum loop depth 5 3 8 2
Number of parameters 5 2 1 0

Scheduling dimensionality 11 7 7 1
Maximum coefficient value 60 5 4 1919

Fig. 1. General properties of reference problems
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experimental evaluations of the four reference benchmarks. Section 5 addresses
additional code generation challenges associated with code size reduction and
efficiency; in particular, it presents the first modulo-condition elimination tech-
nique that succeeds for a large class of real-world schedules while avoiding code
bloat due to multi-versioning.

2 Overview of the Polyhedral Framework

This section presents both a quick overview of the polyhedral framework and
notations we use throughout the paper. A more formal presentation of the model
may be found in [24]. One usually distinguishes three steps: one first has to
represent an input program in the formalism, then apply a transformation to
this representation, and finally generate the target (syntactic) code.

Our introductory example is a polynomial multiplication kernel. The syn-
tactic form is shown in Figure 2(a). It only deals with control aspects of the
program, and we refer to the two computational statements (array assignments)
through their names, S1 and S2. To bypass the limitations of such representa-
tion (e.g. weak data dependence analysis, restriction to simple transformations),
the polyhedral model is closer to the execution itself by considering statement
instances. For each statement we consider the iteration domain, where every
statement instance belongs. The domains are described using affine constraints
that can be extracted from the program control. For example, the iteration do-
main of statement S1, called DS1, is the set of values (i) such that 2 ≤ i ≤ n
as shown in Figure 2(b); a matrix representation is used to represent such con-
straints: A · x + Ap · p ≥ 0, where A is the iteration matrix, x is the iteration
vector (composed of the loop counters), Ap is the parameter matrix and p is the
parameter vector (composed of the unknown constants and the scalar 1). In our
example, DS1 is characterized by 1

−1 ·(i)+ 0 −2
1 0 · n

1 ≥ 0.

for(i=2; i<=n; i++)
z[i] = 0; // S1

for(i=1; i<=n; i++)
for(j=1; j<=n; j++)

z[i+j] += x[i] * y[j]; // S2 1

2

n
j

1 2 i

i>=1
i>=2

i<=n
j<=n

j>=1 i<=2n

S2
S1

S2
S2

S2 S1

n

instance of S1

2n

instance of S2

(a) Syntactic form (b) Polyhedral domains (n ≥ 2)

Fig. 2. A polynomial multiplication kernel and its polyhedral domains

In this framework, a transformation is a set of affine scheduling functions
written θ(x) = T · x + Tp · p. Each statement has its own scheduling function
which maps each run-time statement instance to a logical execution date. In our
polynomial multiplication example, an optimizer may notice a locality problem
and discover a good data reuse potential over array z, then suggest θS1(i) = (i)
and θS2

i
j

= (i + j + 1) to achieve better locality (see e.g., [4] for a method to
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compute such functions). The intuition behind such transformation is to execute
consecutively the instances of S2 having the same i+ j value (thus accessing the
same array element of z) and to ensure that the initialization of each element
is executed by S1 just before the first instance of S2 referring this element. A
transformation is applied in the polyhedral model by using the transformation
formula shown in Figure 3(a) [3], where t is the time-vector, i.e. the vector of
the scheduling dimensions. The resulting polyhedra for our example are shown
in Figure 3(b) with the additional dimension t.

I −T

0 A
· t

x
+

−Tp

Ap
·p = 0

≥ 0

1

2

2
1

n

2n

1 2 n 2n

n

i

j

t

(a) Transformation formula (b) Transformed polyhedra

Fig. 3. General transformation formula and its application

Once the transformation has been applied in the polyhedral model, one needs
to generate the target code. The best syntax tree construction scheme consists
in a recursive application of domain projections and separations [25, 3]. The final
code is deduced from the set of constraints describing the polyhedra attached to
each node in the tree. In our example, the first step is a projection onto the first
dimension t, followed by a separation into disjoint polyhedra as shown on the
top of Figure 4(a). This builds the first loop level of the target code (the loops
with iterator t shown in Figure 4(b)). The same process is applied onto the first
two dimensions (on the bottom of Figure 4(a)) to build the second loop level
and so on. The final code is shown in Figure 4(b) (the reader may care to verify
that this solution does exploit at its best the temporal reuse of array z). Note
that the separation step for two polyhedra needs three operations: DS1 − DS2,
DS2−DS1 and DS2∩DS1, thus for n statements the worst-case complexity is 3n.

3 Related Work

The history of code generation in the polyhedral model shows a constant growth
in transformation complexity, from basic schedules for a single statement to gen-
eral affine transformations for wide code regions. In their seminal work, Ancourt
and Irigoin limited transformations to unimodular functions (the T matrix pre-
sented in Section 2 has determinant 1 or −1) and the code generation process
was applicable for only one domain at once [1]. Several works succeeded in re-
laxing the unimodularity constraint to invertibility (the T matrix has to be
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S1
i=t

2n
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S2 alone
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onto (t,i)

S2

S2

S2

S2

t=2
S1

t>=3
S1S2

t<=2n
S1S2 S2

S1 alone S1 and S2 S2 alone

t=2n+1 // Indentation follows t,i,j domain dimensions
t=2; // A loop running once

i=2;
z[i] = 0; // S1

for(t=3; t<=2*n; t++)
for(i=max(1,t-n-1); i<=min(t-2,n); i++)
j = t-i-1;
z[i+j] += x[i] * y[j] // S2

i=t;
z[i] = 0; // S1

t=2*n+1;
i=n;
j=n;
z[i+j] += x[i] * y[j]; // S2

(a) Projections an separations (b) Target code

Fig. 4. Target code generation

invertible), enlarging the set of possible transformations [8, 20]. A further step
has been achieved by Kelly et al. by considering more than one domain and
multiple scheduling functions at the same time [16]. All these methods relied on
the Fourier-Motzkin elimination method [27] to build the target code. Quilleré et
al. showed how to use polyhedral operations based on the Chernikova Algorithm
[18] instead, to benefit from its practical efficiency to handle bigger problems
[25]. Recently, a new transformation policy has been proposed to allow general
non-invertible, non-uniform, non-integral affine transformations [3]. Such free-
dom allowed to apply polyhedral techniques to much larger programs with very
sophisticated transformations, and led to novel complexity, scalability and code
quality challenges we discuss in this paper.

4 Code Generation Scalability

This section analyzes three important properties of affine schedules used in real-
world program generation problems, then for each property, proposes an algo-
rithmic solution to improve scalability.

4.1 Scalar Dimensions

There are many ways to specify a given transformation (or a given sequence of
transformations) using affine schedules. Basically we can divide them in two fam-
ilies. The first kind, mono-dimensional schedules, describe the execution order
thanks to functions with only one dimension. The second kind, multi-dimensional
schedules, use several dimensions to express the ordering. Most of the time,
the original domains are parametric, i.e., are bounded by (statically) unknown
constants. For the first kind, this variety amounts to manipulating non-affine
expressions. This is not the case with multi-dimensional schedules, when using
at least as many dimensions as the original domain [10]. Moreover, using addi-
tional dimensions to explicitly order different statements onto a given dimension
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makes transformation manipulation easier [15, 6]. As a result, multi-dimensional
schedules with more dimensions than original domains are quite often used to
specify transformations. Figure 5 shows an example of a loop interchange trans-
formation applied to the example in Figure 2(a) that may be achieved thanks to
different schedules. ρ(S) is the depth of the original statement, i.e., the number
of dimensions of its original iteration domain.

Scheduling policy θS1 θS2
Mono-dimensional (i) (n + j ∗ n + i)
ρ(S)-dimensional (i) (n + j, i)T

(2 ∗ ρ(S) + 1)-dimensional (0, i, 0)T (1, j, 0, i, 0)T

for(i=2; i<=n; i++)
z[i] = 0; /* S1 */

for(j=1; j<=n; j++)
for(i=1; i<=n; i++)

z[i+j] += x[i]*y[j]; /* S2 */

(a) Possible schedules for loop interchange (b) Target code

Fig. 5. Loop interchange for polynomial multiplication using different schedules

Unified transformation frameworks like UTF [15] or URUK [6] are good ex-
ample of multi-dimensional schedule policies. Both ask for (2ρ(S)+1) dimensions
which allow them to be much more flexible. Nevertheless, using additional dimen-
sions has a cost. In time: we will see that each dimension needs costly polyhedral
operations (projection/separation/sorting). In space: each dimension implies (1)
a new column in the constraint matrix, (2) as many rows as new constraints and
(3) a new level in the generated code tree.

Most of the time, additional dimensions are scalar, i.e. they are constant for
every scheduling functions. Because polyhedral operations on such dimensions
are trivial, we systematically remove them from the constraint matrix, storing
the scalar values in ad-hoc vectors. In the following, scalar dimensions will be
implicitly stripped away from the schedule matrices. Polyhedral operations as
usual with the additional provision that, before each separation step, we order
the polyhedra according to the appropriate scalar vector components. Further
steps of the code generation algorithm are applied onto lists of polyhedra having
the same values for these components.

This optimization benefits from schedule properties without impacting ex-
pressiveness. It may dramatically reduce the number of polyhedral operations,
improving both time and space complexity. Moreover, it also reduces the cost
(in time and space) of every single polyhedral operation, by reducing matrix
size. In practice, the actual benefits depend on the transformation policy: the
more the constant scalar dimensions, the better the results. Also, this step has a
very low complexity and thus does not degrade computation time even in worst

Time Space
Benchmark Scalar ratio Original(s) Scalar(s) Speedup Original(KB) Scalar(KB) Reduction
Swim 6/11 41.20 10.33 3.99× 17480 8128 2.15×
QR 4/7 19.47 2.44 7.98× 3012 988 3.05×
Classen 3/7 1.12 0.69 1.62× 1092 672 1.62×
DreamupT3 0/1 0.49 0.49 1.00× 160 160 1.00×

Fig. 6. Experimental results for scalar dimension removal
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case scenarios. Figure 6 shows the results when applying this optimization to
our reference code generation problems. The scalar ratio gives the number of
scalar dimensions with respect to the total number of dimensions, showing that
the different teams which provided their problems do use scalar dimensions. This
results into significant time and space improvement, except for the last program.

4.2 Node Fusion

When specifying transformations for a program with many statements, often
is the case the processing is similar for several statements, at least for some
dimensions. For instance, applying a given transformation (same schedules) to
some statements of a given loop nest (same domains) allow to consider only one
statement block. The modified version of the Quilleré algorithm [3] is given in
Figure 7 and exploits the similarities of the transformations on certain dimen-
sions for different statements.

CodeGeneration: builds an AST (Abstract Syntax Tree) scanning a list of polyhedra
Input:
node: flat AST holding the domains to scan
context: static context (known constraints met by the parameters)
depth: the nesting level

Output: An AST scanning the polyhedra in the lexicographic order

AST ←
while node has successors

1 Intersect node.domain with the context
2 Project intersected domain on the depth outermost dimensions and on parameters
3 node ← node.next

if nodes have scalar values at depth and they are different
4 Sort nodes according to their scalar values at depth
5 worklist ← partition nodes by scalar values

foreach job in worklist
6 fusedlist ← Fuse nodes of job with the same projected intersected domain
7 separatedlist ← Apply Quilleré’s separation step to fusedlist
8 sortedlist ← Sort separatedlist according to the lexicographic order

foreach ASTnode in sortedlist
if ASTnode.domain dimensionality > depth

9 ASTnode.inner = CodeGeneration(ASTnode.node, context, depth+1)
10 Enqueue ASTnode to AST

return AST

Fig. 7. Code generation algorithm

Steps 4 and 5 create work-lists that fully take advantage of the detection
of scalar dimensions described in Section 4.1. Step 6 examines nodes of each
job of the work-list and tries to fuse them into sub-work-lists to reduce the
number of elements given to the Quilleré algorithm as much as possible. Node
fusion occurs at current depth on the projected domains and is guaranteed to
exploit similarities between schedules at each nesting level independently. The
complexity gain of Steps 4, 5 and 6 is difficult to quantify as it depends on the



192 N. Vasilache, C. Bastoul, and A. Cohen

shape of the generated code itself and transformation similarities across different
statements.

Considering a simple case with n statements in a loop nest level that can be
blocked into c chunks of sc statements with same scalar components. Suppose
each chunk can further be blocked into bc blocks of lbc ≤ sc statements with same
projected domain. This translates to

∑
bc

(Quilleré (lbc)) instead of Quilleré (n)
which stands for a call to the Quilleré separation algorithm that has a worst-case
complexity of 3n. Furthermore, Step 8 also benefits from the reduction above
and allows for

∑
bc

(Sort (lbc)) instead of Sort (n) which stands for a call to a
function sorting n polyhedra that also has an exponential worst case complexity.
Experimental results are summarized in Figure 8. As expected, this technique is
quite useful for large problems like Swim.

Time Space
Benchmark Original(s) Fused(s) Speedup Original(KB) Fused(KB) Reduction
Swim 41.20 5.90 6.98× 17480 5048 3.46×
QR 19.47 19.17 1.02× 3012 2992 1.01×
Classen 1.12 1.03 1.09× 1092 1060 1.03×
DreamupT3 0.49 0.49 1.00× 160 160 1.00×

Fig. 8. Experimental results on node fusion

4.3 Domain Iterators

It is well known that code generation is easier when restricting the problem
to invertible schedules [29, 25]. CLooG was the first tool to seamlessly manage
non-invertible schedules, at the cost of additional recursion steps, polyhedral
projections and larger matrix sizes in Quilleré’s algorithm [2, 3]. For scalability
reasons, we propose to detect non-singularity conditions and refine the recursive
AST traversal automatically. Indeed, when considering invertible transforma-
tions, the value of the original domain iterators (used, e.g., in the statement
bodies) according to the target space iterators can be efficiently obtained via
matrix inversion (instead of recursive polyhedral projections).

Let θ(x) = T · x + Tp · p be a schedule transformation where T is invertible,
and consider an iteration domain D : A ·x+Ap ·p ≥ 0. The transformed domain
T (see Figure 3(a)) can be broken down into two distinct components:

– a polyhedron to scan (Figure 9) obtained by projecting T on time iterators
and parameters only;

– an inverted scatter matrix (ISM) that associates, locally to each statement,
the expression of the domain iterators as invertible functions of time iterators
and parameters. When T is non-unimodular, T−1 has rational coefficients.
Let (di,j) be the denominators of T−1, by taking λi = lcm(di,•) we define Λ =
Diag (λi) as the diagonal matrix where the diagonal element of the ith line
is λi. The left multiplication of the matrix representation of T (Figure 3(a))
by (ΛT−1 | 0) yields an integral matrix, the ISM in Figure 10.
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T ⊥ t 0 0
0 0 p

Fig. 9. Simplified time-extended
domain

ΛT −1 −Λ
t

x
− ΛT −1Tpp = 0

Fig. 10. ISM to recover the domain iterators

The benefits brought to the separation algorithm are threefold and contribute
to possibly exponential complexity gains:

– it is straightforward to write domain iterators as expressions of time itera-
tors and parameters from Figure 10 instead of performing costly polyhedral
projections on each domain iterator;

– the column number of each polyhedron to scan is reduced by the number of
domain iterators (potentially half the original size if there are no parameters);

– the height of the generated AST is reduced on each path to every statement
by the same amount above. However the paths subject to reduction are
linear and save no branches from the original AST but still save polyhedral
projections.

The Swim benchmark has invertible schedules only (this is a strong assump-
tion of the URUK framework [6]), but this is not the case for the other bench-
marks. We could therefore evaluate this optimization to Swim only, yielding 36%
reduction in code generation time and 57% reduction in memory usage. We are
working on extending this domain iterator elimination technique to all kinds of
non-invertible schedules, combining Gaussian elimination steps with polyhedral
projections.

4.4 If Conditional Hoisting

Under complex transformation sequences, the top-down part of Quilleré’s code
generation algorithm [25] yields if conditionals that greatly hamper the qual-
ity of the generated code and thus, its execution time. Figure 11 exhibits this
behavior on a basic example: generating a code for scanning the polyhedra of Fig-
ure 11(a) using the algorithm in Figure 7 would lead to the code in Figure 11(b).
This figure shows internal guards leading to a high control-overhead.

The approach presented in [25] for removing inner if conditionals and gen-
erating the better code in Figure 11(c) consists of a backtracking call to the
separation procedure. Although it proved successful at performing its primary
task, its side effects can yield unnecessary computation and code bloating. The
aforementioned algorithm lacks the capability of factorizing similar conditionals.
Examine a node at depth d after the separation phase. Assume the separation
has generated an inner conditional c which depends only on the i, i < d, first
dimension iterators. During the backtracking called on depth d, the algorithm
in [25, 3] performs separation regardless of the condition c. Therefore, costly
polyhedral operations have been made while only a separation at depth i was
necessary. Focusing only on conditionals also avoids to version triangular loops
which may not execute only for specific values of the outer loop counters. For
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for(i=1;i<=n;i++)
if(i == n)

S1(j=n)
S2(j=n)
S3(j=n)

if(i <= n-1)
S1(j=i)
S2(j=i)

for(j=i+1;j<=n-1;j++)
S2

if(i <= n-1)
S2(j=n)
S3(j=n)

for(i=1;i<=n-1;i++)
S1(j=i)
S2(j=i)
for(j=i+1;j<=n-1;j++)
S2

S2(j=n)
S3(j=n)

S1(i=n,j=n)
S2(i=n,j=n)
S3(i=n,j=n)

(a) Domains to scan (b) Before if-hoisting (c) After if-hoisting

Fig. 11. Removing internal guards with if-hoisting

instance, in Figure 11(c) the j-loop does not iterate for i = n − 1; removing this
negligible control overhead would increase code size by 50%.

Our solution boils down to a depth-first traversal of the AST, fetching all
the conditionals of subsequent domains for the current nesting level, factoriz-
ing them by performing polyhedral separation (intersection and difference) on
conditionals relevant to the current depth only, and intersecting these newfound
conditionals with the current domain, duplicating the underlying AST structure.
The algorithm, which intervenes as a post pass after separation guarantees no
unnecessary cuts are performed and therefore avoids unnecessary code explosion.
Figure 12 shows the duplication factor results on the four reference benchmarks,
i.e., the number of computational statements in the generated code divided by
the number of statements in the polyhedral representation, a reasonable met-
ric for code quality [2]. These results show strong code size reductions can be
achieved through our improved if-hoisting phase. The relatively low duplication
factor for Swim (2.5) is also a very good indication of the applicability and scal-
ability of polyhedral techniques to larger optimization and parallelization prob-
lems. Eventually, to better isolate the effect of this optimization, the last row
(Figure 12) reports results for the simple one-statement matrix multiplication,
applying three-dimensional tiling and shifting through the URUK framework [6].
It incurs major (yet unavoidable) code bloat, but our technique reduces it by a
factor of 2.5.

Benchmark Original dup. factor if-hoisting dup. factor Reduction
Swim 2.5 2.5 1
QR 107 35 3
Classen 11.5 9.6 1.2
DreamupT3 23.3 4 5.8
MxM 175 69 2.5

Fig. 12. Experimental results with if-hoisting
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5 Code Quality

Beyond code generation performance, addressing real-world problems raises gen-
erated code quality issues that may not directly emerge from smaller, academic
examples. This section investigates two of them: extending code generation to
implement a smarter loop unrolling strategy, and building on this extension
to achieve a major step in code generation for strided domains and reindexed
schedules.

5.1 Enabling Strip-Mining for Unrolling

In most cases, loop unrolling can be implemented as a combination of strip-
mining and full unrolling [28]. Strip-mining itself may be implemented in several
ways in a polyhedral setting. Following our earlier work in [6] and calling b
the strip-mining factor, we choose to model a strip-mined loop by dividing the
iteration span of the outer loop by b instead of leaving the bounds unchanged
and inserting a non-unit stride b:

for(i=�(x); i<=u(x); i++)
strip-mine(b)

−→
for(t1=

⌈
�(x)

b

⌉
; t1<=

⌊
u(x)

b

⌋
; t1++)

for(t2=max(�(x),b*t1); t2<=min(u(x),b*t1+b-1); t2++)

This design preserves the convexity of the polyhedra representing the trans-
formed code, alleviating the need for specific stride-recognition mechanisms
(based, e.g., on the Hermite normal form).

In Figure 13(b) we can see how strip-mining by a factor of 2 the original
code of Figure 13(a) yields an internal loop with non-trivial bounds. It can be
very useful to unroll the innermost loop to exhibit register reuse (a.k.a. register
tiling), relax scheduling constraints and diminish the impact of control on useful
code. However, unrolling requires to cut the domains so that min and max con-
straints disappear from loop bounds. Our method is adapted the one presented
for hoisting if conditionals; the difference lies in the selection of conditionals. For
the purpose of if-hoisting (see Section 4.4), we just had to pick the constraints
that did not concern the node at current depth. Here we focus on finding con-
ditionals (lower bound and upper bound) for the current depth, such that their
difference is a non-parametric constant : the unrolling factor. Hoisting these con-
ditionals actually amounts to splitting the outer strip-mined loop into a kernel
part where the inner strip-mined loop will be fully unrolled, and a remainder part

for(t1=M; t1<=N; t1++)
S1(i = t1);

for(t1=M/2; t1<=(N+1)/2; t1++)
for(t2=max(M,2*t1);

t2<=min(N,2*t1+1); t2++)
S1(i = t2);

if(M%2==1)
S1(i = M);

for(t1=(M+1)/2; t1<=(N-1)/2; t1++)
S1(i = 2*t1);
S1(i = 2*t1+1);

if(N%2==0)
S1(i = N);

(a) Original code (b) Strip-mining of 2 (c) Separation & unrolling

Fig. 13. Strip-mining and unrolling transformation
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(not unrollable) spanning at most as many iterations as the strip-mining factor.
In our example, the conditions associated with a constant trip-count (equal to
2) are t2>=2*t1 and t2<=2*t1+1 and are associated with the kernel, separated
from the prologue where 2*t1<M and from the epilogue where 2*t1+1>N. This
separation leads to the more desirable form of Figure 13(c).

Finally, instead of implementing loop unrolling in the intermediate represen-
tation of our framework, we delay it to the code generation phase and perform
full loop unrolling in a lazy way, avoiding the added (exponential) complexity
on the separation algorithm. This approach relies on a preliminary strip-mine
step that determines the amount of partial unrolling.

5.2 Removing Modulo Conditions

When the transformed domains T (see Figure 3(a)) are Z-polyhedra (a.k.a.
lattice polyhedra), the generated code shows modulo conditions. The modulo
guards guarantee that only the iterations that belong to the original domain
are scanned in the generated code. For instance, if the ISM of a statement S
(see section 4.3) that gives the value of the original domain iterators (e.g., i)
according to the transformed space iterators (e.g., t) gives 2i = t, the execution
of the statement S will be guarded with if (t%2 == 0). This situation happens
either when the transformation matrices T are not unimodular or when the
original domains D are Z-polyhedra, e.g., in some kinds of strip-mined loops1.
Both cases boil down to the same code generation problem. For space reasons, we
will only detail our solution in the case of invertible, non-unimodular schedules.

The consequence of generating modulo guards is to introduce a high con-
trol overhead. Many works focused on finding solutions to avoid them. The first
idea was to compute an appropriate loop stride. At first it was done using the
Hermite Normal Form [20, 29, 8, 26], but this was limited to only one domain,
then by considering the transformation expression itself [16, 2], but some guards
cannot be removed in this way. More recent methods suggest to use strip-mining
for one domain [11], or to find equivalent transformations with convenient ad-
ditional dimensions when this is possible [12], or to unroll the loops according
to a convenient unroll factor in the case where modulo guards depend on only
one loop counter [12]. Here we give a general algorithm to drastically reduce the
number of modulo guards inside the loops and even void them all in the loop
kernels.

Consider a simple example with two statements, where S1 has the one-
dimensional schedule 2t1 − 5 and S2 has the one-dimensional schedule 3t1. In
other words, the rate of S1 is 50% higher than S2 and is shifted ahead by 5 itera-
tions. This example is derived from the low-level scheduling and code generation
for a software-pipelined FIR filter, where one functional unit (a multiplier in S1)
is needed at a 50% higher rate than a another one (an adder in S2), and S2
depends on S1. Due to the combined reindexing (factors 2 and 3 in the schedule)
and shifting (by 5 iterations), traditional techniques to avoid modulo expressions
cannot be applied [2], and existing code generators yield the inefficient code of
1 Although one may express strip-mining with convex polyhedra only, see Section 5.1.
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(...)
// software pipeline kernel
for (t1=5; t1<=2*N-2; t1++)
if ((t1-5)%3 == 0)
S2(i = (t1-5)/3);

if (t1%2 == 0)
S1(i = t1/2);

(...)

Fig. 14. Traditional code genera-
tion

// prologue
S2(0);
// kernel code with S1 and S2 synchronized modulo 6
for (t1=1; t1<=floord(N-4,3); t1++)
S1(i = 3*t1); S2(i = 2*t1-1); // t2%6 = 0
S1(i = 3*t1+1); // t2%6 = 2
S1(i = 3*t1+2); // t2%6 = 3
S2(i = 2*t1); // t2%6 = 4

// epilogue
for (t1=ceild(N-3,3); t1<=floord(N-1,3); t1++)
for (t2=6*t1; t2<=2*N-2; t2++)
if ((-t2+5)%3 == 0)
S2(i = (t2-5)/3);

if (-t2%2 == 0)
S1(i = t2/2);

Fig. 15. Our solution for the software-pipelined
kernel

Figure 14. Our technique eliminates modulo expressions completely from the
kernel part (the hot path) of the generated code, without code bloat, and gen-
erates the much more efficient version in Figure 15. On this simple example,
our technique achieves a 67% reduction in generated code execution-time, with
respect to the more naive one with modulo expressions.

In the general case, the main problem resides in the lower bound of the
scattered domain [8, 26, 29] whose value modulo the stride factor must be known
in order to exhibit a regular pattern in the loop body. This lower bound can
be viewed as a pattern alignment synchronization barrier for S1 and S2. Indeed,
parametric schedules with non-unit stride factors may generate as many different
loop body patterns as the least common multiplier of these strides; notice these
patterns are not identical (in general) up to loop body “rotations”. The only
solution to thoroughly eliminate modulo conditions is multi-versioning, but it
results in severe code bloat for stride factors over 2 or 3.

Our approach consists in forcing pattern synchronization by strip-mining the
original loop by a factor that is yet to determine. This amounts to extracting
a prologue and an epilogue from the unrollable kernel, yielding the much more
efficient solution of Figure 15. Using this method, the prologue and epilogue still
contain internal modulo conditions whereas the kernel (where the vast majority
of the execution time is spent) can be unrolled. This approach is effective on a
large class of “well-behaved” schedules. We will argue at the end of this section
that the other “ill-behaved” schedules are intrinsicly code-bloating if modulo
expression elimination is to be attempted.

The previous case having the sole purpose of stating the problem simply, we
now outline the general algorithm. This step takes place after the separation, if-
hoisting, and lazy unrolling steps. From the Inverse Scatter Matrix (ISM) shown
in Figure 10, we can derive that the ith original loop iterator xi corresponding
to a given statement S can be expressed thanks to the ith line of its ISM for-
mula: λi · xi =

(∑
j (ki,j · tj) + C

)
, where C is the constant parametric part. It

follows, a modulo condition that rules the execution of S is
(∑

j (ki,j · tj) + C
)
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mod λi = 0. Let us first assume that C is known at compile time. The point is
to statically determine the values of (ki,j · tj) mod λi for all i and j to be able
to remove all the modulo guards. For that purpose, for each node of the AST at
depth j, the time dimension tj will be unrolled by the least common multiplier
over all statements under this node (at depth j) of

lcmj = lcm
{i|ki,j �=0}

(
λi/ gcd(ki,j , λi)

)
.

Unrolling by this factor yields as many instances of tj for which we statically
know the value modulo λi. For a given loop node at depth d, the least common
multiplier of all such unrolling factors yields the global unrolling factor lcmj

that is necessary for static elimination of all internal modulo conditions. To
enable unrolling, a new time dimension is introduced by strip-mining by lcmj .
This new dimension scans the same points as the old time dimension, with the
additional property that its first iteration is divisible by lcmj , thus achieving the
required synchronization of all statements to a statically known pattern. Building
on the strip-mining method introduced in Section 5.1, the strip-mined loop is
actually split into a prologue, a so-called zero-aligned kernel, and an epilogue.
By construction, the zero-aligned kernel has the important property that its
outer strip-mined loop scans multiples of lcmj only. Thanks to this property,
and having fully unrolled the inner strip-mined loop, we may statically evaluate
the remainder of the division of the inner strip-mined loop’s iterator by lcmj .
Applying this systematically to all depths where lcmj is greater than 1 allows
all modulo conditions to be removed from the zero-aligned kernel only.

RemoveModuloGuards: removes modulo conditionals from loop kernels
Input:
node: AST root node
depth: the depth of the modulo conditional

Output: an AST without modulo conditionals in loop nest kernel

nodelist ← empty list
while node has successors
if node is a for loop

1 compute lcmdepth
if lcmdepth > 1

2 kernel.inner ← new time dimension between tdepth and tdepth+1 with constraints
lcmdepth × tdepth ≤ tnew ≤ lcmdepth × tdepth +(lcmdepth −1)

3 Update all the statement informations (domains and ISMs) with the new dimension
4 Strip-mine and partition node.domain in prologue, zero-aligned kernel, and epilogue
5 Enqueue prologue, kernel and epilogue to nodelist
6 Unroll kernel with respect to tnew
7 RemoveModuloGuards(kernel.inner.inner, depth+2)

else
8 RemoveModuloGuards(node.inner, depth+1)

else node is a statement
9 Prune node off the AST if needed

node ← node.next

return nodelist

Fig. 16. RemoveModuloGuards Algorithm



Polyhedral Code Generation in the Real World 199

The algorithm in Figure 16 describes how to introduce new time dimensions
and unroll them so as to eliminate modulo conditions. Step 9 is actually not
trivial. When reaching the leaves of the AST, we need to determine which modulo
guards have been simplified, which ones are still necessary and which ones have
become unfeasible. Having strip-mined (and unrolled) by the factor lcmdepth, we
have forced newly created time iterators on the path to the innermost kernel
to be divisible by λi. If all the components of an ISM line i are divisible by λi,
then the modulo condition is always true and needs not to be printed. If all the
components are divisible by λi but not the constant part, the modulo condition
is always false and the statement should be pruned. In the last case, the modulo
condition for line i needs to be printed, but at least its expression simpler (and
faster to evaluate) than it would have been without strip-mining and unrolling.

Had we wished to fully unroll and had we used versioning, we could have
generated an unreasonable number of versions (up to the factorial of lcmdepth).
Our algorithm manages to fully unroll the kernel only, where most computation
time is spent, while the prologues and epilogues (with modulo conditions) hold
at most lcmdepth − 1 iterations.

When the value of constant parametric shift component C modulo lcmdepth
is not statically known, it is impossible to statically determine an interleaving
pattern. Synchronizing the values of time iterators modulo lcmdepth does not help
and even leads to the insertion of internal modulo conditions. Nonetheless, one
can argue on the interest of schedules that do not exhibit a regular pattern: the
interleaving of statements itself totally changes with the values of parameters,
hence is intrinsincly tied to multi-versioning.

6 Putting It All Together

Let us combine all the previous optimizations and summarize the total improve-
ments in code generation time, memory usage and generated code size. To further
stress the scalability of our tool, we added a more complex optimization of the
Swim benchmark, called Swim+, in its most general setting with 5 parameters
(without context).

Time Space Code size
Benchmark Orig.(s) Opt.(s) Speedup Orig.(KB) Opt.(KB) Reduction Orig.(Lines) Opt.(Lines) Reduction
Swim 41.20 2.41 17.09× 17480 2380 7.34× 830 764 1.09×
Swim+ 1219.67 21.62 56.41× 322624 22180 14.55× 17791 12041 1.48×
QR 19.47 2.42 8.05× 3012 988 3.05× 4733 1432 3.33×
Classen 1.12 0.25 4.48× 1092 272 4.01× 130 105 1.24×
DreamupT3 0.49 0.20 2.45× 160 160 1.00× 382 68 5.62×

Fig. 17. Summary of experimental results

7 Conclusion

The polyhedral model is a powerful framework to reason about high level loop
transformations. Recently, new algorithms made it possible to compute the tar-
get code for hundreds of statements while this code generation step was expected
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not to be scalable. Unfortunately, these improvements allowed the exploration of
larger, more complex optimization and parallelization problems, which in turn
raised several scalability and code quality challenges.

We presented scalable code generation methods that make possible the ap-
plication of complex program transformations to real-world computation kernels
with up to 199 statements. By studying the transformations themselves, we show
how it is possible to benefit from their properties to dramatically improve both
code generation quality and space/time complexity. Moreover, building on these
algorithmic improvements, we proposed a new algorithm to generate more effi-
cient (conditional-free) code for strided domains and reindexed schedules.

We believe these improvements — implemented in the latest versions of the
CLooG [3] and WRaP-IT/URUK [6] frameworks — will initiate an other vir-
tuous cycle towards allowing polyhedral techniques to bring dramatic improve-
ments in the effectiveness of optimizing and parallelizing compilers.
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Abstract. Naive code generation from high-level languages that encour-
age modularity can give rise to large numbers of simple loops for array-
based programs. Collective loop fusion and array contraction can be used
on such codes to improve temporal locality and performance. The prob-
lem is typically formalised using a loop dependence graph (LDG), with
solutions denoted by fusion partitions. Much previous work has concen-
trated on approaches to the abstract formulation. We present our tech-
nique called iterative collective loop fusion based on empirically evaluating
different transformations, and show how it can provide speedups over ex-
isting approaches of up to 1.38. We also give results showing that applying
such techniques to high-level languages can provide speedups of up to 2.45
over the original code, and outperforms an equivalent code in Fortran.

1 Introduction

Advanced programming languages that encourage modularity can give rise to
programs with many loops, poor temporal locality and many temporary ar-
ray variables when used to write scientific codes. The original motivation for
this work came from the desire to optimise a package of iterative linear solvers
with exactly these characteristics, written in Aldor[1], a high level mixed func-
tional/imperative programming language for numerical and symbolic computer
algebra. Such codes can benefit greatly from a systematic approach to loop
fusion and array contraction. However, previous approaches to collective loop
fusion have chosen transformations based on models rather than real perfor-
mance. Our proposed solution to the problem is iterative collective loop fu-
sion, which brings the techniques of iterative compilation to collective loop
fusion.

The rest of the paper is organised as follows: Section 2 introduces the basic
formalism with examples, Section 3 discusses previous work and motivates the
development of our technique, Section 4 describes the technique in detail, Section
5 provides experimental results and Section 6 concludes and offers some ideas
for future development.

2 Formulation and Example

A loop dependence graph (LDG) describes a program section that consists of
basic blocks and perfectly nested loops with no additional branching for which

A. Mycroft and A. Zeller (Eds.): CC 2006, LNCS 3923, pp. 202–216, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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data dependencies are known. Figure 1 gives an example with pseudocode for
four loops and the corresponding loop dependence graph. Nodes in the graph
represent the loops of the program section, and a directed edge exists between
two nodes if the target is data dependent on the source. The lack of branching
in the program section ensures that its LDG is acyclic.

The LDG is used to reason about loop fusion for the program section that
it represents. A dependency path (or just path) in the LDG is a set of edges
describing a path from a source node to a destination node through the graph
following the directed edges. Two loops are conformable if their headers are the
same. The nodes representing two conformable loops are possible candidates to
be directly fused if they connected by paths of length one and all the distance
vectors from the source to the target are non-negative, such as loops a and b
in Figure 1, or if they are not connected by a path. In the former case such an
edge is defined as collapsible. A dependency path is collapsible if all its edges are
collapsible, and non-collapsible otherwise.

(loop a)
for i in 1..n do

a[i] := ...
done

(loop b)

for i in 1..n do
reduction := reduction + a[i]
b[i] := ...

done

(basic block) alpha := reduction

(loop c)
for i in 1..n do

c[i] := a[i] + b[i]
done

(loop d)
for i in 1..n do

d[i] := alpha * c[i]
done

a

����
��
��

���
��

��
�

b

��
��

��
�

��
��

�
�� c

����
��
��

d

Key
loop node

�� true dependence
�� fusion–preventing

true dependence

i) ii)

Fig. 1. An example LDG. i) Pseudocode for the original program section, with four
loops and one basic block. Only array d is live out of the program section (i.e. read at
some later point), so all the other arrays can potentially be completely contracted. The
loops are all conformable, and all distance vectors are 0, except for the loop-carried
dependence in the second loop for a reduction variable, the dependence of the basic
block on said reduction variable, and the dependence of the fourth loop on the basic
block. ii) The corresponding loop dependence graph. Nodes in the graph are labelled
with the name of the array that they write to.
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2.1 Collective Loop Fusion and Fusion Partitions

A fusion partition is a partitioning of the nodes of an LDG into disjoint sets
(partitions or clusters) where the nodes in each set will be fused together to
produce the final transformed code. A fusion partition itself can be represented
by a graph where nodes are clusters, and there is an edge between cluster nodes
for every edge that exists between the loop nodes that belong to the respective
partitions in the LDG. See Figure 2 for two fusion partitions of the LDG in
Figure 1. The size of a fusion partition is the number of non-empty partitions
it has (empty partitions are not allowed). For a fusion partition to be legal, it
must be possible to fuse together all the nodes within a given partition, and the
graph of the fusion partition must be acyclic. The first condition is satisfied by
the absence of non-collapsible edges within the cluster. A given LDG has a lower
bound on the size of its legal fusion partitions determined by the dependency
path with the most fusion–preventing edges in it – for example, the minimum
size fusion partition for the LDG in Figure 1 is two.

A B

a, b, c

��

c

		
d

a, b





b

		

a

��
c, d

Key
cluster (partition) node
– represents a fused loop

�� true dependence
induced by use of an array

�� fusion–preventing true dependence
induced by reduction variable

Fig. 2. The graphs of two possible fusion partitions of the LDG from Figure 1. Nodes in
the graph (clusters) are labelled with the letters representing the loop nodes within that
cluster. Both fusion partitions are the same size (2), but permit different amounts of
array contraction – partition A allows two arrays to be contracted (a and b), whereas B
allows only one (c). This corresponds (inversely) to the inter-cluster array dependency
edges in the graphs of the fusion partitions, which are labelled with the non-contracted
array they correspond to – one for partition A and two for B.

2.2 Array Contraction

For a given array, (complete) contraction will be legal after partitioning if all the
dependencies associated with it appear in the same cluster, and they all have
distance zero. Applying array contraction to two fusion partitions of the same
size on a given LDG can give different contraction amounts. This can be seen
by the number of edges in Figure 2, and also the replacement of arrays with
scalar variables in Figure 3, which represents the end product of the transforma-
tions represented in Figure 2. Conversely, different size partitions with the same
amount of contraction are also possible.

A fusion partition can be labelled with a pair of numbers that denote the size
of the fusion partition and the amount of array contraction that it permits. For
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for i in 1..n do
a := ...
reduction := reduction + a
b := ...
c[i] := a + b

done

alpha := reduction

for i in 1..n do
d[i] := alpha * c[i]

done

for i in 1..n do
a[i] := ...
reduction := reduction + a
b[i] := ...

done

alpha := reduction

for i in 1..n do
c := a[i] + b[i]
d[i] := alpha * c

done

A B

Fig. 3. Pseudocode representing the two fusion partitions A and B from Figure 2.
Array contraction has been applied e.g. arrays a and b in the first loop of partition A
have been reduced to scalar variables

some LDGs there will be multiple fusion partitions with the same (contraction
amount, partition size) label.

3 Previous Work

3.1 Standard Model Based Approach

It is usual to associate a cost function with an LDG that ranks the possible
transformations that can be applied to it. The simplest example of this is prefer-
ring more fusion over less (e.g. [2] in the context of typed loop fusion), with all
fusion partitions of the same size being equal. A more sophisticated (and more
common) approach is to add to the LDG a set of edges and associated weights
that model the expected benefit of fusing the loops that they connect.

There have been numerous minor variations on the second approach. Some
examples include transformations specifically for array contraction [3], [4], and a
technique which minimises memory usage and simultaneously improves locality
whilst limiting the size of any fused loop that is produced (i.e. avoiding ”over
fusing”) [5]. One adaptation replaced edges in the cost graph with hyper edges
to better capture re-use between array operands being read [6]. There have
also been several composite approaches, such as a technique that prevents the
creation of loops with parallelisation–preventing loop–carried dependencies [2],
and a related approach that uses adjustable weights which can be altered to
favour fusion for parallelism or fusion for locality [7].

The abstract formulation of various problems has been shown to be at least
NP-hard [6], [8]. Consequently, most work on loop fusion is based on heuristic
algorithms to find some approximation to the optimum answer for the model.
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Approaches have included various greedy algorithms [4], [9], and algorithms
based on max-flow min-cut heuristics [3], [6], [5].

There are two major weaknesses in previous model based fusion/contraction
work. The first is the use in some approaches of overly simple search strategies
to find some approximation to the solution of the idealised NP-hard problem
(e.g. greedy search). As pointed out in [10], the majority of LDGs encountered
in realistic programs will be small, and hence there is no real reason to emphasise
the efficiency of the search so much at the cost of the quality of the approxima-
tion. The second problem is that although all the approaches discussed above
target slightly different optimisations, it can be assumed that their ultimate goal
is to get the best performance for a given LDG, but no authors have adequately
explored the differences between their idealised problem and the implementation
details of actual hardware.

For example, for a given LDG there may be many fusion partitions all ranked
equal according to some abstract cost function (e.g. all with the same amount of
contraction). However, for any method in the literature there is not usually any
indication of how any particular one is chosen, or any indication of how the actual
quality of the equally ranked LDGs varies in practice. Another illustration is the
lack of any indication as to how fusion for locality and fusion for contraction
may conflict, how the trade-off should be managed to get the best performance,
and crucially how this may vary depending on the form of the loops and the
actual processor architecture under consideration.

3.2 Iterative Optimisation

Current implementations of computer architectures contain a wide variety of com-
plex structures, and consequently they are very difficult to model accurately – for
one example of this see [11]. To combat this, the approach of iterative optimisa-
tion treats the goal of finding good transformations as a search problem, with the
cost function as the empirical cost of executing the program that results from a
candidate transformation.

Almost all previous approaches to iterative optimisation deal with trivial
search spaces that are the Cartesian product of some number of options (e.g.
array padding and tiling and unrolling factors for a loop [12]), where all choices
are legal. A notable exception to this is [13]. Our work similarly deals with search
spaces that are themselves nontrivial to generate (see Section 4.1). Also, loop
fusion is rarely included in iterative optimisation work, with [13], [14] being two
largely isolated examples. In the first of these papers loop fusion is implicitly
included in the action of generated space-time mappings, but appears to be ap-
plied in an ad hoc fashion with no mention of choosing fusion partitions etc (in
fact, fusion is almost not mentioned at all) – the primary focus of the paper is
on finding parallelisation transformations with good performance. In the second,
a small experiment on four loops with no fusion–preventing dependencies finds
that fusing all loops together gives the best reduction in energy use, but the
main emphasis is on tiling and unrolling. Again, there is no mention of fusion
partitions. In both papers there is no mention at all of array contraction.
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4 Iterative Collective Loop Fusion

The choice of fusion partition on an LDG usually involves a trade-off in locality
for different pairs of references, and so the best choice depends on how the
locality characteristics of the program interact with the architecture on which it
is being run. These include considerations such as issue width, clock rate, cache
size, miss penalty and bandwidth limits. Hence, choosing a good fusion partition
with respect to temporal locality is architecture dependent and far from trivial,
which is why we employ search.

To perform iterative loop fusion exhaustively we simply require a method
of enumerating all the legal fusion partitions for a given LDG, and the means
to empirically test their run-times. The size of the search space, that is the
number of legal fusion partitions, almost always makes testing each point in it
unfeasible, so there must be some method of selecting a subset of the search
space to test. This is a standard problem in iterative compilation. An extra
complication though is the generation of the search space of legal transformations
itself, which is discussed below.

4.1 Generating Legal Fusion Partitions

Although clusters within a fusion partition are not distinguished, it is useful to
label them with identification (ID) numbers to reason about the enumeration of
the fusion partitions for an LDG. Clusters are numbered from 1 to n giving a
total ordering on the loops produced from a fusion partition.

The naive approach to generating fusion partitions of size n is to assign
each node to a partition i with 1 ≤ i ≤ n. The vast majority of these con-
figurations will be illegal though, so a large number will have to be generated
and tested to find each legal point. An alternative is to find some algorithmic
way of enumerating only legal fusion partitions. The approach in this paper is
based on node numbering, which is described below, followed by the enumeration
algorithm.

Node numbering and range finding. Given a loop dependence graph, a
target size of fusion partition, and a set of nodes with pre-assigned partition
numbers, the forward node numbering procedure provides a test to determine the
lower bound on the ID number of the partition to which any given (unassigned)
node may belong.

Two directly connected nodes joined by at least one fusion–preventing edge
must belong to different partitions. Consequently, given any path from a source
to a sink, the nodes along the path can be numbered to show the earliest partition
that they may belong to (as determined by this path) by grouping the nodes
into sets separated by fusion–preventing edges and numbering the sets (and their
elements) along the path consecutively. If a set contains a pre-assigned node with
a value different from the parent set, then the set is split into two with the second
set starting with the pre-assigned node and labelled with its value. Numbering
along the path continues as before counting upward from the new value.
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NumberNodesForwards(preassigned, LDG)
Description: Labels each unassigned node in the LDG with the
earliest partition that it may belong to.

Input:
{

LDG, a loop dependence graph
preassigned, a set of (node, partitionID) pairs

Output: An integer label for each node as a set of (node,
partitionID) pairs
(1) sources := {(v, partitionID = 1) |

v ∈ Sources(LDG) \ Nodes(preassigned) }
(2) labelled := preassigned ∪ sources
(3) unlabelled := {v | v ∈ Nodes(LDG) \ Nodes(labelled) }
(4) repeat
(5) choose v ∈ unlabelled s.t. Parents(v) ∩ unlabelled = ∅
(6) rankv := 0
(7) foreach p ∈Parents(v)
(8) if ∃e ∈ Joins(v, p) s.t. FusionPreventing?(e)
(9) rankv,p := 1+ Rank(p, labelled)
(10) else
(11) rankv,p := Rank(p, labelled)
(12) rankv := Maximum( { rankv,p } )
(13) labelled := labelled ∪ {(v, rankv)}
(14) unlabelled := unlabelled \ {v}
(15) until unlabelled = ∅
(16) return labelled \ preassigned

Fig. 4. Forward node numbering algorithm
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Fig. 5. An example showing the results produced by Ranges() when calculating pos-
sible partitionings into four clusters for a graph containing both collapsible and fusion–
preventing edges. Each node is labelled with a (minimum partition number, maximum
partition number) tuple, with numbers in bold indicating that the value results from
the node being either a source or a sink in the graph.

If this procedure is repeated for all paths through the graph with each node
being assigned the maximum value over all paths, then the final label Pmin will
denote the earliest possible partition that the node may belong to in this LDG
with these pre-assigned nodes. A pseudocode for the algorithm is provided in
Figure 4. The description makes use of several simple utility functions:
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– Nodes(): returns the set of vertices from an aggregate data structure (either
an LDG or a set of (node, partitionID) pairs).

– Sources(): returns the set of root (source) vertices in the LDG.
– Parents(): returns the parents of a vertex (in the current LDG).
– Joins(): returns the set of edges that joins two vertices (in the current LDG).
– FusionPreventing?(): returns a Boolean depending on whether the edge

is collapsible or not.
– Rank(): returns from a set of (node, partitionID) pairs the partition ID

(integer) of a given vertex.
– Maximum(): returns the maximum from a set of integers.

The algorithm does not actually enumerate all the paths through the LDG.
Instead it successively selects nodes from the unassigned set only after all their
parents have been processed.1

Given a maximum number of partitions, the same numbering can be re-
peated in reverse working from sinks to sources. This gives NumberNodes-
Backwards(), the result of which denotes the latest possible partition that
a node may belong to, Pmax. Taken together, the two procedures provide the
range of partition IDs to which any unassigned node v may belong Pv,min ≤
IDv ≤ Pv,max , and also the size of the range for that node Pv,max −Pv,min +1.
Any node with a range of sizes less than or equal to zero indicates that no legal
fusion partitions of this size exist for this LDG. This information is provided by
the Ranges() function, which essentially just calls NumberNodesForwards()
and NumberNodesBackwards().

An example of the results produced by applying the Ranges() function to
an example problem is given in Figure 5. The labelling of the graph shows for
each node the earliest (minimum number) and latest (maximum number) cluster
that it may belong to for the case of four partitions. Note that this is not the
minimum number of partitions possible for this LDG.

Enumeration algorithm. The enumeration algorithm generates the fusion
partitions of a given size for an LDG. It starts by finding the ranges of the
nodes in the LDG, then choosing a (node, range) pair. For the chosen node,
the algorithm chooses a value in its range, treats the (node, value) pair as a
pre-assigned node, and recursively calls itself. At each step, the search is pruned
if any partition will remain empty. For subsequent calls, a different value from
the range of the last assigned node is chosen, until the range has been covered
indicating that this recursive step is complete. Note that the ranges of unassigned
nodes may change before each recursive function call, and that any unassigned
node can be selected for enumeration within a call.

The enumeration algorithm is given in Figure 6. As well as the recursive call, it
uses two other functions; Ranges(), explained above, and FusionPartition(),
1 A similar algorithm to NumberNodesForwards() , without the notion of accom-

modating preassigned nodes, can be found in an early paper on the subject [3].
However, the authors do not apply the same technique in reverse, as described here,
and do not attempt to enumerate different fusion partitions.
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EnumerateFusionPartitions(LDG, size, fixed)
Description: Enumerates the fusion partitions of an LDG

Input:

⎧⎨
⎩

LDG, a loop dependence graph
size, the required size of fusion partition
fixed, a set of (node, partitionID) pairs

Output: the set of fusion partitions of size size in LDG
(1) if Nodes(LDG) \ Nodes(fixed) = ∅ then return FusionPartition(fixed)
(2) fps := ∅
(3) ranges := Ranges(LDG, size, fixed)
(4) if ∀p ∈ {1, . . . , size} ∃(v, p) ∈ fixed

∨ ∃(v, rmin, rmax) ∈ ranges such that
(rmin ≤ p ≤ rmax)

(5) choose (v, rankv,min, rankv,max) from ranges
(6) for i := rankv,min to rankv,max

(7) newFixed := fixed ∪ {(v, i)}
(8) fps := fps ∪ EnumerateFusionPartitions(LDG, size, newFixed)
(9) return fps

Fig. 6. Fusion partition enumeration algorithm

which makes a fusion partition data structure from a list of (node, partitionID)
pairs. In the current implementation there is no special criterion for choosing
nodes to fix (they are taken in whatever order they are provided in by the
function that calculates the ranges) or values from their ranges (currently they
are taken sequentially, from bottom to top by the loop on line 6).

4.2 Search Heuristics and Search Space Reduction

Although generating legal fusion partitions is relatively cheap, the total number
of them means that generating and storing all of them (i.e. the search space)
before choosing points to tests would take far too much time and space (see
Table 1). Consequently, there needs to be some way of selecting a region of the
search space to generate. The choice of this region is governed by the charac-
teristics of the points we hope to find, and therefore determined by the search
heuristics themselves:

1. More array contraction is likely to be better.
2. A smaller size fusion partition (i.e. less clusters) is likely to better.

Both heuristics stem from the goal of improving memory performance. The
heuristics are not independent. Given some initial LDG, it is necessary to fuse
some loops (i.e. choose a fusion partition) to uncover any more array contraction.
Note that the smallest partition size may not contain the fusion partition with
the most contracted arrays. However, for a non-pathological LDG derived from a
typical program, more fusion and more contraction are likely to be related. This
last assumption allows us to use the second heuristic to guide the generation of
points in the space with the assumption that they will include (the majority of)
the good points as determined by the first heuristic.
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GenerateTestCases(LDG, maxCandidates, minPartitions, maxPartitions)
Description: Enumerates the fusion partitions of an LDG

Input:

⎧⎪⎪⎨
⎪⎪⎩

LDG, a loop dependence graph
maxCandidates, the maximum number of fusion partitions to generate
minPartitions, the minimum size of fusion partition to generate
maxPartitions, the maximum size of fusion partition to generate

Output: fusion partitions of LDG
(1) candidates := ∅
(2) for i := minPartitions to maxPartitions
(3) fps := EnumerateFusionPartitions(LDG, i, ∅)
(4) total := fps ∪ candidates
(5) candidates := SelectBest(maxCandidates, total)
(6) return candidates

Fig. 7. Test case generation algorithm

Using the enumerating procedure, the overall algorithm for generating cases
is given in Figure 7. The algorithm starts at small fusion partition sizes, and
with each successive iteration the size of fusion partitions that are considered
increases by one. Note that the amount of search space to generate (i.e. fusion
partition size range) and the number of points to try are arguments supplied by
the user. The function SelectBest() orders the set total based on the search
heuristics (e.g. contraction, then partition size, then first come-first served) and
then cuts it down to the first maxCandidates elements.

4.3 Code Generation

The only requirements on the code generated from the fusion partition of an
LDG is that dependencies between partitions are respected in the final ordering
of the loops generated from them, and similarly that the dependencies within a
partition are respected in the ordering of the bodies from the original loops to
form the body of the partition. The first requirement is automatically satisfied
by ordering the loops according to the partition label sequence, and the second
can be satisfied by a simple topological sort. Basic blocks are placed in the code
between loops as early as is legal.

5 Experiments

5.1 Example LDG

The example is derived from the general step of a two-sided Krylov space algo-
rithm, the fundamental component of several sparse linear solver and eigenvalue
approximation algorithms [17], code for which is given in [15]. It is applied to
a 3/4 dimensional simple stencil problem. A decorated version of the associated
LDG is presented in Figure 8. All loops are conformable, and all edge weights
are equal. Loop nodes are labeled with the variable they write to – scalars are
denoted with greek letters (α, β . . . ), arrays with lower case letters or numbered
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temporaries (w2, temp9 . . . ), and data for the stencil with capitals (A . . . ).
Data that is live-in and dependencies to an exit node for data that is live-out
are added for illustration purposes.

5.2 Enumeration of Fusion Partitions and Compilation Times

Table 1 gives the four smallest fusion partition sizes (column 1), the number
of legal fusion partitions for that size (column 2), along with the time taken
to generate them (column 3). The results are further broken down to show
how many partitions of that size exist with a given amount of maximum array
contraction (columns 4 – 8). For example, of the 80 fusion partitions of size 3,
24 have a maximum of 9 array contractions. Our heuristics prioritise partitions
with the most contraction – i.e. the column marked 10, which has a total of eight
partitions from different sizes. In fact, the best result was always produced by
one of these fusion partitions (although not necessarily the smallest). The table
shows that there are relatively few fusion partitions with the best characteristics
according to our heuristics, and so restricting empirical testing to these preferred
candidates would be cheap.

The time to find a solution depends on the time spent generating the search
space and testing points, both of which are under user control. Consequently
compile times are determined by how much search a user is willing to do to
characterise the space. The optimum points can be found for our example by
testing only eight points each time, (i.e. column four from Table 5.2) but this may
not be enough in all cases. A characterisation of the search spaces for multiple
benchmarks on different architectures is currently in progress. Compilation times
are, however, expected to be relatively long – the approach is targeted at long-
running scientific/embedded applications where the investment will pay off.

Table 1. Number of legal fusion partitions (FPs) of certain sizes, the time taken to
generate them and how many partitions with a given amount of array contraction exist
for that size

FP size no. legal time to enumerate no. FPs with n contracted arrays
FPs (in minutes) 10 9 8 7 6

3 80 1 2 24 39 13 2
4 3557 1 4 174 960 1395 792
5 63801 4 2 366 4974 17066 22362
6 633799 57 0 307 10350 71951 178862

5.3 Comparison Against Existing Fusion Techniques

Method. The first set of iterative search experiments compare our search tech-
nique against two algorithms representative of those in the literature that target
array contraction, a greedy [9] and a max-flow min-cut [3] algorithm, as well
as the original untransformed code (i.e. without any fusion/contraction). In all
cases simple Aldor code is generated from the fusion partitions by our proto-
type tool, followed by compilation to C code using the Aldor compiler version
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Table 2. Times in seconds for best search, control methods and untransformed code

stencil machine size best search greedy max-flow original
min-cut

3D Pentium III 50 136.8 186.3 163.6 329.6
Pentium 4 70 55.3 64.2 76.6 122.3

4D Pentium III 18 118.6 141.3 148.5 291.1
Pentium 4 24 59.7 69.7 79.2 126.9

Table 3. Times for linear solve on 3D stencil (search vs. Fortran)

machine size best search Fortran
Pentium III 30 43.4 64.1

50 209.1 303.7
Pentium4 30 5.26 7.20

50 24.5 33.6
70 71.6 95.6

1.01 with aggressive inlining settings. This C code is compiled using the Intel C
compiler (icc) version 8.0 to run on either a 1 GHz Pentium III (Coppermine)
or a 2.6 GHz Pentium 4 (Northwood). Flags for icc were set to target the spe-
cific processor (-xK/N), perform all but the most aggressive optimisations (-O2)
and instrument the code for profiling. Timings were generated by executing a
program that calls the main function 1000 times, to give stable results.

Results. A comparison of the results produced for the first set of experiments
by our search method, the control techniques and the original code is given
in Table 2.2 Our technique provides speedups of up to 2.45 over the original
code, and up to 1.36 and 1.38 over a greedy and a max-flow min-cut algorithms
respectively. The speedup over the original code shows that there are important
gains to be had from this kind of technique, and the speedup over the other
methods shows that search is necessary to get the full potential benefit of the
transformations.

5.4 Comparison Against Fortran

Method. The second set of experiments provide some broad comparison of the
performance of Aldor code transformed with our technique against a standard
Fortran 77 package containing an equivalent algorithm, QMRpack [16]. This was
compiled using the Intel Fortran compiler version 8.0 (ifc) with the same flags
as for icc, but also with cross-file inlining and the highest level of optimisation
(-O3) to enable high-level transformations such as loop fusion. QMRpack had
to be modified slightly to make the two codes more similar, by adding a stencil
2 For further results, a more in-depth analysis and a discussion of how the best solution

changes with respect to the problem and the architecture in question, please see [15].
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and removing some conditionals that skip steps based on floating point error
tolerances and may have prevented transformations such as loop fusion. Addi-
tionally, the Aldor code had to be augmented with some extra code to make it
into a full QMR solver.

Results. Results for the second set of experiments are presented in Table 3.
The transformed version outperforms the Fortran version with the relative per-
formance gain being ≈ 1.46 on the Pentium III and ≈ 1.35 on the Pentium 4.
These results show that using an advanced language does not necessarily mean
sacrificing performance compared to lower-level languages.

6 Conclusion and Future Work

Iterative collective loop fusion applies heuristically guided search to select the
best candidate from several fusion partition sizes and contraction amounts, and
provides important performance benefits over the alternative techniques with
speedups of up to 1.38. The overall approach of applying such a technique to
a high-level language that is inherently very modular is promising, with perfor-
mance improvements over navely generated code of up to 2.45, combining ele-
gance of expression with performance more usually associated with traditional
imperative languages.

The two most important extensions to this work will be to gather further
results using more machines and LDGs derived from other codes, and to investi-
gate how loop fusion and array contraction interact with subsequent single loop
optimisations such as loop unrolling or software pipelining. In addition, inves-
tigating how to formulate the loop fusion/array contraction problem for other
abstract frameworks such as the polytope model would be interesting.
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Converting Intermediate Code to Assembly Code
Using Declarative Machine Descriptions

João Dias and Norman Ramsey

Division of Engineering and Applied Sciences, Harvard University

Abstract. Writing an optimizing back end is expensive, in part because it re-
quires mastery of both a target machine and a compiler’s internals. We separate
these concerns by isolating target-machine knowledge in declarative machine de-
scriptions. We then analyze these descriptions to automatically generate machine-
specific components of the back end. In this work, we generate a recognizer; this
component, which identifies register transfers that correspond to target-machine
instructions, plays a key role in instruction selection in such compilers as vpo,
gcc and Quick C--. We present analyses and transformations that address the
major challenge in generating a recognizer: accounting for compile-time abstrac-
tions not present in a machine description, including variables, pseudo-registers,
stack slots, and labels.

1 Introduction

Because of the substantial effort required to build a compiler, and because of the in-
creasing diversity of target machines, including PCs, graphics cards, wireless sensors,
and other embedded devices, a compiler is most valuable if it is easily retargeted. But
in current practice, retargeting requires new machine-dependent components for each
new back end: instruction selection, register allocation, calling conventions, and pos-
sibly machine-specific optimizations. Writing these components by hand requires too
much effort, and it requires an expert who knows both the internals of the compiler
and the details of the target machine. Our long-term goal is to minimize this effort
by dividing and encapsulating expertise: compiler expertise will be encapsulated in
compiler-specific optimizations and code-generator generators, and machine expertise
will be encapsulated in declarative machine descriptions.

A declarative machine description clearly and precisely describes a property of a
machine, in a way that is independent of any compiler. For example, the SLED machine-
description language (Ramsey and Fernández 1997) describes the binary and assem-
bly encodings of machine instructions, and the λ-RTL machine-description language
(Ramsey and Davidson 1998) describes the semantics of machine instructions. A
declarative machine description is well suited to formal analysis, and because it is in-
dependent of any compiler, it can be reused by multiple compilers and other tools.
Furthermore, a declarative machine description may be checked independently for cor-
rectness or consistency (Fernández and Ramsey 1997).

Our ultimate goal is to use declarative machine descriptions to generate all the
machine-dependent components of a compiler’s back end. In this work, we gener-
ate a recognizer, which supports machine-independent instruction selection and opti-
mization (Davidson and Fraser 1984). A recognizer is an integral part of Davidson and

A. Mycroft and A. Zeller (Eds.): CC 2006, LNCS 3923, pp. 217–231, 2006.
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Front End

IR (possibly RTL)

Code Expander

RTL satisfying M

RTL satisfying M

recognizer

Optimizations

Assembly language

Code
Generator

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fig. 1. Davidson/Fraser compiler: M represents the machine invariant. Machine-dependent com-
ponents and representations are in bold.

Fraser’s compilation strategy: intermediate code is represented by machine-independent
register-transfer lists (RTLs), but each RTL is required to be implementable by a single
instruction on the target machine (Figure 1). This requirement, called the machine in-
variant, is established by a compiler phase called the code expander, which runs at the
start of code generation. In later phases, the requirement is enforced by the recognizer:
each phase is built around a machine-independent, semantics-preserving transforma-
tion, and the phase maintains the machine invariant by asking the recognizer if each
new RTL can be implemented by an instruction on the target machine; if not, transfor-
mations are rolled back. For example, instead of building a peephole optimizer for each
target, we build a single peephole optimizer which combines related instructions and,
if the recognizer accepts the combination, replaces the original instructions with the
combination. The recognizer can not only identify which RTLs correspond to machine
instructions but can also emit assembly code for such instructions.

In generating a recognizer from machine descriptions, the major challenge is to ac-
count for compile-time abstractions such as variables, pseudo-registers, stack slots, and
labels. Such abstractions, while essential to compilation, have no place in a machine
description. The contribution of this paper is a set of analyses and transformations that
enable us to bridge this “semantic gap” between instructions as viewed by a machine
and instructions as viewed by a compiler. We have built these analyses and transforma-
tions into a “λ-RTL toolkit,” which generates recognizers for our Quick C-- compiler.

2 The Semantic Gap

The λ-RTL machine-description language takes the perspective of the bare machine.
Each instruction is specified as a transformation on the machine’s state. This state is
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modeled as a collection of storage spaces, each of which is an array of cells. For exam-
ple, on the x86, the storage spaces include the ‘r’ space for the 32-bit integer registers,
the ‘m’ space for 8-bit addressable memory, and the ‘f’ space for the floating-point reg-
ister stack. We refer to storage using array-index notation; for example, $r[0] refers to
the first cell in the ‘r’ space.

Transformations on storage are specified using a formal notation for register transfers
(Ramsey and Davidson 1998). For example, $r[0] := 16 + $r[0] adds 16 to the
value in register 0, then places the sum in register 0. The register transfers needed to
describe a machine are so simple that this example shows essentially all their elements:
storage, assignment, literal bit vectors such as 16, and RTL operators such as +.

A compiler has a much richer model of computation. During compilation, computa-
tions may refer to source-language variables, pseudo-registers, stack slots whose loca-
tions have not yet been determined, and names defined in separately compiled modules.
A compiler also distinguishes among storage spaces in ways that are not necessary in
a machine description; for example, hardware registers are typically managed entirely
by the compiler, whereas memory locations are managed partly by the compiler (e.g.,
stack slots) and partly by user code (e.g., heap). A compiler therefore needs a much
richer model of register transfers than a machine-description language:

– Hardware locations are not undifferentiated storage cells; a compiler represents
registers differently from memory. Moreover, compile-time locations include not
only hardware locations but also variables and pseudo-registers.

– Constants include not only literal bit vectors but also late compile-time constants
(e.g., the offset of a stack slot) and labels.

The differences in the representations of locations and constants constitute the semantic
gap between λ-RTL’s model of the machine and a compiler’s model of the machine.

2.1 Mapping High-Level RTLs to Low-Level RTLs

To be usable at any time during compilation, a recognizer must accept RTLs contain-
ing high-level abstractions such as variables, labels,1 stack slots, and late compile-time
constants. To accept such a high-level RTL, the recognizer must know how the com-
piler will map that RTL down to a machine-level RTL. That way, it can accept an RTL
if and only if the RTL’s image (under the mapping) will be implementable by a single
instruction on the target machine.

The mapping is distributed over several compiler phases, each of which eliminates
one abstraction. Variables and labels are familiar, simple abstractions, but stack slots
and late compile-time constants may need some explanation.

We represent a stack slot as a memory location addressed using an offset from a
frame pointer. Until stack-frame layout is complete, we represent the offset as a sym-
bolic constant (Lindig and Ramsey 2004); such a constant is called a late compile-time
constant and is notated k. Furthermore, in order to save a register, our compiler uses a

1 Our compiler actually works with “link-time constant expressions,” which include not only
labels but also such expressions as the sum of a label and a constant or the difference of two
labels. But for simplicity, in this paper we refer to all of these expressions as “labels.”
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Front end

Variable Placer Replace variable x with pseudo-register $t[0]:

Expander Establish machine invariant:

Optimizer Improve code, maintain machine invariant:

Register Allocator Replace $t[0], $t[3] with registers $r[0], $r[1]:

Stack Freezer Replace k with known constant (1232):

VFP Replacer Replace vfp with offset from stack pointer ($r[4] + 1632):

Code Emission

Assembly code such as

[
movl 5(%EAX), %ECX
movl %ECX, 4(%ESP)

RTLs with

⎧⎪⎨
⎪⎩

variables
vfp
late constants
labels

⎫⎪⎬
⎪⎭ such as $m[vfp − k] := $m[x + 532]

RTLs with

⎧⎪⎨
⎪⎩

pseudo-registers
vfp
late constants
labels

⎫⎪⎬
⎪⎭ such as $m[vfp − k] := $m[$t[0] + 532]

RTLs with

⎧⎪⎨
⎪⎩

pseudo-registers
vfp
late constants
labels

⎫⎪⎬
⎪⎭ such as

⎡
⎢⎢⎣

$t[1] := vfp − k
$t[2] := $t[0] + 532

$t[3] := $m[$t[2]]
$m[$t[1]] := $t[3]

RTLs with

⎧⎪⎨
⎪⎩

pseudo-registers
vfp
late constants
labels

⎫⎪⎬
⎪⎭ such as

[
$t[3] := $m[$t[0] + 532]
$m[vfp − k] := $t[3]

RTLs with

{
vfp
late constants
labels

}
such as

[
$r[1] := $m[$r[0] + 532]
$m[vfp − k] := $r[1]

RTLs with
{

vfp
labels

}
such as

[
$r[1] := $m[$r[0] + 532]
$m[vfp − 1232] := $r[1]

RTLs with {labels } such as

[
$r[1] := $m[$r[0] + 532]
$m[$r[4] + 432] := $r[1]

Fig. 2. Translation by phases. Each phase is shown in a box; each arrow between phases describes
the representation passed between those phases. The examples on the right show the evolution of
a memory-to-memory move instruction.
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virtual frame pointer (vfp), which is read-only. At each program point, the virtual frame
pointer is at a known offset from the stack pointer, but because the stack pointer may
move, offsets may differ at different program points. After stack layout is complete,
these offsets are computed by a separate dataflow pass, which also replaces each use of
the virtual frame pointer with an expression of the form stack-pointer-plus-constant.

Figure 2 shows all phases of our back end; code flows from top to bottom. Phases that
map high-level RTLs to low-level RTLs are interleaved with other phases, such as the
code expander and the optimizer. The first phase, the variable placer, puts each variable
in a pseudo-register or a stack slot. Then the code expander establishes the machine
invariant: provided that suitable substitutions are made for pseudo-registers, the virtual
frame pointer, late compile-time constants, and labels, each RTL can be represented
by a single instruction on the target machine. The optimizer then improves the code,
maintaining this form of the machine invariant. After optimization, the register allocator
replaces pseudo-registers with hardware registers; the stack freezer lays out the stack
frame and replaces late compile-time constants with constant bit vectors; and a final
pass replaces each use of the virtual frame pointer with the correct stack-pointer-plus-
offset expression. The only remaining high-level abstractions are labels, which are dealt
with by the assembler.

The phases of our compiler behave as in typical compilers, with two exceptions:
the expander generates very naı̈ve code, and the optimizer works at the machine level.
Generating naı̈ve code makes it easier for the optimizer to find redundancies. And ex-
posing the machine-level semantics of the target instructions makes it possible for the
optimizer to produce better code (Benitez and Davidson 1994).

To generate a recognizer for the high-level RTLs manipulated by the compiler, we
use our λ-RTL toolkit to analyze the low-level RTLs in a machine description and find
the corresponding set of high-level RTLs. Specifically, our analyses recover high-level
abstractions of locations and constants from the low-level RTLs in the λ-RTL machine
description. The basic idea behind the analyses is to invert the compiler’s mapping
from high-level RTLs to low-level RTLs. Some analyses are very nearly the inverse
of compiler stages; others are not. Before presenting these analyses in Section 3, we
explain how the semantics and encoding of instructions are expressed in the λ-RTL and
SLED machine-description languages.

2.2 Describing Instructions Using λ-RTL and SLED

λ-RTL and SLED share the same model of an instruction set: a simple grammar gives
the abstract syntax of instructions and addressing modes. For example, the x86 8-bit
add-immediate instruction is associated with the abstract syntax ADDidb (reg, i8),
where ADDidb is a constructor and reg and i8 are integer operands (a register number
and an 8-bit immediate operand, respectively). A constructor acts much like an opcode,
but although opcodes may be overloaded in the surface syntax of an assembly language,
constructor names are not overloaded; the idb suffix serves to distinguish this instruc-
tion from other add instructions.

Using this model, a λ-RTL description associates each abstract-syntax tree with a
semantics (Ramsey and Davidson 1998). More precisely, each constructor is associated
with a function that maps the semantics of the operands to the semantics of the
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instruction, which is described using a low-level RTL. For example, neglecting effects
on condition codes (Section 4), the semantics of ADDidb is

ADDidb (reg, i8) is $r[reg] := $r[reg] + sx i8

The ADDidb instruction stores the sum of register $r[reg] and the sign-extended 8-bit
immediate i8 back into register $r[reg].

In similar fashion, a SLED description associates each instruction with an assembly-
language and binary representation (Ramsey and Fernández 1997). The details are be-
yond the scope of this paper.

Given λ-RTL and SLED machine descriptions, we generate a recognizer that match-
es a high-level, compile-time RTL with an instruction represented using the common
abstract syntax. From this representation, we produce assembly or binary code.

3 Transforming λ-RTL into a Recognizer

We generate a recognizer by transforming a λ-RTL description into an automaton that
can accept high-level RTLs. Broadly speaking, this transformation involves two tasks:
bridging the semantic gap and working within the limitations of efficient automata.

To bridge the semantic gap, we transform the low-level RTLs in the machine descrip-
tion into patterns that match the high-level RTLs used in our compiler. In particular, we
arrange to accept registers and memory (in place of undifferentiated storage spaces),
pseudo-registers (in addition to hardware registers), stack slots, late compile-time con-
stants, and labels. Accepting each of these high-level abstractions requires some analy-
sis or transformation of the original λ-RTL.

The primary limitation of efficient automata is that it is not known how to accept or
reject an RTL efficiently based on its semantics; we can do so only based on its syntax.
This limitation affects the compiler: a transformation maintains the machine invariant
only if the recognizer accepts the transformed RTLs. To manage this limitation requires
both an additional compile-time invariant and additional analysis and transformation of
the original λ-RTL.

We achieve these two tasks through a combination of different techniques, as detailed
below. The whole is a bit of a bag of tricks, but there is one pleasantly recurring theme:
binding time.

3.1 Bridging the Semantic Gap

We cover the high-level abstractions from the simplest to the most complex: labels,
registers and memory, pseudo-registers, and stack slots.

Labels. Labels are easy because they are supported by the assembler and linker, which
deal with the semantic gap. Coding of labels within machine instructions is the province
of SLED, which handles not only labels coded as absolute addresses but also labels
coded using PC-relative arithmetic. By hiding this coding, SLED simplifies the λ-RTL
description and thereby our recognizer. For example, λ-RTL describes an x86 PC-
relative jump instruction as follows:

JMP.Jb (addr) is EIP := addr
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The jump instruction takes an address, which could be a label, and sets the program
counter EIP to the value of the label. Because the SLED description identifies which
operands can be labels, our toolkit need only identify addr as a possible label and
generate code to match it.

Registers and memory. The first part of the semantic gap that requires work on our
part is the classification of each storage space as registers or memory. We use a binding-
time analysis developed by Feigenbaum (2001). Depending on when the value of an
expression becomes known, Feigenbaum identifies three binding times:

– Specification time: The value of the expression depends only on literal constants,
so it may be determined from the λ-RTL specification alone.

– Instruction-creation time: The value of the expression depends only on the values of
an instruction’s operands, so it may be determined when the instruction is created.

– Run time: The value of the expression depends on machine state, so it is not deter-
mined until run time.

A simple analysis determines the binding time of each expression in a machine de-
scription. To distinguish registers from memory, Feigenbaum applies this analysis to
the addressing expressions used to compute cell numbers in each storage space. The
resulting binding times classify the spaces:

– Fixed space: The value of each addressing expression is determined by the con-
structor used to build the instruction, so these values are known at specification
time. An example on the x86 is the control-register space, which contains the pro-
gram counter and the condition codes.

– Register-like space: The value of each addressing expression is determined by con-
structors and operands, so these values are known at instruction-creation time. An
example on the x86 is the integer-register space.

– Memory-like space: The values of some addressing expressions may not be known
until run time. An example on the x86 is the memory space. A more subtle example
is the x86 floating-point register stack: it may be indexed using the run-time value
of the floating-point stack-top pointer.

The λ-RTL toolkit classifies fixed and register-like spaces as registers; it classifies
memory-like spaces as memory. It then transforms the RTLs in the machine descrip-
tion to distinguish between registers and memory, just like the RTLs manipulated by
the compiler.

By choosing the operands used in addressing expressions in a register-like space, a
compiler can control which cells are used. The compiler can therefore manage these
cells using standard register-allocation techniques, justifying the name “register-like.”
The next step in our transformation is therefore to arrange for the recognizer to accept
pseudo-registers, which will be mapped to hardware registers by the register allocator.

Pseudo-registers. Each pseudo-register lives in an imaginary, infinite storage space
that is different from any hardware space. Pseudo-register spaces are not one-to-one
with hardware register spaces; instead, each pseudo-register space corresponds to an
interchangeable set of hardware registers. Such a set is not necessarily identified with
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a hardware register space; for example, on the SPARC, integer registers $r[1] to $r[31]
are interchangeable in most instructions, but integer register $r[0] is not, because it is
hardwired to zero. As another example, a single hardware space may include multi-
ple, distinct register sets; on the x86, for example, the 32-bit, 16-bit, and 8-bit integer
registers each form distinct sets, despite the fact that the 16-bit registers are contained
entirely within the 32-bit registers, and the 8-bit registers are contained entirely within
the 16-bit registers. Our λ-RTL toolkit identifies these register sets, associates each set
with a pseudo-register space, and arranges for the recognizer to accept a pseudo-register
if and only if it would accept any register from the corresponding set.

To identify sets, we use a location-set analysis developed by Feigenbaum (2001):

– Fixed location set: A fixed location set contains only a single location. A fixed
location set arises if an instruction refers specifically to a location. For example, the
32-bit multiply instruction on the x86 refers to the EAX register; no other location
could replace EAX in this instruction. The compiler simply uses the location; no
pseudo-registers are needed.

– Register-like location set: A register-like location set contains a set of locations
from a register-like space. For each register-like location set, the toolkit introduces
a new pseudo-register space.

– Memory-like location set: A memory-like location set contains a set of locations
from a memory-like space. For example, a load from memory on the x86 may load
from any memory location.

The analysis works by examining the addressing expression in each RTL location in
each instruction. If the addressing expression is always bound at specification time, the
location forms a fixed location set. If the addressing expression is bound at instruction-
creation time or at run time, the analysis assumes it may evaluate to any bit vector
of the appropriate width, except that the value may be constrained by guards on the
RTL containing the location. The location set consists of those cells whose numbers
satisfy the constraints. For example, on the SPARC, most instructions are guarded by
a condition specifying that the addressing expression for an integer register is nonzero,
and the relevant location set contains only integer registers $r[1] to $r[31].

After the location-set analysis, the λ-RTL toolkit replaces each location in an RTL
with a pattern that matches either a hardware location or an appropriate pseudo-register.
The compiler and the λ-RTL toolkit must agree on the names used to represent pseudo-
register spaces.

Stack slots and late compile-time constants. For most of compilation, a stack slot is
a memory reference of the form $m[vfp + k], where k is a (symbolic) late compile-time
constant. Because the address in this form must be accepted wherever the hardware
would expect a reference of the form stack-pointer-plus-constant, we must extend the
recognizer to deal with both the virtual frame pointer and late compile-time constants.

The virtual frame pointer is eventually replaced with an expression of the form sp+n,
where sp is the stack pointer and n is a literal bit vector. We therefore arrange to accept
the virtual frame pointer wherever sp+n would be accepted. The only potentially tricky
part is identifying the stack pointer. If there is only one indistinguishable set of registers
used in addressing expressions, we can simply assume the stack pointer is in that set.
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Otherwise, because the identity of the stack pointer is a matter of software convention,
the λ-RTL toolkit must be told which register is the stack pointer.

The more difficult problem is when to accept a late compile-time constant k. The
problem is that an instruction set may limit the number of bits of precision available
for an immediate constant. For example, while the x86 supports 32-bit immediate con-
stants, the MIPS supports only 16-bit constants, and the SPARC only 13-bit constants.
The recognizer can easily determine if the value of a literal bit vector fits in 16 or 13
bits, but what should it do with a 32-bit late compile-time constant, which is symbolic?

One solution is to be pessimistic: to reject any late compile-time constant that might
be too wide. This solution requires that the code expander be pessimistic as well. For
example, to address a memory cell using the expression sp+k, the code expander might
load the high bits of k into a pseudo-register, add sp to that pseudo-register, and then
address the cell by using the low bits of k as an offset from the pseudo-register. After
the stack-freezing phase determines the values of late compile-time constants, some of
these extra instructions might be eliminated by the peephole optimizer, but in the mean-
time the compiler must deal with more instructions in the intermediate representation,
as well as increased register pressure.

A better solution is to assume optimistically that a late compile-time constant fits in
the width required by the instruction. This solution results in a simpler code expander,
a simpler recognizer, and fewer instructions in the intermediate representation. It works
well because most late compile-time constants represent offsets of stack slots, which
are usually small. But when the optimistic assumption proves incorrect, the compiler
must fix any incorrect code. On some machines, the compiler must reserve a register
for such fixup code. Sometimes the assembler will reserve a register and do the fixup,
allowing compiler writers to assume that machine instructions can handle any 32-bit
constant (Kane and Heinrich 1992).

3.2 Limitations of Efficient Automata

A recognizer should accept any compile-time RTL that is equivalent to some RTL in
the machine description. But when are two RTLs equivalent? Ideally, two RTLs would
be deemed equivalent if, when executed, they had the same effect on a machine’s state.
But such equivalence is extremely expensive to compute—and because the recognizer
is consulted in the optimizer’s inner loop, it has to decide the question efficiently. The
need for efficiency rules out reasoning about the effects of RTLs; instead, we decide
equivalence based on syntax. It would be pleasant to be flexible and to accept multiple
ways of writing such associative-commutative operations as two’s-complement addi-
tion or simultaneous composition of effects, but even the equivalence relation induced
by associativity and commutativity is too expensive to be decided in the inner loop.
Accordingly, like vpo and gcc, we deem two RTLs to be equivalent only if they are
syntactically identical. This impoverished equivalence relation can be decided easily
and relatively cheaply at compile time, but to make it useful, we have to work harder at
recognizer-generation time.

To illustrate the most frequent way in which a compiler may generate semantically
equivalent but syntactically different RTLs, we return to the ADDidb instruction. The
machine description says
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ADDidb (reg, i8) is $r[reg] := $r[reg] + sx i8

The RTL $r[0] := $r[0] + 1232 is not a syntactic match for any RTL generated
by the right-hand side, but we would like to accept it as a proxy for the semantically
equivalent $r[0] := $r[0] + sx 128, which is a syntactic match. We can frame the
requirement in terms of binding time: the recognizer should accept a constant in place
of an expression that can be evaluated at instruction-creation time. We call such an
expression a compile-time constant expression.

It is not safe to accept any literal constant in place of a compile-time constant expres-
sion. For example, the literal constant 6553532 could not be obtained by sign-extending
an 8-bit immediate constant. In the general case, a literal constant is acceptable only
if it satisfies a constraint, which ensures that the constant could have been computed
by the original expression. For example, for ADDidb, the λ-RTL toolkit identifies the
compile-time constant expression sx i8, and it transforms sx i8 into a constrained
pattern variable const:

ADDidb (reg, i8) is $r[reg] := $r[reg] + (const : #32 bits)
where fits signed(const, 8)

By itself, const would match any 32-bit constant; the where constraint ensures that
const can be obtained by sign-extending an 8-bit quantity. Using the optimistic strategy
described above, the recognizer also allows const to match expressions involving only
literal bit vectors and late compile-time constants.

The transformation of sx i8 to const has one more subtle consequence. Because
SLED uses the original operands of an instruction to construct the assembly or bi-
nary encoding of that instruction, the λ-RTL toolkit must generate code to reconstruct
the values of those operands. In the ADDidb instruction, for example, the value of the
operand i8 can be extracted directly from the value of const. The final result is an in-
struction with constants in place of compile-time constant expressions, with constraints
to maintain the original semantics of the instruction, and with a map that can compute
the values of the operands of the original instruction:

ADDidb (reg, i8) is $r[reg] := $r[reg] + (const : #32 bits)
where fits signed(const, 8)
and i8 = lobits(const, 8)

Finally, once the recognizer is geared to accept constants, the compiler must arrange
that every compile-time constant expression is represented by a literal constant. In other
words, the compiler must fold constants. Constant folding is done by the simplifier,
which is applied to each RTL before the RTL is passed to the recognizer.

4 Pragmatics

In generating a recognizer, we must deal with two sets of pragmatic concerns: how to
manage multiple forms of the machine invariant, and how to manage complexity in the
semantics of the target machine.
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As they pass through the compiler, RTLs satisfy successively stronger forms of the
machine invariant, containing successively fewer high-level abstractions (Figure 2). Be-
cause the recognizer is used both in the optimizer and in the code emitter, it must accept
RTLs satisfying different forms of the invariant. We could generate multiple recogniz-
ers, but it is simpler to generate a single recognizer that accepts the weakest form of the
invariant. When used for code emission, this recognizer may mistakenly accept RTLs
that contain pseudo-registers or late compile-time constants, but such RTLs can exist
only if the register allocator or the stack freezer is broken. If necessary, we could add a
function to reject any RTL containing a pseudo-register or late compile-time constant.

Another pragmatic concern is that real machines are often complicated in detail but
simple in the abstract. To eliminate unwanted detail, a compiler writer can ignore un-
used instructions and machine state (e.g., obscure parts of the processor status word).

What about state that is used, but the details of which we wish to ignore? For ex-
ample, most compiler writers don’t care about the x86’s six different condition-code
bits; they just want to know how conditional-branch instructions interact with instruc-
tions that set condition codes. A common trick is to aggregate and abstract over such
state. For example, a description of the x86 might treat the condition-code register as
an aggregate instead of as six individual bits. Each effect on the aggregate could then
be described as the result of some machine-specific comparison operator. For example,
to describe the addition instructions, we might introduce the machine-specific operator
x86_addflags, which takes two n-bit arguments and returns a new value for the entire
32-bit condition-code aggregate:

rtlop x86_addflags : #n bits * #n bits -> #32 bits

Using this kind of abstraction, the full semantics of ADDidb can be described by simul-
taneous composition of just two effects:

ADDidb (reg, i8) is $r[reg] := $r[reg] + sx i8
| EFLAGS := x86_addflags($r[reg], sx i8)

Judicious use of such abstractions can simplify both a machine description and a com-
piler, but to ensure that such abstract RTLs are recognized, the machine description
and compiler must use exactly the same abstraction to specify the semantics of each
instruction.

Using these kinds of abstractions has a number of advantages:

– It is easier to write and understand code that manipulates simpler RTLs.
– The compile-time representation of a simple RTL requires less memory.
– A recognizer that only needs to match simple RTLs may be smaller and faster.

But simplifying abstractions must be used with care; they may change the semantics of
instructions in subtle ways. For example, aggregation of mutable state may indicate that
an instruction uses or modifies more state than it actually does. It is safe to aggregate
mutable state only if no source program can tell the difference between instructions
with and without this simplification. Because most source languages do not expose
condition codes or status bits, it is usually safe to abstract over mutation of the entire
condition-code register.
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Even when it is safe, a simplifying abstraction may inhibit optimization. If the op-
timizer does not know the semantics of each machine-specific operator, it cannot tell
when two such operators affect relevant state in the same ways, and it may miss oppor-
tunities to remove redundant code.

5 Generating a Recognizer

To generate a recognizer, we first use analyses from Section 3 to transform the λ-RTL
description into a suitable pattern match over compiler RTLs. This match is expressed
in terms of a one-off, domain-specific language. This language defines a set of non-
terminals, each of which may be matched by BURG-style, linear tree patterns which
are extended with constraints. After the transformations described in Section 3, we lin-
earize the patterns: if a pattern variable occurs multiple times in one pattern, we rewrite
the pattern to use distinct variables, and we add an equality constraint. At this point, we
can compile the pattern match into an efficient, bottom-up tree matcher in the style of
BURG (Fraser, Henry, and Proebsting 1992).

We use a few tricks to improve the quality of the compiled matcher. A bottom-up tree
matcher works by associating each subtree with a state. Such a matcher can be table-
driven; the table is indexed by a tree constructor and by the states of the subtrees. One
can compress tables by identifying sub-states that are equivalent, then merging table
entries for such sub-states (Chase 1987; Proebsting 1992). Table-compression heuristics
work best on matches in which common patterns have been factored out. To improve
factoring in the matches we generate, we use the structure of operands in the λ-RTL
description. For example, if an instruction takes as operand an addressing mode with
eight alternatives, we do not expand the instruction into a list of eight patterns. Instead,
we introduce a pattern-match nonterminal to stand for the addressing mode. We also
keep code size down by introducing a single named function to stand for any fragment
of code that is common to two or more actions.

6 Results

We have used the λ-RTL toolkit and our match compiler to generate a recognizer for
the x86 target in our Quick C-- compiler, which is implemented in Objective Caml.
We used a machine description that describes 630 instructions; it is 1,160 non-blank,
non-comment lines of λ-RTL code. The generated recognizer replaces a hand-written
recognizer which describes only the 233 instructions used in the compiler; it is 754 non-
blank, non-comment lines of Objective Caml and BURG code.

The major effort of integrating the generated recognizer with the compiler involved
correcting bugs in the hand-written code expander, which often produced incorrect
RTLs. For example, the RTL that represented the x86’s block copy instruction was
incorrect, but because the hand-written recognizer accepted the incorrect RTL, the bug
went undetected. Other bugs in the hand-written expander included missing effects on
floating-point condition codes. These types of bugs may be less likely to appear in a
machine description: the author of a machine description is free to focus on describ-
ing the machine accurately, instead of worrying about how to convert the compiler’s
intermediate representation to machine code.
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Table 1. Time and space measurements for hand-written and machine-generated recognizers

Recognizer Compilation Time Recognizer Fraction Size

Hand-written 69.29 s 3.99% 189,504 B
Machine-generated, factored 64.23 s 0.69% 555,804 B
Machine-generated, expanded 65.73 s 0.56% 1,330,036 B

To evaluate the quality of the generated recognizers, we compare three different rec-
ognizers: a hand-written recognizer, a machine-generated recognizer with the operands
factored out, and a machine-generated recognizer with the operands expanded. Like the
hand-written recognizer, the generated recognizers include only the instructions used
in the compiler, and when we run the compiler on our test suite, all three recognizers
match the same RTLs. For each recognizer, we measured the time spent compiling our
test suite, the percentage of compilation spent in the recognizer as indicated by gprof,
and the size of the stripped object file (Table 1).

Although all three recognizers are generated from variants of a BURG specification
language, the machine-generated recognizers use a different match compiler, which
generates faster recognizers. This match compiler, like BURG, precomputes state ta-
bles at compile-compile time; the hand-written recognizer uses a match compiler that,
like iBurg (Fraser, Hanson, and Proebsting 1992), computes the state tables at run time.
The use of different match compilers also helps to explain why the machine-generated
recognizer with factored operands is almost three times the size of the hand-written rec-
ognizer. The size of each machine-generated recognizer includes the precomputed state
tables, which are known to dominate the size of a bottom-up match compiler.

The size of the recognizer is further affected by the factoring of the BURG specifica-
tion. A well-factored BURG specification can produce a smaller, more efficient recog-
nizer, as demonstrated by the machine-generated recognizers: the factored recognizer is
less than half the size of the unfactored recognizer. The hand-written recognizer bene-
fits further because the original programmer carefully factored the BURG specification
by hand, whereas the specification of the machine-generated recognizer is factored only
over the operands.

7 Related Work

The technique of compiling RTLs using machine-independent optimizations with a
machine-dependent code expander and a recognizer was developed by
Davidson and Fraser (1984) and refined by Benitez and Davidson (1994). This tech-
nique is also used in gcc. It provides effective scalar, loop, and machine-level opti-
mizations without requiring many machine-specific compiler passes.

Compiler writers have used “machine descriptions” for years, but the term is nor-
mally used loosely to mean “whatever information is needed to retarget my compiler.”
Recently, some other researchers have begun to use machine descriptions that have a
declarative flavor. For example, Ceng et al. (2005) present a machine-description lan-
guage that is similar in spirit, if not in syntax, to λ-RTL. They use a machine description
to generate a BURG specification for instruction selection. After instruction selection,
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the code proceeds to a register allocator and a code emitter; the optimizer does not have
the opportunity to exploit information about the semantics of machine instructions.

Tröger (2004) uses declarative machine descriptions to implement a dynamic binary
translator. The translator uses two machine descriptions; for each effect of a guest-
machine instruction, it finds host-machine instructions which execute that effect. Pro-
vided the semantics of parallel execution are preserved, the effects can be executed in
sequence.

From the vast literature on bottom-up tree matching, we mention only papers that we
have found directly relevant. Early work by Hoffmann and O’Donnell (1982) provides
a useful overview of what are now common top-down and bottom-up tree-matching
algorithms. Table-compression techniques for compile-compile-time state tables in a
bottom-up tree matcher were developed by Chase (1987) and refined by Proebsting
(1992). An alternative approach to bottom-up parsing is to perform shift-reduce parsing
on the intermediate representation (Glanville and Graham 1978).

Pattern matching is built into many functional languages, which are typically im-
plemented using top-down matching. Top-down matching works well on hand-written
patterns with few alternatives and shallow nesting (Scott and Ramsey 2000), but a ma-
chine’s instruction set has hundreds of deeply nested alternatives. For machine instruc-
tions, top-down matchers are prohibitively large, even when clever compression tech-
niques are used (Eddy 2002).

8 Conclusion and Future Work

We have shown how to analyze a declarative, low-level machine description to recover
the high-level abstractions used in a compiler. Leveraging these analyses, we generated
a recognizer for the x86 in the Quick C-- compiler. The benefits of generating the
recognizer are modest as long as the rest of the back end continues to be written by
hand. Ultimately, we would like to generate all the machine-specific components of the
back end, most notably, the code expander. Other plans include automatically checking
the correctness of a λ-RTL machine description and incorporating elements of semantic
matching to improve the flexibility of the recognizer.
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Abstract. Commonly-used memory units enable a processor to load
and store multiple registers in one instruction. We showed in 2003 how
to extend gcc with a stack-location-allocation (SLA) phase that reduces
memory traffic by rearranging the stack and replacing some load/store
instructions with load/store-multiple instructions. While speeding up the
target code, our technique leaves room for improvement because of the
phase ordering of register allocation before SLA. In this paper we present
SARA which combines SLA and register allocation into a single phase.
SARA creates a synergy among register assignment, spill-code genera-
tion, and SLA that makes the combined phase generate faster code than
a sequence of the individual phases. We specify SARA by an integer
linear program generated from the program text. We have implemented
SARA in gcc, replacing gcc’s own implementation of register allocation.
For our benchmarks, our results show that the target code is up to 16%
faster than gcc with a separate SLA phase.

1 Introduction

Background. Processors such as Intel StrongARM together with memory such
as SDRAM enable efficient execution of multiple loads and stores in a single
instruction. We can find such a combination of processor and memory in In-
tel’s IXP-2400 [1], Stargate (http://www.xbow.com/Products/XScale.htm), Sun
MAJC 5200 [24], etc. Multiple loads and stores are particularly useful in con-
nection with register allocation where spill code may need to save and restore
multiple registers.

For example, on the StrongARM, the register size is 32 bits and each basic
load/store operation (called LDR/STR) operates on one register at a time. How-
ever, the SDRAM has a 64 bit bus so if we are using an LDR instruction to load
a 32 bit register, we are wasting half of the bandwidth of the bus. Fortunately,
we can use a load/store-multiple operation (we refer to them as LDM/STM) to
operate on two registers at a time, thereby taking full advantage of the bus and
saving one full LDR/STR instruction (40/50 cycles) [23].

To replace two LDR instructions with one LDM instruction we need the ad-
dresses to be contiguous and the destination registers to be different. To replace

LDR addr1 ri

LDR addr2 rj
by

MOV r addr1
LDM [r] {ri,rj}

A. Mycroft and A. Zeller (Eds.): CC 2006, LNCS 3923, pp. 232–246, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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int a,b,c,d;
...

1. c = a;
2.
3. d = b;
4.
5. ...

(a)

pseudo line reg stack
gcc SARA

a 1 r3 r1 fp-16
b 3 r3 r2 fp-20
c 1 r3 r1 fp-24
d 3 r3 r2 fp-28

(b)

ldr r3, [fp, #-16] ; load a
str r3, [fp, #-24] ; store into c

ldr r3, [fp, #-20] ; load b
str r3, [fp, #-28] ; store into d

(c)

sub r1, fp, #20 ;
ldmia r1, {r1,r2} ; load a and b

sub r9, fp, #28 ;
stmia r9, {r1,r2} ; store into c and d

(d)

Fig. 1. (a) Fragment of C code, (b) Mappings of pseudos to registers and stack loca-
tions, (c) code generated by gcc, (d) code generated by SARA

we would need i �= j and the two base addresses addr1 and addr2 must be
contiguous at 4 byte boundaries: addr2 − addr1 = 4.

We showed in 2003 [20] how to extend gcc with a stack-location-allocation
(SLA) phase that reduces memory traffic by

– moving some load and store instructions such that they occur in pairs,
– rearranging the stack such that the temporaries used in a pair of load/store

instructions have neighboring stack locations, and
– replacing some loads and stores with load/store-multiple instructions.

While speeding up the target code, our technique leaves room for improvement
because of the phase ordering of register allocation before SLA.

For an example of the shortcomings of gcc extended with SLA, consider the
code snippet in Figure 1(a). The code snippet is part of a synthetic benchmark
program in which c and d are needed somewhere after line 3. For the benchmark
program, gcc spills the four pseudos a, b, c, and d to the memory locations
shown in Figure 1(b) and generates the code shown in Figure 1(c); gcc extended
with SLA generates exactly the same code. To see why SLA fails to merge the
two loads and the two stores, notice first that the register allocator has done a
good job using register r3 both when loading a and when loading b. However,
the use of r3 in both load instructions and both store instructions prevents SLA
from moving the instruction for loading b to the program point just before the
instruction for storing into c; the code motion would change the behavior of the
program. Thus, the good register allocation is counterproductive to merging loads
and stores. The compiler can generate better code for the benchmark program by
first doing a worse register allocation which uses different registers when loading
a and when loading b. The reason is that now the SLA phase can safely move the
two load instructions together and also move the two store instructions together,
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then replace those instructions with a double-load (ldmia) and a double-store
(stmia), and ultimately generate the code shown in Figure 1(d).

Another weakness of gcc extended with SLA is that first the register allocator
will assign stack locations to all spilled pseudos and then SLA will try to reor-
ganize the stack as best as it can to enable double-loads and double-stores. If
SLA does not manage to find the best permutation of the stack locations, then
the target code may not contain the highest possible number of double-loads
and double-stores. A better approach may be to let the register allocator know
about double-loads and double-stores and do the spilling of pseudos accordingly.

Our observations about gcc extended with SLA suggest that a compiler can
do better if register allocation and SLA are more tightly integrated.

Question: Can a combined phase be better than a two-phase sequence
of register allocation and SLA?

Our Results. In this paper we present SARA which combines SLA and register
allocation into a single phase. Our technique creates a synergy among register
assignment, spill-code generation, and SLA that makes the combined phase gen-
erate faster code than a sequence of the individual phases. We specify SARA
by an integer linear program (ILP) generated from the program text. Our ILP
formulation uses an objective function which estimates the execution time of the
memory instructions. We have implemented SARA in gcc, replacing gcc’s own
implementation of register allocation. For our benchmarks, our results show that
the target code is up to 16% faster than gcc with a separate SLA phase.

We specify SARA by an ILP because (1) register allocation can be specified
by an ILP [13, 14, 16, 3, 11, 19], (2) SLA can be specified by an ILP [20], and
(3) ILPs are often easy to combine. We speculate that it would be much more
difficult to build a one-phase combination of register allocation and SLA based
on one of the classical non-ILP-based register allocators [8, 7, 6].

While solving ILPs can be slow, we note that all of the following three prob-
lems are NP-complete: (a) register assignment [22], (b) spill code generation [12],
and (c) SLA [20]. The combination of (a)+(b)+(c) is also NP-complete. We view
our ILP formulation of (a)+(b)+(c) as a high-level specification which, as we
demonstrate, leads to good target code. We present a technique that enables us
to contain the state space explosion and allow the solver to terminate in rea-
sonable time limits. Our proposal uses the variable liveness information that is
available to the register allocator in most optimizing compilers. In future work
one might investigate how to implement fast approximation algorithms for our
ILP formulation.

To show that the combined phase SARA works better than the individual
phases performed sequentially, we specify an ILP-based register allocation phase
(RA) without SLA. Our results show that RA leads to faster code than the code
generated by gcc at O2 level of optimization. Next we reconfirm our results in
[20] by showing that RA followed by SLA is better than RA alone. And finally we
show that the combined phase SARA is better than the sequential composition
of ILP-based register allocation and SLA. In slogan form, if P is one of our
benchmark programs, and ET denotes an execution time monitor, we have
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ET(SARA(P )) ≤ ET(SLA(RA(P ))).

In related work, Bradlee et al. [5] and Motwani et al. [18] demonstrated how
to combine register allocation and code scheduling to obtain faster code. Lerner
et al. [15] presented a framework for composing dataflow analyses and thereby
overcoming the phase ordering problem. Our approach differs from theirs in that
we use and combine ILPs.

In the following section we specify an ILP-based register allocator. In Section
3 we extend the ILP-based register allocator with facilities for SLA; the result
is SARA. In Section 4 we discuss how we control the state-explosion problem,
and in Section 5 we present our experimental results.

2 ILP-Based Register Allocation

Our ILP-based register allocator does register assignment and spill code genera-
tion. We defined our register allocatorwith inspiration fromthe ILP-based register
allocators of Goodwin and Wilken [13] and of Appel and George [3]. The key prop-
erty of our register-allocator specification is that we can easily add SLA, as shown
in the following section. We will now present the three main phases of the register
allocator: model extraction, constraint generation, and constraint solving.

Model extraction. From the input program we extract a model consisting of
sets and parameters.

Insts ⊆ {1..nInsts} Req : Insts × Pseudos → {0, 1}
Pseudos ⊆ {1..nPseudos} Def : Insts × Pseudos → {0, 1}
Regs ⊆ {1..nRegs} prevInst : Insts → Insts ∪ {null}
Loc ⊆ {1..nPseudos} joinInst : Insts × Insts → Insts ∪ {null}

callInst : Insts → {0, 1}

The set of instructions, pseudos, registers, and stack locations for the pseudos is
given by Insts, Pseudos, Regs, Loc, respectively. For the example shown in Fig-
ure 1, Insts = {1,2,3,4}, Pseudos = {a,b,c,d}, Regs = {1,2,3,4,5,6,7,8,9,10}. The
parameter Req(i, p) is set to 1 if instruction i requires pseudo p and hence needs
p to be present in a register. The parameter Def(i, p) is set to 1 if instruction i
sets pseudo p. The control flow of the program is given by three parameter maps.
The parameter prevInst(i) is a singleton set containing the previous instruction
of i if it has only one previous instruction, and null otherwise. The parame-
ter joinInst(i) is the set of previous instructions of i if instruction i is a join
point with multiple previous instructions, and null otherwise. The parameter
callInst(i) has value 1 if the instruction i is a call instruction, and 0 otherwise.

For each instruction i, the parameter freq(i) returns the frequency of execution
of that instruction. In this paper, we use static estimates of freq(i); alternatively
one might use a profiling-based approach. The parameters loadCost and storeCost
give the cost of one single load and one single store respectively. Also a subset of
Regs is designated as caller save registers and are represented by callerSaveRegs
For the target environment we have the set of caller save registers is {0,1,2,3,9,12}.
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Each function must save and restore any register that is a callee save register, that
is, not a caller save register.

Constraint Generation. From the input program we generate an ILP whose
main purpose is to ensure the following properties: (1) at any instruction, each
pseudo is assigned at most one register, (2) at any instruction, each register is
assigned at most one pseudo, (3) at any instruction, the number of used registers
is bounded by the available number of registers, (4) for every definition and use
of a pseudo, the pseudo has a register assigned to it, and (5) a pseudo keeps
its mapping to a register, unless the pseudo is no longer live or the pseudo is
defined, loaded, or stored.

We will use the following maps. Intuitively, the map PsR maps pseudos to
registers for each instruction, the map xDef gives the register map for a pseudo
p at a given instruction defining p, the maps spLoad and spStore represent the
load and store instructions that need to be inserted into the program, and the
map inUse tracks whether a register is used.

PsR : Insts × Pseudos × Regs → {0,1}
xDef : Insts × Pseudos × Regs → {0, 1}
spStore : Insts × Pseudos × Regs → {0, 1}
spLoad : Insts × Pseudos × Regs → {0, 1}
inUse : Regs → {0, 1}

PsR(i, p, r) returns 1 if pseudo p is present in register r at instruction i. xDef(i, p, r)
returns 1 if pseudo p is defined in instruction i, in register r. Pseudo p will be
present in register r in the next instruction. spStore(i, p, r) returns 1 if pseudo p
is spilled after instruction i and is currently mapped to register r. spLoad(i, p, r)
returns 1 if pseudo p is (re)loaded before instruction i into register r. We generate
the following constraints.

Each pseudo is assigned to at most one register and each register is assigned
to at most one pseudo:

∀i ∈ Insts, ∀p ∈ Pseudos :
∑

r∈Regs
PsR(i, p, r) ≤ 1

∀i ∈ Insts, ∀r ∈ Regs :
∑

p∈Pseudos
PsR(i, p, r) ≤ 1

The second of the two constraints above implies that at any program point the
number of pseudos that are available in registers is bounded by the number of
registers available.

A pseudo that is used in an instruction has to be present in a register at that
point:

∀i ∈ Insts, ∀p ∈ Pseudos :
∑

r∈Regs
PsR(i, p, r) ≥ Req(i, p)

A pseudo being defined needs a register:

∀i ∈ Insts, p ∈ Pseudos :
∑

r∈Regs
xDef(i, p, r) = Def(i, p)
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A pseudo p retains its mapping to a register unless it is spilled or another pseudo
is mapped to that register. If the instruction has only one previous instruction:

∀i ∈ Insts, p ∈ Pseudos, r ∈ Regs, pr ∈ prevInst(i) :
PsR(i, p, r) = (spLoad(i, p, r) ∨ PsR(pr, p, r) ∨ xDef(pr, p, r)) ∧ ¬spStore(pr, p, r)

If the instruction is next to a join point and hence have multiple predecessors:

∀i ∈ Insts, p ∈ Pseudos, r ∈ Regs :

PsR(i, p, r) = (
∧

pr∈joinInst(i)
PsR(pr, p, r) ∧ ¬spStore(pr, p, r)) ∨ spLoad(i, p, r)

A pseudo mapped to a caller save register loses its mapping after a call:

∀i ∈ Insts, ∀p ∈ Pseudos ∀r ∈ callerSaveRegs : callInst(i) ⇒ PsR(i, p, r) = 0

A register is used if it is mapped to a pseudo:

∀i ∈ Insts, ∀p ∈ Pseudos ∀r ∈ Regs : inUse(r) ≥ PsR(i, p, r)

Objective function. Our objective function estimates the execution time of
the inserted loads and stores for spilling and for storing and restoring the callee
save registers at the beginning and end of a function. The objective of our ILP
solver is to minimize SpillCost + CalleeSaveCost where

SpillCost =
i∈Insts

freq(i)×
p∈Pseudos, r∈Regs

(spLoad(i, p, r)×loadCost)
+

(spStore(i, p, r)×storeCost)

CalleeSaveCost =
1
2

×
r∈Regs−callerSaveRegs

inUse(r) × (loadCost + storeCost)

The callee save registers are loaded and stored using load/store-multiple in-
structions, hence the cost is reduced by a factor of two.

Constraint Solving. We use AMPL [9] to generate the ILP, and CPLEX
(www.cplex.com) to solve it. The gcc compiler invokes the constraint genera-
tor by providing the data in a file. Once constraints are generated the constraint
generator calls the solver, which returns the resulting solution to gcc in a file.

The result of solving the constraints for the running example in Figure 1 is
shown in the following table. (Only tuples with non-zero values are shown.)

PsR = {(1,a,r3),(2,c,r3),(3,b,r3),(4,d,r3)}
spLoad = {(1,a,r3),(3,b,r3)}
spStore = {(2,c,r3),(4,d,r3)}
xDef = {(1,c,r3),(3,d,r3)}
inUse = {r3}
SpillCost = 2 × loadCost + 2 × storeCost = 184
CalleeSaveCost = 0
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3 SARA

The advantage of using an ILP-based framework for combining multiple phases
is that each phase can be added as a module on top of an already existing ILP.
SARA, the combined phase of SLA and RA, is built upon the set of parameters
and constraints given for the ILP-based RA in section 2. We now present the
additional parameters, variables and constraints required for SARA over RA.
The new phase SARA requires three additional variables:

loadPair : Insts × Pseudos × Pseudos → {0, 1}
storePair : Insts × Pseudos × Pseudos → {0, 1}
f : Pseudos × Loc → {0, 1}

For a given instruction i, and two pseudos p1 and p2 (p1 �= p2), the map
loadPair(i, p1, p2) returns 1 if we can replace the two spill loads by a pair, and 0
otherwise. The map f maps a pseudo to its location: f(p, l) returns 1 if pseudo
p is placed in location l. Note that not all pseudos would need a location.

A pseudo can have at most one location and a location can have at most one
pseudo mapped to it.

∀p ∈ Pseudos :
∑

l∈Loc
f(p, l) ≤ 1 ∀p ∈ Loc :

∑
l∈Pseudos

f(p, l) ≤ 1

A pseudo needs a location if it is spilled and/or reloaded.
∀i ∈ Insts, p ∈ Pseudos :

2 ×
∑

l∈Loc
f(p, l) ≥

∑
r∈Regs

(spLoad(i, p, r) + spStore(i, p, r))

Two consecutive loads or stores can be replaced by an LDM or STM instruction.
∀i ∈ Insts, ∀p1, p2 ∈ Pseudos :

2 × loadPair(i, p1, p2) ≤
∑

r∈Regs
(spLoad(i, p1, r) + spLoad(i, p2, r))

2 × storePair(i, p1, p2) ≤
∑

r∈Regs
(spStore(i, p1, r) + spStore(i, p2, r))

LDM and STM require that the memory locations are consecutive.
∀i ∈ Insts, ∀p1, p2 ∈ localPseudos :

diff(p1, p2) �= 1 ⇒ loadPair(i, p1, p2) = 0
diff(p1, p2) �= 1 ⇒ storePair(i, p1, p2) = 0

diff(p1, p2) = ((
∑

l∈Loc l × f(p1, l)) − (
∑

l∈Loc l × f(p2, l)))

It may be noted that we do not need to check for the absolute value of diff.
This is because the optimizing solver will consider both the options (p1, p2) and
(p2, p1) and can pick the best one.
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Objective function. The objective function used in SARA is similar to the one
used by our ILP-based RA given in section 2. The new twist is that SpillCost
takes pairs into account.
SpillCost =

∑
i∈insts

freq(i) ×

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∑
p∈Pseudos,r∈Regs spLoad(i, p, r) × loadCost −∑
p1,p2∈Pseudos(loadPair(i, p1, p2) × loadPairSave)

∑
p∈Pseudos,r∈Regs spStore(i, p, r) × storeCost −∑
p1,p2∈Pseudos(storePair(i, p1, p2) × storePairSave)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Here loadPairSave is the savings that one gets because of replacing two loads by
a load-pair and storePairSave is the savings that one gets by replacing two stores
by a store-pair. If loadPairCost is the cost of executing one load-pair instruction
(this will include the cost of setting the base register) then loadPairSave is given
by (2 × loadCost − loadPairCost). Similarly storePairSave is calculated as (2 ×
storeCost−storePairCost). In the model generated by the compiler loadPairCost
and storePairCost are given as parameters.

The result of solving the above constraints for the running example shown in
Figure 1 is shown below. As can be seen the cost has gone down by nearly 50% as
compared to the ILP-based RA in section 2. This is because of the introduction
of the load-pair and store-pair instructions in the code.

PsR = {(1,a,r1),(2,c,r1),(3,b,r2),(4,d,r2)}
spLoad = {(1,a,r1),(3,b,r2)}
loadPair = {(1,a,b)}
storePair = {(4,c,d)}
xDef = {(1,c,r1),(3,d,r2)}
inUse = {r1,r2}
SpillCost = loadPairCost + storePairCost = 94
CalleeSaveCost = 0

Our implementation of SARA uses a superset of the constraints presented
in this paper. The additional constraints take care of (1) pre-colored pseudos
(pseudos that require a certain register, as required, for example, in connec-
tion with parameter passing), (2) non-spill memory instructions (generated in
the presence of pointer based accesses in the code), and (3) inversions [20]. A
practical register allocator has to take care of these issues to be able to gener-
ate executable code. The reader can obtain the full set of constraints from our
webpage, http://compilers.cs.ucla.edu/nvk/sara.mod.

4 SARA Improvements

In this section we will explain three techniques that are used in SARA, namely
two techniques for reducing the size of the ILP state space and one technique
for improving the quality of the generated code.
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Reducing the size of the ILP state space. Our first technique uses liveness
information. Notice first that the domain of the pseudo-to-register map PsR is
Insts × Pseudos × Regs. However, for a pseudo to be assigned a register, the
pseudo has to be live, that is, the map PsR is valid only at those instructions
where the pseudo is live. For our benchmarks, most of the pseudos are live in only
small parts of the program. So we define PsR only for live pseudos. Similarly,
we define spLoad, spStore, loadPair, and storePair only for live pseudos. By the
same token, we define constraints only for defined ILP variables. Our focus on
live pseudos let us reduce the number of variables and constraints by a big factor.
We have tried a version of SARA without this optimization on our benchmark
programs, and in many case the preprocessor that translates the constraints
specified in high level language (AMPL) to a format that is understood by the
solver (CPLEX) runs out of memory and fails. With the liveness-based optimiza-
tion in place, SARA does not run out of space when handling our benchmark
programs.

Our second technique manages the number of ILP variables needed to repre-
sent the generated load and store instructions. Our technique inserts a dummy
instruction after each instruction, generates load instructions only before real
instructions, and generates store instructions only after dummy instructions. A
dummy instruction does not use any pseudos nor define any; we use dummy
instructions as place holders for spill instructions. Let us now explain the de-
tails and merits of dummy instructions in more detail. We are trying to track
the mapping of pseudos to registers at each instruction. However, sometimes it
is not sufficient to know the mapping of a pseudo just at each instruction! For
example, in the code fragment without dummy instructions:

i1 : x = y + p ; // p dies after i1
i2 : y = y + z ;

let us assume pseudo x has to be spilled (because of register pressure) to memory
after the instruction labeled i1 but before i2, and let us assume pseudo z has to
be loaded before i2. In the case where we do not have any more free registers,
we could use the same register (say r1) for p, x and z. Notice that because x is
being set, x needs a register. But since x will be spilled that register will be free
immediately afterwards and can be used for loading z. So we have a mapping of
x to r1 between i1 and i2. But at i1, p is mapped to r1, and at i2, z is mapped
to r1. This leads to the situation that x does not have a mapping to r1 in PsR.
To avoid such situations, we inserted a dummy instruction after each instruction
before generating the ILP:

i1 : x = y + p ; // p dies after i1
d1 :
i2 : y = y + z ;
d2 :

The register allocator can assign register r1 to pseudo x at the dummy instruc-
tion d1. Additionally, the register allocator can emit an instruction to spill x
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after d1, and an instruction to load z before i2, thereby establishing the de-
sired pseudo-to-register mapping. The introduction of dummy instructions also
overcomes the need to introduce dummy basic blocks as additional place hold-
ers for spill code. Our notion of dummy instructions is related to the notion of
points between instructions that was used by Appel and George [3]. Instead of
using dummy instructions or points between instructions, one might find a way
to allow the generation of loads and stores before and after every instruction,
although we believe such an approach is more awkward.

Improving the quality of the generated code. SARA can benefit from
having freedom to move the spill and reload instructions around. Perhaps sur-
prisingly, the use of strict (exact) liveness information can lead to the generation
of inefficient code. For example, in code for copying structures, we come across
patterns like:

// x1, x2, y1, y2 are dead
i1: y1 = x1; // live x1
i2: // x1 and y1 are dead
i3: y2 = x2; // live x2
i4: // x2 and y2 are dead

Here x1, x2, y1, y2 could be globals or be accessed by globals. We must load
x1 before instruction i1 and x2 before i3. Recall that a load/store requires that
the pseudo is live. Forcing such liveness constraints would constrain SARA so
much that it cannot move these two loads together. The same logic holds for
the spill of pseudo y1 and y2 after instructions i1 and i3. Assuming that we have
an additional register for the duration of these instructions, and the liveness
constraints were a bit relaxed, we would give SARA a bit more breathing room
to pair up more loads and stores. For example, if we deliberately make the
liveness information a bit more conservative and convey to SARA that x2 is live
at i1 as well, then SARA could generate a load-pair for x1 and x2. A similar
argument can be given for y1 and y2 as well. This leads to an interesting trade
off: strict liveness reduces the search space and state space but might result in
inefficient code.

We have experimented with relaxing the liveness information by different
amounts: (a) strict liveness, (b) liveness extended to basic blocks—each pseudo
is live from the beginning of the basic block until the end; unless it dies in
between, (c) liveness relaxed by three instructions. Let us consider (c) in more
detail. If a pseudo is live starting at instruction i1, then the pseudo is assumed
to be live starting at i1 − 2 × 3 (multiplied by 2, to take care of the dummy
instructions) unless i1 is one of the first three instructions in the basic block.
And if it is, then the pseudo is assumed to be live starting from the beginning
of the basic block until its death or end of basic block. We arrived at the magic
number three from our experience with the benchmarks code. Our experience
confirmed our belief that most of the need for code motion arises in code that
does copying of structures, etc. In such cases, relaxing the liveness by three
instructions is effective.
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From our experience, we found that case (b) above, even though it gives more
flexibility to the solver to move the spill code, often resulted in large data sets
that causes the ILP solver to return no feasible solution even after a lengthy
execution. We present in this paper our experience with cases (a) and (c). We
refer to the case (c) as SARA and case (a) as SARAs (the subscript denoting
strict liveness).

5 Experimental Results

We have implemented SARA in gcc-2.95.2, replacing gcc’s own implementation
of register allocation, and we have tested the target code from the new compiler
on a Stargate platform. Stargate has a StrongArm/XScale processor and 64MB
SDRAM and no cache. The impact of SARA may be different for systems with
cache. We have drawn our benchmark programs from a variety of sources:

– Stanford Benchmark suite: The first four benchmarks are small and simple,
but typical of the subroutines of many other benchmarks.

– NetBench: Route and url are network related benchmarks from the NetBench
[17] suite. Route is an implementation of IPv4 routing according to RFC
1812, and url is a switching protocol that implements url based switching.

– Pointer-intensive benchmark: This benchmark suite is a collection of pointer-
intensive benchmarks [4]. Yacr2 is an implementation of a channel router and
Ft is an implementation of a minimum spanning tree algorithm [10].

– The last two benchmarks are taken from the comp.benchmarks FAQ at
http://www.cs.wisc.edu/~thomas/comp.benchmarks.FAQ.html. The c4
benchmark is an implementation of the connect-4 [2] game and mm is an
implementation of nine different matrix multiplication algorithms.

The static characteristics and compile time statistics of these benchmarks are
presented in Figure 2. The static characteristics we present here include the
number of lines of C code, the number of instructions seen by the ILP solver

Benchmark LoC #RTLs #Funcs

sieve 39 134 3
matmul 56 254 6
perm 34 112 3
queen 58 144 4
route 2246 4672 23
url 790 1264 12
yacr2 3979 10838 58
ft 2155 3218 35
c4 885 3388 21
mm 647 2884 14

gcc+SLA RA+SLA SARA
Mem Pair CSR Mem Pair CSR Mem Pair CSR

0 0 9 0 0 9 0 0 9
9 2 22 9 0 20 7 6 19
5 0 14 5 0 12 4 2 12
11 0 14 12 1 11 8 5 11
519 4 110 506 6 116 546 19 107
115 8 62 120 5 56 120 8 58
1060 8 123 1003 6 123 1109 24 142
219 5 92 225 9 87 230 14 106
189 3 289 190 7 305 184 18 320
386 9 130 375 4 116 380 23 92

Fig. 2. Benchmark characteristics and compile time statistics
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(which depends on the number of RTL instructions in the intermediate represen-
tation of the program), and the number of functions. Due to space constraints,
we limit ourselves to presenting compile time statistics for three different register
allocators: gcc’s default register allocator followed by SLA, our ILP-based RA
followed by SLA, and SARA (with the liveness information extended to three
instructions, see section 4). For each of these combinations we present an esti-
mate of the number of memory accesses; the number of loads and stores (Mem),
the number of load-pair/store-pair instructions (Pair) inserted, and the number
of callee save registers (CSR) used.

All these benchmarks have the common characteristic that they are non-
floating point benchmarks. (We had to edit a few of them to remove some code
that uses floating point operations; we did so only after ensuring that the code
with floating point operations is not critical to the behavior of the program.)

Studying the compile time characteristics gives a good insight into the way
SARA works. We can see that in the compile time statistics, SARA outperforms
both gcc+SLA and RA+SLA by a big margin in terms of the number of pairs
generated. Notice, though, that SARA sometimes uses more callee save registers.
because of the added register pressure that comes from pairing up loads and
stores. Another point that can be easily noticed is that in some cases, such as
c4, SARA and RA+SLA are generating more memory instructions than gcc. This
is because the constraints use the frequency of the instruction as a parameter
to compute the cost of the objective function. And in such cases, generating
loads/stores outside the loop is a better option. One final point to note here is
that, for benchmarks route, yacr2, ft and mm, SARA generates more loads/stores
than our ILP-based register allocator. The reason is that by generating more
loads and stores in non-loop code and generating load-pairs in the loops SARA
is able to reduce the overall cost.

We do not give detailed compilation times; our solver sometimes took more
than 30 minutes and we had to terminate CPLEX and work with a perhaps
nonoptimal solution. The total compilation time for all the benchmarks is in the
order of hours.

We now present the execution time numbers for the benchmarks. In Figure 3
we present the time each benchmark took to run when compiled with different
compilers. Each of these is compiled at the -O2 level of optimization.

To get an overall comparison of the different register allocators, we present
the normalized execution time numbers in Figure 4. Our experience can be
represented in a lattice as shown in Figure 5. We use the notation A ≤ B to
denote that time taken to execute code when compiled with A less than or equal
to the time taken to execute the same when compiled with B.

Let us now analyze the results in more detail. Sieve is one benchmark where
no spill code was needed and gcc’s register allocator and our register allocator
both perform in the same way. For benchmarks matmul and route, gcc+SLA
performs better than RA, indicating that SLA in itself is fairly powerful. For
other benchmarks RA is doing better than gcc+SLA, showing that our ILP-
based register allocation is giving better results than gcc’s default module run
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Benchmark Exec Time(seconds)
gcc-O2 RA gcc+SLA RA+SLA SARAs SARA

sieve 9.26 9.26 9.26 9.26 9.26 9.26
matmul 71.59 68.19 67.49 67.02 66.45 66.28
perm 154.45 151.26 146.90 143.24 140.10 140.10
queen 27.33 24.39 26.80 23.39 22.90 22.24
route 20.9 18.91 18.82 18.10 17.8 17.18
url 10.85 10.36 10.55 10.36 9.86 9.86
yacr2 4.40 4.21 4.30 4.11 3.99 3.95
ft 46.25 45.26 46.15 45.26 45.26 43.21
c4 42.3 41.1 42.19 40.53 40.23 39.65
mm 330.02 326.2 326.5 324.21 322.60 311.32

Fig. 3. Execution time numbers
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Fig. 4. Normalized execution times

followed by SLA. For ft, RA + SLA does not give any improvement over RA.
That is because SLA could not introduce many pairs in the frequently executed
code. Also SARAs is not giving much improvement either. That’s because the
ILP solver could not generate many pairs with the strict liveness constraints.
However SARA does show an improvement which is due to the relaxed bounds.
Theoretically one can imagine cases where RA+SLA could be doing better than
SARAs or even SARA, but we did not find any such cases in our benchmarks.
Further experimentation may reveal such cases.

A general point to note about the numbers is that there is a appreciable
amount of tension between the number of callee save registers used, the number
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RA+SLA

RA gcc+SLA

gcc−O2

SARA

SARAs

≤ ≤

≤

≤
≤≤

≤ ≤

Fig. 5. A comparison of different register allocator schemes

of normal loads and stores, and the pairs inserted. As a result, SARA shows a
significant but not earthshaking improvement over the other register allocators.
Overall, we see that SARA yields improvements up to 16% compared to the gcc
compiler’s own register allocator extended with SLA, and up to 8% compared
to our own ILP-based register allocator followed by SLA. On average (excluding
the numbers for sieve), the improvements are 7.4% and 4.1% respectively.

6 Conclusion and Future Work

We have presented an ILP-based approach to combining register allocation and
stack location allocation. We have shown that doing these optimizations together
gives better results than doing them separately in sequence.

In future work, one might implement SARA using fast heuristics and compare
the results to the results of solving the ILPs using CPLEX. One might also add
register coalescing, register rematerialization, etc. to SARA and study the effect
on code quality and compilation time.
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Abstract. As register allocation is one of the most important phases
in optimizing compilers, much work has been done to improve its qual-
ity and speed. We present a novel register allocation architecture for
programs in SSA-form which simplifies register allocation significantly.
We investigate certain properties of SSA-programs and their interfer-
ence graphs, showing that they belong to the class of chordal graphs.
This leads to a quadratic-time optimal coloring algorithm and allows for
decoupling the tasks of coloring, spilling and coalescing completely. Af-
ter presenting heuristic methods for spilling and coalescing, we compare
our coalescing heuristic to an optimal method based on integer linear
programming.

1 Introduction

Graph coloring register allocation has been a successful approach for register al-
location, mostly due to its very simple abstraction: Each variable in the program
is mapped to a node in an undirected, so called interference graph. Whenever
the compiler finds out that two variables cannot be held in the same register
(they are simultaneously live), an edge is drawn between the two nodes in the
interference graph representing the two variables. A k-coloring of the interference
graph thus leads to a valid register allocation using at most k registers.

Chaitin [1] showed that for each undirected graph G, there is a program
which has G as its interference graph. Since graph coloring is NP-complete, so
is register allocation. This leads to the well known iterative approach of graph
coloring register allocators (here, we illustrate a simplified version of the allocator
proposed by Briggs [2]):

Build Coalesce Color

Spill

not k-colorable

Since determining the graph’s chromatic number (the minimal number of colors
needed for a valid coloring) is also NP-complete, the impact of a modification
of the graph (spilling and coalescing) on its colorability cannot be determined
efficiently in general. This has two unappealing consequences:

A. Mycroft and A. Zeller (Eds.): CC 2006, LNCS 3923, pp. 247–262, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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a ← 1

b ← a + a
c ← a + 1
d ← b + 1
store c
g ← d

e ← 1
f ← a + 1
store e
g ← f

store g

e1 e2

e3
e4

(a) Program P

a

b

c

d

g

f e

(b) Interference graph
G of P

a

b

c

dgf

e
(c) Interference graph
G′ of coalesced P

Fig. 1. Program P and its interference graph

1. Coalescing (the task of eliminating useless copies) may do more harm than
good by increasing the chromatic number of the graph. Consider the example
program P in figure 1(a) and its interference graph G in figure 1(b). G’s
chromatic number χ(G) equals 2. Aggressive coalescing would merge the
nodes d, g, f into one producing the graph G′ (shown in figure 1(c)) which is
not 2-colorable anymore. Thus, the register demand of P is raised by merely
removing some copies and thus possibly introducing spill code.

2. Since it is not clear if the spilling of a node improved the colorability of
the graph, the modifications of the program caused by spilling have to be
materialized, the interference graph has to be rebuilt and coloring has to be
attempted again. Thus, coloring is repeated until k colors suffice. Especially
for a small number of available registers many iterations have to be expected,
since the number of spills will be high. This is costly, since the interference
graph is a large data structure which then has to be rebuilt over and over.

The situation drastically changes if we require the processed program to be in
SSA-form. As we show in section 2, interference graphs of SSA-form programs
are chordal. The two major properties of chordal graphs which make them so
appealing for register allocation are:

1. Their chromatic number is equal to the size of the largest clique in the graph.
2. They can be optimally1 colored in quadratic time (concerning the number

of nodes, cf. Golumbic [3]).

Furthermore, there are several relations between SSA-form programs and their
interference graphs which allow us to circumvent the deficiencies of conventional
graph coloring register allocators as mentioned above:

– Cliques in the interference graph correspond to live sets in the program. This
means after liveness analysis we know how many registers will be needed for
the program in question. If we reduce the amount of variables live at each
point in the program to at most k, the graph will be k-colorable, which

1 Using as few colors as possible.
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eliminates the iteration. In section 4.1, we present a simple algorithm which
splits the live ranges of the variables so that the register pressure is at most
k at each point in the program.

– Dominance, a fundamental notion for SSA-form programs, induces an order
of the interference graph’s nodes which allows the interference graph G =
(V,E) of a SSA-form program to be colored optimally in O(χ(G) · |V |) as
shown in section 2.

– Finally, as shown in section 4.3, we coalesce useless copies in the shape of
φ-operations not by modifying the graph but by finding a k-coloring which
assigns as many sources and targets of copies the same register. This pre-
serves the chordality of the interference graph and thus does not change its
k-colorability. So coalescing a copy will never cause any additional spill.

This leads to a single pass register allocator architecture looking like

Spill Color Coalesce SSA-Destruction

avoiding any iteration.

2 SSA-form Programs and their Interference Graphs

Before going into algorithmic details, let us discuss basic properties of SSA-
form programs and their connection to relevant terms of register allocation like
liveness and interference.

We consider a program as a standard CFG being a triple (Labels,CF , start).
Each label � ∈ Labels contains a single instruction

� : (y1, . . . , ym︸ ︷︷ ︸
Dτ

) ← τ(x1, . . . , xn︸ ︷︷ ︸
Uτ

)

a set of control flow edges CF between the labels and one designated label start
which has no control flow predecessors. As we only consider SSA-form programs
from now on, each variable v has a unique label where it is defined. We will
denote this label by Dv.

A fundamental notion for SSA-form programs is the one of dominance:

Definition 1 (Dominance). A label � dominates a label �′ if all paths from
start to �′ contain �. We then write � � �′.

Essential for all later work is the notion of a strict program which was coined
by Budimlić [4].

Definition 2 (Strict program). A program is strict, if each usage of a vari-
able v is dominated by Dv.

The interference graph G = (V,E) of a program P contains all variables
occurring in P as nodes. Two variables v and w are connected by an edge (we
then write vw ∈ E) in G, iff they interfere:
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Definition 3 (Interference). We say, two variables interfere if there exists a
label in the program where they are both live.

In the same paper, Budimlić gave two lemmas which establish a fundamental
relationship between dominance and interference:

Lemma 1. If two variables v, w interfere either Dv � Dw or Dw � Dv.

Lemma 2. If v, w interfere and Dv � Dw, then v is live at Dw.

Based on Budimlić’s lemmas we can prove our first claim of the introduction:2

Theorem 1. For each clique C = {c1, . . . , cn} ⊆ V in the interference graph
G = (V,E) of a SSA-form program P , there exists a label � ∈ LabelsP where all
c1, . . . , cn are live.

Proof. Since C is a clique, (ci, cj) ∈ E for each 1 ≤ i < j ≤ n. By lemma 1, the
labels {Dc1, . . . ,Dcn} form a totally ordered set. Thus there exists a permutation
σ : C −→ C for which Dσ(c1) � · · · � Dσ(cn). By lemma 2, σ(c1), . . . , σ(cn) are
live at Dσ(cn).

3 Coloring SSA Interference Graphs

Consider the following method to color a graph: Given an order v1, . . . , vn of the
graph’s nodes. Eliminate the vi one by one from the graph. Then, re-insert the
nodes in reverse order and give each vi the first free color not used by its already
re-inserted neighbors.

A well-known result from graph theory states that for each graph G = (V,E)
there is an ordering of all nodes in V for which this procedure leads to an optimal
coloring of G (cf. the textbook of Diestel [6] for example). In general, as graph
coloring is NP-complete, determining such a sequence is also NP-complete.

For the moment, let us consider the following approach to generate such an
ordering: In each elimination step, search a node v whose neighbors form a
clique in the current graph (such a node is also called simplicial). The idea is,
that when the node is re-inserted, all neighbors which are already colored form
a clique, and thus the number of colors used for the coloring is bound by the size
of the largest clique in the graph. Such an elimination order is called a perfect
elimination order (PEO). Consider the following example:

a b c

d e
PEO: a, d, b, e, c

No PEO: b, a, c, d, e

Of course, not every graph allows to find such a node whose neighbors form a
clique at each step in the elimination process. For instance, the diamond graph

2 Bouchez [5] gave this theorem, independently from us, too.
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used as an example by Briggs in [2] does not allow for perfect elimination order. It
is a well-known theorem of the theory of perfect graphs, that if a graph possesses
a perfect elimination order, the coloring procedure described above will generate
an optimal coloring of the graph (cf. the textbook of Golumbic [3] for example).

Based on Budimlić’s lemmas, we prove that the dominance relation of a pro-
gram in SSA-form induces a perfect elimination order of its interference graph
G = (V,E).

Lemma 3. Let ab, bc ∈ E and ac �∈ E. If Da � Db, then Db � Dc.

Proof. By contradiction: due to lemma 1, either Db � Dc or Dc � Db. Assume
Dc � Db. Then (by lemma 2), c is live at Db. Since a and b also interfere and
Da � Db, a is also live at Db. So, a and c are live at Db which cannot be by
precondition.

Theorem 2. A variable v can be added to a PEO of G if all variables whose
definitions are dominated by the definition of v have already been added to the
PEO.

Proof. To be added to a PEO, v must be simplicial. Let us assume, v is not
simplicial. Then, by definition, there exist two neighbors a, b of v which are not
connected (va, vb ∈ E and ab �∈ E). By the proposition, all variables whose
definitions are dominated by Dv have been added to the PEO and removed
from G. Thus, Da � Dv. Then, by lemma 3, Dv � Db which contradicts the
proposition. Thus, v is simplicial.

Thus, a PEO of a SSA interference graph’s nodes can be easily obtained by a
post order walk over the program’s dominance tree. Thus, we can optimally color
the interference graphs of SSA-form programs in quadratic time.

The graphs, for which perfect elimination orders exist are called chordal
graphs or sometimes triangulated or rigid-circuit graphs. Since chordal graphs
are perfect (cf. to [3]) the characteristic property of perfect graphs also applies
to chordal graphs:

Definition 4. A graph H is perfect, iff for each induced subgraph H of G the
chromatic number χ(H) is equal to the size of the largest clique ω(H).

4 A Register Allocator for SSA-form Programs

Before giving a detailed description of spilling and coalescing techniques in the
next subsections let us briefly outline how the theoretical results of the last
section can be exploited to derive a new architecture for register allocators in
general.
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Theorem 2 together with definition 4 state that the chromatic number of a
SSA interference graph is determined by the largest clique in the graph. By
theorem 1, for each clique in the interference graph, there is a label in the
program, where all variables in the clique are live. Thus, spilling can make the
interference graph k-colorable by reducing the number of live variables at each
label to k. This enables us to consider the spilling problem separately from the
other tasks of a register allocator since checking how many variables are live
at all labels in the program is easy in contrast to determining the chromatic
number of an arbitrary graph. In section 4.1 we demonstrate how a well known
basic block oriented spilling technique can be extended to serve as a spilling
method for the whole program.

By section 3, obtaining an optimal k-coloring is trivial. All one has to do is to
obey the coloring sequence induced by the dominance relation. Section 4.2 shows
how the φ-operations can be removed to obtain a non-SSA program having a
valid register allocation with k registers.

We consider coalescing as the task of obtaining a good coloring with respect
to φ-operations. Consider a φ-operation y ← φ(x1, . . . , xn). If we can assign as
many of the xi the color of y, we save move operations on the respective edges
to the φ’s block. The advantage over merging the node of y with the nodes of
the xi in the interference graph is, that we do not modify the graph’s structure
(i.e. possibly rendering it non-chordal) which lets us still determine its chromatic
number easily.

4.1 Spilling

In conventional global register allocation (like the register allocator by Briggs [2]),
spilling is not activated until coloring fails. Thus, the spilling decision is tightly
coupled to the way the graph is colored: If a node is popped from the coloring
stack and there is no color left to assign since its neighbors use up all available
colors, one of its neighbors is marked to be spilled, i.e. each use is preceded by
a reload and each definition is succeeded by a store of its value. This breaks the
live range apart making the variable only interfere with the variables live at the
usages and definitions. So the node is spilled only because another one cannot
be colored.

Since the interference graph represents the live ranges of variables, it hides
relevant information concerning spilling:

– How often is a variable used?
– Where is a variable used?
– How far is the next use away from a given point?

Thus spilling in conventional global register allocation is only concerned with
modifying the graph’s structure in order to make it k-colorable. A lot of work
has been done to make these register allocators more sensitive to the program
structure (see e.g. the work by Bergner et al. [7] or by Chow and Hennessy [8]).

However, theorems 1 and 2 and definition 4 allow for using more program-
sensitive, basic block oriented spilling approaches like Hsu et al. [9] and combine
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their results to a solution for the whole procedure. Guo et al. [10] describe the
power of Belady’s MIN algorithm [11] for spilling in a basic block. Belady’s
algorithm does not minimize the number of loads or stores in a basic block.
Though, as the measurements of Guo show, it is still a good heuristic. In the
following, we present a method how Belady’s algorithm can be extended to work
on a whole procedure by using the results of section 2.

Belady’s MIN Algorithm. The main principle of Belady’s MIN algorithm is
to displace the variables from registers whose next use is farthest in the future
(regarding the number of instructions). The algorithm starts at the entry of a
basic block B and visits each label � in the block once. Assume, that all operands
of the instruction of � are read/written from/to registers. If all registers are
occupied, one variable has to be displaced from the registers to make room for
the result of the instruction. If a label is reached whose instruction uses a value
which has been displaced, a reload must be inserted for this variable and, since
the reload loads the value in a register, another variable may have to be displaced
from the register set.

For example, you have 4 registers which are currently occupied by the vari-
ables a, b, c, d. Reaching a label

� : f ← τ(a, e)

one register has to be freed to reload the variable e. The algorithm of Belady
selects the one of b, c, d whose next use is farthest away from �. Two questions
arise immediately:

1. How far away is the next use of a variable v which is live out at the block B
of consideration but not used in that block anymore?
Since v can be used on several different control flow paths from the block, it
is not clear when v will be used next since this depends on the taken control
flow successor of B. Therefore we use an estimation by taking the minimum
of all next use distances.

2. What is the initial occupation of the registers?
Let us consider the set IB containing all values live in at B and the results of
all φ-functions in B. All these values are passed to this block “from outside”.3

If |I| > k, we select k elements from IB with the nearest next uses.
Furthermore, if we find out that a variable v in IB is displaced before it is
used, it is not sensible to hold v in a register at the entry of the block, thus
v is removed from IB.

We record the occupation of the registers after the last instruction in the block
B in the set OB .

The final step is to combine the results of the algorithm applied to all basic
blocks in the program into a solution for the whole procedure. Since the register
pressure is nowhere larger than k, we only have to assure that all variables in IB

3 Note that a φ is just a representative for a control flow dependent live in.
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for some block B are in registers on each control flow edge leading to B. Thus
we examine each predecessor block P of B: If M := IB \ OP is not empty, we
have to insert reloads for all variables in M on the control flow edge from P
to B.4

Note that spilling a (SSA-)variable v and reloading it several times actually
destroys the SSA-form of the program, since v has then multiple definitions, i.e.
the reloads v. The SSA-form can be reconstructed by applying a SSA construc-
tion algorithm, e.g. the one by Cytron et al. [12].

4.2 SSA-Destruction

A φ-operation y ← φ(x1, . . . , xn) works like a control flow dependent copy op-
eration assigning xi to y if the φ’s label is reached via the i-th control flow
predecessor. Furthermore, SSA semantics state that all φ-operations in a basic
block have to be executed simultaneously before all other instructions in that
basic block. Thus, all φ-operations

y1 ← φ(x11, . . . , x1n)
. . .

ym ← φ(xm1, . . . , xmn)

in a block work as a “bulk copy” copying the xij to the yi at once if the block
was entered via the j-th edge.

Conventionally, while translating out of the SSA-form, φ-operations are re-
placed by copy instructions. Despite some other problems like the swap-problem
(see Briggs et al. [13]), this kind of φ removal may raise the register demand un-
necessarily as demonstrated by the example program Q in figure 2(a): Replacing
the φ-operations by inserting the copies

i3 ← i2

j3 ← j2

on the edge e4 introduces an interference between i3 and j2 which was not present
in the SSA interference graph shown in figure 2(c). This edge creates the clique
i3, j2, j3 which raises the graph’s chromatic number to 3.

So let us reconsider the bulk copy property of the φ-operations in a basic
block. Consider the register allocation of Q shown in figure 2(d). If the block B
is entered via e1, R1 is assigned R1 and R2 is assigned R2, so the φs do nothing
on this edge. However, if B is reached via e4, R1 is assigned R2 and vice versa,
at once: The registers R1 and R2 are swapped.

So generally φ-operations work like permutations on registers and not like a
set of copies. It depends on the registers allocated for the results of the φ and its
operands how the permutation will look like. Thus, in this setting, coalescing is

4 Instructions can be placed on a control flow edge by eliminating critical edges and
putting the instruction in the respective block.
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i1 ← 1
j1 ← 1

i3 ← φ(i1, i2)
j3 ← φ(j1, j2)

if i3 < 100

return j3
j2 ← j3 + i3
i2 ← j3 + 1

e1

e2 e3

e4

B

(a) SSA program Q

i1 ← 1

i3 ← φ(i1, i2)
j3 ← φ(i1, j2)

if i3 < 100

return j3
j2 ← j3 + i3
i2 ← j3 + 1

e1

e2 e3

e4

B

(b) SSA program Q′

i1 j1

i2 j2

i3 j3

(c) Interference Graph of Q

R1 ← 1
R2 ← 1

R1 ← φ(R1, R2)
R2 ← φ(R2, R1)

if R2 < 100

return R2
R1 ← R2 + R1
R2 ← R2 + 1

e1

e2 e3

e4

B

(d) Register allocated Q

Fig. 2. Example programs Q and Q′

the task of finding a register allocation in which the permutations will have as
many fixed points (registers that are mapped to themselves) as possible.

As known from basic linear algebra, each permutation of size n can be writ-
ten as a sequence of transpositions (swaps) and thus is implementable using n
registers, using no extra register. For example, the φ-operations at some label �

R2 ← φ(. . . , R1, . . .)
R3 ← φ(. . . , R2, . . .)
R1 ← φ(. . . , R3, . . .)
R4 ← φ(. . . , R4, . . .)

can be implemented by inserting the sequence

swap R2, R3
swap R1, R2

on the corresponding control flow edge entering �.
If the processor provides a swap instruction (like xchg on the x86), φ-opera-

tions can be directly be implemented by a sequence of these. If not, one can
use three exclusive ors. However, if one register is spare at the φs, we can use
it to implement the permutation with moves. Note that due to theorem 1 and
definition 4 we exactly know how many registers are in use at �.
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Finally, there is one subtle point: The φ-operations of a basic block can use
a variable multiply concerning the same control flow edge like the φ-operations
in figure 2(b) both use i1 concerning edge e1. So, arriving at B from e1, i1 must
be written to i3 and j3. Thus, a copy from i1 to either i3 or j3 must be inserted
on edge e1. This copy is inevitable since the value of i1 must be present in two
registers upon entering B. The decision which destination the copy has (in this
example either i3 or j3) is deferred to coalescing since at this point in time it is
not clear whether i1 and i3 or i1 and j3 can be assigned the same color.

Note that the same situation also occurs if an operand x of a φ is live-in at
the φ’s block. Then x and the φ’s result interfere and cannot be given the same
color. Thus a copy has to be inserted also.

4.3 Coalescing

As we have seen, we can eliminate φ-operations in a way that no additional
register demand arises. Thus, a coloring of the interference graph of the SSA-
form program is a valid register allocation for the program with φ-operations
removed. In order to lower the number of transpositions needed for a φ-opera-
tion we investigate the problem of maximizing the number of fixed points of
a φ.5

Concerning a coloring f , variable x is a fixed point of a φ-operation y ←
φ(. . . , x, . . .) if x and y have been assigned the same register, i.e. f(y) = f(x).
Clearly, for fixed points no code has to be generated. Even more, if all φ-operands
are fixed points, no code has to be generated for the φ at all.

Given a SSA-form program P , its interference graph G = (V,E) and the set
Φ of all φ-operations in P . For a valid k-coloring f : V −→ {1, . . . , k} of G, we
define the costs of a φ-operation p : y ← φ(x1, . . . , xn) as follows:

cf (p) =
n∑

i=1

costf (y, xi) with costf (a, b) =
{

wab if f(a) �= f(b)
0 else (1)

where the wab ≥ 0 are costs for copying b to a. The overall costs of the program
under the coloring f are then

cf (P ) =
∑
p∈Φ

cf (p)

Definition 5 (SSA-Maximize-Fixed-Points). Given a SSA-form program
P and its interference graph G. Find a coloring f of G for which cf (P ) is
minimal.

Theorem 3. SSA-Maximize-Fixed-Points is NP-complete depending on the
number of Φ-operations. For a proof see [14].
5 Note that optimizing fixed points is only an approximation corresponding to the

traditional coalescing paradigm but does not generally minimize the number of trans-
positions.
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A Heuristic Approach for SSA-Maximize-Fixed-Points. In contrast to
existing approaches we do not merge nodes in the interference graph but try to
alter the coloring (as obtained with theorem 2) in order to assign operands of
φ-operations and their results the same color. So, instead of changing the graph’s
structure, we search for a “better” k-coloring wrt. the cost function defined in
equation 1. Thus, it will never happen that additional spill code is caused by
assigning two nodes the same color, in contrast to the example in figure 1. Unlike
other techniques, our method is not limited to the immediate neighborhood of
the node pair to base its decision whether to coalesce or not.

The algorithm considers each φ-operation separately. The aim is to color as
many operands of the φ equally to the φ’s result. Therefore we consider an
excerpt (later called conflict graph) from the interference graph containing the
φ’s result and its operands. Then we try to assign these nodes the same color. As
this may lead to conflicts (as this color may already be in use by neighbors), we
try to resolve these conflicts by recursively adjusting the conflicting nodes’ colors.
If we cannot resolve the conflicts for a node, we mark this node as incompatible.

For each φ-operation, we build an optimization unit (OU) ω = (y, x1, . . . , xm)
consisting of the φ’s result y and the arguments x1, . . . , xm of the φ which do not
interfere with y. An argument interfering with y can trivially never be assigned
y’s color. For each OU a minimization of the costs is then tried separately. The
minimization of an OU is not allowed to touch the results of all already processed
OU. The processing of every ω = (y, x1, . . . , xm) consists of three phases:

Init. For each allowed color c for y, we insert an entry Ec = (c, Cc, Sc) into a
priority queue. An entry consists of:
– a color c.
– a conflict graph Cc. Initially, Cc equals to the subgraph of the interfer-

ence graph induced by y, x1, . . . , xm.
– a maximum weighted stable set Sc of Cc.6 Sc represents all nodes in the

conflict graph which shall be assigned the color c. Each xi in the OU is
assigned the weight wyxi

as defined in the cost function in equation 1.
The weight of y is arbitrary, because y is contained in every maximum
stable set by construction. This property is preserved throughout the
optimization process.

The gain of Ec is the sum of the weights of the nodes contained in Sc. The
priority queue is ordered decreasingly by the gain of the entries. Thus, the
first entry in the queue represents a coloring which provides the largest gain
(or causes the fewest costs).

Test. The first entry Ec is removed from the priority queue. We then attempt
to adjust the coloring of the interference graph in a way, that the nodes in Sc
are assigned the color c. Note, that until the testing phase is not completed
for an OU, color changes are only virtual and rolled back if the optimization
fails for the OU.

6 A weighted stable set is a set of nodes equipped with weights for which no node is
connected to the other.
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We try to change the color for each u ∈ {y, x1, . . . , xm} to c. If a neighbor
n of u is also colored with c, we annotate n with the former color of u. This
may provoke further conflicts which are then resolved recursively. Swapping
the color of a node v originally initiated by changing the color of u to c ends
in one of the three cases:
1. Changing v’s color does not generate new conflicts.
2. v’s color has already been pinned (see phase Apply) by the processing of

another optimization unit. Then, changing v’s color would increase the
costs incurred by this other OU. uu is added to Cc. Thus, u is excluded
from every possible stable set of Cc. Then, Sc is recomputed and the
entry is reinserted into the queue.

3. If v is a pinning candidate for the current OU, u and v are somehow
interdependent. The algorithm cannot assign c to u and v at the same
time. As we require y to be always contained in each Sc, if v = y, we add
the edge uu, otherwise the edge uv to Cc. Afterwards, Sc is recomputed
and the entry is reinserted into the queue.

If all conflicts caused by changing u’s color to c have been resolved (all ended
in case 1), then u is marked as a pinning candidate, else all color annotations
caused by re-coloring u are discarded.
If all y, x1, . . . , xm are marked as pinning candidates, testing ends for this
OU.

Apply. If the testing phase produced at least two pinning candidates (some xi

and y could be colored with the same color), the pinning candidates become
pinned and all color changes annotated by the testing phase are applied to G.

Note, that the Test-Phase always terminates, since in each step an edge is
added to the conflict graph, if testing was not successful. Thus, in the worst case,
the stable set will finally consist of the φ-result only and is not re-inserted into
the priority queue. Thus, the whole algorithm terminates.

5 Measurements

We implemented our coalescing heuristic into our research compiler system
Firm [15] and ran the complete C/C++-subset of the SPEC2000 benchmark
suite through it. The architecture compiled for is a virtual RISC machine, to
determine the effect of our approach on different register file sizes. Therefore, we
did not measure the execution times of the compiled programs but investigated
the quality of the heuristic’s solutions in terms of costs of the target function as
defined in equation 1 in section 4.3. The weights wij are determined by the loop
nesting depth to the power of two.

To assess the quality of the heuristic, we implemented an ILP formulation
of SSA-Maximize-Fixed-Points (for details on the implementation, see [14]).
Since ILP solving occasionally takes very long, the ILP solver was stopped af-
ter one minute of computation and thus did sometimes not produce an optimal
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solution.7 As this happened in only 7% of all cases, we consider the solutions of
the ILP solver as the best ones we could get and call the remaining costs after
applying the ILP solver unoptimizable.

The measurements were conducted as follows: We compiled all C/C++-
functions in the SPEC2000 benchmark suite for 8, 16 and 32 registers. We mea-
sured the costs incurred by the φ-functions at three stages in the compiler: After
coloring with no coalescing done, after performing the heuristic and after apply-
ing the ILP solver. The solution of the heuristic was fed into the ILP solver as
a start solution.8 The row Non-Opt gives the percentage of functions for which
the ILP solutions were not proven optimal. The results of the three measure-
ments are reflected by the rows Initial, Heuristic and ILP in the table below.
The Elim row shows the quotient (Initial − Heuristic)/(Initial − ILP) represent-
ing the fraction of optimizable costs the heuristic has eliminated. One can see
that the heuristic eliminates always more than 95.0% of all optimizable costs.

Costs
1000

Registers8 16 32
0

100

200

300

Initial Heuristic ILP

Registers 8 16 32
Non-Opt 6.7% 3.7% 1.3%
Initial 394592 342842 213544
Heuristic 60114 63506 46060
ILP 42738 57010 43479
Elim 95.0% 97.7% 98.4%

6 Conclusions and Further Work

SSA-form programs allow for a new architecture of register allocators. Due to the
chordality of their interference graphs, spilling and coalescing can be completely
decoupled, thus avoiding the iterative approach in common graph coloring reg-
ister allocators.

Based on the direct correspondence between the variables live at a label in
the program and the cliques in its interference graph, we showed how an already
existing, heuristic method for spilling in basic blocks can be extended to work
on a whole procedure. Furthermore, we showed that an optimal coloring of the
interference graph G = (V,E) can be obtained in O(χ(G) · |V |).

We investigated the NP-complete problem of copy coalescing, presented a
heuristic method for its solution and compared its quality to (near-) optimal
solutions computed by an integer linear program. As our measurements show,

7 To be precise, the solver could not prove the optimality of its best known feasible
solution within time.

8 Thus the solution of the ILP solver is always feasible and as good as or better than
the heuristic’s one.
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the proposed coalescing heuristic eliminated more than 95% of all optimizable
costs for 8, 16 and 32 registers.

Finally, we showed how a k-register allocation of a SSA program can be imme-
diately turned into a k-register allocation of a non-SSA program. Thus, optimiz-
ing SSA-destruction is no longer necessary since it is handled by the coalescing
phase.

As using SSA-form for register allocation demands a complete new backend
architecture, we only had a prototype implementation running at the point in
time this paper was written. The implementation of conventional register allo-
cators is also work in progress and has not been completed.

As anticipated in section 4.3 optimal copy minimization is not achieved by
maximizing the fixed points of a φ-operation but by minimizing the number of
transpositions of the register permutation the φ stands for. Future work could
investigate this problem.

7 Related Work

The first coalescing technique concerning graph coloring register allocation,
called aggressive coalescing, was given by Chaitin et al. [1]. It recklessly coalesced
all copies if the source and target did not interfere. It thus often introduced addi-
tional spill code by degrading the graph’s colorability. Since then, a lot of work has
been done on developing coalescing techniques which do not degrade the colorabil-
ity of the graph, basically by stating criteria under which coalescing two nodes
never will introduce a spill. Briggs et al. [2] introduced conservative coalescing
which refuses to merge two nodes if the merged node will have more or equal than
k neighbors. George and Appel [16] developed iterated coalescing which is able to
remove more copies than conservative coalescing by interleaving it with the sim-
plification phase of the register allocator. Park and Moon [17] present optimistic
coalescing which adapts aggressive coalescing and integrate it into the Briggs al-
locator, allowing to undo coalescing if the coalesced node is selected to be spilled.

In his inspiring paper [18] Andersson tested a huge amount of interference
graphs from the SML/NJ compiler published by Appel and George for the so
called 1-perfectness property and found for all graphs he investigated, ω(G) was
equal to χ(G). Following Andersson’s work, Pereira and Palsberg [19] tested the
interference graphs of the Java standard library compiled with the JoeQ compiler
for chordality and found that 95% of them were chordal. They propose a register
allocator without iteration for non-SSA programs and give heuristics both for
spilling and coalescing. Since their approach works with non-SSA programs and
even non-chordal interference graphs, they cannot utilize the theoretic properties
presented in section 2.

A more technical proof (without using perfect elimination orders) of the
chordality of SSA interference graphs by one of the authors can be found in [20].
Brisk [21] gives a proof for the perfectness of the interference graphs of SSA-
form programs. Bouchez [5] extensively studies the complexity of the spilling
problem for SSA-form programs. He proves the problem of reducing the number



Register Allocation for Programs in SSA-Form 261

of live variables for each label to k while minimizing the number of reloads to
be NP-complete wrt. to the chromatic number of the interference graph of the
SSA program.
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Enhanced Bitwidth-Aware Register Allocation

Rajkishore Barik and Vivek Sarkar
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Abstract. Embedded processors depend on register files for
performance, just like general-purpose processors in desktop and
server systems. However, unlike general-purpose processors, the power
consumption of register files poses a significant challenge for embedded
processors, making it desirable for embedded processors to use as
few registers as possible. Past research has indicated the potential for
leveraging bitwidth analysis and bitwidth-aware register allocation to
reduce register usage in embedded applications.

This paper makes the following contributions in evaluating and
enhancing bitwidth-aware register allocation for embedded applications.
First, we compare the Tallam-Gupta bitwidth analysis with an idealized
limit study, and show significant opportunities for enhancements. Sec-
ond, we show how bitwidth-aware register allocation can be enhanced
by enhanced bitwidth analysis for scalar and array variables, and
also by enhanced coalescing of variables. Third, we use our prototype
implementation of bitwidth-aware register allocation in gcc to compare
the number of dynamic spill load/store instructions resulting from a)
bitwidth-unaware allocation, b) bitwidth-aware allocation, c) enhanced
bitwidth-aware allocation, and d) ideal profile-driven bitwidth-aware
allocation. Our results show that our enhancements can reduce the
number of dynamic spill load/store instructions to between 3% and 27%
of the number obtained from the Tallam-Gupta algorithm.

1 Introduction

Embedded applications operate extensively on subword data values i.e., data
values with narrower width than the standard data width (word size) supported
by the underlying embedded processor e.g., 32 bits or 64 bits. As indicated by
Tallam and Gupta [20], the register usage of embedded applications can be
reduced by employing bitwidth-aware register allocation. A reduction in register
usage can then be leveraged to reduce the power requirements of the embedded
application on an embedded system [11]. Similarly, bitwidth analysis has been
used to reduce the number of registers needed in the context of silicon com-
pilation [19] and reconfigurable architectures. The opportunities for reducing
register usage are even more promising when moving to embedded processors
with a 64-bit word size (compared to a 32-bit word size).

One cornerstone of bitwidth-aware register allocation lies in its underlying
bitwidth analysis. Stephenson et al. introduced a bitwidth analysis for silicon
compilation [19] and showed how it can be used to reduce the total number of
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c© Springer-Verlag Berlin Heidelberg 2006
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register bits in the generated RTL. However, the silicon compilation problem
differs from register allocation, because there is no notion of register spills in
silicon compilation. The Tallam-Gupta algorithm addresses this problem more
directly by providing a register allocation algorithm that is capable of packing
multiple subwords into a single register. There is an underlying trade-off when
performing bitwidth-aware register allocation viz., reducing the number of reg-
isters used can save power, but may introduce additional overhead for subword
access. This trade-off is well suited to new embedded processors in which the
overhead of subword access is reduced by direct hardware support, and where
the benefits of using fewer registers is clearly visible in reduced power.

Another cornerstone lies in the coalescing heuristics employed by bitwidth-
aware register allocation. Unlike coalescing in conventional register allocation,
it is permissible to coalesce two interfering variables in bitwidth-aware register
allocation (provided that the sum of their bitwidths does not exceed the register
word size). As shown in Figure 5, the estimates for coalescing provided in [20]
can be improved significantly to perform a better coalescing of live ranges.

This paper makes the following contributions in evaluating and enhancing
bitwidth-aware register allocation for embedded applications:

1. A limit study (Section 2) that compares compare the Tallam-Gupta bitwidth
analysis algorithm [20] with dynamic profile-driven bitwidth information,
and show significant opportunities for enhancements.

2. An enhanced bitwidth analysis algorithm (Section 3) that performs more
detailed scalar analysis and array analysis for improved bitwidth information
than in [20].

3. An enhanced coalescing algorithm (Section 4) that performs less conservative
(more aggressive) coalescing than in [20].

4. Experimental results from a prototype implementation of bitwidth-aware
register allocation in gcc to compare the effect of the two main enhancements
listed above.

Our results show that our enhancements can reduce the dynamic number of
load/store instructions significantly, compared to the Tallam-Gupta bitwidth-
aware allocation algorithm. In the best case, our enhancements resulted in a
reduction of the load/store instructions to 3% of the bitwidth-unaware case (for
6 registers). As can be seen in Table 4, the reductions delivered by our enhance-
ments can also be smaller — the “worst” case is a reduction to 27% of the orginal
dynamic number of load/store instructions. To the best of our knowledge this
is the first study that reports on the dynamic number of load/store instructions
(spill instructions) resulting from bitwidth-aware register allocation. (The results
reported in [20] were for static register requirements and static numbers of live
ranges and interference graph nodes.)

Davidson and Jinturkar [8] proposed a compiler optimization that exploits
narrow width data. They used memory coalescing to improve cache performance
of a program. It will be interesting to see how the approach advocated in this
paper for register allocation could be extended in the future to improve cache
performance.
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The rest of this paper is organized as follows. Section 2 introduces metrics such
as the Active Compression Factor (ACF) to compare the Tallam-Gupta bitwidth
analysis with an idealized limit study, and thereby show significant opportunities
for enhancements. Section 3 shows how bitwidth-aware register allocation can
be improved by enhanced analysis of scalar and array variables. Section 4 shows
how additional improvements can be obtained by enhancements to the coalescing
algorithm and its underlying framework. Section 5 reports on our experimental
results obtained from our prototype implementation of bitwidth-aware register
allocation. Finally, Section 6 contains our conclusions.

2 Limit Study of Bitwidth Usage

Our first step in studying bitwidth-aware register allocation was to perform a
limit study that compares the bitwidth usage computed by the static compile-
time bitwidth analysis algorithm in [20] with dynamic bitwidth information ob-
tained from an execution profile. The infrastructure used for this study was based
on the GCC compiler, as depicted in Figure 1. The register allocation phase in
gcc was modified to accept input from the box labeled “Bitwidth analysis”,
which can either generate compile-time or profile-driven bitwidth information.
In general, the width of a variable at a program point can be represented by
three parts: a leading part of unused bits, a middle part of active bits, and a
trailing part of unused bits. We implemented the Tallam-Gupta algorithm in
the GCC compiler to obtain this information for the compile-time case. For the
profile-driven case, we instrumented the code generated by GCC so as to per-
form a “logical or” of the values dynamically assigned to a each variable. The
major motivation for performing the limit study is that the prior work by Gupta
and Tallam reported static benefits of bitwidth-aware register allocation (fewer
registers used, smaller cliques in the interference graph), but did not provide
any indication of what additional opportunities remain for improved bitwidth
analysis.

The benchmarks used in this paper were all taken from the Bitwise benchmark
set [1], so as to be representative of embedded applications. Our evaluation was
performed on 9 out of the 15 programs in the full benchmark set. The following
five programs were not used because they did not contain a return value, thereby
making it possible for gcc to optimize away the entire program as dead code —
bilint, levdurb, motiontest, sha, softfloat. In addition, the life program was not
used, because the Bitwise benchmark set already contains a newlife program
which is very similar to life. All experiments were performed using the -O3 option
and the –param max-unroll-times=0 option1 with version 4.1 of gcc targeted to
the x86 platform.

Table 1 lists the total number of variables (pseudoregisters) available for reg-
ister allocation in each benchmark, followed by the number of variables that were
1 This option disables loop unrolling. Loop unrolling can create more candidates for

register allocation, but the relative impact of unrolling depends on the benchmark
so it was disabled.
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GCC Frontend
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Bitwidth analysis
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Register allocation
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Executable code

C Program

Program Execution

Profile    Info

Fig. 1. GCC modification for limit study

identified to have varying bitwidth by static analysis, and next by the number
of variables that were identified to have variable bitwidth by profile informa-
tion. The results in the table indicate that there is opportunity for significant
improvement in compile-time bitwidth analysis, compared to the static analysis
obtained from the Tallam-Gupta algorithm.

We now introduce another metric called the active compression factor (ACF)
to measure the effectiveness of the bit sensitive analysis. Let ABij denote the
number of active bits in register operand j at statement i (obtained either from
static analysis or from profile information), and TBj denote the number of total
bits in register operand j (in other words, the statically defined size of j). Let

Table 1. Comparison of compile-time and profile-driven bitwidth analysis: Number of
and percentage of variables with bitwidth < 32 bits

Total # variables Total # and % of variables with variable bitwidth
Benchmark (Compiler analysis) (Profile-driven)

adpcm 26 20 (76.92%) 25 (96.15%)
bubblesort 20 11 (55.00%) 20 (100.00%)
convolve 8 6 (75.00%) 7 (87.50%)

edge detect 107 20 (18.69%) 76 (71.02%)
histogram 29 16 (55.17%) 23 (79.31%)

jacobi 36 13 (36.11%) 23 (63.88%)
median 33 9 (27.27%) 26 (78.78%)

mpegcorr 30 13 (43.33%) 21 (70.00%)
newlife 62 19 (30.64%) 48 (77.41%)
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FREQi denote the dynamic frequency of statement i. We define the active
compression factor as follows:

ACF =

∑
i∈INSN

∑
j∈REGOPERAND FREQi ∗ TBj∑

i∈INSN

∑
j∈REGOPERAND FREQi ∗ ABij

Note that ACF must be ≥ 1 since TBj ≥ ABij .
Table 2 shows ACF values for the compile-time and profile-driven cases.

The same execution profile information is used for the FREQi values in both
cases – the difference lies in the computation of the ABij values. A larger ACF
value indicates a greater opportunity for bitwidth-aware register allocation. The
results in Table 2 show ACF values in the range of 1.0 to 1.37 for the compile-
time case, and in the range of 1.45 to 3.90 for the profile-driven case. Once again,
this shows opportunity for improved bitwidth analysis, compared to the results
obtained from the Tallam-Gupta algorithm.

Table 2. Active Compression Factor (ACF) comparison across static and profile-driven
bitwidth analysis without loop unrolling

Benchmark Compile-time Profile-driven
compression compression

adpcm 1.37 3.39
bubblesort 1.21 3.90
convolve 1.00 3.05

edge detect 1.04 2.26
histogram 1.10 2.09

jacobi 1.00 1.67
median 1.01 2.14

mpegcorr 1.03 1.94
newlife 1.05 2.67

3 Enhanced Bitwidth Analysis

In this section, we outline two key enhancements that we made to the bitwidth
analysis in the Tallam-Gupta algorithm, both of which were motivated by the
opportunities identified by the limit study in the previous section.

1. Enhanced Scalar Analysis. The Tallam-Gupta algorithm performs a data flow
analysis that includes a forward zero bit section analysis and a backward dead
bit section analysis. We added a recurrence analysis (using the algorithm in
[3]) that can identify general induction variables and other patterns with
closed form solutions. This is more general than the scalar range analysis
presented by Stephenson et al [19].

2. Enhanced Array Analysis. A key limitation of the Tallam-Gupta algorithm
is that it performs no analysis of array variables. We added an array range
analysis that tracks the values being assigned to arrays, and integrates the
array analysis with the enhanced scalar analysis. This enhancement performs
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a flow-insensitive analysis of all accesses to an array variable. In the future,
we plan to implement a flow-sensitive version, based on the Array SSA form
algorithm for element-level constant propagation [13].

#define NSAMPLES 2407
. . .
int sbuf[NSAMPLES];
. . .
for(i=0;i<NSAMPLES;i++) {
sbuf[i]=i & 0xFFFF;

}
. . .

for ( i = 0; i < NSAMPLES; i++ ) {
val = sbuf[i];

. . .

Fig. 2. Code fragment from BITWISE adpcm benchmark

. . .
for (i=0; i<SIZE/2; i++) {
sortlist_even[i] = (SIZE-(i << 1) ) | (1 << (WIDTH-1));
sortlist_odd[i] = (SIZE-((i << 1) | 1) ) | (1 << (WIDTH-1));

}

for(top=SIZE-1;top>0;top--) {
for(i=0;i<top;i++) {
io = i >> 1;
ie = io + (i & 1);
s1=sortlist_even[ie];
s2=sortlist_odd[io];
if(s1 > s2 ^ (i & 1)) {
sortlist_even[ie] = s2;
sortlist_odd[io] = s1;

}
}

}
. . .

Fig. 3. Code fragment from BITWISE bubblesort benchmark

We use two code examples to illustrate the benefits of these two enhancements,
and how they are used in conjunction with each other. Figure 2 contains a code
fragment from the Bitwise adpcm benchmark. While it may not be standard prac-
tice in general, it is common practice in embedded applications for loop iterations
to be bounded by constants defined in the program. When analyzing the expres-
sion, i & 0xFFFF, our enhanced analysis determines that variable i must be in the
range, 0 . . . 2406. Further, the constant 0xFFFF value has a bitwidth of 16 bits.
Hence, each element assigned to the sbuf array has a lower bound of 0, and an
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upper bound of min(2406, 65535) = 2406, or a maximum bitwidth of 12 bits (The
min function is applied when a bitwise-and operator is being analyzed.). Scalar
variable val is then bounded by a maximum bitwidth of 12 bits.

Figure 3 contains a code fragment from the Bitwise bubblesort bench-
mark. There are two static definitions each for arrays sortlist even and
sortlist odd. However, the values of s2 and s1 that appear in the right-hand-
side of the second pair of definitions originate from the same arrays. Therefore,
our data flow analysis determines that the bitwidth of the array elements must
be bounded by their initial definition i.e., 17 bits.

4 Enhanced Coalescing for Bitwidth-Aware Register
Allocation

In this section, we outline improvements in the coalescing heuristics used in
bitwidth-aware register allocation. Figure 4 contains a summary of the Tallam-
Gupta bitwidth-aware register allocation algorithm, as presented in Figure 13 in
[20]. The key step that implements the coalescing heuristic is Step 7. As shown
later in our experimental results, enhancements to the coalescing heuristic can
have a significant impact on the effectiveness of bitwidth-aware register alloca-
tion. Note that the coalescing step in bitwidth-aware register allocation is different
from coalescing in classical register allocation. In classical register allocation, two
non-interfering variables can be coalesced so as to use the same register. Bitwidth-
aware register allocation allows two interfering variables to be coalesced provided
the sum of their bitwidths does not exceed the register word size.

We now discuss three key characteristics of the Tallam-Gupta algorithm, and
outline how they were extended/replaced in our algorithm:

1. Coalescing is performed conservatively in the Tallam-Gupta algorithm i.e.,
coalescing is restricted to cases when the node created by coalescing two
nodes has fewer than k neighbors with degree of k or more (where k is
the number of registers available for allocation). However, our experimental
results show that this restriction is too conservative in many cases, so we
use aggressive coalescing algorithm originally proposed by Chaitin [7].

2. If nodes A and B are coalesced, and both have an edge to another node, C,
it is necessary to compute a new label for the edge from the new coalesced
node, AB to C. As discussed in Section 4.1 below, the heuristic used in
the Tallam-Gupta algorithm can result in edge labels that are unnecessarily
large, thereby precluding some possible coalescing heuristics. Our algorithm
performs a more precise update of the edge label.

3. The priority function for live ranges used in the Tallam-Gupta algorithm for
selecting nodes in Step 3 is defined as follows:

Priority(lr) =
Estimated Load/Store Savings

Live Range Area

=
Estimated Load/Store Savings∑

Program point p width(lr, p)
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However, our experience has shown that this priority function often favors
short-lived live ranges which have a small area, even though they may not
offer a large savings in load/store instructions. Our enhancement was to
remove the denominator term in the priority function, so that all live ranges
are prioritized (largest-first) according to the estimated absolute load/store
savings.

These three enhancements together result in the “Enhanced Coalescing” ex-
perimental results presented in Section 5.

1. Construct interference graph.
2. Label edges with interference widths.
3. Construct prioritized node list.
4. while node list �= φ do
5. Get a node, say n, from prioritized node list.
6. for each node a in n’s adjacency list do
7. Attempt coalescing a with n. // Coalescing heuristic
8. If successful, update interference graph and prioritized node list.
9. end for

10. end while
11. Replace each coalesced variable set with a new name.
12. Introduce intravariable moves.
13. Perform graph coloring register allocation

Fig. 4. Tallam-Gupta Bitwidth-aware Register Allocation

4.1 Updating Edge Labels After Coalescing

As mentioned earlier, the update of edge labels after coalescing can be unneces-
sarily large in the Tallam-Gupta algorithm. Each edge (X,Y ) is labeled with an
ordered pair, (Xy, Yx), such that Xy and Yx estimate the maximum widths of
X and Y at a program point corresponding to the maximum interference width
of X and Y . A key constraint is that nodes X and Y cannot be coalesced if
Xy + Yx is larger than the register word size.

Let us consider the interference graph shown in Figure 5 as an example in
which we attempt to coalesce nodes A and B. The upper right section of Fig-
ure 5 shows the actual number of bits required by variables A, B and C in the
instruction stream. The Tallam-Gupta algorithm uses an Estimated Maximum
Interference Width (EMIW) computation that results in the edge label (28, 8)
as shown on the lower left of Figure 5 (Refer to Eint in [20]). In this case, node
AB cannot be coalesced later with C, since 28 + 8 = 36 is larger than the 32-bit
word size assumed in this example. However, if we use our enhanced estimates
as illustrated in the lower right of Figure 5, the resulting edge label is (21, 8),
which would permit nodes AB and C to be coalesced next. The key point is that
the Tallam-Gupta algorithm conservatively estimates the bitwidth of AB after
coalescing to be 28, though it should actually be 21.
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Fig. 5. Example Interference Graph

The details of our more precise estimate of edge labels can be obtained from
the equations listed below, which we used to add to the equations for Case II in
Figure 7 of [20]. NODEMAX denotes the maximal width of a node across all
program points. We have also proved that this more precise estimation satisfies
the intermediate value theorem in [20]. The proofs are included in Appendix A.

E1 = Ab + Ba + NODEMAX(C)
E2 = Ac + Ca + NODEMAX(B)
E3 = Cb + Bc + NODEMAX(A)
E4 = Ba + Ca + MAX(Ab, Ac) if Emin = Ea and E4 ≥ Emin

E5 = Ab + Cb + MAX(Ba, Bc) if Emin = Eb and E5 ≥ Emin

E6 = Ac + Bc + MAX(Ca, Cb) if Emin = Ec and E6 ≥ Emin

EMIW (A,B,C) = MIN(Eint, E1, E2, E3, E4, E5, E6)

(ABc, Cab) = (Ab + Ba, NODEMAX(C)) if EMIW (A,B,C) = E1

(ABc, Cab) = (Ac + NODEMAX(B), Ca) if EMIW (A,B,C) = E2

(ABc, Cab) = (Bc + NODEMAX(A), Cb) if EMIW (A,B,C) = E3

(ABc, Cab) = (Ba + MAX(Ab, Ac), Ca) if EMIW (A,B,C) = E4

(ABc, Cab) = (Ab + MAX(Ba, Bc), Cb) if EMIW (A,B,C) = E5

(ABc, Cab) = (Ac + Bc,MAX(Ca, Cb)) if EMIW (A,B,C) = E6

5 Experimental Results

In this section, we report on experimental results obtained from our prototype
implementation of bitwidth-aware register allocation based on gcc. Figure 6
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Bitwidth Analysis

Variable Coalescing
with or without 
improvements

Executable code

Register allocation 
via graph coloring

Other Backend
phases

Program Execution

Compile time

analysis
bitwidth

Profile−driven Enhanced
bitwidth info

Backend phases

RTL

GCC Frontend

C Program

Profile Info

bitwidth info

Fig. 6. GCC modification for register allocation

depicts how the bitwidth-aware register allocator is inserted into the phases
of the gcc compiler. A standard graph coloring register allocator [7] was used
instead of GCC’s local and global register allocator. Note that we now have
three options for Bitwidth Analysis — the Tallam-Gupta algorithm, enhanced
bitwidth analysis, and profile-driven information. The enhanced analysis results
were obtained by our implementation of the enhanced scalar and array analysis
outlined in Section 3. Also, there are two options for Variable Coalescing —
the Tallam-Gupta algorithm or the enhanced coalescing algorithm outlined in
Section 4.

The experimental results reported in this section will be used to compare five
different cases:

1. Bitwidth-Unaware — a standard graph coloring algorithm is used with no
support for bitwidth-aware register allocation.

2. + Bitwidth-Aware — enhancement of the previous case by using the Tallam-
Gupta bitwidth-aware register allocation.

3. + Enhanced Coalescing — addition of the enhanced coalescing techniques
introduced in Section 4 of this paper.

4. + Enhanced Bitwidth — addition of the enhanced scalar and array bitwidth
analysis techniques introduced in Section 3 of this paper.

5. + Profiled Bitwidth — like the previous case, but with profiled bitwidth
information from the limit study used instead of statically analyzed bitwidth
information.

The benchmark programs being used in this section are the same as those that
were used for the limit study described in Section 2.
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Table 3. Comparison of number of coalesce node-pairs with different levels of bit-
sensitive register allocation for the number of available registers = 8

Benchmarks Bitwidth-Aware + Enhanced + Enhanced + Profiled
(Tallam-Gupta) Coalescing Bitwidth Bitwidth

adpcm 0 7 15 18
bubblesort 1 1 12 12
convolve 0 0 2 2

edge detect 0 0 25 64
histogram 1 1 15 15

jacobi 0 0 15 16
median 0 0 16 17

mpegcorr 0 0 10 13
newlife 0 2 40 41

As can be seen in Figure 6, the same register allocator based on graph coloring
is used in all cases. Therefore, the only way for the bitwidth-aware heuristics to
demonstrate an improvement compared to bitwidth-unaware allocation, is for
the heuristics to perform some coalescing of nodes.

Table 3 reports the number of node-pairs coalesced when processing all nine
benchmark programs for number of available registers 8. Note that the coa-
lescing pre-pass for Tallam-Gupta depends on the number of available registers
(conservative coalescing) whereas our modified approach does not (aggressive co-
alescing). The results show that our combined heuristic (Case 4 above) performs
significantly more coalescing than the Tallam-Gupta algorithm.

Next, Table 4 compares the number of dynamic load/store instructions arising
from register spills for the five different cases. Each row represents the case for
a certain number of available registers, and each entry represents the sum of the
dynamic load/store spill instructions for the nine benchmarks.

As seen in Table 4, the Tallam-Gupta algorithm had zero impact on reducing
the number of dynamic load/store spill instructions, for the cases studied, and
essentially yielded the same dynamic spill load/store instruction count as the
bitwidth-unaware. However, the techniques introduced in our paper (cases 3

Table 4. Comparison of dynamic spill load/store instructions with different levels of
bit-sensitive register allocation for the number of available registers = 8

Number of Bitwidth-Unaware + Bitwidth-Aware + Enhanced + Enhanced + Profiled
registers (Standard Coloring) (Tallam-Gupta) Coalescing Bitwidth Bitwidth

4 2427150 2427150 1973769(81.00) 669469(27.00) 622421(25.00)
6 836687 836687 267324(31.00) 26443(3.00) 18953(2.00)
8 58633 58633 36967(63.00) 6909(11.00) 5370(9.00)
10 19581 19581 19571(99.00) 3342(17.00) 1803(9.00)
12 9945 9945 9945(100.00) 1824(18.00) 527(5.00)
14 6378 6378 6378(100.00) 548(8.00) 0(0)
16 4860 4860 4860(100.00) 10(0) 0(0)
18 3342 3342 3342(100.00) 0(0) 0(0)

/
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and 4 above) reduced the dynamic spill load/store instruction count to 3% to
27% of the bitwidth-unaware case. This is a significant reduction.

6 Conclusions and Future Work

In this paper, we studied the problem of enhancing bitwidth-aware register allo-
cation. Our limit study showed significant opportunities for improvement, com-
pared to the algorithm pioneered by Tallam and Gupta. We used our prototype
implementation of bitwidth-aware register allocation in gcc to compare the dy-
namic number of load/store instructions) resulting from a) bitwidth-unaware
allocation, b) bitwidth-aware allocation, c) enhanced bitwidth-aware allocation
with improved bitwidth analysis and improved coalescing, and d) ideal profile-
driven bitwidth-aware allocation. Our results show that our enhancements can
reduce the dynamic number of spill load/store instructions to 3% to 27% of the
number obtained from the Tallam-Gupta algorithm.

In future, we would like to study the overhead of bit-aware register allocation
(number of extra instructions added), effect on run-time performance and energy
reduction.
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A Appendix

Theorem 1. The estimates E1, E2 and E3 are safe i.e., each of E1, E2 and E3
is greater than or equal to MIW (A,B,C).

Proof. Let MIW (A,B,C) = WA + WB + WC , where WA, WB , and WC are
contributions of A, B, and C to MIW (A,B,C). By definition of MIW it is true
that:

WA + WB ≤ Ab + Ba
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Similarly, by definition of NODEMAX it must be the case that:

WC ≤ NODEMAX(C)

Combining the above two equations:

WA + WB + WC ≤ Ab + Ba + NODEMAX(C)

⇒
E1 ≥ WA + WB + WC

E1 is safe. In a similar fashion we can prove that E2 and E3 are safe.

Theorem 2. The estimates E4, E5 and E6 are safe i.e., each of E4, E5 and E6
is greater than or equal to MIW (A,B,C).

Proof. By definition of MIW ,

Ab + Ba ≥ WA + WB

Ac + Ca ≥ WA + WC

⇒
Ba + Ca + Ab + Ac ≥ WB + WC + 2WA

⇒

Ba + Ca + MAX(Ab, Ac) ≥ WB + WC + WA + WA − MIN(Ab, Ac)

⇒ If WA ≥ MIN(Ab, Ac), then

Ba + Ca + MAX(Ab, Ac) ≥ WA + WB + WC

⇒ If WA ≥ MIN(Ab, Ac), then

E4 ≥ WA + WB + WC

Whether WA ≥ MIN(Ab, Ac) is obtained the following way.
If Emin = Ea (Emin and Ea are estimates in Figure 7 of [20]), and E4 ≥ Emin

then estimate E4 can be used, because the following two things can happen:

– if Emin ≥ MIW (A,B,C) then E4 ≥ Emin ≥ MIW (A,B,C). E4 is safe.
– if Emin < MIW (A,B,C) then Bc+Cb+max(Ab, Ac) < WA+WB +WC . By

definition of MIW , Bc +Cb < WB +WC . This implies WA > MAX(Ab, Ac)
≥ MIN(Ab, Ac). E4 is safe.

Similarly, E5 and E6 can be proven to be safe.
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