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Abstract. In environments with highly dynamic user demand, for example in 
airports, high over-dimensioning of wireless access networks is required to be 
able to serve high user densities at any possible location in the covered area, re-
sulting in a large number of base stations. This problem is addressed with the 
novel concept of a self-deploying network. Distributed algorithms are proposed, 
which autonomously identify the need of changes in position and configuration 
of wireless access nodes and adapt the network to its environment. It is shown 
that a self-deploying network can significantly reduce the number of required 
base stations compared to a conventional statically deployed network. In this 
paper, this is demonstrated in a specific test scenario at Athens International 
Airport, simulating a moving user hotspot after the arrival of an airplane.  

1   Introduction 

In an airport environment, the arrival and departure of airplanes results in a highly 
dynamic environment. User demand and positions are changing rapidly with the result 
that high over-dimensioning of wireless access networks is required to meet the need 
of high bandwidth services at any possible hot-spot location. In this paper, autono-
mous adaptation of base station positions is investigated as a possible means to reduce 
the total number of required base stations in such environments. Such self-deploying 
network [1] would be able to identify the need for changes in both base station posi-
tions and configuration, and implement these changes without human intervention. 
The potential reduction of required base stations is investigated in a specific scenario 
at Athens International Airport, simulating a moving user hotspot after the arrival of 
an airplane. Mobile base stations are considered which are deployed on a rail at the 
ceiling of the terminal building, and are able to move autonomously along this rail, as 
illustrated in Fig. 1. Instead of over-dimensioning the network for the highest ex-
pected user density at any possible location, mobility of base stations allows it to 
adapt autonomously to changes in user locations and demand with the result of a sig-
nificantly reduced number of required base stations.  

While base station mobility might seem futuristic for commercial wireless commu-
nication systems (due to the costs involved in providing base station mobility), this 
concept has near-term applications in the field of military and emergency communica-
tions, where fast network deployment is required in high-risk areas or in environments 
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that are difficult to access. The airport scenario was chosen for its simplicity in order 
to minimise the computational complexity of the environment simulation and to dem-
onstrate the proposed algorithms, which are not limited to such a one-dimensional 
self-deployment implementation. 

Base station positioning has been studied extensively in the past, using simulated 
annealing [2,3], evolutionary algorithms [4], linear programming [5], and greedy al-
gorithms [6,7]. Other work has explored the trade-offs between coverage, cell count 
and capacity [8]. It has been shown that the identification of the globally optimum 
base station locations in a network of multiple base stations is an NP-hard problem, 
far too complex to solve computationally [4-6]. Further difficulties are that most of 
the system parameters required to find an optimal solution are unknown, and the op-
timal positions change constantly due to the changes in user demand, user positions, 
and base station positions. 

The objective is the development of algorithms that are able to find near-optimum 
solutions for self-deployment and self-configuration, based only on limited local sys-
tem knowledge. To achieve a high robustness and scalability, radically distributed 
processing which results in self-organising behaviour is investigated. An additional 
objective is to avoid or minimise direct communication between base stations in order 
to reduce the signalling overhead and allow technology independent operation. In this 
way, the network may consist of base stations with different access technologies such 
as UMTS or 802.11.  

This paper is organised as follows. In Section 2, the use of stigmergy [9] for indi-
rect communication between base stations is investigated in order to achieve a glob-
ally self-organising behaviour of base station locations in a network. In Section 3 the 
difficulties involved in finding the optimal locations of base stations in a network are 
discussed. Globally and locally optimal solutions are presented and modified, to allow 
self-deployment with limited local system knowledge. Simulation results in an airport 
scenario are presented in Section 4 and finally, conclusions are drawn in Section 5. 
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Fig. 1. Autonomous, self-deploying wireless access network. Mobile base stations are mounted 
on a rail in an airport environment. 
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2   Self-deployment and Stigmergy 

Avoiding direct communication between base stations makes the optimisation prob-
lem very challenging since some means of communication is necessary to optimise 
the network globally. This problem may be addressed by using indirect communica-
tion, where each base station modifies its surrounding environment, and these changes 
then influence the behaviour of neighbouring base stations. In the field of biology, 
such interaction is known as stigmergy and is widely used by social insects to coordi-
nate their activities by means of self-organisation (e.g. ants use decaying pheromone 
trails to find shortest paths). 

In wireless communication systems, the environment in the network relates to the 
connections to the mobiles. When mobiles connect to the base station with the strong-
est received control pilot power, these connections provide information on the  
coverage of neighbouring cells. One possible driver for a change in the network envi-
ronment is the modification of base station positions. Other possibilities are, for ex-
ample, changing user demand or the adaptation of the pilot powers to achieve load 
balancing (either equal transmit power, or equal capacity) in each cell. The modifica-
tion of the network environment through re-positioning or load balancing provides an 
indirect way of communication between the base stations. 

One advantage of the proposed indirect communication is that it can be considered 
as a universal language which allows interoperability of heterogeneous systems (i.e. 
systems with different access technologies) since base stations do not need to be able 
to exchange data directly with other base stations in the network. 

Examples: 
An example of the self-organisation process, resulting from indirect communication 
between base stations and local optimisation of each base station location is illustrated 
in Fig. 2. Base stations are shown as solid squares and mobiles are shown as circles 
with a line to the connected base station. The optimal base station positions are shown 
as squares. 

Start condition:  
All mobiles are connected to the base station dependent on the connection rule 
(strongest received control pilot power). This defines the current network envi-
ronment.  

Continuous self-deployment process:  
• In each step, the optimal positions for all base stations are calculated, based on the 

current network environment (i.e. connections) seen by each base station. 
• In each following step, all base stations move to the optimum positions predicted 

in the previous step. 
• The new base station positions trigger a change in the connection to the mobiles.  

A further example showing the self-deployment process triggered by load balancing 
via modification of the pilot powers is shown in Fig. 3. The contour plots illustrate the 
received control pilot power. When BS2 reduces its pilot power for load balancing 
(Step 1), BS1 takes over several connections (Step 2). As a result, both base stations 
optimise their positions for their changed connections (Step 3). 
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Fig. 2. Self-deployment using stigmergy 
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Fig. 3. Load balancing through re-positioning of base stations 

3   Base Station Positioning Algorithms 

The optimal position of a base station can depend on a variety of factors. While optimi-
sation of the resource efficiency is an obvious criterion, other factors or constraints such 
as suitable locations, costs, or legislation also play an important role. This investigation, 
is focussed on the optimal use of resources (i.e. transmit power and available frequency 
spectrum), within constraints such as maximum transmit power levels of single base sta-
tions or possible locations. From this standpoint, rules for optimal positioning of indi-
vidual base stations, and base stations in a network, can be stated as follows: 

 

Rule1: Local optimisation of individual base stations 
The optimal position for an individual base station allows it to sustain all re-
quested connections with the minimum possible transmit power.  

 

Rule 2: Global optimisation of base stations in a network 
The optimal positions of all base stations in a network allow the network to 
sustain all requested connections with the minimum possible transmit power. 
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Note that both rules are subject to constraints, and the locally optimum position of a 
single base station according to Rule 1 is not necessarily equivalent to the position of 
the same base station in a globally optimised network based on Rule 2.  

To satisfy the minimum possible transmit power criterion for an arbitrary small bit-
error rate, the receivers must operate at the Shannon capacity limit. In fact, recent ad-
vances in coding theory (turbo codes, LDPC codes) allow communications very close 
to the capacity limit even in the presence of fast fading. Therefore, the capacity limit 
itself may be targeted as the optimisation point for the wireless access network.  

The following assumptions are made: In order to use simple capacity equations, the 
intra- an inter-cell interference is modelled as a white Gaussian random variable with 
zero mean. This can be justified by arguing that for a large number of interferers, the 
total interference becomes Gaussian. In addition, only the slow fading components of 
the channel are taken into account for the base station positioning. 

3.1   Minimum Power Requirement for a Link with Given Capacity 

The channel capacity C for a channel perturbed by additive white Gaussian noise is a 
function of the average received signal power PRx = E{s(t)s(t)*}, the average noise 
power N = E{n(t)n(t)*} and the bandwidth B, where s(t) and n(t) denote the signal and 
noise values at the time instant t. The well known capacity relationship (Shannon-
Hartley theorem [10]) can be expressed as 

 +=
N

P
BC Rx

2 1log .   (1) 

In order to write (1) in terms of transmitted power PTx, the impact of the channel loss 
L = Lp⋅Ls, characterised as a combination of attenuations resulting from path loss Lp 
and shadow fading Ls and must be taken into account. Note that this requires knowl-
edge of the positions of the connected mobiles and knowledge of the environment (i.e. 
shadow fading properties). In addition, gains at the base station and the mobile, GBS 
and GUE, can be included. Then, the channel capacity can be rewritten as 
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Finally, the minimum required transmit power for a radio link of capacity C for given 
values of bandwidth B, channel attenuation L and received noise N (including inter-
ference) operating a factor of α from the capacity limit, can be determined as 
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Here, the capacity C represents the requested data rate and the bandwidth B of the ra-
dio link is known.  

 
 



Autonomous Self-deployment of Wireless Access Networks in an Airport Environment 91 

 

3.2   Globally Optimum Positioning 

For joint optimisation of the whole network, the optimal positions of all base stations 
minimise the total transmitted power for all requested links (Rule 2). The optimum set 
of coordinates for all M base stations and all Km requested links to the mth base station 
can be written as 
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where (x, y) = ({x1…xM}, {y1…yM}) is the set of possible base station position coor-
dinates. The indices for the base station and the link are denoted by m and k, respec-
tively. ),()(

Tx, mm
k

m yxP denotes the required transmit power from (3) for the kth link of 
the mth base station at the coordinates ),( mm yx within the possible region of de-
ployment. 

Alternatively to using specific connections for the calculation of the required 
transmit power ),()(

Tx, mm
k

m yxP , the above problem may be solved for a given user and 
demand distribution. Then, for each potential user location the expected value 
E{ ),()(

Tx, mm
k

m yxP } may be used instead. Each base station can collect the required user 
statistics during operation. This approach results in the average optimum position and 
can be used to optimise the positions of non-mobile base stations that require human 
intervention to move. 

The optimisation of (4) implies a search over a very large number of candidates, 
which grows exponential with the number of base stations. Therefore, an exhaustive 
search for jointly optimal positions for more than a few base stations in a limited area 
is impractical due to prohibitive computational complexity (i.e. NP-hard problem). In 
addition, centralised processing is necessary and complete system knowledge is re-
quired. However, in reality most of the required parameters (e.g. channels and  
interference at new positions) are unknown. Therefore, even if the computational 
complexity were manageable, it would still be impossible to compute the globally op-
timum positions due to incomplete system knowledge.   

3.3   Locally Optimum Positioning 

For each individual mth base station, the position can be optimised locally, by search-
ing for a position, which minimises its transmitted power for all Km requested links 
(Rule 1). Then, the locally optimum coordinates of each mth base station may be cal-
culated as 
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Again, the optimisation problem may be solved for a given user and demand distribu-
tion instead of for specific connections by using the expected value of the transmit 
power, required at each potential user location.  

In contrast to the global optimisation, the local optimisation can be solved in a de-
centralised manner, based only on local system knowledge. However, as before, not 
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all of the required system knowledge is available. At each potentially new base station 
position, the channel conditions (i.e. Ls), and therefore also the interference at both, 
mobiles and base stations, are unknown.    

3.4   Positioning with Limited System Knowledge 

As shown in Section 3.2, the globally optimal positioning of networks is a challenging 
task due to limited knowledge of the constantly changing system parameters and the 
prohibitive computational complexity. The locally optimum solution of Section 3.3 is 
of manageable computational complexity, but suffers from the same problem of in-
complete system knowledge. As a consequence, other solutions based on partial sys-
tem knowledge are required that provide results close to the optimum solution. 

Current values for shadow fading and interference levels seen by each node can be 
easily measured. However, when the base station positions change relative to the in-
terference sources, both, the shadow fading values and also the interference, can 
change unpredictably. Therefore, the shadow fading values Ls, and the interference 
levels, which dominate N in (3), at any new potential base station position can be con-
sidered as unknown. Under this assumption, the local optimisation criterion of (5) 
may be modified to  
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The strategy is to take any knowledge available into account, and ignore (or replace 
with their expected value) all unknown contributions. Here, L is replaced with Lp, since 
E{L} = Lp and N is ignored. Alternatively, N could be estimated by calculating inter-
cell interference based on path-loss only, and assuming constant intra-cell interference. 

Equation (6) represents a convex optimisation function that can be solved using ei-
ther an exhaustive search, or less complex approaches such as steepest descent or con-
jugate gradient methods [11]. 

4   Simulation Results 

In order to evaluate the impact of autonomous self-deployment on the required num-
ber of base stations, both conventional and self-deploying wireless access networks 
were simulated for a specific test scenario in the terminal building at Athens Interna-
tional Airport. The scenario is illustrated in Fig. 4, where base stations are shown as 
solid squares and mobiles are shown as circles with a line to the connected base sta-
tion. The arrows indicate the movement of the user hotspot. 
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Fig. 4. Test scenario in the terminal building of Athens International Airport 

Simulation steps: 

(a) Start condition: uniform user and base station distribution along the terminal cor-
ridor. 

(b) An airplane arrives and the passengers create a user hot-spot (shown in Fig. 4) 
(c) The arriving passengers move along the corridor in direction of the airport exits 

(indicated by arrows). 
(d) The arriving passengers leave the airport, and the user hotspot disappears. 
(e) Finally, the user distribution becomes uniform again. 

System level simulations were performed for the downlink of a generic wireless system 
to identify both the required number of base stations and the network performance, in 
terms of total required transmit power, for self-deploying and conventional networks. 
The evaluation was performed in an iterative manner until a convergence point for the 
link transmit powers was reached. In this way it is possible to take into account that the 
transmit power of each link depends on the powers of all other links in the system, and 
vice versa. It is assumed that each mobile connects to the base station with the highest 
received control pilot power. Load balancing via modification of the control pilot power 
is employed such that all base stations try to stay within both power and capacity limits. 
An additional pilot for channel estimation is assumed to require 10% of the transmit 
power used for data at each base station.  For each simulation step, the evaluation was 
performed as follows, using the parameters shown in Table 1. 
 

PBS(0) = zeros(M)            %  initialise base station powers with zeros 
for i = 1…Imax                 %  for a maximum of Imax iterations 
 for m = 1…M        %  for all M base stations 

  pilot
1

)(
,TxBS, )1()( PiPiP

mK

k

k
mm +−=

=

    % calculate BS powers  (8) 

  )(/)1()()( BS,BS,BS, iPiPiPi mmmm −−=δ              (9)  

 end 
 if  max( )(imδ )  <  0.01   % convergence criterion 
  break; % break iterations when BS powers are converged  
 end   
end 
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In each iteration i, the inter-cell interference required for the calculation of 
)1()(

,Tx −iP n
m  can be calculated based on the transmit power of each mth interfering 

base station as PI,inter = L )1(BS, −iP m  from the previous iteration, where L is the chan-
nel loss between the interference source and the receiver of interest. When multiple 
links are served simultaneously from a single base station, the intra-cell interference 
for the nth link of the mth base station can be calculated as PI,intra = L[PBS,m(i−1) –

)1()(
,Tx −iP n
m ], based on values from the previous iteration. 

Table 1. Simulation parameters 

 

Parameter value 
Maximum BS transmit power 0.25 W 
Maximum number of users per BS 32 users 
Channel bandwidth B 3.84 MHz 
Link capacity C 64 KBit/s 
BS antenna gain – cable loss GBS,[dB] 5 dB 
UE antenna gain – cable loss GUE,[dB] 0 dB 
Operation point (from channel capacity) α[dB] 7 dB 
UE noise figure NF[dB] 10 dB 
Shadow fading standard deviation 6 dB 
Shadow fading spatial correlation r(x)=e−x/20 
Path loss Lp,[dB] 37+30log(d) dB 
Maximum BS speed 5 m/s 

 

For the optimisation of the base station locations, the positioning algorithms based 
on limited local system knowledge of (6) and (7) are employed and solved by using a 
simple steepest descent algorithm. It is assumed that each base station has knowledge 
of the path loss, but the shadow fading variations are unknown. A spatially correlated 
shadow fading environment was generated as described in [12]. 

The simulations indicate that the self-deploying network requires at least five mo-
bile base stations to serve all user requests of the simulated scenario. The user and 
base station locations, and the control pilot power during the autonomous self-
deployment process are depicted in Fig. 5. As start condition, all base stations are uni-
formly distributed to provide service to a uniform user distribution of 75 mobiles (a). 
Then a plane arrives and the passengers create a user hotspot of additional 75 mobiles 
(b). The capability of autonomous repositioning allows the base stations to adapt to 
the changing user and demand distributions and move to the user hotspot to increase 
the capacity in this region. When the users move in direction of the airport exits, the 
base stations follow their movement and hand the users over to their neighbouring 
base stations (c). In this way, a small number of base stations have the ability to serve 
a large number of users in highly dynamic scenarios. Arriving at the exits the users 
leave the airport and the hotspot disappears (d). As a consequence, the base stations 
spread out again to serve the remaining users (e). 
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(a) Uniform user distribution along the gates 

(b) A plane arrives and the passengers create a user hotspot. Base stations move to the user
 hot-spot to provide the required capacity.

(c) The users move along the corridor to the airport exits. Base stations follow their
 movement.

(d) Arriving at the exits, the users leave the terminal building (hotspot disappears). 

(e) The base stations spread out uniformly to serve the remaining users  

Fig. 5. Simulation steps of a self-deploying network in an airport environment. A minimum 
number of five mobile base stations is required for this scenario. 

In the same scenario, a conventional wireless access network with fixed base sta-
tion deployment requires at least nine base stations to achieve similar performance as 
the self-deploying network. This over-dimensioning is required to allow the network 
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Fig. 6. Performance comparison of self-deploying and conventional networks 

 (c) The users move along the corridor to the airport exits.  

Fig. 7. Simulation step of a conventional network with fixed base station deployment in an  
airport environment. A minimum number of nine base stations are required to achieve 
a similar performance as the self-deploying network with five base stations. 

to cope with the moving user hotspot, without having the ability of base station repo-
sitioning. Therefore, it must be dimensioned for the highest expected user density at 
any possible location. 

Figure 6 depicts a performance comparison of conventional and self-deploying 
networks. It is shown that a self-deploying network with only five base stations is able 
to outperform a conventional network with nine base stations. In addition, the self-
deploying network shows much less variations in the required transmit power. A con-
ventional network with five base stations exceeds the maximum base station power 
resources, and therefore is not able to provide all requested services in the test  
scenario.  
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The results confirm that self-deploying wireless access networks are able to sig-
nificantly outperform conventional networks, since they are able to adapt effectively 
to changing user demand and user locations, and therefore do not require high over-
dimensioning as conventional networks to cope with dynamic network environments. 

5   Conclusions 

In this paper, the concept of a self-deploying wireless access network was used to 
reduce the required number of base stations in highly dynamic environments. 
Distributed algorithms based on the channel capacity were proposed that are able to 
autonomously identify required changes in position and configuration of wireless 
access nodes, dependent on the demand and locations of users. It was shown that self-
deploying networks using the proposed algorithms are able to significantly 
outperform conventional networks with fixed base station positions. For the 
investigated test scenario at Athens International Airport, this resulted in a reduction 
of the required number of base stations from nine, for the conventional network, to 
only five self-deploying base stations with improved network performance. This 
promising result demonstrates the potential advantages of autonomous, self-deploying 
wireless access networks. Future research will have to investigate both, technical 
robustness and economic viability of such self-aware and self-designing networks, 
critical for the widespread adoption in next-generation wireless access architectures. 
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