
Bridging Physical and Virtual Worlds: Complex Event
Processing for RFID Data Streams

Fusheng Wang1, Shaorong Liu2,�, Peiya Liu1, and Yijian Bai2

1 Integrated Data Systems Department,
Siemens Corporate Research,

Princeton, NJ 08540, USA
{fusheng.wang, peiya.liu}@siemens.com

2 Computer Science Department,
University of California, Los Angeles,

Los Angeles, CA 90095, USA
{sliu, bai}@cs.ucla.edu

Abstract. Advances of sensor and RFID technology provide significant new
power for humans to sense, understand and manage the world. RFID provides
fast data collection with precise identification of objects with unique IDs without
line of sight, thus it can be used for identifying, locating, tracking and moni-
toring physical objects. Despite these benefits, RFID poses many challenges for
data processing and management: i) RFID observations contain duplicates, which
have to be filtered; ii) RFID observations have implicit meanings, which have to
be transformed and aggregated into semantic data represented in their data mod-
els; and iii) RFID data are temporal, streaming, and in high volume, and have
to be processed on the fly. Thus, a general RFID data processing framework is
needed to automate the transformation of physical RFID observations into the
virtual counterparts in the virtual world linked to business applications. In this pa-
per, we take an event-oriented approach to process RFID data, by devising RFID
application logic into complex events. We then formalize the specification and
semantics of RFID events and rules. We demonstrate that traditional ECA event
engine cannot be used to support highly temporally constrained RFID events,
and develop an RFID event detection engine that can effectively process com-
plex RFID events. The declarative event-based approach greatly simplifies the
work of RFID data processing, and significantly reduces the cost of RFID data
integration.

1 Introduction and Motivation

Background

An RFID (radio frequency identification) system consists of a host computer, RFID
reader, antenna (which is often integrated into readers), transponders or RF tags. An
RFID tag is always uniquely identified by a tag ID stored in its memory, and can be
attached to almost anything. The EPC (electronic product code) standard [1] defines
such unique IDs around the world. Readers can be mounted at entrance/exit, point of
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sale, warehouse, and so on. When a tag is in the vicinity of a reader, the reader sends
energy through RF signal to the tag for power, and the tag sends back modulated signal
with ID and data. The reader then decodes and sends the data to the host computer.

With RFID technology, it is possible to create a physically linked world in which
every object is numbered, identified, cataloged, and tracked. RFID is automatic and
fast, and does not require line of sight or contact between readers and tagged objects.
With the significant advantages of RFID technology, RFID is being gradually adopted
and deployed in a wide area of applications, such as access control, library checkin
and checkout, document tracking, smart box, highway tolls, logistics and supply chain,
security and healthcare.

To achieve these, the first task for RFID applications is to map objects and their
behaviors in the physical world into the virtual counterparts and their virtual behaviors
in the applications by semantically interpreting and transforming RFID data.

RFID Data Transformation and Aggregation

There are generally two types of RFID applications: i) history-oriented object tracking
and ii) real-time oriented monitoring. Both need to transform RFID observations into
logic data.

History-oriented object tracking. In this type of RFID applications, RFID data streams
are collected from multiple RFID readers at distributed locations, and transformed into
semantic data stored in RFID data store. The semantics of the data include:

– Location, which can be either a geographic location or a symbolic location such
as a warehouse, a shipping route, a surgery room, or a smart box. A change of
location of an EPC-tagged object is often signaled by certain RFID readers. The
location histories of RFID objects are then transformed automatically from these
RFID readings, and stored in a location history relation in an RFID data store [2];

– Aggregation, i.e., formation of relationship among objects. A common case is the
containment relationship, e.g., containment relationship as shown next in Example
1. How to associate relationship among RFID objects in an Auto-ID environment
has been identified as a difficult issue for RFID applications [3]. To our best knowl-
edge, no work has been published on solving this problem.
Example 1: Data Aggregation. In Fig. 1a, on a packing conveyer, a sequence of
tagged items move through Reader A and are observed by the reader as a sequence
of observations, and then a tagged case is read by Reader B as another observation.
After that, all items of this sequence are packed into the case.

– Temporal. RFID observations and their collected data are highly temporal, as stud-
ied in [2]. The RFID data store essentially preserves the history of the movement
and behaviors of objects.

Real-time Monitoring. RFID is also widely used for real-time applications, where pat-
terns of RFID observations implying special application logic can trigger real-time re-
sponse. An example is discussed as follows.

Example 2. A company uses RFID tags to identify asset items and employees in the
building, and only authorized users (superusers) can move the asset items out of the
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Fig. 1. Sample aggregation in RFID. a) Packing of items into its container case; b) Complex
events used for aggregation.

building. When an unauthorized employee or a criminal takes a laptop (with an embed-
ded RFID tag) out of the building, the system will send an alert to the security personnel
for response.

Event-Oriented Processing of RFID Data Streams

Indeed, automatic RFID data transformation can be achieved by first devising applica-
tion logic as complex events, and then detecting such complex events (Fig. 2). After
the detection of these complex events, the semantics are interpreted and can be easily
integrated into business applications. RFID reader observations are the only primitive
events, which then form complex events. Next we show how to devise complex events
for data transformation.

– Data Aggregation Event. For Example 1, indeed, the items in the conveyer can be
arranged as a sequence of events TSEQA with certain temporal constraint (Fig.
1). Then the packing step becomes a sequence event from Reader A, followed by a
primitive event OB , an observation of case B from Reader B. Then, the containment
relationship is detected and transformed into a containment relation inside the RFID
data store.

– Real-time Monitoring Event. Example 2 can be simplified by a complex event: the
system detects an event A – observation of an object of type “laptop”, and within
certain interval τ , e.g., 5 seconds, it does not detect any occurrence of event B –
observation of a superuser, i.e., a negated event, then the event triggers an alert
action.
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RFID events, however, have their own characteristics and cannot be supported by
traditional event systems. The two examples above show that RFID events are temporal
constrained: both the temporal distance between two events and the interval of a single
event are critical for event detection. Such temporal constraints, however, are not well
supported by traditional ECA rules detection systems. In addition, non-spontaneous
events, including negated events and temporal constrained events, are important for
many RFID applications but difficult to support in past event detection engines. More-
over, the actions from RFID events are quite different: they neither trigger new primitive
events for the system, nor lead to a cascade of rule firings as in active databases. Thus,
there is an opportunity to build a scalable rule-based system to process complex RFID
events.

Our Contribution

In this paper, we formulate a declarative rule based approach to provide powerful sup-
port of automatic RFID data transformation between the physical world and the virtual
world. We develop a graph-based RFID complex event detection engine – RCEDA,
where temporal constraint is taken as a first class object in event detection. We intro-
duce pseudo events in event detection to process non-spontaneous events, which are
difficult to support in traditional event detection systems. We show that our approach
can support RFID applications effectively, and the performance of our event detection
engine is quite scalable as well.

The paper is organized as follows. We first give a formal definition of RFID events
in Section 2, and then discuss the declarative RFID rules language in Section 3. Event
detection engine is discussed in Section 4, and performance is studied in Section 5.
Related work is discussed in Section 6, followed by conclusions.

2 RFID Events

In this section, we will formalize the semantics and specification for RFID events. In
particular, we will discuss temporal RFID events, which are highly temporally con-
strained and cannot be well supported by traditional ECA (Event-Condition-Action)
rule systems.

An event is defined to be an occurrence of interest in time, which could be either
a primitive event or a complex event. Primitive events occur at a point in time, while
complex events are patterns of primitive events and happen over a period of time.

In the following discussion, we use E to represent an event type, and e to represent
an event instance.

We first define several functions used in our event expressions (Fig. 3).
t begin(e) returns the starting time of an event instance e, and t end(e) returns
the ending time. interval(e) returns the interval of an event instance: t end(e)
- t begin(e); dist(e1, e2) returns the distance between two event instances
e1 and e2, which is equal to t end(e2) - t end(e1); interval(e1, e2)
returns the interval between two event instances e1 and e2, which is equal to
max{t end(e2), t end(e1)} - min{t begin(e2), t begin(e1)}.



592 F. Wang et al.

t_begin(e1) t_end(e1)

dist(e1, e2)

interval(e1, e2)

t_begin(e2) t_end(e2)

time

Fig. 3. An illustration of functions used in event expressions

2.1 Primitive Event

Primitive events in RFID applications are events generated during the interaction be-
tween readers and tagged objects. That is, a primitive event is a reader observation,
in the format of observation(r, o, t), where r represents the reader EPC,
o represents the object EPC and t represents the timestamp when the observation
is made. For example, observation(’r1’, o, t) represents events generated
from a reader with EPC ’r1’. Primitive events are instantaneous. That is, given any
primitive event instance e, t begin(e) = t end(e). Primitive events are also
atomic: a primitive event either happens completely or does not happen at all.

Definition of Primitive Event Types. While primitive events are all from observations,
they can be of different types, according to the reader EPC, or tag EPC. We first present
two user-defined functions on primitive event attributes used to define primitive event
types.

– group(r) – the group which the reader r belongs to. Readers are often deployed
into groups in which readers perform the same functionality.

– type(o) –the type of the object with EPC o. The type can be extracted from its
EPC value with a user-defined extraction function, or specified by a user with a map-
ping function. For example, type(’8E5YUK691I0J60KDN’)=’laptop’
while type (’UH7JEFU63MAW6I610’) = ’pallet’.

With above functions, we can define primitive event types. For example, the primi-
tive event type E is defined as:
E = observation(r, o, t), group(r)=’g1’, type(o) =’case’
That is, observations of ’case’ by readers in group ’g1’ are of type E.
If group() and type() functions are not explicitly specified, the default primitive

event type is a group with the reader itself.
E = observation(’r’, o, t) ⇐⇒
E = observation(’r’, o, t), group(r)=’r’

2.2 Complex Event

A complex event is usually defined by applying event constructors to its constituent
events, which are either primitive events or other complex events. There are two types
of RFID event constructors: non-temporal and temporal, and the latter contains order,
temporal constraints, or both. While complex events defined with non-temporal event
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constructors can be detected without considering the orders among constituent events,
complex events defined with temporal event constructors cannot be detected without
checking the orders and/or other temporal constraints (e.g., distance or interval) among
constituent events.

Basic Non-Temporal Complex Event Constructors

– OR (∨): Disjunction of two events E1 and E2, E1 ∨ E2, occurs when either E1 or
E2 occurs.

– AND (∧): Conjunction of two events E1 and E2, E1 ∧ E2, occurs when both E1
and E2 occur disregarding their occurrence orders.

– NOT(¬): Negation of an eventE, ¬E, occurs if no instance of E ever occurs. Negated
events themselves are non-spontaneous and they are usually combined with other
events and/or with some temporal constraints.

In this paper, we only consider the above three basic non-temporal complex event
constructors, which are in fact sufficient for expressing any complex event patterns
without temporal constraints. For example, a complex event E = ALL(E1, E2,
..., En), which occurs if all E1, E2, ..., En occur irrespective of their orders, is
equivalent to E = E1 ∧ E2 ∧ ... ∧ En.

Temporal Complex Event Constructors

– SEQ(;): Sequence of two events E1 and E2, denoted by E1;E2, occurs when E2
occurs given that E1 has already occurred. (Here we assume that E1 ends before E2
starts.)

– TSEQ(:): Distance-constrained sequence of two events E1 and E2,
TSEQ(E1;E2, τl, τu), occurs when E2 occurs given that E1 has already
occurred and that the temporal distance between the occurrences of E1 and E2 is
bounded by [τl, τu]. That is, τl ≤ dist(TE1, E2) ≤ τu.

– SEQ+(;+): The aperiodic sequence operator, SEQ+(E), allows one to express
one or more occurrences of an event E.

– TSEQ+(:+): The distance-constrained aperiodic sequence operator, TSEQ+(E,
τl, τu), allows one to express one or more occurrences of an event E such that
the temporal distance between any two adjacent occurrences of E are bounded by
[τl, τu].

– WITHIN: An interval-constrained event, WITHIN(E, τ), occurs if an instance
of E, e.g., e, occurs and interval(e) ≤ τ .

Temporal Constraints. While non-temporal event constructors above were discussed
in the past [4, 5], the new temporal event constructors that we propose are essential
for RFID applications. As shown above, most temporal event constructors use tempo-
ral constraints to specify temporal complex events. These include distance constraint:
minimal distance (τl) between two events in a temporal sequence TSEQ and maximal
distance (τu) between two events in a temporal sequence TSEQ; and interval constraint:
maximal interval size (τ ) of a complex event as in the WITHIN constructor. These tem-
poral constraints are not supported in past event systems.
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Examples of Complex Events. In Example 1, the complex event is:
TSEQ( TSEQ+(E1, τl1, τu2); E2, τl2, τu2 ),

where event types E1 = observation(r1, o1, t1), group(r1) = ’r1’
and E2 = observation(r2, o2, t2), group(r2) = ’r2’.

In Example 2, the complex event is:
WITHIN(E1 ∧ ¬ E2, 5sec),

where E1 = observation(’r2’, o1, t1), type(o1) = ’laptop’ and
E2 = observation(’r2’, o2, t2), type(o2) = ’superuser’.

3 RFID Rules

Based on event specification described above, we now define RFID rules. We first in-
troduce the syntax of RFID rules as follows:

CREATE RULE rule id, rule name
ON event

IF condition
DO action1; action2; ...; actionn

where rule id and rule name stand for the unique id and name for a rule; event is the
event part of the rule, condition is a boolean combination of user-defined boolean func-
tions and SQL queries; and action1; action2; ...; actionn is an ordered list of actions,
where each action is either a SQL statement or a user-defined procedure, e.g., to send
out alarms.

An alias of an event can be defined for reuse in the following form:

DEFINE event name = event specification

Next, we show that with declarative RFID rules, we can provide powerful support
for RFID data processing, including data filtering, data transformation and aggregation,
and real-time monitoring.

3.1 RFID Data Filtering

Before RFID data are further processed, they need to be filtered first. There are two
types of data filtering for RFID data: low level data filtering, and semantic data filtering.
The low level data filtering cleans raw RFID data, and semantic data filtering extracts
data on demand or interprets semantics from RFID data.

Low Level Data Filtering: Duplicate Detection
Duplicate observations are common in RFID applications. This can be caused by several
reasons: i) tags in the scope of a reader for a long time (in multiple reading frames)
are read by the reader multiple times; ii) multiple readers are installed to cover larger
area or distance, and tags in the overlapped areas are read by multiple readers; and iii)
to enhance reading accuracy, multiple tags with same EPCs are attached to the same
object.
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Rule 1. If the same reader observes the same object multiple times within a short
interval, e.g., 5 seconds, then mark the previous event as a duplicate.

CREATE RULE r2, duplicate detection rule
ON WITHIN(observation(r, o, t1); observation(r, o, t2), 5sec)
IF true
DO

send duplicate msg(observation(r, o, t1))

Similarly, we can filter duplicates from multiple readers (e.g., r1 and r2), by defin-
ing a reader group containing these readers.

Semantic Data Filtering: Infield/Outfield Filtering
RFID rules can also be used to perform effective semantical data filtering. For example,
infield and outfield events are used in smart shelf applications [6]. Although tagged ob-
jects on a smart shelf are read all the times, applications may only be interested in when
an object is put on the shelf (infield) and when an object is taken off the shelf (outfield)
in order to update inventory automatically. The following example illustrates how to
use an RFID rule to express infield events and perform the corresponding actions.

Rule 2. If an object is observed by a reader r on a smart shelf for the first time, then
the rule will insert the observation into the OBSERVATION table. (We assume that the
reader is scheduled to bulk-read all objects every 30 seconds in the following example.)

CREATE RULE r2, infield filtering
ON WITHIN(¬observation(r, o, t1); observation(r, o, t2), 30sec)
IF true
DO

INSERT INTO OBSERVATION
VALUES (r, o, t2)

Outfield filtering can be defined similarly by switching the order of the negated event.

3.2 Data Transformation and Aggregation

One significant benefit of RFID rules is that data transformation and aggregation is
simplified in a declarative way. With a set of data transformation and aggregation rules,
RFID observations are automatically interpreted and mapped into their data models and
stored in RFID data store.

In the following, we show two examples of how to devise data transformation and
aggregation rules, and detect such rules to generate semantic data in a fully automatic
environment. We assume that object containment relationships are stored in table OB-
JECTCONTAINMENT(object epc, parent epc, tstart, tend), where object epc stands for
the EPC of the object being contained, parent epc stands for the EPC of the container
object, and [tstart, tend] stands for the period of the containment relationship.

Location Transformation
RFID observations may imply location changes and business movements. For example,
an observation by a reader r of an object o at time t implies that the object has entered
the location where the reader resides in starting from time t.
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In the following, we assume that object location information is stored in table OB-
JECTLOCATION (object epc, loc id, tstart, tend), with the EPC of an object, location ID
of the object, and the period during which the object stayed.

Rule 3. Any observation by a reader rwill change the location of the observed object
o: updating the object’s current location by changing its tend from “Until Changed”
(UC) to t and inserting a new location for this object, i.e., the reader’s new location
with its starting timestamp t and ending timestamp “UC.”

CREATE RULE r3, location change rule
ON observation(r, o, t)
IF true
DO

UPDATE OBJECTLOCATION
SET tend = t
WHERE object epc = o and tend = “UC”;
INSERT INTO OBJECTLOCATION VALUES(o, “loc2”, t, “UC”);

Containment Relationship Aggregation
Automatic data aggregation, a difficult task for RFID applications [3], can now be
greatly simplified with RFID rules. (RFID applications need to be engineered accord-
ingly to generate proper patterns.)

Rule 4. If a distance-constrained aperiodic sequence of readings from reader “r1”
is observed followed by a distinct reading from a reader “r2,” it implies that ob-
jects observed by “r1” are being packed in the object observed by “r2.” Then the
rule will insert new containment relationships into the OBJECTCONTAINMENT table
(Fig. 1).

DEFINE E1 = observation(“r1”, o1, t1)
DEFINE E2 = observation(“r2”, o2, t2)
CREATE RULE r4, containment rule
ON TSEQ(TSEQ+(E1, 0.1sec, 1sec); E2, 10sec, 20sec)
IF true
DO

BULK INSERT INTO CONTAINMENT
VALUES (o2, o1, t2, “UC”)

The keyword “BULK” will enforce a bulk insertion of all contained objects into the
container.

3.3 Real-Time Monitoring

RFID rules can also provide effective support of real-time monitoring, as shown in the
following asset monitoring example.

Rule 5. As shown in Example 2, if the reader mounted at a building exit, "r4,"
detects a tagged laptop but does not detect any tagged superuser (who is authorized to
move asset items out of the building) within certain time threshold, e.g., 5 seconds, then
it implies that the laptop is being taken out illegally, and an alert is sent to a security
personnel.
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DEFINE E4 = observation(“r4”, o4, t4), type(o4) = “laptop”
DEFINE E5 = observation(“r4”, o5, t5), type(o5) = “superuser”
CREATE RULE r5, asset monitoring rule
ON WITHIN(E4 ∧ ¬E5, 5sec)
IF true
DO send alarm

4 RCEDA: RFID Complex Event Detection

While RFID rules provide powerful support for data transformation and monitoring, the
detection of complex RFID events is quite challenging. We next discuss the differences
between RFID event detection and traditional ECA event detection.

4.1 RFID Event Detection Versus Traditional ECA Event Detection

First, many RFID events (e.g., events containing constructors of TSEQ, TSEQ+ and
WITHIN) contain temporal constraints at instance level, which are not supported by
traditional ECA rules. In traditional ECA rule systems [7, 8, 4, 9], event detection is
performed at type level, but instance level constraints (such as temporal constraints)
are not supported. (Snoop supports interval for periodic events, which have to be be-
tween two events.) Thus, in such systems, instance-level constraint checking has to be
performed as condition checking. In RFID events, temporal constraints, however, are
inherent to the events and highly essential to the correctness of event detection. Thus,
RFID temporal constraints cannot be simply taken as conditions. Next we show an ex-
ample that traditional ECA event detection will not work properly for temporal RFID
events. Suppose that we have the following complex event to detect the packing of items
into cases in an assembly line (Fig. 1):

E = TSEQ(TSEQ+(E1, 0sec, 1sec); E2, 5sec, 10sec)

where E1 represents an observation of an item and E2 represents an observation of a
case.

If the event detection is done through ECA systems, where instance level temporal
constraints are checked as conditions, we will first detect the following instances for
complex event E, given the event history in Fig. 4.

{e1
1, e2

1, e3
1, e5

1, e6
1, e7

1}; e12
2

where ej
i denotes an instance of event type Ei at time j. The instances {e1

1, e2
1, e3

1,
e5
1, e6

1, e7
1}, however, do not satisfy the temporal constraints in TSEQ+(E1, 0sec,

1sec) because the distance between e3
1 and e5

1 is larger than the upper bound, 1sec.
With such an event processing approach, no instances for complex event E will be gen-
erated, which, however, is not correct. Therefore, for proper processing of RFID events,
we must consider temporal constraints as an integral part of the event detection step.
Thus, existing ECA-based event systems cannot be used for detecting RFID events.

Second, RFID events by constructors such as SEQ+ and NOT are non-spontaneous
or induced: they cannot detect their occurrences by themselves unless they either get
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time e1
1 e1

2 e1
3 e1

5 e1
6 e1

7 e2
12 e2

15time e1
1e1
1 e1

2e1
2 e1

3e1
3 e1

5e1
5 e1

6e1
6 e1

7e1
7 e2

12e2
12 e2

15e2
15

Fig. 4. Sample event history for complex event E = TSEQ(TSEQ+(E1, 0sec, 1sec);
E2, 5sec, 10sec)

expired or are explicitly queried. Most existing event systems, however, only detect
spontaneous events, i.e., events that can detect their occurrences by themselves. For ex-
ample, while Snoop [4] supports aperiodic sequence and negation constructors, these
constructors, however, must always start with an initiator event and end with a termi-
nator event, which is not general enough. The non-spontaneous nature of many RFID
event constructors demands a new approach for RFID event processing and detection.

To this end, in this paper, we develop a general RFID Complex Event Detection
Algorithm (RCEDA). In our approach, temporal constraints become the first class ob-
jects in the event detection phase. To support detection of non-spontaneous events, the
system automatically generates pseudo events to actively trigger the querying of the
occurrences of these non-spontaneous events.

Next, we first discuss the parameter context applicable to RFID applications, then
present in detail how to effectively detect RFID complex events under such parameter
context.

4.2 Parameter Context for RFID Event Detection

Parameter contexts define which instances of a complex event are actually pulled out
of a history of multiple constituent events. Events can always be detected using unre-
stricted (or general) context, in which all combinations of instances of constituent events
are returned as instances of a complex event. The unrestricted parameter context usually
produces a large number of event instances. Only some of these combinations, however,
are meaningful for an application. Thus, four different restricted parameter contexts
have been proposed in [4], including recent, continuous, cumulative and chronicle.

Among the four types of contexts, only the chronicle context will work for RFID
events. This is because that complex RFID events often overlap with each other (e.g.,
Fig. 1b), since multiple readers (often deployed in a sequence of locations) produce ob-
servations simultaneously and these observations are collected and processed together.
Under the other three types of contexts, there are often events matched from overlapped
events which lead to incorrect detection. The chronicle context detects complex events
in chronicle order of occurrence: the oldest initiator is paired with the oldest terminator.
Thus it works properly even when instances for a complex event overlaps. For exam-
ple, instances for event E in Fig. 4 under chronicle context will include {e1

1, e2
1, e3

1,
e12
2 }, {e5

1, e6
1, e7

1, e15
2 }, which are as intended. Thus, we use chronicle context

for detecting complex events in RFID applications.

4.3 Graphical Representation of Complex Events

Our event detection uses a graph-based computation model. We first introduce the
graphical representation for each complex event constructor and then present how to
construct event graphs for complex events in RFID rules.
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Fig. 5. Graphical representations of complex event constructors: (a) E = E1∨E2, (b) E
= E1∧E2, (c) E = ¬E1, (d) E = E1;E2, (e) E = TSEQ(E1;E2, τl, τu), (f) E =
SEQ+(E1) and (g) E = TSEQ+(E1, τl, τu)

Fig. 5 illustrates the graphical representation of each event constructor discussed in
Section 2.2, where constituent events are represented as child nodes, and the constructed
events are represented as parent nodes. We denote a node that represents an event E
as vE . Note that the temporal sequence events are also associated with their distance
constraints.

An exception is the WITHIN constructor, which is represented as an interval con-
straint of the constituent node. For example, Fig. 6a shows the graphical representation
of an interval-constrained event E = WITHIN(E1 ∧ E2, 10sec). As another ex-
ample, Fig. 6b shows the graphical representation of a complex event with both interval-
constraint and distance-constraint: E = WITHIN(TSEQ+(E1, 0.1sec,
1sec), 100sec).

∧

E1 E2

[10sec]∧

E1 E2

∧

E1 E2

[10sec] :+

E1

[0.1sec, 1sec] [100sec ]:+

E1

[0.1sec, 1sec] [100sec ]

(a) (b)

Fig. 6. Graphical representations of interval-constrained complex events: (a) WITHIN(E1 ∧
E2, 10sec) and (b) WITHIN( TSEQ+(E1, 0.1sec, 1sec), 100sec)

Given a set of RFID rules R = {r1, r2, ..., rn}, we construct a graph rep-
resenting the events for these rules in the following steps.

– First, build an event graph for each rule’s event. For each rule ri in R, we build an
event graph Ti with leaf nodes representing primitive events, internal nodes repre-
senting complex events and edges linking constituent events with parent complex
events. The root node of Ti represents the event part of the rule ri.

– Second, propagate interval constraints. For each event graphTi, if there is any inter-
val constraint defined on an event node vE ∈ Ti, propagate vE’s interval constraint
to all the descendant nodes of vE . This is because that a complex event always
has a longer interval than its constituent events. Interval constraints are propagated
top-down in the event graph: given any event node vE , its interval constraint is set
to be the minimum of the current interval constraint of E (if any) and that of its
parent event node, if any. For example, Fig. 7b illustrates the graphical representa-
tion of a complex event E = WITHIN(TSEQ+(E1 ∨ E2, 0.1sec, 1sec)
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Fig. 7. Graphical representations of an interval-constrained complex event E =
WITHIN(TSEQ+(E1 ∨ E2, 0.1sec, 1sec) ; E3, 10min): (a) before propagating
the interval constraint; and (b) after propagating the interval constraint.

; E3, 10min) after interval propagating from Fig. 7a. We use vE.within to
represent the interval constraint on event E.

– Finally, merge common sub-graphs. We can combine any common sub-graphs in
{T1, T2, ..., Tn} to form an event graph G, thus avoid detecting common
sub-events multiple times to improve efficiency and reduce space requirements.
For convenience, we use p(vE) to represent the set of nodes that are parents of
vE in G; and we use r(vE) to represent a rule whose event part is represented by
vE .

By integrating temporal constraints into event graphs, temporal constraints become
first class constructs in event detection, and are checked during the detection process,
as discussed later.

4.4 RFID Event Detection Mode

Traditional graph-based event processing systems detect complex events in a bottom-up
fashion: occurrences of primitive events are injected at the leaves and flow upwards to
trigger parent complex events. Such a bottom-up event detection approach, however,
is inapplicable to detecting RFID events. In fact, many RFID events (such as those
generated from SEQ+ and NOT constructors) are non-spontaneous: they cannot detect
their occurrences by themselves unless they either get expired – if they are associated
with interval constraints – or are explicitly queried about their occurrences from their
parent nodes.

Next, we generalize three RFID event detection modes for each node vE in G.

– Push(↑): An event node vE’s detection mode is push if E is a spontaneous event
such that any occurrence of E will trigger vE to automatically detect the occur-
rences and propagate them to their parents. For example, primitive events will al-
ways automatically propagate their instances to their parents, thus are always in
push mode.

– Pull(↓): An event node vE’s detection mode is pull if E is a non-spontaneous event
such that vE cannot determine whether instances of E have occurred or not unless
being explicitly queried by vE’s parent node. For example, the detection mode for
a NOT event is always pull.
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– Mixed(	): An event node vE’s detection mode is mixed if its detection mode is
neither push nor pull. Such event nodes are usually associated with temporal con-
straints. For example, the detection mode for a complex event E = TSEQ+(E1,
τl, τu) is mixed if E1 is a spontaneous event. When an instance of E1 arrives at
time timestamp,vE cannot determine whether the sequence has ended or not un-
less there is no arrival of other instance of E1 during the period of [timestamp,
timestamp + τu].

We can compute the event detection modes for the nodes in an event graph G re-
cursively by starting from primitive event nodes on the leaf level. While the detection
mode for a primitive event node is always push, the detection mode for a complex event
depends on the event constructor type and the modes of its constituent sub-events.

An RFID rule r is valid only if the detection mode for its event E is in either push
mode or mixed mode. In this paper, we propose a method to detect mixed mode events
by the introduction of pseudo events. (If the detection mode for r’s event E is pull, then
occurrences of E can never be detected and thus r will never be triggered. We call such
events invalid events, and corresponding rules invalid rules.)

4.5 Pseudo Events

Existence of non-spontaneous RFID events causes mixed detection mode. Mixed mode
RFID event nodes cannot be supported in traditional graph-based event detection sys-
tems, which propagate event occurrences bottom up. To address this challenge, we pro-
pose to generate pseudo events when necessary to trigger explicit queries about the
occurrences of these non-spontaneous events, i.e., in a top-down way.

A pseudo event is a special artificial event used for querying the occurrences of non-
spontaneous events during a specific period, and is scheduled to happen at an event
node’s expiration time. We represent a pseudo event instance as e

′[tc,te]
i , with its target

event id i, creation time tc and execution time te. A pseudo event e
′[tc,te]
i will query

the occurrences of event i during the period [tc, te], or non-occurrences of event i
during the period [tc, te] if the constructor for event i is NOT.

For a rule r with a push mode event r.E, there is no need to generate pseudo events
even though r.E contains non-spontaneous sub-events.

For example, suppose that the event of rule r is WITHIN(¬E1; E2, τ ) where E1 and
E2 are primitive events, any occurrence of E2 ( e.g., e2) will trigger the querying about
the non-occurrences of E1 during the period [t end(e2) - τ, t end(e2)].
Thus, there is no need to generate pseudo events in this case.

For a mixed mode event r.E, however, we need to generate pseudo events to trigger
the querying about the occurrences of non-spontaneous sub-events. For example, for an
interval-constrained complex event E = WITHIN(E1 ∧ ¬E2, τ) where E1 and E2
are primitive events; if E1 happens first, we need to make sure that there is no occurrence
of E2 within τ . Therefore, if there is no occurrence of E2 during the interval of E1’s
instance, occurrence of an E1 instance e1 will create a pseudo event with the target event
¬E2, creation time t end(e1) and execution time t begin(e1) + τ . This pseudo
event will query about the non-occurrence of event E2 during the period [t end(e1),
t begin(e1) + τ].
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Fig. 8. An example of detecting a complex event E = WITHIN(E1 ∧ ¬ E2, 10sec) with
event history {e2

2, e10
1 , e20

1 }: (a) graphical representation for E; (b) on arrival of e2
2; (c) on

arrival of e10
1 ; (d) after processing of (c); (e) on arrival of e20

1 ; (f) after processing of (e); (g) after
arrival of pseudo event e′[20,30]

3 , where the event id for ¬ E2 is 3; and (h) after processing of (g).

For a mixed mode event, we can determine whether a node v in the event graph G
needs to generate pseudo events in a top-down way.

The notations used here include: i) vE.mode: the detection mode for vE ; ii)
vE.pseudo: vE’s pseudo event generation flag; and iii) vE.pseudo target: the
target event of a pseudo event from vE .

Implementation of Pseudo Events. When pseudo events are created, they are put into a
sorted pseudo queue (pseudo queue) according to their scheduled execution times-
tamps. The incoming RFID event queue (event queue) is ordered by their observa-
tion timestamps. When the event engine fetches an event, it always fetches the earliest
event from the two queues.

An Example of Detecting Complex Events Using Pseudo Events
Fig. 8 illustrates an example of detecting a complex event E = WITHIN(E1 ∧ ¬E2,
10sec) with pseudo events. We assume an event history {e2

2, e10
1 , e20

1 }, where ej
i

represents an occurrence of event Ei at time j. The steps are described as follows:

1. On arrival of e2
2, vE2 propagates e2

2 to its parent node. Since the parent node is
non-spontaneous, it will not further propagate the occurrence (Fig. 8b);

2. On the arrival of e10
1 , vE1 propagates its occurrence to vE , which triggers the

querying about the non-occurrence of E2 during the period [t end(e10
1 ) -

10sec, t end(e10
1 )], i.e., [0sec, 10sec] (Fig. 8c);

3. Since there is an occurrence e2
2 of E2 during the period of [0sec, 10sec], e10

1
cannot be a constituent instance of an E’s occurrence. Thus, e10

1 is deleted (Fig.
8d);

4. Similarly, on the arrival of e20
1 , vE1 propagates its occurrence to vE , which triggers

the querying about the non-occurrence of E2 during the period [t end(e20
1 ) -

10sec, t end(e20
1 )], i.e., [10sec, 20sec] (Fig. 8e);

5. Since there is no occurrence of E2, vE cannot detect its occurrence unless there
is no occurrence of E2 during the period [t end(e20

1 ), t begin(e20
1 ) +
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10sec]), i.e., [20sec, 30sec] (Fig. 8f). Thus, a pseudo event e′[20,30]
3 is

scheduled to be generated at time 30sec to query the event node v¬E2 . We assume
that the event id for ¬E2 is 3;

6. The arrival of e′[20,30]
3 will trigger the querying about the non-occurrence of event

E2 during the period [20sec, 30sec] (Fig. 8g). Since there is no occurrence
of E2 during that period, occurrence of E is detected (Fig. 8h).

4.6 RFID Complex Event Detection Algorithm (RCEDA)

In this subsection, we discuss how to efficiently detect RFID complex events under
chronicle parameter context (Algorithm RFID COMPLEX EVENT DETECTION).

RFID COMPLEX EVENT DETECTION(R = {r1, r2, ..., rn})
1 Construct an event graph G representing the rules in R (Section 4.3)
2 //begin of initializing event graph
3 Propagate interval constraints starting from the root node of G
4 Assign an event detection mode for each node in G
5 Assign pseudo event flag and target for each node in G
6 //end of initializing event graph
7 for each incoming event e1

8 do if e1 is an instance of a primitive event E1

9 then for each parent node vE of vE1

10 do ACTIVATE PARENT NODE(vE, e1)
11 if vE1 .pseudo
12 then GENERATE PSEUDO EVENT(vE1 , vE, e1)
13 for each rule r whose event part is represented by vE1

14 do trigger the rule r
15 if e1 is a pseudo event
16 then let E be the target event of e1

17 let tstart be the creation timestamp of e1

18 let tend be the execution timestamp of e1

19 EList ← QUERY INTERVAL NODE(vE , tstart, tend)
20 for each event instance e in EList
21 do for each parent node, v, of vE

22 do ACTIVATE PARENT NODE(v, e)

Given an event graph G, we first initialize G by: i) propagating interval constraints
in a top-down way (Algorithm PROPAGATE INTERVAL CONSTRAINT); ii) assigning
event detection modes bottom-up based on event constructors and interval constraints
(Section 4.4); and iii) assigning pseudo event generation flags top-down based on the
event detection modes (Algorithm ASSIGN PSEUDO EVENT FLAG). Then, we can use
this event graph to monitor the occurrences of events based on the algorithm RCEDA.
The algorithm has three main functions:

– ACTIVATE PARENT NODE(vE, e1): This recursive function propagates an event
instance e1 from one sub-event E1 of E to vE and detects whether any instance
of E has occurred or not. If yes, vE will recursively propagate its occurrence to
its parent node (if any), i.e. call the ACTIVATE PARENT NODE function again, or
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trigger a rule r whose event part is represented by vE . If the pseudo flag of vE1
is set to true during the event graph initialization, this function will also generate a
pseudo event from vE1, e

′[ts,te]
i , where i is the id of vE’s pseudo event target, i.e.,

vE.pseudo target, ts and te are set based on t begin(e1), t end(e1)
and the temporal constraints on E.

– QUERY INTERVAL NODE(vE, tstart, tend): This function queries about oc-
currences of the event E during the period [tstart, tend] and outputs such
occurrences if any.

– GENERATE PSEUDO EVENT(vE1, vE, e2): This function will generate a
pseudo event for the target event vE1 on the occurrence of an event instance e2,
where e2 is an instance of one of vE’s sub-events; vE1 is either the same as vE or
a child node of vE . The creation time and execution time for the pseudo event will
depend on the temporal constraints on vE , t begin(e2) and t end(e2).

The algorithm RCEDA works as follows:

– On each occurrence of a primitive event e1 (of type E1) attached to a leaf node
vE1, the algorithm will propagate e1 to all the internal event nodes vE where
E1 is a sub-event of E. That is, the occurrence of e1 will call the function ACTI-
VATE PARENT NODE(vE, e1). Also, the occurrence of e1 will also trigger all the
rules whose events are represented by vE1 .

– On each occurrence of a pseudo event e
′[ts,te]
i , the algorithm will query about the

occurrences of the target event with id i during the period [ts, te], with the
function query internal node(vEi, ts, te). The algorithm will recursively prop-
agate each occurrence, ei, in the query results to event i’s parent node v, with the
function ACTIVATE PARENT NODE(v, ei).

– On each occurrence e of an event E, either primitive or complex, if the pseudo
flag of vE is set to true during the event graph initialization, the algorithm will
generate a pseudo event for vE.pseudo target. The creation and execution
timestamps of the pseudo event are set based on the t begin(e), t end(e)
and the temporal constraints between E and the target event. This is done with the
function generate pseudo event(vE, v, e), where v is the common parent node
between vE and vE’s pseudo target event node.

5 Performance Study

To evaluate the performance of our approach, we developed a simulator of an RFID-
enabled supply chain system with warehouses, shipping, retail stores and sale to cus-
tomers. Rules are defined for the system to automatically transform and aggregate data.
The machine used is a Dell Latitude D610, with 2GHz Pentium M CPU and 1GB mem-
ory, installed with Windows XP. We implemented our event detection algorithm RCEDA
in C#.

We tested the total event processing time versus the number of primitive events and
versus the number of rules, with event arrival rate of 1000 events per second. (To sim-
plify the test, action cost such as database update cost is not counted in the processing
time.) The experiment result shown in Fig. 9 demonstrates that the cost increases almost
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Fig. 9. Event processing time versus number of events and number of rules

linearly versus the number of events, and that the performance versus number of rules
is also quite scalable.

6 Related Work

RFID technology has emerged for years and poses new challenges for data processing
and management. The importance of event processing is pointed out in [10], but
methodology is not provided. In [2], a temporal-based data model is developed for
RFID data, and how to use rules to transform RFID data from observations into the data
model is also discussed; however, it lacks a complete framework and implementation.

Recently, major IT vendors are providing sophisticated RFID platforms, including
the Sun EPC Network [11], SAP Auto-ID Infrastructure [12], Oracle Sensor Edge
Server [13], IBM WebSphere RFID Premises Server [14], Sybase RFID Solutions [15],
and UCLA’s WinRFID Middleware[16]. These platforms provide a general interface
to collect RFID data from readers, and then forward the data to applications. These
systems, however, only support limited RFID rules: in fact they only support primi-
tive events or their simple combinations. Thus it is up to users’ applications to detect
complex events. RFID event processing is also discussed in [17, 18], where no formal
method is proposed.

Event processing has been studied extensively in the past [19, 9, 7], in the context of
active databases. These systems normally use Event-Condition-Action (ECA) rules for
event processing. RFID events differ from traditional events in several ways, including
the high temporal nature and existence of non-spontaneous events. Thus it is difficult
for traditional event detection systems to support RFID event detection.

Temporal constraints are considered in [20, 21], which, however, cannot be used to
support the special RFID events such as temporal sequence and temporal negation.
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Event negation is discussed in [7], where a negated event must have an initiator event
and a terminate event. Motakis et al [5] provide a formal discussion of active rules
including negated events, but the implementation approach is not provided.

7 Conclusions

One of the major challenges for RFID applications is to bridge the physical world rep-
resented with EPC tags, and the virtual world represented with application logic. To
address this challenge, we develop an event-oriented framework that can effectively
transform and aggregate raw RFID data into semantic data, by i) declarative event spec-
ification with temporal constraints; ii) declarative rules definition to support data trans-
formation and real-time monitoring; and iii) an RFID complex event detection engine
that supports temporal constraints by integrating instance level constraint checking into
the detection process, and uses pseudo events to actively detect non-spontaneous events.
The event framework provides comprehensive support of RFID applications, including
object tracking and real-time monitoring. For the latter, the difficulty of data aggrega-
tion can now be solved soundly through complex event generation and detection. The
performance study shows that our system is efficient and scalable. The technology de-
veloped in this paper is now integrated into Siemens RFID Middleware [2] to provide
integrated RFID solutions for RFID-enabled business applications.
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