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Abstract. Mobile objects have become ubiquitous in our everyday lives, rang-
ing from cellular phones to sensors, therefore, analyzing and mining mobile data
becomes an interesting problem with great practical importance. For instance, by
finding trajectory patterns of the mobile clients, the mobile communication net-
work can allocate resources more efficiently. However, due to the limited power
of the mobile devices, we are only able to obtain the imprecise location of a mo-
bile object at a given time. Sequential patterns are a popular data mining model.
By applying the sequential pattern model on the set of imprecise trajectories of
the mobile objects, we may uncover important information or further our under-
standing of the inherent characteristics of the mobile objects, e.g., constructing
a classifier based on the discovered patterns or using the patterns to improve the
accuracy of location prediction. Since the input data is highly imprecise, it may
not be possible to directly apply any existing sequential pattern discovery algo-
rithm to the problem in this paper. Thus, we propose the model of the trajectory
patterns and a novel measure to represent the expected occurrences of a pattern
in a set of imprecise trajectories. The concept of pattern groups is introduced to
present the trajectory patterns in a concise manner. Since the Apriori property no
longer holds on the trajectory patterns, a new min-max property is identified and
a novel TrajPattern algorithm is devised based on the newly discovered property.
Last but not least, we apply the TrajPattern algorithm on a wide range of real
and synthetic data sets to demonstrate the usefulness, efficiency, and scalability
of this approach.

1 Introduction

Mobile devices have been widely used in our everyday life, from handheld devices,
e.g., PDA, to embedded devices, e.g., sensors. The trend is expected to intensify in the
coming years. It is projected that in the next few years, all Hertz rental cars will be
equipped with global positioning systems (GPS). One may infer important information
from the trajectories of mobile objects. Most of the recent research effort has been
concentrated in modeling the trajectory of mobile objects [2, 10, 11, 12] and indexing
mobile objects [7, 9]. However, mining mobile data has received little attention so far.
In this paper, we investigate the problem of mining and analyzing trajectories of moving
objects. The following is a list of applications of analyzing the mobile trajectory data.

– Due to the limited power on the mobile devices and the unreliable communication
links, we may want to infer the location of a mobile object based on its previous
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locations. If we can find some moving patterns that are common to a large set
of mobile objects, then these moving patterns may be useful for predicting the
locations of an object in the future.

– In location-based commerce advertisement, if customers are willing to receive ad-
vertisements, retail stores will distribute e-Flyers to potential customers’ mobile
devices based on their locations. In this setting, finding common moving patterns
of mobile devices is valuable for inferring potential movement of mobile device
users, and thus helps to efficiently distribute the advertisement.

– Using a remote sensing system, the animals in a large farming area can be tracked.
The sensors are limited in power and may fail from time to time. By mining the
imprecise trajectories of animals, it is possible to determine migration patterns of
certain animal or groups of animals. These patterns could be useful to analyze the
migration behavior of different species of animals.

The energy in a mobile device is very limited, so it is impossible for a mobile object
to continuously send out its location information. To reduce the energy consumption,
many methods [2, 11, 12] are developed for obtaining (predicting) the approximate lo-
cation of a mobile object. At a high level, all of these methods share the same principle.
These methods first use some predictive model, e.g., Kalman Filter, linear model, etc.,
to predict an expected location of a mobile object at a given time t. If the actual loca-
tion of the mobile object differs too much from the predicted location, then the mobile
object reports the new location. Otherwise, it does not report the new location.

In this paper, our aim is not to develop a data mining approach which depends on
a particular prediction model, but rather develop a general data mining framework that
can be applied to a large number of existing location prediction methods. In the data
mining field, there exist a large number of different models, from association to classi-
fication. Among these models, frequent patterns are one of the most basic and widely
employed models. In addition, most of the previous proposed location prediction mod-
els for mobile objects assume one type of movement, e.g., linear, quadratic, etc. How-
ever, the type of movement for a mobile object may not be known ahead. Moreover, a
mobile object may change the type of movement at any time. Therefore, the accuracy
of these models might not be high. The frequent patterns may help to improve the ac-
curacy of the prediction module. If an object follows some moving patterns, e.g., an
object always changes its velocity or directions after it moves in a certain manner, then
this knowledge can be integrated into the location prediction module and the location
prediction can be adjusted accordingly. Looking ahead, we will show the usefulness
of the frequent patterns of the imprecise trajectories on real data sets via the location
prediction.

The traditional frequent pattern models and approaches could not be directly applied
to the trajectories due to their imprecise nature. In the traditional frequent sequential
pattern setting, the sequences are synchronized and we know exactly the occurrences
of the symbol or values at every synchronized point. In this paper, a series of synchro-
nization points can be superimposed on the trajectories. The interpolated values (at syn-
chronization points) can be taken as the input for the frequent pattern mining process.
In many applications, it is more useful to find patterns on the velocities rather than the
locations. In such a case, we can transform the location trajectories (sequences) into
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velocity trajectories (sequences). Thus, our frequent pattern model can be constructed
on a set of either location or velocity trajectories.

A sequential pattern is an ordered list of symbols. It is intuitive and easy for a user
to comprehend, thus we also use the sequential pattern model in this paper. A trajectory
pattern is an ordered list of positions. For instance, a pattern (p1, p2, . . . , pm) can be
considered as the possible positions of an object at m consecutive snapshots. The support
model is usually used to measure the importance of a pattern, i.e., if a pattern occurs a
large number of times, then it is an important pattern. However, in the context of the
imprecise trajectories, at any given moment, the location of an object in a trajectory is
not precise, but rather a distribution of possible locations. Thus, we do not know for sure
whether a pattern occurs or not. This could be a very challenging issue for formulating
the frequent sequential pattern model. In this paper, we propose the normalized match
(NM) measure to capture the importance of a trajectory pattern. We show the benefits of
the NM measure over other measures in the experimental results section.

Most previous frequent sequential pattern algorithms utilize the Apriori property.
However, the Apriori property does not hold for our NM measure. Fortunately, we are
able to identify another property, called min-max property, which is weaker than the
Apriori property. Thus it is necessary for us to devise a new algorithm for mining the
NM patterns. Based on the min-max property, we develop a trajectory pattern mining
algorithm called TrajPattern. The user will specify k, the number of trajectory pat-
terns that he wants. Our goal is to mine the k patterns with the most NM. Due to the
presence of noise in the trajectories, many similar patterns may be found in the mining
process. The concept of pattern groups is introduced to compactly represent a large
number of similar trajectory patterns via a small number of groups. The TrajPattern al-
gorithm mines the patterns by a growing process. We first identify short patterns with
high NM value, and then try to extend these short patterns to find longer patterns with
high NM via the min-max property. With the min-max property, a novel pruning method
is devised to reduce the number of candidate patterns, thus the efficiency of the mining
algorithm can be greatly improved. In addition, the TrajPattern algorithm can be used
for mining any type of patterns satisfying the min-max property.

The remainder of this paper is organized as follows. We briefly describe some related
work at Section 2. The problem model is presented in Section 3. The TrajPattern algo-
rithm is discussed in Section 4. Additional issues of the trajectory pattern model and
algorithm are discussed in Section 5. The experimental results are shown in Section 6.
Finally, we draw our conclusions in Section 7.

2 Related Work

There is a large amount of work in location modeling and prediction. In [2] the Kalman
Filter is used to predict the location of a mobile object at a given time while in [11], the
authors used not only a single previous location, but rather multiple locations to predict
the current location. Authors in [12] assumed that the object moves in a piece-wise
linear manner. Thus the location of an object can be predicted by its previous locations
and velocities.

Data mining has been an active research area in the past decade. Many data min-
ing models and approaches have been proposed. However, there is limited work on
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spatiotemporal data mining. In [5], the proposed algorithm treated spatiotemporal data
as a generalization of pattern mining in time-series data to capture the frequent mov-
ing patterns of users from a set of log data in a mobile environment. Authors in [6]
processed moving nearest-neighbor queries in R-trees by employing sampling. In [9]
the TPR-tree is presented as an extension of the R-tree to answer prediction queries
on dynamic objects. Very recently, researchers began to study the problem of mining
the trajectories of mobile objects. In [3] the authors proposed a method on clustering
the locations of mobile objects continuously. It groups nearby objects into small micro-
clusters and each micro-cluster is treated as an entity so that the computation time can
be saved. The authors of [4] proposed a method to find periodic patterns for trajec-
tories of mobile objects. This work aims to find the periodic moving patterns in the
history of one object. In addition, all above works also assume that the input data is
a sequence of precise locations, which is quite different from our assumption that the
locations of objects are imprecise. Therefore the support measure can be used to qual-
ify the importance of patterns in [4], but it could not be applied to our problem. To
the best of our knowledge, we are the first to tackle the problem of mining imprecise
trajectories.

Sequential patterns has been an active research topic in recent years, and many se-
quential pattern mining models and approaches have been proposed. One category of
sequential patterns is the periodic patterns [1, 4] which repeat themselves over the time.
Another category is the frequent sequential patterns [8, 13, 14, 15], which is more re-
lated to the problem in this paper. A frequent sequential pattern is a pattern which occurs
at a large number of sequences. Several models and approaches have been proposed for
this problem. In [8] the authors used the prefix-tree to maintain the set of prefixes of fre-
quent patterns and later grow the set of patterns. The author of [15] designed an efficient
algorithm for mining frequent subsequences in a long sequence. Both above approaches
assume that the symbol in each position is accurate and the Apriori Property is used for
devising efficient algorithms.

In [14] the authors studied the problem that symbols in a set of sequences are not
accurate and may mutate due to noise. There is a mutation matrix which shows the
probability that a symbol a may mutate to b in the input data sequence. The match
model is invented for representing the true (or expected) occurrences of a pattern. The
match of a pattern within a sequence is the joint probability of the occurrence of the
symbols in the pattern. The match value of a pattern is not normalized according to
its length. As a result, the non-normalized match of a longer pattern is smaller. This
property is not desirable in many applications where longer patterns are needed since
longer patterns usually consist of more information. Since the Apriori property holds
for the match measure, the authors in [14] devised an algorithm based on the Apriori
property, which could not be directly applied to the problem in this paper.

3 Preliminaries and Problem Statement

In this paper, we study the problem of identifying sequential patterns of imprecise tra-
jectories of mobile devices. We assume that there is a server and a set of mobile devices.
The mobile devices have the capability to know their own locations (e.g. via GPS) and
they asynchronously report their locations to the server via some wireless network.
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3.1 Location Reporting Scheme

A mobile object may choose not to notify the server its current location for a long
time when the location can be derived from its previous locations, speed, directions,
etc. There are many methods (e.g., [2, 11, 12], etc.) for a server to predict the location
of a mobile device. Our aim is to develop a general pattern mining framework that
can be used with various different location inference models, so we only require that
the location prediction method has the following property. At any given time t, each
mobile object has a predicted location. The actual location of the mobile object follows
a certain distribution around the predicted location.

Most of the proposed location inference techniques satisfy the above property. With-
out loss of generality, we choose the method proposed in [12] as an example to demon-
strate our problem model and solution. For a given device o, let last loc be the last
known location of the object and v be the velocity vector of the object. The predicted
position of o (predict loc) is defined as follows:

predict loc = last loc + v × t (1)

Here, t is the number of time units that have elapsed since the last known position of o.
Since this is only a prediction, the actual position of o may vary from the predicted po-
sition. It is assumed that the actual position of o follows the k-dimensional multivariate
normal distribution Nk(µ, Σ) where k is equal to the dimension of the space, the mean
µ = predict loc, and Σ is the variance-covariance matrix. The variance-covariance
matrix is a symmetric k × k matrix with diagonal elements σ2 equal to the variance
of the marginal distributions. σ is defined as 1

cU where U is the tolerable uncertainty
distance of the object and c is a constant. A mobile object may choose to report its
actual location only if it is more than U away from the predicted position µ. There are
several ways to assess the parameters U and c. U can be either a constant, a function
of the elapse time t, or the expected traversed distance d. In this paper, we assume that
U is a constant so that all objects in the database have the same uncertainty. This as-
sumption has been practically used since it is difficult to find the uncertainty for each
object. c is a constant which may depend on the network reliability, etc. With the greater
c, the probability that the actual location close to the predicted location is higher. For
instance, a mobile device is within U distance from µ with probability 0.68, 0.95 and
0.997 for c = 1, 2, 3, respectively. Since there may be an error during the communi-
cation between the mobile object and the server, the location information may be lost
during the transmission. If there exists a 5% chance that the message will be lost during
the location notification, then c should be set to 2 so that the probability that the actual
location is more than U away from µ is equal to 5%.

3.2 Location and Velocity Trajectories

To provide a consistent view of all objects, a set of synchronous snapshots are generated
on the server. A series of synchronization points can be superimposed on the asynchro-
nous data. The interpolated values (at synchronization points) can be taken as the input
to the data mining modules. Let’s assume that we generate a snapshot at time point
t. For every object we could calculate its locations at t via some prediction method.
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Fig. 1. Location Trajectories

For instance, we can apply Equation 1 to compute the expected location of an object
based on the last reported location before t. Based on this model, at each snapshot,
every object will have an expected location and a distribution of errors. The frequency
of the snapshots may vary in different applications. We will discuss how to choose this
parameter in a later section.

The locations of a mobile object o at each snapshot can form a sequence T . We call
T the location trajectory of object o. Here T = (l1, σ1), (l2, σ2), . . . where li and σi

are the mean and standard deviation of the distribution of the true location of o at ith
snapshot, respectively. li and σi can be calculated via Equation 1. Figure 1 shows two
location trajectories.

In many applications, two mobile objects may travel in different regions of space.
Thus these two location trajectories could not be compared directly. On the other hand,
the velocities may be more important. In these applications, we need to transform the
location trajectories to a sequence of velocities, or velocity trajectories. This can be
achieved by taking the difference between two consecutive snapshots. For example, let
T = (l1, σ1), (l2, σ2), (l3, σ3), . . . be a location trajectory where li and σi are the ex-
pected location and the standard deviation of the mobile object at the ith snapshot. The
velocity trajectory is generated as follows. We consider the location of a mobile object at
ith and i+1th snapshot as two random variables of normal distribution with mean li and
li+1 and standard deviation σi and σi+1. The difference of these two random variables
can be considered as the velocity of the mobile object at ith snapshot. The difference is
also a normal distribution random variable where the mean is li+1 − li and the standard

deviation is
√

σ2
i + σ2

i+1. (A slightly more complicated formula can be used to com-

pute the standard deviation if the two random variables are not independent.) Thus the
new velocity trajectory T ′ is in the following form: T ′ = (l′1, σ

′
1), (l

′
2, σ

′
2), (l

′
3, σ

′
3), . . .

where l′i = li+1 − li and σ′
i =

√
σ2

i + σ2
i+1. It is obvious that the transformed veloc-

ity trajectories are in the same form as the original location trajectories. Thus, we call
both the velocity trajectories and location trajectories as trajectories. In this paper, we
assume that the input data is a set of trajectories, each of which is in the form of T .

3.3 Model of Trajectory Pattern

A trajectory pattern P can be represented as P = (p1, p2, . . . , pm) where pi is a lo-
cation. P can be interpreted as the following: the mobile object is located at p1, p2,
. . . , and pm at m consecutive snapshots. The length of a pattern P is the number of
positions in P , which is m in this example. We call a pattern of length 1 as a singular
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pattern. In theory, the space in which the objects travel is continuous, which means that
there are infinite possible choices for a position in a pattern. To expedite the mining
process, we discretize the space into small regions and only the centers of these regions
may serve as the positions in a pattern. Let Gx, Gy be the grid size on a 2-dimensional
space. As long as Gx, Gy are sufficiently small, our model will provide a very good
approximation.

The support model has been used to measure the importance of a pattern in many
applications [8, 15]. According to the traditional support model, we may define the sup-
port of a trajectory pattern as follows. A trajectory sequence T supports a pattern if there
exists a consecutive segment ((lk, σk), (lk+1, σk+1), . . . , (lk+m−1, σk+m−1)) such that
lk+i−1 is equal to pi for 1 ≤ i ≤ m. However, in the context of this problem, the sup-
port model may not work well due to the presence of noises. The degradation of quality
of the data may conceal the real frequent patterns. The spirit of the support model is
to find frequently occurred patterns. Due to the uncertainty (which is described as a
probabilistic function), we have to find expected frequently occurred patterns instead.
In [14] the match model is proposed to measure the expected number of occurrences of
a pattern. Intuitively, the match model computes the expectation on how likely a pat-
tern occurs in a trajectory or the degree that a trajectory confirms (supports) a trajectory
pattern.

Let δ be the indifferent parameter such that for any coordinate (x, y), if an object o is
at most δ away from (x, y), then the location of o is considered indifferent from (x, y).
With the indifferent parameter, we can define the match of a trajectory pattern as the
following. If at a snapshot the expected location of an object is l with standard deviation
σ, the probability that the true location of the object is within δ away from another
location p is denoted as Prob(l, σ, p, δ), which represents how likely the object is truly
very close to a position p. Let T ′ = ((lk, σk), (lk+1, σk+1), . . . , (lk+m−1, σk+m−1)) be
a contiguous segment of a trajectory sequence and P = (p1, p2, . . . , pm) be a trajectory
pattern, the probability that for every 1 ≤ i ≤ m, the true location of the mobile object
is located within at most δ away from pi is1

M(P, T ′) = Prob(P, T ′) = Πm
i=1Prob(lk+i−1, σk+i−1, pi, δ) (2)

We call M(P, T ′) the match between a pattern P and a trajectory T ′ of the same length.
This is essentially the same measure as in [14].

Based on the definition of match, the value of match monotonously decreases with
the growth of pattern length m. For example, if the probabilities of observing symbol
a, b, and c at position 1, 2, and 3 are all 0.9, then the joint probability of (a, b) is 0.81
while the joint probability of (a, b, c) is 0.729. In this case, only short patterns can be
found and the measurement can not be compared between patterns of different lengths.
To normalize this effect, we choose the geometric mean to denote the match between

T ′ and P , which is (M(P, T ′))
1
m . To speed up the computation we use the logarithmic

value to present the match between a trajectory and a pattern with the same length, i.e.,

NM(P, T ′) = log M1/m(P, T ′) =
log M(P, T ′)

m
. (3)

1 We assume that the error in location prediction in T ′ is independent, but the locations of the
mobile objects in T ′ are not assumed independent.
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We call NM(P, T ′) the normalized match (NM) of a pattern P with a trajectory T ′

of the same length. In reality, the length of a trajectory T is usually much longer than
that of a pattern P (with m locations). Thus, we use the maximum NM between any
continuous segment of m locations in T and P as the NM between T and P . Formally,
the NM between T and P is defined as follows.

NM(P, T ) = max
∀T ′⊆T,|T ′|=|P |

NM(P, T ′) (4)

In a data set D, the NM of a pattern P is equal to
∑

T∈D NM(T, P ), i.e., the sum
of NM between P and each trajectory in D. Here, the NM between P and a trajectory
actually represents how likely the pattern occurs in the trajectory. The sum of NM mea-
sures the expected occurrence of the pattern in a trajectory set. This is essentially based
on the same intuition that, in traditional frequent patterns, the support of a pattern is
defined as the total number of exact occurrences in a data set. The match measure can
be defined similarly. The Apriori property holds on the match measure, but not on the
NM measure, because the NM is normalized according to the pattern length. Thus,
the algorithm proposed in [14] can only be applied for mining patterns according to the
match measure. We need to develop algorithms to mine the patterns according to
the NM measure.

3.4 Definition of Pattern Group

Since the trajectories are imprecise, many mined trajectory patterns are very similar.
At each snapshot of trajectory, the true location of the moving object follows a normal
distribution where the mean is the expected location of the object. Therefore, due to
the bell shape of the normal distribution, the probabilities that the true location of the
object falls into two adjacent grids could be similar. As a result, the NM of two patterns
consisting of nearby grids could be similar.

The pattern group is a concept which helps to compactly present the results of im-
precise trajectory mining, in which many patterns are similar to each other. The similar
patterns can be clustered into a small number of groups. Intuitively, similar patterns
should be close to each other at any snapshot. The similar relation of patterns and the
concept of pattern group are formally defined as below:

Definition 1. Given two patterns of the same length, if at every snapshot of the patterns,
the distance between the two patterns is no larger than a pre-defined value γ, we say
that these two patterns are similar patterns.

γ is called the maximum similar pattern distance. How to set this parameter is discussed
in a later section.

Definition 2. A pattern group is a set of patterns, which contains the maximum num-
ber of patterns that are similar to each other.

Problem Statement

In this paper, we try to solve the following problem. For a given set of imprecise tra-
jectories, we want to find k patterns with the most normalized match. These qualified
patterns are represented via the concept of pattern groups.
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3.5 Properties of Trajectory Patterns

As discussed above, the NM measure does not possess the Apriori property. As a result,
many algorithms that utilize the Apriori property could not be applied here. However,
the NM of trajectory patterns exhibit the following property which can be used to fa-
cilitate the mining process. Before stating the property, we first define some terms that
will be used in the remainder of this paper.

Definition 3. Let P = (p1, p2, . . . , pm) and P ′ = (p′1, p
′
2, . . . , p′n) be two trajectory

patterns. P is a super-pattern of P ′ iff there exists an integer i ≥ 0 such that for all
1 ≤ j ≤ n, pi+j = p′j . In addition, P is called a proper super-pattern of P ′ if m > n.

For example, let P = (p1, p2, p3) and P ′ = (p2, p3). We call P a super-pattern or
proper super-pattern of P ′. On the other hand, we also call P ′ a sub-pattern or proper
sub-pattern of P .

Definition 4. A trajectory pattern P is called an i-trajectory pattern (or i − pattern
for short) if there are i positions specified in P , i.e., P = (p1, p2, . . . , pi).

Property 1. Given two trajectory patterns P ′ = (p′1, p
′
2, . . . , p

′
i) and P ′′ = (p′′1 , p′′2 , . . . ,

p′′j ). Let P = (p′1, p
′
2, . . . , p

′
i, p

′′
1 , . . . , p′′j ) be the trajectory pattern by appending P ′′

to the end of P ′. Within a given set of trajectories D, NM(P ) ≤ max(NM(P ′),
NM(P ′′)). We call it the min-max property.

Proof. For each trajectory T ∈ D, there exists a sub-trajectory T ′, where |T ′| = |P |
and NM(P, T ) = NM(P, T ′). By definition, we have (i + j) × NM(P, T ′) ≤
i × NM(P ′, T ′) +j × NM(P ′′, T ′) ≤ i × NM(P ′, T ) +j × NM(P ′′, T ). Thus,
(i + j) × NM(P ) =

∑
T∈D(i + j) × NM(P, T ) ≤

∑
T∈D i × NM(P ′, T ) +∑

T∈D j × NM(P ′′, T ) = i × NM(P ′) + j × NM(P ′′). As a result, NM(P ) ≤
max(NM(P ′), NM(P ′′)).

Note that the above min-max property is very different from the Apriori property. The
Apriori property states that the support of a pattern is less than or equal to any of its
sub-patterns, while the min-max property is much looser. For each partition of a pat-
tern P , we have two portions (sub-patterns) Pleft and Pright. The min-max property
requires that the NM of P is less than or equal to either Pleft or Pright. The algorithms
developed for mining the patterns satisfying the Apriori property may not be directly
applied to the trajectory patterns with NM. As a result, it is necessary to develop a new
algorithm for mining NM patterns.

4 TrajPattern Algorithm

In this section, we present the TrajPattern algorithm to mine the k trajectory patterns
with the most normalized match (NM), and cluster these patterns into pattern groups.
The following observations are used for the mining process.

1. The length of the discovered trajectory patterns is usually much shorter than the
length of the trajectory. A trajectory could contain thousands of snapshots while a
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qualified trajectory pattern often has much less positions, e.g., tens. Based on this
observation, it is reasonable to start the search process from the short patterns, and
grow to longer patterns.

2. Our goal is to find the k patterns with the most NM. If we know the NM threshold
ω, then this threshold can be used for pruning the search space. Unfortunately, we
do not know ω. However, if we find a set of patterns Q, then the NM threshold
ω should be greater than or equal to the kth maximum NM of the patterns in Q.
Based on this observation, we can dynamically maintain a set of patterns Q, and
the NM threshold ω should be the kth maximum NM of the patterns in Q. With
more patterns discovered, we can update the threshold ω, which could increase the
pruning power.

3. Based on the min-max property, if a pattern P1 is below a NM threshold ω, then in
order to find a super-pattern P = (P1, P2) such that NM(P ) ≥ ω, the NM of the
pattern P2 has to be greater than or equal to ω. As a result, if the NM of a pattern
P is below ω, then P will only be combined with patterns whose NM is at least ω
to generate the candidate patterns. Thus, we may consider the set of patterns with
NM at least ω as the seeds for generating the candidate patterns.

Based on the previous observations, we devise an algorithm called TrajPattern to
mine the set of k trajectories with the most NM. We first partition the space into grids,
and the grid centers serve as the singular patterns. Then we initialize the set Q to in-
clude all these singular patterns and set the NM threshold ω to be the kth maximum
NM of patterns in Q. The set of patterns in Q with NM lower than ω is marked as
low patterns and denoted as L while the set of patterns in Q with NM greater than or
equal to ω is labeled as high patterns and denoted as H. We can generate the candi-
date patterns from the set of high patterns as follows. For each high pattern P ∈ H,
we extend P by adding each pattern P ′ ∈ Q. Note that P ′ may be a high pattern
or a low pattern. Let P = (p1, p2, . . . , pm) and P ′ = (p′1, p′2, . . . , p′l). Two candi-
date patterns (p1, . . . , pm, p′1, . . . , p

′
l) and (p′1, . . . , p

′
l, p1, . . . , pm) will be generated.

The NM of these candidate patterns are computed and these newly generated patterns
are inserted into Q. Based on these patterns, we can update the threshold ω and mark
all patterns as high or low according to the new threshold ω. Then, patterns in Q are
pruned to reduce the cardinality and improve the efficiency (The detail is explain of
the pruning step later.) The mining process terminates when the set of high patterns
does not change during the last iteration. Lastly, pattern groups are discovered from the
set of high patterns. The formal description of the TrajPattern algorithm can be found
in [17].

4.1 Pruning

In the TrajPattern algorithm, the main problem is the size of Q. If it is too large, then
the algorithm would be very inefficient. During an iteration, the size of Q increases by
2k fold. Without any pruning, Q would grow to 2kiG after ith iteration where G is the
number of grids in the space. This could be too large. In order to provide an efficient
algorithm, it is necessary to reduce the size of Q. Fortunately, we can prune Q based on
the following observation. We only need to keep the set of low patterns satisfying the
following 1-extension property.
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Fig. 2. 1-extension patterns

Definition 5. (1) For a j-pattern(j > 1) P , if there exists a (j − 1)-pattern P ′ which
is the proper sub-pattern of P and P ′ is a high pattern, then we say that P satisfies the
1-extension property. (2) Any 1-pattern satisfies the 1-extension property.

For example, the pattern in Figure 2(a) can be viewed as a pattern satisfying the 1-
extension property while the pattern in Figure 2(b) does not satisfy the 1-extension
property. The reason that we only need to retain the set of low patterns satisfying the
1-extension property is due to the following lemma.

Lemma 1. Any high pattern P can be obtained by extending a high pattern P ′ with
either a high pattern or a low pattern P ′′ satisfying the 1-extension property.

Proof. Let’s consider the high pattern P = (p1, p2, . . . , pm) shown in Figure 2(c). A
”cut” partitions P into two non-overlapping complementary patterns Pleft and Pright

where Pleft and Pright contains the sub-patterns left and right to the cut respectively.
Assume the cut is made at the end of the first position of P , then Pleft = (p1) and
Pright = (p2, . . . , pm). There are three cases. (1) Both Pleft and Pright are high pat-
terns, then the lemma holds. (2) Pleft is low while Pright is high. Since Pleft is a
1-pattern (i.e., 1-extension pattern), then the lemma also holds. (3) Pleft is high and
Pright is low. In this case, we move the cut from the left to the right one position at a
time. If Pleft is always high with respect to all cuts, then this lemma also holds because
when the cut is at the (m − 1)th position, Pright is of length 1 (a 1-extension pattern).
Let’s assume that there exists a position 1 < i ≤ m − 1, such that (p1, p2, . . . , pi) is
high and (p1, p2, . . . , pi, pi+1) is low. This means that (pi+2, . . . , pm) is a high pattern
by the min-max property. In addition, (p1, p2, . . . , pi+1) is a 1-extension pattern by the
definition. Thus the lemma holds.

Armed with the above lemma, we can remove all low patterns that do not satisfy the
1-extension property. In the Prune procedure, for each low pattern P , we examine
whether P is an 1-extension pattern. This can be achieved by removing either the first
or the last position in P and search whether the resulting pattern exists in Hnew . If it
exists, then P is an 1-extension pattern and it will remain in Q, otherwise, it is removed.

4.2 Pattern Groups Discovery

After obtaining the top k patterns, we first group these qualified patterns by their
lengths, then cluster the patterns of the same length into pattern groups. The cluster-
ing process can be conducted in the following way. First, the patterns are clustered at
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each snapshot based on their distances. We refer to these clusters as snapshot groups.
If any pattern is clustered into a single snapshot group at certain snapshot, according
to the definition of pattern group, this pattern should be in a single pattern group. Then
this pattern is removed from all remaining snapshot groups. Next, we start from the
smallest snapshot group at all snapshots, denoted as G, to check whether G exists at
other snapshots. If so, patterns in G are qualified as a pattern group at all snapshots,
and should be removed from all remaining snapshot groups. If G does not exist at other
snapshots, we find the snapshot group at other snapshots G′, which makes G ∩ G′ has
the minimum number of patterns. We continue to check whether G ∩ G′ exists at other
snapshots, until we find a proper pattern group. This process continues until all patterns
are grouped.

For example, assume we have six patterns of length two: P1 = (p1, p
′
1), P2 = (p2, p

′
2),

P3 = (p3, p
′
3), P4 = (p4, p

′
4), P5 = (p5, p

′
5) and P6 = (p6, p

′
6). We cluster these six

patterns according to their locations at the two snapshots. Assume that at the first snap-
shot we have snapshot groups (p1, p3, p4, p5) and (p2, p6); at the second snapshot we
have snapshot groups (p′1, p′3, p′6), (p′2, p′4) and (p′5). We start with the snapshot group
containing only one pattern, which is (p′5) at the second snapshot. Then P5 is assigned
into a single pattern group and we remove P5 from all remaining snapshot groups. After
this step, (p1, p3, p4) and (p2, p6) remain for the first snapshot, while (p′1, p′3, p′6) and
(p′2, p

′
4) remain for the second snapshot. Now the smallest snapshot group is (p2, p6).

Since this snapshot group does not exist at the second snapshot, we find the smallest
subset of (p2, p6) contained in any snapshot groups at the second snapshot, which is ei-
ther P2 or P6. For the same reason as P5, P2 and P6 are assigned into single pattern
groups separately. After removing P2 and P6, P4 is also assigned into a single pattern
group. Now (p1, p3) and (p′1, p

′
3) remain for both snapshots, and (P1, P3) is qualified as

a pattern group. Thus the final pattern groups are (P2), (P4), (P5), (P6), and (P1, P3).

4.3 Correctness Analysis

In this subsection we show the correctness of the TrajPattern algorithm.

Theorem 1. Let Hnew be the set of high patterns in Q when the TrajPattern algorithm
terminates and K be the set of k patterns with the highest NM. Then Q = K.

Proof. Since the cardinality of Hnew and K is the same, ie., k, we only need to prove
K ⊆ Hnew. Let Pi ∈ K be the pattern of length i. We prove via induction that Pi is
also in Hnew. First, when i = 1, Pi is a singular pattern. This pattern will be generated
in Q at the beginning and thus P1 ∈ Hnew . Assume that for each i ≤ m, any pattern
Pi is in Hnew where m is a positive integer. For a pattern Pm+1 there exists a proper
subpattern Pm of Pm+1 and M(Pm) ≥ M(Pm+1) by the min-max property. Pm+1
can be obtained via extending the high pattern Pm by adding an 1-extension pattern (a
singular pattern). Thus at the latest Pm+1 will be inserted into Hnew after Pm is inserted
into Hnew. Therefore Pm+1 will be in Hnew by the end of the TrajPattern algorithm.

4.4 Complexity Analysis

To analyze the complexity of the algorithm we need to determine the number of itera-
tions executed by TrajPattern. For the same reason as in the previous proof, by the ith
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iteration, all high patterns with length less than or equal to i is inserted in H. Therefore
the max number of iterations is O(M) where M is the maximum length of the pattern
with top k NM.

Second, we need to analyze the number of patterns in Q. Q consists of two types of
patterns: high patterns and low patterns. The low patterns are the 1-extension patterns.
Let G be the number of grids in the space. Each high pattern P can generate at most 2G
low 1-extension patterns by extending one position before the first or after the last po-
sition. Therefore, we have at most (2G|H| + G) low patterns, which is O(kG). During
the candidate pattern generation phase there are a total of O(k2G) candidate patterns.
The time complexity to compute the NM of a pattern is O(MN) where M is the max-
imum length of a pattern and N is the size of the input trajectory data set, i.e., |D|.
Thus, during one iteration, the total time spent in computing the NM of all candidate
patterns is O(k2MNG). All other operations, e.g., choosing top k patterns, extending
high patterns, pruning, etc. have lower complexity than the computation of NM. As a
result, the total time complexity of the TrajPattern algorithm is O(k2M2NG).

The largest data structure to maintain is Q, which has the space complexity
O(kMG). Although the input data set size N could be larger than that of Q, it is not
necessary to load the entire input data set at once since we only need a portion of the
data set at a time for computing the NM. Thus the space complexity of our algorithm
can be considered as O(kMG).

5 Discussion

In this section we will further discuss some additional issues in the TrajPattern ap-
proach. First, in the context of the problem studied in this paper, it is desirable to find
patterns with some wild card positions or gaps. A wild card position represented by the
”*” symbol can be considered as a ”don’t care” position and any location can match
this position. An additional parameter d can be used to limit the number of consecu-
tive ”don’t care” symbols in a pattern. For each pattern P in Q, we can add between 0
and d ”*” symbols either in the left side or right side of P . A gap can be viewed as a
variant number of consecutive ”*”s. When computing the NM of a pattern, the dynamic
programming technique can be used in this case.

In our current problem statement, the discovered pattern may contain any number of
positions. In many applications, it may be desirable to find longer patterns, i.e., patterns
longer than a certain threshold d, since longer patterns usually contain more informa-
tion. This additional constraint poses a significant challenge due to the fact that we no
longer know how large of a set of Q we need to track. To adapt the TrajPattern algo-
rithm to this new problem, we only need to perform the following modification. The
NM threshold ω is set to the minimum NM of the set of k patterns with the most NM
of length at least d. In Q, the set of patterns with NM more than ω are labeled as high
patterns. The set of high patterns may be more than k. When more patterns of at least
length d are inserted into H, ω will be updated. This modification enables us to find
patterns with the highest NM and at least length d.

In the TrajPattern algorithm, there are several parameters: the time interval between
two consecutive snapshots t, the indifference threshold δ, the size of a grid gx and gy ,
and the maximum similar pattern distance γ. For the snapshot interval, we can use a
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small time unit, e.g., seconds or minutes. It can be specified by a domain expert. δ can
be set to a small distance unit, which can be considered as ignorable by the domain
experts. The unit length of a grid along the x and y directions gx and gy can be set
to δ. The larger grid will reduce the computation complexity but provide inaccurate
results, while the finer grid would increase the computation complexity but provide
more accurate results. The sensitivity of our algorithm to δ and the computation cost
of various grid size are analyzed in the experimental results section. For the maximum
similar pattern distance γ, we can decide its value based on the probabilistic distribution
of the location prediction model. Here due to the property of normal distribution, that
is, the probability within the range between −3 × σ and 3 × σ is approximately 0.97,
we can set γ equal to 3 × σ.

6 Experimental Results

In this paper we implemented the TrajPattern algorithm in the C++ programming lan-
guage. All experiments are running on a PC with a 3.2 GHz Pentium-4 processor and
1GB main memory. The PC is running Windows XP. It is also equipped with 160 GB
disk of 7200 RPM rotation speed. We use both real and synthetical data to analyze the
performance of the TrajPattern algorithm.

To illustrate the usefulness of the NM model, we compare it with the match model.
The border collapsing algorithm in [14] is used to mine patterns according to match
(since the Apriori property holds on the match). In addition, to show the scalability of
the TrajPattern algorithm, we compare it with the PB approach [13] (used for mining
the same set of NM patterns).

6.1 Effectiveness of the NM Model

We use two real data sets for demonstrating the usefulness of the trajectory patterns.
One is a bus route data set, and the other is a human posture data set. Due to the space
limitations, we only present the first one in this paper. The second has similar results.

In the bus data set, we have the locations of 50 buses belonging to 5 routes. Each bus
is equipped with a small sensor and is able to obtain its locations via GPS. It transmits
its location reading every minute. We obtain the traces of these 50 buses for 10 week-
days. Thus we have a total number of 500 traces. Each reading consists of the longitude
and latitude of the bus’ location. Although this data set does not use any predictive
model, we can transform it to the predictive model M as follows. For a location read-
ing at time t, if the location can be predicted with sufficient accuracy by the previous
location(s) according to M, then the location reading is omitted. As a result, we only
retain these readings that can not be predicted by M accurately, which is the same as
using the predictive model M. Next we transform the location trajectories into velocity
trajectories and align all 500 trajectories on a set of 100 snapshots.

For mining the trajectory patterns, we assume that the objects are traveling in a square,
gx, gy , and δ are set to 1

1000 of the side of the space. In the bus route data set, it takes
TrajPattern a couple minutes to mine 1000 NM patterns. The average length of top-1000
match patterns with length at least 3 is about 3.18, while the average length of top-1000
NM patterns with length at least 3 is 4.2, which is much longer than that of match patterns.
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(b) Kalman Filter Model
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Fig. 3. Location Predictions for Bus Traces

To analyze the usefulness of the trajectory pattern model, we study the effects of
employing trajectory patterns in the location prediction module. We assume that a par-
ticular module is used to predict the locations and integrate the trajectory patterns into
the location prediction module. We first mine a set of k patterns of length at least 4
with the most match on the 450 velocity trajectories. Then we apply the discovered
patterns to the location prediction module for the remaining 50 trajectories. When an
object needs to decide whether to report a location, it first checks whether the previous
portion of the trajectory confirms2 with a discovered pattern. If so, we will use the pat-
tern for the prediction. Otherwise, the location calculated according to the prediction
module will be used. We chose three prediction modules, i.e., the linear model (LM)
[12], linear Kalman Filter (LMF) [2], and the recursive motion function (RMF) [11]
for the comparison. If the predicted location is too far away from the actual location
such that a message has to be sent from the mobile object to the server, this is called a
mis-prediction. Figure 3 shows the ratio of reduced mis-predictions by each approach.
By employing the top-k NM patterns, the mis-predictions can be reduced by 20% to
40% for the three prediction methods, while with the top-k match patterns we only can
reduce the mis-predictions by around 10% to 20%. This also demonstrates the effec-
tiveness of the NM model and the trajectory patterns.

6.2 Scalability and Sensitivity

To further analyze the performance and sensitivity of our TrajPattern algorithm, we
utilize a large set of synthetic data. A projection based (PB) approach [13] to mine
the normalized match is presented as a baseline algorithm. We apply the TrajPattern
algorithm and the PB algorithm on the synthetic data and analyze their scalability with
respect to the growth of the number of patterns wanted, the number of grids in the space,
the number of trajectories and the average length of the trajectories.

Synthetic data is generated according to the following parameters: the average length
of a trajectory L, the number of trajectories S and the number of grids G. We generate
the synthetic data in two different ways. The first data set is generated based on a similar
data generation method as in [9]. The second data set is generated based on the ZebraNet
data [16]. In the ZebraNet project, traces of wild zebras are recorded by deploying
wireless devices on zebras in Kenya. We first extract the movement of zebras from the
real traces, including the moving distance in a unit time and moving directions. There

2 Here, we assume that a segment of trajectory confirms with a pattern if the probability that the
trajectory segment is generated by the pattern (based on Equation 2) is above 90%.
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are a certain number of zebra groups, within which zebras move together. For each time
snapshot, each group is randomly assigned a moving distance and a moving direction
that are extracted from the real traces. A randomness is added to every individual zebra
to simulate noise in trajectories. Meanwhile, at each time snapshot, a certain small
number of zebras will leave the group and move individually. In this paper, we only
present the experimental results of the ZebraNet data set.

The projection based (PB) algorithm [13] suffers from the fact that a large set of
prefixes need to be maintained. At each unspecified position, the maximum match of
a position p is used as the up-bound of the possible match. However, this bound could
be very loose. As a result, it could be true that every prefix up to length c could be
extensible where c is a small positive integer. In this case, we need to keep Gc prefixes,
which may be too large when c is larger than 3 or 4. This could render the projection
based algorithm inefficient.

We compare the performance (efficiency) of the TrajPattern algorithm against the
baseline projection based (PB) approach. The experimental results show that the Traj-
Pattern algorithms outperforms the PB approach with a wide margin.

First we evaluate the performance with respect to the number of patterns needed, k.
Figure 4(a) shows the average execution time of two algorithms with respect to k. Al-
though the response time of the TrajPattern algorithm and the PB algorithm grow super-
linearly with the increase of k, the response time of the TrajPattern algorithm grows at a
much slower pace than that of the PB approach due to the following reason. In the pre-
vious section, we have shown that the time complexity of TrajPattern is quadratical to k,
while in the PB approach the thresholds ω is lower and M is larger with larger k. As a
result, the number of extensible prefixes in PB approach could increase at an exponential
pace. Thus the TrajPattern is much more scalable than the PB algorithm as k increases.

The second aspect that we investigate is the scalability with the number of sequences
S. The empirical results from Figure 4(b) have confirmed that the time complexity of
the TrajPattern algorithm is linearly proportional to S. On the other hand, the response
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time of the PB approach increases super-linearly with respect to S due to the follow-
ing reason. When the number of trajectories increases, the NM of singular patterns
increases and in turn the number of extendible prefixes increases exponentially. As a
result, the response time of the PB algorithm increases at a much faster pace than those
of the two TrajPattern algorithms.

Third, we study the effects of the average length of a sequence L. From Figure 4(c), L
has similar effects on two algorithms since the time to scan a data set increases linearly
with L.

Lastly, we examine the response time with various number of grids G. The TrajPat-
tern algorithm is more scalable than the PB algorithm since the time complexity of the
TrajPattern algorithm is linear with respect to G. On the other hand, in the PB approach,
there are more candidate locations for each unspecified position, and in turn the number
of extensible prefixes increases exponentially. Our empirical results in Figure 4(d) also
confirm the theoretical analysis. The response time of the PB approach grows exponen-
tially while the response time of the TrajPattern algorithm increases linearly.

The last experiment is performed to study the effect of the indifferent threshold δ
on the mining results. Figure 4(e) shows that the number of discovered pattern groups
decreases with the growth of the indifferent threshold δ. As analyzed in Section 3, the
larger the indifferent threshold δ, the more grids will be considered indifferent from
the expected location of the object, thus the more similar patterns will be found from
the same set of trajectories. Because the number of patterns to mine is determined, the
number of pattern groups becomes smaller when δ becomes larger, thus the discovered
patterns represent a smaller amount of ”useful information”.

7 Conclusion

In this paper, we study a new problem, mining trajectory patterns from a set of imprecise
trajectories. A novel measure is devised to represent the importance of a trajectory
pattern. The min-max property is identified for the trajectory patterns. Based on this
property, we develop the TrajPattern algorithm to mine the trajectory patterns, which
first finds short patterns and then extends them in a systematic manner. The concept of
pattern group is defined to present the trajectory patterns. Both real and synthetic data
sets are used to demonstrate the usefulness of the trajectory patterns and the efficiency
of the TrajPattern algorithm.
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